
Security Guide
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org).
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: March 23, 2007

Contents

List of Tables 11

List of Figures 13

Preface 15
What is Covered in This Book 15
Who Should Read This Book 15
The Artix Documentation Library 15

Chapter 1 Getting Started with Artix Security 17
Secure SOAP Demonstration 18

Secure Hello World Example 19
HTTPS Connection 22
IIOP/TLS Connection 27
Security Layer 34

Secure Container Demonstration 40
Debugging with the openssl Utility 47

Chapter 2 Introduction to the Artix Security Framework 53
Artix Security Architecture 54

Types of Security Credential 55
Protocol Layers 57
Security Layer 59
Using Multiple Bindings 60

Caching of Credentials 61

Chapter 3 Security for HTTP-Compatible Bindings 63
Overview of HTTP Security 64
Securing HTTP Communications with SSL/TLS 67
HTTP Basic Authentication 78
X.509 Certificate-Based Authentication 82
 3

CONTENTS
Chapter 4 Security for SOAP Bindings 87
Overview of SOAP Security 88
WSS X.509 Certificates and Authentication 92

Chapter 5 Security for CORBA Bindings 97
Overview of CORBA Security 98
Securing IIOP Communications with SSL/TLS 100
Securing Two-Tier CORBA Systems with CSI 106
Securing Three-Tier CORBA Systems with CSI 112
X.509 Certificate-Based Authentication for CORBA Bindings 118

Chapter 6 Single Sign-On 125
SSO and the Login Service 126
Username/Password-Based SSO for SOAP Bindings 129
SSO Sample Configuration for SOAP Bindings 135

Chapter 7 Publishing WSDL Securely 139
Introduction to the WSDL Publish Plug-In 140
Deploying WSDL Publish in a Container 143
Preprocessing Published WSDL Contracts 147
Enabling SSL/TLS for WSDL Publish Plug-In 148

Chapter 8 Configuring the Artix Security Plug-In 153
The Artix Security Plug-In 154
Configuring an Artix Configuration File 155
Configuring a WSDL Contract 157

Chapter 9 Configuring the Artix Security Service 161
Configuring the Security Service 162

Security Service Accessible through IIOP/TLS 163
Security Service Accessible through HTTPS 172

Configuring the File Adapter 183
Configuring the LDAP Adapter 185
Configuring the Kerberos Adapter 191

Overview of Kerberos Configuration 192
Configuring the KDC Connection 195
Configuring the Active Directory Connection 198
4

CONTENTS
Sample Kerberos Configuration 201
Clustering and Federation 203

Federating the Artix Security Service 204
Failover 209
Client Load Balancing 217

Additional Security Configuration 220
Configuring Single Sign-On Properties 221
Configuring the Log4J Logging 223

Chapter 10 Managing Users, Roles and Domains 225
Introduction to Domains and Realms 226

Artix security domains 227
Artix Authorization Realms 229

Managing a File Security Domain 234
Managing an LDAP Security Domain 239

Chapter 11 Managing Access Control Lists 241
Overview of Artix ACL Files 242
ACL File Format 243
Generating ACL Files 246
Deploying ACL Files 249

Chapter 12 Managing Certificates 251
What are X.509 Certificates? 252
Certification Authorities 254

Commercial Certification Authorities 255
Private Certification Authorities 256

Certificate Chaining 257
PKCS#12 Files 259
Creating Your Own Certificates 261

Set Up Your Own CA 262
Use the CA to Create Signed Certificates 265

Generating a Certificate Revocation List 268
Deploying Certificates 271

Overview of Certificate Deployment 272
Deploying Trusted Certificate Authority Certificates 274
Deploying Application Certificates 279
 5

CONTENTS
Chapter 13 Configuring HTTPS and IIOP/TLS Authentication 283
Requiring Authentication 284

Target-Only Authentication 285
Mutual Authentication 288

Specifying Trusted CA Certificates 291
Specifying an Application’s Own Certificate 292
Providing a Certificate Pass Phrase 293

Certificate Pass Phrase for HTTPS and IIOP/TLS 294
Specifying a Certificate Revocation List 296
Advanced Configuration Options 298

Setting a Maximum Certificate Chain Length 299
Applying Constraints to Certificates 300

Chapter 14 Configuring HTTPS and IIOP/TLS Secure Associations 303
Overview of Secure Associations 304
Setting Association Options 306

Secure Invocation Policies 307
Association Options 309
Choosing Client Behavior 311
Choosing Target Behavior 313
Hints for Setting Association Options 315

Specifying Cipher Suites 319
Supported Cipher Suites 320
Setting the Mechanism Policy 323
Constraints Imposed on Cipher Suites 326

Caching Sessions 329

Chapter 15 Partial Message Protection 331
Introduction to SOAP PMP 332
Setting Up a Java Keystore 336
Artix Configuration 343
Policy Configuration 347

Introduction to Policy Configuration 348
Action Definitions 350
Action Properties 357
Protection Policy Definitions 361
Conditions 365

Example of WSS Signing and Encryption 368
6

CONTENTS
Basic Signing and Encryption Scenario 369
Configuring the Client 371
Configuring the Server 377

Exception Handling 382

Chapter 16 Principal Propagation 385
Introduction to Principal Propagation 386
Configuring 387
Programming 390
Interoperating with .NET 393

Explicitly Declaring the Principal Header 394
Modifying the SOAP Header 396

Chapter 17 Bridging between SOAP and CORBA 399
SOAP-to-CORBA Scenario 400

Overview of the Secure SOAP-to-CORBA Scenario 401
SOAP Client 403
SOAP-to-CORBA Router 407
CORBA Server 413

Single Sign-On SOAP-to-CORBA Scenario 416
Overview of the Secure SSO SOAP-to-CORBA Scenario 417
SSO SOAP Client 419
SSO SOAP-to-CORBA Router 421

CORBA-to-SOAP Scenario 423
Overview of the Secure CORBA-to-SOAP Scenario 424
CORBA Client 426
CORBA-to-SOAP Router 428
SOAP Server 434

Chapter 18 Programming Authentication 437
Configuration for SOAP 1.2 Bindings 438
Propagating a Username/Password Token 439
Propagating a Kerberos Token 444
Propagating an X.509 Certificate 449

Chapter 19 Developing an iSF Adapter 455
iSF Security Architecture 456
iSF Server Module Deployment Options 460
 7

CONTENTS
iSF Adapter Overview 462
Implementing the IS2Adapter Interface 463
Deploying the Adapter 473

Configuring iSF to Load the Adapter 474
Setting the Adapter Properties 475
Loading the Adapter Class and Associated Resource Files 476

Appendix A Artix Security 479
Applying Constraints to Certificates 481
bus:initial_contract 483
bus:security 484
initial_references 486
password_retrieval_mechanism 488
plugins:asp 489
plugins:at_http 492
plugins:atli2_tls 497
plugins:csi 498
plugins:gsp 499
plugins:https 504
plugins:iiop_tls 505
plugins:java_server 509
plugins:kdm 512
plugins:kdm_adm 514
plugins:login_client 515
plugins:login_service 516
plugins:schannel 517
plugins:security 518
plugins:wsdl_publish 521
plugins:wss 522
policies 524
policies:asp 531
policies:bindings 534
policies:csi 536
policies:external_token_issuer 539
policies:https 540
policies:iiop_tls 543
policies:security_server 553
policies:soap:security 555
principal_sponsor 556
8

CONTENTS
principal_sponsor:csi 560
principal_sponsor:http 563
principal_sponsor:https 565
principal_sponsor:wsse 567

Appendix B iSF Configuration 571
Properties File Syntax 572
iSF Properties File 573
Cluster Properties File 599
log4j Properties File 602

Appendix C ASN.1 and Distinguished Names 605
ASN.1 606
Distinguished Names 607

Appendix D Action-Role Mapping DTD 611

Appendix E OpenSSL Utilities 617
Using OpenSSL Utilities 618

The x509 Utility 619
The req Utility 621
The rsa Utility 623
The ca Utility 625
The s_client Utility 627
The s_server Utility 629

The OpenSSL Configuration File 632
[req] Variables 633
[ca] Variables 634
[policy] Variables 635
Example openssl.cnf File 636

Appendix F License Issues 639
OpenSSL License 640

Index 643
 9

CONTENTS
10

List of Tables

Table 1: The Artix Security Plug-In Configuration Variables 155

Table 2: <bus-security:security> Attributes 157

Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope 189

Table 4: Description of Different Types of Association Option 315

Table 5: Setting EstablishTrustInTarget and EstablishTrustInClient Association Options 316

Table 6: Setting Quality of Protection Association Options 317

Table 7: Setting the NoProtection Association Option 318

Table 8: Cipher Suite Definitions 321

Table 9: Association Options Supported by Cipher Suites 327

Table 10: Properties of an Action Definition 357

Table 11: Condition Properties 365

Table 12: Standard WSS Fault Codes 383

Table 13: IONA Proprietary Fault Codes 383

Table 14: Mechanism Policy Cipher Suites 527

Table 15: Mechanism Policy Cipher Suites 541

Table 16: Mechanism Policy Cipher Suites 547

Table 17: Commonly Used Attribute Types 608
 11

LIST OF TABLES
 12

List of Figures

Figure 1: Overview of the Secure HelloWorld Example 19

Figure 2: A HTTPS Connection in the HelloWorld Example 22

Figure 3: An IIOP/TLS Connection in the HelloWorld Example 27

Figure 4: The Security Layer in the HelloWorld Example 34

Figure 5: Connecting to a Secure Container Service 40

Figure 6: Protocol Layers in a HTTP-Compatible Binding 57

Figure 7: Protocol Layers in a SOAP Binding 58

Figure 8: Protocol Layers in a CORBA Binding 58

Figure 9: Example of an Application with Multiple Bindings 60

Figure 10: HTTP-Compatible Binding Security Layers 64

Figure 11: Overview of Certificate-Based Authentication with HTTPS 82

Figure 12: Overview of Security for SOAP Bindings 88

Figure 13: Overview of Certificate-Based Authentication with WSS 92

Figure 14: A Secure CORBA Application within the Artix Security Framework 98

Figure 15: Two-Tier CORBA System Using CSI Credentials 106

Figure 16: Three-Tier CORBA System Using CSIv2 112

Figure 17: Overview of Certificate-Based Authentication 119

Figure 18: Client Requesting an SSO Token from the Login Service 127

Figure 19: Overview of Username/Password Authentication without SSO 129

Figure 20: Overview of Username/Password Authentication with SSO 130

Figure 21: Endpoints Used by the WSDL Publishing Service 140

Figure 22: WSDL Publish Plug-In Deployed in a Secure Container 143

Figure 23: HTML Page Served Up by the WSDL Publishing Service 151

Figure 24: An iSF Federation Scenario 205

Figure 25: Failover Scenario for a Cluster of Three Security Services 210

Figure 26: Architecture of an Artix security domain 227
 13

LIST OF FIGURES
Figure 27: Server View of Artix authorization realms 230

Figure 28: Role View of Artix authorization realms 231

Figure 29: Assignment of Realms and Roles to Users Janet and John 232

Figure 30: Locally Deployed Action-Role Mapping ACL File 242

Figure 31: A Certificate Chain of Depth 2 257

Figure 32: A Certificate Chain of Depth 3 258

Figure 33: Elements in a PKCS#12 File 259

Figure 34: Target Authentication Only 285

Figure 35: Mutual Authentication 288

Figure 36: Configuration of a Secure Association 305

Figure 37: Constraining the List of Cipher Suites 326

Figure 38: Basic Client-Server Scenario 333

Figure 39: Overview of Keystores for a Client-Server Application 338

Figure 40: Basic Signing and Encryption Scenario 369

Figure 41: Propagating Credentials Across a SOAP-to-CORBA Router 401

Figure 42: Propagating an SSO Token Across a SOAP-to-CORBA Router 417

Figure 43: Propagating Credentials Across a CORBA-to-SOAP Router 424

Figure 44: Overview of the Artix Security Service 457

Figure 45: iSF Server Module Deployed as a CORBA Service 460

Figure 46: iSF Server Module Deployed as a Java Library 461
 14

Preface
What is Covered in This Book
This book describes how to develop and configure secure Artix solutions.

Who Should Read This Book
This book is aimed at the following kinds of reader: security administrators,
C++ programmers who need to write security code and Java programmers
who need to write security code.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Getting Started with Artix.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library
 15

http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
../library_intro/index.htm
../library_intro/index.htm

PREFACE
 16

CHAPTER 1

Getting Started
with Artix Security
This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

In this chapter This chapter discusses the following topics:

Secure SOAP Demonstration page 18

Secure Container Demonstration page 40

Debugging with the openssl Utility page 47
 17

CHAPTER 1 | Getting Started with Artix Security
Secure SOAP Demonstration

Overview This section provides a brief overview of how the Artix security framework
provides security for SOAP bindings between an Artix client and an Artix
server. The Artix security framework is a comprehensive security framework
that supports authentication and authorization using data stored in a central
security service (the Artix security service). This discussion is illustrated by
reference to the secure HelloWorld demonstration.

In this section This section contains the following subsections:

Secure Hello World Example page 19

HTTPS Connection page 22

IIOP/TLS Connection page 27

Security Layer page 34
18

Secure SOAP Demonstration
Secure Hello World Example

Overview This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the Artix Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Figure 1: Overview of the Secure HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS

Security layer

IIOP/TLS

WSDL X.509 ARMWSDL

Artix Security
Service

IIOP/TLS

X.509

File
Adapter

Props

User Data

HTTPS

HTTP Basic Authentication

Cert for HTTPSServer copyClient copy hello_world_action_role_mapping.xml

is2.propertiesCert for security service

is2_user_password_file.txt
 19

CHAPTER 1 | Getting Started with Artix Security
Location The secure HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/security/full_security

Main elements of the example The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

• HelloWorld client.

• HelloWorld server.

• Artix security service.

• File adapter.

HelloWorld client The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

HelloWorld server The HelloWorld server employs two different kinds of secure transport,
depending on which part of the system it is talking to:

• HTTPS—to receive SOAP invocations securely from the HelloWorld
client.

• IIOP/TLS—to communicate securely with the Artix security service,
which contains the central store of user data.

Artix security service The Artix security service manages a central repository of security-related
user data. The Artix security service can be accessed remotely by Artix
servers and offers the service of authenticating users and retrieving
authorization data.

File adapter The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter is
available). This example uses the iSF file adapter, which is a simple
adapter provided for demonstration purposes.

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. IONA supports the use of the file adapter in a
production environment, but the number of users is limited to 200.
20

Secure SOAP Demonstration
Security layers To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

• HTTPS layer.

• IIOP/TLS layer.

• Security layer.

HTTPS layer The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the Artix configuration
file (for example, artix.cfg or artix-secure.cfg). Some of the HTTPS
settings can optionally be set in the WSDL contract instead (both the client
copy and the server copy).

For more details, see “HTTPS Connection” on page 22.

IIOP/TLS layer The IIOP/TLS layer consists of the OMG’s Internet Inter-ORB Protocol (IIOP)
combined with the SSL/TLS protocol. The IIOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
IIOP/TLS is configured by editing the Artix configuration file.

For more details, see “IIOP/TLS Connection” on page 27.

Security layer The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 34.
 21

CHAPTER 1 | Getting Started with Artix Security
HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

Baltimore toolkit HTTPS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 320.

Target-only authentication The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Figure 2: A HTTPS Connection in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

Security layer

IIOP/TLS

WSDL X.509WSDL

HTTPS

Cert for HTTPSServer copyClient copy

HTTPS
22

Secure SOAP Demonstration
Enabling HTTPS To enable HTTPS, you must ensure that the URL identifying the service
endpoint in the WSDL contract has the https: prefix. For example, the
HelloWorld service specifies a SOAP over HTTPS endpoint in the
hello_world.wsdl file as follows:

Client HTTPS configuration Example 1 shows how to configure the client side of an HTTPS connection,
in the case of target-only authentication.

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello_world_soap_http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="https://localhost:9000"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Example 1: Extract from the Secure Client HTTPS Configuration

Artix Configuration File
...
security {
 ...
 full_security {
 ...
 client {

1 orb_plugins = ["xmlfile_log_stream", "at_http", "https"];
2 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

3 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
 };
 23

CHAPTER 1 | Getting Started with Artix Security
The preceding extract from artix-security.cfg can be explained as
follows:

1. The at_http and https plug-ins together provide support for the HTTP
and HTTPS protocols. You can optionally include these plug-ins in the
orb_plugins list. If they are not explicitly listed, Artix will automatically
load them when necessary.

2. A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. You must, therefore, edit the
policies:https:trusted_ca_list_policy variable to point at a list of
trusted certificate authority (CA) certificates. See “Specifying Trusted
CA Certificates” on page 291.

3. The following two lines set the required options and the supported
options for the HTTPS client secure invocation policy. In this example,
the client is configured to require a secure connection and to request
an X.509 certificate from the server.

Server HTTPS configuration Example 2 shows how to configure the server side of an HTTPS connection,
in the case of target-only authentication.

};

Example 1: Extract from the Secure Client HTTPS Configuration

Note: Loading the https plug-in is not sufficient to make a service
secure. You must also configure the endpoints to have HTTPS URLs
in the WSDL contract—see “Enabling HTTPS” on page 23.

Example 2: Extract from the Secure Server HTTPS Configuration

Artix Configuration File
...
security {
 ...
 full_security {
 ...
 server {
 ...
24

Secure SOAP Demonstration
The preceding extract from artix-security.cfg can be explained as
follows:

1. The at_http and https plug-ins together provide support for the HTTP
and HTTPS protocols. You can optionally include these plug-ins in the
orb_plugins list. If they are not explicitly listed, Artix will automatically
load them when necessary.

2. The following two lines set the required options and the supported
options for the HTTPS target secure invocation policy. In this example,
the server target is configured to require a secure connection, but it
does not request a certificate from the client.

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

1 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

 ...
 # Secure HTTPS settings:

2 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

 };
 };
};

Example 2: Extract from the Secure Server HTTPS Configuration

Note: Loading the https plug-in is not sufficient to make a service
secure. You must also configure the endpoints to have HTTPS URLs
in the WSDL contract—see “Enabling HTTPS” on page 23.
 25

CHAPTER 1 | Getting Started with Artix Security
3. The principal_sponsor settings are used to attach a certificate to the
Artix server, which identifies the server to its peers during an IIOP/TLS
handshake.

Note: In this example, the certificate password is specified directly
in the configuration file, which implies that the artix-security.cfg
file should be readable only by the administrator. For alternative ways
of specifying the certificate password, see “Providing a Certificate
Pass Phrase” on page 293.
26

Secure SOAP Demonstration
IIOP/TLS Connection

Overview Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the Artix security service. In general, the Artix security service is usually
accessed through the IIOP/TLS transport.

Baltimore toolkit IIOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 320.

Figure 3: An IIOP/TLS Connection in the HelloWorld Example

Artix Security
Service

IIOP/TLS

X.509

File
AdapterUser Data

Cert for Artix security service

is2_user_password_file.txt

Artix Server

HTTPS

Security layer

IIOP/TLS
 27

CHAPTER 1 | Getting Started with Artix Security
Target-only authentication The HelloWorld example is configured to use target-only authentication on
the IIOP/TLS connection between the Artix server and the Artix security
service. That is, during the TLS handshake, the Artix security service
authenticates itself to the Artix server (using an X.509 certificate), but the
Artix server does not authenticate itself to the Artix security service. Hence,
in this example there is no X.509 certificate associated with the IIOP/TLS
transport in the Artix server.

Artix server IIOP/TLS
configuration

The Artix server’s IIOP/TLS transport is configured by the settings in the
ArtixInstallDir/artix/Version/etc/domains/artix-secure.cfg file.
Example 3 shows an extract from the artix-secure.cfg file, highlighting
some of the settings that are important for the HelloWorld Artix server.

WARNING: For a real deployment, you must modify the configuration of
the Artix security service so that it requires mutual authentication.
Otherwise, your system will be insecure.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
2 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:55020/IT_SecurityService";
 ...
 full_security
 {
 server
 {
 # IIOP/TLS Settings

3 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
28

Secure SOAP Demonstration
The preceding extract from the Artix configuration file can be explained as
follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on
page 291.

2. This IT_SecurityService initial reference gives the location of the
Artix security service. When login security is enabled, the Artix server
uses this information to open an IIOP/TLS connection to the Artix
security service. In this example, the Artix security service is presumed
to be running on localhost and listening on the 55020 IP port.

4 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

5
policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

6 # Security Layer Settings
 ...
 };
 };
};

Example 3: Extract from the Artix Server IIOP/TLS Configuration
 29

CHAPTER 1 | Getting Started with Artix Security
3. The ORB plugins list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

4. The principal_sponsor settings are used to attach a certificate to the
Artix server, which identifies the server to its peers during an IIOP/TLS
handshake.

5. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the Artix security service.

For more details about the client secure invocation policy, see “Setting
Association Options” on page 306.

6. Independently of the IIOP/TLS settings, you also configure the security
layer using settings in the artix-secure.cfg file. These settings are
described in “Security Layer” on page 34.

Note: In this example, the certificate password is specified directly
in the configuration file, which implies that the artix-security.cfg
file should be readable only by the administrator. For alternative ways
of specifying the certificate password, see “Providing a Certificate
Pass Phrase” on page 293.

Note: In a realistic deployment, you should add the
EstablishTrustInClient association option to the list of supported
client invocation policies. This is needed for mutual authentication.
30

Secure SOAP Demonstration
Artix security service IIOP/TLS
configuration

Example 4 shows an extract from the artix-secure.cfg file, highlighting
the IIOP/TLS settings that are important for the Artix security service.

Example 4: Extract from the Artix security service IIOP/TLS
Configuration

artix-secure.cfg File
secure_artix
{
 ...

1 policies:trusted_ca_list_policy =
"C:\artix/artix/1.2/demos/secure_hello_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_list1.pem";

 ...
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:55020/IT_SecurityService";
 ...
 full_security
 {
 ...
 security_service
 {
 # IIOP/TLS Settings
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_30/artix/3.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

 ...
3 policies:target_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

4 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
 31

CHAPTER 1 | Getting Started with Artix Security
The preceding extract from the Artix configuration file can be explained as
follows:

1. The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix security service over the IIOP/TLS transport. If a received
certificate has not been digitally signed by one of the CA certificates in
the list, it will be rejected by the Artix security service.

2. The principal_sponsor settings are used to attach an X.509
certificate to the Artix security service. The certificate is used to identify
the Artix security service to its peers during an IIOP/TLS handshake.

In this example, the Artix security service’s certificate is stored in a
PKCS#12 file, administrator.p12, and the certificate’s private key
password is stored in another file, administrator.pwf.

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor” on page 556 and “Providing a Certificate Pass
Phrase” on page 293.

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

5 orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls"];

 ...
6 plugins:security:iiop_tls:port = "55020";

 plugins:security:iiop_tls:host = "localhost";
 ...

7 policies:security_server:client_certificate_constraints=["%{CERT
_CONSTRAINT_1}"];

8 policies:external_token_issuer:client_certificate_constraints=[]
;

 };
 ...
 };
 ...
};

Example 4: Extract from the Artix security service IIOP/TLS
Configuration
32

Secure SOAP Demonstration
3. The target secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can accept when it acts
in a server role. For more details about the target secure invocation
policy, see “Setting Association Options” on page 306.

4. The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix security service can open when it acts
in a client role.

5. The ORB plugins list specifies which plug-ins should be loaded into
the Artix security service. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the iiop plug-in is excluded (thus disabling
plain IIOP connections).

6. If you want to relocate the Artix security service, you must modify the
plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure IIOP/TLS connections.

7. An application can open a connection to the Artix security service only
if it presents an X.509 certificate that satisfies the certificate
constraints specified by this setting.

For details of how to specify certificate constraints, see “Applying
Constraints to Certificates” on page 481.

8. Disable the external token issuer feature by setting the token issuer
certificate constraints to be an empty list (as shown here). This feature
would only be enabled in the context of an integration with Artix
mainframe.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the Artix security service. In particular, you
should also require EstablishTrustInClient. For example, see “Mutual
Authentication” on page 288.
 33

CHAPTER 1 | Getting Started with Artix Security
Security Layer

Overview Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Figure 4: The Security Layer in the HelloWorld Example

Artix Client

HTTPS

Security layer

Artix Server

HTTPS IIOP/TLS

WSDL ARMWSDL

IIOP/TLS

File
Adapter

Props

User Data

HTTP Basic Authentication

Server copyClient copy hello_world_action_role_mapping.xml

is2.properties

is2_user_password_file.txt

Security layer

Artix Security
Service
34

Secure SOAP Demonstration
The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

HTTP BASIC login The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the UserName and Password attributes in the <http-conf:client> tag set
the HTTP BASIC login parameters for the Artix SOAP client.

Setting enableSecurity to true in the bus-security:security element
ensures that the Artix security plug-in is loaded and enabled. Alternatively,
you could enable the security plug-in in the Artix configuration file. See
“Configuring the Artix Security Plug-In” on page 153 for details.

<definitions name="HelloWorld"
targetNamespace="http://www.iona.com/full_security"

 xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ... >
 <service name="SOAPService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address location="https://localhost:9000"/>
 <http-conf:client
 ...
 UserName="user_test"
 Password="user_password"
 />
 <bus-security:security enableSecurity="true"/>
 </port>
 </service>
</definitions>
 35

CHAPTER 1 | Getting Started with Artix Security
Authentication through the iSF file
adapter

On the server side, the Artix server delegates authentication to the Artix
security service, which acts as a central repository for user data. The Artix
security service is configured by the is2.properties file, whose location is
specified in the artix-secure.cfg file as follows:

In this example, the is2.properties file specifies that the Artix security
service should use a file adapter. The file adapter is configured as follows:

artix-secure.cfg File
secure_artix {
 ...
 full_security {
 ...
 security_service {
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\artix_30/artix/3.0/demos/security/full_sec
urity/cxx/security_service/is2.properties.FILE",
"java.endorsed.dirs=C:\artix_30/artix/3.0/lib/endorsed"];

 ...
 };
 ...
 };
 ...
};

is2.properties File
...
##
##
File Adapter Properties
##
##
com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil

e.FileAuthAdapter
com.iona.isp.adapter.file.params=filename
com.iona.isp.adapter.file.param.filename=../../etc/is2_user_pass

word_file.txt
36

Secure SOAP Demonstration
The com.iona.isp.adapter.file.param.filename property is used to
specify the location of a file, is2_user_password_file.txt, which contains
the user data for the iSF file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iSF file adapter, see “Managing a File Security
Domain” on page 234.

Server domain configuration and
access control

On the server side, authentication and authorization must be enabled by the
appropriate settings in the artix-secure.cfg file. Example 6 explains the
security layer settings that appear in the artix-secure.cfg file.

Example 5: User Data from the is2_user_password_file.txt File

<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 <users>
 <user name="user_test" password="user_password">
 <realm name="IONAGlobalRealm">
 <role name="IONAUserRole"/>
 <role name="PaulOnlyRole"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. IONA supports the use of the file adapter in a
production environment, but the number of users is limited to 200.

Example 6: Security Layer Settings from the artix-secure.cfg File

artix-secure.cfg File
secure_artix
{
 ...
 full_security
 {
 37

CHAPTER 1 | Getting Started with Artix Security
The security layer settings from the artix-secure.cfg file can be explained
as follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The server’s orb_plugins list must include the artix_security
plug-in.

3. The policies:asp:enable_authorization variable is set to true to
enable authorization.

4. This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

5. The Artix authorization realm determines which of the user’s roles will
be considered during an access control decision. Artix authorization
realms provide a way of grouping user roles together. The
IONAGlobalRealm (the default) includes all user roles.

 server
 {
 # IIOP/TLS Settings
 ...

 # Security Layer Settings
 plugins:artix_security:shlib_name="it_security_plugin";

1 binding:artix:server_request_interceptor_list=
"security";

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix_security",
"https"];

3 policies:asp:enable_authorization = "true";
4 plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

5 plugins:asp:authorization_realm = "IONAGlobalRealm";
6 plugins:asp:security_level = "MESSAGE_LEVEL";

 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 };
 };
};

Example 6: Security Layer Settings from the artix-secure.cfg File
38

Secure SOAP Demonstration
6. The plugins:asp:security_level variable specifies which client
credentials are used for the purposes of authentication and
authorization on the server side (in this case, the MESSAGE_LEVEL value
indicates that the username/password credentials sent in the HTTP
header).

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 225.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>

 <server-name>secure_artix.full_security.server</server-name>

 <interface>
 <name>http://www.iona.com/full_security:Greeter</name>
 <action-role>
 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>

 </action-role-mapping>
</secure-system>
 39

CHAPTER 1 | Getting Started with Artix Security
Secure Container Demonstration

Location of demonstration The secure container demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/advanced/container/secure_con
tainer

Scenario description The secure container demonstration illustrates a scenario where some
components are configured to be secure while others are insecure. The
various components are configured as follows:

• WSDL publishing service—provides the main point of contact with the
container (runs on the port specified by the container’s -port option).
This endpoint is insecure.

• Container service—provides administrative operations, which can be
accessed using the it_container_admin utility. This endpoint is
secured through HTTPS and the Artix security layer.

• Other Artix services—can be either secure or insecure, depending on
the settings in the WSDL contract.

Connecting to the container
service

Figure 5 shows an overview of how the it_container_admin client
establishes a secure connection to the ContainerService service.

Figure 5: Connecting to a Secure Container Service

Container

 Container Port

 Container Service

WSDL Publish
Plug-In

WSDL Publish Port

WSDL Publishing

it_container_admin
Client

Insecure

Secure

1

2

u/p

u/p
40

Secure Container Demonstration
The connection from the it_container_admin client to the
ContainerService service is established in two steps, as follows:

1. The it_container_admin client sends a message to the port supplied
to the -port option, requesting the WSDL publishing service to send
the WSDL contract for the ContainerService service.

2. Using the endpoint details from the retrieved WSDL contract, the
it_container_admin client establishes a secure connection to the
ContainerService endpoint. With every operation invocation on the
ContainerService service, the it_container_admin client sends WSS
username and password credentials, u/p, to authenticate itself to the
container.

Configuring the secure container In this scenario, the container service is configured to have the following
security characteristics:

• The container service accepts only HTTPS connections.

• Clients of the container service can present X.509 certificates, but are
not required to do so.

• Clients must present WSS username and password credentials.

• The received WSS username and password credentials are sent to the
Artix security service to be authenticated.

• Depending on which configuration is used to run the container service,
the Artix security plug-in might also limit what clients can do by
applying role-based access control.

For most of the preceding security features, the container service is
configured in a similar way to any other Artix server (for example, see the
details of secure Artix server configuration in “Secure SOAP Demonstration”
on page 18).

The following configuration setting, however, is specific to the secure
container service:

Note: This initial connection is insecure, because the WSDL
publishing service is configured to be insecure in this demonstration.
The username and password sent by the it_container_admin client
are therefore potentially vulnerable to eavesdropping in this scenario.

plugins:at_http:server:use_secure_sockets:container = "true";
 41

CHAPTER 1 | Getting Started with Artix Security
This boolean variable enables the HTTPS protocol for the container service
alone. Because the effect of this variable is restricted to the container
service, it is possible also to deploy other insecure services into the
container.

When plugins:at_http:server:use_secure_sockets:container is true,
HTTPS is enabled for the container service only (subject to the effective
target secure invocation policy); when false, HTTPS is not specifically
enabled (although other configuration settings might enable it). The default
is false.

Configuring the secure
it_container_admin utility

In order to administer a secure container with the it_container_admin
utility, it is necessary to define a custom configuration scope. The
configuration scope enables enables the it_container_admin utility to
invoke remote administration commands securely.

Note: This behavior contrasts with the behavior of the
plugins:at_http:server:use_secure_sockets variable, which enables
HTTPS for all services in the container (including the ContainerService
service itself).

Example 8: Configuration for Connecting to Secure Container

Artix Configuration File
secure_artix
{
 secure_container
 {
 client_authentication
 {

1 orb_plugins = ["xmlfile_log_stream", "https"];
2 policies:https:trusted_ca_list_policy =

"%{ROOT_TRUSTED_CA_LIST_POLICY_1}";

3 bus:security:enable_security = "true";

4 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=%{PRIVATE_CERT_1}",
"password_file=%{PRIVATE_CERT_PASSWORD_FILE_1}"];

 };
 };
42

Secure Container Demonstration
The preceding configuration can be explained as follows:

1. This line loads the https plug-in at start-up time. This is not strictly
necessary, however, because Artix can load the https plug-in
dynamically whenever it is needed.

2. The client side of a HTTPS connection must always provide a list of
trusted CA certificates. During the SSL/TLS handshake, the client
checks that the server certificate has been signed by a trusted CA.

3. The bus:security:enable_security variable is set to true, to enable
authentication using WSS username and password on the client side.
In this case, because the username and password are not explicitly
provided in configuration, the it_container_admin utility will prompt
the user to enter the username and password from the command line
in a secure mode (where keystrokes cannot be intercepted).

4. The principal_sponsor settings associate an X.509 certificate with
the it_container_admin client. You only need to include these
settings, if the container is configured to require client authentication.

To run the it_container_admin utility with the preceding configuration,
enter a command of the following form:

Where the Port option specifies the IP port where the container is listening
for connections and the CommandOption specifies one of the container
administration commands (see Configuring and Deploying Artix Solutions
for details of it_container_admin commands).

};

Example 8: Configuration for Connecting to Secure Container

Note: In particular, loading the https plug-in does not automatically
enable HTTPS security. The it_container_admin client dynamically
enables security for any service whose address URL starts with the
https: prefix.

it_container_admin -ORBname
secure_artix.secure_container.client_authentication_config
-port Port CommandOption
 43

CHAPTER 1 | Getting Started with Artix Security
When you run the it_container_admin command, you will be prompted as
follows for the WSS username and password:

Instead of providing the WSS username and password at the command line,
you can provide them directly in the configuration file using the following
settings:

Configuring deployed Artix
services

Because the services in the container (including the ContainerService
itself) all share the same Artix configuration, you must edit the endpoint
settings in the WSDL contract, in order to tailor the security settings for
individual services.

For example, for a SOAP over HTTP service, there are two main aspects of
security that can be enabled:

• HTTPS security—requires incoming connections to use SSL/TLS.

• Artix security layer—enables authentication of credentials through the
Artix security service. Optionally, this might also involve authorization
using role-based access control.

You can selectively enable or disable these two security features by editing
the service’s WSDL contract as follows:

Please enter login : WSS_Username
Please enter password :

bus:security:user_name = "WSS_Username";
bus:security:user_password = "WSS_Password";
44

Secure Container Demonstration
Enable HTTPS security and Artix security layer

To enable both HTTPS security and the Artix security layer for the
WellWisherService service in the secure container demonstration, use the
following endpoint configuration:

Where the HTTPS protocol is enabled by putting the https: prefix in the
SOAP URL and the Artix security layer is implicitly enabled (because the
container configuration already enables Artix security).

Enable HTTPS security only

To enable HTTPS only for the WellWisherService service, use the following
endpoint configuration:

Where the Artix security layer is explicitly disabled (for this endpoint only) by
setting the enableSecurity attribute to false in the
bus-security:security element.

<definitions ... >
 ...
 <service name="WellWisherService">
 <port binding="tns:WellWisher_SOAPBinding"
 name="WellWisherPort">
 <soap:address
 location="https://localhost:9999/wellwisher"/>
 </port>
 </service>
</definitions>

<definitions ... >
 ...
 <service name="WellWisherService">
 <port binding="tns:WellWisher_SOAPBinding"
 name="WellWisherPort">
 <soap:address
 location="https://localhost:9999/wellwisher"/>
 <bus-security:security enableSecurity="false"/>
 </port>
 </service>
</definitions>
 45

CHAPTER 1 | Getting Started with Artix Security
Insecure service

To disable security completely for the WellWisherService service, use the
following endpoint configuration:

Where the insecure HTTP protocol is selected by putting the http: prefix in
the SOAP URL and the Artix security layer is explicitly disabled for this
endpoint. You must also ensure that plugins:at_http:use_secure_sockets
is not set to true in the Artix configuration (this setting would force the port
to use the HTTPS protocol).

Securing the WSDL publishing
service

It is possible to make the container completely secure by securing the WSDL
publishing service (in addition to securing the container service).

Details of how to deploy the WSDL publishing service securely in a
container are given in “Deploying WSDL Publish in a Container” on
page 143.

<definitions ... >
 ...
 <service name="WellWisherService">
 <port binding="tns:WellWisher_SOAPBinding"
 name="WellWisherPort">
 <soap:address
 location="http://localhost:9999/wellwisher"/>
 <bus-security:security enableSecurity="false"/>
 </port>
 </service>
</definitions>

Note: Artix 4.0 has a limitation, which forces you to make all of the
services in a container secure, if you make the WSDL publishing service
secure.
46

Debugging with the openssl Utility
Debugging with the openssl Utility

Overview The OpenSSL toolkit is an open source implementation of SSL and TLS.
OpenSSL provides a utility, openssl, which includes two powerful tools for
debugging SSL/TLS client and server applications, as follows:

• openssl s_client—an SSL/TLS test client, which can be used to test
secure Artix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

• openssl s_server—an SSL/TLS test server, which can be used to test
secure Artix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -WWW switch,
the test server can also simulate a simple secure Web server.

OpenSSL command-line utility Artix versions 4.1 and later include the openssl command-line utility, which
is a general-purpose SSL/TLS utility. See “OpenSSL Utilities” on page 617
for more details.

References For complete details of the openssl s_client and the openssl s_server
commands, see the following OpenSSL documentation pages:

• http://www.openssl.org/docs/apps/s_client.html

• http://www.openssl.org/docs/apps/s_server.html

Debugging example Consider the HelloWorld demonstration discussed in the previous section,
Secure SOAP Demonstration page 18. This demonstration consists of a
client and a target server.

To demonstrate SSL debugging, you can use the openssl test client to
connect directly to the target server.
 47

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

CHAPTER 1 | Getting Started with Artix Security
Debugging steps The following table shows the steps required to debug a secure server by
connecting to that server using the openssl test client:

Convert the client certificate to
PEM format

Certificates for Artix applications are deployed in PKCS#12 format, whereas
the openssl test client requires the certificate to be in PEM format (a format
that is proprietary to OpenSSL). It is, therefore, necessary to convert the
client certificate to the PEM format.

For example, given the certificate testaspen.p12 (located in the
ArtixInstallDir/artix/Version/demos/security/certificates/openssl

/x509/certs directory), you can convert the certificate to PEM format as
follows.

1. Run the openssl pkcs12 command, as follows:

openssl pkcs12 -in testaspen.p12 -out testaspen.pem

When you run this command you are prompted to enter, first of all, the
pass phrase for the testaspen.p12 file and then to enter a pass phrase
for the newly created testaspen.pem file.

2. The testaspen.pem file generated in the previous step contains a CA
certificate, an application certificate, and the application certificate’s
private key. Before you can use the testaspen.pem file with the
openssl test client, however, you must remove the CA certificate from
the file. That is, the file should contain only the application certificate
and its private key.

For example, after deleting the CA certificate from the testaspen.pem
file, the contents of the file should look something like the following:

Step Action

1 Convert the client certificate to PEM format.

2 Run the target server.

3 Obtain the target server’s IP port.

4 Run the test client.

Bag Attributes
48

Debugging with the openssl Utility
 localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
C1 E1 FF 4A

 friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty -- demo

purposes/OU=Administration/CN=Administrator/emailAddress=admi
nistrator@abigbank.com

issuer=/C=US/ST=Massachusetts/L=Boston/O=ABigBank -- no warranty
-- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate
Authority/emailAddress=info@abigbank.com

-----BEGIN CERTIFICATE-----
MIIEiTCCA/KgAwIBAgIBATANBgkqhkiG9w0BAQQFADCB5jELMAkGA1UEBhMCVVMx
FjAUBgNVBAgTDU1hc3NhY2h1c2V0dHMxDzANBgNVBAcTBkJvc3RvbjExMC8GA1UE
ChMoQUJpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3NlczEwMC4G
A1UECxMnRGVtb25zdHJhdGlvbiBTZWN0aW9uIC0tIG5vIHdhcnJhbnR5IC0tMScw
JQYDVQQDEx5BQmlnQmFuayBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIDAeBgkqhkiG
9w0BCQEWEWluZm9AYWJpZ2JhbmsuY29tMB4XDTA0MTExODEwNTE1NVoXDTE0MDgw
NzEwNTE1NVowgbQxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXNzYWNodXNldHRz
MTEwLwYDVQQKEyhBQmlnQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHB1cnBv
c2VzMRcwFQYDVQQLEw5BZG1pbmlzdHJhdGlvbjEWMBQGA1UEAxMNQWRtaW5pc3Ry
YXRvcjEpMCcGCSqGSIb3DQEJARYaYWRtaW5pc3RyYXRvckBhYmlnYmFuay5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANk75O3YBkkjCvgy0pOPxAU+M6Rt
0QzaQ8/YlciWlQ/oCT/l7+3P/ZhHAJaT+QxmahQHdY5ePixGyaE7raut2MdjHOUo
wCKtZqlhuNa8juJSvsN5iTUupzp/mRQ/j4rOxr8gWI5dh5d/kF4+H5s8yrxNjrDg
tY7fdxP9Kt0x9sYPAgMBAAGjggF1MIIBcTAJBgNVHRMEAjAAMCwGCWCGSAGG+EIB
DQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBDZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQUJBdK
9LPZPsaE9+a/FWbCz2LQxWkwggEVBgNVHSMEggEMMIIBCIAUhJz9oNb6Yq8d1nbH
BPjtS7uI0WyhgeykgekwgeYxCzAJBgNVBAYTAlVTMRYwFAYDVQQIEw1NYXNzYWNo
dXNldHRzMQ8wDQYDVQQHEwZCb3N0b24xMTAvBgNVBAoTKEFCaWdCYW5rIC0tIG5v
IHdhcnJhbnR5IC0tIGRlbW8gcHVycG9zZXMxMDAuBgNVBAsTJ0RlbW9uc3RyYXRp
b24gU2VjdGlvbiAtLSBubyB3YXJyYW50eSAtLTEnMCUGA1UEAxMeQUJpZ0Jhbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXR5MSAwHgYJKoZIhvcNAQkBFhFpbmZvQGFiaWdi
YW5rLmNvbYIBADANBgkqhkiG9w0BAQQFAAOBgQC7S5RiDsK3ZChIVpHPQrpQj5BA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2fvQJ8M7t8EMkHKPqeguArnY+x
3VNGwWvlkr5jQTDeOd7d9Ilo2fknQA14j/wPFEDUwdz4n9TThjE7lpj6zG27EivF
cm/h2L/DpWgZK0TQ9Q==
-----END CERTIFICATE-----
Bag Attributes
 localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91

C1 E1 FF 4A
 friendlyName: Administrator
Key Attributes: <No Attributes>
-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0E97FB4E

e3cexhY+kAujb6cOs9skerP2qZsauc33yyp4cdZiAkAilcmfA/mLv2pfgao8gfu9
 49

CHAPTER 1 | Getting Started with Artix Security
Run the target server Run the target server, as described in the README.txt file in the
demos/security/full_security directory.

Obtain the target server’s IP port In this demonstration, the server’s IP port is specified explicitly in the WSDL
contract, demos/security/full_security/etc/hello_world.wsdl. For
example, in this contract the SOAPService service is configured as follows:

In this example, the target server’s IP port is 9000.

Run the test client To run the openssl test client, open a command prompt, change directory
to the directory containing the testaspen.pem file, and enter the following
command:

yroNvYyDADEZzagEyzF/4FGU1nScZjAiy9Imi9mA/lSHD5g1HH/wl2bgXclBqtC3
GrfiHzGMbWyzDUj0PHjw/EkbyxQBJsCe4fPuCGVH7frgCPeE1q2EqRKBHCa3vkHr
6hrwuWS18TXn8DtcCFFtugouHXwKeGjJxE5PYfKak18BOwKgiZqtj1DHY6G2oERl
ZgNtAB+XF9vrA5XZHNsU6RBeXMVSrUlOGzdVrCnojd6d8Be7Q7KBSHDV9XzZlPKp
7DYVn5DyFSEQ7kYs9dsaZ5Id5iNkMJiscPp7AL2SJAWpYlUfEN5gFnIYiwXP1ckF
STTiq+BG8UPPm6G3KGgRZMZ0Ih7DySZufbE24NIrN74kXV9Vf/RpxzNiMz/PbLdG
6wiyp47We/4OqxLv8YIjGGEdYyaB/Y7XEyE9ZL74Dc3CcuSvtA2fC8hU3cXjKBu7
YsVz/Dq8G0w223owpZ0Qz2KUl9CLq/hmYLOJt1yLVoaGZuJ1CWXdgX0dComDOR8K
aIaUagy/Gz2zys20N5WRK+s+HzqoB0vneOy4Z1Ss71HfGAUemiRTAI8DXizgyHYK
5m6iSSB961xOM7YI58JYOGNLMXzlLmCUAyCQhklWGJFEN4cZBrkh5o6r+U4FcwhF
dvDoBu39Xie5gHFrJU86qhzxi202h0sO2vexvujSGyNy009PJGkEAhJGfOG+a2Qq
VBwuUZqo0zIJ6gUrMV1LOAWwL7zFxyKaF5lijF1C9KxtEKm0393zag==
-----END RSA PRIVATE KEY-----

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/full_security"

 ...
>
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="https://localhost:9000"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

openssl s_client -connect localhost:9000 -ssl3 -cert
testaspen.pem
50

Debugging with the openssl Utility
When you enter the command, you are prompted to enter the pass phrase
for the testaspen.pem file.

The openssl s_client command switches can be explained as follows:

-connect host:port

Open a secure connection to the specified host and port.

-ssl3

This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the
target server is configured to use, check the value of the
policies:mechanism_policy:protocol_version variable in the Artix
configuration file. Artix servers can also be configured to use TLS v1,
for which the corresponding openssl command switch is -tls1.

-cert testaspen.pem

Specifies testaspen.pem as the test client’s own certificate. The PEM
file should contain only the application certificate and the application
certificate’s private key. The PEM file should not contain a complete
certificate chain.

If your server is not configured to require a client certificate, you can
omit the -cert switch.

Other command switches

The openssl s_client command supports numerous other command
switches, details of which can be found on the OpenSSL document
pages. Two of the more interesting switches are -state and -debug,
which log extra details to the command console during the handshake.
 51

CHAPTER 1 | Getting Started with Artix Security
52

CHAPTER 2

Introduction to the
Artix Security
Framework
This chapter describes the overall architecture of the Artix
Security Framework.

In this chapter This chapter discusses the following topics:

Artix Security Architecture page 54

Caching of Credentials page 61
 53

CHAPTER 2 | Introduction to the Artix Security Framework
Artix Security Architecture

Overview The Artix security architecture embraces a variety of protocols and security
technologies. This section provides a brief overview of the security features
supported by the different kinds of Artix bindings.

In this section This section contains the following subsections:

Types of Security Credential page 55

Protocol Layers page 57

Security Layer page 59

Using Multiple Bindings page 60
54

Artix Security Architecture
Types of Security Credential

Overview The following types of security credentials are supported by the Artix
security framework:

• WSS username token.

• WSS Kerberos token.

• CORBA Principal.

• HTTP Basic Authentication.

• X.509 certificate.

• CSI authorization over transport.

• CSI identity assertion.

• SSO token.

WSS username token The Web service security (WSS) UsernameToken is a username/password
combination that can be sent in a SOAP header. The specification of WSS
UsernameToken is contained in the WSS UsernameToken Profile 1.0
document from OASIS (www.oasis-open.org).

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

WSS Kerberos token The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. The implementation is based on the Kerberos Token Profile
v1.0 specification (wss-kerberos-token-profile-1.0). If you use Kerberos, you
must also configure the Artix security service to use the Kerberos adapter.

This type of credential is available for the SOAP binding in combination with
any kind of Artix transport.

CORBA Principal The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. The CORBA Principal is
effectively just a username (no password can be propagated).

This type of credential is available only for the CORBA binding and for SOAP
over HTTP.
 55

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 2 | Introduction to the Artix Security Framework
HTTP Basic Authentication HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header.

This type of credential is available to any HTTP-compatible binding.

X.509 certificate Two different kinds of X.509 certificate-based authentication are provided,
depending on the type of Artix binding, as follows:

• HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

• CORBA binding—in this case, authentication is based on the entire
X.509 certificate, which is sent to the Artix security service to be
authenticated.

This type of credential is available to any transport that uses SSL/TLS.

CSI authorization over transport The OMG’s Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password
data inside a GIOP service context. This kind of authentication is available
only for the CORBA binding.

This type of credential is available only for the CORBA binding.

CSI identity assertion The OMG’s Common Secure Interoperability (CSI) specification also defines
an identity assertion mechanism, which passes username data (no
password) inside a GIOP service context. The basic idea behind CSI identity
assertion is that the request message comes from a secure peer that can be
trusted to assert the identity of a user. This kind of authentication is
available only for the CORBA binding.

This type of credential is available only for the CORBA binding.

SSO token An SSO token is propagated in the context of a system that uses single
sign-on. For details of the Artix single sign-on feature, see “Single Sign-On”
on page 125.
56

Artix Security Architecture
Protocol Layers

Overview Within the Artix security architecture, each binding type consists of a stack
of protocol layers, where a protocol layer is typically implemented as a
distinct Artix plug-in. This subsection describes the protocol layers for the
following binding types:

• HTTP-compatible binding.

• SOAP binding.

• CORBA binding.

HTTP-compatible binding HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 6 shows the protocol layers and the kinds of
authentication available to a HTTP-compatible binding.

Figure 6: Protocol Layers in a HTTP-Compatible Binding

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

HTTP-compatible
binding
 57

CHAPTER 2 | Introduction to the Artix Security Framework
SOAP binding The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials
that can be propagated only in a SOAP header. Figure 7 shows the protocol
layers and the kinds of authentication available to the SOAP binding over
HTTP.

CORBA binding For the CORBA binding, there are only two protocol layers (CORBA binding
and IIOP/TLS). This is because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 8 shows the protocol layers and the
kinds of authentication available to the CORBA binding.

Figure 7: Protocol Layers in a SOAP Binding

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

SOAP
CORBA Principal
WSSE Kerberos
WSSE UsernameToken

Figure 8: Protocol Layers in a CORBA Binding

IIOP/TLS

CORBA Principal

X.509

CORBA
binding

GIOP CSI identity assertion
CSI authentication over transport
58

Artix Security Architecture
Security Layer

Overview The security layer is responsible for implementing a variety of different
security features with the exception, however, of propagating security
credentials, which is the responsibility of the protocol layers. The security
layer is at least partially responsible for implementing the following security
features:

• Authentication.

• Authorization.

• Single sign-on.

Authentication On the server side, the security layer selects one of the client credentials (a
server can receive more than one kind of credentials from a client) and calls
the central Artix security service to authenticate the credentials. If the
authentication call succeeds, the security layer proceeds to make an
authorization check; otherwise, an exception is thrown back to the client.

Authorization The security layer makes an authorization check by matching a user’s roles
and realms against the ACL entries in an action-role mapping file. If the
user does not have permission to invoke the current action (that is, WSDL
operation), an exception is thrown back to the client.

Single sign-on Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

Artix security plug-in The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer is loaded, if artix_security is listed
in the orb_plugins list in the Artix domain configuration, artix.cfg.

GSP security plug-in The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer is loaded, if gsp is listed in the orb_plugins list
in the Artix domain configuration, artix.cfg.
 59

CHAPTER 2 | Introduction to the Artix Security Framework
Using Multiple Bindings

Overview Figure 9 shows an example of an advanced application that uses multiple
secure bindings.

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of a migration strategy, where the server can support
requests in multiple formats, such as G2++, SOAP, or CORBA.

Example bindings The following bindings are used in the application shown in Figure 9:

• G2++—consisting of the following layers: ASP security, G2++
binding, HTTP, SSL/TLS.

• SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

• CORBA—consisting of the following layers: GSP security, CORBA
binding, GIOP, IIOP/TLS.

Figure 9: Example of an Application with Multiple Bindings

IIOP/
TLS

CORBA

GIOP

SSL/TLS

HTTP

SOAPG2++

GSP
security

ASP security

Application
60

Caching of Credentials
Caching of Credentials

Overview To improve the performance of servers within the Artix Security Framework,
both the GSP plug-in (CORBA binding only) and the artix security plug-in
(all other bindings) implement caching of credentials (that is, the
authentication and authorization data received from the Artix security
service).

The credentials cache reduces a server’s response time by reducing the
number of remote calls to the Artix security service. On the first call from a
given user, the server calls the Artix security service and caches the received
credentials. On subsequent calls from the same user, the cached credentials
are used, thereby avoiding a remote call to Artix security service.

Cache time-out The cache can be configured to time-out credentials, forcing the server to
call the Artix security service again after using cached credentials for a
certain period.

Cache size The cache can also be configured to limit the number of stored credentials.

GSP configuration variables The following variables configure the credentials cache for CORBA bindings:

plugins:gsp:authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
 61

CHAPTER 2 | Introduction to the Artix Security Framework
ASP configuration variables The following variables configure the credentials cache for all non-CORBA
bindings:

plugins:asp:authentication_cache_size

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:asp:authentication_cache_timeout

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Artix security service on the next call from that
user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.
62

CHAPTER 3

Security for
HTTP-Compatible
Bindings
This chapter describes the security features supported by the
Artix HTTP plug-in. These security features are available to any
Artix binding that can be layered on top of the HTTP transport.

In this chapter This chapter discusses the following topics:

Overview of HTTP Security page 64

Securing HTTP Communications with SSL/TLS page 67

HTTP Basic Authentication page 78

X.509 Certificate-Based Authentication page 82
 63

CHAPTER 3 | Security for HTTP-Compatible Bindings
Overview of HTTP Security

Overview Figure 10 gives an overview of HTTP security within the Artix security
framework, showing the various security layers (ASP, binding layer, HTTP,
and SSL/TLS) and the different authentication types associated with the
security layers. Because many different binding types (for example, SOAP or
G2++) can be layered on top of HTTP, Figure 10 does not specify a
particular binding layer. Any HTTP-compatible binding could be substituted
into this architecture.

Security layers As shown in Figure 10, a HTTP-compatible binding has the following
security layers:

• SSL/TLS layer.

• HTTP layer.

• HTTP-compatible binding layer.

• ASP security layer.

SSL/TLS layer The SSL/TLS layer provides guarantees of confidentiality, message integrity,
and authentication (using X.509 certificates). The TLS functionality is
integrated into the https plug-in.

Figure 10: HTTP-Compatible Binding Security Layers

authorization

authentication

Action-role
mapping file

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

HTTP-compatible
binding

ASP security

Artix Security Service

User Data

ARM
64

Overview of HTTP Security
The https plug-in is configured by editing the Artix configuration file,
artix.cfg.

HTTP layer The HTTP layer supports the sending of username/password data in the
HTTP message header—that is, HTTP Basic Authentication. HTTP Basic
Authentication is configured by editing an application’s WSDL contract.

In Artix, the HTTP/S protocol is implemented by the following plug-ins:

• at_http plug-in—this plug-in is a thin layer that integrates the other
two plug-ins, http and https, with the Artix core. The at_http plug-in
is automatically loaded, if either the <http-conf:client> or
<http-conf:server> tags appear amongst the WSDL port settings.

• http plug-in—implements insecure HTTP only. The http plug-in is
automatically loaded by the at_http plug-in.

• https plug-in—implements secure HTTPS only. The https plug-in
must be added explicitly to the orb_plugins list in order to load.

HTTP-compatible binding layer The HTTP-compatible binding layer could provide additional security
features (for example, propagation of security credentials), depending on the
type of binding. The following binding types are HTTP-compatible:

• SOAP binding.

• XML format binding.

• G2++ binding.

• Fixed record length binding.

• Tagged data binding.

• MIME binding.

ASP security layer The ASP security layer is implemented by the Artix security plug-in, which
provides authentication and authorization checks for all binding types,
except the CORBA binding, as follows:

Note: In versions of Artix prior to 3.0, one plug-in, http, provided all of
the HTTP/S functionality. In Artix 3.0, it was refactored into three separate
plug-ins. Hence, the pre-Artix 3.0 http plug-in is a completely different
plug-in from the post-Artix 3.0 http plug-in.
 65

CHAPTER 3 | Security for HTTP-Compatible Bindings
• Authentication—by selecting one of the available client credentials
and calling out to the Artix security service to check the credentials.

• Authorization—by reading an action-role mapping (ARM) file and
checking whether a user’s roles allow it to perform a particular action.

Authentication options The following authentication options are common to all HTTP-compatible
bindings:

• HTTP Basic Authentication.

• X.509 certificate-based authentication.

HTTP Basic Authentication HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

For details of HTTP Basic Authentication, see “HTTP Basic Authentication”
on page 78.

X.509 certificate-based
authentication

X.509 certificate-based authentication is an authentication step that is
performed in addition to the checks performed at the socket layer during the
SSL/TLS security handshake.

For details of X.509 certificate-based authentication, see “X.509
Certificate-Based Authentication” on page 82.
66

Securing HTTP Communications with SSL/TLS
Securing HTTP Communications with
SSL/TLS

Overview This subsection describes how to configure the HTTP transport to use
SSL/TLS security, a combination usually referred to as HTTPS. In Artix,
HTTPS security is implemented by a combination of the at_http and https
plug-ins and configured by settings in the artix.cfg file.

The following topics are discussed in this subsection:

• Generating X.509 certificates.

• Enabling HTTPS.

• HTTPS client with no certificate.

• HTTPS client with certificate.

• HTTPS server configuration.

Generating X.509 certificates A basic prerequisite for using SSL/TLS security is to have a collection of
X.509 certificates available to identify your server applications and,
optionally, your client applications. You can generate X.509 certificates in
one of the following ways:

• Use a commercial third-party to tool to generate and manage your
X.509 certificates.

• Use the free openssl utility (which can be downloaded from
http://www.openssl.org)—see “Creating Your Own Certificates” on
page 261 for details of how to use it.
 67

http://www.openssl.org

CHAPTER 3 | Security for HTTP-Compatible Bindings
Enabling HTTPS There are two approaches to enabling HTTPS, depending on whether or not
the configuration in the WSDL contract explicitly specifies a HTTPS URL.

HTTPS specified in the WSDL contract

The usual way to enable HTTPS is by specifying the endpoint address in the
WSDL contract as an URL with the https: prefix. For example, to enable
SOAP over HTTPS, you would specify the endpoint address as follows:

Where the location attribute of the soap:address element is configured to
use a HTTPS URL. For bindings other than SOAP, you would edit the URL
appearing in the location attribute of the http:address element.

HTTPS not specified in the WSDL contract

If the endpoint address in the WSDL contract is specified as an URL with
the http: prefix (insecure HTTP), it is possible to force the endpoint to use
SSL/TLS security by editing the Artix configuration file, setting
plugins:at_http:client:use_secure_sockets to true on the client side
and plugins:at_http:server:use_secure_sockets to true on the server
side. In general, however, it is better to specify the HTTPS protocol by
modifying the URL in the WSDL contract (the first approach).

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello_world_soap_http"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >
 ...
 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding"
 name="SoapPort">
 <soap:address location="https://localhost:9000"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
68

Securing HTTP Communications with SSL/TLS
HTTPS client with no certificate For example, consider the configuration for a secure HTTPS client with no
certificate. Example 9 shows how to configure such a sample client.

Example 9: Sample HTTPS Client with No Certificate

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.

1 orb_plugins = ["xml_log_stream", ..., "at_http", "https"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:https:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

3 policies:https:mechanism_policy:protocol_version = "SSL_V3";
 policies:https:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

4 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific HTTPS client configuration settings

5 principal_sponsor:use_principal_sponsor = "false";

6 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...
 69

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding client configuration can be described as follows:

1. The at_http and https plug-ins together provide support for the HTTP
and HTTPS protocols. You can optionally include these plug-ins in the
orb_plugins list. If they are not explicitly listed, Artix will automatically
load them when necessary.

If you plan to use the full Artix Security Framework, you should include
the ASP plug-in, artix_security, in the ORB plug-ins list as well.

2. A HTTPS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other HTTPS applications. You must, therefore, edit the
policies:https:trusted_ca_list_policy variable to point at a list of
trusted certificate authority (CA) certificates. See “Specifying Trusted
CA Certificates” on page 291.

3. The mechanism policy specifies the default security protocol version
and the available cipher suites—see “Specifying Cipher Suites” on
page 319.

4. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

5. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

6. The following two lines set the required options and the supported
options for the HTTPS client secure invocation policy. In this example,
the policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

Note: Loading the https plug-in is not sufficient to make a service
secure. You must also configure the endpoints to have HTTPS URLs
in the WSDL contract—see “Enabling HTTPS” on page 68.
70

Securing HTTP Communications with SSL/TLS
♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

HTTPS client with certificate For example, consider a secure HTTPS client that is configured to have its
own certificate. Example 10 shows how to configure such a sample client.

Example 10: Sample HTTPS Client with Certificate

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 orb_plugins = ["xml_log_stream", ..., "at_http", "https"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

 policies:https:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

 policies:https:mechanism_policy:protocol_version = "SSL_V3";
 policies:https:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific HTTPS client configuration settings

1 principal_sponsor:use_principal_sponsor = "true";
2 principal_sponsor:auth_method_id = "pkcs12_file";
3 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12"];
 71

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding client configuration can be described as follows:

1. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. The principal sponsor is
enabled by setting principal_sponsor:use_principal_sponsor to
true.

2. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 292.

3. Specify the X.509 certificate location by editing the filename value to
point at a custom X.509 certificate file, which should be in PKCS#12
format—see “Specifying an Application’s Own Certificate” on page 292
for more details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 294.

4. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure HTTPS connections.

♦ Supported options—the association options shown here include
the EstablishTrustInClient option. This association option
must be supported when the client has an X.509 certificate.

4 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 };
};
...

Example 10: Sample HTTPS Client with Certificate
72

Securing HTTP Communications with SSL/TLS
Alternatively, you could configure security for a HTTPS client by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 11 shows how to configure the client side of a HTTPS connection
in Artix, in the case of mutual authentication.

The preceding WSDL contract can be described as follows:

1. The ClientCertificate attribute specifies the client’s own certificate
in PKCS#12 format.

2. The ClientPrivateKeyPassword attribute specifies the password to
decrypt the contents of the ClientCertificate file.

Example 11: WSDL Contract for HTTPS Client with Certificate

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">
 <soap:address location="https://localhost:55012"/>
 <http-conf:client
 UseSecureSockets="true"
TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

p12"
1 ClientCertificate="../certificates/openssl/x509/certs/client_cer

t.p12"
2 ClientPrivateKeyPassword="ClientPrivKeyPass"

 />
 </port>
 </service>
</definitions>

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
 73

CHAPTER 3 | Security for HTTP-Compatible Bindings
HTTPS server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role. The
sample server described here combines the following qualities: in the server
role, the application requests clients to send a certificate; in the client role,
the application requires security and includes a certificate.

Example 12 shows how to configure such a sample server.

Example 12: Sample HTTPS Server Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 my_server {
 # Specific HTTPS server configuration settings

2 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=CertsDir\server_cert.p12"];

 # Specific HTTPS client configuration settings
6 policies:client_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...
74

Securing HTTP Communications with SSL/TLS
The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “HTTPS client with no certificate” on page 69.

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the server
accepts only secure HTTPS connection attempts.

♦ Supported options—all of the target association options are
supported.

3. A secure server must always be associated with an X.509 certificate.
Hence, this line enables the SSL/TLS principal sponsor, which
specifies a certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 292.

