
Artix Transactions Guide, Java
Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: March 7, 2007

Contents

List of Tables 5

List of Figures 7

Preface 9

Chapter 1 Introduction to Transactions 11
Basic Transaction Concepts 12
Artix Transaction Features 14

Chapter 2 Selecting a Transaction System 19
Configuring OTS Lite 20
Configuring OTS Encina 23
Configuring Non-Recoverable WS-AT 27
Configuring Recoverable WS-AT 31

Chapter 3 Basic Transaction Programming 35
Artix Transaction Interfaces 36
Beginning and Ending Transactions 38

Chapter 4 Transaction Propagation 43
Transaction Propagation and Interposition 44

Chapter 5 Threading 49
Client Threading 50
Threading and XA Resources 55

Chapter 6 Transaction Recovery 61
Transactions Systems and Recovery 62
Transaction Recovery Scenarios 64

Server Crash before or during Prepare Phase 65
 3

CONTENTS
Server Crash after Prepare Phase 67
Transaction Coordinator Crash 69

Chapter 7 Recoverable Resources 71
Transaction Participants 72
Interposition 79

Chapter 8 Notification Handlers 81
Introduction to Notification Handlers 82

Chapter 9 MQ Transactions 85
Reliable Messaging with MQ Transactions 86

Index 95
4

List of Tables

Table 1: Transaction Systems and Recoverability 62
 5

LIST OF TABLES
 6

List of Figures

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server 15

Figure 2: One-Phase Commit Protocol 16

Figure 3: Two-Phase Commit Protocol 17

Figure 4: Overview of a Client-Server System that Uses OTS Lite 20

Figure 5: Overview of a Client-Server System that Uses OTS Encina 23

Figure 6: Client-Server System that Uses Non-Recoverable WS-AT 27

Figure 7: Client-Server System that Uses Recoverable WS-AT 31

Figure 8: Overview of the Artix Transaction API 36

Figure 9: Overview of Different Kinds of Transaction Propagation 45

Figure 10: Limitation of Transaction Propagation Using OTS Lite 46

Figure 11: Default Client Threading Model 50

Figure 12: Detaching and Re-Attaching a Transaction to a Thread 52

Figure 13: Attaching a Transaction to Multiple Threads 53

Figure 14: Transferring a Transaction from One Thread to Another 54

Figure 15: Auto-Association with a Single Registered Resource 55

Figure 16: Auto-Association with Multiple Registered Resources 57

Figure 17: Database Resource Operating in Multi-Threaded Mode 58

Figure 18: Threading for a Dynamically Registered Resource 59

Figure 19: Server Crash before or during the Prepare Phase 65

Figure 20: Server Crash after the Prepare Phase 67

Figure 21: Transaction Participants in a 2-Phase Commit Protocol 73

Figure 22: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 87

Figure 23: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled90
 7

LIST OF FIGURES
 8

Preface
What is Covered in this Book
This book explains how to program and configure Artix transactions in Java.

Who Should Read this Book
This guide is intended for Artix Java programmers. This guide assumes that
the reader is familiar with WSDL and XML schemas.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library
 9

../library_intro/index.htm
../library_intro/index.htm

PREFACE
 10

CHAPTER 1

Introduction to
Transactions
This chapter provides an introduction to transaction concepts
and to the transaction features supported by Artix.

In this chapter This chapter discusses the following topics:

Basic Transaction Concepts page 12

Artix Transaction Features page 14
 11

CHAPTER 1 | Introduction to Transactions
Basic Transaction Concepts

What is a transaction? Artix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Artix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The
most common example is a bank fund transfer: imagine a failed software
call that debited one account but failed to credit another. A transactional
process, on the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

Example The classical illustration of a transaction is that of funds transfer in a
banking application. This involves two operations: a debit of one account
and a credit of another (perhaps after extracting an appropriate fee). To
combine these operations into a single unit of work, the following properties
are required:

• If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

• The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

• It is implicit that committed results of the whole operation are
permanently stored.
12

Basic Transaction Concepts
Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one
persistent, consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.
 13

CHAPTER 1 | Introduction to Transactions
Artix Transaction Features

Overview This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can
access the transaction system using a technology-neutral API, but the
technology-specific APIs are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:

• Supported protocols

• Client-side transaction support.

• Server-side transaction support.

• Compatibility with Orbix.

• Pluggable transaction system.

• One-phase commit.

• Two-phase commit.

• Transaction propagation.

Supported protocols Artix supports distributed transactions using the following protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

Client-side transaction support Transaction demarcation methods (beginTransaction(),
commitTransaction() and rollbackTransaction()) can be used on the
client side to initiate and terminate a transaction. While the transaction is
active, all of the operations called from the current thread are included in
the transaction (that is, the operations’ request headers include a
transaction context).
14

Artix Transaction Features
Server-side transaction support On the server side, an API is provided that enables you to implement
transaction participants (sometimes referred to as transactional resources).
Using transaction participants, you can implement servers that participate in
a distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into
your application. For example, you might take a technology-neutral
approach by implementing the TransactionParticipant class, or you might
decide to exploit the special features of a particular transaction system
instead.

Compatibility with Orbix The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix
ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

Orbix Domain
beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client
 15

CHAPTER 1 | Introduction to Transactions
One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 2 shows a schematic
overview of the 1PC protocol for a simple client-server system.

The 1PC protocol progresses through the following stages:

1. The client calls beginTransaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server. The WSDL operations are transactional, requiring
updates to a persistent resource.

3. The client calls commitTransaction() to make permanent any changes
caused during the transaction (alternatively, the client could call
rollbackTransaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a 1PC commit.

Two-phase commit The two-phase commit (2PC) protocol enables multiple resources to
participate in a transaction. In order to preserve the essential properties of a
transaction involving multiple distributed resources, it is necessary to use a
more elaborate algorithm. The 2PC algorithm consists of the following two
phases:

• Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

Figure 2: One-Phase Commit Protocol

Artix Server

Transaction
System

Resource

beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client

1

2

3
4

16

Artix Transaction Features
• Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the
participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and
two remote servers.

The 2PC protocol progresses through the following stages:

1. The client calls beginTransaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

3. The client calls commitTransaction() to make permanent any changes
caused during the transaction (alternatively, the client could call
rollbackTransaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the
remote transaction participants (the first phase of a two-phase
commit).

Figure 3: Two-Phase Commit Protocol

beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit
 17

CHAPTER 1 | Introduction to Transactions
5. The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants (the
second phase of a two-phase commit).

