IONA

Artix:

Artix WWSDLGen Guide

Version 4.2, March 2007

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: April 3, 2007

Contents

List of Figures
Preface

Chapter 1 Using WSDLGen
WSDLGen Architecture
Generating Code with the wsdligen Utility
Standard WSDLGen Templates
WSDLGen Configuration File

Chapter 2 Developing Basic Templates
Writing Custom Templates
Bilingual Files
Predefined Objects
Generating Java Code
Generating C++ Code

Chapter 3 Parsing WSDL

Parser Overview

Basic Parsing
The WSDL and XML Schema Models
Parsing Document/Literal Wrapped Style
Parsing RPC/Literal Style

The JWSDL Parser
Overview of the WSDL Model
Useful Java Utility Classes
JWSDL Parser Classes

The XMLBeans Parser
Overview of the XMLBeans Parser
XMLBeans Parser Classes

Index

10
12
16
18

21
22
24
29
34
41

49
50
52
53
55
57
59
60
62
65
70
71
72

79

CONTENTS

List of Figures

Figure 1: WSDLGen Code Generator Architecture
Figure 2: JWSDL Classes for Parsing a Port Type
Figure 3: Navigating the JWSDL Node Hierarchy

10
60
61

LIST OF FIGURES

Preface

What is Covered in This Book

This book describes how to use the WSDLGen command-line utility to
generate code from a WSDL contract. As well as describing the standard
WSDLGen code generating templates, the book explains how to develop
custom templates, which you can then use to generate Artix applications
implemented in either Java or C++.

Who Should Read This Book

This book is aimed primarily at Java developers and C++ developers who
are interested in using code generation to accelerate the process of
implementing Web service applications.

This book might also be of some interest to build engineers who need to
generate Makefiles and Ant build files based on the content of WSDL
contracts.

The Artix Documentation Library

For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library

../library_intro/index.htm
../library_intro/index.htm

PREFACE

In this chapter

CHAPTER 1

Using WSDLGen

This chapter explains how to use the standard templates
provided with WSDLGen to generate sample applications in

C++ and in Java.

This chapter discusses the following topics:

WSDLGen Architecture page 10
Generating Code with the wsdlgen Utility page 12
Standard WSDLGen Templates page 16
WSDLGen Configuration File page 18

CHAPTER 1 | Using WSDLGen

WSDLGen Architecture

Overview Figure 1 provides an overview of the WSDLGen code generator architecture.

Figure 1: WSDLGen Code Generator Architecture

WSDLGen Core Template
.jsb
JWSDL Model Language =—
Plug-Ins B
WSDL XMLBeans
Model

E—— —‘ \| JavaScript
= | P *‘/ Plug-In Output Files

SmartLoader

Randomizer —— |~

* .
WSDLGen core At the heart of the WSDLGen code generator are two object models that

represent the parsed contents of the WSDL contract, as follows:

® JWSDL model—a model that recognizes the standard elements of a
WSDL contract, identifying each type of WSDL element with a Java
class.

® XMLBeans model—a model that recognizes the elements of an XML
schema definition. This model is used to represent the types section of
a WSDL contract (where the parameter data types are defined).

For more details about the core parsers, see “Parser Overview” on page 50.
The WSDLGen core also provides additional utilities, as follows:

® SmartlLoad utility—provides the capability to load template files from a
well-known location (a search path for SmartLoad can be specified in
the WSDLGen configuration file).

10

Language plug-ins

JavaScript plug-in

Standard templates

Custom templates

WSDLGen Architecture

® Randomizer utility—can be used to generate random parameter data.
This is useful for generating sample application code.

The WSDLGen architecture has been designed so that it is possible to
support additional template languages by adding a plug-in to the core.
Currently, WSDLGen supports only the JavaScript language.

JavaScript (also known as ECMAScript) is an object-based scripting
language that has a syntax similar to C or Java. Unlike object-oriented
languages, however, JavaScript is not a strongly-typed language.

The JavaScript plug-in enables you to write code-generating templates in the
JavaScript language. The choice of JavaScript as the template language has
no impact on the choice of generated language: you can use JavaScript
templates to generate code in C++, Java or any other language.

WSDLGen provides a standard suite of templates that take a WSDL contract
and generate a sample Artix application in C++ or Java based on the
interfaces defined in the contract.

It is also possible for you to develop your own custom templates. An easy
way to get started with developing custom templates is to take one of the
standard WSDLGen templates and modify it for your own requirements—
see “Developing Basic Templates” on page 21 for details.

11

CHAPTER 1 | Using WSDLGen

Generating Code with the wsdlgen Utility

Syntax of wsdigen

12

The wsdlgen command-line utility has the following syntax:

wsdlgen [-T TemplateFile]* [-java JavaOption] * [-cxx C++Option] *

[-C ConfigFilel

[-D Name=Valuel * WSDLFile

Where a pair of square brackets, [1, denotes an optional part of the syntax
and the asterix character, *, implies that the preceding option can be
repeated O or more times.

You must specify the location of a valid WSDL contract file, wsprrile. You
can also supply the following options:

-T TemplateFile

-java JavaOption

-cxx C++Option

-C ConfigFile

-D Name=Value

Specifies the location of a bilingual template file,

TemplateFile, that governs code generation. This
option can be repeated, in order to generate code
from multiple templates in one invocation.

Specifies an option, Javaoption, for the generation
of Artix Java code. The following Java options are
supported: impl, server, client, plugin, all, ant.

Specifies an option, c++option, for the generation
of Artix C++ code. The following C+ + options are
supported: impl, server, client, plugin, all,
make.

Specifies the location of the WSDLGen
configuration file, configrile. If this option is not
set, wsdlgen reads the default configuration file
(located in $IT ARTIX ETC DIR%/wsdlgen.cfg On
Windows and $IT ARTIX ETC DIR/wsdlgen.cfg On
UNIX).

Specifies the value, value, of a JavaScript
property, Name. In particular, the portType property
can be set in order to specify which WSDL port
type you want to generate code for.