5. Specify the location of the X.509 certificate file, by editing the
filename value to point at a custom X.509 certificate, which should be
in PKCS#12 format—see “Specifying an Application’s Own Certificate”
on page 292 for more details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 294.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.
 75

CHAPTER 3 | Security for HTTP-Compatible Bindings
Alternatively, you could configure security for a HTTPS server by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 13 shows how to configure the server side of a HTTPS connection
for mutual authentication in Artix.

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled by using https:
instead of http: in the location URL attribute.

2. The <http-conf:server> tag contains all the attributes for configuring
the server side of the HTTPS connection.

3. If the UseSecureSockets attribute is true, the server will open a port to
listen for secure connections.

Example 13: WSDL Contract with Server HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"

name="HelloWorldPort">
1 <soap:address location="https://localhost:55012"/>
2 <http-conf:server
3 UseSecureSockets="true"
4 ServerCertificate="../certificates/openssl/x509/certs/server_cer

t.p12"
5 ServerPrivateKeyPassword="ServerPrivKeyPass"
6 TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

p12"
 />
 </port>
 </service>
</definitions>

Note: If UseSecureSockets is false and the <soap:address>
location URL begins with https:, however, the server will listen for
secure connections.
76

Securing HTTP Communications with SSL/TLS
4. The ServerCertificate attribute specifies the server’s own certificate
in PKCS#12 format. For more background details about X.509
certificates, see “Managing Certificates” on page 251.

5. The ServerPrivateKeyPassword attribute specifies the password to
decrypt the server certificate’s private key.

6. The file specified by the TrustedRootCertificates contains a
concatenated list of CA certificates in PKCS#12 format. This attribute
value is needed for mutual authentication (for checking the certificates
sent by clients).

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<http-conf:server> tag from the copy of the WSDL contract that is
distributed to clients.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
 77

CHAPTER 3 | Security for HTTP-Compatible Bindings
HTTP Basic Authentication

Overview This section describes how to configure an Artix client and server to use
HTTP Basic Authentication. With HTTP Basic Authentication,
username/password credentials are sent in a HTTP header.

For more details, see the W3 specification
(http://www.w3.org/Protocols/HTTP/1.0/spec.html) for HTTP/1.0.

HTTP Basic Authentication client
configuration

Example 14 shows how to configure a client WSDL contract to use HTTP
Basic Authentication.

Example 14: WSDL Contract with Client HTTP Basic Authentication

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
1 xmlns:bus-security="http://schemas.iona.com/bus/security"

... >
 ...
 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

2 <soap:address location="https://localhost:55012"/>
 <http-conf:client
 ...

3 UserName="user_test"
4 Password="user_password"

 />
5 <bus-security:security enableSecurity="true" />

 </port>
 </service>
</definitions>
78

http://www.w3.org/Protocols/HTTP/1.0/spec.html

HTTP Basic Authentication
The preceding WSDL contract can be described as follows:

1. The bus-security namespace prefix is needed for the ASP plug-in
settings.

2. In this example, HTTP Basic Authentication is combined with SSL/TLS
security (see “Securing HTTP Communications with SSL/TLS” on
page 67). This ensures that the username and password are
transmitted across an encrypted connection, protecting them from
snooping.

3. The UserName attribute sets the user name for the HTTP Basic
Authentication credentials.

4. The Password attribute sets the password for the HTTP Basic
Authentication credentials.

5. The presence of the <bus-security:security> tag ensures that the
ASP plug-in, artix_security, is loaded into your application. This
plug-in is responsible for the authentication and authorization features.

HTTP Basic Authentication server
configuration

There is no need to make any modifications to the WSDL contract for
servers that support HTTP Basic Authentication.

However, it is necessary to make modifications to the domain configuration
file, artix.cfg (in the ArtixInstallDir/artix/Version/etc/domains
directory), as shown in Example 15.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.

Example 15: Artix Configuration for Server HTTP Basic Authentication

Artix Configuration File
security_artix {
 ...
 demos
 {
 hello_world
 {
 plugins:artix_security:shlib_name="it_security_plugin";
 79

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb_plugins list should include the artix_security plug-in,
which is responsible for enabling authentication and authorization.

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 241 for more details.

4. The policies:asp:enable_authorization variable must be set to
true to enable authorization.

5. The plugins:asp:security_level configuration variable specifies the
type of credentials authenticated on the server side. The
MESSAGE_LEVEL security type, selects the username/password
credentials from the HTTP Basic Authentication header.

1 binding:artix:server_request_interceptor_list=
"security";

 binding:client_binding_list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

2 orb_plugins = ["xmlfile_log_stream", ..., "at_http",
"artix_security", "https"];

3 plugins:is2_authorization:action_role_mapping =
"file://ArtixInstallDir/artix/Version/demos/secure_hello_worl
d/http_soap/config/helloworld_action_role_mapping.xml";

4 policies:asp:enable_authorization = "true";
5 plugins:asp:security_level = "MESSAGE_LEVEL";
6 plugins:asp:authentication_cache_size = "5";

 plugins:asp:authentication_cache_timeout = "10";
 };
 ...
 };
};

Example 15: Artix Configuration for Server HTTP Basic Authentication
80

HTTP Basic Authentication
6. The next pair of configuration variables configure the asp caching
mechanism. For more details, see “ASP configuration variables” on
page 62.
 81

CHAPTER 3 | Security for HTTP-Compatible Bindings
X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authentication for
HTTP-compatible bindings, based on a simple two-tier client/server
scenario. In this scenario, the Artix security service authenticates the client’s
certificate and retrieves roles and realms based on the identity of the
certificate subject. When certificate-based authentication is enabled, the
X.509 certificate is effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by the HTTPS configuration
settings in the Artix configuration file, artix.cfg.

• Artix security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the
artix_security plug-in.

Certificate-based authentication
scenario

Figure 11 shows an example of a two-tier system, where authentication of
the client’s X.509 certificate is integrated with the Artix security service.

Figure 11: Overview of Certificate-Based Authentication with HTTPS

Artix Security Service

TargetClient

User login
4 Apply access

control

3
Retrieve user's
realms and roles

2 authenticate()
X.509

1 SSL/TLS-level
authentication
82

X.509 Certificate-Based Authentication
Scenario description The scenario shown in Figure 11 can be described as follows:

Stage Description

1 When the client opens a connection to the server, the client
sends its X.509 certificate as part of the SSL/TLS handshake
(HTTPS). The server then performs SSL/TLS-level
authentication, checking the certificate as follows:

• The certificate is checked against the server’s trusted CA
list to ensure that it is signed by a trusted certification
authority.

• The server sends a challenge to the client, which requires
the client to prove that it possesses the certificate’s
private key.

2 The server performs security layer authentication by calling
authenticate() on the Artix security service, passing a copy of
the client’s certificate to the Artix security service.

The details of this authentication step depend on the particular
security adapter that is plugged into the Artix security service.
For example, the file adapter would authenticate the client
certificate as follows:

• The user’s identity is extracted from the certificate’s
subject DN.

• To verify the user’s identity, the file adapter compares the
client certificate with a cached copy. The authentication
succeeds, only if the certificates are equal.

3 If authentication is successful, the Artix security service returns
the user’s realms and roles.

4 The ASP security layer controls access to the target’s WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.
 83

CHAPTER 3 | Security for HTTP-Compatible Bindings
Credentials priority When performing authentication at the Artix security level, the X.509
certificate credentials have a lower priority than HTTP Basic Authentication
credentials. Hence, if both HTTP Basic Authentication credentials and
X.509 certificate credentials are presented, the credentials from HTTP Basic
Authentication are used to perform authentication and authorization at the
Artix security layer.

HTTPS prerequisites In general, a basic prerequisite for using X.509 certificate-based
authentication is that both client and server are configured to use HTTPS.

See “Securing HTTP Communications with SSL/TLS” on page 67.

Certificate-based authentication
security service configuration

A basic prerequisite for using certificate-based authentication is to configure
the security adapter that plugs into the Artix security service. The details of
this configuration step are specific to each security adapter. Typically, it
involves caching copies of the X.509 certificates for all users with security
privileges.

Specific details of how to configure each adapter for certificate-based
authentication are available, as follows:

• File adapter—see “Certificate-based authentication for the file
adapter” on page 236.

• LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 239.

• Custom adapter—see “Developing an iSF Adapter” on page 455.

Certificate-based authentication
client configuration

To enable certificate-based authentication on the client side, it is sufficient
for the client to be configured to use HTTPS with its own certificate. For
example, see “HTTPS client with certificate” on page 71.
84

X.509 Certificate-Based Authentication
Certificate-based authentication
server configuration

A prerequisite for using certificate-based authentication on the server side is
that the server’s WSDL contract is configured to use HTTPS. For example,
see “HTTPS server configuration” on page 74.

Additionally, on the server side it is also necessary to configure the ASP
security layer by editing the artix-secure.cfg domain configuration file (in
the ArtixInstallDir/artix/Version/etc/domains directory), as shown in
Example 16.

Example 16: Artix Configuration for X.509 Certificate-Based
Authentication

Artix Configuration File
security_artix {
 ...
 demos
 {
 hello_world
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
1 binding:artix:server_request_interceptor_list=

"security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
2 orb_plugins = ["xmlfile_log_stream", ..., "at_http",

"artix_security", "https"];
3 plugins:is2_authorization:action_role_mapping =

"file://ArtixInstallDir/artix/2.0/demos/secure_hello_world/ht
tp_soap/config/helloworld_action_role_mapping.xml";

4 policies:asp:enable_authorization = "true";
5 plugins:asp:security_level = "MESSAGE_LEVEL";
6 plugins:asp:authentication_cache_size = "5";

 plugins:asp:authentication_cache_timeout = "10";
7 plugins:asp:enable_security_service_cert_authentication ="true";

8 # SSL/TLS Settings for HTTPS Transport
 ...
 };
 ...
 };
};
 85

CHAPTER 3 | Security for HTTP-Compatible Bindings
The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb_plugins list should include the artix_security plug-in,
which is responsible for enabling authentication and authorization. You
can optionally include the https plug-in, which implements the HTTPS
transport protocol (if you don’t include it here, it will be loaded
dynamically in any case).

3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 241 for more details.

4. policies:asp:enable_authorization variable must be set to true to
enable authorization.

5. The plugins:asp:security_level configuration variable specifies
whether the credentials are taken from a request-level header or from a
transport-level header. By setting the security level to MESSAGE_LEVEL,
you indicate that the credentials are taken either from HTTP Basic
Authentication credentials or from an X.509 certificate at the SSL/TLS
layer.

6. The next pair of configuration variables configure the ASP caching
mechanism. For more details, see “ASP configuration variables” on
page 62.

7. The plugins:asp:enable_security_service_cert_authentication
variable must be set to true in order to enable X.509 certificate
authentication at the Artix security level.

8. You also need to include the settings for configuring the SSL/TLS layer.
See “HTTPS server configuration” on page 74 for details.
86

CHAPTER 4

Security for SOAP
Bindings
This chapter describes the security features that are specific
to the SOAP binding—for example, such as security
credentials that can be propagated in a SOAP header.

In this chapter This chapter discusses the following topic:

Overview of SOAP Security page 88

WSS X.509 Certificates and Authentication page 92
 87

CHAPTER 4 | Security for SOAP Bindings
Overview of SOAP Security

Overview Figure 12 gives an overview of security for a SOAP binding within the Artix
security framework. SOAP security consists of four different layers (SSL/TLS,
HTTP, SOAP, and ASP) and support is provided for several different types of
credentials. Figure 12 shows you how the different credential types are
associated with the different security layers.

Security layers As shown in Figure 12, the SOAP binding includes the following security
layers:

• SSL/TLS layer.

• HTTP layer.

• SOAP layer.

• ASP security layer.

Figure 12: Overview of Security for SOAP Bindings

authorization

authentication

Action-role
mapping file

SSL/TLS

HTTP Basic Authentication

X.509

HTTP

ASP security

Artix Security Service

User Data

ARM

SOAP

CORBA Principal

WSSE Kerberos
WSSE UsernameToken

WSSE X.509 Certificate
88

Overview of SOAP Security
SSL/TLS layer The SSL/TLS layer provides the SOAP binding with message encryption,
message integrity and authentication using X.509 certificates. The
implementation of SSL/TLS that underlies HTTPS is based on the Baltimore
security toolkit.

To enable SSL/TLS for HTTP, you must edit the artix.cfg file—see
“Securing HTTP Communications with SSL/TLS” on page 67.

HTTP layer The HTTP layer provides a means of sending username/password
credentials in a HTTP header (HTTP Basic Authentication). The HTTP layer
relies on SSL/TLS to prevent password snooping.

SOAP layer The SOAP layer can send various credentials (WSS UsernameToken, WSS
Kerberos, WSS X.509 certificate, and CORBA Principal) embedded in a
SOAP message header. The SOAP layer relies on SSL/TLS to prevent
password snooping.

ASP security layer The ASP security layer implements a variety of security features for
non-CORBA bindings. The main features of the ASP security layer are:

• Authentication—the ASP security layer calls the Artix security service
(which maintains a database of user data) to authenticate a user’s
credentials. If authentication is successful, the Artix security service
returns a list of the user’s roles and realms.

• Authorization—the ASP security layer matches the user’s roles and
realms against an action-role mapping file to determine whether the
user has permission to invoke the relevant WSDL operation.

• Inserting and extracting SOAP 1.2 security credentials—the ASP
security layer is responsible for inserting and extracting security
credentials to and from SOAP 1.2 message headers.

Note: The division of labor between the SOAP layer and the ASP security
layer differs between SOAP 1.1 and SOAP 1.2, as follows:

• SOAP 1.1—the Artix SOAP plug-in is responsible for inserting and
extracting security credentials.

• SOAP 1.2—the Artix security plug-in (ASP security layer) is
responsible for inserting and extracting security credentials.
 89

CHAPTER 4 | Security for SOAP Bindings
Authentication options As shown in Figure 12 on page 88, the SOAP binding supports the following
authentication options:

• WSS UsernameToken.

• WSS Kerberos.

• WSS X.509 certificate.

• CORBA Principal.

• HTTP Basic Authentication.

• SSL/TLS X.509 certificate.

WSS UsernameToken The Web service security extension (WSS) UsernameToken is a
username/password combination that can be sent in a SOAP header. The
specification of WSS UsernameToken is contained in the WSS
UsernameToken Profile 1.0 document from OASIS (www.oasis-open.org).

Prior to Artix version 4.0.1, the WSS UsernameToken could be set only by
programming. From Artix 4.0.1 onward, the WSS UsernameToken can be
set either by programming or through configuration. See “Propagating a
Username/Password Token” on page 439 and “principal_sponsor:wsse” on
page 567.

WSS Kerberos The WSS Kerberos specification is used to send a Kerberos security token in
a SOAP header. If you use Kerberos, you must also configure the Artix
security service to use the Kerberos adapter—see “Configuring the Kerberos
Adapter” on page 191.

Currently, the WSS Kerberos token can be set only by programming. See
“Propagating a Kerberos Token” on page 444.

Note: If using a SOAP 1.2 binding, you must also load the Artix security
plug-in on the client side in order to transmit WSS UsernameTokens. See
“Load the artix_security plug-in” on page 154 for details.

Note: If using a SOAP 1.2 binding, you must also load the Artix security
plug-in on the client side in order to transmit WSS Kerberos tokens. See
“Load the artix_security plug-in” on page 154 for details.
90

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

Overview of SOAP Security
WSS X.509 certificate The WSS specification allows you to send an X.509 certificate in a SOAP
header. For the purpose of authentication, Artix takes the username to be
the common name from the certificate’s subject DN.

For details, see “WSS X.509 Certificates and Authentication” on page 92.

CORBA Principal The CORBA Principal is a legacy feature originally defined in the early
versions of the CORBA GIOP specification. To facilitate interoperability with
early CORBA implementations, the Artix SOAP binding is also able to
propagate CORBA Principals. This feature is available only for SOAP over
HTTP and a SOAP header is used to propagate the CORBA Principal.

For details, see “Principal Propagation” on page 385.

HTTP Basic Authentication HTTP Basic Authentication is used to propagate username/password
credentials in a HTTP header. This kind of authentication is available to any
HTTP-compatible binding.

For details, see “HTTP Basic Authentication” on page 78.

SSL/TLS X.509 certificate You can use an X.509 certificate from the SSL/TLS layer for the purpose of
performing authentication and authorization at the Artix security layer. This
kind of authentication is available to any HTTP-compatible binding.

For details, see “X.509 Certificate-Based Authentication” on page 82.

Note: If using a SOAP 1.2 binding, you must also load the Artix security
plug-in on the client side in order to transmit WSS X.509 certificates. See
“Load the artix_security plug-in” on page 154 for details.

Note: If using a SOAP 1.2 binding, you must also load the Artix security
plug-in on the client side in order to transmit CORBA Principals. See
“Load the artix_security plug-in” on page 154 for details.
 91

CHAPTER 4 | Security for SOAP Bindings
WSS X.509 Certificates and Authentication

Overview This section describes how to enable X.509 certificate authentication for
certificates extracted from a WSS SOAP header, based on a simple two-tier
client/server scenario. In this scenario, the Artix security service retrieves
roles and realms based on the identity of the certificate subject.

Certificate-based authentication
scenario

Figure 13 shows an example of a two-tier system, where authentication of
the client’s WSS X.509 certificate is integrated with the Artix security
service.

WARNING: The WSS X.509 certificate is not authenticated by the server
and the security service does not verify the identity of the certificate owner.
The receiver of the WSS X.509 certificate relies on the sender to perform
authentication. This contrasts with the case of X.509 certificates sent over
a TLS transport, where the receiver does verify the certificate owner’s
identity.

Figure 13: Overview of Certificate-Based Authentication with WSS

Artix Security Service

TargetClientUser login

4 Apply access
control

3
Retrieve user's
realms and roles

2 authenticate()

X.509

1 Transmit X.509
cert. over WSSE
92

WSS X.509 Certificates and Authentication
Scenario description The scenario shown in Figure 13 can be described as follows:

Credentials priority When performing authentication, the X.509 certificate credentials have a
lower priority than that of the other SOAP credential types. For example, if
both WSS UsernameToken credentials and X.509 certificate credentials are
available, the WSS UsernameToken credentials take priority over the X.509
certificate and are used to perform authentication and authorization at the
Artix security layer.

Programming the client for WSS
certificate-based authentication

On the client side, you need to insert an X.509 certificate into the WSS
SOAP header by programming the bus-security context (there is currently
no configuration option for doing this). For details, see “Propagating an
X.509 Certificate” on page 449.

Stage Description

1 When the client opens a connection to the server, the client
sends an X.509 certificate in a WSS SOAP header. The server
does not check the certificate itself.

2 The server performs security layer authentication by calling
authenticate() on the Artix security service, passing
username and password arguments as follows:

• Username—obtained by extracting the common name
(CN) from the client certificate’s subject DN.

• Password—obtained from the value of the
plugins:asp:default_password configuration variable in
the server’s artix.cfg domain configuration.

WARNING: This step is not a true authentication step,
because the password is cached on the server side. Effectively,
this authentication is performed with a dummy password.

3 If the preceding step is successful, the Artix security service
returns the user’s realms and roles.

4 The ASP security layer controls access to the target’s WSDL
operations by consulting an action-role mapping file to
determine what the user is allowed to do.
 93

CHAPTER 4 | Security for SOAP Bindings
Configuring the server for WSS
certificate-based authentication

On the server side it is necessary to configure the ASP security layer by
editing the artix-secure.cfg domain configuration file (in the
ArtixInstallDir/artix/Version/etc/domains directory), as shown in
Example 17.

The preceding extract from the domain configuration can be explained as
follows:

1. The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix
security layer.

2. The orb_plugins list should include the artix_security plug-in,
which is responsible for enabling authentication and authorization.

Example 17: Configuration for WSS Certificate-Based Authentication

Artix Configuration File
security_artix {
 ...
 demos
 {
 hello_world
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
1 binding:artix:server_request_interceptor_list=

"principal_context+security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
2 orb_plugins = ["xmlfile_log_stream", ..., "at_http",

"artix_security", "https"];
3 plugins:is2_authorization:action_role_mapping =

"file://ArtixInstallDir/artix/2.0/demos/secure_hello_world/ht
tp_soap/config/helloworld_action_role_mapping.xml";

4 policies:asp:enable_authorization = "true";
5 plugins:asp:security_level = "REQUEST_LEVEL";
6 plugins:asp:default_password = "CertPassword";
7 plugins:asp:authentication_cache_size = "5";

 plugins:asp:authentication_cache_timeout = "10";
 ...
 };
 ...
 };
};
94

WSS X.509 Certificates and Authentication
3. The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of
the roles assigned to that user.

See “Managing Access Control Lists” on page 241 for more details.

4. policies:asp:enable_authorization variable must be set to true to
enable authorization.

5. The plugins:asp:security_level configuration variable specifies
whether the credentials are taken from a request-level header or from a
transport-level header. By setting the security level to REQUEST_LEVEL,
you indicate that the credentials are taken from a SOAP header (for
example, WSS X.509 certificate or WSS UsernameToken credentials).

In the case of WSS X.509 certificate-based authentication, the
username is taken to be the common name (CN) from the client
certificate’s subject DN (for an explanation of X.509 certificate
terminology, see “ASN.1 and Distinguished Names” on page 605).

6. When WSS X.509 certificate-based authentication is used, a default
password, CertPassword, must be supplied on the server side. This
password is then used for authenticating with the Artix security service.

7. The next pair of configuration variables configure the ASP caching
mechanism. For more details, see “ASP configuration variables” on
page 62.
 95

CHAPTER 4 | Security for SOAP Bindings
96

CHAPTER 5

Security for
CORBA Bindings
Using IONA’s modular ART technology, you make a CORBA
binding secure by configuring it to load the relevant security
plug-ins. This section describes how to load and configure
security plug-ins to reach the appropriate level of security for
applications with a CORBA binding.

In this chapter This chapter discusses the following topics:

Overview of CORBA Security page 98

Securing IIOP Communications with SSL/TLS page 100

Securing Two-Tier CORBA Systems with CSI page 106

Securing Three-Tier CORBA Systems with CSI page 112

X.509 Certificate-Based Authentication for CORBA Bindings page 118
 97

CHAPTER 5 | Security for CORBA Bindings
Overview of CORBA Security

Overview There are three layers of security available for CORBA bindings: IIOP over
SSL/TLS (IIOP/TLS), which provides secure communication between client
and server; CSI, which provides a mechanism for propagating
username/password credentials; and the GSP plug-in, which is concerned
with higher-level security features such as authentication and authorization.

The following combinations are recommended:

• IIOP/TLS only—for a pure SSL/TLS security solution.

• IIOP/TLS, CSI, and GSP layers—for a highly scalable security solution,
based on username/password client authentication.

CORBA applications and the Artix
security framework

Figure 14 shows the main features of a secure CORBA application in the
context of the Artix security framework.

Figure 14: A Secure CORBA Application within the Artix Security
Framework

authorization

authentication

Action-role
mapping file

IIOP/TLS
X.509

GSP security

Artix Security Service

User Data

ARM

CORBA
binding

GIOP
CORBA Principal

CSI identity assertion
CSI authentication over transport
98

Overview of CORBA Security
Security plug-ins Within the Artix security framework, a CORBA application becomes fully
secure by loading the following plug-ins:

• IIOP/TLS plug-in

• CSIv2 plug-in

• GSP plug-in

IIOP/TLS plug-in The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing IIOP Communications with SSL/TLS” on page 100 for details
on how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the Artix security framework, the username and password are
forwarded to a central Artix security service to be authenticated. This plug-in
is needed to support the Artix security framework.

GSP plug-in The GSP plug-in, gsp, provides authorization by checking a user’s roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the Artix security framework.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSIv2 authentication mechanisms are independent of each other and can
be used simultaneously.
 99

CHAPTER 5 | Security for CORBA Bindings
Securing IIOP Communications with SSL/TLS

Overview This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain (that is, the artix.cfg domain configuration
file has been modified to include artix-secure.cfg).

Sample client configuration For example, consider the configuration for a secure SSL/TLS client with no
certificate. Example 18 shows how to configure such a sample client.

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

Example 18: Sample SSL/TLS Client Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.

1 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];

2 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

3 policies:trusted_ca_list_policy =
"ArtixInstallDir\artix\Version\demos\secure_hello_world\http_
soap\certificates\tls\x509\trusted_ca_lists\ca_list1.pem";

4 policies:mechanism_policy:protocol_version = "SSL_V3";
 policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];
100

Securing IIOP Communications with SSL/TLS
The preceding client configuration can be described as follows:

1. Make sure that the orb_plugins variable in this configuration scope
includes the iiop_tls plug-in.

If you plan to use the full Artix Security Framework, you should include
the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 106.

2. Make sure that the binding:client_binding_list variable includes
bindings with the IIOP_TLS interceptor. You can use the value of the
binding:client_binding_list shown here.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the

5 event_log:filters = ["IT_ATLI_TLS=*", "IT_IIOP=*",
"IT_IIOP_TLS=*", "IT_TLS=*"];

 ...
 my_client {
 # Specific SSL/TLS client configuration settings

6 principal_sponsor:use_principal_sponsor = "false";

7 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 };
};
...

Example 18: Sample SSL/TLS Client Configuration

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure IIOP) from the ORB plug-ins list. This renders the
application incapable of making insecure IIOP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the iiop_tls plug-in in the ORB plug-ins list.
 101

CHAPTER 5 | Security for CORBA Bindings
policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 291.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 319.

5. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting principal_sponsor:use_principal_sponsor to
false.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

♦ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.
102

Securing IIOP Communications with SSL/TLS
Example 19 shows how to configure a sample server that acts both as a
secure server and as a secure client.

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 100

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:

Example 19: Sample SSL/TLS Server Configuration

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 my_server {
 # Specific SSL/TLS server configuration settings

2 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
4 principal_sponsor:auth_method_id = "pkcs12_file";
5 principal_sponsor:auth_method_data =

["filename=CertsDir\server_cert.p12"];

 # Specific SSL/TLS client configuration settings
6 policies:client_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 };
};
...
 103

CHAPTER 5 | Security for CORBA Bindings
♦ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

♦ Supported options—all of the target association options are
supported.

3. A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

4. This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 292.

5. Replace the X.509 certificate, by editing the filename option in the
principal_sponsor:auth_method_data configuration variable to point
at a custom X.509 certificate. The filename value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 292 for more
details.

For details of how to specify the certificate’s pass phrase, see
“Certificate Pass Phrase for HTTPS and IIOP/TLS” on page 294.

6. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

♦ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

♦ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Mixed security configurations Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.
104

Securing IIOP Communications with SSL/TLS
For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 102. Then configure the
client role by adding (or modifying) the following lines to the
my_secure_apps.my_server configuration scope:

The first line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure IIOP) is included. The NoProtection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Customizing SSL/TLS security
policies

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

• “Configuring HTTPS and IIOP/TLS Secure Associations” on page 303.

• “Configuring HTTPS and IIOP/TLS Authentication” on page 283.

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];
 105

CHAPTER 5 | Security for CORBA Bindings
Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
OMG’s Common Secure Interoperability specification version 2.0 (CSIv2).
The client supplies username/password authentication data which is
transmitted as CSI credentials and then authenticated on the server side.
The following configurations are described in detail:

• Client configuration.

• Target configuration.

Two-tier CORBA system Figure 15 shows a basic two-tier CORBA system using CSI credentials,
featuring a client and a target server.

Figure 15: Two-Tier CORBA System Using CSI Credentials

Request + u/p/d

Artix Security
Service

1 2

3

Client
authentication
token

TargetClient
u/p/d

User login
Propagate
authentication
token

authenticate() 4
Retrieve user's
realms and roles

5
Apply access
control
106

Securing Two-Tier CORBA Systems with CSI
Scenario description The scenario shown in Figure 15 can be described as follows:

Client configuration The CORBA client from Example 15 on page 106 can be configured as
shown in Example 20.

Stage Description

1 The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name must match the value of the
policies:csi:auth_over_transport:server_domain_name
configuration variable set on the server side.

2 When the client makes a remote invocation on the server, the
CSI username/password/domain authentication data is
transmitted to the target along with the invocation request.

3 The server authenticates the received username and password
by calling out to the external Artix security service.

4 If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 The GSP security layer controls access to the target’s IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Example 20: Configuration of a CORBA client Using CSI Credentials

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {

1 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "ots", "gsp"];
 107

CHAPTER 5 | Security for CORBA Bindings
The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 100 for details of the SSL/TLS configuration.

2. Make sure that the orb_plugins variable in this configuration scope
includes both the iiop_tls and the gsp plug-ins in the order shown.

3. Make sure that the binding:client_binding_list variable includes
bindings with the CSI interceptor. Your can use the value of the
binding:client_binding_list shown here.

4. Make sure that the binding:server_binding_list variable includes
bindings with both the CSI and GSP interceptors. Your can use the
value of the binding:server_binding_list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing IIOP Communications with SSL/TLS”
on page 100.

3 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

4 binding:server_binding_list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

 ...
 my_client {

5 # Specific SSL/TLS configuration settings.
 ...
 # Specific Artix security framework settings.

6 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

7 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};
...

Example 20: Configuration of a CORBA client Using CSI Credentials
108

Securing Two-Tier CORBA Systems with CSI
6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

Target configuration The CORBA target server from Figure 15 on page 106 can be configured as
shown in Example 21.

Example 21: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 my_two_tier_target {

1 # Specific SSL/TLS configuration settings.
 ...
 # Specific Artix security framework settings.

2 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

3 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:server_domain_name =
"CSIDomainName";

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";
 109

CHAPTER 5 | Security for CORBA Bindings
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 100.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name, CSIDomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server_domain_name variable on the server side.

5. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 229.

6. The action_role_mapping configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 243.

7 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 21: Configuration of a Second-Tier Target Server in the Artix
Security Framework
110

Securing Two-Tier CORBA Systems with CSI
7. You should also set secure client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 225.

• See “ACL File Format” on page 243.
 111

CHAPTER 5 | Security for CORBA Bindings
Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using
CSIv2. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

• Intermediate configuration.

• Target configuration.

Three-tier CORBA system Figure 16 shows a basic three-tier CORBA system using CSIv2, featuring a
client, an intermediate server and a target server.

Figure 16: Three-Tier CORBA System Using CSIv2

Request + u/p/d

Artix Security
Service

1
2

u

Client
authentication
token

Identity token

Request + uIntermediate
Server

Target
Server

Client
u/p/d

Set own identity

Propagate identity

3
Obtain user's
realms and roles

4
Apply access
control
112

Securing Three-Tier CORBA Systems with CSI
Scenario description The second stage of the scenario shown in Figure 16 (intermediate server
invokes an operation on the target server) can be described as follows:

Client configuration The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 107.

Intermediate configuration The CORBA intermediate server from Figure 16 on page 112 can be
configured as shown in Example 22.

Stage Description

1 The intermediate server sets its own identity by extracting the
user identity from the received username/password CSI
credentials. Hence, the intermediate server assumes the same
identity as the client.

2 When the intermediate server makes a remote invocation on
the target server, CSI identity assertion is used to transmit the
user identity data to the target.

3 The target server then obtains the user’s realms and roles.

4 The GSP security layer controls access to the target’s IDL
interfaces by consulting an action-role mapping file to
determine what the user is allowed to do.

Example 22: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 113

CHAPTER 5 | Security for CORBA Bindings
The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing IIOP
Communications with SSL/TLS” on page 100.

2. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

3. This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

 my_three_tier_intermediate {
1 # Specific SSL/TLS configuration settings.

 ...
 # Specific Artix security framework settings.

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

3 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

4 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

5 policies:csi:auth_over_transport:server_domain_name =
"CSIDomainName";

6 plugins:gsp:authorization_realm = "AuthzRealm";
7 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

8 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 22: Configuration of a Second-Tier Intermediate Server in the
Artix Security Framework
114

Securing Three-Tier CORBA Systems with CSI
4. This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

5. The server_domain_name configuration variable sets the server’s CSIv2
authentication domain name, CSIDomainName. The domain name
embedded in a received CSIv2 credential must match the value of the
server_domain_name variable on the server side.

6. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 229.

7. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role_mapping.xml (Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 243.

8. You should also set Artix security framework client configuration
variables in the intermediate server configuration scope, because a
secure server application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need to
contact both the locator service and the CORBA naming service.

Target configuration The CORBA target server from Figure 16 on page 112 can be configured as
shown in Example 23.

Example 23: Configuration of a Third-Tier Target Server Using CSI

Artix Configuration File
...
General configuration at root scope.
...
my_secure_apps {
 # Common SSL/TLS configuration settings.
 ...
 # Common Artix security framework configuration settings.
 orb_plugins = [..., "iiop_tls", "gsp", ...];
 binding:client_binding_list = [...];
 binding:server_binding_list = [...];
 ...
 115

CHAPTER 5 | Security for CORBA Bindings
The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing IIOP Communications with
SSL/TLS” on page 100.

2. It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

You can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

 my_three_tier_target {
 # Specific SSL/TLS configuration settings.

1 ...
2 policies:iiop_tls:target_secure_invocation_policy:requires

= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate_constraints_policy =
[ConstraintString1, ConstraintString2, ...];

 # Specific Artix security framework settings.
4 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

5 plugins:gsp:authorization_realm = "AuthzRealm";
6 plugins:is2_authorization:action_role_mapping =

"ActionRoleURL";

7 # Artix security framework client configuration settings.
 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];

 principal_sponsor:csi:use_principal_sponsor = "true";
 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data = [];
 };
};

Example 23: Configuration of a Third-Tier Target Server Using CSI
116

Securing Three-Tier CORBA Systems with CSI
3. In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 300.

4. This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

5. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms” on page 229.

6. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml.

For more details about the action-role mapping file, see “ACL File
Format” on page 243.

7. You should also set secure client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

• See “Managing Users, Roles and Domains” on page 225.

• See “ACL File Format” on page 243.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.
 117

CHAPTER 5 | Security for CORBA Bindings
X.509 Certificate-Based Authentication for
CORBA Bindings

Overview This section describes how to enable X.509 certificate authentication for
CORBA bindings, based on a simple two-tier client/server scenario. In this
scenario, the Artix security service authenticates the client’s certificate and
retrieves roles and realms based on the identity of the certificate subject.
When certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:

• SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Artix configuration settings
and programmable SSL/TLS policies.

• GSP security-level authentication and authorization—this
authentication step occurs after the SSL/TLS handshake and is
performed by the Artix security service working in tandem with the gsp
plug-in.
118

X.509 Certificate-Based Authentication for CORBA Bindings
Certificate-based authentication
scenario

Figure 17 shows an example of a two-tier system, where authentication of
the client’s X.509 certificate is integrated with the Artix security service.

Scenario description The scenario shown in Figure 17 can be described as follows:

Figure 17: Overview of Certificate-Based Authentication

Artix Security Service

TargetClient

User login
5 Apply access

control

4
Retrieve user's
realms and roles

2 authenticate()
X.509

X.509

3

Check certificate

1 SSL/TLS-level
authentication

Stage Description

1 When the client opens a connection to the server, the client
sends its X.509 certificate as part of the SSL/TLS handshake.
The server then performs SSL/TLS-level authentication,
checking the certificate as follows:

• The certificate is checked against the server’s trusted CA
list to ensure that it is signed by a trusted certification
authority.

• If a certificate constraints policy is set, the certificate is
checked to make sure it satisfies the specified constraints.

• If a certificate validator policy is set (by programming),
the certificate is also checked by this policy.
 119

CHAPTER 5 | Security for CORBA Bindings
Client configuration Example 24 shows a sample client configuration that you can use for the
security-level certificate-based authentication scenario (Figure 17 on
page 119).

2 The server then performs security layer authentication by
calling authenticate() on the Artix security service, passing
the client’s X.509 certificate as the argument.

3 The Artix security service authenticates the client’s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Artix security service.

4 If authentication is successful, the Artix security service returns
the user’s realms and roles.

5 The security layer controls access to the target’s IDL interfaces
by consulting an action-role mapping file to determine what
the user is allowed to do.

Stage Description

Example 24: Client Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 client_x509
 {
120

X.509 Certificate-Based Authentication for CORBA Bindings
The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the principal_sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

For a discussion of these client SSL/TLS settings, see “Sample client
configuration” on page 100 and “Deploying Application Certificates” on
page 279.

Target configuration Example 25 shows a sample server configuration that you can use for the
security-level certificate-based authentication scenario (Figure 17 on
page 119).

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=W:\art\etc\tls\x509\certs\demos\bob.p12",
"password=bobpass"];

 };
};

Example 24: Client Configuration for Security-Level Certificate-Based
Authentication

Example 25: Server Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls", "gsp"];

 event_log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];
 121

CHAPTER 5 | Security for CORBA Bindings
 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

 server
 {
 policies:csi:auth_over_transport:authentication_service

= "com.iona.corba.security.csi.AuthenticationService";

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";

1 principal_sponsor:auth_method_data =
["filename=CertDir\target_cert.p12",
"password=TargetCertPass"];

 binding:server_binding_list = ["CSI+GSP", "CSI",
"GSP"];

 initial_references:IS2Authorization:plugin =
"it_is2_authorization";

 plugins:it_is2_authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugIn
";

2 plugins:is2_authorization:action_role_mapping =
"file:///PathToARMFile";

 auth_x509
 {

3
plugins:gsp:enable_security_service_cert_authentication =
"true";

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

Example 25: Server Configuration for Security-Level Certificate-Based
Authentication
122

X.509 Certificate-Based Authentication for CORBA Bindings
The preceding server configuration can be explained as follows:

1. As is normal for an SSL/TLS server, you must provide the server with
its own certificate, target_cert.p12. The simplest way to do this is to
specify the location of a PKCS#12 file using the principal sponsor.

2. This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations. See “ACL File Format” on page 243 for more details.

3. The plugins:gsp:enable_security_service_cert_authentication
variable is the key to enabling security-level certificate-based
authentication. By setting this variable to true, you cause the server to
perform certificate authentication in the GSP security layer.

4. The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the security layer authentication.

Related administration tasks When using X.509 certificate-based authentication for CORBA bindings, it is
necessary to add the appropriate user data to your enterprise security
system (which is integrated with the Artix security service through an iSF
adapter), as follows:

• File adapter—see “Certificate-based authentication for the file adapter”
on page 236.

• LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 239.

4
policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 };
 };
};

Example 25: Server Configuration for Security-Level Certificate-Based
Authentication
 123

CHAPTER 5 | Security for CORBA Bindings
124

CHAPTER 6

Single Sign-On
Single sign-on (SSO) is an Artix security framework feature
which is used to minimize the exposure of usernames and
passwords to snooping. After initially signing on, a client
communicates with other applications by passing an SSO
token in place of the original username and password.

In this chapter This chapter discusses the following topics:

Note: The SSO feature is unavailable in some editions of Artix. Please
check the conditions of your Artix license to see whether your installation
supports SSO.

SSO and the Login Service page 126

Username/Password-Based SSO for SOAP Bindings page 129

SSO Sample Configuration for SOAP Bindings page 135
 125

CHAPTER 6 | Single Sign-On
SSO and the Login Service

Overview There are two different implementations of the login service, depending on
the type of bindings you use in your application:

• SOAP binding.

• CORBA Binding.

SOAP binding For SOAP bindings, SSO is implemented by the following elements of the
Artix security framework:

• Artix login service—a central service that authenticates
username/password combinations and returns SSO tokens. Clients
connect to this service using the HTTP/S protocol.

• login_client plug-in—the login_client plug-in, which is loaded by
SOAP clients, is responsible for contacting the Artix login service to
obtain an SSO token.

• artix_security plug-in—on the server side, the artix_security plug-in
is responsible for parsing the received SSO credentials and
authenticating the SSO token with the Artix security service.

CORBA Binding For CORBA bindings, SSO is implemented by the following elements of the
Artix security framework:

• CORBA login service—a central service that authenticates
username/password combinations and generates SSO tokens. Clients
connect to this service using the IIOP/TLS protocol.

• GSP plug-in—the generic security plug-in is responsible for the
following:

♦ On the client side—contacts the CORBA login service to obtain an
SSO token.

♦ On the server side—sends a received SSO token to be
authenticated by the Artix security service.
126

SSO and the Login Service
Advantages of SSO SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

• Password visibility is restricted to the login service.

• Clients use SSO tokens to communicate with servers.

• Clients can be configured to use SSO with no code changes.

• SSO tokens are configured to expire after a specified length of time.

• When an SSO token expires, the Artix client automatically requests a
new token from the login service. No additional user code is required.

Login service Figure 18 shows an overview of a login service. The client Bus automatically
requests an SSO token by sending a username and a password to the login
service. If the username and password are successfully authenticated, the
login service returns an SSO token.

SSO token The SSO token is a compact key that the Artix security service uses to
access a user’s session details, which are stored in a cache.

Figure 18: Client Requesting an SSO Token from the Login Service

Client

User login

login(<username>,<password>)

<token>

Artix
Security
Service

Login
Service
 127

CHAPTER 6 | Single Sign-On
SSO token expiry The Artix security service is configured to impose the following kinds of
timeout on an SSO token:

• SSO session timeout—this timeout places an absolute limit on the
lifetime of an SSO token. When the timeout is exceeded, the token
expires.

• SSO session idle timeout—this timeout places a limit on the amount
of time that elapses between authentication requests involving the SSO
token. If the central Artix security service receives no authentication
requests in this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 221.

Automatic token refresh In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a security exception whenever an
SSO token expires. In practice, however, when SSO is enabled, the relevant
plug-in (login_service for SOAP and gsp for CORBA) catches the exception
on the client side and contacts the login service again to refresh the SSO
token automatically. The plug-in then automatically retries the failed
operation invocation.
128

Username/Password-Based SSO for SOAP Bindings
Username/Password-Based SSO for SOAP
Bindings

Overview When using SOAP bindings, usernames and passwords can be transmitted
using one of the following mechanisms:

• WSS UsernameToken.

• HTTP Basic Authentication.

• CORBA Principal (username only).

This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password.

Username/password
authentication without SSO

Figure 19 gives an overview of ordinary username/password-based
authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

Figure 19: Overview of Username/Password Authentication without SSO

Artix Security
Service

TargetClient

User login

Retrieve user's
realms and roles

Authenticate username
and password

username = <username>
password = <password>
 129

CHAPTER 6 | Single Sign-On
Username/password
authentication with SSO

Figure 20 gives an overview of username/password-based authentication
when SSO is enabled.

Prior to contacting the target server for the first time, the client Bus sends
the username, <username>, and password, <password>, to the login server,
getting an SSO token, <token>, in return. The client Bus then includes an
IONA-proprietary SOAP header (extension of WSS BinarySecurityToken) in
the next request to the target server. The target server’s Bus contacts the
Artix security service to validate the SSO token passed in the WSS Binary
SecurityToken.

Client configuration Example 26 shows a typical domain configuration for an SSO SOAP client
that employs username/password authentication.

Figure 20: Overview of Username/Password Authentication with SSO

Artix
Security
Service

TargetClient

User login

Retrieve user's
realms and roles

WSSE BinarySecurityToken

Login
Service

login(<username>,<password>)

<token>

Example 26: SOAP Client Configuration for Username/Password-Based
SSO

Artix Configuration File
...

1 bus:initial_contract:url:login_service="../../wsdl/login_service
.wsdl";

plugins:login_client:shlib_name = "it_login_client";
...
130

Username/Password-Based SSO for SOAP Bindings
The preceding Artix configuration can be described as follows:

1. The bus:initial_contract:url:login_service variable specifies the
location of the Artix login service WSDL contract. You must edit this
setting, if you store this contract at a different location.

2. The orb_plugins list must include the login_client plug-in.

If the client uses a SOAP 1.2 binding, it is also necessary to include
the artix_security plug-in in the orb_plugins list.

3. The Artix client request interceptor list must include the login_client
interceptor.

If the client uses a SOAP 1.2 binding, it is also necessary to include
the security and principal_context interceptors in the order shown.

Target configuration Example 27 shows a typical domain configuration for an SSO SOAP target
server that accepts connections from clients that authenticate themselves
using username/password authentication.

sso_soap_client {
2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "soap", "http", "login_client", "artix_security"];
3 binding:artix:client_request_interceptor_list=

"login_client+security+principal_context";
 ...
};

Example 26: SOAP Client Configuration for Username/Password-Based
SSO

Example 27: SOAP Target Configuration for Username/Password-Based
SSO

Artix Configuration File
...
sso_soap_target {
 plugins:artix_security:shlib_name = "it_security_plugin";

1 binding:artix:server_request_interceptor_list=
"principal_context+security";

 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix_security"];
 131

CHAPTER 6 | Single Sign-On
The preceding Artix configuration can be described as follows:

1. The security interceptor must appear in the Artix server interceptor
list to enable the artix_security plug-in functionality.

2. The orb_plugins list must include the artix_security plug-in.

3. You can enable SSO with or without authentication. In this example,
the authentication feature is enabled.

4. The security level is set to REQUEST_LEVEL, implying that the username
and password are extracted from the SOAP header.

Artix login service configuration Example 28 shows the domain configuration for a standalone Artix login
service. The clients of this login service authenticate themselves to the login
service using WSS UsernameToken credentials.

3 policies:asp:enable_authorization = "true";
 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 plugins:is2_authorization:action_role_mapping =

"file://C:\artix_20/artix/2.0/demos/security/single_signon/et
c/helloworld_action_role_mapping.xml";

4 plugins:asp:security_level = "REQUEST_LEVEL";
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=%{PRIVATE_CERT_1}",
"password_file=%{PRIVATE_CERT_PASSWORD_FILE_1}"];

};

Example 27: SOAP Target Configuration for Username/Password-Based
SSO

Example 28: Artix Login Service Domain Configuration

Artix Configuration File
...
sso_login_service {
 plugins:artix_security:shlib_name = "it_security_plugin";

1 binding:artix:server_request_interceptor_list= "security";
 binding:client_binding_list = ["OTS+POA_Coloc", "POA_Coloc",

"OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
2 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "http", "artix_security",
"login_service"];
132

Username/Password-Based SSO for SOAP Bindings
The preceding Artix configuration can be described as follows:

1. The security interceptor must appear in the Artix server interceptor
list to enable the artix_security plug-in functionality.

2. The orb_plugins list must include the artix_security plug-in and the
login_service plug-in.

3. The plugins:login_service:wsdl_url variable specifies the location
of the Artix login service WSDL contract. You must edit this setting, if
you store this contract at a different location.

4. The security type setting selected here (REQUEST_LEVEL) implies that
the login service reads the WSS UsernameToken and PasswordToken
credentials from the incoming client request messages.

You can change these settings to use different client credentials (for
example, MESSAGE_LEVEL for HTTP Basic Authentication), but you must
be careful to ensure that this matches the kind of credentials sent by
the client.

Login service WSDL configuration Example 29 shows an extract from the login service WSDL contract (in the
directory, artix/Version/demos/security/single_signon/wsdl) showing
details of the WSDL port settings.

3 plugins:login_service:wsdl_url="../../wsdl/login_service.wsdl";
 plugins:login_service:shlib_name = "it_login_service";

4 plugins:asp:security_level = "REQUEST_LEVEL";
};

Example 28: Artix Login Service Domain Configuration

Example 29: Extract from the Login Service WSDL Configuration

Login Service WSDL Contract
<definitions ... >
 ...
 <service name="LoginService">
 <port binding="tns:LoginServiceBinding"
 name="LoginServicePort">
 <soap:address
 location="http://localhost:49675"/>
 <bus-security:security
 enableSSO="false"
 133

CHAPTER 6 | Single Sign-On
Note the following points about the WSDL port settings:

• The login service listens on a fixed host and port,
http://localhost:4975. You will probably need to edit this setting
before deploying the login service in a real system.

However, you should not choose dynamic IP port allocation (for
example, using http://localhost:0), because the clients would not
be able to discover the value of the dynamically allocated port.

• You should not change the values of the attributes in the
<bus-security:security> tag. The values shown in Example 29 are
essential for the correct functioning of the Artix login service.

Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 221.

 enableAuthorization="false"
 authenticationCacheSize="1"
 authenticationCacheTimeout="1" />
 </port>
 </service>
</definitions>

Example 29: Extract from the Login Service WSDL Configuration

WARNING: Example 29 shows a login service configuration with insecure
communications (HTTP). It is strongly recommended that you modify this
configuration to use TLS security (HTTPS).
134

SSO Sample Configuration for SOAP Bindings
SSO Sample Configuration for SOAP Bindings

Overview This section provides SSO sample configurations for the SOAP binding
including configurations for a client, a server, and a standalone Artix login
service.

Client SSO configuration The secure_artix.single_signon.client configuration scope from
Example 30 can be used to configure a SOAP SSO client. This client
configuration has the following characteristics:

• The SSO client loads the login_client plug-in, which is responsible
for contacting the HTTP login server to obtain an SSO token.

• The client’s SOAP and HTTP security settings are stored separately in
the client’s copy of the WSDL contract.

Server SSO configuration The secure_artix.single_signon.server configuration scope from
Example 30 can be used to configure a SOAP SSO server. This server
configuration has the following characteristics:

• The SSO server loads the artix_security plug-in, which provides the
implementation of SSO on the server side.

• You can enable authorization while using SSO credentials (set
policies:asp:enable_authorization to true).

Artix login service configuration The secure_artix.single_signon.sso_service configuration scope from
Example 30 gives an example of a standalone Artix login service.

WARNING: It is strongly recommended that you configure the client’s
WSDL contract to use TLS security (HTTPS).

WARNING: It is strongly recommended that you configure the server’s
WSDL contract to use TLS security (HTTPS).

WARNING: It is strongly recommended that you configure the login
server’s WSDL contract to use TLS security (HTTPS).
 135

CHAPTER 6 | Single Sign-On
SSO configuration example Example 30 shows sample configurations for a SOAP SSO client and a
SOAP SSO server.

Example 30: SOAP SSO Client and Server Configuration Examples

secure_artix {
 ...
 single_signon
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:55349/IT_SecurityService";

 security_service
 {
 ...
 };

 client
 {
bus:initial_contract:url:login_service="../../wsdl/login_service

.wsdl";
 plugins:login_client:shlib_name = "it_login_client";
 binding:artix:client_request_interceptor_list=

"login_client";
 orb_plugins = ["xmlfile_log_stream", "soap", "http",

"login_client"];
 };

 server
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
 binding:artix:server_request_interceptor_list=

"security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "soap", "http", "artix_security"];

 policies:asp:enable_authorization = "true";
 plugins:asp:authentication_cache_size = "5";
 plugins:asp:authentication_cache_timeout = "10";
 plugins:is2_authorization:action_role_mapping =

"file://C:\artix_20/artix/2.0/demos/security/single_signon/et
c/helloworld_action_role_mapping.xml";

 plugins:asp:security_level = "REQUEST_LEVEL";
136

SSO Sample Configuration for SOAP Bindings
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=%{PRIVATE_CERT_1}",
"password_file=%{PRIVATE_CERT_PASSWORD_FILE_1}"];

 };

 sso_service
 {
 plugins:artix_security:shlib_name =

"it_security_plugin";
 binding:artix:server_request_interceptor_list=

"security";
 binding:client_binding_list = ["OTS+POA_Coloc",

"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "soap", "http", "artix_security",
"login_service"];

 plugins:login_service:wsdl_url="../../wsdl/login_service.wsdl";
 plugins:login_service:shlib_name = "it_login_service";
 plugins:asp:security_level = "REQUEST_LEVEL";
 };
 };
 ...
};

Example 30: SOAP SSO Client and Server Configuration Examples
 137

CHAPTER 6 | Single Sign-On
138

CHAPTER 7

Publishing WSDL
Securely
The WSDL publishing service enables clients to download
WSDL contracts that are constructed from a server’s
in-memory WSDL model. In order to ensure the integrity of the
WSDL contracts downloaded in this manner, Artix supports a
number of special security features.

In this chapter This chapter discusses the following topics:

Introduction to the WSDL Publish Plug-In page 140

Deploying WSDL Publish in a Container page 143

Preprocessing Published WSDL Contracts page 147

Enabling SSL/TLS for WSDL Publish Plug-In page 148
 139

CHAPTER 7 | Publishing WSDL Securely
Introduction to the WSDL Publish Plug-In

Overview The Artix WSDL publishing service is packaged as a plug-in and can be
loaded by any Artix server that needs to make its WSDL contracts available
to remote clients. In particular, the WSDL publish plug-in provides a way of
publishing endpoint information for services that have dynamically allocated
IP ports.

Figure 21 provides an overview of the endpoints that can be used to access
the WSDL publishing service. Because published WSDL contracts are
constructed from the server’s in-memory WSDL model, they also include
volatile information, such as dynamically-allocated IP ports.

Reference For a detailed introduction to the Artix WSDL publishing service, see the
relevant chapter in the Deploying and Managing Artix Solutions guide.

Figure 21: Endpoints Used by the WSDL Publishing Service

WSDL

WSDL Model

WSDL

WSDL File

Artix Server

Read and parse

Service port

WSDL publish port

wsdl_publish plug-in
140

Introduction to the WSDL Publish Plug-In
Publishing WSDL As shown in Figure 21, the WSDL publishing service publishes WSDL
contracts through two different kinds of endpoint, as follows:

• Service-specific WSDL publish endpoints—if the WSDL publish
plug-in is enabled, the WSDL publishing service is automatically made
available through any existing HTTP or HTTPS endpoints. In other
words, the WSDL publishing service doubles up on existing service
endpoints.

• Dedicated WSDL publish endpoint—in addition to the service-specific
endpoints, the WSDL publish plug-in opens its own dedicated IP port
for publishing WSDL.

Security features The WSDL publishing service has the following security features that
provide protection for clients and servers:

• Protection for clients—there are two ways in which clients are
protected:

♦ Secure connections to WSDL publish—you can configure the
WSDL publishing endpoints to be secured by SSL/TLS. This
ensures that published WSDL contracts cannot be tampered with
when they are retrieved by clients.

♦ Clients ignore downloaded client configuration—some WSDL
extensions allow you to configure client properties (for example,
the location of a client’s own X.509 certificate). Artix is designed
to ignore client properties from downloaded WSDL contracts.
Only local contracts can be used to configure the client.

• Protection for servers—some WSDL extensions might contain sensitive
details about server configuration (for example, a server’s private key
password). To avoid exposing these details to clients, the WSDL
publishing service automatically strips out server configuration details
from the published WSDL contract.
 141

CHAPTER 7 | Publishing WSDL Securely
Loading the wsdl_publish plug-in To load the wsdl_publish plug-in, add wsdl_publish to your orb_plugins
list in the application’s configuration scope. For example, if your server’s
configuration scope is secure_server, you might use the following
orb_plugins list:

Enabling the dedicated WSDL
publish endpoint

To specify the IP port for the dedicated WSDL publish endpoint, set the
plugins:wsdl_publish:publish_port variable in the application’s
configuration scope.

For example, use the following configuration to specify that a server opens a
dedicated WSDL publish endpoint on the IP port, 2222:

Artix Configuration file
secure_server
{
 orb_plugins = [... , "wsdl_publish"];
 ...
};

Artix Configuration file
secure_server
{
 orb_plugins = [... , "wsdl_publish"];
 plugins:wsdl_publish:publish_port = "2222";
 ...
};
142

Deploying WSDL Publish in a Container
Deploying WSDL Publish in a Container

Overview Figure 22 shows the outline of a container with a secure WSDL publish
plug-in deployed inside it. There are three kinds of endpoints in this
example: the container endpoint (which is used to administer the container),
Artix service endpoints, and a dedicated endpoint for the WSDL publishing
service.

Limitations of WSDL publish in a
container

The WSDL publish plug-in is currently not compatible with running a
container in mixed mode—that is, where some services are secure and other
services insecure. When the WSDL publish plug-in is deployed in a
container, every endpoint in the container must be secure. Specifically, the
following endpoints must be secure:

• WSDL publishing endpoint—the dedicated WSDL publishing endpoint
must be made secure by setting
plugins:wsdl_publish:enable_secure_wsdl_publish to true and by
setting plugins:at_http:server:use_secure_sockets to true (see
“Configuring SSL/TLS for the WSDL publish endpoint” on page 149).

Figure 22: WSDL Publish Plug-In Deployed in a Secure Container

Container

Port
Plug-In

A

 Container Port

 Container Service

 Service A

WSDL Publish
Plug-In

Port

WSDL Publishing
 143

CHAPTER 7 | Publishing WSDL Securely
• Container endpoint—must be made secure by adding the appropriate
settings to the Artix configuration file (see “Configuring the secure
container” on page 41).

• Artix service endpoints—must be made secure, either by adding
security settings to the Artix configuration file or to the service’s WSDL
contract.

How to deploy the WSDL
publishing service

To deploy the WSDL publishing service into a secure container, modify the
secure container configuration, as shown in the following example:

Where wsdl_publish is added to the orb_plugins list to load the WSDL
publish plug-in. The plugins:wsdl_publish:enable_secure_wsdl_publish
variable is set to true to make the WSDL publishing port secure. The
plugins:at_http:server:use_secure_sockets variable enables HTTPS on
the WSDL publishing port (this is required, because the WSDL publishing
service uses HTTP by default). The plugins:wsdl_publish:publish_port
variable specifies the WSDL publish dedicated port.

Artix Configuration File
include "../../../../../etc/domains/artix.cfg";
include "../../../../../etc/domains/artix-secure.cfg";

secure_artix
{
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:%{ISF_SECURE_PORT}/IT_Securi
tyService";

 secure_container
 {
 orb_plugins = [... , "wsdl_publish"];

 plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
 plugins:at_http:server:use_secure_sockets = "true";
 plugins:wsdl_publish:publish_port = "2222";
 ...
 };
};

Note: In Artix versions 4.0 and earlier, the
plugins:wsdl_publish:publish_port setting would be ignored and the
container port value used instead.
144

Deploying WSDL Publish in a Container
it_container_admin utility To connect to a secure container using the it_container_admin utility,
perform the following steps:

1. The it_container_admin utility should be configured to support
security. See “Configuring the secure it_container_admin utility” on
page 42 for an example of a suitable configuration.

2. Add bus_entity_resolver to the list of ORB plug-ins in the
configuration scope used by the it_container_admin utility. For
example:

This ensures that the it_container_admin utility is able to parse the
HTTPS URL published by it_container.

3. Run the container with the command-line options shown in the
following example:

Where Container is the name of the configuration scope for
it_container. The -port option ensures that the container service
listens on a fixed IP port. The -publish option causes the container to
write an endpoint reference to the file, ContainerService.url, in the
current directory (you can optionally use the -file option to specify
the file name explicitly). The -deploy option is used to deploy an Artix
service plug-in whose deployment descriptor is
DeployDescriptor.xml.

ContainerAdmin
{
 orb_plugins = ["xmlfile_log_stream", "https",

"bus_entity_resolver"];
 ...
};

it_container -ORBname Container -port 1234 -publish
-deploy DeployDescriptor.xml
 145

CHAPTER 7 | Publishing WSDL Securely
4. You can use one of the following approaches to running the
it_container_admin utility:

♦ Specify the address of the WSDL publish service—run the
it_container_admin utility, using the -host and -port options to
specify the address of the WSDL publish service, as follows:

Where ContainerAdmin is the name of the configuration scope for
it_container_admin. The ContainerHost is the host where the
container process is running and WSDLPublishPort is the WSDL
publish IP port value.

♦ Specify the URL published by the container—run the
it_container_admin utility, using the -container option to
specify the location of the ContainerService.url file from the
previous step, as follows:

The ContainerService.url file can be copied from the directory
where it was generated by the container and CommandOption is
one of the container administration commands (see Configuring
and Deploying Artix Solutions for details of available commands).

it_container_admin -ORBname ContainerAdmin -host
ContainerHost -port WSDLPublishPort CommandOption

it_container_admin -ORBname ContainerAdmin -container
ContainerService.url CommandOption
146

Preprocessing Published WSDL Contracts
Preprocessing Published WSDL Contracts

Overview If you configure a server’s security through the WSDL contract (for example,
by setting security attributes on the bus-security:security element), you
could potentially expose sensitive information to clients through the WSDL
publishing mechanism.

To avoid opening a potential security hole, the wsdl_publish plug-in
provides a preprocessing option to strip out server settings before publishing
the WSDL contract. This option is enabled by default.

Specifying WSDL preprocessing You can use the plugins:wsdl_publish:processor variable to specify the
kind of preprocessing done before publishing a WSDL contract.

Because published contracts are intended for client consumption, by
default, all server-side WSDL artifacts are removed from the published
contract. You can also require IONA-specific extensors to be removed. This
variable has the following possible values:

Example configuration Example 31 shows a sample configuration for a secure server that selects
the standard processing option for publishing WSDL contracts. This option
ensures that all server related configuration and Artix specific tags are
stripped from the WSDL contracts before publishing.

artix Remove server-side artifacts. This is the default setting.

standard Remove server-side artifacts and IONA proprietary extensors.

none Disable preprocessing

Example 31: Configuration for Preprocessing Published WSDL Contracts

Artix Configuration file
secure_server
{
 orb_plugins = [... , "wsdl_publish"];

 plugins:wsdl_publish:publish_port = "2222";
 plugins:wsdl_publish:processor = "standard";
 ...
};
 147

CHAPTER 7 | Publishing WSDL Securely
Enabling SSL/TLS for WSDL Publish Plug-In

Overview This section describes how to make the WSDL publishing service secure, by
requiring clients to connect using the SSL/TLS protocol. The purpose of this
feature is to protect clients from downloading WSDL contracts that have
been tampered with. Without this security, a malicious user could intercept
and modify the WSDL contract as it is being downloaded to the client.

Securing import statements If you are about to enable SSL/TLS for the WSDL publishing service, you
should ensure that wsdl:import statements in your WSDL contracts locate
imported contracts using a https URL instead of a http URL.

For example, if your contract includes a statement that imports the
WS-Addressing schema, as follows:

You would modify this import statement, changing the schemaLocation
attribute to use a https URL, as follows:

In addition, if any of the imported WSDL contracts themselves contain
import statements, these recursive import statements must also be modified
to use a https URL.

Configuring SSL/TLS for a
service-specific endpoint

If you configure an Artix service to use HTTPS, the wsdl_publish plug-in
automatically makes the publishing service available through the same
HTTPS endpoint. Because the publishing service is exposed through the
same IP port as your Artix service, any security policies and settings that
apply to the service endpoint automatically apply to connections made for
the purpose of downloading WSDL contracts. Hence, you can make this
publishing mechanism secure simply by configuring your service endpoints
to be secure.

<import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd" />

<import namespace="http://www.w3.org/2005/08/addressing"
 schemaLocation="https://www.w3.org/2005/08/addressing/ws-addr.xsd" />
148

Enabling SSL/TLS for WSDL Publish Plug-In
For details of how to secure service endpoints with HTTPS, see “Securing
HTTP Communications with SSL/TLS” on page 67.

Configuring SSL/TLS for the
WSDL publish endpoint

The WSDL publish plug-in also provides a dedicated HTTP port for
publishing WSDL contracts. To make this port secure, you must explicitly
enable security by setting the
plugins:wsdl_publish:enable_secure_wsdl_publish configuration
variable to true and the plugins:at_http:server:use_secure_sockets
variable to true. To associate an X.509 certificate with this port, you can
use the same configuration options as you would for a regular Artix endpoint
(see “Deploying Application Certificates” on page 279).

Example 32 shows a sample configuration of a secure WSDL publish
endpoint that uses the HTTPS principal sponsor to specify an own
certificate, CertName.p12.

Note: Publishing WSDL through a service-specific endpoint is only
possible, if the service runs over the HTTPS transport. Other transports are
not supported.

