Progress. | Artix.

Artix ESB Java Runtime Command Reference
Version 5.6, August 2011

PROGRESS

software
BUSINESS MAKING PROGRESS™

Progress Software

Publication date 12 Aug 2011

Legal Notices

These materials and all Progress software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Connect, DataDirect Connect64, DataDirect
Technologies, DataDirect XML Converters, DataDirect XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework, IntelliStream, IONA, Making Software
Work Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress,
Progress DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment Center, Progress Empowerment
Program, Progress OpenEdge, Progress Profiles, Progress Results, Progress Software Developers Network, Progress Sonic,
ProVision, PS Select, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ, Sonic Orchestration
Server, SpeedScript, Stylus Studio, Technical Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our
Technology-Experience the Connection are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio, Apama Event Manager, Apama Event
Modeler, Apama Event Store, Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making
Progress, Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource, Future Proof, GVAC, High
Performance Integration, ObjectStore Inspector, ObjectStore Performance Expert, OpenAccess, Orbacus, Pantero, POSSE,
ProDataSet, Progress Arcade, Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP Event
Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software Business Making Progress, PSE Pro,
SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder, SmartFrame,
SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic Business Integration Suite, Sonic Process Manager,
Sonic Collaboration Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or service marks of Progress Software
Corporation and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or
its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements -- See Third Party Acknowledgements on page 11.

Table of Contents

11 - oL 7
What is Covered in THhiS BOOKc.euieeieiii et e e eneaen 8
Who Should Read This BOOKuueeiiiiie ettt e e e 9
The Artix ESB Documentation Libraryc.ouiuiieiiiii e 10
Third Party ACKNOWIEAZEMENTS ... e e e e e 11
g LT 0T [T (=3P 13
L= 1= LT TV T PPN 15
[N AT PP PPPN 16
0 L2 19
D T8 2T 22
Adding BindiNgS ...cucuiiiiiiiiiiiiiiiiii et s s s s s s sttt a e e e e e e e e e et et rnrnrnnnn 25
VT o] Ao T | o TP 26
LTV L2 28
WSAIZ2IA] “COTDA ..ttt e 30
Adding ENAPOiNtscieieiiiiiiiii i r e e e e e sttt ra ittt rnrnannn 33
WSAI2Service -transport NP ..o 34
WSAI2SEIVICE ~TraNSPOIT NS L ettt e e 36
Validating W SDLuiiii it r s s s s s et e e e a e e e s e e s ea e s sasarasasasasnsnnnnnnnnensnsnsnsnen 39
WSAIVAIIAATOL ... e 40
Generating Code from WSDLcciiiiiiiiiiiiiiii i s s s s s e e e s s s s s s s rasarnsnsnsnsnsnsnns 41
(VYo] =T PP 42
LTV ST L2 T 7 44
1Y 24 1 48
(VYo] 2 1 PP 50
Generating SUPPOIt FIlesc.eeiiiiiii it r s e s s s s s s ettt nanaan 53
WSAI2C0MDA =Ml et 54

List of Examples

NO Ok WhN

. Generating WSDL From Ant ... 18
. Generating a WSDL from a Schema Using Antcoiiiiinenen. 23
. Generating a SOAP 1.2 Binding From Antcoovviiiiiiiiiiin, 27
. Generating a SOAP Binding From Ant ..o, 29
. Generating a JMS Binding From Ant ... 35
. Generating a JMS Binding From Antcocoiiiiiiiiiii, 37
. Generating a Java Code From Antccoviiiiiiiiiiee, 46

Preface

What is Covered in This Book
Who Should Read This Book
The Artix ESB Documentation

Third Party Acknowledgements

L D Y et 10

What is Covered in This Book

This book is a reference to the command line tools included with Artix ESB.

Who Should Read This Book

This book is intended for developers who use command line tools as part of
their build and development environments. However, all users of Artix ESB
can benefit from using this as a reference.

The Artix ESB Documentation Library

For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library®.

Seezthe entire documentation set at the Artix Product Documentation Web
Site

! http://documentation. progress.com/output/lona/artix/5.6/library_intro/library_intro.pdf
2 http://communities. progress.com/pcom/docs/DOC-106903

10

http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://documentation.progress.com/output/Iona/artix/5.6/library_intro/library_intro.pdf
http://communities.progress.com/pcom/docs/DOC-106903

Third Party Acknowledgements

Progress Artix ESB v5.6 incorporates Apache Commons Codec v1.2 from The
Apache Software Foundation. Such technology is subject to the following
terms and conditions: The Apache Software License, Version 1.1 - Copyright
(c) 2001-2003 The Apache Software Foundation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided
with the distribution. 3. The end-user documentation included with the
redistribution, if any, must include the following acknowledgement: "This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgement may appear in
the software itself, if and wherever such third-party acknowledgements
normally appear. 4. The names "Apache", "The Jakarta Project", "Commons",
and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For
written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", "Apache" nor may "Apache"
appear in their name without prior written permission of the Apache Software
Foundation. THIS SOFTWARE IS PROVIDED " "AS IS" AND ANY EXPRESSED
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals
on behalf of the Apache Software Foundation. For more information on the
Apache Software Foundation, please see http://www.apache.org/.