Generating code from a specific
template (or templates)

Variables defined at the command
line

Generating Code with the wsdlgen Utility

You can specify explicitly which templates to run, by invoking the wsdigen
utility with the -t option. For example, suppose you have a WSDL contract
file, hello world.wsdl, and you wish to generate a sample implementation
of the areeter port type. You could invoke the wsdigen utility as follows:

wsdlgen -D portType=Greeter
-T templates\cxx\ArtixCxxImplH.jsb
-T templates\cxx\ArtixCxxImplCxx.jsb
hello world.wsdl

The following JavaScript variables can be set at the command line, using
the -p option of the wsdlgen command:

® portType—Ilocal name of the port type for which code is generated.

® bindingName—Ilocal name of the binding for which code is generated.

® serviceName—Ilocal name of the service for which code is generated.

® portName—name of the port for which code is generated.

You can set the following combinations of these variables at the command

line:

® serviceName and portName—generate code for the specified service
and port.

® serviceName—generate code for the specified service and the first port
of that service.

® portType—generate code for the first service, port, and binding
associated with the specified port type.

® bindingName—generate code for the first service and port associated
with the specified binding.

® None specified—generate code for the first service and port in the
WSDL contract.

13

CHAPTER 1 | Using WSDLGen

Generating C++ code When generating C+ + code from the standard templates, it is usually
simpler to use the -cxx switch instead of the -T option. The -cxx switch
enables you to run useful template combinations with a single option. For
example, to generate a sample implementation of the creeter port type
from the hello world.wsdi file, you could invoke the wsdlgen utility as

follows:

wsdlgen -D portType=Greeter -cxx impl hello world.wsdl

The -cxx switch supports the following parameters:

impl

server

client

plugin

all

make

14

For the given portType port type (specified by the
portType property), generate the files
PortTypelImpl.h and PortTypeImpl.cxx that
implement portType. Also, generate stub code and
type files for the port type.

For the given portType, generate a file,
PortTypeServerSample.cxx, that implements the
main () function for a standalone server. Also,
generate stub code and type files for the port type.

For the given portType, generate a file,
PortTypeClientSample.cxx, that invokes all of the
operations in the portType port type. Also,
generate stub code and type files for the port type.

For the given portType, generate all of the files
required for a plug-in implementation of the server.
The resulting plug-in can then be deployed into an
Artix container (see Developing Artix Applications
in C++ for more details).

Specifying -cxx all is equivalent to specifying
-cxx impl -cxx plugin -cxx client.

Generate a Makefile for the C++ application. This
option must be used in combination with one or

more of the following options -cxx plugin, -cxx
server, -cxx client, OF -cxx all.

Generating Java code

Generating Code with the wsdlgen Utility

When generating Java code from the standard templates, it is usually
simpler to use the -java switch instead of the -T option. The -java switch
enables you to run useful template combinations with a single option. For
example, to generate a sample implementation of the creeter port type
from the hello world.wsdi file, you could invoke the wsdlgen utility as
follows:

wsdlgen -D portType=Greeter -java impl hello world.wsdl

The -java switch supports the following parameters:

impl For the given prortType port type (specified by the
portType property), generate the files
PortType.java and PortTypeImpl.java. AlsO,
generate stub code for the port type.

server For the given portType, generate a file,
PortTypeServerSample.java, that implements the
main () function for a standalone server. Also,
generate stub code for the port type.

client For the given portType, generate a file,
PortTypeClientSample.java, that invokes all of
the operations in the portType port type. Also,
generate stub code for the port type.

plugin For the given portType, generate all of the files
required for a plug-in implementation of the server.
The resulting plug-in can then be deployed into an
Artix container (see Developing Artix Applications
in Java for more details).

all Specifying -java all is equivalent to specifying
-java impl -java plugin -java client.

ant Generate an Apache Ant build file for the Java
application.

15

CHAPTER 1 | Using WSDLGen

Standard WSDLGen Templates

Overview

C+ + templates

WSDLGen provides a variety of standard templates that you can use to
generate sample application code directly from a WSDL contract. These
templates are located in the artixInstallbir/artix/Version/templates
directory.

Table 1 lists the WSDLGen templates that can be used to generate C+ +
examples.

Table 1: WSDLGen Templates for Generating C++ Code

C+ + Template File

Description

ArtixCxxActivatorCxx.jsb

Generate the implementation of a service activator class (to use in
conjunction with a container plug-in). When a service is deployed in an
Artix container, the service activator makes it possible to start and stop the
service at runtime using the it container admin utility.

ArtixCxxActivatorH.jsb

Generate the header file for the service activator class.

ArtixCxxClientMain.jsb

Generate a sample C++ client.

ArtixCxxDeployDescr.jsb

Generate an XML deployment descriptor for deploying a plug-in into the
Artix container.

ArtixCxxImplCxx.jsb

Generate an outline servant implementation for the port type specified by
the portType property.

ArtixCxxImplH. jsb

Generate the header file for the servant implementation.

ArtixCxxMakefile.jsb

Generate a sample Makefile.

ArtixCxxPlugin.jsb

Generate a sample plug-in implementation (for deploying into an Artix
container).

ArtixCxxPluginScript.jsb

Generate a script that starts an Artix container process and deploys the
plug-in into the container.

ArtixCxxServerMain.jsb

Generate a sample server main () function (for a standalone application).

16

Standard WSDLGen Templates

Table 1: WSDLGen Templates for Generating C++ Code

C++ Template File

Description

ArtixCxxStubTypes.jsb

Generate stub code for specified port type specifed by the portType
property.

Java templates

Table 2 lists the WSDLGen templates that can be used to generate Java
examples.

Table 2: WSDLGen Templates for Generating Java Code

Java Template File

Description

ArtixJavaActivator.jsb

Generate a service activator class (to use in conjunction with a container
plug-in). When a service is deployed in an Artix container, the service
activator makes it possible to start and stop the service at runtime using
the it container admin utility.

ArtixJavaAntfile.jsb

Generate a sample build.xmi file, for use with the Apache Ant build
utility.

ArtixJavaClientMain.jsb

Generate a sample Java client.

ArtixJavaDeployDescr.jsb

Generate an XML deployment descriptor for deploying a plug-in into the
Artix container.