Example 32: Configuration for Secure WSDL Publish Endpoint

Artix Configuration File
secure_server
{
 orb_plugins = [... , "wsdl_publish", "at_http", "https"];

 plugins:wsdl_publish:publish_port = "2222";
 plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
 plugins:at_http:server:use_secure_sockets = "true";

 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:https:trusted_ca_list_policy
="X509Deploy/ca/CACert.pem";

 principal_sponsor:https:use_principal_sponsor = "true";
 149

CHAPTER 7 | Publishing WSDL Securely
Testing secure WSDL publishing To test the secure WSDL publishing service, you can try to connect to the
service using an ordinary Web browser, as follows:

1. Configure your Artix server to enable secure WSDL publishing, as
shown in Example 32 on page 149. In this example, the server will
open a dedicated WSDL publishing port at IP port 2222.

2. If your server requires mutual authentication (that is, requiring clients
to send an X.509 certificate to the server), you must add a personal
X.509 certificate to the Web browser’s certificate store. The certificate
must be signed by a CA that the server trusts.

For example, to install a personal X.509 certificate into Internet
Explorer, do the following:

i. Select Tools|Internet Options to open the Internet Options
dialog.

ii. Click the Content tab and then click the Certificates button. The
Certificates dialog opens.

iii. Click the Personal tab and then click the Import button to bring
up the Certificate Import Wizard.

iv. Follow the instructions in the Certificate Import Wizard to import
a PKCS#12 format certificate (or other supported format) into the
Internet Explorer certificate store.

3. Optionally, install the CA certificate that signed the server’s certificates
into the Web browser’s certificate store.

 principal_sponsor:https:auth_method_id = "pkcs12_file";
 principal_sponsor:https:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.p12"];
 ...
};

Example 32: Configuration for Secure WSDL Publish Endpoint

Note: At the end of the import process, if the PKCS#12 certificate
includes a CA certificate in its certificate chain, the import wizard will
ask you whether you want to install that CA certificate as a trusted
CA certificate.
150

Enabling SSL/TLS for WSDL Publish Plug-In
If you do not install the CA certificate, you can still run the test.
However, in this case, when you attempt to connect to the server, your
Web browser will warn you that the server’s certificate is not trusted.

4. Start the Artix server.

5. Connect to the server’s WSDL publish port using the Web browser. In
the Web browser, enter the following secure URL address:

Where ServerHost is the name of the host where the server is running
(or localhost, if this is the same host where you are running the Web
browser). After connecting to the WSDL publish port, you should see a
page like the following:

6. You can also try a negative test—entering the URL address,
http://ServerHost:2222/get_wsdl? into the browser—to verify that
the WSDL publish port rejects insecure HTTP connections.

https://ServerHost:2222/get_wsdl?

Figure 23: HTML Page Served Up by the WSDL Publishing Service
 151

CHAPTER 7 | Publishing WSDL Securely
152

CHAPTER 8

Configuring the
Artix Security
Plug-In
Artix allows you to configure a number of security features
directly from the Artix contract describing your system.

In this chapter This chapter discusses the following topics:

The Artix Security Plug-In page 154

Configuring an Artix Configuration File page 155

Configuring a WSDL Contract page 157
 153

CHAPTER 8 | Configuring the Artix Security Plug-In
The Artix Security Plug-In

Overview This section describes how to initialize the Artix security plug-in, which is
responsible for performing authentication and authorization for non-CORBA
bindings (CORBA bindings use the gsp plug-in) and is also responsible for
inserting and extracting credentials to and from SOAP 1.2 message headers.

The Artix security plug-in implements only a part of Artix security.
Specifically, it is not responsible for transmitting credentials, nor does it
implement any cryptographic algorithms.

Load the artix_security plug-in To load the Artix security plug-in, you must include artix_security in the
orb_plugins list in your application’s configuration scope.

Edit your application’s configuration scope in the artix-secure.cfg file so
that it includes the following configuration settings:

The orb_plugins list for your application might differ from the one shown
here, but it should include the artix_security entry.

Enable the artix_security plug-in The artix_security plug-in is enabled by default, once it is loaded into
your application. You might like to check, however, that the plug-in is not
accidentally disabled, as follows:

• If the policies:asp:enable_security variable is present in your
application’s configuration (or an enclosing configuration scope), it
should be set to true.

• If the enableSecurity attribute appears in <bus-security:security>
in your WSDL contract, it should be set to true.

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "at_http", "artix_security", "https"];

plugins:artix_security:shlib_name = "it_security_plugin";
binding:artix:server_request_interceptor_list =

"principal_context+security";
binding:artix:client_request_interceptor_list =

"security+principal_context";
154

Configuring an Artix Configuration File
Configuring an Artix Configuration File

Overview You can tailor the behavior of the Artix security plug-in by setting
configuration variables in the Artix configuration file, artix.cfg, as
described here. The settings in the configuration file are applied, by default,
to all the services and ports in your WSDL contract.

Prerequisites Before configuring the Artix security plug-in, you must ensure that the
plug-in is loaded into your application. See “Load the artix_security plug-in”
on page 154.

Artix security plug-in
configuration variables

The complete set of Artix security plug-in variables, which are all optional,
are listed and described in Table 1. These settings are applied by default to
all services and ports in the WSDL contract.

Table 1: The Artix Security Plug-In Configuration Variables

Configuration Variable Description

policies:asp:enable_security A boolean variable that enables the artix_security
plug-in. When true, the plug-in is enabled; when
false, the plug-in is disabled. Default is true.

Note: You can override this setting in the WSDL
contract. See “Configuring a WSDL Contract” on
page 157.

plugins:is2_authorization:action_role_mapping A variable that specifies the action-role mapping file
URL.

policies:asp:enable_authorization A boolean variable that specifies whether Artix should
enable authorization using the Artix Security
Framework. Default is false.

plugins:asp:authentication_cache_size The maximum number of credentials stored in the
authentication cache. If exceeded, the oldest
credential in the cache is removed.

A value of -1 (the default) means unlimited size. A
value of 0 means disable the cache.
 155

CHAPTER 8 | Configuring the Artix Security Plug-In
plugins:asp:authentication_cache_timeout The time (in seconds) after which a credential is
considered stale. Stale credentials are removed from
the cache and the server must re-authenticate with the
Artix security service on the next call from that user.

A value of -1 means an infinite time-out. A value of 0
means disable the cache. The value must lie within
the range -1 to 2^31-1.

Default is 600 seconds.

plugins:asp:security_level This variable specifies the level from which security
credentials are picked up. For a detailed description of
the allowed values, see
plugins:asp:security_level.

plugins:asp:authorization_realm This variable specifies the Artix authorization realm to
which an Artix server belongs. The value of this
variable determines which of a user’s roles are
considered when making an access control decision.

plugins:asp:default_password This variable specifies the password to use on the
server side when the securityType attribute is set to
either PRINCIPAL or CERT_SUBJECT.

plugins:asp:enable_security_service_load_bala
ncing

This boolean variable enables load balancing over a
cluster of Artix security services. For details of how to
enable security service clustering, see “Clustering and
Federation” on page 203.

plugins:asp:enable_security_service_cert_auth
entication

This boolean variable enables authentication based on
the client certificate extracted from the TLS security
layer. For details of how to enable this kind of
authentication, see “X.509 Certificate-Based
Authentication” on page 82.

Table 1: The Artix Security Plug-In Configuration Variables

Configuration Variable Description
156

Configuring a WSDL Contract
Configuring a WSDL Contract

Overview Occasionally you will need finer grained control of your system’s security
than is provided through the standard Artix and security configuration. Artix
provides the ability to control security on a per-port basis by describing the
service’s security settings in the Artix contract that describes it. This is done
by using the <bus-security:security> extension in the port element
describing the service’s address and transport details.

Namespace The XML namespace defining <bus-security:security> is
http://schemas.iona.com/bus. You need to add the following line to the
definitions element of any contracts that use the bus-security:security
element:

<bus-security:security>
attributes

The complete set of <bus-security:security> attributes, which are all
optional, are listed Table 2. Each attribute maps to an equivalent
configuration variable, as shown in the table. The attributes specified in the
WSDL contract override settings specified in the Artix configuration file,
artix-secure.cfg.

xmlns:bus-security="http://schemas.iona.com/bus/security"

Table 2: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable

enableSecurity policies:asp:enable_security

is2AuthorizationActionRoleMapping plugins:is2_authorization:action_role_mapping

enableAuthorization policies:asp:enable_authorization

authenticationCacheSize plugins:asp:authentication_cache_size

authenticationCacheTimeout plugins:asp:authentication_cache_timeout

securityType plugins:asp:security_type (Obsolete)

securityLevel plugins:asp:security_level
 157

CHAPTER 8 | Configuring the Artix Security Plug-In
Enabling security for a service Example 33 shows how to enable security for the service
personalInfoService.

The bus-security:security element in Example 33 configures
personalInfoService to use WS Security compliant username/password
authentication.

authorizationRealm plugins:asp:authorization_realm

defaultPassword plugins:asp:default_password

Table 2: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable

Example 33: Enabling Security in an Artix Contract

<definitions
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ...>
...
<service name="personalInfoService">
 <port name="personalInfoServicePort" binding="tns:infoSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus-security:security enableSecurity="true"
 is2AuthorizationActionRoleMapping="file://c:/iona/artix/2.0/bin/action_role.xml"
 enableAuthorization="true"
 securityLevel="REQUEST_LEVEL"
 authenticationCacheSize="5"
 authenticationCacheTimeout="10" />
 </port>
</service>
</definitions>
158

Configuring a WSDL Contract
Disabling security for a service Example 34 shows how to selectively disable security for the service
widgetService.

Example 34: Disabling Security in an Artix Contract

<definitions
 xmlns:bus-security="http://schemas.iona.com/bus/security"
 ...>
...
<service name="widgetService">
 <port name="widgetServicePort" binding="tns:widgetSOAPBinding">
 <soap:address location="http://localhost:8080"/>
 <bus-security:security enableSecurity="false" />
 </port>
</service>
</definitions>
 159

CHAPTER 8 | Configuring the Artix Security Plug-In
160

CHAPTER 9

Configuring the
Artix Security
Service
This chapter describes how to configure the properties of the
Artix security service and, in particular, how to configure a
variety of adapters that can integrate the Artix security service
with third-party enterprise security back-ends (for example,
LDAP).

In this chapter This chapter discusses the following topics:

Configuring the Security Service page 162

Configuring the File Adapter page 183

Configuring the LDAP Adapter page 185

Configuring the Kerberos Adapter page 191

Clustering and Federation page 203

Additional Security Configuration page 220
 161

CHAPTER 9 | Configuring the Artix Security Service
Configuring the Security Service

Overview To configure the basic properties of the Artix security service, you must edit
the appropriate settings in the Artix configuration file. In particular, the
settings in the Artix configuration file enable you to specify the manner in
which the security service communicates with other Artix programs.

Two major variants of security service communications are supported:
IIOP/TLS-based and HTTPS-based.

In this section This section contains the following subsections:

Security Service Accessible through IIOP/TLS page 163

Security Service Accessible through HTTPS page 172
162

Configuring the Security Service
Security Service Accessible through IIOP/TLS

Overview This section describes how to configure a security service that is made
accessible through the IIOP/TLS protocol. This approach to configuring the
security service has been used by all versions of Artix that include security,
up to and including 4.0.

Setting the security service’s host
and port

To change the security service’s host and port, edit the configuration as
follows:

• Configuration of the security service—in the security service’s
configuration scope, specify the host and port as follows:

Where SecurityHost and SecurityPort specify the host and IP port
where the security service listens for IIOP/TLS connections.

• Configuration of clients of the security service—for any programs that
need to contact the security service, add the following line to their
configuration scopes (or enclosing scopes):

Where you must replace the SecurityHost and SecurityPort settings
in the it_iiops address.

Replacing X.509 certificates The security service is provided with demonstration X.509 certificates by
default. Whilst this is convenient for running demonstrations and tests, it is
fundamentally insecure, because Artix provides identical demonstration
certificates for every installation.

Artix Configuration File
plugins:security:iiop_tls:host = "SecurityHost";
plugins:security:iiop_tls:port = "SecurityPort";

Artix Configuration File
corbaloc:it_iiops:1.2@SecurityHost:SecurityPort/IT_Security

Service
 163

CHAPTER 9 | Configuring the Artix Security Service
Before deploying the security service in a live system, therefore, you must
replace the default X.509 certificates with your own custom-generated
certificates. Specifically, for the security service you must replace the
following certificates:

• Trusted CA list—this is a list of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed
to connect to the security service.

To update the trusted CA list, edit the
policies:trusted_ca_list_policy variable in the security service’s
configuration scope (or enclosing scope). For more details, see
“Deploying Trusted Certificate Authority Certificates” on page 274.

• Security service’s own certificate—the security service uses its own
X.509 certificate to identify itself to peers during SSL/TLS handshakes.

To replace the security service’s own certificate, edit the principal
sponsor settings in the security service’s configuration scope (or
enclosing scope). For more details, see “Deploying Application
Certificates” on page 279.

Setting client certificate
constraints

To provide a basic level of access control, the security service enables you to
set client certificate constraints, which prevents clients from opening a
connection to the security service unless they present an certificate that
matches the specified constraints.

To specify the security sevice’s client certificate constraints, assign the
constraints to the
policies:security_server:client_certificate_constraints
configuration variable (for details of how to specify constraints, see
“Applying Constraints to Certificates” on page 481).

Note: You should specify the security service’s constraints using the
policies:security_server:client_certificate_constraints
constraints variable rather than the generic
policies:certificate_constraints_policy constraints variable. This
approach allows you to differentiate between the constraints on the
security service and the constraints on other services that might run in the
same process (for example, the login service).
164

Configuring the Security Service
Minimum level of security The security service always requires clients to present an X.509 certificate to
identify themselves, irrespective of the secure invocation policy specified in
configuration. Hence, the actual level of security that applies to SSL/TLS
communications is obtained by implicitly adding EstablishTrustInClient
to the list of required association options in the target secure invocation
policy (the security service does this automatically).

Relocating files The security service depends on several directories and files, which might
need to be relocated when it comes to deployment time. Some directories
and files that might be relocated are, as follows:

• Artix install directory—if you manually move the core files in the Artix
installation, this would affect the location of certain library directories
that the security service depends on. The following configuration
settings would be affected:

♦ SECURITY_CLASSPATH—a substitution variable that specifies the
location of the JAR file containing the security service code.

♦ plugins:java_server:system_properties—amongst this list of
properties, the java.endorsed.dirs property would be affected.

• iS2 properties file—this is an important file that provides additional
security service configuration through Java properties. You can alter
the location of this file by editing the is2.properties property in the
list of properties specified by
plugins:java_server:system_properties.

• Security log file—if you have enabled local logging for the security
service, you can specify the location of the security log file by editing
the plugins:local_log_stream:filename configuration variable.
 165

CHAPTER 9 | Configuring the Artix Security Service
Sample configuration Example 35 shows a sample configuration for a security service that
supports connections over the IIOP/TLS transport protocol. In this example,
the security service’s configuration scope (which would be passed to the
-ORBname parameter of the command that launches the security service) is
secure_artix.your_application.security_service.

Example 35: Configuration of the Artix Security Service with IIOP/TLS

Artix Configuration File
secure_artix
{

1 # Generic security settings

2 policies:trusted_ca_list_policy =
"C:\artix_40/artix/4.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

3 SECURITY_CLASSPATH =
"C:\artix_40\lib\artix\security_service\4.0\security_service-
rt.jar";

 ...
 your_application
 {

4 initial_references:IT_SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:55020/IT_SecurityService";

 security_service
 {

5 password_retrieval_mechanism:inherit_from_parent =
"true";

6 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

 binding:client_binding_list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];
166

Configuring the Security Service
7 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

8 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop_tls"];

9 generic_server_plugin = "java_server";
 plugins:java_server:shlib_name = "it_java_server";

10 plugins:java_server:class =
"com.iona.corba.security.services.SecurityServer";

 plugins:java_server:classpath = "%{SECURITY_CLASSPATH}";
 plugins:java_server:jni_verbose = "false";
 plugins:java_server:X_options = ["rs"];

11 #event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL",
"IT_JAVA_SERVER="];

 plugins:security:direct_persistence = "true";

12 plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\artix_40/artix/4.0/demos/security/full_sec
urity/cxx/security_service/is2.properties.FILE",
"java.endorsed.dirs=C:\artix_40/artix/4.0/lib/endorsed"];

13 plugins:local_log_stream:filename =
"C:\artix_40/artix/4.0/demos/security/full_security/cxx/secur
ity_service/isf.log";

14 plugins:security:iiop_tls:port = "55020";
 plugins:security:iiop_tls:host = "localhost";

Example 35: Configuration of the Artix Security Service with IIOP/TLS
 167

CHAPTER 9 | Configuring the Artix Security Service
The preceding configuration can be explained as follows:

1. Most of the settings appearing in the secure_artix scope are entirely
generic and never need to be edited.

2. By default, the trusted CA list points at a demonstration CA certificate.
Before deploying the Artix security service, you must replace this
demonstration CA list by a list of CA certificates that are genuinely
trustworthy.

3. The SECURITY_CLASSPATH substitution variable specifies the location of
the JAR file containing the implementation of the Artix security service.
If you move the Artix JAR files to a non-standard location, you would
have to update this file location.

4. The IT_SecurityService initial reference setting provides the endpoint
details for connecting to the security service through the IIOP/TLS
protocol. You should ensure that this setting is available in the scope of
any Artix application that needs to connect to the security service.

The initial reference is specified as a corbaloc URL, in the following
format:

Where SecurityHost and SecurityPort are the host and port for the
security service.

15 policies:security_server:client_certificate_constraints
= ["CN=*"];

16
policies:external_token_issuer:client_certificate_constraints
= [];

 };
 };
};

Example 35: Configuration of the Artix Security Service with IIOP/TLS

WARNING: The default trusted CA list is provided for demonstration
purposes only. It is not secure, because every installation of Artix uses the
same demonstration certificates. You must replace the CA certificate list
when you deploy the Artix security service to a live system.

corbaloc:it_iiops:1.2@SecurityHost:SecurityPort/IT_Security
Service
168

Configuring the Security Service
5. Setting the password retrieval mechanism to obtain the private key
password from a parent process is a technicality, which is required
because the security service implementation forks a new process.

6. The principal sponsor settings are used to set the security service’s
own X.509 certificate. The security service uses this certificate during
SSL/TLS handshakes to identify itself to other programs.

Before deploying the security service to a live system, you must replace
the demonstration certificate with a secure custom certificate. For
details of how to configure the principal sponsor, see “Deploying
Application Certificates” on page 279.

7. The following lines set the minimum requirements for the target secure
invocation policy and the client secure invocation policy. The security
service implicitly augments these security policies by requiring the
EstablishTrustInClient association option for the target secure
invocation policy. In other words, the security service always expects a
client to present an X.509 certificate, irrespective of what appears in
the configuration.

8. The orb_plugins list loads plug-ins to support the local log stream and
the IIOP/TLS transport protocol.

9. The following lines configure the Artix generic server.

The core of the Artix security service is implemented as a pure Java
program. To make the security service accessible through the IIOP/TLS
protocol, the Java code is hosted inside an Artix generic server.

10. The plugins:java_server:class setting specifies the entry point for
the Java implementation of the security service. Currently, there are
two possible entry points:

♦ com.iona.corba.security.services.SecurityServer—this
entry point is suitable for a security service that supports the
IIOP/TLS transport protocol.

WARNING: The security service’s default own certificate is provided for
demonstration purposes only. It is not secure, because every installation of
Artix uses the same demonstration certificates. You must replace the own
certificate when you deploy the Artix security service to a live system.
 169

CHAPTER 9 | Configuring the Artix Security Service
♦ com.iona.jbus.security.services.SecurityServer—this entry
point is suitable for a security service that supports other Artix
protocols, such as HTTPS. See “Security Service Accessible
through HTTPS” on page 172 for more details.

11. To enable an error log for the security service, uncomment this line.

12. This line sets the system properties for the Java implementation of the
security service. In particular, the is2.properties property specifies
the location of a properties file, which contains further property
settings for the Artix security service.

Sample property files for the LDAP and KERBEROS security adapters
are available at the following locations:

You need to customize these property files before using them in an
application—see “Configuring the LDAP Adapter” on page 185 and
“Configuring the Kerberos Adapter” on page 191.

13. The plugins:local_log_stream:filename specifies the location of the
security service’s log file.

14. These two variables, plugins:security:iiop_tls:port and
plugins:security:iiop_tls:host, specify the host and IP port where
the security service listens for incoming connections. Therefore, if you
want to change the security service’s listening address, you should edit
these settings.

15. The security service requires that any clients attempting to open a
connection must present an X.509 certificate to identify themselves. In
addition, the security service supports a primitive form of access
control: client certificates will be rejected unless they conform to the
constraints specified in
policies:security_server:client_certificate_constraints.

ArtixInstallDir/artix/Version/etc/is2.properties.LDAP
ArtixInstallDir/artix/Version/etc/is2.properties.KERBEROS
170

Configuring the Security Service
For details of how to specify certificate constraints, see “Applying
Constraints to Certificates” on page 481.

16. The security service supports a special kind of access, where a client
can obtain security tokens without providing a password, based on a
username alone. This type of access is needed to support
interoperability with the mainframe platform. Normally, however, this
feature should be disabled to avoid opening a security hole.

To disable the token issuer, set the token issuer’s certificate constraints
to be an empty list (as shown here). This causes the token issuer to
reject all clients, effectively disabling this feature.

Note: The
policies:security_server:client_certificate_constraints
setting must be present in the security service’s configuration scope,
otherwise the security service will not start.

Note: The
policies:external_token_issuer:client_certificate_constrain

ts setting must be present in the security service’s configuration
scope, otherwise the security service will not start.
 171

CHAPTER 9 | Configuring the Artix Security Service
Security Service Accessible through HTTPS

Overview This section describes how to configure a security service that is made
accessible through the HTTPS protocol. A key difference between the
HTTPS-based security service and the IIOP/TLS-based security service is
that the HTTPS-based variant uses an Artix enabled security service. The
HTTPS-based variant also requires you to configure clients differently.

Location of demonstration The full security demonstration shows how to configure and run a
HTTPS-based security service. The demonstration code is located in the
following directory:

ArtixInstallDir/artix/Version/demos/security/full_security

Artix enabled security service In versions of Artix prior to 4.0, the Artix security service is available only as
a pure CORBA service. The architecture for this security service is based on
a pure Java core (the core implementation of the security service) which is
loaded into an Artix generic server. The generic server provides an OMG IDL
wrapper interface, which enables the core service to be accessed through
the IIOP/TLS protocol.

From Artix 4.0 onwards, a more flexible type of architecture is provided that
makes the security service accessible through any Artix transport—that is,
the security service is Artix enabled. Using this approach, the security
service is deployed as a regular Artix service with its own WSDL contract.
Just as with any other Artix service, you can select the transport and modify
the endpoint attributes by editing the security service’s WSDL contract.

Configuring clients of the Artix
enabled security service

If you configure the security service to be Artix enabled, you must also
configure the clients of the security service appropriately (in this context,
client means any program that communicates with the security service—for
example, the client could be an Artix server).
172

Configuring the Security Service
To configure an Artix program to communicate with the Artix enabled
security service, make the following modifications to the program’s
configuration:

• Load the Artix security plug-in—this is a basic prerequisite for
communication with the Artix security service. See “The Artix Security
Plug-In” on page 154.

• Enable Artix proxies in the security plug-in—set the
policies:asp:use_artix_proxies configuration variable to true.

• Specify the location of the security service WSDL contract—set the
bus:initial_contract:url:isf_service configuration variable to the
location of the contract.

For example, the following configuration sample, your_artix_server,
highlights the settings that need to be modified in order to access an Artix
enabed security service:

A sample copy of the security service WSDL contract, isf_service.wsdl, is
provided in the following directory:

ArtixInstallDir/artix/Version/demos/security/full_security/etc

Note: This is not the only way of specifying the location of a WSDL
contract. See the Finding Contracts and References chapter of the
Configuring and Deploying Artix Solutions guide for more details.

Artix Configuration File
your_artix_server
{
 orb_plugins = [..., "artix_security", ...];
 ...
 policies:asp:use_artix_proxies = "true";
 bus:initial_contract:url:isf_service =

"../../etc/isf_service.wsdl";
 ...
};
 173

CHAPTER 9 | Configuring the Artix Security Service
Instantiation of an Artix Bus in the
security service

In order to expose the security service as an Artix service, you need to
configure the generic server to create an Artix Bus in which the Artix enabled
security service can run.

To configure the generic server to instantiate an Artix Bus, perform the
following steps:

1. In the security_service configuration scope, edit the
plugins:java_server:class setting and set it equal to
com.iona.jbus.security.services.SecurityServer.

2. Add a bus sub-scope to the security_service configuration scope.
The bus sub-scope is used to configure the Artix enabled security
service.

In outline, the modified configuration would look as follows:

Customising the security service
configuration

To configure the HTTPS-based security service, see the following topics:

• Setting the HTTPS-based security service’s host and port.

• Location of the security service WSDL contract.

• Replacing X.509 certificates.

• Setting client certificate constraints.

• Minimum level of security.

• Dependency on secure WSDL publishing service.

• Relocating files.

• Sample configuration.

Artix Configuration File
security_service
{
 # Security Service Configuration Settings
 ...
 plugins:java_server:class =

"com.iona.jbus.security.services.SecurityServer";
 ...
 bus
 {
 # HTTPS-Based Security Service Configuration Settings
 ...
 };
};
174

Configuring the Security Service
Setting the HTTPS-based security
service’s host and port

The HTTPS-based security service’s address details are specified in the
security service’s WSDL contract. If you want to change the security
service’s address, edit the relevant location attribute in the security service
endpoint.

Example 36 shows a security service endpoint with a location attribute
equal to https://localhost:59075/services/security/ServiceManager.

Location of the security service
WSDL contract

The location of the security service WSDL contract is specified by the value
of the bus:initial_contract:url:isf_service variable in the bus
sub-scope of the security service’s configuration scope.

A sample copy of the security service WSDL contract, isf_service.wsdl, is
provided in the following directory:

ArtixInstallDir/artix/Version/demos/security/full_security/etc

Example 36: Address Details in the Security Service WSDL Contract

<definitions name="isf_service"
 targetNamespace="http://schemas.iona.com/idl/isf_service.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:addressing="http://schemas.iona.com/references"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://schemas.iona.com/idl/isf_service.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1="http://schemas.iona.com/idltypes/isf_service.idl"
>

 ...
 <service name="IT_ISF.ServiceManagerSOAPService">
 <port binding="tns:IT_ISF.ServiceManagerSOAPBinding"
 name="IT_ISF.ServiceManagerSOAPPort">
 <http:address location =
"https://localhost:59075/services/security/ServiceManager"
 />
 </port>
 </service>
</definitions>
 175

CHAPTER 9 | Configuring the Artix Security Service
Replacing X.509 certificates The security service is provided with demonstration X.509 certificates by
default. Whilst this is convenient for running demonstrations and tests, it is
fundamentally insecure, because Artix provides identical demonstration
certificates for every installation.

Before deploying the security service in a live system, therefore, you must
replace the default X.509 certificates with your own custom-generated
certificates. Specifically, for the security service you must replace the
following certificates:

• Trusted CA list—this is a list of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed
to connect to the security service.

To update the trusted CA list, edit the
plugins:at_http:server:trusted_root_certificates variable in
the bus sub-scope of the the security service’s configuration scope. For
more details, see “Deploying Trusted Certificate Authority Certificates”
on page 274.

• Security service’s own certificate—the security service uses its own
X.509 certificate to identify itself to peers during SSL/TLS handshakes.

To replace the security service’s own certificate, edit the
plugins:at_http:server:server_certificate and the
plugins:at_http:server:server_private_key_password settings in
the bus sub-scope of the security service’s configuration scope. For
more details, see “Deploying Application Certificates” on page 279.

Setting client certificate
constraints

To provide a basic level of access control, the security service enables you to
set client certificate constraints, which prevents clients from opening a
connection to the security service unless they present an certificate that
matches the specified constraints.
176

Configuring the Security Service
To specify the HTTPS-based security service’s client certificate constraints,
assign the constraints to the policies:certificate_constraints_policy
configuration variable in the bus configuration sub-scope (for details of how
to specify constraints, see “Applying Constraints to Certificates” on
page 481).

Minimum level of security In the case of the HTTPS-based security service, the minimum security
requirements for SSL/TLS communications are specified explicitly by the
effective target secure invocation policy (which can be specified using the
policies:target_secure_invocation_policy:requires variable).

Because it is an important security requirement for clients of the security
service to present an X.509 certificate, you should take care that the target
secure invocation policy in the bus configuration sub-scope always includes
the EstablishTrustInClient association option.

Dependency on secure WSDL
publishing service

The HTTPS-based security service requires that the secure WSDL publishing
service is loaded and enabled. The WSDL publishing service enables clients
of the security service to download WSDL contracts containing particular
security service interfaces at runtime.

For more details about the secure WSDL publishing service, see “Publishing
WSDL Securely” on page 139.

Relocating files The security service depends on several directories and files, which might
need to be relocated when it comes to deployment time. Some directories
and files that might be relocated are, as follows:

• Artix install directory—if you manually move the core files in the Artix
installation, this would affect the location of certain library directories
that the security service depends on. The following configuration
settings would be affected:

♦ SECURITY_CLASSPATH—a substitution variable that specifies the
location of the JAR file containing the security service code.

Note: The HTTPS-based security service sets certificate constraints using
a different variable, policies:certificate_constraints_policy, from
the one used by the IIOP/TLS-based security service,
policies:security_server:client_certificate_constraints.
 177

CHAPTER 9 | Configuring the Artix Security Service
♦ plugins:java_server:system_properties—amongst this list of
properties, the java.endorsed.dirs property would be affected.

• iS2 properties file—this is an important file that provides additional
security service configuration through Java properties. You can alter
the location of this file by editing the is2.properties property in the
list of properties specified by
plugins:java_server:system_properties.

• Security log file—if you have enabled local logging for the security
service, you can specify the location of the security log file by editing
the plugins:local_log_stream:filename configuration variable.

• iSF service file—you can change the location of the WSDL contract file
for the HTTPS-based security service by editing the
bus:initial_contract:url:isf_service configuration variable.

Sample configuration Example 37 shows a sample configuration for a security service that
supports connections over the HTTPS transport protocol. In this example,
the security service’s configuration scope (which would be passed to the
-ORBname parameter of the command that launches the security service) is
secure_artix.your_application.security_service.

Example 37: Configuration of the Artix Security Service with HTTPS

include "../../../../etc/domains/artix.cfg";
1 include "../../../../etc/domains/artix-secure.cfg";

secure_artix
{
 # Generic security settings
 ...
 your_application
 {
 ...
 security_service
 {
 ...

2 generic_server_plugin = "java_server";
 plugins:java_server:shlib_name = "it_java_server";

3 plugins:java_server:class =
"com.iona.jbus.security.services.SecurityServer";

 plugins:java_server:classpath = "%{SECURITY_CLASSPATH}";
 plugins:java_server:jni_verbose = "false";
178

Configuring the Security Service
 plugins:java_server:X_options = ["rs"];
4 #event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL",

"IT_JAVA_SERVER="];
 plugins:security:direct_persistence = "true";

5 plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERS
ION}/demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_
VERSION}/lib/endorsed"];

6 plugins:local_log_stream:filename =
"%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERSION}/demos/secu
rity/full_security/etc/isf.log";

 ...
 bus
 {

7 orb_plugins = ["local_log_stream", "java",
"wsdl_publish"];

8 java_plugins= ["isf"];
plugins:isf:classname="com.iona.jbus.security.services.ISFBusPlu

ginFactory";

9 bus:initial_contract:url:isf_service =
"%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERSION}/demos/secu
rity/full_security/etc/isf_service.wsdl";

10 plugins:wsdl_publish:enable_secure_wsdl_publish="true";

11 plugins:at_http:server:use_secure_sockets="true";
12 plugins:at_http:server:trusted_root_certificates =

"%{ROOT_TRUSTED_CA_LIST_POLICY_1}";
13 plugins:at_http:server:server_certificate =

"%{PRIVATE_CERT_1}";
 plugins:at_http:server:server_private_key_password =

"%{PRIVATE_CERT_PASSWORD_1}";
14 policies:target_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectMisordering",
"DetectReplay", "EstablishTrustInClient"];

15 policies:certificate_constraints_policy =
["%{CERT_CONSTRAINT_1}"];

Example 37: Configuration of the Artix Security Service with HTTPS
 179

CHAPTER 9 | Configuring the Artix Security Service
The preceding configuration can be described as follows:

1. The included artix-secure.cfg configuration file contains some
generic configuration and settings to initialize the security substitution
variables.

2. The following lines configure the Artix generic server.

The core of the Artix security service is implemented as a pure Java
program, which gets loaded into the Artix generic server.

3. The plugins:java_server:class setting specifies the entry point for
the Java implementation of the security service. Currently, there are
two possible entry points:

♦ com.iona.jbus.security.services.SecurityServer—this entry
point is suitable for running a HTTPS-based security service. The
detailed configuration of the HTTPS transport appears inside the
bus configuration sub-scope.

♦ com.iona.corba.security.services.SecurityServer—this
entry point is suitable for running an IIOP/TLS-based security
service. See “Security Service Accessible through IIOP/TLS” on
page 163 for details.

4. To enable an error log for the security service, uncomment this line.

5. This line sets the system properties for the Java implementation of the
security service. In particular, the is2.properties property specifies
the location of a properties file, which contains further property
settings for the Artix security service.

 };
 };
 };
};

Example 37: Configuration of the Artix Security Service with HTTPS

Note: Substitution variables provide a simple way of defining
constants in an Artix configuration file. If you define a substitution
variable, VARIABLE_NAME, you can substitute its value into a
configuration setting using the syntax %{VARIABLE_NAME}.
180

Configuring the Security Service
6. The plugins:local_log_stream:filename specifies the location of the
security service’s log file.

7. The orb_plugins list in the bus scope must include the following
plug-ins:

♦ java plug-in—enables the Artix Java plug-in mechanism, which
can then be loaded using the java_plugins list.

♦ wsdl_publish plugin—loads the WSDL publishing service, which
enables clients of the security service to download WSDL
contracts. In order to access some of the security service’s
interfaces, the client must download the relevant WSDL contracts
through the publishing service.

8. The java_plugins list lets you load Artix Java plug-ins (see Developing
Artix Applications in Java for more details) and in this case a single
plug-in, isf, is loaded. The isf plug-in is responsible for exposing the
security service core as an Artix service.

The plugins:isf:classname variable specifies the entry point for the
implementation of the isf plug-in.

9. This setting specifies the location of the security service’s WSDL
contract. You will generally need to edit this WSDL contract, to specify
the security service’s host and port.

10. This setting enables HTTPS-related security features for the WSDL
publishing service. For more details about securing the WSDL
publishing service, see “Enabling SSL/TLS for WSDL Publish Plug-In”
on page 148.

11. This setting ensures that the security service and the WSDL publishing
service accept incoming connections only over HTTPS, instead of
insecure HTTP, and implicitly causes the https plug-in to load.

12. If the client presents a certificate to the security service, Artix checks to
make sure that the client certificate is signed by one of the CAs in the
trusted CA list specified here.

13. This line specifies the X.509 certificate that the security server
presents to incoming HTTPS connections during an SSL/TLS
handshake.
 181

CHAPTER 9 | Configuring the Artix Security Service
14. The specified target secure invocation policy includes the
EstablishTrustInClient association option, which ensures that the
security service accepts connections only from clients that present an
X.509 certificate.

15. The HTTPS-based security service supports a primitive form of access
control, whereby client certificates are rejected unless they conform to
the constraints specified in
policies:certificate_constraints_policy.

For details of how to specify certificate constraints, see “Applying
Constraints to Certificates” on page 481.

Note: The policies:certificate_constraints_policy setting is
fundamentally important for securing the security service. This is the
only mechanism that the security service can use to restrict access to
itself.
182

Configuring the File Adapter
Configuring the File Adapter

Overview The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate mainly for demonstration purposes
and small deployments. This section describes how to set up and configure
the iSF file adapter.

File locations The following files configure the iSF file adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 573 for details of how to customize
the default iS2 properties file location.

• Security information file—this file’s location is specified by the
com.iona.isp.adapter.file.param.filename property in the
is2.properties file.

File adapter properties Example 38 shows the properties to set for a file adapter.

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. IONA supports the use of the file adapter in a
production environment, but the number of users is limited to 200.

ArtixInstallDir/artix/2.0/bin/is2.properties

Example 38: Sample File Adapter Properties

1 com.iona.isp.adapters=file

##
##
Demo File Adapter Properties
##
##

2 com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter
 183

CHAPTER 9 | Configuring the Artix Security Service
The necessary properties for a file adapter are described as follows:

1. Set com.iona.isp.adapters=file to instruct the Artix security service
to load the file adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the iSF file adapter.

3. The com.iona.isp.adapter.file.param.filename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general Artix security
service properties.

See “Additional Security Configuration” on page 220 for details.

3 com.iona.isp.adapter.file.param.filename=ArtixInstallDir/artix/2
.0/bin/is2_user_password_role_file.txt

##
General Artix security service Properties
##

4 # ... Generic properties not shown here ...

Example 38: Sample File Adapter Properties
184

Configuring the LDAP Adapter
Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file. This section
discusses the following topics:

• Prerequisites

• File location.

• Minimal LDAP configuration.

• Basic LDAP properties.

• LDAP.param properties.

• LDAP server replicas.

• Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Artix, but you can use the Artix security service’s LDAP adapter with any
LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

• is2.properties file—the default location of the iS2 properties file is as
follows:

See “iSF Properties File” on page 573 for details of how to customize
the default iS2 properties file location.

ArtixInstallDir/artix/2.0/is2.properties
 185

CHAPTER 9 | Configuring the Artix Security Service
Minimal LDAP configuration Example 39 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

The necessary properties for an LDAP adapter are described as follows:

1. Set com.iona.isp.adapters=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. The com.iona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

Example 39: A Sample LDAP Adapter Configuration File

1 com.iona.isp.adapters=LDAP
##

LDAP Adapter Properties
##
##

2 com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda
p.LdapAdapter

3 com.iona.isp.adapter.LDAP.param.host.1=10.81.1.400
com.iona.isp.adapter.LDAP.param.port.1=389

4 com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPe

rson
com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

5 com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn
com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

6 com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquena

mes
com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB
com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com
com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

7 com.iona.isp.adapter.LDAP.param.version=3
186

Configuring the LDAP Adapter
3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host.1 and port.1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as
follows:

See “iSF Properties File” on page 573 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as
follows:

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

UserObjectClass The attribute type for the object class that
stores users.

UserSearchScope The user search scope specifies the search
depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

UserRoleDNAttr The attribute type that stores a user’s role DN.

RoleNameAttr The attribute type that the LDAP server uses
to store the role name.

GroupNameAttr The attribute type whose corresponding
attribute value gives the name of the user
group.

GroupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

GroupObjectClass The object class that applies to user group
entries in the LDAP directory structure.
 187

CHAPTER 9 | Configuring the Artix Security Service
See “iSF Properties File” on page 573 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

Basic LDAP properties The following properties must always be set as part of the LDAP adapter
configuration:

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com.iona.isp.adapter.LDAP.param.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

MemberDNAttr The attribute type that is used to retrieve
LDAP group members.

com.iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

p.LdapAdapter
188

Configuring the LDAP Adapter
LDAP.param properties Table 3 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param scope. Required properties are shown
in bold:

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host.<Index> and
port.<Index> include a replica index as part of the parameter name.

For example, host.1 and port.1 refer to the host and port of the primary
LDAP server, while host.2 and port.2 would refer to the host and port of an
LDAP backup server.

Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host.<Index>
port.<Index>
SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>
PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchScope
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

LDAP Group/Member
Configuration Properties

Other LDAP Properties

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr
MemberFilter

MaxConnectionPoolSize
version
UseGroupAsRole
RetrieveAuthInfo
CacheSize
CacheTimeToLive
 189

CHAPTER 9 | Configuring the Artix Security Service
Logging on to an LDAP server The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

Secure connection to an LDAP
server

The following properties can be used to configure SSL/TLS security for the
connection between the Artix security service and the <Index> LDAP server
replica:

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

iS2 properties reference For more details about the Artix security service properties, see “iSF
Properties File” on page 573.
190

Configuring the Kerberos Adapter
Configuring the Kerberos Adapter

Overview The Kerberos adapter enables you to use the Kerberos Authentication
Service. By configuring the Kerberos adapter, you ensure that any
authentication requests within the Artix Security Framework are delegated to
Kerberos. This section describes how to set up and configure the Kerberos
adapter.

In this section This section contains the following subsections:

Overview of Kerberos Configuration page 192

Configuring the KDC Connection page 195

Configuring the Active Directory Connection page 198

Sample Kerberos Configuration page 201
 191

CHAPTER 9 | Configuring the Artix Security Service
Overview of Kerberos Configuration

Kerberos adapter The Kerberos adapter integrates Kerberos into the Artix security framework
by treating the Artix security service as a Kerberos server. The Artix system
of role-based access control can also optionally be integrated with an LDAP
directory service (for example, Active Directory) that stores the user and role
information.

Kerberos Distribution Center
(KDC)

The Kerberos Distribution Centre (KDC) server is responsible for managing
authentication in a Kerberos system. When a client authenticates with the
KDC server, the client receives a ticket that allows it to talk to the Artix
security service. The client then sends the ticket to an Artix server (through a
WS-Security SOAP header) and the server authenticates the ticket by
sending it to the Artix security service, which forwards the ticket to the KDC
server.

JAAS login module The Kerberos adapter is required to log into the KDC server before it can
start verifying tickets on behalf of servers.

To perform the login step, the Kerberos adapter uses the Java
Authentication and Authorization Service (JAAS). The JAAS API is a general
purpose wrapper that enables Java programs to perform authentication and
authorization in a technology-neutral way. Specific security technologies are
supported by loading the relevant plug-in modules—see
http://java.sun.com/products/jaas/ for details.

To perform a Kerberos login, JAAS loads the Kerberos login module and
obtains login credentials by reading the jaas.conf configuration file. See
“JAAS login properties” on page 196 for more details.

LDAP directory The LDAP directory stores user and role information. The Kerberos adapter
can optionally access the directory to obtain role information, which can
then be used to perform authorization in the context of the Artix security
framework.
192

http://java.sun.com/products/jaas/

Configuring the Kerberos Adapter
LDAP directory is a database whose entries are organized in a hierarchical
scheme based on the X.500 standard. For details of the system for naming
entries in an LDAP directory, see “ASN.1 and Distinguished Names” on
page 605.

Active Directory service Active Directory is the Microsoft implementation of Kerberos, which is
integrated into Windows 2000 and other Windows operating systems.
Because Active Directory includes a KDC server and an LDAP directory, you
can integrate the Kerberos adapter with Active Directory.

For more details about Active Directory, see the Microsoft Active Directory
Web pages.

Kerberos realm A Kerberos realm is an administrative domain with its own Kerberos
database that stores data on users and services belonging to that domain.
Conventionally, a Kerberos realm is spelt all uppercase—for example,
IONA.COM.

Kerberos principal A Kerberos principal identifies a user or service within a particular Kerberos
domain. The following naming conventions are used for Kerberos principals:

• Client principal—follows the convention UserName@KerberosRealm.
For example:

• Server principal—follows the convention
ServiceName/HostName@KerberosRealm. For example, the service,
WebServer, running on host, web01.iona.com, in realm, IONA.COM,
would have the following principal:

Formally, WebServer is the primary and web01.iona.com is the
instance part of the principal. This two-part name acknowledges the
fact that a single service could be replicated on different hosts. The
Kerberos naming convention enables each replica to have a unique
principal.

Fred.Flintstone@IONA.COM

WebServer/web01.iona.com@IONA.COM
 193

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx

CHAPTER 9 | Configuring the Artix Security Service
Kerberos keyTab file A Kerberos keyTab file (short for key table file) stores the password
associated with a server. It is important to protect this file by setting file
permissions to restrict ordinary users from reading from or writing to the file.

File location The Kerberos adapter is configured by an is2.properties file. A sample
properties file for configuring Kerberos is provided at the following location:

To define properties for the Kerberos adapter, make a copy of this file and
customize it for your particular deployment. To specify the location of your
properties file, edit the Artix configuration file, setting the is2.properties
property in the plugins:java_server:system_properties list to the
location of the Kerberos adapter properties file, KerberosPropertiesFile,
as shown in Example 40.

ArtixInstallDir/artix/Version/etc/is2.properties.KERBEROS

Example 40: Specifying the Location of the Kerberos Properties File

Artix Configuration File
secure_artix
{
 your_application
 {
 security_service
 {
 ...
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton", "is2.properties=KerberosPropertiesFile",
"java.endorsed.dirs=C:\artix_40/artix/4.2/lib/endorsed"];

 ...
 };
 };
};
194

Configuring the Kerberos Adapter
Configuring the KDC Connection

Overview This subsection explains how to configure the Kerberos adapter to connect
to the Kerberos Distribution Center (KDC) server. The following topics are
described in this subsection:

• Enabling the Kerberos adapter.

• KDC connection properties.

• JAAS login properties.

• Kerberos logging support.

• Other KDC configuration options.

Enabling the Kerberos adapter The first thing you need to do is to instruct the Artix Security Service to load
the Kerberos adapter. The following two lines in the is2.properties file
specify the Kerberos adapter:

Where the com.iona.isp.adapters setting tells the security service to use
the Kerberos adapter, krb5, and the com.iona.isp.adapter.krb5.class
setting specifies the class that implements the Kerberos adapter.

KDC connection properties The following properties in the com.iona.isp.adapter.krb5.param scope
specify the connection details for the KDC server:

Where realm is the Kerberos realm name and kdc is the host name or IP
address of the KDC host. This is the minimum amount of information
required for connecting to a KDC server. If you need to specify further
connection details, however, you can use a krb5.conf file—see
“com.iona.isp.adapter.krb5.param.java.security.krb5.conf” on page 578 for
details.

is2.properties File
com.iona.isp.adapters=krb5
com.iona.isp.adapter.krb5.class=com.iona.security.is2adapter.krb

5.IS2KerberosAdapter

java.security.krb5.realm
java.security.krb5.kdc
 195

CHAPTER 9 | Configuring the Artix Security Service
JAAS login properties

In addition to specifying the KDC connection properties, you also need to
specify the JAAS login properties, which enable the Kerberos adapter to log
on to the KDC server. Specify the location of the jaas.conf file by setting
the following property in the com.iona.isp.adapter.krb5.param scope:

The jaas.conf file has a standard format defined by the JAAS standard.
Example 41 shows a sample jaas.conf file that demonstrates how to
configure the JAAS Kerberos login module.

The com.sun.security.jgss.accept scope defines the server-side login
behavior. There are two essential properties that you need to specify:

• principal—Kerberos identity of the Artix Security Server. See
“Kerberos principal” on page 193 for more details.

• keyTab—the location of a file that contains the password for the
principal. This is the usual method for storing a server-side password
in a Kerberos system. See “Kerberos keyTab file” on page 194 for more
details.

java.security.auth.login.config

Example 41: Sample jaas.conf File for the Kerberos Login Module

/* Login Configuration for JAAS */

com.sun.security.jgss.initiate {
 com.sun.security.auth.module.Krb5LoginModule required;
};

com.sun.security.jgss.accept {
 com.sun.security.auth.module.Krb5LoginModule required

storeKey=true principal="ServerPrincipalName@REALM"
useKeyTab = true keyTab="krb5.keytab" ;

};
196

Configuring the Kerberos Adapter
Kerberos logging support You can set two additional properties to check whether a valid Kerberos
KDC is running when the Artix security service starts up. Example 42 shows
how to configure the relevant properties:

The DummyPrincipal is a principal that is used for connecting to the KDC
server to check whether it is running. If the KDC server is not running, the
Artix security service writes a warning to its log.

Other KDC configuration options The following property in the com.iona.isp.adapter.krb5.param scope
must always be set to false:

Essentially, this is an implementation detail of the Kerberos adapter. If the
property is true, it signals to the Java security API that the Kerberos
credentials must be stored in a javax.security.auth.Subject object. If the
property is false, it signals that the Kerberos credentials can be stored in an
implementation-dependent manner (required for the Kerberos adapter).

Example 42: Configuration to Enable Kerberos Logging Support

is2.properties File
com.iona.isp.adapter.krb5.param.check.kdc.running=true
com.iona.isp.adapter.krb5.param.check.kdc.principal=DummyPrincip

al

javax.security.auth.useSubjectCredsOnly
 197

CHAPTER 9 | Configuring the Artix Security Service
Configuring the Active Directory Connection

Overview This subsection explains how to configure the Kerberos adapter to connect
to the Active Directory LDAP server. Many of the properties described here
are analogous to properties that configure the LDAP adapter (see
“Configuring the LDAP Adapter” on page 185). The following topics are
described in this subsection:

• LDAP server replicas.

• LDAP host and port.

• Logging on to an LDAP server.

• Secure connection to an LDAP server.

• Connection timeout.

• Specifying the LDAP version.

• Enabling retrieval of group information.

• Configuring the user schema.

• Configuring the group schema.

• Setting the connection pool size.

LDAP server replicas The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host.<Index> and
port.<Index> include a replica index as part of the parameter name.

LDAP host and port To specify the host and IP port of the LDAP adapter, set the following
properties in the com.iona.isp.adapter.krb5.param scope:

Where <Index> refers to a particular failover replica. For example, host.1
and port.1 refer to the host and port of the primary LDAP server, while
host.2 and port.2 would refer to the host and port of an LDAP backup
server.

host.<Index>
port.<Index>
198

Configuring the Kerberos Adapter
Logging on to an LDAP server The following properties in the com.iona.isp.adapter.krb5.param scope
can be used to configure login parameters for the <Index> LDAP server
replica:

The properties need only be set if the LDAP server is configured to require
username/password authentication.

Secure connection to an LDAP
server

The following properties in the com.iona.isp.adapter.krb5.param scope
can be used to configure SSL/TLS security for the connection between the
Artix security service and the <Index> LDAP server replica:

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

Connection timeout The following property in the com.iona.isp.adapter.krb5.param scope can
be used to configure a connection timeout for the <Index> LDAP server
replica:

Specifying the LDAP version The following property in the com.iona.isp.adapter.krb5.param scope is
used to specify the version of the LDAP server:

The LDAP version can be either 2 or 3.

Enabling retrieval of group
information

To enable retrieval of group information from the LDAP server, set the
following property in the com.iona.isp.adapter.krb5.param scope to true:

PrincipalUserDN.<Index>
PrincipalUserPassword.<Index>

SSLEnabled.<Index>
SSLCACertDir.<Index>
SSLClientCertFile.<Index>
SSLClientCertPassword.<Index>

ConnectTimeout.<Index>

version

RetrieveAuthInfo
 199

CHAPTER 9 | Configuring the Artix Security Service
Configuring the user schema The following properties in the com.iona.isp.adapter.krb5.param scope
are used to configure details of the user schema in the LDAP repository:

Configuring the group schema The following properties in the com.iona.isp.adapter.krb5.param scope
are used to configure details of the group schema in the LDAP repository:

Setting the connection pool size The following properties in the com.iona.isp.adapter.krb5.param scope
can be used to set the LDAP connection pool size:

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr

MaxConnectionPoolSize
MinConnectionPoolSize
200

Configuring the Kerberos Adapter
Sample Kerberos Configuration

Kerberos is2.properties file Example 43 shows a sample is2.properties file that could be used to
configure the Kerberos adapter.

Example 43: Sample Kerberos is2.properties File

is2.properties File
com.iona.isp.adapters=krb5

##
##
Kerberos Adapter Properties
##
##
com.iona.isp.adapter.krb5.class=com.iona.security.is2adapter.krb

5.IS2KerberosAdapter
com.iona.isp.adapter.krb5.param.java.security.krb5.realm=YOUR_RE

ALM
com.iona.isp.adapter.krb5.param.java.security.krb5.kdc=YOUR_KDC_

SERVER
com.iona.isp.adapter.krb5.param.java.security.auth.login.config=

jaas.conf
com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCr

edsOnly=false
#com.iona.isp.adapter.krb5.param.sun.security.krb5.debug=true

#To retrieve group infor from active directory, change this to
true

com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=false

com.iona.isp.adapter.krb5.param.host.1=YOUR_ACTIVE_DIRECTORY_SER
VER

com.iona.isp.adapter.krb5.param.port.1=389
#com.iona.isp.adapter.krb5.param.SSLEnabled.1=no
#com.iona.isp.adapter.krb5.param.SSLCACertDir.1=
#com.iona.isp.adapter.krb5.param.SSLClientCertFile.1=
#com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1=
com.iona.isp.adapter.krb5.param.PrincipalUserDN.1=YOUR_PRINCIPAL

_USER_DN
com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1=YOUR_PRI

NCIPAL_PASSWORD
com.iona.isp.adapter.krb5.param.ConnectTimeout.1=15
 201

CHAPTER 9 | Configuring the Artix Security Service
com.iona.isp.adapter.krb5.param.UserNameAttr=CN
com.iona.isp.adapter.krb5.param.UserBaseDN=dc=boston,dc=amer,dc=

iona,dc=com
com.iona.isp.adapter.krb5.param.version=3
com.iona.isp.adapter.krb5.param.UserObjectClass=Person
com.iona.isp.adapter.krb5.param.GroupObjectClass=group
com.iona.isp.adapter.krb5.param.GroupSearchScope=SUB
com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=boston,dc=amer,dc

=iona,dc=com
com.iona.isp.adapter.krb5.param.GroupNameAttr=CN
com.iona.isp.adapter.krb5.param.MemberDNAttr=memberOf
#com.iona.isp.adapter.krb5.param.UseGroupAsRole=yes
com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=1
com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=1

#com.iona.isp.adapter.krb5.param.UserRoleDNAttr=nsroledn
#com.iona.isp.adapter.krb5.param.RoleNameAttr=CN
#com.iona.isp.adapter.krb5.param.UserSearchFilter=
#com.iona.isp.adapter.krb5.param.UserCertAttrName=userCertificat

e

###

Single Sign On Session Info
##
###
is2.sso.session.timeout=600
is2.sso.session.idle.timeout=60
is2.sso.cache.size=200

###

Log4j configuration
##
###
#log4j.configuration=log4j.properties

Example 43: Sample Kerberos is2.properties File
202

Clustering and Federation
Clustering and Federation

Overview Clustering and federation are two distinct, but related, features of the Artix
security service. Briefly, these features can be described as follows:

• Clustering—involves running several instances of the Artix security
service to provide what is effectively a single service. By running
multiple security service instances as a cluster, Artix enables you to
support fault tolerance features. Typically, in this case all of the
security services in a cluster are integrated with a single authentication
database back-end.

• Federation—enables SSO tokens to be recognized across multiple
security domains. Each security domain is served by a distinct security
service instance and each security service is integrated with a different
database back-end.

In this section This section contains the following subsections:

Federating the Artix Security Service page 204

Failover page 209

Client Load Balancing page 217
 203

CHAPTER 9 | Configuring the Artix Security Service
Federating the Artix Security Service

Overview Federation is meant to be used in deployment scenarios where there is more
than one instance of an Artix security service. By configuring the Artix
security service instances as a federation, the security services can talk to
each other and access each other’s session caches. Federation frequently
becomes necessary when single sign-on (SSO) is used, because an SSO
token can be verified only by the security service instance that originally
generated it.

Federation is not clustering Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there
are no fault tolerance features provided.

Example federation scenario Consider a simple federation scenario consisting of two security domains,
each with their own Artix security service instances, as follows:

• LDAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user
data in an LDAP database. The domain includes any Artix applications
that use this Artix security service (ID=1) to verify credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

• Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user
data in a Kerberos database. The domain includes any Artix
applications that use this Artix security service (ID=2) to verify
credentials.

The two Artix security service instances are federated, using the
configuration described later in this section. With federation enabled, it is
possible for single sign-on clients to make invocations that cross security
domain boundaries.
204

Clustering and Federation
Federation scenario Figure 24 shows a typical scenario that illustrates how iSF federation might
be used in the context of an Artix system.

Figure 24: An iSF Federation Scenario

Security Service

Client

5

1

Login
Service

u/p/d

u/p/d

t

t

t

3

Authenticate
SSO token

4

User data store

Target A Target B

LDAP

2

Security Service

User data store

Kerberos

7

Authenticate
SSO token

6

LDAP Security Domain Kerberos Security Domain

ID=1 ID=2
 205

CHAPTER 9 | Configuring the Artix Security Service
Federation scenario steps The federation scenario in Figure 24 on page 205 can be described as
follows:

Stage Description

1 With single sign-on (SSO) enabled, the client calls out to the
login service, passing in the client’s GSSUP credentials, u/p/d,
in order to obtain an SSO token, t.

2 The login service delegates authentication to the Artix security
server (ID=1), which retrieves the user’s account data from the
LDAP backend.

3 The client invokes an operation on the Target A, belonging to
the LDAP security domain. The SSO token, t, is included in the
message.

4 Target A passes the SSO token to the Artix security server
(ID=1) to be authenticated. If authentication is successful, the
operation is allowed to proceed.

5 Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 is included in the message.

6 Target B passes the SSO token to the second Artix security
server (ID=2) to be authenticated.

7 The second Artix security server examines the SSO token.
Because the SSO token is tagged with the first Artix security
server’s ID (ID=1), verification of the token is delegated to the
first Artix security server. The second Artix security server opens
an IIOP/TLS connection to the first Artix security service to
verify the token.
206

Clustering and Federation
Configuring the is2.properties files Each instance of the Artix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

• is2.current.server.id—a unique ID for this Artix security service
instance,

• is2.cluster.properties.filename—a shared cluster file.

• is2.sso.remote.token.cached—a boolean property enables caching
of remote token credentials in a federated system.

With caching enabled, the call from one federated security service to
another (step 7 of Figure 24 on page 205) is only necessary to
authenticate a token for the first time. For subsequent authentications,
the security service (with ID=2) can obtain the token’s security data
from its own token cache.

For example, the first Artix security server instance from Figure 24 on
page 205 could be configured as follows:

And the second Artix security server instance from Figure 24 on page 205
could be configured as follows:

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...

iS2 Properties File, for Server ID=2
...
###
iSF federation related properties
###
is2.current.server.id=2
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote.token.cached=true
...
 207

CHAPTER 9 | Configuring the Artix Security Service
Configuring the cluster properties
file

All the Artix security server instances within a federation should share a
cluster properties file. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded Artix
security servers shown in Figure 24 on page 205.

This assumes that the first security service (ID=1) runs on host
security_ldap1 and IP port 5001; the second security service (ID=2) runs
on host security_ldap2 and IP port 5002. To discover the appropriate host
and port settings for the security services, check the
plugins:security:iiop_tls settings in the relevant configuration scope in
the relevant Artix configuration file for each federated security service.

The securityInstanceURL.ServerID variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set
these values is to use the corbaloc URL format.

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security_ldap1:5001/IT_Secu

rityService
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security_ldap2:5002/IT_Secu

rityService
208

Clustering and Federation
Failover

Overview To support high availability of the Artix security service, Artix implements
the following features:

• Failover—the security service is contacted using an IOR that contains
the address of every security service in a cluster. Hence, if one of the
services in the cluster crashes, or otherwise becomes unavailable, an
application can automatically try one of the alternative addresses listed
in the IOR.

This subsection describes how to configure failover.
 209

CHAPTER 9 | Configuring the Artix Security Service
Failover scenario Example 25 shows a scenario for a highly available Artix security service
that consists of a cluster of three security services. The security services run
on separate hosts, security01, security02, and security03 respectively,
and all of the services rely on the same third-party LDAP database to store
their user data.

In this scenario, it is assumed that both the client and the target application
are configured to perform random load balancing over the security services
in the cluster (see “Client Load Balancing” on page 217 for details). Each of
the security services in the cluster are configured for failover.

Figure 25: Failover Scenario for a Cluster of Three Security Services

Client

u/p

2

Authenticate
credentials

Target A
1

Security Service
Cluster

security01:5001 security02:5002 security03:5003IOR:

Initial Reference for Security Service

security02 Host

Security Service
ID=2

security01 Host

Security Service
ID=1

security03 Host

Security Service
ID=3

u/p
210

Clustering and Federation
Failover scenario steps The interaction of the client and target with the security service cluster
shown in Example 25 on page 210 can be described as follows:

Configuring the failover cluster To configure a cluster of security services that support failover, you need to
edit a variety of configuration files, as follows:

• Configuring the is2.properties file.

• Configuring the cluster properties file.

• Artix configuration for the first security service.

• Artix configuration for the second and third security services.

Configuring the is2.properties file Each instance of the Artix security service should have its own
is2.properties file. Within each is2.properties file, you should set the
following:

• is2.current.server.id—a unique ID for this Artix security service
instance,

• is2.cluster.properties.filename—a shared cluster file.

Stage Description

1 The client invokes an operation on the target, sending the
username and password (u/p) credentials supplied by the user.

2 The target server checks the u/p credentials received from the
client by sending an invocation to the security service cluster. If
the target server already has an existing connection with a
service in the cluster, it re-uses that connection. Otherwise, the
target randomly picks an address from the list of addresses in
the IT_SecurityService IOR.
 211

CHAPTER 9 | Configuring the Artix Security Service
For example, the first Artix security server instance from Figure 25 on
page 210 could be configured as follows:

The second and third Artix security services from Figure 25 on page 210
should be configured similarly, except that the is2.current.server.id
property should be set to 2 and 3 respectively.

Configuring the cluster properties
file

For the three-service cluster shown in Figure 25 on page 210, you could
configure the cluster.properties file as follows:

This file defines the following settings:

• securityInstanceURL.ServerID—advertises the location of a security
service in the cluster. Normally, the most convenient way to set these
values is to use the corbaloc URL format.

iS2 Properties File, for Server ID=1
...
###
iSF federation related properties
###
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
...

Advertise the locations of the security services in the cluster.
com.iona.security.common.securityInstanceURL.1=corbaloc:it_iiops:1.2@security01:5001/IT_Security

Service
com.iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:1.2@security02:5002/IT_Security

Service
com.iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:1.2@security03:5003/IT_Security

Service
212

Clustering and Federation
Artix configuration for the first
security service

Example 44 shows the details of the Artix configuration for the first Artix
security service in the cluster. To configure this security service to support
failover, you must ensure that the security service’s IOR contains a list
addresses for all of the services in the cluster.

Example 44: Artix Security Service Configuration for Failover

Artix Configuration File
1 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security0
2:5002,it_iiops:1.2@security03:5003/IT_SecurityService";

artix_services {
 ...

2 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data = ["filename=PKCS12File",

"password_file=CertPasswordFile"];

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

 security {
 ...

3 plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];

4 plugins:security:iiop_tls:host = "security01";
 plugins:security:iiop_tls:port = "5001";

5 plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton","is2.properties=SecurityPropertiesDir/security01
.is2.properties","java.endorsed.dirs=ArtixInstallDir/artix/Ve
rsion/lib/endorsed"];

 policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];
 213

CHAPTER 9 | Configuring the Artix Security Service
The preceding Artix configuration can be explained as follows:

1. The IT_SecurityService initial reference is read by Artix applications
to locate the cluster of Artix security services. The initial reference is
provided in the form of a corbaloc URL, which contains the addresses
of all of the security services in the cluster. The corbaloc URL for the
security service cluster has the following general form:

Where ListOfAddresses is a comma-separated list of protocol/address
combinations. For each security service in the cluster, you need to
make an entry in the comma-separated address list, as follows:

Where Hostname is the host where the security service is running and
Port is the IP port where the security service listens for connections.

