
Getting Started with Artix
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: March 27, 2007

Contents

List of Figures 5

Preface 7
What is Covered in This Book 7
Who Should Read This Book 7
Organization of This Book 7
The Artix Documentation Library 8

Chapter 1 Introduction 9
What is Artix ESB? 10
Solving Problems with Artix ESB 17

Chapter 2 Artix ESB Concepts 21
The Artix ESB Runtime Components 22
The Artix Bus 23
Artix Endpoints 24
Artix Contracts 25
Artix Services 27

Chapter 3 Artix Designer Introduction and Tutorial 29
Introduction 30
Artix Designer Tutorial 37
Tutorial: Creating New Projects 38
Tutorial: Creating a Blank WSDL File 40
Tutorial: Defining the WSDL Elements 43

Defining Types 44
Defining Messages 49
Defining Port Types 53
Defining Bindings 57
Defining a Service 62

Tutorial: Generating Code 66
Creating code generation configurations 67

Tutorial: Running the Applications 73
3

CONTENTS
Appendix A Understanding WSDL 81
WSDL Basics 82
Abstract Data Type Definitions 84
Abstract Message Definitions 87
Abstract Interface Definitions 90
Mapping to the Concrete Details 93

Index 95
4

List of Figures

Figure 1: Artix ESB High-Performance Architecture 12

Figure 2: Artix ESB Runtime Components 22

Figure 3: The CppHello Project with a Link to the HelloWorld.wsdl File 42

Figure 4: The Select Source Resources Panel 45

Figure 5: The Define Type Properties Panel 46

Figure 6: The Define Element Data Panel 47

Figure 7: Define Message Properties panel 49

Figure 8: The Define Message Parts Panel 50

Figure 9: The Message Part Data Dialog Box 50

Figure 10: The Define Message Parts Panel, with the InPart Added 51

Figure 11: The Define Port Type Properties Panel 54

Figure 12: The Define Port Type Operations Panel 54

Figure 13: The Operation Message Data Dialog Box 55

Figure 14: The Define Operation Messages Panel 56

Figure 15: The Select Binding Type Panel 58

Figure 16: The Set Binding Defaults Panel 59

Figure 17: Edit Operation panel 60

Figure 18: Edit Operation panel, sayHi node selected 60

Figure 19: The Define Service Panel 62

Figure 20: The Define Port Panel 63

Figure 21: The Define Port Properties panel 64

Figure 22: The Artix Tools Panel 67

Figure 23: Artix Tools Panel, HelloJ configuration, Generation Tab 68

Figure 24: Artix Tools panel, WSDL Details tab 69

Figure 25: The Duplicate Launch Configuration Button 70

Figure 26: Java Application Launch Configurations in the Run Window 74
5

LIST OF FIGURES
Figure 27: Eclipse Console View toolbar 76
 6

Preface
What is Covered in This Book
Getting Started with Artix provides an introduction to IONA’s Artix ESB
technology. It gives a brief overview of the architecture and functionality of
Artix, and an introduction to Web Services Description Language (WSDL).

This book takes you through the process of creating a WSDL file and
generating starting point code in both C++ and Java using the Artix
Designer development tool.

This book also provides guidance for finding your way around the Artix
product library.

Who Should Read This Book
Getting Started with Artix is for anyone who needs to understand the
concepts and terms used in IONA’s Artix product.

Organization of This Book
This book contains conceptual information about Artix and WSDL:

• Chapter 1, “Introduction” on page 9 introduces the Artix product and
the types of problems it is designed to solve, and provides an
introduction walkthrough of the Artix documentation library.

• Chapter 2, “Artix ESB Concepts” on page 21 explains the main
concepts used in Artix.

• Chapter 3, “Artix Designer Introduction and Tutorial” on page 29
explains the basics of using Artix Designer to edit Artix contracts and
generate project code from a WSDL contract.

• Appendix A, “Understanding WSDL” on page 81 explains the basics of
WSDL.
7

PREFACE
The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and finding additional resources, see Using the Artix
Library.
 8

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Introduction
This chapter introduces the main features of Artix ESB.

In this chapter This chapter discusses the following topics:

What is Artix ESB? page 10

Solving Problems with Artix ESB page 17
9

CHAPTER 1 | Introduction
What is Artix ESB?

Overview Artix ESB is an extensible enterprise service bus. It provides the tools for
rapid application integration that exploits the middleware technologies and
the products already present within your enterprise.

The approach taken by Artix ESB relies on existing Web service standards
and extends these standards to provide rapid integration solutions that
increase operational efficiencies, capitalize on existing infrastructure, and
enable the adoption or extension of a service-oriented architecture (SOA).

Web services and SOAs The information services community generally regards Web services as
application-to-application interactions that use SOAP over HTTP.

Web services have the following advantages:

• The data encoding scheme and transport semantics are based on
standardized specifications.

• The XML message content is human readable.

• The contract defining the service is XML-based and can be edited by
any text editor.

• They promote loosely coupled architectures.

Service-oriented architectures take the Web services concept and extend it
to the entire enterprise. Using a service-oriented architecture, your
infastructure becomes a collection of loosely coupled services. Each service
becomes an endpoint defined by a contract written in Web Services
Description Language (WSDL). Clients, or service consumers, can then
access the services by reading a service’s contract.

Artix and services Using IONA’s proven Adaptive Runtime Technology (ART), Artix extends the
Web service standards to include more than just SOAP over HTTP. Thus,
Artix allows organizations to define their existing applications as services
without worrying about the underlying middleware. It also provides the
ability to expose those applications across a number of middleware
technologies without writing any new code.
10

What is Artix ESB?
Artix also provides developers with the tools to write new applications in
C++ or Java that can be exposed as middleware-neutral services. These
tools aid in the definition of the new service in WSDL and in the generation
of stub and skeleton code.

Just like the WSDL contracts used to define a service, the code that Artix
generates adheres to industry standards.

Benefits of Artix Artix ESB’s extensible nature provides a number of benefits compared to
other ESB products and older enterprise application integration (EAI)
products. Chief among these is its speed and flexibility. In addition, Artix
ESB provides enterprise levels of service such as session management,
service discovery, security, and cross-middleware transaction propagation.

EAI products typically use a proprietary, canonical message format in a
centralized EAI hub. When the hub receives a message, it transforms the
message to this canonical format and then transforms the message to the
format of the target application before sending it to its destination. Each
application requires two adapters that are typically proprietary and that
translate to and from the canonical format.

By contrast, the Artix ESB bus does not require a hub architecture, nor does
it use any intermediate message format. When a message is received by the
bus, it is transformed directly into the target application’s message format.

Because Artix ESB uses a standardized means of defining its services, the
plug-ins used to connect applications to the bus are reusable.
11

CHAPTER 1 | Introduction
Figure 1 shows an example Artix ESB integration between BEA Tuxedo and
IBM WebSphere MQ.

Because Artix ESB is built on top of ART, it is modular in nature. This
means that it is highly configurable and that it is easily extendable. You can
configure Artix ESB to only load the pieces you need for the functionality you
require. If Artix ESB does not provide a transport or message format you
need, you can easily develop your own plug-in, extend the contract
definitions, and configure Artix to load it.

Using Artix ESB There are two ways to use Artix ESB in your enterprise:

• You can use Artix ESB to develop new applications using the Artix
Application Programming Interface (API). In this situation, developers
generate Artix stubs and skeletons from an Artix contract, and Artix
becomes a part of your development environment.

• You can use the Artix bus to integrate two existing applications, built
on different middleware technologies, into a single application. In this
situation, developers simply create an Artix contract defining the
integration of the systems. In most cases, no new code is needed.

Figure 1: Artix ESB High-Performance Architecture
12

What is Artix ESB?
Becoming proficient with Artix
ESB

To become an effective Artix ESB developer you need an understanding of
the following:

1. The syntax for WSDL files and the Artix ESB extensions to the WSDL
specification.

2. The relationship between Artix WSDL extensions, ART plug-ins, and
setting configuration entries.

3. The Artix APIs that you can use in your application.

4. Artix Designer, a GUI tool that enables you to write, generate, and edit
WSDL files, and to generate, compile, and run code.

This book introduces these four concepts. The other books in the Artix
documentation library covers the same technologies in greater detail.

Artix ESB features Artix ESB includes the following unique features:

• Support for multiple transports and message data formats

• C++ and Java development

• Message routing

• Cross-middleware transaction support

• Asynchronous Web services

• Deployment of services as plug-ins via the Artix container

• Role-based security, single sign-on, and security integration

• Session management and stateful Web services

• Look-up services

• Load-balancing

• High-availability service clustering

• Integration with EJBs

• Easy-to-use development tools

• Support for Microsoft .NET

• Integration with enterprise management tools such as IBM Tivoli and
BMC Patrol

• Support for XSLT-based message transformation

• No need to hard-code WSDL references into applications
13

CHAPTER 1 | Introduction
Supported transports and
protocols

A transport is an on-the-wire format for messages; whereas a protocol is a
transport that is defined by an open specification. For example, WebSphere
MQ and Tuxedo are transports, while HTTP and IIOP are protocols.