ArtixJavaImpl.jsb

Generate an outline implementation for the port type specified by the
portType property.

ArtixJavaPluginFactory.jsb

Generate a sample plug-in factory implementation (for deploying into an
Artix container).

ArtixJavaPlugin.jsb

Generate a sample plug-in implementation (for deploying into an Artix
container).

ArtixJavaPluginScript.jsb

Generate a script that starts an Artix container process and deploys the
plug-in into the container.

ArtixJavaServerMain.jsb

Generate a server main () function (for deploying the server in standalone
mode).

ArtixJavaStubTypes.jsb

Generate stub code and type files for port type specifed by the portType
property.

17

CHAPTER 1 | Using WSDLGen

WSDLGen Configuration File

Overview

Default location

Setting JavaScript variables

18

The wsdlgen utility has its own configuration file, which is defined in XML
format. This configuration file enables you to customize WSDLGen by:

® Setting JavaScript variables.
® Setting SmartLoader paths.

The WSDLGen configuration is stored at the following default location:

ArtixInstallDir/artix/Version/etc/wsdlgen.cfg

You can initialize JavaScript variables from the WSDLGen configuration file,
as shown in Example 1.

Example 1: Setting JavaScript Variables in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
<defines>
<foo>fooValue</foo>
gl== ., ==

</defines>
</wsdlgen>

Where the defines element can contain any number of entries of the form
<VariableName>Value</VariableName>. Each configuration entry of this
form is equivalent to including the following JavaScript code at the top of
your template:

var VariableName = "Value";

WSDLGen Configuration File

Setting SmartLoader paths You can define a search path for the smart loader utility in the WSDLGen

configuration file by adding a sequence of path elements inside an enclosing
paths element, as shown in Example 2.

Example 2: Setting SmartLoader Paths in the Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
<paths>
<path>/home/fflintstone/.wsdlgen</path>
<paths>/usr/local/templates/wsdlgen</path>

<l-— .. -->
</paths>
</wsdlgen>
When searching for scripts included through the smart loader mechanism,

WSDLGen searches the directories listed in the paths element. For more
details about the smart loader utility, see “smartLoader utility” on page 33.

19

CHAPTER 1 | Using WSDLGen

20

In this chapter

CHAPTER 2

Developing Basic
Templates

This chapter provides an introduction to the subject of writing
your own templates for generating code in Java and C+ +.

This chapter discusses the following topics:

Writing Custom Templates page 22
Bilingual Files page 24
Predefined Objects page 29
Generating Java Code page 34
Generating C++ Code page 41

21

CHAPTER 2 | Developing Basic Templates

Writing Custom Templates

Overview

Running a custom template

Bilingual files

Predefined objects

22

The simplest approach to take when writing a custom template is to take
one of the WSDLGen samples and modify it to your own requirements. This
chapter aims to provide you with enough information to understand the
sample templates and to use the WSDLGen programming interfaces
effectively.

To generate code using a custom template, specify the template to the
wsdlgen utility using the -t command-line option. For example, to generate
code from a FooBar.wsdl WSDL contract file using a customTempl .jsb
custom template, you would invoke the wsdigen utility as follows from the
command line:

wsdlgen -T CustomTempl.jsb FooBar.wsdl

For more details about the wsdigen command-line syntax, see “Generating
Code with the wsdlgen Utility” on page 12.

WSDLGen templates are written in a special file format known as a
bilingual file and identified by the .qsb file suffix. The bilingual file format
enables you to freely mix the JavaScript language and the target language
together in the one file. For details, see “Bilingual Files” on page 24.

To provide you with convenient access to data and objects derived from the
WSDL contract, WSDLGen creates predefined objects in JavaScript. For
example, the wsdlModel object provides access to a complete parse tree of
the WSDL contract (using the JWSDL API).

For details, see “Predefined Objects” on page 29.

Built-in APls

Writing Custom Templates

A few different APIs are provided for writing templates, as follows:

® WSDLGen API for Artix Java—utility functions for generating Artix Java
code from WSDL.

® WSDLGen API for Artix C++—utility functions for generating Artix
C++ code from WSDL.

® WSDLGen randomizer—a random data generator, used internally by
WSDLGen to generate random parameter values.

® JWSDL APl—a WSDL parser based on the JWSDL standard. See “The
JWSDL Parser” on page 59 for details.

® XMLBeans APl—an XML schema parser. See “The XMLBeans Parser”
on page 70 for details.

23

CHAPTER 2 | Developing Basic Templates

Bilingual Files

Overview

24

The basic purpose of a JavaScript template in WSDLGen is to generate code
in a target language (such as Java or C++). Consequently, if a code
generating template was written in pure JavaScript, it would contain a large
number of print directives to produce the required target code. In practice,
this style of coding quickly leads to templates that are virtually illegible (you
might be familiar with this sort of problem in the context of
HTML-generating servlet code).

To solve this difficulty, WSDLGen introduces the concept of a bilingual file
for developing code-generating templates. The basic idea of the bilingual file
is that a set of escape sequences enable you to switch back and forth
between the generating language and the target language. Example 3 shows
a sample outline of such a bilingual file, with one section of the file
(enclosed between [*** and ***]) expressed in the target language.

Example 3: Sample Outline of a Bilingual File.

// JavaScript Bilingual File
openOutputFile (PathName)

// Put JavaScript code here...

[***

// Put TargetLanguage code here. ..

***]

closeOutputFile ()

Opening and closing the output
file

Bilingual Files

A bilingual file must be associated with an output destination. You can
specify an output file for the generated code by calling the following function
in your script (typically, at the start of the template):

openOutputFile (PathName)

Where pathname specifies the path to the generated output file. On UNIX
platforms, an alternative form of the openoutputFile () function is available,
which lets you set file permissions on the output file:

openOutputFile (PathName, Permissions)

Where permissions is a string value formatted in the same way as a
standard chmod permission string. For example, the string, u=rwx, g=rx, o=x,
would give full permissions to the owner, read and execute permissions to
the group, and execute permission to all others. For full details of the
permission string syntax, enter man chmod at the command line.

