
™

PROGRESS
®

ARTIX
WSDL Extension Reference

Version 5.6, December 2011

© 2011 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.
These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technology–Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliates in the U.S. and other countries. Java is a registered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technologies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Ant", "Xerces," "Xalan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
Lotus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:
 1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.
 4. The names "The Jakarta Project", "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.
 5. Products derived from this software may not be called "Apache", "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.
 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions: The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.
4. The names "log4j" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.
5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.
THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.
(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions: Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE IS PROVIDED AS IS AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter_AT_jdom_DOT_org> and
Brett McLaughlin <brett_AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol-
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
ware is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE IS PRO-
VIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealings in this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer. Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make sure that you read all the parts. Up until 2001,
the project was based at UC Davis, and the first part covers all code written during this time.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNMP community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under a BSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under a BSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over the years it has been in
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appears in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of California not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks Associates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: *Redistributions of source code must retain the above
copyright notice, this list of conditions and the following disclaimer.* Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks Associates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:*Redistributions of
source code must retain the above copyright notice, this list of conditions and the following
disclaimer.* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) -----Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. Use is
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) -----Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributions in binary form must repro-
duce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (c) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R&D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.* Redistributions in binary form
must reproduce the above copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R&D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSLeay v0.9.8i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES ==============
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.
 OpenSSL License ---------------
/*
==
====

 Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.
 3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

==
====
This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).
 Original SSLeay License -----------------------
Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL. This library is free for
commercial and non-commercial use as long as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright notices in
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can be in the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ̀ `AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE is a library of functions to support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied in the "doc" directory, is distributed under the same terms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mcpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following terms and conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AIX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Tables 25

List of Figures 27

Preface 29
What is Covered in this Book 29
Who Should Read this Book 29
How to Use this Book 29
The Artix Documentation Library 29

Part I Bindings

SOAP 1.1 Binding 33
Runtime Compatibility 33
soap:binding 33
soap:operation 34
soap:body 35
soap:header 37
soap:fault 38

SOAP 1.2 Binding 41
Runtime Compatibility 41
wsoap12:binding 41
wsoap12:operation 42
wsoap12:body 43
wsoap12:header 45
wsoap12:fault 46

MIME Multipart/Related Binding 49
Runtime Compatibility 49
Namespace 49
 17

CONTENTS
mime:multipartRelated 50
mime:part 50
mime:content 50

CORBA Binding and Type Map 53
CORBA Binding Extension Elements 54

Runtime Compatibility 54
C++ Runtime Namespace 54
Primitive Type Mapping 54
corba:binding 56
corba:operation 56
corba:param 57
corba:return 58
corba:raises 58

T y p e M a p E x t e n s i o n E l e m e n t s

59
corba:typeMapping 59
corba:struct 60
corba:member 60
corba:enum 61
corba:enumerator 62
corba:fixed 62
corba:union 64
corba:unionbranch 64
corba:case 65
corba:alias 66
corba:array 67
corba:sequence 68
corba:exception 69
corba:anonsequence 70
corba:anonstring 72
corba:object 73

Tuxedo FML Binding 79
Runtime Compatibility 79
Namespace 79
FML\XMLSchema Support 80
tuxedo:binding 80
tuxedo:fieldTable 80
18

CONTENTS
tuxedo:field 81
tuxedo:operation 81

Fixed Binding 83
Runtime Compatibility 83
Namespace 83
fixed:binding 83
fixed:operation 84
fixed:body 84
fixed:field 85
fixed:enumeration 88
fixed:choice 90
fixed:case 90
fixed:sequence 92

Tagged Binding 95
Runtime Compatibility 95
Namespace 95
tagged:binding 95
tagged:operation 97
tagged:body 97
tagged:field 98
tagged:enumeration 98
tagged:sequence 99
tagged:choice 101
tagged:case 102

TibrvMsg Binding 105
Runtime Compatibility 105
Namespace 105
TIBRVMSG to XMLSchema Type Mapping 106
tibrv:binding 107
tibrv:operation 108
tibrv:input 109
tibrv:output 110
tibrv:array 111
tibrv:msg 115
tibrv:field 116
 19

CONTENTS
tibrv:context 117

Chapter 9 XML Binding 119
Runtime Compatibility 119
Namespace 119
xformat:binding 120
xformat:body 120

Pass Through Binding 121
Runtime Compatibility 121
Namespace 121
tagged:binding 122

Part II Ports

HTTP Port 125
Standard WSDL Elements 126

http:address 126
soap:address 126
wsoap12:address 126

Configuration Extensions for C++ 127
Namespace 127
http-conf:client 127
http-conf:server 130

Attribute Details 133
AuthorizationType 133
Authorization 133
Accept 133
AcceptLanguage 134
AcceptEncoding 135
ContentType 135
ContentEncoding 136
Host 136
Connection 137
CacheControl 137
BrowserType 140
20

CONTENTS
Referer 140
ProxyServer 142
ProxyAuthorizationType 142
ProxyAuthorization 142
UseSecureSockets 143
RedirectURL 143
ServerCertificateChain 143

CORBA Port 145
Runtime Compatibility 145
C++ Runtime Namespace 145
corba:address 145
corba:policy 146

IIOP Tunnel Port 149
Runtime Compatibility 149
Namespace 149
iiop:address 149
iiop:payload 150
iiop:policy 151

Chapter 15 WebSphere MQ Port 153
Artix Extension Elements 154

Runtime Compatibility 154
Namespace 154
mq:client 154
mq:server 157

Attribute Details 160
Server_Client 160
AliasQueueName 161
UsageStyle 163
CorrelationStyle 164
AccessMode 165
MessagePriority 166
Delivery 166
Transactional 167
ReportOption 168
Format 170
 21

CONTENTS
Tuxedo Port 173
Runtime Compatibility 173
Namespace 173
tuxedo:server 173
tuxedo:service 174
tuxedo:input 174

JMS Port 175
C++ Runtime Extensions 176

Namespace 176
jms:address 176
jms:JMSNamingProperty 177
jms:client 178
jms:server 178

Tibco/Rendezvous Port 181
Artix Extension Elements 182

Runtime Compatibility 182
Namespace 182
tibrv:port 183

Attribute Details 187
bindingType 187
callbackLevel 187
responseDispatchTimeout 188
transportService 188
transportNetwork 188
cmTransportServerName 188
cmQueueTransportServerName 189

File Transfer Protocol Port 191
Runtime Compatibility 191
Namespace 191
ftp:port 192
ftp:properties 192
ftp:property 193
22

CONTENTS
Part III Other Extensions

Routing 197
Runtime Compatibility 197
Namespace 197
routing:expression 197
routing:route 198
routing:source 198
routing:query 199
routing:destination 199
routing:transportAttribute 200
routing:equals 201
routing:greater 202
routing:less 202
routing:startswith 203
routing:endswith 203
routing:contains 204
routing:empty 204
routing:nonempty 205
Transport Attribute Context Names 205

Security 207
Runtime Compatibility 207
Namespace 207
bus-security:security 207

Codeset Conversion 211
Runtime Compatibility 211
Namespace 211
i18n-context:client 211
i18n-context:server 212

Index 213
 23

CONTENTS
24

List of Tables

Table 1: Primitive Type Mapping for CORBA Plug-in 54

Table 2: Complex IDL Type Mappings 59

Table 3: FML Type Support 80

Table 4: Values of tuxedo:fieldTable Element’s type Attribute 81

Table 5: TIBCO to XMLSchema Type Mapping 106

Table 6: Functions Used for Specifying TibrvMsg Array Element Names 113

Table 7: Settings for http-conf:client CacheControl 137

Table 8: Settings for http-conf:server CacheControl 139

Table 9: Server_Client Attribute Settings 160

Table 10: UsageStyle Settings 163

Table 11: MQGET and MQPUT Actions 164

Table 12: Artix WebSphere MQ Access Modes 165

Table 13: TabDelivery Attribute Settings 167

Table 14: Transactional Attribute Settings 167

Table 15: ReportOption Attribute Settings 168

Table 16: FormatType Attribute Settings 170

Table 17: TIB/RV Supported Payload formats 187

Table 18: Context QNames 205
25

LIST OF TABLES
 26

List of Figures

Figure 1: MQ Remote Queues 162
27

LIST OF FIGURES
 28

Preface
What is Covered in this Book
This book is a reference to all of the Artix ESB specific WSDL extensions used
in Artix contracts.

Who Should Read this Book
This book is intended for Artix users who are familiar with Artix concepts
including:

• WSDL

• XMLSchema

• Artix interface design

In addition, this book assumes that the reader is familiar with the transports and
middleware implementations with which they are working.

How to Use this Book
This book contains the following parts:

• “Bindings”—contains descriptions for all the WSDL extensions used to

define the payload formats supported by Artix.

• “Ports”—contains descriptions for all the WSDL extensions used to define

the transports supported by Artix.

• “Other Extensions”—contains descriptions for the WSDL extensions used

by Artix to support features like routing.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library.
 29

PREFACE
 30

Part I
Bindings

In this part This part contains the following chapters:

SOAP 1.1 Binding page 33

SOAP 1.2 Binding page 41

MIME Multipart/Related Binding page 49

CORBA Binding and Type Map page 53

Tuxedo FML Binding page 79

Fixed Binding page 83

Tagged Binding page 95

TibrvMsg Binding page 105

XML Binding page 119

Pass Through Binding page 121
 31

32

CHAPTER 1

SOAP 1.1 Binding
This chapter describes the extensions used to define a SOAP 1.1
message.