11

http://www.apache.org/

12

Progress Artix ESB v5.6 incorporates Jcraft JSCH v0.1.44 from Jcraft. Such
technology is subject to the following terms and conditions: Copyright (c)
2002-2010 Atsuhiko Yamanaka, JCraft,Inc. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the
following disclaimer. 2. Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution. 3.
The names of the authors may not be used to endorse or promote products
derived from this software without specific prior written permission. THIS
SOFTWARE IS PROVIDED " "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Prerequisites

Artix ESB Java Runtime provides a tool for setting up your environment.
To set up your environment to use Artix ESB Java Runtime do the following:

1. Run the artix_java_env script located in rnsta11pir/bin.

2. Ensure that sava HOME points to a Java 6 (or higher) JDK.

13

14

Generating WSDL

Artix provides a number of command line tools for generating WSDL.

[N AT PPN
o] 2T |
DT .Y |

15

Generating WSDL

Name

Synopsis

java2ws — generates WSDL and other artifacts from JAX-WS compliant Java
code

java2ws [[-?] | [-help] | [-h]] [-frontend { jaxws | simple }] [-databinding {
jaxb | aegis }] [-wsdlI] [-wrapperbean] [-client] [-server] [-ant] [-0 outFilel
[-s sourcepir] [-d resourcepir] [-classdir classpir] [-Cp classpath]
[-s0apl?2] [t targetNamespace] [-beans beanpath...] [-servicename
serviceName] [-portname portname] [-createxsdimports] [-v] [[-verbose] |
[-quiet]] classname

Description
java2ws takes a service endpoint implementation (SEI) and generates the
support files used to implement a Web service. java2ws can generate the
following:
* a WSDL document
* the server code needed to deploy the service as a POJO
* client code for accessing the service
* wrapper and fault beans

Arguments
The arguments used to manage the code generation process are reviewed in
the following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

-frontend {jaxws|simple}

Specifies front end to use for processing the SEI and generating the support
classes. jaxws is the default.

16

Option

Interpretation

-databinding {jaxblaegis} |Specifies the data binding used for processing the SEI and generating the support
classes. The default when using the JAX-WS front end is jaxb. The default when
using the simple frontend is aegis.

-wsdl Instructs the tool to generate a WSDL document.

-wrapperbean Instructs the tool to generate the wrapper bean and the fault beans.

-client Instructs the tool to generate client code.

-server Instructs the tool to generate server code.

-ant Instructs the tool to generate an Ant build script to compile the generated code.

-0 outFile

Specifies the name of the generated WSDL file.

-s sourceDir

Specifies the directory into which the generated source files are placed.

-d resourceDir

Specifies the directory into which the resource files are placed.

-classdir classDir

Specifies the directory into which the generated source files are compiled. If this
option is not used, the generated source is not compiled.

—-Cp classpath

Specifies the classpath searched when processing the SEI.

-soapl2

Specifies that the generated WSDL document is to include a SOAP 1.2 binding.

-t targetNamespace

Specifies the target namespace to use in the generated WSDL file.

-beans beanPath

Specifies the path used to locate the bean definition files.

-servicename serviceName

Specifies the value of the generated service element's name attribute.

—-portname portName

Specify the value of the generated port element's name attribute.

-createxsdimports Instructs the tool to generate a separate schema for the types instead of including
the types directly in the generated WSDL document.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.

-quiet Suppresses comments during the code generation process.

classname Specifies the name of the SEI class.

17

Generating WSDL

Using Ant

18

To call this tool from Ant you execute the
org.apache.cxf.tools.java2ws.JavaToWs class.

Example 1 on page 18 shows the java task to generate WSDL from an SEI.

Example 1. Generating WSDL From Ant

<java classname="org.apache.cxf.tools.java2ws.JavaToWs"
fork="true">

<arg value="-wsdl"/>

<arg value="Service.greeter"/>

<classpath>

<path refid="fsf.classpath"/>

</classpath>

</java>

Name

Synopsis

Description

Required Arguments

idl2wsd| — generates an Artix ESB Java Runtime compliant WSDL document
from a CORBA IDL file

id12wsdl [-| idl-include-dir...] [-0 output-dir] [-a corba-address]
[-b] [-f corba-address-filel [-N schema-import-filel [-S
idl-sequence-typel [-W target-namespacel [-X schema-namespace] [-t
corba-typemap-namespacel [-L logical-wsdl-filename] [-P
physical-wsdl-filename] [-T schema-filename] [-qualified] [-e
xml-encoding-typel [-MNSnamespaceMapping]l [-OW wsdloutput-rfilel
[exexcludedModules] [-pf]l [-v] [[-verbose] | [-quietl] id1

idl2wsdl supports several options that control the generation of a WSDL file
from an IDL file. The default behavior of the tool is to create WSDL file that
uses wrapped doc/literal style messages. Wrapped doc/literal style messages
have a single part, defined using an element, that wraps all of the elements
in the message.