2. The Artix security service picks up most of its SSL/TLS security settings
from the artix_services scope. In particular, the default configuration
of the security service uses the X.509 certificate specified by the
principal_sponsor settings in this scope.

3. The plugins:security:iiop_tls:addr_list variable lists the
addresses of all of the security services in the cluster.

The first entry, not prefixed by a + sign, specifies the address of the
current security service instance. The remaining entries, prefixed by a
+ sign, specify the addresses of the other services in the cluster.

The + sign indicates that an entry affects only the contents of the
generated IOR; it does not affect the security service’s listening port.

 policies:iiop_tls:target_secure_invocation_policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

 ...
 };
};

Example 44: Artix Security Service Configuration for Failover

corbaloc:ListOfAddresses/IT_SecurityService

it_iiops:1.2@Hostname:Port
214

Clustering and Federation
4. The plugins:security:iiop_tls:host and
plugins:security:iiop_tls:port settings specify the listening port
for this security service instance.

5. Edit the is2.properties entry in the
plugins:java_server:system_properties list to specify the location
of the properties file used by this security service instance (see
“Configuring the is2.properties files” on page 207). In this example,
the properties file is called security01.is2.properties.

Artix configuration for the second
and third security services

The Artix configurations for the second and third security services in the
cluster are similar to the configuration for the first one, except that the
address details and the location of the is2.properties file must be
modified appropriately.

For example, the second security service’s configuration would be modified
as highlighted in the following example:

Where the name of the configuration scope for the second security service is
artix_services.security_02. The
plugins:security:iiop_tls:addr_list,
plugins:security:iiop_tls:host, and plugins:security:iiop_tls:port

Artix Configuration File
artix_services
{
 ...
 security_02 {
 ...
 plugins:security:iiop_tls:addr_list = ["security02:5002",

"+security03:5003", "+security01:5001"];
 plugins:security:iiop_tls:host = "security02";
 plugins:security:iiop_tls:port = "5002";

 plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton","is2.properties=SecurityPropertiesDir/security02
.is2.properties","java.endorsed.dirs=ArtixInstallDir/artix/Ve
rsion/lib/endorsed"];

 ...
 };
};
 215

CHAPTER 9 | Configuring the Artix Security Service
configuration variables are modified so that the listening host and port are
configured as security02 and 5002 respectively. The is2.properties
property is modified to point at the second security service’s property file,
security02.is2.properties.
216

Clustering and Federation
Client Load Balancing

Overview When you use a clustered security service, it is important to configure all of
the secure applications in the system (clients and servers) to perform client
load balancing (in this context, client means a client of the Artix security
service and thus includes ordinary Artix servers as well). This ensures that
the client load is evenly spread over all of the security services in the cluster.

Client load balancing is disabled by default.

Configuration for load balancing Example 45 shows an outline of the configuration for a client of a security
service cluster. Such clients must be configured to use random load
balancing to ensure that the load is spread evenly over the servers in the
cluster. The settings highlighted in bold should be added to the application’s
configuration scope.

Security service corbaloc URL The IT_SecurityService initial reference is specified as a corbaloc URL.
The corbaloc URL includes the addresses for all of the security services in
the cluster—see “Artix configuration for the first security service” on
page 213 for details of how to construct this corbaloc URL.

Example 45: Configuration for Client of a Security Service Cluster

Artix Configuration File
...
load_balanced_app {
 ...
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security0
2:5002,it_iiops:1.2@security03:5003/IT_SecurityService";

 ...
 plugins:asp:enable_security_service_load_balancing = "true";
 policies:iiop_tls:load_balancing_mechanism = "random";
 policies:asp:load_balancing_policy = "per-server";
};
 217

CHAPTER 9 | Configuring the Artix Security Service
Client load balancing mechanism The client load balancing mechanism is selected by setting the
policies:iiop_tls:load_balancing_mechanism variable. Two mechanisms
are supported, as follows:

• random—choose one of the addresses embedded in the IOR at random
(this is the default).

• sequential—choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

In general, this mechanism is not recommended for deployed systems,
because it usually results in all of the client applications connecting to
the first cluster member. This mechanism can sometimes be useful for
running tests (because the order in which addresses are chosen is
deterministic).

Client load balancing policy The client load balancing policy is selected by setting the
policies:asp:load_balancing_policy variable. Two policies are
supported, as follows:

• per-server—(the default) after selecting a particular security service
from the cluster, the client remains connected to that security service
instance.

• per-request—for each new request, the Artix security plug-in selects
and connects to a new security service node (in accordance with the
algorithm specified by
policies:iiop_tls:load_balancing_mechanism).

Note: This is the only mechanism suitable for use in a deployed
system.

Note: The process of re-establishing a secure connection with every
new request imposes a significant performance overhead. Therefore,
the per-request policy value is not recommended for most
deployments.
218

Clustering and Federation
Note on the use of a corbaloc URL
for the initial reference

Specifying the security service IOR as a corbaloc URL has a subtle impact
on the semantics of connection establishment, as detailed here.

Internally, Artix converts the corbaloc URL into a multi-profile IOR, where
each profile contains a single IOR component with the address details for
one security service. This contrasts with the structure of an IOR created
directly by a security service, which consists of a single profile containing
multiple IOR components. These IORs are treated slightly differently by
Artix.

When an Artix program attempts to establish a connection to the security
service using a corbaloc URL, the connection establishment is a two-step
process:

1. Initially, Artix attempts to send a message to the first address
appearing in the corbaloc URL. If that connection attempt fails, Artix
moves on to the next address in the corbaloc URL, trying each address
in sequence until a connection attempt succeeds.

2. In reply to the message sent in step 1, the contacted security service
sends back a multi-component IOR, containing the addresses of all the
security services in the cluster (this exploits a feature of the GIOP
protocol that allows CORBA servers to redirect incoming connections).
When the Artix program receives the multi-component IOR, it makes a
renewed attempt to contact a security service using the IOR it has just
received.

Because Artix supports load balancing over the addresses in a
multi-component IOR, the Artix security plug-in can now randomly pick
one of the IOR components (assuming that the random load balancing
mechanism is selected) and connect to the address contained therein.

Note: In this initial step, Artix always starts by attempting to contact
the first address in the corbaloc URL. That is, Artix does not
load-balance over multiple profiles in an IOR.
 219

CHAPTER 9 | Configuring the Artix Security Service
Additional Security Configuration

Overview This section describes how to configure optional features of the Artix security
server, such as single sign-on and the authorization manager. These
features can be combined with any iSF adapter type.

In this section This section contains the following subsections:

Configuring Single Sign-On Properties page 221

Configuring the Log4J Logging page 223
220

Additional Security Configuration
Configuring Single Sign-On Properties

Overview The IONA security framework provides an optional single sign-on (SSO)
feature. If you want to use SSO with your applications, you must configure
the Artix security service as described in this section. SSO offers the
following advantages:

• User credentials can easily be propagated between applications in the
form of an SSO token.

• Performance is optimized, because the authentication step only needs
to be performed once within a distributed system.

• Because the user’s session is tracked centrally by the Artix security
service, it is possible to impose timeouts on the user sessions and
these timeouts are effective throughout the distributed system.

SSO tokens The Artix security service generates an SSO token in response to an
authentication operation. The SSO token is a compact key that the Artix
security service uses to access a user’s session details, which are stored in a
cache.

SSO properties Example 46 shows the iS2 properties needed for SSO:

The SSO properties are described as follows:

1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifesaving of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

Example 46: Single Sign-On Properties

iS2 Properties File
...
###
Single Sign On Session Info
###

1 is2.sso.enabled=yes
2 is2.sso.session.timeout=6000
3 is2.sso.session.idle.timeout=300
4 is2.sso.cache.size=10000
 221

CHAPTER 9 | Configuring the Artix Security Service
3. The SSO session idle timeout sets the maximum length of time for
which an SSO session can remain idle, in units of seconds. If the Artix
security service registers no activity against a particular session for this
amount of time, the session and its token expire.

4. The size of the SSO cache, in units of number of sessions.
222

Additional Security Configuration
Configuring the Log4J Logging

Overview log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the Artix
security service’s logging is based on log4j, it is possible to configure the
output of iSF logging using a standard log4j properties file.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

Enabling log4j logging To enable log4j logging, specify the location of the log4j properties file in the
is2.properties file as follows:

Configuring the log4j properties
file

The following example shows how to configure the log4j properties to
perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

iS2 Properties File, for Server ID=1
...
###
log4j Logging
###
log4j.configuration=C:/is2_config/log4j.properties
...

log4j Properties File
log4j.rootCategory=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x

- %m%n
 223

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 9 | Configuring the Artix Security Service
Redirecting log4j to an Artix local
log stream

You can optionally redirect the log4j log stream to the Artix local log stream.
To enable this feature, set plugins:security:log4j_to_local_log_stream
to true in the Artix configuration file.

For example, you can configure the Artix security service to send log4j
logging to the local log stream, as follows:

You must ensure that the local_log_stream plug-in is present in the
orb_plugins list and the log4j logging level can be set using the Artix event
log filters mechanism. The event_log:filters setting in the preceding
example is equivalent to setting log4j.rootCategory=WARN in the log4j
properties file.

Artix Configuration File
security_service
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls"];
 plugins:security:log4j_to_local_log_stream = "true";

 # Log all log4j messages at level WARN and above
 event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL"];
 ...
};
224

CHAPTER 10

Managing Users,
Roles and
Domains
The Artix security service provides a variety of adapters that
enable you to integrate the Artix Security Framework with
third-party enterprise security products. This allows you to
manage users and roles using a third-party enterprise security
product.

In this chapter This chapter discusses the following topics:

Introduction to Domains and Realms page 226

Managing a File Security Domain page 234

Managing an LDAP Security Domain page 239
 225

CHAPTER 10 | Managing Users, Roles and Domains
Introduction to Domains and Realms

Overview This section introduces the concepts of an Artix security domain and an Artix
authorization realm, which are fundamental to the administration of the
Artix Security Framework. Within an Artix security domain, you can create
user accounts and within an Artix authorization realm you can assign roles
to users.

In this section This section contains the following subsections:

Artix security domains page 227

Artix Authorization Realms page 229
226

Introduction to Domains and Realms
Artix security domains

Overview This subsection introduces the concept of an Artix security domain.

Domain architecture Figure 26 shows the architecture of an Artix security domain. The Artix
security domain is identified with an enterprise security service that plugs
into the Artix security service through an iSF adapter. User data needed for
authentication, such as username and password, are stored within the
enterprise security service. The Artix security service provides a central
access point to enable authentication within the Artix security domain.

Figure 26: Architecture of an Artix security domain

Artix
Server

Artix
Server

Artix
Server

Enterprise Security Service

Artix Security Service

iSF Security Domain

authenticate authenticate authenticate

User Data Store

Janet

John
 227

CHAPTER 10 | Managing Users, Roles and Domains
Artix security domain An Artix security domain is a particular security system, or namespace
within a security system, designated to authenticate a user.

Here are some specific examples of Artix security domains:

• LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

Creating an Artix security domain Effectively, you create an Artix security domain by configuring the Artix
security service to link to an enterprise security service through an iSF
adapter (such as an LDAP adapter). The enterprise security service is the
implementation of the Artix security domain.

Creating a user account User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 234.
228

Introduction to Domains and Realms
Artix Authorization Realms

Overview This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

Artix authorization realm An Artix authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

Role-based access control The Artix Security Framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1. User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, administrator, and so on, in a realm,
Engineering). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the Artix
security service, which returns the set of realms and roles assigned to a
user when required.

2. Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the Artix security framework use an XML action-role mapping
file to control access to WSDL port types and operations.
 229

CHAPTER 10 | Managing Users, Roles and Domains
Servers and realms From a server’s perspective, an Artix authorization realm is a way of
grouping servers with similar authorization requirements. Figure 27 shows
two Artix authorization realms, Engineering and Finance, each containing a
collection of server applications.

Adding a server to a realm To add an Artix server to a realm, add or modify the
plugins:asp:authorization_realm configuration variable within the
server’s configuration scope (in the artix.cfg file).

For example, if your server’s configuration is defined in the my_server_scope
scope, you can set the Artix authorization realm to Engineering as follows:

Figure 27: Server View of Artix authorization realms

IONAGlobalRealm

Srv1 Srv2

Srv3 Srv4

Engineering

Srv5 Srv6

Srv7 Srv8

Finance

Artix configuration file
...
my_server_scope {
 plugins:asp:authorization_realm = "Engineering";
 ...
};
230

Introduction to Domains and Realms
Roles and realms From the perspective of role-based authorization, an Artix authorization
realm acts as a namespace for roles. For example, Figure 28 shows two
Artix authorization realms, Engineering and Finance, each associated with
a set of roles.

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the Artix security service through an
adapter. Not every enterprise security system supports realms and roles,
however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles.

Figure 28: Role View of Artix authorization realms

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO
 231

CHAPTER 10 | Managing Users, Roles and Domains
Assigning realms and roles to
users

The assignment of realms and roles to users is administered from within the
enterprise security system that is plugged into the Artix security service. For
example, Figure 29 shows how two users, Janet and John, are assigned
roles within the Engineering and Finance realms.

• Janet works in the engineering department as a developer, but
occasionally logs on to the Finance realm with guest permissions.

• John works as an accountant in finance, but also has guest
permissions with the Engineering realm.

Figure 29: Assignment of Realms and Roles to Users Janet and John

IONAGlobalRealm

Engineering Finance

guest

admin

developer

guest

admin

accountant

CFO

iSF Security Domain (users)

Janet John
232

Introduction to Domains and Realms
Special realms and roles The following special realms and roles are supported by the Artix Security
Framework:

• IONAGlobalRealm realm—a special realm that encompasses every Artix
authorization realm. Roles defined within the IONAGlobalRealm are
valid within every Artix authorization realm.

• UnauthenticatedUserRole—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the UnauthenticatedUserRole role are also
accessible to authenticated users.

The UnauthenticatedUserRole can be used only in action-role
mapping files.
 233

CHAPTER 10 | Managing Users, Roles and Domains
Managing a File Security Domain

Overview The file security domain is active if the Artix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 183). The main purpose of the iSF file adapter is to provide a
lightweight security domain for demonstration purposes and small
deployments. A large deployed system, however, should use one of the
other adapters (LDAP or custom) instead.

Location of file The location of the security information file is specified by the
com.iona.isp.adapter.file.param.filename property in the Artix security
service’s is2.properties file.

Example Example 47 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

Note: The file adapter is a simple adapter that does not scale well for
large enterprise applications. IONA supports the use of the file adapter in a
production environment, but the number of users is limited to 200.

Example 47: Sample Security Information File for an iSF File Domain

<?xml version="1.0" encoding="utf-8" ?>

1 <ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
2 <users>
3 <user name="IONAAdmin" password="admin"

 description="Default IONA admin user">
4 <realm name="IONA" description="All IONA applications"/>

 </user>
 <user name="admin" password="admin" description="Old admin

user; will not have the same default privileges as
IONAAdmin.">

 <realm name="Corporate">
 <role name="Administrator"/>
 </realm>
 </user>
 <user name="alice" password="dost1234">
234

Managing a File Security Domain
1. The <ns:securityInfo> tag can contain a nested <users> tag.

2. The <users> tag contains a sequence of <user> tags.

3. Each <user> tag defines a single user. The <user> tag’s name and
password attributes specify the user’s username and password. Instead
of specifying the password in plaintext, you also have the option of
specifying a password hash using the password_hash attribute—see
“Password hashing” on page 237 for details.

Within the scope of the <user> tag, you can list the realms and roles
with which the user is associated.

4. When a <realm> tag appears within the scope of a <user> tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <realm> must have a name and can optionally have a
description attribute.

5. A realm can optionally be associated with one or more roles by
including role elements within the <realm> scope.

5 <realm name="Financials"
 description="Financial Department">
 <role name="Manager" description="Department Manager" />
 <role name="Clerk"/>
 </realm>
 </user>
 <user name="bob" password="dost1234">
 <realm name="Financials">
 <role name="Clerk"/>
 </realm>
 </user>
 </users>
</ns:securityInfo>

Example 47: Sample Security Information File for an iSF File Domain
 235

CHAPTER 10 | Managing Users, Roles and Domains
Certificate-based authentication
for the file adapter

When performing certificate-based authentication for the CORBA binding,
the file adapter compares the certificate to be authenticated with a cached
copy of the user’s certificate.

To configure the file adapter to support X.509 certificate-based
authentication for the CORBA binding, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location
that is accessible to the file adapter. The certificate must be in PEM
format.

2. Specify which one of the fields from the certificate’s subject DN should
contain the user’s name (user ID) by setting the
com.iona.isp.adapter.file.param.userIDInCert property in the
Artix security server’s is2.properties file.

For example, to use the Common Name (CN) from the certificate’s
subject DN as the user name, add the following setting to the
is2.properties file:

3. In the security information file, make the following type of entry for
each user with a certificate:

The user name, FieldFromSubjectDN, is derived from the user’s
certificate by extracting the relevant field from the subject DN of the
X.509 certificate (for DN terminology, see “ASN.1 and Distinguished
Names” on page 605). The field to extract from the subject DN is
specified as described in the preceding step.

Artix Security Server Properties File
com.iona.isp.adapter.file.param.userIDInCert=CN

Example 48: File Adapter Entry for Certificate-Based Authentication

...
<user name="FieldFromSubjectDN" certificate="CertFile.pem"

description="User certificate">
 <realm name="RealmName">
 ...
 </realm>
</user>
236

Managing a File Security Domain
The certificate attribute specifies the location of this user’s X.509
certificate, CertFile.pem.

Password hashing Storing passwords in plaintext format in the security information file is not
ideal, from a security perspective. In particular, it is likely that several
different users would need to update the security information file. Hence,
using operating system permissions to block read/write access to this file is
not a practical solution.

The problem of plaintext passwords can be solved using password hashing.
Instead of storing passwords in plaintext, you can generate a secure hash
key based on the original password. In the security information file, replace
the password attribute with the password_hash attribute to store the
password hash—for example:

Where HashKey is generated from the original password using the Artix
it_pw_hash utility.

it_pw_hash utility The Artix it_pw_hash utility is a command-line utility for converting plaintext
passwords to password hashes. The hashing algorithm used is SHA-1.
There are three different ways of using the utility, as follows:

• Convert all passwords to hashes—to convert all of the passwords in a
security information file to password hashes (replacing every password
attribute by a corresponding password_hash attribute), enter the
following at a command prompt:

Where SecurityFile is the path to the security information file
containing password data in plaintext. By default, the original
SecurityFile is overwritten with a version that uses password_hash

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
 ...
 <user name="alice" password_hash="HashKey">
 ...
 </user>
 ...
</ns:securityInfo>

it_pw_hash -update_all -password_file SecurityFile
[-out_file NewSecurityFile] [-v]
 237

CHAPTER 10 | Managing Users, Roles and Domains
attributes. However, you can optionally use the -out_file flag to
specify an alternative file for the output, in which case the original file
is left unchanged. The optional -v flag switches on verbose logging.

• Convert a single password to a hash—to convert a single password in
a security information file to a password hash (replacing the user’s
password attribute by a corresponding password_hash attribute), enter
the following at a command prompt:

Where Username specifies the name of the user (matching the name
attribute in one of the user elements) whose password is to be
changed into hash format.

• Reset a password hash—to reset the password hash value for a single
user, enter the following at a command prompt:

In this case, the command prompts you to enter a new password for
the user and generates a corresponding password hash, which is then
assigned to the password_hash attribute.

it_pw_hash -update_password -user Username -password_file
SecurityFile [-out_file NewSecurityFile] [-v]

it_pw_hash -set_password -user Username -password_file
SecurityFile [-out_file NewSecurityFile] [-v]
238

Managing an LDAP Security Domain
Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and the Artix security service’s LDAP adapter can
integrate with any LDAP v.3 implementation.

Please consult documentation from your third-party LDAP

implementation for detailed instructions on how to administer

users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the Artix Security Framework is that
the Artix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 185.

Certificate-based authentication
for the LDAP adapter

When performing certificate-based authentication, the LDAP adapter
compares the certificate to be authenticated with a cached copy of the
user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based
authentication, perform the following steps:

1. Cache a copy of each user’s certificate, CertFile.pem, in a location
that is accessible to the LDAP adapter. The certificate must be in PEM
format.

2. The user’s name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 605).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.
 239

CHAPTER 10 | Managing Users, Roles and Domains
240

CHAPTER 11

Managing
Access Control
Lists
The Artix Security Framework defines access control lists
(ACLs) for mapping roles to resources.

In this chapter This chapter discusses the following topics:

Overview of Artix ACL Files page 242

ACL File Format page 243

Generating ACL Files page 246

Deploying ACL Files page 249
 241

CHAPTER 11 | Managing Access Control Lists
Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

Deployment scenarios Artix supports the following deployment scenario for ACL files:

• Local ACL file.

Local ACL file In the local ACL file scenario, the action-role mapping file is stored on the
same host as the server application (see Figure 30). The application obtains
the action-role mapping data by reading the local ACL file.

In this case, the location of the ACL file is specified by a setting in the
application’s artix.cfg file.

Figure 30: Locally Deployed Action-Role Mapping ACL File

authentication

Action-role
mapping file

Artix Security Service

User Data

ARM

Application

Security Layer

authorization

Application Host Security Host
242

ACL File Format
ACL File Format

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

Example WSDL For example, consider how to set the operation permissions for the WSDL
port type shown in Example 49.

Example action-role mapping Example 50 shows how you might configure an action-role mapping file for
the HelloWorldPortType port type given in the preceding Example 49 on
page 243.

Example 49: Sample WSDL for the ACL Example

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld" ... >

 ...
 <portType name="HelloWorldPortType">
 <operation name="greetMe">
 <input message="tns:greetMe" name="greetMe"/>
 <output message="tns:greetMeResponse"
 name="greetMeResponse"/>
 </operation>
 <operation name="sayHi">
 <input message="tns:sayHi" name="sayHi"/>
 <output message="tns:sayHiResponse"
 name="sayHiResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 50: Artix Action-Role Mapping Example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

1 <action-role-mapping>
2 <server-name>secure_artix.demos.hello_world</server-name>
 243

CHAPTER 11 | Managing Access Control Lists
The preceding action-role mapping example can be explained as follows:

1. The <action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

2. The <server-name> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the -ORBname command-line parameter.

3. The <interface> tag contains all of the access permissions for one
particular WSDL port type.

4. The <name> tag identifies a WSDL port type in the format
NamespaceURI:PortTypeName. That is, the PortTypeName comes from a
tag, <portType name="PortTypeName">, defined in the NamespaceURI
namespace.

For example, in Example 49 on page 243 the <definitions> tag
specifies the NamespaceURI as http://xmlbus.com/HelloWorld and
the PortTypeName is HelloWorldPortType. Hence, the port type name
is identified as:

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>

3 <interface>
4

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>
 <action-role>

5 <action-name>sayHi</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>

Example 50: Artix Action-Role Mapping Example

Note: The ORB name also determines which configuration scopes
are read by the server.
244

ACL File Format
5. The sayHi action name corresponds to the sayHi WSDL operation
name in the HelloWorldPortType port type (from the <operation
name="sayHi"> tag).

Wildcard character Artix supports a wildcard mechanism for the server-name, interface name,
and action-name elements in an ACL file. The wildcard character, *, can be
used to match any number of contiguous characters in a server name,
interface name, or action name. For example, the access control list shown
in Example 51 assigns the IONAUserRole role to every action in every
interface in every Bus instance.

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 611 for details.

Example 51: Wildcard Mechanism in an Access Control List

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>
 <server-name>*</server-name>
 <interface>
 <name>*</name>
 <action-role>
 <action-name>*</action-name>
 <role-name>IONAUserRole</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>
 245

CHAPTER 11 | Managing Access Control Lists
Generating ACL Files

Overview Artix provides a command-line tool, wsdltoacl, that enables you to generate
the prototype of an ACL file directly from a WSDL contract. You can use the
wsdltoacl utility to assign a default role to all of the operations in WSDL
contract. Alternatively, if you require more fine-grained control over the role
assignments, you can define a role-properties file, which assigns roles to
individual operations.

WSDL-to-ACL utility The wsdltoacl command-line utility has the following syntax:

Required arguments:

Optional arguments:

wsdltoacl { -s server-name } WSDL-URL
 [-i interface-name] [-r default-role-name]
 [-d output-directory] [-o output-file]
 [-props role-props-file] [-v] [-?]

-s server-name The server’s configuration scope from the Artix
domain configuration file (the same value as
specified to the -ORBname argument when the Artix
server is started from the command line).

For example, the basic/hello_world_soap_http
demonstration uses the
demos.hello_world_soap_http server name.

WSDL-URL URL location of the WSDL file from which an ACL
is generated.

-i interface-name Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output is
generated for all of the port types in the WSDL file.

-r default-role-name Specify the role name that will be assigned to all
operations by default. Default is IONAUserRole.

The default role-name is not used for operations
listed in a role-properties file (see -props).
246

Generating ACL Files
Example of generating an ACL file As example of how to generate an ACL file from WSDL, consider the
hello_world.wsdl WSDL file for the basic/hello_world_soap_http
demonstration, which is located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello_world_soap_http/e
tc

The HelloWorld WSDL contract defines a single port type, Greeter, and two
operations: greetMe and sayHi. The server name (that is, configuration
scope) used by the HelloWorld server is demos.hello_world_soap_http.

Sample role-properties file For the HelloWorld WSDL contract, you can define a role-properties file,
role_properties.txt, that assigns the FooUser role to the greetMe
operation and the FooUser and BarUser roles to the sayHi operation, as
follows:

Sample generation command To generate an ACL file from the HelloWorld WSDL contract, using the
role_properties.txt role-properties file, enter the following at a
command-line prompt:

-d output-directory Specify an output directory for the generated ACL
file.

-o output-file Specify the name of the generated ACL file. Default
is WSDLFileRoot-acl.xml, where WSDLFileRoot is
the root name of the WSDL file.

-props

role-props-file
Specifies a file containing a list of role-properties,
where a role-property associates an operation
name with a list of roles. Each line of the
role-properties file has the following format:

OperationName = Role1, Role2, ...

-v Display version information for the utility.

-? Display usage summary for the wsdltoacl utility.

greetMe = FooUser
sayHi = FooUser, BarUser

wsdltoacl -s demos.hello_world_soap_http hello_world.wsdl -props
role_properties.txt
 247

CHAPTER 11 | Managing Access Control Lists
Sample ACL output The preceding wsdltoacl command generates an ACL file,
hello_world-acl.xml, whose contents are shown in Example 52.

Example 52: ACL File Generated from HelloWorld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
 <action-role-mapping>
 <server-name>demos.hello_world_soap_http</server-name>
 <interface>
 <name>http://www.iona.com/hello_world_soap_http:Greeter</name>
 <action-role>
 <action-name>greetMe</action-name>
 <role-name>FooUser</role-name>
 </action-role>
 <action-role>
 <action-name>sayHi</action-name>
 <role-name>FooUser</role-name>
 <role-name>BarUser</role-name>
 </action-role>
 </interface>
 </action-role-mapping>
</secure-system>
248

Deploying ACL Files
Deploying ACL Files

Configuring a local ACL file To configure an application to load action-role mapping data from a local
file, do the following:

1. Save the ACL file together with the Artix action-role mapping DTD file
in a convenient location. You can copy the DTD file,
actionrolemapping.dtd, from the
ArtixInstallDir/artix/4.0/demos/security/full_security/etc
directory.

2. Edit the artix-secure.cfg configuration file, initializing the
plugins:is2_authorization:action_role_mapping configuration
variable with the ACL file location.

For example, an application with ORB name, my_server_scope, can be
initialized to load a local ACL file,
security_admin/action_role_mapping.xml, using the following
configuration:

Artix Configuration File
...
orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop_tls", "soap", "http", "artix_security"];

my_server_scope {
 plugins:is2_authorization:action_role_mapping =
 "file:///security_admin/action_role_mapping.xml";
 ...
};
 249

CHAPTER 11 | Managing Access Control Lists
250

CHAPTER 12

Managing
Certificates
TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

In this chapter This chapter contains the following sections:

What are X.509 Certificates? page 252

Certification Authorities page 254

Certificate Chaining page 257

PKCS#12 Files page 259

Creating Your Own Certificates page 261

Generating a Certificate Revocation List page 268

Deploying Certificates page 271
 251

CHAPTER 12 | Managing Certificates
What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert.pem. This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.
252

What are X.509 Certificates?
The contents of an X.509
certificate

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

• X.509 version information.

• A serial number that uniquely identifies the certificate.

• A subject DN that identifies the certificate owner.

• The public key associated with the subject.

• An issuer DN that identifies the CA that issued the certificate.

• The digital signature of the issuer.

• Information about the algorithm used to sign the certificate.

• Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 605 for more details about
DNs.
 253

CHAPTER 12 | Managing Certificates
Certification Authorities

Choice of CAs A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

• A commercial CA is a company that signs certificates for many
systems.

• A private CA is a trusted node that you set up and use to sign
certificates for your system only.

In this section This section contains the following subsections:

Commercial Certification Authorities page 255

Private Certification Authorities page 256
254

Certification Authorities
Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

• What are the certificate-signing policies of the commercial CAs?

• Are your applications designed to be available on an internal network
only?

• What are the potential costs of setting up a private CA?
 255

CHAPTER 12 | Managing Certificates
Private Certification Authorities

Choosing a CA software package If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

OpenSSL software package One software package that allows you to set up a private CA is OpenSSL,
http://www.openssl.org. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in “License Issues” on page 639.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from http://www.openssl.org/docs.

Setting up a private CA using
OpenSSL

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 261.

Choosing a host for a private
certification authority

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

Security precautions If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

• Do not connect the CA to a network.

• Restrict all access to the CA to a limited set of trusted users.

• Protect the CA from radio-frequency surveillance using an RF-shield.
256

Certificate Chaining
Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 31 shows an example of a simple certificate chain.

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Figure 31: A Certificate Chain of Depth 2

CA
Certificate

Peer
Certificate

signs signs
 257

CHAPTER 12 | Managing Certificates
Certificates signed by multiple
CAs

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 32 shows what this certificate chain looks like.

Trusted CAs An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Deploying Trusted Certificate Authority Certificates” on page 274.

Maximum chain length policy You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length_policy configuration variable for
IIOP/TLS and the policies:max_chain_length_policy configuration
variable for HTTPS respectively.

Figure 32: A Certificate Chain of Depth 3

Finance
CA

Certificate

Peer
Certificate

signs signs Commercial
CA

Certificate

signs
258

PKCS#12 Files
PKCS#12 Files

Overview Figure 33 shows the typical elements in a PKCS#12 file.

Contents of a PKCS#12 file A PKCS#12 file contains the following:

• An X.509 peer certificate (first in a chain).

• All the CA certificates in the certificate chain.

• A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Figure 33: Elements in a PKCS#12 File

X.509

PKCS#12 File

Private Key

Certificate Chain

X.509
CA

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.
 259

CHAPTER 12 | Managing Certificates
Creating a PKCS#12 file To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 265.

Viewing a PKCS#12 file To view a PKCS#12 file, CertName.p12:

Importing and exporting
PKCS#12 files

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Artix.

openssl pkcs12 -in CertName.p12

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.
260

Creating Your Own Certificates
Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.

OpenSSL utilities The steps described in this section are based on the OpenSSL
command-line utilities from the OpenSSL project,
http://www.openssl.org—see “OpenSSL Utilities” on page 617. Further
documentation of the OpenSSL command-line utilities can be obtained from
http://www.openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Set Up Your Own CA page 262

Use the CA to Create Signed Certificates page 265
 261

CHAPTER 12 | Managing Certificates
Set Up Your Own CA

Substeps to perform This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 256.

To set up your own CA, perform the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create the CA directory hierarchy

• Step 3—Copy and edit the openssl.cnf file

• Step 4—Initialize the CA database

• Step 5—Create a self-signed CA certificate and private key

Step 1—Add the bin directory to
your PATH

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create the CA directory
hierarchy

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

Step 3—Copy and edit the
openssl.cnf file

Copy the sample openssl.cnf from your OpenSSL installation to the X509CA
directory.

Edit the openssl.cnf to reflect the directory structure of the X509CA directory
and to identify the files used by the new CA.

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl
262

Creating Your Own Certificates
Edit the [CA_default] section of the openssl.cnf file to make it look like
the following:

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 632.

Step 4—Initialize the CA database In the X509CA directory, initialize two files, serial and index.txt.

Windows

> echo 01 > serial

To create an empty file, index.txt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> notepad index.txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

###
[CA_default]

dir = X509CA # Where CA files are kept
certs = $dir/certs # Where issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file
new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert
...

Note: The index.txt file must initially be completely empty, not even
containing white space.
 263

CHAPTER 12 | Managing Certificates
Step 5—Create a self-signed CA
certificate and private key

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
....+++++
.+++++
writing new private key to 'new_ca_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown
Email Address []:gbrown@iona.com

You should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl.cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.
264

Creating Your Own Certificates
Use the CA to Create Signed Certificates

Substeps to perform If you have set up a private CA, as described in “Set Up Your Own CA” on
page 262, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName.p12, perform
the following substeps:

• Step 1—Add the bin directory to your PATH

• Step 2—Create a certificate signing request

• Step 3—Sign the CSR

• Step 4—Concatenate the files

• Step 5—Create a PKCS#12 file

• Step 6—Repeat steps as required

Step 1—Add the bin directory to
your PATH

If you have not already done so, add the OpenSSL bin directory to your
path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.

Step 2—Create a certificate
signing request

Create a new certificate signing request (CSR) for the CertName.p12
certificate:

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName_csr.pem -keyout
X509CA/certs/CertName_pk.pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl.cnf
file). The default openssl.cnf file requires the following entries to match:

• Country Name

• State or Province Name

• Organization Name
 265

CHAPTER 12 | Managing Certificates
The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration from X509CA/openssl.cnf
Generating a 512 bit RSA private key
.+++++
.+++++
writing new private key to 'X509CA/certs/CertName_pk.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE
State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin
Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix
Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:password
An optional company name []:IONA

Step 3—Sign the CSR Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with
the new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'IE'
stateOrProvinceName :PRINTABLE:'Co. Dublin'
localityName :PRINTABLE:'Dublin'
organizationName :PRINTABLE:'IONA Technologies PLC'
266

Creating Your Own Certificates
organizationalUnitName:PRINTABLE:'Systems'
commonName :PRINTABLE:'Bank Server Certificate'
emailAddress :IA5STRING:'info@iona.com'
Certificate is to be certified until May 24 13:06:57 2000 GMT (365

days)
Sign the certificate? [y/n]:y
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 262.

Step 4—Concatenate the files Concatenate the CA certificate file, CertName certificate file, and
CertName_pk.pem private key file as follows:

Windows

copy X509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA/certs/CertName.pem
X509CA/certs/CertName_pk.pem >
X509CA/certs/CertName_list.pem

Step 5—Create a PKCS#12 file Create a PKCS#12 file from the CertName_list.pem file as follows:

openssl pkcs12 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.p12 -name "New cert"

Step 6—Repeat steps as required Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Artix services.
 267

CHAPTER 12 | Managing Certificates
Generating a Certificate Revocation List

Overview This section describes how to use an OpenSSL CA to generate a certificate
revocation list (CRL). A CRL is a list of X.509 certificates that are no longer
considered to be valid. You can deploy a CRL file to a secure application, so
that the application automatically rejects certificates that appear in the list.

For details about how to deploy a CRL file, see “Specifying a Certificate
Revocation List” on page 296.

Relationship between a CA and a
CRL

In order to generate a certificate revocation list, it is not sufficient simply to
assemble a list of certificates that you would like to revoke. The CA, just as
it is responsible for creating and signing certificates, is also responsible for
revoking certificates. When you decide to revoke a certificate, you must
inform the CA, which records this fact in its database.

After revoking certificates, you can ask the CA to generate a signed
certificate revocation list.

Steps to revoke certificates To generate a certificate revocation list, perform the following steps:

• Step 1—Add the OpenSSL bin directory to your path.

• Step 2—Revoke certificates.

• Step 3—Generate the CRL file.

• Step 4—Check the CRL file.

Step 1—Add the OpenSSL bin
directory to your path

On the secure CA host, add the OpenSSL bin directory to your path:

Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openssl utility available from the command line.
268

Generating a Certificate Revocation List
Step 2—Revoke certificates To add a certificate, CertName.pem, to the revocation list, enter the following
command:

openssl ca -config X509CA/openssl.cnf -revoke
X509CA/certs/CertName.pem

The command prompts you for the CA pass phrase and then revokes the
certificate:

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:
DEBUG[load_index]: unique_subject = "yes"
Adding Entry with serial number 02 to DB for

/C=IE/ST=Dublin/O=IONA/CN=bad_guy
Revoking Certificate 02.
Data Base Updated

Repeat this step as many times as necessary to add certificates to the CA’s
revocation list.

Step 3—Generate the CRL file To generate a PEM file, crl.pem, containing the CA’s complete certificate
revocation list, enter the following command:

openssl ca -config X509CA/openssl.cnf -gencrl -out crl/crl.pem

The command prompts you for the CA pass phrase and then generates the
crl.pem file:

Using configuration from openssl.cnf
Loading 'screen' into random state - done
Enter pass phrase for C:/temp/artix_40/X509CA/ca/new_ca_pk.pem:
DEBUG[load_index]: unique_subject = "yes"

Step 4—Check the CRL file Check the contents of the CRL file by converting it to plain text format, using
the following command:

openssl crl -in crl/crl.pem -text

Note: If you get the following error while attempting to revoke a
certificate:

unable to rename C:/temp/artix_40/X509CA/index.txt to
C:/temp/artix_40/X509CA/index.txt.old

reason: File exists

Simply delete index.txt.old and then try the command again.
 269

CHAPTER 12 | Managing Certificates
For a single revoked certificate with serial number 02 (that is, the second
certificate in the OpenSSL CA’s database), the output of this command
would look something like the following:

Certificate Revocation List (CRL):
 Version 1 (0x0)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: /C=IE/ST=Dublin/O=IONA/CN=CA_for_CRL
 Last Update: Feb 15 10:47:40 2006 GMT
 Next Update: Mar 15 10:47:40 2006 GMT
Revoked Certificates:
 Serial Number: 02
 Revocation Date: Feb 15 10:45:05 2006 GMT
 Signature Algorithm: md5WithRSAEncryption
 69:3e:55:8a:20:a0:57:d2:36:79:f0:34:bb:73:65:1e:1c:a9:
 40:35:8d:c4:e6:b9:77:fd:2b:1f:a8:26:0c:7a:fb:30:67:7f:
 6a:13:74:58:b9:e2:88:e7:ad:c5:d2:62:48:6b:1e:f6:10:0d:
 45:cc:11:cb:6b:48:28:e2:78:ad:f0:cf:fd:d6:57:78:f2:aa:
 19:8b:bc:62:79:9b:90:f7:18:ba:96:dc:7b:a5:b4:d5:bf:0f:
 e8:5e:71:89:4b:38:8c:f8:75:17:dd:ba:74:f1:01:e0:48:d0:
 e4:f4:dd:ea:47:32:8b:70:5e:1d:9a:4a:88:41:ba:bf:b2:39:
 ce:32
-----BEGIN X509 CRL-----
MIIBHTCBhzANBgkqhkiG9w0BAQQFADBCMQswCQYDVQQGEwJJRTEPMA0GA1UECBMG
RHVibGluMQ0wCwYDVQQKEwRJT05BMRMwEQYDVQQDFApDQV9mb3JfQ1JMFw0wNjAy
MTUxMDQ3NDBaFw0wNjAzMTUxMDQ3NDBaMBQwEgIBAhcNMDYwMjE1MTA0NTA1WjAN
BgkqhkiG9w0BAQQFAAOBgQBpPlWKIKBX0jZ58DS7c2UeHKlANY3E5rl3/SsfqCYM
evswZ39qE3RYueKI563F0mJIax72EA1FzBHLa0go4nit8M/91ld48qoZi7xieZuQ
9xi6ltx7pbTVvw/oXnGJSziM+HUX3bp08QHgSNDk9N3qRzKLcF4dmkqIQbq/sjnO
Mg==
-----END X509 CRL-----
270

Deploying Certificates
Deploying Certificates

Overview This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

In this section This section contains the following subsections:

Overview of Certificate Deployment page 272

Deploying Trusted Certificate Authority Certificates page 274

Deploying Application Certificates page 279
 271

CHAPTER 12 | Managing Certificates
Overview of Certificate Deployment

Overview Because the HTTPS and IIOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

• Certificate deployment for HTTPS.

• Certificate deployment for IIOP/TLS.

Certificate deployment for HTTPS Certificates used by the HTTPS transport must be in PKCS#12 format. To
specify certificates for the HTTPS transport, you can either edit the Artix
configuration file or edit your application’s WSDL contract.

Certificate deployment for
IIOP/TLS

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the IIOP/TLS transport, you must edit the Artix
configuration file.

Order of precedence Certificate deployment settings can be specified in a number of different
ways. The order of precedence, from the highest to the lowest, is as follows:

• Programmatic settings—you can use Artix contexts to specify security
settings. See “Programming Authentication” on page 437 for details.

• WSDL settings (HTTPS only)—Artix enables you to specify security
settings using attributes of the http-conf:client and
http-conf:server elements.

• plugins:at_http settings in the Artix configuration file (HTTPS only).

• principal_sponsor, policies, policies:iiop_tls, and
policies:https settings in the Artix configuration file.

• Default settings—if no settings are explicitly provided, Artix falls back
on the defaults.

Note: Versions of Artix prior to 3.0 required certificates for the HTTPS
transport to be in Privacy Enhanced Mail (PEM) format. For instructions on
how to convert PEM certificates to PKCS#12 format, see “Converting
legacy certificates” on page 279.
272

Deploying Certificates
Sample deployment directory
structure

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

Where X509Deploy is the parent directory for the deployed certificates.

X509Deploy/trusted_ca_lists

X509Deploy/certs
 273

CHAPTER 12 | Managing Certificates
Deploying Trusted Certificate Authority Certificates

Overview This section how to deploy trusted root CA certificates for Artix applications.

CA certificate format CA certificates must be provided in Privacy Enhanced Mail (PEM) format.

The PEM format is a proprietary format. You can use the Openssl
command-line tools to convert certificates to and from the PEM format. For
example, to convert a CA file, ca.der, from DER format to PEM format, use
the following openssl command:

openssl crl -inform DER -outform PEM -in ca.der -out ca.pem

Where ca.pem is the converted PEM format file.

How to deploy a trusted CA list In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

• Deployment for the HTTPS and IIOP/TLS transports.

• Alternative HTTPS deployment in the Artix configuration file.

• Alternative HTTPS deployment by configuring the WSDL contract.

Deployment for the HTTPS and
IIOP/TLS transports

To deploy one or more trusted root CAs for the HTTPS and IIOP/TLS
transport, perform the following steps (the procedure for client and server
applications is the same):

1. Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 262). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

2. Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

X509Deploy/trusted_ca_lists/ca_list01.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

Each CA list file consists of a concatenated list of CA certificates in
PEM format. A CA list file can be created using a simple file
274

Deploying Certificates
concatenation operation. For example, if you have two CA certificate
files, ca_cert01.pem and ca_cert02.pem, you could combine them into
a single CA list file, ca_list01.pem, with the following command:

Windows
copy X509CA\ca\ca_cert01.pem +

X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01.pem

UNIX
cat X509CA/ca/ca_cert01.pem X509CA/ca/ca_cert02.pem >>

X509Deploy/trusted_ca_lists/ca_list01.pem

The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

3. Edit the artix.cfg file to specify the locations of the CA list files to be
used by your application. The artix.cfg file is located in the following
directory:

ArtixInstallDir/artix/Version/etc/domains

To specify the CA list files, go to your application’s configuration scope
in the artix.cfg file and edit the value of the
policies:iiop_tls:trusted_ca_list_policy configuration variable
for the IIOP/TLS transport and the
policies:https:trusted_ca_list_policy configuration variable for
the HTTPS transport.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
 275

CHAPTER 12 | Managing Certificates
certificates from the ca_list01.pem and ca_list02.pem files, edit the
artix.cfg file as follows:

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Alternative HTTPS deployment in
the Artix configuration file

Alternatively, the at_http plug-in supports configuration variables that let
you specify the CA certificate list separately for the client role and the server
role.

Edit the Artix configuration file by adding (or modifying) the
plugins:at_http:client:trusted_root_certificates and
plugins:at_http:server:trusted_root_certificates configuration
variables, as follows:

Artix configuration file.
...
SecureAppScope {
 ...
 policies:iiop_tls:trusted_ca_list_policy =

["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 policies:https:trusted_ca_list_policy =
["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

 ...
;

Note: If an application supports authentication of a peer, that is a client
supports EstablishTrustInTarget, then a file containing trusted CA
certificates must be provided. If not, a NO_RESOURCES exception is raised.

secure_app {
 plugins:at_http:client:use_secure_sockets="true";
 plugins:at_http:client:trusted_root_certificates =

"X509Deploy/trusted_ca_lists/ca_list01.pem";
 ...
 plugins:at_http:server:trusted_root_certificates =

"X509Deploy/trusted_ca_lists/ca_list02.pem";
 ...
};
276

Deploying Certificates
Alternative HTTPS deployment by
configuring the WSDL contract

Alternatively, the HTTPS transport lets you specify the location of a CA list
file by configuring the WSDL contract. An advantage of this approach is that
it allows you to specify trusted CA lists independently for each port.

Edit the WSDL contract to specify the location of the CA list file. The details
of this step depend on whether you are deploying a trusted CA list on the
client side or on the server side.

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates attribute in the <http-conf:client> tag. For
example, to specify X509CA/ca/ca_list01.pem as the client’s trusted CA
certificate list, modify the client’s WSDL contract as follows:

Note: These settings take precedence over the
policies:https:trusted_ca_list_policy variable.

Note: The settings in the WSDL contract take precedence over the
settings in the artix.cfg file.

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
...
<service name="...">
 <port binding="...">
 <http-conf:client ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 ...
 </port>
</service>

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
 277

CHAPTER 12 | Managing Certificates
Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates attribute in the <http-conf:server> tag. For
example, to specify X509CA/ca/ca_list01.pem as the server’s trusted CA
certificate list, modify the server’s WSDL contract as follows:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
...
<service name="...">
 <port binding="...">
 ...
 <http-conf:server ...

TrustedRootCertificates="X509CA/ca/ca_list01.pem"
 ... />
 </port>
</service>

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
278

Deploying Certificates
Deploying Application Certificates

Overview This section describes how to deploy an Artix application’s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

• Deployment for the HTTPS and IIOP/TLS transports.

• Alternative HTTPS deployment in the Artix configuration file.

• Alternative HTTPS deployment by configuring the WSDL contract.

Converting legacy certificates For both the HTTPS and the IIOP/TLS transports, certificates must be
supplied in PKCS#12 format. If you have any legacy certificates in PEM
format, you can convert them to PKCS#12 format using the openssl
command-line utility, as follows:

Windows

Given the CA signing certificate, CACert.pem, the application certificate,
Cert.pem, and its private key, PrivKey.pem, enter the following at a
Windows command prompt:

> copy CACert.pem + Cert.pem + PrivKey.pem CertList.pem
> openssl pkcs12 -export -in CertList.pem -out Cert.p12

UNIX

Given the CA signing certificate, CACert.pem, the application certificate,
Cert.pem, and its private key, PrivKey.pem, enter the following at a UNIX
command prompt:

> cat CACert.pem Cert.pem PrivKey.pem > CertList.pem
> openssl pkcs12 -export -in CertList.pem -out Cert.p12

Deployment for the HTTPS and
IIOP/TLS transports

To deploy an Artix application’s own certificate, CertName.p12, for the
HTTPS and IIOP/TLS transports, perform the following steps:

1. Copy the application certificate, CertName.p12, to the certificates
directory—for example, X509Deploy/certs/applications—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.
 279

CHAPTER 12 | Managing Certificates
2. Edit the artix.cfg configuration file (usually
ArtixInstallDir/artix/Version/etc/domains/artix.cfg). Given
that your application picks up its configuration from the
SecureAppScope scope, change the principal sponsor configuration to
specify the CertName.p12 certificate, as follows:

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see “Providing a Certificate Pass Phrase” on page 293.

Alternative HTTPS deployment in
the Artix configuration file

Alternatively, the at_http plug-in supports configuration variables that let
you specify the location of an application’s PKCS#12 separately for the
client role and the server role.

Edit the Artix configuration file by adding (or modifying) the following
highlighted configuration variables, as follows:

Artix configuration file
...
SecureAppScope {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.p12"];
};

secure_app {
 plugins:at_http:client:use_secure_sockets="true";
 // Client certificate settings.
 plugins:at_http:client:client_certificate =

"X509Deploy/certs/applications/CertName.p12";
 plugins:at_http:client:client_private_key_password =

"MyKeyPassword";
 ...
 // Server certificate settings.
 plugins:at_http:server:server_certificate =

"X509Deploy/certs/applications/CertName.p12";
 plugins:at_http:server:server_private_key_password =

"MyKeyPassword";
 ...
};
280

Deploying Certificates
Alternative HTTPS deployment by
configuring the WSDL contract

Alternatively, the HTTPS transport lets you specify the location of an
application’s PKCS#12 file by configuring the WSDL contract.

Edit the WSDL contract to specify the location of the application’s
PKCS#12 file. The details of this step depend on whether you are deploying
a trusted CA list on the client side or on the server side:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:client> tag:

Note: These settings take precedence over the principal_sponsor:https
settings.

Note: The settings in the WSDL contract take precedence over the
settings in the artix.cfg file.

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:client UseSecureSockets="true"
 ClientCertificate="X509Deploy/certs/applications/CertName.p12"
 ClientPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
 281

CHAPTER 12 | Managing Certificates
Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <http-conf:server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >
...
<service name="...">
 <port binding="...">
 <soap:address ...>
 <http-conf:server UseSecureSockets="true"
 ServerCertificate="X509Deploy/certs/applications/CertName.p12"
 ServerPrivateKeyPassword="MyKeyPassword"
 TrustedRootCertificates="RootCertPath"
 ... />
 </port>
</service>

Note: Because the private key passwords in the WSDL contracts appear
in plaintext form, you must ensure that the WSDL contract files themselves
are not readable/writable by every user. Use the operating system to
restrict read/write access to trusted users only.

Additionally, to avoid revealing the server’s security configuration to
clients, you should remove the <http-conf:server> tag from the client
copy of the WSDL contract.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you
configure the WSDL publishing service to be secure. See “Publishing
WSDL Securely” on page 139.
282

CHAPTER 13

Configuring
HTTPS and
IIOP/TLS
Authentication
This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:

Requiring Authentication page 284

Specifying Trusted CA Certificates page 291

Specifying an Application’s Own Certificate page 292

Providing a Certificate Pass Phrase page 293

Specifying a Certificate Revocation List page 296

Advanced Configuration Options page 298
 283

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:

Target-Only Authentication page 285

Mutual Authentication page 288
284

Requiring Authentication
Target-Only Authentication

Overview When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 34.

Security handshake Prior to running the application, the client and server should be set up as
follows:

• A certificate chain is associated with the server—the certificate chain is
provided in the form of a PKCS#12 file (for HTTPS and IIOP/TLS). See
“Specifying an Application’s Own Certificate” on page 292.

• One or more lists of trusted certification authorities (CA) are made
available to the client—see “Deploying Trusted Certificate Authority
Certificates” on page 274.

During the security handshake, the server sends its certificate chain to the
client—see Figure 34. The client then searches its trusted CA lists to find a
CA certificate that matches one of the CA certificates in the server’s
certificate chain.

Figure 34: Target Authentication Only

Secure Association
Client Server

Cert file

Trusted CA Lists
Authenticate
CertificateCA Cert List 1

CA Cert List 2
 285

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
HTTPS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is HTTPS.

Artix Configuration File
...
policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:target_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
286

Requiring Authentication
IIOP/TLS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, where the transport type is IIOP/TLS.

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

bank_server {
 policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 ...
};

bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

};
 287

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 35. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Figure 35: Mutual Authentication

Secure Association
Client Server

Trusted CA Lists
Authenticate

Target

Trusted CA Lists

Authenticate
Client

Cert file

CA Cert List 1

CA Cert List 2

Cert fileCA Cert List 1

CA Cert List 2
288

Requiring Authentication
Security handshake Prior to running the application, the client and server should be set up as
follows:

• Both client and server have an associated certificate chain (PKCS#12
file)—see “Specifying an Application’s Own Certificate” on page 292.

• Both client and server are configured with lists of trusted certification
authorities (CA)—see “Deploying Trusted Certificate Authority
Certificates” on page 274.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 34.

HTTPS example The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is HTTPS.

Artix Configuration File
...
policies:mechanism_policy:protocol_version = "SSL_V3";
policies:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
 289

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
IIOP/TLS example The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,
secure_server_enforce_client_auth, where the transport type is
IIOP/TLS.

};

Artix Configuration File
...
policies:iiop_tls:mechanism_policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism_policy:ciphersuites =

["RSA_WITH_RC4_128_SHA", "RSA_WITH_RC4_128_MD5"];

secure_server_enforce_client_auth
{
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 ...
};

secure_client_with_cert
{
 policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustInTarget"];
 policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 ...
};
290

Specifying Trusted CA Certificates
Specifying Trusted CA Certificates

Overview When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Which applications need to
specify trusted CA certificates?

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

• All IIOP/TLS or HTTPS clients.

• Any IIOP/TLS or HTTPS servers that support mutual authentication.

How to deploy trusted CA
certificates

For more details about how to deploy trusted CA certificates, see the
following references:

• “Deploying Trusted Certificate Authority Certificates” on page 274.
 291

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

• Security unaware—configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application
certificate

For details about how to deploy an application’s own certificate, see the
following reference:

• “Deploying Application Certificates” on page 279.
292

Providing a Certificate Pass Phrase
Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:

Certificate Pass Phrase for HTTPS and IIOP/TLS page 294
 293

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Certificate Pass Phrase for HTTPS and IIOP/TLS

Overview Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

For the HTTPS and IIOP/TLS transports, the pass phrase can be provided in
one of the following ways:

• From a dialog prompt.

• In a password file.

• Directly in configuration.

From a dialog prompt If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C++ Applications

When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the ORB
Enter password :

In a password file The pass phrase is stored in a password file whose location is specified in
the principal_sponsor:auth_method_data configuration variable using the
password_file option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=X509Deploy/certs/administrator.p12",
"password_file=X509Deploy/certs/administrator.pwf"];

 ...
};
294

Providing a Certificate Pass Phrase
In this example, the pass phrase for the bank_server.p12 certificate is
stored in the administrator.pwf file, which contains the following pass
phrase:

administratorpass

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
principal_sponsor:auth_method_data configuration variable using the
password option. For example, the bank_server demonstration configures
the principal sponsor as follows:

In this example, the pass phrase for the bank_server.p12 certificate is
bankserverpass.

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Artix Configuration File
bank_server {
 ...
 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=ASPInstallDir\asp\6.0\etc\tls\x509\certs\demos\ban
k_server.p12", "password=bankserverpass"];

};

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.
 295

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Specifying a Certificate Revocation List

Overview Occasionally, it can happen that the security of an X.509 certificate is
compromised or you might want to invalidate a certificate, because the
owner of the certificate no longer enjoys the same security privileges as
before. In either of these cases, it is useful to generate and deploy a
certificate revocation list (CRL). A CRL is a list of X.509 certificates that are
no longer valid. When you deploy a CRL file to a secure application, the
application automatically rejects the certificates that appear in the list.

Configuring certificate revocation Example 53 shows how to configure an application to use a CRL file. For an
application that uses the secure_artix.my_secure_app configuration scope,
add cert_validator to the list of ORB plug-ins and set the
plugins:cert_validator:crl_file_path variable to the location of the
CRL file.

Format of the CRL file The CRL file must be in a PEM format.

Sources of CRL files You can obtain a CRL file from one of the following sources:

• Commercial CAs.

• OpenSSL CA.

Example 53: Configuration of a Certificate Revocation List

Artix Configuration File
secure_artix {
 ...
 my_secure_app {
 orb_plugins = [... , "cert_validator"];
 plugins:cert_validator:crl_file_path = "CRLDir/crl.pem";
 };
};

Note: The specified CRL file can be empty, but it must exist. Otherwise,
every certificate would be rejected.
296

Specifying a Certificate Revocation List
Commercial CAs If you use a commercial CA to manage your certificates, simply ask the CA
to generate the CRL file for you.

It is unlikely, however, that the CA will provide the CRL file in the requisite
PEM format (the PEM format is proprietary to the OpenSSL product). To
convert a CRL file, crl.der, from DER format to PEM format, use the
following openssl command:

openssl crl -inform DER -outform PEM -in crl.der -out crl.pem

Where crl.pem is the converted PEM format file.

OpenSSL CA If you use the OpenSSL product to manage a custom CA, you can generate a
CRL file by following the instructions in “Generating a Certificate Revocation
List” on page 268.

Creating an aggregate CRL file If you need to revoke certificates from more than one CA, you can create an
aggregate CRL file simply by concatenating the CRL files from each CA.

For example, if you have a CRL file generated by a commercial CA,
commercial_crl.pem, and another CRL file generated by a home-grown
OpenSSL CA, openssl_crl.pem, you can combine these into a single CRL
file as follows:

Windows
copy commercial_crl.pem + openssl_crl.pem crl.pem

UNIX
cat commercial_crl.pem openssl_crl.pem > crl.pem
 297

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Advanced Configuration Options

Overview For added security, the HTTPS and IIOP/TLS transports allows you to apply
extra conditions on certificates. Before reading this section you might find it
helpful to consult “Managing Certificates” on page 251, which provides
some background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:

Setting a Maximum Certificate Chain Length page 299

Applying Constraints to Certificates page 300
298

Advanced Configuration Options
Setting a Maximum Certificate Chain Length

Max chain length policy You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the
TrustedCAListPolicy).

Example For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

Configuration variable You can specify the maximum length of certificate chains used in maximum
chain length policy with the policies:iiop_tls:max_chain_length_policy
and policies:max_chain_length_policy configuration variable. For
example:

policies:iiop_tls:max_chain_length_policy = "4";

Default value The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA’s.
 299

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
Applying Constraints to Certificates

Certificate constraints policy You can use the certificate constraints policy to apply constraints to peer
X.509 certificates. These conditions are applied to the owner’s distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
or policies:certificate_constraints_policy configuration variable. For
example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
300

Advanced Configuration Options
Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 605.
 301

CHAPTER 13 | Configuring HTTPS and IIOP/TLS Authentication
302

CHAPTER 14

Configuring
HTTPS and
IIOP/TLS Secure
Associations
The Artix HTTPS and IIOP/TLS transport layers offer additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

In this chapter This chapter discusses the following topics:

Overview of Secure Associations page 304

Setting Association Options page 306

Specifying Cipher Suites page 319

Caching Sessions page 329
 303

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Overview of Secure Associations

Secure association A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is a HTTPS connection or an IIOP/TLS connection augmented by
a collection of security policies that govern the behavior of the connection.

TLS session A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

Colocation For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS_Coloc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

Configuration overview The security characteristics of an association can be configured through the
following CORBA policy types:

• Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 311 for details.

• Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 313 for details.

• Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
Cipher Suites” on page 319 for details.
304

Overview of Secure Associations
Figure 36 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

Figure 36: Configuration of a Secure Association

Client

Client Invocation
Policy

Client Configuration

Association Options

Specified Cipher SuitesMechanism Policy

Secure Association
Server

Server Configuration

Target Invocation
Policy

Association Options

Specified Cipher SuitesMechanism Policy
 305

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Setting Association Options

Overview This section explains the meaning of the various association options and
describes how you can use the association options to set client and server
secure invocation policies for HTTPS and IIOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:

Secure Invocation Policies page 307

Association Options page 309

Choosing Client Behavior page 311

Choosing Target Behavior page 313

Hints for Setting Association Options page 315
306

Setting Association Options
Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements for the applications in your
system with two types of security policy:

• Client secure invocation policy—specifies the client association
options.

• Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

IIOP/TLS configuration example For example, to specify that client authentication is required for IIOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth
{
 # IIOP/TLS Association Options
 policies:iiop_tls:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 # Other settings (not shown)...
};
 307

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
HTTPS configuration example For example, to specify that client authentication is required for HTTPS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server_enforce_client_auth
{
 # HTTPS Association Options
 policies:target_secure_invocation_policy:requires =

["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

 # Other settings (not shown)...
};
308

Setting Association Options
Association Options

Available options You can use association options to configure IIOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

• NoProtection

• Integrity

• Confidentiality

• DetectReplay

• DetectMisordering

• EstablishTrustInTarget

• EstablishTrustInClient

NoProtection Use the NoProtection flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the target can accept secure and insecure
invocations.

Integrity Use the Integrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Confidentiality Use the Confidentiality flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the MechanismPolicy support
confidentiality-protected invocations.

DetectReplay Use the DetectReplay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

DetectMisordering Use the DetectMisordering flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.
 309

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
EstablishTrustInTarget The EstablishTrustInTarget flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client supports
and requires unless anonymous cipher suites are supported.

EstablishTrustInClient Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.
310

Setting Association Options
Choosing Client Behavior

Client secure invocation policy The client secure invocation policy type determines how a client handles
security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
IIOP/TLS connections.

HTTPS configuration You can set this policy for HTTPS connections through the following generic
configuration variables:

policies:client_secure_invocation_policy:requires

Specifies the minimum security features that the client requires to
establish a HTTPS connection or an IIOP/TLS connection.

policies:client_secure_invocation_policy:supports

Specifies the security features that the client is able to support on
HTTPS connections and IIOP/TLS connections.

Association options In both cases, you provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 309.

Default value The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget
 311

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Example The following example shows some sample settings for the client secure
invocation policy:

Artix Configuration File
 bank_client {
 ...
 policies:iiop_tls:client_secure_invocation_policy:requires =
 ["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget"];

 policies:iiop_tls:client_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 };
 ...
};
312

Setting Association Options
Choosing Target Behavior

Target secure invocation policy The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

IIOP/TLS configuration You can set the target secure invocation policy for IIOP/TLS connections
through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
IIOP/TLS connections.

HTTPS configuration You can set the target secure invocation policy for HTTPS connections
through the following configuration variables:

policies:target_secure_invocation_policy:requires

Specifies the minimum security features that your targets require,
before they accept a HTTPS connection.

policies:target_secure_invocation_policy:supports

Specifies the security features that your targets are able to support on
HTTPS connections.

Association options In both cases, you can provide the details of the security levels in the form of
AssociationOption flags—see “Association Options” on page 309.

Default value for IIOP/TLS The default value for the IIOP/TLS target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering
 313

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Default value for HTTPS The default value for the HTTPS target secure invocation policy is:

In contrast to the IIOP/TLS policy, the HTTPS policy additionally requires
EstablishTrustInClient by default.

Example The following example shows some sample settings for the target secure
invocation policy:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget,
EstablishTrustInClient

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInClient

Artix Configuration File
 ...
 bank_server {
 ...
 policies:iiop_tls:target_secure_invocation_policy:requires =
 ["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering"];

 policies:iiop_tls:target_secure_invocation_policy:supports =
 ["Confidentiality", "Integrity", "DetectReplay",
 "DetectMisordering", "EstablishTrustInTarget"];
 ...
 };
 ...
314

Setting Association Options
Hints for Setting Association Options

Overview This section gives an overview of how association options can be used in
real applications.

Rules of thumb The following rules of thumb should be kept in mind:

• If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

• It is important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 326).

• The NoProtection option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoProtection.

Types of association option Association options can be categorized into the following different types, as
shown in Table 4.