You can close the output file by calling the following function (typically, at
the end of the template):

closeOutputFile ()

The call to openoutputFile () establishes an association between the
destination file, pathname, and the blocks of generated code written in the
target language. All of the generated code is sent to the file, Pathname,
specified by the openoutputFile () function.

Note: If openoutputFile () is not called, the output is directed to
standard out by default.

25

CHAPTER 2 | Developing Basic Templates

Output text delimiters Blocks of generated code are delimited by the output text delimiters shown
in Table 3

Table 3: Character Sequences for Delimiting Output Text

Character Description
Sequence
[Beginning of a code block written in the target
language.
*xx] End of the code block written in the target language.
Escaping within output text Within the scope of the output text delimiters, you can escape back to

JavaScript using the escape characters shown in Table 4.

Table 4: Escape Characters Used in Output Text

Escape Description
Sequence

$VarName$ Substitute a JavaScript variable, varname, embedding
it in a line of output text—see “Variable escape” on
page 26.

@JavaScript Escape to a line of JavaScript—see “Line escape” on
page 27.

Variable escape Within the scope of the output text delimiters, you can substitute the value

of a JavaScript variable using the dollar sign, ¢, as an escape character. To
make the substitution, enclose the JavaScript variable name between two
dollar signs, $varNames.

For example, if intfName is a JavaScript variable that holds a WSDL port
type name, you could declare a Java class to implement this port type using
the following fragment of bilingual file.

// JavaScript Bilingual File
openOutputFile (PathName)

[***

26

Line escape

Bilingual Files

public class $intfName$Impl implements java.rmi.Remote {
***]

// More script (not shown)...
closeOutputFile ()

The implementation class name is derived by adding the tmp1 suffix to the
porty type name. For example, if generating code for the creeter port type,
$intfName$Impl would expand to GreeterImpl.

Within the scope of the output text delimiters, you can escape to a line of
JavaScript code by putting the at symbol, e, at the start of a line (as the first
non-whitespace character).

For example, the following bilingual file generates a Java function,
ListInterfaceOps (), that lists all of the operations in the current WSDL
interface.

// JavaScript Bilingual File
openOutputFile (PathName)

[***

public static void ListInterfaceOps() {
System.out.println("Operation is one of: ");
@for (var i = 0; i < numOps; i++) {

System.out.println(" Soperations[i].getName()s$S");
e}
}
}
***]
closeOutputFile ()

Unlike the variable escape mechanism, $varnames, the line escape does not
produce any output text as a side effect of its execution. While the line
enclosing a variable escape sequence, $varNames, is implicitly enclosed in a
print statement, the line escaped by the at symbol, e, is not printed.

27

CHAPTER 2 | Developing Basic Templates

Escaping the escape characters Occasionally, you might need to output the dollar, s, and at sign, e,
character literals inside the scope of an output text block. For this purpose,
WSDLGen defines the sdol1lars and sats variables, which resolve to literal
dollar, ¢, and literal at, @, inside an output text block.

For example, you could insert the ¢ and @ character literals into your output
code, as shown in the following example:

// JavaScript Bilingual File
[***
cout << "Here is a contrived example," << endl;

cout << "that shows how to get the $dollar$ and Sats$"

<< " literals into your output." << endl;
***]

28

Predefined Objects

Predefined Objects

Overview

List of predefined objects

The programming interface provided by WSDLGen includes a number of
predefined JavaScript objects. Some of these predefined objects are simple
variables (for example, intfName, containing the name of the current port
type), whilst others provide access to particular APls (for example,
wsdlModel, which provides access to the JWSDL parser API).

Table 5 shows the list of JavaScript objects predefined by WSDLGen.

Table 5: Predefined JavaScript Objects

JavaScript Object

Description

bindingName

Local part of the binding name for which code is
generated. You can set this variable when you
invoke the wsdlgen command (see “Variables
defined at the command line” on page 13).

cxxIntfName

A name derived from intfName by replacing any
dot characters, ., with underscores, . For
example, simple.simpleIntf would become
simple_simpleIntf.

cxxNamespace

The C++ namespace in which to define the
generated implementation classes. Its value is
derived from the WSDL target namespace.

cxxServiceName

A name derived from serviceName by replacing
any dot characters, ., with underscores, . For

example, simple.simpleService would become
simple simpleService.

intfName

A name derived from the port type name,
portType, by dropping the portType suffix (if any).

javaIntfName

A name derived from intfName by removing any
dot characters, ., and capitalizing the subsequent
letter. For example, simple.simpleIntf would
become simpleSimpleIntf.

29

CHAPTER 2 | Developing Basic Templates

30

Table 5: Predefined JavaScript Objects

JavaScript Object

Description

javaPackage

The Java package name in which to define the
generated implementation classes. Its value is
derived from the WSDL target namespace.

javaServiceName

A name derived from serviceName by removing
any dot characters, ., and capitalizing the
subsequent letter. For example,
simple.simpleService would become
SimpleSimpleService.

jsModel

A wrapper for the wsdiModel object.

operations[]

An array of operation objects, of
javax.wsdl.Operation type. See “JWSDL Parser
Classes” on page 65 for details.

parametersList

[An instance of the utility class,

com. iona.wsdlgen. common. ParametersList. This
object enables you to obtain a list of parts and
faults for every WSDL operation.]

portName

Port name for which code is generated. You can
set this variable when you invoke the wsdlgen
command (see “Variables defined at the command
line” on page 13).

portType

Local part of the port type name for which code is
generated. You can set this variable when you
invoke the wsdlgen command (see “Variables
defined at the command line” on page 13).

randomizer

An instance of a WSDLGen utility that generates
random numbers. The WSDLGen templates use
this object to generate random parameters.

schemaModel

An instance of the

org.apache.xmlbeans . SchemaTypeLoader class,
which provides access to an XML schema parser.
See “The XMLBeans Parser” on page 70 for
details.

