
Session Manager Guide
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: March 21, 2007

Contents

List of Figures 5

Preface 7

Chapter 1 Introduction 9
What is the Session Manager? 10
Session Manager WSDL Contract 16

Chapter 2 Configuring and Deploying the Session Manager 19
Deploying the Session Manager 20
Registering a Server with the Session Manager 26
Configuring the Simple Policy Plug-in 28
Implementing your own Policy Plug-In 29
Fault Tolerance 32
Adding SOAP 1.2 Support 33

Chapter 3 Using the Session Manager from an Artix Client 35
Implementing a C++ Client 36
Implementing a Java Client 44
Migrating from Earlier Versions 50

Chapter 4 Using the Session Manager from a non-Artix Client 55
Implementing a .NET Client 56
Implementing an Axis Client 61

Index 65
3

CONTENTS
4

List of Figures

Figure 1: Session Manager Plug-ins 13
5

LIST OF FIGURES
 6

Preface
What is Covered in this Book
This book describes how to use the Artix session manager.

Who Should Read this Book
This book is intended for use by anyone who wants to use the Artix session
manager.

How to Use this Book
This book is divided into the following chapters:

• Chapter 1, Introduction, which gives an overview of the Artix session
manager.

• Chapter 2, Configuring and Deploying the Session Manager, which
describes how to configure and deploy the Artix session manager.

• Chapter 3, Using the Session Manager from an Artix Client, which
describes how to write both a C++ client and a Java client of a
session managed service. In addition it covers important migration
information about moving from Artix 3 to Artix 4.

• Chapter 4, Using the Session Manager from a non-Artix Client, which
describes how to write both a .NET client and an Axis client of a
session managed service.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
7

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 8

CHAPTER 1

Introduction
The Artix session manager enables Web service clients to hold
conversations with stateful servers. Client requests are
identified as being part of a session and the server can hold
state information relating to the client by identifying the
requests as part of that client’s session. In addition, the session
manager controls the number of concurrent clients that can
access a Web service and the amount of time allocated to
each session.

In this chapter This chapter includes the following sections:

What is the Session Manager? page 10

Session Manager WSDL Contract page 16
9

CHAPTER 1 | Introduction
What is the Session Manager?

Overview The Artix session manager is implemented as a group of plug-ins that work
together to manage the number of concurrent clients allowed to connect to a
group of services. An Artix plug-in is a code library that can be loaded into
an Artix application at runtime. The session manager plug-ins work together
to control how long a client has access to a service before it has to request
an extension. In addition, the session manager notifies all registered services
of session state changes, including when sessions begin and when they end.
This section gives an overview of the session manager’s use cases and
describes the plug-ins and how they work together in a deployed system.

Use cases The Artix session manager supports the following use cases:

Limiting the amount of time a client is connected to a service

You can use the Artix session manager to control the amount of time a client
has access to a service. This is useful when you do not want clients to have
unrestricted access to a service. For example, you might want to limit the
amount of time available to complete a request form to five minutes. Clients
can request session extensions.

Limiting the number of concurrent client connections to a service

You can specify how many concurrent connections are permitted to a
service. For example, if your services are running on old hardware you could
ensure higher performance by limiting the number of connections to a small
number.

Stateful services

You can write services that store state data across multiple invocations. This
is possible because clients of session managed services include identity
details with each invocation. Using the session manager’s callback
mechanism, you can destroy any state information for a client once the
client’s session expires.
10

What is the Session Manager?
How the session manager works Using a developer assigned group name, Artix servers register during
start-up with the session manager. The session manager maintains a list of
servers that register under the same group name. Servers that register under
the same group name do not need to offer the same Web service.

Client applications contact the session manager and obtain a session ID for
a specific group of servers. Client applications embed the session ID in a
context, which must be included with all request to begin, renew, or
terminate a session. The session manager sends the clients a collection of
endpoint references to all members of the group and the client determines
what Web service is represented by each reference and uses the appropriate
reference to instantiate a proxy and invoke on the Web service. The client
includes the session ID with each invocation.

Session manager plug-ins The two main session manager plug-ins are:

The session manager also includes a simple policy plug-in:

Session manager service plug-in
(session_manager_service)

This is the central service plug-in. It
accepts and tracks service registration,
hands out sessions to clients, accepts or
denies session renewal, and notifies
session endpoint managers of session
state changes, including when sessions
begin and when they end.

Session endpoint manager
plug-in
(session_endpoint_manager)

This is the portion of the session manager
that resides in a registered service. It
registers its location with the service
plug-in, and accepts or rejects client
requests based on the validity of their
session headers.

Session manager simple policy
plug-in (sm_simple_policy)

This provides control over the allowable
duration for a session and the maximum
number of concurrent sessions allowed for
each group.
11

CHAPTER 1 | Introduction
The simple policy plug-in is an implementation of the Artix session
manager’s SessionManagementPolicyCallback interface. You can create
your own session policies by implementing this interface. For more detail,
see “Implementing your own Policy Plug-In” on page 29.

How do the plug-ins interact? Figure 1 on page 13 shows how the session manager plug-ins are deployed
in an Artix system. The session manager service plug-in and the simple
policy plug-in are both deployed into the same Artix bus process.

In this example, these plug-ins are deployed in the Artix container. Although
they can be deployed in any Artix process, the recommended approach is to
use the Artix container. The session manager service plug-in and the simple
policy plug-in interact to ensure that the session manager does not hand out
sessions that violate the policies established by the simple policy plug-in.
The simple policy plug-in makes all the decisions on which sessions are
permitted. The session manager service queries this policy on all decisions.
Artix provides a default implementation in the simple policy plug-in. You
can, however, also write your own policy plug-in.

The endpoint manager plug-ins are deployed into the server processes that
contain session managed services. A process can host two services (for
example, Service C and Service D in Figure 1 on page 13), but the process
can have only one endpoint manager. The endpoint manager plug-ins are in
constant communication with the session manager service plug-in to report
on endpoint health. They also receive information on new sessions that have
been granted to the managed services, and check on the health of the
session manager service.
12

What is the Session Manager?
Figure 1: Session Manager Plug-ins
13

CHAPTER 1 | Introduction
What are sessions? The session manager controls access to services by handing out sessions to
clients that request access to the services. A session is a pass that provides
access to the services in a specific group for a specific amount of time.

For example, the following process is used when a client application wants
to use the services in a group named sales:

1. The client application asks the session manager for a session with the
sales group.

2. The session manager checks and see if the sales group has an
available session and, if so, it returns a session ID and the list of sales
service references to the client.

3. The session manager notifies the endpoint managers in the sales
group that a new session has been issued. It also supplies a new
session ID, and a duration for which the session is valid.

4. When the client makes requests on the services in the sales group, it
must include the session information as part of the request.

5. The endpoint manager for the services checks the session information
to ensure it is valid. If it is, the request is accepted. If it is not, the
request is rejected.

6. If the client wants to continue using the sales services beyond the
duration of its session, the client must ask the session manager to
renew its session before the session expires.

7. Lastly, when a client’s session has expired, it must request a new one.
14

What is the Session Manager?
What are groups? The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group must be
related, it is recommended that the endpoints have some relationship.

A service’s group affiliation is controlled by the configuration scope in which
it is run. To change a service’s group, edit the following value in the process
configuration scope:

This specifies the default group name for the services instantiated by the
server.

Set up steps You set up the server side of the session manager using configuration. You
do not need to write any dedicated server code. See “Configuring and
Deploying the Session Manager” on page 19 for more detail.

Session manager enabling a client requires dedicated coding. See “Using
the Session Manager from an Artix Client” on page 35 and “Using the
Session Manager from a non-Artix Client” on page 55 for details.