Table 4: Description of Different Types of Association Option

Description Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustInTarget and
EstablishTrustInClient.

Quality of protection. Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.
 315

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
EstablishTrustInTarget and
EstablishTrustInClient

These association options are used as follows:

• EstablishTrustInTarget—determines whether a server sends its own
X.509 certificate to a client during the SSL/TLS handshake. In
practice, secure Artix applications must enable
EstablishTrustInTarget, because all of the cipher suites supported
by Artix require it.

The EstablishTrustInTarget association option should appear in all
of the configuration variables shown in the relevant row of Table 5.

• EstablishTrustInClient—determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The
EstablishTrustInClient feature is optional and various combinations
of settings are possible involving this assocation option.

The EstablishTrustInClient association option can appear in any of
the configuration variables shown in the relevant row of Table 5.

Table 5: Setting EstablishTrustInTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

EstablishTrustInClient policies:client_secure_invocation_pol

icy:supports
policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow_unauthenticated_clients_policy configuration
variable. See “policies” on page 524.
316

Setting Association Options
Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 9 on page 327). As a rule of thumb, if you want security you
generally would want all of these association options.

A typical secure application would list all of these association options in all
of the configuration variables shown in Table 6.

NoProtection The NoProtection association option is used for two distinct purposes:

• Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

Table 6: Setting Quality of Protection Association Options

Association Options Client side—can appear in... Server side—can appear in...

Confidentiality,
Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires

Note: Some of the sample configurations appearing in the generated
configuration file require Confidentiality, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confidentiality also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

Note: In this case, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure IIOP communication.
 317

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
• Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoProtection appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

♦ Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the binding:client_binding_list.

♦ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Table 7 shows the configuration variables in which the NoProtection
association option can appear.

Note: In this case, the orb_plugins configuration variable should
include both the iiop_tls plug-in and the iiop plug-in.

Table 7: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...

NoProtection policies:client_secure_invocation_pol

icy:supports

policies:client_secure_invocation_pol

icy:requires

policies:target_secure_invoca

tion_policy:supports

policies:target_secure_invoca

tion_policy:requires
318

Specifying Cipher Suites
Specifying Cipher Suites

Overview This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
IIOP/TLS and HTTPS secure associations. During a security handshake, the
client chooses a cipher suite that matches one of the cipher suites available
to the server. The cipher suite then determines the security algorithms that
are used for the secure association.

In this section This section contains the following subsections:

Supported Cipher Suites page 320

Setting the Mechanism Policy page 323

Constraints Imposed on Cipher Suites page 326
 319

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Supported Cipher Suites

Artix cipher suites The following cipher suites are supported by IIOP/TLS and HTTPS, which
are both implemented using the Baltimore security toolkit:

• Null encryption, integrity-only ciphers:
RSA_WITH_NULL_MD5
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH_RC4_128_MD5
RSA_WITH_RC4_128_SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

Security algorithms Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

• Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.

• Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

• Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

Key exchange algorithms The following key exchange algorithms are supported:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.

RSA_EXPORT RSA public key encryption using X.509v3 certificates.
Key size restricted to 512 bits.
320

Specifying Cipher Suites
Encryption algorithms The following encryption algorithms are supported:

Secure hash algorithms The following secure hash algorithms are supported:

Cipher suite definitions The Baltimore-based cipher suites in Artix are defined as follows:

RC4_40 A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4_128 RC4 with a 128-bit key.

DES40_CBC Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES_CBC DES with a 56-bit key.

3DES_EDE_CBC Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

SHA Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

Table 8: Cipher Suite Definitions

Cipher Suite Key Exchange
Algorithm

Encryption
Algorithm

Secure Hash
Algorithm

Exportable?

RSA_WITH_NULL_MD5 RSA NULL MD5 yes

RSA_WITH_NULL_SHA RSA NULL SHA yes

RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes

RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5 no

RSA_WITH_RC4_128_SHA RSA RC4_128 SHA no

RSA_EXPORT_WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes

RSA_WITH_DES_CBC_SHA RSA DES_CBC SHA no

RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
 321

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.
322

http://www.ietf.org

Specifying Cipher Suites
Setting the Mechanism Policy

Mechanism policy To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

• Whether SSL or TLS is used, and

• Which specific cipher suites are to be used.

The protocol_version
configuration variable

You can specify whether SSL, TLS or both are used with a transport protocol
by assigning a list of protocol versions to the
policies:iiop_tls:mechanism_policy:protocol_version configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:protocol_version configuration
variable for HTTPS. For example:

You can set the protocol_version configuration variable to include one or
more of the following protocols:

TLS_V1
SSL_V3

The order of the entries in the protocol_version list is unimportant. During
the SSL/TLS handshake, the highest common protocol will be negotiated.

Interoperating with CORBA
applications on OS/390

There are some implementations of SSL/TLS on the OS/390 platform that
erroneously send SSL V2 client hellos at the start of an SSL V3 or TLS V1
handshake. If you need to interoperate with a CORBA application running
on OS/390, you can configure Artix to accept SSL V2 client hellos using the
policies:iiop_tls:mechanism_policy:accept_v2_hellos configuration
variable for IIOP/TLS. For example:

The default is false.

Artix Configuration File
policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",

"SSL_V3"];

Artix Configuration File
policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";
 323

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
The cipher suites configuration
variable

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechanism_policy:ciphersuites configuration
variable for IIOP/TLS and the
policies:https:mechanism_policy:ciphersuites configuration variable
for HTTPS. For example:

Cipher suite order The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ciphersuites list.

Valid cipher suites You can specify any of the following cipher suites:

• Null encryption, integrity only ciphers:
RSA_WITH_NULL_MD5,
RSA_WITH_NULL_SHA

• Standard ciphers
RSA_EXPORT_WITH_RC4_40_MD5,
RSA_WITH_RC4_128_MD5,
RSA_WITH_RC4_128_SHA,
RSA_EXPORT_WITH_DES40_CBC_SHA,
RSA_WITH_DES_CBC_SHA,
RSA_WITH_3DES_EDE_CBC_SHA

Default values If no cipher suites are specified through configuration or application code,
the following apply:

RSA_WITH_RC4_128_SHA,
RSA_WITH_RC4_128_MD5,
RSA_WITH_3DES_EDE_CBC_SHA,
RSA_WITH_DES_CBC_SHA

Artix Configuration File
policies:iiop_tls:mechanism_policy:ciphersuites =
 ["RSA_WITH_NULL_MD5",
 "RSA_WITH_NULL_SHA",
 "RSA_EXPORT_WITH_RC4_40_MD5",
 "RSA_WITH_RC4_128_MD5"];
324

Specifying Cipher Suites
That is, by default all of the null encryption cipher suites are disabled and all
of the non-export cipher suites are supported.
 325

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
Constraints Imposed on Cipher Suites

Effective cipher suites Figure 37 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Required and supported
association options

For example, in the context of the IIOP/TLS protocol the list of cipher suites
is affected by the following configuration options:

• Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

• Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports on
the server side.

Figure 37: Constraining the List of Cipher Suites

Association
Options

Specified
Cipher Suites

constrain

Effective
Cipher Suites

yields
326

Specifying Cipher Suites
Cipher suite compatibility table Use Table 9 to determine whether or not a particular cipher suite is
compatible with your association options.

Determining compatibility The following algorithm is applied to the initial list of cipher suites:

1. For the purposes of the algorithm, ignore the EstablishTrustInClient
and EstablishTrustInTarget association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 9) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 9) not included in the configured supported
association options.

Table 9: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA_WITH_NULL_MD5 Integrity, DetectReplay,
DetectMisordering

RSA_WITH_NULL_SHA Integrity, DetectReplay,
DetectMisordering

RSA_EXPORT_WITH_RC4_40_MD5 Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_RC4_128_MD5 Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_RC4_128_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_EXPORT_WITH_DES40_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_DES_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality

RSA_WITH_3DES_EDE_CBC_SHA Integrity, DetectReplay,
DetectMisordering, Confidentiality
 327

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
No suitable cipher suites available If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

Example For example, specifying a cipher suite such as RSA_WITH_RC4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionally EstablishTrustInClient) but
specifying a secure_invocation_policy that supports only a subset of
those features results in that cipher suite being ignored.
328

Caching Sessions
Caching Sessions

Session caching policy You can use the IIOP/TLS and HTTPS session caching policies to control
TLS session caching and reuse for both the client side and the server side.

Configuration variable You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or
policies:session_caching_policy configuration variables. For example:

policies:iiop_tls:session_caching_policy = "CACHE_CLIENT";

Valid values You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

Default value The default value is CACHE_NONE.

Configuration variable plugins:atli_tls_tcp:session_cache_validity_period

This allows control over the period of time that SSL/TLS session caches
are valid for.

Valid values session_cache_validity_period is specified in seconds.

Default value The default value is 1 day.

Configuration variable plugins:atli_tls_tcp:session_cache_size

session_cache_size is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

Default value This defaults to no limit specified for C++.
 329

CHAPTER 14 | Configuring HTTPS and IIOP/TLS Secure Associations
330

CHAPTER 15

Partial Message
Protection
Partial message protection refers to a range of features defined
by the WS-Security specification that enable you to apply
cryptographic operations at the level of the SOAP binding. The
“partial” in partial message protection refers to the fact that
cryptographic operations can be applied to parts of the
message, instead of to the whole message.

In this chapter This chapter discusses the following topics:

Introduction to SOAP PMP page 332

Setting Up a Java Keystore page 336

Artix Configuration page 343

Policy Configuration page 347

Example of WSS Signing and Encryption page 368

Exception Handling page 382
 331

CHAPTER 15 | Partial Message Protection
Introduction to SOAP PMP

Overview Artix partial message protection (PMP) is a suite of cryptographic
capabilities that can be applied at the SOAP binding layer. The feature is
based on the following WS-Security specification:

WS-Security Core Specification 1.0

In many respects, the capabilities offered by SOAP PMP parallel the
capabilities offered by socket layer security, such as SSL/TLS. Like socket
layer security, PMP provides confidentiality and integrity guarantees, based
on X.509 certificates and asymmetric key technology. The key difference,
however, is that PMP applies cryptographic operations at a higher level in
the binding stack. Consequently, a smaller portion of the message is
subjected to encryption operations. In particular, by leaving message
headers unencrypted, PMP enables routers to process messages efficiently,
while the message body itself remains safely encrypted.

Features Partial message protection offers the following features:

• Security at the level of a SOAP 1.1 binding.

• Confidentiality and integrity support.

• Secure SOAP messages independently of the transport layer.

• Ability to send encrypted messages through plain HTTP firewall ports.

• Ability to avoid the restrictions of point-to-point security.

• Apply security policies to individual endpoints.

Limitations Partial message protection is currently subject to the following limitations:

• Currently, cannot specify which part of message to protect (default is
to protect the SOAP body of message).

• Supported only for the SOAP 1.1 binding.
332

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Introduction to SOAP PMP
Architecture The current implementation of PMP has the following architectural
characteristics:

• PMP is implemented by the WSS plug-in.

• The WSS plug-in is implemented as an Artix Java plug-in, but can also
be used in Artix C++ applications.

• The WSS plug-in can install two Java handlers, a WSS client handler
and a WSS server handler, which are responsible for modifying
incoming and outgoing messages on the client and server.

Basic client-server scenario The basic behaviour of PMP at run time can be illustrated by the
client-server scenario shown in Figure 38, which shows handlers installed
on the client side and on the server side. In this example, messages are
encrypted as they pass back and forth between the client and the server

On the client side, the outgoing request passes along the chain of handlers
until it reaches the PMP SOAP message handler, which encrypts the
message’s SOAP body.

On the server side, the incoming request message encounters the PMP
SOAP message handler, which decrypts the SOAP message. The plaintext
message then passes along the rest of the Java handler chain until it
reaches the servant object.

The reply message is treated in a similar manner, except that the message
progresses in the opposite direction, back to the client.

Figure 38: Basic Client-Server Scenario

Encrypted
Request

Client Message Handlers

Encrypted
Reply

Request

Reply

PMP
Client

Message
Handler

Encrypted
Request

Encrypted
Reply

Request

Reply

PMP
Server

Message
Handler

Server Message Handlers

Note: Currently, SOAP headers are not protected; just the message body.
 333

CHAPTER 15 | Partial Message Protection
Key distribution Artix employs a Java keystore repository to store the certificates and private
keys for PMP—see “Setting Up a Java Keystore” on page 336.

Artix does not provide any tools for managing the distribution of keys and
certificates in a large secure network, however. For managing certificates
and keys in a large system, it is recommended that you install a public key
infrastructure (PKI) tool from a third-party software vendor.

Cryptographic operations Artix PMP currently supports the following basic cryptographic operations:

These basic cryptographic operations can be combined, to give the following
composite cryptographic operations:

The order of the constituent operations is important. Thus, a producer that
performs encrypt and sign on an outgoing message must be complemented
by a consumer that performs verify and decrypt. Likewise, the sign and
encrypt operation is complemented by the decrypt and verify operation.

Granularity of protection policies Artix PMP provides flexible options for specifying the granularity at which
protection policies are applied. For example, you can apply policies at any of
the following levels of granularity:

• All incoming and outgoing messages.

• All endpoints from a particular service.

• A single endpoint only.

Encrypt Encrypt the SOAP body of a message (that is,
excluding the SOAP header).

Sign Sign the SOAP body of a message (that is,
excluding the SOAP header).

Verify Verify the signature on the SOAP body of a
message.

Decrypt Decrypt the SOAP body of a message.

Encrypt and Sign Encrypt and then sign the SOAP body.

Sign and Encrypt Sign and then encrypt the SOAP body.

Verify and Decrypt Verify signature and then decrypt the SOAP body.

Decrypt and Verify Decrypt the SOAP body and then verify the
signature.
334

Introduction to SOAP PMP
• Outgoing messages only.

• Incoming messages only.

• Client or server role only.

Moreover, PMP lets you specify the granularity using a flexible system of
rules and conditions. In particular, PMP supports a feature that lets you
select service QNames and port names using regular expression matching.
See “Conditions” on page 365 for more details.
 335

CHAPTER 15 | Partial Message Protection
Setting Up a Java Keystore

Overview The Artix PMP feature uses Java keystores as a repository for storing X.509
certificates and private keys. Before enabling PMP for your application, you
need to understand how to create and manage Java keystores, as described
in this section.

Prerequisites The Java keystore is a feature of the Java platform Standard Edition (SE)
from Sun. To perform the tasks described in this section, you will need to
install a recent version of the Java Development Kit (JDK) and ensure that
the JDK bin directory is on your path. See http://java.sun.com/javase/.

Default keystore provider Sun’s JDK provides a standard file-based implementation of the keystore.
The instructions in this section presume you are using the standard
keystore. If there is any doubt about the kind of keystore you are configured
to use, check the following line in your java.security file (located either in
JavaInstallDir/lib/security or JavaInstallDir/jre/lib/security):

keystore.type=jks

The jks (or JKS) keystore type represents the standard keystore.

Customizing the keystore provider Java also allows you provide a custom implementation of the keystore, by
implementing the java.security.KeystoreSpi class. For details of how to
do this see the following references:

• http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html

• http://java.sun.com/j2se/1.5.0/docs/guide/security/HowToImplAProvider.h
tml

If you use a custom keystore provider, you should consult the third-party
provider documentation for details of how to manage certificates and private
keys with this provider.

Keystore password The keystore repository is protected by a keystore password, which is
defined at the same time the keystore is created. Every time you attempt to
access or modify the keystore, you must provide the keystore password.
336

http://java.sun.com/javase/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/HowToImplAProvider.html

Setting Up a Java Keystore
Keystore entries The keystore provides two distinct kinds of entry for storing certificates and
private keys, as follows:

• Key entries—each key entry contains the following components:

♦ A private key,

♦ An X.509 certificate (can be v1, v2, or v3) containing the public
key that matches this entry’s private key.

♦ Optionally, one or more CA certificates that belong to the
preceding certificate’s trust chain.

In addition, each key entry is tagged by an alias and protected by a key
password. To access a particular key entry in the keystore, you must
provide both the alias and the key password.

• Trusted certificate entries—each trusted certificate entry contains just
a single X.509 certificate.

Each trusted certificate entry is tagged by an alias. There is no need to
protect the entry with a password, however, because the X.509
certificate contains only a public key.

How PMP uses keystore entries The way in which Artix PMP uses Java keystores is slightly unconventional.
This is because Java keystores were originally developed to support SSL/TLS
protocols, which have slightly different requirements from PMP. In
particular, PMP does not attempt to perform any authentication based on
X.509 certificates (in contrast to the SSL/TLS family of protocols). Hence,
PMP does not need to store trusted CA certificates, which is what the
keystore’s trusted certificate entries were originally devised for. PMP uses
trusted certificate entries to store the X.509 certificates belonging to its
peers.

Note: The CA certificates belonging to a certificate’s trust chain can
be stored either in its key entry or in trusted certificate entries.
 337

CHAPTER 15 | Partial Message Protection
To illustrate the way in which PMP uses keystores, consider the example
shown in Figure 39, which shows two keystores used in a client-server
application.

In this example, the keystores are set up as follows:

• Client keystore—stores the following entries:

♦ A key entry, containing the X.509 certificate identified as alice
and its matching private key. This private key is used to sign
outgoing requests and to decrypt incoming replies.

♦ A trusted certificate entry, containing the X.509 certificate
identified as bob. This public key is used to verify incoming replies
and to encrypt outgoing requests.

• Server keystore—stores the following entries:

♦ A key entry, containing the X.509 certificate identified as bob and
its matching private key. This private key is used to sign outgoing
replies and to decrypt incoming requests.

Figure 39: Overview of Keystores for a Client-Server Application

alias = alice, password = ...

X.509

X.509

Private Key

alias = bob

.
.
.

.
.
.

K
ey

 e
nt

rie
s

T
ru

st
ed

 c
er

t.
en

tr
ie

s
Client Keystore

alias = bob, password = ...

X.509

X.509

Private Key

alias = alice

.
.
.

.
.
.

K
ey

 e
nt

rie
s

T
ru

st
ed

 c
er

t.
en

tr
ie

s

Server Keystore
338

Setting Up a Java Keystore
♦ A trusted certificate entry, containing the X.509 certificate
identified as alice. This public key is used to verify incoming
requests and to encrypt outgoing replies.

Keystore utilities The Java platform SE provides two keystore utilities: keytool and
jarsigner. Only the keytool utility is needed here.

Generating certificates and keys
using keytool

To generate the sample certificates and keys shown in Figure 39 on
page 338 using the keytool utility, perform the following steps:

1. In this example, you create two keystores: a client keystore and a
server keystore. Create a directory, KeystoreDir, to hold the keystores
you are about to create.

2. Open a command prompt and change directory to KeystoreDir. Enter
the following command:

This keytool command, invoked with the -genkey option, generates
an X.509 certificate and a matching private key for the client. The
certificate and key are both placed in a key entry in a newly created
keystore, client.jks. Because the specified keystore, client.jks, did
not exist before issuing the command, keytool implicitly creates a new
keystore.

The options specified to the preceding keytool command have the
following meaning:

♦ -genkey option—selects the command to generate a self-signed
X.509 certificate and its associated private key, placing both of
these items in a single key entry in the keystore.

♦ -dname and -validity options—specify the minimum amount of
information needed for an X.509 certificate. The -dname specifies
the distinguished name (DN) of the certificate owner (see “ASN.1

keytool -genkey -dname "CN=Alice, OU=Engineering, O=IONA
Technologies, C=IE" -validity 365 -alias alice -keypass
password -keystore client.jks -storepass password
 339

CHAPTER 15 | Partial Message Protection
and Distinguished Names” on page 605 for a detailed
explanation). The -validity option specifies the number of days
before the certificate expires.

♦ -alias and -keypass options—control access to the newly
created key entry. The -alias option specifies a tag that is used
to access the key entry. The -keypass option specifies a
corresponding password that protects access to the private key in
the key entry.

♦ -keystore and -storepass options—you must always specify
these options to access the keystore. The -keystore option
specifies the location of the keystore file. If the option references a
non-existent file, keytool creates a new keystore with the given
file name (if appropriate). The -storepass specifies the password
that protects access to the keystore.

3. To generate an X.509 certificate and a matching private key for the
server, enter the following command:

4. To export the client certificate to a file, alice.cert, enter the following
command:

The file, alice.cert, will contain the client’s exported X.509
certificate in a binary format (just the certificate, not the private key). It
is not necessary to specify the key password (-keypass option),
because the private key is not accessed.

Note: The keytool command also supports -keyalg, -keysize, and
-sigalg options for selecting the algorithms to generate keys and to
sign the certificate.

keytool -genkey -dname "CN=Bob, OU=Engineering, O=IONA
Technologies, C=IE" -validity 365 -alias bob -keypass
password -keystore server.jks -storepass password

keytool -export -alias alice -file alice.cert -keystore
client.jks -storepass password
340

Setting Up a Java Keystore
5. To export the server certificate to a file, bob.cert, enter the following
command:

6. To import the server certificate file, bob.cert, into the client keystore,
enter the following command:

Before importing the certificate into the keystore, the keytool prompts
you whether to accept the new certificate or not, as follows:

Enter y to accept the certificate.

The keytool then imports the server certificate (alias bob) into a
trusted certificate entry in the client’s keystore, as shown in Figure 39
on page 338.

7. To import the client certificate file, alice.cert, into the server
keystore, enter the following command:

keytool -export -alias bob -file bob.cert -keystore
server.jks -storepass password

keytool -import -alias bob -file bob.cert -keystore
client.jks -storepass password

Owner: CN=Bob, OU=Engineering, O=IONA Technologies, C=IE
Issuer: CN=Bob, OU=Engineering, O=IONA Technologies, C=IE
Serial number: 45261b85
Valid from: Fri Oct 06 10:01:57 BST 2006 until: Sat Oct 06

10:01:57 BST 2007
Certificate fingerprints:
 MD5: B6:52:53:54:1E:DD:A6:6A:86:58:B5:61:90:9C:B8:A3
 SHA1:

56:F3:88:11:FB:33:19:DA:1A:AB:0A:56:EC:91:3E:AD:CE:5B:D1
:6F

Trust this certificate? [no]:

Note: Whenever you import a certificate using a new alias, the
keytool automatically presumes you want to import the certificate
into a trusted certificate entry.

keytool -import -alias alice -file alice.cert -keystore
server.jks -storepass password
 341

CHAPTER 15 | Partial Message Protection
The keytool then imports the client certificate (alias alice) into a
trusted certificate entry in the server’s keystore, as shown in Figure 39
on page 338.

342

Artix Configuration
Artix Configuration

Overview To enable the partial message protection feature, you need to add some
settings to the Artix configuration file, as described here. This section
discusses the following topics:

• Loading the WSS plug-in.

• Enabling client-side functionality.

• Enabling server-side functionality.

• Specifying a keystore.

• Specifying a policy configuration file.

• Logging.

• Customizing the keystore.

Loading the WSS plug-in To load the WSS plug-in, your bus configuration should include settings
similar to those shown in Example 54.

The WSS plug-in is implemented as a Java Artix plug-in. To enable Java
plug-ins, you must include the java plug-in in the orb_plugins list. The wss
plug-in is then listed in the java_plugins list. The plugins:wss:classname
variable specifies the Java class that implements the WSS plug-in.

Enabling client-side functionality The client-side functionality is enabled by adding the wss handler to the
client handler chain, as shown in Example 55.

Example 54: Configuration to Load the WSS Plug-In

Artix Configuration File
orb_plugins = [... , "java"];
java_plugins = ["wss"];
plugins:wss:classname =

"com.iona.jbus.security.wss.plugin.BusPlugInFactory";

Example 55: Configuration to Enable Client-Side Functionality

Artix Configuration File
binding:artix:client_message_interceptor_list= "wss";
 343

CHAPTER 15 | Partial Message Protection
If more than one client interceptor is installed, the wss handler should be
the last one in the list (closest to the transport layer).

Enabling server-side functionality The server-side functionality is enabled by adding the wss handler to the
server handler chain, as shown in Example 56.

If more than one server interceptor is installed, the wss handler should be
the first one in the list (closest to the transport layer).

Specifying a keystore You must associate the WSS plug-in with a Java keystore in order to access
X.509 certificates and keys (see “Setting Up a Java Keystore” on page 336).
Specify the keystore using the settings shown in Example 57.

This configuration specifies a keystore file, Keystore.jks, which is located
in the KeystoreDir directory. The password, StorePassword, specifies the
password needed to access the keystore.

Example 56: Configuration to Enable Server-Side Functionality

Artix Configuration File
binding:artix:server_message_interceptor_list= "wss";

Example 57: Configuration to Specify a Keystore

Artix Configuration File
plugins:wss:keyretrieval:keystore:file="KeystoreDir/Keystore.jks

";
plugins:wss:keyretrieval:keystore:storepass="StorePassword";

WARNING: Because these configuration settings include a password, you
must be careful to set the file permissions appropriately on the Artix
configuration file. You need to ensure that both the confidentiality and the
integrity of the password data are protected.
344

Artix Configuration
Specifying a policy configuration
file

A policy configuration file specifies policies that govern encryption and
integrity in the context of the partial message protection feature. To specify
the location of the policy configuration file, PolicyDir/PolicyFile.xml, add
the configuration setting shown in Example 58.

This configuration setting is used both on the client side and on the server
side. For details about the policy configuration file, see “Policy
Configuration” on page 347.

Logging For diagnostic purposes, you can optionally enable logging for the WSS
plug-in by modifying your configuration as follows:

The xmlfile_log_stream plug-in writes logging data to a local XML file. For
more details about Artix logging, see the Artix Configuration Reference.

Customizing the keystore The Java keystore system allows you to provide a custom implementation of
the keystore (see “Customizing the keystore provider” on page 336). If you
want to take advantage of this feature, you need to tell the WSS plug-in
what type of keystore to use by setting the
plugins:wss:keyretrieval:keystore:provider and
plugins:wss:keyretrieval:keystore:storetype variables.

Example 58: Specifying a Policy Configuration File

Artix Configuration File
plugins:wss:protection_policy:location="PolicyDir/PolicyFile.xml

";

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", ...];
event_log:filters=["MESSAGE_SNOOP=*",

"IT_BUS.SERVICE.SECURITY.WSS=*"];

Note: You should only enable this logging for testing purposes, because it
can have a significant impact on performance.

Note: In Artix 4.2, the logging subsystem ID has changed to
IT_BUS.SERVICE.SECURITY.WSS. Previously, in Artix 4.1, the logging
subsystem ID was IT.SECURITY.WSS.
 345

../config_ref/index.htm

CHAPTER 15 | Partial Message Protection
For example, to specify that you are using the standard JKS keystore
implementation from Sun, you can specify the following settings:

There is no need to set these configuration variables, however, if you are
using the standard JKS store type, as shown here.

Artix Configuration File
plugins:wss:keyretrieval:keystore:provider="SunJCE";
plugins:wss:keyretrieval:keystore:storetype="jks";
346

Policy Configuration
Policy Configuration

Overview This section describes how to configure the settings in a policy configuration
file, which is responsible for defining the cryptographic operations
performed on incoming and outgoing SOAP messages in the context of
partial message protection.

In this section This section contains the following subsections:

Introduction to Policy Configuration page 348

Action Definitions page 350

Action Properties page 357

Protection Policy Definitions page 361

Conditions page 365
 347

CHAPTER 15 | Partial Message Protection
Introduction to Policy Configuration

Overview The policies that govern Artix partial message protection are specified in an
XML file, the policy configuration file. By specifying protection policies in
this file, you can decide which security guarantees are applied and when
they should be applied. For example, you could use a protection policy to
specify that all SOAP messages sent to a specific endpoint must be
encrypted.

Protection policy schema A complete XML schema for the policy configuration file is available at the
following location:

ArtixInstallDir/artix/Version/schemas/protection-policy.xsd

Structure of policy configuration
file

A typical policy configuration file would have the overall structure shown in
Example 59.

Example 59: Structure of a Policy Configuration File

<?xml version='1.0' encoding='utf-8'?>
<itsp:ProtectionPolicyType
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">

 <ActionDef name="...">
 <NameValuePair name="..."> ... </NameValuePair>
 ...
 </ActionDef>

 <ActionDef name="...">
 <NameValuePair name="..."> ... </NameValuePair>
 ...
 </ActionDef>
 ...
 <MessageProductionPolicy>
 <Rule>
 <ConditionSet> ... </ConditionSet>
 ...
 <ActionRef ref="..."></ActionRef>
 ...
 </Rule>
348

Policy Configuration
Where the policy configuration file consists of a sequence of action
definitions, which define specific cryptographic operations, followed by a
message production policy, which defines rules that apply to outgoing
messages, and a message consumption policy, which defines rules that
apply to incoming messages.

Confidentiality and integrity Currently, the following cryptographic operations or combinations of
cryptographic operations are supported by partial message protection:

Details of how to configure the cryptographic combinations are given in the
following subsections.

 </MessageProductionPolicy>

 <MessageConsumptionPolicy>
 <Rule>
 <ConditionSet> ... </ConditionSet>
 ...
 <ActionRef ref="..."></ActionRef>
 ...
 </Rule>
 </MessageConsumptionPolicy>
</itsp:ProtectionPolicyType>

Example 59: Structure of a Policy Configuration File

Sign Sign the SOAP body of the message (that is,
ignoring SOAP header content) using a private key.

Encrypt Encrypt the SOAP body of the message using a
public key.

Encrypt and Sign A combination of cryptographic operations, where
encryption precedes signing.

Sign and Encrypt A combination of cryptographic operations, where
signing precedes encryption.
 349

CHAPTER 15 | Partial Message Protection
Action Definitions

Overview An action definition describes one atomic cryptographic operation (for
example, sign the message using a particular key). The action definition on
its own does not result in the specified behavior. When the action is
referenced within a policy, however, the action can be triggered by the Artix
runtime, provided that the appropriate conditions are fulfilled.

Structurally, action definitions are named sequences of name-value pairs,
where the action name is a simple mnemonic that uniquely identifies the
action definition for later reference in a policy.

Producers and consumers Instead of using the notions of a client role and a server role, action
definitions and protection policies are defined with respect to a producer
role and a consumer role, as follows:

• Message producer—the role describing an application program that
emits a message. For example, a message producer could be a client
program that sends a request, or a server program that sends a reply.

• Message consumer—the role describing an application program that
absorbs a message. For example, a message consumer could be a
client program that receives a reply, or a server program that receives a
request.

Action definitions for a message
producer

On the message producer side, action definitions can be used to describe
actions that protect messages—that is, encrypting and signing messages.

For example, the sequence of action definitions shown in Example 60
describes how to encrypt a SOAP message body using the public key
embedded in Bob's X.509 certificate and how to sign a SOAP message body
using Alice's private key:

Example 60: Message Producer Action Definitions

<itsp:ProtectionPolicyType
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">

 <ActionDef name="encrypt_to_bob">
350

Policy Configuration
In the context of a message producer, the confidentiality value of the
protection property is interpreted as an instruction to encrypt the outgoing
message and the integrity value of the protection property is interpreted
as an instruction to sign the outgoing message.

Action definitions for a message
consumer

On the message consumer side, action definitions can be used to describe
actions that unprotect messages—that is, decrypting and verifying
messages.

For example, the sequence of action definitions shown in Example 61
describes how to verify a SOAP message body using the public key
embedded in Alice's X.509 certificate and how to decrypt a SOAP message
body using Bob's private key:

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="bob"/>
 </NameValuePair>
 </ActionDef>

 <ActionDef name="sign_by_alice">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="alice" password="password"/>
 </NameValuePair>
 </ActionDef>
 ...
</itsp:ProtectionPolicyType>

Example 60: Message Producer Action Definitions

Example 61: Message Consumer Action Defintions

<itsp:ProtectionPolicyType
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">

 <ActionDef name="verify_from_alice">
 351

CHAPTER 15 | Partial Message Protection
In the context of a message consumer, the integrity value of the
protection property is interpreted as an instruction to verify the incoming
message and the confidentiality value of the protection property is
interpreted as an instruction to decrypt the incoming message.

Signature validation You can configure a message consumer to verify the signature on a received
SOAP message in one of the following ways:

• Referencing the producer’s X.509 certificate.

• Referencing a list of producer X.509 certificates.

• Referencing a trusted CA.

Referencing the producer’s X.509
certificate

If the signed messages all originate from the same message producer, you
can configure the message consumer to verify the signature by setting a
cert_info property that references the producer’s X.509 certificate.

The prerequisites for this approach are as follows:

• The producer’s X.509 certificate is cached in the local Java keystore,

• The message producer is configured to use the issuer serial signing
option (see “Issuer serial” on page 355).

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="alice"/>
 </NameValuePair>
 </ActionDef>

 <ActionDef name="decrypt_to_bob">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="bob" password="password"/>
 </NameValuePair>
 </ActionDef>
 ...
</itsp:ProtectionPolicyType>

Example 61: Message Consumer Action Defintions
352

Policy Configuration
For example, to specify that signature validation is performed using Bob’s
public key, you can configure the action definition element as shown in
Example 62.

Where it is assumed that Bob’s X.509 certificate is cached under the alias
bob in the Java keystore on the message consumer side.

Referencing a list of producer
X.509 certificates

If the signed messages originate from multiple message producers, you can
configure the message consumer to verify signatures by setting a
cert_info_list property that references a list of producer X.509
certificates.

The prerequisites for this approach are as follows:

• The producer X.509 certificates are all cached in the local Java
keystore,

• Message producers are configured to use the issuer serial signing
option (see “Issuer serial” on page 355).

Example 62: Signature Validation Using the cert_info Property

<ActionDef name="verify_from_bob">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType" alias="bob"/>
 </Value>
 </NameValuePair>
</ActionDef>
 353

CHAPTER 15 | Partial Message Protection
For example, to specify that signature validation is performed using either
Bob or Alice’s public key, you can configure the action definition element as
shown in Example 63.

Where the cert_info_list property consists of a sequence of zero or more
CertAlias elements, each of which reference an X.509 certificate. It is
assumed that Bob’s X.509 certificate is cached under the alias bob and
Alice’s X.509 certificate is cached under the alias alice. The appropriate
certificate is selected at runtime, based on the value of the issuer serial
number transmitted by the message producer.

Referencing a trusted CA The approach described in “Referencing a list of producer X.509
certificates” is appropriate only for a fairly small number of message
producers. If the number of message producers is large, it becomes
impractical to cache the producer certificates on the consumer side. In this
case, you can configure the message consumer to verify signatures by
setting a ca_info property that references a trusted certificate authority (CA)
certificate.

The prerequisites for this approach are as follows:

• The trusted CA certificate is cached in the local Java keystore,

• Every producer X.509 certificate is signed by the trusted CA certificate,

• Message producers are configured to use the direct reference signing
option (see “Direct reference” on page 356).

Example 63: Signature Validation Using the cert_info_list Property

<ActionDef name="verify_from_bob_or_alice">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="cert_info_list">
 <Value xsi:type="itsp:CertAliasListType">
 <CertAlias alias="bob"/>
 <CertAlias alias="alice"/>
 </Value>
 </NameValuePair>
</ActionDef>
354

Policy Configuration
In this scenario, the producer’s X.509 certificate is transmitted directly to
the consumer in a SOAP header. The consumer verifies the X.509 certificate
(by checking that is validly signed by the trusted CA certificate) and then
uses the X.509 certificate to verify the SOAP message signature.

For example, to specify that signature validation can be performed using
X.509 certificates signed by the trusted CA certificate, trent, configure the
action definition element as shown in Example 63.

Where the ca_info property has a value of itsp:CertAliasType type,
whose alias attribute references the trusted CA certificate in the local Java
keystore.

Signing options You can configure a message producer to transmit the identity of the public
key required to verify a signed message, in one of the following ways:

• Issuer serial.

• Direct reference.

Issuer serial When you specify the issuer serial signing option, the message producer
transmits the serial number of the its X.509 certificate in a SOAP header.
The message consumer then uses the serial number to identify which X.509
certificate to use when verifying the message signature. No special
configuration is required to select this option—it is the default.

Example 64: Signature Validation Using the ca_info Property

<ActionDef name="verify_issued_by_trent">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="ca_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="trent"/>
 </NameValuePair>
</ActionDef>

Note: The issuer serial signing option is compatible with either the
cert_info or cert_info_list validation options on the consumer side.
 355

CHAPTER 15 | Partial Message Protection
Direct reference When you specify the direct reference signing option, the message producer
transmits its X.509 certificate in a SOAP header. The consumer checks, first
of all, whether the producer’s X.509 certificate is validly signed by a trusted
CA certificate. If the certificate is validly signed, the consumer then uses it to
verify the signature on the received SOAP message.

To enable the direct reference signing option, add the key_identifier
property to an action definition that defines message signing, as shown in
Example 65.

Where the key_identifier property is configured with the value,
direct_reference. The key_identifier property must be used in
combination with the protection and key_info properties in order to
produce a well-defined action definition.

Note: The direct reference signing option is compatible only with the
ca_info validation option on the consumer side.

Example 65: Enabling the Direct Reference Signing Option

<ActionDef name="sign_by_alice.direct_reference">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="alice" password="password"/>
 </NameValuePair>
 <NameValuePair name="key_identifier">
 <Value xsi:type="xs:string">direct_reference</Value>
 </NameValuePair>
</ActionDef>
356

Policy Configuration
Action Properties

Overview An action property is a property setting defined using itsp:NameValuePair
elements inside an action definition. Table 10 shows the set of action
properties currently supported by the Artix partial message protection
feature.

Table 10: Properties of an Action Definition

Property Name Property Type Allowed Values and Attributes

protection xs:string Value string can be confidentiality or integrity.

key_info itsp:KeyAliasType Attribute alias specifies the alias of a key entry in
the keystore.

Attribute password specifies the corresponding key
password.

cert_info itsp:CertAliasType Attribute alias specifies the alias of a trusted
certificate entry in the keystore.

cert_info_list itsp:CertAliasListType A sequence of zero or more CertAlias elements.

ca_info itsp:CertAliasType Attribute alias specifies the alias of a trusted CA
certificate, which is stored in a trusted certificate
entry in the keystore.

key_identifier xs:string Value string can be direct_reference.

target xs:string Value string is a SOAP actor.

must_understand xs:string Value string can be true or false.
 357

CHAPTER 15 | Partial Message Protection
Setting a Value element The property name, type, value, and attributes (if any) are all specified in
anitsp:Value element. Because the Value element is defined to be of
xs:anyType, the pattern for setting a Value element depends on the
particular type that it instantiates (as specified by the type attribute).

For example, consider a Value element that is specified to be of
itsp:KeyAliasType. You would define such a Value element as follows:

The alias and password attributes belong to the definition of the
itsp:KeyAliasType type.

protection The protection property describes the cryptographic operation to perform.
The allowable operations are, as follows:

• confidentiality—interpreted as encrypt on the producer side and
decrypt on the consumer side, or

• integrity—interpreted as sign on the producer side and verify on the
consumer side.

Within the enclosing itsp:ActionDef element, the protection property
must be accompanied either by a key_info property (to gain access to a
private key) or a cert_info property (to gain access to a public key).

key_info The key_info property references a private key stored in a key entry in the
Java keystore (see “Setting Up a Java Keystore” on page 336). To access
the private key, you must provide a key alias and a key password. The Value
element that defines the key_info property is an instance of
itsp:KeyAliasType type, which is defined by the following fragment of XML
schema:

<NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="AliasValue" password="PassValue"/>
</NameValuePair>

<complexType name="KeyAliasType">
 <sequence/>
 <attribute name="alias" type="string" use="required"/>
 <attribute name="password" type="string" use="required"/>
</complexType>
358

Policy Configuration
cert_info The cert_info property references an X.509 certificate stored in a trusted
certificate entry in the Java keystore. You must provide a certificate alias for
the referenced certificate. The Value element that defines the cert_info
property is an instance of itsp:CertAliasType type, which is defined by the
following fragment of XML schema:

cert_info_list The cert_info_list property references zero or more X.509 certificates
stored in trusted certificate entries in the Java keystore. Each referenced
certificate is represented by a CertAlias element, which has an alias
attribute to identify the certificate in the Java keystore. The Value element
that defines the cert_info_alias property is an instance of
itsp:CertAliasListType, which is defined by the following fragment of
XML schema:

ca_info The ca_info property references a trusted CA certificate stored in a trusted
certificate entry in the Java keystore. The Value element that defines the
ca_info property is an instance of itsp:CertAliasType type (see “cert_info”
on page 359).

<complexType name="CertAliasType">
 <sequence/>
 <attribute name="alias" type="string" use="required"/>
</complexType>

<complexType name="CertAliasListType">
 <sequence>
 <element
 name="CertAlias"
 type="tns:CertAliasType"
 minOccurs="0"
 maxOccurs="unbounded"
 />
 </sequence>
</complexType>
 359

CHAPTER 15 | Partial Message Protection
key_identifier The key_identifier property specifies how a message producer transmits
the identity of the public key required to verify signed messages. The
following options are supported:

• direct_reference—the message producer sends the X.509
certificate, which contains the key, directly in the message.

The key_identifier property is used in combination with the protection
and key_info properties.

target The target property describes the SOAP actor or role to whom the message
protection is targeted. The value of this property can be any string (where an
empty string is semantically equivalent to not specifying the property at all.)

If an action is used to cryptographically protect (sign or encrypt) a message,
and the action contains this property, the resulting message will contain a
WS-Security SOAP header with an actor attribute containing the designated
value. This property allows applications to target cryptographic operations
for specific SOAP entities (such as a router or other intermediary, for
example).

If an action is used to cryptographically unprotect (verify or decrypt) a
message, and the action contains this property, the unprotection operation
will apply only to WS-Security SOAP headers that contain the specified
target in the actor attribute. This property allows receiving applications (for
example, a router) to process only those headers to whom it has targeted
cryptographic operations.

must_understand This property specifies the value of the mustUnderstand attribute in
WS-Security SOAP headers, when SOAP headers are inserted into SOAP
messages as a result of signing or encryption operations.

The allowed values for this property are true or false.

Specifying false is semantically equivalent to not specifying any value, and
results in no specification of the mustUnderstand attribute.
360

Policy Configuration
Protection Policy Definitions

Overview Protection policies are evaluated at run time to determine which actions to
perform, based on information available from the current execution context
(such as the currently operational service QName and port name, as defined
in WSDL). When the WSS plug-in intercepts a message, the information
from the current execution context is combined with the protection policies
to determine which cryptographic operations to perform.

Logically, a protection policy consists of a sequence of rules, which are
evaluated in order, to determine which cryptographic operations to perform.
When a rule fires, the referenced actions are performed in the defined order
and the remaining rules are then skipped.

Protection policy Two different types of element define protection policies, as follows:

• itsp:MessageProductionPolicy—defines policies that apply to
outgoing messages.

• itsp:MessageConsumptionPolicy—defines policies that apply to
incoming messages.

Within a policy configuration file, a message production policy and a
message consumption policy would be defined as shown in Example 66.

Example 66: Syntax of Protection Policy Elements

<itsp:ProtectionPolicyType
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">
 ...
 <MessageProductionPolicy>
 <Rule> ... </Rule>
 <Rule> ... </Rule>
 ...
 </MessageProductionPolicy>

 <MessageConsumptionPolicy>
 <Rule> ... </Rule>
 <Rule> ... </Rule>
 ...
 </MessageConsumptionPolicy>
 361

CHAPTER 15 | Partial Message Protection
Where the MessageProductionPolicy element can appear at most once, the
MessageConsumptionPolicy element can appear at most once, and the
elements must appears in the order shown. Each of the policy elements can
contain zero or more Rule elements, as discussed next.

Rules A rule consists of a set of conditions and a list of action references. If all of
the conditions are satisfied by the current execution context or if no
conditions are specified, the listed actions are performed in the order in
which they appear in the rule.

A policy rule is defined using an itsp:Rule element of the general form
shown in Example 67:

The rule consists of an optional ConditionSet element followed by zero or
more ActionRef elements. The ConditionSet element must precede the
ActionRef elements and the order of the ActionRef elements is significant.

Rule example The following example illustrates a simple rule definition with one condition
and two action references:

</itsp:ProtectionPolicyType>

Example 66: Syntax of Protection Policy Elements

Example 67: Syntax of a Rule Element

<Rule>
 <ConditionSet> ... </ConditionSet>
 ...
 <ActionRef ref="..."/>
 <ActionRef ref="..."/>
 ...
</Rule>

<Rule>
 <ConditionSet>
 <NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
 </NameValuePair>
 </ConditionSet>
 <ActionRef ref="encrypt_to_bob"></ActionRef>
 <ActionRef ref="sign_by_alice"></ActionRef>
</Rule>
362

Policy Configuration
If the current port name (from the current WSDL contract) is SoapPort, the
rule performs the following actions:

1. The SOAP message body is encrypted using Bob's public key, and

2. The encrypted SOAP message body is then signed using Alice's private
key.

Conditions A condition is a list of properties (represented as name-value pairs), whose
values are compared with settings in the current execution context. The
condition is satisified when all of its properties match the current execution
context. An absent condition evaluates to true by default.

A condition is defined using an itsp:ConditionSet element of the general
form shown in Example 68.

The ConditionSet element can contain zero or more NameValuePair
elements. Conditions are described in detail in “Conditions” on page 365

Action references An action reference is a reference to an action definition that appears within
the same enclosing ProtectionPolicyType element. If no corresponding
action definition is found, however, a runtime error occurs.

An action reference is defined using an itsp:ActionRef element of the
general form shown in Example 69.

Where ActionName matches the name attribute from a previously defined
ActionDef element.

Example 68: Syntax of a ConditionSet Element

<ConditionSet>
 <NameValuePair name="..."> ... </NameValuePair>
 <NameValuePair name="..."> ... </NameValuePair>
 ...
</ConditionSet>

Example 69: Syntax of an ActionRef Element

<ActionRef ref="ActionName"/>
 363

CHAPTER 15 | Partial Message Protection
Rule evaluation algorithm It is possible for a protection policy to contain multiple rules, but only one of
the rules is ever executed. Rules are evaluated at runtime by the WSS
plug-in, using the following algorithm (in pseudo-code):

Effectively, in a protection policy with multiple rules, Artix executes the first
matching rule.

For each rule, R, in the protection policy {
 If all of the conditions in R are satisfied
 by the current execution context
 {
 Apply each action in R, in the order specified,
 to the message and then exit;
 }
 else
 {
 go to the next rule;
 }
}

364

Policy Configuration
Conditions

Overview Within a policy rule, each condition is represented by an
itsp:ConditionSet element containing zero or more properties, where the
properties are expressed as name-value pairs.

The supported condition properties are listed in Table 11.

service_qname The service_qname property specifies a service QName, as it appears in a
WSDL contract. The value of this property is a string of the form
{Namespace}LocalName, where Namespace is the service QName namespace,
and LocalName is the service QName local name. For example, consider the
following service_qname property defined as a name-value pair:

A condition with this property is satisified, if and only if the value of the
property matches the service QName of the current execution context.

Table 11: Condition Properties

Property Name Property Type Allowed Values

service_qname xs:string QName of a target service.

port_name xs:string Port (or endpoint) name.

mode xs:string client or server.

bus_name xs:string Name of the current Artix bus.

<NameValuePair name="service_qname">
 <Value

xsi:type="xs:string">{http://www.acme.com}MyService</Value>
</NameValuePair>
 365

CHAPTER 15 | Partial Message Protection
port_name The port_name property specifies a service port (or endpoint) name, as it
appears in a WSDL contract. The value of this property is a string. For
example, consider the following port_name property defined as a
name-value pair:

A condition with this property is satisified, if and only if the value of the
property matches the service port name of the current execution context.

mode The mode property specifies whether the application program is acting as a
client or as a server. The allowed values are client and server. For
example, consider the following mode property defined as a name-value pair:

A condition with this property is satisified, if and only if the value of the
property matches the current mode, client or server, of the current
execution context.

bus_name The bus_name property specifies the Artix bus name in which the condition
is evaluated. The value of this property may be any string. For example,
consider the following bus_name property defined as a name-value pair:

A condition with this property is satisified, if and only if the value of the
property matches the bus name of the current execution context.

Condition matching algorithm A condition value matches against a value in the current execution context,
using one of the following mechanisms:

• Case-sensitive matching.

• Regular expression matching.

<NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
</NameValuePair>

<NameValuePair name="mode">
 <Value xsi:type="xs:string">client</Value>
</NameValuePair>

<NameValuePair name="bus_name">
 <Value xsi:type="xs:string">my.bus.name</Value>
</NameValuePair>
366

Policy Configuration
Case-sensitive matching Condition values are compared to variables in the execution context using
case-sensitive string-to-string comparison. This is the default.

Regular expression matching Regular expression matching is automatically enabled whenever you use a
special syntax for the condition value.

Condition values that use regular expression syntax take the following form:

Where Expr is a regular expression, as described in
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

For example, to match any port name that ends with the string
SecretSauce, you would use the following property:

regexp{Expr}

<NameValuePair name="port_name">
 <Value xsi:type="xs:string">regexp{.*SecretSauce$}</Value>
</NameValuePair>
 367

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

CHAPTER 15 | Partial Message Protection
Example of WSS Signing and Encryption

Overview This section describes a simple example of partial message protection that
provides a guarantee of confidentiality and integrity on all of the messages
passing back and forth between a client and a server.

In this section This section contains the following subsections:

Basic Signing and Encryption Scenario page 369

Configuring the Client page 371

Configuring the Server page 377
368

Example of WSS Signing and Encryption
Basic Signing and Encryption Scenario

Overview The scenario described here is a client-server application, where partial
message protection is set up to encrypt and sign the SOAP body of
messages that pass back and forth between the client and the server. This
example is configured to use HTTP as the transport layer, but you could
reconfigure the code to use any other supported transport instead.

Demonstration code Complete demonstration code for the scenario described here is available at
the following location:

ArtixInstallDir/artix/Version/demos/security/wss

Example scenario Figure 40 shows an overview of the basic signing and encryption scenario,
which is implemented by the WSS demonstration.

Figure 40: Basic Signing and Encryption Scenario

Client - 'Alice'

WSS Plug-In

XML

Client Keystore

Client Protection Policy

Encrypted
Request

Encrypted
Reply

Server - 'Bob'

WSS Plug-In

XML

Server Keystore

Server Protection Policy

1 2

34
 369

CHAPTER 15 | Partial Message Protection
Scenario steps When the client in Figure 40 invokes a synchronous operation on the
SoapPort endpoint, the request and reply message are processed as follows:

1. As the outgoing request message passes through the wss client
handler, the handler processes the message in accordance with the
policies specified in the client’s protection policy file. In this example,
the handler performs the following processing:

i. Encrypt the SOAP body of the message using Bob’s public key.

ii. Sign the encrypted SOAP body using Alice’s private key.

2. As the incoming request message passes through the wss server
handler, the handler processes the message in accordance with the
policies specified in the server’s protection policy file. In this example,
the handler performs the following processing:

i. Verify the signature using Alice’s public key.

ii. Decrypt the SOAP body using Bob’s private key.

3. As the outgoing reply message passes back through the wss server
handler, the handler performs the following processing:

i. Encrypt the SOAP body of the message using Alice’s public key.

ii. Sign the encrypted SOAP body using Bob’s private key.

4. As the incoming reply message passes back through the wss client
handler, the handler performs the following processing:

i. Verify the signature using Bob’s public key.

ii. Decrypt the SOAP body using Alice’s private key.
370

Example of WSS Signing and Encryption
Configuring the Client

Overview This subsection describes the configuration of the client from the WSS
partial message protection demonstration. The following topics are
discussed:

• Setting up the client keystore.

• Artix configuration.

• Policy configuration.

Setting up the client keystore The client accesses its own Java keystore, which is set up as follows:

• Key entries—contains a single entry, with the following details:

♦ alias—is alice and associated key password is password.

♦ private key—Alice’s private key.

♦ X.509 certificate—containing Alice’s public key.

• Trusted certificate entries—contains a single entry, with the following
details:

♦ alias— is bob.

♦ X.509 certificate—containing Bob’s public key.

For details of how to set up the client’s keystore, see “Setting Up a Java
Keystore” on page 336.

Artix configuration Example 70 shows the Artix configuration for a client that supports the
partial message protection feature (implemented by the WSS plug-in).

Example 70: Artix Configuration for a PMP Client

1 include "../../../../../etc/domains/artix.cfg";
include "../../../../../etc/domains/artix-secure.cfg";

secure_artix
{
 wss
 {

2 orb_plugins = ["xmlfile_log_stream", "java"];
 java_plugins = ["wss"];
 371

CHAPTER 15 | Partial Message Protection
The preceding Artix configuration can be explained as follows:

1. The standard artix.cfg and artix-secure.cfg configuration files
contain default plug-in settings that are essential for most applications.

2. The client must be explicitly configured to load the wss Java plug-in.
The following three lines load the wss plug-in, as described in “Loading
the WSS plug-in” on page 343.

3. You can optionally enable logging for the WSS plug-in, by including the
event_log:filters setting shown here—see “Logging” on page 345
for details.

4. In addition to loading the WSS plug-in, you must explicitly enable
client-side functionality by installing the wss handler in the client
handler list, as shown here. If there are multiple handlers in the list,
the wss handler should appear last.

5. The plugins:wss:keyretrieval:keystore settings associate a Java
keystore with the application—see “Specifying a keystore” on
page 344 for details.

 plugins:wss:classname =
"com.iona.jbus.security.wss.plugin.BusPlugInFactory";

3 event_log:filters=["MESSAGE_SNOOP=*",
"IT.SECURITY.WSS=*"];

 client
 {

4 binding:artix:client_message_interceptor_list= "wss";
5

plugins:wss:keyretrieval:keystore:file="%{INSTALL_DIR}/%{PROD
UCT_NAME}/%{PRODUCT_VERSION}/demos/security/wss/etc/keys/alic
e.jks";

plugins:wss:keyretrieval:keystore:storepass="password";

6
plugins:wss:protection_policy:location="file://%{INSTALL_DIR}
/%{PRODUCT_NAME}/%{PRODUCT_VERSION}/demos/security/wss/etc/cl
ient_policy.xml";

 };
 };
};

Example 70: Artix Configuration for a PMP Client
372

Example of WSS Signing and Encryption
6. The plugins:wss:protection_policy:location setting specifies the
location of the policy configuration file for the client (discussed next).

Policy configuration Example 71 shows the policy configuration for a client that supports the
partial message protection feature.

Example 71: Policy Configuration File for a PMP Client

<?xml version='1.0' encoding='utf-8'?>
1 <itsp:ProtectionPolicyType

 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">

 <!-- -->
 <!-- Action definitions -->
 <!-- -->

 <!-- Sign the SOAP Body using Alice's private key -->

2 <ActionDef name="sign_by_alice">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="alice" password="password"/>
 </NameValuePair>
 </ActionDef>

 <!-- Encrypt the SOAP Body using Bob's public key -->
3 <ActionDef name="encrypt_to_bob">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="bob"/>
 </NameValuePair>
 </ActionDef>

 <!-- Verify the signature on the SOAP Body using Bob's public
key -->

4 <ActionDef name="verify_from_bob">
 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 373

CHAPTER 15 | Partial Message Protection
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="bob"/>
 </NameValuePair>
 </ActionDef>

 <!-- Decrypt the SOAP Body using Alice's private key -->
5 <ActionDef name="decrypt_to_alice">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="alice" password="password"/>
 </NameValuePair>
 </ActionDef>

 <!-- -->
 <!-- Message Production Policy -->
 <!-- -->

6 <MessageProductionPolicy>
 <Rule>
 <ConditionSet>
 <NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
 </NameValuePair>
 </ConditionSet>
 <ActionRef ref="encrypt_to_bob"></ActionRef>
 <ActionRef ref="sign_by_alice"></ActionRef>
 </Rule>
 </MessageProductionPolicy>

 <!-- -->
 <!-- Message Consumption Policy -->
 <!-- -->

7 <MessageConsumptionPolicy>
 <Rule>
 <ConditionSet>
 <NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
 </NameValuePair>
 </ConditionSet>
 <ActionRef ref="verify_from_bob"></ActionRef>
 <ActionRef ref="decrypt_to_alice"></ActionRef>

Example 71: Policy Configuration File for a PMP Client
374

Example of WSS Signing and Encryption
The preceding policy configuration can be described as follows:

1. The ProtectionPolicyType element is the enclosing element for all of
the policy definitions in the file. The
http://www.iona.com/security/wss/policy namespace identifies
IONA’s proprietary XML schema that defines the format of the policy
configuration. In this example, the namespace maps to the itsp
namespace prefix.

2. The sign_by_alice action definition defines an action to sign the
SOAP body of outgoing request messages—see “Overview” on
page 357 for more details.

3. The encrypt_to_bob action definition defines an action to encrypt the
SOAP body of outgoing request messages.

4. The verify_from_bob action definition defines an action to verify the
signature appearing on incoming reply messages. The signature would
have been added to the SOAP body by the remote server endpoint.

5. The decrypt_to_alice action definition defines an action to decrypt
the SOAP body of incoming reply messages.

6. The message production policy defines a single rule that defines the
actions to take when the client is sending messages to the server.
Given that the port name of the remote endpoint is SoapPort, the client
applies the following actions to outgoing requests:

i. Encrypt the SOAP body of the message using Bob’s public key,
and

ii. Sign the encrypted SOAP body using Alice’s private key.

 </Rule>
 </MessageConsumptionPolicy>

</itsp:ProtectionPolicyType>

Example 71: Policy Configuration File for a PMP Client
 375

CHAPTER 15 | Partial Message Protection
7. The message consumption policy defines a single rule that defines the
actions to take when the client receives messages from the server.
Given that the port name of the remote endpoint is SoapPort, the client
applies the following actions to incoming replies:

i. Verify the SOAP body of the message using Bob’s public key, and

ii. Decrypt the SOAP body using Alice’s private key.
376

Example of WSS Signing and Encryption
Configuring the Server

Overview This subsection describes the configuration of the server from the WSS
partial message protection demonstration. The following topics are
discussed:

• Setting up the server keystore.

• Artix configuration.

• Policy configuration.

Setting up the server keystore The server accesses its own Java keystore, which is set up as follows:

• Key entries—contains a single entry, with the following details:

♦ alias—is bob and associated key password is password.

♦ private key—Bob’s private key.

♦ X.509 certificate—containing Bob’s public key.

• Trusted certificate entries—contains a single entry, with the following
details:

♦ alias— is alice.

♦ X.509 certificate—containing Bob’s public key.

For details of how to set up the server’s keystore, see “Setting Up a Java
Keystore” on page 336.

Artix configuration Example 72 shows the Artix configuration for a server that supports the
partial message protection feature (implemented by the WSS plug-in).

Example 72: Artix Configuration for a PMP Server

include "../../../../../etc/domains/artix.cfg";
include "../../../../../etc/domains/artix-secure.cfg";

secure_artix
{
 wss
 {
 orb_plugins = ["xmlfile_log_stream", "java"];
 java_plugins = ["wss"];
 377

CHAPTER 15 | Partial Message Protection
The preceding Artix configuration can be explained as follows:

1. In addition to loading the WSS plug-in, you must explicitly enable
server-side functionality by installing the wss handler in the server
handler list, as shown here. If there are multiple handlers in this list,
the wss handler should appear first.

2. The plugins:wss:keyretrieval:keystore settings associate a Java
keystore with the application—see “Specifying a keystore” on
page 344 for details.

3. The plugins:wss:protection_policy:location setting specifies the
location of the policy configuration file for the server (discussed next).

Policy configuration Example 73 shows the policy configuration for a server that supports the
partial message protection feature.

 plugins:wss:classname =
"com.iona.jbus.security.wss.plugin.BusPlugInFactory";

 event_log:filters=["MESSAGE_SNOOP=*"];

 server
 {

1 binding:artix:server_message_interceptor_list= "wss";
2

plugins:wss:keyretrieval:keystore:file="%{INSTALL_DIR}/%{PROD
UCT_NAME}/%{PRODUCT_VERSION}/demos/security/wss/etc/keys/bob.
jks";

plugins:wss:keyretrieval:keystore:storepass="password";

3
plugins:wss:protection_policy:location="file://%{INSTALL_DIR}
/%{PRODUCT_NAME}/%{PRODUCT_VERSION}/demos/security/wss/etc/se
rver_policy.xml";

 };
 };
};

Example 72: Artix Configuration for a PMP Server

Example 73: Policy Configuration File for a PMP Server

<?xml version='1.0' encoding='utf-8'?>
<itsp:ProtectionPolicyType
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
378

Example of WSS Signing and Encryption
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:itsp="http://www.iona.com/security/wss/policy">

 <!-- -->
 <!-- Action definitions -->
 <!-- -->

 <!-- Verify the signature on the SOAP Body using Alice's

public key -->
1 <ActionDef name="verify_from_alice">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="alice"/>
 </NameValuePair>
 </ActionDef>

 <!-- Decrypt the SOAP Body using Bob's private key -->
2 <ActionDef name="decrypt_to_bob">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="bob" password="password"/>
 </NameValuePair>
 </ActionDef>

 <!-- Sign the SOAP Body using Bob's private key -->
3 <ActionDef name="sign_by_bob">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">integrity</Value>
 </NameValuePair>
 <NameValuePair name="key_info">
 <Value xsi:type="itsp:KeyAliasType"
 alias="bob" password="password"/>
 </NameValuePair>
 </ActionDef>

 <!-- Encrypt the SOAP Body using Alice's public key -->
4 <ActionDef name="encrypt_to_alice">

 <NameValuePair name="protection">
 <Value xsi:type="xs:string">confidentiality</Value>

Example 73: Policy Configuration File for a PMP Server
 379

CHAPTER 15 | Partial Message Protection
 </NameValuePair>
 <NameValuePair name="cert_info">
 <Value xsi:type="itsp:CertAliasType"
 alias="alice"/>
 </NameValuePair>
 </ActionDef>

 <!-- -->
 <!-- Message Production Policy -->
 <!-- -->

5 <MessageProductionPolicy>
 <Rule>
 <ConditionSet>
 <NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
 </NameValuePair>
 </ConditionSet>
 <ActionRef ref="encrypt_to_alice"></ActionRef>
 <ActionRef ref="sign_by_bob"></ActionRef>
 </Rule>
 </MessageProductionPolicy>

 <!-- -->
 <!-- Message Consumption Policy -->
 <!-- -->

6 <MessageConsumptionPolicy>
 <Rule>
 <ConditionSet>
 <NameValuePair name="port_name">
 <Value xsi:type="xs:string">SoapPort</Value>
 </NameValuePair>
 </ConditionSet>
 <ActionRef ref="verify_from_alice"></ActionRef>
 <ActionRef ref="decrypt_to_bob"></ActionRef>
 </Rule>
 </MessageConsumptionPolicy>

</itsp:ProtectionPolicyType>

Example 73: Policy Configuration File for a PMP Server
380

Example of WSS Signing and Encryption
The preceding policy configuration can be described as follows:

1. The verify_from_alice action definition defines an action to verify the
signature appearing on incoming request messages—see “Overview”
on page 357 for more details.

2. The decrypt_to_bob action definition defines an action to decrypt the
SOAP body of incoming request messages.

3. The sign_by_bob action definition defines an action to sign the SOAP
body of outgoing reply messages.

4. The encrypt_to_alice action definition defines an action to encrypt
the SOAP body of outgoing reply messages.

5. The message production policy defines a single rule that defines the
actions to take when the server is sending messages back to the client.
Given that the current endpoint has the name, SoapPort, the endpoint
applies the following actions to outgoing requests:

i. Encrypt the SOAP body of the message using Alice’s public key,
and

ii. Sign the encrypted SOAP body using Bob’s private key.