Runtime Compatibility

The SOAP binding is defined by a standard set of WSDL extensors.

soap:binding

Synopsis <soap:binding style="..." transport="..." />

Description The soap:binding element specifies that the payload format to use is a SOAP
1.1 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the soap:binding element.

• style

• transport

style

The value of the style attribute within the soap:binding element acts as the
default for the style attribute within each soap:operation element. It indicates
whether request/response operations within this binding are RPC-based (that is,
messages contain parameters and return values) or document-based (that is,
messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.
 33

CHAPTER 1 | SOAP 1.1 Binding
If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within the
SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the value of
the soap:body namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in the same order
as the parameters in the operation. Each part name must match the parameter
name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as follows
if the style is RPC-based:

If document is specified, message parts within the SOAP Body element appear
directly under the SOAP Body element as body entries and do not appear inside a
wrapper element that corresponds to an operation. For example, the SOAP Body
element of a SOAP request message is as follows if the style is document-based:

transport

The transport attribute defaults to the URL that corresponds to the HTTP
binding in the W3C SOAP specification (http://schemas.xmlsoap.org/soap/http).
If you want to use another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

soap:operation

Synopsis <soap:operation style="..." soapAction="..." />

Description The soap:operation element is a child of the WSDL operation element. A
soap:operation element is used to encompass information for an operation as a
whole, in terms of input criteria, output criteria, and fault information.

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
34

Attributes The following attributes are defined within a soap:operation element:

• style

• soapAction

style

This indicates whether the relevant operation is RPC-based (that is, messages
contain parameters and return values) or document-based (that is, messages
contain one or more documents).

Valid values are rpc and document. The default value for soap:operation
style is based on the value specified for the soap:binding style attribute.

See “style” on page 33 for more details of the style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be used to
specify the intent of the SOAP message.

soap:body

Synopsis <soap:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The soap:body element in a binding is a child of the input, output, and fault
child elements of the WSDL operation element. A soap:body element is used
to provide information on how message parts are to be appear inside the body of
a SOAP message. As explained in “soap:operation” on page 34, the structure of
the SOAP Body element within a SOAP message is dependent on the setting of
the soap:operation style attribute.

Attributes The following attributes are defined within a soap:body element:

• use

• encodingStyle

• namespace

• parts

Note: This attribute is mandatory only if you want to use SOAP over HTTP.
Leave it blank if you want to use SOAP over any other transport.
 35

CHAPTER 1 | SOAP 1.1 Binding
use

This mandatory attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn might relate
to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set of
rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

• encoded

• literal

If encoded is specified, the type attribute that is specified for each message part
(within the message component of the WSDL contract) is used to reference an
abstract type defined in some remote encoding schema. In this case, a concrete
SOAP message is produced by applying encoding rules to the abstract types. The
encoding rules are based on the encoding style identified in the soap:body
encodingStyle attribute. The encoding takes as input the name and type
attribute for each message part (defined in the message component of the WSDL
contract). If the encoding style allows variation in the message format for a
given set of abstract types, the receiver of the message must ensure they can
understand all the format variations.

If literal is specified, either the element or type attribute that is specified for
each message part (within the message component of the WSDL contract) is
used to reference a concrete schema definition (defined within the types
component of the WSDL contract). If the element attribute is used to reference a
concrete schema definition, the referenced element in the SOAP message
appears directly under the SOAP Body element (if the operation style is
document-based) or under a part accessor element that has the same name as the
message part (if the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP
message becomes the schema type of the SOAP Body element (if the operation
style is documented-based) or of the part accessor element (if the operation style
is document-based).
36

encodingStyle

This attribute is used when the soap:body use attribute is set to encoded. It
specifies a list of URIs (each separated by a space) that represent encoding styles
that are to be used within the SOAP message. The URIs should be listed in
order, from the most restrictive encoding to the least restrictive.

This attribute can also be used when the soap:body use attribute is set to
literal, to indicate that a particular encoding was used to derive the concrete
format, but that only the specified variation is supported. In this case, the sender
of the SOAP message must conform exactly to the specified schema.

namespace

If the soap:operation style attribute is set to rpc, each message part within
the SOAP Body element of a SOAP message is a parameter or return value and
will appear inside a wrapper element within the SOAP Body element. The name
of the wrapper element must match the operation name. The namespace of the
wrapper element is based on the value of the soap:body namespace attribute.

parts

This attribute is a space separated list of parts from the parent input, output, or
fault element. When parts is set, only the specified parts of the message are
included in the SOAP Body element. The unlisted parts are not transmitted
unless they are placed into the SOAP header.

soap:header

Synopsis <soap:header message="..." part="..." use="..." encodingStyle="..."
namespace="..."/>

Description The soap:header element in a binding is an optional child of the input, output,
and fault elements of the WSDL operation element. A soap:header element
defines the information that is placed in a SOAP header element. You can define
any number of soap:header elements for an operation. As explained in
“soap:operation” on page 34, the structure of the SOAP header within a SOAP
message is dependent on the setting of the soap:operation element’s style
attribute.
 37

CHAPTER 1 | SOAP 1.1 Binding
Attributes The soap:header element has the following attributes.

soap:fault

Synopsis <soap:fault name="..." use="..." encodingStyle="..." />

Description The soap:fault element is a child of the WSDL fault element within an
operation component. Only one soap:fault element is defined for a particular
operation. The operation must be a request-response or solicit-response type of
operation, with both input and output elements. The soap:fault element is used
to transmit error and status information within a SOAP response message.

message Specifies the qualified name of the message from which the
contents of the SOAP header is taken.

part Specifies the name of the message part that is placed into
the SOAP header.

use Used in the same way as the use attribute within the
soap:body element. See “use” on page 36 for more details.

encodingStyle Used in the same way as the encodingStyle attribute
within the soap:body element. See “encodingStyle” on
page 37 for more details.

namespace If the soap:operation style attribute is set to rpc, each
message part within the SOAP header of a SOAP message
is a parameter or return value and will appear inside a
wrapper element within the SOAP header. The name of the
wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of
the soap:header namespace attribute.

Note: A fault message must consist of only a single message part. Also, it is
assumed that the soap:operation element’s style attribute is set to
document, because faults do not contain parameters.
38

Attributes The soap:fault element has the following attributes:

name Specifies the name of the fault. This relates back to the name
attribute for the fault element specified for the
corresponding operation within the portType component of
the WSDL contract.

use This attribute is used in the same way as the use attribute
within the soap:body element. See “use” on page 36 for
more details.

encodingStyle This attribute is used in the same way as the encodingStyle
attribute within the soap:body element. See
“encodingStyle” on page 37 for more details.
 39

CHAPTER 1 | SOAP 1.1 Binding
40

CHAPTER 2

SOAP 1.2 Binding
This chapter describes the extensions used to define a SOAP 1.2
message.

Runtime Compatibility

The SOAP 1.2 binding is defined by a standard set of WSDL extensors.

wsoap12:binding

Synopsis <wsoap12:binding style="..." transport="..." />

Description The wsoap12:binding element specifies that the payload format to use is a SOAP
1.2 message. It is a child of the WSDL binding element.

Attributes The following attributes are defined within the wsoap12:binding element.

• style

• transport

style

The value of the style attribute acts as the default for the style attribute within
each wsoap12:operation element. It indicates whether request/response
operations within this binding are RPC-based (that is, messages contain
parameters and return values) or document-based (that is, messages contain one
or more documents).

Valid values are rpc and document. The specified value determines how the
SOAP Body element within a SOAP message is structured.
 41

CHAPTER 2 | SOAP 1.2 Binding
If rpc is specified, each message part within the SOAP Body element is a
parameter or return value and will appear inside a wrapper element within the
SOAP Body element. The name of the wrapper element must match the
operation name. The namespace of the wrapper element is based on the value of
the soap:body namespace attribute. The message parts within the wrapper
element correspond to operation parameters and must appear in the same order
as the parameters in the operation. Each part name must match the parameter
name to which it corresponds.

For example, the SOAP Body element of a SOAP request message is as follows
if the style is RPC-based:

If document is specified, message parts within the SOAP Body element appear
directly under the SOAP Body element as body entries and do not appear inside a
wrapper element that corresponds to an operation. For example, the SOAP Body
element of a SOAP request message is as follows if the style is document-based:

transport

The transport attribute specifies a URL describing the SOAP transport to
which this binding corresponds. The URL that corresponds to the HTTP binding
in the W3C SOAP specification is http://schemas.xmlsoap.org/soap/http.
If you want to use another transport (for example, SMTP), modify this value as
appropriate for the transport you want to use.

wsoap12:operation

Synopsis <wsoap12:operation style="..." soapAction="..."
soapActionRequired="..."/>

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
42

Description The wsoap12:operation element is a child of the WSDL operation element. A
soap:operation element is used to encompass information for an operation as a
whole, in terms of input criteria, output criteria, and fault information.

Attributes The following attributes are defined within a wsoap12:operation element:

• style

• soapAction

• soapActionRequired

style

This indicates whether the relevant operation is RPC-based (that is, messages
contain parameters and return values) or document-based (that is, messages
contain one or more documents).