The command has the following required arguments:

Option | Interpretation

id1 |Specifies the name of the IDL file.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-I idl-include-dir Specify a directory to be included in the search path for the IDL preprocessor.
You can use this flag multiple times.

-0 output-dir Specifies the directory into which the WSDL file is written.

19

Generating WSDL

Option

Interpretation

—-a corba-address

Specifies an absolute address through which the object reference may be accessed.
The address may be a relative or absolute path to a file, or a corbaname URL.

Specifies that bounded strings are to be treated as unbounded. This eliminates
the generation of the special types for the bounded string.

-f corba-address-file

Specifies a file containing a string representation of an object reference. The object
reference is placed in the corba:address element in the port definition of the

generated service. The file must exist when you run the IDL compiler.

-n schema-import-file

Specifies that a schema file is to be included in the generated contract by an
import statement. This option cannot be used with the -T option.

-s idl-sequence-type

Specifies the XML Schema type used to map the IDL sequence<octet> type.
Valid values are base64Binary and hexBinary. The default is base64Binary.

-w target-namespace

Specifies the namespace to use for the WSDL document's target namespace.

-x schema—-namespace

Specifies the namespace to use for the generated XML Schema's target namespace.

-t

corba-typemap-namespace

Specifies the namespace to use for the CORBA type map's target namespace.

-L logical-wsdl-filename

Specifies that the logical portion of the generated WSDL specification into is
written to l1ogical-wsdl-filename. The logical WSDL is then imported into

the default generated file.

-P physical-wsdl-filename

Specifies that the physical portion of the generated WSDL specification into is
written to physical-wsdl-filename. The physical WSDL is then imported into

the default generated file.

-T schema-filename

Specifies that the schema types are to be generated into a separate file. The
schema file is included in the generated contract using an import statement. This
option cannot be used with the -n option.

—qualified

Generates fully qualified WSDL.

—e xml-encoding-type

Specifies the value for the generated WSDL document’s xml encoding attribute.
The default is UTF-8.

—-mnsnamespaceMapping

Specifies a mapping between IDL modules and XML namespaces.

—-ow wsdloutput-file

Specifies the name of the generated WSDL file.

—exexcludeModules

Specifies one or more IDL modules to exclude when generating the WSDL file.

20

Option

Interpretation

-pf Specifies that polymorphic factory support is enabled.

-h Displays the tool's usage statement.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.

21

Generating WSDL

Name

Synopsis

Description

xsd2wsdl — generates a WSDL document containing the types defined in an
XML Schema document.

xsd2wsdl [[-?] | [-help] | [-h]] [t target-namespacel [-N wsd1-name] [-d
output-directoryl [-0 output-£ilel [-v] [[-verbose] | [-quiet]] {xsduri}

xsd2wsdl imports an XML Schema document and generates a WSDL file
containing a types element populated by the types defined in the XML
Schema document.

Required Arguments

The command has the following required arguments:

Option Interpretation

-t target-namespace|Specifies the target namespace for the generated WSDL.

xsdurl The path and name of the existing XSDSchema file.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-7 Displays the online help for this utility.
-help

-h

-n wsdl-name

Specifies the value of the generated definition element's name attribute.

-d output-directory

Specifies the directory in which the generated WSDL is placed.

-0 output-file

Specifies the name of the generated WSDL file.

22

Option

Interpretation

-v Displays the version number for the tool.
-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.

Using Ant

To call this tool from Ant you execute the
org.apache.cxf.tools.misc.XSDToWSDI.daS&

Example 2 on page 23 shows the java task to execute this command.

Example 2. Generating a WSDL from a Schema Using Ant

<java classname="org.apache.cxf.tools.misc.XSDToWSDL"
fork="true">

<arg value="-t"/>

<arg value="http://cxf.apache.org/demos"/>

<arg value="MyXSD.xsd"/>
<classpath>
<path refid="fsf.classpath"/>
</classpath>
</java>

23

24

Adding Bindings

Artix provides command line tools for adding SOAR XML, and CORBA bindings to WSDL documents.

Vo VAo T o PPN
LYY |28
LYY |2 T | oTo o - N

25

Adding Bindings

Name

Synopsis

Description

wsdl2soap — generates a WSDL document containing a valid SOAP/HTTP
endpoint definition based on a portType element.

wsdlZsoap[P?]| Phdp]l [-h]] {-i port-type-name} [-b binding-name
1[-s0apl2] [-d output-directoryl] [-0 output-file] [-n
soap-body-namespace] [-style { document | rpc }] [-use (literal/encoded)]
[-v] [[-verbose] | [-quiet]] wsdlurl

wsdl2soap will generate a new WSDL file with a SOAP binding from an
existing WSDL file containing a portType element.