Demonstrations Artix includes a number of session manager demonstrations, which are
located in the following directory of your Artix installation:

For details on how to run the demos, see the README.txt file located in this
directory.

plugins:session_endpoint_manager:default_group

InstallDir/artix/Version/demos/advanced/session_management
15

CHAPTER 1 | Introduction
Session Manager WSDL Contract

Overview The session manager service is described in the session-manager.wsdl
contract, which defines the public interface through which the service can
be accessed either locally or remotely. A copy of the session manager WSDL
contract is stored in the following directory of your Artix installation:

The session manager WSDL file defines two port types:

• SessionManager port type

• SessionEndpointManager port type

SessionManager port type The SessionManager port type includes operations through which a server
process registers and deregisters its endpoint manager and endpoints with
the session manager. In addition, it includes operations through which client
applications can manage sessions and retrieve a collection of references to
all server endpoints registered under a common group name. As an Artix
developer you need only understand and use the following operations:

• beginSession—a request-response operation used by a client process
to initiate a session. If the request to initiate a session is rejected, the
session manager returns a BeginSessionFault.

• renewSession—a request-response operation used by a client process
to renew a session. It the request to renew is rejected, the session
manager returns a RenewSessionFault.

• endSession—a oneway operation used by a client process to terminate
a session.

• getAllServiceEndpoints—a request-response operation used by a
client process to obtain the collection of endpoint references belonging
to a specific group. If the request is rejected, the session manager
returns the GetAllEndpointsFault.

InstallDir/artix/Version/wsdl/session-manager.wsdl
16

Session Manager WSDL Contract
SessionEndpointManager port
type

The SessionEndpointManager port type includes operations through which
the session manager communicates session related events to the session
endpoint manager associated with a registered service. As an Artix
developer, you do not need to use the operations included in this port type.

Binding and protocol The session manager is accessed through the SOAP binding and over the
HTTP protocol.
17

CHAPTER 1 | Introduction
18

CHAPTER 2

Configuring and
Deploying the
Session Manager
This chapter explains how to configure and deploy the session
manager.

In this chapter This chapter discusses the following topics:

Deploying the Session Manager page 20

Registering a Server with the Session Manager page 26

Configuring the Simple Policy Plug-in page 28

Implementing your own Policy Plug-In page 29

Fault Tolerance page 32

Adding SOAP 1.2 Support page 33
19

CHAPTER 2 | Configuring and Deploying the Session Manager
Deploying the Session Manager

Overview The Artix session manager is implemented using Artix plug-ins. This means
that any Artix application can host the session manager’s core functionality
by loading the session_manager_service plug-in. However, it is
recommended that you deploy the session manager using the Artix
container.

This section describes how to configure and deploy the session manager
using the Artix container. It also explains how you can deploy the session
manager using dynamic port allocation or using a fixed port, and how you
can use the container service to shut down a running session manager.

If you are new to Artix
configuration and deployment

If you are new to Artix configuration and deployment, you should read the
introductory chapters of the Configuring and Deploying Artix Solutions guide.

Artix container The Artix container is an executable, it_container, that provides a basic
environment in which to run Web services. Service implementations are
loaded into the container as plug-ins.

For more information on the Artix container, see the container chapter in the
Configuring and Deploying Artix Solutions guide.

Demo configuration file The session manager demo includes an example session manager
configuration file, called session_management.cfg, which is located in the
following directory of your Artix installation:

The configuration examples given in this chapter are taken from this file.

InstallDir/artix/Version/demos/advanced/session_management/etc
20

../deploy/index.htm
../deploy/index.htm

Deploying the Session Manager
Configuring the session manager
to run in the container

To configure the session manager service, ensure that the
session_manager_service plug-in is included in the session manager
service configuration scope, for example:

The session_manager_service plug-in implements the session manager
service functionality.

In this example the sm_simple_policy plug-in is also included in the
orb_plugins list. If you want to customize settings for this policy, see
“Configuring the Simple Policy Plug-in” on page 28.

You can write your own session management policy plug-in and, by adding
it to the orb_plug-ins list, configure the session manager to use it. For
more detail see “Implementing your own Policy Plug-In” on page 29.

If you do not specify a policy plug-in, the sm_simple_policy plug-in is
loaded automatically by the session manager service.

Configuring a dynamic port By default, the session manager is configured for deployment on a dynamic
port. In the default session manager WSDL contract, the addressing
information is as follows:

The highlighted part shows the address. The localhost:0 port means that
when you activate the session manager service, the operating system
assigns a port dynamically on startup.

session_management {
 ...
 sm_service{
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"session_manager_service", "sm_simple_policy"];
 ...
 };

Example 1: Session Manager Service on Dynamic Port

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:0/services/sessionManagement/
 sessionManagerService"/>
 </port>
</service>
21

CHAPTER 2 | Configuring and Deploying the Session Manager
Because the port is assigned dynamically, you must ensure that your clients
obtain a reference to the updated contract when it is assigned a port.

For details of using the Artix locator to do this, see the Artix Locator guide.

Configuring a fixed port There are two ways of configuring the session manager for deployment on a
well-known fixed port. You can either edit the default
session-manager.wsdl contract, or you can create a new
session-manager.wsdl contract for your application.

Editing the default session manager contract

To edit the default session-manager.wsdl contract, perform the following
steps:

1. Open the session-manager.wsdl contract in any text editor. It is
located in the following directory of your Artix installation:

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 2 shows a modified session manager
service contract entry. The highlighted part has been modified to point
to the desired address.

InstallDir/artix/Version/wsdl/session-manager.wsdl

Example 2: Session Manager Service on Fixed Port

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:8080/services/sessionManagement/session
ManagerService"/>

 </port>
</service>
22

../locator/index.htm

Deploying the Session Manager
Creating a new session manager contract

To create a new session-manager.wsdl contract, perform the following
steps:

1. Copy the default session-manager.wsdl contract to another location,
and open it in any text editor.

2. Edit the soap:address attribute at the bottom of the contract to specify
the correct address. Example 2 shows a modified session manager
service contract entry. The highlighted part has been modified to point
to the desired address.

3. In your configuration file, in the application’s scope, add a new
bus:initial_contract:url:sessionmanager variable that points to
your edited WSDL contract. For example:

The default bus:initial_contract:url:sessionmanager variable is in
the Artix global scope, which ensures that every application has access
to the contract. Specifying a new contract in your application scope
overrides the global session manager contract for your application.

Configuring a range of ports You can also limit the range of ports that the session manager is deployed
on by specifying a range of ports for the session managers SOAP or HTTP
address. Example 3 shows a modified session manager contract entry. The
highlighted part specifies the desired range of ports.

When the session manager has been correctly configured, it can be started
like any other application. The only difference is that the session manager
must be started before any servers that need to register with it.

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager.wsdl";

Example 3: Session Manager Port Range

<service name="SessionManagerService">
 <port name="SessionManagerPort" binding="sm:SessionManagerBinding">
 <soap:address

location="http://localhost:11000-11100/services/sessionManagement/sessionManagerService"/>
 </port>
</service>
23

CHAPTER 2 | Configuring and Deploying the Session Manager
Deploying the session manager
using the container

To deploy the default session manager in the container, perform the
following steps:

1. Run the session manager in the Artix container; for example:

♦ -ORBname specifies the configuration scope under which the
container runs the session manager.

♦ -ORBdomain_name specifies the name of the configuration file that
stores the configuration information.

♦ -ORBconfig_domains_dir specifies the directory where Artix
searches for the configuration file.