In Artix ESB, both protocols and transports are referred to as transports.
Artix ESB supports the following message transports:

• HTTP

• BEA Tuxedo

• IBM WebSphere MQ (formerly MQSeries)

• TIBCO Rendezvous™

• IIOP

• CORBA

• Java Messaging Service

Supported payload formats A payload format defines the layout of a message delivered over a transport.
Artix ESB can automatically transform between the following payload
formats:

• CORBA Common Data Representation (CDR)

• G2++

• Fixed record length (FRL)

• SOAP

• Pure XML

• Tagged (variable record length)

• TibrvMsg (a TIBCO Rendezvous format)

• Tuxedo’s Field Manipulation Language (FML)

Artix for z/OS Artix for z/OS allows you to design, create, and deploy a variety of enterprise
integration solutions for the mainframe. These solutions include:

• Non-intrusively exposing existing mainframe applications to the
network as Web services and CORBA objects, with no need to recode
the mainframe applications.

• Developing new mainframe-based Web service applications from
WSDL definitions.
14

What is Artix ESB?
An application can be exposed as both a Web service and a CORBA object
that can accept client requests via SOAP over HTTP or HTTPS, SOAP over
WebSphere MQ, or IIOP over TCP/IP. Thus, Artix for z/OS enables you to
transform basic mainframe applications into true multi-protocol applications
that are accessible throughout the entire enterprise.

Artix for z/OS is delivered in separate packages, as follows:

• Artix for z/OS is a separate add-on package that provides the on-host
mainframe components for development and deployment of Artix
services on the mainframe.

• The Artix for z/OS off-host components are included with Artix ESB for
the Windows, Linux, and Solaris platforms.

For more information on mainframe support in Artix, see the documentation
for Artix for z/OS at http:/www.iona.com/support/docs/index.xml.

Artix Orchestration Artix Orchestration is an add-on kit that must be installed into an existing
Artix ESB installation, as follows:

• The Artix Orchestration add-on for all supported operating systems
provides support for the Artix Orchestration BPEL engine.

• The Artix Orchestration add-on for Windows, Linux, and Solaris
integrates orchestration development tools into Artix Designer.

The installation requirements are further described in the Artix Orchestration
Installation Guide.

Artix Orchestration adds support for designing an orchestrated set of Web
services using the standard Business Process Execution Language (BPEL),
and for integrating your orchestrated set of services into your Artix
environment.

Artix Orchestration adds the following features to Artix:

• BPEL Designer, integrated into Eclipse alongside Artix Designer

• Artix Orchestration and Artix Orchestration Debug perspectives for
Eclipse

• An Artix Orchestration BPEL server for hosting and managing deployed
BPEL processes

• A Web-based Administration Console for the Artix Orchestration server

• A persistent storage option for the Artix Orchestration server

• Demonstration code
15

http://www.iona.com/support/docs/index.xml
http://www.iona.com/support/docs/artix/4.2/orch_install/index.htm
http://www.iona.com/support/docs/artix/4.2/orch_install/index.htm

CHAPTER 1 | Introduction
• Documentation embedded as Eclipse Help

• An Artix Orchestration tutorial
16

Solving Problems with Artix ESB
Solving Problems with Artix ESB

Overview Artix ESB allows you to solve problems arising from the integration of
existing back-end systems using a service-oriented approach. Artix ESB
allows you to develop new services using C++ or Java, and to retain all of
the enterprise levels of service that you require.

There are three phases to an Artix ESB project:

1. The design phase, where you define your services and define how they
are integrated using Artix contracts.

2. The development phase, where you write the application code
required to implement new services.

3. The deployment phase, where you configure and deploy your Artix
solution.

Design phase In the design phase, you define the logical layout of your system in an Artix
contract. The logical or abstract definition of a system includes:

• the services that it contains

• the operations each service offers

• the data the services will use to exchange information

Once you have defined the logical aspects of your system, you then add the
physical network details to the contracts.

The physical details of your system include the transports and payload
formats used by your services, as well as any routing schemes needed to
connect services that use different transports or payload formats.

Artix Designer and the Artix command-line tools automate the mapping of
your service descriptions into WSDL-based Artix contracts. These tools allow
you to:

• Import existing WSDL documents

• Create Artix contracts from scratch

• Generate Artix contracts from:

♦ CORBA IDL

♦ A description of tagged data
17

CHAPTER 1 | Introduction
♦ A description of fixed record length data

♦ A COBOL copybook

♦ A Java class

• Add the following bindings to an Artix contract:

♦ CORBA

♦ Fixed record length

♦ SOAP

♦ Tagged data

♦ XML

Development phase You must write Artix application code if your solution involves creating new
applications or a custom router, or involves using the Artix session
management feature. The first step in writing Artix code is to generate client
stub code and server skeleton code from the Artix contracts that you created
in the design phase. You can generate this code using Artix Designer or the
Artix command-line tools.

After you have generated the client stub code and server skeleton code, you
can develop the code that implements the business logic you require. For
most applications, Artix-generated code allows you to stick to using
standard C++ or Java code for writing business logic.

Artix Designer is integrated with the open-source Eclipse application
framework, but you are not required to use Eclipse for the whole project.
Once the stub code is generated, you can switch to your favorite
development environment to develop and debug the application code.

Artix ESB also provides advanced APIs for directly manipulating messages,
for writing message handlers, and for other advanced features your
application might require. These can be plugged into the Artix runtime for
customized processing of messages.

Deployment phase In the deployment phase, you configure the Artix runtime to fine-tune the
Artix bus for your new Artix system. This involves modifying the Artix
configuration files and editing the Artix contracts that describe your solution
to fit the exact circumstances of your deployment environment.
18

Solving Problems with Artix ESB
This phase also includes the managing of the deployed system. This might
involve, for example, using an enterprise management tool such as Tivoli
along with the Artix command interface. These tools allow you to further
fine-tune your system.
19

CHAPTER 1 | Introduction
20

CHAPTER 2

Artix ESB
Concepts
This chapter introduces the key concepts used in the Artix ESB
product.

In this chapter This chapter discusses the following topics:

The Artix ESB Runtime Components page 22

The Artix Bus page 23

Artix Endpoints page 24

Artix Contracts page 25

Artix Services page 27
21

CHAPTER 2 | Artix ESB Concepts
The Artix ESB Runtime Components

How it fits together Artix ESB is comprised of a group of components that are built on the
Adaptive Runtime Technology (ART) platform:

• The Artix Bus is at the core of Artix, and provides the support for
various transports and payload formats.

• Artix Contracts describe your applications in such a way that they
become services that can be deployed as Artix Endpoints.

• Artix Services include a number of advanced services, such as the
locator and session manager. Each Artix service is defined with an Artix
contract and can be deployed as an Artix endpoint.

Figure 2 illustrates how the Artix ESB elements fit together.

Plugability Because Artix ESB is built on ART, all Artix services are implemented as
plug-ins. You can also deploy your own services as plug-ins. This means
that you can host any Artix service either as a standalone application or as a
plug-in to another Artix application.

Each separate service, regardless of how it is deployed, becomes a separate
endpoint.

Figure 2: Artix ESB Runtime Components

Artix Bus

Client Server

Endpt
contract

Endpt
contract
22

The Artix Bus
The Artix Bus

Overview The Artix bus is at the heart of the Artix ESB architecture. It is the
component that hosts the services that you create and connects your
applications to those services.

The bus is also responsible for translating data from one format into
another. This translation process works as follows:

1. Reader plug-ins accept incoming data in one format.

2. The Artix bus directly translates the data into another format.

3. Writer plug-ins write the data back out to the wire in the new format.

In this way, Artix ESB enables all of the services in your company to
communicate, without needing to communicate in the same way. It also
means that clients can contact services without understanding the native
language of the server handling requests.

Benefits While other products provide some ability to expose applications as
services, they frequently require a good deal of coding. The Artix bus
eliminates the need to modify your applications or write code by directly
translating the application’s native communication protocol into any of the
other supported protocols.

For example, by deploying an Artix instance with a SOAP-over-WebSphere
MQ endpoint and a SOAP-over-HTTP endpoint, you can expose a
WebSphere MQ application directly as a Web service. The WebSphere MQ
application does not need to be altered or made aware that it is being
exposed using SOAP over HTTP.

The Artix bus translation facility also makes it a powerful integration tool.
Unlike traditional EAI products, Artix translates directly between different
middlewares without first translating into a canonical format. This saves
processing overhead and increases the speed at which messages are
transmitted.
23

CHAPTER 2 | Artix ESB Concepts
Artix Endpoints

Overview An Artix endpoint is the connection point at which a service or a service
consumer connects to the Artix bus. Endpoints are described by a contract
describing the services offered and the physical representation of the data
on the network.