Required Arguments

The command has the following required arguments:

Option

Interpretation

-1 port-type-name

Specifies the portType element for which a binding should be generated.

wsdlurl

The path and name of the WSDL file containing the portType element definition.

Optional Arguments

The command has the following optional arguments:

Option Interpretation

-2 Displays the online help for this utility.
-help

-h

-b binding-name

Specifies the name of the generated SOAP binding.

-soapl2

Specifies that the generated binding will use SOAP 1.2.

26

Option

Interpretation

-d output-directory

Specifies the directory to place generated WSDL file.

-0 output-file

Specifies the name of the generated WSDL file.

-n soap-body-namespace

Specifies the SOAP body namespace when the style is RPC.

—style(document/rpc)

Specifies the encoding style (document or RPC) to use in the SOAP binding. The
default is document.

-use (literal/encoded)

Specifies the binding use (encoded or literal) to use in the SOAP binding. The default
isliteral.

-V

Displays the version number for the tool.

-verbose

Displays comments during the code generation process.

-quiet

Suppresses comments during the code generation process.

Using Ant

If the -style rpc argument is specified, the -n soap-body-namspace
argument is also required. All other arguments are optional and may be listed
in any order.

To call this tool from Ant you execute the
org.apache.cxf.tools.misc.WSDLToSoap class.

Example 3 on page 27 shows the java task to generate a SOAP 1.2 binding.

Example 3. Generating a SOAP 1.2 Binding From Ant

<java classname="org.apache.cxf.tools.misc.WSDLToSoap"
fork="true">

<arg value="-i"/>
<arg value="greeter"/>
<arg value="-soapl2"/>

<arg value="MyWSDL.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>
</classpath>
</java>

27

Adding Bindings

Name

Synopsis

wsdl2xml — generates a WSDL document containing an XML binding based
on a portType element.

wsdleml[P?]| Phekﬂ| [-h]]1 [-i port-type-namel [-b binding-name] [-e
service-namel] [-p port-name] [-a address] [-d output-directoryl] [-0
output-rfilel [-v] [[-verbose] | [-quiet]] {wsdluri}

wsdl2xml generates an XML binding from an existing WSDL document

The arguments used to manage WSDL file generation are reviewed in the

Description

containing a portType element.
Arguments

following table.
Option Interpretation

-1 port-type-name

Specifies the portType element to use.

wsdlurl

The path and name of the existing WSDL file.

Optional Arguments

The command takes the following optional arguments:

Option Interpretation

-2 Displays the online help for this utility.
-help

-h

-b binding-name

Specifies the name of the generated XML binding.

—-e service-name

Specifies the value of the generated service element's name attribute.

28

Option

Interpretation

-p port-name

Specifies the value of the generated port element's name attribute. To specify multiple
port elements, separate the names by a space.

—-a address

Specifies the value used in the address element of the generated port element.

-d output-directory

Specifies the directory to place generated WSDL file.

-0 output-file

Specifies the name of the generated WSDL file.

-v Displays the version number for the tool.
-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.

Using Ant

To execute this tool using Ant set the java task's classname property to
org.apache.cxf.tools.misc.WSDLToXML.

Example 4 on page 29 shows the java task to execute this command.

Example 4. Generating a SOAP Binding From Ant

<java classname="org.apache.cxf.tools.misc.WSDLToXML"
fork="true">

<arg value="-i"/>

<arg value="greeter"/>

<arg value="MyWSDL.wsdl"/>
<classpath>
<path refid="artix java.classpath"/>
</classpath>
</java>

29

Adding Bindings

Name
wsdl2idl -corba — adds an Artix ESB Java Runtime CORBA binding to a

WSDL document

Synopsis
ws1d2idl {-corba} {-i portType} [-idl] [-b binding]l [-d dir] [-W wsd1out]

[-0 idlout...] [-props namespacel [-wrapped] [-a address] [-f
address-rfilel [[-quiet] | [-verbosell [-v] [-h] wsd1

Description
wsdI2idl -corba adds a Artix ESB Java Runtime CORBA binding to an existing

WSDL document. The generated WSDL file will also contain a Artix ESB Java
Runtime CORBA port with no address specified.

@ Tip

You can also generate an IDL file that corresponds to the generated
CORBA binding by using the -id1 option.

Required Arguments

The tool has the following required arguments:

Option Interpretation

-corba Specifies that the tool will generate a new WSDL file with a CORBA binding.

-i portType|Specifies the name of the interface for which the CORBA binding is generated.

wsdl Specifies the WSDL document to which the binding is added.

