
ibm.com/redbooks

Front cover

Communications Server for z/OS V1R7
TCP/IP Implementation, Volume 4
Policy-Based Network Security

Bob Louden
Rama Ayyar

Garth Madella
Joel Porterie

Understand CS for z/OS TCP/IP security
and policy capabilities

See CS for z/OS security and
policy implementation examples

Protect your z/OS networking
environment

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Communications Server for z/OS V1R7 TCP/IP
Implementation, Volume 4, Policy-Based Network
Security

March 2006

SG24-7172-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (March 2006)

This edition applies to Version 1, Release 7, of z/OS Communications Server.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xvii.

Contents

Preface . ix
Our implementation environment . xi

The environment used for all four books. xi
Our focus for this book . xii

The team that wrote this redbook. xiii
Become a published author . xiv
Comments welcome. .xv

Notices . xvii
Trademarks . xviii

Part 1. Policy-based networking . 1

Chapter 1. Policy Agent (PAGENT) . 3
1.1 Policy Agent description . 4

1.1.1 Basic concepts . 4
1.1.2 The Policy model . 6

1.2 Implementing PAGENT on z/OS. 10
1.2.1 Starting PAGENT as started task . 10
1.2.2 Starting PAGENT from UNIX . 14
1.2.3 Stopping PAGENT . 14
1.2.4 How to disable PAGENT policies for IPSec . 14
1.2.5 Basic configuration . 15
1.2.6 Coding policy definitions in a configuration file . 17
1.2.7 Refreshing policies . 18
1.2.8 Verification . 19
1.2.9 For additional information . 19

1.3 Setting up TRMD. 19

Chapter 2. IP filtering . 21
2.1 Defining IP filtering . 22

2.1.1 Basic concepts . 22
2.1.2 For additional information . 25

2.2 Why IP filtering is important . 25
2.3 How IP filtering is implemented. 25

2.3.1 z/OS IP filtering implementation . 25

Chapter 3. IPSec . 61
3.1 IPSec definition . 62
3.2 Key IPSec components. 62

3.2.1 IP Authentication Header (AH) protocol . 63
3.2.2 IP Encapsulating Security Payload (ESP) protocol. 63
3.2.3 Internet Key Exchange (IKE) protocol. 63

3.3 How IPSec is implemented . 63
3.3.1 Set up the Internet Key Exchange Daemon (IKED) . 64
3.3.2 Set up the System Logging Daemon (syslogd) to log IKED messages 71
3.3.3 Start IKE daemon and verify it initializes. 71
3.3.4 Set up Traffic Regulation Manager Daemon (TRMD). 71
3.3.5 Update the TCP/IP stack to activate IPSec. 71

© Copyright IBM Corp. 2006. All rights reserved. iii

3.3.6 Restrict the use of the ipsec command. 71
3.3.7 Install the Policy Agent (PAGENT) . 72
3.3.8 Define the IPSec policies to PAGENT . 72
3.3.9 Using the z/OS Network Security Configuration Assistant 72

3.4 Implementing IPSec between two z/OS systems . 80
3.4.1 Setting up the policy using z/OS GUI . 81

3.5 Implementing IPSec between z/OS and Windows . 105
3.5.1 Setting up the policy . 105
3.5.2 Setting up the Windows XP . 111

3.6 Verification . 124
3.6.1 Checking syslogd for messages . 124
3.6.2 Proving things are working . 125

3.7 Problem determination aids . 126
3.7.1 IPSEC command . 127
3.7.2 pasearch command . 127
3.7.3 PAGENT and IKE daemon logs . 127

3.8 Further information . 127

Chapter 4. Application Transparent - TLS. 129
4.1 AT-TLS definition . 131

4.1.1 Basic concepts . 131
4.1.2 AT-TLS application types . 132
4.1.3 For additional information . 133

4.2 Why AT-TLS is important . 133
4.3 Recommendations . 133
4.4 Restrictions . 134
4.5 How AT-TLS is implemented . 134

4.5.1 Rexx socket application scenario . 135

Chapter 5. Intrusion Detection Services (IDS) . 151
5.1 What IDS is . 152
5.2 Basic concepts . 152

5.2.1 Scan policies. 153
5.2.2 Attack policies . 156
5.2.3 Attack policy tracing . 158
5.2.4 Traffic Regulation (TR) policies. 159

5.3 How IDS is implemented. 161
5.3.1 The eServer IDS Configuration Manager . 161
5.3.2 Requirements and download instructions . 163
5.3.3 Windows steps . 164
5.3.4 Linux steps . 164
5.3.5 Using the GUI . 164
5.3.6 Policy priorities . 189
5.3.7 Additional information . 194

Chapter 6. Quality of Service . 197
6.1 QoS definition . 198

6.1.1 Differentiated Services . 198
6.1.2 QoS with z/OS Communications Server . 200
6.1.3 PAGENT QoS policies . 201
6.1.4 Configuring QoS in the z/OS Communication Server . 202
6.1.5 For additional information . 204

6.2 Why QoS is important . 204
6.3 How QoS is implemented . 204

iv Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

6.3.1 QoS configuration using the zQoS Manager. 204
6.3.2 LDAP configuration . 208
6.3.3 z/OS host information . 210
6.3.4 QoS policy rules . 215
6.3.5 Conjunctive Normal Form (CNF) policies . 230
6.3.6 Problem determination . 232

Part 2. SAF-based security . 235

Chapter 7. RACF demystified . 237
7.1 Basic concepts . 238
7.2 How to protect your network resources. 240
7.3 How to protect your programs. 240

7.3.1 The sticky bit in the z/OS UNIX environment . 241
7.4 How to associate a user ID with a started task (STC). 242
7.5 How to set up security for daemons in z/OS UNIX . 242
7.6 RACF multilevel security (MLS) for network resources. 243

7.6.1 Basic concepts of MLS . 243
7.7 Digital certificates in RACF . 244
7.8 Further information . 244

Chapter 8. Protecting network resources . 245
8.1 The SERVAUTH resource class . 246
8.2 Protecting your TCP/IP stack . 246

8.2.1 Stack Access overview . 246
8.2.2 Example setup . 246

8.3 Protect your network access . 247
8.3.1 Network access control overview . 247
8.3.2 Server considerations . 248
8.3.3 Using NETSTAT for Network Access control . 248
8.3.4 Working example of Network Access control . 249

8.4 Protecting your network ports . 250
8.4.1 The PORT/PORTRANGE SAF keyword. 251
8.4.2 Using NETSTAT to display Port Access control . 252

8.5 Protecting the use of socket options . 252
8.5.1 SO_BROADCAST Socket option access control . 252
8.5.2 IPv6 advanced socket API options . 253

8.6 Protect sensitive network commands . 253
8.6.1 z/OS VARY TCPIP command security . 254
8.6.2 TSO NETSTAT and UNIX onetstat command security. 257
8.6.3 Policy Agent command security . 259
8.6.4 IPSec command access control . 260
8.6.5 For more information. 260

8.7 Protecting FTP-related resources . 260
8.7.1 FTP SITE command control . 260
8.7.2 FTP server access control . 260
8.7.3 FTP z/OS UNIX access control. 260
8.7.4 RACF-delegation of cryptographic resources . 260

8.8 Protecting network management resources . 261
8.8.1 SNMP agent control . 261
8.8.2 TCP connection information service access control . 261
8.8.3 CIM provider access control . 261

8.9 Protecting miscellaneous resources . 261
8.9.1 Digital Certificate Access Server (DCAS) access control 261

 Contents v

8.9.2 MODDVIPA utility program control . 261
8.9.3 Fast Response Cache Accelerator (FRCA) Access Control 261
8.9.4 Real-time SMF information service access control . 262
8.9.5 TCP/IP packet trace service access control . 262
8.9.6 TCP/IP stack initialization access control . 262

Part 3. Appendixes . 263

Appendix A. Basic cryptography. 265
Potential problems with electronic message exchange . 267

The request is not really from your client . 267
The order could have been intercepted and read . 267
The order could have been intercepted and altered . 268
An order is received from your client, but he denies sending it. 269

Secret key cryptography . 270
Public key cryptography . 271

Encryption . 271
Authentication . 272
Public key algorithms . 273
Digital certificates . 273

Performance issues of cryptosystems . 277
Message integrity . 278

Message digest (or hash) . 278
Message authentication codes (MAC) . 279
Digital signatures . 280

Appendix B. Tools for application security . 283
Secure Sockets Layer (SSL) . 284

SSL protocol description . 284
Certificates for SSL . 286
B.0.1 System SSL . 288

TLS protocol . 289
Kerberos-based security system . 290

Kerberos protocol overview. 290
Inter-realm operation. 295
Some assumptions . 295
Kerberos implementation in z/OS . 296

Appendix C. Certificate management in z/OS . 301
Digital certificates . 302
How to generate digital certificates in z/OS . 303
Digital certificate field formats . 304
RACF RACDCERT command use. 306
RACF key rings . 307

RACDCERT command security . 308
RACDCERT command format . 308

gskkyman command use . 309
Client certificates . 311
Server certificates . 311
Self-signed certificates . 312
Obtaining certificates . 312

Self-signed certificates . 312
Internal Certificate Authority (CA) . 328
External Certificate Authority (CA) . 333

vi Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Certificate locations example . 346
RACF certificates . 346
gskkyman z/OS UNIX certificates . 349

Appendix D. IPSec scenario policies . 353

Related publications . 357
IBM Redbooks . 357
Other publications . 357
Online resources . 359
How to get IBM Redbooks . 359
Help from IBM . 359

Index . 361

 Contents vii

viii Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Preface

For more than 40 years, IBM® mainframes have supported an extraordinary portion of the
world's computing work, providing centralized corporate databases and mission-critical
enterprise-wide applications. The IBM System z9™, the latest generation of the IBM
distinguished family of mainframe systems, has come a long way from its IBM System/360™
heritage. Likewise, its z/OS® operating system is far superior to its predecessors—providing,
among many other capabilities, world-class, state-of-the-art, support for the TCP/IP Internet
protocol suite.

TCP/IP is a large and evolving collection of communication protocols managed by the
Internet Engineering Task Force (IETF), an open, volunteer organization. Because of its
openness, the TCP/IP protocol suite has become the foundation for the set of technologies
that form the basis of the Internet. The convergence of IBM mainframe capabilities with
Internet technology, connectivity, and standards—particularly TCP/IP—is dramatically
changing the face of information technology and driving requirements for ever more secure,
scalable, and highly available mainframe TCP/IP implementations.

This new and improved Communications Server (CS) for z/OS TCP/IP Implementation series
provides easy-to-understand step-by-step how-to guidance on enabling the most commonly
used and important functions of CS for z/OS TCP/IP. Communications Server for z/OS V1R7
TCP/IP Implementation, Volume 4 - Policy-Based Network Security, SG24-7172, explains
how to set up security for your z/OS networking environment. With the advent of TCP/IP and
the Internet, network security requirements have become more stringent and complex.
Because many transactions come from untrusted networks such as the Internet, and from
unknown users, careful attention must be given to host and user authentication, data privacy,
data origin authentication, and data integrity. In addition, there are certain applications
shipped with TCP/IP such as File Transfer Protocol (FTP) that, without proper configuration
and access controls in place, could allow unauthorized users access to system resources and
data. The z/OS V1R7.0 Communications Server, along with other elements of z/OS, provides
security functions to address these TCP/IP security concerns, including the following:

� Protecting data privacy and integrity while in the network

The Communications Server protects data in the network using secure protocols based on
cryptography, such as IP Security (IPSec), Secure Socket Layer (SSL), and Transport
Layer Security (TLS). IPSec and TLS implementations with z/OS Communications Server
are shown in Chapter 3, “IPSec” on page 61, and Chapter 4, “Application Transparent -
TLS” on page 129, respectively.

� Protecting the system from the network

The Communications Server is responsible for protecting the system against
denial-of-service attacks from the network. The Communications Server has built-in
defenses and also provides several services that an installation can optionally deploy to
protect against these attacks. Chapter 2, “IP filtering” on page 21, and Chapter 5,

Note: This book is focused on providing CS for z/OS TCP/IP implementation guidance.
Just in case you are unfamiliar with cryptographic technologies, however, we have also
included technology overviews for cryptography, IPSec, SSL, and TLS in Appendix A,
“Basic cryptography” on page 265, and Appendix B, “Tools for application security” on
page 283.

© Copyright IBM Corp. 2006. All rights reserved. ix

“Intrusion Detection Services (IDS)” on page 151, provide implementation examples for
those technologies.

� Protecting system resources and data from unauthorized access

Communications Server applications and the TCP/IP protocol stack protect data and
resources on the system using standard SAF-based services. Part 2, “SAF-based
security” on page 235, provides high-level discussion and implementation details
regarding the IBM Resource Access Control Facility (RACF®) product.

This book is organized as follows:

� Part 1, “Policy-based networking” on page 1, provides implementation examples for
setting up and using Policy Agent.

– Chapter 1, “Policy Agent (PAGENT)” on page 3, introduces the concepts of Policy
Agent and shows you how to set it up to define your security policies.

– Chapter 2, “IP filtering” on page 21, shows you how to use filters to control the IP traffic
flowing in and out of your z/OS system and to restrict it as per your security policies. It
shows how to code your policies to be enforced by the Policy Agent using the IBM z/OS
Network Security Configuration Assistant.

– Chapter 3, “IPSec” on page 61, explains how to use the encryption, encapsulation,
authentication, and key exchange facilities of the z/OS Communication Server to set up
secure transmission of your data across untrusted networks such as the public
Internet.

– Chapter 4, “Application Transparent - TLS” on page 129, describes how you can set up
secure communications to mainframe applications providing authentication, integrity,
and confidentiality without requiring changes to the applications themselves.

– Chapter 5, “Intrusion Detection Services (IDS)” on page 151, allows you to define
policies to the Policy Agent to detect suspicious traffic patterns in your network traffic to
detect potential malicious attacks.

– Chapter 6, “Quality of Service” on page 197, explains how to use Policy Agent to define
network and bandwidth management policies.

� Part 2, “SAF-based security” on page 235 explains the Security Access Facility (SAF) and
how to use it to protect your system and network resources.

– Chapter 7, “RACF demystified” on page 237, explains the basic concepts of the IBM
Resource Access Control Facility to protect your network resources and programs from
unauthorized access.

– Chapter 8, “Protecting network resources” on page 245, goes on to explain how to
implement RACF protection for your network resources.

Finally, given that security technologies are complex and can be confusing, we have included
helpful tutorial information in the appendixes of this book.

For more specific information about CS for z/OS base functions, standard applications, and
high availability, reference the other volumes in the series. These are:

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 1 - Base
Functions, Connectivity, and Routing, SG24-7169

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 2 - Standard
Applications, SG24-7170

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 3 - High
Availability, Scalability, and Performance, SG24-7171

x Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Our implementation environment
We wrote the four books in the Communications Server for z/OS V1R7 Implementation
guides at the same time. Given the complexity of our test environment, we needed to be
somewhat creative in organizing the environment so that each team could work with minimal
coordination with (and interference from) the other teams.

The environment used for all four books
To enable concurrent work on each of the four books, we set up and shared the test
environment illustrated in Figure 1.

Figure 1 Our implementation environment

Our books were written—and implementation scenarios executed—using three logical
partitions (LPARs) on an IBM System z9-109 (referred to as A22, A23, and A24). Because we
were working on four books at the same time, we implemented four TCP/IP stacks on each
LPAR (admittedly, a configuration not recommended for a production environment, but
convenient for our purposes). Each LPAR shared:

� HiperSockets™ connectivity

� Coupling Facility connectivity (CF38 and CF39) for parallel sysplex scenarios

� Four OSA-Express2 1000BASE-T Ethernet ports cross-connected to a pair of Cisco 6509
switches

Finally, we shared ten workstations, representing corporate network access to the z/OS
networking environment, for scenario verification (using applications such as TN3270 and
FTP).

Our IP addressing convention is as follows:

� The first octet is the network (always 10 for our environment)

� The second octet is the VLAN (10,20,30,40) assigned to the stack. (Essentially, except
when required by a specific implementation scenario, each team’s stacks shared a
common VLAN.)

 Preface xi

� The third octet refers to the device:

– The addresses with the third octet of 2 or 3 are defined to the OSA devices.
– The addresses with the third octet of 4, 5, or 6 are defined to the Hipersocket devices.

� The last octet is made up as follows:

– The first two digits are the LPAR number.
– The last digit is the CHPID number.

Our focus for this book
Given the above actual environment, the (simplified) environment that we had to work with on
this book is illustrated in Figure 2.

Figure 2 Our environment for this book

For the purposes of this book, then, we viewed the environment as three LPARs leveraging
coupling facilities, HiperSockets, and OSA connectivity as required for our implementation
scenarios.

Each of the books in our four-volume Communications Server (CS) for z/OS TCP/IP
Implementation series are the result of very close cooperation and coordination across the
entire team—a team with representation from seven different countries and with more than
200 years of combined information technology experience.

Important: Our use of multiple TCP/IP stacks on each LPAR and our TCP/IP addressing
were set up for our convenience and are not recommended approaches for your
environment.

xii Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center. The following authors worked
on the books in this series. The main authors who wrote this particular book are Bob Louden,
Rama Ayyar, Garth Madella, and Joel Porterie.

Bob Louden is a Consultant in the IBM Global Services, IT Services, Network Services
Delivery practice. His 23 years as a networking professional with IBM have enabled him to
develop strong professional and consulting skills, including leadership, project management,
problem solving, and decision analysis. Bob's technical expertise includes wide-area and
local-area networking and SNA and TCP/IP protocols. More important, however, is his ability
to leverage technology understanding to develop business solutions.

Rama Ayyar is a Senior IT Specialist with the IBM Support Center in Sydney, Australia.
Rama has over 22 years of experience with the MVS™ Operating System. His areas of
expertise include TCP/IP, RACF, DFSMS, z/OS Operating System, Configuration
Management, Dump Analysis, and Disaster Recovery and has written six IBM Redbooks™.
Rama holds a Master's Degree in Computer Science from the Indian Institute of Technology,
Kanpur and has been in the computer industry for 34 years.

Garth Madella is an Information Technology Specialist with IBM South Africa. He has 20
years of experience in the S/390® networking software field. He has worked with IBM for nine
years. His areas of expertise include VTAM®, SNA, TCP/IP, and sysplex. He has written
extensively on TCP/IP and Enterprise Extender issues.

Joel Porterie is a Senior IT Specialist who has been with IBM France for 28 years. He works
for Network and Channel Connectivity Services in the EMEA Product Support Group. His
areas of expertise include z/OS, TCP/IP, VTAM, OSA-Express, and Parallel Sysplex® for
zSeries®. He has taught OSA-Express and FICON® problem determination classes and
provided on-site assistance in these areas in numerous countries. He also co-authored the
IBM Redbooks Using the IBM S/390 Application StarterPak, SG24-2095; OSA-Express
Gigabit Ethernet Implementation Guide, SG24-5443; OSA-Express Implementation Guide,
SG24-5948; and Introduction to the New Mainframe: Networking, SG24-6772.

Valirio Braga is a Senior IT Specialist in Brazil working for the IBM Support Center. He has
eight years of experience in networking with areas of expertise including VTAM, TCP/IP, CS
for z/OS, and OSA. He has written the IBM Redbook OSA-Express Implementation Guide,
SG24-5948-04, and is a Cisco Certified Network Associate (CCNA).

Octavio Ferreira is a Senior IT Specialist in IBM Brazil. He has 26 years of experience in IBM
software support. His areas of expertise include z/OS Communications Server, SNA and
TCP/IP, Communications Server in all platforms. For the last eight years, he has worked at
the Area Program Support Group providing guidance and support to clients and designing
networking solutions such as SNA/TCP/IP integration, z/OS Connectivity, Enterprise
Extender design and implementation, and SNA to APPN migration.

Michael W. Jensen is a Senior IT Specialist with IBM Global Services, Strategic Outsourcing
in Denmark. Michael has 23 years of experience with Networking (OSA, SNA, APPN, TCP/IP,
Cisco SNASw, SNA-to-APPN migration, and SNA/IP Integration) and IBM Mainframe
systems primarily focusing on the z/OS Communications Server. His areas of expertise
include design and implementation of Content Switching and load balancing solutions for the
z/OS Sysplex environment using Cisco Series Products.

Sherwin Lake is an IT Specialist with IBM Global Services in Research Triangle Park, North
Carolina. Sherwin has worked over the past 30 years in VSE/SP, VM, and MVS systems

 Preface xiii

environments. During that time he was an online and batch applications developer, product
support specialist, Network Analyst, IT Specialist, and Manager. Before joining IBM, Sherwin
Managed the Technical Support group at the Trinidad and Tobago Telephone Company in
Trinidad. Sherwin was a member of the team that migrated IBM from Office Vision to Lotus®
Notes. He currently works with the Delivery part of IBM Global Services providing SNA and
TCP/IP support to internal and external accounts. Sherwin holds a Bachelor of Science
Degree in Computer Science/Math from the University of Miami.

Marc Price is a Staff Software Engineer with IBM Software Group in Raleigh, North Carolina.
Marc has over six years of experience with the Communications Server for z/OS as a
member of the organization that develops and services Communications Server for z/OS. His
areas of expertise include TCP/IP, security, z/OS dump analysis, and a variety of operating
systems. Marc holds a Bachelor's Degree in Computer Science from Purdue University in
Indiana, USA. Marc has 10 years of experience in the computer industry.

Larry Templeton is a Network Architect with IBM Global Services, Network Outsourcing. He
has 36 years of experience in IBM mainframe and networking systems, consulting with clients
throughout the United States. His current responsibilities include architecting mainframe IP
connectivity solutions, designing inter-company Enterprise Extender configurations, and
assisting clients with high availability data center implementations.

Thomas Wienert is a Senior IT Specialist working for IBM z9 Field Technical Sales Support
(FTSS) in Germany. He has over 20 years of experience with IBM networking. Thomas has
been with IBM for 16 years and worked as a S/390 Systems Engineer in technical support
and marketing. His areas of expertise include Communications Server for z/OS,
Communication Controller for Linux®, OSA-Express, z/OS, Parallel Sysplex, and
zSeries-related hardware. He has co-authored the IBM Redbook OSA-Express
Implementation Guide, SG24-5948-04, and is a Cisco certified Associate (CCNA).

Thanks to Alfred Christensen, Programming Consultant, Enterprise Networking Solutions,
for his vision and drive to make these redbooks possible.

As is always the case with any complex technical effort such as this Communications Server
(CS) for z/OS TCP/IP Implementation series, success would not have been possible without
the advice, support, and review of many outstanding technical professionals. In particular, we
would like to thank Russ Hardgrove, RACF level 2 support, for his help and Roland Peschke
for his careful review and excellent suggestions.

We are especially grateful for the significant expertise and contributions of content to these
books from the Communications Server for z/OS Development team, especially from Jeannie
Kristufek, Jeremy Geddes, Barry Mosakowski, Andy Tracy, Jason Hawrysz, Mark Wright,
Dinakaran Joseph, Brenda Kerr, and Allen Bailey.

Thanks also to the International Technical Support Organization, Raleigh and Poughkeepsie,
for their invaluable support in this project, particularly Margaret Ticknor, Bob Haimowitz,
David Bennin, Denice Sharpe, Eran Yona, Linda Robinson, Julie Czubik, and most
importantly, Bill White—our ITSO mentor and guide.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or clients.

xiv Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Your efforts will help increase product acceptance and client satisfaction. As a bonus, you'll
develop a network of contacts in IBM development labs, and increase your productivity and
marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
eServer™
z/OS®
zSeries®
z9™
CICS®
Domino®

DB2®
FICON®
HiperSockets™
IBM®
Lotus®
MVS™
NetView®
OS/390®
Parallel Sysplex®

Redbooks™
RACF®
S/390®
SecureWay®
System z9™
System/360™
Tivoli®
VTAM®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries,
or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xviii Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Part 1 Policy-based
networking

For as long as Information Technology (IT) components have been shared, we have needed
to make (and enforce) choices as to who is allowed to access specific IT applications and
which applications get priority over others. Historically, such choices have been implemented
individually for each component, for example:

� Setting up application access and task priorities in each computer system (such as using
ftp.data and telnetglobals for security-specific configuration of FTP and Telnet,
respectively)

� Defining network traffic priorities in each piece of network equipment

Ultimately, however, those application and traffic decisions must be determined by business
priorities—also called business policies.

As the complexity of IT environments has increased, it has become increasingly difficult to
configure each system and network component individually, and yet still ensure that the
overall system usage (and especially the network) matches the desired business policies.
Consequently, policy-based networking has emerged as a standards-based approach for
defining policies in one place and applying them broadly across the entire IT environment.

In this part we discuss the z/OS Communications Server Policy Agent (Chapter 1, “Policy
Agent (PAGENT)” on page 3) and its use in defining:

� Chapter 2, “IP filtering” on page 21
� Chapter 3, “IPSec” on page 61
� Chapter 4, “Application Transparent - TLS” on page 129
� Chapter 5, “Intrusion Detection Services (IDS)” on page 151
� Chapter 6, “Quality of Service” on page 197

Part 1

© Copyright IBM Corp. 2006. All rights reserved. 1

2 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 1. Policy Agent (PAGENT)

The Policy Agent is a component within server platforms that is responsible for implementing
policy decisions. This chapter focuses on the z/OS Communications Server Policy Agent and
its related security functions. Policy Agent enforces a set of rules and policies that dictate how
users, applications, and organizations can access and use IT resources. We show how
policy-based networking introduces a centralized policy storage approach, and how it
interacts with other security functions.

This chapter discusses the following.

1

Section Topic

1.1, “Policy Agent description” on page 4 We discuss the idea behind using Policy Agent as a
central repository for policies. We also discuss Policy
Agents basic concepts.

1.2, “Implementing PAGENT on z/OS”
on page 10

Here we show a basic Policy Agent installation.

1.3, “Setting up TRMD” on page 19 This section describes how to set up TRMD to work in
conjunction with IDS to handle Policy Agent messages.

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Policy Agent description
As is illustrated in Figure 1-1, the z/OS Communications Server Policy Agent (PAGENT)
implements policy-based networking for the z/OS environment.

Figure 1-1 Policy-based networking and PAGENT

Policy definitions are contained in an Lightweight Directory Access Protocol (LDAP) server
and local configuration flat files. The policies are used to control network security and traffic
prioritization for the z/OS environment. The Policy Agent reads these configuration files,
parses the policies, and stores the policy definitions in the TCP/IP stack. The policies are then
acted on by a TCP/IP stack.

The policies supported by PAGENT are used to set up the following functions (which are
discussed in detail in the referenced subsequent chapters):

� Chapter 2, “IP filtering” on page 21
� Chapter 3, “IPSec” on page 61
� Chapter 4, “Application Transparent - TLS” on page 129
� Chapter 5, “Intrusion Detection Services (IDS)” on page 151
� Chapter 6, “Quality of Service” on page 197

1.1.1 Basic concepts
Architecturally, policy-based networking typically involves the following components:

� A policy management service: A graphical user interface for specifying, editing, and
administering policies. Examples are the QoS Manager Graphic User Interface (GUI) and
the eServer™ IDS Configuration Manager GUI.

� Policy repository: A place to store and retrieve policy information, such as an LDAP server
or a configuration file.

� Policy decision point (PDP): A resource manager or policy server that is responsible for
handling events and making decisions based on those events, and updating the Policy
Enforcement Point configurations appropriately. Policy Agent (PAGENT) is our PDP, as
shown in Figure 1-2 on page 5.

� Policy enforcement point (PEP): A PEP exists in network nodes such as routers, firewalls,
and hosts. It enforces the policies based on the “if condition then action” rule sets it has
received from the PDP. In Figure 1-2 on page 5, the TCP/IP stack serves as our PEP.

Policy
Manager

z/OS
Communications Server

Policies

PAGENT

Policy
Repository

(LDAP)
z/OS UNIX

File

4 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 1-2 Policy system model

Where and how we define policies
Policies can be defined in the Policy Agent configuration file, in the LDAP server, or both, as
shown in Figure 1-3. Policies from both sources are combined into a single list. You should
keep policy names unique, as policy objects with duplicate names run the risk of being
deleted by PAGENT.

Figure 1-3 Configuring Policy Agent

The following PAGENT policies can be stored in a configuration text file format:

� Simple QoS policies (alternatively supported in LDAP)

Note: The QoS GUI and eServer IDS Config Manager can only be used to create QoS
policies in LDAP, not in a PAGENT text-based configuration file.

Policy
Manager

Policies

Policy
Repository

(LDAP)
z/OS UNIX

File

z/OS

Policy
Enforcement

Point

Policy
Enforcement

Point

PAGENT
Policy

Decision
Point

Text editor (ISPF/PDF):
QoS
IPSec
AT-TLS
Sysplex distributor
Traffic regulation

IBM Server IDS
Configuration
Manager

Transport protocol layer
TCP and UDP

Network Interfaces

IP Networking Layer

Sockets

Applicationsz/OS Network Security
Configuration Assistant

IPSec
AT-TLS

zQoS
Manager

Policy
Repository

(LDAP)

z/OS UNIX
File

Policy
Agent

Chapter 1. Policy Agent (PAGENT) 5

� IPSec VPN policies
� IP filter policies
� AT-TLS policies
� Sysplex Distributor policies
� Traffic regulation policies

The following PAGENT policies must be stored in LDAP:

� Intrusion Detection Services (IDS)
� Complex QoS policies

To aid in setting up policies, the following GUIs are available:

� zQoS Manager (to build QoS LDAP policies)

� eServer IDS Configuration Manager (to build IDS LDAP policies)

� z/OS Network Security Configuration Assistant (to build the configuration flat-file for IPSec
and AT-TLS policies)

These GUIs are available for download from the Web at:

http://www.ibm.com/software/network/commserver/zos/support/

1.1.2 The Policy model
Service policies consist of policy rules and policy actions. When the policy rule is true, one set
of actions is initiated, and when false, a different set of actions is initiated. The policy rule is
the condition. Conditions can involve both time specifications and traffic filters; however, if
both are used then both would have to match for the condition to be true. The policy action is
the action to be performed. To learn more about Policy Agent rules refer to the z/OS V1R7.0
Communications Server: IP Configuration Guide, SC31-8775.

An example of a Policy rule and action statement
The example policy definition in Figure 1-4 on page 7 causes the stack to discard all Telnet
requests from subnet 10.12.4.224 to 10.12.4.254 on Port 23. Note how we have restricted the
range to a single port (23). Yet there might be other Telnet servers at other ports available on
the IP stack, including a UNIX® Telnet server. Perhaps it is not important to block access to
those Telnet servers because you have other security mechanisms in place for them.
However, if it is critical to inhibit all attempts to reach any Telnet server on the z/OS systems,
you would need to include a PolicyRule for each of them. Policy Agent blocking is not meant
to be a replacement for firewall filtering. PAGENT should be considered only as a second or
third line of defense for certain types of actions.

Rules that intend to block traffic apply to both inbound and outbound traffic, whether or not
the traffic originates at the z/OS Communications Server - TCP/IP component.

For actions specifying a permission of blocked, TCP traffic is handled differently from UDP or
RAW traffic depending on whether the connection request is inbound or outbound. When an
inbound request is received, an inbound rule is checked to see if the SYN should be
accepted. If it is, then the outbound rule is checked to see if the connection is allowed. If both
the inbound and outbound rules indicate that it is all right to accept the connection, then a tcb
(TCP connection control block) is built. Any other QOS rules, for example, TOS settings or
similar, may now be applied to the outbound connection. If the inbound rule permits the
connection but the outbound connection does not, the tcb is not built and the connection
request is rejected.

If an outbound TCP SYN request is generated and there is no outbound blocking rule in
effect, the tcb is created and any outbound QoS rules are applied. Inbound blocking rules are

6 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

http://www-306.ibm.com/software/network/commserver/zos/support/

ignored. When the SYN/ACK arrives back at the z/OS Communications Server IP server, a
tcb with an assigned outbound QoS already exists and there is no further checking to see if
an inbound blocking rule is in effect.

With a flat file policy definition, the source indicates the source of the data flow with
destination signifying the target of the data traffic. So, in some cases the source would be
z/OS Communications Server IP and in others the source would be the remote host.

Figure 1-4 Policy rule and action statement

The TCP/IP stack receives policies from the following two sources:

� Policy Agent, which has its policies stored in LDAP or a flat file
� The PROFILE.TCPIP statements:

– IPCONFIG IPSECURITY
– IPSEC
– ipsec rules
– ENDIPSEC

If using the PROFILE.TCPIP statements without Policy Agent IPSec policies, note the
following:

� The IPSEC/ENDIPSEC block statement is ignored if IPSECURITY is not specified on the
IPCONFIG statement.

� Only one IPSEC/ENDIPSEC block statement block should appear in the profile. Any
subsequent statement blocks are ignored.

� If you code IPSECURITY IPCONFIG with no IPSEC/ENDIPSEC block statement only
local traffic will flow through the stack (that is, loopback addresses).

� No routing functions are supported by the stack through these statements even with
DATAGRAMFWD coded in the PROFILE.TCPIP. Routing function can only be performed
based on the policies read in from PAGENT.

Note: There was a problem with Distributed VIPA traffic that resulted in all Distributed
VIPA traffic being denied. The problem was corrected via APAR PK15475 and now, per
the APAR, such traffic will be classified as local traffic.

It is recommended that you not use the PROFILE.TCPIP statements without Policy Agent
IPSec policies; however, the APAR will close the timing window that exists while the stack
is initialized and before the Policy Agent is active.

PolicyAction telnet-block
{
Permission Blocked # Do not permit inbound telnet
}
PolicyRule telnetin-block23
{
DestinationPortRange 23 23
SourceAddressRange 10.12.4.224 10.12.4.254
policyactionreference telnet-block
}

TN3270 10.40.1.230

VIPA
10.40.1.230

X

Chapter 1. Policy Agent (PAGENT) 7

Example 1-1 shows the sample shipped in member SAMPPOF of the SEZAINST data set.

Example 1-1 Example IPCONFIG for IPSECURITY support

; IPCONFIG IPSECURITY

; --

; Configure IPSECURITY default filter rules

; --

;

; Example IPSEC default filter rule. This rule permits

; outbound TCP traffic from local IP address 1.1.1.1 port 23 to

; remote IP address 2.2.2.2. The same rule also permits

; inbound TCP traffic from remote IP address 2.2.2.2 to local

; IP address 1.1.1.1 port 23.

;

; IPSEC LOGDISABLE NOLOGIMPLICIT

; Rule SrcIp DestIp Log Prot SrcPort DestPort Secclass

; IPSECR 1.1.1.1 2.2.2.2 NOLOG PROTO TCP SRCPORT 23 DSTPORT *

; ENDIPSEC

TCP/IP does not use both sets of policies simultaneously. It uses the IPSEC policies from the
profile when PAGENT is not active and swaps to the PAGENT policies when PAGENT is
active.

PAGENT installs two default policy rules, which deny all inbound and outbound traffic. The
active policies can be displayed using the pasearch command. We displayed our active
policies and used the pasearch command to establish the presence of the default rules, which
can be seen in Example 1-2.

Example 1-2 pasearch command showing the default policies

policyRule: DenyAllRule_Generated___________Inbnd
 Rule Type: IpFilter
 Version: 3 Status: Active
 Weight: 102 ForLoadDist: False
 Priority: 2 Sequence Actions: Don't Care
 No. Policy Action: 0
 IpSecType: policyIpFilter
 Time Periods:
 Day of Month Mask:
 First to Last: 1111111111111111111111111111111
 Last to First: 1111111111111111111111111111111
 Month of Yr Mask: 111111111111
 Day of Week Mask: 1111111 (Sunday - Saturday)
 Start Date Time: None
 End Date Time: None
 Fr TimeOfDay: 00:00 To TimeOfDay: 24:00

8 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 Fr TimeOfDay UTC: 04:00 To TimeOfDay UTC: 04:00
 TimeZone: Local
 IpSec Condition Summary: NegativeIndicator: Off
 IpFilter Condition:
 FromAddr: All
 ToAddr: All
 Destination Address:
 FromAddr: All
 ToAddr: All
 Service Condition:
 Protocol: All
 Direction: Inbound
 RouteType: Either SecurityClass: 0

policyRule: DenyAllRule_Generated___________Outbnd
 Rule Type: IpFilter
 Version: 3 Status: Active
 Weight: 101 ForLoadDist: False
 Priority: 1 Sequence Actions: Don't Care
 No. Policy Action: 0
 IpSecType: policyIpFilter
 Time Periods:
 Day of Month Mask:
 First to Last: 1111111111111111111111111111111
 Last to First: 1111111111111111111111111111111
 Month of Yr Mask: 111111111111
 Day of Week Mask: 1111111 (Sunday - Saturday)
 Start Date Time: None
 End Date Time: None
 Fr TimeOfDay: 00:00 To TimeOfDay: 24:00
 Fr TimeOfDay UTC: 04:00 To TimeOfDay UTC: 04:00
 TimeZone: Local
 IpSec Condition Summary: NegativeIndicator: Off
 IpFilter Condition:

The following services have to be available to the stack (Table 1-1).

Table 1-1 Stack services

Important: When dealing with policies that deny all traffic it is imperative to permit traffic to
some essential servies.

Service Direction Source port Destination port Protocol

Resolver Outbound 53 Any TCP or UDP

Resolver Inbound 53 Any TCP or UDP

Omproute -
RIPV1

Outbound 520 520 UDP

Omproute -
RIPV1

Inbound 520 520 UDP

Omproute -
RIPV2

Outbound 520 520 UDP and IGMP

Omproute Inbound 520 520 UDP and IGMP

Omproute -
OSPF

Outbound IP and IGMP

Chapter 1. Policy Agent (PAGENT) 9

Even though not listed under essential services, PING using protocol ICMP could be useful
during problem determination.

1.2 Implementing PAGENT on z/OS
On z/OS V1R7.0 Communications Server the Policy Agent runs as a UNIX process. As such,
it may be started either from the UNIX System Services shell or as a started task. We used a
started task procedure to start Policy Agent.

1.2.1 Starting PAGENT as started task
The sample started task procedure for PAGENT can be found in
TCPIP.SEZAINST(EZAPAGSP). We used the following PAGENT started task procedure on
our system (Example 1-3).

Example 1-3 PAGENT started task procedure

//PAGENT PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZAPAGSP
//*
//* 5694-A01 (C) Copyright IBM Corp. 1998, 2005
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV1R7
//*
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/'
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM='POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE=DD:STDENV")/-c /
//* etc/pagent3.conf -l SYSLOGD'
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* PAGENT_CONFIG_FILE=/etc/pagent2.conf
//* PAGENT_LOG_FILE=/tmp/pagent2.log
//*
//* For information on the above environment variables, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//*STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.PAGENT.ENV(PAGENT),DISP=SHR
//* Sample z/OS UNIX file containing environment variables:
//STDENV DD PATH='/etc/pagent.sc30.env',PATHOPTS=(ORDONLY)1
//*

Omproute -
OSPF

Inbound IP and IGMP

Service Direction Source port Destination port Protocol

10 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, PAGENT doesn't write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the PAGENT_LOG_FILE environment variable, and defaults to
//* /tmp/pagent.log. When the -d parameter is specified, however,
//* output is also written to stdout.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

You can use environment variables either configured in an MVS data set or z/OS UNIX file
specified by the STDENV DD to run with the desired configuration. We have configured our
environment variables in an z/OS UNIX file, /etc/pagent.sc30.env, shown in Example 1-4.

Example 1-4 STDENV dataset contents

LIBPATH=/lib:/usr/lib:/usr/lpp/ldapclient/lib:. 1
PAGENT_CONFIG_FILE=/SC30/etc/pagent.sc30.conf 2
PAGENT_LOG_FILE=/SC30/tmp/pagent.sc30.log 3
PAGENT_LOG_FILE_CONTROL=300,3 4
_BPXK_SETIBMOPT_TRANSPORT=TCPIPD
TZ=EST5EDT

We configured the following environment variables for the Policy Agent:

� 1 LIBPATH enables PAGENT to search the dynamic link libraries needed to act as an
LDAP client.

� 2 PAGENT_CONFIG_FILE specifies the specific PAGENT configuration file to use.

� 3 PAGENT_LOG_FILE specifies the log file name used by PAGENT.

� 4 PAGENT_LOG_FILE_CONTROL defines the number of PAGENT log files and their size
in kilobytes. In our case we requested three log files, each 300 kb in size. These are used
in a round-robin fashion. To configure PAGENT to use SYSLOGD to log messages you
can define PAGENT_LOG_FILE=SYSLOGD. In this case
PAGENT_LOG_FILE_CONTROL has no meaning.

� In our case, while we do not have the RESOLVER_CONFIG variable configured,
PAGENT establishes an affinity to the proper TCP/IP stack through
BPXK_SETIBMOPT_TRANSPORT=TCPIPD. The TcpImage statement in the Policy
Agent configuration file also determines to which TCP/IP stack PAGENT will install
policies.

� For the Policy Agent to run in your local time zone, you might have to specify the time
zone in your working location using the TZ environment variable even if you have the TZ
environment variable configured in /etc/profile.

Before we started PAGENT we defined it with the correct security authorizations.

Note: Ensure that the z/OS UNIX file pointed to by STDENV, as well as the files contained
in this STDENV file, has the correct permission bits set to allow PAGENT access to these
files.

Note: Most z/OS UNIX applications that start as MVS started tasks cannot use
environment variables that have been configured in /etc/resolve.conf.

Chapter 1. Policy Agent (PAGENT) 11

Defining the security product authorization for PAGENT
Because the Policy Agent can affect system operation significantly, security product authority
(for example, RACF) is required to start the Policy Agent from a z/OS procedure library.

To set up the security definitions for PAGENT the following steps are necessary:

1. Define the PAGENT started task to RACF.
2. Define a user ID for the PAGENT started task.
3. Associate this user ID with the PAGENT started task.
4. Give authorized users access to start and stop PAGENT.
5. Restrict access to the pasearch command to authorized users.
6. Set up TTLS Stack Initialization access control.

Define the PAGENT started task to RACF
To set up a started task you need to define a profile for it in the resource class called
STARTED. First you need to activate this class if it is not already active. This resource class
is RACLISted so that the profiles are kept in RACF data space for improved performance. It is
also defined as a GENERIC class to allow generic profiles to be created in this class for more
efficient searches. In most installations this would already have been done so you would not
need to issue commands to define the STARTED class RACLIST and GENERIC. We just
mention it here for completeness.

You must specify two qualifiers for the profile names in STARTED class. We defined
PAGENT.* and then we refreshed RACLIST and GENLIST to update the in-storage profiles
with this new information. Example 1-5 shows the RACF commands for this.

Example 1-5 Define the PAGENT started task to RACF

SETROPTS CLASSACT(STARTED)
SETROPTS RACLIST(STARTED)
SETROPTS GENERIC(STARTED)
RDEFINE STARTED PAGENT.*
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

Define a user ID for the PAGENT started task
We defined a PAGENT user ID with default group TCPGRP and with an OMVS segment.

This user ID needs to be defined with UID=0. But only one user ID can have UID=0 in the
system and it is normally already assigned to user BPXROOT in most installations. So you
have use the ‘SHARED’ parameter in the definition. A home directory is also assigned to this
user ID. Example 1-6 shows the command we used.

Example 1-6 Define a user ID for the PAGENT started task

ADDUSER PAGENT DFLTGRP(TCPGRP) OMVS(UID(0) SHARED HOME('/'))

Associate this user ID with the PAGENT started task
We used the RALTER command to associate the PAGENT user ID and its group TCPGRP to
the PAGENT started task. RACF stores this information in the STDATA field of the profile.
Example 1-7 shows the command we used.

Example 1-7 Associate user ID with the PAGENT started task

RALTER STARTED PAGENT.* STDATA(USER(PAGENT) GROUP(TCPGRP))

12 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Give authorized users access to start and stop PAGENT
To control which users can start PAGENT and thus reduce the risk of an unauthorized user
starting and affecting policy-based networking, we define a profile named
MVS.SERVMGR.RSVPD in resource class OPERCMDS and give authorized users access to
this facility. Activate the OPERCMDS class and RACLIST it if not already done in your
installation. Example 1-8 shows the commands we used.

Example 1-8 Give authorized users access to start and stop PAGENT

SETROPTS CLASSACT(OPERCMDS)
SETROPTS RACLIST (OPERCMDS)
RDEFINE OPERCMDS (MVS.SERVMGR.PAGENT) UACC(NONE)
PERMIT MVS.SERVMGR.PAGENT CLASS(OPERCMDS) ACCESS(CONTROL) ID(PAGENT,CS08,CS09,CS10)
SETROPTS RACLIST(OPERCMDS) REFRESH

Restrict access to the pasearch command to authorized users
The pasearch command is used to obtain details of the security policies on your system. You
can also enable and disable policies using this command. This is a very sensitive command
and needs to be protected. The profile to protect this resource is of the form
EZB.PAGENT.sysname.tcpprocname.*, where:

EZB Constant.
PAGENT Constant for this resource type.
sysname This is the system name.
tcpprocname This is the TCP/IP proc name.
* This is for all policy type options.

The profile is defined in the SERAUTH class. Example 1-9 shows the commands we used.

Example 1-9 Restrict access to the pasearch command to authorized users

RDEFINE SERVAUTH EZB.PAGENT.SC30.TCPIPD.* UACC(NONE)
PERMIT EZB.PAGENT.SC30.TCPIPD.* CLASS(SERVAUTH) ID(PAGENT,CS08,CS09,CS10) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH

Set up TTLS Stack Initialization access control
If you are using Application Transparent Transport Layer Security (AT-TLS), z/OS will not
allow any socket-based applications to start before PAGENT is up and running so as to make
sure that all the security policies are enforced. But some essential applications need to start
before PAGENT. To allow this you need to define a resource profile
EZB.STACKACCESS.sysname.tcpprocname in the SERVAUTH class. The resource name
consists of the following parts:

EZB Constant.
INITSTACK Constant for this resource type.
sysname This is the system name.
tcpprocname This is the TCP/IP proc name.

The RACF commands we used for this are shown in Example 1-10.

Example 1-10 Set up TTLS Stack Initialization access control

SETROPTS CLASSACT(SERVAUTH)
SETROPTS RACLIST (SERVAUTH)
SETROPTS GENERIC (SERVAUTH)
RDEFINE SERVAUTH EZB.INITSTACK.SC30.TCPIPD UACC(NONE)
PERMIT EZB.INITSTACK.SC30.TCPIPD CLASS(SERVAUTH) ID(*) ACCESS(READ) -
 WHEN(PROGRAM(PAGENT,EZAPAGEN))

Chapter 1. Policy Agent (PAGENT) 13

SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH
SETROPTS WHEN(PROGRAM) REFRESH

1.2.2 Starting PAGENT from UNIX
The PAGENT executable resides in /usr/lpp/tcpip/sbin. There is also a link from /usr/sbin.
Make sure your PATH statement contains either /usr/sbin or /usr/lpp/tcpip/sbin. To start
PAGENT in the z/OS UNIX System Services shell you simply need to issue the command:

pagent -c /etc/pagent.sc30.conf SYSLOGD &

The Policy Agent uses the configuration file /etc/pagent.sc30.conf and logs output to the
syslog daemon (SYSLOGD). To run pagent in the background the start command is suffixed
with “&”.

Consult the z/OS V1R7.0 Communications Server: IP Diagnosis Guide, GC31-8782, to
resolve any EZZ errors encountered at PAGENT startup time.

1.2.3 Stopping PAGENT
You can stop the Policy Agent as follows:

� Using the operator command P PAGENT from SDSF or the system console.

� Using the kill command in the z/OS UNIX shell. Example 1-11 shows how to find the
process ID for PAGENT, which is then killed with the kill -s command. The pid can also
be found in /tmp/pagent.pid.

Example 1-11 Stopping pagent from UNIX

CS10 @ SC30:/u/cs10>ps -ef | grep PAGENT
 BPXROOT 16842831 83951672 - 16:00:27 ttyp0001 0:00 grep PAGENT
 BPXROOT 67174676 1 - Oct 14 ? 1:13 PAGENT
CS10 @ SC30:/u/cs10>kill -s TERM 67174676
CS10 @ SC30:/u/cs10>ps -ef | grep PAGENT
 BPXROOT 33620047 83951672 - 16:01:10 ttyp0001 0:00 grep PAGENT
CS10 @ SC30:/u/cs10>

When the Policy Agent is shut down normally (KILL or STOP), if the PURGE option is
configured, all QoS, IDS, and AT-TLS policies are purged from this stack. IPSec policies are
not automatically purged.

1.2.4 How to disable PAGENT policies for IPSec
PAGENT policies can be disabled by using the following command:

ipsec -f default

This reverts back to the TCP/IP configuration file policies. To convert back to PAGENT
policies issue the following command:

ipsec -f reload

14 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

1.2.5 Basic configuration
Before defining policies, some basic operational characteristics of the Policy Agent need to be
configured in the PAGENT configuration file. In this section we detail the following
configuration steps:

� Define the TcpImage statements.
� Define the appropriate logging level.

Define the TcpImage statements
The Policy Agent can be configured to install policies on one or more TCP/IP stacks or
images. Each TCP/IP stack is configured using a TcpImage statement in the main
configuration file. A secondary configuration file can be defined for each stack, a set of stacks
can share configuration information in the main configuration file, or a combination of these
techniques can be used.

To install different sets of policies to different stacks, configure each image with a different
secondary configuration file. In this case, each image can be configured with a different policy
refresh interval if desired. The refresh interval used for the main configuration file will be the
smallest of the values specified for the different stacks.

In Figure 1-5 we show PAGENT’s configuration file identifying, through TcpImage statements,
the names of the TCP/IP stacks on which policies are to be installed and the different
configuration files that should be used by each.

Figure 1-5 Multiple stacks, multiple policy definitions

//PAGENT PROC
//PAGENT EXEC
PGM=PAGENT...
// PARM='.../-c
...
//STDENV DD
PATH='/etc/pagent.itsoral.env'
...

TcpImage TCPIPA /etc/sc30.tcpipa_image.conf
TcpImage TCPIPB /etc/sc30.tcpipb_image.conf
TcpImage TCPIPC /etc/sc30.tcpipc_image.conf
TcpImage TCPIPD /etc/sc30.tcpipd_image.conf

Install the different policies
into each TCP/IP stack

PAGENT started procedure

IPSecConfig
//'TCPIPD.TCPPARMS(IPSEC0D)'
policyAction
.......
policyRule
.......

Image configuration files
TCPIPA TCPIPD

/etc/pagent.sc30.env

PAGENT_CONFIG_FILE=pagent.sc30.conf
PAGENT_LOG_FILE
PAGENT_LOG_FILE_CONTROL
TZ

/etc/pagent.sc30.conf

/etc/sc30.tcpipa_image.conf
/etc/sc30.tcpipb_image.conf

/etc/sc30.tcpipb_image.conf
/etc/sc30.tcpipd_image.conf

TCPIPB TCPIPC

Policies

Policy Agent

Chapter 1. Policy Agent (PAGENT) 15

To install a common set of policies to a set of stacks on the same LPAR, do not specify
secondary configuration files for each image. In this case, there is only one configuration file
(the main one) and the policy information contained in it is installed to all of the configured
stacks. Different refresh intervals can also be configured for each image, but would probably
not be useful in this case.

In Figure 1-6 we show PAGENT’s configuration file identifying, through TcpImage statements,
the names of the TCP/IP stacks on which policies are to be installed, but in this case installing
the same policies into each.

Figure 1-6 Multiple stacks, single policy definition

It is possible that TCP/IP stacks configured to the Policy Agent are not started or even
defined. The Policy Agent will fail when trying to connect to those stacks and log appropriate
error messages.

The Policy Agent does not end when any (or all) stacks end. When the stacks are restarted,
active policies are automatically reinstalled. When the Policy Agent is shut down normally
(that is, using KILL or STOP commands), and the TcpImage statement option PURGE was
coded, all policies will be purged from this stack. The TcpImage statement specifies a TCP/IP
image and its associated configuration file to be installed to that image. The following

Note: When the main configuration file is an MVS data set, it is reread at each refresh
interval (which is the smallest of the individual stack refresh intervals), regardless of
whether it has actually been changed. Because PAGENT restarts all stack-related
processing when the main configuration file is reread, this effectively makes the refresh
interval for all stacks the same as this smallest configured interval.

//PAGENT PROC
//PAGENT EXEC
PGM=PAGENT...
// PARM='.../-c ...
//STDENV DD
PATH='/etc/pagent.sc30.env'
...

Install the same policies
into all TCP/IP stack

PAGENT started procedure

TCPIPA TCPIPD

/etc/pagent.sc30.env

PAGENT_CONFIG_FILE=pagent.sc30.conf
PAGENT_LOG_FILE
PAGENT_LOG_FILE_CONTROL
TZ

CommonTTLSConfig /etc/sc30.pagent_CommonTTLS_conf
CommonIPSecConfig /etc/sc30.pagent_CommonIPSec_conf
policyAction
.....
policyRule

LPAR configuration file (second level)

/etc/pagent.sc30.conf

TCPIPB TCPIPC

Policies

Policy Agent

PAGENT configuration file (first level)

16 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

example installs the policy control file /etc/pagent.sc30.conf to the TCPCS TCP/IP image,
after flushing the existing policy control data:

TcpImage TCPIPD /etc/pagent.sc30.conf FLUSH

Define the appropriate logging level
The LogLevel statement is used to define the amount of information to be logged by the
Policy Agent. The default is to log only event, error, console, and warning messages. This
might be appropriate for a stable policy configuration, but more information might be required
to understand policy processing or debug problems when first setting up policies or when
making significant changes. Specify the LogLevel statement with the appropriate logging
level in the main configuration file.

Considerations when defining policy rules
When you define and code the policy rules direction, source, and destination, you should
consider when policy rules are applied:

� For TCP, the policies are applied at TCP connection set up.

� For UDP, a policy rule is applied every time a UDP datagram is being received or sent.

� For other protocols, such as ICMP, OSPF, etc., every time an IP datagram is being
received or sent, the policy rules are applied.

� The policies are re-mapped when the policy definitions are being updated or refreshed.
The rules will be re-mapped for every ACK segment in a TCP flow to adjust for time-of-day
related policies.

1.2.6 Coding policy definitions in a configuration file
This example configuration shown in Example 1-12 is based upon the “Multiple stacks,
multiple policy definitions” scenario shown in Figure 1-5 on page 15. In this scenario, the
policy definitions have been configured in the PAGENT configuration file and we use a
two-level PAGENT configuration file to define the policy in a multiple IP stacks environment,
as shown in Example 1-12.

Example 1-12 PAGENT configuration file

#
IBM Communications Server for z/OS
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAPAGCO
#
Licensed Materials - Property of IBM
5694-A01
(C) Copyright IBM Corp. 1998, 2005
Status = CSV1R7
LogLevel Statement
Loglevel 255 1
TcpImage Statement 2
TcpImage TCPIPA /etc/sc30.tcpipa_image.conf FLUSH
TcpImage TCPIPB /etc/sc30.tcpipb_image.conf FLUSH

Note: The maximum logging level (511) can produce a significant amount of output,
especially with large LDAP configurations. This is not of concern if z/OS UNIX log files are
used, as Policy Agent will round-robin (circulate) a set of finite size files. (The
environmental variable PAGENT_LOG_FILE_CONTROL identifies the number and size of
these files.) However, when using the syslog daemon as the log file, the amount of log
output produced should be taken into consideration.

Chapter 1. Policy Agent (PAGENT) 17

TcpImage TCPIPC /etc/sc30.tcpipc_image.conf FLUSH
TcpImage TCPIPD /etc/sc30.tcpipd_image.conf FLUSH

The log level 1 is set with the integer that specified the level of logging/tracing. We are using
LogLevel 255, which means all messages except trace messages are captured. The
supported levels are:

� 1 - SYSERR - System error messages
� 2 - OBJERR - Object error messages
� 4 - PROTERR - Protocol error messages
� 16 - EVENT - Event messages
� 32 - ACTION - Action messages
� 64 - INFO - Informational messages
� 128 - ACNTING - Accounting messages
� 256 - TRACE - Trace messages

The TcpImage statement 2 defined the TCP/IP stacks to be policed (TCPIPA, TCPIPB,
TCPIPC, and TCPIPD). Up to four parameters can be configured for this statement. The first
parameter specifies the TCP/IP stack name on which the policy must be installed. The next
one is the path of the image configuration file for the associated TCP/IP stack. The third
parameter, you can specify whether the Policy Agent deletes all the policies existing in the
TCP/IP stack when it is started.

If you want to remove policies when you cancel PAGENT, you can restart PAGENT
afterward, pointing to a configuration file with FLUSH specified but no policies defined. The
last TcpImage statement parameter (not specified in our example) specifies the time interval
in seconds for checking the creation or modification time of the configuration files and for
refreshing policies from the LDAP server. The default value is 1800 seconds (30 minutes).

Policy Agent log file
When you start the Policy Agent as a started task, the output messages written to stdout and
stderr go to the data set or file specified with SYSPRINT or SYSOUT DD. But, normally,
PAGENT does not write output to stdout or stderr. Instead, output is written to the log file,
which can be specified by the PAGENT_LOG_FILE environment variable and defaults to
/tmp/pagent.sc30.log. When the -d parameter is specified, however, output is also written to
stdout. The log file is created when the Policy Agent is activated, if it does not already exist.

1.2.7 Refreshing policies
The are two commands used to refresh policies in PAGENT:

� The F PAGENT,REFRESH command triggers Policy Agent to reread its config files and, if
requested, downloads policy objects from the LDAP server. If the FLUSH parameter was
specified on the TcpImage configuration statement, policy statistics being collected in the
TCP/IP stack are reset, because FLUSH deletes and reinstalls all policies.

Note: The policies installed in the TCP/IP stack will be deleted at PAGENT startup time
only if the FLUSH parameter is specified. This prevents the policies from being deleted
unexpectedly if PAGENT terminates abnormally.

Note: Dynamic monitoring for the configuration file is only supported for z/OS UNIX files.
MVS data sets are not monitored for changes.

18 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

� The F PAGENT,UPDATE command is different from the REFRESH command because
PAGENT only installs or removes from the stack (as appropriate) any new, changed, or
deleted policies.

1.2.8 Verification
Use the z/OS UNIX pasearch command to query information from the z/OS UNIX Policy
Agent. The command is issued from the UNIX System Services shell. We used the pasearch
command to display all the policy entries for our TCP/IP stack named TCPIPD using the
following command:

pasearch -p TCPIPD

The default is to return all policy entries for all TCP/IP stacks. The value used for TcpImage,
in our example TCPIPD, must match one of the values specified on the TcpImage statement
in the Policy Agent configuration file.

1.2.9 For additional information
Refer to the z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775, for
additional information regarding Policy Agent.

1.3 Setting up TRMD
The Traffic Regulation Monitoring daemon, or TRMD, can be viewed simply as a syslog
daemon message writer. TRMD handles syslogd event recording for Intrusion Detection
Services (IDS), IPSec services, and traffic regulation.

Setting up the started task procedure
A sample TRMD procedure can be found in TCPIP.SEZAINST(EZATRMDP). To associate
the TRMD procedure with our TCP/IP job name, we set the RESOLVER_CONFIG
environment variable to point to our TCPIP.DATA file, as shown in Example 1-13. TRMD can
be started from the z/OS UNIX shell or as a started task.

Example 1-13 TRMD procedure parameters

//TRMD EXEC PGM=EZATRMD,REGION=4096K,TIME=NOLIMIT,
// PARM=('POSIX(ON) ALL31(ON)',
// 'ENVAR("RESOLVER_CONFIG=//''TCPIP.TCPPARMS(DATAD30)''"',
// '"LIBPATH=/usr/lib)"/-d 1')

To start TRMD as a started task, use the S TRMD command from the MVS console or SDSF.
To automatically start TRMD when the TCP/IP stack is started, add TRMD to the AUTOLOG
statement in the TCP/IP profile, as shown below.

Example 1-14 Autologging TRMD from TCP/IP

AUTOLOG
TRMD JOBNAME TRMD

ENDAUTOLOG

Chapter 1. Policy Agent (PAGENT) 19

Starting TRMD from z/OS UNIX
Only a superuser can run TRMD from the z/OS UNIX shell. Ensure that the following
environment variables are correctly set before starting TRMD:

RESOLVER_CONFIG - To determine which stack TRMD will use
TZ - To ensure that the syslogd records are correctly timestamped

We set the environment variables 1, and started 2 and stopped 3 TRMD with the kill
command, as shown in Example 1-15.

Example 1-15 Starting and stopping TRMD

CS10 @ SC30:/u/cs10>su
CS10 @ SC30:/u/cs10>export TZ="EST5EDT" 1
CS10 @ SC30:/u/cs10>echo $TZ
EST5EDT
CS10 @ SC30:/u/cs10>
CS10 @ SC30:/u/cs10>export RESOLVER_CONFIG="//'TCPIPD.TCPPARMS(DATAD30)'" 1
CS10 @ SC30:/u/cs10>echo $RESOLVER_CONFIG
//'TCPIPD.TCPPARMS(DATAD30)'
CS10 @ SC30:/u/cs10>
CS10 @ SC30:/u/cs10>trmd 2
CS10 @ SC30:/u/cs10>ps -ef | grep trmd
 BPXROOT 65581 83951684 - 11:58:18 ttyp0001 0:00 grep trmd
 BPXROOT 65601 1 - 11:57:58 ttyp0001 0:00 trmd
CS10 @ SC30:/u/cs10>kill -s TERM 65601 3
CS10 @ SC30:/u/cs10>ps -ef | grep trmd
 BPXROOT 16842817 83951684 - 11:59:03 ttyp0001 0:00 grep trmd
CS10 @ SC30:/u/cs10>

Defining the security product authorization for TRMD
RACF is required to start the Policy Agent from a z/OS procedure library. First, define a user
ID for TRMD with a UID of 0 and define it to the RACF started class list (as shown in
Example 1-16).

Example 1-16 RACF definitions for TRMD

//RACFDEF EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 ADDUSER TRMD DFLTGRP(TCPGRP) OMVS(UID(0) SHARED HOME('/'))
 RDEFINE STARTED TRMD.* STDATA(USER(TRMD))
 SETROPTS RACLIST(STARTED) REFRESH
 SETROPTS GENERIC(STARTED) REFRESH

TRMDSTAT
Trmdstat is a utility that produces reports from IDS syslog records (summary and detailed). It
reads a log file and analyses the log records from TRMD. The following reports are available:

� Overall summary of logged connection events
� IDS summary of logged events
� Reports of logged connection events
� Reports of logged intrusions defined in the ATTACK policy
� Reports of logged intrusions defined in the TCP policy
� Reports of logged intrusions defined in the UDP policy
� Reports of statistics events

20 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 2. IP filtering

IP filtering provides a means of permitting or denying IP messages into and out of the z/OS
Communications Server environment at a very early stage in message handling (and so, very
efficiently).

This chapter discusses the following.

2

Note: One thing that could be confusing about z/OS V1R7.0 Communications Server IP
filtering support is that has been packaged together with IPSec support and is referred to
as integrated IP Security. That is because there is a very close affinity between IPSec and
IP filtering in the z/OS Communications Server; while you can implement IP filtering
without IPSec, you cannot implement IPSec without IP filtering. Consequently, you will
notice that, in order to configure IP filtering, you will need to indicate that you are
configuring IPSec in the configuration GUI.

Section Topic

2.1, “Defining IP filtering” on page 22 Discusses the basic concepts of IP filtering

2.2, “Why IP filtering is important” on
page 25

Discusses key characteristics of IP filtering and why it
may be important in your environment

2.3, “How IP filtering is implemented” on
page 25

Presents selected implementation scenarios, tasks,
configuration examples, and problem determination
suggestions

© Copyright IBM Corp. 2006. All rights reserved. 21

2.1 Defining IP filtering
IP filtering enables a z/OS system to classify any IP packet that comes across a network
interface and take specific action according to a predefined set of rules. An administrator can
configure IP filtering to deny or allow any given network packet into or out of a z/OS system
with an IP filtering policy. IP filtering provides:

� Packet filtering and logging
� Filtering rules that determine whether IPSec encryption and authentication are required

The new ipsec command is used to manage and monitor the IP filtering and VPN policies.

Filter rules can be defined to match inbound and outbound packets based on:

� Packet information
� Network attributes
� Time of day

Possible actions that can be taken include:

� Permit (with or without manual or dynamic IPSec).
� Deny.
� Log (in combination with Permit or Deny).

2.1.1 Basic concepts
Figure 2-1 on page 23 shows an overview of IP filtering.

Note: The z/OS V1R7.0 Communications Server introduced integrated IP Security: IPv4
support for IP filtering, IP security/Virtual Private Network (IPSec/VPN), and Internet Key
Exchange (IKE) dynamic key management—no longer requiring the Integrated Security
Services Firewall Technologies. IP filtering, IPSec, and Application Transparent Transport
Layer Security (AT-TLS) are now all under Policy Agent control. This support provides
easier configuration, greater scalability, improved performance, and enhanced
serviceability over the Firewall Technologies versions available prior to z/OS V1R7.
Therefore, integrated IP security is the recommended way to implement packet filtering in
z/OS 1.7.

Note: When a packet is blocked the source of the packet is not informed about what
happened.

22 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-1 IP filtering at the z/OS communication endpoint

When a packet arrives over a network interface into the z/OS environment, the IP filtering
code running under the TCP/IP stack will search the security policy database (SPD),
matching the TCP/IP header against the specified filters. Filters are rules defined to either
deny or permit packets. IP filtering matches a filter rule to data traffic based on any
combination of IP source or destination address (or masked address), protocol, source or
destination port, direction of flow, or time. In order to create the IP filtering policy we have to
know the resources available in the network, the resources available in a z/OS image, and
how they relate to others hosts.

The resources available in the z/OS image are:

� TCP/IP address space and stack (can be more than one stack)

� The network interfaces and their respective IP address

� The servers or clients, which are the address spaces running programs that will be either
access or be accessed by others hosts (such as TN3270 server, FTP server and client,
and DB2®) and what interfaces they will be using

� The direction of the information flow and if routing may be needed

� Authentication and encryption requirements

The network resources that should be mapped outside the z/OS are:

� Clients and servers that need to connect to the z/OS image, their IP addresses, and the
services required

� Networks and subnets

The relationship between the TCP/IP components in a z/OS image and the network
resources will be translated in the IP filtering implementation. We can call this relationship an
IP filtering policy. This policy will contain all the rules that will permit or deny the access to our
z/OS image.

Filter Deny
TCPIP

z/OS
Communications Server

Applications
Sockets

Data Link

z/OS

X

Permit

Chapter 2. IP filtering 23

Security Policy Database (SPD)
The Security Policy Database (SPD) provides two types of filter policies: The default IP filter
policy and the IP security filter policy.

The default IP filters policy is intended to allow limited access while the IP security filter policy
is being loaded and can be reverted to in an attack situation with an operator command. The
default IP filter policy is defined in the TCP/IP profile and defaults deny all traffic. It provides a
basic filtering function only (permit rules only and no VPN support).

The IP security filter policy is intended to be the primary source of filter rules. It is defined in a
Policy Agent IPSec configuration file and can be generated by the z/OS IP Security
Configuration Assistant GUI. Its default, too, is to deny all traffic.

The ipsec command is used to switch between the default and IP security filter policies.

The IPSECURITY option on the IPCONFIG statement
The IPSECURITY option enables use of the new integrated IP security functions. It is
mutually exclusive with the FIREWALL option.

Figure 2-2 shows an overview of IP filter policy on z/OS.

Figure 2-2 IP filter policy overview

Note: The IP filtering function available on the z/OS Communication Server should only be
used to control and protect the resources owned by the z/OS image and not to protect
resources running on another host, acting as a security gateway or and enterprise firewall.

Note: Separate FIREWALL and IPSECURITY stacks may coexist on one z/OS image.