WSDL and schema models

operations[] array

Predefined Objects

Table 5: Predefined JavaScript Objects

JavaScript Object Description

smartLoader An instance of a WSDLGen utility that imports
JavaScript or bilingual files from a well-known
location. The search path for the smart loader can
be specified in the WSDLGen configuration file.

serviceName Local part of the service name for which code is
generated. You can set this variable when you
invoke the wsdlgen command (see “Variables
defined at the command line” on page 13).

tns The namespace of the port type, binding, and
service elements. Specifically, this variable
contains the value of the targetNamespace
attribute from the definitions element in the
WSDL contract.

wsdlModel An instance of the javax.wsdl.Definition class,
which provides access to a JWSDL parser. See
“Parsing WSDL” on page 49 for details.

wsdlFile The location of the WSDL contract file.

The following objects represent the roots of the WSDL model and the XML
schema model respectively:

® wsdlModel

hd schemaModel

These parser objects provide a complete model of the WSDL elements and
XML schema types defined in the WSDL contract. Typically, it is not
necessary to use these APIs in a basic template. For more advanced
applications, however, see “Parsing WSDL" on page 49 for details about the
parser APIs.

An array of operation objects representing all of the operations in the
portType port type. The operation objects are instances of
javax.wsdl.Operation, Which is part of the JWSDL API.

31

CHAPTER 2 | Developing Basic Templates

parametersList object

32

For example, you can print out the names of all the operations in the
portType port type as follows:

// JavaScript Bilingual File

for (var i=0; i < operations.length; i++) {
[***
System.out.println("Operation["+i+"] name = "
+ Soperations[i] .getName () $
)i

***]

}

For more details about the javax.wsdl.operation class, see “JWSDL
Parser Classes” on page 65.

The parametersList object provides a method, getPartsandraults (), that
provides access to all of the message parts and faults associated with a
particular WSDL operation.

For example, to obtain the parts and faults associated with the ith operation
of the current WSDL interface, make the following JavaScript call:

var partsAndFaults = parametersList.getPartsAndFaults (
portType + operations[i].getName ()
)

Where the argument to getPartsandraults() is a key, consisting of a port

type name concatenated with an operation name.

By calling partsandraults.parts () [k]—Wwhere k lies in the range o to

partsAndFaults.parts () . length—Yyou can obtain a partHolder object,

which holds the following items:

® partsAndFaults.parts() [k] .getPart ()—returns the
javax.wsdl.Part object that represents the current part.

® partsAndFaults.parts() [k] .getDirection ()—returns one of the
following direction flag values: DIRECTION IN, Or DIRECTION OUT.

smartLoader utility

Predefined Objects

By calling partsandraults. faults () [k]—Wwhere k lies in the range o to

partsAndFaults.faults () .length—Yyou can obtain a FaultHolder Object,

which holds the following items:

® partsAndFaults.faults() [k] .getName ()—returns the fault name

® partsAndFaults.faults() [k] .getParts ()—returns the array of
javax.wsdl.Part Objects contained in the fault.

The smart loader utility provides a way of including files located relative to a
well-known directory (or directories). For example, if you are implementing a
custom template, you could include the contents of the file,
CustomUtils/MyUtilities.qs, at the start of your template by calling
smartLoad () as follows:

JavaScript Bilingual File
smartLoad ("CustomUtils/MyUtilities.js") ;

Where the included file, customutils/MyUtilities.js, is located under one
of the directories listed in the paths element in the WSDLGen configuration
file. Example 4 shows an example of a configuration file that specifies two
path directories, with each directory enclosed in a path element. The
directories are searched in the order in which they appear in the
configuration file.

Example 4: Smart Loader Path in the WSDLGen Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<wsdlgen>
<paths>
<path>/home/fflintstone/.wsdlgen</path>
<path>/usr/local/templates/wsdlgen</path>
<!-- ... -->

</paths>

</wsdlgen>

33

CHAPTER 2 | Developing Basic Templates

Generating Java Code

Overview

Indentation level

Generally useful functions

This section provides a brief overview of the most important WSDLGen
functions for generating Java code. The following topics are described:

® Indentation level.

® Generally useful functions.

® Generating operation calls in a Java consumer.
® Catching fault exceptions.

® Generating operation implementations.

Some of the functions in the WSDLGen API generate multi-line output. To
give you some control over the layout of the resulting output, these functions
take an integer parameter, rndentLevel, that lets you specify the initial level
of indentation.

Table 6 summarizes the most useful general purpose functions in the
WSDLGen API for generating Java code .

Table 6: General Purpose Functions

Function

Description

namespaceToURL (URLString)

Replace every occurrence of the period character, ., with the slash
character, /, in the string, UrLString.

getJavaPackage (NS)

Maps a WSDL namespace string, ns, to a Java package name, using the
standard JAX-RPC mapping rule.

34

Example 5 shows how you might use the namespaceTourL () function in a
JavaScript bilingual file. In this example, the function is used to generate the
path to a sample client implementation.

Example 5: The namespaceToURL() Function
// JavaScript Bilingual File

openOutputFile (namespaceToURL (javaPackage) + intfName +
"ClientSample.java")

Generating operation calls in a
Java consumer

Generating Java Code

The preceding code fragment reflects the fact that it is conventional for a
Java class such as,
com.iona.hello world soap http.GreeterClientSample, to be stored at
the file location,

com/iona/hello world soap http/GreeterClientSample.java.

Table 7 summarizes the WSDLGen functions that you use to generate a
WSDL operation call in the Java language.

Table 7: Functions for Generating an Operation Call in Java

Function

Description

artixJavaOperParambDecl (
PortTypeName,
Op,
IndentLevel

)

Declare all of the parameters that are required for this operation
invocation.

artixJavaPopulateAllInParts (
PortTypeName,
Op,
IndentLevel

)

Populate each of the request parameters with random data.

artixJavaClientServerCall (
PortTypeName,
Op,
IndentLevel

)

Call the operation, op.

artixJavaPrintAllOutParts (
PortTypeName,
Op,
IndentLevel

Print out all of the returned parameters.

All of the functions in Table 7 take the same kind of arguments:

® portTypeName is the local name of the port type on which the operation
is defined;

® opisajavax.wsdl.Operation instance that represents the operation
in the WSDL model;

35

CHAPTER 2 | Developing Basic Templates

® IndentLevel specifies how many levels of indentation are applied to
the generated code.