Optional Arguments

The tool has the following optional arguments:

Option Interpretation

-idl Specifies that an IDL file will be generated for the generated CORBA binding. You must also
use the -b flag in conjunction with this flag.

30

Option

Interpretation

-b binding Specifies the name of the generated CORBA binding.

-d dir Specifies the directory into which the new WSDL document is written.

-w wsdlOut Specifies the name of the WSDL document containing the generated CORBA binding.
-0 idlout Specifies the name of the generated IDL file.

-pProps namespace

Specifies the namespace to use for the generated CORBA typemap.

-wrapped

Specifies that the generated binding uses wrapped types.

—-a address

Specifies the value of the generated binding's corba:address element's 1ocation attribute.

-f address-file

Specifies the name of a file whose contents are to be used as the value of the generated
binding's corba:address element's 1ocation attribute.

-V

Displays the tool's version.

-h Specifies that the tool will display a detailed usage statement.
-quiet Specifies that the tool is to run in quiet mode.
-versbose Specifies that the tool is to run in verbose mode.

31

32

Adding Endpoints

Artix provides command line tools for adding endpoints to WSDL documents.

WSAI2SErvice -transpOrt NP ... e
WSAI2SEIVICE -tranSPOIT JIMS ettt e e et e e e

33

Adding Endpoints

Name

Synopsis

wsdl2service -transport http — generates a WSDL document containing a
valid HTTP endpoint definition from a binding element.

wsdl2service - transport http [[-?] | [-help] | [-h]] [-e service-namel
[-p port-name] { -n binding-name} [-a address] [-soapl2] [-0
output-filel [-d output-directoryl [-v] [[-verbose] | [-quiet]] { wsd1url

}

Description
wsdl2service -transport http creates a new WSDL file containing an HTTP
service definition from an existing WSDL document containing a binding
element.

Arguments
The arguments used to manage the WSDL file generation are reviewed in the
following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

—e service-name

Specifies the value of the generated service element's name attribute.

—-p port-name

Specifies the value of the generated port element's name attribute. To specify multiple
port elements, separate the names by a space.

—a address

Specifies the value used in the address element of the port.

-soapl2

Specifies that the SOAP version to use is 1.2.

-n binding-name

Specifies the binding used to generate the service.

-0 output-file

Specifies the name of the generated WSDL file.

34

Option

Interpretation

-d output-directory

Specifies the directory in which the generated WSDL is placed.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.
wsdlurl The path and name of the existing WSDL file.

Using Ant

To call this tool from Ant you execute the
org.apache.cxf.tools.misc.WSDLToService Cclass.

Example 5 on page 35 shows the java task to generate a HTTP binding.

Example 5. Generating a JMS Binding From Ant

<java classname="org.apache.cxf.tools.misc.WSDLToService"
fork="true">

<arg value="-transport"/>
<arg value="http"/>
<arg value="-n"/>

<arg value="JMSSoapBinding"/>

<arg value="MyWSDL.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>
</classpath>
</java>

35

Adding Endpoints

Name

Synopsis

wsdl2service -transport jms — generates a WSDL document containing a
valid JMS endpoint definition from a binding element.

wsdl2service -transport jms[ﬂ?]|[-hdp]| [-h]] [-e service-namel
[-p port-namel { -n binding-name} [[-jds (queue/topic)] | [-jpu
jndi—provider—URL]|[ﬂCfinitial—context—factory]| [-jifn
jndi—connection—factory—name]|[ﬂdn jndi—destination—name]|
[-jmt { text | binary }1 | [-jmc { true | false }1 | [-jsn
durable-subscriber-namell [-0 output—file]ﬁd output—directo:{
[-v] [[-verbose] | [-quiet]] { wsd1url }

Description
wsdl2service creates a new WSDL file containing an HTTP or JMS service
definition from an existing WSDL document containing a binding element.

Arguments
The arguments used to manage the WSDL file generation are reviewed in the
following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

—e service-name

Specifies the value of the generated service element's name attribute.

—-Pp port-name

Specifies the value of the generated port element's name attribute. To
specify multiple port elements, separate the names by a space.

—-n binding-name

Specifies the binding used to generate the service.

-jds {queue/topic}

Specifies the JMS destination style.

-jpu jndi-provider-URL

Specifies the URL of the JMS JNDI provider.

36

Option

Interpretation

-jcf initial-context-rfactory

Specifies the JMS initial context factory.

-jfn jndi-connection-factory-name

Specifies the JMS JNDI connection factory name.

-jdn jndi-destination-name

Specifies the JMS JNDI destination name.

-jmt (text/binary)

Specifies the JMS message type.

-9me (true/false)

Specifies if the MessageID is used as the correlationID.

-jsn durable-subscriber-name

Specifies an optional durable subscriber name.

-0 output-file

Specifies the name of the generated WSDL file.