Reconfigurable connection An Artix endpoint provides an abstract connection point between
applications, as shown in Figure 2 on page 22. The benefit of this abstract
connection is that it allows you to change the underlying communication
mechanism without recoding any of your applications. You only need to
modify the contract describing the endpoint.

For example, if one of your back-end service providers is a Tuxedo
application and you want to swap it for a CORBA implementation, you
simply change the endpoint’s contract to contain a CORBA connection to
the Artix bus. The clients accessing the back-end service provider do not
need to be aware of the change.
24

Artix Contracts
Artix Contracts

Overview Artix contracts are written in WSDL. In this way, a standard language is
used to describe the characteristics of services and their associated Artix
endpoints. By defining characteristics such as service operations and
messages in an abstract way—independent of the transport or protocol used
to implement the endpoint—these characteristics can be bound to a variety
of protocols and formats.

Artix ESB allows an abstract definition to be bound to multiple specific
protocols and formats. This means that the same definitions can be reused
in multiple implementations of a service. Artix contracts define the services
exposed by a set of systems, the payload formats and transports available to
each system, and the rules governing how the systems interact with each
other. The simplest Artix contract defines a single pair of systems with a
shared interface, payload format, and transport. Artix contracts can also
define very complex integration scenarios.

WSDL elements Understanding Artix contracts requires some familiarity with WSDL. The key
WSDL elements are as follows:

WSDL types provide data type definitions used to describe messages.

A WSDL message is an abstract definition of the data being communicated.
Each part of a message is associated with a defined type.

A WSDL operation is an abstract definition of the capabilities supported by
a service, and is defined in terms of input and output messages.

A WSDL portType is a set of abstract operation descriptions.

A WSDL binding associates a specific data format for operations defined in
a portType.

A WSDL port specifies the transport details for a binding, and defines a
single communication endpoint.

A WSDL service specifies a set of related ports.
25

CHAPTER 2 | Artix ESB Concepts
The Artix contract An Artix contract is specified in WSDL and is conceptually divided into
logical and physical components.

The logical contract

The logical contract specifies components that are independent of the
underlying transport and wire format. It fully specifies the data structure and
the possible operations or interactions with the interface. It enables Artix to
generate skeletons and stubs without having to define the physical
characteristics of the connection (transport and wire format).

The logical contract includes the types, message, operation, and portType
elements of the WSDL file.

The physical contract

The physical component of an Artix contract defines the format and
transport-specific details. For example:

• The wire format, middleware transport, and service groupings

• The connection between the portType operations and wire formats

• Buffer layout for fixed formats

• Artix extensions to WSDL

The physical contract includes the binding, port, and service elements of
the WSDL file.
26

Artix Services
Artix Services

Overview In addition to the core Artix components, Artix also provides the following
services:

• Container

• Locator

• Session manager

• Transformer

• Accessing contracts and references

These services provide advanced functionality that Artix deployments can
use to gain even more flexibility.

Container The Artix container provides a consistent mechanism for deploying and
managing Artix services. It allows you to write Web service implementations
as Artix plug-ins and then deploy your services into the Artix container.

Using the container eliminates the need to write your own C++ or Java
server mainline. Instead, you can deploy your service by simply passing the
location of a generated deployment descriptor to the Artix container's
administration client.

IONA strongly recommends that all new client and server Artix
implementations be implemented and deployed in an Artix container.

Locator The Artix locator provides service look-up and load balancing functionality to
an Artix deployment. It isolates service consumers from changes in a
service's contact information.

The Artix WSDL contract defines how the client contacts the server, and
contains the address of the Artix locator. The locator provides the client with
a reference to the server.

Servers are automatically registered with the locator when they start, and
service endpoints are automatically made available to clients without the
need for additional coding.
27

CHAPTER 2 | Artix ESB Concepts
Session manager The Artix session manager is a group of plug-ins that work together to
manage the number of concurrent clients that access a group of services.
This allows you to control how long each client can use the services in the
group before having to check back with the session manager.

In addition, the session manager has a pluggable policy callback
mechanism that enables you to implement your own session management
policies.

Transformer The Artix transformer provides Artix ESB with a way to transform operation
parameters on the wire using rules written in Extensible Style Sheet
Transformation (XSLT) scripts. The transformer can be used to provide a
simple means of transforming data. For example, it can be used to develop
an application that accepts names as a single string and returns them as
separate first and last name strings.

The transformer can also be placed between two applications where it can
transform messages as they pass between the applications. This
functionality allows you to connect applications that do not use exactly the
same interfaces and still realize the benefits of not using a canonical format
without rewriting the underlying applications.

Accessing contracts and
references

Accessing contracts and references in Artix ESB refers to enabling client and
server applications to find WSDL service contracts and references. Using the
techniques and conventions of Artix avoids the need to hard code WSDL into
your client and server applications.

For more information For more information on Artix services, see Configuring and Deploying Artix
Solutions.
28

http://www.iona.com/support/docs/artix/4.0/deploy/index.htm
http://www.iona.com/support/docs/artix/4.0/deploy/index.htm

CHAPTER 3

Artix Designer
Introduction and
Tutorial
This chapter introduces Artix Designer, and outlines how you
can use it to build a WSDL file and to generate starting point
code.

In this chapter This chapter discusses the following topics:

Introduction page 30

Artix Designer Tutorial page 37

Tutorial: Creating a Blank WSDL File page 40

Tutorial: Defining the WSDL Elements page 43

Tutorial: Generating Code page 66

Tutorial: Running the Applications page 73
29

CHAPTER 3 | Artix Designer Introduction and Tutorial
Introduction

Overview Artix Designer is a GUI development tool that ships as a series of plug-ins to
the Eclipse platform. Eclipse is an open source development platform and
application framework for building software, as described at eclipse.org.

Artix Designer enables you to write and edit the WSDL files that describe
Artix resources and their integration, and to generate starting point code for
a Web service. Artix Designer also includes perspectives that enable you to
work with Artix for z/OS and Artix database projects, and to manage
deployed Artix services.

Generating WSDL Artix Designer features a number of wizards that enable you to create WSDL
files based on:

• CORBA IDL files

• Java classes

• EJB session beans

• XSD schemas

• Fixed record-length data

• Tagged data

• COBOL copybook files

The WSDL editor Artix Designer's WSDL editor is integrated with its code generation tools,
and incorporates a thorough understanding of the Artix extensions to the
WSDL standard.

For example, Artix Designer automatically adds the required namespace
declarations and prefix definitions when you build Artix applications that
involve Artix-extended data marshalling schemas, transport protocols, or
routing.

The Artix Designer WSDL editor provides a number of wizards that take you
through the process of creating and editing type, message, portType,
binding, service, and route elements in your WSDL files.
30

http://www.eclipse.org

Introduction
Generating code Artix Designer’s code generation tool incorporates the same technology as
the Artix command-line tools, including WSDLgen, wsdltocpp and
wsdltojava. This allows Artix Designer to generate starting point code in
C++ and Java based on your WSDL files.

Integration with the Eclipse Java Development Tools (JDT) and C/C++
Development Tools (CDT) means that any code you create is compiled
automatically after you generate it, and is recompiled when you make any
changes to your source.

The Artix code generator allows you to create a variety of code generation
configurations, which you can save and reuse. For example, you can create
configurations for:

• Client and server applications

• Artix router applications

• CORBA IDL

• Artix service plug-ins

• Container applications for hosting service plug-ins

See “Tutorial: Generating Code” on page 66 for an example of the Artix code
generator at work.

Artix for z/OS off-host components The off-host components of the Artix for z/OS product are included with the
base configuration of Artix Designer. These off-host components are
designed to be used in conjunction with the mainframe components of Artix
for z/OS, which are separately licensed.

Launching Artix Designer To launch Artix Designer in Windows, select Start|(All)
Programs|IONA|Artix version|Artix Designer.

To launch Artix Designer in Linux or Solaris, run:

Note: The Build Automatically option must be enabled in the Eclipse
Project menu for code to be compiled automatically.

InstallDir/artix/version/eclipse/eclipse
31

CHAPTER 3 | Artix Designer Introduction and Tutorial
The Eclipse platform launches with the Artix Designer plug-ins loaded.

Artix-related perspectives In the Eclipse development framework, a perspective is a predefined layout
of the windows, views, menus, and tools in the Eclipse window. The
following Artix-related perspectives are shipped with Artix Designer:

• The Artix perspective is associated with basic Web services projects,
as well as CORBA and EJB projects.

• The Artix for z/OS perspective is associated with Artix for z/OS projects.

• The Artix Database perspective is associated with Artix database
projects.

The optional Artix Orchestration add-on package installs two more
perspectives: Artix Orchestration and Artix Orchestration Debug.

Starting with Artix 4.2, Artix Designer also includes three perspectives from
the client side of Artix Registry/Repository. If you have an Artix Repository
database at your site, you can log in to it from one of the Registry/Repository
perspectives.

The Artix perspective When you create a new Artix Designer Web services project, Eclipse
automatically switches to the Artix perspective.