Transaction propagation If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a
transaction, invokes an operation on server 1, and then server 1 makes a
further call on server 2. In this scenario, Artix automatically propagates the
transaction to server 2. The transaction is propagated, even if the protocol
between the client and server 1 differs from the protocol used between
server 1 and server 2.
18

CHAPTER 2

Selecting a
Transaction
System
Using the Artix plug-in architecture, you can choose between
a number of different transaction system implementations.
Because the Artix transaction API is designed to be
independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime.
Typically, you would choose the transaction system that
provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would select
the WS-AT transaction system.

In this chapter This chapter discusses the following topics:

Configuring OTS Lite page 20

Configuring OTS Encina page 23

Configuring Non-Recoverable WS-AT page 27

Configuring Recoverable WS-AT page 31
 19

CHAPTER 2 | Selecting a Transaction System
Configuring OTS Lite

Overview The OTS Lite plug-in is a lightweight transaction manager, which is subject
to the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access
a single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 4 shows a
client-server deployment that uses the OTS Lite plug-in.

OTS Lite and interposition If you plan to use OTS Lite in an application that needs to propagate
transactions between different transaction systems, you should be aware
that OTS Lite is subject to certain limitations in the context of interposition.
See “Limitation of using OTS Lite with propagation” on page 46 for details.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 4: Overview of a Client-Server System that Uses OTS Lite

Artix Client Artix Server

OTS

Resource

OTS

OTS Lite
20

Configuring OTS Lite
Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include
the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can
be loaded on the client side, but it is not usually needed on the server side.
You can load the OTS Lite plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_lite plug-in
dynamically, if it is required. For this approach, you need to configure
the initial_references:TransactionFactory:plugin variable as
follows:

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.

• Explicit loading—load the ots_lite plug-in by adding it to the list of
orb_plugins, as follows:

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_lite"];
 ...
};
 21

CHAPTER 2 | Selecting a Transaction System
Sample configuration The following example shows a sample configuration for using the OTS Lite
transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
names and so on) included in the global configuration scope.
... (not shown)

ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
};
22

Configuring OTS Encina
Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Figure 5 shows a client/server
deployment that uses the OTS Encina plug-in.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx_provider.

Figure 5: Overview of a Client-Server System that Uses OTS Encina

Artix Client

OTS

OTS Encina

Artix Server

OTS

Resource

Artix Server

OTS

Resource
 23

CHAPTER 2 | Selecting a Transaction System
Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed
on the server side. You can load the OTS Encina plug-in in one of the
following ways:

• Dynamic loading—configure Artix to load the ots_encina plug-in
dynamically, if it is required. For this approach, you need to configure
the initial_references:TransactionFactory:plugin variable as
follows:

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.

• Explicit loading—load the ots_encina plug-in by adding it to the list of
orb_plugins, as follows:

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin="ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin="ots_encina";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_encina"];
 ...
};
24

Configuring OTS Encina
Sample configuration Example 1 shows a complete configuration for using the OTS Encina
transaction manager:

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if
it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port. The port on
which the transaction manager listens is specified by the
plugins:ots_encina:iiop:port variable.

Example 1: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];

2 initial_references:TransactionFactory:plugin = "ots_encina";

3 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";

4 plugins:ots_encina:initial_disk = "../../log/encina.log";
5 plugins:ots_encina:initial_disk_size = "1";
6 plugins:ots_encina:restart_file =

"../../log/encina_restart";
7 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)

8 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
};
 25

CHAPTER 2 | Selecting a Transaction System
4. The plugins:ots_encina:initial_disk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

5. The plugins:ots_encina:initial_disk_size variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

6. The plugins:ots_encina:restart_file variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

7. The plugins:ots_encina:backup_restart_file variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

8. The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.
26

Configuring Non-Recoverable WS-AT
Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP
headers to transmit transaction contexts between the participants in a
transaction. The lightweight WS-AT transaction system supports the 2PC
protocol and allows you to register multiple resources; unlike OTS Encina,
however, it does not support recovery. Figure 6 shows a client/server
deployment that uses the lightweight WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx_provider.

Figure 6: Client-Server System that Uses Non-Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource
 27

CHAPTER 2 | Selecting a Transaction System
Disabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by
default (by layering itself over OTS Encina). Hence, to use the lightweight,
non-recoverable version of WS-AT in your application, you need to explicitly
disable recovery by setting the following configuration variable to true:

plugins:ws_coordination_service:disable_tx_recovery = "true";

Plug-ins for WS-AT The division of the WS-AT transaction system into separate plug-ins reflects
the fact that the WS-AT specification has two distinct parts:
WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction
system:

• wsat_protocol plug-in—implements WS-AtomicTransactions. It is
required by all services and clients that use WS-AT transactions. This
plug-in enables an Artix executable to receive and transmit WS-AT
transaction contexts.

• ws_coordination_service plug-in—implements WS-Coordination.
Only one instance of this plug-in is required (typically, loaded into a
client). This plug-in coordinates the two-phase commit protocol.

Sample configuration Example 2 shows a complete configuration for using the non-recoverable
WS-AT transaction manager:

Example 2: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";
3 plugins:ws_coordination_service:disable_tx_recovery ="true";

 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

 plugins:ws_coordination_service:disable_tx_recovery ="true";
28

Configuring Non-Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol plug-in as well. Hence, it is unnecessary to include
wsat_protocol plug-in in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

3. This line specifies that transaction recovery is disabled. The effect of
this setting is that the transaction system relies on a lightweight,
non-recoverable implementation of WS-AT.

4. The server needs to load the wsat_protocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coordinator_stub_wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

5 // No need to specify default_tx_provider here.
 };
};

Example 2: Sample Configuration for Non-Recoverable WS-AT
 29

CHAPTER 2 | Selecting a Transaction System
References The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:

• WS-AtomicTransactions
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicT
ransaction.pdf).

• WS-Coordination
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin
ation.pdf).
30

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT
Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the
WS-AT protocols, Artix supports an option to layer WS-AT over the OTS
Encina transaction manager. With this configuration, WS-AT becomes a
fully recoverable transaction system. Figure 7 shows a client/server
deployment that uses the recoverable WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat_tx_provider.