Valid values are rpc and document. The default value for the
wsoap12:operation element’s style attribute is based on the value specified
for the wsoap12:binding element’s style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant
operation. The value must take the form of the absolute URI that is to be used to
specify the intent of the SOAP message.

soapActionRequired

The soapActionRequired is a boolean that specifies if the value of the
soapAction attribute must be conveyed in the request message. When the value
of soapActionRequired is true, the soapAction attribute must be present. The
default is to true.

wsoap12:body

Synopsis <wsoap12:body use="..." encodingStyle="..." namespace="..."
parts="..." />

Description The wsoap12:body element in a binding is a child of the input, output, and fault
child elements of the WSDL operation element. A wsoap12:body element is
used to provide information on how message parts are to be appear inside the body
of a SOAP 1.2 message. As explained in “wsoap12:operation” on page 42, the

Note: This attribute is mandatory only if you want to use SOAP 1.2 over
HTTP. Leave it blank if you want to use SOAP 1.2 over any other transport.
 43

CHAPTER 2 | SOAP 1.2 Binding
structure of the SOAP Body element within a SOAP message is dependent on the
setting of the soap:operation style attribute.

Attributes The following attributes are defined within a wsoap12:body element:

• use

• encodingStyle

• namespace

• parts

use

This mandatory attribute indicates how message parts are used to denote data
types. Each message part relates to a particular data type that in turn might relate
to an abstract type definition or a concrete schema definition.

An abstract type definition is a type that is defined in some remote encoding
schema whose location is referenced in the WSDL contract via an
encodingStyle attribute. In this case, types are serialized based on the set of
rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL
contract itself, within a schema element within the types component of the
contract.

The following are valid values for the use attribute:

• literal

• encoded

If literal is specified, either the element or type attribute that is specified for
each message part (within the message component of the WSDL contract) is
used to reference a concrete schema definition (defined within the types
component of the WSDL contract). If the element attribute is used to reference a
concrete schema definition, the referenced element in the SOAP 1.2 message
appears directly under the SOAP Body element (if the operation style is
document-based) or under a part accessor element that has the same name as the
message part (if the operation style is RPC-based). If the type attribute is used to
reference a concrete schema definition, the referenced type in the SOAP 1.2
message becomes the schema type of the SOAP Body element (if the operation
style is documented-based) or of the part accessor element (if the operation style
is document-based).

Note: Artix 4.1 does not support encoded messages when using SOAP 1.2.
44

encodingStyle

This attribute is only used when the wsoap12:body element’s use attribute is set
to encoded. and the wsoap12:binding element’s style attribute is set to rpc. It
specifies the URI that represents the encoding rules that used to construct the
SOAP 1.2 message.

namespace

If the soap:operation element’s style attribute is set to rpc, each message part
within the SOAP Body element of a SOAP 1.2 message is a parameter or return
value and will appear inside a wrapper element within the SOAP Body element.
The name of the wrapper element must match the operation name. The
namespace of the wrapper element is based on the value of the soap:body
namespace attribute.

parts

This attribute is a space separated list of parts from the parent input, output, or
fault element. When the parts attribute is set, only the specified parts of the
message are included in the SOAP Body element. The unlisted parts are not
transmitted unless they are placed into the SOAP header.

wsoap12:header

Synopsis <wsoap12:header message="..." part="..." use="..."
encodingStyle="..." namespace="..."/>

Description The wsoap12:header element in a binding is an optional child of the input,
output, and fault elements of the WSDL operation element. A
wsoap12:header element defines the information that is placed in a SOAP 1.2
header element. You can define any number of wsoap12:header elements for an
operation. As explained in “wsoap12:operation” on page 42, the structure of the
header within a SOAP 1.2 message is dependent on the setting of the
wsoap12:operation element’s style attribute.

Attributes The wsoap12:header element has the following attributes.

message Specifies the qualified name of the message from which the
contents of the SOAP header is taken.

part Specifies the name of the message part that is placed into
the SOAP header.
 45

CHAPTER 2 | SOAP 1.2 Binding
wsoap12:fault

Synopsis <wsoap12:fault name="..." namespace="..." use="..."
encodingStyle="..." />

Description The wsoap12:fault element is a child of the WSDL fault element within a
WSDL operation element. The operation must have both input and output
elements. The wsoap12:fault element is used to transmit error details and status
information within a SOAP 1.2 response message.

use Used in the same way as the wsoap12:body element’s use
attribute.

encodingStyle Used in the same way as the wsoap12:body element’s
encodingStyle attribute.

namespace Specifies the namespace to be assigned to the header
element when the use attribute is set to encoded. The
header is constructed in all cases as if the wsoap12:binding
element’s style attribute had a value of document.

Note: A fault message must consist of only a single message part. Also, it is
assumed that the wsoap12:operation element’s style attribute is set to
document, because faults do not contain parameters.
46

Attributes The wsoap12:fault element has the following attributes:

name Specifies the name of the fault. This relates back to the name
attribute for the fault element specified for the
corresponding operation within the portType component of
the WSDL contract.

namespace Specifies the namespace to be assigned to the wrapper
element for the fault. This attribute is ignored if the style
attribute of either the wsoap12:binding element of the
containing binding or of the wsoap12:operation element of
the containing operation is either omitted or has a value of
document. This attribute is required if the value of the
wsoap12:binding element’s style attribute is set to rpc.

use This attribute is used in the same way as the wsoap12:body
element’s use attribute.

encodingStyle This attribute is used in the same way as the wsoap12:body
element’s encodingStyle attribute
 47

CHAPTER 2 | SOAP 1.2 Binding
48

CHAPTER 3

MIME
Multipart/Related
Binding
This chapter describes the extensions that are used to define a
SOAP message binding that contains binary data.

Runtime Compatibility

The MIME extensions are defined by a standard.

Namespace

The WSDL extensions used to define the MIME multipart/related messages are
defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed with
mime. The entry in the WSDL defintion element to set this up is shown in
Example 1.

Example 1: MIME Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 49

CHAPTER 3 | MIME Multipart/Related Binding
mime:multipartRelated

Synopsis <mime:multipartRelated>

 <mime:part ...>

 ...

 </mime:part>

 ...

</mime:multipartRelated>

Description The mime:multipartRelated element is the child of an input element or an
output element that is part of a SOAP binding. It tells Artix that the message body
is going to be a multipart message that potentially contains binary data.
mime:multipartReleated elements in Artix contain one or more mime:part
elements that describe the individual parts of the message.

mime:part

Synopsis <mime:part name="...">

 ...

</mime:part>

Description The mime:part element is the child of a mime:multipartRelated element. It is used
to define the parts of a multi-part message. The first mime:part element must
contain the soap:body element or the wsoap12:body element that would normally
appear in a SOAP binding. The remaining mime:part elements define the
attachments that are being sent in the message using a mime:content element.

Attributes The mime:part element has a single attribute called name. name is a unique string
that is used to identify the part being described.

mime:content

Synopsis <mime:content part="..." type="..." />

Description The mime:content element is the child of a mime:part element. It defines the
binary content being passed as an attachment to a SOAP message.
50

Attributes The mime:content element has the following attributes:

part Specifies the name of the WSDL part element, from the
parent message definition, that is used as the content of this
part of the MIME multipart message being placed on the
wire.

type Specifies the MIME type of the data in this message part.
MIME types are defined as a type and a subtype using the
syntax type/subtype.

There are a number of predefined MIME types such as
image/jpeg and text/plain. The MIME types are
maintained by IANA and described in the following:

• Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies

(ftp://ftp.isi.edu/in-notes/rfc2045.txt)

• Multipurpose Internet Mail Extensions (MIME) Part

Two: Media Types

(ftp://ftp.isi.edu/in-notes/rfc2046.txt).
 51

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 3 | MIME Multipart/Related Binding
52

CHAPTER 4

CORBA Binding
and Type Map
Artix CORBA support uses a combination of a WSDL binding
element and a corba:typeMapping element to unambiguously
define CORBA Messages.

In this chapter This chapter discusses the following topics:

CORBA Binding Extension Elements page 54

Type Map Extension Elements page 59
 53

CHAPTER 4 | CORBA Binding and Type Map
CORBA Binding Extension Elements

Runtime Compatibility

The CORBA binding extensions are compatible with the C++ runtime.

C++ Runtime Namespace

The WSDL extensions used for the C++ Runtime CORBA binding and the
CORBA data mappings are defined in the namespace
http://schemas.iona.com/bindings/corba. The Artix designer adds the
following namespace declaration to any contract that uses the C++ runtime
CORBA binding:

Primitive Type Mapping

Most primitive IDL types are directly mapped to primitive XML Schema types.
Table 1 lists the mappings for the supported IDL primitive types.

xmlns:corba="http://schemas.iona.com/bindings/corba"

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema
Type

CORBA Binding
Type

Artix C++ Type

Any xsd:anyType corba:any IT_Bus::AnyHolder

boolean xsd:boolean corba:boolean IT_Bus::Boolean

char xsd:byte corba:char IT_Bus::Char

wchar xsd:string corba:wchar

double xsd:double corba:double IT_Bus::Double

float xsd:float corba:float IT_Bus::Float

octet xsd:unsignedByte corba:octet IT_Bus::Octet
54

CORBA Binding Extension Elements
Unsupported types The following CORBA types are not supported:

• long double

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• Forward-declared interfaces

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time zone

offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

long xsd:int corba:long IT_Bus::Long

long long xsd:long corba:longlong IT_Bus::LongLong

short xsd:short corba:short IT_Bus::Short

string xsd:string corba:string IT_Bus::String

wstring xsd:string corba:wstring

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong

unsigned long
long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong

Object wsa:EndpointRefer
enceType

corba:object WS_Addressing::En
dpointReferenc
eType

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the
restrictions see “Unsupported time/date values” on page 55

Table 1: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema
Type

CORBA Binding
Type

Artix C++ Type
 55

CHAPTER 4 | CORBA Binding and Type Map
The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

corba:binding

Synopsis <corba:binding repositoryID="..." bases=".." />

Description The corba:binding element indicates that the binding is a CORBA binding.