TCP/IP Stack

IPSec
Config
Files

z/OS IP Security
Configuration
Assistant GUI

Must specify
IPSECURITY
on IPCONFIG

statement

Filtering Logic IP Security
Filter Policy

Implicit Rules

Pagent

Default IP
Filter Policy

Implicit Rules

TCP/IP
Profile

ipsec
command

24 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

2.1.2 For additional information
For additional information, please consult the following books:

� z/OS V1R7.0 Communications Server: IP Configuration Reference, SC31-8776
� z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775
� z/OS V1R7.0 Communications Server: IP Diagnosis Guide, GC31-8782

2.2 Why IP filtering is important
Depending upon your organization’s security policies, IP filtering capabilities (provided as part
of the z/OS V1R7.0 Communications Server Integrated IP Security support) can provide
either the primary means of protecting your z/OS environment from network-based attacks or
a powerful additional line of defense (when used in conjunction with layers of external
firewalls and access control lists).

IP filtering is also required if you intend to use IPSec for authentication or encryption.

2.3 How IP filtering is implemented
IP filtering is implemented through the z/OS Communications Server PAGENT function.
PAGENT is discussed in Chapter 1, “Policy Agent (PAGENT)” on page 3.

2.3.1 z/OS IP filtering implementation
There are two parts to implementing the IP filtering policy:

� The default policy is specified using the IPSEC statement in the TCP/IP profile dataset.

� The filter policy is specified using the PAGENT policy configuration files. Those are flat
files that can be created in a z/OS UNIX file or in a sequential dataset under z/OS.

The TCP/IP profile has to be configured to activate IP filtering. That is done with the
IPSECURITY option under the IPCONFIG statement. If IPSECURITY is not specified then
the IP filtering function will not be available even if they are configured either in the PAGENT
filter policy configuration file or in the IPSEC statement in the TCP/IP profile. Figure 2-3 on
page 26 shows the structure of an IP filtering implementation.

Chapter 2. IP filtering 25

Figure 2-3 IP security filtering structure

As is illustrated in Figure 2-3:

� PAGENT loads the filter policies into the TCP/IP stack at startup or when you make
changes to it and refreshes the policy by using the modify console command.

� The default policy is always loaded by the stack at the start. If it does not have any rules
the implicit rules will be loaded. Any rule defined or the log options can be changed by the
vary tcpip obeyfile console command.

� The ipsec command is used to manage and monitor the IP security filtering.

The major differences between the default policy and the filter policy are:

� In the default policy there are only permit rules. The implicit rules implement the deny all
functions. In the pagent policy you have the option to create deny rules.

� The default policy only applies to local packets. If you wish to apply filter policies to
messages that are being routed between a z/OS image and other z/OS images, then the
filter policy must be used.

� There is no option to group similar resources in the default policy. That capability is only
available in the filter policy.

The default policy will always be used in the absence of a filter policy. If a filter policy is
defined, both will be loaded into the TCP/IP stack and the filter policy will be used unless you

TCP/IP Stack

IPFilterRule1
IPFilterRule2
 IPgenericfilteraction

Must specify
IPSECURITY
on IPCONFIG

statement

Filtering Logic IP Security
Filter Policy

Implicit Rules

Pagent

Default IP
Filter Policy

Implicit Rules

TCP/IP
Profile

ipsec
command

Implicit Rules

IPFilterPolicy

Define IP filter conditions here

Define IP filter actions here

Controls which SPD
is used when both
are loaded

Important: The implicit rules will be always created by using either the default or the filter
policy. Just by using the IPSECURITY option in the IPCONFIG statement the implicit rules
will be created and will deny all the inbound and outbound TCP/IP traffic in that z/OS
image.

26 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

specify with the ipsec command that the default policy should be used. Using the ipsec
command, you can switch between the default and the filter policy whenever necessary.

The IPSECURITY option is activated only at the TCP/IP startup. If you want to remove the IP
filtering function you must restart the stack without it.

Example 2-1 shows our IP filtering definitions in the TCP/IP profile for our test system image
A23.

Example 2-1 PSec configuration statements on profile for image A23

IPCONFIG DATAGRAMFWD
 IPSECURITY 1

DEVICE OSA2080 MPCIPA
 LINK OSA2080LNK IPAQENET OSA2080 VLANID 40 SECCLASS 1 2
DEVICE OSA20A0 MPCIPA
 LINK OSA20A0LNK IPAQENET OSA20A0 VLANID 40 SECCLASS 1
 DEVICE OSA20C0 MPCIPA
 LINK OSA20C0LNK IPAQENET OSA20C0 VLANID 41 SECCLASS 1
 DEVICE OSA20E0 MPCIPA
 LINK OSA20E0LNK IPAQENET OSA20E0 VLANID 41 SECCLASS 1

IPSEC 3
 LOGENABLE 4
 LOGIMPLICIT 5
ENDIPSEC

1 The IPSECURITY option is specified on the IPCONFIG statement, indicating that we want
IPsecurity activated on the stack. This option will automatically install the default security
policy that will contain only the implicit rules, meaning that all the IP traffic will be blocked. If
PAGENT is running and there is an IP filtering policy defined, it will be installed and activated.

2 The SECCLASS option on the LINK statements enables you to either uniquely identify an
interface, or to group interfaces with similar security requirements, based on site policy. Then
you can configure a single IP filter rule that matches all of the IP traffic from interfaces that
share a common security class without explicitly identifying any attributes of the IP packets. In
our scenario, we have only one security class for the network outside the A23 image, the
security class 1.

Each non-virtual interface on a z/OS system is assigned a security class. The security class
of an interface is determined by the SECCLASS parameter that is coded on either the LINK
statement or the DYNAMICXCF parameter of the IPCONFIG statement in the TCP/IP profile.
The value of SECCLASS is a number in the range 1–255. If SECCLASS is not specified for
an interface, the interface is assigned the default security class of 255.

Each IP packet entering or leaving the system inherits the security class of the interface that it
traverses:

� For inbound traffic, this is the interface on which the packet arrived.
� For outbound traffic, this is the interface over which the packet will be sent.

Important: If the IPCONFIG IPSECURITY statement is coded in the TCP/IP profile, the
default IP filter policy is to effectively deny all network traffic, with the exception of some
selected ICMP messages that are necessary for the internal stack function.

Chapter 2. IP filtering 27

Security classes can only be assigned to physical interfaces, not VIPA devices. Networks
connected to the same network interface (for example, Alpha network and Beta network in
Figure 2-4) cannot be distinguished into different security classes.

Figure 2-4 Interface security class example

Security classes can be used in conjunction with IP address information to create filter rules
to block packets having spoofed source IP addresses. For example, if a packet enters the
stack from the Delta network (in Figure 2-4) but its source IP address is not from the address
space of the Delta network, then the packet is probably spoofed and should be denied.

3 The IPSEC statement is used to define the default policy. The default policy will be
activated and applied if the filter policy is not defined. Additional rules have to be defined in
order to gain access to services running on this TCP/IP stack. In our scenario, our default
policy contains only the implicit rules, and all of our real policy rules will be defined in the filter
policy configuration. Filter rules can be defined in the IPSEC statement by using the
IPSECRULE statement. In our example we do not have any rules defined on the IPSEC
statement.

4 The LOGENABLE option activates packet filter logging. All the log messages are sent to the
syslogd by the TRMD daemon. You can disable it by using the LOGDISABLE option. In each
of the filter rules there is an option to generate (or not) a log record when the rule is applied to
a packet.

5 The LOGIMPLICIT specifies that we want to log all packets that get blocked by the implicit
rules in the default policy.

In our implementation we have all the configuration files stored in a partitioned dataset (PDS).
This PDS is shared by all of the components: PAGENT, TRMD, SYSLOGD, and TCP/IP
address spaces. Figure 2-5 on page 29 shows the members flow to customize IP filtering
from IPSec and PAGENT.

Note: While it is possible to configure different security classes for different interfaces into
the same network (for example, Gamma network in Figure 2-4), all interfaces into the same
network should be configured with the same security class to avoid unnecessarily
complicating security policies.

Interface 1
Secclass 1

Interface 2
Secclass 130

Interface 3
Secclass 25Router

Interface 4
Secclass 42

STACK

Beta
Network

Gamma
 Network

Delta
Network

Alpha
Network

28 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-5 Members flow

The IpSecConfig statement in the pagent configuration file is:

IpsecConfig //'TCPIPD.TCPPARMS(IPSEC0D)'

The IpsecConfig statement specifies the path of an IPSec policy file that contains common
IPSec policy statements. If no path name is specified, then the common IPSec policy file
specified on the CommonIpSecConfig statement is used.

You can manually create the IP security policy configuration files by coding all of the required
statements in an z/OS UNIX file or MVS data set. There are a large number of powerful
configuration options provided by IP security policy statements that permit advanced users to
carefully fine-tune the IP security policy. However, IBM also provides a configuration GUI that
you can use to generate the Policy Agent and IKE daemon configuration files. The z/OS
Network Security Configuration Assistant is a standalone application that runs under the
Windows® operating system and requires no network connectivity or setup.

The z/OS Network Security Configuration Assistant GUI tool can be downloaded from:

http://www.ibm.com/software/network/commserver/zos/support/

For a complete explanation of the IP filtering statements and options please see:

� z/OS V1R7.0 Communications Server: IP Configuration Reference, SC31-8776
� z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775

/etc/pagent.sc30.conf

TCPIPD.TCPPARMS(IPSecPOL)

CommonIPsecConfig /etc/sc30.pagent_CommonIPSec_conf
..........
TcpImage TCPIPD /etc/sc30.tcpipd_image.conf
.....

.....
IPSecConfig //'TCPIPD.TCPPARMS(IPSecPOL)'
.....

.....
IpGenericFilterAction
.....

/etc/sc30.tcpipd_image.conf

/etc/pagent.sc30.env

SYS1.PROCLIB(PAGENT)

Chapter 2. IP filtering 29

http://www.ibm.com/software/network/commserver/zos/support/
http://www.ibm.com/software/network/commserver/zos/support/

FTP and TN3270 filtering scenario
In the following IP filtering implementation scenario (see Figure 2-6), we use the z/OS
Network Security Configuration Assistant graphic user interface (GUI) to define filter rules for
system A23 to:

1. Allow FTP traffic from IP address 10.40.1.241 (LPAR A24) to IP address 10.40.1.230
(LPAR A23).

2. Allow TN3270 from remote station 10.12.4.224 to IP address 10.40.1.230 (LPAR A23).

3. All other application connections should be denied for system A23.

Figure 2-6 Scenario overview

In our case, we allow only those specific point-to-point connections; however, there is also
some essential traffic that must be allowed:

� resolver

– Outbound: srcport=any, destport=53, proto=TCP or UDP
– Inbound: srcport=53, destport=any, proto=TCP or UDP

� omproute

– RIP: Inbound and outbound: srcport=520, destport=520, proto=UDP; for RIPv2 also
need IGMP

– OSPF: Inbound and outbound: IP protocol 89 (OSPF) and IGMP

Refer to Figure 2-31 on page 55 to see how to configure security so that those services are
permitted.

Implementation steps
The steps are:

1. Start the z/OS Network Security Configuration Assistant GUI. (See Figure 2-7 on
page 31.)

IP
Filters

DenyPermit

TCPIPD

IP@ 10.40.1.230

z/OS

Applications
Sockets

Data Link

A23

IP@ 10.12.4.224

FTP

TN3270

TCPIPD

IP@ 10.40.1.241

z/OS

Applications
Sockets

Data Link

A24

FTP

TN3270

30 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-7 Application launch

Then the screen shown in Figure 2-8 appears.

Figure 2-8 Configuration Assistant start panel

2. Select IPSec only (recall that z/OS Communications Server IP filtering support is
packaged with the IPSec support), then click Add New z/OS Image.

Figure 2-9 on page 32 shows that our LPAR name is A23 and we are not using IPSec
VPNs with dynamic tunnels (because we are just doing IP filtering in this scenario).

Chapter 2. IP filtering 31

Figure 2-9 z/OS image information

3. Click Next and you will be asked add a TCP/IP stack (Figure 2-10).

Figure 2-10 Proceed to configuring TCP/IP stack

4. Click Yes and the panel in Figure 2-11 on page 33 is presented.

Our stack name is TCPIPD and, as with the z/OS image, we are not using IPSec VPNs
with dynamic tunnels (because we are just doing IP filtering in this scenario).

32 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-11 IP stack information

5. Click Next and proceed to configuring stack-level settings. We chose to:

– Enable Filter Logging Policy.
– De-encapsulate and then filter IPSec payloads rather than filter IPSec headers.

Chapter 2. IP filtering 33

Figure 2-12 Filter Logging Policy

6. Click Next and you will be asked to configure the connectivity rules for the new stack (see
Figure 2-13).

Figure 2-13 Proceed to configuring connectivity rules

7. Click Yes and select the appropriate network topology from the panel shown in
Figure 2-14 on page 35. Our configuration is for a host-to-host rule. Then click Next.

34 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-14 Network topology

8. On the panel shown in Figure 2-15 on page 36, we fill in the IP addresses that we will be
able to connect from and to. The name of the Connectivity Rule must be a string from 1 to
25 characters. The configuration assistant will supply a name, which you can change if
you wish.

Important: The Source IP address must be the IP address of the stack you are
protecting.

Chapter 2. IP filtering 35

Figure 2-15 Connectivity rules

9. Click Next and the connectivity rule requirement map panel in Figure 2-16 on page 37
appears. There are IBM-provided maps; however, in our example, we have configured our
own map (A23toA24):

a. Highlight the desired map.
b. Then click Add for Beginners.

36 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-16 Map for data endpoints

10.Figure 2-17 on page 38 shows a listing of likely traffic types to allow. The map shown is to
allow TN3270 traffic from a remote workstation for LPAR A24.

Chapter 2. IP filtering 37

Figure 2-17 Traffic descriptors

11.Click Next and the panel shown in Figure 2-18 on page 39 gives you the opportunity to
add additional traffic type descriptions.

38 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-18 Additional traffic descriptors

12.Select all_other_traffic, then click Remove (See Figure 2-19 on page 40).

Note: Unless you remove the all_other_traffic row shown in Figure 2-18 on page 39,
OSPF will be unable to route your traffic.

Chapter 2. IP filtering 39

Figure 2-19 Additional traffic descriptors

13.Click Next to proceed to determining security levels. Each row on the Requirement Map
table is a mapping between a Traffic Descriptor and either an IPSec Security Level, an
AT-TLS Security level, or both.

Note: If you specify no mapping for a Requirement Map, IPSec will deny all traffic and
AT-TLS will protect no traffic.

40 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-20 Security levels

14.Click Finish. The screen shown in Figure 2-21 on page 42 shows the result of our
definitions.

Chapter 2. IP filtering 41

Figure 2-21 Stack settings

At this point, we need to add another rule for the remote station.

15.Click Add and the following panel appears (Figure 2-22 on page 43). Then select No
topology information is required.

42 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-22 Network topology

16.Click Next and on the following panel (Figure 2-23 on page 44) we specify the IP
addresses that will be permitted to connect from and to.

Chapter 2. IP filtering 43

Figure 2-23 Connectivity rule

17.Click Next and in the following panel we will determine which kind of traffic we allow
(Figure 2-24 on page 45).

44 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-24 Traffic types

18.Click Next and on the next panel (Figure 2-25 on page 46) we see that three lines are
generated:

– FTP server
– FTP client
– all_other_traffic

Chapter 2. IP filtering 45

Figure 2-25 Add traffic descriptor

19.Click Next and we will set up our policy so that we permit only FTP to reach the IP stack
(see Figure 2-26 on page 47).

46 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-26 Security level

20.Select all_other_traffic, then click Remove (see Figure 2-27 on page 48).

Attention: If you do not remove the all_other_traffic row shown in Figure 2-26, you will
be not able to reach your host.

Chapter 2. IP filtering 47

Figure 2-27 Traffic descriptors

21.Click Finish and we will return to the TCP/IP Stack Settings panel (see Figure 2-28 on
page 49).

48 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-28 TCP/IP stack settings

Next we need to install the configuration files.

22.Select Edit on the top left corner, then click Install Configuration Files. In Figure 2-29 we
show there are two files to be installed:

– A sample TCP/IP profile to insert in the profile TCP/IP
– An IPSec configuration file

Figure 2-29 Installation stack

We have two options:

– Show Configuration File, save the file on your computer using Save As, and then
upload the file to your mainframe server later on.

– FTP the file to your mainframe server.

Below, we show each of the configuration files and then an example of the FTP.

Chapter 2. IP filtering 49

23.We selected IPSec: Policy Agent Stack Configuration, then clicked Show
Configuration File. The file in Example 2-2 was generated by the Configuration Assistant
show.

Example 2-2 IPSec configuration file

IPSec Policy Agent Configuration file for:
Image: A23
Stack: TCPIPD

Created by the z/OS Network Security Configuration Assistant
Date Created: Fri Oct 14 22:32:16 CEST 2005

Copyright = None

IpGenericFilterAction Permit~LogYes
{
 IpFilterAction Permit
 IpFilterLogging Yes
}

IpService TN3270-Server
{
 Protocol TCP
 SourcePortRange 23
 DestinationPortRange 1024 65535
 Direction BiDirectional InboundConnect
 Routing Either
}

IpService FTP-Client
{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 21
 Direction BiDirectional
 Routing Either
}

IpService FTP-Client~1
{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 20
 Direction BiDirectional
 Routing Either
}

IpService FTP-Client~2
{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 50000 50200
 Direction BiDirectional OutboundConnect
 Routing Either
}

IpService FTP-Server
{

50 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 Protocol TCP
 SourcePortRange 21
 DestinationPortRange 1024 65535
 Direction BiDirectional InboundConnect
 Routing Either
}

IpService FTP-Server~3
{
 Protocol TCP
 SourcePortRange 20
 DestinationPortRange 1024 65535
 Direction BiDirectional OutboundConnect
 Routing Either
}

IpService FTP-Server~4
{
 Protocol TCP
 SourcePortRange 50000 50200
 DestinationPortRange 1024 65535
 Direction BiDirectional InboundConnect
 Routing Either
}

Connectivity Rule TELNET combines the following items:
Local data endpoint TELNET~ADR~1
Remote data endpoint TELNET~ADR~2
Topology None (Permit/Deny only)
Requirement Map TELNET
TN3270-Server => Permit

IpAddr TELNET~ADR~1
{
 Addr 10.40.1.230
}

IpAddr TELNET~ADR~2
{
 Addr 10.12.4.224
}

IpFilterRule TELNET~3
{
 IpSourceAddrRef TELNET~ADR~1
 IpDestAddrRef TELNET~ADR~2
 IpServiceRef TN3270-Server
 IpGenericFilterActionRef Permit~LogYes
}

Connectivity Rule FTPa combines the following items:
Local data endpoint FTPa~ADR~1
Remote data endpoint FTPa~ADR~2
Topology None (Permit/Deny only)
Requirement Map FTP1a
FTP-Client => Permit
FTP-Server => Permit

IpAddr FTPa~ADR~1
{

Chapter 2. IP filtering 51

 Addr 10.40.1.230
}

IpAddr FTPa~ADR~2
{
 Addr 10.40.1.241
}

IpFilterRule FTPa~3
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Client
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule FTPa~4
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Client~1
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule FTPa~5
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Client~2
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule FTPa~6
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Server
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule FTPa~7
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Server~3
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule FTPa~8
{
 IpSourceAddrRef FTPa~ADR~1
 IpDestAddrRef FTPa~ADR~2
 IpServiceRef FTP-Server~4
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterPolicy
{
 PreDecap OFF
 FilterLogging ON

52 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 IpFilterLogImplicit Yes
 AllowOnDemand Yes
 IpFilterRuleRef TELNET~3
 IpFilterRuleRef FTPa~3
 IpFilterRuleRef FTPa~4
 IpFilterRuleRef FTPa~5
 IpFilterRuleRef FTPa~6
 IpFilterRuleRef FTPa~7
 IpFilterRuleRef FTPa~8
}

24.Next, we selected IPSec: Sample PROFILE.TCPIP Insert, then clicked Show
Configuration File. The file in Example 2-3 was generated by the Configuration Assistant
show.

Example 2-3 Profile TCP/IP Insert

;;
;; Sample IPSec PROFILE.TCPIP default rules for:
;; Image: A23
;; Stack: TCPIPD
;;
;; Created by the z/OS Network Security Configuration Assistant
;; Date Created: Fri Oct 14 22:32:36 CEST 2005
;;
;; Copyright = None
;;
;;
;; The following statement is required to enable IP Security.
IPCONFIG IPSECURITY
;;
;;
;; The following IPSECRULE statements are example only. Refer to the
;; System Administrator Information... panel for information on the
;; default filter policy.

IPSEC LOGENABLE
;;
;; OSPF protocol used by Omproute
IPSECRULE * * NOLOG PROTOCOL OSPF
;;
;; IGMP protocol used by Omproute
IPSECRULE * * NOLOG PROTOCOL 2
;;
;; DNS queries to UDP port 53
IPSECRULE * * NOLOG PROTOCOL UDP SRCPORT * DESTPORT 53 SECCLASS 100
;;
;; Administrative access
IPSECRULE * 9.1.1.1 LOG PROTOCOL *
ENDIPSEC

25.Figure 2-29 on page 49 shows the FTP process for transferring the configuration files.

Chapter 2. IP filtering 53

Figure 2-30 File transfer

Connectivity rules for Resolver and OMPROUTE
Some protocols must be allowed in order for key services (Resolver, OMPROUTE, and PING)
to function. Therefore, you need to create another connectivity rule (shown in Figure 2-31 on
page 55) to permit them.

54 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-31 Services rule

We allow all IP addresses to get these services (see Figure 2-32 on page 56).

Chapter 2. IP filtering 55

Figure 2-32 Requirement map

Verification
We do the following to verify our IP filtering configurations:

� Log on to system A23 using TN3270
� Attempt to FTP to system A23 from a remote workstation (should fail)

Log on to system A23 using TN3270
From our workstation, we create a TELNET session to TCPIPD (10.40.1.230) on A23 (see
Figure 2-33 on page 57).

56 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 2-33 TN3270 Host definition

The Figure 2-34 shows the connection between remote station to host.

Figure 2-34 TN3270 connection

Chapter 2. IP filtering 57

Attempt to FTP to system A23 from a remote workstation (should fail)
From the remote station we are not allowed to FTP into system A23, as shown in Figure 2-35.

Figure 2-35 Workstation FTP fails

Log on to system A24 using TN3270 and then use TSO FTP to system A23
From our workstation, we can log on to system A24 because we have not set up any filtering
rules for A24 (Figure 2-36). From there, we can demonstrate that the host-to-host FTP works
(Figure 2-37 on page 59) because we set up our filter rules to permit FTP traffic from A24 to
A23.

Figure 2-36 Telnet connection to A24

58 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Using TSO on system A24, then we issue the command:

ftp -p tcpipd 10.40.1.230

Figure 2-37 shows the result of the successful TSO FTP command.

Figure 2-37 TSO output

Problem determination
The following documentation can aid in problem determination:

� TCP/IP CTRACE output: The CTRACE facility has flexibility such as filtering, combining
multiple concurrent applications and traces, and using an external writer. (For additional
information see z/OS V1R7.0 Communications Server: IP Diagnosis Guide, GC31-8782.)

� PASEARCH command: Use the pasearch command to display policy rules with complex
conditions.

� TCP/IP profile output.

� POLICY config file output.

Chapter 2. IP filtering 59

60 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 3. IPSec

IPSec is a suite of protocols and standards defined by the Internet Engineering Task Force
(IETF) to provide an open architecture for security at the IP networking layer of TCP/IP. IPSec
provides the framework to define and implement network security based on policies defined
by your organization.

This chapter discusses the implementation of IPSec on z/OS.

3

Section Topic

3.1, “IPSec definition” on page 62 The basic concepts of IPSec and VPN are discussed
here.

3.2, “Key IPSec components” on
page 62

The key IPSec components are discussed here.

3.3, “How IPSec is implemented” on
page 63

The implementation procedures for installing IPsec are
discussed in this section.

3.4, “Implementing IPSec between two
z/OS systems” on page 80

This section looks at the implementation of IPSec
between two z/OS machines.

3.5, “Implementing IPSec between z/OS
and Windows” on page 105

This section looks at the implementation of IPSec
between a z/OS and a Windows machine.

© Copyright IBM Corp. 2006. All rights reserved. 61

3.1 IPSec definition
IPSec is a suite of protocols and standards defined by the Internet Engineering Task Force
(IETF) to provide an open architecture for security at the IP networking layer of TCP/IP.
Because IPSec works at the IP networking layer, it can be used to provide security for any
TCP/IP application without modification. If necessary, applications can have their own
additional security features on top of the underlying IPSec security. Also, unlike
TCP-layer-based security implementations (such as SSL/TLS), IPSec can be used to protect
both TCP and UDP applications. The IPSec standards have also been structured so that they
can accommodate newer, more powerful, algorithms as they become available in the future.

IPSec is often referred to as a Virtual Private Networking (VPN) technology because it
enables an enterprise to extend its network across an untrusted network (such as the
Internet) without compromising security. Using IPSec protocols, each host can encrypt and
authenticate individual IP packets between itself and other communicating hosts. Companies
can therefore securely, and cost effectively, extend the reach of their applications and data
across the world by replacing leased lines to remote sites with VPN connections. Because
Internet access is increasingly available worldwide, companies can now use VPN
technologies to reach places where other connectivity alternatives like leased lines are
expensive or not available.

The z/OS V1R7.0 Communications Server implements the following IPSec RFCs:

� RFC 2401: Security Architecture for the Internet Protocol
� RFC 2402: IP Authentication Header
� RFC 2403: The Use of HMAC-MD5-96 within ESP and AH
� RFC 2404: The Use of HMAC-SHA-1-96 within ESP and AH
� RFC 2406: IP Encapsulating Security Payload (ESP)
� RFC 2407: The Internet IP Security Domain of Interpretation for ISAKMP
� RFC 2408: Internet Security Association and Key Management Protocol (ISAKMP)
� RFC 2409: The Internet Key Exchange (IKE)
� RFC 2410: The NULL Encryption Algorithm and Its Use with IPSec
� RFC 2451: The ESP CBC-Mode Cipher Algorithms
� RFC 3947: Negotiation of NAT-Traversal in the IKE
� RFC 3948: UDP Encapsulation of IPSec ESP Packets

3.2 Key IPSec components
Three of the most important IPSec components implemented by the z/OS V1R7.0
Communications Server include:

� RFC 2402: IP Authentication Header (AH) protocol, which provides for data
authentication, IP header authentication, and data origin authentication

� RFC 2406: IP Encapsulating Security Payload (ESP), which provides for data
authentication, data origin authentication, and data privacy (encryption)

� RFC 2409: The Internet Key Exchange (IKE), which provides protocols for automated
encryption key management

Note: One thing that could be confusing about z/OS V1R7.0 Communications Server
IPSec support is that it has been packaged together with IP filtering support and is referred
to as integrated IP Security. That is because there is a very close affinity between IPSec
and IP filtering in the z/OS Communications Server; while you can implement IP filtering
without IPSec, you cannot implement IPSec without IP filtering (discussed in Chapter 2, “IP
filtering” on page 21).

62 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

3.2.1 IP Authentication Header (AH) protocol
As the name suggests, IPSec AH authenticates IP packets, ensuring that they came from a
legitimate origin host and that they have not been changed. IPSec AH provides:

� Data integrity by authenticating the entire IP packet using a message digest that is
generated by algorithms such as HMAC-MD5 or HMAC-SHA

� Data origin authentication by using a shared secret key to create the message digest

� Replay protection by using a sequence number field within the AH header

3.2.2 IP Encapsulating Security Payload (ESP) protocol
ESP provides additional protection beyond (or in addition to) AH, including:

� Encapsulating and encrypting the IP packet
� Authenticating the IP datagram portion of the IP packet

In ESP, before leaving a host, outbound packets are rebuilt with additional IPSec headers
using a cryptographic key that is known to both communicating hosts. This is called
encapsulation. On the receiving side, the inbound packets are stripped of their IPSec headers
(decapsulated) using the same cryptographic key, thereby recovering the original packet. Any
packet that is intercepted on the IP network is unreadable to anyone without the encryption
key. Any modifications to the IP packet while in transit are detected by authentication
processing at the receiving host and is discarded.

3.2.3 Internet Key Exchange (IKE) protocol
The IKE protocol (implemented in the z/OS V1R7.0 Communications Server by the IKE
daemon) manages the transfer and periodic changing of security keys between senders and
receivers. Key exchange, defined in IKE, is normally a two-step process:

1. The partners establish a logical connection, called a Security Association (SA), and decide
on security parameters like encryption and hashing algorithms and authentication
methods (IKE SA).

2. Once the appropriate security parameters have been negotiated, they set up a second
Security Association for the actual data transfer (IPSec SA).

Such secure logical connections between pairs of endpoints are often called tunnels. The
z/OS V1R7.0 Communications Server IPSec implementation refers to two types of tunnels:

� Manual tunnels: The security parameters and encryption keys are statically configured
and are manually managed by a security administrator.

� Dynamic tunnels: The security parameters are negotiated and the encryption keys are
generated dynamically using IKE.

The Internet Key Exchange (IKE) daemon uses the IP security policies defined by you in the
Policy Agent and dynamically manages the keys that are associated with dynamic IPSec
VPNs.

3.3 How IPSec is implemented
IPSec uses the services of a number of z/OS Communications Server components
(illustrated in Figure 3-1 on page 64) to provide policy-based security.

Chapter 3. IPSec 63

Figure 3-1 z/OS Communications Server components involved with IPSec

The steps to implement IPSec are:

1. Set up the Internet Key Exchange Daemon (IKED).
2. Set up the System Logging Daemon (syslogd) to log IKED messages.
3. Start IKE daemon and verify it initializes.
4. Set up Traffic Regulation Manager Daemon (TRMD).
5. Update the TCP/IP stack to activate IPSec.
6. Restrict the use of the ipsec command.
7. Install the Policy Agent (PAGENT).
8. Define the IPSec policies to PAGENT.

In the following sections we briefly describe each of these steps.

3.3.1 Set up the Internet Key Exchange Daemon (IKED)
The Internet Key Exchange daemon is responsible for retrieving the IP security policy from
the Policy Agent, and dynamically managing keys that are associated with dynamic tunnels.
The IKE daemon implements the protocols to dynamically establish IKE SAs with peers that
also support these protocols. It can provide automatic management of cryptographic keys
and remove the administrative burden associated with key creation, distribution, and
maintenance.

IKE provides the following services:

� Host authentication (ensuring that each hosts is certain of the other’s identity)
� The negotiation of a security association as follows:

– Agreeing on the type of traffic to be protected
– Agreeing on the authentication and encryption algorithms to be used
– Generating cryptographic keys

� Nondisruptive periodic refresh of keys
� The deletion of security associations whose lifetimes have expired

IKE operates at the application layer and communicates between two IKE peers using a
series of UDP messages.

Filter rules
with IPSec

actions
IPSec manual

SAs
IPSec

dynamic SAs

Install
IPSec
policy

Install
manual
SA

Install dynamic
SAs after IKE
negotiation

IKE daemon
IKE

policy

Local IPSec
policy

Policy agent SyslogDTRMDIPSEC
command

Log
buffer

TCP/IP
Stack

Filter/
IPSec
events

Install
IKE

policy
Policy
admin

Store policy
locally on z/OS

SyslogD
logs

64 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Only one instance of the IKE daemon can run on a single z/OS image. The IKE daemon
obtains operational parameters from the configuration file and the IP security policy from the
Policy Agent.

The steps to set up the IKE daemon are:

1. Set up the IKE daemon cataloged procedure.
2. Create the IKE daemon configuration file.
3. Reserve the TCP/IP ports for IKE demon.
4. Associate a RACF user ID and group with the IKE daemon.
5. Define profiles to control access to the RACDCERT command.
6. Create a RACF key ring.
7. Install an X509 digital certificate for the IKE daemon.
8. (Optionally) Authorize use of hardware cryptographic encryption.

These steps are explained below.

Set up the IKE daemon cataloged procedure
A sample of the procedure can be obtained from the z/OS Communications Server
installation file TCPIP.SEZAINST(IKED). Example 3-1 shows the procedure we used. Copy
this procedure into your SYS1.PROCLIB library.

Example 3-1 IKE daemon cataloged procedure

//IKED EXEC PGM=IKED,REGION=0K,TIME=NOLIMIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:STDENV")/'
//STDENV DD DUMMY
//STDENV DD DSN=TCPIP.IKED.ENV(IKED30),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

TCPIP.IKED.ENV(IKED30) contains the following:

IKED_FILE=/etc/security/iked.conf30
IKED_CTRACE_MEMBER=CTIIKE00

The file /etc/security/iked.conf30 is the IKE daemon configuration file shown in Example 3-2
on page 66.

IKED_CTRACE_MEMBER is the name of a parmlib member that contains default CTRACE
settings for IKE daemon.

Create the IKE daemon configuration file
A sample config is supplied in the z/OS Communication server installation file
/usr/lpp/tcpip/samples/IBM/EZAIKCFG. The config we used is shown in Example 3-2 on
page 66.

Attention: Once the IKE daemon has obtained the IP Security policy, the Policy Agent
may be stopped without impacting the IKE daemon. However, any changes to the IP
Security policy will not be detected until the Policy Agent is restarted. The IKE daemon will
reconnect to the Policy Agent when it is restarted.

Note: The IKE daemon is required only if IpDynVpnAction statements are utilized in the
policy.

Chapter 3. IPSec 65

Example 3-2 IKE daemon configuration file

IkeConfig
{
 IkeSyslogLevel 255
 PagentSyslogLevel 128
 Keyring IKED/IKED_keyring
 KeyRetries 10
 KeyWait 30
 DataRetries 10
 DataWait 15
 Echo no
 PagentWait 0
}

These parameters control the workings of the IKE daemon, and each is explained below:

� IkeSyslogLevel - Level of logging from the IKE daemon. We left it at the highest level to
get all messages during testing. On the production system this can be set to 1.

� PagentSyslogLevel - Level of logging from pagent. We set it to the highest level of 128 for
testing.

� Keyring - Owning user ID and ringname for RSA Signature Mode of authentication. We set
this up later in “Create a RACF key ring” on page 68.

� KeyRetries - Number of times the IKE daemon will retransmit a key negotiation before
aborting.

� KeyWait - Number of seconds between retransmissions of key negotiations.

� DataRetries - Number of times the IKE daemon will retransmit a data negotiation before
aborting.

� DataWait - Number of seconds between retransmissions of data negotiations.

� Echo - Option to echo all IKE daemon log messages to the IKEDOUT DD file.

� PagentWait - The time limit in seconds to wait for connection to the Policy Agent. A value
of 0 means retry forever.

We edited our IKE daemon configuration file as follows:

1. We issued the su command in UNIX to get superuser authority.

2. We copied the file /usr/lpp/tcpip/samples/IBM/EZAIKCFG to /etc/security/iked.conf30
using the UNIX command:

cp /usr/lpp/tcpip/samples/IBM/EZAIKCFG /etc/security/iked.conf30

3. We updated this file using the UNIX command:

oedit /etc/security/iked.conf30

Attention: The IkeSyslogLevel and PagentSyslogLevel have been set for the maximum
level of tracing for our testing. In the production environment you should set them to low
levels to avoid a performance impact from excessive logging.

Tip: Newly created z/OS UNIX files may not have write access. Issue the ls -al command
for the file to verify this and issue the chmod 700 command to change the access if
necessary.

66 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Reserve the TCP/IP ports for IKE demon
Update the PORT statement in PROFILE.TCPIP to reserve ports 500 and 4500 for the IKE
daemon:

PORT
500 UDP IKED
4500 UDP IKED

Make sure to specify the correct name of the IKE daemon that you are using here. We used
the name IKED.

Associate a RACF user ID and group with the IKE daemon
We defined a user ID IKED with default group TCPGRP and with an OMVS segment. This
user ID needs to be defined with UID=0. But only one user ID can have UID=0 in the system
and it is normally already assigned to user BPXROOT in most installations. So you have to
use the ‘SHARED’ parameter in the definition. A home directory was also assigned to this
user ID.

We then defined the started task IKED to RACF and associated the user IKED and group
TCPGRP using the RDEFINE command. We refreshed the RACLIST and GENERIC for the
STARTED class to update the profiles in storage with this new information.

Example 3-3 shows the commands we used. Please note that IKE daemon user ID IKED
requires read access to RACF profile BPX.DAEMON in the FACILITY resource class to work
as a daemon.

Example 3-3 Associate a RACF user ID and group with IKE daemon

ADDUSER IKED DFLTGRP(TCPGRP) OMVS(UID(0) SHARED HOME(’/’))
RDEFINE STARTED IKED.* STDATA(USER(IKED) GROUP(TCPGRP))
PERMIT BPX.DAEMON CLASS(FACILITY) ID(IKED) ACCESS(READ)
SETROPTS RACLIST(STARTED) REFRESH
SETROPTS GENERIC(STARTED) REFRESH

Define profiles to control access to the RACDCERT command
The RACDCERT command is used to generate keys and key rings and to connect the keys
to key rings. This facility should be protected and only authorized users like the IKE daemon
should have access to it. Example 3-4 shows the commands we used.

Example 3-4 Control access to the RACDCERT command

RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.ADDRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.CONNECT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.GENREQ UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)
RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)
PERMIT IRR.DIGTCERT.ADD CLASS(FACILITY) ID(IKED) ACC(CONTROL)
PERMIT IRR.DIGTCERT.ADDRING CLASS(FACILITY) ID(IKED) ACC(UPDATE)
PERMIT IRR.DIGTCERT.CONNECT CLASS(FACILITY) ID(IKED) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(IKED) ACC(CONTROL)
PERMIT IRR.DIGTCERT.GENREQ CLASS(FACILITY) ID(IKED) ACC(CONTROL)
PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(IKED) ACC(CONTROL)

Attention: If you are a network programmer, you may not have the necessary RACF
authority to issue many of these commands. You may need to work with your RACF
administrator who would have the necessary ‘SPECIAL’ authority to issue them.

Chapter 3. IPSec 67

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(IKED) ACC(UPDATE)

Create a RACF key ring
Digital certificates are made available to the IKE server by connecting them to a key ring that
is owned by the IKE server. To create a key ring for the IKE server, issue the TSO command:

RACDCERT ID(IKED) ADDRING(IKE_keyring)

Install an X509 digital certificate for the IKE daemon
You can install an X509 digital certificate in the following ways:

� Generate an X509 digital certificate for the IKE server and have it signed by a certificate
authority.

� Generate a self-signed X509 digital certificate for the IKE server.

� Migrate an existing key database to a RACF key ring.

We generated a self-signed X509 digital certificate. The steps we followed are explained
below:

1. Activate the RACF classes DIGTCERT and DIGTNMAP if not already active.
2. Generate a self-signed certificate to represent the local certificate authority.
3. Create a certificate for the server.
4. Connect the certificates to IKED’s key ring.
5. Tell IKE daemon where to find the key ring.
6. Verify certificate creation.

These steps are explained in the following sections.

Activate the RACF classes DIGTCERT and DIGTNMAP if not already active
The DIGTCERT (contains digital certificates and information related to them) and DIGTNMAP
(mapping class for certificate name filters) classes should be active for RACF certificate
creation. The command to do this is:

SETROPTS CLASSACT(DIGTCERT,DIGTNMAP)

Generate a self-signed certificate to represent the local certificate authority
We created a certificate to act as local certificate-issuing authority. The label for our certificate
was My Local Certificate Authority. This label will be used to refer to the certificate in the next
steps. Example 3-5 shows the command to do this.

Example 3-5 Generate a self-signed certificate

RACDCERT ID(IKED) CERTAUTH GENCERT SUBJECTSDN(O('I.B.M Corporation') -
 CN('itso.ibm.com') -
 C('US')) -
 WITHLABEL('My Local Certificate Authority') -
 KEYUSAGE(certsign)

Create a certificate for the server
We created a certificate for the IKED daemon and signed the new certificate with authority of
My Local Certificate Authority, which was created to represent the local certificate authority.
Example 3-6 on page 69 shows the command we used.

Note: The value used for key ring is case sensitive.

68 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Example 3-6 Create a certificate for the server

RACDCERT ID(IKED) GENCERT
 SUBJECTSDN (CN('IKE Daemon on SC30')
 OU('ITSO')
 C('US'))
 WITHLABEL('IKE Daemon on SC30')
 SIGNWITH(CERTAUTH
 label('My Local Certificate Authority'))

Connect the certificates to IKED’s key ring
The certificates created in the earlier two steps need to be connected to IKED’s key ring. The
commands in Example 3-7 accomplish this.

Example 3-7 Connect the certificate to IKED’s existing key ring

RACDCERT ID(IKED) CONNECT(ID(IKED) -
 LABEL('IKE Daemon on SC30') -
 RING(IKED_keyring) -
 USAGE(personal))
RACDCERT ID(IKED) CONNECT(ID(IKED) CERTAUTH -
 LABEL('My Local Certificate Authority') -
 RING(IKED_keyring) -
 USAGE(certauth))

Tell IKE daemon where to find the key ring
We then added the following statement to the IKE daemon configuration file,
etc/security/iked.conf30, we defined earlier:

Keyring IKED_keyring

Verify certificate creation
You can verify that the certificates that you have created are connected to the key ring
associated with user ID IKED by using the RACDCERT command and examining the output
of the Ring Associations field. Example 3-8 shows the commands to do the verification.

Example 3-8 Verify certificate creation

RACDCERT ID(iked) LIST(LABEL('IKE Daemon on SC30'))
RACDCERT ID(IKED) CERTAUTH -
 LIST(LABEL('My Local Certificate Authority'))
RACDCERT id(IKED) LISTRING(IKED_keyring)

Example 3-9 shows the output of these commands.
Example 3-9 Verify certificate creation

Digital certificate information for user IKED:

 Label: IKE Daemon on SC30
 Certificate ID: 2QTJ0sXEydLFQMSBhZSWlUCWlUDiw/Pw
 Status: TRUST
 Start Date: 2005/10/21 00:00:00
 End Date: 2006/10/21 23:59:59
 Serial Number:
 >01<
 Issuer's Name:
 >CN=itso.ibm.com.O=I.B.M Corporation.C=US<
 Subject's Name:
 >CN=IKE Daemon on SC30.OU=ITSO.C=US<
 Private Key Type: Non-ICSF
 Private Key Size: 1024
 Ring Associations:
 Ring Owner: IKED
 Ring:
 >IKED_keyring<

Chapter 3. IPSec 69

Digital certificate information for CERTAUTH:

 Label: My Local Certificate Authority
 Certificate ID: 2QiJmZmDhZmjgdSoQNOWg4GTQMOFmaOJhomDgaOFQMGko4iWmYmjqEBA
 Status: TRUST
 Start Date: 2005/10/21 00:00:00
 End Date: 2006/10/21 23:59:59
 Serial Number:
 >00<
 Issuer's Name:
 >CN=itso.ibm.com.O=I.B.M Corporation.C=US<
 Subject's Name:
 >CN=itso.ibm.com.O=I.B.M Corporation.C=US<
 Key Usage: CERTSIGN
 Private Key Type: Non-ICSF
 Private Key Size: 1024
 Ring Associations:
 Ring Owner: IKED
 Ring:
 >IKED_keyring<

Digital ring information for user IKED:

 Ring:
 >IKED_keyring<
 Certificate Label Name Cert Owner USAGE DEFAULT
 -------------------------------- ------------ -------- -------
 IKE Daemon on SC30 ID(IKED) PERSONAL NO
 My Local Certificate Authority CERTAUTH CERTAUTH NO

Authorize use of hardware cryptographic encryption
This step is optional and is required only if you are going to use the zSeries hardware
cryptographic feature to encrypt or decrypt TCP/IP packets and digital signatures.

To authorize the use of this feature, define the appropriate profiles in the CSFSERV class and
give access to authorized users and daemons. The commands required are shown in
Example 3-10.

Example 3-10 Authorize use of hardware cryptographic encryption

RDEFINE CSFSERV service-name UACC(NONE)
PERMIT service-name CLASS(CSFSERV) ID(stackname) ACCESS(READ)
PERMIT service-name CLASS(CSFSERV) ID (userid)
SETROPTS CLASSACT(CSFSERV) SETROPTS RACLIST(CSFSERV) REFRESH

In our set up we did not use this feature.

For more information about RACF
Please refer to the following manuals:

� z/OS V1R6.0 Security Server RACF Security Administrator's Guide, SA22-7683-05 - for
use of RACDCERT command

� z/OS V1R6.0 Security Server RACF Command Language Reference, SA22-7687-06 - for
other RACF commands

70 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

For more information about zSeies hardware cryptography
Please refer to the following manuals:

� z/OS V1R4.0 ICSF Overview, SA22-7519-04
� z/OS V1R4.0 ICSF Administrator's Guide, SA22-7521-05

3.3.2 Set up the System Logging Daemon (syslogd) to log IKED messages
The system logging daemon manages the logging of messages and events for all of the other
components, including where the log messages are written. We added the following line in
our SYSLOGD config file /SC30/etc/syslogd.conf to route all IKED daemon logs:

.IKED.*.* /tmp/iked-sc30.log

3.3.3 Start IKE daemon and verify it initializes
Start IKED and make sure it comes up correctly. Example 3-11 shows the startup messages
of IKED.

Example 3-11 Starting IKED

S IKED
$HASP100 IKED ON STCINRDR
IEF695I START IKED WITH JOBNAME IKED IS ASSIGNED TO USER IKED
 , GROUP TCPGRP
$HASP373 IKED STARTED
IEE252I MEMBER CTIIKE00 FOUND IN SYS1.PARMLIB
EZD0967I IKE RELEASE CS V1R7 SERVICE LEVEL CS050725 CREATED ON Jul 25
2005
EZD0911I IKE CONFIG PROCESSING COMPLETE USING FILE /etc/security/iked
conf30
EZD1061I IKE CONNECTING TO PAGENT
EZD1059I IKE CONNECTED TO PAGENT
EZD1058I IKE STATUS FOR STACK TCPIPA IS UP
EZD1068I IKE POLICY UPDATED FOR STACK TCPIPA
EZD1058I IKE STATUS FOR STACK TCPIPD IS UP
EZD1068I IKE POLICY UPDATED FOR STACK TCPIPD
EZD1046I IKE INITIALIZATION COMPLETE

3.3.4 Set up Traffic Regulation Manager Daemon (TRMD)
The Traffic Regulation Manager daemon is responsible for logging IP security events that are
detected by the stack, including IP filter events, updates to the IP security policy, and the
creation, deletion, and refresh of IPSec security associations.

For a detailed example of implementing TRMD, see 1.3, “Setting up TRMD” on page 19.

3.3.5 Update the TCP/IP stack to activate IPSec
To activate IPSec you need to add the IPSec option in the IPCONFIG statement in the
TCP/IP Profile.

3.3.6 Restrict the use of the ipsec command
The ipsec command is very powerful and needs to be protected from unauthorized use. We
created a RACF profile for this and gave command access to the IKE daemon. Example 3-4
on page 67 shows the commands to do this.

Chapter 3. IPSec 71

Example 3-12 Define access control for the ipsec command

SETROPTS GENERIC(SERVAUTH) RDEFINE SERVAUTH EZB.IPSECCMD.* UACC(NONE)
PERMIT EZB.IPSECCMD.* CLASS(SERVAUTH) ID(IKED) ACCESS(READ)
SETROPTS GENERIC(SERVAUTH) REFRESH

3.3.7 Install the Policy Agent (PAGENT)
PAGENT reads the configuration files that contain the IP security policy configuration
statements, checks them for errors, and installs them into the IKE daemon and the TCP/IP
stack. Setting up the PAGENT is described in Chapter 1, “Policy Agent (PAGENT)” on page 3.

After setting it up you need to define the IpSecConfig statement to specify the path of the
policy file that contains stack-specific IPSec policy statements to PAGENT.

3.3.8 Define the IPSec policies to PAGENT
IPSec provides flexible building blocks that can support a variety of configurations. You can
choose from a number of protocols and encryption algorithms provided by IPSec to suit to the
security requirements of your installation. You can define your IPSec security policies to
PAGENT in one of two ways:

� Manually code all of the required policy statements to create a configuration file in a z/OS
UNIX file or an MVS data set.

� Use the IBM-provided Graphical User Interface (GUI) to create the IP security
configuration file.

We used the IBM-provided Graphical User Interface (GUI) to create the IP security
configuration file for our Implementation scenarios.

3.3.9 Using the z/OS Network Security Configuration Assistant
IBM provides a Graphical User Interface (GUI) called z/OS Network Security Configuration
Assistant to help you to code your security policies. This is a Windows-based interface you
can download from the IBM Web site:

http://www.ibm.com/software/network/commserver/zos/support/

Once your policy has been coded using this software, it can then be sent via FTP to your
z/OS system to be used by the Policy Agent.

The z/OS Network Security Configuration Assistant gives you the option to create policies for
a simple scenario to test your IPSec for the first time. In this section we explain how to set up
a Quick Dynamic Tunnel using the z/OS Network Security Configuration Assistant.

Note: You need superuser authority to start PAGENT, and the PAGENT executable
modules must be in an APF-authorized library.

Attention: The z/OS Network Security Configuration Assistant is constantly being updated
for enhancements. So you should download the latest version before you use it.

Restriction: The z/OS Network Security Configuration Assistant is provided on an as-is
basis and is not supported by IBM.

72 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

http://www.ibm.com/software/network/commserver/zos/support/

The z/OS Network Security Configuration Assistant provides an option to set up a quick
dynamic tunnel with the following characteristics:

� All IP packets will be encrypted.

� The dynamic tunnel is activated by the outbound traffic flow without user intervention.

� Uses transport mode encapsulation (hence, it does not encapsulate the original IP header
as would be done using tunnel mode).

� Uses shared key authentication for IKE peers.

� Uses DES encryption for both phase 1 (IKE) and phase 2 (IPSec) tunnels.

� Uses ESP HMAC MD5 authentication.

The only parameters you need to supply are the IP addresses of the communicating stacks.

Figure 3-2 Quick Dynamic Tunnel Configuration

To set up the Quick Dynamic Tunnel configuration start the z/OS Network Security
Configuration Assistant and click File on the top left-hand corner of the screen. Then select
the Quick Dynamic Tunnel Configuration option, as shown in Figure 3-2.

Chapter 3. IPSec 73

Figure 3-3 Entering addresses of the tunnel endpoints

Enter the IP addresses of the source and destination endpoints (TCP/IP Stacks) between
which you want to set up the tunnel, as shown in Figure 3-3.

74 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-4 The configuration files created

Now click the Install Configuration Files option. This will show the two configuration files the
the Configuration Assistant has created for you—one per stack, as shown in Figure 3-4.
These files contain the security policies for each stack created by the Configuration Assistant.

Chapter 3. IPSec 75

Figure 3-5 FTPing Stack Number 1 Configuration

You can now FTP the definitions to the respective z/OS systems. For this, select the first file
and then click the FTP option. This will lead to the panel shown in Figure 3-5. Enter the host
name (in our case, SC30) of the z/OS system where you want this file to be sent via FTP
along with your user ID and password on that system.

Similarly, FTP the other file to the other system (in our case, SC31), as shown in Figure 3-6
on page 77.

76 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-6 FTPing stack number 2 configuration

You can click the Show Configuration File option to display the policy created by the Z/OS
Configuration assistant. This is shown in Example 3-13 for stack 1.

Example 3-13 Quick Dynamic Tunnel Policy for stack 1

#--
Quick-Start IP Security policy
Created by the z/OS Nework Security Configuration Assistant
Date Created = Thu Dec 01 22:13:41 EST 2005
#--
IpFilterPolicy
{
 PreDecap off
 FilterLogging on
 AllowOnDemand yes

 IpFilterRule QuickStartRule1
 {
 IpSourceAddr 10.40.1.230
 IpDestAddr 10.40.1.241
 IpService
 {
 SourcePortRange 500
 DestinationPortRange 500
 Protocol udp
 Direction bidirectional
 Routing local
 }

Chapter 3. IPSec 77

 IpGenericFilterActionRef permit
 }

 IpFilterRule QuickStartRule2
 {
 IpSourceAddr 10.40.1.230
 IpDestAddr 10.40.1.241
 IpService
 {
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef ipsec
 IpDynVpnActionRef TransportMode
 }
}

KeyExchangePolicy
{
 KeyExchangeRule QuickStart_KeyExRule
 {
 LocalSecurityEndpoint
 {
 Identity IpAddr 10.40.1.230
 Location 10.40.1.230
 }
 RemoteSecurityEndpoint
 {
 Identity IpAddr 10.40.1.241
 Location 10.40.1.241
 }
 KeyExchangeActionRef QuickStart_KeyExAction
 SharedKey Ascii TheEagleHasLanded
 }
}

#---
Reusable actions
#---
IpGenericFilterAction permit
{
 IpFilterAction permit
}

IpGenericFilterAction ipsec
{
 IpFilterAction ipsec
 IpFilterLogging yes LogDeny
}

KeyExchangeAction QuickStart_KeyExAction
{
 KeyExchangeOffer
 {
 HowToAuthPeers PreSharedKey
 }
}
IpDynVpnAction TransportMode
{
 IpDataOffer

78 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 {
 HowToEncap transport
 }
}

Figure 3-14 shows the configuration file that was generated for stack 2.

Example 3-14 Quick Dynamic Tunnel Policy for stack 2

#--
Quick-Start IP Security policy
Created by the z/OS Nework Security Configuration Assistant
Date Created = Thu Dec 01 22:12:47 EST 2005
#--
IpFilterPolicy
{
 PreDecap off
 FilterLogging on
 AllowOnDemand yes

 IpFilterRule QuickStartRule1
 {
 IpSourceAddr 10.40.1.241
 IpDestAddr 10.40.1.230
 IpService
 {
 SourcePortRange 500
 DestinationPortRange 500
 Protocol udp
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef permit
 }

 IpFilterRule QuickStartRule2
 {
 IpSourceAddr 10.40.1.241
 IpDestAddr 10.40.1.230
 IpService
 {
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef ipsec
 IpDynVpnActionRef TransportMode
 }
}

KeyExchangePolicy
{
 KeyExchangeRule QuickStart_KeyExRule
 {
 LocalSecurityEndpoint
 {
 Identity IpAddr 10.40.1.241
 Location 10.40.1.241
 }
 RemoteSecurityEndpoint
 {

Chapter 3. IPSec 79

 Identity IpAddr 10.40.1.230
 Location 10.40.1.230
 }
 KeyExchangeActionRef QuickStart_KeyExAction
 SharedKey Ascii TheEagleHasLanded
 }
}

#---
Reusable actions
#---
IpGenericFilterAction permit
{
 IpFilterAction permit
}

IpGenericFilterAction ipsec
{
 IpFilterAction ipsec
 IpFilterLogging yes LogDeny
}

KeyExchangeAction QuickStart_KeyExAction
{
 KeyExchangeOffer
 {
 HowToAuthPeers PreSharedKey
 }
}
IpDynVpnAction TransportMode
{
 IpDataOffer
 {
 HowToEncap transport
 }
}

You can now load these policies in the PAGENT policy file and then refresh PAGENT to pick
up this policy using the operator command F PAGENT,REFRESH.

Once the policy is activated, it sets up the tunnel for you between the sytems and provides
security for the traffic flowing between them.

3.4 Implementing IPSec between two z/OS systems
In this scenario we show how to set up a VPN tunnel between two z/OS systems.

80 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-7 VPN traffic between two z/OS systems

We use the z/OS Graphical User Interface to set up a dynamic tunnel between the two z/OS
systems. In this section we go through the step-by-step process of defining the policy to set
up this tunnel.

3.4.1 Setting up the policy using z/OS GUI
Start the z/OS Graphical User Interface. After selecting the Create a New Configuration
option you will be presented with this Welcome screen, as in Figure 3-8.

Figure 3-8 The GUI Welcome window

Select the IPSec only option and click OK. You should now be presented with a screen that
has the IPSec only button checked, as shown in Figure 3-9 on page 82.

z/OS LPAR: A23
TCPIPD: 10.40.1.230
TSO: SC30

z/OS LPAR: A24
TCPIPD: 10.20.40.101
TSO: SC31

Applications

TCP

IP

Network

Applications

IP

Network
Encrypted "Tunnel"

UDP TCP UDP

Chapter 3. IPSec 81

Figure 3-9 Current configuration window

Click the Add a New z/OS Image option and click Next.

Figure 3-10 Adding our z/OS image for sc30

82 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

This will take you to the panel shown in Figure 3-10 on page 82. Here you enter the name of
the z/OS image (in our case, SC30) and its description. Specify that you want to set up
dynamic tunnels for this image by selecting the radio button and click Next. Specify the
TCP/IP stack address and specify that you want to use a single identity for all IP addresses in
this stack. This will create just one tunnel for the stack rather than one for each IP address.
Click Next to go to the panel shown in Figure 3-11.

Figure 3-11 Setting our CA certificate label

On the IPSec IKE Daemon setting page add the SAF key ring database. In this panel you
specify the key ring that contains the digital certificates that will be used by the IKE daemon.
In our test we created a key ring named IKED_keyring for user ID IKED. The format of this
entry is user ID/keyring_name.

Next click Add to add the list of supported certificate authorities to get to the panel shown in
Figure 3-12.

Figure 3-12 Specifying local certificate authority

This will ask for the label of the key ring certificate. Ours is the label of the certificate created
for the local certificate authority. We added our CA as shown in Example 3-9 on page 69.
Enter this name and click OK. Click Next and click Finish.

Proceed to next step and click Yes, which will lead you to the TCP/IP stack wizard panel.
Click Next on the TCP/IP stack wizard panel.

Chapter 3. IPSec 83

Figure 3-13 New TCP/IP stack name

Specify the name of your stack and its description. Our stack name was TCPIPD. Check the
Yes radio button to specify that you want to set up dynamic tunnel for this stack. Then click
Next to go to the panel shown in Figure 3-14.

Figure 3-14 Identifying the local dynamic tunnel

84 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

You can set up separate tunnels for each IP address on this stack or you can have a single
tunnel for all IP addresses. We set up a single tunnel for the stack. For this we checked the
radio button to use single identity for all IP addresses on this stack. You can identify the stack
in four different ways, as shown by the radio buttons in the panel. We identified our stack by
its IP address, 10.40.1.230. Clicking Next leads to the panel shown in Figure 3-15.

Figure 3-15 IPsec log level settings

You use this panel to specify the log levels. For our test we checked the radio buttons to
enable filter logging and to log all implicit deny events. Once everything is working you can
disable the logging later. This panel is also used to specify the Network Address Translation
(NAT) Traversal Policy. For our test we disallowed NAT. Also, we decided not to filter the
IPSec headers.

Click Next, then Finish, which leads to the Connectivity wizard.

When asked Do you want to add a connectivity rule? click Yes.

Click Next to get to the Connectivity Rule: Network topology panel, as shown in Figure 3-16
on page 86.

Chapter 3. IPSec 85

Figure 3-16 Defining our host-to-host connection

Select the radio buttons to specify that the connectivity rule is for IPSec tunnels and that it is
from host to host. Click Next to get to the Connectivity Rule: Data Endpoints panel, as shown
in Figure 3-17 on page 87.

86 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-17 Defining our endpoints

Specify the endpoints of the connection by entering the IP addresses and give a name for the
connection using this panel. Then click Next and proceed to the panel shown in Figure 3-18
on page 88.

Chapter 3. IPSec 87

Figure 3-18 Select Requirement Map

Click Add to get to the Requirement Map panel shown in Figure 3-19 on page 89.

88 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-19 Defining the requirement map

Here you define the type of traffic you want to route through the tunnel. You will see
All_other_traffic in the Traffic Descriptor column. Select the security level Permit. Now select
FTP-Client from the Traffic Descriptors and click Add. FTP-Client will appear in the traffic
Descriptor area. Select the security level IPSec_Bronze. Similarly, select FTP-Server also
from the Traffic Descriptor column, and add and select the IPSec_Bronze security level.

We give the name FTP_DynVPN_Bronze to this requirement map, enter a description, and
click OK to get to the next panel, shown in Figure 3-20 on page 90.

Chapter 3. IPSec 89

Figure 3-20 Requirement map definitions

This panel shows all the requirement map definitions, including the one we just defined and
the IBM-supplied samples. We select the one we just defined and click Next to get to the
panel that specifies the details of the remote security endpoint, as shown in Figure 3-21 on
page 91.

90 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-21 Defining the remote security endpoint

Specify the IP address of the remote endpoint (in our case 10.40.1.241) and click Next on the
panel to specify the logging options shown in Figure 3-22 on page 92.

Chapter 3. IPSec 91

Figure 3-22 Defining additional log settings

We selected the option to log all filter matches. Click Finish.

Figure 3-23 Our completed connectivity rule

92 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Because IPSec denies all traffic by default, we need to allow some basic traffic like
OMPROUTE, Resolver, and PING for the network to function. The following pages show how
to add this to the policy.

To add the services, click Add, then Next.

Figure 3-24 Defining a connectivity rule for our basic services

Click Next. We want to allow basic services for all Source and Destination IP addresses.
Specify “*” for this in the Source and Destination fields.

Add a connectivity rule name. We called it Services.

Chapter 3. IPSec 93

Figure 3-25 Services connectivity rule

Click Next. Then click Add to add a requirement map for services.

94 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-26 Defining our basic services requirement map

Here we permit OMPROUTE, Resolver, and Ping. Click OK.

Chapter 3. IPSec 95

Figure 3-27 Basic services requirement map completed

Click Next, then Finish.

Figure 3-28 Policy created

96 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

This completes the creation of the policy for one endpoint of the tunnel. You can now FTP the
policy to the z/OS system. Clicking the Image-SC30 in the Configuration Assistant Navigation
Tree area gives you the option to install the configuration files. Clicking this option gives you
further options to view the policy and then FTP it to the z/OS system. We showed this in 3.3.9,
“Using the z/OS Network Security Configuration Assistant” on page 72 (see Figure 3-4 on
page 75 through Figure 3-6 on page 77).

The policy file we created is shown in Example 3-15.

Example 3-15 Policy created for local endpoint of the tunnel for the z/OS system

IPSec Policy Agent Configuration file for:
Image: SC30
Stack: TCPIPD

Created by the z/OS Network Security Configuration Assistant
Date Created: Thu Dec 15 01:38:53 EST 2005

Copyright = None

NOTE -- Generated IpGenericFilterAction Permit~LogYes
IpGenericFilterAction Permit~LogYes
{
 IpFilterAction Permit
 IpFilterLogging Yes
}

IpGenericFilterAction IpSec~LogYes
{
 IpFilterAction IpSec
 IpFilterLogging Yes
}

IpGenericFilterAction Permit~LogNo
{
 IpFilterAction Permit
 IpFilterLogging No
}

KeyExchangeOffer KEO~1
{
 HowToEncrypt DES
 HowToAuthMsgs SHA1
 HowToAuthPeers RsaSignature
 DHGroup Group1
 RefreshLifetimeProposed 480
 RefreshLifetimeAccepted 240 1440
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Bronze~R
{
 HowToEncap Transport
 HowToEncrypt DoNot
 HowToAuth AH Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 120 480

Chapter 3. IPSec 97

 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

NOTE -- Generated IpService IKE~Gen
IpService IKE~Gen
{
 Protocol UDP
 SourcePortRange 500
 DestinationPortRange 500
 Direction BiDirectional
 Routing Local
}

IpService FTP-Server
{
 Protocol TCP
 SourcePortRange 21
 DestinationPortRange 1024 65535
 Direction BiDirectional InboundConnect
 Routing Local
}

IpService FTP-Server~3
{
 Protocol TCP
 SourcePortRange 20
 DestinationPortRange 1024 65535
 Direction BiDirectional OutboundConnect
 Routing Local
}

IpService FTP-Server~4
{
 Protocol TCP
 SourcePortRange 50000 50200
 DestinationPortRange 1024 65535
 Direction BiDirectional InboundConnect
 Routing Local
}

IpService FTP-Client
{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 21
 Direction BiDirectional OutboundConnect
 Routing Local
}

IpService FTP-Client~5
{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 20
 Direction BiDirectional InboundConnect
 Routing Local
}

IpService FTP-Client~6

98 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

{
 Protocol TCP
 SourcePortRange 1024 65535
 DestinationPortRange 50000 50200
 Direction BiDirectional OutboundConnect
 Routing Local
}

IpService All_other_traffic
{
 Protocol All
 Direction BiDirectional
 Routing Either
}

IpService OMPROUTE-IP_V4
{
 Protocol OSPF
 Type Any
 Direction BiDirectional
 Routing Either
}

IpService OMPROUTE-IP_V4~7
{
 Protocol IGMP
 Direction BiDirectional
 Routing Either
}

IpService OMPROUTE-IP_V4~8
{
 Protocol UDP
 SourcePortRange 520
 DestinationPortRange 1024 65535
 Direction BiDirectional
 Routing Either
}

IpService OMPROUTE-IP_V4~9
{
 Protocol UDP
 SourcePortRange 1024 65535
 DestinationPortRange 520
 Direction BiDirectional
 Routing Either
}

IpService OMPROUTE-IP_V4~10
{
 Protocol UDP
 SourcePortRange 520
 DestinationPortRange 520
 Direction BiDirectional
 Routing Either
}

IpService Resolver
{
 Protocol TCP

Chapter 3. IPSec 99

 SourcePortRange 1024 65535
 DestinationPortRange 53
 Direction BiDirectional OutboundConnect
 Routing Local
}

IpService Resolver~11
{
 Protocol UDP
 SourcePortRange 1024 65535
 DestinationPortRange 53
 Direction BiDirectional
 Routing Local
}

IpService Ping-IP_V4
{
 Protocol ICMP
 Type 8
 Code Any
 Direction BiDirectional
 Routing Either
}

IpService Ping-IP_V4~12
{
 Protocol ICMP
 Type 0
 Code Any
 Direction BiDirectional
 Routing Either
}

IpDynVpnAction IPSec__Bronze
{
 Initiation RemoteOnly
 VpnLife 1440
 Pfs None
 IpDataOfferRef IPSec__Bronze~R
}

IpDynVpnAction IPSec__Bronze~2
{
 Initiation Either
 VpnLife 1440
 Pfs None
 IpDataOfferRef IPSec__Bronze~R
}

Connectivity Rule A23_SC30_to_A24_SC31 combines the following items:
Local data endpoint A23_SC30_to_A24_SC31~ADR~1
Remote data endpoint A23_SC30_to_A24_SC31~ADR~2
Topology HH
Requirement Map FTP_DynVPN_Bronze
FTP-Server => IPSec__Bronze
FTP-Client => IPSec__Bronze
All_other_traffic => Permit

IpAddr A23_SC30_to_A24_SC31~ADR~1
{

100 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 Addr 10.40.1.230
}

IpAddr A23_SC30_to_A24_SC31~ADR~2
{
 Addr 10.40.1.241
}

LocalSecurityEndpoint A23_SC30_to_A24_SC31~LSE~4
{
 Identity IpAddr 10.40.1.230
 LocationRef A23_SC30_to_A24_SC31~ADR~1
}

RemoteSecurityEndpoint A23_SC30_to_A24_SC31~RSE~3
{
 Identity IpAddr 10.40.1.241
 LocationRef A23_SC30_to_A24_SC31~ADR~2
}

KeyExchangeRule A23_SC30_to_A24_SC31~5
{
 LocalSecurityEndpointRef A23_SC30_to_A24_SC31~LSE~4
 RemoteSecurityEndpointRef A23_SC30_to_A24_SC31~RSE~3
 KeyExchangeActionRef A23_SC30_to_A24_SC31
}

KeyExchangeAction A23_SC30_to_A24_SC31
{
 HowToInitiate Main
 HowToRespond Either
 KeyExchangeOfferRef KEO~1
 AllowNat No
}

IpLocalStartAction A23_SC30_to_A24_SC31~7
{
 AllowOnDemand No
 LocalPortGranularity Rule
 RemotePortGranularity Rule
 ProtocolGranularity Rule
 RemoteIpGranularity Packet
 LocalIpGranularity Packet
 LocalSecurityEndpointRef A23_SC30_to_A24_SC31~LSE~4
 RemoteSecurityEndpointRef A23_SC30_to_A24_SC31~RSE~3
}

NOTE -- Generated IpFilterRule A23_SC30_to_A24_SC31~6
IpFilterRule A23_SC30_to_A24_SC31~6
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef IKE~Gen
 IpGenericFilterActionRef Permit~LogYes
}

IpFilterRule A23_SC30_to_A24_SC31~8
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2

Chapter 3. IPSec 101

 IpServiceRef FTP-Server
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze
 IpLocalStartActionRef A23_SC30_to_A24_SC31~7
}

IpFilterRule A23_SC30_to_A24_SC31~9
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef FTP-Server~3
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze~2
}

IpFilterRule A23_SC30_to_A24_SC31~11
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef FTP-Server~4
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze
 IpLocalStartActionRef A23_SC30_to_A24_SC31~7
}

IpFilterRule A23_SC30_to_A24_SC31~12
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef FTP-Client
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze~2
}

IpFilterRule A23_SC30_to_A24_SC31~14
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef FTP-Client~5
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze
 IpLocalStartActionRef A23_SC30_to_A24_SC31~7
}

IpFilterRule A23_SC30_to_A24_SC31~15
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef FTP-Client~6
 IpGenericFilterActionRef IpSec~LogYes
 IpDynVpnActionRef IPSec__Bronze~2
}

IpFilterRule A23_SC30_to_A24_SC31~16
{
 IpSourceAddrRef A23_SC30_to_A24_SC31~ADR~1
 IpDestAddrRef A23_SC30_to_A24_SC31~ADR~2
 IpServiceRef All_other_traffic
 IpGenericFilterActionRef Permit~LogYes
}

102 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Connectivity Rule Services combines the following items:
Local data endpoint Any
Remote data endpoint Any
Topology None (Permit/Deny only)
Requirement Map Basic_Services
OMPROUTE-IP_V4 => Permit
Resolver => Permit
Ping-IP_V4 => Permit

IpFilterRule Services~1
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef OMPROUTE-IP_V4
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~2
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef OMPROUTE-IP_V4~7
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~3
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef OMPROUTE-IP_V4~8
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~4
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef OMPROUTE-IP_V4~9
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~5
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef OMPROUTE-IP_V4~10
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~6
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef Resolver
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~7
{

Chapter 3. IPSec 103

 IpSourceAddr All
 IpDestAddr All
 IpServiceRef Resolver~11
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~8
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef Ping-IP_V4
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule Services~9
{
 IpSourceAddr All
 IpDestAddr All
 IpServiceRef Ping-IP_V4~12
 IpGenericFilterActionRef Permit~LogNo
}

KeyExchangePolicy
{
 AllowNat No
 KeyExchangeRuleRef A23_SC30_to_A24_SC31~5
}

IpFilterPolicy
{
 PreDecap OFF
 FilterLogging ON
 IpFilterLogImplicit Yes
 AllowOnDemand Yes
 IpFilterRuleRef A23_SC30_to_A24_SC31~6
 IpFilterRuleRef A23_SC30_to_A24_SC31~8
 IpFilterRuleRef A23_SC30_to_A24_SC31~9
 IpFilterRuleRef A23_SC30_to_A24_SC31~11
 IpFilterRuleRef A23_SC30_to_A24_SC31~12
 IpFilterRuleRef A23_SC30_to_A24_SC31~14
 IpFilterRuleRef A23_SC30_to_A24_SC31~15
 IpFilterRuleRef A23_SC30_to_A24_SC31~16
 IpFilterRuleRef Services~1
 IpFilterRuleRef Services~2
 IpFilterRuleRef Services~3
 IpFilterRuleRef Services~4
 IpFilterRuleRef Services~5
 IpFilterRuleRef Services~6
 IpFilterRuleRef Services~7
 IpFilterRuleRef Services~8
 IpFilterRuleRef Services~9
}

Similarly create another image and TCP/IP stack and the policy for the remote endpoint of the
tunnel by following the same procedure as above. FTP the policies to the respective z/OS
systems. Update the Policy Agent, refresh it, and the tunnel will become active.