2. Ask the container to publish the live version of the session manager
WSDL that you use to initialize your clients. For example:

The above command retrieves the session manager’s activated WSDL
contract. This is the contract in which 0 ports are dynamically updated
with the actual port that the service runs on. In this example,
it_container_admin writes the contract to the
sessionmanager-activated.wsdl file in the etc subdirectory.

3. Lastly, you must ensure that your clients use the updated WSDL file at
runtime.

For more information on the Artix container and its command-line
parameters, see the container chapter in the Configuring and Deploying Artix
Solutions guide.

it_container -ORBname demos.session_management.sm_service
-ORBdomain_name session_management -ORBconfig_domains_dir
../../etc -publish

it_container_admin -container ../../etc/ContainerService.url
-publishwsdl -service
{http://ws.iona.com/sessionmanager}SessionManagerService
-file ..\..\etc\sessionmanager-activated.wsdl
24

../deploy/index.htm
../deploy/index.htm

Deploying the Session Manager
Deploying the session manager in
the container on a fixed port

Alternatively, you can use the -port option to specify that the container runs
a service on a fixed port. For example:

In this example, any services that run in the container, and have default
contracts with a port of 0, will not use port 9000.

You can manually update the WSDL used by your client to 9000, or you can
publish the WSDL from the container using it_container_admin with the
-publishwsdl option, shown in “Deploying the session manager using the
container” on page 24.

Shutting down the session
manager

To shut down the session manager, use the Artix container’s shutdown
option, for example:

it_container -port 9000 -ORBname demo.sessionmanager.service
-ORBdomain_name session_management -ORBconfig_domains_dir
../../etc -publish

it_container_admin -shutdown
25

CHAPTER 2 | Configuring and Deploying the Session Manager
Registering a Server with the Session Manager

Overview For a server to use the session manager it must register itself with a running
session manager. Enabling a server to register itself with the session
manager is done through configuration. You do not have to write any special
server code. Once registered with a session manager, the services only
accept client requests that contain valid session headers. All clients that
want to access the services must be written to support session managed
services.

Any server hosting services that are to be managed by the session manager
must load the session_endpoint_manager plug-in. The
session_endpoint_manager enables the server to register with a running
session manager. When a server registers an endpoint with the session
manager, the session manager creates an association between the group
name under which the server process registered and a reference to the
endpoint.

Configuring the server Add the session_endpoint_manager to the plug-ins listed under the
orb_plugins configuration entry within the configuration scope under which
the server process runs. Example 4 shows the configuration scope of a
server that hosts services managed by the session manager.

Example 4: Server Configuration Scope

session_management {
...
 server
 {
 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",

"session_endpoint_manager"];

 plugins:session_endpoint_manager:default_group="SM_Demo";
 };
...
}

26

Registering a Server with the Session Manager
In this example, a server loaded into the server configuration scope is
managed by the session manager at the location specified in your
session-manager.wsdl contract. Its endpoint manager comes up at the
address specified in session-manager.wsdl. In this example, by default, all
services instantiated by the server belong to the SM_Demo session manager
group.

Using a copy of session-manager.wsdl

If you are using a copy of the default session manager contract to specify a
fixed port, your server configuration must also specify the location of the
contract. For example:

This is not necessary if you are using a dynamic port, or have updated the
default contract with a fixed port. The Artix global scope
bus:initial_contract:url:sessionmanager setting is used instead.

Server registration When a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by
bus:initial_contract:url:sessionmanager.

bus:initial_contract:url:sessionmanager =
"c:\myapp/wsdl/session-manager.wsdl";
27

CHAPTER 2 | Configuring and Deploying the Session Manager
Configuring the Simple Policy Plug-in

Overview The Artix session manager provides a simple policy callback plug-in
(sm_simple_policy). This enables you to control the allowable duration for a
session, and the maximum number of concurrent sessions allowed for each
group.

Session properties The simple policy plug-in provides default values for the following session
properties:

• Maximum number of concurrent sessions in a given group (default is
1).

• Minimum allowed timeout for a session (default is 1 seconds).

• Maximum allowed timeout for a session (default is 600 seconds).

You can override these defaults using the following configuration variables:

All values must be non-negative. You must configure the
max_session_timeout to be greater than or equal to min_session_timeout.
A value of 0 means an unlimited timeout.

Implementing your own session
management policies

The simple policy callback plug-in is an implementation of the Artix session
manager’s SessionManagementPolicyCallback interface. You can create
your own session management policy by implementing this interface. For
more detail, see “Implementing your own Policy Plug-In” on page 29.

plugins:sm_simple_policy:max_concurrent_sessions
plugins:sm_simple_policy:min_session_timeout
plugins:sm_simple_policy:max_session_timeout
28

Implementing your own Policy Plug-In
Implementing your own Policy Plug-In

Overview You can create your own session management policy plug-in by
implementing the SessionManagementPolicyCallback interface and
packaging it as a plug-in. This section explains how.

Procedure To create your own session management policy plug-in complete the
following steps:

1. Implement the SessionManagementPolicyCallback interface, shown in
Example 5.

The SessionManagementPolicyCallback interface is contained in the
it_bus_services/session_manager_service.h header file.

Example 5: SessionManagementPolicyCallback Interface

class SessionManagementPolicyCallback
{
 public:
 virtual void
 begin_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id,
 const IT_Bus::ULong& preferred_renew_timeout,
 IT_Bus::ULong& allocated_renew_timeout
) IT_THROW_DECL((SessionCreationException)) = 0;

 virtual void
 renew_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id,
 const IT_Bus::ULong& preferred_renew_timeout,
 IT_Bus::ULong& allocated_renew_timeout
) IT_THROW_DECL((SessionRenewException)) = 0;

 virtual void
 end_session(
 const IT_Bus::String& group,
 const IT_Bus::String& id
) = 0;
};
29

CHAPTER 2 | Configuring and Deploying the Session Manager
2. Write a plug-in. For information on writing a plug-in, see the
introductory chapters of the Developing Advanced Artix Plug-ins in
C++ guide.

3. Integrate your session manager policy and your plug-in by registering
your SessionManagementPolicyCallback implementation in your
plug-in, as shown in Example 6.

The register and deregister policy static methods shown are contained
in the it_bus_services/session_manager_service.h header file.

4. Deploy your session management policy plug-in with the session
manager by listing it in the same orb_plugins list as the session
manager service, and by providing Artix with the root name of the
plug-in library, as shown in Example 7 on page 31.

Example 6: Registering your Session Management Policy

void
MySessionsPolicyBusPlugIn::bus_init(
) IT_THROW_DECL((Exception))
{
 Bus_ptr bus = get_bus();

 m_policy = new MySessionPolicy();

 SessionManagerService::register_policy_callback(bus,

*m_policy);
}

void
MySessionsPolicyBusPlugIn::bus_shutdown(
) IT_THROW_DECL((Exception))
{
 SessionManagerService::deregister_policy_callback(get_bus());
}

30

../plugin_guide/index.htm
../plugin_guide/index.htm

Implementing your own Policy Plug-In
Now when the session manager receives requests for new sessions, your
session management policy implementation will be consulted.

Example 7: Deploying your Session Management Policy Plug-in

Artix domain configuration file
session_management {
 ...
 sm_service{
 orb_plugins = ["xmlfile_log_stream",

"session_manager_service", "my_policy_plugin_name"];

plugins:my_policy_plugin_name:shlib_name="root_library_name"

};
31

CHAPTER 2 | Configuring and Deploying the Session Manager
Fault Tolerance

Overview Enterprise deployments demand that applications can cleanly recover from
occasional failures. The Artix session manager is designed to recover from
the two most common failures:

• Failure of a registered endpoint.