The Artix perspective provides you with the tools that you need to develop
an Artix project in Eclipse. It includes the following features:

• The Artix toolbar

• The Navigator view

• The Outline view

Artix Designer project types In Eclipse, all development is performed within a project. When you create a
new project in the Artix perspective, Artix Designer offers a choice between
the following project creation wizards:

• Basic Web services project

• CORBA Web services project

• Database Web services project

• Web services projects from EJB

Note: You can install Artix Designer into an existing Eclipse 3.2
installation, as described in the Artix Installation Guide.
32

http://www.iona.com/support/docs/artix/4.2/install_guide/index.htm

Introduction
• z/OS CORBA Web services project from IDL

• z/OS Web services project starting from an application

• z/OS Web services project starting from DB2

• z/OS Web services project starting from deployment descriptors

• z/OS Web services projects starting from WSDL

A CORBA Web services project creates a WSDL file and a router
configuration based on a CORBA IDL data source.

Artix Designer project templates The project creation wizards other than Basic have preselected project
templates. When you select one of these wizards, you also select its
associated project template.

When you create a new project starting with the Basic Web services project
wizard, Artix Designer prompts you to specify a template. The template sets
up files and a directory structure for you.

The Empty project template creates only a project folder and an Eclipse
.project file. You must import or link to an existing WSDL file, or create a
new one, in order to have a starting point for generating code.

The other project templates create all the starting point code and
configuration information needed for your Web services application.

Artix Designer provides the following project templates:

• Empty project

• Artix router

• C++ client

• C++ client and container

• C++ client and server

• C++ container

• C++ server

• Java client

• Java client and container

• Java client and server

• Java container

Note: When using a template other than Empty, you must have a valid
WSDL file prepared in advance.
33

CHAPTER 3 | Artix Designer Introduction and Tutorial
• Java server

Using the Artix toolbar The Artix toolbar gives you quick access to the primary Artix Designer
functionality. It contains the following buttons:

Table 1: Artix Designer Toolbar Buttons

Button Description

St
an

da
rd Re-run the last-run Artix Tools configuration.a

Import Artix demos into Artix Designer.

A
rt

ix
 f
or

 z
/O

S
Export Artix for z/OS project
(active in the Artix for z/OS perspective).

Create a BIM file from the current WSDL file
(active in the Artix for z/OS perspective).

Validate selected WSDL for Artix for z/OS
(active in the Artix for z/OS perspective).

St
an

da
rd

Add import element to currently selected WSDL file.

Add type element to currently selected WSDL file.

Add message element to currently selected WSDL file.

Add portType element to currently selected WSDL file.

St
an

da
rd

Add binding element to currently selected WSDL file.

Add service element to currently selected WSDL file.

Add route element to currently selected WSDL file.
34

Introduction
Cheat sheets The Eclipse environment provides an online documentation type that it calls
cheat sheets. Cheat sheets are interactive tutorials that guide you step by
step through common tasks.

Artix Designer ships with several Artix-related cheat sheets to help you:

• Create an Artix Designer project

• Generate a client-server application

• Create a WSDL file’s logical and physical elements

• Generate code for a services plug-in and deploy it in an Artix container

Each cheat sheet lists the steps required to complete a particular task. As
you progress from one step to the next, the cheat sheet automatically
launches the required tools for you.

Artix Designer also provides cheat sheets to help you learn to use the Artix
Container Admin perspective, the Artix for z/OS off-host components, and
Artix database services.

To view the available Artix Designer cheat sheets, select Help|Cheat
Sheets.

Online help Help on Artix Designer is available from within the Eclipse online help
system.

Select Help|Help Contents to view the Eclipse Help. The Artix Designer
Help section is listed in the table of contents frame on the left.

St
an

da
rd

Define an access control list (ACL) to apply to a port type
or an operation.

CORBA-enable the current WSDL file after it has a fully
defined interface.

SOAP-enable the current WSDL file after it has a fully
defined interface.

a. If a code generation configuration already exists, clicking this button
launches the last-used configuration. Click the down arrow next to
this button to run other configurations, or to open the Artix Tools
dialog.

Table 1: Artix Designer Toolbar Buttons (Continued)

Button Description
35

CHAPTER 3 | Artix Designer Introduction and Tutorial
In addition, you can access context-sensitive Help from within the Artix
Designer wizards and the Artix Tools window by pressing F1.
36

Artix Designer Tutorial
Artix Designer Tutorial

Overview This section provides an overview of the tutorial on using Artix Designer to
create, build, and run two simple Web services client and server
applications, one for Java, the other for C++.

Tutorial stages The stages of the tutorial, and of most Artix Web services projects, are the
following:

1. Create a new Eclipse project to contain the files for each application.
“Tutorial: Creating New Projects” on page 38.

2. Import or create a skeleton WSDL file.
“Tutorial: Creating a Blank WSDL File” on page 40.

3. If you are creating a WSDL file, populate it with the necessary parts to
define your intended Web service. This tutorial creates a hello world
service that responds with a greeting to messages sent.
“Tutorial: Defining the WSDL Elements” on page 43.

4. Generate skeleton code for your client and server applications.
“Tutorial: Generating Code” on page 66.

5. Run and test your applications.
“Tutorial: Running the Applications” on page 73.
37

CHAPTER 3 | Artix Designer Introduction and Tutorial
Tutorial: Creating New Projects

Overview This section begins a tutorial on creating a simple Web service client and
server using Artix Designer. This section walks you through the steps to
create two empty, basic Web services projects, one for your Java code and
one for your C++ code.

The Web service that the tutorial creates is a simple hello world service that
responds to a particular message with a response greeting. The client
application sends the message to the service.

Creating the Web services
projects

Create a project to contain the Java version of the hello world application:

1. In Eclipse, select File|New|Project.

2. In the New Project dialog box, select Basic Web Services Project and
click Next.

3. In the New Basic Web Service Project panel:

i. Type JavaHello in the Project name text box.

ii. Leave the Use default location checkbox checked (unless you
want to store the project somewhere other than your current
Eclipse workspace).

iii. Select Empty project in the Project Templates area.

iv. Click Finish.

If is not currently open, Eclipse automatically switches to the Artix
perspective. An empty project named JavaHello is added to the Navigator
view in Eclipse.

Now create a second empty, basic Web services project and name it
CppHello.

Your Eclipse workspace now displays two Artix projects in the Navigator
view:

Note: You must keep your C++ and Java code in separate projects,
because Eclipse does not support the use of the JDT and the CDT in the
same project.
38

Tutorial: Creating New Projects
• CppHello

• JavaHello
39

CHAPTER 3 | Artix Designer Introduction and Tutorial
Tutorial: Creating a Blank WSDL File

Overview This section shows how to use Artix Designer to create a skeleton WSDL file
that forms the basis of your description of the Web service portion of your
application. The same WSDL file is used to generate both Java and C++
versions of the tutorial’s application.

Start with WSDL Each Artix Designer project starts with a WSDL definition of the Web service
that will accept connections for your application. For example, if you are
developing only the client application for an existing Web service, you can
import an existing service’s WSDL file into your new project.

This tutorial aims to create both client and server components of its Web
service, so we will create a new WSDL description of the service.

The first step in creating WSDL from scratch is to create an empty skeleton
WSDL file. In the next step, we will populate the WSDL elements with Artix
Designer wizards.

Creating an empty WSDL file To create an empty WSDL file:

1. Make sure the Artix perspective is currently active in the Eclipse
workspace.

2. Select File|New|WSDL File.

3. In the WSDL File panel, select the JavaHello project folder. This
specifies where the WSDL file is to be stored.

4. In the File name text box, type HelloWorld.

5. Click Finish.

The HelloWorld.wsdl file opens in the WSDL Editor.

Linking to the WSDL file from
CppHello

To generate the C++ client and server code from the same
HelloWorld.wsdl WSDL file, link to the Java project’s file from the CppHello
project:

1. In the Eclipse workspace, select File|New|WSDL File.

2. In the WSDL File panel, select the CppHello project folder.
40

Tutorial: Creating a Blank WSDL File
3. In the File name text box, type HelloWorld.

4. Click the Advanced button.

5. Select the Link to file in the file system checkbox and click Browse.

6. Browse to the EclipseWorkspace\JavaHello directory, select the
HelloWorld.wsdl file, and click Open.

7. Click Finish.

Note: You specified the location of your EclipseWorkspace directory
when you first started Artix Designer. For Windows users, IONA
recommends using a non-default location whose path does not contain a
space, such as C:\EclipseWS. The default workspace location for UNIX
and Linux users is ~/workspace.
41

CHAPTER 3 | Artix Designer Introduction and Tutorial
The HelloWorld.wsdl file now appears as a link in the CppHello project.

Figure 3: The CppHello Project with a Link to the HelloWorld.wsdl File

Note: When you use a link to a file (instead of a copy of the file), the
same file is used by both the CppHello and JavaHello projects.