104 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

3.5 Implementing IPSec between z/OS and Windows
Figure 3-29 shows the setup we implemented in this scenario.

Figure 3-29 VPN between z/OS and Windows

3.5.1 Setting up the policy
We used the z/OS Network Security Configuration Assistant to create our IPSec policy file for
our Server on SC30. The resultant policy file for SC30 is displayed in Example 3-16.

Example 3-16 SC30 policy file for TCPIPD for windows traffic

IPSec Policy Agent Configuration file for:
Image: SC30-A23
Stack: TCPIPD

Created by the z/OS Network Security Configuration Assistant
Date Created: Thu Oct 13 13:38:34 CAT 2005

Copyright = None

IpGenericFilterAction Permit~LogYes 1
{
 IpFilterAction Permit
 IpFilterLogging Yes
}

IpGenericFilterAction IpSec~LogYes 2
{
 IpFilterAction IpSec
 IpFilterLogging Yes
}

KeyExchangeOffer KEO~1 3
{
 HowToEncrypt DES
 HowToAuthMsgs MD5
 HowToAuthPeers RsaSignature
 DHGroup Group1
 RefreshLifetimeProposed 480
 RefreshLifetimeAccepted 240 1440
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None

z/OS LPAR: A23
TCPIPD: 10.40.1.230
TSO: SC30

Applications

TCPUDP

IP

Network
Encrypted "Tunnel"

Windows XP
10.12.4.224

TCP UDP

Chapter 3. IPSec 105

}

IpDataOffer IPSec__Silver~R 4
{
 HowToEncap Transport
 HowToEncrypt DES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 14 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpDataOffer IPSec__Silver~R~2 5
{
 HowToEncap Transport
 HowToEncrypt 3DES
 HowToAuth ESP Hmac_Sha
 RefreshLifetimeProposed 240
 RefreshLifetimeAccepted 14 480
 RefreshLifesizeProposed None
 RefreshLifesizeAccepted None
}

IpService IKE 6
{
 Protocol UDP
 SourcePortRange 500
 DestinationPortRange 500
 Direction BiDirectional
 Routing Either
}

IpService All_other_traffic 7
{
 Protocol All
 Direction BiDirectional
 Routing Local
}

IpDynVpnAction IPSec__Silver 8
{
 Initiation Either
 VpnLife 1440
 Pfs None
 IpDataOfferRef IPSec__Silver~R
 IpDataOfferRef IPSec__Silver~R~2
}

Connectivity Rule ConnRuleA23-224 combines the following items:
Local data endpoint ConnRuleA23-224~ADR~1
Remote data endpoint ConnRuleA23-224~ADR~2
Topology HH
Requirement Map ReqMapWindows
IKE => Permit
All_other_traffic => IPSec__Silver

IpAddr ConnRuleA23-224~ADR~1 9
{
 Addr 10.40.1.230

106 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

}

IpAddr ConnRuleA23-224~ADR~2
{
 Addr 10.12.4.224
}

LocalSecurityEndpoint ConnRuleA23-224~LSE~4 10
{
 Identity IpAddr 10.40.1.230
 LocationRef ConnRuleA23-224~ADR~1
}

RemoteSecurityEndpoint ConnRuleA23-224~RSE~3 11
{
 Identity IpAddr 10.12.4.224
 LocationRef ConnRuleA23-224~ADR~2
}

KeyExchangeRule ConnRuleA23-224~5 12
{
 LocalSecurityEndpointRef ConnRuleA23-224~LSE~4
 RemoteSecurityEndpointRef ConnRuleA23-224~RSE~3
 KeyExchangeActionRef ConnRuleA23-224
}

KeyExchangeAction ConnRuleA23-224 13
{
 HowToInitiate Main
 HowToRespond Either
 KeyExchangeOfferRef KEO~1
 AllowNat No
}

IpFilterRule ConnRuleA23-224~6 14
{
 IpSourceAddrRef ConnRuleA23-224~ADR~1
 IpDestAddrRef ConnRuleA23-224~ADR~2
 IpServiceRef IKE
 IpGenericFilterActionRef Permit~LogNo
}

IpFilterRule ConnRuleA23-224~7 15
{
 IpSourceAddrRef ConnRuleA23-224~ADR~1
 IpDestAddrRef ConnRuleA23-224~ADR~2
 IpServiceRef All_other_traffic
 IpGenericFilterActionRef IpSec~LogNo
 IpDynVpnActionRef IPSec__Silver
}

KeyExchangePolicy 16
{
 AllowNat No
 KeyExchangeRuleRef ConnRuleA23-224~5
}

IpFilterPolicy 17
{
 PreDecap OFF

Chapter 3. IPSec 107

 FilterLogging ON
 IpFilterLogImplicit No
 AllowOnDemand Yes
 IpFilterRuleRef ConnRuleA23-224~6
 IpFilterRuleRef ConnRuleA23-224~7
}

Inherent in the rules discussed below is the default rule that always exists for the Policy
Agent, which is to deny everything. If no matching rule is found, the packet will be denied by
this default rule.

1 This policy is used to define an action of permitting a packet and logging the event. This
policy exists so that it can be later used in a rule.

2 This policy is the same as 1 above, except that it requires that the packet be protected
within an IPsec VPN tunnel.

3 A VPN requires a symmetric key for encrypting data that flows along the tunnel. This policy
defines the security parameters associated with the exchange of symmetric keys. DES
encryption is used, though 3DES would offer more encryption security. MD5 was used for
authentication. RSASignature is specified since this is a dynamic tunnel using certificates to
authenticate. This task is performed by the IKE daemon.

4 This is similar to the policy in 3 above, but this policy controls security parameters with
respect to the data travelling over the VPN itself. The Configuration Assistant has several
default client security proposals (data offers) built in. This proposal is referred to in the
Configuration Assistant as IPSec_Silver.

Note that the RefreshLifetimeAccepted has been set to between 14 and 480. The Windows
XP client was found to have a default of only 900 seconds (15 minutes) for its Session Key
settings. The Configuration Assistant chose a range of 120 to 480. This policy was manually
edited after exporting it from the Configuration Assistant. This is the only alteration made to
the originally created file.

The encapsulation mode chosen is transport mode with ESP as the desired security method.

5 This is the second choice offer (with 4 being the first choice) for security parameters for the
data over the VPN. The encryption for this offer is 3DES.

6 Because the default rule is to deny everything, there needs to be a service definition that
describes the IKE traffic that is necessary for dynamic tunnel negotiation. IKE uses UDP
datagrams via port 500 for negotiating tunnel characteristics.

7 This service describes the traffic that will be directed through the VPN. The Configuration
Assistant contains built-in definitions of most well-known traffic types based upon well-known
port usage. This service definition encompasses all IP traffic.

8 This policy defines the action to be taken for dynamic VPN setup. Either endpoint can
initiate the VPN.

9 These two IpAddr statements were automatically generated as “variables” containing the
z/OS host IP address (10.40.1.230) and the XP workstation address (10.12.4.224).

10 The VPN requires a method of establishing the identity of an endpoint. There are four
different types available from the Configuration Assistant: IP address, Fully Qualified Domain
Name, e-mail address, or X.500 distinguished name. The IP address was used to identify the
endpoint.

108 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

The LocationRef points to the IpAddr defined as ConnRuleA23-224~ADR~1, the local host’s
IP address.

11 The Identity of the RemoteSecurityEndpoint is the XP workstation’s IP address.

12 This rule encompasses the two endpoints from 10 and 11 and specifies that the key
exchange action identified in 13 will be used (the Configuration Assistant created this forward
reference).

13 This is the action pointed to by 12 above. Specifying Main for the HowToInitiate parameter
means that better (encrypted) identity exchange occurs. The z/OS VPN can respond to either
aggressive or main mode exchanges.

Because no NAT firewalls exist between the endpoints, NAT traversal was set to No.

14 and 15 describe the rules that control the rule specification exchanges. At 14, rule 0~6
describes the rule to allow the ISAKMP/IKE exchange, while at 15 we have the rule
(ConnRuleA23-224~7) for the VPN traffic.

16 This is the policy that ultimately controls the behavior of the IKE daemon. It references the
KeyExchangeRule from 12.

17 This is the policy that identifies the rules to be activated. Turning off PreDecap in most
cases will improve throughput by avoiding having each packet go through filtering only after
decapsulation rather than both before and after. Filterlogging is set on, but implicit filter
logging (that is, logging of the default deny rules) is turned off.

AllowOnDemand means that if a packet matches the rule for the VPN filter and the tunnel
does not already exist, z/OS IP Security Services will attempt to establish the tunnel
immediately.

Set up the IKE daemon
In terms of procedure, user ID, and other configuration choices, the IKE daemon was set up
using the same principles as outlined in 3.3.1, “Set up the Internet Key Exchange Daemon
(IKED)” on page 64. The _CEE_ENVFILE environment variable was used to set up a
STDENV DD card for controlling the environment variables. MVS data sets were used for all
files. A sample of the cataloged procedure can be seen in Example 3-17.

Example 3-17 IKE daemon cataloged procedure

//IKED EXEC PGM=IKED,REGION=0K,TIME=NOLIMIT,
// PARM='ENVAR("_CEE_ENVFILE=DD:STDENV")/'
//STDENV DD DUMMY
//STDENV DD DSN=TCPIP.IKED.ENV(IKED30),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

There is no need to specify a resolver configuration file here because, as is the case with the
Policy Agent, one server should be used for all stacks within the image.

A sample config is supplied in the z/OS Communication server installation file
/usr/lpp/tcpip/samples/IBM/EZAIKCFG. The config we used is shown in Example 3-18.

Example 3-18 IKE Daemon config file

IkeConfig
{
 IkeSyslogLevel 127

Chapter 3. IPSec 109

 PagentSyslogLevel 127
 Keyring IKED/IKED_keyring
 KeyRetries 10
 KeyWait 30
 DataRetries 10
 DataWait 15
 Echo no
 PagentWait 0
}

� IkeSyslogLevel and PagentSyslogLevel: These levels were set to 127 during testing to
obtain helpful messages. After successful configuration, a much lower value should be
used to avoid over-filling of the syslogd file.

� KeyRing: This is the RACF key ring name used to hold the certificate authority certificate
required for ISAKMP/IKE authentication. This key ring was created using the user ID for
the IKED started task, IKED. If the key ring had been created under any other user ID,
then this user ID would need to be pre-pended to the key ring name using the syntax
USERID/keyring. For example, in the IKE configuration file we could have specified
KeyRing IKED/IKED_keyring to complete the exact same effect. Note, however, that
accessing a key ring that is owned by another user ID requires UPDATE access to
IRR.DIGTCERT.LISTRING.

Setting up the certificates
The next step is to establish a certificate environment for the key exchange. Both the z/OS
host and the Windows XP host must have valid certificates configured in order for the IKE
exchange to successfully establish a security association.

Because the key exchange mechanism of IKE involves a direct request of the certificate
authority required, self-signed certificates were not an option. Instead, a certificate authority
(CERTAUTH) certificate was created using RACF, and then this certificate was used to sign a
personal certificate. Then a key ring was created and both certificates were connected. The
personal certificate was connected as the default. The JCL we used is shown in
Example 3-19.

Example 3-19 JCL for defining our key ring and digital certificates

//CERTAUTH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Create the top-level self-signed certificate for the certificate
//* authority (CA in this case is ourselves)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 SETROPTS CLASSACT(DIGTCERT,DIGTNMAP)

 RACDCERT ID(IKED) addring(IKED_keyring)

 RACDCERT ID(IKED) CERTAUTH GENCERT -
 SUBJECTSDN(O('I.B.M Corporation') -
 CN('itso.ibm.com') -
 C('US')) -
 WITHLABEL('My Local Certificate Authority') -
 KEYUSAGE(certsign)

 RACDCERT ID(IKED) GENCERT -
 SUBJECTSDN (CN('XP Certificate') -
 OU('ITSO') -
 C('US')) -

110 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 WITHLABEL('XP Certificate') -
 SIGNWITH(CERTAUTH -
 label('My Local Certificate Authority'))

 SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

 RACDCERT ID(IKED) CONNECT(ID(IKED) -
 LABEL('XP Certificate') -
 RING(IKED_keyring) -
 USAGE(personal))
 RACDCERT ID(IKED) CONNECT(ID(IKED) CERTAUTH -
 LABEL('My Local Certificate Authority') -
 RING(IKED_keyring) -
 USAGE(certauth))
/*

In order to keep the configuration scenario simple, the same certificate authority and personal
certificate were used on the XP workstation. To do this, the certificates need to be exported
from the RACF database into MVS data sets using the commands shown in Example 3-20.

Example 3-20 Export job JCL

//CERTAUTH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Create the top-level self-signed certificate for the certificate
//* authority (CA in this case is ourselves)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
RACDCERT CERTAUTH EXPORT(label('My Local Certificate Authority')) -
 DSN('CS09.CERT.CACERT') -
 FORMAT(pkcs7der)
racdcert id(iked) export(label('XP Certificate')) -
 DSN('CS09.CERT.XPCERT') -
 FORMAT(pkcs12der) PASSWORD('security')
/*

Note that the certificate authority (signing) certificate does not require a private key. However,
the personal certificate should include the private key, and hence the PKCS12DER format,
along with a password, was used.

Checkpoint
To summarize the situation at this point in the scenario, the Policy Agent and IKE daemons
should both be running. The GUI has been used to configure a set of policies that will direct
the z/OS host to send all traffic through a dynamic IPsec VPN. A set of certificates has been
created and IKE is pointing to the key ring that contains those certificates in the RACF
database. The next step is to ensure that an equivalent setup has been handled on the
Windows XP workstation.

3.5.2 Setting up the Windows XP
In this section we describe how to set up the Microsoft® Management Console (MMC). The
MMC will have two snap-ins added: Certificates and IP Security Management (see
Figure 3-30 on page 113). The Certificates Snap-in is used to import the certificates that are

Chapter 3. IPSec 111

created by z/OS RACF. The IP Security Management Snap-in is used to configure the VPN
connection between the Windows XP client and the z/OS server.

1. Click Start → Run from the Windows XP task bar.

2. Enter mmc in the Open field.

3. Click OK to start the Microsoft Management Console.

4. On the Console 1 window, click Console on the menu bar. On the pull-down menu, click
Add/Remove Snap-in.

5. On the Add/Remove Snap-in window, click Add.

6. On the Add Standalone Snap-in window, select Certificates and click Add.

7. On the Certificates Snap-in window, select Computer account and click Next.

8. Select Local computer and click Finish.

9. On the Add Standalone Snap-in window, select IP Security Policy Management and
click Add.

10.On the Select Computer window, select Local computer and click Finish.

11.On the Add Standalone Snap-in window, click Close.

12.On the Add/Remove Snap-in window, verify that two snap-ins have been added:
Certificates (Local computer) and IP Security Policies on Local Machine. Click OK.

That process completes the required settings for the MMC console.

Importing the z/OS certificates into Windows XP
In this section we explain how to import two certificates that are created by z/OS RACF: The
Trusted Root CA (Certification Authority) certificate and the client certificate.

Before installing the client certificate on the Windows XP client, Windows XP needs to entrust
the Trusted Root CA (in this case, z/OS RACF acts as a Trusted Root CA to provide
certificates to the clients). After Windows XP entrusts the CA, the client certificate can be
installed on the Windows XP client. This client certificate is used for identity authentication in
the IKE Phase 1 negotiation.

z/OS RACF creates an individual client certificate for each client, because the client
certificate includes the client IP address information. This IP address information is used to
verify the required authority on each client to connect to z/OS.

112 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-30 Microsoft Management Console (MMC) - Certificates

To import the z/OS certificates into Windows XP:

1. On the MMC screen shown in Figure 3-30, click the plus sign (+) next to Certificates (Local
Computer) to show the list of available tasks.

Figure 3-31 Trusted Root Certification Authorities

2. Right-click Trusted Root Certification Authorities and choose All Tasks on the
pull-down menu. Choose Import on the next pull-down menu and click it, as shown in
Figure 3-31.

3. On the Certificate Import Wizard screen, click Next.

4. On the Certificate Import Wizard - File to Import window, click Browse and specify the
Trusted Root CA file name (in this example, we choose C:\racfca.p12 for the Trusted Root
CA file, as shown in Figure 3-32 on page 114). Click Next.

Chapter 3. IPSec 113

Figure 3-32 Certificate import wizard

5. Work through the Certificate Import Wizard indicating the following:

a. Do not select “Mark the private key as exportable.”

b. Select Place all certificates in the following store.

c. Indicate that “Trusted Root Certification Authorities” is shown in the certificate store
column.

d. Click Finish on the Completing the Certificate Import Wizard window.

You will receive a message that the import was successful.

6. On the MMC console window, click the plus (+) sign next to Trusted Root Certification
Authorities, and then click Certificates. Scroll down and verify that your Trusted Root
Certification Authority is installed in the list. In this example, z/OS RACF CA is installed as
a Trusted Root Certification Authority.

7. Right-click Personal and choose All Tasks on the pull-down menu. Choose Import on
the next pull-down menu and click it, as shown in Figure 3-33 on page 115.

114 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-33 Personal Certification Authorities

8. On the Certificate Import Wizard, click Next.

9. On the Certificate Import Wizard - File to Import window, click Browse and specify the
client certificate file name (in this example, we choose C:\clientx.p12 for the client
certificate file shown in Figure 3-34). Click Next.

Figure 3-34 File to import

10.Continue to work through the Certificate Import Wizard indicating the following:

a. Do not select “Mark the private key as exportable.”

b. Make sure “Place all certificates in the following store” is selected and Personal is
shown in the certificate store column.

Chapter 3. IPSec 115

c. Click Finish on the Completing the Certificate Import Wizard window.

You will receive a message that the import was successful.

11.On the MMC console window, click the plus (+) sign next to Personal, and then click
Certificates. Scroll down and verify that your client certificate is installed in the list. In this
example, WinXP Client is installed as a client certificate.

Creating the IP security policy
In the next steps, you will create the IP Security policy on your Windows XP workstation for
the VPN connection between z/OS and the Windows XP client.

1. On the MMC - IP Security Policies on Local Machine window, right-click IP Security
Policies on Local Machine. In the pull-down menu, choose Create IP Security Policy
and click it, as shown in Figure 3-35.

Figure 3-35 MMC - IP Security Policies on Local Machine

2. On the IP Security Policy Wizard - Welcome to the IP Security Policy Wizard, click Next.

3. On the IP Security Policy Wizard - IP Security Policy Name window, type in the name for
the z/OS VPN connection. In this example, we typed zOSVPN for the VPN connection
name. Type in the description, if required. Click Next.

4. On the IP Security Policy Wizard - Requests for Secure Communication window, clear the
Activate the default response rule check box. Click Next.

5. On the IP Security Policy Wizard - Completing the IP Security Policy Wizard, make sure
the Edit properties check box is selected. Click Finish.

116 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-36 IP policy properties window

6. On the IP Policy Properties window (in this example, the zOSVPN Properties window),
select the Use Add Wizard check box shown in Figure 3-36. Click Add.

7. On the IP Security Wizard - Welcome to the IP Security Policy Wizard window, click Next.

8. On the Security Rule Wizard - Tunnel Endpoint window, select This rule does not
specify a tunnel and click Next. This selection means that the z/OS Firewall is the
endpoint of the VPN tunnel with Windows XP, and the VPN tunnel is defined as transport
mode.

9. On the Security Rule Wizard - Network Type window, select All network connections.
Click Next. In this example, z/OS Firewall and Windows XP is connected with the Ethernet
LAN.

10.On the IP Security Policy Wizard - Authentication Method window, select Use a
certificate from this Certificate Authority (CA) and click Browse.

Note: If you want to limit the remote access connection, select Remote Access.

Chapter 3. IPSec 117

Figure 3-37 Select certificate

11.On the Select Certificate window, click the Issued to tab to sort the “Issued to” name into
alphabetic order to help you find the CA file easily. Select the Trusted Root Certificate
Authority name that you installed in “Importing the z/OS certificates into Windows XP” on
page 112 (in this example, we choose z/OS RACF CA for the Trusted Root Certificate
Authority). Click OK.

Figure 3-38 IP Security Policy Wizard - Authentication Method

12.On the IP Security Policy Wizard - Authentication Method window, click Next, as shown in
Figure 3-38.

118 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 3-39 Security Rule Wizard - IP filter list

13.On the Security Rule Wizard - IP filter list window, click the circle for All IP Traffic, as
shown in Figure 3-39. Click Edit.

Figure 3-40 IP filter list

Attention: Notice that this IP filter works as a trigger event to establish the VPN tunnel.
In this example, we choose All IP traffic for the protocol and 10.40.1.230 for the
Destination IP address. This means that if any IP datagram is about to issue from the
Windows XP to 10.12.4.224, this IP filter detects the event and pulls a trigger to create
a VPN tunnel between the Windows XP and 10.40.1.230.

Chapter 3. IPSec 119

14.On the IP filter List window, click Edit, as shown in Figure 3-40 on page 119.

Figure 3-41 Filter properties

15.On the Filter Properties window (shown in Figure 3-41), select A specific IP address in
the Destination address column. Type in the IP address of the z/OS firewall. (This IP
address also means the VPN endpoint.) Click Mirrored. Also match packets with the
exact opposite source and destination addresses. In this example, we typed 10.40.1.230
for the Destination IP address. Click OK.

16.On the IP Filter List window, click OK.

17.On the Security Rule Wizard - IP Filter list window, click Next.

Figure 3-42 Security Rule Wizard - Filter Action

120 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

18.On the Security Rule Wizard - Filter Action window, click the circle for Require Security, as
shown in Figure 3-42 on page 120. Click Edit.

Figure 3-43 Require Security Properties

19.On the Require Security Properties window, choose Negotiate security; Accept
unsecured communication, but always respond using IPSec; and Session key
Perfect Forward Security.

Use of Session key Perfect Forward Security is optional. In this example, we need to
select it because the matching sample configuration in z/OS specifies to use the Session
key Perfect Forward Security. Choose the upmost Security Method and click Edit, as
shown in Figure 3-43.

Chapter 3. IPSec 121

Figure 3-44 Modify security method

20.On the Modify Security Method window, choose Custom (for expert users). Click
Settings, as shown in Figure 3-44.

Figure 3-45 Custom Security Method Settings

21.On the Custom Security Method Settings window, make sure that the “Data and address
integrity without encryption (AH)” check box is not selected.

Select Data integrity and encryption (ESP), and select SHA1 for integrity algorithm.
Select 3DES for encryption algorithm. Clear the “Generate a new key every Kbytes” check

122 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

box. Select the Generate a new key every seconds check box and type in 7200 in the
seconds column, as shown in Figure 3-45 on page 122. Click OK.

22.On the Modify Security Method window, click OK.

23.On the Require Security Properties window, click OK.

24.On the Security Rule Wizard - Filter Action window, click Next.

25.On the Security Rule Wizard - Completing the New Rule Wizard window, click Finish.

Figure 3-46 XP_to_zOS properties

26.On the XP_to_zOS Properties window, make sure the All IP Traffic check box is checked.
Click Close.

Starting the VPN
The first thing to accomplish is to ensure that the Policy Agent has read in the current policies.
The following command was used (where pagent is the started task name for the Policy
Agent):

MODIFY PAGENT,REFRESH

If no changes have been made since the last time the polices were read, then a message
such as follows should be seen in response:

EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : NONE

If changes have been made, then instead, a message such as the following should be seen:

EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : IPSEC

Next, try opening a command prompt on the XP workstation and attempt to FTP to the z/OS
host.

Chapter 3. IPSec 123

3.6 Verification
In this section we review verification.

3.6.1 Checking syslogd for messages
With TRMD running, syslogd is the repository for all Policy Agent and IKE daemon
messages.

To verify the active dynamic VPN policies, try the following UNIX system services command:

ipsec -p tcpip -f display -a Y0

The first parameter, -p, allows a specific stacks policies to be queried. The second parameter
indicates filters are to be displayed, while the third parameter indicates a list of all dynamic
anchor filters. The display output should look something like what is shown in Example 3-21.

Example 3-21 ipsec command

CS V1R7 ipsec TCPIPD Name: TCPIPD Wed Oct 28 18:09:32 2005
Primary: Filter Function: Display Format: Detail
Source: Stack Policy Scope: Current TotAvail: 8
Logging: Yes Predecap: No DVIPSec: No
NatKeepAlive: 20
FilterName: ConnRuleA23-224~7
FilterNameExtension: 1
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Silver
TunnelID: Y0
Type: Dynamic Anchor
State: Active
Action: Permit
Scope: Local
Direction: Outbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPCode: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 10.40.1.230
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.12.4.224
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a

124 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

FilterName: ConnRuleA23-224~7
FilterNameExtension: 2
GroupName: n/a
LocalStartActionName: n/a
VpnActionName: IPSec__Silver
TunnelID: Y0
Type: Dynamic Anchor
State: Active
Action: Permit
Scope: Local
Direction: Inbound
OnDemand: Yes
SecurityClass: 0
Logging: All
Protocol: All
ICMPType: n/a
ICMPCode: n/a
OSPFType: n/a
TCPQualifier: n/a
ProtocolGranularity: Rule
SourceAddress: 10.12.4.224
SourceAddressPrefix: n/a
SourceAddressRange: n/a
SourceAddressGranularity: Packet
SourcePort: All
SourcePortRange: n/a
SourcePortGranularity: Rule
DestAddress: 10.40.1.230
DestAddressPrefix: n/a
DestAddressRange: n/a
DestAddressGranularity: Packet
DestPort: All
DestPortRange: n/a
DestPortGranularity: Rule
OrigRmtConnPort: n/a
RmtIDPayload: n/a

2 entries selected

In the output listed above, filter ConnRuleA23-224~7 is listed twice. The rule has been
expanded into an inbound rule and an outbound rule. A quick glance down the list of
parameters provides information about the VPN action, source, and destination IP addresses
and source and destination ports.

The ipsec display option does not provide complete details on the VPN’s policies. More
complete information can be displayed using the following command:

pasearch -p tcpip -s DynamicVpn

3.6.2 Proving things are working
If the FTP command at the workstation completed successfully, scan syslogd for a message
similar to the one in Example 3-22.

Example 3-22 Security association message

EZD1016I Phase 2 security association 22 created - LocalIp :
10.40.1.230 RemoteIp: 10.12.4.224 LocalDataPort : ALL

Chapter 3. IPSec 125

RemoteDataPort : ALL Protocol : any (0) HowToEncap : TRANSPORT
HowToEncrypt : DES_CBC_8 HowToAuth : HMAC_SHA (ESP) RefreshLifetime
:7200 RefreshLifesize : NONE VpnLife : 86400 PFS : NONE

Alternatively, the following command can be used to display the active tunnel:

ipsec -p tcpip -y display

Output from this command can be seen in Example 3-23.

Example 3-23 ipsec active tunnel display

CS V1R7 ipsec TCPIPD Name: TCPIPD Wed Oct 28 18:20:24 2005
Primary: Dynamic tunnel Function: Display Format: Detail
Source: Stack Scope: Current TotAvail: 1

TunnelID Y24
VpnActionName: IPSec__Silver
State: Active
LocalEndPoint: 10.40.1.230
RemoteEndPoint: 10.12.4.224
HowtoEncap: Transport
HowToAuth: ESP
 AuthAlgorithm: Hmac_Sha
 AuthInboundSpi: 564369184
 AuthOutboundSpi: 3882794343
HowToEncrypt: DES
 EncryptInboundSpi: 564369184
 EncryptOutboundSpi: 3882794343
OutboundPackets: 4
OutboundBytes: 223
InboundPackets: 5
InboundBytes: 115
Lifesize: 0K
LifesizeRefresh: 0K
CurrentByteCount: 0b
LifetimeRefresh: 2005/10/28 20:01:05
LifetimeExpires: 2005/10/28 20:20:14
CurrentTime: 2005/10/28 18:20:24
VPNLifeExpires: 2005/10/29 18:20:14
ParentIKETunnelID: K21
LocalDynVpnRule: n/a
NAT Traversal Topology:
 UdpEncapMode: No
 LclNATDetected: No
 RmtNATDetected: No
 RmtIsGw: No
 RmtIsZOS: No
 zOSCanInitP2SA: Yes
 SrcNATOARcvd: n/a
 DstNATOARcvd: n/a

1 entries selected

3.7 Problem determination aids
In this section we provide problem determination aids.

126 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

3.7.1 IPSEC command
Use the ipsec -y display -b command to display the dynamic tunnels.

Use the ipsec -k display command to check if an IKE tunnel negotiation is in progress.

You can also use this UNIX command to:

� Display current filter rules in use by the stack.
� Display activate, deactivate, and refresh tunnels.
� Display stack interfaces, their security class, and DVIPA status.
� Display filter rules in effect for a specific type of data traffic between two endpoints.
� Display NATT port translation table.

3.7.2 pasearch command
This is also a UNIX command to examine the policies that are in effect and used by the Policy
Agent.

Issue pasearch -v a to see all IP security policies that are active in the Policy Agent.

For more details on these commands please refer to z/OS V1R7.0 Communications Server:
IP System Administrator’s Commands, SC31-8781.

3.7.3 PAGENT and IKE daemon logs
The IKE Syslog level and the Policy Agent API Syslog level can be set from the IPSec: IKE
Daemon Settings panel if you are using the z/OS Network Security Configuration Assistant.
The logs go to syslogd.

3.8 Further information
Refer to the z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775, for
additional information regarding IPSec configuration.

Attention: The ipsec command is protected by the RACF resource profile
EZB.IPSECCMD.* in CLASS(SERVAUTH). You should have READ access to this profile
to be able to use this command.

Chapter 3. IPSec 127

128 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 4. Application Transparent - TLS

Transport Layer Security, or TLS, is the latest evolution of Secure Socket Layer (SSL)
technology. With it, you can encrypt and protect your most important e-commerce
transactions and other data as it crosses the network.

Implementing and taking advantage of this highly secure approach used to require extensive
programming changes to applications within the mainframe environment. With the availability
of Application Transparent Transport Layer Security (AT-TLS) you can now deploy TLS
encryption without the time and expense of re-coding your applications.

AT-TLS support is policy driven and is managed by a Policy Agent (discussed in Chapter 1,
“Policy Agent (PAGENT)” on page 3). Socket applications continue to send and receive clear
text over the socket, but data sent over the network is protected by system SSL. Support is
provided for applications that require awareness of AT-TLS for status or to control the
negotiation of security.

This chapter discusses the following.

4

Note: Be careful to coordinate your use of AT-TLS with other application-specific
encryption implementations; otherwise, you could end up encrypting the same data twice:
First by the application and then by AT-TLS. If possible, use AT-TLS as a consistent
security solution for all of your TCP-based applications. Considerations for the general use
of AT-TLS for application security are discussed in 4.1.2, “AT-TLS application types” on
page 132, and 4.3, “Recommendations” on page 133.

Section Topic

4.1, “AT-TLS definition” on page 131 We discuss the role AT-TLS plays in securing
socket-based applications, basic concepts, and the
different implementations that can be exploited.

4.2, “Why AT-TLS is important” on
page 133

Here we discuss different uses for AT-TLS.

4.3, “Recommendations” on page 133 AT-TLS is not suitable for all socket applications. Here
we make recommendations on applications such as
those that already incorporate TLS security.

© Copyright IBM Corp. 2006. All rights reserved. 129

4.4, “Restrictions” on page 134 This section discusses AT-TLS application restrictions.

4.5, “How AT-TLS is implemented” on
page 134

We discuss our experiences when we secured our Rexx
IP socket application using AT-TLS.

Section Topic

130 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

4.1 AT-TLS definition
The Transport Layer Security (TLS) protocol provides transport layer security (authenticity,
integrity, and confidentiality) for a secure connection between two applications. The TLS
protocol begins with a handshake, in which the two applications agree on a cipher suite, a
group of cryptographic algorithms they will use for authentication, and session encryption.
Once the client and server applications have negotiated a cipher suite, they authenticate
each other and generate a session key. The session key is used to encrypt and decrypt all
data traffic sent between the client and the server.

Implementing TLS protocols directly into applications (without using AT-TLS) requires
modification to incorporate a TLS toolkit. These toolkits are available for limited programming
environments only, and do not incorporate zSeries capabilities like RACF key rings and digital
certificates. Application Transparent Transport Layer Security (AT-TLS) supports existing
socket applications without any change, providing TLS support on behalf of these
applications.

Although AT-TLS can be used to provide security for the majority of applications
transparently, some applications need to control the security functions being performed by
TCP/IP. This communication between the application and AT-TLS is done through the
transparent TLS API using the SIOCTTLSCTL Input/Output Control (IOCTL) macros.

4.1.1 Basic concepts
AT-TLS provides application-to-application security using policies. The policies are defined
and loaded into the stack by Policy Agent. When AT-TLS is enabled and a newly established
connection is first used, the TCP layer of the stack searches for a matching AT-TLS policy. If
no policy is found, the connection is made without AT-TLS involvement. If a policy is found, a
sequence like the one illustrated in Figure 4-1 is followed.

Figure 4-1 AT-TLS basic flow

Note: AT-TLS only supports TCP-based applications; it cannot be used to provide security
for UDP-based applications. To provide security for UDP-based applications, consider
taking advantage of IPSec support (discussed in Chapter 3, “IPSec” on page 61).

3 4

TCP
Application

PAGENT TCP

Network

IP

Sockets

 System SSL

1

2

5

6

Key:
Clear text

SSL handshake

Encrypted text

AT-TLS
Policy

Chapter 4. Application Transparent - TLS 131

The flow is:

1. The client connection to the server gets established.

2. The server sends data in the clear and the TCP layer queues it.

3. The TCP layer invokes System SSL to perform an SSL handshake under the identity of
the server.

4. The TCP layer invokes System SSL to encrypt the queued data and sends it to the client.

5. The client then sends encrypted data and the TCP layer invokes System SSL to decrypt
the data.

6. Lastly, the server receives data in the clear.

When AT-TLS is enabled, statements in Policy Agent define the security attributes for
connections that match AT-TLS rules. This policy-driven support can be deployed
transparently underneath many existing sockets, leaving the application unaware of the
encryption and decryption being done on its behalf. Support is also provided for applications
that need to negotiate TLS or need to participate in client authentication; however, these
applications must be aware of AT-TLS and use IOCTL support (see “controlling applications”
in 4.1.2, “AT-TLS application types” on page 132). AT-TLS supports the TLS, SSLv3, and
SSLv2 protocols.

IOCTL support is provided for applications that need to be aware of AT-TLS for status or to
control the negotiation of security. TLS can be requested by applications where the
application issues AT-TLS API calls to indicate that a connection should start or stop using
TLS. Client identification services are also available for applications where TLS API calls are
used to receive user identity information based on X.509 client certificates. SIOCTTLSCTL is
an IOCTL specifically available with AT-TLS for applications to control AT-TLS for a
connection. Applications can do things like initializing a connection
(TTLS_INIT_CONNECTION), resetting a connection (TTLS_RESET_CONNECTION), and
resetting ciphers, using the SIOCTTLSCTL IOCTL macros.

4.1.2 AT-TLS application types
Applications have different requirements concerning security. Some applications need to be
aware of when a secure connection is being used. Others may need to assume control if and
when a TLS handshake occurs. For this reason there are different application types
supported by AT-TLS. These application types include the following:

� Not enabled applications

– Pascal API and Web Fast Response Cache Accelerator (FRCA) applications are not
supported by AT-TLS.

– When there are no AT-TLS policies in place (including applications that start during the
InitStack window) or if the policy explicitly says enabled off.

– Application like FTP and Telnet, which may use either AT-TLS or the SSL/TLS toolkit
directly.

Note: Applications like FTP and Telnet have already been programmed to use the
SSL/TLS toolkit directly and can provide additional functions (such as
application-negotiated encryption and certificate-based user ID mapping) that cannot
be used with AT-TLS without application changes to utilize the SIOCTTLSCTL IOCTL.
If, however, you do not need those additional functions, you will be better off leveraging
AT-TLS as a consistent solution for all of your TCP applications.

132 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

� Basic applications

– The AT-TLS policy says enabled on.

– The application is unchanged and unaware of AT-TLS.

� Aware applications

– The AT-TLS policy says enabled on.

– The application is changed to use the SIOCTTLSCTL IOCTL to extract AT-TLS
information.

� Controlling applications

– The application protocol may negotiate the use of TLS in cleartext prior to starting a
secure session.

– Where the policy says enabled on and ApplicationControlled on.

– The application is changed to use SIOCTTLSCTL IOCTL to extract and control
AT-TLS.

4.1.3 For additional information
For additional information regarding AT-TLS, refer to the z/OS V1R7.0 Communications
Server: IP Configuration Guide, SC31-8775.

4.2 Why AT-TLS is important
AT-TLS provides security for your TCP-based applications without the development costs of
implementing security directly into your applications. Because AT-TLS can be used as a
consistent solution across all of your TCP-based applications, systems administrators reap
the benefits of improved productivity and infrastructure simplification with streamlined
management.

4.3 Recommendations
If possible, use AT-TLS as a consistent security solution for all of your TCP-based
applications. Certain applications (such as FTP and Telnet), however, have already been
programmed to use the SSL/TLS toolkit directly and provide additional security functions
(such as application-negotiated SSL/TLS and certificate-based user ID mapping) that cannot
be used with AT-TLS without application changes to utilize the SIOCTTLSCTL IOCTL. If,
however, you do not need those additional functions, you will be better off leveraging AT-TLS
as a consistent solution for most, if not all, of your TCP applications.

Chapter 4. Application Transparent - TLS 133

4.4 Restrictions
The following applications will not map to AT-TLS policies and are not supported by AT-TLS:

� Applications using the Pascal API to access TCP/IP

– Line Print daemon and commands LPD, LPQ, LPRM
– Simple Mail Transfer Protocol (JES Spool Server)
– TSO Telnet client

� Web servers using Fast Response Cache Accelerator

� Network administration applications permitted to the EZB.INITSTACK RACF profile

– Connections established and mapped prior to the installation of the AT-TLS policy will
proceed in clear text.

– Connections established and mapped after installation of the AT-TLS policy are
subject to the installed policy.

These applications that are not supported by AT-TLS will be permitted to proceed in cleartext.

4.5 How AT-TLS is implemented
Based upon our recommendations from 4.3, “Recommendations” on page 133, we show
implementation details for using AT-TLS with a Rexx socket server application running on
SC30/A23 using stack TCPIPD connecting to a Rexx socket client application running on
SC31/A24 using stack TCPIPD.

The AT-TLS policies are provided to the stack by the Policy Agent. The Policy Agent thus has
to be set up prior to activating AT-TLS.

We set up our Policy Agent configurations files, which pertain to AT-TLS as follows. We
coded a CommonTTLSConfig statement naming file /etc/sc30.pagent_CommonTTLS_conf
containing AT-TLS objects shared across our TCP/IP stacks. This file contains the following
policy statements:

� TTLSRule statements
� TTLSGroupAction statements
� TTLSEnvironmentAction statements
� TTLSConnectionAction statements

We also coded TcpImage statements naming a file /etc/sc30.tcpip#_image.conf for each
TCP/IP stack. Each one of these stack TTLSConfig files contains a TTLSConfig statement

Note: With the current native SSL/TLS support in FTP, an application can negotiate the
use of SSL/TLS using an FTP protocol exchange known as the AUTH command. Because
FTP is not yet enabled to be an AT-TLS controlling application, in order to use AT-TLS to
secure FTP file transfers (rather than just using the current native SSL/TLS support), you
would need to use implicit SSL/TLS. With implicit SSL/TLS, the fact that SSL/TLS is used
is hidden from the FTP application and a specific port (TCP port 990) must be used. The
use of TCP port 990 “implicitly” requires the use of SSL/TLS encryption.

Use of application-negotiated SSL/TLS is recommended by the IETF over the use of
implicit SSL/TLS; however, implicit SSL/TLS might provide an acceptable tactical solution
in your environment, allowing you to try to standardize on a single consistent encryption
solution.

134 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

that points to TCPIP.SC30.POLICIES(TTLS#). This file contains the following policy
statements:

� TTLSRule statements
� TTLSGroupAction statements
� TTLSEnvironmentAction statements
� TTLSConnectionAction statements

Figure 4-2 gives a diagrammatic representation of how these config files are interlinked.

Figure 4-2 AT-TLS PAGENT config file relationship

Setting up Policy Agent and its associated security aspects is discussed in detail in
Chapter 1, “Policy Agent (PAGENT)” on page 3.

The following RACF aspects are important for the successful implementation of AT-TLS:

� Setting up TTLS Stack Initialization access control
� Enabling CSFSERV resources
� Creating digital certificates and key rings

4.5.1 Rexx socket application scenario
We set up a Rexx socket client and server application on our two z/OS machines, SC30 and
SC31, as shown in Figure 4-3 on page 136, in order to demonstrate how this application can
make use of the TLS protocol without requiring changes. The server application runs under
the job name of APISERV, and repeatedly accepts connections, writes out socket end-point
information, and returns this data to the client application.The server binds to port 7000. The

/etc/pagent.sc30.conf

TCPIPD.TCPPARMS(TTLSPOL)

CommonTTLSConfig /etc/sc30.pagent_CommonTTLS_conf
..........
TcpImage TCPIPD /etc/sc30.tcpipd_image.conf
.....

.....
TTLSConfig //'TCPIPD.TCPPARMS(TTLSPOL)'
.....

.....
TTLSRule
.....

/etc/sc30.tcpipd_image.conf

/etc/pagent.sc30.env

SYS1.PROCLIB(PAGENT)

Chapter 4. Application Transparent - TLS 135

client application, APICLN, runs as a batch job on SC31, sends data to the server on SC30,
and receives returned data.

Figure 4-3 AT-TLS Rexx socket APPLs

We performed the following steps to set up AT-TLS for our Rexx client/server socket
applications:

� Configuring the server policies
� Configuring the client policies
� Defining the digital certificates and key rings
� Enabling CSFSERV resources
� Controlling access during the window period
� Enabling AT-TLS in the TCP/IP profile

Configuring the server policies
We used the z/OS Network Security Configuration Assistant to create our AT-TLS policy file
for our Server on SC30. The resultant policy file for SC30 is displayed in Example 4-1. An
explanation of these policies, along with the changes, follows.

Example 4-1 Server AT-TLS policy for TCPIPD on SC30

AT-TLS Policy Agent Configuration file for:
Image: A23
Stack: TCPIPD

Created by the z/OS Network Security Configuration Assistant
Date Created = Wed Nov 30 14:23:47 CAT 2005

Copyright = None

TTLSRule ATTLS_SC30_SC31~1 1

z/OS LPAR: A23
TCPIPD: 10.40.1.230
TSO: SC30

APISERV

z/OS LPAR: A24
TCPIPD: 10.20.40.101
TSO: SC31

TTLSRule ATTLS_SC30_SC31~1
Local Port=7000

TTLSGroupAction
 TTLSEnabled On

TTLSEnvironmentAction
Handshakerole Servers

TTLSRule ATTLS_SC31_to_SC30~1
Remote Port=7000

TTLSGroupAction
 TTLSEnabled On

TTLSEnvironmentAction
Handshakerole Client

PAGENT PAGENT

APICLN

Server
Certificate

SC30ServerCert

CA
Certificate
LOCAL CA

Key
Ring

CA
Certificate
LOCAL CA

Key
Ring

136 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

{
 LocalAddrRef addr1
 RemoteAddrRef addr2
 LocalPortRangeRef portR1
 RemotePortRangeRef portR2
 Direction Inbound
 Priority 255
 TTLSGroupActionRef gAct1~REXXServer
 TTLSEnvironmentActionRef eAct1~REXXServer
 TTLSConnectionActionRef cAct1~REXXServer
}
TTLSGroupAction gAct1~REXXServer
{
 TTLSEnabled On 2
}
TTLSEnvironmentAdvancedParms RexxNewParm
{
ClientAuthType PassThru 3
}
TTLSEnvironmentAction eAct1~REXXServer
{
 HandshakeRole Server 4
 EnvironmentUserInstance 0
 TTLSKeyringParmsRef keyR~A23
}
TTLSConnectionAction cAct1~REXXServer
{
 HandshakeRole Server
 TTLSCipherParmsRef cipher1~AT-TLS__Gold
 TTLSConnectionAdvancedParmsRef cAdv1~REXXServer
 Trace 255
}
TTLSKeyringParms keyR~A23
{
 Keyring ATTLS_keyring 5
}
TTLSCipherParms cipher1~AT-TLS__Gold 6
{
 V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
}
IpAddr addr1
{
 Addr 10.40.1.230 7
}
IpAddr addr2
{
 Addr 10.20.40.101 8
}
PortRange portR1
{
 Port 7000 9
}
PortRange portR2
{
 Port 1024-65535 10
}

Chapter 4. Application Transparent - TLS 137

1 The TTLSRule statement is used to define an AT-TLS rule. This policy is defined for
inbound connections only and has been given the highest possible priority of 255 for the
duration of our testing.

2 TTLSEnabled is the statement that turns on the AT-TLS function.

3 The z/OS Secure Network Configuration Assistant defaults to requiring client authentication.
If ClientAuthType is not coded, it will default to Required. This policy statement was added
manually to turn off client authentication through the parameter Passthru, which means
bypass the client certificate validation.

4 This statement controls who initiates the handshake. In the server role, AT-TLS will wait for
an inbound hello from the client SSL handshake, which is performed like a server's
handshake.

5 The key ring used was permitted to the user ID under which the Rexx server started task
was running. Even though the TCP/IP stack itself does the SSL calls, the security
environment under which the calls execute is that of the application.

6 The AT-TLS__Gold cipher was selected, including the cipher specifications for this AT-TLS
session.

7 This is the SC30 VIPA address.

8 This is the client source IP address; in our case it is SC31 DYNAMICXCF address.

9 The destination port used for testing was 7000.

10 The source port used for testing was all ephemeral ports.

The above policy definition resulted from using the z/OS Secure Network Configuration
Assistant. The AT-TLS key ring was defined in the AT-TLS Image Level Setting screen on our
SC30 z/OS Image, as shown in Figure 4-4 on page 139.

138 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 4-4 Image key ring definition

The server traffic descriptor screen shown in Figure 4-5 on page 140 contains the AT-TLS
handshake role button, which we set to Server. We are also using the key ring as defined on
our z/OS image. We define our connection direction as incoming from all ephemeral ports to
local port 7000.

Chapter 4. Application Transparent - TLS 139

Figure 4-5 Server traffic descriptor

We defined our Server traffic descriptor with the supplied AT-TLS GOLD security level, which
uses the following ciphers: TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x2F and
TLS_RSA_WITH_AES_128_CBC_SHA, as shown in Figure 4-6 on page 141.

140 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 4-6 Server requirement map

Configuring the client policies
We used the z/OS Network Security Configuration Assistant to create our AT-TLS policy file
for our client on SC31. The resultant policy file for SC31 is displayed in Example 4-2. The
outbound connection direction for this client is reflected in this policy.

Example 4-2 Client AT-TLS policy for TCPIPD on SC31

AT-TLS Policy Agent Configuration file for:
Image: A24
Stack: TCPIPD

Created by the z/OS Network Security Configuration Assistant
Date Created = Mon Dec 05 15:46:57 CAT 2005

Copyright = None

TTLSRule ATTLS_SC31_to_SC30~1
{
 LocalAddrRef addr1
 RemoteAddrRef addr2
 LocalPortRangeRef portR1
 RemotePortRangeRef portR2
 Direction Outbound
 Priority 255
 TTLSGroupActionRef gAct1~REXXClient
 TTLSEnvironmentActionRef eAct1~REXXClient
 TTLSConnectionActionRef cAct1~REXXClient
}
TTLSGroupAction gAct1~REXXClient
{

Chapter 4. Application Transparent - TLS 141

 TTLSEnabled On
}
TTLSEnvironmentAction eAct1~REXXClient
{
 HandshakeRole Client
 EnvironmentUserInstance 0
 TTLSKeyringParmsRef keyR~A24
}
TTLSConnectionAction cAct1~REXXClient
{
 HandshakeRole Client
 TTLSCipherParmsRef cipher1~AT-TLS__Gold
 TTLSConnectionAdvancedParmsRef cAdv1~REXXClient
 Trace 7
}
TTLSConnectionAdvancedParms cAdv1~REXXClient
{
 HandshakeTimeout 5
}
TTLSKeyringParms keyR~A24
{
 Keyring ATTLS_keyring
}
TTLSCipherParms cipher1~AT-TLS__Gold
{
 V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
}
IpAddr addr1
{
 Addr 10.20.40.101
}
IpAddr addr2
{
 Addr 10.40.1.230
}
PortRange portR1
{
 Port 1024-65535
}
PortRange portR2
{
 Port 7000
}

The above policy resulted from the use of the z/OS Secure Network Configuration Assistant.
The AT-TLS key ring was defined in the AT-TLS Image Level Setting screen on our SC31
z/OS Image exactly as defined for SC30 in Figure 4-4 on page 139. We used a shared RACF
database, which results in the ATTLS_keyring also being shared between the two systems.

The client traffic descriptor screen shown in Figure 4-7 on page 143 contains the AT-TLS
handshake role button, which we set to Client. We also used the key ring as defined on our
z/OS image. We define our connection direction as outbound from all ephemeral ports to
remote port 7000.

142 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 4-7 Client traffic descriptor

We defined our Client traffic descriptor with the supplied AT-TLS GOLD security level, which
uses the following ciphers: TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x2F and
TLS_RSA_WITH_AES_128_CBC_SHA, as shown in Figure 4-8 on page 144.

Chapter 4. Application Transparent - TLS 143

Figure 4-8 Client requirement map

It is important to note that AT-TLS functions at a different level from IP filtering and VPN
policies. There is thus no need to integrate the AT-TLS policies into the rules used for VPN
and filtering.

Defining the digital certificates and key rings
We created a key ring called ATTLS_keyring and connected a certificate authority certificate
and server certificate to it, as shown in Example 4-3. We used a shared RACF database and
therefore a shared key ring, so we were not required to export our CA certificate to a client
key ring. The CA certificate was defined as TRUSTED, which made our server certificate
TRUSTED as well.

Example 4-3 Defining our digital certificates and key ring

RACDCERT ID(CS09) addring(ATTLS_keyring)

SETROPTS CLASSACT(DIGTCERT,DIGTNMAP)

RACDCERT ID(cs09) CERTAUTH GENCERT -
SUBJECTSDN(O('I.B.M Corporation') -
 CN('itso.ibm.com') -
 C('US')) TRUST -
 WITHLABEL('LOCALCA') -
 KEYUSAGE(certsign)

SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

SETROPTS CLASSACT(DIGTCERT,DIGTNMAP)

RACDCERT ID(CS09) GENCERT -
 SUBJECTSDN (CN('SC30ServerCert') -

144 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 OU('ITSO') -
 C('US')) -
RACDCERT ID(CS09) GENCERT -
 SUBJECTSDN (CN('SC30ServerCert') -
 OU('ITSO') -
 C('US')) -
 WITHLABEL('SC30ServerCert') -
 SIGNWITH(CERTAUTH -
 label('LOCALCA'))

SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

RACDCERT ID(CS09) CONNECT(ID(CS09) -
 LABEL('SC30 Server Certificate') -
 RING(ATTLS_keyring) -
 USAGE(personal))
 RACDCERT ID(CS09) CONNECT(ID(CS09) CERTAUTH -
 LABEL('LOCALCA') -
 RING(ATTLS_keyring) -
 USAGE(certauth))

Enabling CSFSERV resources
If you are using cryptographic hardware in conjunction with TLS security, and you have
defined resources in the CSFSERV classes to protect cryptographic services, you should
permit the user ID associated with the server to these resources.

With AT-TLS, the system SSL verifies that the user ID associated with the server is permitted
to use CSFSERV resources. We defined the CSFDSV and CSFPKE services and permitted
the RACF user ID CS09 to use the CSFSERV resource class, as shown in Example 4-4.

Example 4-4 Enabling CSFSERV resources

//RACFDEF EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
RDEFINE CSFSERV CSFDSV UACC(NONE)
RDEFINE CSFSERV CSFPKE UACC(NONE)
SETROPTS RACLIST(CSFSERV) REFRESH
PERMIT CSFDSV CLASS(CSFSERV) ID(CS09) ACCESS(READ)
PERMIT CSFPKE CLASS(CSFSERV) ID(CS09) ACCESS(READ)
SETROPTS RACLIST(CSFSERV) REFRESH
/*

Controlling access during the window period
When AT-TLS is enabled, the INITSTACK profile must be defined. The Policy Agent and any
socket-based programs it requires must be permitted to this resource. Other programs or
users that do not need to wait for the TTLS policy to be installed in the stack may be permitted
to this resource. Users that are not permitted to this resource will not be able to open sockets
on this stack until the TTLS policy is installed. When the resource is not defined, no stack
access is permitted. We defined this profile for SC30 and SC31, as shown in Example 4-5.

Example 4-5 Setup TTLS stack initialization access control for SC30 and SC31

SETROPTS CLASSACT(SERVAUTH)
SETROPTS RACLIST (SERVAUTH)
SETROPTS GENERIC (SERVAUTH)
RDEFINE SERVAUTH EZB.INITSTACK.SC30.TCPIPD UACC(NONE)
PERMIT EZB.INITSTACK.SC30.TCPIPD CLASS(SERVAUTH) ID(*) ACCESS(READ) -

Chapter 4. Application Transparent - TLS 145

 WHEN(PROGRAM(PAGENT,EZAPAGEN))
RDEFINE SERVAUTH EZB.INITSTACK.SC31.TCPIPD UACC(NONE)
PERMIT EZB.INITSTACK.SC31.TCPIPD CLASS(SERVAUTH) ID(*) ACCESS(READ) -
 WHEN(PROGRAM(PAGENT,EZAPAGEN))
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH
SETROPTS WHEN(PROGRAM) REFRESH

Setting up the profile
To activate AT-TLS, the TTLS parameter has to be added to the TCPCONFIG profile config
statement, as shown in Example 4-6.

Example 4-6 profile statement to enable AT-TLS

TCPCONFIG TTLS

AT-TLS operability verification
We installed our policies on the client and server side, started PAGENT as shown in
Example 4-7, and started our APISERV application on SC30, and our APICLN application on
SC31.

Example 4-7 PAGENT startup on SC30

000090 $HASP373 PAGENT STARTED
000090 EZZ8431I PAGENT STARTING
000090 EZZ8432I PAGENT INITIALIZATION COMPLETE
000090 EZZ8771I PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIPD : TTLS

We did a NETSTAT TTLS display on the client side, as shown in Example 4-8, to determine
whether the stack mapped a connection to our client AT-TLS policy and, if so, to which policy
it was mapped.

Example 4-8 Display result of NETSTAT TTLS on client

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIPD 07:41:06
 TTLSGrpAction Group ID Conns
 -- ----------------- -----
 gAct1~REXXClient 00000002 0

We did a NETSTAT TTLS display on the server side, as shown in Example 4-9, to determine
whether the stack mapped a connection to our server AT-TLS policy and, if so, to which policy
it was mapped.

Example 4-9 Display result of NETSTAT TTLS on server

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIPD 07:42:30
TTLSGrpAction Group ID Conns
-- ----------------- -----
gAct1~REXXServer 00000002 0

Our NETSTAT ALLCONN command on SC30 showed that the APISERV application was
listening on port 7000.

Example 4-10 NETSTAT ALLCONN on server

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIPD 07:48:47
 User Id Conn State
 ------- ---- -----

146 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

 APISERV 00004765 Listen
 Local Socket: 0.0.0.0..7000
 Foreign Socket: 0.0.0.0..0
:
:

Our NETSTAT ALL command in Example 4-11 on SC31 showed that our client application
APICLN connected to IP address 10.40.1.230 and port 7000 from the client IP address
10.20.40.101 ephemeral port 1041.

Example 4-11 Display results of NETSTAT ALL on client

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIPD 07:38:19
 Client Name: APICLN Client Id: 00004C0B
 Local Socket: 10.20.40.101..1041
 Foreign Socket: 10.40.1.230..7000
 BytesIn: 00000000000000000031
 BytesOut: 00000000000000000031
 SegmentsIn: 00000000000000000011
 SegmentsOut: 00000000000000000013
 Last Touched: 07:38:13 State: TimeWait
 RcvNxt: 3475413650 SndNxt: 3489619133
 ClientRcvNxt: 3475412176 ClientSndNxt: 3489618831
 InitRcvSeqNum: 3475412144 InitSndSeqNum: 3489618799
 CongestionWindow: 0000065120 SlowStartThreshold: 0000065535
 IncomingWindowNum: 3475446389 OutgoingWindowNum: 3489651872
 SndWl1: 3475413650 SndWl2: 3489619133
 SndWnd: 0000032739 MaxSndWnd: 0000032768
 SndUna: 3489619133 rtt_seq: 3489619103
 MaximumSegmentSize: 0000008140 DSField: 00
 Round-trip information:
 Smooth trip time: 0.000 SmoothTripVariance: 201.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000000000
 SockOpt: 8000 TcpTimer: 0C
 TcpSig: 00 TcpSel: C0
 TcpDet: E0 TcpPol: 02
 QOSPolicyRuleName:
 TTLSPolicy: Yes
 TTLSRule: ATTLS_SC31_to_SC30~1
 TTLSGrpAction: gAct1~REXXClient
 TTLSEnvAction: eAct1~REXXClient
 TTLSConnAction: cAct1~REXXClient
 ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384

Our NETSTAT ALL command on SC30 showed that our server application APISERV was
listening on port 7000.

Example 4-12 Display results of NETSTAT ALL

MVS TCP/IP NETSTAT CS V1R7 TCPIP Name: TCPIPD 07:40:53
 Client Name: APISERV Client Id: 00000037
 Local Socket: 0.0.0.0..7000
Foreign Socket: 0.0.0.0..0
 BytesIn: 00000000000000000000
 BytesOut: 00000000000000000000
 SegmentsIn: 00000000000000000000
 SegmentsOut: 00000000000000000000
 Last Touched: 07:40:43 State: Listen

Chapter 4. Application Transparent - TLS 147

 RcvNxt: 0000000000 SndNxt: 0000000000
 ClientRcvNxt: 0000000000 ClientSndNxt: 0000000000
 InitRcvSeqNum: 0000000000 InitSndSeqNum: 0000000000
 CongestionWindow: 0000000000 SlowStartThreshold: 0000000000
 IncomingWindowNum: 0000000000 OutgoingWindowNum: 0000000000
 SndWl1: 0000000000 SndWl2: 0000000000
 SndWnd: 0000000000 MaxSndWnd: 0000000000
 SndUna: 0000000000 rtt_seq: 0000000000
 MaximumSegmentSize: 0000000536 DSField: 00
 Round-trip information:
 Smooth trip time: 0.000 SmoothTripVariance: 1500.000
 ReXmt: 0000000000 ReXmtCount: 0000000000
 DupACKs: 0000000000
 SockOpt: 8000 TcpTimer: 00
 TcpSig: 00 TcpSel: 00
 TcpDet: C0 TcpPol: 00
 QOSPolicyRuleName:
ReceiveBufferSize: 0000016384 SendBufferSize: 0000016384
 ConnectionsIn: 0000000001 ConnectionsDropped: 0000000000
 CurrentBacklog: 0000000000 MaximumBacklog: 0000000010
 CurrentConnections: 0000000000 SEF: 100
 Quiesced: No

Problem determination
The NETSTAT command can aid in problem determination and assist in checking the status
of your connections. The following functions that pertain to AT-TLS are available:

� NETSTAT ALL
� NETSTAT ALLCONN
� NETSTAT TTLS
� pasearch -t

Other useful problem determination aids are:

� Reviewing SYSLOGD
� Running a CTRACE with option TCP or a packet trace
� Setting debug traces using the TTLSConnectionAction statement

The Trace value is interpreted by AT-TLS as a bit map. Each of the options is assigned a
value that is a power of 2, as shown in Table 4-1. You should add together the values of each
option that you want to activate.

The default trace value is 2, which provides error messages to syslogd. While you are
deploying a new policy, you might find it beneficial to specify a trace value of 6 or 7. This
provides connection information messages, in addition to error messages in syslogd. The
information messages provide positive feedback that connections are mapping to the
intended policy. Trace options event (8), flow (16), and data (32) are intended primarily for
diagnosing problems. Trace values larger than 7 can cause a large number of trace records
to be dropped instead of being sent to syslogd.

Table 4-1 Trace values and descriptions

Trace value Description

0 No tracing is enabled.

1 Errors are traced to the TCP/IP joblog.

2 Errors are traced to syslogd.

148 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

For AT-TLS codes that are above 5000 refer to the IP diagnosis guide or to the appropriate IP
messages manual.

For codes below 5000 refer to the z/OS Cryptographic Service System Secure Sockets Layer
Programming manual.

4 Tracing of when a connection is mapped to an AT-TLS rule and when a secure
connection is successfully initiated is enabled.

8 (Event) Tracing of major events is enabled.

16 (Flow) Tracing of system SSL calls is enabled.

32 (Data) Tracing of encrypted negotiation and headers is enabled.

64 Reserved.

128 Reserved.

255 All Tracing is enabled.

Trace value Description

Chapter 4. Application Transparent - TLS 149

150 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 5. Intrusion Detection Services
(IDS)

Intrusion is a term describing undesirable activities. The objective of an intrusion may be to
acquire information that a person is not authorized to have. It may be to gain unauthorized
use of a system as a stepping stone for further intrusions elsewhere. It may also be to cause
business harm by rendering a network, system, or application unusable. Most intrusions
follow a pattern of information gathering, attempted access, and then destructive attacks.
Intrusion Detection Services (IDS) thus guards against these intrusions, thereby providing
protection against potential hackers.

This chapter discusses the following.

5

Section Topic

5.1, “What IDS is” on page 152 This section covers the different types of intrusions, and
how policies are used to fend them off.

5.2, “Basic concepts” on page 152 Here details are given about the scan detection, attack
detection, and traffic regulation.

5.3, “How IDS is implemented” on
page 161

This section covers the use of eServer IDS
Configuration Manager to create IDS policies, which are
loaded into LDAP.

© Copyright IBM Corp. 2006. All rights reserved. 151

5.1 What IDS is
IDS is a z/OS Communications Server security protection mechanism that inspects all
inbound and outbound network activity and identifies suspicious patterns that may indicate a
network or system attack from someone attempting to break into or to compromise a system.
IDS can detect malicious packets that are designed to be overlooked by a firewall’s simplistic
filtering rules. It can also provide a reactive system whereby IDS responds to the suspicious
activity by taking policy actions.

As shown in Figure 5-1, IDS policies are stored on an LDAP server and are downloaded to
the Policy Agent. The Policy Agent in turn installs the policies in the stack. When an attack is
identified, any of the following resultant policy actions can be taken:

� Event logging
� Statistics gathering
� Packet tracing
� Discarding of the attack packets

Some IDS policies log events and statistics in syslogd and the system console via TRMD.

Figure 5-1 IDS architecture

5.2 Basic concepts
IDS functions can be subdivided into three areas:

� Scan detection
� Attack detection
� Traffic regulation

IDS Policy
Repository

LDAP
Server

AdministratorPolicy
Download Log events and

statistics

Intrusion
event

Trace suspicious
activity

ATTACK

Install IDS
policy in stack

SYSLOG

TRACES

Event
Messages

Policy
Agent TRMD

DATA LINK

IP/ICMP

TCP/UDP

SOCKETS API

LDAP

152 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

IDS is managed through policies. The policy is designed by the network administrator and
based on preconceived events. The policy must include factors such as who, what, where,
when, and how:

� Who is allowed to connect to the host?
� What applications/ports are clients allowed to use?
� Where is the attack/intruder/traffic emanating from?
� When should I consider something to be an attack or scan?
� How is my system affected by the attack, scan, or traffic?

The IDS policy information resides on an LDAP server (which may or may not be located on
the local host). The IDS policy syntax is based on the definition of the elements of policies
provided by the LDAP server product. The definition of the elements of policies is known as
the schema, and the z/OS Communications Server provides the schema definition for policies
in a set of sample files that must be installed on the LDAP server.

The policy information is loaded into the Policy Agent (PAGENT) application during PAGENT
startup. All IDS policies allow the logging events to a specified message level in syslogd or
the system console. Most IDS policies support discarding packets when a specified limit is
reached. Most IDS policies support writing statistics records to the INFO message level of
syslogd on a specified time interval or if exception events have occurred. All IDS policies
support tracing all or part of the triggering packet to an IDS-specific CTRACE facility,
SYSTCPIS. IDS assigns a correlator value to each event. Messages written to the system
console and syslogd and records written to the IDS ctrace facility all use this correlator. A
single detected event may involve multiple packets. The correlator value helps to identify
which message and packets are related to each other.