6. The message consumption policy defines a single rule that defines the
actions to take when the server receives messages from a client. Given
that the current endpoint has the name, SoapPort, the endpoint
applies the following actions to incoming requests:

i. Verify the SOAP body of the message using Alice’s public key,
and

ii. Decrypt the SOAP body using Bob’s private key.
 381

CHAPTER 15 | Partial Message Protection
Exception Handling

Overview Security error handling represents an exception to the rule that errors should
be as informative as possible. You need to take into account that your
system might be under attack and, thus, error messages should not provide
information that would be useful to an attacker. Error handling under these
circumstances represents a compromise between security requirements and
diagnostic requirements.

There are two broad categories of failure that can affect an application
secured by WS-Security:

• Configuration errors—which can render the WSS plug-in inoperable

• Runtime errors—which result in a failed request or response

Configuration errors Configuration errors are typically easy to detect and report. In general, a
configuration error results in an immediate exception at plug-in initialization
time (typically, though not necessarily, at Bus initialization time, though
perhaps delayed until an interceptor chain is instantiated).

Certain configuration errors, though, can cause an application to fail at a
later stage (for example, if the wrong keystore is accidentally configured).
Such errors are treated as runtime errors.

Runtime errors Runtime errors always yield a SOAP fault exception
(IT_Bus::FaultException in C++, or
javax.xml.rpc.soap.SOAPFaultException in Java), which are propagated
back to calling applications (or application clients). The fault codes returned
by a SOAPFaultException fall into the following categories:

• WS-Security fault codes.

• IONA proprietary fault codes.
382

Exception Handling
WS-Security fault codes Table 12 shows the standard WS-Security fault codes and fault strings.

IONA proprietary fault codes Table 13 shows the IONA proprietary fault codes and fault strings.

Table 12: Standard WSS Fault Codes

Fault Code Fault String

wsse:UnsupportedSecurityToken An unsupported token was
provided.

wsse:UnsupportedAlgorithm An unsupported signature or
encryption algorithm was used.

wsse:InvalidSecurity An error was discovered
processing the <wsse:Security>
header.

wsse:InvalidSecurityToken An invalid security token was
provided.

wsse:FailedAuthentication The security token could not be
authenticated or authorized.

wsse:FailedCheck The signature or decryption was
invalid.

wsse:SecurityTokenUnavailable Referenced security token could
not be retrieved.

Table 13: IONA Proprietary Fault Codes

Fault Code Fault String

{http://schemas.iona.com/security/wss}Unsatisf
iedProtectionRequirement

A protection requirement was not satisfied.
 383

CHAPTER 15 | Partial Message Protection
384

CHAPTER 16

Principal
Propagation
Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

In this chapter This chapter discusses the following topics:

Introduction to Principal Propagation page 386

Configuring page 387

Programming page 390

Interoperating with .NET page 393
 385

CHAPTER 16 | Principal Propagation
Introduction to Principal Propagation

Overview Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal
propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

Supported bindings/transports Support for principal propagation is limited to the following bindings and
transports:

• CORBA binding—the principal is sent in a GIOP service context.

• SOAP over HTTP—the principal is sent in a SOAP header.

Interoperability The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Note: If a CORBA call is colocated, the principal is not propagated unless
you remove the POA_Coloc interceptor from the binding lists in the
artix.cfg file. This has the effect of disabling the CORBA colocated
binding optimization.
386

Configuring
Configuring

Overview This section describes how to configure Artix to use principal propagation.
The following aspects of configuration are described:

• CORBA.

• SOAP over HTTP.

• Routing.

CORBA To use principal propagation with a CORBA binding, you must set the
following configuration variables in your artix.cfg file (located in the
ArtixInstallDir/artix/Version/etc/domains directory):

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the -ORBname
command line switch when running the Artix application).

SOAP over HTTP By default, the Artix SOAP binding will always add a principal header. The
following cases arise:

• Principal set explicitly—the specified principal is sent in the principal
header.

• Principal not set—Artix reads the username from the operating system
and sends this username in the principal header.

Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

Example 74: Configuring Principal Propagation for a CORBA Binding

policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable_principal_service_context =

"true";
 387

CHAPTER 16 | Principal Propagation
If you use a SOAP 1.2 binding and you want a SOAP client to propagate a
CORBA Principal to the target server, you must add some settings to the
client’s configuration, as shown in Example 75.

If you want a SOAP server to authenticate a propagated principal using the
Artix security service, you need to add some settings to the server’s
configuration scope in your artix.cfg file, as shown in Example 76.

Setting plugins:asp:security_level equal to REQUEST_LEVEL specifies that
the received principal serves as the username for the purpose of
authentication. The plugins:asp:default_password value serves as the
password for the purpose of authentication. This latter setting is necessary
because, although the Artix security service requires a password, there is no
password propagated with the principal.

Example 75: Configuring Principal Propagation for SOAP in the Client

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

binding:artix:client_request_interceptor_list =
"security+principal_context";

Example 76: Configuring Principal Authentication for SOAP in the Server

Security Layer Settings
policies:asp:enable_authorization = "true";
plugins:is2_authorization:action_role_mapping =

"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role_mapping.xml";

plugins:asp:authorization_realm = "IONAGlobalRealm";

plugins:asp:security_level = "REQUEST_LEVEL";
plugins:asp:default_password = "default_password";
binding:artix:server_request_interceptor_list =

"principal_context+security";

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the Artix security service.
Users identified in this way, however, do not have the same status as
properly authenticated users. For security purposes, such users should
enjoy lesser privileges and be treated in the same way as unauthenticated
users.
388

Configuring
The server_request_interceptor_list setting is needed for the case
where the CORBA Principal is transmitted inside a SOAP 1.2 message
header.

The net effect of the configuration shown in Example 76 is that the SOAP
server performs authentication by contacting the central Artix security
service. See also “Security Layer” on page 34 and “Configuring the Artix
Security Service” on page 161 for more details about configuring the Artix
security service.

Routing The Artix router automatically propagates the Principal from the route
source to the route destination, as long as the bindings in the route are
either CORBA or SOAP/HTTP.
 389

CHAPTER 16 | Principal Propagation
Programming

Overview This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value.

The code examples are written using the contexts API. For more details
about contexts, see Developing Artix Applications in C++.

Client example Example 77 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of MyProxy type.

Example 77: Setting a Principal on the Client Side

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();
390

Programming
The preceding code can be explained as follows:

1. Call IT_Bus::ContextContainer::set_context_as_string() to
initialize the string value of the principal context. The
IT_ContextAttributes::PRINCIPAL_CONTEXT_ATTRIBUTE constant is a
QName constant, initialized with the context name of the
pre-registered principal context.

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Set the principal context value
 IT_Bus::String principal("artix_user");

1 context_container->set_context_as_string(
 PRINCIPAL_CONTEXT_ATTRIBUTE,
 principal
);
 ...
 // Invoke the remote operation, echoString()
 MyProxy echo_proxy;
 echo_proxy.echoString("Echo me!")
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 77: Setting a Principal on the Client Side
 391

CHAPTER 16 | Principal Propagation
Server example Example 78 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

The preceding server example can be explained as follows:

1. The IT_Bus::ContextContainer::get_context_as_string() function
returns the principal value that was extracted from the received request
message.

Example 78: Reading the Principal on the Server Side

// C++
// in operation
void MyImpl::echoString(const IT_Bus::String& inputString,
 IT_Bus::String& Response)
IT_THROW_DECL((IT_Bus::Exception))
{
 Response = inputString;
 try {
 IT_Bus::Bus_var bus = IT_Bus::Bus::create_reference();

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 IT_Bus::String & principal =

 context_container->get_context_as_string(
 PRINCIPAL_CONTEXT_ATTRIBUTE,
);
 ...
 }
 catch(IT_Bus::Exception& e) { ... }
}

392

Interoperating with .NET
Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:

Explicitly Declaring the Principal Header page 394

Modifying the SOAP Header page 396
 393

CHAPTER 16 | Principal Propagation
Explicitly Declaring the Principal Header

Overview Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. An Artix service is inherently able to read a
user’s principal from a received SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Declaring the principal header in
WSDL

Example 79 shows the typical modifications you must make to a WSDL
contract in order to make the principal value accessible to non-Artix
applications.

Example 79: WSDL Declaration of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="principal" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...

2 <message targetNamespace="http://schemas.iona.com/security"
 name="principal">

3 <part element="TypePrefix:principal" name="principal"/>
 </message>
 ...

4 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...

5 <operation ...>
 ...
 <input>
 <soap:body ...>

6 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 ...
</definitions>
394

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Declare a principal element in the type schema, which must be
declared to be of type, xsd:string. In this example, the principal
element belongs to the TypeSchema namespace.

2. Add a new message element.

3. The <part> tag’s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:principal" must be a prefix
associated with the TypeSchema namespace.

4. Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the
http://schemas.iona.com/security namespace within the <binding>
tag, which in this example is sec.

5. Edit each operation for which you might need to access the principal
header.

6. Add a <soap:header> tag to the operation’s input part, as shown.
 395

CHAPTER 16 | Principal Propagation
Modifying the SOAP Header

Overview It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

Default SOAP header By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

Custom SOAP header You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec:principal> by a custom
tag, <sec:PrincipalTag>):

WSDL modifications To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 80.

<SOAP-ENV:Header>
 <sec:principal xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:principal>
</SOAP-ENV:Header>

<SOAP-ENV:Header>
 <sec:PrincipalTag

xmlns:sec="http://schemas.iona.com/security"
 xsi:type="xsd:string">my_principal</sec:PrincipalTag>
</SOAP-ENV:Header>

Example 80: Customizing the Form of the Principal Header

<definitions ... >
 <types>
 <schema targetNamespace="TypeSchema" ... >
 ...

1 <element name="PrincipalTag" type="xsd:string"/>
 ...
 </schema>
 </type>
 ...
396

Interoperating with .NET
The preceding WSDL extract can be explained as follows:

1. Modify the principal element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element
belongs to the TypeSchema namespace.

2. The <part> tag’s element attribute is set equal to the QName of the
preceding principal element. Hence, in this example the TypePrefix
appearing in element="TypePrefix:PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

3. The <soap:header> tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
principal part of the message with QName, principal, in the
namespace, http://schemas.iona.com/security.

 <message targetNamespace="http://schemas.iona.com/security"
 name="principal">

2 <part element="TypePrefix:PrincipalTag"
name="principal"/>

 </message>
 ...
 <binding ... xmlns:sec="http://schemas.iona.com/security">
 ...
 <operation ...>
 ...
 <input>
 <soap:body ...>

3 <soap:header message="sec:principal"
 part="principal" use="literal">
 </input>
 </operation>
 </binding>
 ...
</definitions>

Example 80: Customizing the Form of the Principal Header
 397

CHAPTER 16 | Principal Propagation
398

CHAPTER 17

Bridging between
SOAP and CORBA
When a secure SOAP application interoperates with a secure
CORBA application, it is often necessary to transform
credentials between the two applications. For example, you
might need to transform WSS username/password credentials
embedded in a SOAP header into CSI username/password
credentials embedded in a GIOP header.

In this chapter This chapter discusses the following topics:

SOAP-to-CORBA Scenario page 400

Single Sign-On SOAP-to-CORBA Scenario page 416

CORBA-to-SOAP Scenario page 423
 399

CHAPTER 17 | Bridging between SOAP and CORBA
SOAP-to-CORBA Scenario

Overview This section describes how to integrate a secure SOAP client with a secure
CORBA server, by interposing a suitably configured SOAP-to-CORBA Artix
router. The router transforms the SOAP client’s WSS username and
password credentials into CSI/GSSUP credentials for the CORBA server.

In this section This section contains the following subsections:

Overview of the Secure SOAP-to-CORBA Scenario page 401

SOAP Client page 403

SOAP-to-CORBA Router page 407

CORBA Server page 413
400

SOAP-to-CORBA Scenario
Overview of the Secure SOAP-to-CORBA Scenario

Overview This subsection describes a secure SOAP-to-CORBA scenario, where the
router is configured to integrate SOAP security with CORBA security. The
key functionality provided by the router in this scenario is the ability to
extract SOAP credentials (provided in the form of a WSS username and
password) and propagate them as CORBA-compatible GSSUP credentials.

SOAP-to-CORBA scenario Figure 41 shows the outline of a scenario where WSS username and
password credentials, embedded in a SOAP header, are transformed into
GSSUP credentials, embedded in a GIOP service context.

Figure 41: Propagating Credentials Across a SOAP-to-CORBA Router

Artix Security Service

SOAP Client

SOAP Header

3

CSI auth layer

u/p

u/p

SAML

4

1

2

SOAP-to-CORBA Router CORBA Server

u/p/d

u/p

u/p/d
 401

CHAPTER 17 | Bridging between SOAP and CORBA
Steps The steps for propagating credentials across the SOAP-to-CORBA router, as
shown in Figure 41, can be described as follows:

Demonstration code Demonstration code for this SOAP-to-CORBA scenario is available from the
following location:

ArtixInstallDir/artix/Version/demos/security/secure_soap_corba

Enabling GSSUP propagation To enable GSSUP propagation (where received username and password
credentials are inserted into the outgoing GSSUP credentials by the router),
set the following router configuration variable to true:

policies:bindings:corba:gssup_propagation = "true";

Stage Description

1 The client initializes the WSS username and password
credentials, u/p, and sends these credentials, embedded in a
WSS SOAP header, across to the router.

2 The router extracts the received WSS username and password
credentials, u/p, and transfers them into GSSUP credentials,
consisting of username, password and domain, u/p/d. The
username and password are copied straight into the GSSUP
credentials. The domain is set to a blank string (which acts as
a wildcard that matches any domain).

3 The GSSUP credentials, u/p/d, are sent on to the CORBA
server using the CSI authentication over transport mechanism.

4 The CORBA server authenticates the received GSSUP
credentials, u/p/d, by calling out to the Artix security service
(this step is performed automatically by the gsp plug-in).
402

SOAP-to-CORBA Scenario
SOAP Client

Overview When making an invocation, the SOAP client sends username and password
credentials in a SOAP header (formatted according to the WSS standard).
This section describes how to program and configure a SOAP client to send
WSS username and password credentials.

Choice of credentials In this example, the SOAP client is programmed to send
username/password credentials in the SOAP header. It is also possible,
however, to send username/password credentials in the HTTP header, using
the HTTP Basic Authentication mechanism. The propagation mechanism in
the router supports either type of credentials.

Setting the WSS username and
password

Example 81 shows how you can program a SOAP client to send username
and password credentials using the WSS standard.

Example 81: SOAP Client Setting WSS Username/Password Credentials

// C++
...
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>
...
#include "HelloWorldClient.h"

IT_USING_NAMESPACE_STD

using namespace HW;
using namespace IT_Bus;
using namespace IT_ContextAttributes;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::init(argc, argv);

1 Bus* bus = Bus::create_reference();
 ContextRegistry* registry = bus->get_context_registry();
 403

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding client code can be explained as follows:

1. The following four lines contain the standard steps for obtaining a
pointer to the request context container object, request_contexts. The
request context container object contains a collection of context
objects, which contain various settings that can influence the next
invocation request.

For more details about Artix contexts, see the contexts chapter from
Developing Artix Applications in C++.

2. Obtain a pointer to the BusSecurity context object from the request
context container. The BusSecurity context is selected by passing the
QName constant, IT_ContextAttributes::SECURITY_SERVER_CONTEXT,

 ContextCurrent& current = registry->get_current();
 ContextContainer* request_contexts =
 current.request_contexts();

 HelloWorldClient client;
 BusSecurity* security_attr;
 String* username;
 String* token;
 String string_out;

2 AnyType* output_attr = request_contexts->get_context(
 SECURITY_SERVER_CONTEXT,
 true
);

3 security_attr = dynamic_cast<BusSecurity*> (output_attr);
4 security_attr->setWSSEUsernameToken("user_test");

 security_attr->setWSSEPasswordToken("user_password");
5 client.sayHi(string_out);

 ...
 }
 catch(IT_Bus::Exception& e)
 {
 ... // Handle exception (not shown)
 return -1;
 }
 return 0;
}

Example 81: SOAP Client Setting WSS Username/Password Credentials
404

SOAP-to-CORBA Scenario
as the first parameter to get_context(). The second parameter to
get_context(), with the boolean value true, indicates that a new
BusSecurity instance should be created, if one does not already exist.

3. Cast the return value from get_context() to the
IT_ContextAttributes::BusSecurity type.

4. Call the setWSSEUsernameToken() and setWSSEPasswordToken()
functions to specify the credentials to send with the next invocation. In
this example the username and password are sent in the SOAP header
and formatted according to the WSS standard.

5. Invoke the remote WSDL operation, sayHi. The specified username
and password are propagated in the SOAP header along with this
invocation request.

Client configuration Example 82 shows the configuration of the SOAP client in this scenario,
which uses the secure_artix.secure_soap_corba.client.gssup
configuration scope.

Example 82: SOAP Client Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 client
 {
 # Secure HTTPS client-side configuration

1 policies:https:trusted_ca_list_policy =
"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

2 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
 405

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding client configuration can be explained as follows:

1. The trusted CA list policy specifies a listed of trusted CA certificates.
During the SSL handshake, the client checks that the server’s
certificate is signed by one of the CA certificates from this list.

2. The client’s HTTPS security policies require that connections are
secure and the server identifies itself by sending an X.509 certificate.

3. Because this client supports mutual SSL authentication, the principal
sponsor settings are used to associate an X.509 certificate with the
client application.

4. There is no need to list all of the requisite plug-ins explicitly in the
orb_plugins list. In particular, Artix loads the at_http plug-in and the
https plug-in implicitly, because the client connects to a remote WSDL
service that requires HTTPS (the SOAP address that appears in the
WSDL contract starts with the https:// prefix).

If you use a SOAP 1.2 binding, it is also necessary to include the
artix_security plug-in and to configure the client request interceptor
list as shown.

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];

 ...
 gssup
 {

4 orb_plugins = ["xmlfile_log_stream", "https",
"artix_security"];

 binding:artix:client_request_interceptor_list =
"security+principal_context";

 };
 };
};

Example 82: SOAP Client Configuration
406

SOAP-to-CORBA Scenario
SOAP-to-CORBA Router

Overview The SOAP-to-CORBA router receives incoming SOAP/HTTP requests,
translates them into IIOP requests and then forwards them on to a CORBA
server. In addition to translating requests, the router is also configured to
transfer the incoming username/password credentials (embedded in a SOAP
header) into outgoing CSI credentials (embedded in a GIOP service context).
Hence, the SOAP-to-CORBA router enables interoperation of SOAP/HTTP
security with CORBA security.

Transferring credentials from
SOAP to CORBA

The transferal of credentials from SOAP to CORBA obeys the following
semantics:

• Extracting username/password credentials—the router can extract
either WSS username/password from the SOAP header or
username/password from the HTTP header. If username/password
credentials are sent in both headers, you can influence the priority by
setting the plugins:asp:security_level configuration variable to one
of the following values:

♦ REQUEST_LEVEL—give priority to the WSS username and
password from the SOAP header.

♦ MESSAGE_LEVEL—give priority to the username and password from
the HTTP header.

• The username and password credentials are inserted into GSSUP
credentials, which are transmitted using the CSI authentication over
transport mechanism.

• The domain name in the GSSUP credentials is set to an empty string
(which acts as a wildcard that matches any domain).

• The router does not attempt to authenticate the GSSUP credentials.
Hence, the router does not call the Artix security service.

• The GSSUP credentials are used for a single invocation only.

Note: Internally, the GSSUP credentials are set using the
IT_CSI::CSICurrent3::set_effective_own_gssup_credentials_info()
function.
 407

CHAPTER 17 | Bridging between SOAP and CORBA
Router WSDL contract Example 83 shows the WSDL contract for the SOAP-to-CORBA router.

Example 83: SOAP-to-CORBA Router WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 ...>
 <types>
 ...
 </types>
 ...
 <portType name="HelloWorldPortType">
 ...
 </portType>

 <binding name="HelloWorldPortBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

 <binding name="CORBAHelloWorldBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

1 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

2 <soap:address location="https://localhost:8085"/>
 </port>
 </service>

3 <service name="CORBAHelloWorldService">
 <port binding="tns:CORBAHelloWorldBinding"
 name="CORBAHelloWorldPort">

4 <corba:address
 location="file:../../corba/server/HelloWorld.ior"/>
 <corba:policy/>
 </port>
 </service>
408

SOAP-to-CORBA Scenario
The preceding router WSDL contract can be explained as follows:

1. The HellowWorldService specifies a SOAP/HTTP endpoint for the
HelloWorldPortType port type.

2. The SOAP/HTTP endpoint has the address, https://localhost:8085
(you might want to change this to specify the actual name of the host
where the router is running).

3. The CORBAHelloWorldService specifies a CORBA endpoint for the
HelloWorldPortType port type.

4. The location of the CORBA endpoint is given by a stringified
interoperable object reference (IOR), which is stored in the file,
HelloWorld.ior. The CORBA server is programmed to create this file
as it starts up.

5. The route element sets up a route as follows:

♦ The source endpoint (which receives incoming requests) is the
SOAP/HTTP endpoint, HelloWorldPort.

♦ The destination endpoint (to which the router sends outgoing
requests) is the CORBA endpoint, CORBAHelloWorldPort.

5 <ns2:route name="r1">
 <ns2:source port="HelloWorldPort"
 service="tns:HelloWorldService"/>
 <ns2:destination port="CORBAHelloWorldPort"
 service="tns:CORBAHelloWorldService"/>
 </ns2:route>
</definitions>

Example 83: SOAP-to-CORBA Router WSDL Contract

Note: The secure HTTPS protocol is used here (as indicated by the
https prefix in the URL).

Note: A more sophisticated alternative for specifying the CORBA
endpoint would be to use the CORBA Naming Service.
 409

CHAPTER 17 | Bridging between SOAP and CORBA
Router configuration Example 84 shows the configuration of the router in this scenario, which
uses the secure_artix.secure_soap_corba.switch.gssup configuration
scope.

Example 84: SOAP-to-CORBA Router Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 switch
 {
 ###################################
 # required for token propagation

 # iiop_tls config
1 policies:iiop_tls:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

2 policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=router_cert.p12","password_file=router_cert.pwf"];

 # csi auth config
4 policies:csi:auth_over_transport:client_supports =

["EstablishTrustInClient"];
 policies:csi:attribute_service:client_supports =

["IdentityAssertion"];

 #binding/plugin list
5 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "routing", "gsp", "artix_security"];
410

SOAP-to-CORBA Scenario
The preceding router configuration can be explained as follows:

1. This trusted CA list policy specifies the CA certificates that are used to
check certificates received from the CORBA server during the SSL/TLS
handshake.

2. This policy specifies that the router can only open secure IIOP/TLS
connections to CORBA servers.

3. The principal sponsor settings associate an X.509 certificate with the
Artix router.

4. CSI provides two different mechanisms for transporting credentials,
both of which are supported by the router:

 binding:artix:server_request_interceptor_list =
"principal_context+security";

 policies:asp:enable_security = "false";
 policies:asp:enable_authorization = "false";

6 plugins:routing:wsdl_url="../../etc/router.wsdl";

 # Secure HTTPS server-side settings
 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 gssup
 {
 ###
 # flags to control credential propagation

7 policies:bindings:corba:token_propagation="false";
8 policies:bindings:corba:gssup_propagation="true";

 ##
 };
 };
 };
};

Example 84: SOAP-to-CORBA Router Configuration
 411

CHAPTER 17 | Bridging between SOAP and CORBA
♦ Authorization over transport—transfers credentials in the form of
a username, password and domain name. This is the mechanism
used in the current scenario.

♦ Identity assertion—transfers credentials in the form of an
asserted identity. This is the mechanism that is used in
combination with single sign-on—see “Single Sign-On
SOAP-to-CORBA Scenario” on page 416.

5. The iiop_tls plug-in enables secure IIOP/TLS communication. The
at_http plug-in and the https plug-in are loaded implicitly, because
they are required by the HelloWorldService service in the WSDL
contract.

If you use a SOAP 1.2 binding, you must include the artix_security
plug-in, as shown. In this case, you must also initialize the server
request interceptor list and disable authentication and authorization, as
shown in the following lines. The Artix security plug-in is needed only
for the purpose of extracting security credentials from the SOAP 1.2
headers. The authentication and authorization features are not needed
here.

6. This line specifies the location of the router WSDL contract.

7. The token propagation option is disabled in this scenario.

8. The GSSUP propagation option is enabled in this scenario. This is the
key setting for enabling security interoperability. The CORBA binding
extracts the username and password credentials from incoming
SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credentials object, to be transmitted using CSI authentication over
transport. The domain name in the outgoing GSSUP credentials is set
to a blank string.
412

SOAP-to-CORBA Scenario
CORBA Server

Overview In this scenario, the CORBA server must be configured to accept GSSUP
credentials through the CSI authentication over transport mechanism. This
subsection describes how to configure the CORBA server to authenticate the
received CSI credentials.

Server configuration Example 85 shows the configuration of the CORBA server in this scenario,
which uses the secure_artix.secure_soap_corba.server.gssup
configuration scope.

Example 85: CORBA Server Supporting GSSUP Credentials

secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 server
 {

 # binding/plugin list
 orb_plugins = ["local_log_stream", "iiop_profile",

"giop", "iiop_tls", "gsp"];
 binding:server_binding_list = ["CSI+GSP", "CSI", "GSP"];

 # disable authorization
1 plugins:gsp:enable_authorization="false";

2 # disable client side caching
 # plugins:gsp:authentication_cache_size = "-1";
 # plugins:gsp:authentication_cache_timeout = "0";

 # csi auth config
3 policies:csi:auth_over_transport:server_domain_name =

"PCGROUP";
 policies:csi:attribute_service:target_supports =

["IdentityAssertion"];

 413

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding server configuration can be described as follows:

1. In this example, authorization is disabled for simplicity. You can enable
authorization, however, if your application requires it.

2. You might want to disable client side caching for testing purposes (this
would force the server to contact the security service with every
invocation). Normally, however, you should leave these lines
commented out, as shown here. Client caching improves performance
considerably.

3. If needed for authorization purposes, you can set the domain name
here.

 # iiop_tls config
policies:iiop_tls:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

4 policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

5 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=server_cert.p12","password_file=server_cert.pwf"];

 # Configuration required for Token propagation.
6 plugins:gsp:accept_asserted_authorization_info =

"false";

 # Configuration required for GSSUP propagation.
7 policies:csi:auth_over_transport:target_requires =

["EstablishTrustInClient"];
 policies:csi:auth_over_transport:target_supports =

["EstablishTrustInClient"];
 };
 };
};

Example 85: CORBA Server Supporting GSSUP Credentials
414

SOAP-to-CORBA Scenario
4. These settings for the IIOP/TLS target secure invocation policy ensure
that the server accepts only secure connections. The server also
requires the EstablishTrustInClient association option, which
implies that clients must provide an X.509 certificate during the
SSL/TLS handshake.

5. The principal sponsor settings associate an X.509 certificate (in
PKCS#12 format) with the CORBA server.

6. If the server receives credentials in the form of an SSO token, this
setting ensures that the server re-authenticates the token, instead of
relying on SAML data propagated with the request.

7. These CSI authorization over transport policies require clients to
provide GSSUP credentials, which contain a username, password and
domain name. The gsp plug-in is then responsible for contacting the
Artix security service to authenticate these credentials.
 415

CHAPTER 17 | Bridging between SOAP and CORBA
Single Sign-On SOAP-to-CORBA Scenario

Overview This section describes how to integrate a single sign-on SOAP client with a
secure CORBA server, by interposing a suitably configured SOAP-to-CORBA
Artix router.

In this section This section contains the following subsections:

Overview of the Secure SSO SOAP-to-CORBA Scenario page 417

SSO SOAP Client page 419

SSO SOAP-to-CORBA Router page 421
416

Single Sign-On SOAP-to-CORBA Scenario
Overview of the Secure SSO SOAP-to-CORBA Scenario

Overview This subsection describes a variation of the secure SOAP-to-CORBA
scenario, where the client is configured to use single sign-on (SSO). In this
scenario, the client authenticates the username and password with the login
service prior to sending an invocation to the router. Instead of sending
username and password credentials to the router, the client sends the SSO
token it received from the login service. The router can then be configured to
propagate the SSO token to the remote CORBA server.

SSO SOAP-to-CORBA scenario Figure 42 shows the outline of a scenario where an SSO token, embedded
in a SOAP header, is transformed into a CSI identity token, embedded in a
GIOP header (GIOP service context).

Figure 42: Propagating an SSO Token Across a SOAP-to-CORBA Router

Artix Security Service

SOAP Client

SOAP Header

4

1

CSI identity layer

Login
Service

u/p

u/p

u

t

t SAMLt

5

2

3

SOAP-to-CORBA Router CORBA Server

t

u u
 417

CHAPTER 17 | Bridging between SOAP and CORBA
Steps The steps for propagating credentials across the SOAP-to-CORBA router, as
shown in Figure 41, can be described as follows:

Demonstration code Demonstration code for the SSO SOAP-to-CORBA scenario is available from
the following location:

ArtixInstallDir/artix/Version/demos/security/secure_soap_corba

Enabling token propagation To enable SSO token propagation (where received SSO tokens are inserted
into the outgoing CSI identity token by the router), set the following router
configuration variable to true:

policies:bindings:corba:token_propagation = "true";

Stage Description

1 When single sign-on is enabled, the client calls out to the login
service, passing in the client’s WSS credentials, u/p, in order to
obtain an SSO token.

2 When the client invokes an operation on the router, the SSO
token, t, is sent as the password in the WSS credentials.

3 The router extracts the username, u, and the SSO token, t,
from the received WSS credentials and then inserts the
username into the outgoing CSI identity token.

Note: The router should not attempt to authenticate the
received SSO token. In the current example, authentication
does not occur, because the router does not load the
artix_security plug-in.

4 The username, u, is sent on to the CORBA server using the CSI
identity assertion mechanism. The SSO token, t, is transmitted
to the CORBA server in a proprietary GIOP service context.

5 The CORBA server re-authenticates the client’s SSO token, t,
by calling out to the Artix security service. The return value
contains the SAML role and realm data for the token.
418

Single Sign-On SOAP-to-CORBA Scenario
SSO SOAP Client

Overview This subsection describes how to configure a SOAP client to use single
sign-on. The initial client credentials are a WSS username and password
(programmed as shown in “Setting the WSS username and password” on
page 403). After contacting the login service, however, the client uses an
SSO token as its credentials for subsequent invocations.

SSO client configuration Example 86 shows the configuration of the single sign-on SOAP client,
which uses the secure_artix.secure_soap_corba.client.token
configuration scope.

Example 86: Single Sign-On SOAP Client Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 client
 {
 # Secure HTTPS client-side configuration
 policies:https:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_list1.pem";

 policies:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.p12", "password=testaspen"];
 419

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding configuration can be explained as follows:

1. To enable the single sign-on functionality in the client, add the
login_client plug-in to the list of ORB plug-ins.

If the client uses a SOAP 1.2 binding, it is also necessary to include
the artix_security plug-in in the orb_plugins list.

2. It is also necessary to add login_client to the Artix client request
interceptor list (the single sign-on functionality is implemented by a
client request interceptor).

If the client uses a SOAP 1.2 binding, it is also necessary to include
the security and principal_context interceptors in the order shown.

3. The bus:initial_contract:url:login_service variable specifies the
location of the login service’s WSDL contract. This contract contains
the address of the login service endpoint.

 ...
 token
 {

1 orb_plugins = ["xmlfile_log_stream",
"login_client", "https", "artix_security"];

2 binding:artix:client_request_interceptor_list=
"login_client+security+principal_context";

3 bus:initial_contract:url:login_service =
"../../wsdl/login_service.wsdl";

 };
 };
};

Example 86: Single Sign-On SOAP Client Configuration
420

Single Sign-On SOAP-to-CORBA Scenario
SSO SOAP-to-CORBA Router

Overview The single sign-on SOAP-to-CORBA router is configured similarly to the
normal SOAP-to-CORBA router (“SOAP-to-CORBA Router” on page 407),
except that the CORBA binding is configured to enable token propagation
instead of GSSUP propagation.

Transferring credentials from
SOAP to CORBA

The transferal of credentials from SOAP to CORBA in the single sign-on
scenario obeys the following semantics:

• The SSO token credentials are inserted into a proprietary GIOP service
context, which is transmitted in the header of the outgoing IIOP/TLS
message.

• The router does not attempt to authenticate the SSO token. Hence, the
router does not call the Artix security service.

• The SSO token is used for a single invocation only.

SSO router configuration Example 87 shows the configuration of the single sign-on router, which uses
the secure_artix.secure_soap_corba.switch.token configuration scope.

Example 87: Single Sign-On SOAP-to-CORBA Router Configuration

Artix Configuration File
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 switch
 {

1 # Common configuration
 ...

2 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 ...
 token
 421

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding router configuration can be explained as follows:

1. The rest of the secure_artix.secure_soap_corba.switch scope is the
same as the scenario without single sign-on. See “SOAP-to-CORBA
Router” on page 407 for details.

2. This line is of particular importance for the single sign-on scenario. It
enables the CSI identity assertion mechanism, which is needed to
transmit the SSO token to the CORBA server.

3. The token propagation option is enabled in this scenario. This is the
key setting for enabling security interoperability. The CORBA binding
extracts the SSO token from incoming SOAP/HTTP invocations and
inserts the token into an outgoing IIOP request, to be transmitted using
CSI identity assertion.

4. The GSSUP propagation option is disabled in this scenario.

 {
3 policies:bindings:corba:token_propagation="true";
4 policies:bindings:corba:gssup_propagation="false";

 };
 ...
 };
 };
};

Example 87: Single Sign-On SOAP-to-CORBA Router Configuration
422

CORBA-to-SOAP Scenario
CORBA-to-SOAP Scenario

Overview This section describes how to integrate a secure CORBA client with a secure
SOAP server, by interposing a suitably configured CORBA-to-SOAP Artix
router. The router transforms the CORBA client’s CSI/GSSUP credentials
(consisting of username, password, and domain) into WSS credentials
(consisting of username and password) for the SOAP server.

In this section This section contains the following subsections:

Overview of the Secure CORBA-to-SOAP Scenario page 424

CORBA Client page 426

CORBA-to-SOAP Router page 428

SOAP Server page 434
 423

CHAPTER 17 | Bridging between SOAP and CORBA
Overview of the Secure CORBA-to-SOAP Scenario

Overview This subsection describes a secure CORBA-to-SOAP scenario, where the
router is configured to integrate CORBA security with SOAP security. The
key functionality provided by the router in this scenario is the ability to
extract CORBA CSI credentials (provided in the form of a GSSUP username,
password, and domain) and propagate them as SOAP-compatible WSS
credentials.

SOAP-to-CORBA scenario Figure 43 shows the outline of a scenario where GSSUP credentials,
embedded in a GIOP service context, are transformed into WSS username
and password credentials, embedded in a SOAP header.

Figure 43: Propagating Credentials Across a CORBA-to-SOAP Router

Artix Security Service

CORBA Client

SOAP Header

4

CSI auth layer

u/p SAML

3

1

2

CORBA-to-SOAP Router SOAP Server

u/p/d

u/p

u/p/d

u/p/d
424

CORBA-to-SOAP Scenario
Steps The steps for propagating credentials across the CORBA-to-SOAP router, as
shown in Figure 43, can be described, as follows:

Demonstration code Demonstration code for this CORBA-to-SOAP scenario is available from the
following location:

ArtixInstallDir/artix/Version/demos/security/secure_corba_soap

Enabling WSS propagation To enable WSS propagation (where received username and password
credentials are inserted into the outgoing GSSUP credentials by the router),
set the following router configuration variable to true:

policies:bindings:soap:gssup_propagation = "true";

Enabling token propagation Additionally, you can enable Artix security token propagation by setting the
following router configuration variable to true:

policies:bindings:soap:token_propagation = "true";

Stage Description

1 The client initializes the GSSUP username, password, and
domain credentials, u/p/d, and sends these credentials,
embedded in a GIOP service context, across to the router.

2 The router extracts the received GSSUP username, password,
and domain credentials, u/p/d, and transfers them into WSS
credentials, consisting of a username and a password. The
domain name is discarded.

3 The WSS credentials, u/p, are sent on to the SOAP server
inside a WSS SOAP header.

4 The SOAP server authenticates the received WSS credentials,
u/p, by calling out to the Artix security service (this step is
performed automatically by the artix_security plug-in).
 425

CHAPTER 17 | Bridging between SOAP and CORBA
CORBA Client

Overview This section describes how to configure a CORBA client to send username
and password credentials through the CSI authentication over transport
mechanism (which puts the user’s credentials into a GIOP service context).

When a client request arrives in the router, the propagation mechanism in
the router extracts the username and password from the incoming CSI
credentials.

Client configuration Example 88 shows the configuration of the SOAP client in this scenario,
which uses the secure_artix.secure_corba_soap.client configuration
scope.

Example 88: SOAP Client Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 client
 {
 # iiop_tls config

1 policies:iiop_tls:client_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

 # csi auth config

2 policies:csi:auth_over_transport:authentication_service
= "com.iona.corba.security.csi.AuthenticationService";

 policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];

 policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

 #binding/plugin list
3 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "csi"];

4 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
426

CORBA-to-SOAP Scenario
The preceding client configuration can be explained as follows:

1. The IIOP/TLS client invocation policies specified here ensure that the
outgoing client connections are secure.

2. The following three lines specify the basic CSI configuration on the
client side, enabling both CSI authentication over transport and CSI
identity assertion.

3. To enable the client to send credentials using the CSI mechanisms, the
orb_plugins list includes the csi plug-in. Alternatively, you can also
enable CSI by loading the gsp plug-in (which implicitly loads the csi
plug-in).

4. The principal sponsor settings on the following lines associate the
client’s own X.509 certificate with the SSL/TLS layer.

5. The CSI principal sponsor settings on the following lines are used to
specify the CSI credentials in the form of a username, a password and
a domain name.

 principal_sponsor:auth_method_data =
["filename=C:\artix_40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

5 principal_sponsor:csi:use_principal_sponsor = "true";

 principal_sponsor:csi:auth_method_id = "GSSUPMech";
 principal_sponsor:csi:auth_method_data =

["username=user_test", "password=user_password",
"domain=PCGROUP"];

 };
 };
};

Example 88: SOAP Client Configuration
 427

CHAPTER 17 | Bridging between SOAP and CORBA
CORBA-to-SOAP Router

Overview The CORBA-to-SOAP router receives incoming IIOP requests, translates
them into SOAP/HTTP requests and then forwards them on to a SOAP
server. In addition to translating requests, the router is also configured to
transfer the incoming CSI credentials (embedded in a GIOP message
context) into outgoing WSS credentials (embedded in a SOAP header).
Hence, the CORBA-to-SOAP router enables interoperation of CORBA
security with SOAP/HTTP security.

Transferring credentials from
CORBA to SOAP

The transferal of credentials from CORBA to SOAP obeys the following
semantics:

• The router authenticates the incoming CSI credentials, obtaining a
security token from the Artix security service.

• The router embeds the security token in the outgoing SOAP header.

• The username from the incoming CSI credentials is embedded in the
outgoing SOAP header (in the WSS credentials).

• The domain name from the incoming CSI credentials is discarded (the
WSS credentials do not include a domain name).

Router WSDL contract Example 89 shows the WSDL contract for the CORBA-to-SOAP router.

Example 89: CORBA-to-SOAP Router WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 ...>
 <types>
 ...
 </types>
 ...
 <portType name="HelloWorldPortType">
 ...
428

CORBA-to-SOAP Scenario
 </portType>

 <binding name="HelloWorldPortBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

 <binding name="CORBAHelloWorldBinding"
 type="tns:HelloWorldPortType">
 ...
 </binding>

1 <service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding"
 name="HelloWorldPort">

2 <soap:address location="https://localhost:8085"/>
 </port>
 </service>

3 <service name="CORBAHelloWorldService">
 <port binding="tns:CORBAHelloWorldBinding"
 name="CORBAHelloWorldPort">

4 <corba:address
 location="file:../../corba/server/HelloWorld.ior"/>
 <corba:policy/>
 </port>
 </service>

5 <ns2:route name="r1">
 <ns2:source port="CORBAHelloWorldPort"
 service="tns:CORBAHelloWorldService"/>
 <ns2:destination port="HelloWorldPort"
 service="tns:HelloWorldService"/>
 </ns2:route>
</definitions>

Example 89: CORBA-to-SOAP Router WSDL Contract
 429

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding router WSDL contract can be explained as follows:

1. The HellowWorldService specifies a SOAP/HTTP endpoint for the
HelloWorldPortType port type.

2. The SOAP/HTTP endpoint has the address, https://localhost:8085
(you might want to change this to specify the actual name of the host
where the SOAP server is running).

3. The CORBAHelloWorldService specifies a CORBA endpoint for the
HelloWorldPortType port type.

4. The location of the CORBA endpoint is given by a stringified
interoperable object reference (IOR). The router automatically opens an
IP listener port and writes the corresponding IOR into the
HelloWorld.ior file.

5. The route element sets up a route as follows:

♦ The source endpoint (which receives incoming requests) is the
CORBA endpoint, CORBAHelloWorldPort.

♦ The destination endpoint (to which the router sends outgoing
requests) is the SOAP/HTTP endpoint, HelloWorldPort.

Router configuration Example 90 shows the configuration of the router in this scenario, which
uses the secure_artix.secure_corba_soap.switch configuration scope.

Note: The secure HTTPS protocol is used here (as indicated by the
https prefix in the URL).

Note: A more sophisticated alternative for publishing the CORBA
endpoint would be to use the CORBA Naming Service.

Example 90: CORBA-to-SOAP Router Configuration

Artix Configuration File
...
secure_artix
{
 secure_soap_corba
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";
430

CORBA-to-SOAP Scenario
 switch
 {
 # disable authorization

1 plugins:gsp:enable_authorization="false";

 # iiop_tls config
2

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

3 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

 # csi auth config

4 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

 policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];

 #binding/plugin list
5 orb_plugins = ["xmlfile_log_stream", "iiop_profile",

"giop", "iiop_tls", "routing", "gsp", "artix_security"];
 binding:artix:client_request_interceptor_list =

"security+principal_context";
 policies:asp:enable_security = "false";
 policies:asp:enable_authorization = "false";
 binding:server_binding_list = ["CSI+GSP", "CSI",

"GSP"];

6 plugins:routing:wsdl_url="../../etc/router.wsdl";

 plugins:xmlfile_log_stream:use_pid = "true";

Example 90: CORBA-to-SOAP Router Configuration
 431

CHAPTER 17 | Bridging between SOAP and CORBA
The preceding router configuration can be explained as follows:

1. There is no need for the router to perform authorization on incoming
CORBA messages. Therefore, it makes sense to disable authorization
in the GSP plug-in (which is responsible for the authentication and
authorization of CORBA messages).

2. The IIOP/TLS client and target invocation policies specified here ensure
that both outgoing and incoming IIOP/TLS connections are secure.

3. The principal sponsor settings associate an X.509 certificate with the
Artix router.

4. The following three lines specify the basic CSI configuration on the
client side, enabling both CSI authentication over transport and CSI
identity assertion.

5. The gsp plug-in must be included in the orb_plugins list to enable the
router to parse incoming CSI credentials and to authenticate the CSI
credentials with the Artix security service.

If you use a SOAP 1.2 binding, you must include the artix_security
plug-in, as shown. In this case, you must also initialize the client
request interceptor list and disable authentication and authorization, as
shown in the following lines. The Artix security plug-in is needed only

 # secure HTTPS client -> secure HTTPS server settings
7 plugins:at_http:client:use_secure_sockets="true";

 plugins:at_http:client:trusted_root_certificates =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

 plugins:at_http:client:client_certificate =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/certs/testaspen.p12";

 plugins:at_http:client:client_private_key_password =
"testaspen";

8 policies:bindings:soap:token_propagation = "true";
 policies:bindings:soap:gssup_propagation = "true";
 };
 };
};

Example 90: CORBA-to-SOAP Router Configuration
432

CORBA-to-SOAP Scenario
for the purpose of inserting security credentials into SOAP 1.2 headers.
The authentication and authorization features are not needed here.

6. This line specifies the location of the router WSDL contract.

7. The following four lines configure security for the HTTPS transport. In
particular, the plugins:at_http:client:client_certificate
configuration variable specifies an own X.509 certificate to use
specifically with the HTTPS transport.

8. The CORBA-to-SOAP GSSUP propagation option is enabled in this
scenario.

This is the key setting for enabling security interoperability. The router
extracts the username, password, and domain credentials from
incoming CORBA invocations and inserts them into an outgoing WSS
credentials object, to be transmitted in a WSS SOAP header. The
domain name from the incoming CORBA message gets discarded.
 433

CHAPTER 17 | Bridging between SOAP and CORBA
SOAP Server

Overview In this scenario, the SOAP server must be configured to accept WSS
credentials, which are transmitted in a SOAP header. This subsection
describes how to configure the SOAP server to authenticate the received
WSS credentials.

Server configuration Example 91 shows the configuration of the SOAP server in this scenario,
which uses the secure_artix.secure_corba_soap.server configuration
scope.

Example 91: SOAP Server Supporting WSS Credentials

secure_artix
{
 secure_corba_soap
 {
 initial_references:IT_SecurityService:reference =

"corbaloc:it_iiops:1.2@localhost:58482/IT_SecurityService";

 server
 {

1 principal_sponsor:use_principal_sponsor = "true";
 principal_sponsor:auth_method_id = "pkcs12_file";
 principal_sponsor:auth_method_data =

["filename=C:\artix_40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.p12",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

2 policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

 binding:artix:server_request_interceptor_list=
"principal_context+security";

3 orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "artix_security"];
434

CORBA-to-SOAP Scenario
The preceding server configuration can be described as follows:

1. The principal sponsor settings associate an X.509 certificate with the
SOAP server. This certificate is used when opening a connection to the
Artix security service (this connection uses the IIOP/TLS protocol).

2. The target invocation policies specified here ensure that incoming
connections are secure, for both the IIOP/TLS and HTTPS protocols.

3. You must include the artix_security plug-in in the orb_plugins list to
enable Artix security. The iiop_tls plug-in is required in order to
communicate with the Artix security service. In addition, the at_http
plug-in and the https plug-in are loaded, but there is no need to
include at_http or https in the orb_plugins list. Because the HTTPS
port is specified in the WSDL contract, Artix implicitly loads the
at_http and https plug-ins.

4. In this example, authorization is disabled. In most deployed systems,
however, you would probably need to enable authorization (and add
the additional configuration settings—see “Security Layer” on
page 34).

5. By setting the security level to REQUEST_LEVEL, you indicate that the
credentials to authenticate are taken preferentially from the SOAP
header (for example, the WSS credentials).

4 policies:asp:enable_authorization = "false";
5 plugins:asp:security_level = "REQUEST_LEVEL";

6 plugins:at_http:server:trusted_root_certificates =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";

 plugins:at_http:server:server_certificate =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/certs/testaspen.p12";

 plugins:at_http:server:server_private_key_password =
"testaspen";

 };
 };
};

Example 91: SOAP Server Supporting WSS Credentials
 435

CHAPTER 17 | Bridging between SOAP and CORBA
6. These settings specify an own X.509 certificate that is used with the
HTTPS protocol only.
436

CHAPTER 18

Programming
Authentication
To ensure that Web services and Web service clients
developed using Artix can interoperate with the widest possible
array of Web services, Artix supports the WS Security
specification for propagating Kerberos security tokens,
username/password security tokens and X.509 certificates in
SOAP message headers. The security tokens are placed into
the SOAP message header using Artix APIs that format the
tokens and place them in the header correctly.

In this chapter This chapter discusses the following topics:

Configuration for SOAP 1.2 Bindings page 438

Propagating a Username/Password Token page 439

Propagating a Kerberos Token page 444

Propagating an X.509 Certificate page 449
 437

CHAPTER 18 | Programming Authentication
Configuration for SOAP 1.2 Bindings

Overview If you use a SOAP 1.2 binding to transmit the WSS Username/Password
token, you need to ensure that the artix_security plug-in is loaded and
configured both on the client side and on the server side.

Client-side configuration for
SOAP 1.2

On the client side, configure the artix_security plug-in as follows:

The client-side configuration is not required for SOAP 1.1 bindings.

Server-side configuration for
SOAP 1.2

On the server side, configure the artix_security plug-in as follows:

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

binding:artix:client_request_interceptor_list =
"security+principal_context";

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

binding:artix:server_request_interceptor_list =
"principal_context+security";
438

Propagating a Username/Password Token
Propagating a Username/Password Token

Overview Many Web services use simple username/password authentication to ensure
that only preapproved clients an access them. Artix provides a simple client
side API for embedding the username and password into the SOAP message
header of requests in a WS Security compliant manner.

C++ Procedure Embedding a username and password token into the SOAP header of a
request in Artix C++ requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.lib on
Windows and it_context_attribute.so or it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

3. Get a reference to the current IT_ContextAttributes::BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

4. Set the WSSEUsernameToken property on the BusSecurity context using
the setWSSEUsernameToken() method.

5. Set the WSSEPasswordToken property on the BusSecurity context using
the setWSSEPasswordToken() method.

C++ Example Example 92 shows how to set the Web services username/password token
in a C++ client prior to invoking a remote operation.

Example 92: Setting a WS Username/Password Token in a C++ Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>
 439

CHAPTER 18 | Programming Authentication
// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 AnyType* info = context_container->get_context(

 IT_ContextAttributes::SECURITY_SERVER_CONTEXT,
 true
);

 // Cast the context into a BusSecurity object
2 BusSecurity* bus_security_ctx =

 dynamic_cast<BusSecurity*> (info);

 // Set the WS Username and Password tokens
3 bus_security_ctx->setWSSEUsernameToken("artix_user");

 bus_security_ctx->setWSSEPasswordToken("artix");
 ...
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"

Example 92: Setting a WS Username/Password Token in a C++ Client
440

Propagating a Username/Password Token
The preceding code can be explained as follows:

1. Call the IT_Bus::ContextContainer::get_context() function to
obtain a pointer to a BusSecurity object. The first parameter is the
QName of the BusSecurity context and the second parameter is set to
true, indicating that a context with that QName will be created if none
already exists.

2. Cast the IT_Bus::AnyType instance, info, to its derived type,
IT_ContextAttributes::BusSecurity, which is the bus-security
context data type.

3. Use the BusSecurity API to set the WSS username and password
tokens. After this point, any SOAP operations invoked from the current
thread will include the specified WSS username and password in the
request message.

Java Procedure Embedding a username and password token into the SOAP header of a
request in Artix Java requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Create a new com.iona.schemas.bus.security_context.BusSecurity
context data object.

3. Set the WSSEUsernameToken property on the BusSecurity context using
the setWSSEUsernameToken() method.

4. Set the WSSEPasswordToken property on the BusSecurity context using
the setWSSEPasswordToken() method.

5. Set the bus-security context for the outgoing request message by
calling setRequestContext() on an IonaMessageContext object (see
Developing Artix Applications in Java).

 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 92: Setting a WS Username/Password Token in a C++ Client
 441

CHAPTER 18 | Programming Authentication
Java Example Example 93 shows how to set the Web services username/password token
in a Java client prior to invoking a remote operation.

1. Create a new com.iona.schemas.bus.security_context.BusSecurity
object to hold the context data and initialize the WSSEUsernameToken
and WSSEPasswordToken properties on this BusSecurity object.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

Example 93: Setting a WS Username/Password Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.ContextRegistry;
import com.iona.jbus.IonaMessageContext;
import com.iona.schemas.bus.security_context.BusSecurity;
...
// Set the BuSecurity Context
//---------------------------
// Insert the following lines of code prior to making a
// WS-secured invocation:

1 BusSecurity security = new BusSecurity();
security.setWSSEUsernameToken("user_test");
security.setWSSEPasswordToken("user_password");

2 QName SECURITY_CONTEXT =
 new QName(
 "http://schemas.iona.com/bus/security_context",
 "bus-security"
);

3 ContextRegistry registry = bus.getContextRegistry();
4 IonaMessageContext contextimpl =

(IonaMessageContext)registry.getCurrent();
5 contextimpl.setRequestContext(SECURITY_CONTEXT, security);

...
442

Propagating a Username/Password Token
3. The com.iona.jbus.ContextRegistry object manages all of the
context objects for the application.

4. The com.iona.jbus.IonaMessageContext object returned from
getCurrent() holds all of the context data objects associated with the
current thread.

5. Call setRequestContext() to initialize the bus-security context for
outgoing request messages.
 443

CHAPTER 18 | Programming Authentication
Propagating a Kerberos Token

Overview Using the Kerberos Authentication Service requires you to make a few
changes to your client code. First you need to acquire a valid Kerberos
token. Then you need to embed it into the SOAP message header of all the
requests being made on the secure server.

Acquiring a Kerberos Token To get a security token from the Kerberos Authentication Service, you must
use platform specific APIs and then base64 encode the returned binary
token so that it can be placed into the SOAP header.

On UNIX platforms, use the GSS APIs to contact Kerberos and get a token
for the service you wish to make requests upon. On Windows platforms, use
the Microsoft Security Framework APIs to contact Kerberos and get a token
for the service you wish to contact.

C++ embedding the Kerberos
token in the SOAP header

Embedding a Kerberos token into the SOAP header of a request using the
Artix APIs requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.lib on
Windows and it_context_attribute.so or it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

3. Get a reference to the current IT_ContextAttributes::BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

4. Set the WSSEKerberosv5SToken property on the BusSecurity context
using the setWSSEKerberosv5SToken() method.
444

Propagating a Kerberos Token
C++ Example Example 94 shows how to set the Kerberos token prior to invoking a remote
operation.

Example 94: Setting a Kerberos Token on the Client Side

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 AnyType* info = context_container->get_context(

 IT_ContextAttributes::SECURITY_SERVER_CONTEXT,
 true
);
 445

CHAPTER 18 | Programming Authentication
The preceding code can be explained as follows:

1. The IT_Bus::ContextContainer::get_context() function is called
with its second parameter set to true, indicating that a context with
that name will be created if none already exists.

2. Cast the IT_Bus::AnyType instance, info, to its derived type,
IT_ContextAttributes::BusSecurity, which is the bus-security
context data type.

3. Use the BusSecurity API to set the WSS Kerberos token,
kerberos_token_string. The argument to
setWSSEKerberosv5SToken() is a base-64 encoded Kerberos token
received from a Kerberos server.

The next operation invoked from this thread will include the specified
Kerberos token in the request message.

 // Cast the context into a BusSecurity object
2 BusSecurity* bus_security_ctx =

 dynamic_cast<BusSecurity*> (info);

 // Set the Kerberos token
3 bus_security_ctx->setWSSEKerberosv5SToken(

 kerberos_token_string
);
 ...
 }
 catch(IT_Bus::Exception& e)
 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 94: Setting a Kerberos Token on the Client Side
446

Propagating a Kerberos Token
Java embedding the Kerberos
token in the SOAP header

Embedding a Kerberos token into the SOAP header of a request in Artix Java
requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Create a new com.iona.schemas.bus.security_context.BusSecurity
context data object.

3. Set the WSSEKerberosv2SToken property on the BusSecurity context
using the setWSSEKerberosv2SToken() method.

4. Set the bus-security context for the outgoing request message by
calling setRequestContext() on an IonaMessageContext object (see
Developing Artix Applications in Java).

Java Example Example 95 shows how to set the Kerberos token in a Java client prior to
invoking a remote operation.

Example 95: Setting a Kerberos Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.ContextRegistry;
import com.iona.jbus.IonaMessageContext;
import com.iona.schemas.bus.security_context.BusSecurity;
...
// Set the BuSecurity Context
//---------------------------
// Insert the following lines of code prior to making a
// WS-secured invocation:

1 BusSecurity security = new BusSecurity();
security.setWSSEKerberosv5SToken(kerberos_token_string);

2 QName SECURITY_CONTEXT =
 new QName(
 "http://schemas.iona.com/bus/security_context",
 "bus-security"
);
 447

CHAPTER 18 | Programming Authentication
1. Create a new com.iona.schemas.bus.security_context.BusSecurity
object to hold the context data and initialize the
WSSEKerberosv2SToken on this BusSecurity object.

The argument to setWSSEKerberosv5SToken() is a base-64 encoded
Kerberos token received from a Kerberos server.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

3. The com.iona.jbus.ContextRegistry object manages all of the
context objects for the application.

4. The com.iona.jbus.IonaMessageContext object returned from
getCurrent() holds all of the context data objects associated with the
current thread.

5. Call setRequestContext() to initialize the bus-security context for
outgoing request messages.

3 ContextRegistry registry = bus.getContextRegistry();
4 IonaMessageContext contextimpl =

(IonaMessageContext)registry.getCurrent();
5 contextimpl.setRequestContext(SECURITY_CONTEXT, security);

...

Example 95: Setting a Kerberos Token in a Java Client
448

Propagating an X.509 Certificate
Propagating an X.509 Certificate

Overview Artix lets you propagate an X.509 certificate inside a SOAP header, as
specified in the WSS standard. You need to program the client to insert a
certificate into outgoing SOAP headers and program the server to extract the
certificate from the incoming SOAP headers.

C++ Procedure Embedding an X.509 certificate into the SOAP header of a request in Artix
C++ requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.lib on
Windows and it_context_attribute.so or it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

3. Get a reference to the current IT_ContextAttributes::BusSecurity
context data type, using the Artix context API (see Developing Artix
Applications in C++).

4. Set the WSSEX509Cert property on the BusSecurity context using the
setWSSEX509Cert() method.

C++ Example Example 96 shows how to insert an X.509 certificate into a WSS SOAP
header in a C++ client prior to invoking a remote operation.

Example 96: Setting a WSS X.509 Certificate in a C++ Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security_xsdTypes.h>
 449

CHAPTER 18 | Programming Authentication
IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT_Bus;

int
main(int argc, char* argv[])
{
 try
 {
 IT_Bus::Bus_var bus = IT_Bus::init(argc, argv);

 ContextRegistry* context_registry =
 bus->get_context_registry();

 // Obtain a reference to the ContextCurrent
 ContextCurrent& context_current =
 context_registry->get_current();

 // Obtain a pointer to the Request ContextContainer
 ContextContainer* context_container =
 context_current.request_contexts();

 // Obtain a reference to the context
1 AnyType* info = context_container->get_context(

 IT_ContextAttributes::SECURITY_SERVER_CONTEXT,
 true
);

 // Cast the context into a BusSecurity object
2 BusSecurity* bus_security_ctx =

 dynamic_cast<BusSecurity*> (info);

 // Read the WSS X.509 Certificate
3 char x509_cert[10000];

 read_certificate(
 "sample_cert.pem",
 x509_cert
);
 // Set the WSS X.509 Certificate

4 bus_security_ctx->setWSSEX509Cert(x509_cert);
 ...
 }
 catch(IT_Bus::Exception& e)

Example 96: Setting a WSS X.509 Certificate in a C++ Client
450

Propagating an X.509 Certificate
The preceding code can be explained as follows:

1. Call the IT_Bus::ContextContainer::get_context() function to
obtain a pointer to a BusSecurity object. The first parameter is the
QName of the BusSecurity context and the second parameter is set to
true, indicating that a context with that QName will be created if none
already exists.

2. Cast the IT_Bus::AnyType instance, info, to its derived type,
IT_ContextAttributes::BusSecurity, which is the bus-security
context data type.

3. Read the certificate from some external source. The X.509 certificate
must be in Privacy Enhanced Mail (PEM) format (which is a format
proprietary to the OpenSSL product). For example, you might read the
certificate from a file with the following implementation of the
read_certificate() function:

 {
 cout << endl << "Error : Unexpected error occured!"
 << endl << e.message()
 << endl;
 return -1;
 }
 return 0;
}

Example 96: Setting a WSS X.509 Certificate in a C++ Client

// C++
void
read_certificate(
 const char* filename,
 char* cert
)
{
 char buf[5000];
 strcpy(cert, "\0");
 FILE *is;
 if ((is = fopen(filename, "rb")) == NULL)
 {
 fprintf(stdout, "Can't open %s", filename);
 return;
 }

 451

CHAPTER 18 | Programming Authentication
4. Use the BusSecurity API to set the X.509 certificate for sending in the
WSS SOAP header. After this point, any SOAP operations invoked from
the current thread will include the specified WSS X.509 certificate in
the request message.

Java Procedure Embedding an X.509 certificate into the SOAP header of a request in Artix
Java requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings” on page 438.

2. Create a new com.iona.schemas.bus.security_context.BusSecurity
context data object.

3. Set the WSSEX509Cert property on the BusSecurity context using the
setWSSEX509Cert() method.

4. Set the bus-security context for the outgoing request message by
calling setRequestContext() on an IonaMessageContext object (see
Developing Artix Applications in Java).

Java Example Example 97 shows how to insert an X.509 certificate into a WSS SOAP
header in a Java client prior to invoking a remote operation.

 int n = 200;
 while(fgets(buf, n, is) != 0)
 {
 strncat(cert, buf, strlen(buf));
 }

 fclose(is);
}

Example 97: Setting a WSS X.509 Certificate in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.ContextRegistry;
import com.iona.jbus.IonaMessageContext;
import com.iona.schemas.bus.security_context.BusSecurity;
452

Propagating an X.509 Certificate
1. Use the BusSecurity API to set the X.509 certificate in the WSS SOAP
header.

2. Initialize the name of the bus-security context. Because the
bus-security context type is pre-registered by the Artix runtime (thus
fixing the context name) the bus-security name must be set to the
value shown here.

3. The com.iona.jbus.ContextRegistry object manages all of the
context objects for the application.

4. The com.iona.jbus.IonaMessageContext object returned from
getCurrent() holds all of the context data objects associated with the
current thread.

5. Call setRequestContext() to initialize the bus-security context for
outgoing request messages.

...
// Set the BuSecurity Context
//---------------------------
// Insert the following lines of code prior to making a
// WS-secured invocation:

1 BusSecurity security = new BusSecurity();
java.lang.String x509_cert = ... // Get X.509 cert.
security.setWSSEX509Cert(x509_cert);

2 QName SECURITY_CONTEXT =
 new QName(
 "http://schemas.iona.com/bus/security_context",
 "bus-security"
);

3 ContextRegistry registry = bus.getContextRegistry();
4 IonaMessageContext contextimpl =

(IonaMessageContext)registry.getCurrent();
5 contextimpl.setRequestContext(SECURITY_CONTEXT, security);

...

Example 97: Setting a WSS X.509 Certificate in a Java Client
 453

CHAPTER 18 | Programming Authentication
454

CHAPTER 19

Developing an iSF
Adapter
An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate iSF with any third-party
enterprise security service. This chapter explains how to
develop and configure a custom iSF adapter implementation.

In this chapter This chapter discusses the following topics:

iSF Security Architecture page 456

iSF Server Module Deployment Options page 460

iSF Adapter Overview page 462

Implementing the IS2Adapter Interface page 463

Deploying the Adapter page 473
 455

CHAPTER 19 | Developing an iSF Adapter
iSF Security Architecture

Overview This section introduces the basic components and concepts of the iSF
security architecture, as follows:

• Architecture.

• iSF client.

• iSF client SDK.

• Artix Security Service.

• iSF adapter SDK.

• iSF adapter.

• Example adapters.
456

iSF Security Architecture
Architecture Figure 44 gives an overview of the Artix Security Service, showing how it fits
into the overall context of a secure system.

iSF client An iSF client is an application that communicates with the Artix Security
Service to perform authentication and authorization operations. The
following are possible examples of iSF client applications:

• CORBA servers.

• Artix servers.

• Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Artix Security Service.