It is also possible to import the WSDL file into the CppHello project by
selecting File|Import. However, this would create a separate physical file,
and any changes you made to one WSDL file would not be replicated in
the other.
42

Tutorial: Defining the WSDL Elements
Tutorial: Defining the WSDL Elements

Overview Next, populate the empty WSDL file skeleton with the elements to make it a
valid Artix contract. Artix Designer provides a series of wizards that allow
you to create each of these elements.

This section guides you through the task of creating the contract elements in
the following topics:

• “Defining Types” on page 44

• “Defining Messages” on page 49

• “Defining Port Types” on page 53

• “Defining Bindings” on page 57

• “Defining a Service” on page 62
43

CHAPTER 3 | Artix Designer Introduction and Tutorial
Defining Types

Overview The types element of the WSDL file contains all the data types used
between the client and server.

In this simple example, we will create two element types of type string:

• InElement, which maps to the in part of the request message that you
will create later.

• OutElement, which maps to the out part of the response message.

Defining element types To define the InElement type:

1. Open the HelloWorld.wsdl file from either the JavaHello or the
CppHello project.

2. Click the Diagram tab at bottom of the WSDL Editor view.

3. In the Diagram view, right-click the Types node.

4. Select New Type from the pop-up menu. The New Type wizard opens.

Note: You can also add elements to a WSDL file from the Artix
Designer menu, or by clicking the appropriate icon in the Artix
toolbar. See Table 1 on page 34 for more on the available icons.
44

Tutorial: Defining the WSDL Elements
5. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

6. Click Next to display the Define Type Properties panel.

7. In the Define Type Properties panel:

i. Type InElement in the Name text box.

ii. Accept the default target namespace provided.

iii. Select the element control.

iv. Click Next.

Figure 4: The Select Source Resources Panel
45

CHAPTER 3 | Artix Designer Introduction and Tutorial
8. In the Define Element Data panel:

i. Select the Pre-declared Type button.

ii. Select string from the drop-down list.

Figure 5: The Define Type Properties Panel
46

Tutorial: Defining the WSDL Elements
iii. Leave the other controls blank.

9. Click Next to display the View Type Summary panel, then click Finish.

To define the OutElement type:

1. Repeat steps 2 to 6 above.

2. In the Define Type Properties panel:

i. Enter OutElement in the Name field.

ii. Select the element radio button

iii. Click Next.

3. In the Define Element Data panel:

i. Select Pre-declared Type

ii. Select string from the drop-down list.

iii. Click Next.

4. In the View Type Summary panel, click Finish.

Save your WSDL file by selecting File|Save from the menu bar or right-click
in the Source view and select Save.

Figure 6: The Define Element Data Panel
47

CHAPTER 3 | Artix Designer Introduction and Tutorial
Review Click the Source tab at the bottom of the WSDL Editor view to look over the
WSDL file created so far.

In the Outline view in the lower left of the Eclipse window, open the Types
node. Click the name of a types element to jump to that element in the
WSDL Editor view.

<types>
 <schema targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
</types>
48

Tutorial: Defining the WSDL Elements
Defining Messages

Overview Now that you have created the WSDL types, you can define the request and
response messages for your Web service.

You will use your types as the message parts.

Defining messages To define the request message:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Messages node.

2. Select New Message from the pop-up menu. The New Message wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section and click Next.

4. In the Define Message Properties panel:

i. Type RequestMessage in the Name text box.

ii. Click Next.

Figure 7: Define Message Properties panel
49

CHAPTER 3 | Artix Designer Introduction and Tutorial
5. In the Define Message Parts panel, click Add.

6. In the Message Part Data dialog box:

i. Type InPart in the Name text box.

ii. Select InElement from the Type drop-down list.

iii. Click OK to add the InPart to the Part List in the Define Message
Parts panel.

Figure 8: The Define Message Parts Panel

Figure 9: The Message Part Data Dialog Box
50

Tutorial: Defining the WSDL Elements
7. Back in the Define Message Parts panel, click Next.

8. Click Next to display the View Message Summary panel.

9. Click Finish.

To define the response message:

1. Repeat steps 1 to 3 above.

2. In the Define Message Properties panel:

i. Type ResponseMessage in the Name text box

ii. Click Next.

3. In the Define Message Parts panel, click Add.

4. In the Message Part Data dialog box:

i. Type OutPart in the Name text box.

ii. Select OutElement from the Type drop-down list.

iii. Click OK to add the OutPart to the Part List in the Define
Message Parts panel.

5. Back in the Define Message Parts panel, click Next to display the View
Message Summary panel.

6. Click Finish.

7. Save the WSDL file.

Figure 10: The Define Message Parts Panel, with the InPart Added
51

CHAPTER 3 | Artix Designer Introduction and Tutorial
Review You have now added request and response messages to your WSDL file.

The request message includes an in part that maps to the InElement type,
and the response message includes an out part that maps to the OutElement
type.

For a thorough explanation of creating messages, see Understanding Artix
Contracts.

<message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
</message>
<message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
</message>
52

http://www.iona.com/support/docs/artix/4.0/contract/index.htm
http://www.iona.com/support/docs/artix/4.0/contract/index.htm

Tutorial: Defining the WSDL Elements
Defining Port Types

Overview The portType element contains operations, which are composed of one or
more messages:

• A one-way operation includes only an input message; the client
application does not receive a response from the Web service.

• A request-response operation includes an input message, an output
message, and zero or more fault messages1.

In this example, you will define a portType that includes one
request-response operation called sayHi which uses RequestMessage as its
input and ResponseMessage as its output.

There is nothing significant about the names assigned to the messages or
parts; name assignments are to assist the developer. Artix does not care
what names are used.

Defining a port type To define a port type:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Port Types node.

2. Select New Port Type from the pop-up menu. The New Port Type
wizard opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.

1. Defining and coding fault messages is discussed in “Creating User-Defined
Exceptions” in both Developing Artix Applications in C++ and Developing Artix
Applications in Java.
53

http://www.iona.com/support/docs/artix/4.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/4.0/java_pguide/index.htm

CHAPTER 3 | Artix Designer Introduction and Tutorial
5. In the Define Port Type Properties panel:

i. Type HelloWorldPT in the Name text box.

ii. Click Next.

6. In the Define Port Type Operations panel:

i. Type sayHi in the Name text box.

ii. Select Request-response from the Style drop-down list.

7. Click Next.

8. In the Define Operation Messages panel click Add.

Figure 11: The Define Port Type Properties Panel

Figure 12: The Define Port Type Operations Panel
54

Tutorial: Defining the WSDL Elements
9. In the Operation Message Data dialog box:

i. In the Type drop-down list, select input.

ii. In the Message drop-down list, select RequestMessage.

The name SayHiRequest appears in the Name text box. You can
change this to something more meaningful for your application if
you prefer. For this tutorial, leave the suggested name as is.

iii. Click OK to add the operation to the Operation Messages list in
the Define Operation Messages panel.

10. Back in the Define Operation Messages panel, click Add again.

11. In the Operation Message Data dialog box:

i. Expand the Type drop-down list again. Note that input no longer
appears in the list, because an operation can have only one input
message.

ii. Select output from the Type list.

iii. Select ResponseMessage from the Message list.

The name sayHiResponse appears in the Name text box. Leave
the suggested name as is.

iv. Click OK.

Figure 13: The Operation Message Data Dialog Box

Note: You can also use the Operation Message Data dialog box to
add fault messages to each operation. However, this example does
not include any fault messages.
55

CHAPTER 3 | Artix Designer Introduction and Tutorial
12. In the Define Operation Messages panel, click Next.

13. Click Next to display the Port Type Summary panel.

14. Click Finish to close the wizard.

15. Save the WSDL file.

Review You have now added the following portType element to your WSDL file.

Figure 14: The Define Operation Messages Panel

<portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
</portType>
56

Tutorial: Defining the WSDL Elements
Defining Bindings

Overview The binding element in a WSDL file defines the message format and
protocol details for each port. Each binding is associated with a single
portType element, although the same portType can be associated with
multiple bindings.

Artix Designer supports a number of binding types. In this example, you will
specify a SOAP 1.1 binding with the document/literal binding style, which is
required when message parts are element types.

Defining a binding To define a binding:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Bindings node.

2. Select New Binding from the pop-up menu. The New Binding wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.
57

CHAPTER 3 | Artix Designer Introduction and Tutorial
5. In the Select Binding Type panel:

i. Select SOAP 1.1from the list of binding types.

ii. Click Next.

6. In the Set Binding Defaults panel:

i. Select HelloWorldPT from the Port Type drop-down list.

In this case, your WSDL file contains only one portType element.
If there were multiple port types, you would select one from the
drop-down list.

ii. In the Additional Settings section, select document from the
Style drop-down list.

Figure 15: The Select Binding Type Panel

Note: A name is already entered in the Binding Name text box. You
can change this entry, but be sure to give each binding in the WSDL
file a unique name.
58

Tutorial: Defining the WSDL Elements
iii. Select literal from the Use drop-down list.

iv. Click Next.