-d output-directory

Specifies the directory in which the generated WSDL is placed.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.
wsdlurl The path and name of the existing WSDL file.

Using Ant

To call this tool from Ant you execute the
org.apache.cxf.tools.misc.WSDLToService class.

Example 6 on page 37 shows the java task to generate a JMS binding.

Example 6. Generating a JMS Binding From Ant

<java classname="org.apache.cxf.tools.misc.WSDLToService"
fork="true">

<arg value="-transport"/>
<arg value="jms"/>
<arg value="-n"/>
<arg value="JMSSoapBinding"/>
<arg value="MyWSDL.wsdl"/>
<classpath>
<path refid="fsf.classpath"/>
</classpath>
</java>

37

38

Validating WSDL

Artix can validate your contracts to see if they are well-formed WSDL documents. In addition, Artix can validate
your contract against the WS-I Basic Profile.

VT EYe | AVZ= 11T F= (o S 40

39

Validating WSDL

Name

Synopsis

wsdlvalidator — validates a WSDL document

wsdlvalidator [[-?] | [-help] | [-h]] [-s schema-url...] [-v] [[-verbose] |
[-quiet]] {wsd1ur1}

Description
wsdlvalidator validates whether a WSDL document is well-formed and
conforms to the WSDL schema.
Arguments
The arguments used to validate WSDL file are reviewed in the following table:
Option Interpretation

Displays the online help for this utility.

—S schema-url

Specifies the URL of a user specific schema to be included in the validation of the contract. This
switch can appear multiple times.

-V

Displays the version number for the tool.

-verbose Displays comments during the validation.
—quiet Suppresses comments during the validation.
wsdlurl The path and name of the existing WSDL file

Using Ant

40

To execute this tool using Ant set the java task's classname property to
org.apache.cxf.tools.validator.WSDLValidator

Generating Code from WSDL

Artix ESB provides a number of command line tools for generating application code from WSDL documents.

VYo] =L o PPN 42
LTV EST0 L2 T 7 44
21T 24 1 48
LTS L2 50

41

Generating Code from WSDL

Name

Synopsis

Description

Arguments

wsdlgen — generates application code based on JavaScript templates

wsdlgen [-G ApplicationTypel [-T TemplaterD...] [-C configFile] [-D
name=value...] WSDLFile

wsdlgen is a customizable code generator. Using JavaScript templates, you

can customize the implementation classes generated from a WSDL document.
The tool includes a number of standard templates that generate basic Java

code if you do not require any customization.

For more information see WSDLGen Guide'.

The arguments used to manage the code generation are reviewed in the
following table.

Option

Interpretation

-G ApplicationType

Specifies the type of application to generate. The following application type is defined
by default:

jaxws—Tfor generating JAX-WS code

-T TemplateID

Specifies the template ID that governs code generation. See Template IDs on page 43
for details.

-C ConfigFile

Specifies the location of a configuration file to be used by the code generator.

-D name=value

Specifies the value, value, of a JavaScript property, name. Typically you will use this

option to specify a value for the portType property. This instructs the code generator
the WSDL portType element for which code is to be generated.

WSDLFile

Specifies the URL of the WSDL document.

! ../wsdlgen/index.htm

42

../wsdlgen/index.htm
../wsdlgen/index.htm

Template IDs

When called with -G applicationType the -T Tempiaterp switch supports
the following template IDs:

Option |Interpretation

impl Generate the stub and skeleton code require to implement the interface defined by the specified WSDL
portType element.

server |Generate a simple main () for a standalone service that will host an implementation of the interface
defined by the specified WSDL portType element. Stub code is also generated.

client |Generate a Java class that invokes all of the operations defined by the specified WSDL portType
element. Stub code is also generated.

all For JAX-WS, generate a client and a server.

ant Generate an Apache Ant build file for a Java application.

43

Generating Code from WSDL

Name

Synopsis

wsdl2java — generates JAX-WS compliant Java code from a WSDL document

wsd12java [[-?] | [-help] | [-h]] [-fe frontend...]1[-db databinding...] [-wv
wsdlVersion...] [-p [wsdI1Namespace=]PackageName...] [-b bindingName...
1[-sn serviceName] [-d output-directory] [-catalog catalogNamel
[-compile] [-classdir compile-class-dir] [-client] [-server] [-impl] [-all]
[-ant] [-keep] [-defaultValues[=DefaultValueProviderl] [-nexclude
schema-namespace [=java-packagenamel...] [-exsh { true | false }] [-dns
{ true | false }1 [-dex { true | false }] [-wsdlLocation wsdlLocation]
[-Xjcargs] [-noAddressBinding] [-validate] [-v] [[-verbose] | [-quiet]] wsdifile

Description
wsdl2java takes a WSDL document and generates fully annotated Java code
from which to implement a service. The WSDL document must have a valid
portType element, but it does not need to contain a binding element or a
service element. Using the optional arguments you can customize the
generated code. In addition, wsdl2java can generate an Ant-based makefile
to build your application.