Attributes This element has two attributes:

Examples For example, the following IDL:

would produce the following corba:binding:

corba:operation

Synopsis <corba:operation name="..." >

 <corba:param ... />

 ...

 <corba:return ... />

 <corba:raises ... />

repositoryID A required attribute whose value is the full type ID of the
CORBA interface. The type ID is embedded in an object’s
IOR and must conform to the format
IDL:module/interface:1.0.

bases An optional attribute whose value is the type ID of the
interface from which the interface being bound inherits.

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
56

CORBA Binding Extension Elements
</corba:operation>

Description The corba:operation element is a child element of the WSDL operation
element and describes the parts of the operation’s messages. It has one or more of
the following children:

• corba:param

• corba:return

• corba:raises

Attributes The corba:operation attribute takes a single attribute, name, which duplicates
the name given in operation.

corba:param

Synopsis <corba:param name="..." mode="..." idltype="..." />

Description The corba:param element is a child of corba:operation. Each part element of
the input and output messages specified in the logical operation, except for the
part representing the return value of the operation, must have a corresponding
corba:param element. The parameter order defined in the binding must match the
order specified in the IDL definition of the operation.

Attributes The corba:param element has the following required attributes:

mode Specifies the direction of the parameter. The values directly
correspond to the IDL directions: in, inout, out. Parameters
set to in must be included in the input message of the logical
operation. Parameters set to out must be included in the
output message of the logical operation. Parameters set to
inout must appear in both the input and output messages of
the logical operation.

idltype Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types, and corbatm:
for complex data types, which are mapped out in the
corba:typeMapping portion of the contract. See “Type Map
Extension Elements” on page 59.

name Specifies the name of the parameter as given in the name
attribute of the corresponding part element.
 57

CHAPTER 4 | CORBA Binding and Type Map
corba:return

Synopsis <corba:return name="..." idltype="..." />

Description The corba:return element is a child of corba:operation and specifies the return
type, if any, of the operation.

Attributes The corba:return element has two attributes:

corba:raises

Synopsis <corba:raises exception="..." />

Description The corba:raises element is a child of corba:operation and describes any
exceptions the operation can raise. The exceptions are defined as fault messages
in the logical definition of the operation. Each fault message must have a
corresponding corba:raises element.

Attributes The corba:raises element has one required attribute, exception, which
specifies the type of data returned in the exception.

name Specifies the name of the parameter as given in the logical
portion of the contract.

idltype Specifies the IDL type of the parameter. The type names are
prefaced with corba: for primitive IDL types and corbatm:
for complex data types which are mapped out in the
corba:typeMapping portion of the contract.
58

Type Map Extension Elements
Type Map Extension Elements

corba:typeMapping

Synopsis <corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...

</corba:typeMapping>

Description Because complex types (such as structures, arrays, and exceptions) require a more
involved mapping to resolve type ambiguity, the full mapping for a complex type
is described in a corba:typeMapping element in an Artix contract. This element
contains a type map describing the metadata required to fully describe a complex
type as a CORBA data type. This metadata may include the members of a structure,
the bounds of an array, or the legal values of an enumeration.

Attributes The corba:typeMapping element requires a targetNamespace attribute that
specifies the namespace for the elements defined by the type map.

Examples Table 2 shows the mappings from complex IDL types to Artix CORBA types.

Table 2: Complex IDL Type Mappings

IDL Type CORBA Binding Type

struct corba:struct

enum corba:enum

fixed corba:fixed

union corba:union

typedef corba:alias

array corba:array

sequence corba:sequence

exception corba:exception
 59

CHAPTER 4 | CORBA Binding and Type Map
corba:struct

Synopsis <corba:struct name="..." type="..." repositoryID="..." />

 <corba:member ... />

 ...

</corba:struct>

The corba:struct element is used to represent XMLSchema types that are
defined using complexType elements. The elements of the structure are
described by a series of corba:member elements.

Attributes A corba:struct element requires three attributes:

corba:member

Synopsis <corba:member name="..." idlType="..." />

Description The corba:member element is used to define the parts of the structure represented
by the parent element. The elements must be declared in the same order used in
the IDL representation of the CORBA type.

Attributes A corba:member requires two attributes:

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in the
type map.
60

Type Map Extension Elements
Examples For example, you may have a structure, personalInfo, similar to the one in
Example 2.

It can be represented in the CORBA type map as shown in Example 3.

The idltype corbatm:hairColorType refers to a complex type that is defined
earlier in the CORBA type map.

corba:enum

Synopsis <corba:enum name="..." type="..." repositoryID="...">

 <corba:enumerator ... />

 ...

</corba:enum>

The corba:enum element is used to represent enumerations. The values for the
enumeration are described by a series of corba:enumerator elements.

Example 2: personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

Example 3: CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>
 61

CHAPTER 4 | CORBA Binding and Type Map
Attributes A corba:enum element requires three attributes:

corba:enumerator

Synopsis <corba:enumerator value="..." />

Description The corba:enumerator element represents the values of an enumeration. The
values must be listed in the same order used in the IDL that defines the CORBA
enumeration.

Attributes A corba:enumerator element takes one attribute, value.

Examples For example, the enumeration defined in Example 2 on page 61, hairColorType,
can be represented in the CORBA type map as shown in Example 4:

corba:fixed

Synopsis <corba:fixed name="..." repositoryID="..." type="..." digits="..."
scale="..." />

Description Fixed point data types are a special case in the Artix contract mapping. A CORBA
fixed type is represented in the logical portion of the contract as the XML Schema
primitive type xsd:decimal. However, because a CORBA fixed type requires
additional information to be fully mapped to a physical CORBA data type, it must

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 4: CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>
62

Type Map Extension Elements
also be described in the CORBA type map section of an Artix contract using a
corba:fixed element.

Attributes A corba:fixed element requires five attributes:

Examples For example, the fixed type defined in Example 5, myFixed, would be described

by a type entry in the logical type description of the contract, as shown in
Example 6.

In the CORBA type map portion of the contract, it would be described by an
entry similar to Example 7. Notice that the description in the CORBA type map
includes the information needed to fully represent the characteristics of this
particular fixed data type.

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA fixed
types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed. This
corresponds to the first number in the fixed type definition.

scale The number of digits allowed after the decimal point. This
corresponds to the second number in the fixed type
definition.

Example 5: myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 6: Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>

Example 7: CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2"/>
</corba:typeMapping>
 63

CHAPTER 4 | CORBA Binding and Type Map
corba:union

Synopsis <corba:union name="..." type="..." discriminator="..."

 repositoryID="...">

 <corba:unionbranch ... />

 ...

</corba:union>

Description The corba:union element is used to resolve the relationship between a union’s
discriminator and its members. A corba:union element is required for every
CORBA union defined in an IDL contract. The members of the union are described
using a series of nested corba:unionbranch elements.

Attributes A corba:union element has four mandatory attributes:

corba:unionbranch

Synopsis <corba:unionbranch name="..." idltype="..." default="...">

 <corba:case ... />

 ...

</corba:unionbranch>

Description The corba:unionbranch element defines the members of a union. Each
corba:unionbranch except for one describing the union’s default member will
have at least one corba:case element as a child.

Attributes A corba:unionbranch element has two required attributes and one optional
attribute.

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be either a
primitive type or another complex type that is defined in the
type map.
64

Type Map Extension Elements
corba:case

Synopsis <corba:case label="..." />

Description The corba:case element defines the explicit relationship between the
discriminator’s value and the associated union member.

Attributes The corba:case element’s only attribute, label, specifies the value used to select
the union member described by the corba:unionbranch.

Examples For example consider the union, myUnion, shown in Example 8:

For example myUnion, Example 8, would be described with a CORBA type map
entry similar to that shown in Example 9.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 8: myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};

Example 9: myUnion CORBA type map

<corba:typeMapping
targetNamespace="http://schemas.iona.com/bindings/corba/typemap">

...
 <corba:union name="myUnion" type="xsd1:myUnion"

discriminator="corba:short" repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
 65

CHAPTER 4 | CORBA Binding and Type Map
corba:alias

Synopsis <corba:alias name="..." type="..." repositoryID="..." />

Description The corba:alias element is used to represent a typedef statement in an IDL
contract.

Attributes The corba:alias element has three attributes:

Examples For example, the definition of myLong in Example 10, can be described as shown

in Example 11:

 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long"

default="true"/>
 </corba:union>
</corba:typeMapping>

name The value of the name attribute from the XMLSchema
simpleType element representing the renamed type.

type The XMLSchema type for the base type.

repositoryID The fully specified repository ID for the CORBA type.

Example 10: myLong IDL

//IDL
typedef long myLong;

Example 11: myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>

Example 9: myUnion CORBA type map
66

Type Map Extension Elements
corba:array

Synopsis <corba:array name="..." repositoryID="..." type="..."
elemtype="..." bound="..." />

Description In the CORBA type map, arrays are described using a corba:array element.

Attributes A corba:array has the following required attributes:

Examples For example, consider an array, myArray, as defined in Example 12.

 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping

targetNamespace="http://schemas.iona.com/bindings/corba/typem
ap">

 <corba:alias name="myLong" type="xsd:int"
repositoryID="IDL:myLong:1.0" basetype="corba:long"/>

 </corba:typeMapping>
</definitions>

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array’s element. This type can be either
a primitive type or another complex type that is defined
within the type map.

bound The size of the array.