Example 6 shows how to use the preceding functions to generate the
operation calls in a Web service client. The code iterates over every
operation in the current port type, generating code to declare and initialize
the parameters and then call the operation.

Example 6: Generating Operation Calls in Java
// JavaScript Bilingual File
for (var 1 = 0; 1 < operations.length; i++) {
[***
{
SartixJavaOperParamDecl (portType, operations[i], 3)$
SartixJavaPopulateAllInParts (portType, operations[i], 3)$
SartixJavaClientServerCall (portType, operations[i], 3)$

SartixJavaPrintAllOutParts (portType, operations[i], 4)$

***]

For example, if the preceding script is run against the hello world.wsdl
file, it generates the Java code shown in Example 7.

Example 7: Generated Operation Calls in Java

// Java

java.lang.String theResponse;
theResponse = impl.sayHi() ;
System.out.println("sayHi RECVD:") ;

System.out.println (theResponse) ;
System.out.println() ;

java.lang.String me;
java.lang.String theResponse;

36

Generating Java Code

Example 7: Generated Operation Calls in Java
me = "Curry";
theResponse = impl.greetMe (me) ;
System.out .println("greetMe RECVD:") ;

System.out .println (theResponse) ;
System.out .println() ;

Catching fault exceptions To help you generate the code for catching a fault exception, WSDLGen
provides the parametersList object, which enables you to obtain a list of
faults for any WSDL operation by calling the
parametersList .getPartsAndFaults () method. For details of how to use
the parametersList object, see “parametersList object” on page 32.

Example 8 shows an example of how to generate Java code to catch the
fault exceptions associated with the operation, operation(i].

Example 8: Generating Code to Catch a Fault Exception

// JavaScript Bilingual File

[***

@var partsAndFaults =
parametersList.getPartsAndFaults (

portType + operations[i] .getName ()
)
@if (partsAndFaults.faults().length != 0) {

try {
e}

// Code to call i’th operation (not shown)

@if (partsAndFaults.faults().length != 0) {
}
@var faults =
artixJavaGetFaultNames (partsAndFaults.faults())
@for each (fault in faults) {
catch ($fault$ ex) {
System.out .println ("Exception: $fault$ has
Occurred.") ;
ex.printStackTrace () ;
}

37

CHAPTER 2 | Developing Basic Templates

Generating operation
implementations

Example 8: Generating Code to Catch a Fault Exception

e}
e}

***]

For example, if you run the preceding script against the userfault.wsdi file,
you would obtain the Java code shown in Example 9. In Artix, the name of
the fault exception class is equal to the name of the corresponding XML
schema fault type, with the first letter uppercased.

Example 9: Generated Java Catch Clause
// Java

try {
// Code to call i’th operation (not shown)

}

catch (My exceptionType Exception ex) {
System.out.println(
"Exception: My exceptionType Exception has Occurred."
)
ex.printStackTrace() ;

Table 8 summarizes the WSDLGen functions that you use to generate an
operation implementation in the Java language.

Table 8: Functions for Generating a Java Implementation Class

Function Description
artixJavaOperSig (Return the signature of the operation, op, in the port type,
PortTypeName, PortTypeName, as it appears in the Java implementation class. If needed,
op, this function also declares the relevant fault exceptions.
IndentLevel
)

38

Generating Java Code

Table 8: Functions for Generating a Java Implementation Class

Function

Description

artixJavaPopulateAllOutParts (
PortTypeName,

Op,
IndentLevel

Generates code to populate all of the out parameters for the operation,
Op, in the port type, pPortTypeName.

Example 10 shows a fragment of a script that uses the preceding functions
to generate a Java implementation class. The script iterates over all of the
operations in the current port type, generating an implementing method for
each one.

Example 10: Generating a Java Implementation Class
// JavaScript Bilingual File
s

package $javaPackages$;

@if (isHolderTypesRequired (true) == true) {
import $javaPackages.holders.*;
e}
/**
* SjavaPackage$.$intfName$Impl
=

public class $intfName$Impl implements java.rmi.Remote {

@var numOps = operations.length
@for (var i1 = 0; i < numOps; i++) {

$artixJavaOperSig (portType, operations([i], 0, "")$ {
System.out.println("Soperations[i] .getName () $ invoked") ;
SartixJavaPopulateAllOutParts (portType, operations[i],
2)$

For example, if the preceding script is run against the hello world.wsdl
file, it generates the Java code shown in Example 11.

39

CHAPTER 2 | Developing Basic Templates

40

Example 11: Generated Java Implementation Class
package com.iona.hello world soap http;

import com.iona.hello world soap http.*;

Vadd

* com.iona.hello world soap http.GreeterImpl
*/

public class GreeterImpl implements java.rmi.Remote {

public java.lang.String sayHi() {
System.out .println("sayHi invoked") ;
java.lang.String theResponse = new java.lang.String() ;
theResponse = "Curry";
return theResponse;

public java.lang.String greetMe (java.lang.String me) {
System.out .println("greetMe invoked") ;
java.lang.String theResponse = new java.lang.String() ;
theResponse = "Wsdlgen";
return theResponse;

Generating C++ Code

Generating C+ + Code

Overview

Generating operation calls in a
C++ consumer

This section provides a brief overview of the most important WSDLGen
functions for generating C++ code. The following topics are described:

Generating operation calls in a C++ consumer.
Functions for generating C++ implementations.
Generating an implementation header.
Generating a C+ + implementation class.

Table 9 summarizes the WSDLGen functions that you use to generate a
WSDL operation call in the C++ language.

Table 9: Functions for Generating an Operation Call in C++

Function

Description

artixCxxOperParamDecl (
PortTypeName,
Op,
IndentLevel

)

Declare all of the parameters required for this operation invocation.

artixCxxOperParamPopulate (
PortTypeName,
Op,
IndentLevel,
IgnoreDirection,
Print

Populate each of the request parameters with random data. The
IgnoreDirection parameter indicates which of the parameters should
not be initialized. It can take either of the following values:

® DIRECTION ouT—appropriate for consumer code, or

® DIRECTION IN—appropriate for implementation code.
The print parameter indicates whether to generate code that prints out

the parameters. The value true means print and the value false means
do not print.

artixCxxOperParamCall (
PortTypeName,
Op

Generate the parameter list needed for calling the operation, op.