Figure 44: Overview of the Artix Security Service

Java
application

iSF Server Module

iSF client SDK

C / C++
application

iSF client SDK

iSF adapter

iSF adapter SDK

Third-party security service

Artix Security Service
 457

CHAPTER 19 | Developing an iSF Adapter
iSF client SDK The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Artix Security Service.

Artix Security Service The Artix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Artix Security Service, however, it becomes
possible to access the security service remotely.

iSF server module The iSF server module is a broker that mediates between iSF clients, which
request the security service to perform security operations, and a third-party
security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

• A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.

• A single sign-on feature with user session caching.

iSF adapter SDK The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

iSF adapter An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An
iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Example adapters The following standard adapters are provided with Artix:

• Lightweight Directory Access Protocol (LDAP).

• File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

Note: The iSF client SDK is only used internally. It is currently not
available as a public programming interface.
458

iSF Security Architecture
WARNING: The file adapter is intended for demonstration purposes only.
It is not industrial strength and is not meant to be used in a production
environment.
 459

CHAPTER 19 | Developing an iSF Adapter
iSF Server Module Deployment Options

Overview The iSF server module, which is fundamentally implemented as a Java
library, can be deployed in one of the following ways:

• CORBA service.

• Java library.

CORBA service The iSF server module can be deployed as a CORBA service (Artix Security
Service), as shown in Figure 45. This is the default deployment model for
the iSF server module in Artix. This deployment option has the advantage
that any number of distributed iSF clients can communicate with the iSF
server module over IIOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server. The Artix Security Service
can be launched by the itsecurity executable and basic configuration is
set in the iona_services.security scope of the Artix configuration file.

Figure 45: iSF Server Module Deployed as a CORBA Service

Application

iSF Security Module

iSF client SDK

iSF adapter

CORBA Service

IDL Interface

IIOP/TLS
460

iSF Server Module Deployment Options
Java library The iSF server module can be deployed as a Java library, as shown in
Figure 46, which permits access to the iSF server module from a single iSF
client only.

With this type of deployment, the iSF security JAR file is loaded directly into
a Java application. The security service is then instantiated as a local object
and all calls made through the iSF client SDK are local calls.

Figure 46: iSF Server Module Deployed as a Java Library

Java application

iSF Security Module

iSF client SDK

iSF adapter
 461

CHAPTER 19 | Developing an iSF Adapter
iSF Adapter Overview

Overview This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in Java.

Standard iSF adapters IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

• File adapter.

• LDAP adapter.

Custom iSF adapters The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

Main elements of a custom iSF
adapter

The main elements of a custom iSF adapter are, as follows:

• Implementation of the ISF Adapter Java interface.

• Configuration of the ISF adapter using the iSF properties file.

Implementation of the ISF
Adapter Java interface

The only code that needs to be written to implement an iSF adapter is a
class to implement the IS2Adapter Java interface. The adapter
implementation class should respond to authentication requests either by
checking a repository of user data or by forwarding the requests to a
third-party enterprise security service.

Configuration of the ISF adapter
using the iSF properties file

The iSF adapter is configured by setting Java properties in the
is2.properties file. The is2.properties file stores two kinds of
configuration data for the iSF adapter:

• Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 474.

• Configuration of the adapter itself—see “Setting the Adapter
Properties” on page 475.
462

Implementing the IS2Adapter Interface
Implementing the IS2Adapter Interface

Overview The com.iona.security.is2adapter package defines an IS2Adapter Java
interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the ISFAdapter class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the IS2Adapter
interface, which is capable of authenticating a single test user with
hard-coded authorization properties.

Test user The example adapter implementation described here permits authentication
of just a single user, test_user. The test user has the following
authentication data:

Username: test_user
Password: test_password

and the following authorization data:

• The user’s global realm contains the GuestRole role.

• The user’s EngRealm realm contains the EngineerRole role.

• The user’s FinanceRealm realm contains the AccountantRole role.

iSF adapter example Example 98 shows a sample implementation of an iSF adapter class,
ExampleAdapter, that permits authentication of a single user. The user’s
username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 98: Sample ISF Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;
import com.iona.security.common.Role;
import com.iona.security.is2adapter.IS2Adapter;
import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;
import java.util.ArrayList;
import java.security.cert.X509Certificate;
 463

CHAPTER 19 | Developing an iSF Adapter
import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;

public class ExampleAdapter implements IS2Adapter {

 public final static String EXAMPLE_PROPERTY =
"example_property";

 public final static String ADAPTER_NAME = "ExampleAdapter";

1 private final static String MSG_EXAMPLE_ADAPTER_INITIALIZED
= "initialized";

 private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

 private final static String MSG_EXAMPLE_ADAPTER_AUTHENTICATE
= "authenticate";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM =
"authenticate_realm";

 private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK = "authenticateok";

 private final static String MSG_EXAMPLE_ADAPTER_GETAUTHINFO
= "getauthinfo";

 private final static String
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK = "getauthinfook";

 private ResourceBundle _res_bundle = null;

2 private static Logger LOG =
Logger.getLogger(ExampleAdapter.class.getName());

 public ExampleAdapter() {
3 _res_bundle = ResourceBundle.getBundle("ExampleAdapter");

 LOG.setResourceBundle(_res_bundle);
 }

4 public void initialize(Properties props)
 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_INITIALIZED,null);

Example 98: Sample ISF Adapter Implementation
464

Implementing the IS2Adapter Interface
 // example property
 String propVal = props.getProperty(EXAMPLE_PROPERTY);
 LOG.info(propVal);

 }

5 public void close() throws IS2AdapterException {
 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_CLOSED, null);
 }

6 public AuthenticatedPrincipal authenticate(String username,
String password)

 throws IS2AdapterException {

7 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE,new
Object[]{username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

8 ap = getAuthorizationInfo(new
AuthenticatedPrincipal(username));

 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
9 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle,this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);
 return ap;

Example 98: Sample ISF Adapter Implementation
 465

CHAPTER 19 | Developing an iSF Adapter
 }

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)

 throws IS2AdapterException {

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_REALM,new
Object[]{realmname,username,password},null);

 AuthenticatedPrincipal ap = null;
 try{
 if (username.equals("test_user")
 && password.equals("test_password")){

11 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal(username);

 principal.setCurrentRealm(realmname);
 ap = getAuthorizationInfo(principal);
 }
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.WRONG_NAME_PASSWORD,null);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE_OK,null);

 return ap;
 }

12 public AuthenticatedPrincipal authenticate(X509Certificate
certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED

Example 98: Sample ISF Adapter Implementation
466

Implementing the IS2Adapter Interface
);
 }

13 public AuthenticatedPrincipal authenticate(String realm,
X509Certificate certificate)

 throws IS2AdapterException {
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

14 public AuthenticatedPrincipal
getAuthorizationInfo(AuthenticatedPrincipal principal) throws
IS2AdapterException{

 LOG.l7dlog(Priority.INFO, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO,new
Object[]{principal.getUserID()},null);

 AuthenticatedPrincipal ap = null;
 String username = principal.getUserID();
 String realmname = principal.getCurrentRealm();

 try{
 if (username.equals("test_user")) {

15 ap = new AuthenticatedPrincipal(username);
16 ap.addRole(new Role("GuestRole", ""));

17 if (realmname == null || (realmname != null &&

realmname.equals("EngRealm")))
 {
 ap.addRealm(new Realm("EngRealm", ""));
 ap.addRole("EngRealm", new

Role("EngineerRole", ""));
 }

18 if (realmname == null || (realmname != null &&
realmname.equals("FinanceRealm")))

 {
 ap.addRealm(new Realm("FinanceRealm",""));
 ap.addRole("FinanceRealm", new

Role("AccountantRole", ""));
 }
 }

Example 98: Sample ISF Adapter Implementation
 467

CHAPTER 19 | Developing an iSF Adapter
 else {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.USER_NOT_EXIST, new Object[]{username},
null);

 throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.USER_NOT_EXIST, new Object[]{username});

 }

 } catch (Exception e) {
 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +

IS2AdapterException.AUTH_FAILED,e);
 throw new IS2AdapterException(_res_bundle, this,

IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
 }

 LOG.l7dlog(Priority.WARN, ADAPTER_NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO_OK,null);

 return ap;
 }

19 public AuthenticatedPrincipal getAuthorizationInfo(String

username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

20 public AuthenticatedPrincipal getAuthorizationInfo(String
realmname, String username) throws IS2AdapterException{

 // this method has been deprecated
 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);
 }

21 public ArrayList getAllUsers()
 throws IS2AdapterException {

Example 98: Sample ISF Adapter Implementation
468

Implementing the IS2Adapter Interface
The preceding iSF adapter code can be explained as follows:

1. These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

2. This line creates a Log4J logger.

3. This line loads the resource bundle for the adapter.

4. The initialize() method is called just after the adapter is loaded.
The properties passed to the initialize() method, props, are the
adapter properties that the iSF server module has read from the
is2.properties file.

See “Setting the Adapter Properties” on page 475 for more details.

5. The close() method is called to shut down the adapter. This gives you
an opportunity to clean up and free resources used by the adapter.

6. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with
username and password parameters.

In this simple demonstration implementation, the authenticate()
method recognizes only one user, test_user, with password,
test_password.

7. This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate method has
been called with the specified username and password values. Since

 throw new IS2AdapterException(
 _res_bundle, this,

IS2AdapterException.NOT_IMPLEMENTED
);

 }

22 public void logout(AuthenticatedPrincipal ap) throws
IS2AdapterException {

 }
}

Example 98: Sample ISF Adapter Implementation
 469

CHAPTER 19 | Developing an iSF Adapter
all the keys in the resource bundle begin with the adapter name, the
adapter name is prepended to the key. The l7dlog() method is used

because it automatically searches the resource beundle which was set previously by

the loggers setResourceBundle() method.

8. If authentication is successful; that is, if the name and password
passed in match test_user and test_password, the
getAuthorizationInfo() method is called to obtain an
AuthenticatedPrincipal object populated with all of the user’s realms
and role

9. If authentication fails, an IS2AdapterException is raised with minor
code IS2AdapterException.WRONG_NAME_PASSWORD.
The resource bundle is passed to the exception as it accesses the
exception message from the bundle using the key,
ExampleAdapter.wrongUsernamePassword.

10. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with realm
name, username and password parameters.

This method differs from the preceding username/password
authenticate() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

11. If authentication is successful, the getAuthorizationInfo() method is
called to obtain an AuthenticatedPrincipal object populated with the
authorization data from the specified realm and the global realm.

12. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with an
X.509 certificate parameter.

13. This variant of the IS2Adapter.authenticate() method is called
whenever an iSF client calls AuthManager.authenticate() with a
realm name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate()
method in that only the authorization data for the specified realm and
the global realm are included in the return value.

14. This method should create an AuthenticatedPrincipal object for the
username user. If a realm is not specified in the principal, the
AuthenticatedPrincipal is populated with all realms and roles for this
470

Implementing the IS2Adapter Interface
user. If a realm is specified in the principal, the
AuthenticatedPrincipal is populated with authorization data from
the specified realm and the global realm only.

15. This line creates a new AuthenticatedPrincipal object for the
username user to hold the user’s authorization data.

16. This line adds a GuestRole role to the global realm, IONAGlobalRealm,
using the single-argument form of addRole(). Roles added to the
global realm implicitly belong to every named realm as well.

17. This line checks if no realm is specified in the principal or if the realm,
EngRealm, is specified. If either of these is true, the following lines add
the authorization realm, EngRealm, to the AuthenticatedPrincipal
object and add the EngineerRole role to the EngRealm authorization
realm.

18. This line checks if no realm is specified in the principal or if the realm,
FinanceRealm, is specified. If either of these is true, the following lines
add the authorization realm, FinanceRealm, to the
AuthenticatedPrincipal object and add the AccountantRole role to
the FinanceRealm authorization realm.

19. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has been deprecated.
The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

20. Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo() method has also been
deprecated. The method
IS2Adapter.getAuthorizationInfo(AuthenticatedPrincipal

principal) should be used instead

21. The getAllUsers() method is currently not used by the iSF server
module during runtime. Hence, there is no need to implement this
method currently.
 471

CHAPTER 19 | Developing an iSF Adapter
22. When the logout() method is called, you can perform cleanup and
release any resources associated with the specified user principal. The
iSF server module calls back on IS2Adapter.logout() either in
response to a user calling AuthManager.logout() explicitly or after an
SSO session has timed out.
472

Deploying the Adapter
Deploying the Adapter

Overview This section explains how to deploy a custom iSF adapter.

In this section This section contains the following subsections:

Configuring iSF to Load the Adapter page 474

Setting the Adapter Properties page 475

Loading the Adapter Class and Associated Resource Files page 476
 473

CHAPTER 19 | Developing an iSF Adapter
Configuring iSF to Load the Adapter

Overview You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s is2.properties file:

• Adapter name.

• Adapter class.

Adapter name The iSF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, set the property as follows:

com.iona.isp.adapters=AdapterName

Adapter class The name of the adapter class to be loaded is specified by the following
property setting:

com.iona.isp.adapter.AdapterName.class=AdapterClass

Example adapter For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com.iona.isp.adapters=example
com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

Note: In the current implementation, the iSF server module can load only
a single adapter at a time.
474

Deploying the Adapter
Setting the Adapter Properties

Overview This subsection explains how you can set properties for a specific custom
adapter in the is2.properties file.

Adapter property name format All configurable properties for a custom file adapter, AdapterName, should
have the following format:

com.iona.isp.adapter.AdapterName.param.PropertyName

Truncation of property names Adapter property names are truncated before being passed to the iSF
adapter. That is, the com.iona.ispadapter.AdapterName.param prefix is
stripped from each property name.

Example For example, given an adapter named ExampleAdapter which has two
properties, host and port, these properties would be set as follows in the
is2.properties file:

com.iona.isp.adapter.example.param.example_property="This is an
example property"

Before these properties are passed to the iSF adapter, the property names
are truncated as if they had been set as follows:

example_property="This is an example property"

Accessing properties from within
an iSF adapter

The adapter properties are passed to the iSF adapter through the
com.iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

...
public void initialize(java.util.Properties props)
throws IS2AdapterException {
 // Access a property through its truncated name.
 String propVal = props.getProperty("PropertyName")
 ...
}

 475

CHAPTER 19 | Developing an iSF Adapter
Loading the Adapter Class and Associated Resource Files

Overview You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class. You need to
distinguish between the following usages of the iSF server module:

• CORBA service.

• Java library

In all cases, the location of the file used to configure Log4j logging can be
set using the log4j.configuration property in the is2.properties file.

CORBA service By default, the Artix Security Service uses the
secure_artix.full_security.security_service scope in your Orbix
configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory
containing the compiled adapter class and the adapter’s resource bundle.
The plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the ArtixInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable as follows:

Java library In this case, to make the custom iSF adapter class available to an iSF client,
add the directory containing the compiled adapter class and adapter
resource bundle to your CLASSPATH.

You must also specify the location of the license file, which can be set in
one of the following ways:

Artix configuration file
SECURITY_CLASSPATH =

"ArtixInstallDir\ExampleAdapter;ArtixInstallDir\lib\corba\sec
urity_service\5.1\security_service-rt.jar";
476

Deploying the Adapter
• Uncomment and set the value of the is2.license.filename property
in your domain’s is2.properties file to point to license file for
product. For example:

• Add the license file to the CLASSPATH used for the iSF client.

• Pass the license file location to the iSF client using a Java system
property:
java -DIT_LICENSE_FILE=LocationOfLicenseFile iSFClientClass

• Set the license in the code for the iSF client. For example:

iSF properties file
is2.license.filename=ArtixInstallDir/licenses.txt

// Java
...
SecurityService service = SecurityService.instance();
Properties props = new Properties();
props.load(new FileInputStream(propsFileName));
props.setProperty(
 SecurityService.IS2_LICENSE_FILE_NAME,
 LocationOfLicenseFile
);
service.initializeSecurity(props);
 477

CHAPTER 19 | Developing an iSF Adapter
478

APPENDIX A

Artix Security
This appendix describes variables used by the IONA Security
Framework. The Artix security infrastructure is highly
configurable.

In this appendix This appendix discusses the following topics:

Applying Constraints to Certificates page 481

bus:initial_contract page 483

bus:security page 484

initial_references page 486

password_retrieval_mechanism page 488

plugins:asp page 489

plugins:at_http page 492

plugins:atli2_tls page 497

plugins:csi page 498

plugins:csi page 498

plugins:gsp page 499

plugins:https page 504

plugins:iiop_tls page 505
 479

APPENDIX A | Artix Security
plugins:java_server page 509

plugins:kdm page 512

plugins:kdm_adm page 514

plugins:login_client page 515

plugins:login_service page 516

plugins:schannel page 517

plugins:security page 518

plugins:wsdl_publish page 521

plugins:wss page 522

policies page 524

policies:asp page 531

policies:bindings page 534

policies:csi page 536

policies:external_token_issuer page 539

policies:https page 540

policies:iiop_tls page 543

policies:security_server page 553

policies:soap:security page 555

principal_sponsor page 556

principal_sponsor:csi page 560

principal_sponsor:http page 563

principal_sponsor:https page 565

principal_sponsor:wsse page 567
480

Applying Constraints to Certificates
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:certificate_constraints_policy configuration variables. For
example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 481

APPENDIX A | Artix Security
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see the Security Guide.
482

bus:initial_contract
bus:initial_contract
The bus:initial_contract namespace contains the following configuration
variable:

• url:isf_service

• url:login_service

url:isf_service

Specifies the location of the Artix security service’s WSDL contract. This
variable is needed by applications that connect to the Artix security service
through a protocol specified in the physical part of the security service’s
WSDL contract (the alternative would be to connect over IIOP/TLS using a
CORBA object reference).

This variable is used in conjunction with the
policies:asp:use_artix_proxies configuration variable.

url:login_service

Specifies the location of the login service WSDL to the login_client
plug-in. The value of this variable can either be a relative pathname or a
URL. The login_client requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
 483

APPENDIX A | Artix Security
bus:security
The variables in the bus:security are intended for use with the
it_container_admin utility, in order to facilitate communication with a
secure Artix container. The bus:security namespace contains the following
configuration variables:

• enable_security

• user_name

• user_password

enable_security

The bus:security:enable_security variable is a boolean variable that
enables a client to send WSS username and password credentials. When
true, the client sends WSS username and password credentials with every
SOAP request message (whether or not the connection is secured by
SSL/TLS); when false, the feature is disabled.

There are essentially two different ways of initializing the WSS username
and password credentials on the client side:

• From the configuration file—you can set the WSS credentials in the
Artix configuration using the related user_name and user_password
configuration variables. For example:

• From the command line—if you omit the bus:security:user_name
and bus:security:user_password settings from the Artix
configuration, the client program will prompt you for the username and
password credentials as it starts up. For example:

Artix Configuration File
bus:security:enable_security = "true";
bus:security:user_name = "Username";
bus:security:user_password = "Password";

Please enter login :
Please enter password :
484

bus:security
user_name

Initializes a WSS username. This variable is intended for use in conjunction
with the bus:security:enable_security variable as part of the
configuration for the it_container_admin utility.

user_password

Initializes a WSS password. This variable is intended for use in conjunction
with the bus:security:enable_security variable as part of the
configuration for the it_container_admin utility.
 485

APPENDIX A | Artix Security
initial_references
The initial_references namespace contains the following configuration
variables:

• IT_SecurityService:reference

• IT_TLS_Toolkit:plugin

IT_SecurityService:reference

This configuration variable specifies the location of the Artix security service.
Clients of the security service need this configuration setting in order to
locate and connect to the security service through the IIOP/TLS protocol.

The most convenient way to initialize this variable is to use a corbaloc URL.
The corbaloc URL typically has the following format:

corbaloc:it_iiops:1.2@Hostname:Port/IT_SecurityService

Where Hostname is the name of the host where the security service is
running and Port is the IP port where the security service is listening for
incoming connections.

If the security service is configured as a cluster, you need to use a
multi-profile corbaloc URL, which lists the addresses of all the services in
the cluster. For example, if you configure a cluster of three services—with
addresses security01:5001, security02:5002, and security03:5003—you
would set the corbaloc URL as follows:

corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security02:500
2,it_iiops:1.2@security03:5003/IT_SecurityService

Note: This variable is not relevant to clients that connect to a
HTTPS-based security service.
486

initial_references
IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Artix. It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:schannel_toolkit:shlib_name (Windows only) and
plugins:systemssl_toolkit:shlib_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel
SSL/TLS toolkit, you would set configuration variables as follows:

initial_references:IT_TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";
 487

APPENDIX A | Artix Security
password_retrieval_mechanism
The configuration variables in the password_retrieval_mechanism
namespace are intended to be used only by the Artix services. The following
variables are defined in this namespace:

• inherit_from_parent

• use_my_password_as_kdm_password

inherit_from_parent

If an application forks a child process and this variable is set to true, the
child process inherits the parent’s X.509 certificate password through the
environment.

use_my_password_as_kdm_password

This variable should be set to true only in the scope of the KDM plug-in’s
container. From a security perspective it is dangerous to do otherwise as the
password could be left in cleartext within the process.

The KDM is a locator plug-in and so it is natural that it should use the
locator's identity as its identity. However, it requires a password to encrypt
its security information. By default the KDM requests such a password from
the user during locator startup and this is separate from the locator
password. The locator password would be used if this variable is set to
true.

Note: This variable is intended for use only by the standard Artix services.

Note: This variable is intended for use only by the standard Artix services.
488

plugins:asp
plugins:asp
The plugins:asp namespace contains the following variables:

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• default_password

• enable_security_service_cert_authentication

• enable_security_service_load_balancing

• security_type

• security_level

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded, any new authentication tokens acquired by calling the
Artix security service are not stored in the cache. The cache can shrink
again if some of the cached credentials expire (either because the individual
token expiry time is exceeded or the
plugins:asp:authentication_cache_timeout is exceeded).

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache. The value must lie within the range -1 to 2^31-1.

Note: This variable does not affect CORBA credentials. For details of how
to configure the CORBA cache, see “plugins:gsp” on page 499.
 489

APPENDIX A | Artix Security
authentication_cache_timeout

The time (in seconds) after which a credential expires. Expired credentials
are removed from the cache and must re-authenticate with the Artix security
service on the next call from that user.

A value of -1 means an infinite time-out. A value of 0 means disable the
cache. The value must lie within the range -1 to 2^31-1.

Default is 600 seconds.

authorization_realm

Specifies the Artix authorization realm to which an Artix server belongs. The
value of this variable determines which of a user’s roles are considered
when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:asp:authorization_realm
to Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

The default is IONAGlobalRealm.

default_password

When the client credentials originate either from a CORBA Principal
(embedded in a SOAP header) or from a certificate subject, the
default_password variable specifies the password to use on the server side.
The plugins:asp:default_password variable is used to get around the
limitation that a PRINCIPAL identity and a CERT_SUBJECT are propagated
without an accompanying password.

The artix_security plug-in uses the received client principal together with
the password specified by plugins:asp:default_password to authenticate
the user through the Artix security service.

Note: This variable does not affect CORBA credentials. For details of how
to configure the CORBA cache, see “plugins:gsp” on page 499.
490

plugins:asp
The default value is the string, default_password.

enable_security_service_cert_authentication

When this parameter is set to true, the client certificate is retrieved from the
TLS connection. If no other credentials are available, the client certificate is
then sent to the Artix security service for authentication.

The client certificate has the lowest precedence for authentication. Hence, if
any other credentials are presented by the client (for example, if the client
sends a WSS username and password), these alternative credentials are
sent to the Artix security service instead of the certificate credentials.

Default is false.

enable_security_service_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.

Default is false.

security_type

(Obsolete) From Artix 3.0 onwards, this variable is ignored.

security_level

Specifies the level from which security credentials are picked up. The
following options are supported by the artix_security plug-in:

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.
 491

APPENDIX A | Artix Security
plugins:at_http
The plugins:at_http configuration variables are provided to facilitate
migration from legacy Artix applications (that is, Artix releases prior to
version 3.0). The plugins:at_http namespace contains variables that are
similar to the variables from the old (pre-version 3.0) plugins:http
namespace. One important change made in 3.0, however, is that an
application’s own certificate must now be provided in PKCS#12 format
(where they were previously supplied in PEM format).

If the variables from the plugins:at_http namespace are used, they take
precedence over the analogous variables from the
principal_sponsor:https and policies:https namespaces.

The plugins:at_http namespace contains the following variables:

• client:client_certificate.

• client:client_private_key_password.

• client:trusted_root_certificates.

• client:use_secure_sockets.

• server:server_certificate.

• server:server_private_key_password.

• server:trusted_root_certificates.

• server:use_secure_sockets.

client:client_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the client. For example:

plugins:at_http:client:client_certificate =
"C:\aspen\x509\certs\key.cert.p12"

client:client_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by client:client_certificate.
492

plugins:at_http
client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The client uses this CA list during the TLS
handshake to verify that the server’s certificate has been signed by a trusted
CA.

client:use_secure_sockets

The effect of the client:use_secure_sockets variable depends on the type
of URL specifying the remote service location:

• https://host:port URL format—the client always attempts to open a
secure connection. That is, the value of
plugins:at_http:client:use_secure_sockets is effectively ignored.

• http://host:port URL format—whether the client attempts to open a
secure connection or not depends on the value of
plugins:at_http:client:use_secure_sockets, as follows:

♦ true—the client attempts to open a secure connection (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the client uses port 443 for secure HTTPS.

♦ false—the client attempts to open an insecure connection (that
is, plain HTTP).
 493

APPENDIX A | Artix Security
If plugins:at_http:client:use_secure_sockets is true and the client
decides to open a secure connection, the at_http plug-in then automatically
loads the https plug-in.

server:server_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the server. For example:

plugins:at_http:server:server_certificate =
"c:\aspen\x509\certs\key.cert.p12"

server:server_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by server:server_certificate.

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The server uses this CA list during the TLS
handshake to verify that the client’s certificate has been signed by a trusted
CA.

Note: If plugins:at_http:client:use_secure_sockets is true and the
client decides to open a secure connection, Artix uses the following client
secure invocation policies by default:

 policies:client_secure_invocation_policy:requires =

["Confidentiality","Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];

You can optionally override these defaults by setting the client secure
invocation policy explicitly in configuration.
494

plugins:at_http
server:use_secure_sockets

The effect of the server:use_secure_sockets variable depends on the type
of URL advertising the service location:

• https://host:port URL format—the server accepts only secure
connection attempts. That is, the value of
plugins:at_http:server:use_secure_sockets is effectively ignored.

• http://host:port URL format—whether the server accepts secure
connection attempts or not depends on the value of
plugins:at_http:server:use_secure_sockets, as follows:

♦ true—the server accepts secure connection attempts (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the server uses port 443 for secure HTTPS.

♦ false—the server accepts insecure connection attempts (that is,
plain HTTP).

If plugins:at_http:server:use_secure_sockets is set and the server
accepts a secure connection, the at_http plug-in then automatically loads
the https plug-in.

Note: If plugins:at_http:server:use_secure_sockets is set and the
server accepts a secure connection, Artix uses the following server secure
invocation policies by default:

 policies:target_secure_invocation_policy:requires =

["Confidentiality","Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient"];

 policies:target_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",

"DetectMisordering", "EstablishTrustInTarget",

"EstablishTrustInClient"];

You can optionally override these defaults by setting the target secure
invocation policy explicitly in configuration.
 495

APPENDIX A | Artix Security
server:use_secure_sockets:container

The effect of the server:use_secure_sockets:container variable is similar
to the effect of the server:use_secure_sockets variable, except that only
the ContainerService service is affected. Using this variable, it is possible
to enable HTTPS security specifically for the ContainerService service
without affecting the security settings of other services deployed in the
container.
496

plugins:atli2_tls
plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

• use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
the CORBA binding. If true, the CORBA binding uses the JSSE/JCE
architecture to implement SSL/TLS security; if false, the CORBA binding
uses the Baltimore SSL/TLS toolkit.

The default is false.
 497

APPENDIX A | Artix Security
plugins:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• ClassName

• shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin. The
default setting is:

plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

This configuration setting makes it possible for the Artix core to load the
plugin on demand. Internally, the Artix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the orb_plugins list, or by associating the plugin with
an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared library,
where it_csi_prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.
498

plugins:gsp
plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user’s roles against the permissions stored in an action-role mapping file. It
includes the following:

• accept_asserted_authorization_info

• action_role_mapping_file

• assert_authorization_info

• authentication_cache_size

• authentication_cache_timeout

• authorization_realm

• ClassName

• enable_authorization

• enable_gssup_sso

• enable_user_id_logging

• enable_x509_sso

• enforce_secure_comms_to_sso_server

• enable_security_service_cert_authentication

• sso_server_certificate_constraints

• use_client_load_balancing

accept_asserted_authorization_info

If false, SAML authorization data is not read from incoming connections.

Default is true.

Note: In Artix versions 4.0 and earlier, if no SAML authorization data is
received and this variable is true, Artix would raise an exception. In Artix
versions 4.1 and later, if no SAML authorization data is retrieved, Artix
re-authenticates the client credentials with the security service,
irrespective of whether the accept_asserted_authorization_info
variable is true or false.
 499

APPENDIX A | Artix Security
action_role_mapping_file

Specifies the action-role mapping file URL. For example:

plugins:gsp:action_role_mapping_file =
"file:///my/action/role/mapping";

assert_authorization_info

If false, SAML authorization data is not sent on outgoing connections.
Default is true.

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.
500

plugins:gsp
For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm to
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

ClassName

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Artix core to load the plugin
on demand. Internally, the Artix core uses a Java class loader to load and
instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the orb_plugins list, or by associating the plugin with an initial
reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to
true.
 501

APPENDIX A | Artix Security
enable_user_id_logging

A boolean variable that enables logging of user IDs on the server side.
Default is false.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages
containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in
the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP
plug-in is changed, so that user IDs are not logged by default. To restore the
pre-Orbix 6.2 behavior and log user IDs, set this variable to true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is true.

enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the Artix security service.

Default is false.
502

plugins:gsp
sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 481.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.

Default is true.
 503

APPENDIX A | Artix Security
plugins:https
The plugins:https namespace contains the following variable:

• ClassName

ClassName

(Java only) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";
504

plugins:iiop_tls
plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

• buffer_pool:recycle_segments

• buffer_pool:segment_preallocation

• buffer_pools:max_incoming_buffers_in_pool

• buffer_pools:max_outgoing_buffers_in_pool

• delay_credential_gathering_until_handshake

• enable_iiop_1_0_client_support

• incoming_connections:hard_limit

• incoming_connections:soft_limit

• outgoing_connections:hard_limit

• outgoing_connections:soft_limit

• tcp_listener:reincarnate_attempts

• tcp_listener:reincarnation_retry_backoff_ratio

• tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable’s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable’s value.
 505

APPENDIX A | Artix Security
buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable’s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable’s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable’s
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application’s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Artix SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not support
IIOP 1.1.
506

plugins:iiop_tls
The default value is false. When set to true, Artix SSL/TLS searches secure
target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:hard_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:incoming_connections:soft_limit variable’s
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable’s
value.

Note: This variable will not be necessary for most users.
 507

APPENDIX A | Artix Security
outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable’s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable’s
value.

tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C++ applications on Windows. Defaults to 0
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies a
delay between reincarnation attempts. Data type is long. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is long. Defaults to 1.
508

plugins:java_server
plugins:java_server
In the context of Artix security, the variables in the plugins:java_server
namespace are used only to configure the Artix security service. To deploy
the security service, Artix exploits IONA’s generic server (which is a feature
originally developed for Orbix). The Artix security service is deployed into the
following container hierarchy:

• Generic server—a simple container, originally developed for the Orbix
product, which enables you to deploy CORBA services implemented in
C++.

• Java server plug-in—a JNI-based adapter that plugs into the generic
server, enabling you to deploy CORBA services implemented in Java.

• JVM created by the Java server plug-in—once it is loaded, the Java
server plug-in creates a JVM instance to host a Java program.

• Artix security service Java code—you instruct the Java server plug-in
to load the security service core (which is implemented in Java) by
specifying the appropriate class to the plugins:java_server:class
variable.

In addition to the configuration variables described in this section, you must
also include the following setting in your configuration:

generic_server_plugin = "java_server";

Which instructs the generic server to load the Java server plug-in.

The plugins:java_server namespace contains the following variables:

• class

• classpath

• jni_verbose

• shlib_name

• system_properties

• X_options
 509

APPENDIX A | Artix Security
class

In the context of the Artix security service, this variable specifies the entry
point to the core security service (the core security service is a pure Java
program). There are two possible values:

• com.iona.jbus.security.services.SecurityServer—creates an
Artix bus instance that takes its configuration from the bus sub-scope
of the current configuration scope. This entry point is suitable for a
security service that is accessed through a WSDL contract (for
example, a HTTPS-based security service).

• com.iona.corba.security.services.SecurityServer—a
CORBA-based implementation of the security service, which does not
create an Artix bus instance. This entry point is suitable for running an
IIOP/TLS-based security service.

classpath

Specifies the CLASSPATH for the JVM instance created by the Java server
plug-in. For the Artix security service, this CLASSPATH must point at the JAR
file containing the implementation of the security service. For example:

The Java server plug-in ignores the contents of the CLASSPATH environment
variable.

jni_verbose

A boolean variable that instructs the JVM to output JNI-level diagnostics,
which can be helpful for troubleshooting. When true, the JVM-generated
diagnostic messages are sent to the Artix logging stream; when false, the
diagnostic messages are suppressed.

plugins:java_server:classpath =
"C:\artix_40/lib/artix/security_service/4.0/security_service-
rt.jar";
510

plugins:java_server
shlib_name

Specifies the abbreviated name of the shared library that implements the
java_server plug-in. This variable must always be set as follows:

system_properties

Specifies a list of Java system properties to the JVM created by the Java
server plug-in. For example, the Artix security service requires the following
Java system property settings:

Where each item in the list specifies a Java system property, as follows:

<PropertyName>=<PropertyValue>

X_options

Specifies a list of non-standard, -X, options to the JVM created by the Java
server plug-in. In contrast to the way these options are specified to the java
command-line tool, you must omit the -X prefix in the X_options list.

For example:

To find out more about the non-standard JVM options, type java -X -help
at the command line (using Sun’s implementation of the JVM).

plugins:java_server:shlib_name = "it_java_server";

plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERS
ION}/demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_
VERSION}/lib/endorsed"];

plugins:java_server:X_options = ["rs"];
 511

APPENDIX A | Artix Security
plugins:kdm
The plugins:kdm namespace contains the following variables:

• cert_constraints

• iiop_tls:port

• checksums_optional

cert_constraints

Specifies the list of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “Applying Constraints to
Certificates” on page 481 for a description of the certificate constraint
syntax.

To protect the sensitive data stored within it, the KDM applies restrictions
on which entities are allowed talk to it. A security administrator should
choose certificate constraints that restrict access to the following principals:

• The locator service (requires read-only access).

• The kdm_adm plug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might
define certificate constraints similar to the following:

plugins:kdm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=Secure admin*",
"C=US,ST=Boston,O=ABigBank*,CN=Orbix2000 Locator Service*"]

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
512

plugins:kdm
iiop_tls:port

Specifies the well known IP port on which the KDM server listens for
incoming calls.

checksums_optional

When equal to false, the secure information associated with a server must
include a checksum; when equal to true, the presence of a checksum is
optional. Default is false.
 513

APPENDIX A | Artix Security
plugins:kdm_adm
The plugins:kdm_adm namespace contains the following variable:

• cert_constraints

cert_constraints

Specifies the list of certificate constraints that are applied when the KDM
administration plug-in authenticates the KDM server. See “Applying
Constraints to Certificates” on page 481 for a description of the certificate
constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security
administrator should, therefore, choose certificate constraints that restrict
access to trusted KDM servers only. For example, you might define
certificate constraints similar to the following:

plugins:kdm_adm:cert_constraints =
["C=US,ST=Massachusetts,O=ABigBank*,CN=IT_KDM*"];

Your choice of certificate constraints will depend on the naming scheme for
your subject names.
514

plugins:login_client
plugins:login_client
The plugins:login_client namespace contains the following variables:

• wsdl_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.
 515

APPENDIX A | Artix Security
plugins:login_service
The plugins:login_service namespace contains the following variables:

• wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_service
plug-in. The value of this variable can either be a relative pathname or an
URL. The login_service requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
516

plugins:schannel
plugins:schannel
The plugins:schannel namespace contains the following variable:

• prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay_credential_gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of credentials
offered to the user is based on the trusted CAs sent to the client in an
SSL/TLS handshake message.

If prompt_with_credential_choice is set to false, runtime chooses the
first certificate it finds in the certificate store that meets the applicable
constraints.

The certificate prompt can be replaced by implementing an IDL interface
and registering it with the ORB.
 517

APPENDIX A | Artix Security
plugins:security
The plugins:security namespace contains the following variable:

• direct_persistence

• iiop_tls:addr_list

• iiop_tls:host

• iiop_tls:port

• log4j_to_local_log_stream

• share_credentials_across_orbs

direct_persistence

A boolean variable that specifies whether or not the security service runs on
a fixed IP port (for an IIOP/TLS-based security service). You must always set
this variable to true in the security service’s configuration scope, because
the security service must run on a fixed port.

iiop_tls:addr_list

When the security service is configured as a cluster, you must use this
variable to list the addresses of all of the security services in the cluster.

The first entry, not prefixed by a + sign, must specify the address of the
current security service instance. The remaining entries, prefixed by a + sign,
must specify the addresses of the other services in the cluster (the + sign
indicates that an entry affects only the contents of the generated IOR, not
the security service’s listening port).

For example, to configure the first instance of a cluster consisting of three
security service instances—with addresses security01:5001,
security02:5002, and security03:5003—you would initialize the address
list as follows:

plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];
518

plugins:security
iiop_tls:host

Specifies the hostname where the security service is running. This hostname
will be embedded in the security service’s IOR (for an IIOP/TLS-based
security service).

iiop_tls:port

Specifies the fixed IP port where the security service listens for incoming
connections. This IP port also gets embedded in the security service’s IOR
(for an IIOP/TLS-based security service).

log4j_to_local_log_stream

Redirects the Artix security service’s log4j output to the local log stream. In
the Artix security service’s configuration scope, you can set the
plugins:security:log4j_to_local_log_stream variable to one of the
following values:

• true—the security service log4j output is sent to the local log stream.
This requires that the local_log_stream plug-in is present in the
orb_plugins list.

• false—(default) the log4j output is controlled by the
log4j.properties file (whose location is specified in the
is2.properties file).

When redirecting log4j messages to the local log stream, you can control the
log4j logging level using Artix event log filters. You can specify Artix event
log filters with the following setting in the Artix configuration file:

event_log:filters = ["IT_SECURITY=LoggingLevels"];

The IT_SECURITY tag configures the logging levels for the Artix security
service (which includes the redirected log4j stream). log4j has five logging
levels: DEBUG, INFO, WARN, ERROR, and FATAL. To select a particular log4j
logging level (for example, WARN), replace LoggingLevels by that logging
level plus all of the higher logging levels (for example, WARN+ERROR+FATAL).
 519

APPENDIX A | Artix Security
For example, you can configure the Artix security service to send log4j
logging to the local log stream, as follows:

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.

Artix Configuration File
security_service
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls"];
 plugins:security:log4j_to_local_log_stream = "true";

 # Log all log4j messages at level WARN and above
 event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL"];
 ...
};
520

plugins:wsdl_publish
plugins:wsdl_publish
The plugins:wsdl_publish namespace contains the following variables:

• enable_secure_wsdl_publish

enable_secure_wsdl_publish

A boolean variable that enables certain security features of the WSDL
publishing service that are required whenever the WSDL publishing service
is configured to use the HTTPS protocol. Set this variable to true, if the
WSDL publishing service is configured to use HTTPS; otherwise, set it to
false.

Default is false.

For example, to configure the WSDL publishing service to use HTTPS, you
should include the following in your program’s configuration scope:

The plugins:at_http:server:use_secure_sockets setting is needed to
enable HTTPS for the WSDL publishing service.

Artix Configuration File
secure_server
{
 orb_plugins = [... , "wsdl_publish", "at_http", "https"];

 plugins:wsdl_publish:publish_port = "2222";
 plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
 plugins:at_http:server:use_secure_sockets = "true";

 # Other HTTPS-related settings
 ...
};

Note: You must set both
plugins:wsdl_publish:enable_secure_wsdl_publish and
plugins:at_http:server:use_secure_sockets to true, when enabling
HTTPS for the WSDL publish plug-in.
 521

APPENDIX A | Artix Security
plugins:wss
The plugins:wss namespace defines variables that are needed to configure
the Artix partial message protection feature. Partial message protection is a
WS-Security feature that enables you to apply cryptographic operations at
the SOAP 1.1 binding level, including encrypting and signing a message’s
SOAP body. The variables belonging to this namespace are as follows:

• classname

• keyretrieval:keystore:file

• keyretrieval:keystore:provider

• keyretrieval:keystore:storepass

• keyretrieval:keystore:storetype

• protection_policy:location

classname

Specifies the name of the Java class that implements the WSS plug-in. This
variable must be set to the value
com.iona.jbus.security.wss.plugin.BusPlugInFactory.

keyretrieval:keystore:file

Specifies the location of a Java keystore file. This must be a filename or file
pathname, not a URL.

keyretrieval:keystore:provider

Specifies the name of the Java keystore provider (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to provide a
custom implementation of the Java keystore. If your Java keystore is based
on a custom provider, use this variable to set the provider name.

Default is to use the default provider provided by the Java virtual machine.
522

plugins:wss
keyretrieval:keystore:storepass

Specifies the password to access the Java keystore. This variable is used in
conjunction with plugins:wss:keyretrieval:keystore:file to associate a
Java keystore with the WSS plug-in.

For example:

keyretrieval:keystore:storetype

Specifies the type of the Java keystore (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to provide a
custom implementation of the Java keystore. If your Java keystore is based
on a custom provider, use this variable to set the keystore type.

Default is jks.

protection_policy:location

Specifies the location of a policy configuration file that governs the behavior
of the partial message protection feature. The policy configuration file is an
XML file that conforms to the protection-policy.xsd XML schema (located
in ArtixInstallDir/artix/Version/schemas).

Artix Configuration File
plugins:wss:keyretrieval:keystore:file="Keystore.jks";
plugins:wss:keyretrieval:keystore:storepass="StorePassword";
plugins:wss:keyretrieval:keystore:provider="";
plugins:wss:keyretrieval:keystore:storetype="";
 523

APPENDIX A | Artix Security
policies
The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the policies namespace include:

• allow_unauthenticated_clients_policy

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• trusted_ca_list_policy

allow_unauthenticated_clients_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:allow_unauthenticated_clients_policy variable,
which takes precedence.

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).
524

policies
certificate_constraints_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:certificate_constraints_policy variable, which
takes precedence.

A list of constraints applied to peer certificates—see “Applying Constraints
to Certificates” on page 481. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:requires
variable, which takes precedence.

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.
 525

APPENDIX A | Artix Security
client_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:supports
variable, which takes precedence.

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

max_chain_length_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:max_chain_length_policy variable, which takes
precedence.

max_chain_length_policy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:accept_v2_hellos or
policies:https:mechanism_policy:accept_v2_hellos respectively for
IIOP/TLS or HTTPS.

The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
When true, the Artix application accepts V2 client hellos, but continues the

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
526

policies
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:ciphersuites or
policies:https:mechanism_policy:ciphersuites respectively for IIOP/TLS
or HTTPS.

mechanism_policy:ciphersuites specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 14 can be specified in this list.

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

Table 14: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 527

APPENDIX A | Artix Security
mechanism_policy:protocol_version

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:protocol_version or
policies:https:mechanism_policy:protocol_version respectively for
IIOP/TLS or HTTPS.

mechanism_policy:protocol_version specifies the list of protocol versions
used by a security capsule (ORB instance). The list can include one or more
of the values SSL_V3 and TLS_V1. For example:

session_caching_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:session_caching_policy variable, which takes
precedence.

session_caching_policy specifies whether an ORB caches the session
information for secure associations when acting in a client role, a server
role, or both. The purpose of session caching is to enable closed connections
to be re-established quickly. The following values are supported:

CACHE_NONE(default)

CACHE_CLIENT
CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

policies:mechanism_policy:protocol_version=["TLS_V1", "SSL_V3"];
528

policies
target_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:requires
variable, which takes precedence.

target_secure_invocation_policy:requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

target_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:supports
variable, which takes precedence.

supports specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.
 529

APPENDIX A | Artix Security
trusted_ca_list_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:trusted_ca_list_policy or
policies:https:trusted_ca_list_policy respectively for IIOP/TLS or
HTTPS.

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];
530

policies:asp
policies:asp
The policies:asp namespace contains the following variables:

• enable_authorization

• enable_security

• enable_sso

• load_balancing_policy

• use_artix_proxies

enable_authorization

A boolean variable that specifies whether Artix should enable authorization
using the Artix Security Framework. Default is true.

enable_security

A boolean variable that specifies whether Artix should enable security using
the Artix Security Framework. When this variable is set to false, all security
features that depend on the artix_security plug-in (that is, authentication
and authorization using the Artix security service) are disabled. Default is
true.

enable_sso

This configuration variable is obsolete and has no effect.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_authorization is true. For versions of Artix prior to
4.0, the default value of policies:asp:enable_authorization is false.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_security is true. For versions of Artix prior to 4.0,
the default value of policies:asp:enable_security is false.
 531

APPENDIX A | Artix Security
load_balancing_policy

When client load balancing is enabled, this variable specifies how often the
Artix security plug-in reconnects to a node in the security service cluster.
There are two possible values for this policy:

• per-server—(the default) after selecting a particular security service
from the cluster, the client remains connected to that security service
instance for the rest of the session.

• per-request—for each new request, the Artix security plug-in selects
and connects to a new security service node (in accordance with the
algorithm specified by
policies:iiop_tls:load_balancing_mechanism).

This policy is used in conjunction with the
plugins:asp:enable_security_service_load_balancing and
policies:iiop_tls:load_balancing_mechanism configuration variables.

Default is per-server.

use_artix_proxies

A boolean variable that specifies whether a client of the Artix security service
connects to the security service through a WSDL contract or through a
CORBA object reference. The policies:asp:use_artix_proxies variable
can have the following values:

• true—connect to the security service through a WSDL contract. The
location of the security service WSDL contract can be specified using
the bus:initial_contract:url:isf_service configuration variable.

• false—connect to the security service through a CORBA object
reference. The object reference is specified by the
initial_references:IT_SecurityService:reference configuration
variable.

Note: The process of re-establishing a secure connection with every
new request imposes a significant performance overhead. Therefore,
the per-request policy value is not recommended for most
deployments.
532

policies:asp
Default is false.
 533

APPENDIX A | Artix Security
policies:bindings
The policies:bindings namespace contains the following variables:

• corba:gssup_propagation

• corba:token_propagation

• soap:gssup_propagation

• soap:token_propagation

corba:gssup_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of incoming SOAP credentials into outgoing CORBA credentials.

The CORBA binding extracts the username and password credentials from
incoming SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credentials object, to be transmitted using CSI authentication over transport.
The domain name in the outgoing GSSUP credentials is set to a blank
string. Default is false.

corba:token_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of an SSO token from an incoming SOAP request into an
outgoing CORBA request.

The CORBA binding extracts the SSO token from incoming SOAP/HTTP
invocations and inserts the token into an outgoing IIOP request, to be
transmitted using CSI identity assertion.

soap:gssup_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to enable
the transfer of incoming CORBA credentials into outgoing SOAP credentials.
534

policies:bindings
The SOAP binding extracts the username and password from incoming IIOP
invocations (where the credentials are embedded in a GIOP service context
and encoded according to the CSI and GSSUP standards), and inserts them
into an outgoing SOAP header, encoded using the WSS standard.

Default is false.

soap:token_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to enable
the transfer of an SSO token from an incoming CORBA request into an
outgoing SOAP request.

The SOAP binding extracts the SSO token from an incoming IIOP request
and inserts the token into the header of an outgoing SOAP/HTTP request.
 535

APPENDIX A | Artix Security
policies:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

• attribute_service:backward_trust:enabled

• attribute_service:client_supports

• attribute_service:target_supports

• auth_over_transport:authentication_service

• auth_over_transport:client_supports

• auth_over_transport:server_domain_name

• auth_over_transport:target_requires

• auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
536

policies:csi
attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns false when the
authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
 537

APPENDIX A | Artix Security
auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
538

policies:external_token_issuer
policies:external_token_issuer
The policies:external_token_issuer namespace contains the following
variables:

• client_certificate_constraints

client_certificate_constraints

To facilitate interoperability with Artix on the mainframe, the Artix security
service can be configured to issue security tokens based on a username only
(no password required). This feature is known as the external token issuer.
Because this feature could potentially open a security hole in the Artix
security service, the external token issuer is made available only to those
applications that present a certificate matching the constraints specified in
policies:external_token_issuer:client_certificate_constraints. For
details of how to specify certificate constraints, see “Applying Constraints to
Certificates” on page 481.

For example, by inserting the following setting into the security service’s
configuration scope in the Artix configuration file, you would effectively
disable the external token issuer (recommended for deployments that do not
need to interoperate with the mainframe).

This configuration variable must be set in the security server’s configuration
scope, otherwise the security server will not start.

DISABLE the security service’s external token issuer.
Note: The empty list matches no certificates.
#
policies:external_token_issuer:client_certificate_constraints =

[];
 539

APPENDIX A | Artix Security
policies:https
The policies:https namespace contains variables used to configure the
https plugin. It contains the following variables:

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• trace_requests:enabled

• trusted_ca_list_policy

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

The accept_v2_hellos policy is a special setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL
V2 client hellos, because they do not know what SSL version the server
supports.

When true, the Artix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix server throws an error, if it receives a V2 client hello. The default is
true.

For example:

policies:https:mechanism_policy:accept_v2_hellos = "true";

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos default value.
540

policies:https
mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3

The default setting is SSL_V3 and TLS_V1.

For example:

policies:https:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

Table 15: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 541

APPENDIX A | Artix Security
trace_requests:enabled

Specifies whether to enable HTTPS-specific trace logging. The default is
false. To enable HTTPS tracing, set this variable as follows:

This setting outputs INFO level messages that show full HTTP buffers
(headers and body) as they go to and from the wire.

You must also set log filtering as follows to pick up the additional HTTPS
messages, and then resend the logs:

For example, you could enable HTTPS trace logging to verify that
authentication headers are written to the wire correctly.

Similarly, to enable HTTP-specific trace logging, use the following setting:

trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:https:trace_requests:enabled="true";

event_log:filters = ["*=*"];

policies:http:trace_requests:enabled="true";
542

policies:iiop_tls
policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

• allow_unauthenticated_clients_policy

• buffer_sizes_policy:default_buffer_size

• buffer_sizes_policy:max_buffer_size

• certificate_constraints_policy

• client_secure_invocation_policy:requires

• client_secure_invocation_policy:supports

• client_version_policy

• connection_attempts

• connection_retry_delay

• load_balancing_mechanism

• max_chain_length_policy

• mechanism_policy:accept_v2_hellos

• mechanism_policy:ciphersuites

• mechanism_policy:protocol_version

• server_address_mode_policy:local_domain

• server_address_mode_policy:local_hostname

• server_address_mode_policy:port_range

• server_address_mode_policy:publish_hostname

• server_version_policy

• session_caching_policy

• target_secure_invocation_policy:requires

• target_secure_invocation_policy:supports

• tcp_options_policy:no_delay

• tcp_options_policy:recv_buffer_size

• tcp_options_policy:send_buffer_size

• trusted_ca_list_policy
 543

APPENDIX A | Artix Security
allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy’s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy’s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the Artix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
544

policies:iiop_tls
client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A
client uses the version of IIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
 545

APPENDIX A | Artix Security
connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security service
cluster (see also plugins:gsp:use_client_load_balancing and
plugins:asp:enable_security_service_load_balancing). In this context,
a client can also be an Artix server. This policy only affects connections
made using IORs that contain multiple addresses. The iiop_tls plug-in
load balances over the addresses embedded in the IOR.

The following mechanisms are supported:

• random—choose one of the addresses embedded in the IOR at random
(this is the default).

• sequential—choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the iiop_tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
546

policies:iiop_tls
The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
Artix security on the z/OS platform is based on IBM’s System/SSL toolkit,
which implements SSL version 3, but does so by using SSL version 2 hellos
as part of the handshake. This form of handshake causes interoperability
problems, because applications on other platforms identify the handshake
as an SSL version 2 handshake. The misidentification of the SSL protocol
version can be avoided by setting the accept_v2_hellos policy to true in
the non-z/OS application (this bug also affects some old versions of
Microsoft Internet Explorer).

When true, the Artix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default value.

Table 16: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA
 547

APPENDIX A | Artix Security
If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3
SSL_V2V3 (Deprecated)

The default setting is SSL_V3 and TLS_V1.

For example:

policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to facilitate
interoperability with Artix applications deployed on the z/OS platform. If you
have any legacy configuration that uses SSL_V2V3, you should replace it with
the following combination of settings:

policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",
"TLS_V1"];

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_domain policy’s value.

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

Table 16: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers
548

policies:iiop_tls
server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy’s
value.

server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The local_hostname
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy’s
value instead of the
policies:iiop:server_address_mode_policy:port_range policy’s value.

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
 549

APPENDIX A | Artix Security
server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy’s
value.

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:server_version_policy policy’s value.

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Artix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

session_caching_policy

This policy overides policies:session_caching_policy for the iiop_tls
plugin.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
550

policies:iiop_tls
target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the iiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Artix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_delay policy’s
value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.
 551

APPENDIX A | Artix Security
tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy’s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
552

policies:security_server
policies:security_server
The policies:security_server namespace contains the following
variables:

• client_certificate_constraints

client_certificate_constraints

Restricts access to the Artix security server, allowing only clients that match
the specified certificate constraints to open a connection to the security
service. For details of how to specify certificate constraints, see “Applying
Constraints to Certificates” on page 481.

For example, by inserting the following setting into the security service’s
configuration scope in the Artix configuration file, you can allow access by
clients presenting the administrator.p12 and iona_utilities.p12
certificates (demonstration certificates).

The effect of setting this configuration variable is slightly different to the
effect of setting policies:iiop_tls:certificate_constraints_policy.
Whereas policies:iiop_tls:certificate_constraints_policy affects all
services deployed in the current process, the
policies:security_server:client_certificate_constraints variable
affects only the Artix security service. This distinction is significant when the
login server is deployed into the same process as the security server. In this
case, you would typically want to configure the login server such that it does
not require clients to present an X.509 certificate (this is the default), while
the security server does require clients to present an X.509 certificate.

Allow access by demonstration client certificates.
WARNING: These settings are NOT secure and must be customized
before deploying in a real system.
#
policies:security_server:client_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US,ST=Massachusetts,O=ABigBank*,CN=Abigbank Accounts
Server*", "C=US,ST=Massachusetts,O=ABigBank*,CN=Iona
utilities - demo purposes"];
 553

APPENDIX A | Artix Security
This configuration variable must be set in the security server’s configuration
scope, otherwise the security server will not start.
554

policies:soap:security
policies:soap:security
The policies:soap:security namespace contains just a single
configuration variable, as follows:

• enforce_must_understand

enforce_must_understand

Specifies whether the Artix runtime enforces the semantics required by the
mustUnderstand attribute, which appears in the WS-Security SOAP header.

The semantics are as follows: when the mustUnderstand attribute is set to
1, the message receiver must process all of the security elements contained
in the corresponding wsse:Security header element. If the receiving
program is unable to process the wsse:Security element completely, the
message should be rejected.

You can disable this behavior by setting the
policies:soap:security:enforce_must_understand variable to false.

Default is true.

The mustUnderstand attribute appears as follows in a SOAP 1.1 header:

<S11:Envelope>
 <S11:Header>
 ...
 <wsse:Security S11:actor="..." S11:mustUnderstand="...">
 ...
 </wsse:Security>
 ...
 </S11:Header>
 ...
</S11:Envelope>
 555

APPENDIX A | Artix Security
principal_sponsor
The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. the CORBA binding provides an
implementation of a principal sponsor that creates credentials for
applications automatically.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

• callback_handler:ClassName

• login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.
556

principal_sponsor
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

pkcs12_file The authentication method uses a PKCS#12 file.

pkcs11 Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.
 557

APPENDIX A | Artix Security
For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in auth_method_data:

For the security_label authentication method on Windows, the following
authentication data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

The following points apply to Java implementations:

• If the file specified by filename= is not found, it is searched for on the
classpath.

• The file specified by filename= can be supplied with a URL instead of
an absolute file location.

• The mechanism for prompting for the password if the password is
supplied through password= can be replaced with a custom
mechanism, as demonstrated by the login demo.

provider A name that identifies the underlying PKCS #11
toolkit used by Artix to communicate with the smart
card.

The toolkit currently used by Artix has the provider
name dkck132.dll (from Baltimore).

slot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.

pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

label (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
558

principal_sponsor
• There are two extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

• These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that
implements the interface com.iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom CallbackHandlers; if a CallbackHandler is supplied, it is invoked
upon up to login_attempts times as long as the PrincipalAuthenticator
returns SecAuthFailure. This variable is only used by Java clients.
 559

APPENDIX A | Artix Security
principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

• use_existing_credentials

• use_principal_sponsor

• auth_method_data

• auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if false, CSI credentials are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also true.

Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSI principal sponsor is enabled; if false, the CSI
principal sponsor is disabled and the remaining principal_sponsor:csi
variables are ignored. Defaults to false.
560

principal_sponsor:csi
auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the GSSUPMech authentication method, the following authentication
data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.
 561

APPENDIX A | Artix Security
When the application is started, the user is prompted for the administrator
password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

For example, you can select the GSSUPMech authentication method as
follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
562

principal_sponsor:http
principal_sponsor:http
The principal_sponsor:http namespace provides configuration variables
that enable you to specify the HTTP Basic Authentication username and
password credentials.

The principal sponsor is disabled by default.

For example, to configure a HTTP client to use the credentials
test_username and test_password, configure the HTTP principal sponsor
as follows:

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the HTTP principal
sponsor. Defaults to false. If set to true, the following
principal_sponsor:http variables must be set:

• auth_method_id

• auth_method_data

Note: Once the HTTP principal sponsor is enabled, the HTTP header
containing the username and password is always included in outgoing
messages. For example, it is not possible to omit the HTTP Basic
Authentication credentials while talking to security unaware services. It is
possible, however, to program the application to set the username and
password values equal to empty strings.

principal_sponsor:http:use_principal_sponsor = "true";
principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:http:auth_method_data =

["username=test_username", "password=test_password"];
 563

APPENDIX A | Artix Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication method
as follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

The username field is required, and you can include either a password field
or a password_file field to specify the password.

For example, to configure an application with the username,
test_username, whose password is stored in the wsse_password_file.txt
file, set the auth_method_data as follows:

USERNAME_PASSWORD The authentication method reads the HTTP Basic
Authentication username and password from the
auth_method_data variable.

principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";

username The HTTP Basic Authentication username—required.

password The HTTP Basic Authentication password.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the HTTP Basic
Authentication password.

principal_sponsor:http:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];
564

principal_sponsor:https
principal_sponsor:https
The principal_sponsor:https namespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS
transport.

The HTTPS principal sponsor is disabled by default.

In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor:https variables must contain data in order for anything
to actually happen:

• auth_method_id

• auth_method_data
 565

APPENDIX A | Artix Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

pkcs12_file The authentication method uses a PKCS#12 file

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key—required.

password A password for the private key.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key.

This option is not recommended for deployed systems.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
566

principal_sponsor:wsse
principal_sponsor:wsse
The principal_sponsor:wsse namespace provides configuration variables
that enable you to specify the WSS username and password credentials sent
in a SOAP header.

The principal sponsor is disabled by default.

For example, to configure a SOAP client to use the credentials
test_username and test_password, configure the WSS principal sponsor as
follows:

If you use a SOAP 1.2 binding, you must also include the following
configuration in the client and in the server:

Note: Once the WSS principal sponsor is enabled, the SOAP header
containing the WSS username and password is always included in
outgoing messages. For example, it is not possible to omit the WSS
username/password header while talking to security unaware services. It is
possible, however, to program the application to set the username and
password values equal to empty strings.

principal_sponsor:wsse:use_principal_sponsor = "true";
principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:wsse:auth_method_data =

["username=test_username", "password=test_password"];

Artix Configuration File
...
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

plugins:artix_security:shlib_name = "it_security_plugin";
binding:artix:server_request_interceptor_list =

"principal_context+security";
binding:artix:client_request_interceptor_list =

"security+principal_context";
 567

APPENDIX A | Artix Security
In this section The following variables are in this namespace:

• use_principal_sponsor

• auth_method_id

• auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the WSS principal
sponsor. Defaults to false. If set to true, the following
principal_sponsor:wsse variables must be set:

• auth_method_id

• auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication method
as follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

USERNAME_PASSWORD The authentication method reads the WSS
username and password from the
auth_method_data variable.

principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";

username The WSS username—required.
568

principal_sponsor:wsse
The username field is required, and you can include either a password field
or a password_file field to specify the password.

For example, to configure an application with the WSS username,
test_username, whose password is stored in the wsse_password_file.txt
file, set the auth_method_data as follows:

password The WSS password.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the WSS password.

principal_sponsor:wsse:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];
 569

APPENDIX A | Artix Security
570

APPENDIX B

iSF Configuration
This appendix provides details of how to configure the Artix
security server.

In this appendix This appendix contains the following sections:

Properties File Syntax page 572

iSF Properties File page 573

Cluster Properties File page 599

log4j Properties File page 602
 571

APPENDIX B | iSF Configuration
Properties File Syntax

Overview The Artix security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

Property definitions A property is defined with the following syntax:

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,
is2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

Specifying full pathnames When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

Specifying relative pathnames If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Artix security service’s classpath. For
example, if you specify a relative pathname as follows:

UNIX
securityInfo.xml

The security service’s classpath must include the file’s parent directory:

<PropertyName>=<PropertyValue>

D:\\iona\\securityInfo.xml

CLASSPATH = /home/data/:<rest_of_classpath>
572

iSF Properties File
iSF Properties File

Overview An iSF properties file is used to store the properties that configure a specific
Artix security service instance. Generally, every Artix security service
instance should have its own iSF properties file. This section provides
descriptions of all the properties that can be specified in an iSF properties
file.

File location The default location of the iSF properties file is the following:

In general, the iSF properties file location is specified in the Artix
configuration by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally
initialized in the iona_services.security configuration scope as follows:

ArtixInstallDir/artix/Version/bin/is2.properties

Artix configuration file
...
iona_services {
 ...
 security {
 ...
 plugins:java_server:system_properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/artix/2.0/bin/is2.properties"
];

 ...
 };
};
 573

APPENDIX B | iSF Configuration
List of properties The following properties can be specified in the iSF properties file:

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the Artix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an
Artix security domain. Currently, you can specify one of the following
adapter types:

• file

• LDAP

• krb5

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C:/is2_config/security_info.xml,
as follows:

com.iona.isp.adapters=LDAP

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter.file.param.filename=C:/is2_config/security_info.xml
574

iSF Properties File
com.iona.isp.adapter.file.param.userIDInCert

If an X.509 certificate is presented to the Artix security service for
authentication, this property specifies which field from the certificate’s
subject DN is taken to be the user name.

The userIDInCert property can be set to any valid attribute type, where the
attribute type identifes a field in a Distinguished Name (DN). See “Attribute
types” on page 608 for a partial list.

For example, to specify that the user name is taken from the Common Name
(CN) from the certificate’s subject DN, set the property as follows:

com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.krb5.class

Specifies the Java class that implements the Kerberos adapter.