• Failure of the session manager itself.

Endpoint failure When an endpoint gracefully shuts down, it notifies the session manager
that it is no longer available. The session manager removes the endpoint
from its list so it can not give a client a reference to a dead endpoint.
However, when an endpoint fails unexpectedly, it cannot notify the session
manager and the session manager can unknowingly give a client an invalid
reference causing the failure to cascade.

To decrease the risk of passing invalid references to clients, the session
manager occasionally pings all of its registered endpoint managers to see if
they are still running. If an endpoint manager does not respond to a ping,
the session manager removes that endpoint manager’s references.

You can adjust the interval between session manager pings by setting the
plugins:session_manager:peer_timeout configuration variable. The
default setting is 4 seconds. For more information, see the Artix
Configuration Reference.

Service failure If the session manager fails, all of the references to the registered services
are lost and the active services are no longer be registered. After the session
manager misses its ping interval, the endpoint managers periodically
attempt to reregister with the session manager until they are successful.
This ensures that the active services reregister with the session manager
when it restarts.

You can adjust the interval between the endpoint manager’s pings of the
session manager by setting the configuration variable
plugins:session_endpoint_manager:peer_timeout. The default setting is
4 seconds. For more information, see the Artix Configuration Reference.
32

../config_ref/index.htm
../config_ref/index.htm
../config_ref/index.htm

Adding SOAP 1.2 Support
Adding SOAP 1.2 Support

Overview The default session-manager.wsdl file shipped with Artix contains a SOAP
1.1 binding and a SOAP 1.1 service. As of release 4.1, Artix supports SOAP
1.2 bindings as well.

If your site requires the use of SOAP 1.2 bindings for communication with
the session manager, follow these steps:

1. Make a copy of the default session-manager.wsdl file.

2. Edit your copy to include a SOAP 1.2 binding. See the SOAP 1.2
chapter of Writing Artix Contracts for guidelines on adding a SOAP 1.2
binding.

3. Use the bus:initial_contract:url configuration variable to point to
the location of your edited session-manager.wsdl file, or use one of
several WSDL publishing methods described in “Accessing WSDL
Contracts” in Configuring and Deploying Artix Solutions. For SOAP 1.2
both the session manager and the session endpoint manager need to
be updated to a SOAP 1.2 binding; for example:

SOAP 1.2 considerations The SOAP 1.2 binding in Artix 4.1 (or higher) supports endpoint references
(EPRs) only in the format defined by the WS-Addressing standard, and no
longer supports the deprecated proprietary Artix references. Artix’s SOAP
1.1 binding supports both EPRs and the Artix references used by Artix 3.0
and earlier.

This means that an Artix 4.1 (or higher) session manager that uses the
SOAP 1.2 binding cannot support connections from Artix 4.0 and 3.0
clients, because those versions of Artix do not support SOAP 1.2. Thus,
when defining your Artix 4.1 (or higher) session manager, if your site
intends to maintain backward compatibility with Artix 4.0 and Artix 3.0

bus:initial_contract:url:sessionmanager =
"session-manager12.wsdl";

bus:initial_contract:url:sessionendpointmanager =
"session-manager12.wsdl";
33

../contract/index.htm
../deploy/index.htm

CHAPTER 2 | Configuring and Deploying the Session Manager
clients, do not also use a SOAP 1.2 binding. The configuration step
described in “Artix 4.1 and 4.2 session manager setup for backward
compatibility” on page 52 is not compatible with a SOAP 1.2 binding.
34

CHAPTER 3

Using the Session
Manager from an
Artix Client
Clients that want to use the Artix session manager must
include code dedicated to that task. This chapter outlines how
to write an Artix session manager client in Java and in C++.
In addition, it describes migration scenarios that deal with how
to best migrate Artix 3.x applications to Artix 4.

In this chapter This chapter discusses the following topics:

Implementing a C++ Client page 36

Implementing a Java Client page 44

Migrating from Earlier Versions page 50
35

CHAPTER 3 | Using the Session Manager from an Artix Client
Implementing a C++ Client

Overview Clients that want to make requests on session managed services must be
designed explicitly to interact with the Artix session manager and must pass
session headers to the session managed services. This section describes
how to write a session manager client in C++.

Demonstration code The code examples in this section are taken from the session manager
demo’s C++ client code. The C++ client makes a request on a business
service that is managed by the Artix session manager. The complete client
code can be found in the following directory of your Artix installation:

Implementing a C++ session
client

There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

3. Obtain the list of endpoints available in the group.

4. Create a service proxy from one of the endpoints in the group.

5. Build a session header to pass to the service.

6. Invoke requests on the endpoint using the proxy.

7. Renew the session as needed.

8. End the session using the session manager proxy when finished with
the services.

Instantiating a proxy Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
session manager’s contract name, session-manager.wsdl.

InstallDir/artix/Version/demos/advanced/session_management/
cxx/client
36

Implementing a C++ Client
Example 8 shows the C++ code for instantiating a session manager proxy.

Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager’s beginSession()
function. The beginSession() function has the following signature:

The beginSession() function takes the following input parameters:

• endpoint_group—the endpoint group name, which corresponds to the
default group name set in the server’s configuration scope as described
in “Registering a Server with the Session Manager” on page 26.

• preferred_renew_timeout—the preferred session duration in seconds.
If the specified duration is less than the value specified by the session
manager’s min_session_timeout configuration setting, it will be set to
the configured minimum value. If the specified duration is higher than
the value specified by the session manager’s max_session_timeout
configuration setting, it will be set to the configured max value.

And the following output parameter:

• session_info—a sequence complex type that contains the session id,
session_id, and the actual assigned session duration, renew_timeout.

Example 8: Instantiating a Session Manager Proxy—C++

// C++
SessionManagerClient session_mgr;
SessionManagerClient* session_mgr_ptr = &session_mgr;

// C++
virtual void
beginSession(
 const IT_Bus::String &endpoint_group,
 const IT_Bus::ULong preferred_renew_timeout,
 SessionInfo &session_info
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
37

CHAPTER 3 | Using the Session Manager from an Artix Client
Example 9 shows the C++ client code to begin a session for the SM_Demo
group.

Get a list of endpoints in the group The session manager hands out sessions for a group of services. To get an
individual service on which the client can make requests, the client needs to
get a list of the services in the group. The session manager proxy’s
getAllServiceEndpoints() function returns a list of all endpoints registered
to the specified group. The getAllServiceEndpoints() function has the
following signature:

The getAllServiceEndpoints() function takes the following input
parameter:

• session_id—the session ID for which you are requesting services
(obtained in the previous step).

And the following output parameter:

Example 9: Beginning a Session—C++

// C++
...
IT_Bus_Services::IT_SessionManager::SessionId group_session;

int
main(int argc, char* argv[])
{
 ...
 // Begin a session
 session_mgr.beginSession("SM_Demo", 20, session_info);
 cout << "Begin session invoked" << endl;

 // Retrieve the session ID from the response
 group_session = session_info.getsession_id();
 cout << "Got session!" << endl << endl;
 ...
}

// C++
virtual void
getAllServiceEndpoints(
 const SessionId &session_id,
 ServiceEndpointList &endpoints
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
38

Implementing a C++ Client
• endpoints—the list of services available. If the group has no services,
the list will be empty.

Example 10 shows the C++ code for getting the list of services in a group.

Create a proxy for the requested
service

The client can use any of the services returned by
getAllServiceEndpoints() to instantiate a service proxy.