The type of policy written can be a scan policy, attack policy, or traffic regulation policy. The
following sections give detailed descriptions of each of these policies.

5.2.1 Scan policies
Scans are detected because of multiple information gathering events from a single source IP
within a defined time frame. Scanning is not harmful and may be part of normal operation, but
many serious attacks, especially access violation attacks, are preceded by information
gathering scans. Due to the fact that scans use consistent source IP addresses, they can be
monitored and the data processed to help prevent an attack or determine the origins of a
previous attack.

The scanner is defined as a source host that accesses multiple unique resources (ports or
interfaces) over a specified period of time. The number of unique resources (threshold) and
the time period (interval) can be specified via policy. Two categories of scans are supported:
Fast scans and slow scans.

Fast scan
During a fast scan many resources are rapidly accessed in a short time period (usually
program driven and takes less than five minutes), as shown in Figure 5-2 on page 154.

Chapter 5. Intrusion Detection Services (IDS) 153

Figure 5-2 Fast scan

Slow scan
During a slow scan different resources are intermittently accessed over a longer period of
time (many hours). This could be a scanner trying to avoid detection, as shown in Figure 5-3.

Figure 5-3 Slow scan

Port=1 ipaddr=9.3.3.3
Port=2 ipaddr=9.3.3.3
Port=3 ipaddr=9.3.3.3

Port=10000 ipaddr=9.3.3.3

MVS Console

Message: Fast Scan Detected at
 IP address 9.3.3.2

9.3.3.2 9.3.3.3

Program Scan
Co i = 1 to 10,000
mysock=socket ()
rc=connect (mysock,port=i)
End
Run Scan

z/OS

Port=1 ipaddr=9.3.3.3
Port=2 ipaddr=9.3.3.3
Port=3 ipaddr=9.3.3.3

Port=10000 ipaddr=9.3.3.3

MVS Console

Message: Slow Scan Detected at
 IP address 9.3.3.2

9.3.3.2 9.3.3.3

Program Scan
Co i = 1 to 10,000
mysock=socket ()
rc=connect (mysock,port=i)
sleep (120)
End
Run Scan

z/OS

2-Minute Delay
2-Minute Delay

2-Minute Delay

154 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

A fast scan scenario my be one in which an attack is based on the information provided
through a program that loops through ports 1–1025 (normally the ports used by the server for
listening ports), determining which ports have active listeners. This information may be the
basis for a future attack. A slow attack is more deliberate; occasional packets may be sent out
to different ports over a long period of time with the same fundamental purpose, obtaining
host information.

The same port being accessed will not generate multiple event records, for example, if a
client from the same source IP address generates twenty connections to port 23 (TN3270
server). This is not considered a scan because only one unique resource has been accessed.

Scan policy parameters
A scan policy provides the ability to control the following parameters that define a scan:

� Fast scan time interval
� Slow scan time interval
� Fast scan threshold
� Slow scan threshold
� Exclude well-known legitimate scanners via an exclusion list
� Specify a sensitivity level by port or port range (to reduce performance impacts)
� Notify the installation of a detected scan via console message or syslogd message
� Trace potential scan packets

The policy allows the user to set a sensitivity level. This is known as policy-specified
sensitivity. This is used in parallel with the categorization of the individual packets to
determine if a packet should be counted as a scan event. The event classification is a normal,
possibly suspicious, or very suspicious event. This logic is used to control the performance
impact and analysis load of scan monitoring by only counting those individual packets where
the chart indicates a count value. This value is then added with the current count total of scan
events and compared with the threshold value to determine if we have met or exceeded the
threshold in a specified time interval.

Scan events
Scan events are classified into ICMP, UDP port, and TCP port scans categories. The scan
categories are described here:

� ICMP scan

ICMP requests (echo, information, time stamp, and subnet mask) are used to obtain or
map network information. The type of ICMP request determines the event classification.

� TCP port scans

TCP is a stateful protocol. There are many different events that may be classified as
normal, possibly suspicious, or highly suspicious.

� UDP port scans

UDP is stateless. The stack is unable to differentiate between a client port and a server
port. A scanner sending messages to many ephemeral ports looks very similar to a DNS
server sending replies to many clients on ephemeral ports. TCP/IP configuration allows
UDP ports to be RESERVED, therefore restricting a port so that it cannot be used.

Note: Scan policies do not provide the ability to reject a connection. The actual rejecting of
the connection based on the source IP address must be configured in the Traffic
Regulation policy or firewall.

Chapter 5. Intrusion Detection Services (IDS) 155

Any countable scan event will count against an origin source IP address. The total number of
countable events from all categories is compared to the policy thresholds. When an origin
source IP address has exceeded the policy-defined fast or slow threshold, an event may be
sent to the TRMD for logging to syslogd, a console message may be issued, and optionally a
packet trace record issued. This is all dependant upon the notification actions set in the action
of the policy. Once a scan event is logged for a particular source IP address, no further scan
events will be reportable within the specified fast interval. The intervals and thresholds for fast
and slow scan are global. Only one definition of them is allowed across all event categories at
a given point in time.

False positive scans
IDS attempts to reduce the recording of false scan events. This can be manually coded in the
policy by excluding a source IP address, port, or subnet. This is useful if you have a particular
client that probes the TCP/IP stack for general statistical information. Also, only unique
events from a source IP address are counted as a scan event. An event is considered unique
if the four-tuple, client IP address, client port, server IP address, and server port are unique,
as well as the IP protocol for this scan interval. In the case of ICMP, a packet is unique if the
type has not been seen before within this scan interval.

5.2.2 Attack policies
An attack is defined as an assault on system security that derives from an intelligent threat. It
is an intelligent act that is a deliberate attempt to evade security services and violate the
security policy of a system. An attack may in the form of a single packet or multiple packets.
There are two types of attacks, active and passive:

� An active attack is designed to alter system resources or affect their operation.

� A passive attack is designed to learn or make use of system information but not affect
system performance.

For more information about passive and active attacks, reference RFC 2828.

The attack policies designed for IDS are based on active attacks. One may consider scanning
to be more of a passive attack.

IDS attack policy allows the network administrator to provide network detection for one or
more categories of attacks independently of each other. In general, the types of actions that
can be specified for an attack policy are notifications (that is, event logging, statistics
gathering, packet tracing) and discarding the attack packets.

IDS attack categories
The IDS categories of attacks are described in Table 5-1.

Table 5-1 Attack categories

Category Attack description Actions

Malformed
packets

There are numerous attacks designed to crash a
system’s protocol stack by providing incorrect partial
header information. The source IP address is rarely
reliable for this type of attack.

TCP/IP stack: Always
discards malformed
packets.

IDS policy: May provide
notification.

156 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Inbound fragment
restrictions

Many attacks are the result of fragment overlays in
the IP or transport header. This support allows you to
protect your system against future attacks by
detecting fragmentation in the first 256 bytes of a
packet.

TCP/IP stack: No
default action.

IDS policy: May provide
notification and cause
the packet to be
discarded.

IP protocol
restrictions

There are 256 valid IP protocols. Only a few are in
common usage today. This support allows you to
protect your system against future attacks by
prohibiting those protocols that you are not actively
supporting.

TCP/IP stack: No
default action.

IDS policy: May provide
notification and cause
the packet to be
discarded.

IP option
restriction

There are 256 valid IP options, with only a small
number currently in use. This support allows you to
prevent misuse of options you are not intentionally
using. Checking for restricted IP options is
performed on all inbound packets, even those
forwarded to another system.

TCP/IP stack: No
default action.

IDS policy: May provide
notification and cause
the packet to be
discarded.

UDP perpetual
echo

Some UDP applications unconditionally respond to
every datagram received. In some cases, such as
Echo, CharGen, or TimeOfDay, this is a useful
network management or network diagnosis tool. In
other cases it may be polite application behavior to
send error messages in response to incorrectly
formed requests. If a datagram is inserted into the
network with one of these applications as the
destination and another of these applications
spoofed as the source, the two applications will
respond to each other continually. Each inserted
datagram will result in another perpetual echo
conversation between them. This support allows you
to identify the application ports that exhibit this
behavior.

TCP/IP stack: No
default action.

IDS policy: May provide
notification and cause
packet to be discarded.

ICMP redirect
restrictions

ICMP redirect packets can be used to modify your
routing tables.

TCP/IP stack: Will
discard ICMP redirects
if IGNOREREDIRECT
is coded in the
tcpip.profile.

IDS policy: May provide
notification and disable
redirects (this can
optionally be coded as a
parameter in the
tcpip.profile).

Category Attack description Actions

Chapter 5. Intrusion Detection Services (IDS) 157

Attack policy notification
The IDS attack policy (object class name ibm-idsNotification) notification allows attack events
to be logged to syslogd and the system console. For all attack categories except flood, a
single packet triggers an event. To prevent message flooding to the system console, you can
specify the maximum number of console messages to be logged per attack category within a
five-minute interval (ibm-idsMaxEventMessage). There is no default, so it is recommended
that you code a maximum number of event messages that are to be written to the console. To
prevent message flooding to syslogd, a maximum of 100 event messages per attack category
will be logged to syslogd within a five-minute interval.

Attack policy statistics
The IDS attack policy statistics action provides a count of the number of attack events
detected during the statistics interval. The count of attacks is kept separately for each
category of attack (for example, malformed), and a separate statistics record is generated for
each. If you want to turn on statistics for attacks, it is recommended that you specify
exception statistics (ibm-idsTypeActions:EXCEPTSTATS). With exception statistics, a
statistics record will only be generated for the category of attack if the count of attacks is
non-zero. If statistics are requested (ibm-idsTypeActions:STATISTICS) a record will be
generated every statistics interval regardless of whether an attack has been detected during
that interval.

5.2.3 Attack policy tracing
The IDS attack policy tracing uses the component trace facility SYSTCPIS. The attack policy
tracing attributes are ibm-idsTraceData and ibm-idsTraceRecordSize, which indicate whether
packets associated with the attack events are to be traced. For all attack categories except
flood, a single packet triggers an event and the packet is traced. In the case of a flood, a
maximum of 100 attack packets per attack category will be traced during a five-minute
interval.

Outbound raw
restrictions

Most network attacks require the ability to craft
packets that would not normally be built by a proper
protocol stack implementation. This support allows
you to detect and prevent many of these crafting
attempts so that your system is not used as the
source of attacks. As part of this checking, you can
restrict the IP protocols allowed in an outbound RAW
packet. It is recommended that you restrict the TCP
protocol on the outbound raw rule.

TCP/IP stack: No
default action.

IDS policy: May provide
notification and cause
the packet to be
discarded.

TCP SYNflood One common denial of service attack is to flood a
server with connection requests from invalid or
nonexistent source IP addresses. The intent is to use
up the available slots for connection requests and
thereby deny legitimate access from completing.

TCP/IP stack: Provides
internal protection
against SYN attack.

IDS policy: May provide
notification.

Note: The console messages provide a subset of the information provided in the syslogd
messages.

Category Attack description Actions

158 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

5.2.4 Traffic Regulation (TR) policies
The IDS TR policies are used to limit:

� Memory usage
� Queue delay time

There are two types of TR policies, namely TCP and UDP Traffic Regulation policies.

TR TCP policy information
The IDS TR policies for TCP ports limit the total number of connections an application has
active at one time. This can be used to limit the number of address spaces created by forking
applications such as otelnetd. The TR TCP terminology is very important when coding the
policy to ensure the desired goal is achieved. The following section describes TR TCP
terminology.

Connections
Connections can be separated into two groups: Total connections and number of available
connections.

Total connections
This is the total number of connections that are coded in your policy. This number can never
be exceeded for a particular port.

Number of available connections
This is the total number of available connections, which is equal to the connections in use
subtracted from the total connections. This value is used in the fair share algorithm.

Fair share algorithm
The fair share algorithm is designed to limit the number of connections available to any
source IP address. The algorithm is based on the percentage of the available remaining
connections for a particular port compared with the total connections already held by the
source IP address for that port. The fair share equation and logic statements are shown in
Example 5-1.

Example 5-1 Fair share logic

Equation Statement :
% SourceIPAddr = Num. of Conn. held by SourceIPAddr / Currently Available Sessions x 100

Logic Statement:
If %SourceIPAddr < Policy Percentage Then Allow the Session
Else Reject the
Session

Note: In order to use the attack policy tracing via the ctrace component SYSTCPIS, the
component must be started. Reference z/OS V1R7.0 Communications Server: IP
Diagnosis Guide, GC31-8782, for more information.

Note: If a host does not currently have any connections open on the port and connections
are available, a host will always be allowed at least one connection.

Chapter 5. Intrusion Detection Services (IDS) 159

QoS policy
Multi-user source IP addresses may be allowed a larger number of connections by specifying
a QoS policy with a higher number of connections (MaxConnections) than allowed by the TR
policy. TR will honor the QoS Differentiated Services Policy if the port is not in a constrained
state. A QoS exception is made only when QoS Differentiated Services Policy is applied for
the specific source server port and specific outbound client destination IP address.

Constrained state
TR TCP generates a constrained event when a port reaches approximately 90 percent of its
connection limit (total connections). An unconstrained event is generated when the port falls
below approximately 88 percent of its limit. This two percent deviance is designed to avoid
message flooding.

TR UDP policy information
Traffic Regulation for UDP connections can be done in two ways: Through the
UDPQUEUELIMIT parameter in the TCPIP.PROFILE or by coding a TR UDP policy. If both
are in effect, the TR UDP policy takes priority.

UDPQUEUELIMIT
Traffic Regulation for UDP-based applications can be provided through the TCPIP.PROFILE
statement of UDPQUELIMIT. This statement relates to inbound packets for bound UDP ports.
Packets are queued until the queue limit is reached or buffer memory is exhausted. If
NOUDPQUEUELIMIT is coded, any single bound port under a flood attack or with a stalled
application could consume all available buffer storage. It is recommended that
UDPQUEUELIMIT always be set to active. This limits the amount of storage that can be
consumed by inbound datagrams for any single bound port. Sockets that use the Pascal API
have a limit of 160 KB in any number of datagrams. Sockets that use other APIs have a limit
of 2000 datagrams or 2880 KB.

TR UDP policies
IDS TR policies for UDP ports specify one of four abstract queue sizes for specified bound IP
addresses and ports. The four abstract sizes are VERY_SHORT, SHORT, LONG, and
VERY_LONG. The abstract size is comprised of two values, the number of packets and the
total number of bytes on the queue. If either one of these values is exceeded, inbound data is
discarded. See Table 5-2 for the internal values.

Table 5-2 TR UDP abstract queue information

Note: If a policy is in effect for a UDP port, the queue limit size is controlled by the policy
for that port.

Abstract size Number of packets Queue limit

VERY_SHORT 16 32 KB

SHORT 256 512 KB

LONG 2048 4 MB

VERY_LONG 8192 16 MB

160 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Most UDP applications have time-out values based on human perceptions of
responsiveness. These values tend to stay constant while system processing speeds and
network delivery speeds continue to advance rapidly. This may require the physical sizes of
these queues to change over time. For performance reasons, sockets that use the Pascal
API will only enforce the byte limit. Sockets that use other APIs will enforce both limits.
Sockets without a policy specified for their port can use the existing UDPQUEUELIMIT
mechanism.

For applications that can process datagrams at a rate faster than the average arrival rate, the
queue acts as a speed matching buffer that shifts temporary peak workloads into following
valleys. The more the application processing rate exceeds the average arrival rate and the
larger the queue, the greater the variation in arrival rates that can be absorbed without losing
work. Very fast applications with very bursty traffic patterns may benefit from LONG or
VERY_LONG queue sizes.

For applications that consistently receive datagrams at a higher rate than they are able to
process them, the queue acts to limit the effective arrival rate to the processing rate by
discarding excess datagrams. In this case the queue size only influences the average wait
time of datagrams in the queue and not the percentage of work lost. In fact, if the wait time
gets too large, the peer application may have given up or retransmitted the datagram before it
is processed. Slow applications with consistently high traffic rates may benefit from SHORT
queue sizes. In general, client-side applications will tend to have lower system priority, giving
them lower datagram processing rates. They also tend to have much lower datagram arrival
rates. Giving them SHORT or VERY_SHORT queue sizes may reduce the risk to system
buffer storage under random port flood attacks with little impact on percentage of datagrams
lost.

5.3 How IDS is implemented
IDS is implemented through policies. The Policy Agent is an integral part of setting up the
environment for IDS to execute these policies. See Chapter 1, “Policy Agent (PAGENT)” on
page 3, for discussion and implementation examples for PAGENT.

Defining policies in LDAP can be quite complex. To assist you in setting up these policies,
there is an eServer IDS Configuration Manager graphical user interface (GUI) tool that you
can use. At this time there is no flat file alternative for storing IDS policies.

z/OS IDS comes with a set of beginner and advanced definition examples. These sample
definitions are called:

� /usr/lpp/tcpip/samples/pagent_starter_IDS.ldif
� /usr/lpp/tcpip/samples/pagent_advanced_IDS.ldif

Using these samples as a base is a good way to start your IDS implementation. To learn
more about modifying these definitions to create customized policies, please consult the z/OS
V1R7.0 Communications Server: IP Configuration Guide, SC31-8775.

5.3.1 The eServer IDS Configuration Manager
The eServer IDS Configuration Manager enables centralized configuration of Intrusion
Detection policies for z/OS V1R7 using LDAP as a policy repository. It provides a
user-friendly interface with help panels to free network administrators from having to know
LDAP Policy Schema and the complexity of directly writing to an LDAP server.

Chapter 5. Intrusion Detection Services (IDS) 161

The eServer IDS Configuration Manager is a tool designed to allow a network administrator to
produce the following:

� A file the LDAP server can process (using either LDAP version 2 or 3)
� A configuration file for the Policy Agent (PAGENT)

eServer IDS Configuration Manager’s Graphical User Interface (GUI) provides a user-friendly
front end for the entry of policy information. There is also the flexibilty to save the (possibly
incomplete) information you entered in an XML file format on your local machine for future
use. Once the policies are complete, the tool can covert the XML file to an LDIF file and send
the information to the LDAP server and optionally save the file locally in the LDIF file format.

eServer IDS Configuration Manager also produces a configuration file with the LDAP server
information required by PAGENT. This file can be sent via FTP or moved to and placed in the
PAGENT configuration file manually.

The IDS functionality provided by PAGENT must use the LDAP server to retrieve its policy
information. The LDAP server requires that the policies be coded in accordance with RFC
2849 and as per the RFC, transferred to the LDAP server in an LDIF file format. IDS policies
cannot be configured in the PAGENT configuration file. Based on this premise, there are two
methods for generating the LDIF file:

� Manually coding the policies (LDIF) file, and transferring the information to the LDAP
server

� Using the eServer IDS Configuration Manager to generate the LDIF file and using it to
automatically send the information to the LDAP server

We recommend using the eServer IDS Configuration Manager tool to generate and transfer
the policy information. The primary reason is that the network administrator does not need to
learn LDAP syntax in order to create a policy. Also, the amount of time saved by using the
eServer IDS Configuration Manager to generate the LDIF file as opposed to manually coding
the LDIF file is significant.

Figure 5-4 on page 163 shows the communication flow between the eServer IDS
Configuration Manager, the LDAP server, and the PAGENT application. This chapter focuses
on the first flow, the building of the policies, and the transferring of the policies to the LDAP
server.

162 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-4 Policy flow

The eServer IDS Configuration Manager is a tool for network administrators. Therefore,
before you begin you should:

� Read the chapter on policy-based networking in z/OS V1R7.0 Communications Server: IP
Configuration Guide, SC31-8775.

� Have information about the LDAP server to be used, that is, the server address and port
number, the LDAP protocol version (2 or 3), whether a backup LDAP server is used, and
whether SSL is used.

� Be familiar with your particular environment so that you can make decisions on what
events are to be detected under what circumstances and what action to take.

5.3.2 Requirements and download instructions
This section outlines the requirements and support of the eServer IDS Configuration
Manager.

Requirements
The eServer IDS Configuration Manager requires Java™ 1.4.1or later and Windows or Linux
to run. We used Windows XP and Java 1.4.2 for our testing. This application is known to run
on most Windows and Linux platforms as well as AIX. The Java executable can be obtained
at the following URL:

http://java.sun.com/

Download and installation
The download and installation instructions are written for Windows and Linux. The following
information and executables are located at:

http://www.ibm.com/software/network/commserver/zos/support/

zIDS
Manager

What are
my policies?

Here are
your policies.

LDAP
Server

1

3

2

Build and send
the PAGENT
policies.

z/OS running PAGENT

Chapter 5. Intrusion Detection Services (IDS) 163

http://java.sun.com/
http://www-306.ibm.com/software/network/commserver/zos/support/

5.3.3 Windows steps
The steps for Windows are:

1. Download this file to your Windows system: SetupWindowsIDSMgr.exe.
2. Execute SetupWindowsIDSMgr.exe.

5.3.4 Linux steps
The steps for Linux are:

1. Download this file to your Linux system: SetupLinuxIDSMgr.bin.
2. Execute ./SetupLinuxIDSMgr.bin.

5.3.5 Using the GUI
This section is intended to help the network administrator manage and understand the
Graphical User Interface provided. Each first-level directory will be discussed and screen
captures provided to assist in the education. The sections are:

� eServer IDS Configuration Manager configuration.
� PAGENT configuration.
� Work with IDS objects and rules.

Upon completion of this chapter, you will have created:

� Reusable objects
� A scan global policy
� An attack, scan event, and TR TCP (condition, action, and policy)

The first window displayed when starting the eServer IDS Configuration Manager is shown in
Figure 5-5 on page 165.

Note: eServer IDS Configuration Manager help is available via the Help menu option. If
detailed information is needed for a particular field, place the cursor in the desired field and
press the F1 key.

164 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-5 eServer IDS Configuration Manager

eServer IDS Configuration Manager configuration
One of the first steps in using eServer IDS Configuration Manager is to configure the LDAP
server settings. This is done from the section eServer IDS Configuration Manager
Configuration by selecting LDAP Information. The settings we used are shown in Figure 5-6
on page 166. This sets up the configuration information that is needed for communication
between the eServer IDS Configuration Manager and the LDAP server.

Chapter 5. Intrusion Detection Services (IDS) 165

Figure 5-6 IDS LDAP configuration information

eServer IDS Configuration Manager to LDAP server communication
Verify that you can communicate with the LDAP server by clicking File → Send to LDAP.
This is considered successful if you receive the Creating LDIF icon with the message
Updating LDAP. After a few seconds, the icon will disappear. Keep in mind that we are not
sending any new policy information to the LDAP server; we basically sent the default
IBM-provided policy information for connectivity verification. This same step must be
repeated after the policies have been coded and saved to a file by selecting File → Save or
File → Save As from the menu.

PAGENT configuration
Next we set up PAGENT information by selecting PAGENT Configuration. We then select
LDAP Information and the screen that appears, as shown in Figure 5-7 on page 167. We
use the same information as entered for the LDAP Information in the eServer IDS
Configuration Manager Configuration section.

Note: The connection between the eServer IDS Configuration Manager and the LDAP
server can be secured by selecting the SSL YES radio button.

166 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-7 PAGENT LDAP configuration information

We can now configure the TCP images to specify what TCP/IP stacks are supporting the
policies. First, click TCP Images. You will see a summary of information in the right pane. If
you right-click you will see the window shown in Figure 5-8 on page 168. This allows you to
add multiple TCP/IP images to the configuration file.

Chapter 5. Intrusion Detection Services (IDS) 167

Figure 5-8 PAGENT LDAP TCP/IP configuration

Once your TCP/IP image has been created you can add, modify, or delete the TCP/IP Image
object by highlighting it in the right pane and right-clicking the object. The pop-up menu that
appears is shown in Figure 5-9 on page 169.

168 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-9 Add, modify, or delete TCP/IP image object

At this point we are ready to generate the PAGENT configuration file.

PAGENT configuration file
The PAGENT configuration information must be saved to a text file after providing the
necessary information, which we did above. The file is save by selecting File → Save As and
then choosing the conf format, which represents PAGENT LDAP configuration file. An
example of the text output is displayed in Figure 5-10.

Figure 5-10 PAGENT configuration file

This file is the PAGENT configuration file. For more information about the PAGENT
configuration file you can reference the section “The Policy Configuration File” in z/OS V1R2
Communications Server: IP Configuration Reference, SC31-8776. This information must be

ReadFromDirectory
{
 LDAP_Server 10.12.4.211
 LDAP_Port 33389
 LDAP_DistinguishedName cn=LDAP
 LDAP_Password secret
 LDAP_SessionPersistent Yes
 LDAP_ProtocolVersion 3
 LDAP_SchemaVersion 3
 SearchPolicyBaseDN o=ITSO,c=US
}

TcpImage TCPIPD NOFLUSH NOPURGE 1800

Chapter 5. Intrusion Detection Services (IDS) 169

manually transferred (for example, sent via FTP, cut and pasted, or retyped) to the
configuration file located on the z/OS system. Typically, the file is located in the
/etc/pagent.conf file and is used when the PAGENT application is started.

Work with IDS objects and rules
This section specifies the IDS policy rules. This is the most critical task and typically will be
done iteratively until the final policy rules are defined.

� You are required to establish one condition set and one action set in at least one policy
rule.

� You may optionally specify that rules apply only during validity periods.

� You may optionally associate rules with keywords to speed up their retrieval from LDAP.

Use this section to specify IDS policy rules, which can include condition sets, actions, policy
keyword sets, or validity periods. Only one policy rule and associated actions can be applied
to a particular packet.

The first step in creating a policy rule is to create the reusable objects that will be used in your
action and condition sets. Next, create the actions and conditions based on those reuseable
objects. Finally, build your policy rule from the available condition and action sets. The
following sections walk you through this process.

When you have finished specifying IDS policy rules, select File → Send to LDAP to store the
policy information into the LDAP server.

Even before you have finished specifying all the policies, you can save the (possibly
incomplete) information that you have entered (to an XML file on your eServer IDS
Configuration Manager workstation) by selecting File → Save. If you select File → Save As
you then have the option to save as an XML, LDIF, or CONF file.

Work with reuseable objects
The reuseable objects are designed to be incorporated into multiple policies, conditions, or
actions, depending on the type of object. Figure 5-11 illustrates the various object sets
available in the Work with Reuseable Objects folder. The objects are stored in an object set
and the collection of object sets is shown in the folders with the prefix All followed by the
object set identifier. For example, all of the unique IP address sets created are located in the
All IP Address Sets folder.

Figure 5-11 Reuseable objects

Note: Only XML files can be read back in the eServer IDS Configuration Manager and
edited. LDIF and CONF files are generated and are not reuseable by the eServer IDS
Configuration Manager.

170 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Let us create an IP address set. First, right-click the All IP Address Sets folder. You will see
the screen shown in Figure 5-12.

Figure 5-12 Add IP address set

Select Add IP Address Set. You will now be prompted for a name of the IP address set. In
our example we called the object set ITSOIPADDR, as shown in Figure 5-13. Select OK and
the new object set has been created. Notice that you can view the object sets in either the left
pane by expanding the All IP Address Sets folder or the right pane through the summary
information, as shown in Figure 5-14 on page 172.

Figure 5-13 IP address set name

Chapter 5. Intrusion Detection Services (IDS) 171

Figure 5-14 IP address sets

Follow the same procedure to add an IP address set named IPAddrSet1. Right-click IP
Address Set, select Add IP Address Set, then specify the name IPAddrSet1.

Next we want to modify the information that is in the object set ITSOIPADDR. Click the
ITSOIPADDR object set, making this the active element in the left pane. The item that is
highlighted in the left pane is the active window and dictates the information you see in the
right pane, as shown in Figure 5-15 on page 173.

172 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-15 IPAddr object set ITSOIPADDR

Now right-click and the pop-up menu appears, as shown in Figure 5-16 on page 174.

Chapter 5. Intrusion Detection Services (IDS) 173

Figure 5-16 Object set options

The available options are:

Add IP address Select this option to enter a low IP address and a high IP address or
number of mask bits.

Delete this set Select this option to delete the highlighted IP address set and all IP
address ranges in the set. The deleted IP address set will be removed
from all associated condition sets.

Rename set Select this option to rename the highlighted IP address set. The
original IP address set name will be removed from all associated
condition sets. The new set name will have to be re-associated with
the desired condition sets.

Select Add IP Address and the box shown in Figure 5-17 appears.

Figure 5-17 IP address range

174 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

The question mark indicates that this field requires a value. In our case, we place the value
9.9.9.9 in the Low IP Address field and click Apply, followed by another low IP address of
10.10.10.10 and a high IP address or number of mask bits of 24. Select OK. We have
successfully created a reusable object. The ITSOIPADDR object set contains two objects, as
shown in Figure 5-18.

Figure 5-18 Object set summary information

The process by which we built this object set is the same for all of the reuseable objects. Of
course, there are different parameters depending on the type of object set being constructed
(that is, port sets require a port). We have built several other reusable objects that will be
used at a later time, as per Figure 5-19 on page 176. You should create reusable object sets
with the same names for condition, action, and policy building.

Chapter 5. Intrusion Detection Services (IDS) 175

Figure 5-19 Constructed reusable objects

Attacks
An attack can be a single packet designed to crash or hang a system, or multiple packets
designed to consume a limited resource causing a network, system, or application to be
unavailable to its intended users (a denial of service). The IDS attack policy lets you turn on
attack detection for one or more categories of attacks independently of each other. In
general, the types of actions that you can specify for an attack policy are event logging,
statistics gathering, packet tracing, and discarding of attack packets.

The next step is for us to generate an attack condition, action, and policy. Let us start with the
condition. Click Attack Condition Set, making this the active folder. The folder is open if the
plus sign (+) or minus sign (-)next to the folder is a minus sign (-). You should see the same
screen shown in Figure 5-20 on page 177.

176 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-20 Attack Condition Sets

Only five attack types (outbound raw, perpetual echo, restricted IP options, restricted IP
protocols, and interface flood) have condition sets for which the user can specify values.
Select All Outbound Raw Condition Sets, making it active in the left pane, followed by
right-clicking to bring up the option to Add Outbound Raw Condtion Set. Select this option
by clicking it and the menu appears as shown in Figure 5-21.

Figure 5-21 Outbound Raw Condition Set

The set name is the name associated with this condition. We chose to use the name
RawCondSet1. The Restricted Protocol Set Name option presents us with a drop-down menu
that includes all of the objects built in the Reusable Object/All IP Protocol Sets. Let us select
the IPProtocolSet1 object. Select OK. We have generated a condition set, as shown in
Figure 5-22 on page 178.

Chapter 5. Intrusion Detection Services (IDS) 177

Figure 5-22 Summary of raw condition sets

Next select All Attack Actions in the left pane; then right-click and select Add Attack
Actions. The pop-up menu appears as shown in Figure 5-23.

Figure 5-23 Attack action pop-up menu

Action Name is a required field and we chose the name RawAction. Report Set is an optional
field with a drop-down menu containing the reusable report sets. In our case, we use
IPReportSet1. Select OK. Now an attack action is created, as shown in Figure 5-24 on
page 179.

178 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-24 Attack action summary

Now there needs to be a policy associating a condtion with an action. Select All Attack
Policy Rules by clicking the folder. Now, right-click and select Add Attack Policy
Rule/Below Section. The pop-up menu appears as shown in Figure 5-25.

Figure 5-25 Attack policy rule pop-up menu

Chapter 5. Intrusion Detection Services (IDS) 179

Policy Rule Name, Attack Type, Condition Set Name, and Action Name are all required fields.
We will use RawPolicy, Outbound Raw, RawCondSet1, and RawAction, respectively. Attack
Type has a drop-down menu. This contains the different attack categories; see 5.2.2, “Attack
policies” on page 156, for information about the attack types or (in the GUI tool) place the
cursor in this field and press the F1 key. The Validity Period Name and Policy Keyword Set
Name fields are optional. These fields are not used in this example. Select OK. An attack
policy has been built for outbound raw sockets, as shown in Figure 5-26.

Figure 5-26 Attack policy

Scan global
You can specify sets of global scan detection parameters (threshold and interval for fast and
slow scans). These attributes apply to all scan events. If you configure a certain category of
scan events, the action will be triggered if the number of those events received from one IP
address exceeds the slow scan threshold during the slow scan interval. Similarly, if you
configure a certain category of scan event, the action will be triggered if the number of those
events received from one IP address exceeds the fast scan threshold during the fast scan
interval. The slow scan threshold must be greater than the fast scan threshold. The slow scan
interval must be greater than the fast scan interval.

Open the Scan Global folder in the left pane. Click All Scan Global Policy Rules. Next,
right-click and select Add Scan Global Policy Rule/Below Section. The menu appears as
shown in Figure 5-27 on page 181.

180 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-27 Scan global policy rule pop-up menu

As we have already seen, there also needs to be a policy name. For the policy rule name we
used the name ScanGlobalPolicy1. Notice that there are default values for the Fast Scan
Interval, Fast Scan Threshold, Slow Scan Interval, and Slow Scan Threshold fields. We
accept all of the default values. The Report Set Name and Policy Keyword Set Name fields
have drop-down menus indicating that the choices are defined as reusable objects. We chose
IPReportSet1 and PolicyKeywordSet1, respectively. Select OK. A scan global policy is now
created, as shown in Figure 5-28.

Figure 5-28 Scan global policy

Chapter 5. Intrusion Detection Services (IDS) 181

Scan events
Scan events come from the following categories:

� ICMP scans: ICMP requests (echo, information, time stamp, and subnet mask) are used
to map network topology. Any request sent to a subnet base or broadcast address will be
treated as very suspicious. Echo requests (PING) and time stamp requests are normal
unless they include the Record Route or Record Timestamp option, in which case they are
possibly suspicious.

� TCP port scans: Because TCP is a stateful protocol, many different events may be
classified as normal, suspicious, or highly suspicious. For more details, please see the
section “Scan policies” of z/OS V1R7.0 Communications Server: IP Configuration Guide,
SC31-8775.

� UDP port scans: A datagram received for a restricted port is very suspicious; one received
for an unreserved but unbound port is possibly suspicious; and one received for a bound
port is normal.

The individual packets used in a scan can be categorized as normal, possibly suspicious, or
very suspicious. To control the performance impact and analysis load of scan monitoring, you
can adjust your interest level in potential scan events. If you set the sensitivity level to:

� High: Normal, possibly suspicious, and very suspicious events will be counted.
� Medium: Possibly suspicious and very suspicious events will be counted.
� Low: Only very suspicious events will be counted.
� None: No events will be counted.

First open the Scan Events folder. Click All Scan Event Conditions Sets to activate.
Right-click and select Add Scan Event Condtion Set (see Figure 5-29).

Figure 5-29 Scan Event Condition Set pop-up menu

The required fields are Set Name and Protocol. We use ScanEventCondition1 and TCP,
respectively. The Local Port Set and Local IP Address Set fields have drop-down menus that
contain reusable objects. For these fields we use the reusable objects IPPortSet1 and
IPAddrSet1. Next select OK and we have created a condtion set, as shown in Figure 5-30 on
page 183.

182 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-30 Scan event condition set

Now we need an action and, as with the Attack section, a policy to relate the condtion to an
action. Click All Scan Event Actions in the left pane, making it the active element. Right-click
and select Add Scan Event Action. The pop-up menu appears, as shown in Figure 5-31.

Figure 5-31 Scan event action pop-up menu

Action Name is a required field and our action is called ScanEventAction1. The sensitivity
defaults to None. This will cause no events to be counted toward the scan event. We chose a
low sensitivity. For more information about the sensitivity, place your cursor in the Sensitivity
field and press the F1 key. Scan Exclusion Set is optional, and for this action we will not code
a value. A scan exclusion set consists of one or more scan exclusion range attributes that
specify known legitimate scanners. To reduce false positives (that is, undesirable reports of
scans by legitimate scanners), you can specify source IP addresses, a subnet mask length,

Chapter 5. Intrusion Detection Services (IDS) 183

and source port numbers of sources that you trust to be excluded from scan detection. To do
this you can go back to All Scan Exclusion Sets. Right-click it, click Add Exclusion Set, and
give it a name (for example, AllScanExclusionSet). Right-click that, click Work with Scan
Exclusion Set and add your legitimate scanners as shown in Figure 5-32.

Figure 5-32 Scan event exclusion set

Returning to our previous action, assuming you did not choose to add a Scan Exclusion Set,
select OK to complete the action. We see the result in Figure 5-33 on page 185, which is a
scan event action without an exclusion set.

184 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-33 Scan event action

Next click All Scan Event Policy Rules, making this the active folder. Right-click and choose
Add Scan Event Policy Rule → Below Section. The pop-up menu appears as shown in
Figure 5-34.

Figure 5-34 Scan event policy rule pop-up menu

The required fields are Policy Rule Name, Condition Set Name, and Action Name. We use
ScanEventPolicy1, ScanEventCondition1, and ScanEventAction1, respectively. Validty
Period Name and Policy Keyword Name are optional fields that will be left blank. Select OK
and our policy is now complete, as shown in Figure 5-35 on page 186. To modify the policy,
you can double-click the policy in the right pane.

Chapter 5. Intrusion Detection Services (IDS) 185

Figure 5-35 Scan event policy rule

Traffic Regulation
Traffic Regulation (TR) policies are used to limit memory resource consumption and queue
delay during peak loads. TR policies for TCP ports can limit the total number of connections
an application has active at one time. This can be used to limit the number of address spaces
created by forking applications such as FTPD and otelnetd. A fair share algorithm is also
provided based on the percentage of remaining available connections held by a source IP
address. IDS policies for UDP ports specify a queue length. Longer queues let applications
with higher processing rate capacity absorb higher bursts of traffic. Shorter queues let
applications with lower processing rate capacity reduce the queue delay time of packets that
they accept.

We add a Traffic Regulation Report Set named TRReportSet1 for use in our traffic regulation
policy. Right-click All Report Sets, click Add Report Set, and create the report set, as shown
in Figure 5-36 on page 187.

186 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-36 Traffic Regulation report set

Now open the Traffic Regulation folder. Click All Traffic Regulation Condition Sets to
activate it. Right-click and select Add Traffic Regulation Condition Set (see Figure 5-37).

Figure 5-37 Traffic Regulation Condition Set pop-up menu

All of the fields are required as per the question marks. The set name is TRREGCondSet1.
Local Port Set and Local IP Address Set have drop-down menus and we use the
TRPPortSet23 and IPAddrSet1 reuseable objects, respectively. Select OK and the conditions
set is complete. Now click All TR TCP Actions (we will generate a TCP action) in the left
pane, making it the active element. Right-click and select Add TR TCP Action. The pop-up
menu appears as shown in Figure 5-38 on page 188.

Chapter 5. Intrusion Detection Services (IDS) 187

Figure 5-38 TR TCP action pop-up menu

Action Name is a required field and our action is called TRTCPAction1. Report Set is also
required and we will use the our reusable object report set TRReportSet1. We accept the
default values of 65535, 100, and Port_Instance for Total Connections, Percentage, and Limit
Scope, respectively. Finally, we must correlate the condtion with the action through a policy.

Next click All Traffic Regulation Policy Rules followed by a right-click. Now choose Add
Traffic Regulation Policy Rule → Below Selection. The pop-up menu appears as shown in
Figure 5-39.

Figure 5-39 Traffic Regulation policy rule pop-up menu

The required fields are Policy Rule Name, Conditions Set Name, and Action Name. For
Policy Rule Name we use TRPolicyTelnet. Condition Set Name and Action Name are
drop-down menus and we will use our reuseable objects, TRRegCondSet1 and
TRTCPAction1, respectively. Validty Period Name and Policy Keyword Name are optional
fields that will be left blank. Select OK and our policy is now complete, as shown in
Figure 5-40 on page 189. To modify the policy, you can double-click the policy in the right
pane.

188 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-40 TR TCP policy

5.3.6 Policy priorities
Policies consist of several related objects. The main object is the policy rule. A policy rule
object refers to one policy condition and one policy action with optional validity periods and
policy keywords. Policy objects are analogous to an IF/THEN statement in a program. For
example:

IF condition THEN action

When the set of conditions referred to by a policy rule is TRUE, then the policy actions
associated with the policy rule are executed. Only one policy rule and associated action can
be applied to a particular packet. The priortization of the policy can be seen when you add a
policy and receive the Above Selection/Below Selection pop-up menu, as shown in
Figure 5-41 on page 190.

Chapter 5. Intrusion Detection Services (IDS) 189

Figure 5-41 Policy priortization

The first policy in the policy rule table with a TRUE condition will be executed. Thus, the
prioritization of policies must be evaluated prior to implementation. One can easily prioritize a
policy by clicking a policy in the right-hand pane and when the user chooses to add a policy,
they are prompted with a specification for above/below the current policy. Once a policy is
placed in the table of policy of rule, the user has the ability to move the policy based on the
priortization. This is done by highlighting an existing policy in the right-hand pane and then
right-clicking the policy. Figure 5-42 on page 191 illustrates the available options for an
existing policy in the policy rule table.

190 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-42 Policy options within the policy rule table

Conjunctive Normal Form (CNF) policies
The eServer IDS Configuration Manager only supports the Conjunctive Normal Form, which
means an ANDed (different condition levels) set of ORed conditions (same condition level).
This ORing of the same level conditions can be seen in Figure 5-43 on page 192.

Chapter 5. Intrusion Detection Services (IDS) 191

Figure 5-43 CNF ORed condition

The information in IPAddrSet1 is all at the same level. Thus, when evaluated in a packet, this
information will be ORed. This can be viewed as:

IF IP Address 10.12.4.211 OR IP Address 10.10.10.10 THEN Action

Now let us look at a condition set with multiple condition levels, which requires the AND
function (see Figure 5-44 on page 193).

192 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 5-44 CNF ANDed condition

Using CNF, ScanEventConditionSet1 reads as:

IF TCP AND IPPortSet1 AND IPAddrSet1 THEN Action

Where:

� TCP = TCP Protocol
� IPPortSet1 = Port 20 OR Port 21
� IPAddrSet1 = 10.12.4.211 OR 10.10.10.10

Thus making the appropriate substitutions we have:

If (TCP Protocol) AND (Port 20 OR Port 21) AND (10.12.4.211 OR 10.10.10.10) THEN Action

Now we create the action ScanEventAction1 and build the policy ScanEventPolicy1 that
associates the two:

ScanEventPolicy1:
If (TCP Protocol) AND (Port 20 OR Port 21) AND (10.12.4.211 OR 10.10.10.10) THEN
ScanEventAction1

This is shown in graphical form in Figure 5-45 on page 194.

Chapter 5. Intrusion Detection Services (IDS) 193

Figure 5-45 IDS graphical representation of the policy

5.3.7 Additional information
In this section we provide additional information, including a summary of common mistakes
and logging.

Common mistakes
While incorporating our policies into the eServer IDS Configuration Manager, we experienced
a problem with “All Report Sets - Logging Level” that may be common to others: We did not
know what to code for the Logging Level field and the Help menu did not solve our problem
totally. The Logging Level field represents the syslogd value for the priority code. Syslogd
receives the information from TRMD and processes the information based on the facility
name, which is daemon, and the priority code specified on the call. The help screen refers
you to z/OS V1R7.0 XL C/C++ Run-Time Library Reference, SA22-7821; however, no
numeric values are supplied for the priority code argument. The definitions for priority code
values are as follows:

LOG_ALERT A condition that should be corrected immediately, such as a corrupted
system database.

LOG_CRIT Critical conditions, such as hard device errors.

LOG_DEBUG Messages that contain information normally of use only when
debugging a program.

LOG_EMERG A Panic condition. This is normally broadcast to all processes.

LOG_ERR Errors. LOG_INFO Informational messages.

LOG_NOTICE Conditions that are not error conditions, but that may require special
handling.

LOG_WARNING Warning messages.

194 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Table 5-3 lists the corresponding numeric values needed to place in the Logging Level field.

Table 5-3 Syslogd priority table

NetView and z/OS IDS
NetView® z/OS V5R1, PTF UA11043, provides management support for z/OS
Communications Server IDS. It provides the ability to:

� Trap IDS messages from the system console or syslog and take predefined actions based
on IDS event type.

� Route IDS messages to designated NetView consoles.

� Provide e-mail notifications to security administrators (including running trmdstat and
attaching the output to the e-mail).

� Issue predefined commands.

IDSAUTO is a set of NetView REXX clists and automation table entries that automates
Intrusion Detection Services messsages and performs notifications and reporting via e-mails.
These clists can be downloaded from the following Web site:

http://www.ibm.com/support/docview.wss?uid=swg24001743

Tivoli Risk manager and z/OS IDS
You are able to send TEC events to Tivoli® Risk Manager (V4R1 or later) for enterprise-wide
correlation and analysis of intrusion events.

The format file provided by z/OS Communications Server to convert syslog messages to TEC
events is available at:

http://www-1.ibm.com/support/docview.wss?uid=swg24006973

Priority Value

LOG_EMERG 0

LOG_ALERT 1

LOG_CRIT 2

LOG_ERR 3

LOG_WARNING 4

LOG_NOTICE 5

LOG_INFO 6

LOG_DEBUG 7

Note: The STATISTICS report option uses priority code 6, LOG_INFO.

This field is not the same as the LogLevel options coded in the PAGENT config files.

Chapter 5. Intrusion Detection Services (IDS) 195

http://www-1.ibm.com/support/docview.wss?uid=swg24006973
http://www-1.ibm.com/support/docview.wss?uid=swg24001743

196 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 6. Quality of Service

Quality of Service (QoS) refers to a set of networking technologies intended to ensure
satisfactory end-to-end application performance in the presence of network
congestion—essentially by giving time-sensitive applications (such as interactive transaction
processing) priority in the network over less time-sensitive applications (such as print or file
transfer).

This QoS discussion could have been placed in the Communications Server for z/OS V1R7
TCP/IP Implementation, Volume 3 - High Availability, Scalability, and Performance,
SG24-7171, redbook, as performance issues are frequently perceived as availability issues.
However, we chose to instead include the QoS discussion in this book (Communications
Server for z/OS V1R7 TCP/IP Implementation, Volume 4 - Policy-Based Network Security,
SG24-7172) because QoS is a key part of policy-based networking and is implemented in
z/OS through the Policy Agent (PAGENT), discussed in Chapter 1, “Policy Agent (PAGENT)”
on page 3.

This chapter discusses the following.

6

Section Topic

6.1, “QoS definition” on page 198 Discusses the basic concepts of QoS

6.2, “Why QoS is important” on
page 204

Discusses key characteristics of QoS and why it may be
important in your environment

6.3, “How QoS is implemented” on
page 204

Presents selected implementation scenarios, tasks,
configuration examples, and problem determination
suggestions

© Copyright IBM Corp. 2006. All rights reserved. 197

6.1 QoS definition
The terminology used in the networking industry can be confusing, partly because we have
historically shown a tendency to reuse old terms in new and different ways. Quality of Service
(QoS) is just such a term.

The term QoS originally came out of the work on Asynchronous Transfer Mode (ATM)
technology—specifically, a parameter on the ATM User-to-Network Interface (UNI). If an ATM
network user signals across the UNI for a specific QoS, the network is supposed to determine
if it can support the requested QoS and grant or reject the connection accordingly (similar to
connecting a voice telephone call). In theory, if the network grants the connection, it must
guarantee the QoS for the connection.

ATM never caught on as an end-to-end networking technology (partially due to its complexity)
and, in the case of Ethernet and TCP/IP, there is no UNI; so what does QoS really mean
today?

The ATM QoS concept of a contract between a network user and the network, guaranteeing
certain network throughput (and delay and delay variability), was implemented in TCP/IP as
Integrated Services. Integrated Services is supported by the Resource Reservation Protocol
(RSVP), which is used to allow an application to request (or “signal”) the network to reserve a
certain amount of bandwidth with particular QoS criteria. RSVP is defined in IETF Internet
standard RFC 2205 and can be used to provide something similar to a dedicated circuit over
an IP network. Integrated Services and RSVP can provide an essential capability to support
certain network applications such as high-quality, interactive, voice, or video; however, due to
its complexity and the fact that adequate performance can be achieved for most applications
more simply by just using prioritization, RSVP has not been widely implemented.

Short of Integrated Services, QoS may be thought of as “network prioritization done right.”
Historically, organizations individually configured each router in the network to inspect and
prioritize each message. As the complexity of networks and applications have increased,
however, it has become increasingly difficult to individually configure each network
component yet still ensure that the overall network implementation matches the desired
business policies. Consequently, organizations are now developing enterprise-wide QoS
policies (encompassing the network and advanced servers such as zSeries mainframes).
The Differentiated Services form of QoS involves associating individual packets or flows with
a particular class of service (not to be confused with SNA class of service) and having each
node along the network path handle packets in a cooperative manner, according to a
common set of rules, resulting in end-to-end service classes. Additionally, policy-based
networking has emerged as a standards-based approach for defining QoS policies in one
place and applying them uniformly across the entire IT environment.

6.1.1 Differentiated Services
Differentiated Services (DiffServ) was developed to allow a network to support multiple
service classes without the need to maintain the state of each traffic flow along the path or to
perform signaling between nodes (illustrated in Figure 6-1 on page 199). It can, therefore,
scale to support the traffic seen in today’s global networks. The network domain manager or
administrator defines aggregate traffic service classes (for example, premium, gold, silver,
and bronze). DiffServ is, therefore, less complex than Integrated Services. It is less network
intensive and is appropriate for networks of networks even where portions of the network are
outside the control of the network domain manager.

198 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-1 DiffServ end-to-end architecture

DiffServ is described in IETF RFC 2474, RFC 2475, RFC 2597, and RFC 2598. DiffServ is
meant to handle traffic aggregates. This means that traffic is classified according to the
application requirements relative to other application traffic. Each node then handles the
traffic using internal mechanisms to control bandwidth, delay, jitter, and packet loss. Through
the use of standard per-hop-behaviors (PHBs), packets receive the proper handling and the
result is end-to-end QoS.

For true end-to-end QoS, each administrative domain must implement cooperative policies
and PHBs. Packets entering a DiffServ domain can be metered, marked, shaped, or policed
to implement traffic policies as defined by the administrative authority. This is handled by the
DiffServ traffic conditioner block (TCB) function. DiffServ boundary nodes typically perform
traffic conditioning. A traffic conditioner typically classifies the incoming packets into
predefined aggregate classes, meters them to determine compliance to traffic parameters,
marks them appropriately by writing or re-writing the DSCP, and finally shapes the traffic as it
leaves the node.

Bit Bucket
Gold Silver BronzePremium

TCB Process

TCB
Policer, Shaper, LLQ, WRED,

MQC-Clarification and Marketing

Packet color in DSCP

DiffServ Domain A DiffServ Domain C

PHB
LLQ/WRED

DS-Ingress/Egress Node
DS-Boundary Node

DiffServ Domain B

Chapter 6. Quality of Service 199

The DS field
To distinguish the data packets from different applications in DS-capable network devices,
the IP packets are modified in a specific field. A small bit pattern, called the DS field, in each
IP packet is used to mark the packets that receive a particular forwarding treatment at each
network node. The DS field uses the space of the former TOS octet in the IPv4 IP header and
the traffic class octet in the IPv6 header. All network traffic inside of a domain receives a
service that depends on the traffic class that is specified in the DS field.

The DS field uses six bits to determine the Differentiated Services Code Point (DSCP) as
defined in RFC 2474 and RFC 2475. This code point will be used by each node in the net to
select the PHB. A two-bit currently unused (CU) field is reserved. The values of the CU bits
are ignored by Differentiated Services-compliant nodes when PHB is used for received
packets. Figure 6-2 shows the structure of the defined DS field.

Figure 6-2 DS field

In the event that some nodes in a network recognize only the IP precedence bits, standard
DSCP PHBs are constructed in such a way that they remain compatible with IP precedence.
For example, the DSCP values can be used such that the values for IP precedence relate to
the classes, as shown in Table 6-1.

Table 6-1 Relationship between IP precedence and DSCP

6.1.2 QoS with z/OS Communications Server
In the z/OS Communications Server environment, support for Integrated Services is provided
by the RSVP Agent. The RSVP Agent queries the Policy Agent for relevant information and
communicates with the network to request the desired QoS on behalf of the application.

Differentiated Services is supported by the Policy Agent (PAGENT). PAGENT gets policy
definitions from a local configuration file or a Lightweight Directory Access Protocol (LDAP)
server. PAGENT then installs the policies in the z/OS Communications Server stacks as
desired.

RFC 791 precedence RFC 2474, RFC 2475 DiffServ

Network Control 111 (7) Preserved 111000

Internetwork
Control

110 (6) Preserved 110000

CRITIC/ECP 101 (5) Express
Forwarding

101xxx

Flash Override 100 (4) Class 4 100xxx

Flash 011 (3) Class 3 011xxx

Immediate 010 (2) Class 2 010xxx

Priority 001 (1) Class 1 001xxx

Routine 000 (0) Best Effort 000000

CU

0 1 2 3 4 5 6 7

DSCP

200 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-3 shows the relationship between the various z/OS QoS components. Tasks or
daemons such as PAGENT and RSVPD work together and with the TCP/IP protocol stack to
classify and mark packets for QoS. Data collection points are also available for performance
management.

Figure 6-3 z/OS CS QoS components

6.1.3 PAGENT QoS policies
We suggest that when you first implement QoS policies you start with a small number of
critical applications or traffic types. Then, as you develop more knowledge of the traffic
patterns and interactions, continue to apply a set of service classes to applications or traffic
streams as needed.

The Policy Agent (PAGENT) supports the following QoS policies:

� Differentiated Services (DS) policies
� Integrated Services (RSVP) policies
� Sysplex Distributor (SD) policies

Note: Without a cooperative framework of host-based components and QoS mechanisms
within the network (and the necessary interorganzational coordination) it is impossible to
establish and implement end-to-end service levels. It could well happen that you set up the
policies and go through the effort to set the DS field in messages only to have the network
overwrite your settings with their own.

Priority-Based
Output Queuing

(Queued Direct IO)

Monitor and enforce TCP
data rates and connection limits

TCP/UDP
and IP

Interfaces

Active
Service
Policy

IP Packet

Set DS Field
Collect and maintain

performance metrics for
enforcement and monitoring

(MIB variables)
1 2 3 4

Cisco
6500

Cisco 7xxx

NonQoS
Aware
Appl.

Data
Traffic

QoS
Aware
Appl.

Data
Traffic

RSVP
Agent

RSVP
Flows

Policy
Agent

Maintain
Policies

SNMP
Subagent

Obtain MIB
Values

SNMP
Subagent

SNMP Queries,
Responses and Traps

Service
Policy

LDAP
Server

Chapter 6. Quality of Service 201

Policy conditions consist of a variety of selection criteria that act as traffic filters. Traffic can
be filtered based on source/destination IP addresses, source/destination ports, protocol,
inbound/outbound interfaces, application name, application-specific data, or application
priority. Only packets that match the filter criteria are selected to receive the accompanying
action. Policy rules can refer to several policy actions, but only one policy action is executed
per policy scope. A given policy action may be referred to by several policy rules.

Differentiated Services (DS) policies
Policies to be implemented can be configured via the Policy Agent configuration file, in an
LDAP server, or both. Once read, the policies are combined into a single list. Policy rules and
actions map subsets of outbound traffic to various QoS classes and can be used to create
end-to-end Differentiated Services.

Setting DSCP using the Policy Agent
PAGENT policies are defined by rules and actions. The rules consist of a variety of selection
criteria to provide a match condition. Matching the rule then forces the action. One
particularly important action is the setting of the DS field. Outbound traffic can be marked with
the desired Differentiated Services Control Point (DSCP) value. This marking will then be
interrogated by the network and the appropriate per-hop behavior (PHB) applied as the
packet traverses the network.

Integrated Services (RSVP) policies
Given the narrow applicability of Integrated Services and RSVP, they are not covered in this
book.

6.1.4 Configuring QoS in the z/OS Communication Server
The two components responsible for QoS within the z/OS Communications Server are the
Policy Agent and the RSVP Agent. In this section we provide an overview of the configuration
steps necessary to use the z/OS CS Policy Agent (PAGENT) for QoS. PAGENT runs in the
z/OS environment and reads policy definitions from a local configuration file or a central
repository that uses the Lightweight Directory Access Protocol (LDAP). PAGENT then installs
policies in one or more z/OS CS stacks replacing existing policies or updating them as
necessary.

Policies
Policies consist of several related objects. The main object is the policy rule. A policy rule
object refers to one or more policy condition, policy action, or policy time period condition
objects, and also contains information about how these objects are to be used. Policy time
period objects are used to determine when a given policy rule is active. Active policy objects
are related in a way that is analogous to an IF statement in a program. For example:

IF condition THEN action

In other words, when the set of conditions referred to by a policy rule are TRUE, then the
policy actions associated with the policy rule are executed.

Note: Sysplex Distributor policies are discussed in Communications Server for z/OS V1R7
TCP/IP Implementation, Volume 3 - High Availability, Scalability, and Performance,
SG24-7171.

202 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Differentiated Services rule
The most common QoS deployment will use rules to map outbound traffic from particular
applications into sub-classes. Example 6-1 illustrates this type of policy. The goal of this
Differentiated Services policy is to map a subset of the traffic outbound from an FTP server.

Example 6-1 Sample DiffServ rule

PolicyRule diffServ
{
 ProtocolNumberRange 6
 SourceAddressRange 200.50.23.11 1
 SourcePortRange 20-21 1
 PolicyActionReference tokenbucket
 PolicyRulePriority 10
 ConditionTimeRange 20051001000000:20080630235959
 DayOfMonthMask 1111111111111111111111111111111
 DayOfWeekMask 0111110 2
 TimeOfDayRange 06:00-22:00 2
}
PolicyAction tokenbucket
{
 PolicyScope DataTraffic
 OutgoingTOS 10000000 3
DiffServInProfileRate 256 # 256 Kbps 4
 DiffServInProfileTokenBucket 512 # 512 Kbits
 DiffServInProfilePeakRate 512 # 512 Kbps 4
 DiffServInProfileMaxPacketSize 120 # 120 Kbits 4
 DiffServOutProfileTransmittedTOSByte 00000000
 DiffServExcessTrafficTreatment BestEffort
}

This policy is identified as a Differentiated Services policy by the PolicyScope DataTraffic
attribute on the PolicyAction statement, as well as the use of several DS-only attributes.

The following statements apply to Example 6-1:

� 1 The policy rule selects traffic originated by ports in the range 20–21 for TCP (FTP
outbound data connection uses port 20) from the source address 200.50.23.11.

� 2 The policy rule is active on weekdays between 6 a.m. and 10 p.m. local time, between
the dates 01/10/2005 and 30/6/2008.

� 3 The policy action specifies that the TOS byte be set to '10000000' for traffic that
conforms to this policy.

� 4 The action establishes a token bucket traffic conditioner with a mean rate of 256 kilobits
per second, a peak rate of 512 kilobits per second, and a maximum packet size of 120
kilobits. Any traffic that exceeds these specifications will be sent as best effort, with an
accompanying TOS byte of '00000000'.

Example 6-2 shows another example of a DS policy.

Example 6-2 Web policy sample

PolicyRule web-catalog # web catalog traffic
{
 protocolNumberRange 6 1
 SourcePortRange 80 1
 ApplicationData /catalog 1
 policyActionReference interactive1
}

Chapter 6. Quality of Service 203

PolicyAction interactive1
{
 policyScope DataTraffic
 outgoingTOS 10000000
}

The goal of this policy is to ensure that outgoing data that matches the specified attributes will
be assigned a QoS service level defined in action ‘interactive1’.

The following statements apply to Example 6-2 on page 203 in this section:

� 1 This rule will only match traffic on TCP connections (protocol 6) with a source port of 80
(that is, HTTP server) and application-defined data beginning with the string ‘/catalog’.

� Since we are dealing with HTTP traffic, this rule is basically indicating that all outgoing
traffic associated with a URL that begins with ‘/catalog’ should be managed using the DS
characteristics specified in the ‘interactive1’ policy action.

6.1.5 For additional information
For additional informations please refer to:

� z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775
� z/OS V1R7.0 Communications Server: IP Configuration Reference, SC31-8776

6.2 Why QoS is important
Over the past decade, the amount of available network bandwidth has increased almost
exponentially while bandwidth costs have declined almost as dramatically. Yet, still,
bandwidth is not free (nor is it equally available in all locations) and, consequently,
organizations must strive to provide required application performance in the face of
constrained network capacity. The best way to do so is to understand the service levels
required for each type of traffic in the network and prioritize that traffic accordingly. QoS,
along with policy-based networking, provides the facilities to do that prioritization consistently,
and end-to-end, across the entire IT environment.

6.3 How QoS is implemented
There are two ways to create QoS policies:

� Manually enter them into a flat file (using a text editor).
� Use the zQoS Manager tool, which places the policies onto an LDAP server.

PAGENT can then get the policies either directly from the flat file or from the LDAP server.

6.3.1 QoS configuration using the zQoS Manager
The zQoS Manager is discussed in the following sections:

� zQoS Manager
� Requirements and support
� Download and installation
� Using the GUI
� Policy priorities

204 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

zQoS Manager
The zQoS Manager enables centralized configuration of Quality of Service policies for z/OS
using an LDAP server as the policy repository. It provides a user-friendly interface (complete
with help panels) to isolate network administrators from having to know the LDAP Policy
Schema and the complexity of directly writing to the LDAP server.

The zQos Manager helps a network administrator produce the following:

� A file the LDAP server can process (using LDAP version 2 or 3)
� A basic configuration file for the Policy Agent (PAGENT) that identifies the LDAP server

The zQoS Manger is built with a Graphical User Interface (GUI) that provides a user-friendly
front end for the entry of policy information. The policies entered via the GUI may be stored
on your local machine in an XML file format. You can then use the tool to read in and modify
the XML file with updated policies. You can save, load, and change this file repeatedly to
update policies for one or more Policy Agent configurations. Once your policies are ready,
you then use the zQOS Manager to create either of the following:

� The LDIF file format (coded in accordance with RFC 2849) required by LDAP
� The PAGENT Configuration (CONF) file format used by PAGENT

PAGENT can get the QoS policies either from a PAGENT configuration file or from an LDAP
server. If you are using an LDAP server, the zQoS Manager also produces a configuration file
with the LDAP server information required by PAGENT. This LDAP server information file can
be sent via FTP or moved to and placed in the PAGENT configuration file. Given this, there
are two methods for generating the LDIF file:

� Manually coding the policies (LDIF) file, and transferring the information to the LDAP
server

� Using the zQoS Manager to generate the LDIF file and configuring the zQoS Manager to
automatically send the information to the LDAP server

If you intend to store your QoS policies in an LDAP server, we recommend using the zQoS
Manager tool to generate and transfer the policy information. The quantity of information
needed for a single policy is quite substantial and the time saved by using the zQoS Manager
to generate the LDIF file is significant. Figure 6-4 on page 206 shows the communication flow
between the zQoS Manager, the LDAP server, and the PAGENT application.

Note: The zQoS Manager does not produce an output file that contains policies in a format
that can be used directly by PAGENT.

Note: The zQoS Manager can both read and write an XML file; however, it can only write
(create) LDIF and CONF files.

Chapter 6. Quality of Service 205

Figure 6-4 Policy flow

The zQoS Manager is a tool for network administrators. Therefore, before you begin you
should:

� Read the chapter on policy-based networking in z/OS V1R7 Communications Server: IP
Configuration Guide, SC31-8775.

� Have information about the LDAP server to be used, for example, the server address and
port number, the LDAP protocol version (2 or 3), whether a backup LDAP server is used,
and whether SSL is used.

Be familiar with your particular environment so that you can make decisions about what
events are to be detected under what circumstances and the appropriate actions to take.

Requirements and support
This section outlines the requirements and support for the zQoS Manager GUI.

Requirements,
The zQoS Manager requires Java 1.4.2 and Windows 2000, XP or Linux to run. The Java
executable can be obtained at the following URL:

http://java.sun.com/

Support - Legal notice
IBM provides this code on an as is basis without warranty of any kind, either expressed or
implied, including, but not limited to, the implied warranties of merchantability or fitness for a
particular purpose. Support is provided on a best effort basis through a news group. Visit the
news group ibm.software.commserver.os390.zids-manager on server
news.software.ibm.com. The zQoS Manager has been tested on Linux, Windows 2000, and
Windows XP. Any operating system that can support Java 1.3.1 should be able to run the
application.

zQoS
Manager

What are
my policies?

Here are
your policies.

LDAP
Server

1

3

2

Here are my
PAGENT policies:

z/OS
Policy
Agent

206 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

http://java.sun.com/

Download and installation
The download and installation instructions are written for Windows and Linux. The
information and executable in the following sections is also located at:

http://www.ibm.com/software/network/commserver/downloads/zqosmanager.html

Windows 2000, XP installation
To install:

1. Download this file to your Windows system: zQoSManager.exe.
2. Execute zQoSManager.exe.
3. Go to Start → Programs-zQoS Manager.

Linux installation
To install:

1. Download this file to your Linux system: zqosmgr.tar.
2. Untar the file with tar -xvf zqosmgr.tar.
3. Execute ./zqosmgr.

Using the GUI
This section is intended to help the network administrator manage and understand the
Graphical User Interface provided. The first-level directories are:

� LDAP configuration
� z/OS host information
� QoS policy rules

The first window displayed when starting the zQoS Manager is shown in Figure 6-5 on
page 208.

Note: zQoS Manager Help is available via the Help button. If detailed information is
needed for a particular field, place the cursor in the desired field and press the F1 key.

Chapter 6. Quality of Service 207

http://www-3.ibm.com/software/network/commserver/downloads/zqosmanager.html
http://www-3.ibm.com/software/network/commserver/downloads/zidsmanager.html

Figure 6-5 zQoS Manager

6.3.2 LDAP configuration
One of the first steps in using zQoS Manger is to configure the LDAP server settings. This is
done as follows:

1. Select Work with LDAP Configuration.
2. Click QoS Manager LDAP Information.

The settings we used are shown in Figure 6-6 on page 209. This is setting up the
configuration information that is needed for communication between the zQoS Manager and
the LDAP server.

208 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-6 zQoS LDAP configuration information

zQoS Manager to LDAP server communication
Verify that you can communicate with the LDAP server by clicking File → Send to LDAP.
This is considered successful if you receive the Creating LDIF icon with the message
Updating LDAP. After a few seconds, the icon will disappear. Keep in mind that, at this point,
this does not actually send any new policy information to the LDAP server (we only sent the
default IBM-provided policy information for connectivity verification). This same step must be
repeated after the policies have been coded and saved to a file.

PAGENT LDAP information
Next we set up the PAGENT configuration information. Select PAGENT LDAP Information.

As shown in Figure 6-7 on page 210, if the Use QoS Manager/LDAP information for
PAGENT/LDAP information panel box it checked, then the zQoS Manager automatically
reuses the information that you specified in the QoS Manager LDAP information panel. To
change this information simply remove the check from the box. You also need to enter other
PAGENT configuration information in this panel, such as whether PAGENT is to maintain a
persistent session with the LDAP server and whether the PAGENT/LDAP server connection
will use SSL for security. Also, what protocol version PAGENT should use to communicate
with the LDAP server (is the LDAP server a type 2 or type 3).

Note: There is not an option for SSL. The connection between the zQoS Manager and the
LDAP server is a non-secure connection.

Chapter 6. Quality of Service 209

Figure 6-7 PAGENT LDAP configuration information

6.3.3 z/OS host information
This section provides additional information that will be included in PAGENT’s configuration
file on the z/OS host. The information that you provide will depend upon your policies. The
factors to consider are:

� Should policies be applied to Sysplex Distributor?

� Are you using OSA Express cards in QDIO mode?

� Are you running with multiple TCP/IP stacks on this LPAR? And if so, to which instances
of TCP/IP should your policies be applied?

Performance monitor
For this:

1. Select Work with z/OS Host.
2. Click Performance Monitor.
3. Check Enable Performance Monitor for Sysplex Distributor.

You can make updates to the panel shown in Figure 6-8 on page 211 to assign weight
fractions to the monitored performance data and send them to the Sysplex Distributor
distributing stack as the monitored data crosses the defined threshold.