Example 12: myArray IDL

//IDL
typedef long myArray[10];

Example 11: myLong WSDL
 67

CHAPTER 4 | CORBA Binding and Type Map
The array myArray will have a CORBA type map description similar to the one
shown in Example 13.

corba:sequence

Synopsis <corba:sequence name="..." repositoryID="..." elemtype="..."
bound="..." />

Description The corba:sequence element represents an IDL sequence.

Attributes A corba:sequence has five required attributes.

Examples For example, consider the two sequences defined in Example 14, longSeq and
charSeq.

Example 13: myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the sequence’s elements. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

Example 14: IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;
68

Type Map Extension Elements
The sequences described in Example 14 has a CORBA type map description
similar to that shown in Example 15.

corba:exception

Synopsis <corba:exception name="..." type="..." repositoryID="...">

 <corba:member ... />

 ...

</corba:exception>

Description The corba:exception element is a child of a corba:typeMapping element. It
describes an exception in the CORBA type map. The pieces of data returned with
the exception are described by a series of corba:member elements. The elements
must be declared in the same order as in the IDL representation of the exception.

Attributes A corba:exception element has the following required attributes:

Examples For example, consider the exception idNotFound defined in Example 16.

Example 15: CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 16: idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
 69

CHAPTER 4 | CORBA Binding and Type Map
In the CORBA type map portion of the contract, idNotFound is described by an
entry similar to that shown in Example 17:

corba:anonsequence

Synopsis <corba:anonsequence name="..." bound="..." elemtype="..."
type="..." />

Description The corba:anonsequence element is used when representing recursive types.
Because XMLSchema recursion requires the use of two defined types and IDL
recursion does not, the CORBA type map uses the corba:anonsequence element
as a means of bridging the gap. When Artix generates IDL from a contract, it will
not generate new IDL types for XMLSchema types that are used in a
corba:anonsequence element.

Attributes The corba:anonsequence element has four required attributes:

Example 17: CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>

name A unique identifier used to reference the CORBA type in the
binding.

bound The size of the sequence.

elemtype The name of the CORBA type map element that defines the
contents of the sequence.

type The logical type the element represents.
70

Type Map Extension Elements
Examples Example 18 shows a recursive XMLSchema type, allAboutMe, defined using a
named type.

Example 19 shows the how Artix maps the recursive type into the CORBA type
map of an Artix contract.

Example 18: Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>

Example 19: Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:moreMe"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="xsd1:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>
 71

CHAPTER 4 | CORBA Binding and Type Map
While the XML in the CORBA typemap does not explicitly retain the recursive
nature of recursive XMLSchema types, the IDL generated from the typemap
restores the recursion in the IDL type. The IDL generated from the type map in
Example 19 defines allAboutMe using recursion. Example 20 shows the
generated IDL.

corba:anonstring

Synopsis <corba:anonstring name="..." bound="..." type="..." />

Description The corba:anonstring element is used to represent instances of anonymous
XMLSchema simple types that are derived from xsd:string. As with
corba:anonsequence elements, corba:anonstring elements do not result in
generated IDL types.

Attributes corba:anonstring elements have three attributes.

Example 20: IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};

name A unique identifier used to reference the CORBA type in the
binding.

bound The maximum length of the string.

type The XMLSchema type of the base type. Typically this is
xsd:string.
72

Type Map Extension Elements
Examples The complex type, madAttr, described in Example 21 contains a member, style,
that is an instance of an anonymous type derived from xsd:string.

madAttr would generate the CORBA typemap shown in Example 22. Notice
that style is given an IDL type defined by a corba:anonstring element.

corba:object

Synopsis <corba:object binding="..." name="..." repositoryID="..."
type="..." />

Description The corba:object element is used to represent Artix references in the CORBA
type map.

Example 21: madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style">
 <simpleType>
 <restriction base="xsd:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </element>
 <element name="gender" type="xsd:byte"/>
 </sequence>
</complexType>

Example 22: madAttr CORBA typemap

<corba:typeMapping targetNamespace="http://schemas.iona.com/anonCat/corba/typemap/">
 <corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="xsd1:madAttr">
 <corba:member idltype="ns1:styleType" name="style"/>
 <corba:member idltype="corba:char" name="gender"/>
 </corba:struct>
 <corba:anonstring bound="3" name="styleType" type="xsd:string"/>
</corba:typeMapping>
 73

CHAPTER 4 | CORBA Binding and Type Map
Attributes corba:object elements have four attributes:

Examples Example 23 shows an Artix contract fragment that uses Artix references.

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in the
schema, this attribute will be blank.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the schema,
this attribute will be Object. If the annotation is used and the
binding can be found, this attribute will be set to the name of
the interface that the binding represents.

repositoryID Specifies the repository ID of the generated IDL type. If the
annotation element is left off the reference declaration in the
schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is used
and the binding can be found, this attribute will be set to a
properly formed repository ID based on the interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 23: Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
74

Type Map Extension Elements
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>
 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>

Example 23: Reference Sample (Continued)
 75

CHAPTER 4 | CORBA Binding and Type Map
The element named account is a reference to the interface defined by the
Account port type and the find_account operation of Bank returns an element
of type account. The annotation element in the definition of account specifies
the binding, AccountCORBABinding, of the interface to which the reference
refers.

Example 24 shows the generated CORBA typemap resulting from generating
both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file. The
first CORBA object is generated from the first pass of wsdltocorba to generate
the CORBA binding for Account. Because wsdltocorba could not find the
binding specified in the annotation, it generated a generic Object reference. The

 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 23: Reference Sample (Continued)

Example 24: CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>
76

Type Map Extension Elements
second CORBA object, Account, is generated by the second pass when the
binding for Bank was generated. On that pass, wsldtocorba could inspect the
binding for the Account interface and generate a type-specific object reference.

Example 25 shows the IDL generated for the Bank interface.

Example 25: IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
 77

CHAPTER 4 | CORBA Binding and Type Map
78

CHAPTER 5

Tuxedo FML
Binding
Artix supports the use of Tuxedo’s FML buffers. It uses a set of
Artix specific elements placed in the WSDL binding element.

Runtime Compatibility

The Tuxedo FML extension elements are only compatible with the C++ runtime.

Namespace

The WSDL extensions used for the FML binding are defined in the namespace
http://schemas.iona.com/transports/tuxedo. Add the following
namespace declaration to any contracts that use an FML binding:

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 79

CHAPTER 5 | Tuxedo FML Binding
FML\XMLSchema Support

An FML buffer can only contain the data types listed in Table 3.

Due to FML limitations, support for complex types is limited to xsd:sequence
and xsd:all.

tuxedo:binding

Synopsis <tuxedo:binding />

Description The tuxedo:binding element informs Artix that the payload being described is
an FML buffer. It is a child of the WSDL binding element and has no children.

tuxedo:fieldTable

Synopsis <tuxedo:fieldTable type="...">

 <tuxedo:field ... />

 ...

</tuxedo:fieldTable>

Table 3: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string

xsd:hexBinary string
80

Description The tuxedo:fieldTable element contains the mappings between the elements
defined in the logical section of the contract and their associated FML fieldid.

Attributes The tuxedo:fieldTable element has one required attribute, type, that specifies
if the FML buffer is an FML16 buffer or an FML32 buffer. Table 4 shows the
values of the type attribute.

tuxedo:field

Synopsis <tuxedo:field name="..." id="..." />

Description The tuxedo:field element defines the association between an element in the
logical contract and its corresponding entry in the physical FML buffer. Each
element in a message, either a message part or an element in a complex type, must
have a corresponding tuxedo:field element in the FML binding.

Attributes The tuxedo:field element takes two attributes:

tuxedo:operation

Synopsis <tuxedo:operaiton />

Description The tuxedo:operation element is a child of the WSDL binding’s operation
element. It informs Artix that the messages used by the operation are being passed
as FML buffers.

Table 4: Values of tuxedo:fieldTable Element’s type Attribute

Value Meaning

FML The represented FML buffer is a FML16 buffer.

FML32 The represented FML buffer is an FML32 buffer.

name The value of the name attribute from the logical message
element to which this tuxedo:field element corresponds.

id The fieldId value of the corresponding element in the
generated C++ header defining the FML buffer.
 81

CHAPTER 5 | Tuxedo FML Binding
82

CHAPTER 6

Fixed Binding
The fixed binding supports mapping between XML Schema
message definitions and messages formatted in fixed length
records.

Runtime Compatibility

The fixed binding’s extension elements are only compatible with the C++
runtime.

Namespace

The extensions used to describe fixed record length messages are defined in the
namespace http://schemas.iona.com/bindings/fixed. Artix tools use the
prefix fixed to represent the fixed record length extensions. Add the following
line to your contract:

fixed:binding

Synopsis <fixed:binding justification="..." encoding="..."

 padHexCode="..." />

Description The fixed:binding element is a child of the WSDL binding element. It specifies
that the binding defines a mapping between fixed record length data and the
XMLSchema representation of the data.

xmlns:fixed="http://schemas.iona.com/bindings/fixed
 83

CHAPTER 6 | Fixed Binding
Attributes The fixed:binding element has three attributes:

The settings for the attributes on the fixed:binding element become the default
settings for all the messages being mapped to the current binding.

fixed:operation

Synopsis <fixed:operation discriminator="..." />

Description The fixed:operation element is a child element of the WSDL operation
element and specifies that the operation’s messages are being mapped to fixed
record length data.