Figure 16: The Set Binding Defaults Panel
59

CHAPTER 3 | Artix Designer Introduction and Tutorial
7. In the Edit Operation panel:

i. In the Operations Editor on the left, expand the Operations node.

ii. Click each sayHi operation node to review its binding details.

Figure 17: Edit Operation panel

Figure 18: Edit Operation panel, sayHi node selected
60

Tutorial: Defining the WSDL Elements
8. Click Next to display the View Binding Summary panel.

9. Click Finish to close the wizard.

10. Save the WSDL file.

Review You have now added the following binding element to your WSDL file.

<binding name="HelloWorldPTSOAPBinding” type="tns:HelloWorldPT">
 <soap:binding style="document" transport="http://

schemas.xmlsoap.org/soap/http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>
61

CHAPTER 3 | Artix Designer Introduction and Tutorial
Defining a Service

Overview The service element of a WSDL file provides transport-specific information.
Each service element can include one or more port elements. Each port
element must be uniquely identified by the value of its name attribute.

Each port element is associated with a single binding element, although
the same binding element can be associated with one or more port
elements. In addition, a WSDL file can contain multiple service elements.

In this example, the WSDL file contains one service element, which
contains a single port element.

Defining a service To define a service:

1. With the HelloWorld.wsdl file open and the Diagram view displayed,
right-click the Services node.

2. Select New Service from the pop-up menu. The New Service wizard
opens.

3. In the Select Source Resources panel, make sure HelloWorld.wsdl is
selected in the Source File(s) section.

4. Click Next.

5. In the Define Service panel:

i. Type HelloWorldService in the Name text box.

ii. Click Next.

Figure 19: The Define Service Panel
62

Tutorial: Defining the WSDL Elements
6. In the Define Port panel:

i. Type HelloWorldPort in the Name text box.

ii. Select HelloWorldPTSOAPBinding from the Binding drop-down
list.

iii. Click Next.

7. In the Define Port Properties panel:

i. From the Transport Type drop-down list, select SOAP/HTTP.

ii. In the Address section, click below the Value header and type the
following as the value for the location attribute:

Figure 20: The Define Port Panel

http://localhost:9000/HelloWorldService/HelloWorldPort
63

CHAPTER 3 | Artix Designer Introduction and Tutorial
8. Click Next to display the View Service and Port Summary panel.

9. Click Finish to close the wizard.

10. Save the WSDL file.

Review You have now completed your WSDL contract and are ready to use it to
develop an application.

Click the Source tab in the WSDL Editor to review the WSDL that you have
created. It should look like the WSDL shown in Example 1.

Figure 21: The Define Port Properties panel

Example 1: The completed HelloWorld.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<!--WSDL file template-->
<!--Created by IONA Artix Designer-->
<definitions name="HelloWorld.wsdl"
 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://www.iona.com/artix/HelloWorld"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
64

Tutorial: Defining the WSDL Elements
 <types>
 <schema

 targetNamespace="http://www.iona.com/artix/HelloWorld"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="InElement" type="string"/>
 <element name="OutElement" type="string"/>
 </schema>
 </types>
 <message name="RequestMessage">
 <part element="tns:InElement" name="InPart"/>
 </message>
 <message name="ResponseMessage">
 <part element="tns:OutElement" name="OutPart"/>
 </message>
 <portType name="HelloWorldPT">
 <operation name="sayHi">
 <input message="tns:RequestMessage" name="sayHiRequest"/>
 <output message="tns:ResponseMessage" name="sayHiResponse"/>
 </operation>
 </portType>
 <binding name="HelloWorldPTSOAPBinding" type="tns:HelloWorldPT">
 <soap:binding style="document" transport="http:schemas.xmlsoap.org/soap/

http"/>
 <operation name="sayHi">
 <soap:operation soapAction="" style="document"/>
 <input name="sayHiRequest">
 <soap:body use="literal"/>
 </input>
 <output name="sayHiResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPTSOAPBinding"

 name="HelloWorldPort">
 <soap:address location="http://localhost:9000/HelloWorldService/

HelloWorldPort"/>
 </port>
 </service>
</definitions>

Example 1: The completed HelloWorld.wsdl file (Continued)
65

CHAPTER 3 | Artix Designer Introduction and Tutorial
Tutorial: Generating Code

Overview In this section, you will generate starting-point code based on the
HelloWorld.wsdl file for the client and server applications in both Java and
C++. The Artix Tools component of Artix Designer generates the code and
any other necessary configuration files for you.

Compiling the code automatically Because the Artix Tools are integrated with the Eclipse JDT and CDT, you
can make sure your code is compiled automatically as soon as it is
generated. In addition, any changes you make to a Java or C++ file will be
recompiled as soon as you save the file.

To make sure your code is compiled automatically, select Build
Automatically from the Project menu in Eclipse.

Note: For automatic building to work for C++ with the Windows version
of Artix Designer, the environment for supported version of Visual C++ in
must be set before starting starts Artix Designer, as described in the Artix
Installation Guide.
66

../install_guide/index.htm
../install_guide/index.htm

Tutorial: Generating Code
Creating code generation configurations

Artix Tools Before you can generate code, Artix Designer prompts you to define a code
generation configuration. You can use the saved configuration to re-generate
the code, or you can copy one saved configuration to a new one, and edit it
for a different project.

In this step, we will create separate code generation configurations for a

• Java client and server

• C++ client and server

Creating the Java client and server
configuration

To create the Java client and server code generation configuration:

1. From the Artix Designer menu, select Artix Tools | Artix Tools.

2. In the Artix Tools panel, select Artix Code Generation.

3. From the toolbar on the left, click the New launch configuration button
(marked in red in Figure 22).

Figure 22: The Artix Tools Panel
67

CHAPTER 3 | Artix Designer Introduction and Tutorial
4. In the Name text box, replace the default name with a more
meaningful one for this configuration, such as HelloJ.

5. In the Generation tabbed page:

i. From the Targeted Project drop-down list, select JavaHello.

ii. From the WSDL File drop-down list, select HelloWorld.wsdl.

iii. In the Generation Type section, select Application.

iv. In the Development Language section, select Java.

v. In the Templates section, check all five checkboxes.

vi. Click Apply to save the configuration (even though the
configuration is not yet completed).

Figure 23: Artix Tools Panel, HelloJ configuration, Generation Tab
68

Tutorial: Generating Code
6. Click the WSDL Details tab. Then:

i. Select the Services/ports control.

ii. Make sure the HelloWorldService/HelloWorldPort checkbox is
checked.

iii. Select the Bindings control.

iv. Make sure the HelloWorldPTSOAPBinding checkbox is checked.

v. Select the Port types control.

vi. Make sure the HelloWorldPT checkbox is checked.

vii. Click the Apply button to save the configuration.

Generating the Java code To generate Java code from the configuration saved in the previous steps:

7. Click Run.

The Artix Tools create all the Java classes and configuration files for your
client and server applications. The Eclipse JDT compiles the code
automatically.

Figure 24: Artix Tools panel, WSDL Details tab
69

CHAPTER 3 | Artix Designer Introduction and Tutorial
Unless you have changed your Artix Designer code generation preferences,
the source code is written to the following location:

The compiled bytecode is written to the following location:

Creating the C++ client and
server configuration

Since the Java and C++ applications are similar, you can quickly create a
C++ build configuration by duplicating and editing the Java configuration.

To create the C++ client and server code generation configuration:

1. In the Eclipse menu, select the Artix Designer | Artix Tools | Artix
Tools menu.

2. In the Artix Tools window, select the HelloJ configuration.

3. From the toolbar, click the Duplicate launch configuration button.

4. In the Name text box, change the name to HelloC.

5. In the Generation tabbed page:

i. From the Targeted Project drop-down list, select CppHello.

ii. From the WSDL File drop-down list, select HelloWorld.wsdl.

iii. In the Generation Type section, select Application.

iv. In the Development Language section, select C++.

v. In the Templates section, check all five checkboxes.

vi. Click Apply.

EclipseWorkspace\JavaHello\HelloJ\src\com\iona\artix\HelloJ

EclipseWorkspace\JavaHello\bin

Note: If you are using the Windows version of Artix Designer, make sure
you have set the environment for a supported version of Visual C++
before creating the C++ configuration. See the Artix Installation Guide for
information on setting this up.

Figure 25: The Duplicate Launch Configuration Button
70

../install_guide/index.htm

Tutorial: Generating Code
6. Click the WSDL Details tab. Then:

i. Select the Services/ports control.

ii. Make sure the HelloWorldService / HelloWorldPort checkbox is
checked.

iii. Select the Bindings control.

iv. Make sure the HelloWorldPTSOAPBinding checkbox is checked.

v. Select the Port type control.

vi. Make sure the HelloWorldPT checkbox is checked.

vii. Click Apply to save the configuration.