The session manager returns the services in the order the services registered
with the session manager. Clients are, therefore, responsible for circulating
through the list. Otherwise they will all make requests on only one service in
the group. In addition, because the session manager does not force all
members of a group to implement the same interface, you might need to
have your clients to check each service to see if it implements the correct
interface by checking the reference’s service name as shown in Example 11
on page 40.

Example 10: Retrieving the List of Services in a Group—C++

//C++
// Get the endpoints for the session.
IT_Bus_Services::IT_SessionManager::ServiceEndpointList

endpoint_list;

// Must provide the session ID
// Without a valid session ID, the session manager will refuse
// the request
session_mgr.getAllServiceEndpoints(
 group_session,
 endpoint_list
);
39

CHAPTER 3 | Using the Session Manager from an Artix Client
Example 12 shows the client code for creating a GreeterClient proxy from
an endpoint reference.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. Example 13 shows how to
send the session ID in a header by initializing the sessionIDContext header
context.

Example 11: Checking the Service Reference for its Interface—C++

//C++
#include <it_bus/wsaddressing_util.h>

using namespace WS_Addressing;

EndpointReferenceType& endpoint = endpoint_list[0];
QName service_name =

EndpointReferenceUtil::get_service_qname(endpoint);

if (service_name == "", "SOAPService",
"http://www.iona.com/session_management")

{
 // Instantiate a SOAPService proxy
}
else
{
 // do something else
}

Example 12: Instantiate a Proxy Server—C++

// C++
GreeterClient client(endpoint_list[0], bus);

Example 13: Initialize the sessionIDContext Header Context—C++

// C++
using namespace session_management;
using namespace IT_Bus;
using namespace IT_Bus_Services::IT_SessionManager;
40

Implementing a C++ Client
For more details about the context API used in this example, see the Artix
Contexts chapter of the Developing Artix Applications in C++ guide.

...
const QName DEMO_SESSION_ID_CONTEXT_NAME(
 "",
 "sessionIDContext",
 "http://ws.iona.com/sessionmanager"
);
...
// The session name and session group must be added to each
// request Without valid entries, the session endpoint manager
// will reject the request
ContextRegistry* registry = bus->get_context_registry();
ContextCurrent& current = registry->get_current();
ContextContainer* request_contexts = current.request_contexts();

AnyType* attr = request_contexts->get_context(
 DEMO_SESSION_ID_CONTEXT_NAME,
 true
);

if (0 == attr)
{
 cerr << endl << "Error : Unable to access Session Context"
 << endl;
 return -1;
}

SessionId* session_attr = dynamic_cast<SessionId*> (attr);

if (0 == session_attr)
{
 cerr << endl << "Error : Unable to cast Session Context"
 << endl;
 return -1;
}
session_attr->setname(group_session.getname());
session_attr->setendpoint_group(
 group_session.getendpoint_group()
);

Example 13: Initialize the sessionIDContext Header Context—C++
41

../prog_guide/index.htm

CHAPTER 3 | Using the Session Manager from an Artix Client
Make requests on service proxy Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration the session
was granted, the client must renew its session or the session will timeout. A
session is renewed using the session manager proxy’s renewSession()
function. The renewSession() function has the following signature:

The renewSession() function takes the following input parameter:

• session_info—a sequence complex type that contains the session id,
session_id, and the preferred session duration, renew_timeout.

And the following output parameter

• renew_timeout—the actual assigned session duration, in seconds.

If the renewal is unsuccessful, an
IT_Bus_Services::renewSessionFaultException is raised.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This ensures that the session is freed up immediately. A
session is ended using the session manager proxy’s endSession() function.
The endSession() function has the following signature:

Example 14 on page 43 shows how to end a session.

// C++
virtual void
renewSession(
 const SessionInfo &session_info,
 IT_Bus::ULong &renew_timeout
) IT_THROW_DECL((IT_Bus::Exception)) = 0;

// C++
virtual void
endSession(
 const SessionId &session_id
) IT_THROW_DECL((IT_Bus::Exception)) = 0;
42

Implementing a C++ Client
Example 14: Ending a Session—C++

//C++
cout << "Ending session" << endl;
session_mgr.endSession(group_session);
43

CHAPTER 3 | Using the Session Manager from an Artix Client
Implementing a Java Client

Overview Clients that want to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and must pass
session headers to the session managed services. This section describes
how to write a session manager client in Java.

Demonstration code The code examples in this section are taken from the session manager
demo’s Java client code. The Java client makes a request on a business
service that is managed by the Artix session manager. The complete client
code can be found in the following directory of your Artix installation:

Implementing a Java session
client

There are nine steps a client takes when making requests on a session
managed service. They are:

1. Register the type factory for the session manager’s context data.

2. Instantiate a proxy for the session management service.

3. Start a session for the desired service’s group using the session
manager proxy.

4. Obtain the list of endpoints available in the group.

5. Create a service proxy from one of the endpoints in the group.

6. Build a session header containing the session ID to pass to the service.

7. Invoke requests on the endpoint using the proxy.

8. Renew the session as needed.

9. End the session using the session manager proxy when finished with
the services.

Each of these steps is covered in detail in the subsections that follow.

InstallDir/artix/Version/demos/advanced/session_management/
java/client
44

Implementing a Java Client
Registering the session manager’s
type factory

Artix uses the context mechanism to pass session information between the
session manager, clients, and services. Therefore you must register the
session manager’s type factory with the bus before making any calls on the
session manager or session managed services.

Example 15 shows the Java code for registering the session manager’s type
factory.

Instantiating a session manager
proxy

Before a client can request a session from the session manager, it must
create a proxy to forward requests to the running session manager. To do
this the client creates an instance of SessionManagerClient using the
session manager’s contract name, session-manager.wsdl.

Example 16 shows the Java code for instantiating a session manager proxy.

Example 15: Registering the Session Manager’s Type Factory—Java

//Java
// bus obtained earlier
bus.registerTypeFactory(new
 com.iona.ws.sessionmanager.SessionManagerTypeFactory());

Example 16: Instantiating a Session Manager Proxy—Java

//Java
QName name = new QName("http://ws.iona.com/sessionmanager",
 "SessionManagerService");
QName portName = new QName("", "SessionManagerPort");

URL wsdlLocation = null;
try
{
 wsdlLocation = new URL(wsdlPath);
}
catch (java.net.MalformedURLException ex)
{
 wsdlLocation = new File(wsdlPath).toURL();
}

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(wsdlLocation, name);
SessionManager sessionMgr =

(SessionManager)service.getPort(portName,
SessionManager.class);
45

CHAPTER 3 | Using the Session Manager from an Artix Client
For more information on instantiating Artix proxies, see the Things to
Consider When Developing Artix Applications chapter, in the Developing
Artix Applications in Java guide.

Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager’s beginSession()
method.

The beginSession() method has the following signature:

The beginSession() function takes the following input parameters:

• endpoint_group—the endpoint group name, which corresponds to the
default group name set in the server’s configuration scope as described
in “Registering a Server with the Session Manager” on page 26.

• preferred_renew_timeout—the preferred session duration in seconds.
If the specified duration is less than the value specified by the session
manager’s min_session_timeout configuration setting, it will be set to
the configured minimum value. If the specified duration is higher than
the value specified by the session manager’s max_session_timeout
configuration setting, it will be set the configured max value.

And returns the following:

• SessionInfo—a sequence complex type that contains the session id,
session_id, and the actual assigned session duration, renew_timeout.

Example 17 shows the Java client code to begin a session for SM_Demo.