Figure 7: Client-Server System that Uses Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

OTS

OTS Encina

OTS

OTS
 31

CHAPTER 2 | Selecting a Transaction System
Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by
default. Hence, to use the recoverable version of WS-AT in your application,
you can either omit the
plugins:ws_coordination_service:disable_tx_recovery variable from
your Artix configuration file or set it to false, as follows:

Loading WS-AT and OTS Encina
plug-ins

The configuration for the recoverable WS-AT transaction system is
essentially a combination of the WS-AT configuration and the OTS Encina
configuration. It is only necessary to load the WS-AT plug-ins explicitly—if
recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 2 shows a complete configuration for using the recoverable WS-AT
transaction manager:

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Example 3: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";

3 # OTS Encina Configuration
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";
 plugins:ots_encina:initial_disk = "../../log/encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file =

"../../log/encina_restart";
 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)
 plugins:ots_encina:shlib_name = "it_ots_encina";
32

Configuring Recoverable WS-AT
The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol, ots, and ots_encina plug-ins as well. Hence, it is
unnecessary to include the wsat_protocol, ots, and ots_encina
plug-ins in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

3. From this line up to the end of the client scope shows the OTS Encina
configuraion settings. For detailed descriptions of the OTS Encina
settings, see “Sample configuration” on page 25.

4. The server needs to load the wsat_protocol plug-in, in order to
process incoming WS-AT coordination contexts and to propagate
transaction contexts. The coordinator_stub_wsdl plug-in enables the
server to talk to the WS-Coordination service on the client side.

 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

5 // No need to specify default_tx_provider here.
 };
};

Example 3: Sample Configuration for Recoverable WS-AT
 33

CHAPTER 2 | Selecting a Transaction System
5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.
34

CHAPTER 3

Basic Transaction
Programming
This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably
covers all you need to know about transaction programming.

In this chapter This chapter discusses the following topics:

Artix Transaction Interfaces page 36

Beginning and Ending Transactions page 38
 35

CHAPTER 3 | Basic Transaction Programming
Artix Transaction Interfaces

Overview Figure 8 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
you use the Artix APIs, you will be able to switch between any of the
transaction systems supported by Artix.

Accessing the transaction system To access the Artix transaction system, call the getTransactionSystem()
method on the bus. The returned
com.iona.jbus.transaction.TransactionSystem object provides the
starting point for accessing all aspects of Artix transactions.

The signature of Bus.getTransactionSystem() is shown in Example 4.

Figure 8: Overview of the Artix Transaction API

com.iona.jbus.Bus com.iona.jbus.transactions.TransactionSystem

com.iona.jbus.transactions.TransactionManager

com.iona.jbus.transactions.TransactionParticipant

com.iona.jbus.transactions.TransactionNotificationHandler

getTransactionManager()

getTransactionSystem()

Example 4: Signature for getTransactionSystem()

TransactionSystem getTransactionSystem() throws BusException;
36

Artix Transaction Interfaces
TransactionSystem class The TransactionSystem class provides the basic methods needed for
transaction demarcation (beginTransaction(), commitTransaction() and
rollbackTransaction()). For more details see “Beginning and Ending
Transactions” on page 38.

In addition to providing access the transaction demarcation method the
TransactionSystem object provides two other methods:

• getTransactionManager() returns a
com.iona.jbus.transaction.TransactionManager object that
provides access to some of the more advanced transaction features.

• withinTransaction() returns true if it is called within an active
transaction.

TransactionManager class The TransactionManager class provides advanced transaction functionality.
The most important method it provides is enlist(), which enables you to
implement a transactional resource by enlisting a transaction participant
object. It also provides methods for attaching and detaching threads from a
transaction. See “Threading” on page 49.

TransactionParticipant interface The com.iona.jbus.transaction.TransactionParticipant interface is
used to create transactional resources. An implementation of
TransactionParticipant acts as the resource manager for the datastore
involved in the transaction. It receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Recoverable Resources” on
page 71.

TransactionNotificationHandler
interface

The com.iona.jbus.transacation.TransactionNotificationHandler
interface is used to create objects that receive notification callbacks from the
transaction manager whenever a transaction is either committed or rolled
back.
 37

CHAPTER 3 | Basic Transaction Programming
Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling
back) a transaction are collectively referred to as transaction demarcation
methods. Within a given thread, any Artix operations invoked after the
transaction begin and before the transaction commit (or rollback) are
implicitly associated with the transaction. The transaction demarcation
methods are typically the only methods that you need on the client side.
38

Beginning and Ending Transactions
TransactionSystem methods Example 5 shows the methods belonging to the TransactionSystem
interface.

Client transaction functions The following functions are used to demarcate transactions on the client
side:

• beginTransaction()—creates a new transaction on the client side and
associates it with the current thread. This method takes no arguments
and has no return value.

This method can throw the following exceptions:

♦ TransactionAlreadyActiveException is thrown if
beginTransaction() is called inside an already active
transaction.

♦ TransactionSystemUnavailableException is thrown if the
transaction system cannot be loaded. This usually points to a
configuration problem.

Example 5: The TransactionSystem Interface

// Java
package com.iona.jbus.transaction

public interface TransactionSystem {
 void beginTransaction()
 throws TransactionAlreadyActiveException,
 TransactionSystemUnavailableException,
 BusException;

 boolean commitTransaction(boolean reportHeuristics)
 throws NoActiveTransactionException, BusException;

 void rollbackTransaction()
 throws NoActiveTransactionException, BusException;

 TransactionManager getTransactionManager(
 String transactionManagerType
)
 throws TransactionSystemUnavailableException, BusException;

 boolean withinTransaction();
};
 39

CHAPTER 3 | Basic Transaction Programming
• commitTransaction()—ends the transaction normally, making any
changes permanent. This method takes a single boolean argument,
reportHeuristics, and returns true, if the transaction is commited
successfully.

This method can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

• rollbackTransaction()—aborts the transaction, rolling back any
changes.

This method can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no
transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for
use on the client side, the TransactionSystem class also provides the
following functions, which can be used both on the client side and on the
server side:

• withinTransaction()—returns true if the current thread is associated
with a transaction; otherwise, false.

• getTransactionManager()—returns a reference to a
TransactionManager object, which provides access to advanced
transaction features.

Typically, a TransactionManager object is needed on the server side in
order to enlist participants in a transaction (for example, see
“Recoverable Resources” on page 71).

This method can throw the following exception:

♦ TransactionSystemUnavailableException is thrown if the
transaction system cannot be loaded.
40

Beginning and Ending Transactions
Example Example 6 shows an Artix client that invokes a series of operations as an
atomic transaction. The client invokes on single service called Data. Data
provides a read and a write function.