7. Click the C++ Options tab.

i. Check the Specify C++ Namespace checkbox.

ii. Accept the default namespace, COM_IONA_ARTIX.

iii. Click Apply to save the configuration.
71

CHAPTER 3 | Artix Designer Introduction and Tutorial
Generating the C++ code To generate starting point C++ code from the configuration saved in the
previous steps:

8. Click Run.

The Artix Tools create all the C++ source and header files for your client
and server applications in the following location:

EclipseWorkspace\CppHello\HelloC\src
72

Tutorial: Running the Applications
Tutorial: Running the Applications

Overview You are now ready to run the client and server applications in both C++
and Java.

You can launch Java and C++ applications from within the Eclipse
environment, although the procedures for each are different.

Editing run configurations Artix Designer automatically creates run configurations for each generated
executable. You can edit and save a run configuration in much the same
way that you saved the code generation configurations in “Tutorial:
Generating Code” on page 66.

A saved run configuration saves time when re-running your application,
because it saves the environment and any arguments necessary for each
invocation. You can copy a saved run configuration and edit it to create a
new run configuration.
73

CHAPTER 3 | Artix Designer Introduction and Tutorial
Running the Java server To run the Java server:

1. Right-click the JavaHello project folder and select Run As|Run from
the context menu (or invoke Run | Run from the main Eclipse menu).

2. In the Run dialog, select HelloJ_HelloWorldPTServerSample_server
from the list of run configurations on the left.

3. Click Run.

The server process starts running in the Eclipse Console view. After a
moment, the words “Server Ready” appear in the Eclipse Console view.

Figure 26: Java Application Launch Configurations in the Run Window
74

Tutorial: Running the Applications
Editing a run configuration and
running the Java client

To run the Java client:

1. Right-click the JavaHello project folder and select Run As|Run from
the context menu.

2. In the Run window, select HelloJ_HelloWorldPTClientSample_client
from the list of Java launch configurations.

3. Click the Arguments tab.

4. In the Program Arguments text box, add the following to the end of the
argument:

5. Click Apply.

6. Click Run.

The words “sayHi RECVD: GoodMorning” appear in the Eclipse Console
view.

sayHi
75

CHAPTER 3 | Artix Designer Introduction and Tutorial
Stopping applications started
within Eclipse

You can stop applications that you started within Eclipse by using the
toolbar buttons above the Eclipse Console view.

To clear the client output, click the Remove All Terminated Launches
button on the Console view’s toolbar.

To stop the server process, click the Terminate button.

Click the Remove All Terminated Launches button again to clear the server
output.

Running the C++ server To run the C++ server:

1. From the Eclipse menu bar, select Run | External Tools | External
Tools.

2. In the External Tools window, expand the Program node in the list of
configurations on the left.

3. Select the launch configuration entry for
CppHello_container_start_server.bat.

Figure 27: Eclipse Console View toolbar

Remove All Terminated LaunchesTerminate
76

Tutorial: Running the Applications
4. Click Run.

5. If you are using Windows XP SP2 with the Windows Firewall enabled,
the firewall displays a Security Alert.
77

CHAPTER 3 | Artix Designer Introduction and Tutorial
6. Click Unblock to allow the server to run. This opens a small Command
Prompt window.

Running the C++ client Continuing the steps above:

7. Select the launch configuration entry for
CppHello_helloc_start_client.bat.

8. The sayHi argument is entered for you in the Arguments field. Click
Run.

Stop and clear the C++ server
and client

To terminate the C++ server, close its Command Prompt window.

To clear the C++ client, use the methods described in “Stopping
applications started within Eclipse” on page 76.
78

Tutorial: Running the Applications
Command-line alternatives When you use an Artix Designer code generation configuration to create an
Artix application, start and stop scripts are added to the project’s bin
directory.

You can launch both Java and C++ applications by running the appropriate
start script from the command prompt.

To run your C++ application from the command line:

1. Open a command prompt and change to the following directory:

2. Run the start_server_HelloWorldPTServer script.

The server application launches in a new command window.

3. Run the start_client_HelloWorldPTClient script.

The client application launches and displays the words “Hello Artix
User.”

Press Ctrl+C to close the client and server command windows, in that
order.

Note: If an application takes any arguments, you must edit its start script
accordingly.

EclipseWorkspace\CppHello\CppHello\bin
79

CHAPTER 3 | Artix Designer Introduction and Tutorial
80

APPENDIX A

Understanding
WSDL
Artix contracts use WSDL documents to describe services and
the data they use.

In this appendix This appendix discusses the following topics:

WSDL Basics page 82

Abstract Data Type Definitions page 84

Abstract Message Definitions page 87

Abstract Interface Definitions page 90

Mapping to the Concrete Details page 93
81

APPENDIX A | Understanding WSDL
WSDL Basics

Overview Web Services Description Language (WSDL) is an XML document format
used to describe services offered over the Web. WSDL is standardized by
the World Wide Web Consortium (W3C) and is currently at revision 1.1.
You can find the standard on the W3C website at www.w3.org/TR/wsdl.

Elements of a WSDL document A WSDL document is made up of the following elements:

• import allows you to import another WSDL or XSD file.

• Logical contract elements:
♦ types

♦ message

♦ operation

♦ portType

• Physical contract elements:
♦ binding

♦ port

♦ service

These elements are described in “WSDL elements” on page 25.

Abstract operations The abstract definition of operations and messages is separated from the
concrete data formatting definitions and network protocol details. As a
result, the abstract definitions can be reused and recombined to define
several endpoints. For example, a service can expose identical operations
with slightly different concrete data formats and two different network
addresses. Alternatively, one WSDL document could be used to define
several services that use the same abstract messages.

The portType A portType is a collection of abstract operations that define the actions
provided by an endpoint.
82

http://www.w3.org/TR/wsdl

WSDL Basics
Concrete details When a portType is mapped to a concrete data format, the result is a
concrete representation of the abstract definition.A port is defined by
associating a network address with a reusable binding, in the form of an
endpoint. A collection of ports (or endpoints) define a service.

Because WSDL was intended to describe services offered over the Web, the
concrete message format is typically SOAP and the network protocol is
typically HTTP. However, WSDL documents can use any concrete message
format and network protocol. In fact, Artix contracts bind operations to
several data formats and describe the details for a number of network
protocols.

Namespaces and imported
descriptions

WSDL supports the use of XML namespaces defined in the definition
element as a way of specifying predefined extensions and type systems in a
WSDL document. WSDL also supports importing WSDL documents and
fragments for building modular WSDL collections.

Example Example 1 on page 64 shows a simple WSDL document.
83

APPENDIX A | Understanding WSDL
Abstract Data Type Definitions

Overview Applications typically use data types that are more complex than the
primitive types, like int, defined by most programming languages. WSDL
documents represent these complex data types using a combination of
schema types defined in referenced external XML schema documents and
complex types described in types elements.

Complex type definitions Complex data types are described in a types element. The W3C
specification states that XSD is the preferred canonical type system for a
WSDL document. Therefore, XSD is treated as the intrinsic type system.
Because these data types are abstract descriptions of the data passed over
the wire, and are not concrete descriptions, there are a few guidelines on
using XSD schemas to represent them:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

WSDL does allow for the specification and use of alternative type systems
within a document.

Example The structure, personalInfo, defined in Example 2, contains a string, an
int, and an enum. The string and the int both have equivalent XSD types
and do not require special type mapping. The enumerated type
hairColorType, however, does need to be described in XSD.

Example 2: personalInfo structure

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

84

Abstract Data Type Definitions
Example 3 shows one mapping of personalInfo into XSD. This mapping is
a direct representation of the data types defined in Example 2.
hairColorType is described using a named simpleType because it does not
have any child elements. personalInfo is defined as an element so that it
can be used in messages later in the contract.

Another way to map personalInfo is to describe hairColorType in-line as
shown in Example 4. WIth this mapping, however, you cannot reuse the
description of hairColorType.

Example 3: XSD type definition for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <simpleType name="hairColorType">
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="hairColor" type="xsd1:hairColorType"/>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo

<types>
 <xsd:schema targetNamespace="http://iona.com/personal/schema"
 xmlns:xsd1="http://iona.com/personal/schema"
 xmlns="http://www.w3.org/2000/10/XMLSchema"/>
 <element name="personalInfo">
 <complexType>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
85

APPENDIX A | Understanding WSDL
 <element name="hairColor">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="red"/>
 <enumeration value="brunette"/>
 <enumeration value="blonde"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
</types>

Example 4: Alternate XSD Mapping for personalInfo (Continued)
86

Abstract Message Definitions
Abstract Message Definitions

Overview WSDL is designed to describe how data is passed over a network. It
describes data that is exchanged between two endpoints in terms of abstract
messages described in message elements.

Each abstract message consists of one or more parts, defined in part
elements.

These abstract messages represent the parameters passed by the operations
defined by the WSDL document and are mapped to concrete data formats in
the WSDL document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an
endpoint, WSDL documents allow abstract operations to have only one
input message, the representation of the operation’s incoming parameter
list, and only one output message, the representation of the data returned by
the operation.

In the abstract message definition, you cannot directly describe a message
that represents an operation's return value. Therefore, any return value must
be included in the output message.