Arguments
The arguments used to manage the code generation process are reviewed in
the following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

—-fe frontend

Specifies the front end used by the code generator. The default
is jast.a

—-db databinding

Specifies the data binding used by the code generator. The default
is jaxb.

44

Option

Interpretation

-wv wsdlVersion

Specifies the WSDL version expected by the tool. The default is
Cc
1.1.

—p[wsleamespace=]PackageName

Specifies zero, or more, package names to use for the generated
code. Optionally specifies the WSDL namespace to package name

mapping.

-b bindingName

Specifies zero, or more, JAXWS or JAXB binding files. Use spaces
to separate multiple entries.

-sn serviceName

Specifies the name of the WSDL service for which code is to be
generated. The default is to generate code for every service in the
WSDL document.

-d output-directory

Specifies the directory into which the generated code files are
written.

-catalog catalogUrl

Specifies the URL of an XML catalog to use for resolving imported
schemas and WSDL documents.

-compile

Compiles generated Java files.

-classdir complile-class-dir

Specifies the directory into which the compiled class files are
written.

-client Generates starting point code for a client mainline.

-server Generates starting point code for a server mainline.

-impl Generates starting point code for an implementation object.

-all Generates all starting point code: types, service proxy, service
interface, server mainline, client mainline, implementation object,
and an Ant build.xml file.

-ant Generates the Ant build.xml file.

-keep Instructs the tool to not overwrite any existing files.

-defaultValues[=DefaultValueProvider]

Instructs the tool to generate default values for the generated
client and the generated implementation. Optionally, you can also
supply the name of the class used to generate the default values.
By default, the RandomvalueProvider class is used.

-nexclude

schema-namespacel =java-packagenamel

Ignore the specified WSDL schema namespace when generating
code. This option may be specified multiple times. Also, optionally
specifies the Java package name used by types described in the
excluded namespace(s).

45

Generating Code from WSDL

Option

Interpretation

-exsh (true/false)

Enables or disables processing of extended soap header message
binding. Default is false.

-dns (true/false)

Enables or disables the loading of the default namespace package
name mapping. Default is true.

-dex (true/false)

Enables or disables the loading of the default excludes namespace
mapping. Default is true.

-wsdlLocation wsdlLocation

Specifies the value of the @webservice annotation's wsdlLocation

property.

-xjcargs Specifies a comma separated list of arguments to be passed to
directly to the XJC when the JAXB data binding is being used. To
get a list of all possible XJC arguments use the -xjc-x.

-noAddressBinding Instructs the tool to use the Artix ESB proprietary WS-Addressing
type instead of the JAX-WS 2.1 compliant mapping.

-validate Instructs the tool to validate the WSDL document before
attempting to generate any code.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.

—quiet Suppresses comments during the code generation process.

wsdlfile The path and name of the WSDL file to use in generating the

code.

2Currently, Artix ESB only provides the JAX-WS front end for the code generator.
bCurrentIy, Artix ESB only provides the JAXB data binding for the code generator.
“Currently, Artix ESB only provides WSDL 1.1 support for the code generator.

Using Ant

46

To call the WSDL to Java code generator from Ant set the java task's
classname property to org.apache.cxf.tools.wsdlto.WSDLToJava.

Example 7 on page 46 shows the java task to execute this command.

Example 7. Generating a Java Code From Ant

<java classname="org.apache.cxf.tools.wsdlto.WSDLToJava"
fork="true">
<arg value="-client"/>

47

Generating Code from WSDL

Name

java2js — generates JavaScript code from a Java SEI

Synopsis

java2is [[-?] | [-help] | [-h]] [-jsutils] [-0 outFile] [-d outDir] [-beans
beanPath...][-cp classpath] [-soapl2] [-v] [[-verbose] | [-quietl] ciassname

Description
java2js takes a compiled Java SEI and generates JavaScript code from which
to implement a client that is capable of interacting with a service implementing
the service interface.

Arguments
The arguments used to manage the code generation process are reviewed in
the following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

-jsutils Instructs the tool to put the Artix ESB JavaScript utility code at the top of the generated file.

-0 outFile Specifies the name of the generated file.

-d outDir Specifies the name of the directory into which the generated file is placed.

-beans beanpPath|Specify the pathname of a file defining additional Spring beans to customize data binding
configuration.

-cp classpath |Specifies the classpath used to discover the SEI and required support files.

-soapl2 Instructs the tool to generate a SOAP 1.2 binding.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.
-quiet Suppresses comments during the code generation process.

48

Option

Interpretation

classname

Specifies the name of the SEI class.