Attributes The fixed:operation element has one attribute, discriminator, that assigns a
unique identifier to the operation. If your service only defines a single operation,
you do not need to provide a discriminator. However, if your operation has more
than one service, you must define a unique discriminator for each operation in the
service. Not doing so will result in unpredictable behavior when the service is
deployed.

fixed:body

Synopsis <fixed:body justification="..." encoding="..." padHexCode="...">

 ...

</fixed:body>

Description The fixed:body element is a child element of the input, output, and fault
messages being mapped to fixed record length data. It specifies that the message
body is mapped to fixed record length data on the wire and describes the exact
mapping for the message’s parts.

justification Specifies the default justification of the data contained in the
messages. Valid values are left and right. Default is left.

encoding Specifies the codeset used to encode the text data. Valid
values are any valid ISO locale or IANA codeset name.
Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad the
record.
84

The order in which the message parts are listed in the fixed:body element
represent the order in which they are placed on the wire. It does not need to
correspond to the order in which they are specified in the WSDL message
element defining the logical message.

The following child elements are used in defining how logical data is mapped to
a concrete fixed format message:

• fixed:field maps message parts defined using a simple type.

• fixed:sequence maps message parts defined using a sequence complex

type.

• fixed:choice maps message parts defined using a choice complex type.

Attributes The fixed:body element has three attributes:

fixed:field

Synopsis <fixed:field name="..." "size="..." format="..."

 justification="..." fixedValue="..." bindingOnly="...">

 <fixed:enumeration ... />

 ...

</fixed:field>

Description The fixed:field element is used to map simple data types to a field in a fixed
record length message. It is the child of a fixed:body element.

Attributes The fixed:field element has the following attributes:

Note: Complex types defined using all are not supported by the fixed
binding.

justification Specifies how the data in the messages are justified. Valid
values are left and right.

encoding Specifies the codeset used to encode text data. Valid values
are any valid ISO locale or IANA codeset name.

padHexCode Specifies the hex value of the character used to pad the
record.

name Specifies the name of the logical message part that this
element represents. It is a required attribute.
 85

CHAPTER 6 | Fixed Binding
Examples The following examples show different ways of representing data using a
fixed:field element:

• String data

• Numeric data

• Dates

• Binding only records

size Specifies the maximum number of characters in a message
part whose base type is xsd:string. Also used to specify the
number of characters in the on-wire values used to represent
the values of an enumerated type. For more information see
“fixed:enumeration” on page 88.

format Specifies how non-string data is formatted when it is placed
on the wire. For numerical data, formats are entered using #
to represent numerical fields and . to represent decimal
places. For example ##.## would be used to represent
12.04.

Also can be used for string data that is a date. Date formats
use the standard date format syntax. For example, mm/dd/yy
would represent dates such as 02/23/04 and 11/02/98.

justification Specifies the default justification of the data contained in the
field. Valid values are left and right. Default is left.

fixedValue Specifies the value to use for the represented logical
message part. The value of fixedValue is always the value
placed on the wire for the represented message part. It will
override any values set in the application code.

bindingOnly Specifies if the field appears in the logical definition of the
message. The default value is false.

When set to true, this attribute signals Artix that it needs to
insert a field into the on-wire message that does not appear
in the logical message.

bindingOnly is used in conjunction with the fixedValue
attribute. The fixedValue attribute is used to specify the
data to be written into the binding-only field.
86

String data

The logical message part, raverID, described in Example 26 would be mapped
to a fixed:field similar to Example 27.

In order to complete the mapping, you must know the length of the record field
and supply it. In this case, the field, raverID, can contain no more than twenty
characters.

Numeric data

If a field contains a 2-digit numeric value with one decimal place, it would be
described in the logical part of the contract as an xsd:float, as shown in
Example 28.

From the logical description of the message, Artix has no way of determining
that the value of rageLevel is a 2-digit number with one decimal place because
the fixed record length binding treats all data as characters. When mapping
rageLevel in the fixed binding you would specify its format with ##.#, as
shown in Example 29. This provides Artix with the metadata needed to properly
handle the data.

Example 26: Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 27: Fixed String Mapping

<fixed:field name="raverID" size="20"/>

Example 28: Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 29: Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#"/>
 87

CHAPTER 6 | Fixed Binding
Dates

Dates are specified in a similar fashion. For example, the format of the date
12/02/72 is MM/DD/YY. When using the fixed binding it is recommended that
dates are described in the logical part of the contract using xsd:string. For
example, a message containing a date would be described in the logical part of
the contract as shown in Example 30.

If goDate is entered using the standard short date format for US English locales,
mm/dd/yyyy, you would map it to a fixed record field as shown in Example 31.

Binding only records

If you were sending reports that included a fixed expiration date that you did not
want exposed to the application, you could create a binding only record called
expDate. It would be mapped to the fixed field shown in Example 32.

fixed:enumeration

Synopsis <fixed:enumeration value="..." fixedValue="..." />

Description The fixed:enumeration element is a child of a fixed:body element. It is used to
represent the possible values of an enumerated type and define how those values
are represented on the wire.

Example 30: Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Example 31: Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>

Example 32: fixedValue Mapping

<fixed:field name="goDate" bindingOnly="true"
 fixedValue="11/11/2112"/>
88

Attributes The fixed:enumeration element has two required attributes:

Examples If you had an enumerated type with the values FruityTooty, Rainbow, BerryBomb,
and OrangeTango the logical description of the type would be similar to
Example 33.

When you map the enumerated type, you need to know the concrete
representation for each of the enumerated values. The concrete representations
can be identical to the logical definitions or some other value. The enumerated
type in Example 33 could be mapped to the fixed field shown in Example 34.
Using this mapping Artix will write OT to the wire for this field if the
enumerations value is set to OrangeTango.

value Is the value of the corresponding enumeration value in the
logical description of the message part.

fixedValue Specifies the string value that will be used to represent the
logical value on the wire. The length of the string used is
determined by the value of the parent fixed:field
element’s length attribute.

Example 33: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 34: Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango" fixedValue="OT"/>
</fixed:field>
 89

CHAPTER 6 | Fixed Binding
fixed:choice

Synopsis <fixed:choice name="..." discriminatorName="...">

 <fixed:case ... >

 ...

 </fixed:case>

 ...

</fixed:choice>

Description The fixed:choice element is a child of a fixed:body element. It maps choice
complex types to a field in a fixed record length message. The actual values of the
choice are defined using fixed:case child elements. A fixed:choice element must
have a fixed:case child element for each possible value defined in the choice
complex type it represents.

Attributes The fixed:choice element has the following attributes:

fixed:case

Synopsis <fixed:case name="..." fixedValue="...">

 ...

</fixed:case>

Description The fixed:case element is a child of the fixed:choice element. It describes the
complete mapping for an element of a choice complex type to a field in a fixed
record length message.

To fully describe how the logical data that is represented by a fixed:case
element is mapped into a field in a fixed record length message, you need to
create a mapping for the logical element using children to the fixed:case
element. The child elements used to map the part’s type to the fixed message are

name Specifies the name of the logical message part the choice
element is mapping. This attribute is required.

discriminatorName Specifies the name of a binding-only field that is used as
the discriminator for the union. The binding-only field
must defined as part of the parent fixed:body element
and must be capable of representing the discriminator.
90

the same as the possible child elements of a fixed:body element. fixed:field
elements describe simple types. fixed:choice elements describe choice complex
types. fixed:sequence elements describe sequence complex types.

Attributes The fixed:case element has the following required attributes:

Examples Example 35 shows an Artix contract fragment mapping a choice complex type to
a fixed record length message.

name Specifies the value of the name attribute of the corresponding
element in the choice complex type being mapped.

fixedValue Specifies the discriminator value that selects this case. If the
parent fixed:choice element has its discriminatorName
attribute set, the value must conform to the format specified
for that field.

Example 35: Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
 91

CHAPTER 6 | Fixed Binding
fixed:sequence

Synopsis <fixed:sequence name="..." occurs="..." counterName="...">

 ...

</fixed:field>

Description The fixed:sequence element can be a child to a fixed:body element, a
fixed:case element, or another fixed:sequence element. It maps a sequence
complex type to a field in a fixed record length message.

To fully describe how the complex type that is represented by a
fixed:sequence element is mapped into a field in a fixed record length
message, you need to create a mapping for each of the complex type’s elements
using children to the fixed:sequence element. The child elements used to map
the part’s type to the fixed message are the same as the possible child elements

<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:field name="disc" format="##" bindingOnly="true"/>
 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 35: Mapping a Union to a Fixed Record Length Message
92

of a fixed:body element. fixed:field elements describe simple types. fixed:choice
elements describe choice complex types. fixed:sequence elements describe
sequence complex types.

Attributes The fixed:sequence element has the following attributes:

Examples A structure containing a name, a date, and an ID number would contain three
fixed:field elements to fully describe the mapping of the data to the fixed record
message. Example 36 shows an Artix contract fragment for such a mapping.

name Specifies the value of the name attribute from the
corresponding logical complex type. This attribute is
required.

occurs Specifies the number of times this sequence occurs in the
message buffer. This value corresponds the value of the
maxOccurs attribute of the corresponding logical complex
type.

counterName Specifies the name of the binding-only field that is used to
store the actual number of times this sequence occurs in the
on-wire message. The corresponding fixed:field element
must have enough digits to hold the any whole number up
the value of the occurs attribute.