Example 6: Transactional Client Example

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.transaction.*;

public class Transaction Client
{
 public static void main(String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);
2 String serviceName = "DataService";

 String wsdlName = "soap_tx_demo.wsdl";
 QName serviceQName = new QName("http://transaction_demo",
 serviceName);
 QName portQName = new QName("", "DataSOAPPort");
 Data client = null;
 URL wsdlLocation = new URL(wsdlName);
 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(wsdlLocation,
 serviceQName);
 client = (Data)service.getPort(portQName,Data.class);

3 TransactionSystem txSystem = bus.getTransactionSystem();

4 txSystem.beginTransaction();
 41

CHAPTER 3 | Basic Transaction Programming
The code in Example 6 does the following:

1. Initializes the bus.

2. Creates a proxy for the Data service.

3. Gets the transaction system.

4. Begins a transaction.

5. Invokes operations on the service.

6. Rolls back the transaction if an exception is thrown while invoking
operations on the service.

7. Commits the transaction if all of the operations succeeded.

5 try
 {
 int value = client.read();
 System.out.println("value: " + value);
 System.out.println("Incrementing the value");
 client.write(value + 1);
 System.out.println("New values are");
 int value2 = client.read();
 System.out.println("value: " + value2);
 }

6 catch (Trowable T)
 {
 System.out.println("rolling back transaction...");
 txSystem.rollbackTransation();
 System.exit(1);
 }

7 System.out.println("committing transaction...");
 boolean result = txSystem.commitTransaction(true);
 if (result)
 {
 System.out.println("Transaction committed!");
 }
 else
 {
 System.out.println("Transaction *not* Committed!!");
 }
 }
}

Example 6: Transactional Client Example
42

CHAPTER 4

Transaction
Propagation
Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

In this chapter This chapter discusses the following topics:

Transaction Propagation and Interposition page 44
 43

CHAPTER 4 | Transaction Propagation
Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from
tier to tier. This ensures that all of the processes that are relevant to the
outcome of a transaction can participate in the transaction. You do not have
to do anything special to switch on transaction propagation; it is enabled by
default. However, the receiver of a transaction context must have a
transaction plug-in loaded, otherwise the transaction context would be
ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote
server and used to recreate the transaction at a remote location. The type of
transaction context that is transmitted depends on the middleware protocol.
Artix supports the following kinds of transaction context:

• OTS transaction context—a transaction context that is sent in a GIOP
header (part of the CORBA standard).

• WS-AT transaction context—a transaction context that is embedded in
a SOAP header.

Propagation scenario The propagation scenario shown in Figure 9 shows two different kinds of
transaction propagation, as follows:

• Transaction propagation within a single middleware technology—the
OTS transaction context, which propagates across the top half of
Figure 9, illustrates a simple kind of propagation, where the client and
the servers all use the same CORBA OTS transaction technology.

• Transaction propagation across middleware technologies—the WS-AT
transaction context, which propagates across the bottom half of
Figure 9, illustrates a kind of propagation, where the transaction
crosses technology domains. While the client uses OTS Encina to
44

Transaction Propagation and Interposition
manage the transaction, it must generate a WS-AT transaction context
to send to the server. The ability to transform transaction contexts is
known as interposition.

Scenario steps The propagation scenario shown in Figure 9 can be described as follows:

Figure 9: Overview of Different Kinds of Transaction Propagation

Artix Client

OTS

OTS Encina

Artix Server
CORBA

OTS

Resource

Artix Server
SOAP/HTTP

WS-AT

Resource

Artix Server
CORBA

OTS1

2 3

4

5

WS-AT
Tx Context

OTS
Tx Context

OTS
Tx Context

Stage Description

1 The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
beginTransaction() method. The client then invokes a remote
operation, which results in a request message being sent over
an IIOP connection.

2 The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.
 45

CHAPTER 4 | Transaction Propagation
Limitation of using OTS Lite with
propagation

Figure 10 shows an interposition scenario where the client, which uses an
OTS transaction system, connects to a SOAP/HTTP server, which uses the
WS-AT transaction system.

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use
an OTS Lite transaction manager for this scenario. In reality, however, the
client must use the OTS Encina transaction manager. The reason for this is
that Artix implicitly registers an interposition resource to bridge the
OTS-to-WS-AT middleware boundary. Therefore, there are really two
resources in this scenario.

3 The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Stage Description

Figure 10: Limitation of Transaction Propagation Using OTS Lite

Artix Client

OTS

OTS Encina

Artix Server
SOAP/HTTP

WS-AT

Resource

WS-AT
Tx Context
46

Transaction Propagation and Interposition
In summary, interposition requires additional resources as follows:

• OTS-to-WS-AT middleware boundary—one interposition resource is
registered automatically. Applications with one explicitly registered
resource must use OTS Encina.

• WS-AT-to-OTS middleware boundary—no interposition resource
required. Applications with one explicitly registered resource may use
OTS Lite.

Suppressing propagation Once you have selected a transaction system (for example, the application
loads an OTS plug-in or a WS-AT plug-in), transaction contexts are
propagated by default.

It is possible, however, to suppress transaction propagation selectively using
the detachThread() and attachThread() methods. After calling
detachThread(), subsequent operation invocations do not participate in the
transaction and, therefore, do not propagate any transaction context. You
can re-establish an association with a transaction by calling
attachThread().

For more details on these functions, see “Threading” on page 49.
 47

CHAPTER 4 | Transaction Propagation
48

CHAPTER 5

Threading
This chapter discusses the thread affinity of transactions and
how you can modify thread affinities using the Artix transaction
API.

In this chapter This chapter discusses the following topics:

Client Threading page 50

Threading and XA Resources page 55
 49

CHAPTER 5 | Threading
Client Threading

Overview Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the attachThread() and detachThread()
methods, you can flexibly re-assign threads to a transaction (subject to the
limitations imposed by the underlying transaction system).

Default client threading model Figure 11 shows the default threading model for transaction on the client
side. When you call beginTransaction(), Artix creates a new transaction
and attaches it to the current thread. So long as the transaction remains
attached, any WSDL operations called from the current thread become part
of the transaction. When you call commitTransaction() (or
rollbackTransaction(), if the transaction must be aborted), the
transaction is deleted.

Transaction identifiers A transaction identifier is an opaque identifier of type
com.iona.jbus.transaction.TransactionIdentifier that uniquely
identifies a transaction.

Figure 11: Default Client Threading Model

Thread X

beginTransaction()

Transaction Scope

commitTransaction()
50

Client Threading
Controlling thread affinity On the client side, thread affinity is controlled by the following
TransactionManager methods:

These functions can be explained as follows:

• detatchThread()

Detach the transaction from the current thread. After the call to
detatchThread(), WSDL operations called from the current thread do
not participate in the transaction. The returned transaction identifier
can be used to re-attach the transaction to the current thread at a later
stage.

• attachThread()

Attach the transaction, specified by the transactionIdentifier
argument, to the current thread.

• getTransactionIdentifier()

Return the identifier of the transaction that is attached to the current
thread. If no transaction is attached, return null.