210 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-8 Performance monitor for Sysplex Distributor

Performance Collection
Use the Performance Collection panel (shown in Figure 6-9 on page 212) to specify how to
collect and log QoS policy performance information. User-written applications can retrieve the
collected performance information through the Policy API.

Note: Enter the name of the file to which the collected performance data should be written.
If this is not specified, Policy Agent will not log the performance information. If the file is
specified but does not exist, it will be created.

Chapter 6. Quality of Service 211

Figure 6-9 Performance collection

Subnet priority
This option is used to define mappings of IP ToS/DSCP for each OSA Express card
configured in QDIO mode for outbound user interface priorities and to VLAN user priorities.

1. Select Subnet Priority.
2. Click Edit then select Add a subnet.

212 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-10 Adding a subnet

Once the subnet has been successfully added:

1. Select Edit, then Work with subnet.

2. Enter your Subnet Address, then click OK.

3. Highlight your Subnet Address.

4. Click Edit, then Add TOS/DSCP Priority Mappings, and add the TOS/DSCP priority
mappings, as shown in Figure 6-11 on page 214.

Chapter 6. Quality of Service 213

Figure 6-11 Adding TOS priority mappings

At this point we are ready to generate the PAGENT configuration file.

PAGENT configuration file
After providing the necessary information, the PAGENT configuration information must be
saved to a text file by clicking File, then Save As, and selecting the .conf format, which
represents the PAGENT LDAP configuration file. An example of the text output is shown in
Example 6-3.

Example 6-3 PAGENT configuration file

ReadFromDirectory
{
 LDAP_Server wtsc30.itso.ibm.com
 LDAP_Port 33389
 LDAP_DistinguishedName cn=LDAPAdmin
 LDAP_Password ldap**
 LDAP_SessionPersistent Yes
 LDAP_ProtocolVersion 3
 LDAP_SchemaVersion 3
 SearchPolicyBaseDN o=ITSO
}

PolicyPerfMonitorForSDR Enable
{
 SamplingInterval 60
 LossRatioAndWeightFr 10 10
 LossMaxWeightFr 100
 TimeoutRatioAndWeightFr 10 20
 TimeoutMaxWeightFr 100
}

214 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

SetSubnetPrioTosMask
{
 SubnetAddr 10.12.4.211
 SubnetTosMask 11100000
 PriorityTosMapping 1 11100000 0
}

TcpImage TCPIPD NOFLUSH NOPURGE 1800

PolicyPerformanceCollection Enable
{
 DataCollection Rule
 MinimumSamplingInterval 30
 LogSamplingInterval 60
 PerformanceLogFile 'tcpipd.tcpparms(log)'
 NumberOfLogFiles 3
 SizeOfLogFile 300
}

This information must be manually transferred (that is, sent via FTP, cut and pasted, or
retyped) to the PAGENT configuration file located on the z/OS V1R7 system. Typically, the
/etc/pagent.conf file is used when the PAGENT application is started.

6.3.4 QoS policy rules
Specifying the QoS policy rules is the most critical task and typically will be done iteratively
until the final policy rules are accepted:

� You are required to establish one condition set and one action set in at least one policy
rule.

� You may optionally specify that rules apply only during validity periods.

� You may optionally associate rules with keywords to speed up their retrieval from LDAP.

Use this section to specify QoS policy rules, which can include condition sets, actions, policy
keyword sets, or validity periods. However, only one policy rule and associated actions can
be applied to a particular unit of network traffic.

When you have finished specifying QoS policy rules, select File → Send to LDAP to store
the policy information in the LDAP server. Also use the File → Save as tab and select the
PAGENT LDAP Configuration files (.conf) pop-up to save the pagent.conf file used by
PAGENT.

At anytime when setting up your policies with the zQoS Manager, you may save intermediate
policy information in an XML file on the workstation running zQoS Manager by selecting
File → Save As and selecting the file type XML.

Note: The zQoS Manager can both read and write an XML file; however, it can only write
(create) LDIF and CONF files.

Chapter 6. Quality of Service 215

Create QoS policy rules
The QoS Policy Rules panel (shown in Figure 6-12) gives you the ability to actually create a
policy rule by linking together policy conditions with policy actions and validity periods (time
periods when the policy condition will be active). You also have the option of identifying
whether this particular rule will be used by the Sysplex Distributor for load distribution.
However, before you get to this stage you must create the QoS condition sets, the QoS
actions, and all validity ranges.

Figure 6-12 QoS policy rules

QoS condition sets
Like the QoS policy rules, the QoS Condition Sets panel (shown in Figure 6-13 on page 217)
links together sets of information. In this case these are all actual conditions that you will want
PAGENT to check for. As you can see in Figure 6-13 on page 217, you identify the server,
client, application, and protocol, and outbound interface sets to a QoS condition set name.
When creating a QoS condition set you do not need to include an entry for all the different
sets, just the ones that you want to be included in this rule (minimum of 1).

216 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-13 QoS condition sets

Creating a QoS server set
To add a server set:

1. Highlight All Server Sets.

2. Select Edit, then Add Server set. You can enter a name for this server set. In this
example we used the name FTP, as shown in Figure 6-14 on page 218.

Chapter 6. Quality of Service 217

Figure 6-14 Add server set

Once the server set has been added:

1. Highlight the server set you want to work with.

2. Select Edit, then Work with Server set to bring you to, in our case, the server set FTP
panel.

3. Here you select Edit then Add Server range. The screen will appear as shown in
Figure 6-15 on page 219.

218 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-15 Add server range

We will not go through the configuration of all the possible QoS condition set entries here
because, once you start using the zQoS Manager, how to add them will become clear.

To link the condition sets entries into a QoS condition set select Edit → Add New Condition
Set. Now specify the QoS condition set name you want to use, and by clicking the down
arrow select the condition set entry you want to be included in this QoS condition set. In our
example, Figure 6-16 on page 220, we only have the Application Server Set, FTP, which may
be included.

Note: Please be aware that these condition sets are reusable and as such may be
included in multiple QoS condition sets, as is the QoS condition set itself, which may be
included in multiple QoS policy rules.

Chapter 6. Quality of Service 219

Figure 6-16 Adding a QoS condition set

QoS actions
Now that you have created your policy rule, the next step is to add policy actions. This is done
through the QoS Actions panels. Here we define what should happen to a packet if it matches
a particular policy rule.

To add an action:

1. Highlight the QoS Actions tag.
2. Select Edit, then Add New Action.

The menu appears as shown in Figure 6-17 on page 221.

220 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-17 Adding a QoS action

Here you specify the name of the QoS action and other actions that you want to be applied to
a packet.

If you are using Sysplex Distributor, and this action is for one of the connections that is being
distributed, you have the ability to limit which of the target stacks, defined on the
VIPADISTRIBUTE statement, this connection may be distributed to. To do this:

1. Highlight All Outbound Interface Address Sets.
2. Select Edit, then Add Outbound Sysplex Address Set.

Enter a name for this interface set. Although you may use any names, for convenience we
used the name of our Sysplex Distributing stack, SC30. This is seen in Figure 6-18 on
page 222.

Note: The actual setup of Sysplex Distributor for high availability and workload balancing
is discussed in detail in Chapter 6, “Internal application workload balancing,” of
Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 3 - High
Availability, Scalability, and Performance, SG24-7171. In that book, however, they used a
simple configuration flat file to define Sysplex Distributor policies to PAGENT. If you need
to create more complex or dynamic Sysplex Distributor policies you should use the zQoS
Manager. The next few panels illustrate the use of zQoS Manager for Sysplex Distributor
policies.

Chapter 6. Quality of Service 221

Figure 6-18 Add in a sysplex interface name

Once you have defined the Outbound Sysplex Address Set names:

1. Highlight one of the names.

2. Select Edit, then Work with Outbound Sysplex Address Set.

3. Then select Edit and Add Outbound Sysplex Address, as shown in Figure 6-19 on
page 223.

The IP addresses that you code here are the XCF interface addresses of the target TCP/IP
stacks, as configured on the VIPADISTRIBUTE statement on the distributing TCP/IP stack.
You only need to code the XCF interfaces of the systems that you want included as possible
destinations for the packets that match the policy rule for which this policy action applies.

222 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-19 Add outbound sysplex address

Now that the XCF interfaces you want to use are defined in the Outbound Sysplex Address
Set name:

1. Go back to the QoS Action panel.

2. Add the Outbound Target Address Set to the QoS Action Name entry, as seen in
Figure 6-20 on page 224.

Chapter 6. Quality of Service 223

Figure 6-20 Adding an outbound interface address to a policy action

All validity periods
Once the policy rules and policy actions have been completed, you can identify any
limitations as to when the policies will be active. If you want your policies to always be active
(the default), then you do not need to specify anything in this section.

For this example we want a policy to only be active between 08.00 and 18.00 on week days.

1. Highlight All Time Masks.
2. Select Edit, then Add Time Mask.
3. Enter a time mask name, in our case Day, as shown in Figure 6-21 on page 225.
4. Click OK.

224 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-21 Adding a time mask name

5. Highlight the time mask name that you want to work with.
6. Click Edit, then Work with Time Mask.

A panel comes up and provides you with possible day/month/TOD options for coding the time
mask. Our policy is to be active between 08.00 and 18.00.

1. Select Edit, then Add Time Interval.

Enter an interval start of 0800 and an interval end of 1800, as shown in Figure 6-22 on
page 226. You are not limited to coding just a single time interval and may enable and
disable a policy rule many times during a day.

Chapter 6. Quality of Service 225

Figure 6-22 Adding a time interval

Our policy is only to be valid on weekdays. This is set in the Days field. There are a number of
ways to update this field; the simplest is to overwrite the existing mask with the mask of
0111110 (bits are Sunday through Saturday). You can also select the Days button and
highlight the days you want active (hold down the Shift or Ctrl key for multiple days), as
shown in Figure 6-23.

Figure 6-23 Selecting weekdays

226 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

If you only want a particular policy to be active between specific dates:

1. Highlight All Time Ranges in the left-hand panel.
2. Select Edit, then Add Time Range.

Enter the name you want to use for this date range:

1. Highlight the time range name in the right-hand panel.

2. Select Edit, then Work with Time Range, and enter a name for the time range and the
starting and ending date and time when you want a policy to be active, as shown in
Figure 6-24.

Figure 6-24 Adding a time range

Now that you have a time mask, a time range, or both, you can add a validity period entry. In
the left-hand panel:

1. Highlight All Validity Periods.

2. Select Edit, then Add New Validity Period.

3. Enter the name you want to assign to this validity period, the time range, the time mask, or
all of these, as shown in Figure 6-25 on page 228.

Chapter 6. Quality of Service 227

Figure 6-25 Specifying a validity period

Creating a QoS policy rule
Now that we have all the individual components and a policy rule name, a policy action name,
and a Policy Time Period name, you can link them all together into a policy rule:

1. Highlight QoS Policies Rules in the left-hand panel, as shown in Figure 6-12 on
page 216.

2. Select Edit, then Add Policy Rule and Above Selection.

Specify whether you want this new rule to appear above or below the currently highlighted
policy rule in the list. You are now presented with a panel where you enter the new policy rule
name and select a Condition Set Name, an Action Name, a Validity Period Name, and a
Keyword name (if you have defined one) from the drop-down list of entries that you went
through and defined earlier. You also identify, by selecting ForLoadDistribution TRUE,
whether the policy is to be Sysplex Distributor load distribution.

228 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-26 Defining a policy rule

When you have created the policy rules you desire, and assuming you have connectivity to
the LDAP server (see “zQoS Manager to LDAP server communication” on page 209), you can
send the new policy rules to the LDAP server by selecting File, then Send to LDAP.

Policy priorities
Policies consist of several related objects. The main object is the policy rule. A policy rule
object refers to one or more policy condition, policy action, or policy validity period objects.
Validity periods determine when each policy rule is active. Active policy objects are
analogous to an IF statement in a program. For example:

IF condition THEN action

In other words, when the set of conditions referred to by a policy rule are TRUE, then the
policy actions associated with the policy rule are executed. Only one policy rule and
associated action can be applied to a particular packet. The prioritization of the policy can be
seen when you add a policy and receive the Above Section/Below Section option, as shown
in Figure 6-27 on page 230.

Chapter 6. Quality of Service 229

Figure 6-27 Policy prioritization

The first policy with a true condition will be executed, thus, the prioritization of policies must
be evaluated prior to implementation. One can easily prioritize a policy by clicking a policy in
the right-hand pane and when the user chooses to add a policy, they are prompted with a
specification for Above/Below the current policy. In other words, does this policy have a
higher or lower priority than the active policy.

6.3.5 Conjunctive Normal Form (CNF) policies
The zQoS Manager only supports the Conjunctive Normal Form, which means an ANDed
(different condition levels) set of ORed conditions (same condition level). This ORing of the
same level conditions can be seen in Figure 6-28 on page 231.

230 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 6-28 CNF ORed condition

The information in server set SC30 is all at the same level. Thus, when evaluated in a packet
this information will be ORed. This can be viewed as:

IF (Port 20) OR (Port 21) OR (Port 23) THEN Action

Now let us look at a condition set with multiple condition levels, which requires the AND
function (see Figure 6-29 on page 232).

Chapter 6. Quality of Service 231

Figure 6-29 zQoS ANDed condition

Using CNF, condition set sample 1 reads as:

IF SC30 Servers & TCP Then Action

Where:

� TCP = TCP Protocol
� SC30 Servers = Port 20 OR Port 21 or Port 23

Thus, making the appropriate substitutions, we have:

If (TCP Protocol) AND (Port 20 OR Port 21 OR Port 23)

If we were to now include condition set Telnet into a policy called test policy then the login
would be:

Test Policy1:
If (TCP Protocol) AND (Port 20 OR Port 21 or Port 23) Then Action

6.3.6 Problem determination
You can see the effect of defined QoS policies in the following ways:

� Use the Network SLAPM2 Subagent to display service policy and mapped application
information, as well as to manage and display Network SLAPM2 performance monitoring.

� Use the SLA Subagent to display service policy and mapped application information, as
well as to manage and display SLA performance monitoring.

� Use the z/OS UNIX pasearch, z/OS UNIX netstat, and TSO NETSTAT commands as
follows:

– The NETSTAT SLAP (netstat -j) command shows performance metrics for active QoS
policy rules.

232 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

– The NETSTAT ALL or netstat -A command has additional information for each active
connection that shows the QoS policy rule name if the connection maps to a QoS
policy.

– Issue pasearch -q to see all QoS policies that are active in Policy Agent.

Available management tools
There are also tools available that can help you manage your network QoS configuration and
parameters including the z/OS Communications Server SNMP SLA Subagent and network
device MIB variables and tools.

z/OS Communications Server SNMP SLA Subagent
The z/OS CS SLA Subagent allows network administrators to retrieve data and determine if
the current set of SLA policy definitions is performing as needed or if adjustments need to be
made. The SLA Subagent supports the Service Level Agreement Performance Monitor
(SLAPM) MIB. Refer to RFC 2758 for more information about the SLAPM MIB.

Network MIB variables and tools
If you are using Cisco networking gear, the following MIBs may be helpful.

Cisco QoS MIB
The Cisco Class-Based QoS MIB provides you with the same statistics that the show policy
interface command provides.

To measure packet loss through the network with regard to different classes of service, use
Class-Based Queuing over Security Management Information Base [CBQoSMIB (available in
12.1(5) T], SAA/IPM, or QPM.

See also:

� CISCO-CLASS-BASED-QOS-MIB.my
� CISCO-CLASS-BASED-QOS-MIB-CAPABILITY.my

Cisco QoS Device Manager
Cisco QoS Device Manager (QDM) is a Web-based network management application that
provides an easy-to-use graphical user interface for configuring and monitoring advanced
IP-based Quality of Service functionality in Cisco Systems routers.

QDM is intended for users who are configuring QoS functionality in their network for the first
time. It is an easy-to-use management application to help you configure and monitor QoS
features in the most critical router devices in your network. Using QDM, you can quickly and
easily configure QoS functionality and immediately observe the effect that this QoS
configuration has on the pattern of network traffic through the network.

Cisco QoS Policy Manager
QoS Policy Manager (QPM) is a QoS policy system that makes it easy to define traffic
policies and automate multiple service levels across any network topology. The product
enables network-wide, content-based Differentiated Services; centralized policy control for
voice/video/data networks; automated QoS configuration and deployment; and campus-
to-WAN policy control. By automating the process of translating application performance
requirements into QoS policy, QPM helps ensure reliable performance for Internet business
applications and voice traffic that contends with noncritical traffic. Using QPM, a network
administrator can quickly construct rules-based QoS policies that identify and partition
application traffic into multiple levels of service.

Chapter 6. Quality of Service 233

234 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Part 2 SAF-based
security

In this part we explain how you can use the z/OS Security Access Facility (SAF) to protect
your network and communications. SAF is the high-level infrastructure that allows you to plug
in any commercially available security product. This book specifically focuses on the IBM
Resource Access Control Facility (RACF) element of the z/OS Security Server.

Part 2

Attention: Many of the tasks, examples, and references in this chapter assume that you
are using the z/OS Security Server (RACF). References to RACF apply to any other
SAF-compliant security products that contain the required support. If you are using another
security product, read the documentation for that product for instructions on task
performance.

© Copyright IBM Corp. 2006. All rights reserved. 235

236 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 7. RACF demystified

In this chapter we explain how you can use the IBM Resource Access Control Facility
(RACF), a component of z/OS System Authorization Facility (SAF), to protect your network
and communications. SAF is the high-level infrastructure that allows you to plug in to any
commercially available security product.

7

Note: The tasks, examples, and references in this chapter are based upon the z/OS
Security Server (RACF). The basic concepts are similar to other commercially available
security products.

Section Topic

7.1, “Basic concepts” on page 238 We try to demystify RACF for you by explaining the basic
concepts in simple terms.

7.2, “How to protect your network
resources” on page 240

We show you how the TCP/IP resources like the stack,
the ports, the commands, etc. are protected by RACF.

7.3, “How to protect your programs” on
page 240

This section explains concepts of program protection.

7.4, “How to associate a user ID with a
started task (STC)” on page 242

We explain how RACF correlates user IDs to STCs.

7.6, “RACF multilevel security (MLS) for
network resources” on page 243

We explain the basic concepts of MLS.

7.7, “Digital certificates in RACF” on
page 244

This section explains RACF support for keys and
certificate management.

© Copyright IBM Corp. 2006. All rights reserved. 237

7.1 Basic concepts
RACF has evolved over more than 30 years to provide protection for a variety of resources,
features, facilities, programs, and commands on the z/OS platform. Because of its vast array
of commands and numerous methods of protection, you could quickly become confused by
RACF. In this chapter, we try to demystify RACF for you by explaining the basic concepts.

The RACF concept is very simple: It keeps a record of all the resources that it protects in the
RACF database. It can, for example, set permissions for file patterns even for files that do not
yet exist. Those permissions are then used should the file (or other object) be created at a
later time. In other words, RACF establishes security policies rather than just permission
records.

RACF initially identifies and authenticates users via user ID and password when they log on
to the system. When a user tries to access a resource, RACF checks its database and, based
on the information it finds in the database, it either allows or denies the access request. It
displays an ICH408I message if the access is denied.

To understand the basic concepts, let us look closely at one of these ICH408I access denial
messages (shown in Example 7-1) to see what RACF is telling us.

Example 7-1 ICH408I message

ICH408I USER(UTSM) GROUP(MTSM) NAME(TSOMON STC-USERID)
 EZB.PORTACCESS.SX00.TCP2.SAPSYS CL (SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY FROM EZB.PORTACCESS.*.*.SAPSYS (G)

This message means that the user is not authorized to access the TCP/IP port.

� The user is UTSM.

� The user belongs to RACF group MTSM. RACF keeps users with similar security access
requirements in groups so that any access changes can be done just to the group profile
(record) rather than to each individual user’s profile.

� The name recorded in the RACF database for the user is TSOMON STC-USERID.

� The TCP/IP port that failed access has a name SAPSYS and belongs to the TCP/IP stack
named TCP2 on z/OS system SX00.

� The TCP/IP port belongs to the resource class SERVAUTH and the resource name that
we use to query RACF is EZB.PORTACCESS.SX00.TCP2.SAPSYS.

When the user UTSM tried to open the port named SAPSYS on the system SX00 and on
TCP/IP stack TCP2, RACF checked its database for a discrete profile specific to
EZB.PORTACCESS.SX00.TCP2.SAPSYS. It could not find it, but instead found a generic
profile EZB.PORTACCESS.*.*.SAPSYS, which covered the resource. (A generic profile
protects multiple resources having similar characteristics.) The user UTSM was not in the
access list and RACF failed the request.

Now let us see what you should have done to protect the TCP/IP port and to give proper
access to the legitimate user. See Example 7-2.

Example 7-2 RACF commands to protect a TCP/IP port

SETROPTS CLASSACT(SERVAUTH)
SETROPTS RACLIST(SERVAUTH)
RDEFINE EZB.PORTACCESS.*.*.SAPSYS UACC(NONE)
PERMIT EZB.PORTACCESS.*.*.SAPSYS CLASS(SERVAUTH) ID(UTSM) ACCESS(READ)

238 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

SETROPTS RACLIST(SERVAUTH) REFRESH

Let us go through each of those TSO commands and explain why it is needed and what it
does. You need to have RACF authority to issue these commands.

SETROPTS CLASSACT(SERVAUTH) activates the SERVAUTH class of profiles that protect
resources managed by the z/OS TCP/IP stack. When you activate a resource class, you are
basically telling RACF to do authorization checking whenever someone tries to access any
resource protected under that class. RACF keeps resources with similar characteristics in
one class. TCP/IP resources like the stack, network, and port belong to the SERVAUTH
class.

Another example of a resource class is OPERCMDS that protects the use of sensitive
operator commands like VARY TCPIP.

SETROPTS RACLIST(SERVAUTH) tells RACF to read the profiles for the SERVAUTH class
from the RACF database into the RACF data space and to activate the sharing of these
in-storage profiles. With these profiles in storage, RACF does not have to do an I/O to read
the RACF database when making an access decision, and this improves performance.

RDEFINE EZB.PORTACCESS.*.*.SAPSYS UACC(NONE) defines a generic profile to cover
all TCP/IP ports that have the name SAPSYS. The profile that you have to define to protect
the TCP/IP ports is of the format EZB.PORTACCESS.systemname.stackname.portname.
The first two qualifiers of the profile have to be EZB.PORTACCESS. This tells the system that
this profile is protecting TCP/IP ports. The third qualifier specifies the z/OS system name, the
fourth one specifies the name of the TCP/IP stack, and the last one the name of the port. We
have the wildcard character “*” for systemname and stackname. This will cover TCP/IP ports
with name SAPSYS on all TCP/IP stacks and on all z/OS systems. Please note that we have
set UACC(NONE) to restrict its access.

PERMIT EZB.PORTACCESS.*.*.SAPSYS CLASS(SERVAUTH) ID(UTSM) ACCESS(READ)
gives READ access for the user ID UTSM to access the TCP/IP port.

SETROPTS RACLIST(SERVAUTH) REFRESH updates the in-storage SERVAUTH class
profiles in the RACF data space.

Let us look at another example. The socket option IPV6_NEXTHOP is sensitive and you want
to restrict its usage to authorized persons.

Example 7-3 RACF commands to restrict the use of socket option IPV6_NEXTHOP

SETROPTS CLASSACT(SERVAUTH)
SETROPTS RACLIST(SERVAUTH)
RDEFINE SERVAUTH EZB.SOCKOPT.*.*.IPV6_NEXTHOP UACC(NONE)
PERMIT EZB.SOCKOPT.*.*.IPV6_NEXTHOP CL(SERVAUTH) ID(UTSM) ACCESS(READ)
PERMIT EZB.SOCKOPT.*.*.IPV6_NEXTHOP CL(SERVAUTH) ID(*) WHEN(PROGRAM(TSOMON)) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

Example 7-3 shows the RACF commands you will need.

RDEFINE SERVAUTH EZB.SOCKOPT.*.*.IPV6_NEXTHOP UACC(NONE) defines the
RACF profile to restrict the use of the IPV6_NEXTHOP socket option.

Note: In most installations the SERVAUTH class will be active. In that case, you can skip
this step. You can issue a RACF command SETROPTS LIST in TSO to check if it is active.
Look in the section starting with ACTIVE CLASSES =.

Chapter 7. RACF demystified 239

PERMIT EZB.SOCKOPT.*.*.IPV6_NEXTHOP CL(SERVAUTH) ID(UTSM) ACCESS(READ)
gives access for the user UTSM to use the IPV6_NEXTHOP socket option in his programs.

You can also protect the use of the socket option in another way. You can say that any user
can use the socket option, provided he is doing it via a specific program. That way you are
giving authority to a program rather than to a user to access the resource (socket option).

PERMIT EZB.SOCKOPT.*.*.IPV6_NEXTHOP CL(SERVAUTH) ID(*)
WHEN(PROGRAM(TSOMON)) ACCESS(READ) allows anyone to access the socket option,
provided he is using program TSOMON.

In the next section we show the various network resources protected by RACF.

7.2 How to protect your network resources
You have seen how you can define resource profiles to protect a TCP/IP port and also to
protect the use of an IPv6 socket option. All network resources are protected by RACF in the
same way. Most TCP/IP resources are protected by profiles defined in the SERVAUTH
resource class.

To protect a resource, all you need to do is:

� If the SERVAUTH class is not active, activate it with the SETROPTS command. You need
to do this only once in your system and in most cases this would already be active on your
system.

� Identify the profile that protects the resource from Chapter 8, “Protecting network
resources” on page 245. Define the profile with the RDEFINE command.

� Allow access to authorized users to this profile using the PERMIT command.

� Refresh the RACLIST in-storage profiles of the SERVAUTH class in the RACF data space
using the SETROPTS command.

Please refer to Chapter 8, “Protecting network resources” on page 245, for more detailed
information about how RACF protects the various TCP/IP resources using the above method.

7.3 How to protect your programs
One of the main strengths of the z/OS platform is the fool-proof protection of its programs
from unauthorized alteration. This is one of RACF’s most powerful features and makes the
z/OS platform immune to computer viruses, making it stand out from most other platforms.
Very strict controls and protection mechanisms in RACF make it is impossible for any
unauthorized person to modify programs on the z/OS platform.

z/OS security has evolved and matured over a period of more than quarter of a century. Many
other operating systems platforms cannot match the inherent security of the z/OS platform
because they were originally designed either with a single user in mind or for academic
collaboration, where security is a hindrance.

RACF uses the following mechanisms to secure programs from unauthorized access:

� Authorized Program Facility (APF)

Tip: All z/OS Communications Server profiles in the SERVAUTH class have EZA, EZB, or
IST as the High Level Qualifier (HLQ).

240 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

� Program Protection by RACF resource class PROGRAM
� Program Access to Data Sets (PADS)
� Controlling Program Access by SYSID
� The sticky bit in the UNIX environment

Let us examine each one of them.

Authorized Program Facility (APF)
z/OS protects the use of sensitive system functions and supervisor calls (SVC) using the APF
facility. Programs have to be APF authorized to use these system functions. To get APF
authorization the program should meet two conditions:

� It must reside in a library that is in the APF list or in the Link Pack Area (LPA).
� The program must be link-edited with authorization code AC=1.

In addition, the program libraries are protected by RACF. These protections make virus
attacks impossible on z/OS.

Program protection by RACF resource class PROGRAM
RACF treats program load modules as protected resources. PROGRAM is the RACF
resource class that protects programs. Example 7-4 shows the RACF commands to protect a
program. You use the ADDMEM parameter in RDEFINE to specify the library where the
program resides.

Example 7-4 RACF command to protect a program

RDEFINE PROGRAM MYPROGRAM ADDMEM('SYS1.LINKLIB') UACC(NONE)
PERMIT MYPROGRAM CLASS(PROGRAM) ID(SOMEUSER) ACCESS(READ)

Program Access Control
You can use the Program Access Control facility to specify that access to a resource is
allowed only if you are accessing it using a specific program. The program itself has to be in a
controlled library and restricted to only authorized users.

In the Example 7-5 we show how to restrict the use of advanced IPV6 socket options by
program access control.

Example 7-5 PADS to protect use of sockect option

PERMIT EZB.SOCKOPT.*.*.IPV6_NEXTHOP CL(SERVAUTH) ID(*) WHEN(PROGRAM(TSOMON)) ACCESS(READ)

Controlling program access by SYSID
Access to programs (load modules) can be controlled based on the SMF system ID of the
z/OS system, as shown in Example 7-6.

Example 7-6 Controlling program access by system ID

PERMIT MYPROGRAM CLASS(PROGRAM) ID(SOMEUSER) WHEN(SYSID(PROD_SYSTEM))

7.3.1 The sticky bit in the z/OS UNIX environment
Because z/OS UNIX files are not as secure as MVS datasets, sensitive programs running
under z/OS UNIX do not load from the z/OS UNIX file system. z/OS will instead turn to the
standard MVS search order to look for a copy of the executable file in an MVS load library.
z/OS UNIX System Services uses the sticky bit on the program library to bypass loading of a

Chapter 7. RACF demystified 241

program from the UNIX Systems Services file system. Often the program needs to reside in
APF authorized libraries protected by program control.

Sticky bit is one of the bits in the Access Control List (ACL) of the z/OS UNIX file. To see if the
sticky bit is set on a file (program) you can issue the UNIX command ls -l, as shown in
Example 7-7. The ‘T’ as the last character in the access list for the file IMWCGIBN indicates
its sticky bit is on. This means the system will not look for the program IMWCGIBN in the
UNIX files; instead it will search for it in more secure authorized z/OS libraries.

Example 7-7 UNIX command to show the sticky bit

/usr/lpp/internet: >ls -l
total 40
-rw-r--r-- 2 WEBADM IMWEB envvars
-rw-r--r-- 2 WEBADM IMWEB httpd_msg.cat
drwxr-xr-x 2 WEBADM IMWEB IBM
-rwxr--r-T 2 WEBADM IMWEB IMWCGIBN
Drwxr-xr-x 2 WEBADM IMWEB logs
Drwxr-xr-x 3 WEBADM IMWEB Samples
Drwxr-xr-x 10 WEBADM IMWEB ServerRoot
/usr/lpp/internet: >

7.4 How to associate a user ID with a started task (STC)
RACF makes sure that everyone who accesses the system resources is accountable. This
applies to the system tasks as well. For this RACF associates every Started Task (STC) with
a specific user ID. RACF keeps this information in a resource class called STARTED.
Example 7-8 shows you how to define this to RACF.

Example 7-8 RACF commands to associate a user ID with a started task

SETROPTS GENERIC(STARTED)
SETROPTS CLASSACT(STARTED) RACLIST(STARTED)
RDEFINE STARTED TCPIP.* STDATA(USER(tcpip_user) PRIVILEGED(NO) TRUSTED(NO) TRACE(NO))
RDEFINE STARTED FTPD.* STDATA(USER(tcpip_user) PRIVILEGED(NO) TRUSTED(NO TRACE(NO))
SETROPTS RACLIST(STARTED) REFRESH

Before you can start an STC in the system you have to tell RACF to give the STC user ID
access to all the resources used by the STC using the PERMIT commands.

7.5 How to set up security for daemons in z/OS UNIX
TCPIP and other related daemons work in the z/OS UNIX environment and use many of its
services. So it is important to understand how to set up security for daemons working in the
the z/OS UNIX security environment.

To set up a daemon under z/OS Unix the following steps are necessary:

1. Define a user ID for the daemon.

2. Define an OMVS segment for the user ID.

3. Give superuser authority for the user ID.

4. Give user ID access to various RACF profiles protecting the resources for which the
daemon will need access.

5. Associate the user ID with the daemon.

242 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

6. For some daemons you have to turn the sticky bit on to indicate that the program module
resides in a protected z/OS library rather than the z/OS UNIX file pointed to by the
module.

For more details please refer to z/OS V1R7.0 UNIX System Services User’s Guide,
SA22-7801.

7.6 RACF multilevel security (MLS) for network resources
Multilevel security addresses government requirements for highly secure data. This supports
sharing of classified information among multiple agencies on demand. As security controls
become more critical in the emerging on demand virtual environments, this new technology
has applications in the general business sectors as well. This secondary layer is on the top of
existing RACF resource protection.

7.6.1 Basic concepts of MLS
In MLS the resources are divided into a number of categories based on where they belong.
For example, you could classify the resources of your organization based on departments like
PAYROLL, PERSONNEL, RESEARCH, MARKETING, SALES, PRODUCTION, etc.
Resources in each category are further classified based on their importance and sensitivity.
For example, you could classify them into GENERAL, CONFIDENTIAL, SENSITIVE, and
TOP-SECRET in the ascending order of its importance and sensitivity. This classification is
hierarchical, which means GENERAL would be the lowest that everyone can access. The
level goes up with CONFIDENTIAL, then SENSITIVE, and the highest level is TOP-SECRET.

Once this classification is done you assign a similar category and security level for each user
by default. After you switch on MLS, when a user tries to access a resource, RACF will check
if the user’s security level is equal to or above that of the resource and also that the user and
the resource belong to the same category. Thus, a user in the PERSONNEL department will
be able to access a resource only in the PERSONNEL department. Also, the user should
have the right security level. For example, a user from PERSONNEL with a security level of
GENERAL will not be able to access a PERSONNEL resource with a security level of
CONFIDENTIAL. A user from MARKETING will not be able to access a resource from
RESEARCH, though the user may have TOP-SECRET security level in the MARKETING
department.

RACF uses security labels (SECLABELs) to enforce multilevel security.

SECLABELS
A SECLABEL, or security label, consists of two entities:

� A security category such as PAYROLL, PERSONNEL, or RESEARCH
� A security level such as CONFIDENTIAL, SENSITIVE, or TOP-SECRET

The security administrator sets security labels for each user and each resource. When a user
tries to access a resource, RACF allows access only if the security level in the user’s
SECLABEL is higher or equal to the security level specified in the resource’s SECLABEL for
the security category being accessed.

A user may be permitted to access several security labels, but can only be logged onto one of
them at a time.

Chapter 7. RACF demystified 243

You can provide additional layers of protection for your network resources by implementing
MLS. For more details please refer to the section 4.1 of the redbook on z/OS 1.6 Security
Services Update, SG24-6448-00.

7.7 Digital certificates in RACF
RACF allows you to create and maintain security keys, key-rings, and digital certificates in the
RACF database. In a client/server environment, RACF has the ability to map a client’s digital
certificate to a RACF user ID by either storing the digital certificate in the RACF database or
mapping by using a certificate name filter rule. A digital certificate or digital ID, issued by a
Certificate Authority, contains information that uniquely identifies the client.

See Chapter 3, “IPSec” on page 61, for information about how to set up digital certificate keys
and key rings.

7.8 Further information
You can find samples of jobs with the RACF commands required for z/OS Communications
Server and applications in your installation library TCPIP.SEZAINST(EZARACF). The
high-level qualifier of this library could be different in your installation.

244 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Chapter 8. Protecting network resources

This chapter discusses the RACF security profiles that can be used to protect access to
various network resources.

8

Section Topic

8.1, “The SERVAUTH resource class” on
page 246

We explain the basic setup using the RACF SERVAUTH
class to protect your resources.

8.2, “Protecting your TCP/IP stack” on
page 246

We show you how the TCP/IP resource is protected by
RACF.

8.3, “Protect your network access” on
page 247

This section explains how to protect your network.

8.4, “Protecting your network ports” on
page 250

We explain how RACF protects your ports.

8.5, “Protecting the use of socket
options” on page 252

We explain how to restrict the use of sensitive socket
options.

8.6, “Protect sensitive network
commands” on page 253

We show how to setup security for your sensitive
network commands to prevent unauthorized use.

8.7, “Protecting FTP-related resources”
on page 260

Show the setup to protect FTP resources.

8.8, “Protecting network management
resources” on page 261

We show how to use RACF to protect network
management resources (such as data collection
agents).

8.9, “Protecting miscellaneous
resources” on page 261

This section explains RACF support to protect
miscellaneous network resources.

© Copyright IBM Corp. 2006. All rights reserved. 245

8.1 The SERVAUTH resource class
Most network resources are protected by the SERVAUTH resource class profiles. To protect
a resource:

� If the SERVAUTH class is not active, you need to activate it with the SETROPTS
command. You need to do this only once in your system and in most cases this would
already be active on your system.

� Identify the profile that protects the resource from the list that follows in this chapter.
Define the profile with the RACDEF command

� Allow access to authorized users to this profile with the PERMIT command.

� Refresh the RACLIST in-storage profiles of the SERVAUTH class in the RACF data space
with the SETROPTS command.

In the following sections we describe how to set up the RACF profiles to protect various
network resources.

8.2 Protecting your TCP/IP stack
This section discusses the SAF security profiles that can be used to protect access to a
TCP/IP stack's resources.

8.2.1 Stack Access overview
Stack Access control provides a way to permit or deny users or groups of users access to a
TCP/IP stack. The function controls the ability of a user to open an IP socket with the socket()
API function. Stack access control is implemented by defining a SERVAUTH class RACF
profile. The profile name is in the format:

EZB.STACKACCESS.sysname.tcpipname

Where:

� EZB.STACKACCESS is constant.
� sysname is the name of the z/OS image (&SYSNAME symbol).
� tcpipname is the job name of the TCP/IP stack.

8.2.2 Example setup
This example shows how to control access to the TCP/IP stack running with a job name of
TCPIPD on the z/OS system SC30. The first thing to do is to add the SERVAUTH
STACKACCESS profile to RACF. As mentioned, the format of the profile name is
EZB.STACKACCESS.sysname.tcpname, so in our example the profile name will be
EZB.STACKACCESS.SC30.TCPIPD, as shown in Example 8-1.

Example 8-1 RACF SERVAUTH profile to protect TCP/IP stack access

RDEFINE EZB.STACKACCESS.SC30.TCPIPD UACC(NONE)
PERMIT EZB.STACKACCESS.SC30.TCPIPD CLASS(SERVAUTH) ID(UTSM) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

We have specified that Universal Access (UACC) is none, meaning the default for any user is
to be denied access. Then we have given access to user UTSM using the RACF PERMIT

246 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

command. Once the profile has been added, we refresh the in-storage RACF profiles with a
setropts raclist(servauth) refresh command.

We have just covered enabling a user to access the TCP/IP stack. This concept of a user
applies equally to the owner of any server running on the stack. For example, the FTP started
task user ID would have to be given access to the stack’s RACF profile.

8.3 Protect your network access
Network access control enables system administrators to represent access to an IP network,
subnetwork, or host as a RACF resource. The ability to send IP packets to those networks,
subnetworks, or hosts can then be permitted or denied at a RACF user or group level. This
feature provides an additional layer of security to any authentication or authorization that is
used at the target system. It might be used, for example, to prevent access to the Internet by
anyone except the SMTP server, or it could be used to stop general users attempting to
Telnet to a server that contained payroll information.

8.3.1 Network access control overview
In the TCPIP Profile, there is a parameter block, NETACCESS/ENDNETACCESS. This is
where you specify the mapping of an IP network, subnetwork, or host to a SAF profile.
Example 8-2 shows a sample NETACCESS block.

Example 8-2 Sample NETACCESS block

NETACCESS
 10.40.2.0/24 MYSUBNET ;my workstation subnet
 10.40.2.119/32 MYPC ;my workstation
 DEFAULT 0 WORLD ;everything else
ENDNETACCESS

In this example, access to hosts on subnet 10.40.2 is mapped to RACF profile MYSUBNET,
access to host 10.40.2.119 is mapped to SAF profile MYPC, and access to any other host is
mapped to SAF profile WORLD. These RACF profiles are defined to RACF in the
SERVAUTH class. The profile name to be defined is in the following format:

EZB.NETACCESS.sysname.tcpipname.

Where:

� EZB.NETACCESS is constant.
� sysname is the name of the z/OS image (&SYSNAME symbol).
� tcpipname is the job name of the TCP/IP stack.
� resourcename is the name specified in the NETACCESS block.

Chapter 8. Protecting network resources 247

The system that we used in Example 8-2 on page 247 was on a z/OS image named SC30
with a TCP/IP stackname of TCPIPD. Therefore, the three profiles that need to be defined
are:

� EZB.NETACCESS.SC30.TCPIPD.MYSUBNET
� EZB.NETACCESS.SC30.TCPIPD.MYPC
� EZB.NETACCESS.SC30.TCPIPD.WORLD

If you define these profiles to RACF with UACC(NONE), then users must be specifically
permitted access to these profiles in order to send IP packets to the addresses represented
by the profiles.

If a user is attempting to send an IP packet to a host that is not covered by any network/mask
entry in the NETACCESS block, access is automatically allowed. However, if a DEFAULT
statement is present, then access is granted or denied based on the user’s access to the SAF
profile mapped by the DEFAULT statement.

8.3.2 Server considerations
End users are not the only users of TCP/IP to be affected by NETACCESS control. Any IP
applications (servers) that run under their own user IDs would need access to the RACF
profiles of the desired networks, if these networks are protected by a NETACCESS
statement. For example, a server such as the FTP daemon would need to be permitted
access to any hosts or subnets that an FTP transfer will be performed with.

There is another subtlety to be considered. If you have a user out in the network that wants to
FTP to/from your FTP server, then the user ID that this user logs on with must have been
permitted to NETACCESS if their own IP address or network is protected.

8.3.3 Using NETSTAT for Network Access control
The console command D TCPIP,stackname,Netstat,ACCess,NETWork shows how IP
addresses/masks are mapped to SAF profiles. See Figure 8-1 on page 249 for the NETSTAT
console command to display the network access control for the test TCPIPD system.

Tip: On the NETACCESS statement, there are two ways to specify the subnet mask. One
way is the traditional decimal notation, such as 255.255.255.0. The second way is to use a
number, up to 32, that specifies the number of bits, left to right, that should be used as a
subnet mask if the mask is expressed in binary. For example, the subnet mask
255.255.255.0 expressed in binary is 11111111.11111111.11111111.00000000. Note that
there are 24 bits set on. To specify this particular mask on a NETACCESS statement, you
could use either of the following two ways, using the IP address 192.168.100.0 as an
example:

NETACCESS 192.168.100.0 255.255.255.0

or

NETACCESS 192.168.100.0/24

248 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 8-1 NETSTAT command to display network access control in our test system

The TSO NETSTAT command does not display this information.

8.3.4 Working example of Network Access control
We implement network access control on the TCP/IP stack discussed in 8.3.1, “Network
access control overview” on page 247. In that section we show the three SAF profile names
that need to be defined for the given NETACCESS block. Example 8-2 on page 247 shows
the configuration.

Once the RACF profiles names shown in 8.3.1, “Network access control overview” on
page 247, have been defined to RACF, we issue the TSO command PING 10.40.2.119 to
send a packet to the workstation 10.40.2.119. Since we have not been permitted access to
the 10.40.2.119 host (profile MYPC), you would expect an error. Figure 8-2 shows the error
message from RACF indicating that access to the MYPC profile was not permitted.

Figure 8-2 RACF error while attempting PING to host covered by host profile

If we now attempt to ping a new host 10.40.2.120, we would expect a RACF error when the
TCP/IP address space did a RACF check for access to the MYSUBNET profile, as this is the
most specific entry for that host address. We attempt a ping to 10.40.2.120 and get the error
as expected. Figure 8-3 on page 250 shows this.

D TCPIP,TCPIPD,NETSTAT,ACCESS,NETWORK
EZD0101I NETSTAT CS V1R7 TCPIPD 147
NETWORK ACCESS INFORMATION
INBOUND: NO OUTBOUND: YES
SAF NAME NETWORK PREFIX AND PREFIX LENGTH
-------- --------------------------------
WORLD DEFAULT
 PRFNM: <NONE> SECLABEL: <NONE>
MYSUBNET 10.40.2.0/24
 PRFNM: <NONE> SECLABEL: <NONE>
MYPC 10.40.2.119/32
 PRFNM: <NONE> SECLABEL: <NONE>
3 OF 3 RECORDS DISPLAYED
END OF THE REPORT

 ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR)
 EZB.NETACCESS.SC30.TCPIPD.MYPC CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
 CS V1R7: Pinging host 10.40.2.119
 sendto(): EDC5111I Permission denied.

Note: Even though both the host 10.40.2.119 and its subnet 10.40.2.0 are protected by
RACF profiles, the RACF check is only performed on the most specific network/host entry.
An easier way to say this is that the entries in the NETACCESS block are checked starting
with those with the most bits specified in the subnet mask first, until a match is found.

Chapter 8. Protecting network resources 249

Figure 8-3 RACF error while attempting to ping a host covered by subnet profile

Lastly, we show an example of the error you would receive when attempting network access
to a host not specified on any NETACCESS statements. This assumes you have coded a
DEFAULT statement in the NETACCESS block. If you do not, access permission is not
checked for any host not covered by any other NETACCESS statement. We tried to ping
10.40.5.10, an IP address that is not specifically stated in a host or subnet entry. The
DEFAULT NETACCESS statement is therefore used for the SAF check that is mapped to
profile WORLD. As shown in Figure 8-4, we got a RACF error message indicating we did not
have access to EZB.NETACCESS.SC63.TCPIPC.WORLD.

Figure 8-4 RACF error while attempting to ping a host covered by the DEFAULT statement

8.4 Protecting your network ports
The ability of a server to bind to a specific port can be controlled in a number of ways using
the UDPCONFIG, TCPCONFIG, and PORT (or PORTRANGE) TCP/IP profile statements.

The use of TCPCONFIG RESTRICTLOWPORTS and UDPCONFIG RESTRICTLOWPORTS
is encouraged to enhance security. If these statements are present, low ports (<1024) can
only be bound when at least one of the following is true:

� The bind is issued from a process with a UNIX superuser (UID 0).

� The bind is issued from an APF-authorized application.

� The port is reserved for the application by job name, which may include *, OMVS, or TSO
user ID.

� If an SAF resource name is used, the binding process's user ID must be permitted to the
resource by the security product (described later).

� The RESERVED keyword will shut down a port from being used by any job name at all.
The keyword can also be specified on the PORTRANGE statement. This readily allows an
installation to clamp down very tightly on usage of ports if such control is desired.

� Specifying a job name on a PORT or PORTRANGE statement restricts the use of that port
(and protocol) to the specified job name. Multiple PORT statements can be specified for a
TCP port but not for UDP. Note that a job name of '*' (the wildcard character) is normally
used with the SAF keyword, described next.

� Specifying the SAF keyword and profile name provides a mapping from a port and
protocol to a SAF SERVAUTH class profile. A server attempting to bind to this port and

ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR)
 EZB.NETACCESS.SC30.TCPIPD.MYSUBNET CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
CS V1R7: Pinging host 10.40.2.120
sendto(): EDC5111I Permission denied.

 ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR)
 EZB.NETACCESS.SC30.TCPIPD.WORLD CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
 CS V1R7: Pinging host 10.40.5.10
 sendto(): EDC5111I Permission denied.

250 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

protocol is checked for SAF access to the profile named. The use of the SAF keyword is
covered in this section.

8.4.1 The PORT/PORTRANGE SAF keyword
The SAF keyword can be specified along with all other valid options on the PORT and
PORTRANGE statements. The special job name wildcard '*' is normally used with the SAF
keyword so that access to the port is completely handled by the server's SAF profile rather
than job name. Of course, a specific job name and the keyword SAF can still be coded
together if you would like to secure not only the job name that can bind a socket, but also the
SAF user associated with the job.

We show how to protect the FTP ports to illustrate the concept. Sample PORT statements for
the system SC30 are shown in Figure 8-5.

Figure 8-5 PORT statements for stack TCPIPC

Given the PORT statements in Figure 8-5, UDP port 512 is reserved, and therefore
completely unavailable for use. Any process attempting to use TCP ports 20 or 21 would have
to be SAF authorized. The following SERVAUTH profiles would have to be defined (assuming
the system name is SC30 and the TCP/IP stack name is TCPIPD):

� EZB.PORTACCESS.SC30.TCPIPD.FTP20
� EZB.PORTACCESS.SC30.TCPIPD.FTP21

This form of port reservation might be used when a reserved low port needs to be accessed
by many potential users via a client program that is not APF-authorized. All users needing the
ability to run this program would have to be permitted to this RACF resource.

With FTP ports 20/21 (or any well-known port usually used for a system-type server), there is
a possible security exposure when permitting port use by the SAF keyword. Once a user is
permitted to bind to, say, port 20, they can bind to that port using any program, not just
through the FTP server. To prevent this, we recommend that you do not code a SAF keyword
for port 20, but instead use the RESTRICTLOWPORTS parameter of the TCPCONFIG
statement in conjunction with specifying “OMVS” as the job name for port 20. This restricts
the use of port 20 to APF-authorized programs, UNIX superusers, or the FTP server.

The FTP daemon is the only user that needs to access the FTP control port 21, and hence
should have access to the RACF SERVAUTH profile
EZB.PORTACCESS.SC30.TCPIPD.FTP21. If the FTP server does not have access to the
profile, you will get a RACF error similar to that shown in Figure 8-6 on page 252.

PORT
 20 TCP * NOAUTOLOG SAF FTP20 ; FTP Server
 21 TCP OMVS BIND 10.40.1.230 SAF FTP21 ;control port
 23 TCP INTCLIEN ; MVS Telnet Server
 512 UDP RESERVED ; Shut down port 512
 23 TCP OMVS BIND 10.40.1.230; OE Telnet Server
 500 UDP IKED ; IKE Daemon
 4500 UDP IKED ; IKE Daemon

Chapter 8. Protecting network resources 251

Figure 8-6 FTP server unauthorized to use port 21

The FTP data connection port (20) is bound under the identity of the end user, not the FTP
daemon. Therefore, if the PORT statement for port 20 is configured as shown in Figure 8-5 on
page 251, then all end users (including the default user, if defined) who could potentially
perform FTP need to be permitted to the port 20 RACF SERVAUTH profile
EZB.PORTACCESS.SC30.TCPIPD.FTP20.

8.4.2 Using NETSTAT to display Port Access control
The TCPIPC stack contains the PORT statement shown in Figure 8-5 on page 251. The
console command D TCPIP,stackname,Netstat,PORTlist in Figure 8-7 shows the
configuration of the ports, and whether a SAF profile is associated with a port (the F in the
FLAGS column).

Figure 8-7 NETSTAT PORTLIST console command display for TCPIPD

8.5 Protecting the use of socket options
You can use RACF profiles to prevent the misuse the sensitive SO_BROADCAST and IPv6
API socket options.

8.5.1 SO_BROADCAST Socket option access control
The SO_BROADCAST option provides control over the broadcast function, which could be
prone to misuse if not restricted.

S FTPDD
$HASP100 FTPDD ON STCINRDR
IEF695I START FTPDD WITH JOBNAME FTPDD IS ASSIGNED TO USER
TCPIP , GROUP TCPGRP
$HASP373 FTPDD STARTED
ICH408I USER(TCPIP) GROUP(TCPGRP) NAME(####################) 400
 EZB.PORTACCESS.SC30.TCPIPD.FTP21 CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
+EZY2714I FTP server shutdown in progress
+EZYFT59I FTP shutdown complete.
$HASP395 FTPDD ENDED

D TCPIP,TCPIPD,NETSTAT,PORTLIST
EZD0101I NETSTAT CS V1R7 TCPIPD 602
PORT# PROT USER FLAGS RANGE SAF NAME
00020 TCP * DF FTP20
00021 TCP OMVS DABFU FTP21
 BINDSPECIFIC: 10.40.1.230
00023 TCP OMVS DABU
 BINDSPECIFIC: 10.40.1.230
00023 TCP TCPIPD DAU
00500 UDP IKED DA
00512 UDP RESERVED DA
04500 UDP IKED DA
7 OF 7 RECORDS DISPLAYED
END OF THE REPORT

252 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

RACF profile EZB.SOCKOPT.sysname.tcpname.SO_BROADCAST controls this option.

Where:

� sysname is the z/OS system name. Our system name was SC30.
� tcpname is the jobname of the TCP/IP stack. Our stack was TCPIPD.

We show sample RACF commands to define this resource and then give access to
OMPROUTE, which would need to use the SO_BRODCAST socket option.

Example 8-3 Sample RACF commands to protect SO_BROADCAST socket option

RDEFINE SERVAUTH EZB.SOCKOPT.SC30.TCPIPD.SO_BROADCAST UACC(NONE)
PERMIT EZB.SOCKOPT.SC30.TCPIPD.SO_BROADCAST CLASS(SERVAUTH) ACCESS(READ) ID(OMPROUT)
SETROPTS RACLIST(SERVAUTH) REFRESH

If you like, you could protect this option on all your systems and on all the stacks using a
single generic profile. The profile that you could use would be:

EZB.SOCKOPT.*.*.SO_BROADCAST

8.5.2 IPv6 advanced socket API options
The z/OS V1R7.0 Communications Server has a number of new advanced socket API
options that need to be restricted to only authorized users. There is one SERVAUTH class
profile to protect each of these socket options. These profiles are shown below.

� IPV6_NEXTHOP - EZB.SOCKOPT.sysname.tcpname.IPV6_NEXTHOP
� IPV6_TCLASS - EZB.SOCKOPT.sysname.tcpname.IPV6_TCLASS
� IPV6_RTHDR - EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDR
� IPV6_HOPOPTS - EZB.SOCKOPT.sysname.tcpname.IPV6_HOPOPTS
� IPV6_DSTOPTS - EZB.SOCKOPT.sysname.tcpname.IPV6_DSTOPTS
� IPV6_RTHDRDSTOPTS - EZB.SOCKOPT.sysname.tcpname.IPV6_RTHDRDSTOPTS
� IPV6_PKTINFO - EZB.SOCKOPT.sysname.tcpname.IPV6_PKTINFO
� IPV6_HOPLIMIT - EZB.SOCKOPT.sysname.tcpname.IPV6_HOPLIMIT

Note that the last qualifier of the profile is the same as the socket option itself.

8.6 Protect sensitive network commands
This section discusses the ways to control the use of the TCP/IP system administration
commands. These commands are categorized by where they originate.

From the z/OS console, you can use the DISPLAY and VARY commands for the TCP/IP
address spaces. The VARY TCPIP command can be used to stop and start TCP/IP
interfaces, reload configuration parameters, start and stop traces, drop TCP connections, and
quiesce the TN3270 server. This command is very powerful and should only be authorized to
operators or system administrators.

From TSO, there is the NETSTAT command, and from the UNIX shell there is the onetstat
command. Both of these commands are used primarily to display information about the local
TCP/IP environment. You may want to restrict these commands so that people cannot obtain
information about your TCP/IP configuration, perhaps in preparation for an attack of some
kind.

Chapter 8. Protecting network resources 253

8.6.1 z/OS VARY TCPIP command security
This section describes the mechanisms by which you can limit users to the VARY TCPIP
commands.

RACF profile details
The z/OS console VARY TCPIP commands are protected with RACF profiles defined in the
resource class OPERCMDS. You can define a single profile to represent all VARY TCPIP
commands or you can specify individual profiles for each VARY TCPIP command option.

The format of the profile name is:

MVS.VARY.TCPIP.command

Where:

� MVS.VARY.TCPIP is a constant.

� command is either a double asterisk (**), meaning all command options, or a specific
VARY TCPIP option name, such as OBEYFILE.

An important thing to note about the profile name is that it does not specify a z/OS image
name or TCP/IP stack name. Therefore, if there is more than one stack on your z/OS image
or your SAF database is shared between multiple z/OS systems, granting access to a
command enables that command to be performed by a user against any TCP/IP stack in any
z/OS system that shares the database.

Protecting VARY TCPIP at the command level
To specify protection at the command level (any option), you specify the generic OPERCMDS
profile with a profile name of MVS.VARY.TCPIP.**. Figure 8-8 shows how this is done using
RACF commands.

Figure 8-8 Defining generic VARY TCPIP profile to protect command with all options

Protecting VARY TCPIP at the command option level
You may decide to protect the VARY TCPIP command at a more granular level, so that you
can control who has authority to use the options of the VARY TCPIP command. To protect
the command options, you define the particular VARY TCPIP option that you want to protect
as the last qualifier in the profile name. Exceptions to this rule are the VARY TCPIP START
and VARY TCPIP STOP commands that are protected together with the profile named
MVS.VARY.TCPIP.STRTSTOP. See Table 8-1 on page 255 for a list of RACF profile names to
protect the VARY TCPIP command options.

SETROPTS GENERIC(OPERCMDS)
RDEFINE OPERCMDS (MVS.VARY.TCPIP.**) UACC(NONE)
SETROPTS GENERIC(OPERCMDS) REFRESH
SETROPTS RACLIST(OPERCMDS) REFRESH

Note: If the MVS.VARY.TCPIP.** profile is defined, any user that needs to use any VARY
TCPIP command must have CONTROL access to this profile, regardless of whether they
have access to other MVS.VARY.TCPIP.command profiles.

254 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Table 8-1 List of RACF profiles to protect various VARY TCPIP console commands

Figure 8-9 shows the VARY TCPIP,,STOP and VARY TCPIP,,START commands being
protected.

Figure 8-9 Defining specific VARY TCPIP profile to protect VARY TCPIP,,STOP/START commands

VARY TCPIP command security scenario
The command V TCPIP,TCPIPC,STOP,OSA22E0 was chosen to test the console RACF
security profiles. The command output is shown in Figure 8-10 before any RACF security
profiles were defined to the system. The SAF profile that controls the V TCPIP,,STOP
command (in addition to the generic MVS.VARY.TCPIP.** if defined) is
MVS.VARY.TCPIP.STRTSTOP.

Figure 8-10 VARY TCPIP,TCPIPC,STOP command output - No RACF profiles defined yet

For the first test, we only defined the generic MVS.VARY.TCPIP.** profile to protect all
options of the V TCPIP command.

For the second test, we additionally defined the MVS.VARY.TCPIP.STRTSTOP profile to
protect the V TCPIP,,STOP command. Both times, unauthorized use of the command caused
the expected RACF error.

Define the generic profile to protect all V TCPIP commands
The generic profile MVS.VARY.TCPIP.** was added to the OPERCMDS class with
UACC(NONE), as shown in Figure 8-8 on page 254. At this stage, no user had any access to
this profile. A user then attempted a V TCPIP,TCPIPC,START,OSA2080 command from the
console, which resulted in the RACF error shown in Figure 8-11 on page 256. Note that the
profile being SAF checked was MVS.VARY.TCPIP.**

RACF profile name Command protected

MVS.VARY.TCPIP.** All VARY TCPIP options

MVS.VARY.TCPIP.DROP VARY TCPIP,,DROP

MVS.VARY.TCPIP.OBEYFILE VARY TCPIP,,OBEYFILE

MVS.VARY.TCPIP.PKTTRACE VARY TCPIP,,PKTTRACE

MVS.VARY.TCPIP.STRTSTOP VARY TCPIP,,START or VARY TCPIP,,STOP

RDEFINE OPERCMDS MVS.VARY.TCPIP.STRTSTOP UACC(NONE)
SETROPTS RACLIST(OPERCMDS) REFRESH

V TCPIP,TCPIPC,STOP,OSA2080
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPC,STOP,OSA2080
EZZ0053I COMMAND VARY STOP COMPLETED SUCCESSFULLY
EZZ4315I DEACTIVATION COMPLETE FOR DEVICE OSA2080

Chapter 8. Protecting network resources 255

Figure 8-11 RACF error for VARY TCPIP STOP command showing generic profile violation

Define the specific profile to protect the V TCPIP, ,START command
The specific profile MVS.VARY.TCPIP.STRTSTOP was added to the OPERCMDS class with
UACC(NONE), as shown in Figure 8-9 on page 255. At this stage, then, both the
MVS.VARY.TCPIP.STRTSTOP and the generic MVS.VARY.TCPIP.** profiles were defined,
and the user did not have access to either of them.

After the V TCPIP,TCPIPC,STOP,OSA2080 command was issued, Figure 8-12 shows that
the profile name that is causing the access problems is MVS.VARY.TCPIP.**, even though the
MVS.VARY.TCPIP.STRTSTOP profile is defined. This confirms what was said in “Protecting
VARY TCPIP at the command level” on page 254, that the generic profile is always checked
first, if defined.

Figure 8-12 RACF error for VARY TCPIP,,STOP command shows generic profile name

If the generic profile MVS.VARY.TCPIP.** is defined, any user who wants to enter a VARY
TCPIP command must have CONTROL access to it. Example 8-4 shows the RACF
commands to give such access to user CS09.

Example 8-4 Giving CONTROL access to MVS.VARY.TCPIP.**

PE MVS.VARY.TCPIP.** CLASS(OPERCMDS) ID(CS09) ACCESS(CONTROL)
SETROPTS RACLIST(OPERCMDS) REFRESH
SETROPTS GENERIC(OPERCMDS) REFRESH

Now that we have CONTROL access to the generic profile MVS.VARY.TCPIP.**, the SAF
check is for the profile that controls the VARY TCPIP,,STOP command, which is V
TCPIP,TCPIPC,START,OSA2080. Figure 8-13 on page 257 shows the RACF error resulting
when the user does not have CONTROL access to the specific profile.

V TCPIP,TCPIPC,START,OSA2080
IEE345I VARY AUTHORITY INVALID, FAILED BY SECURITY PRODUCT
ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR) 689
 MVS.VARY.TCPIP CL(OPERCMDS)
 INSUFFICIENT ACCESS AUTHORITY
 FROM MVS.VARY.TCPIP.** (G)
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

V TCPIP,TCPIPC,START,OSA2080
IEE345I VARY AUTHORITY INVALID, FAILED BY SECURITY PRODUCT
ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR) 699
 MVS.VARY.TCPIP CL(OPERCMDS)
 INSUFFICIENT ACCESS AUTHORITY
 FROM MVS.VARY.TCPIP.** (G)
 ACCESS INTENT(UPDATE) ACCESS ALLOWED(NONE)

256 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure 8-13 RACF error from unauthorized use of TSO NETSTAT command - Specific profile

Now the user CS09 was given CONTROL access to the specific profile
MVS.VARY.TCPIP.STRTSTOP, as shown in Figure 8-5.

Example 8-5 Give CONTROL access to MVS.VARY.TCPIP.STRTSTOP

PE MVS.VARY.TCPIP.STRTSTOP CLASS(OPERCMDS) ID(CS09) ACCESS(CONTROL)
SETROPTS RACLIST(OPERCMDS) REFRESH
SETROPTS GENERIC(OPERCMDS) REFRESH

The V TCPIP,TCPIPC,STOP,OSA22E0 command completed successfully, as shown in
Figure 8-6.

Example 8-6 Successful START command

V TCPIP,TCPIPC,START,OSA2080
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPC,START,OSA2080
EZZ0053I COMMAND VARY START COMPLETED SUCCESSFULLY

8.6.2 TSO NETSTAT and UNIX onetstat command security
The TSO NETSTAT command and the UNIX shell onetstat command can be protected from
unauthorized use at both the command level (NETSTAT with any option) and the command
option level. By defining a SAF profile to represent the NETSTAT command and option, you
can grant permission by user or group to the NETSTAT command and its options.

RACF profile details
The SERVAUTH class is used to define a profile to protect the NETSTAT command. The
format of the profile name is:

EZB.NETSTAT.sysname.tcpprocname.option

Where:

� EZB.NETSTAT is constant.
� sysname is the z/OS image name.
� cpprocname is the TCP/IP stack name.
� option is either an asterisk (*), meaning all options, or a specific NETSTAT option name.

As mentioned, you can protect NETSTAT/onetstat at the command level and the command
option level.

V TCPIP,TCPIPC,START,OSA2080
EZZ0060I PROCESSING COMMAND: VARY TCPIP,TCPIPC,START,OSA2080
IEE345I VARY AUTHORITY INVALID, FAILED BY SECURITY PRODUCT
ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR) 712
 MVS.VARY.TCPIP.STRTSTOP CL(OPERCMDS)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(CONTROL) ACCESS ALLOWED(NONE)
EZZ0059I MVS.VARY.TCPIP.STRTSTOP COMMAND FAILED: NOT AUTHORIZED

Chapter 8. Protecting network resources 257

Protecting NETSTAT/onetstat at the command level
To specify protection at the command level, specify the SERVAUTH profile with a command
option of an asterisk (*) and define the SERVAUTH profile to be generic. Example 8-7 shows
how this is done using RACF commands, assuming the system name is SC30 and the
TCP/IP stack name is TCPIPD.

Example 8-7 Protecting NETSTAT/onetstat at the command level

SETROPTS GENERIC(SERVAUTH)
RDEFINE SERVAUTH (EZB.NETSTAT.SC30.TCPIPD.*) UACC(NONE)
SETROPTS GENERIC(SERVAUTH) REFRESH
SETROPTS RACLIST(SERVAUTH) REFRESH

Note that the SETROPTS GENERIC(SERVAUTH) needs to be done only once.

Protecting NETSTAT/onetstat at the command option level
You may decide to protect the NETSTAT/onetstat command at a more granular level, so that
you can control who has authority to use the options of the NETSTAT/onetstat command. To
protect the command options, define the particular NETSTAT option that you want to protect
as the last qualifier in the profile name. Example 8-8 shows the NETSTAT HOME or onetstat
-h command being protected for TCP/IP system TCPIPC on z/OS system SC30.

Example 8-8 Defining NETSTAT profile to protect NETSTAT/onetstat command with home option

RDEFINE SERVAUTH (EZB.NETSTAT.SC30.TCPIPD.HOME) UACC(NONE)
SETROPTS RACLIST(SERVAUTH) REFRESH

SAF checking
The NETSTAT SAF check is performed whenever a TSO NETSTAT or UNIX onetstat
command is attempted. A SAF check is performed against the most specific profile name
first. If a profile for the specific command option does not exist, then a check is made against
the generic profile (the profile with a command option specified as an asterisk (*)).

NETSTAT security scenario
Our system name at the ITSO is SC30 and the TCP/IP stack name is TCPIPD. Our tests
were to use the TSO NETSTAT HOME command. For the first test, we defined the generic
NETSTAT profile to protect all options of the NETSTAT command. For the second test, we
defined the profile to protect the NETSTAT HOME command. Both times, unauthorized use
of the command caused the expected RACF error.

In the discussions that follow, wherever the TSO NETSTAT command is mentioned, the
OMVS onetstat command is also implied.

Define the NETSTAT generic profile to protect all NETSTAT commands
The generic profile EZB.NETSTAT.SC30.TCPIPD.* was added to the SERVAUTH class with
UACC(NONE), as shown in Example 8-7. At this stage, no user had any access to this profile.
A user then attempted a TSO NETSTAT HOME command, which resulted in the RACF error
shown in Example 8-9 on page 259. Note that the profile being RACF checked was
EZB.NETSTAT.SC30.TCPIPD.HOME, but since that did not exist, the profile
EZB.NETSTAT.SC30.TCPIPD.* was checked.

Restriction: The NETSTAT DROP command is internally implemented as a z/OS console
command VARY TCPIP,,DROP, and as such is protected by the SAF profile
MVS.VARY.TCPIP.DROP, not by a NETSTAT SAF profile.

258 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Example 8-9 Access denied by generic profile

ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR)
 EZB.NETSTAT.SC30.TCPIPD.HOME CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 FROM EZB.NETSTAT.SC30.TCPIPD.* (G)
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
 Access to Netstat HOME denied - SAF RC is 00000008

Define the NETSTAT profile to protect the NETSTAT HOME command
The specific profile EZB.NETSTAT.SC30.TCPIPD.HOME was added to the SERVAUTH
class with UACC(NONE), as shown in Example 8-8 on page 258. At this stage, no user had
any access to this profile. User CS09 then attempted a TSO NETSTAT HOME command,
which resulted in the RACF error shown in Example 8-10.

Note that the profile that has been SAF checked is now
EZB.NETSTAT.SC30.TCPIPD.HOME rather than EZB.NETSTAT.SC30.TCPIPD.*.

Example 8-10 RACF error from unauthorized use of TSO NETSTAT command - Generic profile

ICH408I USER(CS09) GROUP(SYS1) NAME(RAMA AYYAR)
 EZB.NETSTAT.SC30.TCPIPD.HOME CL(SERVAUTH)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)
Access to Netstat HOME denied - SAF RC is 00000008

The OMVS command equivalent of TSO NETSTAT HOME is onetstat -h. The same user
that attempted the TSO NETSTAT command in Example 8-10 used the command onetstat
-h -p tcpipc (the -p parameter targets the TCP/IP stack named TCPIPD) and got the
expected error, as shown in Example 8-11.