//Java
SessionInfo beginSession(String endpoint_group,
 BigInteger preferred_renew_timeout);

Example 17: Beginning a Session—Java

//Java
SessionInfo sessionInfo = null;
String _endpoint_group = "SM_Demo";
BigInteger _preferred_renew_timeout = new

Java.math.BigInteger("20");
sessionInfo = sessionMgr.beginSession(_endpoint_group,
 _preferred_renew_timeout);
46

../java_pguide/index.htm
../java_pguide/index.htm

Implementing a Java Client
Get a list of endpoints in the group The session manager hands out sessions for a group of services. To get an
individual service on which the client can make requests, the client needs to
get a list of the services in the group. The session manager proxy’s
getAllServiceEndpoints() method returns a list of all endpoints registered
to the specified group. The getAllServiceEndpoints() method has the
following signature:

The getAllServiceEndpoints() function takes the following input
parameter:

• session_id—the session ID for which you are requesting services
(obtained in the previous step).

And returns the following output:

• endpoints—the list of services available. If the group has no services,
the list will be empty.

Example 18 shows the Java code for getting the list of services in a group.

Create a proxy for the requested
service

The client can use any of the services returned by
getAllServiceEndpoints() to instantiate a service proxy.

//Java
ServiceEndpointList getAllServiceEndpoints(SessionId

session_id);

Example 18: Retrieving the List of Services in a Group—Java

//Java
ServiceEndpointList endpointList = null;

endpointList =
sessionMgr.getAllServiceEndpoints(sessionInfo.getSession_id()
);
47

CHAPTER 3 | Using the Session Manager from an Artix Client
Example 19 shows the Java client code for creating a GreeterClient proxy
from an endpoint reference.

Create a session header Services that are being managed by the session manager will only accept
requests that include a valid session header. Example 20 shows the Java
code for sending the session ID in a header by initializing the
sessionIDContext header context.

For more details about the context API used in this example, see the Using
Message Contexts chapter of the Developing Artix Applications in Java
guide.

Example 19: Instantiate a Proxy Server—Java

//Java
EndpointReferenceType[] references =

endpointList.getEndpointReference();
Greeter greeter = (Greeter)bus.createClient(references[0],
 Greeter.class);

Example 20: Initialize the sessionIDContext Header Context—Java

//Java
ContextRegistry registry = bus.getContextRegistry();

QName principalCtxName = new QName("", "SessionId");
QName principalCtxType = new

QName("http://ws.iona.com/sessionmanager", "SessionId");
QName principalMessageName = new

QName("http://ws.iona.com/sessionmanager", "", "");
String principalPartName = "id";

registry.registerContext(principalCtxName,
 principalCtxType,
 principalMessageName,
 principalPartName);

IonaMessageContext contextImpl =
(IonaMessageContext)registry.getCurrent();

SessionId sessionId = sessionInfo.getSession_id();
contextImpl.setRequestContext(principalCtxName, sessionId);
48

../java_pguide/index.htm

Implementing a Java Client
Make requests on service proxy Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

Renewing a session If a client is going to use a session for a longer than the duration the session
was granted, the client must renew its session or the session will timeout. A
session is renewed using the session manager proxy’s renewSession()
method. The renewSession() method has the following signature:

The renewSession() function takes the following input parameter:

• session_info—a sequence complex type that contains the session id,
session_id, and the preferred session duration, renew_timeout.

And the following output parameter:

• BigInteger—the actual assigned session duration, in seconds.

If the renewal is unsuccessful, an exception is raised.

End the session When a client is finished with a session managed service, it should explicitly
end its session. This ensures that the session is freed up immediately. A
session is ended using the session manager proxy’s endSession() method.
The endSession() method has the following signature:

Example 21 shows the Java code for ending a session.

//Java
BigInteger renewSession(SessionInfo session_info);

//Java
void endSession(SessionId);

Example 21: Ending a Session—Java

//Java
sessionMgr.endSession(sessionId);
49

CHAPTER 3 | Using the Session Manager from an Artix Client
Migrating from Earlier Versions

Overview With the release of Artix 4.0 and subsequent releases, the following changes
might affect any existing Artix applications:

• Session manager API name changes were made in compliance with
the wrapped doc-literal convention.

• Artix switched from using a proprietary reference format to using the
standard WS_Addressing endpoint reference format.

If you have existing applications that use the old session manager APIs and
the old proprietary reference format, you might want to consider migrating
those applications to use the new APIs and WS_Addressing.

For WS_Addressing migration information, see the Endpoint References
chapter in the Developing Artix Application in C++ guide and/or the Using
Endpoint References chapter in the Developing Artix Applications in Java
guide. This section describes the session manager API migration scenarios.

New session manager API Artix 4.0 and subsequent releases include a new version of the
session-manager.wsdl file. The operations contained in this new WSDL file
conform with the wrapped doc-literal convention. Specifically:

• The begin_session() operation has been replaced with
beginSession().

• The end_session() operation has been replaced with endSession().

• The renew_session() operation has been replaced with
renewSession().

• The get_all_endpoints() operation has been replaced with
getAllServiceEndpoints(). The get_all_endpoint() operation
returns an EndpointList of old style References. The
getAllServiceEndpoints() operation returns a ServiceEndpointList
of WS-Addressing type EndpointReferenceType.

The new session-manager.wsdl file is located in the following directory of
your Artix installation:

InstallDir/artix/Version/wsdl
50

../prog_guide/index.htm
../java_pguide/index.htm

Migrating from Earlier Versions
In Artix 4.0 and subsequent releases, by default, the session manager
resolves its service contract against this session-manager.wsdl file and,
therefore, supports the new API. The default Artix configuration file,
artix.cfg, points to the new session manager WSDL file as follows:

Migrating to new session manager
APIs

If you have an existing application that you want to migrate to Artix 4.0 or
higher, you can switch to using the new APIs by changing the following
aspects of your application:

• Replace begin_session() with beginSession()

• Replace end_session() with endSession()

• Replace renew_session() with renewSession()

• Replace get_all_endpoints() with getAllServiceEndpoints()

Using a mixture of old and new
session manager APIs

Artix 4.0 and subsequent releases include a second session-manager.wsdl
file that supports both the old and the new APIs. To use the session
manager with Artix 3 clients, you must start the session manager with this
session-manager.wsdl file. It is located in the following directory of your
Artix installation:

You can configure the session manager to use this session-manager.wsdl
file by setting the bus:initial_contract:url:sessionmanager
configuration variable as follows:

Alternatively, you can set it as a command-line argument when launching a
server:

bus:initial_contract:url:sessionmanager =
"InstallDir/artix/Version/wsdl/session-manager.wsdl";

InstallDir\artix\Version\wsdl\oldversion

bus:initial_contract:url:sessionmanager =
"InstallDir/artix/Version/wsdl/oldversion/

 session-manager.wsdl";

-BUSservice_contract
InstallDir/artix/Version/wsdl/oldversion/session-manager.wsdl
51

CHAPTER 3 | Using the Session Manager from an Artix Client
Artix 4.1 and 4.2 session manager
setup for backward compatibility

The artix.cfg file included with Artix 4.1 and 4.2 has a new configuration
entry, bus:non_compliant_epr_format. The default artix.cfg sets this
entry by default to "false". This setting allows for greater interoperability
between Artix and Web services software from other vendors.

If your site uses a session manager, session manager enabled services, and
session manager enabled clients all built with Artix 4.1 or higher, then no
further configuration is necessary.