Example 7: Functions for Controlling Thread Affinity

public class TransactionManager
{
 public TransactionIdentifier detachThread();

 public boolean attachThread(TransactionIdentifier
transactionIdentifier)

 throws InvalidTransactionIdentifierException

 public TransactionIdentifier getTransactionIdentifier()
...

}

 51

CHAPTER 5 | Threading
Detaching and re-attaching a
transaction to a thread

Figure 12 shows how to use the detachThread() and attachThread()
methods to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to
perform some non-transactional tasks.

Attaching a transaction to multiple
threads

Figure 13 shows how to use the getTransactionIdentifier() and
attachThread() methods to associate a transaction with multiple threads.
The getTransactionIdentifier() method is called from within the thread
that initiated the transaction. The transaction ID can then be passed to the
other threads, Y and Z, enabling them to attach the transaction.

Figure 12: Detaching and Re-Attaching a Transaction to a Thread

Thread X

beginTransaction()

Transaction Scope

commitTransaction()detachThread() attachThread()

Figure 13: Attaching a Transaction to Multiple Threads

Thread X

beginTransaction()

Transaction Scope

commitTransaction()id = getTransactionIdentifier()

attachThread(id)

Thread Y

Thread Z

attachThread(id)
52

Client Threading
Transferring a transaction from
one thread to another

Figure 14 shows how to use the detachThread() and attachThread()
methods to transfer a transaction from thread X to thread Y. The transaction
ID returned from the detachThread() call must be passed to thread Y,
enabling it to attach the transaction.

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attachThread() call fails
(returning false), if you attempt to attach a second thread to the
transaction.

Figure 14: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attachThread()
call fails (returning false), unless you are re-attaching the original thread
to the transaction.

Thread X

beginTransaction()

Transaction Scope

commitTransaction()

id = detachThread()

Thread Y

attachThread(id)
 53

CHAPTER 5 | Threading
Threading and XA Resources

Overview This section discusses the following threading models for XA resources:

• Auto-association.

• Multiple registered resources.

• Multi-threaded resource connections.

• Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request
accompanied by a transaction context), Artix automatically creates an
association between the current thread and locally registered resources. For
each registered resource, the Artix transaction manager creates a
transaction branch, which participates in the global transaction.

Figure 15 shows the sequence of events that occur when a transactional
request arrives at an Artix server that has one registered resource.

Figure 15: Auto-Association with a Single Registered Resource

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource

Upcall Return

Receive request Send reply
1

2

3 4

5

6

Resource
Connection
54

Threading and XA Resources
The sequence of events shown in Figure 15 on page 55 can be explained as
follows:

1. Request is received—an operation request is received, which contains
a transaction context.

2. Artix calls xa_start()—to create a temporary association between the
current thread and the local resource. The resource creates a new
transaction branch, which performs work on behalf of the global
transaction.

3. Artix calls servant function—control is passed to the servant function
that implements the WSDL operation. Any interactions and updates
you make to the resource are now governed implicitly by the global
transaction.

4. Servant function returns—control passes back to the Artix runtime.

5. Artix calls xa_end()—to end the association between the current
thread and the resource. Effectively, the local transaction branch is
terminated (but the global transaction is still active).

6. Reply is sent—and the thread becomes available to process another
request.
 55

CHAPTER 5 | Threading
Multiple registered resources Figure 16 shows how auto-association works with multiple registered
resources. When the Artix server receives a transactional request, it obtains
a list of all registered resources. Artix then creates a new transaction branch
for each resource, before making an upcall to the relevant servant function.

After the upcall, any application code in the servant function that interacts
with one of the resources (either resource R1 or resource R2) is implicitly
governed by a global transaction, where the global transaction ID has been
obtained from the received transaction context.

Figure 16: Auto-Association with Multiple Registered Resources

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource R1

Upcall Return

Resource R2
56

Threading and XA Resources
Multi-threaded resource
connections

Most modern databases offer the option of running in a multi-threaded
mode. What this means is that instead of having a single connection to the
database, which must be shared between all threads in the server, the
database allows the transaction manager to open a dedicated connection for
each server thread. This has the advantage of reducing contention between
the server threads.

Figure 17 shows an example of a resource configured to use multi-threaded
mode, where the server threads each open an independent connection to
the resource. This enables the threads to access the resource concurrently.

To use the multi-threaded resource mode, both the resource manager and
the Artix transaction manager must be configured appropriately.

Figure 17: Database Resource Operating in Multi-Threaded Mode

xa_start()

Transaction Branch Scope

xa_end()

Resource

Resource
Connections

Thread Y

Thread X

Transaction Branch Scope
 57

CHAPTER 5 | Threading
Dynamic registration As shown in Figure 18, some XA resources support an alternative algorithm,
dynamic registration, for associating a global transaction with a locally
registered resource.

When dynamic registration is enabled, the transaction manager does not
automatically create a transaction branch for an incoming request (that is,
the transaction manager does not call xa_start()). Instead, the transaction
manager waits until it receives a callback, ax_reg(), from the resource
manager. This callback indicates to the transaction manager that the
application code has attempted to update the resource in some way (for
example, by calling EXEC SQL UPDATE). The transaction manager responds to
this by creating a new transaction branch, which it associates with a global
transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created
only when necessary. In some cases, if the application code does not make
any resource updates, it might not be necessary to create a transaction
branch at all.

Figure 18: Threading for a Dynamically Registered Resource

Thread X
Transaction Branch Scope

xa_end()

Resource

Upcall Return

Resource
Connection

ax_reg()
58

CHAPTER 6

Transaction
Recovery
Transaction recovery is an enterprise-level feature that ensures
a transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent
state. In Artix, transaction recovery is implemented by the
Encina transaction engine.

In this chapter This chapter discusses the following topics:

Transactions Systems and Recovery page 62

Transaction Recovery Scenarios page 64
 61

CHAPTER 6 | Transaction Recovery
Transactions Systems and Recovery

Overview Not all of the Artix transaction systems support recovery. It is important to
distinguish between the lightweight transactions systems, which are
non-recoverable, and the enterprise-level transactions systems, which are
recoverable. Table 1 summarizes the characteristics of the various Artix
transaction systems.

OTS Lite OTS Lite is a lightweight transaction system, whose programming interface
is based on the CORBA OTS standard. The OTS Lite system can manage a
single resource only and is not recoverable.

OTS Encina OTS Encina is a complete, enterprise-level transaction system, whose
programming interface is based on the CORBA OTS standard. The OTS
Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level
transaction systems from lightweight transaction systems. Recoverability
ensures that the system can always be brought back into a consistent state,
irrespective of when or how a transaction participant fails.