Example 8-11 OMVS error from unauthorized use of the onetstat command

CS09 @ SC30:/u/cs09>onetstat -h -p tcpipd
EZZ2385I Access to Netstat -h denied - SAF RC is 00000008
CS09 @ SC30:/u/cs09>

8.6.3 Policy Agent command security
The z/OS UNIX pasearch command queries information from the Policy Agent. The policy
Agent contains sensitive information about the policies that control the security of your
network like IPSec, AT-TLS, Intrusion Detection, VPN tunnels, etc. This command should be
restricted to those network and security administrators that need to know policy settings.

You can define the following RACF profile EZB.PAGENT.sysname.tcpname.policy_type in
SERVAUTH class to individually protect each policy type, where:

� sysname is the z/OS SMFID.
� tcpname is the TCP/IP stack name, which is the name of the TCP/IP started task.
� polocy_type is the policy type, which can be one of the following:

– QOS for Policy QoS
– IDS for Policy IDS
– IPSec for Policy IPSec
– TTLS -for Policy AT-TLS

The polocy_type can also be a wildcard character (*) to protect all the policy types with a
single profile.

Chapter 8. Protecting network resources 259

8.6.4 IPSec command access control
The ipsec commands are sensitive and are used to display and monitor IP Security
management activities. The RACF profiles in the SERVAUTH class required to protect these
commands are:

� EZB.IPSECCMD.sysname.tcpprocname.DISPLAY
� EZB.IPSECCMD.sysname.tcpprocname.CONTROL

You could also define a single generic profile EZB.IPSECCMD.sysname.tcpprocname.* to
control both these commands.

8.6.5 For more information
For more information about the profile names used to protect the various commands and
options, see z/OS V1R7.0 Communications Server: IP User’s Guide and Commands,
SC31-8780.

8.7 Protecting FTP-related resources
In this section we discuss protecting FTP-related resources.

8.7.1 FTP SITE command control
FTP commands SITE DUMP and DEBUG generate a large amount of output and their use
should be restricted. The SERVAUTH class profiles that protect these resources are:

� EZB.FTP.sysname.ftpdname.SITE.DUMP
� EZB.FTP.sysname.ftpdname.SITE.DEBUG, where:

– sysname is the z/OS SMFID.
– ftpdname is the name of the FTP started task.

8.7.2 FTP server access control
To control the ability to access the FTP server based on SAF user ID associated with
TLS-authenticated X.509 client certificate you need to define the profile
EZB.FTP.sysname.ftpdname.PORTxxxxx in the SERVAUTH class.

8.7.3 FTP z/OS UNIX access control
This provides the ability to protect z/OS UNIX access by FTP users. The profile name is of the
following form: EZB.FTP.sysname.ftpdaemonname.ACCESS.HFS. For example, the profile
name for FTP daemon FTPD running on system MVSA would be
EZB.FTP.MVSA.FTPD1.ACCESS.HFS.

8.7.4 RACF-delegation of cryptographic resources
If you are securing connections using TLS/SSL for your z/OS FTP Server, then you need to
permit each FTP client to the sensitive cryptographic resources like CFSERV and CFSKEYS.
You can avoid having to permit each FTP client individually by identifying these resources as
‘RACF DELEGATED’. The RACF command to do this is:

RALTER CSFSERV CSFENV APPLDATA(‘RACF DELEGATED’)

260 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

The FTP daemon will now access these resources on behalf of the user, though the user
does not have explicit access to these sensitive resources.

8.8 Protecting network management resources
In this section we discuss protecting network management resources.

8.8.1 SNMP agent control
You can control which of the SNMP subagents are permitted to connect to the SNMP agent.
You need to define a SERVAUTH class profile EZB.SNMPAGENT.sysname.tcpname for this.
After creating the profile, use the RACF PERMIT command to define the user IDs of those
subagents that should be permitted to connect via TCP to the SNMP Agent.

8.8.2 TCP connection information service access control
The TCP connection information service allows network management applications to obtain
information about TCP connection activity. Access to this information can be controlled by
RACF SERVAUTH class profile EZB.NETMGMT.sysname.tcpname.SYSTCPCN. You also
need to permit the user IDs of the applications authorized to access this resource.

8.8.3 CIM provider access control
The Common Information Model (CIM) provides a model for describing and accessing data
across an enterprise. CIM providers gather the CIM data. You can control this function and
restrict the collection of CIM data to authorized providers by defining the SERVAUTH class
profile EZB.CIMPROV.sysname.tcpname. Access is granted if the user ID associated with
the client of the z/OS CIM server is permitted (has read access) to this resource profile.

8.9 Protecting miscellaneous resources
In this section we discuss protecting miscellaneous resources.

8.9.1 Digital Certificate Access Server (DCAS) access control
This controls the ability to access the DCAS server based on the SAF user ID associated with
the TLS-authenticated X.509 client certificate. The profile that protects this resource is:

EZB.DCAS.cvtsysname

8.9.2 MODDVIPA utility program control
This restricts the usage of the MODDVIPA utility program (creates new DVIPA on system).
The profile that protects this resource is:

EZB.MODDVIPA.sysname.tcpname

8.9.3 Fast Response Cache Accelerator (FRCA) Access Control
This controls the ability to create an FRCA cache. (FRCA is used by Web servers for caching
static Web pages in the stack.) The profile that protects this resource is:

EZB.FRCAACCESS.sysname.tcpname

Chapter 8. Protecting network resources 261

8.9.4 Real-time SMF information service access control
This restricts access to select real-time SMF records accessible using the SMF information
service. It is intended for network management applications. The profile that protects this
resource is:

EZB.NETMGMT.sysname.tcpname.SYSTCPSM

8.9.5 TCP/IP packet trace service access control
This restricts access to select real-time packet trace records accessible using the TCP/IP
packet trace service. It is intended for network management applications. The profile that
protects this resource is:

EZB.NETMGMT.sysname.tcpname.SYSTCPDA

8.9.6 TCP/IP stack initialization access control
This controls the ability of applications to open a socket before the AT-TLS policy is loaded
into the TCP/IP stack. Normally you cannot start any application before the POLICY AGENT
address space starts. The profile that protects this resource is:

EZB.INITSTACK.sysname.tcpname

262 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Part 3 Appendixes

Part 3

© Copyright IBM Corp. 2006. All rights reserved. 263

264 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Appendix A. Basic cryptography

The word cryptography has its roots in Greek, and means secret writing. One of the earliest
uses of cryptography was for protecting military communications. In ancient times, a human
messenger would be dispatched with a military order. If that messenger were caught, the
message could be read by the enemy. A method had to be used to hide the meaning of the
message from an interceptor but still allow the intended recipient to understand it.

The message (plain text) to be conveyed would have to be encrypted by some formula (the
cipher). The cipher normally has, as its inputs, the message to be encrypted and a key. By
using a key, the cipher itself can be public knowledge but the key is kept (hopefully) private
between the communicating parties. The text that is produced by the cipher is the ciphertext.
The decryption process takes the ciphertext, runs it through the decryption cipher with the
key, and produces the plain text again.

Cryptography has more uses than ensuring privacy through encrypting a message. Other
uses for cryptography are to provide message integrity through the use of encrypted
message hashes, and non-repudiation so that a sender cannot deny having sent a particular
message. To ensure privacy, integrity, and non-repudiation in non-secure networks,
cryptographic procedures need to be used.

Today, two distinct classes of cryptographic algorithms are in use:

� Secret key (or symmetric key)
� Public key (or asymmetric key)

They are fundamentally different in how they work, and thus in where they are used.

These are the basic building blocks for securing transactions over the Internet or some other
untrusted network.

This appendix discusses the following.

A

Section Topic

“Potential problems with electronic
message exchange” on page 267

We look at an example to illustrate the security issues
with electronic message exchanges.

© Copyright IBM Corp. 2006. All rights reserved. 265

“Secret key cryptography” on page 270 The basic concepts surrounding secret keys and the
algorithms used for those keys.

“Public key cryptography” on page 271 The basic concepts surrounding public keys where
public and private keys are used. This section also
covers digital certificates along with their role in the
secure use of public key cryptography.

“Performance issues of cryptosystems”
on page 277

Performance is always a concern when doing
cryptography. Here we briefly looks at some of the
issues surrounding performance.

“Message integrity” on page 278 This topic discusses how cryptography can aid in
asserting message integrity (ensuring a message has
not been altered in transit). It also discusses how digital
signatures can prove that the message sender actually
sent the message.

Section Topic

266 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Potential problems with electronic message exchange
Let us take an example of an electronic message exchange for a stock broker. Clients log on
to the system and send buy and sell requests for shares electronically to the broker. Potential
security problems involved with these message exchanges include:

� The request is not really from your client.
� The order could have been intercepted and read.
� The order could have been intercepted and altered.
� An order is received from your client, but he denies sending it.

Now we discuss each of these problems and show what can be done to resolve each.

The request is not really from your client
Figure A-1 shows a hacker posing as a legitimate client (Garth).

Figure A-1 Hacker posing as another genuine client

What is needed here is some way to ensure that the client is who he says he is. In some
cases, this must involve some sort of shared secret, such as a password. This is called user
authentication. “Authentication” on page 272 explains how this is done.

The order could have been intercepted and read
Figure A-2 on page 268 shows a hacker intercepting and reading an order that the client has
placed.

Hacker

Rama
(Broker)

Garth
(Client)

Hi Rama, I am Garth.
Purchase 100 shares of
Goldmine Corporation

for me please.

Appendix A. Basic cryptography 267

Figure A-2 Hacker intercepting the order

Assume you have some way of knowing, for sure, that the order you have received was
originated by your client. How do you know that the order has not been read by anyone other
than the two parties involved? You cannot be sure how many computers and links it has been
across, and you do not know whether any intermediate link in the network has cached the
message or logged it in any way, so what can you do?

The sender must alter the message so that its meaning is hidden to unauthorized parties, a
process known as encryption. “Encryption” on page 271 explains this technology.

The order could have been intercepted and altered
Figure A-3 shows the hacker altering the original message.

Figure A-3 Hacker intercepting and altering the order

How do you know, when you receive a message, that the contents of the message have not
been modified. What is needed is some form of message authentication.

Hacker

Rama
(Broker)

Garth
(Client)

Hi Rama, I am Garth.
Purchase 100 shares of
GoodBank Corporation

for me please.

I see........Garth is
buying 100 shares of

GoodBank Corporation.

Hacker

Rama
(Broker)

Garth
(Client)

Hi Rama, I am Garth.
Purchase 100 shares of
GoodBank Corporation

for me please.

Hi Rama, I am Garth.
Purchase 2000 shares of
DoomedBank Corporation

for me please.

268 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

A message authentication process takes a message block, or stream, and mathematically
summarizes the bits in the message to produce a fixed length message digest that represents
that message. No two messages should produce the same message digest, or at least, it
should be computationally infeasible to find two that do. This message digest is normally
appended to the original message, and transmitted along with it, to the destination. If the
original message is altered, when the receiver recalculates the message digest, it will differ
from the one in the message. This does not guard against someone intercepting the
message, altering it, recalculating the digest, and replacing the original digest and sending it
along. That is why digests are often encrypted, which is then termed a message
authentication code (MAC).

If the encryption process is by a private key (nobody else knows the private key) then the
MAC becomes a digital signature. A digital signature proves that one party, and one party
alone, could have originated a particular message. If the message was intercepted and
altered, the decryption process would yield rubbish and the receiver would know the message
should be retransmitted. These are explained in “Message authentication codes (MAC)” on
page 279 and “Digital signatures” on page 280.

An order is received from your client, but he denies sending it
Figure A-4 shows a hacker placing a false order and the client then denying that he placed
the order.

Figure A-4 Hacker placing an order

What is needed is some method where the sender of a message cannot deny having sent it.
This requirement is called non-repudiation. This is done by making sure that the sender
sends his request along with his unique digital signature. This is described in “Digital
signatures” on page 280.

Hacker

Rama
(Broker)

Garth
(Client) I did not place any

orders today.

Hi Rama, I am Garth.
Purchase 2000 shares of

BankruptBank Corporation
for me please.

Appendix A. Basic cryptography 269

Secret key cryptography
Secret key cryptography is so called because the key used to encrypt the message must be
kept secret from everyone but the two communicating parties. Ensuring a key is secret seems
obvious but is not necessary in public key systems, described in “Public key cryptography” on
page 271. Another name for secret key encryption is symmetric encryption, so called
because the same key that is used to encrypt the data is also used to decrypt the data and
recover the clear text, as shown in Figure A-5.

Figure A-5 Symmetric encryption and decryption: Using the same key

Symmetric algorithms are usually efficient in terms of processing power, so they are ideal for
encryption of bulk data. However, they have one major drawback, which is key management.
The sender and receiver on any secure connection must share the same key; in a large
network where thousands of users may need to communicate securely, it is extremely difficult
to manage the distribution of keys so as not to compromise the integrity of any one of them.
Public key encryption, described in “Public key cryptography” on page 271, can be used to
exchange secret keys securely, and from then onward, the conversation can use the faster
secret key encryption.

Frequently used symmetric algorithms include:

DES Data Encryption Standard. Developed in the 1970s by IBM scientists, it uses a
56-bit key. Stronger versions called Triple-DES have been developed that use
three operations in sequence: 2-key Triple DES encrypts with key 1, decrypts
with key 2, and encrypts again with key 1. The effective key length is 112 bits.
3-key Triple-DES encrypts with key 1, decrypts with key 2, and encrypts again
with key 3. The effective key length is 168 bits.

CDMF Commercial Data Masking Facility. This is a version of the DES algorithm
approved for use outside the U.S. and Canada (in times when export control was
an issue). It uses 56-bit keys, but 16 bits of the key are known, so the effective
key length is 40 bits.

RC2 Developed by Ron Rivest for RSA Data Security, Inc., RC2 is a block cipher with
variable key lengths operating on 8-byte blocks. Key lengths of 40, 56, 64, and
128 bits are in use.

RC4 Developed by Ron Rivest for RSA Data Security, Inc., RC4 is a stream cipher
operating on a bit stream. Key lengths of 40 bits, 56 bits, 64 bits, and 128 bits are
in use. The RC4 algorithm always uses 128-bit keys; the shorter key lengths are
achieved by “salting” the key with a known, non-secret random string.

InternetClear text
message

Decryption
algorithm

Encryption
algorithm ?a4$*@"z

Secret Key

Clear text
message

Encrypted
message

270 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

AES As a result of a contest for a follow-on standard to DES held by the National
Institute for Standards and Technology (NIST), the Rijndael algorithm was
selected. This is a block cipher created by Joan Daemen and Vincent Rijmen with
variable block length (up to 256 bits) and variable key length (up to 256 bits).

IDEA The International Data Encryption Algorithm was developed by James Massey
and Xueija Lai at ETH in Zurich. It uses a 128-bit key and is faster than triple
DES.

DES is probably the most scrutinized encryption algorithm in the world. Much work has been
done to find ways to break DES, notably by Biham and Shamir, but also by others. However,
a way to break DES with appreciably less effort than a brute-force attack (breaking the cipher
by trying every possible key) has not been found.

Both RC2 and RC4 are proprietary, confidential algorithms that have never been published.
They have been examined by a number of scientists under non-disclosure agreements.

With all the ciphers listed above, it can be assumed that a brute-force attack is the only
means of breaking the cipher. Therefore, the work factor depends on the length of the key. If
the key length is n bits, the work factor is proportional to 2(n-1).

Today, a key length of 56 bits is generally only seen as sufficiently secure for applications that
do not involve significant amounts of money or critically secret data. If specialized hardware is
built (such as the machine built by John Gilmore and Paul Kocher for the Electronic Frontier
Foundation), the time needed for a brute-force attack can be reduced to about 100 hours or
less (see Cracking DES: Secrets of Encryption Research, Wiretap Politics & Chip Design, by
Electronic Frontier Foundation, John Gilmore (Editor), 1988). Key lengths of 112 bits and
above are seen as unbreakable for many years to come, since the work factor rises
exponentially with the size of the key.

Public key cryptography
Public key cryptography implements encryption and decryption using two different keys,
which is why it is also termed asymmetric encryption. These two keys are known as a public
key and a private key.

The beauty of asymmetric algorithms is that they are not subject to the key management
issues that beset symmetric algorithms. Your public key is freely available to anyone, and if
someone wants to send you a message he or she encrypts it using that key. Only you can
understand the message, because only you have the private key.

Encryption
Figure A-6 on page 272 shows an exchange where one party (on the left) uses the second
party’s public key to encrypt a message.

Important: Public and private keys, if implemented in a reversible scheme such as RSA,
(described next) yield extremely important properties:

� If the public key is used to encrypt the data, the private key must be used to recover the
clear text.

� If the private key is used to encrypt the data, the public key must be used to recover the
clear text.

Appendix A. Basic cryptography 271

Figure A-6 Public-key cryptography: Encryption using a public key

The ciphertext created by this encryption process is only decipherable by using the private
key, which in turn is only known by the second party. There is no way for any other party to
decipher this message. This type of encryption is used when you want the receiver to be the
only person capable of understanding the message. This message flow can also be used to
securely exchange a secret key between the conversation partners so that the faster secret
key encryption can be used instead of public key.

Authentication
Asymmetric keys are also very useful for authentication. Look at Figure A-7. What happens if
you encrypt a message using your own private key?

Figure A-7 Public-key cryptography: Encryption using a private key results in authentication

As stated earlier, this would indicate that anybody with access to your public key (and that
should be anyone) would be able to decipher the message. This type of encryption, therefore,
is obviously of no use to hide a message. By encrypting a message with your private key, a
receiver must use your public key to decipher it, and that is the point. This proves that the
message could only have come from you.

InternetClear text
message

Decryption
algorithm

Encryption
algorithm ?a4$*@"z Clear text

message

Encrypted
message

Public Key Private Key

Encryption
algorithmInternetClear text

message
Clear text
message

Public Key Private Key

Decryption
algorithm ?a4$*@"z

Encrypted
message

272 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Public key algorithms
Asymmetric encryption algorithms, commonly called Public Key Cryptography Standards
(PKCS), are based on mathematical algorithms. The basic idea is to find a mathematical
problem that is very hard to solve. The algorithm in most widespread use today is RSA.
However, some companies have begun to implement public-key cryptosystems based on
so-called elliptic curve algorithms. With the growing proliferation of IPSec, the Diffie-Hellman
algorithm is gaining popularity. A brief overview of all three methods follows:

RSA Invented in 1977 by Rivest, Shamir, and Adleman (who formed RSA Data
Security, Inc.). The idea behind RSA is that integer factorization of very
large numbers is extremely hard to do. Key lengths of public and private
keys are typically 512 bits, 768 bits, 1024 bits, or 2048 bits. The work factor
for RSA with respect to key length is sub-exponential, which means the
effort does not rise exponentially with the number of key bits. It is roughly
2(0.3*n).

Elliptic Curve Public-key cryptosystems based on elliptic curves use a variation of the
mathematical problem of finding discrete logarithms. It has been stated that
an elliptic curve cryptosystem implemented over a 160-bit field has roughly
the same resistance to attack as RSA with a 1024-bit key length. Properly
chosen elliptic curve cryptosystems have an exponential work factor (which
explains why the key length is so much smaller). Elliptic curve
cryptosystems are now standardized by FIPS PUB 186-2, the digital
signature standard (January 2000).

Diffie-Hellman W. Diffie and M.E. Hellman, the inventors of public key cryptography,
published this algorithm in 1976. The mathematical problem behind
Diffie-Hellman is computing a discrete logarithm. Both parties have a
public-private key pair each; they are collectively generating a key only
known to them. Each party uses its own private key and the public key of
the other party in the key generation process. Diffie-Hellman public keys
are often called shares.

Digital certificates
Digital certificates are used to publish a public key with a certainty that the public key is
genuine, according to the Certificate Authority that digitally signs the certificate. First we
discuss what can happen when a public key is used for communication, and that key is not
genuine. We then cover what can be done about authenticating a public key by using digital
certificates.

How can I trust a published public key
If we want to communicate with XYZ Corporation, and we have found a public key published
on the Internet, how could we use that public key? The two uses of another person’s or
entity’s public key are:

� To decrypt a message originating from that person, who has encrypted with his private
key

� To encrypt a message to be sent to that person, so that only he can decrypt it with his
private key

As mentioned, we have found XYZ Corporation’s public key on the Internet. How do we know
it is genuine? A malicious third party could have put his own public key on the Internet and
now could intercept all communications from you to XYZ Corporation, acting as a sort of
“relay” on the way.

Appendix A. Basic cryptography 273

Figure A-8 Scenario where public key being used by good guy is really a hacker’s key

In Figure A-8, the “good guy” assumes that he has obtained a public key for XYZ Corporation
from the Internet, but in reality, it was a hacker’s public key. We further assume that the hacker
has some way of removing your messages from the network, and injecting his own. The last
assumption is that we are using XYZ’s public key (or at least we think we are) to encrypt
messages to XYZ Corporation and the response will be encrypted by XYZ Corporation with
its private key.

You can see what could happen when a public key is used for communication when you do
not know if it is genuine. Your messages to XYZ Corporation will be encrypted using the
hacker’s public key, because you thought it was XYZ Corporation’s public key. The hacker
then uses his private key to decrypt the message, make any changes he feels is necessary,
and then encrypt the message with XYZ Corporation’s real public key. When XYZ
Corporation receives the message, it will decrypt using its private key, process the message,
and send a message back, encrypting with its own private key. The hacker then receives the
response and decrypts using XYZ Corporation’s public key, makes more changes, if
necessary, and encrypts with his own (hacker’s) private key. Lastly, you receive the hacker’s
message, decrypt with what you think is XYZ Corporation’s public key, and now your
communication to XYZ has been totally compromised.

The problem of securely storing and retrieving public keys is dealt with by what is known as a
Public Key Infrastructure (PKI), discussed next. A good reference work on PKI can be found
in the redbook Deploying a Public Key Infrastructure, SG24-5512, at:

http://www.redbooks.ibm.com

Public Key Infrastructure
A Public Key Infrastructure (PKI) offers the basis for practical usage of public key
cryptography. A PKI defines the rules and relationships for certificates and Certificate
Authorities (CAs). It defines the fields that can or must be in a certificate, the requirements
and constraints for a CA in issuing certificates, and how certificate revocation is handled.

Decrypts msg
with hackers
public key

Encrypts msg
with hackers
public key

Decrypts msg
with hackers
private key

Encrypts msg
with hackers
private key

Encrypts msg
with XYZ corp.'s
public key

Decrypts msg
with XYZ corp.'s
public key

Encrypts msg
with XYZ corp.'s
private key

Decrypts msg
with XYZ corp.'s
private key

Good Guy Hacker XYZ Corp.

274 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

http://www.redbooks.ibm.com

When using a PKI, the user must be confident that the obtained public key belongs to the
correct remote person (or system) with which the digital signature mechanism is to be used.
This confidence is obtained through the use of public key digital certificates. A digital
certificate is analogous to a passport: The passport certifies the bearer's identity, address,
and citizenship. The concepts behind passports and other identification documents (for
instance, drivers’ licenses) are very similar to those that are used for digital certificates.

Passports are issued by a trusted authority, such as a government passport office. A
passport will not be issued unless the person who requests it has proven their identity and
citizenship to the authority. Specialized equipment is used in the creation of passports to
make it very difficult to alter the information in it or to forge a passport altogether. Other
authorities, for instance, the border police in other countries, can verify a passport's
authenticity. If they trust the authority that issued the document, they implicitly trust the
passport.

A digital certificate serves two purposes: It establishes the owner's identity and it makes the
owner's public key available. Similar to a passport, a certificate must be issued by a trusted
authority, the CA, and, like a passport, it is issued only for a limited time. When its expiration
date has passed, it must be replaced.

Trust is a very important concept in passports, as well as in digital certificates. In the same
way as, for instance, a passport issued by the governments of some countries, even if
recognized to be authentic, will probably not be trusted by the government authorities of
another country. Each organization or user has to determine whether a CA can be accepted
as trustworthy.

As an example, a company might want to issue digital certificates for its own employees from
its own Certificate Authority. This could ensure that only authorized employees are issued
certificates, as opposed to certificates being obtained from other sources such as a
commercial entity such as VeriSign.

The information about the certificate owner's identity is stored in a format that follows RFC
2253 and the X.520 recommendation, for instance, CN=Ulrich Boche, O=IBM Corporation.
The complete information is called the owner's distinguished name (DN). The owner's
distinguished name and public key and the CA’s distinguished name are digitally signed by
the CA. That is, a message digest is calculated from the distinguished names and the public
key. This message digest is encrypted with the private key of the CA.

Figure A-9 on page 276 shows a simplified layout of a digital certificate.

Appendix A. Basic cryptography 275

Figure A-9 Simplified layout of a digital certificate

The digital signature of the CA serves the same purpose as the special measures taken for
the security of passports, such as laminating pages with plastic material. It allows others to
verify the authenticity of the certificate. Using the public key of the CA, the message digest
can be decrypted. The message digest can be recreated. If it is identical to the decrypted
message digest, the certificate is authentic.

Security considerations for certificates
If I send my certificate with my public key in it to someone else, what keeps this person from
misusing my certificate and posing as myself? The answer is: My private key.

A certificate alone can never be proof of anyone’s identity. The certificate just allows the
identity of the certificate owner to be verified by providing the public key that is needed to
check the certificate owner’s digital signature. Therefore, the certificate owner must protect
the private key that matches the public key in the certificate. If the private key is stolen, the
thief can pose as the legitimate owner of the certificate. Without the private key, a certificate
cannot be misused.

An application that authenticates the owner of a certificate cannot accept just the certificate. A
message signed by the certificate owner should accompany the certificate. This message
should use elements such as sequence numbers, time stamps, challenge-response
protocols, or other data that allow the authenticating application to verify that the message is
a “fresh” signature from the certificate owner and not a replayed message from an impostor.

Certificate Authorities and trust hierarchies
Before we discuss what is termed a certificate hierarchy, let us look at an analogous
example of trusted hierarchies. If you were selling a car, and a buyer asked you if it was OK to
pay by personal check, then you would have to decide whether you trusted the buyer. If you
do, end of story, the car is sold. If you do not trust him, you may ask someone whom you both
trust to countersign the check.

In digital certificate trust hierarchies, similar considerations to the car-buying example apply.
In the end, it boils down to the fact that you have to trust somebody. You will have digital
certificates in your database, and those certificates will either be set to trusted or untrusted
status. A Certificate Authority (CA) is a company that is considered trustworthy, and produces

Digital Certificate

Private Key of CA

Issuer's
SignatureDigest

Message

Owner's Distinguished
Name

Owner's Public Key

CA's Distinguished Name

276 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

digital certificates for other individuals and companies (called subjects) bearing that subject’s
public key. This certificate is signed with a message hash that is encrypted using the CA’s
private key. To verify that the certificate is authentic, the receiver needs the public key of the
CA that issued the certificate.

Most Web browsers come preconfigured with the public keys of common CAs (such as
VeriSign). However, if the user does not have the public key of the CA that signed the
certificate, an additional certificate would be needed in order to obtain that public key. In
general, a chain of multiple certificates may be required, comprising a certificate of the public
key owner signed by a CA, and possibly additional certificates of CAs signed by other CAs.
Many applications that send a subject's certificate to a receiver send not only just that
certificate, but also all the CA certificates necessary to verify the certificate up to the root.

Obtaining and storing certificates
As we have discussed, certificates are issued by a CA. If you do not want to use a CA, you
can use utilities to issue your own certificates. These are called self-signed certificates and
will only be accepted by people who trust you. If you use an external Certificate Authority, you
request certificates by visiting the CA’s Web site. After verifying the validity of the request, the
CA sends back the certificate in an e-mail message or allows it to be downloaded.

In the case of obtaining a certificate for a server, whether you use a self-signed or external
CA signed certificate is dependent on the server environment. In an intranet environment, it is
generally appropriate to use self-signed certificates. In an environment where external users
are accessing the server over the Internet, it is usually advisable to acquire a server
certificate from a well-known CA, because the steps needed to import a self-signed certificate
might seem obscure, and most users will not have the ability to discern whether the action
they are performing is of trivial consequence. It should also be noted that a root CA certificate
received over an untrusted channel, such as the Internet, does not deserve any kind of trust.

Certificate management in z/OS
To manage certificates on a z/OS system, you can use either the UNIX program gskkyman to
create and manage certificates, or you can use the RACF database and RACDCERT
command. This topic is covered in detail in Appendix C, “Certificate management in z/OS” on
page 301.

Performance issues of cryptosystems
Elliptic curve cryptosystems are said to have performance advantages over RSA in
decryption and signing. While the possible differences in performance between the
asymmetric algorithms are somewhere in the range of a factor of 10, the performance
differential between symmetric and asymmetric cryptosystems is far more dramatic.

For instance, it takes about 1000 times as long to encrypt the same data with RSA (an
asymmetric algorithm) as it takes with DES (a symmetric algorithm), and implementing both
algorithms in hardware does not change the odds in favor of RSA.

As a consequence of these performance issues, the encryption of bulk data is usually
performed using a symmetric cryptosystem, while asymmetric cryptosystems are used for
electronic signatures and in the exchange of key material for secret-key cryptosystems. With
these applications, only relatively small amounts of data need to be encrypted and decrypted,
and the performance issues of public key systems are less important.

Appendix A. Basic cryptography 277

Message integrity
Message integrity is the ability to assert that a message received has not been altered in any
way from the time that it was sent. In a networked environment, a message could have been
altered by a third party intercepting it, or by some other means, such as electromagnetic
interference (although in the latter case the transmission protocol normally handles a
retransmission). To provide message integrity, you provide a message digest along with the
text of your message. Note that the message being authenticated may or may not also be
encrypted.

Message digest (or hash)
A message digest algorithm takes a message as input, and produces a small, fixed length
digest string (usually 128 or 160 bits) often referred to as a hash. This hash can be thought of
as a mathematical summary of a message. There are two important things to note about a
message digest algorithm:

� The algorithm is a one-way function. This means that there is absolutely no way you can
recover a message, given the hash of that message.

� It should be computationally infeasible to produce another message that would produce
the same message digest as another message.

Figure A-10 is a graphical representation of appending a message digest to a message.
When a message digest is appended to a message en-route to its destination, the message
cannot be tampered with, because a recalculation of the hash at the receiver’s end will show
the message digest received is invalid.

Figure A-10 Message digest

The message digest should not be sent in the clear: Since the digest algorithms are
well-known and no key is involved, a man-in-the-middle could not only forge the message but
also replace the message digest with that of the forged message. This would make it
impossible for the receiver to detect the forgery. The solution for this is to use a message
digest algorithm that uses cryptography when creating the message digest—that is, to use a
message authentication code, described in “Message authentication codes (MAC)” on
page 279.

Message digest algorithms
Common message digest algorithms are:

MD2 Developed by Ron Rivest of RSA Data Security, Inc., this algorithm is
mostly used for Privacy Enhanced Mail (PEM) certificates. MD2 is fully

Message

Not possible to produce
 message from message digest Message

Digest X
Message

Message Digest
Algorithm

278 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

described in RFC 1319. Since weaknesses have been discovered in
MD2, its use is discouraged.

MD5 Developed in 1991 by Ron Rivest, the MD5 algorithm takes as input a
message of arbitrary length and produces as output a 128-bit
message digest of the input. The MD5 message digest algorithm is
specified in RFC 1321, The MD5 Message-Digest Algorithm.
Collisions have been found in MD5 (see Hans Dobbertin:
Cryptanalysis of MD5 Compress, available at
http://www.cs.ucsd.edu/users/bsy/dobbertin.ps).

SHA-1 Developed by the National Security Agency (NSA) of the U.S.
Government, this algorithm takes as input a message of arbitrary
length and produces as output a 160-bit hash of the input. SHA-1 is
fully described in standard FIPS PUB 180-1, also called the Secure
Hash Standard (SHS). SHA-1 is generally recognized as the strongest
and most secure message digesting algorithm.

SHA-256, SHA-512 Developed by the National Security Agency (NSA) of the U.S.
Government. The security of a hash algorithm against collision attacks
is half the hash size, and this value should correspond with the key
size of encryption algorithms used in applications together with the
message digest. Since SHA-1 only provides 80 bits of security against
collision attacks, this is deemed inappropriate for the key lengths of up
to 256 bits planned to be used with AES. Therefore, extensions to the
Secure Hash Standard (SHS) have been developed. SHA-256
provides a hash size of 256 bits, while SHA-512 provides a hash size
of 512 bits.

Message authentication codes (MAC)
Figure A-11 shows a message authentication code (MAC) being created for a message. The
first step is to use a hashing algorithm, such as MD5, to compute a message digest. That
message digest is then encrypted with a key, and appended to the original message. Both the
message and the associated MAC are then sent to the recipient. The assumption here is that
the recipient shares the same key, so that he may recompute the message digest and
encrypt it with the shared key. This result should match the MAC sent on the message.

Figure A-11 Message digest for data integrity

Secret-key cryptographic algorithms, such as DES, can be used for encryption with message
digests. A disadvantage of using a secret-key algorithm is that since the receiver has the key
that is used in MAC creation, this system does not offer a guarantee of non-repudiation. That
is, it is theoretically possible for the receiver to forge a message and claim it was sent by the

Message

Message is "signed" by
encrypting digest

Message
Digest

Encryption
Algorithm

Message

Send via
insecure
channel

Internet

Message
Authentication
Code (MAC)

Message Digest
Algorithm

Appendix A. Basic cryptography 279

http://www.cs.ucsd.edu/users/bsy/dobbertin.ps

sender. Therefore, message authentication codes are usually based on public/private-key
encryption in order to provide for non-repudiation. When a MAC is encrypted with a sender’s
private key, rather than a secret (symmetric) key, that MAC becomes a Digital Signature.
This is discussed further in “Digital certificates” on page 273.

Keyed hashing for message authentication (HMAC)
H. Krawczyk and R. Canetti of IBM Research and M. Bellare of UCSD invented a method to
create a message authentication code called HMAC, which is defined in RFC 2104 as a
proposed Internet standard. A simplified description of how to create the HMAC is as follows.
The key and the data are concatenated and a message digest is created. The key and this
message digest are again concatenated for better security, and another message digest is
created, which is the HMAC.

HMAC can be used with any cryptographic hash function. Typically, either MD5 or SHA-1 is
used. In the case of MD5, a key length of 128 bits is used (the block length of the hash
algorithm). With SHA-1, 160-bit keys are used. Using HMAC actually improves the security of
the underlying hash algorithm. For instance, some collisions (different texts that result in the
same message digest) have been found in MD5. However, they cannot be exploited with
HMAC; therefore, the weakness in MD5 does not affect the security of HMAC-MD5.

HMAC is now a PKCS#1 V.2 standard for RSA encryption (proposed by RSA, Inc., after
weaknesses were found in PKCS#1 applications). For further details, see:

http://www.ietf.org/rfc.html

HMAC is also used in the Transport Layer Security (TLS) protocol, the successor to SSL.

Digital signatures
Digital signatures are an additional means of securing data integrity. While data integrity only
ensures that the data received is identical to the data sent, digital signatures go a step further:
They provide non-repudiation. This means that the sender of a message (or the signer of a
document) cannot deny authorship, similar to signatures on paper. As illustrated in
Figure A-12, the creator of a message or electronic document that is to be signed uses a
message digesting algorithm such as MD5 or SHA-1 to create a message digest from the
data. The message digest and some information that identifies the sender are then encrypted
with an asymmetric algorithm using the sender's private key. This encrypted information is
sent together with the data.

Figure A-12 Digital signature creation

Message

Message is "signed" by
encrypting MD with
sender's private key

Message
Digest

Asymmetric
Encryption
Algorithm

Private Key

Message

Send via
insecure
channel

Internet

Message
Authentication
Code (MAC)

Message Digest
Algorithm

280 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

http://www.ietf.org/rfc.html

The receiver, as shown in Figure A-13, uses the sender's public key to decrypt the message
digest received. Then he or she will use the message digesting algorithm to compute the
message digest from the data received. If the computed message digest is identical to the
one recovered after decrypting the digital signature, the signature is recognized as valid proof
of the authenticity of the message.

Figure A-13 Digital signature verification

With digital signatures, only public-key cryptosystems can be used. If secret-key
cryptosystems are used to encrypt the signature, it would be very difficult to make sure that
the receiver (having the key to decrypt the signature) could not misuse this key to forge a
signature of the sender. The private key of the sender is known to nobody else, so nobody is
able to forge the sender's signature.

Note the difference between encryption using public-key cryptosystems and digital
signatures:

� With encryption, the sender uses the receiver's public key to encrypt the data, and the
receiver decrypts the data with his private key. This means everybody can send encrypted
data to the receiver that only the receiver can decrypt. See Figure A-14 on page 282 for a
graphical representation.

Message
Digest

Message Digest
Algorithm

Message

Receive from
insecure channel

Internet

Encrypted
Message

Digest

Asymmetric
Decryption
Algorithm

Message
Digest

Equal

Not equal

Message has
been altered

Message is
unchanged

Compare

Public Key

Appendix A. Basic cryptography 281

Figure A-14 Encrypting data with the receiver’s public key

� With digital signatures, the sender uses his private key to encrypt his signature, and the
receiver decrypts the signature with the sender's public key. This means that only the
sender can encrypt the signature, but everybody who receives the signature can decrypt
and verify it.

The tricky part with digital signatures is the trustworthy distribution of public keys, since a
genuine copy of the sender’s public key is required by the receiver. A solution to this problem
is provided by digital certificates, which were discussed in “Digital certificates” on page 273.

?a4$*@"z

Public Key

Private
Key

Receiver

Key Pair

Clear text
DecryptionEncryption

Encrypted
message

Clear text

Sender

282 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Appendix B. Tools for application security

This appendix discusses ways to secure application traffic. You will find that each of these
protocols is used by many applications. For instance, SSL is used by TN3270, FTP, Policy
Agent, LDAP, and so on. Each protocol is explained in as much detail as needed to
understand the function, and references are given for more advanced study.

SSL and TLS use public key cryptography to establish a secret key, which is then used for
secret key (or symmetric) cryptography. These protocols require digital certificates for the
server, and optionally for the client. For information about the SSL and TLS protocols, see
“Secure Sockets Layer (SSL)” on page 284.

For a brief overview of the differences between SSL and TLS, see “TLS protocol” on
page 289.

The Kerberos system is a secret key system that uses symmetric keys, one at the client and
another at what is known as a Key Distribution Center (KDC). z/OS applications that can
make use of Kerberos include FTP (server and client), UNIX Telnet, and UNIX rsh. See
“Kerberos-based security system” on page 290.

B

© Copyright IBM Corp. 2006. All rights reserved. 283

Secure Sockets Layer (SSL)
The first version of the Secure Sockets Layer protocol was developed by Netscape
Communications Corporation in 1994 to enable secure Web transactions. Since then, the
SSL protocol has been widely deployed to protect traffic for a number of different
applications. In 1996 Netscape Communications handed the responsibility for SSL over to the
Internet Engineering Task Force (IETF), who enhanced the protocol and released it as TLS
V1.0. TLS is discussed in “TLS protocol” on page 289.

Figure B-1 Evolution of SSL

SSL-enabled applications on z/OS include:

� IBM HTTP Server for z/OS
� TN3270 Server
� z/OS LDAP server
� z/OS Firewall Configuration Server
� CICS® Web Interface
� z/OS UNIX policy agent
� Digital Certificate Access Server (DCAS) used in the Express Logon Feature

TLS-enabled applications on z/OS include FTP server and client.

SSL relies on digital certificates and a hierarchy of trusted authorities, as described in “Digital
certificates” on page 273, to ensure authentication of clients or servers.

SSL protocol description
The SSL protocol defines the partners of a conversation as either a client or a server. This
terminology is used because a client must send certain sets of messages and the server
responds with another set. The SSL protocol begins with a handshake initiated by the client.
During the handshake, the client authenticates the server, the server optionally authenticates
the client, and the client and server agree on encryption and authentication algorithms.

SSL V2.0
Netscape

1994

SSL V3.0
Netscape

1995

TLS
Working Group Established

1996 1997 1998

TLS
RFC 2246

SMTP over TLS
RFC 2487

1999

TLS-Based Telnet Security
IETF-05

HTTP over TLS
RFC 2818

2000

284 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure B-2 Overview of SSL handshake protocol

The process is:

1. First, the client sends a client hello message, which lists the cryptographic capabilities
of the client (sorted in client preference order) and contains the SSL/TLS protocol version
desired. It also contains a random number used later to generate a secret key by both
server and client, a session ID (used for resumed sessions, not discussed here), and a list
of cipher suites that the client can support. A cipher suite is an entry indicating an
encryption algorithm and a message hashing algorithm.

2. The server responds with a server hello message, which contains the cipher suite
selected by the server, the session ID, another random number, and the acceptable
SSL/TLS protocol version. The client and server must support at least one common cipher
suite or the handshake will fail.

3. Following the server hello message, the server sends its certificate. This message
contains the server’s digital certificate and all other certificates up to the root. The whole
chain of certificates is included because the client must match the issuers of the
certificates all the way up to the root certificate to find a match with an issuer that it trusts.
In a z/OS system server, the certificate is obtained from either a key ring database stored
in an z/OS UNIX or MVS data set (which is created with the gskkyman utility) or from the
RACF database using the DIGTCERT class.

4. If SSL version 3 or later (TLS) is used and the server application requires a certificate for
client authentication, the server sends a certificate request message. In the certificate
request message, the server sends a list of the types of certificates supported and the
distinguished names of acceptable certification authorities.

5. The server then sends a server hello done message and waits for a client response.
Upon receipt of the server hello done message, the client verifies the validity of the
server’s certificate and checks that the server hello parameters are acceptable.

6. If the server requested a client certificate, the client sends a certificate or, if no suitable
certificate is available, a no certificate alert. This alert is only a warning, but the server
application can fail the session if client authentication is mandatory. If a certificate is
available, this message contains the client’s digital certificate and all other certificates up
to the root. The whole chain of certificates is included because the server must match the
issuers of the certificates all the way up to the root certificate to find a match with an issuer
that it trusts.

Client
Server

(*) Only in SSL V3

1. Client hello

2. Server hello
3. Server certificate

4. Certificate request (*)

5. Server hello done

6. Client certificate (*)

7. Client key exchange

8. Certificate verify (*)

9. Change cipher spec

10. Finished

11. Change cipher spec

12. Finished

Appendix B. Tools for application security 285

7. The client then sends a client key exchange message. This message contains the
so-called pre-master secret, a 46-byte random number that is used in the generation of
the symmetric encryption keys and the message authentication code (MAC) keys,
encrypted with the public key of the server.

8. If the client sent a certificate to the server, the client will now send a certificate verify
message, which is signed with the client’s private key. By verifying the signature of this
message, the server can explicitly verify the ownership of the client certificate.

A similar process to verify the server certificate is not necessary. If the server does not
have the private key that belongs to the certificate, it cannot decrypt the pre-master secret
nor create the correct keys for the symmetric encryption algorithm, and the handshake
must fail.

9. Now the client uses a series of cryptographic operations to convert the premaster secret
into a master secret, from which all key material required for encryption and message
authentication is derived. Then the client sends a change cipher spec message to make
the server switch to the newly negotiated cipher suite.

10.The finished message immediately following is the first message encrypted with this
cipher method and keys.

11.After the server responds with a change cipher spec and a finished message of its own,
the SSL handshake is completed and encrypted application data can be sent.

The SSL Record Protocol transfers application data using the encryption algorithm and keys
agreed upon during the handshake phase. As explained in “Performance issues of
cryptosystems” on page 277, symmetric encryption algorithms are used, since they provide
much better performance than asymmetric algorithms.

Certificates for SSL
To conduct commercial business on the Internet, you might use a widely known Certificate
Authority (CA), such as VeriSign, to get a high assurance server certificate. For a relatively
small private network within your own enterprise or group, you can issue your own server
certificates, called self-signed certificates, using the z/OS UNIX gskkyman utility or the RACF
RACDCERT command.

In SSL, servers are always authenticated by the client. This means that the client must have
access to a CA certificate that can verify the server’s certificate.

Client authentication, which is optional, provides additional authentication and access control
by checking client certificates at the server. This support prevents a client from obtaining a
connection without an installation approved certificate. There are three levels of client
authentication:

� Level 1

The authentication is performed by system SSL and ensures that the server’s key ring
contains a CA certificate that can verify the client certificate. For information about digital
certificates, see “Digital certificates” on page 273.

� Level 2

The authentication provides, in addition to level 1 support, that the client certificate be
registered with RACF (or another SAF-compliant security product) and mapped to a
RACF user ID in the RACF database.

286 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

� Level 3

The authentication provides, in addition to level 1 and level 2 support, the capability to
restrict access to a server (and port number) based on a profile that can be set up in
RACF. The user ID that is associated with the client certificate is tested for access rights
to the server and port represented by the RACF profile.

Figure B-3 shows an example of a z/OS server (TN3270 in this case) using SSL.

Figure B-3 SSL protocol

The client must verify the server's certificate based on the certificate of the Certificate
Authority (CA) that signed the certificate or based on a self-signed certificate from the server.
The server must verify the client's certificate (if client authentication has been configured in
the server) using the certificate of the CA that signed the client's certificate. The client and the
server then use the negotiated session keys and begin encrypted communications.

A program may require a certificate associated with itself depending on what side of the SSL
connection the program is running. This requirement also depends on whether client
authentication is requested as part of the SSL handshake. Programs acting as SSL servers
(act as the server side of the SSL handshake protocol) must have a certificate to use during
the handshake protocol. A program acting as an SSL client requires a certificate in the key
database if the SSL server requests client authentication as part of the SSL handshake
operation.

If the organization chooses to use a Certificate Authority (within the organization or outside of
the organization), then you must generate a certificate request. If only self-signed server
certificates are used, you do not have to formulate a certificate request to be sent to an
external Certificate Authority (CA) for approval. However, in this case SSL clients do have to
import the server's self-signed certificate so that it can be verified during SSL handshake
processing.

Additional information about the concepts of cryptography and SSL can be found at the
following Web sites:

� http://home.netscape.com/eng/ssl3
� http://www.verisign.com/repository/crptintr.html

z/OS

TCP/IP

TN3270E
Server

Basic connection (no-SSL)

Secure connection (SSL)

z/OS
System

SSL

RACF
DB

Key
DB

NORMAL
Port

SECURE
Port

Client

Client

Server Key

23

6023

Appendix B. Tools for application security 287

http://home.netscape.com/eng/ssl3
http://www.verisign.com/repository/crptintr.html

Refer to Appendix C, “Certificate management in z/OS” on page 301, for steps regarding the
creation of certificates with gskkyman and RACF.

B.0.1 System SSL
System SSL is a common set of libraries for use by clients and servers in a z/OS system. An
Application Programming Interface (API) is provided by System SSL in order to use the SSL
code library.

System SSL is part of the System SSL Cryptographic Services Base element of z/OS. The
z/OS Communications Server uses the System SSL APIs to create and manage SSL
connections. X.509 certificates are used by both the client and server when securing
communications using System SSL.

System SSL supports the following two methods for managing PKI private keys and digital
certificates:

� A z/OS shell-based program called gskkyman. gskkyman creates, fills in, and manages a
z/OS UNIX file that contains PKI private keys, certificate requests, and certificates. This
z/OS UNIX file is called a key database and, by convention, has a file extension of .kdb.

� The z/OS SecureWay® Security Server (RACF) RACDCERT command. RACDCERT
installs and maintains PKI private keys and certificates in RACF. RACF supports multiple
PKI private keys and certificates to be managed as a group. These groups are called key
rings. RACF key rings are the preferred method for managing PKI private keys and
certificates for System SSL.

Table B-1 shows the encryption capabilities of each of the z/OS V1R7 System SSL FMIDs.

Table B-1 SSL encryption capabilities

Encryption type/key sizes Base security
level
FMID HCPT320

Security level 3

FMID JCPT321

512-bit keys X X

1024-bit keys X X

1 - SSL V2.0 RC4 US X

2 - SSL V2.0 RC4 Export X X

3 - SSL V2.0 RC2 US X

4 - SSL V2.0 RC2 Export X X

6 - SSL V2.0 DES 56-Bit X X

7 - SSL V2.0 Triple DES US X

01 - SSL V3.0 NULL MD5 X X

02 - SSL V3.0 NULL SHA X X

03 - SSL V3.0 RC4 MD5 Export X X

04 - SSL V3.0 RC4 MD5 US X

05 - SSL V3.0 RC4 SHA US X

06 - SSL V3.0 RC2 MD5 Export X X

09 - SSL V3.0 DES SHA Export X X

288 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

System SSL supports both the TLS (Transport Layer Security) and SSL (Secure Sockets
Layer) protocols.

To implement SSL connections, TCP/IP must have APF-authorized access to the System
SSL DLLs. The System SSL DLLs are located in hlq.SGSKLOAD by default. System SSL
uses the C runtime library (SCEERUN) and the C/C++ IBM Open class library (SCLBDLL),
which must also be accessible to TCP/IP. To access these libraries, either add them to the
linklist or specify them in the TCP procedure's STEPLIB. If accessed via the linklist, the linklist
must be authorized (LNKAUTH=LNKLST specified in the IEASYSxx parmlib member) or the
libraries explicitly APF authorized. If accessed via a STEPLIB, the libraries must be APF
authorized and DISP=SHR specified.

SSL considerations
As discussed, security functions such as SSL are needed to send sensitive data safely if you
connect your system to an insecure network such as the Internet. On the other hand, using
such security functions has performance impacts, including utilizing additional CPU cycles
and degrading server performance.

To maintain SSL security you have to manage the keys carefully, especially when using
self-certification, because the whole system environment is affected by the security of the
Certificate Authority's key database. On z/OS, the key database or key ring file, including the
server key pair, may be stored in a file in the z/OS UNIX file system if you use the gskkyman
utility to manage certificates and keys. In this case, the file may be accessible by users of the
z/OS UNIX shell unless you are very careful about setting the UNIX file permission bits on the
z/OS UNIX files and you do not allow users to enter the superuser state. However, RACF is a
more secure environment to store certificates and keys, and should be used if possible.

TLS protocol
SSL 3.0 has outgrown the scope of being a Netscape standard. Continued development of
the protocol became the responsibility of the Internet Engineering Task Force in 1996. As a
result, SSL 3.0 evolved into the proposed standard for Transport Layer Security, RFC 2246.

TLS is the latest in the continuing evolution of SSL. TLS 1.0 might as readily have been titled
SSL 3.1. In fact, when negotiating a TLS handshake, the client and server hello messages
will use version specification 3.1 (SSL 3.0 uses version specification 3.0).

Enhancements from SSL V3.0 to TLS V1.0 include:

� Additions to the number of alert messages defined in the protocol
� Standardized method of calculating message authentication codes (MAC)
� Simplified CertificateCertify message

0A - SSL V3.0 Triple DES SHA US X

Note: The encryption level used in an SSL connection depends on the client and server
encryption level capability. In the SSL handshake, after server or client authentication, both
server and client exchange their cipher capabilities and agree on the best cipher algorithm
for the session. So, be aware that your TN3270 client must support at least the same level
of encryption as your server to have the level of encryption you want.

Encryption type/key sizes Base security
level
FMID HCPT320

Security level 3

FMID JCPT321

Appendix B. Tools for application security 289

� Simplified Finished message

Kerberos-based security system
Kerberos is a network authentication protocol that was developed in Project Athena at the
Massachusetts Institute of Technology, in cooperation with IBM and Digital Equipment
Corporation in the 1980s. DES cryptography is used to provide data privacy, especially for
sensitive data such as passwords to log into a server.

Kerberos version 5 is the latest release and has been implemented in SecureWay Security
Server Network Authentication and Privacy Service for z/OS, and chosen by Microsoft
Corporation as their preferred authentication technology in Windows 2000.

The Kerberos system is an encryption-based security system that provides mutual
authentication between the users and the servers in a network environment. The assumed
goals for this system are:

� Authentication to prevent fraudulent requests and responses between users and servers
that must be confidential and on groups of at least one user and one server.

� Authorization can be implemented independently from the authentication by each service
that wants to provide its own authorization system. The authorization system can assume
that the authentication of a user/client is reliable.

� Message confidentiality may also be used that provides assurance to a data sender that
the message's content is protected from access by entities other than the context's named
peer.

Kerberos authentication is based on shared secrets, which are passwords stored on the
Kerberos server and client. Those passwords are encrypted with a symmetric cryptographic
algorithm, which is DES in this case, and decrypted when needed. This fact implies that a
decrypted password is accessed by the Kerberos server, which is not usually required in an
authentication system that exploits public key cryptography. Therefore the servers must be
placed in locked rooms that are physically secure to prevent an attacker from stealing a
password.

For the complete description about the Kerberos Version 5 protocol, refer to RFC 1510 - The
Kerberos Network Authentication Service (V5).

Kerberos protocol overview
The Kerberos system consists of three components: A client, a server, and a trusted third
party, which is also known as a Key Distribution Center (KDC). KDC interacts with both a
client and a server to accept the client’s request, authenticate its identity, and issue tickets to
it.

The domain served by a single KDC is referred to as a realm. A principal identifier is used to
identify each client and server in a realm. The principal name is uniquely assigned for all
clients and servers by the Kerberos administrator. All principals must be known to the KDC.

Although the Kerberos protocol consists of several subprotocols, three particular exchanges
provide the fundamental foundation (see Figure B-4 on page 291). The first phase exchange
takes place between a client and the authentication server (AS), in which a client asks the AS
that knows secret keys of all clients in the realm to authenticate himself and give it a ticket
granting ticket (TGT) to be used to get a service ticket for an application server it wants to
access.

290 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Upon receiving the TGT, the client sends a request, which contains the TGT, for a service
ticket to the ticket-granting server (TGS), and waits until a service ticket is returned. Having
the session ticket ready, the client can then communicate with the server that is providing a
service he wants to use. Optionally, the application server can perform further authentication
processes against the client.

Figure B-4 Kerberos protocol overview

Message encoding defined in Kerberos version 5 is described using the Abstract Syntax
Notation 1 (ASN.1) syntax in accordance with ISO standards 8824 and 8825.

In the following sections we discuss the interactions in more detail using the following
notations:

� Kx: X’s symmetric encryption key
� Kx,y: Encryption key shared by X and Y (for example, a session key)
� Kx{data}: A message that contains data encrypted with X’s key

Phase 1: Authentication service (AS) exchange
The authentication service exchange is initiated by a client when it wants to get authentication
credentials for an application server but it currently holds no credentials. Two messages are
exchanged between the client and the Kerberos authentication server; then credentials for a
ticket-granting server (TGS) are given to the client, which is called the ticket-granting ticket
(TGT) and will subsequently be used to obtain credentials for other services.

This exchange is also used for other services, such as the password-changing service. As
noted in Figure B-5 on page 292, the client’s secret key is used exclusively in this phase.

Note: In most Kerberos implementations, the Authentication Server (AS) and the Ticket
Granting Server (TGS) are the same server.

1. Request ticket-granting
ticket (TGT)

2. TGT
3. Request for service ticket
4. Service ticket
5. Request for service
6. Optional mutual AuthN

ServerClient

Keys

TGS

KDC

AS

1
2 3

4

 5

 6

Appendix B. Tools for application security 291

Figure B-5 Simplified authentication service exchange

When a user logs into a client system and enters her password, a client sends the Kerberos
authentication server (AS) a message that includes a user name in plain text (for example,
Alice), the current time encrypted with her secret key, and the identity of the server for which
the client is requesting credentials (TGS in Figure B-5).

Upon receiving the request from the client, the AS looks up the client name and the service
name (the TGS in this case) in the Kerberos database, and then obtains an encryption key of
each of them, KAlice and KKDC.

The AS then generates a response back to the client, which contains the TGT and a session
key KAlice,KDC, which is used in the subsequent secure communication between the client
and KDC. The TGT includes the session key KAlice,KDC, the identities of the server and the
client, lifetime, and some other information. The AS then encrypts the ticket using its own key
KKDC. This produces a sealed ticket. The session key KAlice,KDC is also encrypted using the
client’s key KAlice with some other information, such as nonce.

The encrypted current time is also known as the authenticator, since the receiver can assure
that the sender knows the correct shared secret KAlice, which is the client’s encryption key
derived from her password (this key is also referred as Alice’s long-term key), by decrypting it
and validating what is inside. Because the AS knows Alice’s secret key, it can evaluate the
time decrypted from the received authenticator. As you might have noticed, the clocks on the
client system and the KDC must be reasonably synchronized with each other. A network time
service may be used for this purpose.

An authenticator is also used to help the server detect the message replays.

A nonce is information to identify a pair of Kerberos requests and responses. A time stamp or
a random number generated by a client may be used.

TGS is the server’s identification, which is the Kerberos ticket-granting server (TGS) in this
case.

Since KAlice is known exclusively by Alice and KDC, no one but Alice can extract the critical
information from the response message, such as the session key KAlice,KDC to be used in the
next phase.

When the client receives the AS’s response, it decrypts it using its secret key KAlice and
checks to see if the nonce matches the specific request. If the nonce matches, the client
caches the session key KAlice,KDC for future communications with the TGS.

1. Alice enters her password
2. KAlice{timestamp}, "Alice", tgs, nonce
3. KAlice{KAlice,KDC, nonce}, TGT

where TGT = KKDC{"Alice",KAlice,KDC}

Keys

TGS

KDC

AS

1

Alice
(Client)

 2
 3

292 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Phase 2: Ticket-granting service (TGS) exchange
The next phase is used for a client to obtain credentials for services that it wants to use. This
exchange is also initiated by the client, and two messages are exchanged between the client
and the ticket-granting server (TGS). The protocol and message format used in this exchange
is almost identical to those for the AS exchange. The primary difference is that the client’s key
is never used in this exchange, but the session key obtained from the preceding AS
exchange is used.

The request message the client sends to the TGS contains several pieces of information
including:

� Information to authenticate the client, which includes a new authenticator and the TGT
obtained from the preceding AS exchange

� Identity of the service for which the client is requesting credentials

� Nonce to identify this request

Figure B-6 Simplified ticket-granting service exchange

When the ticket-granting server (TGS) receives the above message from the client, it first
deciphers the sealed ticket using its encryption key KKDC. From the deciphered ticket, the
TGS obtains the session-key KAlice,KDC. It uses this session key to decipher the
authenticator. The validity checks performed by the TGS include:

� If the client name and its realm in the ticket match the same fields in the authenticator.

� If the address from which this message is originated is found in the address field in the
ticket, which specifies addresses from which the ticket can be used.

� If the user-supplied checksum in the authenticator matches the contents of the request.
This procedure guarantees the integrity of the message.

Finally, it checks the current time in the authenticator to make certain the message is recent.
Again, this requires that all the clients and servers maintain their clocks within some
prescribed tolerance.

The TGS now looks up the server name from the message in the Kerberos database, and
obtains the encryption key KBob for the specified service.

Note: By checking the time stamp in the nanoseconds scale, the replay attacks can be
detected.

1. KAlice{timestamp}, TGT, "Bob", nonce
2. KAlice,KDC{KAlice,Bob,"Bob",nonce}, tkt_to_Bob

where tkt_to_Bob = KBob{"Alice",KAlice,Bob}

Keys

KDC

AS

Alice
(Client)

TGS

1
 2

Bob
(Server)

Server (Bob)

 3

Appendix B. Tools for application security 293

The TGS forms a new random session key KAlice,Bob for the benefit of the client (Alice) and
the server (Bob), and then creates a new ticket tkt_to_Bob containing:

� The session key KAlice,Bob
� Identities of the service and the client
� Lifetime

It then assembles and sends a message to the client.

Phase 3: The client/server authentication (CS) exchange
The client/server authentication (CS) exchange is performed by the client and the server to
authenticate each other. The client must have obtained credentials for the server using the
AS or TGS exchange before the CS exchange is initiated.

After receiving the TSG exchange response from the TGS, the client deciphers it using the
TGS session key KAlice,KDC that is exclusively known by the client and the TGS. From this
message it extracts a new session key KAlice,Bob that is shared with the server (Bob) and the
client (Alice). The sealed ticket included in the response from the TGS cannot be deciphered
by the client because it is enciphered using the server's secret key KBob.

Then the client builds an authenticator and seals it using the new session key KAlice,Bob. At
last, it sends a message containing the sealed ticket and the authenticator to the server (Bob)
to request its service.

When the server (Bob) receives this message, it first deciphers the sealed ticket using its
encryption key KBob, which is kept in secret between Bob and the KDC. It then uses the new
session key KAlice,Bob contained in the ticket to validate the authenticator in the same way as
the TGS does in the TGS exchange.

Figure B-7 Simplified client/server authentication exchange

Once the server has authenticated a client, an option exists for the client to validate the
server (this procedure is called mutual authentication). This prevents an intruder from
impersonating the server.

If mutual authentication is required by the client, the server has to send a response message
back to the client. The message has to contain the same time stamp value as one in the
client’s request message. This message is enciphered using the session key KAlice,Bob that
was passed from the client to the server.

Note: The format of the ticket for a particular service is identical to one of the
ticket-granting ticket (TGT).

1. KAlice,Bob{timestamp}, tkt_toBob
2. KAlice,KDC{timestamp} (optional)

Keys

KDC

AS

Alice
(Client)

TGS

Bob
(Server)

Server (Bob)

 3

 1

 2

294 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

If the response is returned, the client decrypts it using the session key KAlice,Bob and verifies
that the time stamp value matches one in the authenticator that was sent by the client in the
preceding CS exchange. If it matches, then the client is assured that the server is genuine.

Once the CS exchange has completed successfully, an encryption key is shared by the client
and server and can be used for the on-going application protocol to provide the data
confidentiality.

Inter-realm operation
The Kerberos protocol is designed to operate across organizational boundaries. Each
organization wishing to run a Kerberos server establishes its own realm. The name of the
realm in which a client is registered is part of the client's name and can be used by the
application server to decide whether to honor a request.

By establishing inter-realm keys, the administrators of two realms can allow a client
authenticated in one realm to use its credentials in the other realm. The exchange of
inter-realm keys registers the ticket-granting service of each realm as a principal in the other
realm. A client is then able to obtain a ticket-granting ticket for the remote realm's
ticket-granting service from its local ticket-granting service. Tickets issued to a service in the
remote realm indicate that the client was authenticated from another realm.

This method can be repeated to authenticate throughout an organization across multiple
realms. To build a valid authentication path to a distant realm, the local realm must share an
inter-realm key with the target realm or with an intermediate realm that communicates with
either the target realm or with another intermediate realm.

Realms are typically organized hierarchically. Each realm shares a key with its parent and a
different key with each child. If an inter-realm key is not directly shared by two realms, the
hierarchical organization allows an authentication path to be easily constructed. If a
hierarchical organization is not used, it may be necessary to consult some database in order
to construct an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be bypassed to achieve
cross-realm authentication through alternate authentication paths. It is important for the
end-service to know which realms were transited when deciding how much faith to place in
the authentication process. To facilitate this decision, a field in each ticket contains the names
of the realms that were involved in authenticating the client.

Some assumptions
The following limitations are applied to the Kerberized security environment:

� Denial-of-service (DoS) attacks are not addressed by Kerberos. There are places in these
protocols where an intruder can prevent an application from participating in the proper
authentication steps. Detection and solution of such attacks (some of which can appear to
be “usual” failure modes for the system) is usually best left to human administrators and
users.

� The secret key must be kept in secret by each principal (each client and server). If an
attacker steals a principal’s key, it can then masquerade as that principal or impersonate
any server of the legitimate principal.

Note: IDS may be used to protect against such attacks as resource hogging.

Appendix B. Tools for application security 295

� Kerberos does not address password-guessing attacks. If a poor password is chosen, an
attacker may be able to mount an offline dictionary attack by repeatedly attempting to
decrypt messages that are encrypted with a key derived from the user’s password.

� Kerberos assumes a loosely synchronized clock in the whole system. Workstations may
be required to have a synchronization tool such as the time server provided.

� Principal identifiers should not be reused on a short-term basis. Access control lists
(ACLs) may be used to grant permissions to particular principals.

Kerberos implementation in z/OS
The Kerberos version 5 server was introduced in OS/390® V2R10 and implemented in
SecureWay Security Server Network Authentication Service for z/OS. Kerberos provides
strong authentication and encryption for the following applications:

� The UNIX Telnet server - Authentication support provided by the Kerberos 5 protocol

� The UNIX remote shell execution (rsh) server - Authentication support provided by the
Kerberos 5 protocol and the GSSAPI protocol

� The FTP client and FTP server - Authentication support provided by the GSSAPI protocol

The following is a brief overview of how Kerberos is set up in z/OS.

RACF support for Kerberos
The Kerberos realm and its trust relationships with other realms is defined using the general
resource class REALM. To define the local realm, you set up a REALM class profile named
KERBDFLT. Figure B-8 on page 297 shows a local realm ZOS17.RAL.IBM.COM being
defined with a minimum ticket lifetime of 30 seconds, a default ticket lifetime of 10 hours, a
maximum ticket lifetime of 24 hours, and a password of NEW1PW. All of the ticket lifetimes
are specified in seconds. The administrator then lists the new REALM profile with the RACF
RLIST command.

Restriction: The zSeries KDC is incompatible with Windows 2000 Kerberos applications.
Windows 2000 applications must use the Windows KDC. To support Windows 2000
applications, a cross-realm connection between the zSeries KDC and the Windows KDC is
required.

296 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure B-8 Setting up the local Kerberos realm using the RACF REALM class

A Kerberos principal is defined in the KERB segment of a user profile (in the same way that
the UNIX information for a user is stored in the OMVS segment). You can use the RACF
ADDUSER (for new users) or ALTUSER (for existing users) commands to add the KERB
segment for a user ID. In the KERB segment, the KERBNAME parameter identifies the local
principal name. Local principal names may contain imbedded blanks and lowercase
characters, and must be unique. For instance, the following associates the RACF user cs09
with Kerberos principal name CS09:

alu CS09 password(kerbpass) noexpired kerb(kerbname(CS09))

When you add a KERB segment to a user profile, RACF automatically sets up a profile in the
KERBLINK class named with the KERBNAME parameter from the user’s KERB profile. This
enables RACF to have a mapping to a RACF user ID from a Kerberos principal name (which
may or may not be the same). When you use ALTER NOKERB to remove a KERB segment
from a user, or you use DELUSER to delete a user with a KERB segment, the KERBLINK
profile is automatically deleted.

Basic steps to follow to configure RACF to support Kerberos are:

� Customizing the local environment:

– Defining your local RRSF (RACF remote sharing facility) node
– Defining your local realm
– Defining local principals

� Defining your foreign environment:

– Defining foreign realms
– Mapping RACF user IDs for foreign principals

 RDEFINE REALM KERBDFLT KERB(KERBNAME(ZOS17.RAL.IBM.COM) -
 PASSWORD(kerberos) MINTKTLFE(15) DEFTKTLFE(36000) -
 MAXTKTLFE(86400))

 RLIST REALM KERBDFLT KERB NORACF
CLASS NAME
----- ----
REALM KERBDFLT

KERB INFORMATION

KERBNAME= ZOS17.RAL.IBM.COM
MINTKTLFE= 0000000015
MAXTKTLFE= 0000086400
DEFTKTLFE= 0000036000
KEY VERSION= 001
KEY ENCRYPTION TYPE= DES DES3 DESD

Note: Do not execute the DELUSER command, or an ALTUSER command with the
NOKERB option, for a user profile that contains a KERB segment from RACF systems that
do not support the KERBLINK class. These systems do not automatically manage
KERBLINK profiles. You will inadvertently leave residual mapping profiles in the
KERBLINK class. For information about recovery procedures, see z/OS SecureWay
Security Server RACF System Programmer's Guide, SA22-7681.

Appendix B. Tools for application security 297

The z/OS Kerberos KDC
The Kerberos KDC is implemented by started task SKRBKDC, as shown in Figure B-9. The
RACF user ID associated with the started task must have a UNIX UID of UID(0) (a
superuser).