Example 36: Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
 93

CHAPTER 6 | Fixed Binding
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

Example 36: Mapping a Sequence to a Fixed Record Length Message
94

CHAPTER 7

Tagged Binding
The tagged binding maps between XMLSchema message
definitions and self-describing, variable record length messages.

Runtime Compatibility

The tagged binding’s extension elements are only compatible with the C++
runtime.

Namespace

The extensions used to describe tagged data bindings are defined in the
namespace http://schemas.iona.com/bindings/tagged. Artix tools use the
prefix tagged to represent the tagged data extensions. Add the following line to
the definitions element of your contract:

tagged:binding

Synopsis <tagged:binding selfDescribing="..." fieldSeperator="..."

 fieldNameValueSeperator="..." scopeType="..."

 flattened="..." messageStart="..." messageEnd="..."

 unscopedArrayElement="..." ignoreUnknownElement="..."

 ignoreCase="..." />

xmlns:tagged="http://schemas.iona.com/bindings/tagged"
 95

CHAPTER 7 | Tagged Binding
Description The tagged:binding element specifies that the binding maps logical messages
to tagged data messages.

Attributes The tagged:binding element has the following ten attributes:

selfDescribing Specifies if the message data on the wire includes
the field names. Valid values are true or false.
If this attribute is set to false, the setting for
fieldNameValueSeparator is ignored. This
attribute is required.

fieldSeparator Specifies the delimiter the message uses to
separate fields. Valid values include any
character that is not a letter or a number. This
attribute is required.

fieldNameValueSeparator Specifies the delimiter used to separate field
names from field values in self-describing
messages. Valid values include any character
that is not a letter or a number.

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default is
tab.

flattened Specifies if data structures are flattened when
they are put on the wire. If selfDescribing is
false, then this attribute is automatically set to
true.

messageStart Specifies a special token at the start of a
message. It is used when messages that require a
special character at the start of a the data
sequence. Valid values include any character that
is not a letter or a number.

messageEnd Specifies a special token at the end of a message.
Valid values include any character that is not a
letter or a number.

unscopedArrayElement Specifies if array elements need to be scoped as
children of the array. If set to true arrays take
the form
echoArray{myArray=2;item=abc;item=def}.
If set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.
96

The settings for the attributes on these elements become the default settings for
all the messages being mapped to the current binding.

tagged:operation

Synopsis <tagged:operation discriminator="..." discrininatorStyle="..." />

Description The tagged:operation element is a child element of the WSDL operation
element. It specifies that the operation’s messages are being mapped to a tagged
data message.

Attributes The tagged:operation element takes two optional attributes:

tagged:body

Synopsis <tagged:body>

 ...

</tagged:body>

Description The tagged:body element is a child element of the input, output, and fault
messages being mapped to a tagged data format. It specifies that the message body
is mapped to tagged data on the wire and describes the exact mapping for the
message’s parts.

ignoreUnknownElements Specifies if Artix ignores undefined element in
the message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with element
names in the message payload. Default is false.

discriminator Specifies a discriminator to be used by the Artix
runtime to identify the WSDL operation that will be
invoked by the message receiver.

discriminatorStyle Specifies how the Artix runtime will locate the
discriminator as it processes the message. Supported
values are msgname, partlist, fieldvalue, and
fieldname.
 97

CHAPTER 7 | Tagged Binding
The tagged:body element will have one or more of the following child
elements:

• tagged:field

• tagged:sequence

• tagged:choice

The children describe the detailed mapping of the XMLSchema message to the
tagged data to be sent on the wire.

tagged:field

Synopsis <tagged:field name="..." alias="...">

 <tagged:enumeration ... />

 ...

</tagged:field>

The tagged:field element is a child of a tagged:body element. It maps simple
types and enumerations to a field in a tagged data message. When describing
enumerated types a tagged:field element will have one or more
tagged:enumeration child elements.

Attributes The tagged:field element has two attributes:

tagged:enumeration

Synopsis <tagged:enumeration value="..." />

Description The tagged:enumeration element is a child element of a tagged:field element.
It is used to map the value of an enumerated types to a field in a tagged data
message.

Parameters The tagged:enumeration element has one required attribute, value, that
corresponds to the enumeration value as specified in the logical description of the
enumerated type.

name A required attribute that must correspond to the name of the
logical message part that is being mapped to the tagged data
field.

alias An optional attribute specifying an alias for the field that can
be used to identify it on the wire.
98

Examples If you had an enumerated type, flavorType, with the values FruityTooty,
Rainbow, BerryBomb, and OrangeTango the logical description of the type would
be similar to Example 37.

flavorType would be mapped to a tagged data field as shown in Example 38.

tagged:sequence

Synopsis <tagged:sequence name="..." alias="..." occurs="...">

 ...

</tagged:sequence>

Description The taggeded:sequence element is a child of a tagged:body element, a
tagged:sequence element, or a tagged:case element. It maps arrays and sequence
complex types to fields in a tagged data message. A tagged:sequence element
contains one or more children to map the corresponding logical type’s parts to
fields in a tagged data message. The child elements can be of the following types:

• tagged:field

• tagged:sequence

• tagged:choice

Example 37: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 38: Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>
 99

CHAPTER 7 | Tagged Binding
Attributes The taggeded:sequence element has three attributes:

Examples A structure containing a name, a date, and an ID number would contain three
tagged:field elements to fully describe the mapping of the data to the fixed
record message. Example 39 shows an Artix contract fragment for such a
mapping.

name Specifies the name of the logical message part that is being
mapped into the tagged data message. This is a required
attribute.

alias Specifies an alias for the sequence that can be used to
identify it on the wire.

occurs Specifying the number of times the sequence appears. This
attribute is used to map arrays.

Example 39: Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
100

tagged:choice

Synopsis <tagged:choice name="..." discriminatorName="..." alais="...">

 <tagged:case ...>

 ...

</tagged:choice>

The tagged:choice element is a child of a tagged:body element, a
tagged:sequence element, or a tagged:case element. It maps unions to a field in a
tagged data message. A tagged:choice element may contain one or more
tagged:case child elements to map the cases for the union to a field in a tagged
data message.

Parameters The tagged:choice element has three attributes:

<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

Example 39: Mapping a Sequence to a Tagged Data Format

name Specifies the name of the logical message part being
mapped into the tagged data message. This is a
required attribute.

discriminatorName Specifies the message part used as the discriminator
for the union.

alias Specifies an alias for the union that can be used to
identify it on the wire.
 101

CHAPTER 7 | Tagged Binding
tagged:case

Synopsis <tagged:case value="..." />

Description The tagged:case element is a child element of a tagged:choice element. It
describes the complete mapping of a union’s individual cases to a field in a tagged
data message. A tagged:case element must have one child element to describe
the mapping of the case’s data to a field, or fields, to a tagged data message. Valid
child elements are tagged:field, tagged:sequence, and tagged:choice.

Attributes The tagged:case element has one required attribute, name, that corresponds to
the name of the case element in the union’s logical description.

Examples Example 40 shows an Artix contract fragment mapping a union to a tagged data
format.

Example 40: Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="tagUnionPortType">
...
</portType>
102

<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 40: Mapping a Union to a Tagged Data Format
 103

CHAPTER 7 | Tagged Binding
104

CHAPTER 8

TibrvMsg Binding
The Artix TibrvMsg binding elements describe a mapping between
XMLSchema messages and the TibrvMsg messages used by Tibco
Rendezvous.

Runtime Compatibility

The TibrvMsg binding’s extension elements are only compatible with the C++
runtime.

Namespace

The extensions used to describe TibrvMsg bindings are defined in the
namespace http://schemas.iona.com/transports/tibrv. Artix tools use the
prefix tibrv to represent the tagged data extensions. Add the following line to
the definitions element of your contract:

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 105

CHAPTER 8 | TibrvMsg Binding
TIBRVMSG to XMLSchema Type Mapping

Table 5 shows how TibrvMsg data types are mapped to XMLSchema types in
Artix contracts.

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte

TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort

TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIMEa xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_STRING xsd:QName

TIBRVMSG_STRING xsd:nonPositiveInteger

TIBRVMSG_STRING xsd:negativeInteger

TIBRVMSG_STRING xsd:nonNegativeInteger
106

tibrv:binding

Synopsis <tibrv:binding stringEncoding="..." stringAsOpaque="...">

 ...

</tibrv:binding>

Description The tibrv:binding element is a child of the WSDL binding element. It identifies
that the data is to be packed into a TibrvMsg. The tibrv:binding element can be
used to set a default array policy for the TibrvMsg generated by the binding by
adding a tibrv:array child element.

The tibrv:binding element can also define binding-only message data by
including child elements. The following elements can be a child:

TIBRVMSG_STRING xsd:positiveInteger

TIBRVMSG_STRING xsd:time

TIBRVMSG_STRING xsd:date

TIBRVMSG_STRING xsd:gYearMonth

TIBRVMSG_STRING xsd:gMonthDay

TIBRVMSG_STRING xsd:gDay

TIBRVMSG_STRING xsd:gMonth

TIBRVMSG_STRING xsd:anyURI

TIBRVMSG_STRING xsd:token

TIBRVMSG_STRING xsd:language

TIBRVMSG_STRING xsd:NMTOKEN

TIBRVMSG_STRING xsd:Name

TIBRVMSG_STRING xsd:NCName

TIBRVMSG_STRING xsd:ID

a. While TIBRVMSG_DATETIME has microsecond precision, xsd:dateTime only
supports millisecond precision. Therefore, Artix rounds all times to the nearest
millisecond.