Non-recoverable WS-AT The non-recoverable WS-AT transaction system is a lightweight transaction
system based on the WS-AtomicTransactions and WS-Coordination
standards. The non-recoverable WS-AT transaction system (in contrast to
OTS Lite) can manage multiple resources.

Table 1: Transaction Systems and Recoverability

Transaction System Single or Multiple
Resources?

Recoverable?

OTS Lite Single No

OTS Encina Multiple Yes

Non-recoverable WS-AT Multiple No

Recoverable WS-AT Multiple Yes
62

Transactions Systems and Recovery
Recoverable WS-AT The recoverable WS-AT transaction system is layered on top of the OTS
Encina transaction engine to give enterprise-level transaction support. From
Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant
OTS plug-ins are automatically loaded when WS-AT is enabled. If the
plugins:ws_coordination_service:disable_tx_recovery variable appears
in your Artix configuration file, it must be set as follows to ensure
recoverability:

When WS-AT is layered over Encina, the initiation of a transaction in
WS-Coordination effectively initiates an OTS transaction. The coordination
context returned from the WS-Coordination service (and subsequently
propagated on SOAP calls) includes an identifier indicating that it is OTS
based and also includes an encoded form of the relevant OTS propagation
context. That is, all transactions, including WS-AT initiated ones, are always
OTS transactions. If a participant enlistment is required then the WS-AT
system will completely bypass the WS-AT protocols and enlist the
participant directly with OTS. This means that at completion time, OTS is
aware of, and in control of, all resources in the system, be they native OTS
resources, WSAT Participants, XA resources and so on.

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.
 63

CHAPTER 6 | Transaction Recovery
Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction
system to recover to a consistent state, irrespective of what kind of system
failures occur. This section discusses a variety of different failure scenarios
in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:

Server Crash before or during Prepare Phase page 65

Server Crash after Prepare Phase page 67

Transaction Coordinator Crash page 69
64

Transaction Recovery Scenarios
Server Crash before or during Prepare Phase

Overview Figure 19 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system, where the OTS Encina transaction
coordinator is loaded into the client and the two servers participate in the
transaction.

The mode of failure described in this scenario involves server 1 crashing
either before or during the prepare phase of the two-phase commit protocol.

Figure 19: Server Crash before or during the Prepare Phase

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2
4

4

prepare

OTS

OTS Encina

4 Crash!!
 65

CHAPTER 6 | Transaction Recovery
Steps leading to crash As shown in Figure 19, the steps leading to a server crash before or during
the prepare phase of a two-phase commit can be described as follows:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

3. The client calls commit_transaction() to make permanent any
changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the
two-phase commit. At some point either before or during the prepare
phase, server 1 crashes. That is, the transaction coordinator never
receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call
on server 1 (for example, the connection to server 1 breaks or the
transaction times out), the transaction coordinator will presume that the
transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other
transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote
anything into its log during the prepare phase. When server 1 re-starts after
crashing, the transaction is recovered in one of the following ways:

• No record of prepare phase in log—in this case, server 1 knows that a
transaction was begun (this is recorded in its log) and that the
transaction was interrupted before the prepare phase. Server 1
automatically rolls back the transaction (presumed rollback), bringing
it back to a state that is consistent with the rest of the system.

• Prepare phase recorded in log—in this case, it is possible that the
prepare phase had completed successfully. Server 1, therefore, needs
to contact the transaction coordinator to discover the outcome of the
transaction. From its log, it can retrieve a recovery coordinator
reference, which it uses to query the transaction state. Depending on
the reply, it will either commit or roll back the transaction (in the
scenario shown in Figure 19, it will be a rollback).
66

Transaction Recovery Scenarios
Server Crash after Prepare Phase

Overview Figure 20 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing
after the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 20, the steps leading to a server crash after the prepare
phase of a two-phase commit can be described as follows:

1. The client calls commit_transaction() to make permanent any
changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the
remote transaction participants.

Figure 20: Server Crash after the Prepare Phase

begin_transaction()
...
...
...
commit_transaction()

Artix
Client

1

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2

prepare

OTS

OTS Encina

3 Crash!!

prepare

4

commit
 67

CHAPTER 6 | Transaction Recovery
3. After replying to the prepare call, but before receiving the commit call,
server 1 crashes. For this scenario, it is assumed that server 1 replied
to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the
prepare phase with a vote commit, the transaction coordinator decides
to commit the transaction and sends a commit notification to the
participants.

Transaction system recovery If the prepare phase has completed successfully (that is, the prepare call
returned from all of the transaction participants), the transaction coordinator
determines the outcome of the transaction to be either commit or rollback.
In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to
server 1, it discovers that server 1 has crashed. The transaction coordinator
reacts to this situation by retrying the commit call forever.

Server 1 recovery When server 1 is restarted, it knows from its own log that a transaction was
prepared but not commited. Therefore, it expects to receive either a commit
or a rollback call from the transaction coordinator. Because the transaction
coordinator retries the commit call forever, server 1 is bound to receive a
commit call shortly after it starts up, thereby resolving the transaction.
68

Transaction Recovery Scenarios
Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction
coordinator crashes (for example, in Figure 20 this would be the client
process). The transaction coordinator has its own log, which it uses as the
basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it
writes whatever information would be needed for recovery into a log file or
partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be
reduced essentially to two cases, as follows:

• The coordinator determined the transaction outcome before
crashing—upon restarting, the transaction coordinator will try forever
to notify the participants of the transaction outcome (commit or
rollback).

• The coordinator did not determine the transaction outcome before
crashing—the presumed rollback rule is used here. Transaction
participants that were not prepared will simply presume a rollback,
after a timeout has elapsed. Prepared participants will use the
coordinator reference to contact the transaction coordinator and query
the outcome of the transaction.
 69

CHAPTER 6 | Transaction Recovery
70

CHAPTER 7

Recoverable
Resources
This section describes those aspects of server side
programming which enable you to update a persistent resource
transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 72

Interposition page 79
 71

CHAPTER 7 | Recoverable Resources
Transaction Participants

Overview When Artix uses a persistent resource, the easiest way to integrate that
resource within the Artix transaction system is to enlist the resource’s XA
switch. If the resource does not support the XA standard, however, you need
to implement a transaction participant instead. A transaction participant is
an object usually on the server side that interfaces between the Artix
transaction manager and a persistent resource. The role of the transaction
participant is to receive callbacks from the transaction manager, which tell
the participant whether to make pending changes permanent or whether to
abort the current transaction and return the resource to its previous
consistent state.
72

Transaction Participants
Participants in a 2-phase commit Figure 21 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

Participants in a 2-phase commit As shown in Figure 21, the transaction participants participate in a
two-phase commit as follows:

Figure 21: Transaction Participants in a 2-Phase Commit Protocol

beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

enlist

TransactionParticipant

delete6

enlist

TransactionParticipant

delete6

Stage Description

1 The client calls beginTransaction() to initiate a distributed
transaction.

2 Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.
 73

CHAPTER 7 | Recoverable Resources
Implementing a transaction
participant

To create a transaction participant, define a class that implements the
com.iona.jbus.transaciton.TransactionParticipant interface.