49

Generating Code from WSDL

Name

Synopsis

wsdl2js — generates JavaScript consumer code from a WSDL document

wsd123s [[-?]1 | [-help] | [-h]] [-wv wsd1Version] [-p {wsdlNamespace
[=jsprefix]}...] [-catalog cataloguri] [-d outpir] [-validate] [-v]
[[-verbose] | [-quiet]] wsd1ur1

Description
wsld2js takes a WSDL document and generates JavaScript code from which
to implement a consumer capable of interacting with a service provider
implementing the described service. The WSDL document must have a valid
portType element, but it does not need to contain a binding element or a
service element.

Arguments
The arguments used to manage the code generation process are reviewed in
the following table.

Option Interpretation

-2 Displays the online help for this utility.

-help

-h

-wv wsdlVersion

Specifies the WSDL version the tool expects. The default is WSDL 1.1. The tool
can also use WSDL 1.2.

P

wsdlNamespacel=jsPrefix]

Specifies a mapping between the namespaces used in the WSDL document and
the prefixes used in the generated JavaScript. This argument can be used more
than once.

-catalog catalogUrl

Specifies the URL of an XML catalog to use for resolving imported schemas and
WSDL documents.

-d outDir

Specifies the directory into which the generated code is written.

-validate

Instructs the tool to validate the WSDL document before attempting to generate
any code.

50

Option

Interpretation

-v Displays the version number for the tool.

-verbose Displays comments during the code generation process.

-quiet Suppresses comments during the code generation process.

wsdlUrl Specifies the location of the WSDL document from which the code is generated.

51

52

Generating Support Files

Artix provides tools to generate a number of support files.

LYY |2 oY= T T |

53

Generating Support Files

Name

wsdl2corba -idl — generates an IDL file from a WSDL document containing
a CORBA binding

Synopsis
wsdl2corba {-idl} {-b binding} [-corbal [-i portTypel [-d dir] [-w

wsdlout] [-0 idlout...] [-props namespacel [-wrapped] [-a address] [-f
address-rfilel [[-quiet] | [-verbosell [-v] [-h] wsd1

Description
wsdl2corba -idl generates an IDL file from a WSDL document containing a

CORBA binding. In addition, the tool can be used to add a CORBA binding
to a WSDL file and generate an IDL file in one step.

Required Arguments

The tool has the following required arguments:

Option Interpretation

-idl Specifies that the tool is to generate IDL from the binding.

-b binding|Specifies the name of the CORBA binding for which the IDL file is generated.

wsdl Specifies the WSDL document to which the binding is added.

Optional Arguments

The tool has the following optional arguments:

Option Interpretation

-corba Specifies that an CORBA binding will be added to the WSDL document. You must also use
the -1 flag in conjunction with this flag.

-i portType Specifies the name of the port type for which the CORBA binding is generated.

-ddir Specifies the directory into which the new IDL file is written.

-w wsdlout Specifies the name of the WSDL document containing the generated CORBA binding.

54

Option

Interpretation

-o idlout

Specifies the name of the generated IDL file.

-props namespace

Specifies the namespace to use for the generated CORBA typemap.

-wrapped

Specifies that the generated binding uses wrapped types.

-a address

Specifies the value of the generated binding's corba:address element's 1ocation attribute.

-f address-file

Specifies the name of a file whose contents are to be used as the value of the generated
binding's corba:address element's 1ocation attribute.

-V

Displays the tool's version.

-h Specifies that the tool will display a detailed usage statement.
-quiet Specifies that the tool is to run in quiet mode.
-versbose Specifies that the tool is to run in verbose mode.

55

56

	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix ESB Documentation Library
	Third Party Acknowledgements

	Prerequisites
	Generating WSDL
	java2ws
	Synopsis
	Description
	Arguments
	Using Ant

	idl2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	xsd2wsdl
	Synopsis
	Description
	Required Arguments
	Optional Arguments
	Using Ant

	Adding Bindings
	wsdl2soap
	Synopsis
	Description
	Required Arguments
	Optional Arguments
	Using Ant

	wsdl2xml
	Synopsis
	Description
	Arguments
	Optional Arguments
	Using Ant

	wsdl2idl -corba
	Synopsis
	Description
	Required Arguments
	Optional Arguments

	Adding Endpoints
	wsdl2service -transport http
	Synopsis
	Description
	Arguments
	Using Ant

	wsdl2service -transport jms
	Synopsis
	Description
	Arguments
	Using Ant

	Validating WSDL
	wsdlvalidator
	Synopsis
	Description
	Arguments
	Using Ant

	Generating Code from WSDL
	wsdlgen
	Synopsis
	Description
	Arguments
	Template IDs

	wsdl2java
	Synopsis
	Description
	Arguments
	Using Ant

	java2js
	Synopsis
	Description
	Arguments

	wsdl2js
	Synopsis
	Description
	Arguments

	Generating Support Files
	wsdl2corba -idl
	Synopsis
	Description
	Required Arguments
	Optional Arguments