Messages allow for concrete methods defined in programming languages
like C++ to be mapped to abstract WSDL operations. Each message
contains a number of part elements that represent one element in a
parameter list.

Therefore, all of the input parameters for a method call are defined in one
message and all of the output parameters, including the operation’s return
value, are mapped to another message.

Example For example, imagine a server that stores personal information as defined in
Example 2 on page 84 and provides a method that returns an employee’s
data based on an employee ID number.
87

APPENDIX A | Understanding WSDL
The method signature for looking up the data would look similar to
Example 5.

This method signature could be mapped to the WSDL fragment shown in
Example 6.

Message naming Each message in a WSDL document must have a unique name within its
namespace. Choose message names that show whether they are input
messages (requests) or output messages (responses).

Message parts Message parts are the formal data elements of the abstract message. Each
part is identified by a name attribute and by either a type or an element
attribute that specifies its data type. The data type attributes are listed in
Table 2.

Messages are allowed to reuse part names. For instance, if a method has a
parameter, foo, which is passed by reference or is an in/out, it can be a part
in both the request message and the response message. An example of
parameter reuse is shown in Example 7.

Example 5: Method for Returning an Employee’s Data

personalInfo lookup(long empId)

Example 6: WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo" />
</message>

Table 2: Part Data Type Attributes

Attribute Description

type="type_name" The data type of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The data type of the part is defined by an
element called elem_name.
88

Abstract Message Definitions
Example 7: Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
</message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
</message>
89

APPENDIX A | Understanding WSDL
Abstract Interface Definitions

Overview WSDL portType elements define, in an abstract way, the operations offered
by a service. The operations defined in a portType list the input, output, and
any fault messages used by the service to complete the transaction the
operation describes.

PortTypes A portType can be thought of as an interface description. In many Web
service implementations there is a direct mapping between portTypes and
implementation objects. PortTypes are the abstract unit of a WSDL
document that is mapped into a concrete binding to form the complete
description of what is offered over a port.

PortTypes are described using the portType element in a WSDL document.
Each portType in a WSDL document must have a unique name, specified
using the name attribute, and is made up of a collection of operations,
described in operation elements. A WSDL document can describe any
number of portTypes.

Operations Operations, described in operation elements in a WSDL document, are an
abstract description of an interaction between two endpoints. For example,
a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation within a portType must have a unique name, specified using
the required name attribute.

Elements of an operation Each operation is made up of a set of elements. The elements represent the
messages communicated between the endpoints to execute the operation.

 The elements that can describe an operation are listed in Table 3.

Table 3: Operation Message Elements

Element Description

input Specifies a message that is received from another endpoint.
This element can occur at most once for each operation.
90

Abstract Interface Definitions
An operation is required to have at least one input or output element. The
elements are defined by two attributes listed in Table 4.

It is not necessary to specify the name attribute for all input and output
elements; WSDL provides a default naming scheme based on the enclosing
operation’s name.

If only one element is used in the operation, the element name defaults to
the name of the operation. If both an input and an output element are
used, the element name defaults to the name of the operation with Request
or Response, respectively, appended to the name.

Return values Because the portType is an abstract definition of the data passed during an
operation, WSDL does not provide for return values to be specified for an
operation. If a method returns a value, it is mapped into the output message
as the last part of that message. The concrete details of how the message
parts are mapped into a physical representation are described in “Bindings”
on page 93.

output Specifies a message that is sent to another endpoint. This
element can occur at most once for each operation.

fault Specifies a message used to communicate an error condition
between the endpoints. This element is not required and can
occur an unlimited number of times.

Table 3: Operation Message Elements (Continued)

Element Description

Table 4: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when mapping
the operation to a concrete data format. The name must be
unique within the enclosing port type.

message Specifies the abstract message that describes the data being
sent or received. The value of the message attribute must
correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
91

APPENDIX A | Understanding WSDL
Example For example, in implementing a server that stores personal information in
the structure defined in Example 2 on page 84, you might use an interface
similar to the one shown in Example 8.

This interface could be mapped to the portType in Example 9.

Example 8: personalInfo Lookup Interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 9: personalInfo Lookup Port Type

<types>
...
 <element name="idNotFound" type="idNotFoundType">
 <complexType name="idNotFoundType">
 <sequence>
 <element name="ErrorMsg" type="xsd:string"/>
 <element name="ErrorID" type="xsd:int"/>
 </sequence>
 </complexType>
</types>
<message name="personalLookupRequest">
 <part name="empId" type="xsd:int" />
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo" />
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound" />
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest" />
 <output name="return" message="personalLookupResponse" />
 <fault name="exception" message="idNotFoundException" />
 </operation>
</portType>
92

Mapping to the Concrete Details
Mapping to the Concrete Details

Overview The abstract definitions in a WSDL document are intended to be used in
defining the interaction of real applications that have specific network
addresses, use specific network protocols, and expect data in a particular
format. To fully define these real applications, the abstract definitions
discussed in the previous section must be mapped to concrete
representations of the data passed between applications. The details
describing the network protocols in use must also be added.

This is accomplished in the WSDL bindings and ports elements. WSDL
binding and port syntax is not tightly specified by the W3C. A specification
is provided that defines the mechanism for defining these syntaxes.
However, the syntaxes for bindings other than SOAP and for network
transports other than HTTP are not defined in a W3C specification.

Bindings Bindings describe the mapping between the abstract messages defined for
each portType and the data format used on the wire. Bindings are described
in binding elements in the WSDL file. A binding can map to only one
portType, but a portType can be mapped to any number of bindings.

It is within the bindings that you specify details such as parameter order,
concrete data types, and return values. For example, a binding can reorder
the parts of a message to reflect the order required by an RPC call.
Depending on the binding type, you can also identify which of the message
parts, if any, represent the return type of a method.

Services To define an endpoint that corresponds to a running service, the port
element in the WSDL file associates a binding with the concrete network
information needed to connect to the remote service described in the file.
Each port specifies the address and configuration information for connecting
the application to a network.

Ports are grouped within service elements. A service can contain one or
many ports. The convention is that the ports defined within a particular
service are related in some way. For example, all of the ports might be
bound to the same portType, but use different network protocols, like HTTP
and WebSphere MQ.
93

APPENDIX A | Understanding WSDL
94

Index

A
Adaptive Runtime Technology, see ART
applications

running 73
ART 10, 12, 22
Artix

bus 23
contracts 25, 26, 43
features 13
locator 27
session manager 28
transformer 28

Artix Designer
projects 32
using 29

Artix Tools
generating code 66

B
BEA Tuxedo 12
bindings 25, 57, 93
bus 23

C
C/C++ Development Tools, see CDT
CDR 14
CDT 31, 38, 66
COBOL 30
code

generating 66
Common Data Representation, see CDR
contracts 25, 26, 43
CORBA 14, 32
CORBA IDL 17, 30

D
deployment phase 18
design phase 17
development phase 18

E
EAI 11
Eclipse 18, 30, 31, 32, 35, 38, 40, 48, 66, 69,

70, 73
console view 74, 75
help system 35

endpoints 22
enterprise application integration, see EAI
enterprise service bus, See ESB

F
Field Manipulation Language, see FML
Fixed 14
fixed record length, see FRL
FML 14
FRL 14

G
G2 14

H
HTTP 14

I
IDL 17
IIOP 14

J
Java Development Tools, see JDT
Java Messaging Service 14
JDT 31, 38, 66, 69

L
locator 27

M
messages 25, 49
MQSeries 14
95

INDEX
O
operations 25, 90

P
payload formats 14
plug-ins 22
ports 25
portTypes 25, 53, 82, 90
protocols 14

S
service 62
service-oriented architecture, see SOA
services 25, 93
session manager 28
SOA 10
SOAP 10, 14

T
TIBCO 14
TibrvMsg 14
transformer 28

transports 14
Tuxedo 14
types 25, 44

V
VRL 14

W
W3C 82
Web Services Description Language, see WSDL
WebSphere MQ 12
World Wide Web Consortium, see W3C
WSDL 25, 81–93

defined 82
WSDL files

adding elements to 43
creating 40

X
XML 14
XSD 30, 84
96

	Getting Started with Artix
	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of This Book
	The Artix Documentation Library

	Introduction
	What is Artix ESB?
	Solving Problems with Artix ESB

	Artix ESB Concepts
	The Artix ESB Runtime Components
	The Artix Bus
	Artix Endpoints
	Artix Contracts
	Artix Services

	Artix Designer Introduction and Tutorial
	Introduction
	Artix Designer Tutorial
	Tutorial: Creating New Projects
	Tutorial: Creating a Blank WSDL File
	Tutorial: Defining the WSDL Elements
	Defining Types
	Defining Messages
	Defining Port Types
	Defining Bindings
	Defining a Service

	Tutorial: Generating Code
	Creating code generation configurations

	Tutorial: Running the Applications
	WSDL Basics
	Abstract Data Type Definitions
	Abstract Message Definitions
	Abstract Interface Definitions
	Mapping to the Concrete Details

	Index