Figure B-9 Started task for Kerberos server

The SKRBKDC started task reads the Kerberos server configuration file from the SKRBKDC
RACF user’s OMVS home directory. The Kerberos configuration file specifies which IP host
and port the KDC server should be started on for the local realm as well as the IP host and
port numbers for KDCs in other realms.

//***
//* *
//* Procedure for starting the Kerberos Security Server *
//* *
//***
//SKRBKDC PROC REGSIZE=256M,OUTCLASS='S'
//*--
//GO EXEC PGM=EUVFSKDC,REGION=®SIZE,TIME=1440,
// PARM=('ENVAR("LANG=En_US.IBM-1047"),TERM(DUMP) X
// / 1>DD:STDOUT 2>DD:STDERR')
//STDOUT DD SYSOUT=&OUTCLASS,DCB=LRECL=250,
// FREE=END,SPIN=UNALLOC
//STDERR DD SYSOUT=&OUTCLASS,DCB=LRECL=250,
// FREE=END,SPIN=UNALLOC
//SYSOUT DD SYSOUT=&OUTCLASS,
// FREE=END,SPIN=UNALLOC
//CEEDUMP DD SYSOUT=&OUTCLASS,
// FREE=END,SPIN=UNALLOC

298 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure B-10 Sample Kerberos configuration file

Figure B-10 shows an example of a Kerberos server configuration file.

1 The default_realm statement specifies the realm name that is used when a principal
wants to start communicating with another principal, and does not specifically state the
realm. This should be the DNS root of your system that the KDC will run on.

2 The KDC statement for a realm specifies the host name and port number of the KDC
server for that realm.

3 The KPASSWD_SERVER statement for a realm specifies the host name and port
number of the Password Change server for that realm.

It should be noted that in the above example, the local realm is ZOS17.RAL.IBM.COM (as set
up in Figure B-8 on page 297), and that the host name on the local realm points to where the
KDC will be opening a socket. These sockets must be reserved for job name OMVS in the
TCP/IP stack that the server will be running on.

Verifying correct KDC startup
After the SKRBKDC started task has successfully started, check to ensure that the KDC
server is listening on the correct sockets in the TCP/IP stack that you have targeted using the
onetstat -s -p stackname OMVS command.

In your TSO logon proc, ensure the Kerberos REXX data set EUVF.SEUVFEXC is in the
SYSEXEC concatenation. In OMVS, ensure the PATH variable has subdirectory
/usr/lpp/skrb/bin before any other bin library for the user.

;--
; Sample Kerberos configuration file
;--

[libdefaults]

default_realm = ZOS17.RAL.IBM.COM 1
kdc_default_options = 0x00000010
use_dns_lookup = 0

; Default encryption types if DES3 is not supported
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc
; Default encryption types if DES3 is supported
;default_tkt_enctypes = des3-cbc-sha1,des-cbc-crc
;default_tgs_enctypes = des3-cbc-sha1,des-cbc-crc

[realms]

ZOS17.RAL.IBM.COM = {
 2 KDC = WTSC63C.ZOS17.RAL.IBM.COM:88
 3 KPASSWD_SERVER = WTSC63C.ZOS17.RAL.IBM.COM:464
}

[domain_realm]

.ZOS17.RAL.IBM.COM = ZOS17.RAL.IBM.COM

Appendix B. Tools for application security 299

Figure B-11 Kerberos installation verification procedure

To get an initial ticket from Kerberos, enter the kinit command. The first parameter is the
principal name. In Figure B-11 the principal name that we are getting a ticket for is CS09
(note the case is exactly the same as that entered on the RACF command used to add the
KERB segment for the user).

The password was then entered (it must be in uppercase) and the ticket was received from
the KDC. The klist command shows a list of credentials that the current user has. In this
case, there is only one, for the default realm ZOS17.RAL.IBM.COM.

The user is now ready to log onto a Kerberized server, such as otelnetd or FTP.

For information about how to Kerberize a server application, see that server’s documentation.

For further information about the Kerberos server in z/OS, refer to z/OS V1R7.0 Integrated
Security Services Network Authentication Service Administration, SC24-5926-05.

CS09 @ SC63:/cs09>kinit CS09
EUVF06017R Enter password:

CS09 @ SC63:/cs09>klist
 Ticket cache: FILE:/var/skrb/creds/krbcred_cf635eb0
 Default principal: CS09@ZOS17.RAL.IBM.COM

Server: krbtgt/ZOS17.RAL.IBM.COM@ZOS17.RAL.IBM.COM
 Valid 2002/05/30-10:23:39 to 2002/05/30-20:23:39
CS09 @ SC63:/cs09>

Note: When using the kinit command, the password that you enter must be uppercase.
This is because when you add it with the RACF ALTUSER command, RACF translates the
password to uppercase.

300 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Appendix C. Certificate management in z/OS

Digital certificates have to be created and maintained within a central repository. In this
chapter we discuss the use of RACF and the gskkyman utility to provide this function. Using
these utilities we discuss how digital certificates and key rings are created and maintained.

In this chapter we cover the following topics.

C

Section Topic

“Digital certificates” on page 302 The basic concepts surrounding digital certificate.s

“How to generate digital certificates in
z/OS” on page 303

We tell you how to generate digital certificates in z/OS.

“Digital certificate field formats” on
page 304

This topic looks at how digital certificates are structured.

“RACF RACDCERT command use” on
page 306

Using RACF to manage digital certificates.

“RACF key rings” on page 307 Using RACF to define key rings.

“gskkyman command use” on page 309 Using gskkyman to manage digital certificates.

“Client certificates” on page 311 The use of client certificates.

“Server certificates” on page 311 The use of server certificates.

“Self-signed certificates” on page 312 The use of self-signed certificates.

“Obtaining certificates” on page 312 Here we cover how to obtain digital certificates in a z/OS
environment.

“Certificate locations example” on
page 346

This topic covers where certificates are stored in RACF
and gsyyyman z/OS UNIX files.

© Copyright IBM Corp. 2006. All rights reserved. 301

Digital certificates
In the z/OS environment, digital certificates are used by SSL/TLS to authenticate and encrypt
the protocol handshaking messages. An SSL/TLS server must send its certificate to the
client, and a server can optionally request a certificate from the client. For the purposes of this
appendix, SSL and TLS are equivalent unless stated otherwise.

There are two ways for you to obtain a certificate. One is to request a Certificate Authority
(CA) to create your certificate. If you are requesting a certificate for a server, and you plan to
make your server available to the public or your business partners, you should get your
certificate from a trusted CA such as VeriSign, Inc., or any other Certificate Authority whose
root certificate is contained in the key database of the clients who use your server.

The second way for you to obtain a certificate is to generate one yourself. This type of
certificate is called a self-signed certificate because the issuer of the certificate is the same as
the subject of the certificate. This type of certificate might be useful for testing purposes or for
securing TLS connections within your intranet.

To validate a certificate, the receiver checks its key database for a trusted CA certificate that
has the same distinguished name as that of the received certificate’s certifier. Thus the CA
certificates must be located in the client’s and server’s local database (or key ring) and
marked as trusted. See Figure C-1.

Figure C-1 SSL certificate management: CA-signed certificates

If you choose to use a self-signed certificate instead of a CA-signed certificate (shown in
Figure C-2 on page 303), the CA certificate that should be trusted is identical to the
server/client certificate itself. If the server itself has signed its certificate and client
authentication is not required, the server certificate must be exported and stored in the
client’s local database as a trusted CA certificate, because the server certificate is the
issuer’s certificate for itself.

SSL Client

The server must send its certificate to the
client.

Assumptions:
CA1 has signed the server certificate.
CA2 has signed the client certificate.
Each CA certificate has been marked
as "trusted".

SSL Server

Key Ring

The client sends its certificate to the server
when requested.

Key Ring

Server
Certificate

Server
Certificate

CA2
CertificateCA1

Certificate

Client
Certificate

Client
Certificate

CA1
CertificateCA2

Certificate

302 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-2 SSL certificate management: Self-signed certificate without client authentication

How to generate digital certificates in z/OS
Most SSL-enabled applications in z/OS are making use of the System SSL toolkit as
described in “System SSL” on page 288. For certificate storage and management, two
command utilities exist:

� The RACF command RACDCERT, which creates and maintains certificates and key rings
that are stored in the RACF database. This command can also be used to create
self-signed certificates and certificate requests for other CAs.

� The gskkyman utility, which creates and maintains a key database as a file in the z/OS
UNIX file system. It can also create self-signed certificates and certificate requests for
other CAs.

Using RACF key rings is the preferred method because it provides better security for the
certificates and their private keys. With RACF key rings, stash files containing key database
passwords are not used and access to key rings and certificates is controlled by RACF. In
this appendix we show both methods of creating and managing certificates.

For detailed information regarding the creation and maintenance of digital certificates in z/OS,
see Chapter 9, “Certificate/Key Management,” in z/OS Crytographic Services System Secure
Sockets Layer Programming, SC24-5901. For a reference on the RACDCERT command, see
z/OS V1R7.0 SecureWay Security Server RACF Command Language Reference,
SA22-7687-08.

Table C-1 on page 304 summarizes all applications that make use of the certificate
management tools in z/OS V1R7.

SSL Client

The server must send its certificate to the
client.

Assumptions:
Server has signed its certificate.
Client authentication is not requested.
Server certificate has been stored in
the client's local database as a CA
certificate and marked as "trusted".

SSL Server

Key Ring

Client authentication is not performed.

Key Ring

Server
Certificate

Server
Certificate

Client
Certificate

Server
Certificate

Appendix C. Certificate management in z/OS 303

Table C-1 Applications that use digital certificates in z/OS V1R7

Digital certificate field formats
When you create a digital certificate, whether using gskkyman or RACDCERT, certain fields
are required and others are optional. We cover the most important fields here.

� Certificate Version Number: This is always 3. gskkyman will ask for the number, while
RACDCERT sets it automatically.

� Distinguished Name: The issuer of a certificate and the subject of a certificate are both
represented by a distinguished nam”. This name takes the form of a hierarchy, although
different certificate issuers treat the format differently. For a self-signed certificate, the
issuer’s distinguished name will be copied from the subject’s distinguished name. A
distinguished name contains the following subfields (with RACDCERT parameter names
in parentheses):

– Common Name: (CN). For a server certificate, this field normally contains the server’s
DNS name. For a client certificate, this will identify the individual or computer.

– Organization-name: (O). Company name or similar.

– Title: (T). Salutation for an individual.

– Organizational-unit: (OU). Used for classification within the Organization-name, above.

– Locality: (L). City or town.

– State-or-province: (SP).

– Country: (C). Two-character ISO code for country.

– The only compulsory subfields of the distinguished name are the common name, the
organization name, and the country.

� Period of validity: The gskkyman utility asks for the number of days from today that the
certificate is valid for, while RACDCERT sets the lower and upper dates with the
NOTBEFORE(DATE(yyyy-mm-dd) and the NOTAFTER(DATE(yyyy-mm-dd) parameters.

RACDCERT gskkyman

S
S

L

TN3270 server X X

HTTP Server X X

PAGENT Client X

LDAP server X X

Policy Agent X

DCAS server X X

Firewall configuration client X X

T
L

S FTP Server X X

IK
E IKE server X

AT-TLS applications X X

IPSec/IKED X X

304 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

The Label field is also needed. This field is not part of the X509 specification but it is used to
organize certificates in the key database. You can use the label to list, alter, and delete
individual certificates. A label must be unique except for storage within RACF, where labels
can be duplicated as long as they are associated with different RACF user IDs (with the
ID(user..) parameter).

Figure C-3 shows a batch job used to create a self-signed digital certificate using
RACDCERT.

Figure C-3 Setting up a test self-signed certificate, for a gskkyman comparison

1 The SUBJECTSDN parameter encloses all the Distinguished Name subfields for the
subject.

Figure C-4 on page 306 shows the same certificate being created (with a different label)
using gskkyman in order to show how the certificate fields are specified in each utility. The
required fields of Common Name, Organization, and Country were specified; the key size
was set to 512 bits; and a 100-day period of validity was set.

//CERTAUTH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Add the top-level self-signed certificate for the certificate
//* authority (ourselves)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CERTAUTH GENCERT -
1 SUBJECTSDN(O('I.B.M Corporation') -
 CN('server.raleigh.ibm.com') -
 C('US')) -
 NOTAFTER(DATE(2002-08-22)) -
 SIZE(512) -
 WITHLABEL('Label for RACDCERT cert')
/*

Appendix C. Certificate management in z/OS 305

Figure C-4 Example of setting up a certificate in gskkyman

RACF RACDCERT command use
RACF can be used to create, register, store, and administer digital certificates and the private
keys associated with the certificates. RACF can also be used to create and manage key rings
of stored digital certificates. Certificates are stored in the RACF database, while private keys
may be stored in the ICSF Public Key Data Set (PKDS), encrypted under a 168-bit
Triple-DES key.

RACF distinguishes three types of digital certificates:

� Certificate Authority certificates: These certificates are associated with Certificate
Authorities (CAs) and are used to verify signatures in other certificates.

� Site certificates: These certificates are associated with servers or network entities in
locations other than the local system.

� User certificates: These certificates are associated with a RACF user ID and are used to
authenticate a user’s identity.

Current key database is /example.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu): 5
Enter version number of the certificate to be created (1, 2, or 3) [3]: 3
Enter a label for this key................> Label for gskkyman cert
Select desired key size from the following options (512):
 1: 512
 2: 1024
Enter the number corresponding to the key size you want: 1
Enter certificate subject name fields in the following.
 Common Name (required)................> server.raleigh.ibm.com
 Organization (required)...............> I.B.M Corporation
 Organization Unit (optional)..........>
 City/Locality (optional)..............>
 State/Province (optional).............>
 Country Name (required 2 characters)..> US
Enter number of valid days for the certificate [365]: 100
Do you want to set the key as the default in your key database? (1 = yes, 0 = no
) [1]: 0
Do you want to save the certificate to a file? (1 = yes, 0 = no) [1]: 0

Please wait while self-signed certificate is created...

306 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

A user certificate or a certificate that has been connected to a key ring with
USAGE(PERSONAL) is the only type of certificate whose private key can be used to create
signatures. Therefore, all server certificates for local servers need to be user certificates or
they need to be connected to an appropriate key ring with USAGE(PERSONAL).

The RACF ISPF panels can be used to maintain the digital certificates if you do not choose to
use the TSO RACDCERT command. Our examples show the TSO commands as they can
be submitted in a batch job.

RACF key rings
A RACF key ring is a way to logically group together a number of certificates. Certificates can
be “connected” to one or more key rings.

Each key ring is associated with only one user, but the certificates that are connected to that
key ring may or may not be the key ring-owner’s certificate.

Figure C-5 Example showing how key rings contain pointers to certificates

Figure C-5 shows the logical relationship between RACF key rings and digital certificates
stored in the RACF database. There can be more than one key ring in the database with the
same name, but each must be assigned to a different user ID.

Typically, a z/OS server that uses digital certificates will have a configuration parameter
where the RACF key ring name is specified. TN3270 and FTP are examples of servers that
use key rings. During SSL/TLS handshaking, the server sends its certificate to the client. The
server will get its certificate from the RACF key ring specified in the server’s configuration file
and that is associated with the server’s RACF user ID. A server also looks at the certificates
in its key ring for a CA certificate with which to validate the client certificate, if client
authentication is configured.

Sample Certificates in RACF Database
Certificate for User1
Certificate for User2

Certificate for Server1
Certificate for Server2

Certificate for CA Verisign

Server 1
Keyring 1

User1
Server1
CA Verisign

Keyring2
Server2
CA Verisign

Server 2
Keyring 1

User2
Server2
CA Verisign

Keyring2
User1
Server1

User 1
Keyring 1

User1
Server1

Keyring2
User1
Server2

Sample groupings of
certificates into keyrings:

Appendix C. Certificate management in z/OS 307

A z/OS client that uses digital certificates (such as FTP) will have a configuration parameter
where the RACF key ring name is specified. During SSL/TLS handshaking, the server sends
its certificate to the client, and the client looks at the certificates in its key ring for a CA
certificate with which to validate the server certificate. If the server requests the client
certificate, the client will get its certificate from the RACF key ring specified in the client’s
configuration file and that is associated with the client’s RACF user ID. Note that a client
certificate must be in TRUSTED status in the RACF database.

RACDCERT command security
Authority to the IRR.DIGTCERT.function resource in the FACILITY class allows a user to
issue the RACDCERT command. To issue the RACDCERT command, users must have one
of the following RACF authorities:

� The SPECIAL attribute

� Sufficient authority to resource IRR.DIGTCERT.function in the FACILITY class

� READ access to IRR.DIGTCERT.function to issue the RACDCERT command for
themselves

� UPDATE access to IRR.DIGTCERT.function to issue the RACDCERT command for
others

� CONTROL access to IRR.DIGTCERT.function to issue the RACDCERT command for
SITE and CERTAUTH certificates (This authority also has other uses.)

Figure C-6 RACF commands to the TCP/IP user ID

Figure C-6 shows the RACF commands needed to permit a user (TCPIPA in this case) to
issue the RACDCERT LIST and RACDCERT LISTRING commands.

For more information see z/OS V1R3.0 Security Server RACF Security Administrator's
Guide, SA22-7683.

RACDCERT command format
RACDCERT [ID(user) | SITE | CERTAUTH] command-options

The RACDCERT command can be directed to a RACF user ID’s digital certificates or key
rings by the ID(user) parameter, to a Certificate Authority’s resources by the CERTAUTH
parameter, and to a site’s resources by the SITE parameter. If no ID, SITE, or CERTAUTH
parameter is included, the command issuer’s ID is used.

For instance, the command racdcert certauth list will list all Certificate Authority
certificates in the RACF database, while racdcert list shows all of your (the command
issuer’s) certificates.

Important: Any z/OS-based client or server that uses a RACF key ring issues an internal
RACDCERT LIST and RACDCERT LISTRING command. The RACF user ID associated
with the server must therefore be granted READ access to the RACF profiles controlling
these commands, which are IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING. For a
list of servers that use RACF key rings, see Table C-1.

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(TCPIPA) ACCESS(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(TCPIPA) ACCESS(READ)
SETR RACLIST(FACILITY) REFRESH

308 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

There is also a “multiid” parameter for mapping functions. This and other parameters are
explained fully in z/OS V1R3.0 Security Server RACF Security Administrator's Guide,
SA22-7683.

gskkyman command use
The gskkyman UNIX command is used to create and maintain digital certificate key databases
in a z/OS UNIX file system. This is an alternative to storing digital certificates in the RACF
database. Note that if you are using SSL/TLS client authentication to map a digital certificate
to a RACF user ID, then you must use the RACF RACDCERT command to store the client
certificate, not gskkyman.

In the examples later in this appendix, we assume that a key database has been set up. The
procedure to set up a new key database (and stash file) is as follows:

1. Set up access to the gskkyman command from your UNIX shell. This is covered in z/OS
V1R7.0 Communications Server: IP Configuration Guide, SC31-8775.

2. From the UNIX shell, enter the command gskkyman. Figure C-7 shows the initial panel.
This example shows how to create a new key database in the z/OS UNIX file system. The
database will be created in the subdirectory you entered the gskkyman command from. The
password you enter here will be used to open the database in the future.

Figure C-7 Setting up a new key database in a z/OS UNIX using gskkyman

Since the key database has a password, there must be a mechanism for a server to
supply it to read the contents. This mechanism is implemented by using a stash file, which
is a file using the same name as the key database, but with a suffix of .sth rather than
.kdb. This file contains the key database password in encrypted form, and is created from
the gskkyman panel.

3. Create the password stash file. This is shown in Figure C-8 on page 310.

FOCAS @ SC63:/>gskkyman

 IBM Key Management Utility

Choose one of the following options to proceed.

 1 - Create new key database
 2 - Open key database
 3 - Change database password

 0 - Exit program

Enter your option number: 1
Enter key database name or press ENTER for "key.kdb": example.kdb
Enter password for the key database.......>
Enter password again for verification.....>
Should the password expire? (1 = yes, 0 = no) [1]: 0

The database has been successfully created, do you want to continue to work with
 the database now? (1 = yes, 0 = no) [1]: 0

Appendix C. Certificate management in z/OS 309

Figure C-8 Creation of the stash file using gskkyman

Note that after the stash file was created, the UNIX file attributes were displayed with the
UNIX ls command. As you can see in Figure C-8, the file attributes of the key database
and the stash file are both “-rw-------", which means only the creator of the database (the
user of the gskkyman command) can read and write to this file. You should use the UNIX
chmod command to set the permission bits so that the server’s UNIX UID is able to read
both the key database and the stash file. An example command to allow the owner
read/write access and the owners group to have read access would be chmod 640
example.*.

FOCAS @ SC63:/>gskkyman

 IBM Key Management Utility

Choose one of the following options to proceed.

 1 - Create new key database
 2 - Open key database
 3 - Change database password

 0 - Exit program

Enter your option number: 2
Enter key database name or press ENTER for "key.kdb": example.kdb
Enter password for the key database.......>

 Key database menu

Current key database is /example.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu): 11

The encrypted password has been stored in file /example.sth

Your request has completed successfully, exit gskkyman? (1 = yes, 0 = no) [0]: 1
FOCAS @ SC63:/>ls -la example.*
-rw------- 1 HAIMO SYS1 65080 May 15 17:57 example.kdb
-rw------- 1 HAIMO SYS1 80 May 15 17:57 example.rdb
-rw------- 1 HAIMO SYS1 129 May 15 18:06 example.sth
FOCAS @ SC63:/>

310 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Client certificates
An SSL/TLS-enabled server may request that the client produce a digital certificate to verify
the client’s identity. The server must then validate the client certificate by checking the trusted
CA hierarchy in its own key database, to ensure the digital signature on the certificate is from
a trusted CA. The server does not make use of the client’s public key contained in the
certificate for communications; the request is for identification purposes only.

If the client passes a self-signed certificate (one that the client has generated and signed
itself), then the server must check to ensure it has a copy of the same certificate in its key
database and that the certificate is marked as trusted.

When client authentication is requested by the server, the server will be configured to
authenticate to a particular level. These levels are:

Level 1 The server ensures the signer of the client’s certificate is trusted by checking the
trusted CA certificates that are in the server’s key ring.

Level 2 The authentication requires that the client certificate be registered with RACF (or
another SAF-compliant security product) and that it be in “TRUSTED” status. The
RACF user ID that the certificate is associated with is that given in the ID()
parameter of the RACFDCERT ID() ADD command when the client certificate was
added to RACF. The CA that issued the client certificate must have a CA certificate
connected to the server’s key ring. Note that this level cannot be used if the z/OS
server is using a key database created by using gskkyman.

Level 3 The authentication provides, in addition to level 1 and level 2 support, the capability
to restrict access to the server based on the user ID returned from RACF. This level
is implemented entirely in RACF, that is, a server only selects level 2 authentication,
and if the appropriate profiles for the server are defined in RACF, the authentication
level is upgraded to level 3. Note that this level cannot be used if the z/OS server is
using a key database created by using gskkyman.

Server certificates
As discussed in “SSL protocol description” on page 284, the SSL/TLS protocol requires a
server to supply a digital certificate to a client. The client must then validate the server
certificate by checking the trusted CA hierarchy in its own key database, to ensure the digital
signature on the certificate is from a trusted CA. Then the client can use the server’s public
key from the certificate to communicate the rest of the SSL handshake.

If the server passes a self-signed certificate (one that the server has digitally signed itself),
then the client must check to ensure it has a copy of the same certificate in its key database,
and that the certificate is marked as “TRUSTED”.

Important: To implement SSL in any form, you must have a server certificate available to
the server and client. This is a prerequisite for implementing any client authentication that
is discussed in this appendix.

Appendix C. Certificate management in z/OS 311

Self-signed certificates
The server or client certificate may be self-signed. This means that the digital signature on the
certificate can only be verified by the public key given on the same certificate. The certificate
is not authenticated by any Certificate Authority and must be taken at face value by the client
or server receiving it.

The normal validation procedure for a certificate is still performed for a self-signed certificate.
This means the receiver checks their key database for the Certificate Authority that signed the
certificate, but, as already mentioned, the CA is represented by the certificate received.
Therefore, the certificate must have been previously received by some other means, and
placed in the receiver’s key database as a trusted certificate.

Obtaining certificates
This section shows the practical steps necessary to obtain digital certificates in a z/OS
environment. If you choose not to use self-signed certificates, you will need to request your
client/server certificates from a Certificate Authority (CA). That CA can be either an external
organization such as VeriSign, or you can create a CA internally by generating a CA
certificate yourself, and using that to sign other certificates. You can also generate self-signed
certificates where the CA is the certificate itself. This is the simplest form of certificate usage.

In all the examples that follow, the server runs on z/OS under the RACF user ID “STC”, and
the end-user’s RACF user ID is “FOCAS”. The end user’s user ID is only needed when you
are storing client certificates in RACF using RACDCERT.

Procedures for obtaining and storing self-signed certificates can be found in “Self-signed
certificates” on page 312. Procedures for obtaining and storing internal CA signed certificates
can be found in “Internal Certificate Authority (CA)” on page 328. Procedures for obtaining
and storing external CA signed certificates can be found in “External Certificate Authority
(CA)” on page 333.

Self-signed certificates
The aim of this section is to show how to use the TSO RACDCERT command and the UNIX
gskkyman command to store and use self-signed certificates. For the purposes of the
examples, it is assumed the server is on z/OS and the client is not.

The procedure to use RACDCERT to generate and manage a self-signed server certificate is
shown in “Self-signed server certificate RACDCERT procedure” on page 312. The procedure
to use RACDCERT to import and manage a self-signed client certificate is shown in
“Self-signed client certificate RACDCERT procedure” on page 317. The procedure to use
gskkyman to generate and manage a self-signed server certificate is shown in “Self-signed
server certificate gskkyman procedure” on page 320. The procedure to use gskkyman to
import and manage a self-signed client certificate is shown in “Self-signed client certificate
gskkyman procedure” on page 324.

Self-signed server certificate RACDCERT procedure
This procedure is basically the same for any z/OS server. In this example we are generating
and storing a certificate for use by a TN3270 server.

Once generated, the server certificate is placed in the server’s RACF key ring and also
exported to the client to be placed in the client’s key database as a trusted CA certificate.

312 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Here are the steps required:

1. Generate a self-signed certificate for the server.

Figure C-9 Batch job to create self-signed server certificate

The ID(STC) parameter 1 associates the certificate being generated with the RACF user
“STC”. This is the user ID that the server in our example is running under. Yours will
probably be different. For an explanation of the rest of the RACDCERT parameters, see
“Digital certificate field formats” on page 304.

Note that since there is no RACDCERT SIGNWITH parameter specified on the
GENCERT command, the certificate will be digitally signed by the private key owned by
the subject of the certificate. This is the definition of a self-signed certificate. Make sure
the common name (CN) is the same as the host or domain name of the server.

2. Create a RACF key ring for the server.

Figure C-10 Batch job to add a key ring for the self-signed certificate

Figure C-10 shows the two steps necessary to create the key ring for the server:

a. Create a new RACF key ring using the RACDCERT ADDRING command.

b. Connect the self-signed servers certificate to the new key ring using the RACDCERT
CONNECT command.

//FOCAS1 JOB 'SET UP TN3270 CERT','PETER FOCAS',CLASS=A,MSGCLASS=X
//SERVCRT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* set up the TN3270 server certificate, and self-sign it.
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
1 RACDCERT ID(STC) GENCERT SUBJECTSDN(CN('ITSO.RALEIGH.IBM.COM') -
 O('IBM Corporation') -
 OU('ITSO Raleigh TN3270 Server') -
 C('US')) -
 WITHLABEL('TN3270 Server')
/*

//FOCAS1 JOB 'SET UP TN3270 CERT','PETER FOCAS',CLASS=A,MSGCLASS=X
//KEYRING EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Add a new Keyring to the TN3270 servers RACF ID (STC), then....
//* Add TN3270 server certificate to the user 'STC's keyring. the
//* Keyring name is from the TN3270 configuration statement as below
//* 'KEYRING SAF TN3270Ring'
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(STC) ADDRING(TN3270Ring)
 RACDCERT ID(STC) CONNECT(ID(STC) -
 LABEL('TN3270 Server') -
 RING(TN3270Ring) -
 DEFAULT -
 USAGE(PERSONAL))
/*

Appendix C. Certificate management in z/OS 313

Note the RING parameter specifies the same ring name as what you would have
configured into the server. In the TN3270 server, this is specified on the KEYRING SAF
ringname statement, and on the FTP server it is on the KEYRING statement in
FTP.DATA. The DEFAULT statement is needed because there may be more than one
certificate in the key ring, and System SSL needs to know which certificate to pass to the
client.

3. Export the self-signed server certificate to an MVS database.

Figure C-11 Batch job to write the internal CA certificate to an MVS data set

Figure C-11 shows the RACDCERT EXPORT command being used to export the
self-signed server certificate to an MVS data set.

4. FTP the certificate exported to the MVS data set in step 3 to the client that will use it.

This step is not shown, since any FTP client will be able to perform this step. Note that in
the example, the exported certificate in the MVS data set is in EBCDIC format. Therefore,
the FTP must perform EBCDIC-to-ASCII translation if the client is on an ASCII host. The
MVS data set will be sent via FTP to any client that needs to use that certificate to validate
the same certificate when presented by a server in an SSL exchange. Depending on the
number of clients in an enterprise, this may result in a large number of transfers. One way
to reduce the number of file transfers to clients is for all clients to pick up their key
database from a LAN drive.

//FOCAS1 JOB 'EXPORT SERVER CERT','PETER FOCAS',CLASS=A,MSGCLASS=X
//EXPORT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Export the Self-signed Server certificate from the RACF database
//* in base-64 encoded format. This is then FTP'd to the TN3270
//* client so that it can verify the same certificate
//* when passed in the SSL exchange.
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(STC) EXPORT(label('TN3270 Server')) -
 FORMAT(CERTB64) DSN('FOCAS.RACDCERT.TN32CERT')
/*

314 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-12 Personal Communications client certificate management window

5. At the client, the certificate received from step 4 must be imported into the key database
as a trusted certificate.

Depending on the type of client, there are a number of different ways to do this. In the
case of a Windows Personal Communications client (a TN3270 client) you select the
Certificate Management or Certificate Wizard icon from the Utilities folder. This displays
the window (after the key database file is opened) shown in Figure C-12. You now import
the certificate by clicking the Add button. Once the certificate is added, the window seen
in Figure C-13 on page 316 is the detail display from the certificate, showing the key size
of 1024 (set by default with the RACDCERT GENCERT command), the certificate version,
and the Issued To name the same as the Issued By (this is a self-signed certificate).

Appendix C. Certificate management in z/OS 315

Figure C-13 Personal Communications client: Display of imported self-signed server certificate

6. Test the client-to-server connection.

The Personal Communications client was instructed to connect to the TN3270 server
using SSL. Figure C-14 on page 317 shows Personal Communications displaying the
server certificate (by clicking Communication → Security → Server), which shows that
the certificate subject is the TN3270 server, and the certificate issuer is the same. This is
the self-signed server certificate set up in step 1.

316 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-14 Personal Communications client: server certificate being used and signer’s details

While this discussion showed the certificate being generated for a TN3270 server, followed
by an export to the client and placement in the client’s key database as a trusted certificate,
the procedure for any client/server is basically the same.

Self-signed client certificate RACDCERT procedure
A client certificate must be added to RACF and associated with the appropriate RACF user ID
using the RACFDCERT ID(clients-user ID) ADD.... statement. The client certificate’s CA must
be connected to the server’s RACF key ring using the RACFDCERT ID(servers-user ID)
CONNECT. The basic procedure to follow is:

1. Get the client certificate. For a self-signed certificate, this is normally generated at the
client end.

Since different client programs have different ways to generate a client certificate, this
should be thought of as a generic example. Most clients will have some way to generate a
certificate. In the case of Personal Communications, which provides a TN3270 client, you
use the Windows menu (click Start → Programs → IBM Personal Communications →
Utilities → Certificate Management) to open the client’s key database. Then you click
Create → New Self-signed Certificate to generate the certificate. See Figure C-15 on
page 318 for an example of a self-signed client certificate that has just been generated by
Personal Communications into the client key database.

Appendix C. Certificate management in z/OS 317

Figure C-15 Personal Communications client: Newly added self-signed client certificate

2. Export the certificate from the client’s key database to a certificate file.

Export the client certificate to a file. Most certificate management utilities allow the export
of a certificate in at least two formats. The most common is Base64-encoded ASCII, but
there is also the binary DER format. The choice depends on what your certificate
management utility at the server end can use as an import format. We will use Base64
ASCII format. At the lower right-hand side of the window shown in Figure C-15 is the
Extract Certificate... button. This is used to write a certificate to a data set. The window
that is presented is shown in Figure C-16 on page 319. Note the Data Type field specifies
Base64-encoded ASCII and that the certificate will be written to the cert.arm file.

318 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-16 Exporting a client certificate to a file

3. FTP the certificate file from the client to the z/OS server side.

This does not need to be shown here. You just need to FTP the certificate file created in
step 2 (cert.arm in this example) to an MVS data set at the server side as a text file.

4. Add the client certificate into the RACF database and associate with an end user.

Figure C-17 shows the batch job used to add the client certificate to the RACF database
and associate it with the RACF user ID “FOCAS” (the owner of the client certificate) with
the ID() parameter. The RACDCERT ADD statement specifies the MVS data set name
that contains the client certificate; this was the data set name that was created by the FTP
in step 3. The certificate is set to TRUSTED status, which means that any certificate that is
signed with this certificate will pass authentication.

Figure C-17 Batch job to add a client certificate into the RACF database as TRUSTED

//FOCAS1 JOB 'EXPORT SERVER CERT','PETER FOCAS',CLASS=A,MSGCLASS=X
//CLIENT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Import the Self-signed Client certificate into the RACF database
//* This was FTP's from the workstation TN3270 client, that
//* generated it with the local PCOMM utility. It must be
//* imported as a trusted CA certificate
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(FOCAS) ADD('FOCAS.RACDCERT.CLIENT.CERT') -
 TRUST WITHLABEL('TN3270 client certificate PF')
/*

Appendix C. Certificate management in z/OS 319

5. Connect the client certificate to the server’s RACF key ring.

Figure C-18 shows the batch job used to connect the client certificate, added in step 4, to
the server’s key ring. In the RACDCERT CONNECT statement, the key ring name is
whatever is coded in the server’s configuration file (in TN3270’s case it is specified on the
KEYRING SAF statement). This assumes the key ring is already set up (probably because
you have the server’s certificate there). If the ring is not set up, you must create it before
this job is run with the RACDCERT ID(STC) ADDRING(TN3270Ring) command
(assuming the server’s RACF ID is STC and key ring name is TN3270Ring).

Figure C-18 Batch job to import client certificate into RACF

After these steps have been taken (assuming you have followed the steps to obtain and store
the server’s certificate) and both the client and server are configured with the appropriate
parameters for client authentication, the connection can be made.

Self-signed server certificate gskkyman procedure
It is assumed that you have set up a key database and produced a stash file for the server as
discussed in “gskkyman command use” on page 309, that you have set the correct UNIX
permission bits so that the server can read the files, and that the database is named
tn32v1r7.kdb. Once the database is created, you generate a self-signed certificate into it, and
set it as the default certificate. The self-signed certificate must then be exported to the client
workstation, where it is imported into the client’s key database as a trusted CA certificate.

Figure C-19 on page 321 shows gskkyman being used to open the existing database in
preparation for generating the certificate:

1. Open the key database using gskkyman.

//FOCAS1 JOB 'EXPORT SERVER CERT','PETER FOCAS',CLASS=A,MSGCLASS=X
//CLIENT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Import the Self-signed Client certificate into the RACF database
//* This was FTP's from the workstation TN3270 client, that
//* generated it with the local PCOMM utility. It must be
//* imported as a trusted CA certificate
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
RACDCERT ID(STC) CONNECT(ID(FOCAS) -
 LABEL('TN3270 client certificate PF') -
 RING(TN3270Ring) -
 USAGE(PERSONAL))
/*

320 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-19 Opening the key database

Now that the key database is opened, you are presented with a list of options. Option 5
creates a self-signed certificate by prompting for details. The generation of the self-signed
certificate is shown in Figure C-20 on page 322, which carries on from Figure C-19 by
selecting option 5.

2. Create the self-signed certificate and export it to an z/OS UNIX file.

FOCAS @ SC63:/>gskkyman

 IBM Key Management Utility

Choose one of the following options to proceed.

 1 - Create new key database
 2 - Open key database
 3 - Change database password

 0 - Exit program

Enter your option number: 2
Enter key database name or press ENTER for "key.kdb": tn32v1r7.kdb
Enter password for the key database.......>

 Key database menu

Current key database is /tn32v1r7.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu):

Appendix C. Certificate management in z/OS 321

Figure C-20 Generating a self-signed certificate using gskkyman

Figure C-20 shows the dialog between the user and gskkyman to set up a self-signed
certificate. The key size is requested; then details about the certificate subject are entered,
whether you want to set the certificate as the default certificate, and whether you want to
produce an exported ASCII file of the certificate. This exported certificate is what is sent
via FTP to the client for importation into the client’s key database. In this example, the
exported file is called tn32v1r7.arm. The contents of the exported file are shown in
Figure C-21.

Figure C-21 An exported certificate from the gskkyman utility

Enter option number (or press ENTER to return to the parent menu): 5
Enter version number of the certificate to be created (1, 2, or 3) [3]:
Enter a label for this key................> TN3270 gskkyman certificate
Select desired key size from the following options (512):
 1: 512
 2: 1024
Enter the number corresponding to the key size you want: 2
Enter certificate subject name fields in the following.
 Common Name (required)................> ITSO.RALEIGH.IBM.COM
 Organization (required)...............> IBM
 Organization Unit (optional)..........> ITSO Raleigh TN3270 Server
 City/Locality (optional)..............> Raleigh
 State/Province (optional).............> NC
 Country Name (required 2 characters)..> US
Enter number of valid days for the certificate [365]:
Do you want to set the key as the default in your key database? (1 = yes, 0 = no
) [1]: 1
Do you want to save the certificate to a file? (1 = yes, 0 = no) [1]: 1
Should the certificate binary data or Base64 encoded ASCII data be saved? (1 = A
SCII, 2 = binary) [1]:
Enter certificate file name or press ENTER for "cert.arm": tn32v1r7.arm

Please wait while self-signed certificate is created...

Your request has completed successfully, exit gskkyman? (1 = yes, 0 = no) [0]: 1
FOCAS @ SC63:/>

FOCAS @ SC63:/>cat tn32v1r7.arm
-----BEGIN CERTIFICATE-----
MIICczCCAdygAwIBAgIEPOOwjjANBgkqhkiG9w0BAQQFADB+MQswCQYDVQQGEwJV
UzELMAkGA1UECBMCTkMxEDAOBgNVBAcTB1JhbGVpZ2gxDDAKBgNVBAoTA0lCTTEj
MCEGA1UECxMaSVRTTyBSYWxlaWdoIFROMzI3MCBTZXJ2ZXIxHTAbBgNVBAMTFElU
U08uUkFMRUlHSC5JQk0uQ09NMB4XDTAyMDUxNTEzMTM1MFoXDTAzMDUxNjEzMTM1
MFowfjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk5DMRAwDgYDVQQHEwdSYWxlaWdo
MQwwCgYDVQQKEwNJQk0xIzAhBgNVBAsTGklUU08gUmFsZWlnaCBUTjMyNzAgU2Vy
dmVyMR0wGwYDVQQDExRJVFNPLlJBTEVJR0guSUJNLkNPTTCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEAvuHpLXympFCoT1Q3jZ5E+EveDyued1RUo+BgCWOEErB/
6rKLrnlVwEU8w/nnTyApBW19IEbITrJ3YFGa4tIJVlleCQpGj5yQJNyPj6MIYOzv
9xDD8TgJu61zciJWLN6cnC7sygHiC+gEhCVAs+LR2wspfz0v8ebQZpujQDr2ZT0C
AwEAATANBgkqhkiG9w0BAQQFAAOBgQCzEB3UQoAUrAsyCYFrZwxRgS86RiNHU5iA
F+eHCwDSHzo6JI1q2l/JklbH/A4d9/ftN0rH0TS4rDl/U/izJR7tMSbJ/7kSAeZj
NXJDgQOIjpkMyZS8FQR9+BCRTD9EhDmaJGzxPxQ7U0F9Kth0c87NkMKaO6BNhUml
5DzQ9Vjiag==
-----END CERTIFICATE-----
FOCAS @ SC63:/>

322 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

3. FTP the file exported in step 3 to the client that will be using it.

Any FTP client at the workstation can be used for this transfer. Ensure the transfer type is
text and that you can view the file at the workstation as a text file.

Figure C-22 Personal Communications client certificate management window

4. Import the certificate into the client’s key database.

At the client, the certificate received from step 4 must be imported into the key database
as a trusted certificate. Depending on the type of client, there are a number of different
ways to do this. In the case of a Windows Personal Communications client (a TN3270
client), you select the Certificate Management or Certificate Wizard icon from the Utilities
folder. This displays the window (after the key database file is opened) shown in
Figure C-22. You now import the certificate by clicking the Add button. Once the certificate
is added, the window shown in Figure C-23 on page 324 is the detail display from the
certificate, showing the key size of 1024 (set by gskkyman when creating the certificate in
Figure C-20 on page 322), the certificate version, and the Issued To name the same as the
Issued By (this is a self-signed certificate).

Appendix C. Certificate management in z/OS 323

Figure C-23 Personal Communications client: Display of imported self-signed server certificate

Now the client should be able to connect to the server. Once the server passes its certificate
to the client during the SSL exchange, the client will be able to validate it using the same
certificate that is now stored in the client’s key database as a CA certificate.

Self-signed client certificate gskkyman procedure
It is assumed that you have set up a key database (tn32v1r7.kdb) and the server’s certificate
is in the key database. The steps to implement client authentication in a gskkyman
environment are basically the same as in the RACDCERT environment, except the
certificates are stored in an z/OS UNIX key database rather than the RACF database. These
steps are:

1. Get the client certificate. For a self-signed certificate, this is normally generated at the
client end.

Since different client programs have different ways to generate a client certificate, this
should be thought of as a generic example. Most clients will have some way to generate a
certificate. In the case of Personal Communications, which provides a TN3270 client, you
use the Windows menu (click Start → Programs → IBM Personal Communications →
Utilities → Certificate Management) to open the client’s key database. Then you click
Create → New Self-signed Certificate to generate the certificate. See Figure C-24 on
page 325 for an example of a self-signed client certificate that has just been generated by
Personal Communications into the client key database.

324 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-24 Personal Communications client: Newly added self-signed client certificate

2. Export the client certificate to a file.

Most certificate management utilities allow the export of a certificate in at least two
formats. The most common is Base64-encoded ASCII, but there is also the binary DER
format. The choice depends on what your certificate management utility at the server end
can use as an import format. We will use Base64 ASCII format. At the lower right-hand
side of the window shown in Figure C-24 is the Extract Certificate... button. This is used to
write a certificate to a file. The window that is presented is shown in Figure C-25 on
page 326. Note the Data Type field specifies Base64-encoded ASCII and that the
certificate will be written to the cert.arm file.

Appendix C. Certificate management in z/OS 325

Figure C-25 Exporting a client certificate to a file

3. FTP the certificate file from the client to the z/OS server side.

This does not need to be shown here. You just need to FTP the certificate file created in
step 2 (cert.arm in this example) to an z/OS UNIX file at the server side as a text file.

4. Add the client certificate into the server’s z/OS UNIX key database using gskkyman.

Figure C-26 on page 327 shows gskkyman being used to open the existing database in
preparation for importing the client’s certificate.

326 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-26 Opening the key database

Now that the key database is opened, you are presented with a list of options. Choose
option 6 Store a CA certificate to receive a certificate and store it as a trusted Certificate
Authority certificate.

FOCAS @ SC63:/>gskkyman

 IBM Key Management Utility

Choose one of the following options to proceed.

 1 - Create new key database
 2 - Open key database
 3 - Change database password

 0 - Exit program

Enter your option number: 2
Enter key database name or press ENTER for "key.kdb": tn32v1r7.kdb
Enter password for the key database.......>

 Key database menu

Current key database is /tn32v1r7.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu):

Appendix C. Certificate management in z/OS 327

Figure C-27 Adding a self-signed client certificate as a CA certificate using gskkyman

Figure C-27 shows the dialog between the user and gskkyman to add the client certificate
as a CA certificate. The client certificate file in the example is named cert.arm and was
placed there in the FTP transfer in step 3.

Now the client should be able to connect to the server (assuming you have followed the steps
to obtain and store the server’s certificate). The server will be able to validate the client
certificate with its copy of the client’s certificate in the server’s key database.

Internal Certificate Authority (CA)
One possibility in setting up your certificate management scheme is to set up as a Certificate
Authority. This means that you will be signing digital certificates for other entities, and
anybody who uses the certificates that you sign will have to have a copy of your certificate in
their key databases as a trusted CA.

You might choose to be a Certificate Authority if you have multiple SSL/TLS-enabled servers
in your system. When you have more than one server with its own self-signed certificate,
each certificate must be exported to the clients that will use them. Therefore, if you had an
FTP server, a TN3270 server, and an LDAP server, each using self-signed certificates and all
being used from one workstation, that workstation would need all three certificates in its key
database. With an internal CA, you can sign each of the server’s certificates, and export the
one certificate (the internal CA certificate) to the clients. Please note that this assumes that a
client’s key database can be shared between client programs. This is mostly not the case, but
a saving can still be made in that only the one key needs to be distributed.

 Key database menu

Current key database is /tn32v1r7.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu): 6
Enter certificate file name or press ENTER for "cert.arm": cert.arm
Enter a label for this key................> TN3270 Client Cert for User1

Please wait while certificate is stored...

Your request has completed successfully, exit gskkyman? (1 = yes, 0 = no) [0]: 1
FOCAS @ SC63:/>
 ===>

328 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

In this section we cover setting up an internal CA and creating and signing a server certificate
with that CA certificate. Only one example is given, that is signing a server certificate and
using RACDCERT for storing the certificates. You will see that the process is similar to the
self-signing process described in “Self-signed certificates” on page 312, except that the
certificate being distributed to the clients is the CA certificate, not the server certificate.

Internal-CA signed server certificate RACDCERT procedure
This procedure is basically the same for any z/OS server. In this example we are producing a
certificate for use by a TN3270 server. This certificate is needed by TN3270 clients using
SSL. For the client to validate the server certificate, the internal CA certificate will be needed
at the client:

1. Create a self-signed certificate for the local (internal) CA.

Figure C-28 Batch job to create internal CA certificate in RACF database

2. Generate a certificate for the server.

Figure C-29 Batch job to create server certificate and sign with internal CA certificate

Note that the RACDCERT SIGNWITH parameter specifies the LABEL of the internal CA
certificate we set up in step 1. This indicates that the server certificate should be digitally
signed with the internal CA’s private key. The ID(STC) parameter is used in this example
because the TN3270 server, for whom the certificate is being generated, is associated
with RACF user ID STC. Make sure the common name (CN) is the same as the host or
domain name of the server.

3. Create a RACF key ring for the server.

//CERTAUTH EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Add the top-level self-signed certificate for the certificate
//* authority (ourselves)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 racdcert certauth gencert -
 subjectsdn(o('IBM Corporation') -
 ou('ITSO Certificate Authority') -
 C('US')) -
 WITHLABEL('ITSO Certificate Authority')
/*

//SERVCRT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* set up the TN3270 server certificate, and sign it with the
//* self-signed certificate-authority certificate set up previously
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(STC) GENCERT SUBJECTSDN(CN('ITSO.RALEIGH.IBM.COM') -
 O('IBM Corporation') -
 OU('ITSO Raleigh TN3270 Server') -
 C('US')) -
 WITHLABEL('TN3270 Server') -
 SIGNWITH(CERTAUTH LABEL('ITSO Certificate Authority'))
/*

Appendix C. Certificate management in z/OS 329

Figure C-30 Batch job to add a key ring

Figure C-30 shows the three steps necessary to create the key ring for the server:

a. Create a new RACF key ring using the RACDCERT ADDRING command.

b. Connect the internal CA certificate to the new key ring using the RACDCERT
CONNECT command.

c. Connect the server’s certificate (which was signed by the internal CA certificate) to the
new key ring using the RACDCERT CONNECT command.

4. Export the internal CA certificate to an MVS data set.

Figure C-31 Batch job to write the internal CA certificate to an MVS data set

Figure C-31 shows the RACDCERT EXPORT command being used to export the internal
CA certificate to an MVS data set. The MVS data set will be ASCII sent via FTP to any
client that needs to use that certificate to validate a server (in this case a TN3270 client).
One way to reduce the number of file transfers to clients is for them to pick up their key
databases from a LAN drive, if practicable.

5. FTP the certificate exported in step 4 to the client that will use it.

This step is not shown, since any FTP client will be able to perform this step.

//KEYRING EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Add a new Keyring to the TN3270 servers RACF ID (STC), then....
//* Add TN3270 server certificate to the user 'STC's keyring. the
//* Keyring name is from the TN3270 configuration statement as below
//* 'KEYRING SAF TN3270Ring'
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(STC) ADDRING(TN3270Ring)
 RACDCERT ID(STC) CONNECT(CERTAUTH -
 LABEL('ITSO Certificate Authority') -
 RING(TN3270Ring) -
 USAGE(CERTAUTH))
 RACDCERT ID(STC) CONNECT(ID(STC) -
 LABEL('TN3270 Server') -
 RING(TN3270Ring) -
 DEFAULT -
 USAGE(PERSONAL))
/*

//EXPORT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Export the Self-signed Certificate Authority certificate from the
//* RACF database in base-64 encoded format. This is then FTP'd to
//* the TN3270 client so that it can verify the TN3270 server's
//* certificate when passed in the SSL exchange.
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CERTAUTH EXPORT(label('ITSO Certificate Authority')) -
 FORMAT(CERTB64) DSN('FOCAS.RACDCERT.SERVCERT')
/*

330 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-32 Personal Communications client certificate management window

6. At the client, the certificate received from step 5 must be imported into the key database
as a trusted certificate.

Depending on the type of client, there are a number of different ways to do this. In the
case of a Windows Personal Communications client (a TN3270 client) you select the
Certificate Management or Certificate Wizard icon from the Utilities folder. This displays
the window (after the key database file is opened) in Figure C-32. You now import the
certificate using the Add button. Once the certificate is added, the window shown in
Figure C-33 on page 332 is the detail display from the certificate, showing the key size of
1024 (set by default in the RACDCERT GENCERT command), the certificate version, and
the Issued To name the same as the Issued By (this is a self-signed certificate for a CA).

Appendix C. Certificate management in z/OS 331

Figure C-33 Personal Communications client: Display of imported server certificate

7. Test the client-to-server connection.

The Personal Communications client was instructed to connect to the TN3270 server
using SSL. Figure C-34 on page 333 shows Personal Communications displaying the
server certificate (by clicking Communication → Security → Server), which shows that
the certificate subject is the TN3270 server, and the certificate issuer is the internal CA set
up in step 1.

332 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-34 Personal Communications client: Server certificate and signer’s details

While this discussion showed certificates being generated for a TN3270 server, and the
internal CA certificate being exported to the client, then placed in the client’s key database as
a trusted certificate, the procedure for any client/server is basically the same.

External Certificate Authority (CA)
The aim of this section is to show how to use the TSO RACDCERT command and the UNIX
gskkyman command to store and use CA-signed certificates. For the purposes of the
examples, it is assumed that the server is on z/OS and the client is not.

The following step-by-step examples are generic in nature. They can be used to create an
z/OS UNIX key database or RACF certificate/key ring for the IBM HTTP Server for z/OS, the
TN3270 server, or other servers that are SSL enabled.

The procedure to use RACDCERT to request and manage a CA-signed server certificate is
shown in “External CA-signed server certificate RACDCERT procedure” on page 334.

The procedure to use RACDCERT to request and manage a CA-signed client certificate is
shown in “External CA-signed client certificate RACDCERT procedure” on page 340. The
procedure to use gskkyman to request and manage a CA-signed server certificate is shown in
“External CA-signed server certificate gskkyman procedure” on page 335. The procedure to
use gskkyman to request and manage a CA-signed client certificate is shown in “External
CA-signed client certificate gskkyman procedure” on page 346.

Appendix C. Certificate management in z/OS 333

External CA-signed server certificate RACDCERT procedure
This section presents the steps required to implement the SSL environment for IBM HTTP
Server with a server certificate signed by a public CA. A similar procedure can be used for
other SSL-enabled application servers. The assumption in the examples is that the Web
server’s RACF user ID is“WEBSRV.

1. Generate a self-signed certificate.

We will use this certificate as a base for the certificate request we will be creating.

RACDCERT ID(WEBSRV) GENCERT
 SUBJECTDSN(CN(’itso.raleigh.ibm.com’)
 O(’IBM Corporation’)
 OU(’ITSO Raleigh Webserver’)
 C(’US’))
 WITHLABEL(’Web Server Certificate’)

Make sure the common name (CN) is the same as the host or domain name of the server.

2. Create a certificate request for the CA.

The certificate request will be stored in an MVS data set named
BOCHE.WEBSERV.GENREQ.

RACDCERT ID(WEBSRV) GENCERT
 GENREQ(LABEL(’Web Server Certificate’))
 DSN(’BOCHE.WEBSERV.GENREQ’)

This certificate request needs to be sent to the Certificate Authority. The format of the
request is Base64-encoded text. The data set can be transmitted to a PC with FTP and
pasted into the appropriate field in the certificate request. Alternatively, cutting and pasting
between a host emulator window and the Web browser can be used.

3. Store the returned certificate in an MVS data set.

The CA usually returns the certificate using e-mail or similar means. The certificate is in
Base64-encoded text format. Use FTP to transfer the certificate received from the CA into
an MVS data set named, for instance, BOCHE.WEBSERV.CERT.

4. Replace the self-signed certificate with the certificate received from and signed by the CA.

RACDCERT ID(WEBSRV)
 ADD(’BOCHE.WEBSERV.CERT’)
 WITHLABEL(’Web Server Certificate’)

5. Create a key ring for the server.

This key ring must not already exist for this user. Key ring names become names of RACF
profiles in the DIGTRING class, and can contain only characters that are allowed in RACF
profile names. Although asterisks (*) are allowed in key ring names, a single asterisk is not
allowed.

RACDCERT ID(WEBSRV) ADDRING(WEBSERVER)

6. Connect the certificate to the key ring.

Now we can create the connection between the digital certificate and the key ring with the
RACDCERT CONNECT command and associate it with the HTTP started task user ID.

RACDCERT ID(WEBSRV) CONNECT(ID(WEBSRV) LABEL('Web Server Certificate')
 RING(WEBSERVER) DEFAULT USAGE(PERSONAL))

334 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

External CA-signed server certificate gskkyman procedure
The following step-by-step example shows how to create a key database in the z/OS UNIX
and how to create certificate requests for external CAs for the IBM HTTP Server for OS/390.
A similar procedure may be used for other server applications, including the TN3270 server
and the Policy Agent.

In our test environment, we elected to have our certificate issued by the public Certificate
Authority company, VeriSign. In the following discussion, we show how we created the
certificate request for our server certificate, and how we received it into the key database.

It is assumed that you have set up a key database and produced a stash file for the server, as
discussed in “gskkyman command use” on page 309; that you have set the correct UNIX
permission bits so that the server can read the files; and that the database is named
/u/takada/sslkey/server.kdb.

1. Create a public-private key pair and certificate request.

Figure C-35 on page 336 shows the menu screen of the gskkyman utility. To create a
public-private key pair and a certificate request, select 3 - Create new key pair and
certificate request on this screen.

Appendix C. Certificate management in z/OS 335

Figure C-35 Create a new key pair and certificate request

1 Select option 3 - Create new key pair and certificate request to create a new key pair
and certificate request. If you want to create a self-signed certificate, select option 5 -
Create a self-signed certificate.

2 Specify a file name for the certificate request. Later you have to send the contents of this
file to the CA you selected.

3 Enter a label related to this key and certificate.

4 Select the key size you desire. However, the key size depends on the location. In our
test environment (ITSO Raleigh), we installed the strong crypto version of the gskkyman
utility. In almost all cases, you would want to install the strong crypto version and use a
key size of 1024 bits.

5 Enter the certificate subject name fields. Common Name should be your server’s host
name. If you specify another name, a user will receive the window shown in Figure C-36
on page 337 when accessing this server via a browser.

Key database menu

Current key database is /u/takada/sslkey/server.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu): 3 1
Enter certificate request file name or press ENTER for "certreq.arm": server.arm 2
Enter a label for this key................> ITSO Raleigh Webserver Cert 3
Select desired key size from the following options (512):
 1: 512
 2: 1024
Enter the number corresponding to the key size you want: 1 4
Enter certificate subject name fields in the following. 5
Common Name (required)................> mvs03c.itso.ral.ibm.com
 Organization (required)...............> IBM Corp.
 Organization Unit (optional)..........> ITSO Raleigh
 City/Locality (optional)..............> Research Triangle Park
 State/Province (optional).............> North Carolina
 Country Name (required 2 characters)..> US

Please wait while key pair is created...

Your request has completed successfully, exit gskkyman? (1 = yes, 0 = no) [0]: 0

336 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-36 Netscape Navigator’s window checking certificate name

The only way a Web browser can check the server’s identity is to compare the host name
in the URL with the host name in the Common Name attribute in the certificate. If they do
not match, Netscape Navigator will display the warning window shown in Figure C-36.
Whether Internet Explorer (IE) will display a warning window or simply terminate the
connection depends on the release level of IE and the security level chosen.

2. Request the certificate from the Certificate Authority.

After step 1, you have three files in addition to the key database:

– A certificate request file (*.arm)
– A stash file (*.sth)
– A key pair file (*.rdb)

Figure C-37 shows the contents of the certificate request file. You send this request to the
Certificate Authority to be signed. We sent this certificate request to VeriSign. As shown in
Figure C-38 on page 338, you can copy and paste the contents of the request file into the
VeriSign form.

Figure C-37 The content of the certificate request file

TAKADA @ RA03:/u/takada/sslkey>ls -l
total 192
rw-r--r-- 1 TAKADA OMVSGRP 513 Aug 6 18:56 server.arm
-rw-r--r-- 1 TAKADA OMVSGRP 65080 Aug 6 18:54 server.kdb
-rw-r--r-- 1 TAKADA OMVSGRP 5080 Aug 6 18:56 server.rdb
-rw------- 1 TAKADA OMVSGRP 129 Aug 6 18:56 server.sth
TAKADA @ RA03:/u/takada/sslkey>cat server.arm
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBNTCB4AIBADB7MQswCQYDVQQGEwJVUzELMAkGA1UECBMCTkMxDTALBgNVBAcT
BENhcnkxGDAWBgNVBAoTD0lCTSBDb3Jwb3JhdGlvbjEUMBIGA1UECxMLSVRTTyBS
YWxpZ2gxIDAeBgNVBAMTF212czAzYy5pdHNvLnJhbC5pYm0uY29tMFwwDQYJKoZI
hvcNAQEBBQADSwAwSAJBAJaDyGjFOxIvb3FXm68t66tDQ+dn9B/zLthCS7dc7nor
KT6YpfjnI7duvw/zXXMrrJP99y4oLIGafHIZq1qAHo0CAwEAAaAAMA0GCSqGSIb3
DQEBBAUAA0EAc70FskVCHrzZXkyoIa6NnDdrtt6CHhMKLJKtIitStFPXZVIMQxPK
1ER2vdsdzpQtIqgTromX2Jf4l4qm47gcWA==
-----END NEW CERTIFICATE REQUEST----

Appendix C. Certificate management in z/OS 337

Figure C-38 Certificate request submit form at VeriSign Web site

After you send a certificate request to an external CA, it can take several days before the
request is processed and the certificate is returned. We used the trial Secure Server ID
from VeriSign to test the IBM HTTP Server for z/OS SSL function in the ITSO Raleigh test
environment. This provides a temporary certificate that is valid for two weeks from the
date of issuance. Because the certificate is temporary, it does not require the extensive
checking that a real certificate would, so we received it almost immediately after
submitting the certificate request.

While you are waiting for the CA to process your certificate request, it is a good idea to
exploit a trial certificate to test SSL sessions. Alternatively (or in addition), you can use the
gskkyman utility to create a self-signed certificate to enable SSL sessions between clients
and the server. For detailed information regarding how to make a self-signed certificate,
see IBM HTTP Server for z/OS Planning, Installing, and Using, SC31-8690, or Enterprise
Web Serving with the Lotus Domino® Go Web Server for OS/390, SG24-2074.

3. Receive the certificate from the Certificate Authority.

After receiving a certificate from the CA via e-mail, copy and paste it to an z/OS UNIX file.
In Figure C-39 on page 339, we created a file server.cert and put our certificate into this
file.

Our certificate request

338 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-39 The content of the server certificate issued by the trusted CA

Because the gskkyman utility accepts only z/OS UNIX files, you have to create an z/OS
UNIX file for your certificate.

4. Import the CA-signed server certificate into the key database.

Figure C-40 on page 340 shows gskkyman being used to import the certificate into your
key database.

 File Edit Confirm Menu Utilities Compilers Test Help

 EDIT /u/takada/sslkey/server.cert Columns 00001 00072
 Command ===> Scroll ===> CSR
 ****** ***************************** Top of Data ******************************
 000001 -----BEGIN CERTIFICATE-----
 000002 MIICJTCCAc8CEA35fK/Qad35oFktNSeSsS8wDQYJKoZIhvcNAQEEBQAwgakxFjAU
 000003 BgNVBAoTDVZlcmlTaWduLCBJbmMxRzBFBgNVBAsTPnd3dy52ZXJpc2lnbi5jb20v
 000004 cmVwb3NpdG9yeS9UZXN0Q1BTIEluY29ycC4gQnkgUmVmLiBMaWFiLiBMVEQuMUYw
 000005 RAYDVQQLEz1Gb3IgVmVyaVNpZ24gYXV0aG9yaXplZCB0ZXN0aW5nIG9ubHkuIE5v
 000006 IGFzc3VyYW5jZXMgKEMpVlMxOTk3MB4XDTk5MDgwNjAwMDAwMFoXDTk5MDgyMDIz
 000007 NTk1OVowgYExCzAJBgNVBAYTAlVTMRcwFQYDVQQIEw5Ob3J0aCBDYXJvbGluYTEN
 000008 MAsGA1UEBxQEQ2FyeTESMBAGA1UEChQJSUJNIENvcnAuMRQwEgYDVQQLFAtJVFNP
 000009 IFJhbGlnaDEgMB4GA1UEAxQXbXZzMDNjLml0c28ucmFsLmlibS5jb20wXDANBgkq
 000010 hkiG9w0BAQEFAANLADBIAkEA4P/8r7jWD27V1XWTP1l2GgOqcakpxrTaXZ78x/Sr
 000011 EMydBymOnxhrRzK21DFbpTlbM9mT+ju0av9mKiUxf19WswIDAQABMA0GCSqGSIb3
 000012 DQEBBAUAA0EAr2OtpJvdpN4NcR6Lzx3eBGUZ4VtwtwkvKeU2AU6N9/JX0MGS2r+m
 000013 IckUeu4+pRF+cHZY8uLjL1hA+c0Bux4RKA==
 000014 -----END CERTIFICATE-----
 ****** **************************** Bottom of Data ****************************

 F1=Help F2=Split F3=Exit F5=Rfind F6=Rchange F7=Up
 F8=Down F9=Swap F10=Left F11=Right F12=Cancel .

Appendix C. Certificate management in z/OS 339

Figure C-40 Store the server certificate into the key database

1 Open the key database. Since the gskkyman command was entered from the subdirectory
/u/takada/sslkey, there was no need to specify the subdirectory in the key database name.

2 Select option 4 - Receive a certificate issued for your request to store your server
certificate file.

3 Specify your server certificate file created in Figure C-39 on page 339.

4 You have to select 1. If you set another key as the default, server authentication will fail.

External CA-signed client certificate RACDCERT procedure
The procedure for a client to request a CA-signed certificate is dependent on the type of client
software being used. Most SSL/TLS-enabled clients will have a method to create a file with a
certificate request for submission to a CA.

 IBM Key Management Utility

Choose one of the following options to proceed.

 1 - Create new key database
 2 - Open key database
 3 - Change database password

 0 - Exit program

Enter your option number: 2 1
Enter key database name or press ENTER for "key.kdb": server.kdb
Enter password for the key database.......>******

 Key database menu

Current key database is /u/takada/sslkey/server.kdb

 1 - List/Manage keys and certificates
 2 - List/Manage request keys
 3 - Create new key pair and certificate request
 4 - Receive a certificate issued for your request
 5 - Create a self-signed certificate
 6 - Store a CA certificate
 7 - Show the default key
 8 - Import keys
 9 - Export keys
 10 - List all trusted CAs
 11 - Store encrypted database password

 0 - Exit program

Enter option number (or press ENTER to return to the parent menu): 4 2
Enter certificate file name or press ENTER for "cert.arm": server.cert 3
Do you want to set the key as the default in your key database? (1 = yes, 0 = no) [1]:
1 4
Please wait while certificate is received.......

340 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

A client certificate, in addition to being stored in the client’s key database, must be added to
RACF and associated with the appropriate RACF user ID using the RACFDCERT
ID(clients-user ID) ADD.... statement. The client certificate’s CA must be connected to the
server’s RACF key ring using the RACFDCERT ID(servers-user ID) CONNECT. The basic
procedure to follow is:

1. Generate a certificate request at the client.

Clients have different ways to generate a certificate request from an external CA. For this
example, we will be requesting a client certificate for a Personal Communications
(TN3270) client. Figure C-41 shows the Personal Communications window to request a
certificate.

Figure C-41 Using a client to request a certificate

See Figure C-42 for an example of the certificate request file that is created.

Figure C-42 Certificate request generated by client for external CA

2. Send the certificate request to the Certificate Authority.

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBqDCCARECAQAwaDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAk5DMRAwDgYDVQQH
EwdSYWxlaWdoMRgwFgYDVQQKEw9JQk0gQ29ycG9yYXRpb24xDTALBgNVBAsTBElU
U08xETAPBgNVBAMTCG0yMzhwNHlrMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQC81RfEw/spXrdZY/eSES6kFkrI+BvO1lVhYQ+X/+lgsA/Bbb85e75hsPAHU/+q
xeDC2JDqJrjPIChbwxb0MRofxwYhSpu51grQJIYYMehbWlmz9BvF3V+I8SV2fp+A
uPXtjwl7cTC1tNO+mbBnlxgYVDaygOgkh8XhlM4QMderIwIDAQABoAAwDQYJKoZI
hvcNAQEEBQADgYEAHdJbb3R3i7a2WJgQKnl+TdbeJxX9D8bdufXfzwCRckLqBPNi
kVeh6Hg5z+UeLX7O+Cr3TsPmYJHAXZYQCNATCsHIRj1p5XC50VDrckEG/RpVLvf0
36Y2fYOT4f86sOy8L2RwhRSm3V2mC5vG9JjlB1MS2hkQ13ZWFkYrFMvwczo=
-----END NEW CERTIFICATE REQUEST-----

Appendix C. Certificate management in z/OS 341

E-mail the certificate request output from the client, either by using cut and paste, or as an
attachment. The CA may take a number of days to generate and send the certificate and
private key back to you.

3. Receive the certificate from the CA.

Depending on the CA, you may have to go to a secure Web site to download your client
certificate and key or they may send it to you in a secure e-mail. Whatever method is
chosen, you must end up with a file, probably in PKCS12 format, which contains both a
digital certificate and a private key. This file will be password protected.

4. Import the client certificate (and private key) into the client key database.

In step 3, the certificate and key were received and detached into a workstation file. That
certificate and key must now be imported into your client’s key database. As an example,
we show how to import the client certificate and key into the Personal Communications
key database.

First, start the Certificate Management utility. Click Start → Programs →
IBM-Personal-Comm → Utilities → Certificate Management.

Open the Personal Communications key database and give the password (the default
installation password is PCOMM).