41

CHAPTER 2 | Developing Basic Templates

Most of the functions in Table 9 take the following arguments:

® portTypeName is the local name of the port type on which the operation
is defined;

® opisa javax.wsdl.Operation instance that represents the operation
in the WSDL model;

® IndentLevel Specifies how many levels of indentation are applied to
the generated code.

Example 12 shows how to use the preceding functions to generate the

operation calls in a Web service client. The code iterates over every

operation in the current port type, generating code to declare and initialize

the parameters and then call the operation.

Example 12: Generating Operation Calls in C++

// JavaScript Bilingual File

for (var 1 = 0; 1 < operations.length; i++) {
[***

{

SartixCxxOperParamDecl (portType, operations[i], 1)$
SartixCxxOperParamPopulate (portType, operations[i], 1,

DIRECTION OUT, false)$

client->Soperations [i] .getName () $ (SartixCxxOperParamCall (port
Type, operations[i])s$);

}

***]

}

For example, if the preceding script is run against the hello world.wsdl
file, it generates the C++ code shown in Example 13.

Example 13: Generated Operation Calls in C++

// Java

{

IT Bus::String theResponse;

client->sayHi (theResponse) ;

42

Generating C++ Code

Example 13: Generated Operation Calls in C++

IT Bus::String me;
IT Bus::String theResponse;

me = "Curry";

client->greetMe (me, theResponse) ;

Functions for generating C+ + Table 10 summarizes the WSDLGen functions that you use to generate an
implementations implementation class in the C++ language.

Table 10: Functions for Generating a C+ + Implementation

Function Description
artixCxxOperSig(Return the signature of the operation, op, in the port type,
Prefix, portTypeName. This function can be used in various contexts; that is,
PortTypeName, either in the header file or the C++ implementation file. The Prefix
op, string—which should be in the format cxxNamespace: : ClassName: : —
IndentLevel, allows you to prefix the function signature with the name of the
Trailing implementation class. The trailing string, Trailing, is appended to the

) end of the generated signature.

artixCxxOperImpl (Generates code to populate the out parameters of the operation, op, in
PortTypeName, the port type, portTypeName. Normally, the parameters are populated
Op, with random values. However, if you specify the echoparams flag to be
echoParams true, any parameters declared both IN and OUT will echo the incoming

) value back to the caller.

43

CHAPTER 2 | Developing Basic Templates

Generating an implementation Example 14 shows a script that uses the preceding functions to generate an
header implementation header file. The script iterates over all of the operations in
the current port type, generating a function declaration for each one.

Example 14: Generating a C++ Implementation Header
// JavaScript Bilingual File
var UpperInfName = intfName.toUpperCase ()
[***
#ifndef IT Bus $cxxNamespaces$_ $UpperInfName$IMPL INCLUDED
#define IT Bus $cxxNamespace$_$UpperInfName$IMPL INCLUDED
#include "$intfNameS$Server.h"
namespace ScxxNamespaces

{

class $intfName$Impl : public $intfName$Server
{
public:
$intfName$TImpl (IT Bus::Bus ptr bus) ;
virtual ~$intfName$Impl () ;
virtual IT Bus::Servant*

clone () const;

@var numOps = operations.length
@for (var i = 0; i < numOps; i++) {

SartixCxxOperSig("", portType, operations[i], 2, ";\n")$
e}

i
1
#endif

***]

44

Generating C++ Code

For example, if the preceding script is run against the hello world.wsdl
file, it generates the C+ + header file shown in Example 15.

Example 15: Generated C++ Implementation Header

#ifndef

IT Bus COM IONA HELLO WORLD SOAP HTTP GREETERIMPL INCLUDED

#define

IT Bus COM IONA HELLO WORLD SOAP HTTP GREETERIMPL INCLUDED

#include "GreeterServer.h"

using namespace COM IONA HELLO WORLD SOAP HTTP;

namespace COM IONA HELLO WORLD SOAP_ HTTP

{

class GreeterImpl : public GreeterServer

{

public:

I
1

GreeterImpl (
IT Bus::Bus ptr bus

) g
virtual ~GreeterImpl () ;

virtual IT Bus::Servant*
clone () const;

void
sayHi (
IT Bus::String& theResponse
) IT THROW DECL((IT Bus::Exception)) ;

void
greetMe (
const IT Bus::String& me,
IT Bus::String& theResponse
) IT THROW DECL((IT Bus::Exception)) ;

#endif //IT SIMPLE SERVICE IMPL INCLUDED

45

CHAPTER 2 | Developing Basic Templates

Generating a C++ Example 16 shows a script that uses the functions from Table 10 on

implementation class page 43 to generate a C++ implementation class. The script iterates over
all of the operations in the current port type, generating a member function
for each one.

Example 16: Generating a C++ Implementation Class

// JavaScript Bilingual File
[***

#include "S$intfName$Impl.h"
#include <it cal/cal.h>

#include <it cal/iostream.h>
#include <it bus/to string.h>

IT USING NAMESPACE_STD
using namespace S$ScxxNamespaces;

using namespace IT Bus;

SintfName$Impl: : $intfName$Impl (IT Bus::Bus ptr bus)
$int fName$Server (bus)
{

}

SintfName$Impl: : ~SintfName$Impl ()

{
}

IT Bus::Servant*
$intfName$Impl: :clone () const

{
}

***]

return new $intfName$Impl (get bus()) ;

var numOps = operations.length
for (var 1 = 0; i < numOps; i++) {
[***

SartixCxxOperSig (intfName + "Impl::", portType, operations[i],
0, ll|l)$
{

SartixCxxOperImpl (portType, operations[i], true)s

46

Generating C++ Code

Example 16: Generating a C++ Implementation Class

***]

For example, if the preceding script is run against the hello world.wsdl
file, it generates the C+ + implementation class shown in Example 17.