If your site uses a session manager build with Artix 4.1 or higher, with
services and clients from Artix 4.0 and 3.0.x, then you must add one
configuration entry in your Artix configuration. Add the line to the
session_management.sm_service scope of the configuration file that
controls your instance of the session manager. The line to add is:

Note: The session manager and the endpoints it manages are tightly
coupled and, therefore, must be the same version.

bus:non_compliant_epr_format = "true";

Note: The session manager demos that ship with Artix 4.1 and 4.2 do
not have this line added to their session_management.cfg files.
52

Migrating from Earlier Versions
For example, the following configuration file extract shows an edited
session_management.cfg file for the primary session manager demo that
allows Artix 3.x and 4.0 clients to connect to and use an Artix 4.1 or higher
session manager:

demos {
 session_management {

 plugins:xmlfile_log_stream:use_pid = "true";

 client
 {
 orb_plugins = ["xmlfile_log_stream"];
 };

 sm_service
 {
 bus:initial_contract:url:sessionmanager =

"../../etc/session-manager.wsdl";

 plugins:sm_simple_policy:max_concurrent_sessions = "1";
 plugins:sm_simple_policy:min_session_timeout = "1";
 plugins:sm_simple_policy:max_session_timeout = "600";

 orb_plugins = ["xmlfile_log_stream", "wsdl_publish",
"session_manager_service", "sm_simple_policy"];

 bus:non_compliant_epr_format = "true";

 };

 server
 {
 orb_plugins = ["xmlfile_log_stream",

"session_endpoint_manager"];

 bus:initial_contract:url:sessionmanager =
"../../etc/session-manager.wsdl";

 plugins:session_endpoint_manager:default_group = "SM_Demo";
 };

 };
};
53

CHAPTER 3 | Using the Session Manager from an Artix Client
Disabling session manager
support for Artix 3

When you have all Artix client applications migrated to Artix 4, the
backward compatibility feature of the Artix 4 session manager is no longer
necessary for your site. However, there is no need to disable the backward
compatibility feature, and the Artix 4 session manager performance is not
improved by disabling backward compatibility.

If you prefer to disable this feature, you can use a local configuration scope
to override the Artix root configuration. In your local scope, set the WSDL
path to empty for the Artix 3-compatible version of the session manager,
using a line like the following:

bus:qname_alias:sessionmanager_oldversion = "";
54

CHAPTER 4

Using the Session
Manager from a
non-Artix Client
Non-Artix clients can also use the session manager to make
requests on managed services. This chapter outlines how to
implement a .NET client and an Axis client.

In this chapter This chapter discusses the following topics:

Implementing a .NET Client page 56

Implementing an Axis Client page 61
55

CHAPTER 4 | Using the Session Manager from a non-Artix Client
Implementing a .NET Client

Overview .NET clients can use the session manager to make requests on managed
services, using the Bus.Services.dll library. This is because the Artix
session manager uses SOAP headers to pass session tokens between clients
and services. The session manager also has a number of methods for
managing active sessions. The Artix .Net plug-in is Web Services
Enhancements 2.0 (WSE 2.0) compliant. Users can enable session by
constructing a session filter and appending it to a SOAP output filter using
WSE 2.0 APIs. The helper classes included in the Bus.Services library
simplify working with the session manager by providing native .Net calls to
access the session manager. They also handle session renewal and
attaching session headers to outgoing requests.

What you need before starting Before starting to develop a client that uses the Artix session manager you
need:

• A means for contacting a deployed Artix session manager. This can be
one of the following:

♦ An Artix reference

♦ An HTTP address

♦ A local copy of the session manager WSDL contract

• A locally accessible copy of the WSDL contract that defines the service
that you want the client to invoke upon.

• To install WSE 2.0 SP3 before starting an Artix .NET session manager
client.

Demonstration code The code examples in this section are taken from the session manager
demo’s .NET client code. The .NET client makes a request on a business
service that is managed by the Artix session manager. The complete client
code can be found in the following directory of your Artix installation:

InstallDir\artix\Version\demos\advanced\session_management\
dotnet\client
56

Implementing a .NET Client
Procedure To develop a .Net client that uses the Artix session manager do the
following:

1. Create a new project in Visual Studio.

2. Right-click the folder for you new project and select Add Reference
from the pop-up menu.

3. Click Browse on Add Reference window.

4. In the file selection window browse to your Artix installation and select
the Bus.Services.dll from the
InstallDir\artix\Version\utils\.NET directory.

5. Click OK to return to the Visual Studio editing area.

6. Right-click the folder for your new project and select Add Web
Reference from the pop-up menu.

7. In the Address: field of the browser, enter the full pathname of the
contract for the service on which you are going to make requests.

8. Click Add Reference to return to the Visual Studio editing area.

9. Open the .cs file generated for the contract you imported.

10. Locate the class declaration for the service on which you intend to
make requests. The class declaration will look similar to that shown in
Example 22.

11. Change the class’ base type from
System.Web.Services.Protocols.SoapHttpClientProtocol to
Microsoft.Web.Services2.WebServicesClientProtocol. The
resulting class declaration will look similar to that shown in
Example 23.

Reassigning the service proxy class to the Artix specific base class adds

Example 22: .Net Service Proxy Class Declaration

public class SOAPService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

Example 23: .Net Session Managed Proxy Class Declaration

public class SOAPService :
 Microsoft.Web.Services2.WebServicesClientProtocol {
57

CHAPTER 4 | Using the Session Manager from a non-Artix Client
methods to the proxy that allow it to work with the session manager.

12. Add a new C# class to your project.

13. Add the statement using Bus.Services; after the statement using
System;.

14. Create a service proxy for the Artix session manager by instantiating an
instance of the Bus.Services.SessionManager class as shown in
Example 24.

The constructor’s parameter is the HTTP address of a deployed session
manager. The SessionManager class also has a construct that takes an
Artix reference for use with the Artix locator.

15. Create a new Artix session by instantiating an instance of
Bus.Services.Session as shown in Example 25.

The constructor takes three parameters:

♦ An instantiated SessionManager object.

♦ A string identifying the group for which the client wants a session;
in this example, the group name is SM_Demo.

♦ The default timeout value, in seconds, for the session.

Once the session is created, the session will automatically attempt to
renew itself until the session is closed. The client does not need to
worry about renewing the session.

16. Get a list of the references for the endpoints that are in the session’s

Example 24: Instantiating a Session Manager Proxy in .Net

SessionManager sessionManager = new SessionManager
("http://localhost:9007/services/sessionManagement/

 sessionManagerService");

Example 25: Creating a New Session

Session session = new Session(sessionManager, "SM_Demo", 20);
58

Implementing a .NET Client
group using the SessionManager.get_all_endpoints() function as
shown in Example 26.

The get_all_endpoints() function takes the session ID of the session
and returns an array of Artix references. Each entry in the array
contains the endpoint of one member of the group for which the
session was requested.

17. Create a .Net proxy for the service on which you are going to make
requests as you normally would.

18. Change the value of the proxy’s .Url member to the SOAP address of
one of the Artix references returned from the session manager as
shown in Example 27.

How you determine which member of the returned array contains the
desired endpoint is an implementation detail beyond the scope of this
discussion.

19. Instruct the proxy to include the session header in all of its requests by

adding a session filter on the proxy output SOAP filters as shown in
Example 28.

Once you have made the above call, all requests made by the proxy
will contain an Artix session header. The session manager uses the
session header to validate the client’s requests against the list of valid
sessions.