3 The client calls commitTransaction() to make permanent any
changes caused during the transaction.

4 The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare() function.

5 The transaction system performs the commit or rollback phase
by calling commit() or rollback() on all of the transaction
participants.

6 When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

Stage Description
74

Transaction Participants
TransactionParticipant methods Example 8 shows the public member functions of the
TransactionParticipant interface.

1PC callback method The following method is called during a one-phase commit:

• commitOnePhase()—this method should make permanent any changes
associated with the current transaction.

2PC callback functions The following methods are called during a two-phase commit:

• prepare()—called during phase one of a two-phase commit. Before
returning, this method should write a recovery log to persistent storage.
The recovery log should contain whatever data would be necessary to
restore the system to a consistent state, in the event that the server
crashes before the transaction is finished.

Example 8: The TransactionParticipant Interface

// Java
package com.iona.jbus.transaction;

import com.iona.jbus.BusException;

public interface TransactionParticipant
{
 void commitOnePhase() throws BusException;

 VoteOutcome prepare();

 void commit();

 void rollback();

 void setTransactionManager(TransactionManager txManager);

 String preferredTransactionManager();
}

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.
 75

CHAPTER 7 | Recoverable Resources
The prepare() function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

♦ VoteOutcome.VOTE_COMMIT—vote to commit the transaction.

♦ VoteOutcome.VOTE_ROLLBACK—vote to roll back the transaction.
For example, you would return VOTE_ROLLBACK, if an error
occurred while attempting to write the recovery log.

♦ VoteOutcome.VOTE_READONLY—explicitly request not to be
included in the commit phase of the 2PC protocol.

• commit()—called during phase two of a two-phase commit, if the
transaction outcome was successful overall. The implementation of
this method should make permanent any changes associated with the
current transaction.

• rollback()—called during phase two of a two-phase commit, if the
transaction must be aborted. The implementation of this method
should undo any changes associated with the current transaction,
returning the system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following methods are relevant to this callback
behavior:

• preferredTransactionManager()—called just after the participant is
enlisted. The return value is a string that tells the transaction system
what type of transaction manager the participant requires. The
following return strings are supported:

♦ DEFAULT_TRANSACTION_TYPE—no preference; use the current
default.

♦ OTS_TRANSACTION_TYPE—prefer the OTSTransactionManager
interface (manager for CORBA OTS transactions).

♦ WSAT_TRANSACTION_TYPE—prefer the WSATTransactionManager
interface (manager for WS-AtomicTransactions).

• setTransactionManager()—called after the
preferredTransactionManager() call. The transaction system calls
setTransactionManager() to pass a transaction manager of the
76

Transaction Participants
preferred type to the participant. If the type of transaction manager
requested by the participant differs from the one currently in use, Artix
uses interposition to simulate the preferred transaction manager type.

For more details about interposition, see “Interposition” on page 79.

Enlisting a transaction participant Example 9 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 9 shows a sample implementation of an
operation, write(), which is called in the context of a transaction.

Example 9: Example of Enlisting a Transactional Participant

public void write(int value) throws Exception
{
 Bus bus = DispatchLocals.getCurrentBus();

 TransactionSystem txSystem = bus.getTransactionSystem();

 if (txSystem.withinTransaction())
 {
 TxParticipant participant = new TxParticipant(this);

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlist(participant, true);

 m_value = value;
 }
 else
 {
 System.out.println("No transaction");
 throw new BusException("Invocation not in transaction");
 }
}

 77

CHAPTER 7 | Recoverable Resources
The preceding code example can be explained as follows:

1. DispatchLocals.getCurrentBus() is a standard function that returns
a reference to the current thread’s bus instance.

2. write() requires a transaction. If it is not called in the context of a
transaction, it raises an exception back to the client.

3. The TXParticipant class is an implementation of the
TransactionParticipant interface.

4. The participant is enlisted in the transaction, ensuring that the
participant receives callbacks either to commit or rollback any
changes.

The second parameter is a boolean flag that specifies the kind of
participant:

♦ true indicates a durable participant, which participates in all
phases of the transaction.

♦ false indicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.
78

Interposition
Interposition

What is interposition? Sometimes, there can be a mismatch between the transaction API used by
the application code and the type of the underlying transaction system. For
example, imagine that you have a legacy CORBA server that manages
transactions with CORBA OTS. If you migrate this server code to a
WS-AT-based Artix service, you would obtain a mismatch between the
transaction API used by the application code (which is CORBA OTS-based)
and the underlying transaction system (which is WS-AT).

To bridge this API mismatch, Artix uses interposition. With interposition,
the Artix runtime provides the application code with an object of the
preferred type (for example, an OTSTransactionManager object), but the
object is merely a facade, whose calls are ultimately translated into a form
suitable for the underlying transaction system (for example, WS-AT).

Interposition matrix Artix supports interposition between every permutation of transaction
systems. Internally, Artix converts calls made on a specific transaction API
into a technology-neutral API. The calls are then converted from the
technology-neutral API into one of the supported transaction APIs.
 79

CHAPTER 7 | Recoverable Resources
80

CHAPTER 8

Notification
Handlers
A notification handler is an object that receives callbacks to
inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 82
 81

CHAPTER 8 | Notification Handlers
Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a
transaction. It can be used both on the server side and on the client side.
For example, you might use a notification handler to log transaction
outcomes or to synchronize other events with a transaction.

Implementing a notification
handler

To implement a notification handler, implement the
com.iona.jbus.transaction.TransactionNotificationHandler interface.

TransactionNotificationHandler
interface

Example 10 shows the TransactionNotificationHandler interface. These
methods will only be called if an appropriate notification mechanism is
available in the underlying transaction system.

Notification callback functions The following notification handler functions receive callbacks from the
transaction manager:

• commitInitiated()—informs the handler that a commit has been
initiated. This method is called before any participants are prepared.

• committed()—informs the handler that the transaction completed
successfully.