Example 17: Generated C++ Implementation Class

#include "GreeterImpl.h"
#include <it cal/cal.h>
#include <it cal/iostream.h>
#include <it bus/to_string.h>

IT USING NAMESPACE STD
using namespace S$cxxNamespaces;
using namespace IT Bus;
GreeterImpl: :GreeterImpl (

IT Bus::Bus ptr bus

) : GreeterServer (bus)

// complete

GreeterImpl: :~GreeterImpl ()

{
}

// complete

IT Bus::Servant*
$intfName$SImpl::clone () const

{
}

return new $intfName$Impl (get bus()) ;

void
GreeterImpl: :sayHi (
IT Bus::String& theResponse
) IT_THROW DECL((IT_ Bus::Exception))

{

theResponse = IT Bus::String("Curry");

47

48

CHAPTER 2 | Developing Basic Templates

Example 17: Generated C++ Implementation Class
1

void
GreeterImpl: :greetMe (
const IT Bus::String& me,
IT Bus::String& theResponse
) IT _THROW DECL((IT Bus::Exception))

{
}

theResponse = me;

In this chapter

CHAPTER 3

Parsing WSDL

This chapter introduces you to the subject of parsing WSDL
using the low-level APIs, JWSDL and Apache XMLBeans. The
higher-level WSDLGen AP is built on top of these basic
parsing APIs.

This chapter discusses the following topics:

Parser Overview page 50
Basic Parsing page 52
The JWSDL Parser page 59
The XMLBeans Parser page 70

49

CHAPTER 3 | Parsing WSDL

Parser Overview

Overview

JWSDL

Apache XMLBeans

Rhino

50

The parsing APIs that underly WSDLGen are taken from the following open
source products:

® WSDLA4J (reference implementation of the JWSDL standard),
® Apache XMLBeans.

These two parsers provide alternative views of the WSDL contract. The
JWSDL model is useful for parsing WSDL artifacts, such as port types,
bindings, and services. The XMLBeans model, on the other hand, is an XML
schema parser, which is more useful for parsing the XML schema types
defined in the WSDL contract.

JWSDL is a Java API for parsing WSDL contracts. This APl is being
developed under the Java Community Process, JSR 110. A copy of the
JWSDL specification and complete Javadoc for the JWSDL API can be
downloaded from the following location:

http://icp.org/en/jsr/detail?id=110

Apache XMLBeans is an open source API for parsing XML schemas. It is
useful for parsing the contents of the schema elements in a WSDL contract.
The home page for the XMLBeans project is:

http://xmlbeans.apache.org/

The complete Javadoc for XMLBeans v2.2.0 is available at the following
location:

http://xmlbeans.apache.org/docs/2.2.0/reference/index.htmi

Rhino is a Java implementation of JavaScript that includes the capability to
map Java APIs into JavaScript (the scripting Java feature). In the context of
WSDLGen, this capability of Rhino is exploited to make both the JWSDL
APl and the XMLBeans API available in JavaScript (these APIs are originally
specified in Java only).

http://jcp.org/en/jsr/detail?id=110
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/docs/2.2.0/reference/index.html

Parser Overview

Due to the strong similarity between Java syntax and JavaScript syntax, the
mapped APIs are remarkably intuitive to use from within JavaScript. For
details about how this mapping works, see:

http://www.mozilla.org/rhino/ScriptingJava.htmi

51

http://www.mozilla.org/rhino/ScriptingJava.html

CHAPTER 3 | Parsing WSDL

Basic Parsing

Overview

In this section

52

This section discusses some basic topics in parsing WSDL contracts. In
particular, you need to be aware of how the contract style (document/literal
wrapped or RPC/literal) affects how you parse a WSDL port type.

This section contains the following subsections:

The WSDL and XML Schema Models page 53
Parsing Document/Literal Wrapped Style page 55
Parsing RPC/Literal Style page 57

Basic Parsing

The WSDL and XML Schema Models

Overview

wsdlModel instance

WSDLGen enables JavaScript programs to access the JWSDL APl and the
XMLBeans API from by defining the following JavaScript objects:

® wsdlModel—the root of the JWSDL parser model.
® schemaModel—the root of the XMLBeans parser model.

These two objects are pushed into JavaScript using the Rhino
Java-to-JavaScript mapping feature.

To access the JWSDL API from within JavaScript, use the wsdiModel object,
which is an instance of the javax.wsdl.Definition class mapped to
JavaScript.

The JWSDL pefinition class represents the top level element of the WSDL
contract (see “JWSDL Parser Classes” on page 65). For example, you can
use the wsdlModel object to obtain a list of all the port types in the contract
as follows:

// JavaScript

var portTypeMap = wsdlModel.getPortTypes ()
var portTypeArr = portTypeMap.values () .toArray ()

// Iterate over the list of port types

for each (pt in portTypeArr) {
... // Do something with the port type, pt.
}

53

54

CHAPTER 3 | Parsing WSDL

schemaModel instance

To access the XMLBeans API from within JavaScript, use the schemaModel
object, which is an instance of the

org.apache . xmlbeans . SchemaTypeLoader class mapped to JavaScript.

The XMLBeans schemaTypelLoader class enables you to find the XML
schema types and elements defined within the wsdi : types element in the
WSDL contract (see “XMLBeans Parser Classes” on page 72). For example,
you can use the schemaModel object to obtain an element named
{nttp://xml.iona.com/wsdlgen/demo}testParams, as follows:

// JavaScript

var TARG NAMESPACE = "http://xml.iona.com/wsdlgen/demo"

var elQName = new javax.xml.namespace.QName (TARG NAMESPACE,
"testParams")

var el = schemaModel.findElement (elQName)

Basic Parsing

Parsing Document/Literal Wrapped Style

Overview

Characteristics of the
document/literal wrapped style

Sample WSDL contract

This subsection describes how to parse a WSDL contract that is written in
document/literal wrapped style. The document/literal wrapped style is
distinguished by the fact that it uses single part messages. Each part is
defined to be a sequence type, whose constitutent elements represent
operation parameters.

A given operation, operationName, must be defined as follows, in order to
conform to the document/literal wrapped style of interface:

Input message—the message element that represents the operat