20. Make requests on the service as you would normally.

Example 26: Getting the Endpoint References

Bus.Services.Types.EndpointReferenceType[] refs =
sessionManager.getAllServiceEndpoints(sessionId);

Example 27: Changing the URL of a .Net Service Proxy to Use a
Reference

simpleService.Url = refs[0].Address.Value;

Example 28: Setting a Proxy’s Session Header

simpleService.Pipeline.OutputFilters.Add(new
Bus.Services.SessionFilter(session));
59

CHAPTER 4 | Using the Session Manager from a non-Artix Client
21. When you are done with the service, end the session by calling
EndSession() on the session object, as shown in Example 29:

Example 29: Ending a Session

session.EndSession()

Note: For a complete list of available classes and methods, see the
docs.xml file, which is generated during the Bus.Services build. It is
available in the following directory of your Artix installation:

InstallDir\artix\Version\utils\.NET
60

Implementing an Axis Client
Implementing an Axis Client

Overview An Axis client can use the session manager to invoke on managed services.
The Artix session manager uses SOAP headers to pass session tokens
between clients and services. Therefore, when writing an Axis client, you
must insert session tokens into SOAP headers programmatically in order to
invoke on services managed by session manger.

Demonstration code The code examples in this section are taken from the session manager
demo’s Axis client code. The Axis client makes a request on a business
service that is managed by the Artix session manager. The complete client
code can be found in the following directory of your Artix installation:

Axis version Axis version 1.3 is used in the demo.

Procedure To develop an Axis client that uses Artix session manager do the following:

1. Generate Axis stub code from the Artix session manager WSDL file as
shown in Example 30:

The session-manager.wsdl file is available in the following directory of your
Artix installation:

InstallDir/artix/Version/demos/advanced/session_management/Axis/
client

Example 30: Generating Axis Stub Code for Session Manager

Java org.apache.axis.wsdl.WSDL2Java ..\etc\session-manager.wsdl

InstallDir/artix/Version/wsdl
61

CHAPTER 4 | Using the Session Manager from a non-Artix Client
2. Generate Axis stub code from the WSDL file for the service on which
you want your client to invoke, as shown in Example 31:

In this example, the session_management.wsdl file is part of the
session manager demo and describes the business service on which
the client ultimately invokes. It is available in the following directory of
your Artix installation:

3. Retrieve a session manager service endpoint as shown in Example 32:

4. Instantiate a session manager proxy as shown in Example 33:

5. Start a new session as shown in Example 34:

Example 31: Generating Axis Stub Code for the Target Web Service

Java org.apache.axis.wsdl.WSDL2Java
..\etc\session_management.wsdl

InstallDir/artix/Version/demos/advanced/session_management/etc

Example 32: Retrieving a Session Manager Service Endpoint

java.lang.String url =
get_soap_address("../etc/session-manager.wsdl", service,
port);

java.net.URL endpoint = new java.net.URL(url);

Example 33: Instantiating a Session Manager Proxy

SessionManagerService smsl = new SessionManagerServiceLocator();
SessionManagerBindingStub sm_binding =

(SessionManagerBindingStub)smsl.getSessionManagerPort
 (endpoint);

Example 34: Starting a Session

SessionInfo session_response = null;

session_response = sm_binding.beginSession("SM_Demo", new
org.apache.axis.types.UnsignedLong(20));
62

Implementing an Axis Client
6. Retrieve the session ID and all the endpoints as shown in Example 35:

7. Retrieve the first endpoint as shown in Example 36:

8. Insert the session ID into the SOAP header of the Axis client request as
shown in Example 37:

You must insert the session context into the SOAP header programmatically
for each invocation. Otherwise, the invocation will fail.

9. Invoke on the endpoint, as shown in Example 38:

10. End the session, as shown in Example 39:

Example 35: Retrieving a Session ID and the Endpoints

SessionId session_id = session_response.getSession_id();
EndpointReferenceType[] endpoints =

sm_binding.getAllServiceEndpoints(session_id);

Example 36: Retrieving the Business Service Endpoint

EndpointReferenceType epr_ref = endpoints[0];
String url = epr_ref.getAddress().get_value().toString();
java.net.URL simple_endpoint = new java.net.URL(url);

Example 37: Inserting the Session ID into the Axis Client Request SOAP
Header

String ns = "http://ws.iona.com/sessionmanager";
header = new org.apache.axis.message.SOAPHeaderElement(ns, "id",

session_response.getSession_id());
proper_call.addHeader(header);

Example 38: Invoking on the Business Service

String _return = (String)proper_call.invoke(new
java.lang.Object[] {});

Example 39: Ending the Session

sm_binding.endSession(session_id);
63

CHAPTER 4 | Using the Session Manager from a non-Artix Client
64

Index

Symbols
.NET client 56

demo code 56

A
APIs

new in Artix 4.0 50
Artix 4.1

special configuration for Artix 4.0 and 3.x
clients 52

Artix 4.2
special configuration for Artix 4.0 and 3.x

clients 52
Artix container 24
Axis client 61

demo code 61

B
beginSession() 16

C++ 37
Java 46
migrating from Artix 3 50, 51

begin_session()
migrating to Artix 4 50, 51

BeginSessionFault 16
binding and protocol

used by session manager 17
bus:initial_contract:url:sessionmanager 23, 27, 51

C
C++ client

demo code 36
implementing 36

configuration
for Artix 4.1 session manager 52
for Artix 4.2 session manager 52

D
demonstrations 15
dynamic port

configuring the session manager to use 21

E
endpoint_group 37
EndpointReferenceType 50
endpoints 39
endSession() 16, 42

C++ 42
Java 49
migrating from Artix 3 50, 51

end_session()
migrating to Artix 4 50, 51

F
fixed port

configuring session manager to use 22, 25

G
get_all_endpoints()

migrating to Artix 4 50, 51
GetAllEndpointsFault 16
getAllServiceEndpoints() 16

C++ 38, 39
Java 47
migrating from Artix 3 50, 51

I
IT_Bus_Services::renewSessionFaultException 42
it_container 24
it_container_admin 24

J
Java client

demo code 44
implementing 44

M
migration

from Artix 3 to Artix 4 50

O
ORBconfig_domains_dir 24
ORBdomain_name 24
65

INDEX
ORBname 24
orb_plugins 21, 26

P
plug-ins 11

how they interact 12
plugins:session_endpoint_manager:default_group 1

5, 26
plugins:session_endpoint_manager:peer_timout 32
plugins:session_manager:peer_timeout 32
plugins:sm_simple_policy:max_concurrent_sessions

28
plugins:sm_simple_policy:max_session_timeout 28,

37, 46
plugins:sm_simple_policy:min_session_timeout 28,

37, 46
preferred_renew_timeout 37

R
renewSession() 16

C++ 42
Java 49
migrating from Artix 3 51
migrating to Artix 4 50

renew_session()
migrating to Artix 4 50, 51

RenewSessionFault 16
renew_timeout 37, 42

S
ServiceEndpointList 50
session

what is a 14
session_endpoint_manager 11, 26
SessionEndpointManager port type 17
session_id 37, 38, 42
sessionIDContext 40
session_info 37, 42
SessionManagementPolicyCallback 28, 29
session management policy plug-in

implementing your own 29
sm_simple_policy 28

session-manager.wsdl 16, 22, 27, 50, 51
location 16

SessionManagerClient
C++ 36
Java 45

SessionManager port type 16
session_manager_service 11, 21
shutdown

using container 25
sm_simple_policy 11, 21

configuring 28
soap:address 22
SOAP 1.2 33

W
WS_Addressing 50
66

	List of Figures
	Preface
	Introduction
	What is the Session Manager?
	Session Manager WSDL Contract

	Configuring and Deploying the Session Manager
	Deploying the Session Manager
	Registering a Server with the Session Manager
	Configuring the Simple Policy Plug-in
	Implementing your own Policy Plug-In
	Fault Tolerance
	Adding SOAP 1.2 Support

	Using the Session Manager from an Artix Client
	Implementing a C++ Client
	Implementing a Java Client
	Migrating from Earlier Versions

	Using the Session Manager from a non-Artix Client
	Implementing a .NET Client
	Implementing an Axis Client

	Index