Example 10: The TransactionNotificationHandler Interface

// Java
package com.iona.jbus.transaction;

public interface TransactionNotificationHandler
{
 void commitInitiated(TransactionIdentifier transactionId);

 void committed();

 void aborted();
}

Note: WS-AT does not support this notification point.
82

Introduction to Notification Handlers
• aborted()—informs the handler that the transaction did not complete
successfully and was aborted.

Enlisting a notification handler To use a notification handler, you must enlist it with a TransactionManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 11 shows how to enlist a sample notification handler,
NotificationHandlerImpl.

Example 11: Example of Enlisting a Notification Handler

// Java
Bus bus = DispatchLocals.getCurrentBus();
TransactionSystem txSystem = bus.getTransactionSystem();

if (txSystem.withinTransaction())
{
 NotificationHandlerImpl notHandler = new

NotificationHandlerImpl;

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlistForNotification(notHandler);
}

 83

CHAPTER 8 | Notification Handlers
84

CHAPTER 9

MQ Transactions
This chapter describes how transactions are integrated with
the Artix MQ transport, which integrates with the IBM
MQ-Series product to provide a reliable message-oriented
transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 86
 85

CHAPTER 9 | MQ Transactions
Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ
transactions in your Artix applications. MQ transactions differ in several
important respects from ordinary Artix transactions, in particular:

• MQ transactions are managed by a transaction manager that is internal
to the MQ-Series product.

• MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

• You can not initiate and terminate MQ transactions on the client side
using the Artix transaction API (for example, the functions in
IT_Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is
integrated with an Artix transaction, so that an incoming message is
considered to have been processed, only if the Artix transaction completes
successfully on the server side.
86

Reliable Messaging with MQ Transactions
Oneway invocation scenario Figure 22 shows a oneway invocation scenario, where an Artix client
invokes oneway operations on an Artix server over the MQ transport with
MQ transactions enabled. Because the WSDL operations are oneway (that
is, consisting only of output messages), the MQ transport does not require a
reply queue in this scenario.

Description of oneway invocation The oneway operation invocation shown in Figure 22 is executed in the
following stages:

Figure 22: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

receiveArtix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQ
send

RequestQueue
propagation. . .

Transaction
Scope

1
2

3 4

5

Transaction Scope

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.
 87

CHAPTER 9 | MQ Transactions
Oneway client configuration To enable transactional semantics for a client that invokes oneway
operations over the MQ transport, you should define a WSDL port as shown
in Example 12.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 93).

Stage Description

Example 12: WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 ...
 </wsdl:port>
</wsdl:service>
88

Reliable Messaging with MQ Transactions
Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transactional attribute
to internal and the Delivery attribute to persistent.

Oneway server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway
invocations over the MQ transport, you should define a WSDL port as shown
in Example 13.

To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 19.

Example 13: WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 </wsdl:port>
</wsdl:service>
 89

CHAPTER 9 | MQ Transactions
Synchronous invocation scenario Figure 23 shows a synchronous invocation scenario, where an Artix client
invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that
is, consisting of output messages and input messages), the MQ transport
requires a reply queue.

Description of synchronous
invocation

The synchronous operation invocation shown in Figure 23 is executed in the
following stages:

Figure 23: Synchronous Operation Invoked Over the MQ Transport with
MQ Transactions Enabled

receive

Artix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQRequestQueue

propagation. . .

1 2 3

4

5

Transaction Scope

MQ MQReplyQueue

6

send

7
receive send

Stage Description

1 When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.
90

Reliable Messaging with MQ Transactions
Synchronous client configuration To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown
in Example 14.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 93).

6 MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mq:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

Stage Description

Example 14: WSDL Port Configuration for Synchronous Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 91

CHAPTER 9 | MQ Transactions
To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in
Example 15.

 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 ...
 </wsdl:port>
</wsdl:service>

Example 14: WSDL Port Configuration for Synchronous Client Over MQ

Example 15: WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 </wsdl:port>
</wsdl:service>
92

Reliable Messaging with MQ Transactions
To enable transactions, you must set the Transactional attribute to
internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 19.

Configuring the backout threshold You can configure the backout threshold using the runmqsc command-line
tool, which is provided as part of the MQ-Series product. To configure a
queue to use backouts, set the following MQ attributes:

• BOTHRESH—the backout threshold, which defines the maximum
number of times a message can be pushed back onto the queue.

• BOQNAME—the backout queue name. If the current backout count
equals the backout threshold, Artix puts the message onto the backout
queue whose name is given by BOQNAME.

Hence, the BOQNAME queue would contain all of the messages that have been
rolled back more than BOTHRESH times. The administrator can then manually
examine the messages stored in the BOQNAME queue and take appropriate
remedial action.

For more details about how to set MQ attributes, see your MQ-Series user
documentation.

Accessing the backout count On the server side, you can obtain the backout count for the current
message using Artix contexts. To access the current backout count, perform
the following steps:

1. Retrieve the server context identified by the
IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTES QName.

2. Cast the returned context instance to the
IT_ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutCount() function to access the current backout
count.
 93

CHAPTER 9 | MQ Transactions
For more details about programming with Artix contexts, see Developing
Artix Applications in C++.
94

Index

A
attach_thread() function

and suppressing propagation 47

B
backout count 93
backout threshold 88, 91

configuring 93
BOQNAME attribute 93
BOTHRESH attribute 93
Bus.getTransacionSystem() 36

D
Delivery attribute 89
detach_thread() function

and suppressing propagation 47

G
getBackoutCount() function 93
getTransacionSystem() 36
getTransactionManager() 37

I
interoperability

transaction propagation 44
interposition

resource for 46

M
MQ-Series

BOQNAME attribute 93
BOTHRESH attribute 93
runmqsc command-line tool 93

MQ transactions 86
backout count 93
backout threshold 88, 91, 93
Delivery attribute 89

synchronous invocation 90
Transactional attribute 89

O
oneway invocations

and MQ transactions 87
OTS Lite

limitations on using 46

R
reliable messaging

and transactions 86
runmqsc command-line tool 93

S
synchronous invocation

and MQ transactions 90

T
Transactional attribute 89
TransactionAlreadyActiveException 39
transaction contexts 44
TransactionManager 37
TransactionNotificationHandler 37
TransactionParticipant 37, 74
transaction propagation 44

suppressing, how to 47
transactions 12

compatibility with CORBA OTS 15
example 12
properties 13

TransactionSystem 36
getTransactionManager() 37

TransactionSystemUnavailableException 39

U
UsageStyle attribute 92
 95

INDEX
96

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Documentation Library

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	MQ Transactions
	Reliable Messaging with MQ Transactions

	Index