For example, the default implementation of the Kerberos adapter provided
with Artix is selected as follows:

com.iona.isp.adapter.krb5.param.check.kdc.principal

(Used in combination with the
com.iona.isp.adapter.krb5.param.check.kdc.running property.)
Specifies the dummy KDC principal that is used for connecting to the KDC
server, in order to check whether it is running or not.

com.iona.isp.adapter.file.param.userIDInCert=CN

com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr5.IS2KerberosAdapter
 575

APPENDIX B | iSF Configuration
com.iona.isp.adapter.krb5.param.check.kdc.running

A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server is running. Default is false.

com.iona.isp.adapter.krb5.param.ConnectTimeout.1

Specifies the time-out interval for the connection to the Active Directory
Server.

com.iona.isp.adapter.krb5.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.krb5.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.krb5.param.GroupNameAttr=cn
576

iSF Properties File
com.iona.isp.adapter.krb5.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfWriters object class:

com.iona.isp.adapter.krb5.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example, to search just the entries immediately bellow the base DN you
would use the following:

com.iona.isp.adapter.krb5.param.host.1

Specifies the server name or IP address of the Active Directory Server used
to retrieve a user’s group information.

com.iona.isp.adapter.krb5.param.GroupObjectClass=groupOfWriters

com.iona.isp.adapter.krb5.param.GroupSearchScope=ONE
 577

APPENDIX B | iSF Configuration
com.iona.isp.adapter.krb5.param.java.security.auth.login.config

Specifies the JAAS login module configuration file. For example, if your
JAAS login module configuration file is jaas.config, your Artix security
service configuration would contain the following:

com.iona.isp.adapter.krb5.param.java.security.krb5.conf

Specifies the location (path and file name) of the Kerberos configuration file,
krb5.conf. In most cases, this configuration is not needed. For more
information, see the Java documentation for Kerberos.

com.iona.isp.adapter.krb5.param.java.security.krb5.kdc

Specifies the server name or IP address of the Kerberos KDC server.

com.iona.isp.adapter.krb5.param.java.security.krb5.realm

Specifies the Kerberos Realm name.

For example, to specify that the Kerberos Realm is is2.iona.com would
require an entry similar to:

com.iona.isp.adapter.krb5.param.javax.security.auth.useSubjectCredsOnly

This is a JAAS login module property that must be set to false when using
Artix.

com.iona.isp.adapter.krb5.param.java.security.auth.login.config=jaas.conf

com.iona.isp.adapter.krb5.param.java.security.krb5.realm=is2.iona.com
578

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/KerberosReq.html

iSF Properties File
com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Kerberos adapter
(a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Kerberos adapter. The default is 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at a time:

com.iona.isp.adapter.krb5.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the MemberDNAttr property to construct a query to
find out which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Kerberos adapter.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.krb5.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.krb5.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter.krb5.param.MinConnectionPoolSize=10
 579

APPENDIX B | iSF Configuration
com.iona.isp.adapter.krb5.param.port.1

Specifies the port on which the Active Directory Server can be contacted.

com.iona.isp.adapter.krb5.param.PrincipalUserDN.1

Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

com.iona.isp.adapter.krb5.param.PrincipalUserPassword.1

Specifies the password that is used to login to the Active Directory Server.
This property need only be set if the Active Directory Server is configured to
require username/password authentication.

com.iona.isp.adapter.kbr5.param.RetrieveAuthInfo

Specifies if the user’s group information needs to be retrieved from the
Active Directory Server. Default is false.

To instruct the Kerberos adapter to retrieve the user’s group information, use
the following:

com.iona.isp.adapter.krb5.param.RoleNameAttr

Specifies the attribute type that the Kerberos server uses to store the role
name. The default is CN.

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.krb5.param.RetrieveAuthInfo=true
580

iSF Properties File
For example, you can specify the common name, CN, attribute type as
follows:

com.iona.isp.adapter.krb5.param.SSLCACertDir.1

Specifies the directory name for trusted CA certificates. All certificate files in
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify that the Kerberos adapter uses the d:/certs/test
directory to store CA certificates:

com.iona.isp.adapter.krb5.param.SSLClientCertFile.1

Specifies the client certificate file that is used to identify the Artix security
service to the Active Directory Server. This property is needed only if the
Active Directory Server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSLClientCertPassword.1

Specifies the password for the client certificate that identifies the Artix
security service to the Active Directory Server. This property is needed only if
the Active Directory Server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.krb5.param.RoleNameAttr=cn

com.iona.isp.adapter.kbr5.param.SSLCACertDir.1=d:/certs/test

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
 581

APPENDIX B | iSF Configuration
com.iona.isp.adapter.krb5.param.SSLEnabled.1

Specifies if SSL is needed to connect with the Active Directory Server. The
default is no.

To use SSL when contacting the Active Directory Server use the following:

com.iona.isp.adapter.krb5.param.sun.security.krb5.debug

Specifies a boolean value for the sun.security.krb5.debug debugging
property. If true, Kerberos debugging output is generated. Default is false.

com.iona.isp.adapter.krb5.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the
group.

This option is useful for some older directory structures, that do not have the
role concept.

Default is no.

For example:

com.iona.isp.adapter.krb5.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
active directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.krb5.param.SSLEnabled.1=yes

com.iona.isp.adapter.krb5.param.UseGroupAsRole=no

com.iona.isp.adapter.krb5.param.UserBaseDN=dc=iona,dc=com
582

iSF Properties File
com.iona.isp.adapter.krb5.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.krb5.param.UserNameAttr

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.krb5.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example to set the class to Person you would use the following:

com.iona.isp.adapter.krb5.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.krb5.param.UserCertAttrName=userCertificate

com.iona.isp.adapter.krb5.param.UserNameAttr=uid

com.iona.isp.adapter.krb5.param.UserObjectClass=Person

com.iona.isp.adapter.krb5.param.UserRoleDNAttr=nsroledn
 583

APPENDIX B | iSF Configuration
com.iona.isp.adapter.krb5.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

com.iona.isp.adapter.krb5.param.version

Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The only supported version is
3 (for LDAP v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this Artix security service instance.

&(uid=$USER_NAME$)(objectclass=organizationalPerson)

com.iona.isp.adapter.krb5.param.version=3

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter
584

http://www.ietf.org/rfc/rfc2251.txt

iSF Properties File
Internally, the Artix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, CN, attribute type to store the
user group’s name by setting this property as follows:

com.iona.isp.adapter.LDAP.param.CacheSize=1000

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona,dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr=cn
 585

APPENDIX B | iSF Configuration
com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is groupOfUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.host.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10.81.1.100 as follows:

com.iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100
586

iSF Properties File
com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Artix security
service (a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Artix security service. The default is 1.

For example, to limit the Artix security service to open a maximum of 50
LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the MemberDNAttr property to construct a query to find
out which groups a user belongs to.

The list of the user’s groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember
 587

APPENDIX B | iSF Configuration
com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Artix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Artix security service.
The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com.iona.isp.adapter.LDAP.param.port.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cluster_index> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter.LDAP.param.port.1=636
588

iSF Properties File
No default.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo

Specifies whether or not the Artix security service retrieves authorization
information from the LDAP server. This property selects one of the following
alternatives:

• yes—the Artix security service retrieves authorization information from
the LDAP server.

• no—the Artix security service retrieves authorization information from
the iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is CN.

For example, you can specify the common name, CN, attribute type as
follows:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>

For the <cluster_index> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn
 589

APPENDIX B | iSF Configuration
No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>

Specifies the client certificate file that is used to identify the Artix security
service to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>

Specifies the password for the client certificate that identifies the Artix
security service to the <cluster_index> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual authentication.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>

Enables SSL/TLS security for the connection between the Artix security
service and the <cluster_index> LDAP server replica. The possible values
are yes or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com.iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test

WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.1=yes
590

iSF Properties File
com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

• yes—each group name is interpreted as a role name.

• no—for each of the user’s groups, retrieve all roles assigned to the
group.

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=iona,DC=com, as a base
DN by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be userCertificate as follows:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona,dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate
 591

APPENDIX B | iSF Configuration
com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is uid.

For example:

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is organizationalPerson.

For example:

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRoleDn (from the Netscape LDAP directory schema).

For example:

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER_NAME$ is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

com.iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

&(uid=$USER_NAME$)(objectclass=organizationalPerson)
592

iSF Properties File
com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

• BASE—Search a single entry (the base object).

• ONE—Search all entries immediately below the base DN.

• SUB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the Artix security service uses to
communicate with LDAP servers. The only supported version is 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter.LDAP.param.version=3
 593

http://www.ietf.org/rfc/rfc2251.txt

APPENDIX B | iSF Configuration
com.iona.isp.authz.adapters

Specifies the name of the adapter that is loaded to perform authorization.
The adapter name is an arbitrary identifier, AdapterName, which is used to
construct the names of the properties that configure the adapter—that is,
com.iona.isp.authz.adapter.AdapterName.class and
com.iona.isp.authz.adapter.AdapterName.param.filelist. For example:

com.iona.isp.authz.adapter.AdapterName.class

Selects the authorization adapter class for the AdapterName adapter. The
following adapter implementations are provided by Orbix:

• com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—
an authorization adapter that enables you to specify multiple ACL files.
It is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

For example:

com.iona.isp.authz.adapter.AdapterName.param.filelist

Specifies the absolute pathname of a file containing a list of ACL files for the
AdapterName adapter. Each line of the specified file has the following
format:

com.iona.isp.authz.adapters=file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter
com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

com.iona.isp.authz.adapters = file
com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda

pter.multifile.MultiFileAzAdapter

[ACLKey=]ACLFileName
594

iSF Properties File
A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key. The ACL file,
ACLFileName, is specified using an absolute pathname in the local file
format.

For example, on Windows you could specify a list of ACL files as follows:

is2.current.server.id

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service’s ID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this
Orbix security service, the server ID is embedded into the SSO token.
Subsequently, if the SSO token is passed to a second Orbix security service
instance, the second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates security
operations to the first Orbix security service.

The server ID is also used to identify replicas in the cluster.properties
file.

For example, to assign a server ID of 1 to the current Orbix security service:

is2.cluster.properties.filename

Specifies the file that stores the configuration properties for clustering. For
example:

U:/orbix_security/etc/acl_files/server_A.xml
U:/orbix_security/etc/acl_files/server_B.xml
U:/orbix_security/etc/acl_files/server_C.xml

is2.current.server.id=1

is2.cluster.properties.filename=C:/is2_config/cluster.properties
 595

APPENDIX B | iSF Configuration
is2.replication.required

Enables the replication feature of the Artix security service, which can be
used in the context of security service clustering. The possible values are
true (enabled) and false (disabled). When replication is enabled, the
security service pushes its cache of SSO data to other servers in the cluster
at regular intervals.

Default is false.

For example:

is2.replication.interval

Specifies the time interval between replication updates to other servers in
the security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replica.selector.classname

If replication is enabled (see is2.replication.required), you must set this
variable equal to com.iona.security.replicate.StaticReplicaSelector.

For example:

is2.sso.cache.size

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user’s group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

is2.replication.required=true

is2.replication.interval=10

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector
596

iSF Properties File
Default is 10000.

For example:

is2.sso.enabled

Enables the single sign-on (SSO) feature of the Artix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.

For example:

is2.sso.remote.token.cached

In a federated scenario, this variable enables caching of token data for
tokens that originate from another security service in the federated cluster.
When this variable is set to true, a security service need contact another
security service in the cluster, only when the remote token is authenticated
for the first time. For subsequent token authentications, the token data for
the remote token can be retrieved from the local cache.

Default is false.

is2.sso.session.idle.timeout

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

If a user logs on to the Artix Security Framework (supplying username and
password) with SSO enabled, the Artix security service returns an SSO token
for the user. The next time the user needs to access a resource, there is no
need to log on again because the SSO token can be used instead. However,
if no secure operations are performed using the SSO token for the length of
time specified in the idle time-out, the SSO token expires and the user must
log on again.

Default is 0 (no time-out).

is2.sso.cache.size=1000

is2.sso.enabled=yes
 597

APPENDIX B | iSF Configuration
For example:

is2.sso.session.timeout

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

log4j.configuration

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Artix security
service. See also “log4j Properties File” on page 602.

For example:

is2.sso.session.idle.timeout=0

is2.sso.session.timeout=0

log4j.configuration=d:/temp/myconfig.txt
598

Cluster Properties File
Cluster Properties File

Overview The cluster properties file is used to store properties common to a group of
Artix security service instances that operate as a cluster or federation. This
section provides descriptions of all the properties that can be specified in a
cluster file.

File location The location of the cluster properties file is specified by the
is2.cluster.properties.filename property in the iSF properties file. All of
the Artix security service instances in a cluster or federation must share the
same cluster properties file.

List of properties The following properties can be specified in the cluster properties file:

com.iona.security.common.securityInstanceURL.<server_ID>

Specifies the server URL for the <server_ID> Artix security service instance.

When single sign-on (SSO) is enabled together with clustering or federation,
the Artix security service instances use the specified instance URLs to
communicate with each other. By specifying the URL for a particular Artix
security service instance, you are instructing the instance to listen for
messages at that URL. Because the Artix security service instances share
the same cluster file, they can read each other’s URLs and open connections
to each other.

The connections between Artix security service instances can either be
insecure (HTTP) or secure (HTTPS). To enable SSL/TLS security, use the
https: prefix in each of the instance URLs.

For example, to configure two Artix security service instances to operate in a
cluster or federation using insecure communications (HTTP):

com.iona.security.common.securityInstanceURL.1=http://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=http://localhost:8081/isp/AuthService
 599

APPENDIX B | iSF Configuration
Alternatively, to configure two Artix security service instances to operate in a
cluster or federation using secure communications (HTTPS):

In the secure case, you must also configure the certificate-related cluster
properties (described in this section) for each Artix security service instance.

com.iona.security.common.replicaURL.<server_ID>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data.

com.iona.security.common.cACertDir.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the directory containing trusted CA certificates. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify d:/temp/cert as the CA certificate directory for the
primary Artix security service instance:

com.iona.security.common.clientCertFileName.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the client certificate file that identifies the Artix security
service to its peers within a cluster or federation. The certificate must be in
PKCS#12 format.

com.iona.security.common.clientCertPassword.<server_ID>

For the <server_ID> Artix security service instance in a HTTPS cluster or
federation, specifies the password for the client certificate that identifies the
Artix security service to its peers within a cluster or federation.

com.iona.security.common.securityInstanceURL.1=https://localhost:8080/isp/AuthService
com.iona.security.common.securityInstanceURL.2=https://localhost:8081/isp/AuthService

com.iona.security.common.cACertDir.1=d:/temp/cert
600

Cluster Properties File
WARNING: Because the password is stored in plaintext, you must ensure
that the is2.properties file is readable and writable only by users with
administrator privileges.
 601

APPENDIX B | iSF Configuration
log4j Properties File

Overview The log4j properties file configures log4j logging for your Artix security
service. This section describes a minimal set of log4j properties that can be
used to configure basic logging.

log4j documentation For complete log4j documentation, see the following Web page:

http://jakarta.apache.org/log4j/docs/documentation.html

File location The location of the log4j properties file is specified by the
log4j.configuration property in the iSF properties file. For ease of
administration, different Artix security service instances can optionally share
a common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<AppenderHandle>

This property specifies a log4j appender class that directs
<AppenderHandle> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

• org.apache.log4j.ConsoleAppender

• org.apache.log4j.FileAppender

• org.apache.log4j.RollingFileAppender

• org.apache.log4j.DailyRollingFileAppender

• org.apache.log4j.AsynchAppender

• org.apache.log4j.WriterAppender

For example, to log messages to the console screen for the A1 appender
handle:

log4j.appender.A1=org.apache.log4j.ConsoleAppender
602

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File
log4j.appender.<AppenderHandle>.layout

This property specifies a log4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

• org.apache.log4j.PatternLayout

• org.apache.log4j.HTMLLayout

• org.apache.log4j.SimpleLayout

• org.apache.log4j.TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

log4j.appender.<AppenderHandle>.layout.ConversionPattern

This property is used only in conjunction with the
org.apache.log4j.PatternLayout class (when specified by the
log4j.appender.<AppenderHandle>.layout property) to define the format
of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

The logging level, <LogLevel>, can have one of the following values:

• DEBUG

• INFO

• WARN

• ERORR

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

<LogLevel>, <AppenderHandle01>, <AppenderHandle02>, ...
 603

APPENDIX B | iSF Configuration
• FATAL

An appender handle is an arbitrary identifier that associates a logger with a
particular logging destination.

For example, to select all messages at the DEBUG level and direct them to the
A1 appender, you can set the property as follows:

log4j.rootCategory=DEBUG, A1
604

APPENDIX C

ASN.1 and
Distinguished
Names
The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 606

Distinguished Names page 607
 605

APPENDIX C | ASN.1 and Distinguished Names
ASN.1

Overview The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

BER The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

DER The OSI’s Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

References You can read more about ASN.1 in the following standards documents:

• ASN.1 is defined in X.208.

• BER is defined in X.209.
606

Distinguished Names
Distinguished Names

Overview Historically, distinguished names (DN) were defined as the primary keys in
an X.500 directory structure. In the meantime, however, DNs have come to
be used in many other contexts as general purpose identifiers. In the Artix
Security Framework, DNs occur in the following contexts:

• X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

• LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

DN string example The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string A DN string is built up from the following basic elements:

• OID.

• Attribute types.

• AVA.

• RDN.

OID An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.
 607

APPENDIX C | ASN.1 and Distinguished Names
Attribute types The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 17 shows a selection of the attribute types that you are most likely to
encounter:

AVA An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in
the string representation (see Table 17). For example:

2.5.4.3=A. N. Other

Table 17: Commonly Used Attribute Types

String
Representation

X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid
608

Distinguished Names
RDN A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering
 609

APPENDIX C | ASN.1 and Distinguished Names
610

APPENDIX D

Action-Role
Mapping DTD
This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

DTD file The action-role mapping DTD is shown in Example 99.

Example 99:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT action-name (#PCDATA)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT server-name (#PCDATA)>
<!ELEMENT action-role-mapping (server-name, interface+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT interface (name, action-role+)>
<!ELEMENT action-role (action-name, role-name+)>
<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
<!ELEMENT secure-system (allow-unlisted-interfaces*,

action-role-mapping+)>
 611

APPENDIX D | Action-Role Mapping DTD
Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:

<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:

♦ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).

For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, foo, would
have an accessor, _get_foo, and a modifier, _set_foo.

♦ Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the OperationName from a
tag, <operation name="OperationName">.

The action-name element supports a wildcard mechanism, where the
special character, *, can be used to match any number of contiguous
characters in an action name. For example, the following action-name
element matches any action:

<!ELEMENT action-role (action-name, role-name+)>

Groups together a particular action and all of the roles permitted to
perform that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server
application.

<action-name>*</action-name>
612

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>

Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

♦ true—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

♦ false—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is false.

<!ELEMENT interface (name, action-role+)>

In the case of a CORBA server, the interface element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.

<!ELEMENT name (#PCDATA)>

Within the scope of an interface element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

♦ CORBA server—the name element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters IDL: followed by the fully
scoped name of the interface (using / instead of :: as the scoping

Note: However, if <allow-unlisted-interfaces> is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s interface element are accessible. Unlisted
actions from the listed interface are not accessible.
 613

APPENDIX D | Action-Role Mapping DTD
character), followed by the characters :1.0. Hence, the
Simple::SimpleObject IDL interface is identified by the
IDL:Simple/SimpleObject:1.0 repository ID.

♦ Artix server—the name element contains a WSDL port type name,
specified in the following format:

NamespaceURI:PortTypeName

The PortTypeName comes from a tag, <portType
name="PortTypeName">, defined in the NamespaceURI namespace.
The NamespaceURI is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.

The name element supports a wildcard mechanism, where the special
character, *, can be used to match any number of contiguous
characters in an interface name. For example, the following name
element matches any interface:

<!ELEMENT role-name (#PCDATA)>

Specifies a role to which permission is granted. The role name can be
any role that belongs to the server’s Artix authorization realm (for
CORBA bindings, the realm name is specified by the
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
IONAGlobalRealm realm. The roles themselves are defined in the

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefix.

For example, the CosNaming::NamingContext interface in the naming
service module, which uses the omg.org prefix, has the following
repository ID: IDL:omg.org/CosNaming/NamingContext:1.0

<interface>
 <name>*</name>
 ...
</interface>
614

security server backend; for example, in a file adapter file or in an
LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping elements.

<!ELEMENT server-name (#PCDATA)>

The server-name element specifies the configuration scope (that is, the
ORB name or BUS name) used by the server in question. This is
normally the value of the -ORBname or -BUSname parameter passed to
the server executable on the command line.

The server-name element supports a wildcard mechanism, where the
special character, *, can be used to match any number of contiguous
characters in an ORB name or BUS name. For example, the following
server-name element matches any ORB name or BUS name:

<server-name>*</server-name>
 615

APPENDIX D | Action-Role Mapping DTD
616

APPENDIX E

OpenSSL Utilities
The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Artix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:

Using OpenSSL Utilities page 618

The OpenSSL Configuration File page 632
 617

APPENDIX E | OpenSSL Utilities
Using OpenSSL Utilities

The OpenSSL package This section describes a version of the openssl program that is available
with Eric Young’s OpenSSL package, which you can download from the
OpenSSL Web site, http://www.openssl.org. OpenSSL is a publicly available
implementation of the SSL protocol. Consult “License Issues” on page 639
for information about the copyright terms of OpenSSL.

Command syntax An openssl command line takes the following form:

openssl utility arguments

For example:

openssl x509 -in OrbixCA -text

The openssl utilities This appendix describes the following openssl utilities:

The -help option To get a list of the arguments associated with a particular command, use
the -help option as follows:

openssl utility -help

For example:

openssl x509 -help

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http://www.openssl.org/docs.

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and
self-signed certificates.

rsa Manipulates RSA private keys.

ca Implements a Certification Authority (CA).

s_client Implements a generic SSL/TLS client.

s_server Implements a generic SSL/TLS server.
618

http://www.openssl.org

Using OpenSSL Utilities
The x509 Utility

Purpose of the x509 utility In Artix the x509 utility is mainly used for:

• Printing text details of certificates you wish to examine.

• Converting certificates to different formats.

Options The options supported by the openssl x509 utility are as follows:

-inform arg - input format - default PEM
(one of DER, NET or PEM)

-outform arg - output format - default PEM
(one of DER, NET or PEM

-keyform arg - private key format - default PEM

-CAform arg - CA format - default PEM

-CAkeyform arg - CA key format - default PEM

-in arg - input file - default stdin

-out arg - output file - default stdout

-serial - print serial number value

-hash - print serial number value

-subject - print subject DN

-issuer - print issuer DN

-startdate - notBefore field

-enddate - notAfter field

-dates - both Before and After dates

-modulus - print the RSA key modulus

-fingerprint - print the certificate fingerprint

-noout - no certificate output

-days arg - How long till expiry of a signed certificate
- def 30 days

-signkey arg - self sign cert with arg

-x509toreq - output a certification request object

-req - input is a certificate request, sign and
output

-CA arg - set the CA certificate, must be PEM format
 619

APPENDIX E | OpenSSL Utilities
Using the x509 utility To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

-CAkey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-sha1/
-mdc2

- digest to do an RSA sign with
620

Using OpenSSL Utilities
The req Utility

Purpose of the x509 utility The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted
for a pass phrase which will be used to protect the private key.

Options The options supported by the openssl req utility are as follows:

Note: It is important to specify a validity period (using the -days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM

-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg key file format

-keyout arg file to send the key to

-newkey rsa:bits generate a new RSA key of ‘bits’ in size

-newkey dsa:file generate a new DSA key, parameters taken from
CA in ‘file’

-[digest] Digest to sign with (md5, sha1, md2, mdc2)

-config file request template file
 621

APPENDIX E | OpenSSL Utilities
Using the req Utility To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA_cert.pem and
the corresponding encrypted private key file CA_pk.pem:

openssl req -config ssl_conf_path_name -days 365
-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq.pem and the
corresponding encrypted private key file MyEncryptedKey.pem:

openssl req -config ssl_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

-new new request

-x509 output an x509 structure instead of a
certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is
valid for

-asn1-kludge Output the ‘request’ in a format that is wrong
but some CA’s have been reported as requiring
[It is now always turned on but can be turned
off with -no-asn1-kludge]
622

Using OpenSSL Utilities
The rsa Utility

Purpose of the rsa utility The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The rsa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

Options The options supported by the openssl rsa utility are as follows:

Using the rsa Utility Converting a private key to PEM format from DER format involves using the
rsa utility as follows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey2.pem

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus
 623

APPENDIX E | OpenSSL Utilities
Note: Do not specify the same file for the -in and -out parameters,
because this can corrupt the file.
624

Using OpenSSL Utilities
The ca Utility

Purpose of the ca utility You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca -policy and -name options, refer to “The OpenSSL Configuration
File” on page 632.

Creating a new CA To create a new CA using the openssl ca utility, two files (serial and
index.txt) need to be created in the location specified by the openssl
configuration file that you are using.

Options The options supported by the openssl ca utility are as follows:

-verbose - Talk alot while doing things

-config file - A config file

-name arg - The particular CA definition to use

-gencrl - Generate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - number of days to certify the certificate for

-md arg - md to use, one of md2, md5, sha or sha1

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEM private key file

-key arg - key to decode the private key if it is
encrypted

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)

-out file - Where to put the output file(s)

-outdir dir - Where to put output certificates
 625

APPENDIX E | OpenSSL Utilities
Note: Most of the above parameters have default values as defined in
openssl.cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
MyReq.pem to be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ssl_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos
universal strings
626

Using OpenSSL Utilities
The s_client Utility

Purpose of the s_client utility You can use the s_client utility to debug an SSL/TLS server. Using the
s_client utility, you can negotiate an SSL/TLS handshake under controlled
conditions, accompanied by extensive logging and error reporting.

Options The options supported by the openssl s_client utility are as follows:

-connect
host[:port]

- Specify the host and (optionally) port to
connect to. Default is local host and port 4433.

-cert certname - Specifies the certificate to use, if one is
requested by the server.

-certform format - The certificate format, which can be either
PEM or DER. Default is PEM.

-key keyfile - File containing the client’s private key.
Default is to extract the key from the client
certificate.

-keyform format - The private key format, which can be either
PEM or DER. Default is PEM.

-pass arg - The private key password.

-verify depth - Maximum server certificate chain length.

-CApath directory - Directory to use for server certificate
verification.

-CAfile file - File containing trusted CA certificates.

-reconnect - Reconnects to the same server five times using
the same session ID.

-pause - Pauses for one second between each read and
write call.

-showcerts - Display the whole server certificate chain.

-prexit - Print session information when the program
exits.

-state - Prints out the SSL session states.

-debug - Log debug data, including hex dump of
messages.

-msg - Show all protocol messages with hex dump.

-nbio_test - Tests non-blocking I/O.
 627

APPENDIX E | OpenSSL Utilities
Using the s_client utility Before running the s_client utility, there must be an active SSL/TLS server
for you to connect to. For example, you could have an s_server test server
running on the local host, listening on port 9000. To run the s_client test
client, open a command prompt and enter the following command:

Where clientcert.pem is a file containing the client’s X.509 certificate in
PEM format. When you enter the command, you are prompted to enter the
pass phrase for the clientcert.pem file.

-nbio - Turns on non-blocking I/O.

-crlf - Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

-ign_eof - Inhibits shutting down the connection when end
of file is reached in the input.

-quiet - Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

-ssl2, -ssl3,
-tls1, -no_ssl2,
-no_ssl3, -no_tls1

- These options enable/disable the use of
certain SSL or TLS protocols.

-bugs - Enables workarounds to several known bugs in
SSL and TLS implementations.

-cipher cipherlist- Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

-starttls protocol- Send the protocol-specific message(s) to
switch to TLS for communication, where the
protocol can be either smtp or pop3.

-engine id - Specifies an engine, by it's unique id string.

-rand file(s) - A file or files containing random data used to
seed the random number generator, or an EGD
socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.

openssl s_client -connect localhost:9000 -ssl3
-cert clientcert.pem
628

Using OpenSSL Utilities
The s_server Utility

Purpose of the s_server utility You can use the s_server utility to debug an SSL/TLS client. By entering
openssl s_server at the command line, you can run a simple SSL/TLS
server that listens for incoming SSL/TLS connections on a specified port.
The server can be configured to provide extensive logging and error
reporting.

Options The options supported by the openssl s_server utility are as follows:

-accept port - Specifies the IP port to listen for incoming
connections. Default is port 4433.

-context id - Sets the SSL context id (any string value).

-cert certname - Specifies the certificate to use for the
server.

-certform format - The certificate format, which can be either
PEM or DER. Default is PEM.

-key keyfile - File containing the server’s private key.
Default is to extract the key from the server
certificate.

-keyform format - The private key format, which can be either
PEM or DER. Default is PEM.

-pass arg - The private key password.

-dcert filename,
-dkey keyname

- Specifies an additional certificate and
private key, enabling the server to have
multiple credentials.

-dcertform format,
-dkeyform format,
-dpass arg

- Specifies additional certificate format,
private key format, and passphrase respectively.

-nocert - If this option is set, no certificate is used.

-dhparam filename - The DH parameter file to use.

-no_dhe - If this option is set, no DH parameters will
be loaded, effectively disabling the ephemeral
DH cipher suites.

-no_tmp_rsa - Certain export cipher suites sometimes use a
temporary RSA key. This option disables
temporary RSA key generation.
 629

APPENDIX E | OpenSSL Utilities
-verify depth,
-Verify depth

- Maximum client certificate chain length. With
the -Verify option, the client must supply a
certificate or an error occurs.

-CApath directory - Directory to use for client certificate
verification.

-CAfile file - File containing trusted CA certificates.

-state - Prints out the SSL session states.

-debug - Log debug data, including hex dump of
messages.

-msg - Show all protocol messages with hex dump.

-nbio_test - Tests non-blocking I/O.

-nbio - Turns on non-blocking I/O.

-crlf - Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

-quiet - Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

-ssl2, -ssl3,
-tls1, -no_ssl2,
-no_ssl3, -no_tls1

- These options enable/disable the use of
certain SSL or TLS protocols.

-bugs - Enables workarounds to several known bugs in
SSL and TLS implementations.

-hack - Enables a further workaround for some some
early Netscape SSL code.

-cipher cipherlist- Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

-www - Sends a status message back to the client when
it connects. The status message is in HTML
format.

-WWW - Emulates a simple web server, where pages are
resolved relative to the current directory.

-HTTP - Emulates a simple web server, where pages are
resolved relative to the current directory.

-engine id - Specifies an engine, by it's unique id string.

-id_prefix_arg - Generate SSL/TLS session IDs prefixed by arg.
630

Using OpenSSL Utilities
Connected commands When an SSL client is connected to the test server, you can enter any of the
following single letter commands at the server side:

Using the s_server utility To use the s_server utility to debug SSL clients, start the test server with
the following command:

Where the test server listens on the IP port 9000 and servercert.pem is a
file containing the server’s X.509 certificate in PEM format.

The s_server utility also provides a convenient way to test a secure Web
browser. If you start the s_server utility with the -WWW switch, the test
server functions as a simple Web server, serving up pages from the current
directory. For example:

-rand file(s) - A file or files containing random data used to
seed the random number generator, or an EGD
socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.

q End the current SSL connection but still accept new connections.

Q End the current SSL connection and exit.

r Renegotiate the SSL session.

R Renegotiate the SSL session and request a client certificate.

P Send some plain text down the underlying TCP connection. This
should cause the client to disconnect due to a protocol violation.

S Print out some session cache status information.

openssl s_server -accept 9000 -cert servercert.pem

openssl s_server -accept 9000 -cert servercert.pem -WWW
 631

APPENDIX E | OpenSSL Utilities
The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the openssl configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl.cnf The openssl.cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:

[req] Variables page 633

[ca] Variables page 634

[policy] Variables page 635

Example openssl.cnf File page 636
632

The OpenSSL Configuration File
[req] Variables

Overview of the variables The req section contains the following variables:

default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

default_bits configuration
variable

The default_bits variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

default_keyfile configuration
variable

The default_keyfile variable is the default name for the private key file
created by req.

distinguished_name
configuration variable

The distinguished_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attributes variable specifies the section in the configuration
file that defines defaults for certificate request attributes.
 633

APPENDIX E | OpenSSL Utilities
[ca] Variables

Choosing the CA section You can configure the file openssl.cnf to support a number of CAs that
have different policies for signing CSRs. The -name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MyCa ...

This command refers to the CA section [MyCa]. If -name is not supplied to
the ca command, the CA section used is the one indicated by the
default_ca variable. In the “Example openssl.cnf File” on page 636, this is
set to CA_default (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Overview of the variables Possible [ca] variables include the following

dir: The location for the CA database
The database is a simple text database containing the

following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified
revoked date: When it was revoked, blank if not revoked
serial number: The certificate serial number
certificate: Where the certificate is located
CN: The name of the certificate

The serial number field should be unique, as should the CN/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept
634

The OpenSSL Configuration File
[policy] Variables

Choosing the policy section The policy variable specifies the default policy section to be used if the
-policy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 636: policy_match and policy_anything.

Example policy section The policy_match section of the example openssl.cnf file specifies the
order of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

The match policy value Consider the following value:

countryName = match

This means that the country name must match the CA certificate.

The optional policy value Consider the following value:

organisationalUnitName = optional

This means that the organisationalUnitName does not have to be present.

The supplied policy value Consider the following value:

commonName = supplied

This means that the commonName must be supplied in the certificate request.
 635

APPENDIX E | OpenSSL Utilities
Example openssl.cnf File

Listing The following listing shows the contents of an example openssl.cnf
configuration file:

##
openssl example configuration file.
This is mostly used for generation of certificate requests.
###
[ca]
default_ca= CA_default # The default ca section
###

[CA_default]

dir=/opt/iona/OrbixSSL1.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL
private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should

conform to the details of the CA

policy= policy_match

For the CA policy

[policy_match]
countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied
636

The OpenSSL Configuration File
emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy_anything]
countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]
default_bits = 1024
default_keyfile= privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes

[req_distinguished_name]
countryName= Country Name (2 letter code)
countryName_min= 2
countryName_max = 2
stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)
organizationalUnitName = Organizational Unit Name (eg, section)
commonName = Common Name (eg. YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 40

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20
unstructuredName= An optional company name
 637

APPENDIX E | OpenSSL Utilities
638

APPENDIX F

License Issues
This appendix contains the text of licenses relevant to Artix.

In this appendix This appendix contains the following section:

OpenSSL License page 640
 639

APPENDIX F | License Issues
OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix SSL/TLS is as follows:

LICENSE ISSUES
==============
 The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
 the OpenSSL License and the original SSLeay license apply to the toolkit.
 See below for the actual license texts. Actually both licenses are BSD-style
 Open Source licenses. In case of any license issues related to OpenSSL
 please contact openssl-core@openssl.org.

 OpenSSL License

/* ==
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
640

OpenSSL License
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
 641

APPENDIX F | License Issues
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
642

Index

Symbols
.NET

and principal propagation 393
<action-role-mapping> tag 244
<interface> tag 244
<name> tag 244
<realm> tag 235
<role> tag 235
<server-name> tag 244
<users> tag 235

A
access control

wsdltoacl utility 246
ACL

<action-role-mapping> tag 244
<interface> tag 244
<name> tag 244
<server-name> tag 244
action_role_mapping configuration variable 249
action-role mapping file 243
action-role mapping file, example 243

action-role mapping
and role-based access control 229

action_role_mapping configuration variable 110,
249

action-role mapping file
<action-role-mapping> tag 244
<interface> tag 244
<name> tag 244
<server-name> tag 244
CORBA

configuring 243
example 243

administration
OpenSSL command-line utilities 261

and iSF adapter properties 475
Artix security layer

and certificate-based authentication 82
Artix security plug-in

and security layer 59
authentication_cache_size configuration

variable 62

artix_security plug-in
loading and basic configuration 154

Artix security plug-in plug-in
authentication_cache_timeout configuration

variable 62
Artix security service

and embedded deployment 461
architecture 457
configuring 161
definition 458
features 458
file adapter 183
is2.properties file 183
LDAP adapter 185
LDAP adapter, properties 186
log4j logging 223
plugins:java_server:classpath configuration

variable 476
security infomation file 183
standalone deployment of 460

ASN.1 253, 605
attribute types 608
AVA 608
OID 607
RDN 609

ASP plug-in
caching of credentials 61

asp plug-in
default_password configuration value 388
security_type configuration variable 388

ASP security layer
and HTTP 65
and SOAP binding 89

association options
and cipher suite constraints 326
and mechanism policy 315
client secure invocation policy, default 311
compatibility with cipher suites 327
EstablishTrustInClient 71, 72, 102, 116
NoProtection 105
rules of thumb 315
SSL/TLS

Confidentiality 309
 643

INDEX
DetectMisordering 309
DetectReplay 309
EstablishTrustInClient 310
EstablishTrustInTarget 310
Integrity 309
NoProtection 309
setting 306

target secure invocation policy, default 313, 314
attribute value assertion 608
authenticate() method

in IS2Adapter 469
authentication

and security layer 59
caching of credentials 61
certificate-based 56
CSI 56
HTTP Basic Authentication 56
iSF

process of 107
own certificate, specifying 292
pass phrase

dialog prompt, C++ 294
in configuration 295
password file, from 294

SSL/TLS
mutual 288
target only 285
trusted CA list 291

authentication_cache_size configuration
variable 61, 62

authentication_cache_timeout configuration
variable 61, 62

authorization
and security layer 59
caching of credentials 61
role-based access control 229
roles

creating 231
special 233

authorization realm
adding a server 230
IONAGlobalRealm realm 233
iSF 229
iSF, setting in server 110
roles in 231
servers in 230
special 233

authorization realms
creating 231

AVA 608

B
backward trust 117
Baltimore toolkit

selecting for C++ applications 487
Basic Encoding Rules 606
BER 606
bus:initial_contract:url:login_service configuration

variable 131
bus:security 157
bus-security:security interceptor 80, 132

C
CA 252

choosing a host 256
commercial CAs 255
index file 263
list of trusted 258
multiple CAs 258
private CAs 256
private key, creating 264
security precautions 256
See Alsocertificate authority
self-signed 264
serial file 263
trusted list 274, 291

634
CA, setting up 262
CACHE_CLIENT session caching value 329
CACHE_NONE session caching value 329
CACHE_SERVER_AND_CLIENT session caching

value 329
CACHE_SERVER session caching value 329
caching

authentication_cache_size configuration
variable 61, 62

authentication_cache_timeout configuration
variable 61, 62

CACHE_CLIENT session caching value 329
CACHE_NONE session caching value 329
CACHE_SERVER_AND_CLIENT session caching

value 329
CACHE_SERVER session caching value 329
of credentials 61
SSL/TLS

cache size 329
validity period 329
644

INDEX
Caching sessions 329
CAs 262
ca utility 625
CertConstraintsPolicy 481
CertConstraintsPolicy policy 481
certificate authority

and certificate signing 252
certificate-based authentication 56

and HTTP 66
example scenario 82, 92, 118
file adapter, configuring 236
LDAP adapter, configuring 239

certificate constraints policy
three-tier target server 117

certificate_constraints_policy variable 300, 481
Certificates

chain length 299
constraints 300, 481

certificates
CertConstraintsPolicy policy 481
chaining 257
constraint language 300, 481
constraints policy 117
contents of 253
creating and signing 265
deployment,sample directory structure 273
importing and exporting 260
length limit 258
own, specifying 292
pass phrase 294
peer 257
PKCS#12 file 259
public key 253
public key encryption 320
security handshake 285, 289
self-signed 257, 264
serial number 253
signing 252, 266
signing request 265
trusted CA list 274, 291
X.509 252

certificate signing request 265
common name 266
signing 266

chaining of certificates 257
ciper suites

order of 324
cipher suites

ciphersuites configuration variable 324

compatibility algorithm 327
compatibility with association options 327
default list 324
definitions 321
effective 326
encryption algorithm 320
exportable 321
integrity-only ciphers 320
key exchange algorithm 320
mechanism policy 323
secure hash algorithm 320
secure hash algorithms 321
security algorithms 320
specifying 319
standard ciphers 320

ciphersuites configuration variable 324
CLASSPATH 476
client_binding_list configuration variable

iSF, client configuration 108
secure client 101

ClientCertificate attribute 73
ClientPrivateKeyPassword attribute 73
client secure invocation policy 326

HTTPS 311
IIOP/TLS 311

ClientSecureInvocationPolicy policy 307
client_version_policy

IIOP 545
close() method 469
cluster.properties file

example 212
clustering

definition 203
is2.cluster.properties.filename property 211
is2.replica.selector.classname 211
IT_SecurityService initial reference 214
load balancing 217
login service 210, 211
plugins:security:iiop_tls:addr_list variable 214
plugins:security:iiop_tls:host variable 215
plugins:security:iiop_tls:port variable 215
policies:iiop_tls:load_balancing_mechanism

variable 218
securityInstanceURL property 212

cluster properties file 208
colocated invocations

and secure associations 304
colocation

incompatibility with principal propagation 386
 645

INDEX
com.iona.isp.adapters property 474
common names

uniqueness 266
Confidentiality association option 309

hints 317
Confidentiality option 309
configuration

and iSF standalone deployment 460
of the iSF adapter 474
plugins:java_server:classpath configuration

variable 476
Configuration file 632
connection_attempts 545
constraint language 300, 481
Constraints

for certificates 300, 481
CORBA

action-role mapping file 243
action-role mapping file, example 243
and iSF client SDK 458
configuring principal propagation 387
intermediate server configuration 113
iSF, three-tier system 112
principal propagation 386
security, overview 98
SSL/TLS

client configuration 100
securing communications 100

three-tier target server configuration 115
CORBA binding

CSI authorization over transport 56
CSI identity assertion 56
protocol layers 58
SSO overview 126

CORBA Principal 55, 91
CORBA security

CSIv2 plug-in 99
GSP plug-in 99
IIOP/TLS plug-in 99

CSI
authorization over transport 56
identity assertion 56

CSI interceptor 108
CSIv2

certificate constraints policy 117
principal sponsor

client configuration 109
CSIv2 plug-in

CORBA security 99

CSR 265

D
data encryption standard

see DES
default_password configuration value 388
DER 606
DES

symmetric encryption 321
DetectMisordering association option 309

hints 317
DetectMisordering option 309
DetectReplay association option 309

hints 317
DetectReplay option 309
Distinguished Encoding Rules 606
distinguished names

definition 607
DN

definition 607
string representation 607

domain name
ignored by iSF 107

domains
federating across 204

E
effective cipher suites

definition 326
embedded deployment 461

loading an adapter class 476
enable_principal_service_context configuration

variable 387
encryption algorithm

RC4 321
encryption algorithms 320

DES 321
symmetric 321
triple DES 321

enterprise security service
and iSF security domains 227

EstablishTrustInClient association option 71, 72,
102, 310

hints 316
three-tier target server 116

EstablishTrustInClient option 310
EstablishTrustInTarget association option 310

hints 316
646

INDEX
EstablishTrustInTarget option 310
event_log:filters 542
exportable cipher suites 321

F
failover

definition 209
features, of the Artix security service 458
federation

and the security service 204
cluster properties file 208
definition 203
is2.cluster.properties.filename property 207
is2.current.server.id property 204
is2.properties file 207, 211
plugins:security:iiop_tls settings 208

file adapter 183
configuring certificate-based authentication 236
properties 183

file domain
<realm> tag 235
<users> tag 235
example 234
file location 234
managing 234

G
generic server 460
getAllUsers() method 471
getAuthorizationInfo() method 470
GroupBaseDN property 187
GroupNameAttr property 187
GroupObjectClass property 187
GroupSearchScope property 188
GSP plug-in

and security layer 59
and the login service 126
authentication_cache_size configuration

variable 61
authentication_cache_timeout configuration

variable 61
caching of credentials 61
CORBA security 99

GSSUP credentials 206

H
high availability 209
HTTP

ASP security layer 65
security layers 64

HTTP Basic Authentication 56, 66
overview 78

HTTP-compatible binding
compatible bindings 65
overview 64
protocol layers 57

HTTPS
ciphersuites configuration variable 324
client configuration 69, 71
mutual authentication 73

HTTPS security
overview 67

I
identity assertion 56
IIOP/TLS

ciphersuites configuration variable 324
IIOP/TLS plug-in

CORBA security 99
IIOP plug-in

and semi-secure clients 101
IIOP policies 540, 543

client version 545
connection attempts 545
export hostnames 550
export IP addresses 550
GIOP version in profiles 550
server hostname 549
TCP options

delay connections 551
receive buffer size 552

IIOP policy
ports 549

IIOP_TLS interceptor 101
index file 263
initialize() method 469, 475
Integrity association option 309

hints 317
integrity-only ciphers 320
Integrity option 309
interceptors

artix security 80
bus-security 132
login_client 131

interoperability
explicit principal header 394
with .NET 393
 647

INDEX
with Orbix applications 386
invocation policies

interaction with mechanism policy 315
IONAGlobalRealm 471
IONAGlobalRealm realm 233
IONAUserRole 246
is2.cluster.properties.filename property

and clustering 211
and federation 207

is2.current.server.id property 204
and clustering 211

is2.properties file 183
and clustering 211
and federation 207, 211
and iSF adapter configuration 462

IS2AdapterException class 470
IS2Adapter Java interface 462

implementing 463
iS2 adapters

file domain
managing 234

LDAP domain
managing 239

standard adapters 458
iSF

action_role_mapping configuration variable 110
and certificate-based authentication 118
authorization realm

setting in server 110
client configuration

CSI interceptor 108
CORBA

three-tier system 112
three-tier target server configuration 115
two-tier scenario description 107

CORBA security 98
domain name, ignoring 107
intermediate server configuration 113
security domain

creating 228
server configuration

server_binding_list 108
server_domain_name configuration variable 110
three-tier scenario description 113
user account

creating 228
iSF adapter

adapter class property 474
and IONAGlobalRealm 471

and the iSF architecture 458
authenticate() method 469
close() method 469
com.iona.isp.adapters property 474
configuring to load 474
custom adapter, main elements 462
example code 463
getAllUsers() method 471
getAuthorizationInfo() method 470
initialize() method 469, 475
logout() method 472
overview 462
property format 475
property truncation 475
WRONG_NAME_PASSWORD minor

exception 470
iSF adapters

enterprise security service 227
iSF adapter SDK

and the iSF architetecture 458
iSF client

in iSF architecture 457
iSF client SDK 458
iSF server

plugins:java_server:classpath configuration
variable 476

IT_SecurityService initial reference 214

J
J2EE

and iSF client SDK 458
JCE architecture

enabling 497

K
Kerberos 191

token 55
key exchange algorithms 320

L
LDAP adapter 185

basic properties 188
configuring certificate-based authentication 239
GroupBaseDN property 187
GroupNameAttr property 187
GroupObjectClass property 187, 188
LDAP server replicas 189
MemberDNAttr property 188
648

INDEX
PrincipalUserDN property 190
PrincipalUserPassword property 190
properties 186
replica index 189
RoleNameAttr property 187
SSLCACertDir property 190
SSLClientCertFile property 190
SSLClientCertPassword property 190
SSLEnabled property 190
UserBaseDN property 187
UserNameAttr property 187
UserObjectClass property 187
UserRoleDNAttr property 187

LDAP database
and clustering 210

LDAP domain
managing 239

Lightweight Directory Access Protocol
see LDAP

load balancing 210
and clustering 217
policies:iiop_tls:load_balancing_mechanism

variable 218
local_hostname 549
log4j 223

documentation 223
logging

in secure client 70, 102
log4j 223

login_client:login_client interceptor 131
login_client plug-in 131

and the login service 126
login service

and single sign-on 126
standalone deployment 127
WSDL contract for 133

login_service plug-in
configuring 133

logout() method 472

M
max_chain_length_policy configuration variable 299
MD5 309, 321
mechamism policy

interaction with invocation policies 315
MechanismPolicy 309
mechanism policy 323
MemberDNAttr property 188
message digest 5

see MD5
message digests 309
message fragments 309
MESSAGE_LEVEL security level 133
mixed configurations, SSL/TLS 104
multi-homed hosts, configure support for 549
multiple CAs 258
mutual authentication 288

HTTPS 73

N
namespace

plugins:csi 498
plugins:gsp 499
policies 524
policies:csi 536
policies:https 540
policies:iiop_tls 542
principal_sponsor:csi 560
principle_sponsor 556, 563, 565, 567

no_delay 551
NoProtection assocation option

rules of thumb 315
NoProtection association option 105, 309

hints 317
semi-secure applications 318

NoProtection option 309

O

opage Abstract Syntax Notation One
see ASN.1 605

OpenSSL 256, 617
openSSL

configuration file 632
utilities 618

openSSL.cnf example file 636
OpenSSL command-line utilities 261
Orbix configuration file 460
-ORBname argument 246
orb_plugins configuration variable 101

client configuration 108
orb_plugins variable

and the NoProtection association option 317
semi-secure configuration 318

P
pass phrase 294
 649

INDEX
dialog prompt, C++ 294
in configuration 295
password file, from 294

Password attribute 79
peer certificate 257
performance

caching of credentials 61
PKCS#12 files

creating 260, 265
definition 259
importing and exporting 260
pass phrase 294
viewing 260

plug-ins
CSIv2, in CORBA security 99
GSP, in CORBA security 99
IIOP 101
IIOP/TLS, in CORBA security 99

plugins:asp:default_password configuration
variable 93

plugins:asp:security_level 491
plugins:asp:security_level configuration variable 80
plugins:csi:ClassName 498
plugins:csi:shlib_name 498
plugins:gsp:authorization_realm 500
plugins:gsp:ClassName 501
plugins:iiop:tcp_listener:reincarnate_attempts 508
plugins:iiop:tcp_listener:reincarnation_retry_backoff_

ratio 508
plugins:iiop:tcp_listener:reincarnation_retry_delay 5

08
plugins:iiop_tls:hfs_keyring_file_password 546
plugins:iiop_tls:tcp_listener:reincarnation_retry_back

off_ratio 508
plugins:iiop_tls:tcp_listener:reincarnation_retry_dela

y 508
plugins:java_server:classpath configuration

variable 476
plugins:login_service:wsdl_url configuration

variable 133
plugins:security:iiop_tls:addr_list variable

and clustering 214
plugins:security:iiop_tls:host variable 215
plugins:security:iiop_tls:port variable 215
plugins:security:iiop_tls settings 208
POA_Coloc interceptor 386
polices:max_chain_length_policy 526
policies

CertConstraintsPolicy 481

client secure invocation 326
ClientSecureInvocationPolicy 307
HTTPS

client secure invocation 311
target secure invocation 313

IIOP/TLS
client secure invocation 311
target secure invocation 313

target secure invocation 326
TargetSecureInvocationPolicy 307

policies:allow_unauthenticated_clients_policy 524
policies:asp:enable_authorization configuration

variable 80
policies:certificate_constraints_policy 525
policies:csi:attribute_service:client_supports 536
policies:csi:attribute_service:target_supports 537
policies:csi:auth_over_transpor:target_supports 538
policies:csi:auth_over_transport:client_supports 53

7
policies:csi:auth_over_transport:target_requires 538
policies:https:mechanism_policy:ciphersuites 541
policies:https:mechanism_policy:protocol_version 5

41
policies:https:trace_requests:enabled 542
policies:https:trusted_ca_list_policy 542
policies:iiop_tls:allow_unauthenticated_clients_polic

y 544
policies:iiop_tls:certificate_constraints_policy 544
policies:iiop_tls:client_secure_invocation_policy:requ

ires 545
policies:iiop_tls:client_secure_invocation_policy:sup

ports 545
policies:iiop_tls:client_version_policy 545
policies:iiop_tls:connection_attempts 545
policies:iiop_tls:connection_retry_delay 546
policies:iiop_tls:load_balancing_mechanism

variable 218
policies:iiop_tls:max_chain_length_policy 546
policies:iiop_tls:mechanism_policy:ciphersuites 547
policies:iiop_tls:mechanism_policy:protocol_version

548
policies:iiop_tls:server_address_mode_policy:local_h

ostname 549
policies:iiop_tls:server_address_mode_policy:port_ra

nge 549
policies:iiop_tls:server_address_mode_policy:publish

_hostname 550
policies:iiop_tls:server_version_policy 550
policies:iiop_tls:session_caching_policy 550
650

INDEX
policies:iiop_tls:target_secure_invocation_policy:req
uires 551

policies:iiop_tls:target_secure_invocation_policy:sup
ports 551

policies:iiop_tls:tcp_options:send_buffer_size 552
policies:iiop_tls:tcp_options_policy:no_delay 551
policies:iiop_tls:tcp_options_policy:recv_buffer_size

552
policies:iiop_tls:trusted_ca_list_policy 552
policies:mechanism_policy:ciphersuites 527
policies:mechanism_policy:protocol_version 528
policies:session_caching_policy 528
policies:target_secure_invocation_policy:requires 52

9
policies:target_secure_invocation_policy:supports 5

29
policies:trusted_ca_list_policy 530
635

Principal 55
principals

and colocation 386
configuring propagation 387
explicit principal header 394
from O/S username 387
interoperability 386
interoperating with .NET 393
overview 386
reading on the server side 392
setting on the client side 390

principal sponsor
CSIv2

client configuration 109
SSL/TLS

enabling 75, 104
SSL/TLS, disabling 70, 72, 102

principal_sponsor:csi:auth_method_data 561
principal_sponsor:csi:use_principal_sponsor 560
principal_sponsor Namespace Variables 556, 563,

565, 567
PrincipalUserDN property 190
PrincipalUserPassword property 190
principle_sponsor:auth_method_data 557, 564,

566, 568
principle_sponsor:auth_method_id 557, 564, 566,

568
principle_sponsor:callback_handler:ClassName 559
principle_sponsor:login_attempts 559
principle_sponsor:use_principle_sponsor 556, 563,

565, 568

private key 264
protocol_version configuration variable 323
public key encryption 320
public keys 253
publish_hostname 550

R
RC4 encryption 321
RDN 609
realm

see authorization realm
realms

IONAGlobalRealm, adding to 471
recv_buffer_size 552
relative distinguished name 609
Replay detection 309
633

REQUEST_LEVEL security level 132
req utility 621
req Utility command 621
Rivest Shamir Adleman

see RSA
role-based access control 229

example 232
RoleNameAttr property 187
role-properties file 247
roles

creating 231
special 233

root certificate directory 258
RSA 320

symmetric encryption algorithm 321
RSA_EXPORT_WITH_DES40_CBC_SHA cipher

suite 320, 327
RSA_EXPORT_WITH_RC4_40_MD5 cipher

suite 320, 327
rsa utility 623
rsa Utility command 623
RSA_WITH_3DES_EDE_CBC_SHA cipher

suite 320, 327
RSA_WITH_DES_CBC_SHA cipher suite 320, 327
RSA_WITH_NULL_MD5 cipher suite 320, 327
RSA_WITH_NULL_SHA cipher suite 320, 327
RSA_WITH_RC4_128_MD5 cipher suite 320, 327
RSA_WITH_RC4_128_SHA cipher suite 320, 327

S
Schannel toolkit
 651

INDEX
selecting for C++ applications 487
secure associations

client behavior 311
definition 304
TLS_Coloc interceptor 304

secure hash algorithms 320, 321
security algorithms

and cipher suites 320
security domain

creating 228
security domains

architecture 227
iSF 228

security handshake
cipher suites 319
SSL/TLS 285, 289

security infomation file 183
securityInstanceURL property 212
security layer

overview 59
security levels

MESSAGE_LEVEL 133
REQUEST_LEVEL 132

security service
federation of 204

security_type configuration variable 388
self-signed CA 264
self-signed certificate 257
semi-secure applications

and NoProtection 318
send_principal configuration variable 387
serial file 263
serial number 253
server_binding_list configuration variable 108
ServerCertificate attribute 77
server_domain_name configuration variable

iSF, ignored by 110
ServerPrivateKeyPassword attribute 77
server_version_policy

IIOP 550
session_cache_size configuration variable 329
session_cache_validity_period configuration

variable 329
session_caching_policy configuraion variable 329
session_caching_policy variable 329
session idle timeout

SSO 128
session timeout

SSO 128

SHA 321
SHA1 309
signing certificates 252
Single sign-on

and security layer 59
single sign-on

SSO token 56
token timeouts 128

SOAP
principal propagation 386

SOAP 1.2
configuring Artix security plug-in for 154

SOAP binding
ASP security layer 89
configuring principal propagation 387
protocol layers 58, 88
SOAP protocol layer 89
SSO overview 126

Specifying ciphersuites 319
SSL/TLS

association options
setting 306

caching validity period 329
cipher suites 319
client configuration 100
colocated invocations 304
encryption algorithm 320
IIOP_TLS interceptor 101
key exchange algorithm 320
logging 70, 102
mechanism policy 323
mixed configurations 104
orb_plugins list 101
principal sponsor

disabling 70, 72, 102
enabling 75, 104

protocol_version configuration variable 323
secure associations 304
secure hash algorithm 320
secure hash algorithms 321
securing communications 100
security handshake 285, 289
selecting a toolkit, C++ 487
semi-secure client

IIOP plug-in 101
session cache size 329
TLS session 304

SSLCACertDir property 190
SSLClientCertFile property 190
652

INDEX
SSLClientCertPassword property 190
SSLeay 256
SSLEnabled property 190
SSO

advantages 127
CORBA binding 126
login_client plug-in 131
login service WSDL 133
sample configurations 135
session idle timeout 128
session timeout 128
SOAP binding 126
username/password-based authentication 130

SSO token 56
and the login service 126
automatic refresh 128
timeouts 128

standalone deployment 460
standard ciphers 320
symmetric encryption algorithms 321

T
Target

choosing behavior 313
target authentication 285
target secure invocation policy 326

HTTPS 313
IIOP/TLS 313

TargetSecureInvocationPolicy policy 307
TCP policies

delay connections 551
receive buffer size 552

three-tier scenario description 113
TLS_Coloc interceptor 304
TLS security

and HTTP 64
TLS session

definition 304
toolkit replaceability

enabling JCE architecture 497
selecting the toolkit, C++ 487

triple DES 321
truncation of property names 475
trusted CA list 274
trusted CA list policy 291
trusted CAs 258
TrustedRootCertificates attribute 77

U
use_jsse_tk configuration variable 497
user account

creating 228
UserBaseDN property 187
username/password-based authentication

overview 129
SSO 130

UserName attribute 79
UserNameAttr property 187
UserObjectClass property 187
UserRoleDNAttr property 187
UserSearchScope property

LDAP adapter
UserObjectClass property 187

UseSecureSockets attribute 76
utilities

wsdltoacl 246

V
Variables 633, 634, 635

W
Web service security extension

opage see WSSE 55
WRONG_NAME_PASSWORD minor exception 470
wsdltoacl utility 246

role-properties file 247
WSSE

Kerberos token 55
UsernameToken 55

WSSE Kerberos credentials 90
WSSE UsernameToken credentials 90
WSSEUsernameToken property 439, 441, 444,

447
WSSEX509Cert property 449, 452

X
X.500 605
X.509

public key encryption 320
X.509 certificate

definition 252
X.509 certificates 251
x509 utility 619
 653

INDEX
654

	List of Tables
	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Documentation Library

	Getting Started with Artix Security
	Secure SOAP Demonstration
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	Secure Container Demonstration
	Debugging with the openssl Utility

	Introduction to the Artix Security Framework
	Artix Security Architecture
	Types of Security Credential
	Protocol Layers
	Security Layer
	Using Multiple Bindings

	Caching of Credentials

	Security for HTTP-Compatible Bindings
	Overview of HTTP Security
	Securing HTTP Communications with SSL/TLS
	HTTP Basic Authentication
	X.509 Certificate-Based Authentication

	Security for SOAP Bindings
	Overview of SOAP Security
	WSS X.509 Certificates and Authentication

	Security for CORBA Bindings
	Overview of CORBA Security
	Securing IIOP Communications with SSL/TLS
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication for CORBA Bindings

	Single Sign-On
	SSO and the Login Service
	Username/Password-Based SSO for SOAP Bindings
	SSO Sample Configuration for SOAP Bindings

	Publishing WSDL Securely
	Introduction to the WSDL Publish Plug-In
	Deploying WSDL Publish in a Container
	Preprocessing Published WSDL Contracts
	Enabling SSL/TLS for WSDL Publish Plug-In

	Configuring the Artix Security Plug-In
	The Artix Security Plug-In
	Configuring an Artix Configuration File
	Configuring a WSDL Contract

	Configuring the Artix Security Service
	Configuring the Security Service
	Security Service Accessible through IIOP/TLS
	Security Service Accessible through HTTPS

	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the Kerberos Adapter
	Overview of Kerberos Configuration
	Configuring the KDC Connection
	Configuring the Active Directory Connection
	Sample Kerberos Configuration

	Clustering and Federation
	Federating the Artix Security Service
	Failover
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	Artix security domains
	Artix Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain

	Managing Access Control Lists
	Overview of Artix ACL Files
	ACL File Format
	Generating ACL Files
	Deploying ACL Files

	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Generating a Certificate Revocation List
	Deploying Certificates
	Overview of Certificate Deployment
	Deploying Trusted Certificate Authority Certificates
	Deploying Application Certificates

	Configuring HTTPS and IIOP/TLS Authentication
	Requiring Authentication
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Certificate Pass Phrase
	Certificate Pass Phrase for HTTPS and IIOP/TLS

	Specifying a Certificate Revocation List
	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	Configuring HTTPS and IIOP/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching Sessions

	Partial Message Protection
	Introduction to SOAP PMP
	Setting Up a Java Keystore
	Artix Configuration
	Policy Configuration
	Introduction to Policy Configuration
	Action Definitions
	Action Properties
	Protection Policy Definitions
	Conditions

	Example of WSS Signing and Encryption
	Basic Signing and Encryption Scenario
	Configuring the Client
	Configuring the Server

	Exception Handling

	Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	Bridging between SOAP and CORBA
	SOAP-to-CORBA Scenario
	Overview of the Secure SOAP-to-CORBA Scenario
	SOAP Client
	SOAP-to-CORBA Router
	CORBA Server

	Single Sign-On SOAP-to-CORBA Scenario
	Overview of the Secure SSO SOAP-to-CORBA Scenario
	SSO SOAP Client
	SSO SOAP-to-CORBA Router

	CORBA-to-SOAP Scenario
	Overview of the Secure CORBA-to-SOAP Scenario
	CORBA Client
	CORBA-to-SOAP Router
	SOAP Server

	Programming Authentication
	Configuration for SOAP 1.2 Bindings
	Propagating a Username/Password Token
	Propagating a Kerberos Token
	Propagating an X.509 Certificate

	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Artix Security
	Applying Constraints to Certificates
	bus:initial_contract
	bus:security
	initial_references
	password_retrieval_mechanism
	plugins:asp
	plugins:at_http
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:https
	plugins:iiop_tls
	plugins:java_server
	plugins:kdm
	plugins:kdm_adm
	plugins:login_client
	plugins:login_service
	plugins:schannel
	plugins:security
	plugins:wsdl_publish
	plugins:wss
	policies
	policies:asp
	policies:bindings
	policies:csi
	policies:external_token_issuer
	policies:https
	policies:iiop_tls
	policies:security_server
	policies:soap:security
	principal_sponsor
	principal_sponsor:csi
	principal_sponsor:http
	principal_sponsor:https
	principal_sponsor:wsse

	iSF Configuration
	Properties File Syntax
	iSF Properties File
	Cluster Properties File
	log4j Properties File

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility
	The s_client Utility
	The s_server Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	License Issues
	OpenSSL License

	Index