Figure C-43 Personal Communications certificate management window after key database is opened

Figure C-43 shows the window that is displayed after the Personal Communications key
database is opened. The highlighted certificate is the server certificate that we have
already assumed to have been set up.

342 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Just below the heading Key database content there is a drop-down box containing the
words Signer Certificates, so the certificates listed are the CA certificates. Click the
drop-down box and select Personal Certificates. You will then be presented with a list of
personal certificates. If you have never imported any, the list will be blank. In any case,
then click the Import button and select the certificate file you exported in step 1, and click
OK. You will be asked for a password, which will have been provided by your CA.

Figure C-44 Personal Communications certificate dialog after importing a client certificate and key

Figure C-44 shows the window after you have imported the key/certificate into the key
database. As the file received from the CA not only contained the client certificate, but also
the signer’s certificate, the import function added two certificates to the client key
database, one in the Personal Certificates section and one in the Signer Certificates
section, as indicated in the informational window.

5. Export the client certificate to a workstation file.

This step is not shown for brevity. It is a matter of highlighting the client certificate in the
Personal Certificates section and clicking the Export/Import... button, then following the
instructions to create a Base64-encoded ASCII certificate file. Note that the file received
from the CA should not be sent to the server, since it contains the client’s private key. That
is why it is first imported into the client’s key database; then just the certificate is exported,
not the private key.

Note: This same step might need to be followed for the CA certificate as well. If the CA
that signed your client certificate does not have a CA certificate at the server’s key
database, then the server has no way of validating the client certificate. You will need to
export the CA certificate, add it into the RACF database, and connect it as a CA
certificate into the server’s key ring. Use the RACDCERT CERTAUTH LIST command
to see all Certificate Authority certificates in your system.

Appendix C. Certificate management in z/OS 343

6. FTP the client (and CA certificate if needed as per the note in step 4) exported in step 5 to
the z/OS system as MVS data sets.

This step does not need to be shown. Ensure the transfer is a text-type transfer to enable
ASCII/EBCDIC translation.

7. Add the client certificate into the RACF database as a TRUSTED certificate for the RACF
ID that you want to associate the certificate with (the user of the workstation).

In our case, the client certificate was issued for user ID FOCAS, and the FTP in step 6
transferred the client certificate to an MVS data set named
FOCAS.RACDCERT.THAWTE.CLIENT.CERT.

Figure C-45 Batch job to import client certificate and associate with a RACF user ID

Figure C-45 shows the RACDCERT ADD command being used to add the client
certificate issued by the CA into the RACF database. The TRUST flag is set on, and the
ID(FOCAS) parameter associated this certificate with the user ID FOCAS. This certificate
does not need to be added to the server’s key ring.

8. Connect the CA certificate of the client certificate’s issuer into the RACF database and
connect it to the server’s key ring.

If the CA certificate is already in the RACF database, the ADD step can be skipped, but
you must still connect the CA certificate to the server’s key ring with
USAGE(CERTAUTH), which sets the TRUST status on for use in the server’s key ring.

Important: The RACF RACDCERT command requires a certificate file that it will be
importing to be in variable blocked format. To do this from a workstation FTP client, use
the quote site recfm=vb command or, if using a GUI FTP client, consult the help files.

//CLIENT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Import the Client certificate issued by Thawte, and set the
//* TRUST flag on.
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT ID(FOCAS) ADD('FOCAS.RACDCERT.THAWTE.CLIENT.CERT') -
 WITHLABEL('Thawte Certificate for FOCAS') TRUST
/*

344 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Figure C-46 Batch job to import CA certificate and add to server’s RACF key ring as a CA

Figure C-46 shows the RACDCERT ADD command being used to add the CA certificate
into the RACF database. In this example, we added the certificate as a CA certificate
(CERTAUTH on the ADD) but set the NOTRUST flag. This is overridden in any case when
you connect the CA certificate to the server’s key ring as USAGE(CERTAUTH). This was
just an example to show how the TRUST status of a certificate can be overridden for a
particular server’s use by adding that certificate to the server’s key ring as a CA certificate
by specifying USAGE(CERTAUTH).

Table C-2 Example certificate locations

Table C-2 shows the various locations of the certificates for client authentication to happen.
The assumption is that user FOCAS is the client user and STC is the RACF user ID
associated with the server. If the server uses a self-signed certificate, ignore the Server

//CACERT EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//*
//* Import the CA Certificate that signed the client certificate
//* into the RACF database. This certificate was FTP'd from the
//* TN3270 client PCOMM key database from the 'Servers Certifictes'
//* section.If the CA certificate is already in the RACF database
//* the 'ADD' step can be skipped. You must still add the CA
//* certificate to the servers keyring with USAGE(CERTAUTH)
//*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 RACDCERT CERTAUTH ADD('FOCAS.RACDCERT.FREEMAIL.RSA.CERT') -
 WITHLABEL('Thawte Freemail RSA 2000') notrust
 RACDCERT ID(STC) CONNECT(CERTAUTH -
 LABEL('Thawte Freemail RSA 2000') -
 RING(TN3270Ring) -
 USAGE(CERTAUTH))
/*

Certificate z/OS RACF database Personal Communications
Client Key database

Client Certificate ADDed with ID(FOCAS) status
TRUST.
If self-signed, must also
CONNECT to server’s key ring
as USAGE(CERTAUTH).

In the Personal Certificates
section as default certificate

Client Certificate’s CA
certificate

ADDed with CERTAUTH (trust
status immaterial).
CONNECT to server’s key ring
as USAGE(CERTAUTH).

In the Signer Certificates
section marked as trusted root

Server Certificate ADDed with ID(STC).
CONNECT to server’s key ring
as USAGE(PERSONAL) and
DEFAULT.

Not needed unless the server
certificate is a self-signed, in
which case it is added to the
Signer Certificates section as a
trusted root

Server Certificates CA
certificate
(non-self-signed server
certificate only)

ADDed with CERTAUTH (trust
status immaterial).
CONNECT to server’s key ring
as USAGE(CERTAUTH).

In the Signer Certificates
section as a trusted root

Appendix C. Certificate management in z/OS 345

Certificate CA row. If the client uses a self-signed certificate, ignore the Client Certificate CA
row.

Once these steps are followed, the connection can be established using SSL/TLS.

External CA-signed client certificate gskkyman procedure
The basic procedure to follow for gskkyman is:

� Steps 1 through 4 are exactly the same as those outlined in “External CA-signed client
certificate RACDCERT procedure” on page 340:

a. Generate a certificate request at the client.
b. Send the certificate request to the Certificate Authority.
c. Receive the client certificate from the CA.
d. Import the certificate into the client’s key database.

� Step 5: When you use gskkyman, you do not store the client’s certificate in the server’s key
ring. However, you need to ensure that the CA that issued the client certificate has a CA
certificate in the server’s key ring. This is needed so that the server can validate the
client’s certificate when the client presents it during the SSL handshake. The CA
certificate should already be in the key database as a CA. The gskkyman database comes
preconfigured with CA certificates from some major Certificate Authorities such as Thawte
and VeriSign. If your client certificate was issued by some other CA that does not have a
CA certificate in the server’s z/OS UNIX key database, you should export it from the client,
where it would have been also added when you imported your certificate from the CA, and
then add it to the gskkyman database by selecting option 6 - Store a CA certificate.

Certificate locations example
This section briefly summarizes the locations of certificates using each of the utilities.

RACF certificates
The following example may help you visualize where client and server certificates must be
located in order for SSL/TLS to function correctly. Both user1 and user2 are clients of the FTP
and TN3270 servers on z/OS. Both clients use a workstation-based TN3270 client. user1
uses a z/OS-based FTP client and user2 has a workstation FTP client.

Table C-3 Example list of certificates for RACF database

Note: The RACF database comes preconfigured with CA certificates from some major
Certificate Authorities. These companies are Thawte and VeriSign. If you delete these CA
certificates from the RACDCERT database, they will be reinstated automatically after an
IPL.

Owner Certificate
number

Signer Description Trusted?

ID(user1) 1 Self FTP Client Certificate Yes

ID(user1) 2 VeriSign TN3270 Client Certificate Yes

ID(user2) 3 VeriSign FTP Client Certificate Yes

ID(user2) 4 Self TN3270 Client Certificate Yes

346 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Certificate table description
In Table C-3 on page 346, the Owner column identifies the certificate owner. This is the
parameter used on the RACDCERT command when you add, delete, or change this
certificate entry.

user1 is an FTP and TN3270 client’s RACF user ID. His FTP client is on z/OS and his
TN3270 client is on a workstation. The FTP client has a self-signed certificate and the
TN3270 workstation client has a certificate issued by a well-known CA, VeriSign.

user2 is an FTP and TN3270 client’s RACF user ID. His FTP client and TN3270 client are on
a workstation. The TN3270 client has a self-signed certificate and the FTP client has a
certificate issued by a well-known CA, VeriSign.

FTP is the RACF user ID that the TLS-enabled FTP server on z/OS runs under. The FTP
server has a server certificate issued by a well-known CA, VeriSign.

TN3270 is the RACF user ID that the SSL-enabled TN3270 server on z/OS runs under. The
TN3270 server has a self-signed server certificate.

CERTAUTH is that part of the RACF database reserved for CA certificates. The VeriSign
certificate is shown as being self-signed, although it could also be signed by a higher-level
authority. For the purposes of this discussion, that is immaterial.

Key rings needed for example
If we discuss each user in turn, we can see where the digital certificates for the clients and the
servers need to be located. We are assuming both the TN3270 and FTP servers are
configured for client authentication (server authentication is mandatory).

user1
Table C-4 RACF key ring connections needed for user1

user1 is an FTP and TN3270 client user. The FTP client is on z/OS and will be
communicating with the z/OS-based TLS-enabled FTP server. Therefore the client needs a
key ring to store the certificates that will be used in the SSL exchange. Table C-4 shows the
RACF key ring with example name FTPClientRing set up for the user. There are two
certificates in the key ring:

1 The client certificate (certificate number 1 in Table C-3 on page 346) is needed by the
client to pass to the FTP server when requested as part of client authentication. The client

ID(FTP) 5 VeriSign FTP Server Certificate Does not
matter

ID(TN3270) 6 Self TN3270 Server Certificate Does not
matter

CERTAUTH 7 Self VeriSign CA Certificate Does not
matter

Key ring
name

Key ring
association

Certificate
number

Certificate
association

Default Usage()

FTPClientRing ID(user1) 1 1 ID(user1) Yes PERSONAL

FTPClientRing ID(user1) 7 2 CERTAUTH No CERTAUTH

Owner Certificate
number

Signer Description Trusted?

Appendix C. Certificate management in z/OS 347

certificate must be in ‘TRUSTED status and must be set to the DEFAULT certificate in the
key ring. This is how the FTP client knows which certificate to pass in the TLS exchange.

2 The server that is being connected to has a server certificate (certificate number 5 in
Table C-3 on page 346) signed by an external CA, VeriSign (certificate number 7 in
Table C-3 on page 346). The CA certificate is needed by the client to validate the server
certificate passed by the FTP server during the TLS exchange.

user1’s TN3270 client is not on z/OS so does not require a RACF key ring. However, the
TN3270 client on the workstation will require its key database to contain the client certificate
and a CA certificate to verify the TN3270 server (since the TN3270 server certificate is
self-signed, the server certificate itself is the CA certificate).

user2
user2 is an FTP and TN3270 client user, with both clients on a workstation. Therefore, user2
does not require a RACF key ring. However, the workstation key databases of both clients
need the following:

� The TN3270 client on the workstation will require its key database to contain user2’s
TN3270 client certificate and a CA certificate to verify the TN3270 server (since the
TN3270 server certificate is self-signed, the server certificate itself is the CA certificate).

� The FTP client on the workstation will require its key database to contain the user2’s FTP
client certificate and a CA certificate to verify the FTP server (since the FTP server
certificate was signed by VeriSign, you should ensure that the VeriSign CA certificate is
present and set as TRUSTED).

FTP
Table C-5 RACF key ring connections needed for user FTP

FTP is the RACF user ID that the z/OS-based FTP server runs under. Any TLS-enabled
server requires a key ring to refer to certificates that it will be using in the TLS exchange. A
certificate is required for the server, and a certificate is required for every different CA that
has issued the FTP client certificates. Table C-5 shows the RACF key ring with example
name FTPServerRing. There are three certificates in the key ring:

1 When the server sends its certificate to the client at the beginning of the TLS handshake, it
looks in the key ring (whose name is in the server’s configuration file) for a DEFAULT
certificate. That is the server’s certificate that is passed to the client (certificate number 5 in
Table C-3 on page 346).

2 This is the CA certificate to validate user1. Since user1 had a self-signed client certificate
for FTP, the client certificate (certificate number 1 in Table C-3 on page 346) is being used
here in the context of a CA certificate, that is, it will be used to validate the client certificate
when it is passed to the server.

3 This is the CA certificate to validate user2. Since user2 had a client certificate for FTP
issued by an external company, VeriSign, this is the VeriSign CA certificate (certificate
number 7 in Table C-3 on page 346).

Key ring
name

Key ring
association

Certificate
number

Certificate
association

Default Usage()

FTPServerRing ID(FTP) 5 1 ID(FTP) Yes PERSONAL

FTPServerRing ID(FTP) 1 2 ID(user1) No CERTAUTH

FTPServerRing ID(FTP) 7 3 CERTAUTH No CERTAUTH

348 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

TN3270
Table C-6 List of RACF key rings needed for example

TN3270 is the RACF user ID that the z/OS-based TN3270 server runs under. Any
SSL-enabled server requires a key ring to refer to certificates that it will be using in the SSL
exchange. A certificate is required for the server, and a certificate is required for every
different CA that has issued the TN3270 client certificates. Table C-6 shows the RACF key
ring with example name TN3270ServerRing. There are three certificates in the key ring:

1 When the server sends its certificate to the client at the beginning of the SSL handshake, it
looks in the key ring (whose name is in the server’s configuration file) for a DEFAULT
certificate. That is the server’s certificate that is passed to the client (certificate number 6
in Table C-3 on page 346).

2 This is the CA certificate to validate user2. As user2 had a self-signed client certificate for
TN3270, the client certificate (certificate number 4 in Table C-3 on page 346) is being used
here in the context of a CA certificate, that is, it will be used to validate the client certificate
when it is passed to the server.

3 This is the CA certificate to validate user1. Since user1 had a client certificate issued by an
external company, VeriSign, this is the VeriSign CA certificate (certificate number 7 in
Table C-3 on page 346).

gskkyman z/OS UNIX certificates
The following example may help you visualize where client and server certificates must be
located in order for SSL/TLS to function correctly. Both user1 and user2 are clients of the FTP
and TN3270 servers on z/OS. Both clients use a workstation-based TN3270 client. user1
uses a z/OS-based FTP client and user2 has a workstation FTP client.

Table C-7 Example list of certificates for examples to follow

Key ring
name

Key ring
association

Certificate
number

Certificate
association

Default Usage()

TN3270ServerRing ID(TN3270) 6 1 ID(TN3270) Yes PERSONAL

TN3270ServerRing ID(TN3270) 4 2 ID(user2) No CERTAUTH

TN3270ServerRing ID(TN3270) 7 3 CERTAUTH No CERTAUTH

Certificate
subject

Certificate
number

Signer Description Trusted?

user1 1 Self FTP Client Certificate Yes

user1 2 VeriSign TN3270 Client Certificate Yes

user2 3 VeriSign FTP Client Certificate Yes

user2 4 Self TN3270 Client Certificate Yes

FTP 5 VeriSign FTP Server Certificate No

TN3270 6 Self TN3270 Server Certificate Yes

VERISIGN 7 Self VeriSign CA Certificate Yes

Appendix C. Certificate management in z/OS 349

Certificate table description
Table C-7 on page 349 shows a list of certificates we will be using to set up some different key
databases. A key database will be set up for the RACF user IDs user1, FTP, and TN3270.

user1 is an FTP and TN3270 client’s RACF user ID. His FTP client is on z/OS and his
TN3270 client is on a workstation. The FTP client has a self-signed certificate and the
TN3270 workstation client has a certificate issued by a well-known CA, VeriSign.

user2 is an FTP and TN3270 client’s RACF user ID. His FTP client and TN3270 client are on
a workstation. The TN3270 client has a self-signed certificate and the FTP client has a
certificate issued by a well-known CA, VeriSign.

FTP is the RACF user ID that the TLS-enabled FTP server on z/OS runs under. The FTP
server has a server certificate by a well-known CA, VeriSign.

TN3270 is the RACF user ID that the SSL-enabled TN3270 server on z/OS runs under. The
TN3270 server has a self-signed server certificate.

VERISIGN is an external CA certificate. The VeriSign certificate is shown as being
self-signed, although it could also be signed by a higher-level authority. As long as the trusted
root status is set, that is OK.

z/OS UNIX key databases needed for example
If we discuss each user in turn, we can see where the digital certificates for the clients and the
servers need to be located. We are assuming both the TN3270 and FTP servers are
configured for client authentication (server authentication is mandatory).

user1
Table C-8 Key database needed for user1 to use FTP client on z/OS

user1 is an FTP and TN3270 client user. The FTP client is on z/OS and will be
communicating with the z/OS-based TLS-enabled FTP server. Therefore the client needs a
key ring to store the certificates that will be used in the SSL exchange. Table C-8 shows the
contents of the z/OS UNIX key database set up for user1. There are two certificates in the key
database:

1 The client certificate (certificate number 1 in Table C-7 on page 349) is needed by the
client to pass to the FTP server when requested as part of client authentication. The client
certificate must be in TRUSTED status and must be set to the DEFAULT certificate in the
key database. This is how the FTP client knows which certificate to pass in the TLS
exchange.

2 The server that is being connected to has a server certificate (certificate number 5 in
Table C-7 on page 349) signed by an external CA, VeriSign (certificate number 7 in
Table C-7 on page 349). The CA certificate is needed by the client to validate the server
certificate passed by the FTP server during the TLS exchange.

user1’s TN3270 client is not on z/OS, so does not require an z/OS UNIX key database.
However, the TN3270 client on the workstation will require its key database to contain user1’s
TN3270 client certificate and a CA certificate to verify the TN3270 server (since the TN3270
server certificate is self-signed, the server certificate itself is the CA certificate).

Certificate
subject

Certificate
number

Signer Description Default?

user1 1 1 Self FTP Client Certificate Yes

VERISIGN 7 2 Self VeriSign CA Certificate No

350 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

user2
user2 is an FTP and TN3270 client user, with both clients on a workstation. Therefore, user2
does not require an z/OS UNIX key database. However, the workstation key databases of the
FTP and TN3270 clients need the following:

� The TN3270 client on the workstation will require its key database to contain user2’s
TN3270 client certificate and a CA certificate to verify the TN3270 server (since the
TN3270 server certificate is self-signed, the server certificate itself is the CA certificate).

� The FTP client on the workstation will require its key database to contain the user2’s FTP
client certificate and a CA certificate to verify the FTP server (since the FTP server
certificate was signed by VeriSign, you should ensure that the VeriSign CA certificate is
present and set as TRUSTED).

FTP
Table C-9 Key database needed for FTP server on z/OS

FTP is the RACF user ID that the z/OS based FTP server runs under. Any TLS-enabled
server requires a key database to refer to certificates that it will be using in the TLS exchange.
A certificate is required for the server, and a certificate is required for every different CA that
has issued the FTP client certificates. Table C-9 shows the contents of the z/OS UNIX key
database set up for user FTP. There are three certificates in the key ring:

1 When the server sends its certificate to the client at the beginning of the TLS handshake, it
looks in the key database (whose name is in the server’s configuration file) for a DEFAULT
certificate. That is the server’s certificate that is passed to the client (certificate number 5
in Table C-7 on page 349).

2 This is the CA certificate to validate user1. Since user1 had a self-signed client certificate
for FTP, the client certificate (certificate number 1 in Table C-7 on page 349) is being used
here in the context of a CA certificate, that is, it will be used to validate the client certificate
when it is passed to the server.

3 This is the CA certificate to validate user2. Since user2 had a client certificate for FTP
issued by an external company, VeriSign, this is the VeriSign CA certificate (certificate
number 7 in Table C-7 on page 349).

TN3270
Table C-10 Example list of certificates for examples to follow

Certificate
subject

Certificate
number

Signer Description Default?

FTP 5 1 VeriSign FTP Server Certificate Yes

user1 1 2 Self FTP Client Certificate No

VERISIGN 7 3 Self VeriSign CA Certificate No

Certificate
subject

Certificate
number

Signer Description Default?

TN3270 6 1 Self TN3270 Server Certificate Yes

user2 4 2 Self TN3270 Client Certificate No

VERISIGN 7 3 Self VeriSign CA Certificate No

Appendix C. Certificate management in z/OS 351

TN3270 is the RACF user ID that the z/OS-based TN3270 server runs under. Any
SSL-enabled server requires a key database to refer to certificates that it will be using in the
SSL exchange. A certificate is required for the server, and a certificate is required for every
different CA that has issued the TN3270 client certificates. Table C-10 on page 351 shows the
contents of the z/OS UNIX key database set up for user TN3270. There are three certificates
in the key ring:

1 When the server sends its certificate to the client at the beginning of the SSL handshake,
it looks in the key database (whose name is in the server’s configuration file) for a
DEFAULT certificate. That is the server’s certificate that is passed to the client (certificate
number 6 in Table C-7 on page 349).

2 This is the CA certificate to validate user2. Since user2 had a self-signed client certificate
for TN3270, the client certificate (certificate number 4 in Table C-7 on page 349) is being
used here in the context of a CA certificate, that is, it will be used to validate the client
certificate when it is passed to the server.

3 This is the CA certificate to validate user1. Since user1 had a client certificate issued by
an external company, VeriSign, this is the VeriSign CA certificate (certificate number 7 in
Table C-7 on page 349).

352 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Appendix D. IPSec scenario policies

This appendix contains the policies used for our IPSec scenarios. They are as follows:

� 3.4, “Implementing IPSec between two z/OS systems” on page 80
– The policy for TCPIPD on SC30 is shown in Example D-1.
– The policy for TCPIPD on SC31 is shown in Example D-2 on page 355.

Example: D-1 TCPIPD policy for SC30

#--
Quick-Start IP Security policy
Created by the z/OS Nework Security Configuration Assistant
Date Created = Tue Oct 25 03:34:50 CAT 2005
#--
IpFilterPolicy
{
 PreDecap off
 FilterLogging on
 AllowOnDemand yes

 IpFilterRule QuickStartRule1
 {
 IpSourceAddr 10.40.1.230
 IpDestAddr 10.40.1.241
 IpService
 {
 SourcePortRange 500
 DestinationPortRange 500
 Protocol udp
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef permit
 }

 IpFilterRule QuickStartRule2
 {
 IpSourceAddr 10.40.1.230
 IpDestAddr 10.40.1.241
 IpService

D

© Copyright IBM Corp. 2006. All rights reserved. 353

 {
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef ipsec
 IpDynVpnActionRef TransportMode
 }
}

KeyExchangePolicy
{
 KeyExchangeRule QuickStart_KeyExRule
 {
 LocalSecurityEndpoint
 {
 Identity IpAddr 10.40.1.230
 Location 10.40.1.230
 }
 RemoteSecurityEndpoint
 {
 Identity IpAddr 10.40.1.241
 Location 10.40.1.241
 }
 KeyExchangeActionRef QuickStart_KeyExAction
 SharedKey Ascii TheEagleHasLanded
 }
}

#---
Reusable actions
#---
IpGenericFilterAction permit
{
 IpFilterAction permit
}

IpGenericFilterAction ipsec
{
 IpFilterAction ipsec
 IpFilterLogging yes LogDeny
}

KeyExchangeAction QuickStart_KeyExAction
{
 KeyExchangeOffer
 {
 HowToAuthPeers PreSharedKey
 }
}
IpDynVpnAction TransportMode
{
 IpDataOffer
 {
 HowToEncap transport
 }
}

354 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Example: D-2 TCPIPD policy for SC31

#--
Quick-Start IP Security policy
Created by the z/OS Nework Security Configuration Assistant
Date Created = Tue Oct 25 03:30:28 CAT 2005
#--
IpFilterPolicy
{
 PreDecap off
 FilterLogging on
 AllowOnDemand yes

 IpFilterRule QuickStartRule1
 {
 IpSourceAddr 10.40.1.241
 IpDestAddr 10.40.1.230
 IpService
 {
 SourcePortRange 500
 DestinationPortRange 500
 Protocol udp
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef permit
 }

 IpFilterRule QuickStartRule2
 {
 IpSourceAddr 10.40.1.241
 IpDestAddr 10.40.1.230
 IpService
 {
 Direction bidirectional
 Routing local
 }
 IpGenericFilterActionRef ipsec
 IpDynVpnActionRef TransportMode
 }
}

KeyExchangePolicy
{
 KeyExchangeRule QuickStart_KeyExRule
 {
 LocalSecurityEndpoint
 {
 Identity IpAddr 10.40.1.241
 Location 10.40.1.241
 }
 RemoteSecurityEndpoint
 {
 Identity IpAddr 10.40.1.230
 Location 10.40.1.230
 }
 KeyExchangeActionRef QuickStart_KeyExAction
 SharedKey Ascii TheEagleHasLanded
 }
}

Appendix D. IPSec scenario policies 355

#---
Reusable actions
#---
IpGenericFilterAction permit
{
 IpFilterAction permit
}

IpGenericFilterAction ipsec
{
 IpFilterAction ipsec
 IpFilterLogging yes LogDeny
}

KeyExchangeAction QuickStart_KeyExAction
{
 KeyExchangeOffer
 {
 HowToAuthPeers PreSharedKey
 }
}
IpDynVpnAction TransportMode
{
 IpDataOffer
 {
 HowToEncap transport
 }
}

356 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 359. Note that some of the documents referenced here may be available in softcopy
only.

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 1 - Base
Functions, Connectivity, and Routing, SG24-7169

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 2 - Standard
Applications, SG24-7170

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 3 - High
Availability, Scalability, and Performance, SG24-7171

� Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4 - Security,
SG24-7172

� z/OS Communications Server: SNA Network Implementation Guide, Migrating Subarea
Networks to an IP Infrastructure Using Enterprise Extender, SG24-5957

� TCP/IP Tutorial and Technical Overview, GG24-3376

� The Basics of IP Network Design, SG24-2580

� OSA-Express Implementation Guide, SG24-5948

� zSeries HiperSockets, SG24-6816

� SNA in a Parallel Sysplex Environment, SG24-2113

� z/OS Infoprint Server Implementation, SG24- 6234

� z/OS Security Services Update, SG24-6448-00

� Deploying a Public Key Infrastructure, SG24-5512

Other publications
These publications are also relevant as further information sources:

� z/OS V1R7.0 XL C/C++ Run-Time Library Reference, SA22-7821

� z/OS V1R7.0 Communications Server: IP System Administrator’s Commands, SC31-8781

� z/OS V1R7.0 MVS IPCS Commands, SA22-7594

� z/OS V1R7.0 MVS System Commands, SA22-7627

� z/OS V1R7.0 Communications Server: SNA Operation, SC31-8779

� z/OS V1R7.0 TSO/E Command Reference, SA22-7782

� z/OS V1R7.0 UNIX System Services Command Reference, SA22-7802

� z/OS V1R2.0 Communications Server: CSM Guide, SC31-8808

© Copyright IBM Corp. 2006. All rights reserved. 357

� z/OS V1R7.0 Communications Server: New Function Summary, GC31-8771

� z/OS V1R7.0 Communications Server: Quick Reference, SX75-0124

� z/OS V1R7.0 Communications Server: IP and SNA Codes, SC31-8791

� z/OS V1R7.0 Communications Server: IP System Administrator’s Commands, SC31-8781

� z/OS V1R7.0 MVS IPCS Commands, SA22-7594

� z/OS V1R7.0 Communications Server: IP Diagnosis Guide, GC31-8782

� z/OS V1R7.0 Communications Server: IP Configuration Guide, SC31-8775

� z/OS V1R7.0 Communications Server: IP Messages Volume 1 (EZA), SC31-8783

� z/OS V1R7.0 Communications Server: IP Messages Volume 2 (EZB, EZD), SC31-8784

� z/OS V1R7.0 Communications Server: IP Messages Volume 3 (EZY), SC31-8785

� z/OS V1R7.0 Communications Server: IP Messages Volume 4 (EZZ, SNM), SC31-8786

� z/OS V1R7.0 Communications Server: IP Programmer’s Guide and Reference,
SC31-8787

� z/OS V1R7.0 Communications Server: IP Configuration Reference, SC31-8776

� z/OS V1R7.0 Communications Server: IP Sockets Application Programming Interface
Guide and Reference, SC31-8788

� z/OS V1R7.0 Communications Server: IP User’s Guide and Commands, SC31-8780

� z/OS V1R7.0 Communications Server: IP User’s Guide and Commands, SC31-8780

� z/OS V1R7.0 Communications Server: IPv6 Network and Application Design Guide,
SC31-8885

� z/OS V1R7.0 Migration, GA22-7499

� z/OS V1R7.0 MVS System Commands, SA22-7627

� OSA-Express Customer’s Guide and Reference, SA22-7935

� z/OS V1R7.0 Communications Server: SNA Operation, SC31-8779

� z/OS V1R7.0 TSO/E Command Reference, SA22-7782

� z/OS V1R7.0 UNIX System Services Programming: Assembler Callable Services
Reference, SA22-7803

� z/OS V1R7.0 UNIX System Services Command Reference, SA22-7802

� z/OS V1R7.0 UNIX System Services File System Interface Reference, SA22-7808

� z/OS V1R7.0 UNIX System Services Messages and Codes, SA22-7807

� z/OS V1R7.0 UNIX System Services Parallel Environment: Operation and Use,
SA22-7810

� z/OS V1R7.0 UNIX System Services Programming Tools, SA22-7805

� z/OS V1R7.0 UNIX System Services Planning, GA22-7800

� z/OS V1R7.0 UNIX System Services User’s Guide, SA22-7801

� z/OS V1R7.0 UNIX System Services User’s Guide, SA22-7801

358 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Online resources
These Web sites and URLs are also relevant as further information sources:

� Mainframe networking

http://www.ibm.com/servers/eserver/zseries/networking/

� z/OS Communications Server product overview

http://www.ibm.com/software/network/commserver/zos/

� z/OS Communications Server publications

http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/r7pdf/commserv.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 359

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/servers/eserver/zseries/networking/
http://www-03.ibm.com/servers/eserver/zseries/zos/bkserv/r7pdf/commserv.html

360 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Index

A
Abstract Syntax Notation (ASN) 291
access control 72, 246, 261, 286
Access control list (ACL) 25, 242, 296
Additional information 194
AES 271
All validity periods 224, 227
ALTUSER command 297
Application Programming Interface (API) 288
application security 129, 283
Application Transparent Transport Layer Security
(AT-TLS) 13, 22, 129
associate a userid with a started task (STC) 242
Attack categories

ICMP redirect restriction 157
Inbound fragment restrictions 157
IP option restriction 157
IP protocol restrictions 157
Malformed packets 156
Outbound raw restrictions 158
TCP SYNflood 158
UDP perpetual echo 157

Attack policies 156
Attack policy notification 158
Attack policy statistics 158
Attack policy tracing 158
Attacks 176
Attempt to FTP to system A23 from a remote workstation
(should fail) 58
AT-TLS

implementation 134
importance 133

AT-TLS application
restriction 130

AT-TLS application types 132
AT-TLS operability verification 146
AT-TLS policy 6, 132, 144, 262
Authentication Header (AH) 62
authentication server (AS) 290
authenticator 292
authorization code (AC) 241
Authorize use of hardware cryptographic encryption 70
Authorized Program Facility (APF) 240–241
authorized users access to start and stop PAGENT 13
Available management tools 233

B
basic concept 3, 21, 61, 129, 131, 197, 237, 266, 301
Basic concepts 4, 22, 131, 152, 238
Basic configuration 15
batch job 136, 305

© Copyright IBM Corp. 2006. All rights reserved.
C
CA 274, 277
CA certificate 144, 277, 286, 302, 343

server certificate 329
CDMF 270
Certificate Authority 68, 83, 244, 273, 287, 302
certificate authority

direct request 110
Certificate Authority (CA) 274, 286
Certificate management 237, 302
certificate management

RACDCERT 303
RACF common keyring 306
SSL 334–335

certificate request 285, 303, 306
appropriate field 334

Certificate Version Number 304
Checkpoint 111
CIM provider access control 261
Cisco QoS Device Manager 233
Cisco QoS MIB 233
Cisco QoS Policy Manager 233
Click Finish 41, 92
Click Next 32, 83
client authentication 132, 285, 302, 347

appropriate parameters 320
Client certificate

CA certificate 344
client certificate 112, 132, 260, 285, 302, 312
Client policies

Configuring 141
Client policy 136
client/server (CS) 294, 312
Coding policy definitions in a configuration file 17
Commercial Data Masking Facility (CDMF) 270
Common Information Model (CIM) 261
Common mistakes 194
Common Name 304

required fields 305
Common Name (CN) 304
Communications Server (CS) 206
Condition Set 170, 215
CONF file 170, 205
configuration client 304
configuration file 4, 25, 65, 72, 162, 167, 200, 307

Coding policy definitions 17
Dynamic monitoring 18
IKE daemon obtains operational parameters 65
modification time 18

Conjunctive Normal Form (CNF) 191, 230
Conjunctive Normal Form (CNF) policies 191, 230
Connect the certificates to IKED’s key ring 69
Connections 159
Connectivity Rule

A23_SC30_to_A24_SC31 100
 361

ConnRuleA23-224 106
FTPa 51
Services 103
TELNET 51

connectivity rule 34, 85
Connectivity rules for Resolver and OMPROUTE 54
Constrained state 160
Controlling access during the window period 145
Controlling program access by SYSID 241
Country 304
Create a certificate for the server 68
Create a RACF key ring 68
Create QoS policy rules 216
Create the IKE daemon configuration file 65
Creating a QoS policy rule 228
Creating a QoS server set 217
Creating the IP security policy 116
cryptographic key 63–64

automatic management 64
currently unused (CU) field 200

D
Data Encryption Standard (DES) 270
datagram 157
DCAS

RACDCERT 303
DD SYSOUT 11, 65
default policy 8, 25

group similar resources 26
implicit rules 28
major differences 26

default_realm statement 299
define policies 5
defining policy rules

Considerations 17
DELUSER command 297
denial of service (DoS) 295
DES 270, 306
Differentiated Services 198

DS field 200
policies 201
TOS octet 200
traffic class octet 200

Differentiated Services (DS) policies 202
Differentiated Services Code Point (DSCP) 199–200
Differentiated Services rule 203
Diffie-Hellman 273
digital certificate 68, 83, 131, 136, 244, 266, 275, 283,
301, 304

Certificate Authority (CA) 276
management in OS/390 and z/OS 277, 303
Public Key Infrastructure (PKI) 275
security considerations 276

Digital Certificate Access Server (DCAS) 261, 284
Digital Certificate Access Server (DCAS) access control
261
digital certificates and key rings

Define 144
Digital certificates in RACF 244
digital certificates in z/OS 303

digital signature 70, 266, 269, 311
tricky part 282

digital signatures 280
DIGTCERT and DIGTNMAP

Activate classes 68
disable PAGENT policies 14
Distinguished Name

only compulsory subfields 304
distinguished name (DN) 108, 275, 285, 302, 304
DN 275, 304
does not specifically (DNS) 299
DoS 295
Download and installation 163, 207
drop-down menu 177

optional field 178
DS field 200
DSCP 199

setting using the Policy Agent 202
dynamic tunnel 31, 63

IPSec VPNs 31

E
elliptic curve 273

cryptosystem 273
E-mail Address 108
Enabling CSFSERV resources 145
Encapsulating Security Payload (ESP) 62
encryption algorithms

AES 271
CDMF 270
DES 270
Diffie-Hellman 273
elliptic curves 273
IDEA 271
performance issues 277
RC2 270
RC4 270
triple DES 270

end user 248, 319
environment variable 10, 109
eServer IDS Configuration Manager 6, 161

communication flow 162
tool 162
workstation 170

eServer IDS Configuration Manager to LDAP Server com-
munication 166
Example setup 246
Exit program 306
External CA-signed client certificate gskkyman procedure
346
EZB.NETACCESS 247
EZB.NETSTAT 257
EZB.PORT Access 238

INSUFFICIENT ACCESS AUTHORITY 238
EZB.PORTACCESS 251
EZB.STACKACCESS 246

F
Fair share algorithm 159

362 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

False positive scans 156
Fast Response Cache Accelerator (FRCA) 132, 261
Fast Response Cache Accelerator (FRCA) Access Con-
trol 261
Fast Scan 153
Fast scan 153
File Transfer

Program 23, 245, 304
File Transfer Protocol (FTP) 307
filter policy 24
Firewall Technologies

configuration client
gskkyman 303

For additional information... 25, 133, 204
For additional information.... 19
For more information 260
For more information on RACF 70
For more information on zSeies hardware cryptography
71
FTP and TN3270 filtering scenario 30
FTP client 260, 296, 314, 347
FTP server 45, 203, 248, 251, 284, 296, 314, 328

access control 260
FTP server access control 260
FTP SITE command control 260
FTP z/OS UNIX access control 260
Further information 127, 244

G
generic profile 12, 238, 253, 256
generic profile to protect all V TCPIP commands

Define 255
graphic user interface (GUI) 4, 21, 205
Graphical User Interface (GUI) 4, 72, 161, 205
GROUP TCPGRP 67, 252
gskkyman 303

certificate request file 337
key pair file 337
stash file 337

gskkyman utility 286, 301
exported certificate 322
menu screen 335
strong crypto version 336

GSSAPI protocol 296

H
High Level Qualifier (HLQ) 240
HMAC 280
HTTP Server

certificate management 334–335
gskkyman 303
RACDCERT 303

Hypertext Transfer Protocol (HTTP)
traffic 204

I
I.B.M Corporation 68, 144, 305
ICH408I User 249

IDEA 271
IDS 152

Attacks 156
implementation 161
Traffic Regulation (TR) policies 159

IDS attack categories 156
IDS policy 151, 153
IKE 304

RACDCERT 304
IKE daemon (ID) 63, 251
IKE SA 63
implement packet (IP) 21
Implementation steps 30
Implementing IPSec between two z/OS systems 80
Implementing IPSec between z/OS and Windows 105
Implementing PAGENT on z/OS 10
Importing the z/OS certificates into Windows XP 112
inbound request 6
Information Technology (I/T) 1
Install an X509 digital certificate for the IKE daemon 68
Install the Policy Agent (PAGENT) 72
Integrated Service 198

narrow applicability 202
Integrated Services

policies 201
Integrated Services (RSVP) policies 202
International Data Encryption Algorithm (IDEA) 271
Internet Engineering Task Force (IETF) 284
Internet Key Exchange (IKE) 22, 62
Internet Key Exchange (IKE) protocol 63
IP Address

10.10.10.10 192
10.12.4.211 192
Sets folder 170

IP address 23, 73, 155, 248
1.1.1.1 port 23 8
10.40.1.230 30, 147
10.40.1.241 30
information 28, 112
range 174
Select 171
separate tunnels 85
set 170
single identity 83
single tunnel 85

IP Authentication Header (AH) protocol 63
IP datagram

TOS octet 200
IP Encapsulating Security Payload (ESP) protocol 63
IP Filter

list 119
list window 119–120

IP filtering
implementation 25
importance 25

IP packet 22, 63, 200, 247
IP datagram portion 63

IP precedence bits 200
IP protocol

89 30

 Index 363

IP Security 21
IP security

configuration file 72
event 71
filter policy 24
policy 29, 63, 65
policy configuration file 29
policy configuration statement 72
policy statement 29

IP traffic 26, 108
IP Version 6 (IPv6)

traffic class octet 200
IPSec

implementation 63
IPSEC command 127
ipsec command 22, 27, 71, 260
IPSec command access control 260
IPSec policies to PAGENT

Define 72
IPSec policy

file 29, 105
statement 29, 72

IPSECURITY IPCONFIG 7
IPSECURITY option on the IPCONFIG statement 24
IPv6 advanced socket API options 253
IPV6_NEXTHOP Chlorine 239
Issue pasearch (IP) 4, 127, 198
ITSO Raleigh

test environment 338
TN3270 Server 313
Webserver 334
Webserver Cert 3 336

J
job name 135, 246

K
KDC 296
KDC statement 299
KERB segment 297
Kerberos 290

assumptions 295
authentication server (AS) 290
authenticator 292
denial-of-service (DoS) 295
implementation in z/OS 296
inter-realm operation 295
Key Distribution Center (KDC) 290
principal identifier 290
realm 290
ticket granting ticket (TGT) 290
Version 5 290

Kerberos principal
name 297
name CS09 297

Kerberos server 290
further information 300

Kerberos Version 5
protocol 290

server 296
KERBLINK class 297

residual mapping profiles 297
key database 287, 302, 311

CA-signed server certificate 339
DEFAULT certificate 350
server certificate 340

Key Distribution Center (KDC) 283, 290
Key IPSec components 62
Key length 270, 279
key pair 306
key ring 68, 136, 144, 244
key size 279, 288, 305, 315
keyring 66, 137, 302, 307
kpasswd_server statement 299

L
LDAP 200, 202

gskkyman 303
RACDCERT 303

LDAP configuration 208
LDAP Server

policy information 215
LDAP server 4, 18, 152, 162, 202, 204, 304

policy information 170
policy objects 18
refreshing policies 18

LDIF file 162, 205
Legal Notice 206
Lightweight Directory Access Protocol (LDAP) 4, 200,
202
Line Print daemon (LPD) 134
Link Pack Area (LPA) 241
Linux 207
Linux installation 207
Linux steps 164
List/Manage key 306
local realm

point 299
ZOS17.RAL.IBM.COM 296

Localiity 304
logging level

Define 17
LogNo 97
Logon to system A23 using TN3270 56
Logon to system A24 using TN3270 and then use TSO
FTP to system A23 58
LPAR 210

M
MD2 278
MD5 279
message authentication 277

code 269, 278
process 269

message authentication code (MAC) 286
HMAC 280

message digest 269
message digest algorithms

364 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

MD2 278
MD5 279
SHA-1 279

MLS
Basic concepts 243

MMC 111
MODDVIPA utility program control 261
multiple realm 295
mutual authentication 294
MVS data 10, 29, 72, 285, 314

exported certificate 314
returned certificate 334

MVS.VARY.TCPI P 254
MVS.VARY.TCPIP.STRT STOP

Chlorine 257
profile 255

MVS.VARY.TCPIP.STRT Stop 254

N
name SAPSYS 238

TCP/IP ports 239
National Security Agency (NSA) 279
NETACCESS block 247

DEFAULT statement 250
network/mask entry 248

NETSTAT 257
NETSTAT generic profile

Define 258
NETSTAT Home 258
NETSTAT profile

Define 259
NETSTAT security scenario 258
Netview and z/OS IDS 195
Network access control overview 247
Network Address Translation (NAT) 85
network administrator 153, 205
Network MIB variables and tools 233
network resource 23, 245
nonce 292
Number of available connections 159

O
OMVS segment 12, 67, 242, 297
onetstat 257
OPERCMDS 254
option number 306
Organization 304
Organizational-unit 304
Organizational-unit (OU) 304
Organization-name 304
Outbound Sysplex Address

Set 221
Set name 222

P
PAGENT 201
PAGENT and IKE daemon logs 127
PAGENT configuration 166

file 11, 15, 29, 162, 205
information 169, 209

PAGENT configuration file 169, 214
PAGENT LDAP information 209
pagent policy 5, 25, 202
PAGENT QoS policies 201
PAGENT started task to RACF

Define 12
Pascal API 132, 160
PASEARCH command 8, 59, 127
pasearch command 127
Passive attack 156
password-guessing attacks 296
PCOMM client 315
Performance Collection 211
Performance issue 197, 277
Performance monitor 210
per-hop behavior (PHB) 200
per-hop-behavior (PHB) 199
PHB 200
PKDS 306
PKI 274
policy action 6, 152, 189, 202

policy conditions 216
Policy Agent 1, 3, 22, 29, 63, 129, 152, 197, 200, 283,
304

basic operational characteristics 15
configuration file 162
following environment variables 11
IP security policy 64
started task name 123

policy agent
gskkyman 303
RACDCERT 303

Policy Agent command security 259
Policy agent log file 18
Policy API 211

collected performance information 211
policy condition 202
Policy decision point (PDP) 4
Policy enforcement point (PEP) 4
Policy model 6
Policy priorities 189, 229
Policy rule

validity periods 224
policy rule 6, 28, 170, 202
Policy rule and Action statement 6
policy time period condition 202
Policy-based networking 1, 3, 163, 197
policy-based networking

key part 197
polocy_type 259
pop-up menu 168
PORT/PORTRANGE SAF keyword 251
PORTRANGE statement 250
principal identifier 290
private key 69, 111, 269, 280, 286, 303, 307
Problem determination 59, 148, 232
Problem determination aids 126
profile name 12, 246

 Index 365

last qualifier 254
profile to protect the V TCPIP, ,START command

Define 256
profiles to control access to the RACDCERT command

Define 67
Program Access

Control 241
Control facility 241
to Data Sets 241

Program Access Control 241
Program Protection by RACF resource class PROGRAM
241
Programs-zQoS Manager 207
Protect sensitive network commands 253
Protect your network access 247
protect your network resources 240
protect your programs 240
Protecting

FTP related resources 260
miscellaneous resources 261
NETSTAT/onetstat at the command level 258
NETSTAT/onetstat at the command option level 258
network management resources 261
the use of socket options 252
VARY TCPIP at the command level 254
VARY TCPIP at the command option level 254
your network ports 250
your TCP/IP stack 246

Public Key
Cryptography Standard 273
Infrastructure 274

Public key 265, 273, 283, 311
trustworthy distribution 282

Public Key Data Set (PKDS) 306
Public Key Infrastructure (PKI) 274

digital certificate 275
public/private key encryption 271
pull-down menu 112

Q
QoS 198

implementation 204
importance 204
MIBs 233
tools 233

QoS action 216
QoS actions 220
QoS Condition

Set 216
Set entry 219
Set name 219
Sets panel 216

QoS condition 216
Condition Sets entries 219

QoS Condition Set
entry 219
name 216

QoS condition sets 216
QoS configuration using the zQoS Manager 204
QoS Device Manager (QDM) 233

QoS in z/OS Communication Server
Configuring 202

QoS policy 5, 160, 198
application performance requirements 233

Qos Policy Manager 233
QoS policy rules 215
QoS with z/OS Communications Server 200
QPM 233
Quality of Service (QOS) 197

R
RACDCERT CERTAUTH

Export 111, 330
GENCERT 305
LIST command 343

RACDCERT command 67, 277, 286, 303
RACDCERT command format (RACF) 12, 70, 245, 301
RACDCERT Id 68, 144, 313
RACDCERT RACF command 303
RACF

certificate management 353
common keyring 333
RACDCERT 303

RACF common keyring 306
RACF data base 111, 238
RACF database

CA certificate 345
Certificate Authority certificates 308
client certificate 319
digital certificate 244
digital certificates 309
internal CA certificate 329
Self-signed Client certificate 319
Self-signed Server certificate 314
SERVAUTH class 239

RACF error 249
RACF key ring 68
RACF Multilevel security (MLS) for network resources
243
RACF profile

detail 254
MYSUBNET 247
name 254–255, 334

RACF profile details 254, 257
RACF remote sharing facility (RRSF) 297
RACF resource

class 241
class Program 241
profile EZB.IPSE CCMD 127
protection 243

RACF user Id 297, 306
RACF userid and group with the IKE daemon 67
RACF userid with the PAGENT started task 12
RACFDCERT Id 311
RACF-delegation of cryptographic resources 260
RC2 270
RC4 270
RDEFINE SERVAUTH

EZB.IPSE CCMD 72
realm 290

366 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Real-time SMF information service access control 262
Recommendations 133
Redbooks Web site 359

Contact us xv
Refreshing Policies 18
Request for Comments (RFC)

RFC 1510 290
RFC 2253 275

required field 178, 305
Requirement Map

Basic_Services 103
FTP_DynVPN_Bronze 89
FTP1a 51
table 40

Requirements 163, 206
Requirements and download instructions 163
Requirements and support 206
Reserve the TCPIP ports for IKE demon 67
Resource Access Control Facility (RACF) 235, 237
resource class

OPERCMDS 13, 254
Realm 296
SERVAUTH 238

Restrict access to the pasearch command to authorized
users 13
Restrict the use of the ipsec command 71
Restrictions 134
RESTRICTLOWPORTS 251
Reusable Objects 164
Rexx socket application scenario 135
RFC

2474 199–200
2475 199
2597 199
2598 199

RFC 2402 62
Rivest, Shamir, and Adleman (RSA) 270
RSA 273
RSVPD 201

S
SAF check 250
SAF checking 258
SAF profile

MVS.VARY.TCPIP.DROP 258
MYPC 247
name 249
World 247

scan event 155
certain category 180
current count total 155

Scan events 155, 182
ICMP Scan 155
TCP port scans 155
UDP port scans 155

Scan Global 180
Scan global policy rule popup menu 181

Scan global 180
Scan policies 153
Scan policy parameters 155

Secret key 265, 283
secret key

encryption 270
KAlice 292
KBob 294
system 283

Secure Hash Standard (SHS) 279
Secure Socket Layer (SSL) 129
Secure Sockets Layer (SSL) 283
Security Access Facility (SAF) 235, 237
Security Association (SA) 62
Security Policy Database (SPD) 24
security policy database (SPD) 23
security product authorization for TRMD

Define 20
Select OK 171
self-signed certificate 68, 277, 286, 289, 301–303, 312
self-signed client certificate 312
Sensitivity level 155
SERVAUTH class 239, 245–246

following RACF profile EZB.PAGENT.sysname.tcp-
name.policy_type 259
profile EZB.FTP.sysname.ftpdname.PORTxxxxx 260
RACF profiles 260
RACLIST in-storage profiles 240
z/OS Communications Server profiles 240

SERVAUTH resource class 246
server certificate 144, 277, 286, 301
Server considerations 248
Server Policies

Configuring 136
Server policy 136
Service Level

Agreement 232
Agreement Performance Monitor 233

Service Level Agreement Performance Monitor (SLAPM)
233
session key

KAlice 292
session key KAlice 292
set up security for daemons in z/OS UNIX 242
Set up the IKE daemon cataloged procedure 65
Set up the Internet Key Exchange Daemon (IKED) 64
Set up the System Logging Daemon (syslogd) to log IKED
messages 71
Set up Traffic Regulation Manager Daemon (TRMD) 71
SETROPTS RACLIST 12, 67, 144, 238, 246
Setting DSCP using the Policy Agent 202
Setting up the certificates 110
Setting up the policy 105
Setting up the policy using z/OS GUI 81
Setting up the Profile 146
Setting up the started task procedure 19
Setting up the Windows XP 111
Setting up TRMD 19
Setup the IKE daemon 109
Setup TTLS Stack Initialization access control 13
SHA-1 279
SIOCTTLSCTL IOCTL 132
Slow Scan 154

 Index 367

Slow scan 154
SNMP agent control 261
SNMP SLA subagent 233
SO_BROADCAST Socket option access control 252
source IP address 28, 155

only unique events 156
SSL 304

Certificate Authority (CA) 302
client authentication 285
MAC 286
message authentication code (MAC) 286
public-private key pair 335
record protocol 286
self-signed certificate 289, 336
server authentication 340
server certificate 340
symmetric encryption keys 286

SSL connection 287
SSL considerations 289
SSL exchange 314
SSL handshake

operation 287
processing 287
protocol 285

SSL V2.0
Des 288
RC2 Export 288
RC4 Export 288
Triple DES US 288

SSL V3.0
DES SHA Export 288
NULL MD5 288
NULL SHA 288
RC2 MD5 Export 288
RC4 MD5 Export 288
RC4 MD5 US 288
RC4 SHA US 288
Triple DES SHA US 289

SSL-enabled applications 284
Stack Access overview 246
Start IKE daemon and verify it initializes 71
Starting PAGENT as started task 10
Starting PAGENT from UNIX 14
Starting the VPN 123
Starting TRMD from z/OS UNIX 20
State-or-province 304
STDENV DD

card 109
sticky bit in the z/OS UNIX environment 241
Stopping PAGENT 14
subnet mask 155, 248

255.255.255.0 248
length 183

Subnet priority 212
Support - Legal notice 206
Sysplex Distributor

actual setup 221
load distribution 228
Performance Monitor 210
policies 201

policy 6, 202, 216
Sysplex Distributor (SD) 201
system A23 30

filter rules 30
system A24 58
System SSL

APIs 288
Cryptographic Services Base element 288
DLLs 289

system SSL 129, 286, 303
call 149
verifie 145

T
TCP connection

activity 261
control block 6
information service 261
information service access control 261

TCP connection control block (TCB) 6
TCP connection information service access control 261
TCP layer 131
TCP port 250

990 134
scan 155
TR policies 159

TCP/IP 4, 23, 61, 155, 245, 289
TCP/IP packet trace service access control 262
TCP/IP profile

dataset 25
statement 250

TCP/IP stack initialization access control 262
TCP-based application 129
TCPCONFIG 251
TcpImage statement 11, 134

Define 15
TCPIP 4, 65, 134, 238, 248, 255, 299
TCPIP command

option 254
security 254
security scenario 255

TCPIP port 67, 238–239
Tell IKE daemon where to find the key ring 69
Ticket Granting Server (TGS) 291
ticket granting ticket (TGT) 290
ticket-granting server (TGS) 291
time zone (TZ) 11
Title 304
Tivoli Risk manager and z/OS IDS 195
TLS 289, 308
TLS exchange 348

FTP server 348
TN3270 307

gskkyman 303
RACDCERT 303

TN3270 Client
Cert 328
Certificate 319

TN3270 client 289, 315, 317
certificate PF 320

368 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

PCOMM key database 345
user 347–348

TN3270 Server 23, 155, 253, 284, 304
token bucket 203

traffic conditioner 203
Total connections 159
TR TCP 159
TR TCP policy information 159
TR UDP 160
TR UDP policies 160

LONG 160
SHORT 160
VERY_LONG 160
VERY_SHORT 160

TR UDP policy information 160
traffic conditioner block (TCB) 199
Traffic Regulation 186
Traffic Regulation (TR) policies 159
Transparent Transport Layer Security (TTLS) 13
Transport Layer Security

proposed standard 289
Transport Layer Security (TLS) 129, 280, 283
Triple-DES 270, 306
TRMDSTAT 20
TSO NETSTAT

command 249
Home 258
HOME command 258–259

TSO NETSTAT and UNIX onetstat command security
257

U
u/cs10 >

export RESOLVER_CONFIG 20
export TZ 20

UDP port 155
512 251
53 53
IDS policies 186
IDS TR policies 160

UDPQUEUELIMIT 160
Update the TCP/IP stack to activate IPSec 71
user Id 20, 69, 138, 248, 286, 307

KERB segment 297
user UTSM 238, 246
user1 347
userid for the PAGENT started task

Define 12
User-to-Network Interface (UNI) 198
Using NETSTAT for Network Access control 248
Using NETSTAT to display Port Access control 252
Using the GUI 164, 207
Using the z/OS Network Security Configuration Assistant
72

V
VARY TCPIP command security scenario 255
Verification 19, 56, 124
Verify certificate creation 69

VeriSign 286
Virtual Private Networking (VPN) 62
VPN tunnel 80, 259

W
Web Site 72, 277, 338, 342
Web Site Voice 198
Windows 2000, XP installation 207
Windows steps 164
Windows XP 108, 112, 163, 206

client 112
host 110
task bar 112
VPN tunnel 117
workstation 111
z/OS certificates 112

Work with IDS objects/rules 170
Work with reuseable objects 170
Working example of Network Access control 249

X
XML file 162, 170, 205

intermediate policy information 215
XYZ Corp 274
XYZ Corporation 273

public key 274

Y
YNAMNBR 110, 305

Z
z/OS Communications Server

component 63
environment 200
IP 7, 21
PAGENT function 25
Policy Agent 1, 3
profile 240
security protection mechanism 152
SNMP SLA Subagent 233

z/OS Communications Server SNMP SLA Subagent 233
z/OS environment 4, 23, 202, 301

digital certificates 301
network interface 23
policy-based networking 4
traffic prioritization 4

z/OS host
IP address 108

z/OS host information 210
z/OS image 23, 65, 138, 246

inbound and outbound TCP/IP traffic 26
TCP/IP components 23

z/OS IP
Security Configuration Assistant GUI 24
Security Service 109

z/OS IP filtering implementation 25
z/OS Network Security Configuration Assistant 6, 29, 50,
72, 136

 Index 369

z/OS platform 238
inherent security 240
main strengths 240

z/OS Security
Access Facility 235, 237
Server 235, 237

z/OS system 6, 22, 76, 170, 238–239, 246, 277, 285, 344
dynamic tunnel 81
name 239, 253
non-virtual interface 27
SC30 258
SMF system ID 241
telnet server 6
VPN traffic 81

z/OS V1R7
system 215
System SSL FMIDs 288

z/OS V1R7.0 Communications Server 10, 21, 62, 127,
253
z/OS VARY TCPIP command security 254
zIDS Manager

LDAP Information 165
PAGENT Configuration 166
Scan Events 182
Scan Global 180
TCP Images 167
TCP/IP Image 168
Work with IDS Objects/Rules

Attacks 176
Attack Condition Set 176

Scan Events 182
All Scan Event Actions 183
All Scan Event Conditions Sets 182
All Scan Event Policy Rules 185
ICMP scans 182
TCP port scans 182
UDP port scans 182

Scan Global 180
Add Scan Global Policy Rule/Below Section
180
All Scan Global Policy Rules 180

Traffic Regulation 186
All TR TCP Actions 187
All Traffic Regulation Condition Sets 187
All Traffic Regulation Policy Rules 188

Work with Reuseable Objects 170
All IP Address Sets 170

Work with Reuseable Objects 170
zIDS Manager Configuration 165

zQoS Manager 6, 204–205
communication flow 205
GUI 206
Help 207
tool 205
Work with LDAP Information 208

PAGENT LDAP Information 209
QoS Manager LDAP Information 208

Work with QoS Policy Rules 215
QoS Policy Rules 216

All Validity Periods 224

QoS Actions 220
QoS Condition Sets 216

Work with z/OS host 210
Performance Monitor 210
Subnet Priority 212

zQoS Manager to LDAP Server Communication 209

370 Communications Server for z/OS V1R7 TCP/IP Implementation, Volume 4, Policy-Based Network Security

Com
m

unications Server for z/OS V1R7 TCP/IP Im
plem

entation, Volum
e 4, Policy-Based Netw

ork Security

Com
m

unications Server for z/OS V1R7
TCP/IP Im

plem
entation, Volum

e 4,

Com
m

unications Server for z/OS
V1R7 TCP/IP Im

plem
entation,

Volum
e 4, Policy-Based Netw

ork

Com
m

unications Server for z/OS V1R7 TCP/IP Im
plem

entation, Volum
e 4,

Com
m

unications Server for z/OS
V1R7 TCP/IP Im

plem
entation,

Volum
e 4, Policy-Based Netw

ork

Com
m

unications Server for z/OS
V1R7 TCP/IP Im

plem
entation,

Volum
e 4, Policy-Based Netw

ork

®

SG24-7172-00 ISBN 0738496154

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Communications Server for
z/OS V1R7 TCP/IP
Implementation, Volume 4,
Policy-Based Network Security

Understand CS for
z/OS TCP/IP security
and policy
capabilities

See CS for z/OS
security and policy
implementation
examples

Protect your z/OS
networking
environment

This new and improved Communications Server (CS) for z/OS
TCP/IP Implementation series provides easy-to-understand
step-by-step how-to guidance on enabling the most commonly
used and important functions of CS for z/OS TCP/IP. With the
advent of TCP/IP and the Internet, network security requirements
have become more stringent and complex. Because many
transactions come from untrusted networks such as the Internet,
and from unknown users, careful attention must be given to host
and user authentication, data privacy, data origin authentication,
and data integrity. In addition, there are certain applications
shipped with TCP/IP such as File Transfer Protocol (FTP) that,
without proper configuration and access controls in place, could
allow unauthorized users access to system resources and data.
This IBM Redbook explains how to set up security for your z/OS
networking environment. For more specific information about CS
for z/OS base functions, standard applications, and high
availability, reference the other volumes in the series. These are:

� Communications Server for z/OS V1R7 TCP/IP
Implementation, Volume 1 - Base Functions, Connectivity, and
Routing, SG24-7169

� Communications Server for z/OS V1R7 TCP/IP
Implementation, Volume 2 - Standard Applications,
SG24-7170

� Communications Server for z/OS V1R7 TCP/IP
Implementation, Volume 3 - High Availability, Scalability, and
Performance, SG24-7171

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	Our implementation environment
	The environment used for all four books
	Our focus for this book

	The team that wrote this redbook
	Become a published author
	Comments welcome

	Notices
	Trademarks

	Part 1 Policy-based networking
	Chapter 1. Policy Agent (PAGENT)
	1.1 Policy Agent description
	1.1.1 Basic concepts
	1.1.2 The Policy model

	1.2 Implementing PAGENT on z/OS
	1.2.1 Starting PAGENT as started task
	1.2.2 Starting PAGENT from UNIX
	1.2.3 Stopping PAGENT
	1.2.4 How to disable PAGENT policies for IPSec
	1.2.5 Basic configuration
	1.2.6 Coding policy definitions in a configuration file
	1.2.7 Refreshing policies
	1.2.8 Verification
	1.2.9 For additional information

	1.3 Setting up TRMD

	Chapter 2. IP filtering
	2.1 Defining IP filtering
	2.1.1 Basic concepts
	2.1.2 For additional information

	2.2 Why IP filtering is important
	2.3 How IP filtering is implemented
	2.3.1 z/OS IP filtering implementation

	Chapter 3. IPSec
	3.1 IPSec definition
	3.2 Key IPSec components
	3.2.1 IP Authentication Header (AH) protocol
	3.2.2 IP Encapsulating Security Payload (ESP) protocol
	3.2.3 Internet Key Exchange (IKE) protocol

	3.3 How IPSec is implemented
	3.3.1 Set up the Internet Key Exchange Daemon (IKED)
	3.3.2 Set up the System Logging Daemon (syslogd) to log IKED messages
	3.3.3 Start IKE daemon and verify it initializes
	3.3.4 Set up Traffic Regulation Manager Daemon (TRMD)
	3.3.5 Update the TCP/IP stack to activate IPSec
	3.3.6 Restrict the use of the ipsec command
	3.3.7 Install the Policy Agent (PAGENT)
	3.3.8 Define the IPSec policies to PAGENT
	3.3.9 Using the z/OS Network Security Configuration Assistant

	3.4 Implementing IPSec between two z/OS systems
	3.4.1 Setting up the policy using z/OS GUI

	3.5 Implementing IPSec between z/OS and Windows
	3.5.1 Setting up the policy
	3.5.2 Setting up the Windows XP

	3.6 Verification
	3.6.1 Checking syslogd for messages
	3.6.2 Proving things are working

	3.7 Problem determination aids
	3.7.1 IPSEC command
	3.7.2 pasearch command
	3.7.3 PAGENT and IKE daemon logs

	3.8 Further information

	Chapter 4. Application Transparent - TLS
	4.1 AT-TLS definition
	4.1.1 Basic concepts
	4.1.2 AT-TLS application types
	4.1.3 For additional information

	4.2 Why AT-TLS is important
	4.3 Recommendations
	4.4 Restrictions
	4.5 How AT-TLS is implemented
	4.5.1 Rexx socket application scenario

	Chapter 5. Intrusion Detection Services (IDS)
	5.1 What IDS is
	5.2 Basic concepts
	5.2.1 Scan policies
	5.2.2 Attack policies
	5.2.3 Attack policy tracing
	5.2.4 Traffic Regulation (TR) policies

	5.3 How IDS is implemented
	5.3.1 The eServer IDS Configuration Manager
	5.3.2 Requirements and download instructions
	5.3.3 Windows steps
	5.3.4 Linux steps
	5.3.5 Using the GUI
	5.3.6 Policy priorities
	5.3.7 Additional information

	Chapter 6. Quality of Service
	6.1 QoS definition
	6.1.1 Differentiated Services
	6.1.2 QoS with z/OS Communications Server
	6.1.3 PAGENT QoS policies
	6.1.4 Configuring QoS in the z/OS Communication Server
	6.1.5 For additional information

	6.2 Why QoS is important
	6.3 How QoS is implemented
	6.3.1 QoS configuration using the zQoS Manager
	6.3.2 LDAP configuration
	6.3.3 z/OS host information
	6.3.4 QoS policy rules
	6.3.5 Conjunctive Normal Form (CNF) policies
	6.3.6 Problem determination

	Part 2 SAF-based security
	Chapter 7. RACF demystified
	7.1 Basic concepts
	7.2 How to protect your network resources
	7.3 How to protect your programs
	7.3.1 The sticky bit in the z/OS UNIX environment

	7.4 How to associate a user ID with a started task (STC)
	7.5 How to set up security for daemons in z/OS UNIX
	7.6 RACF multilevel security (MLS) for network resources
	7.6.1 Basic concepts of MLS

	7.7 Digital certificates in RACF
	7.8 Further information

	Chapter 8. Protecting network resources
	8.1 The SERVAUTH resource class
	8.2 Protecting your TCP/IP stack
	8.2.1 Stack Access overview
	8.2.2 Example setup

	8.3 Protect your network access
	8.3.1 Network access control overview
	8.3.2 Server considerations
	8.3.3 Using NETSTAT for Network Access control
	8.3.4 Working example of Network Access control

	8.4 Protecting your network ports
	8.4.1 The PORT/PORTRANGE SAF keyword
	8.4.2 Using NETSTAT to display Port Access control

	8.5 Protecting the use of socket options
	8.5.1 SO_BROADCAST Socket option access control
	8.5.2 IPv6 advanced socket API options

	8.6 Protect sensitive network commands
	8.6.1 z/OS VARY TCPIP command security
	8.6.2 TSO NETSTAT and UNIX onetstat command security
	8.6.3 Policy Agent command security
	8.6.4 IPSec command access control
	8.6.5 For more information

	8.7 Protecting FTP-related resources
	8.7.1 FTP SITE command control
	8.7.2 FTP server access control
	8.7.3 FTP z/OS UNIX access control
	8.7.4 RACF-delegation of cryptographic resources

	8.8 Protecting network management resources
	8.8.1 SNMP agent control
	8.8.2 TCP connection information service access control
	8.8.3 CIM provider access control

	8.9 Protecting miscellaneous resources
	8.9.1 Digital Certificate Access Server (DCAS) access control
	8.9.2 MODDVIPA utility program control
	8.9.3 Fast Response Cache Accelerator (FRCA) Access Control
	8.9.4 Real-time SMF information service access control
	8.9.5 TCP/IP packet trace service access control
	8.9.6 TCP/IP stack initialization access control

	Part 3 Appendixes
	Appendix A. Basic cryptography
	Potential problems with electronic message exchange
	The request is not really from your client
	The order could have been intercepted and read
	The order could have been intercepted and altered
	An order is received from your client, but he denies sending it

	Secret key cryptography
	Public key cryptography
	Encryption
	Authentication
	Public key algorithms
	Digital certificates

	Performance issues of cryptosystems
	Message integrity
	Message digest (or hash)
	Message authentication codes (MAC)
	Digital signatures

	Appendix B. Tools for application security
	Secure Sockets Layer (SSL)
	SSL protocol description
	Certificates for SSL
	B.0.1 System SSL

	TLS protocol
	Kerberos-based security system
	Kerberos protocol overview
	Inter-realm operation
	Some assumptions
	Kerberos implementation in z/OS

	Appendix C. Certificate management in z/OS
	Digital certificates
	How to generate digital certificates in z/OS
	Digital certificate field formats
	RACF RACDCERT command use
	RACF key rings
	RACDCERT command security
	RACDCERT command format

	gskkyman command use
	Client certificates
	Server certificates
	Self-signed certificates
	Obtaining certificates
	Self-signed certificates
	Internal Certificate Authority (CA)
	External Certificate Authority (CA)

	Certificate locations example
	RACF certificates
	gskkyman z/OS UNIX certificates

	Appendix D. IPSec scenario policies
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