Table 5: TIBCO to XMLSchema Type Mapping

TIBRVMSG XSD
 107

CHAPTER 8 | TibrvMsg Binding
• tibrv:msg

• tibrv:field

• tibrv:context

Any binding-only data defined at the binding level is attached to all messages
that use the binding.

Attributes The tibrv:binding element has the following attributes:

tibrv:operation

Synopsis <tibrv:operation>

 ...

</tibrv:operation>

Description The tibrv:operation element is a child of a WSDL operation element. It
signifies that the messages used for this operation are mapped into a TibrvMsg
and defines any operation specific array policies and data fields.

A tibrv:operation element can specify an operation specific array policy by
adding a child tibrv:array element. This array policy overrides any array policy
set at the binding level.

A tibrv:operation element can define binding-only message data to be
inserted into all TibrvMsg messages generated by the operation by adding
children to define the data. The following elements are valid children:

• tibrv:msg

• tibrv:field

• tibrv:context

Any binding-only data defined by a tibrv:operation element is attached to all
messages generated by the operation.

stringEncoding Specifies the character set used in encoding
string data included in the message. The default
value is utf-8.

stringAsOpaque Specifies how string data is passed in messages.
false, the default value, specifies that strings
data is passed as TIRBMSG_STRING. true
specifies that string data is passed as OPAQUE.
108

tibrv:input

Synopsis <tibrv:input messageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

 stringAsOpaque="...">

 ...

</tibrv:input>

Description The tibrv:input element is a child of a WSDL input element. It defines the
exact mapping of the logical input message to the TibrvMsg that is used to make
requests on a service. When the tibrv:input element does not have any children,
it signifies that the default XMLSchema message to TibrvMsg message mappings
are used. If you want to define a custom mapping from the XMLSchema message
to the TibrvMsg message, want to add context information to the TibrvMsg
message, or want to add binding only elements to the TibrvMsg message, you can
add children to the tibrv:input element. Valid child elements include:

• tibrv:msg

• tibrv:field

• tibrv:context

A tibrv:input element can specify an operation specific array policy by adding
a child tibrv:array element. This array policy overrides any array policy set at the
binding level or the operation level.

Attributes The tibrv:input element has the following attributes:

messageNameFieldPath Specifies the field path that includes the message
name. If this attribute is not specified, the first
field in the top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified, the
value of the WSDL message element’s name
attribute will be used.

stringEncoding Specifies the character set used in encoding string
data included in the message. This value will
override the value set in tibrv:binding.
 109

CHAPTER 8 | TibrvMsg Binding
tibrv:output

Synopsis <tibrv:outputmessageNameFieldPath="..."

 messageNameFieldValue="..."

 stringEncoding="..."

 stringAsOpaque="...">

 ...

</tibrv:output>

Description The tibrv:output element is a child of a WSDL output element. It defines the
exact mapping of the logical output message to the TibrvMsg that is used when
responding to requests. When the tibrv:output element does not have any
children, it signifies that the default XMLSchema message to TibrvMsg message
mappings are used. If you want to define a custom mapping from the XMLSchema
message to the TibrvMsg message, want to add context information to the
TibrvMsg message, or want to add binding only elements to the TibrvMsg
message, you can add children to the tibrv:output element. Valid child elements
include:

• tibrv:msg

• tibrv:field

• tibrv:context

A tibrv:output element can specify an operation specific array policy by
adding a child tibrv:array element. This array policy overrides any array policy
set at the binding level or the operation level.

stringAsOpaque Specifies how string data is passed in the message.
false specifies that strings data is passed as
TIBRVMSG_STRING. true specifies that string data
is passed as OPAQUE. This value will override the
value set in tibrv:binding.
110

Attributes The tibrv:output element has the following attributes:

tibrv:array

Synopsis <tibrv:array elementName="..." integralAsSingleField="..."

 loadSize="..." sizeName="..." />

Description The tibrv:array element defines how arrays are mapped into elements as a
TibrvMsg message. The array mapping properties can be set at any level of
granuality by making it the child of different TibrvMsg binding elements. The
array mapping properties at lower levels always override the array mapping
properties. For example, the mapping properties defined by a tibrv:array
element that is the child of a tibrv:msg element will override the array mapping
properties defined by a tibrv:array element that is a child of the parent
tibrv:operation element.

messageNameFieldPath Specifies the field path that includes the message
name. If this attribute is not specified, the first
field in the top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue Specifies the field value that corresponds to the
message name. If this attribute is not specified, the
value of the WSDL message element’s name
attribute will be used.

stringEncoding Specifies the character set used in encoding string
data included in the message. This value will
override the value set in tibrv:binding.

stringAsOpaque Specifies how string data is passed in the message.
false specifies that strings data is passed as
TIRBMSG_STRING. true specifies that string data is
passed as OPAQUE. This value will override the
value set in tibrv:binding.
 111

CHAPTER 8 | TibrvMsg Binding
Attributes The array mapping properties are set using the attributes of the tibrv:array
element. The tibrv:array element has the following attributes:

Custom array naming expressions When specifying a naming policy for array element names you use a string
expression that combines XML properties, strings, and custom naming
functions. For example, you could use the expression
concat(xml:attr(’name’), ’_’, counter(1,1)) to specify that each
element in the array street is named street_n.

elementName Specifies an expression that when evaluated will
be used as the name of the TibrvMsg field to
which array elements are mapped. The default
element naming scheme is to concatenate the
value of WSDL element element’s name
attribute with a counter. For information on
specifying naming expressions see “Custom
array naming expressions”.

integralAsSingleField Specifies how scalar array data is mapped into
TibrvMsgField instances. true, the default,
specifies that arrays are mapped into a single
TibrvMsgField. false specifies that each
member of an array is mapped into a separate
TibrvMsgField.

loadSize Specifies if the number of elements in an array is
included in the TibrvMsg. true specifies that the
number of elements in the array is added as a
TibrvMsgField in the same TibrvMsg as the
array. false, the default, specifies that the
number of elements in the array is not included
in the TibrvMsg.

sizeName Specifies an expression that when evaluated will
be used as the name of the TibrvMsgField to
which the size of the array is written. The default
naming scheme is to concatenate the value of
WSDL element element’s name attribute with
@size. For information on specifying naming
expressions see “Custom array naming
expressions” on page 112.
112

Table 6 shows the available functions for use in building array element names.

Examples Example 41 shows an example of an Artix contract containing a TibrvMsg binding
that uses array policies. The policies are set at the binding level and:

• Force the name of the TibrvMsg containing array elements to be named

street0, street1,

• Write out the number of elements in each street array.

• Force each element of a street array to be written out as a separate field.

Table 6: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

xml:attr(’attribute’) Inserts the value of the named
attribute.

concat(item1, item2, ...) Concatenates all of the elements into
a single string.

counter(start, increment) Adds an increasing numerical value.
The counter starts at start and
increases by increment.

Example 41: TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema

targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 113

CHAPTER 8 | TibrvMsg Binding
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1"

maxOccurs="5"
 nillable="true"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="addressRequest">
 <part name="resident" type="xsd:string"/>
 </message>
 <message name="addressResponse">
 <part name="address" type="xsd1:Address"/>
 </message>
 <portType name="theFourOneOne">
 <operation name="lookUp">
 <input message="tns:addressRequest" name="request"/>
 <output message="tns:addressResponse" name="response"/>
 </operation>
 </portType>
 <binding name="lookUpBinding" type="tns:theFourOneOne">
 <tibrv:binding>
 <tibrv:array elementName="concat(xml:attr('name'),

counter(0, 1))"
 integralsAsSingleField="false"
 loadSize="true"/>
 <\tibrv:binding>
 <operation name="lookUp">
 <tibrv:operation/>
 <input name="addressRequest">
 <tibrv:input/>
 </input>
 <output name="addressResponse">
 <tibrv:output/>
 </output>
 </operation>
 </binding>

Example 41: TibrvMsg Binding with Array Policies Set (Continued)
114

tibrv:msg

Synopsis <tibrv:msg name="..." alias="..." element="..." id="..."

 minOccurs="..." maxOccurs="...">

 ...

</tibrv:msg>

Description The tibrv:msg element instructs Artix to create an instance of a TibrvMsg.

Attributes The tibrv:msg element has the following attributes:

 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 41: TibrvMsg Binding with Array Policies Set (Continued)

name Specifies the name of the contract element which this TibrvMsg
instance gets its value. If this attribute is not present, then the
TibrvMsg is considered a binding-only element.

alias Specifies the value of the name member of the TibrvMsg
instance. If this attribute is not specified, then the binding will
use the value of the name attribute.

element Used only when tibrv:msg is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsg.

id Specifies the value of the id member of the TibrvMsg instance.
The default value is 0.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in the
schema definition.
 115

CHAPTER 8 | TibrvMsg Binding
tibrv:field

Synopsis <tibrv:field name="..." alias="..." element="..." id="..."

 type="..." value="..." minOccurs="..." maxOccurs="..." />

Description The tibrv:field element instructs Artix to create an instance of a
TibrvMsgField.

Parameters The tibrv:field element has the following attributes:

name Specifies the name of the contract element which this
TibrvMsgField instance gets its value. If this attribute is not
present, then the TibrvMsgField is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsgField
instance. If this attribute is not specified, then the binding will
use the value of the name attribute.

element Used only when tibrv:field is an immediate child of
tibrv:context. Specifies the QName of the element defining
the context data to use when populating the TibrvMsgField.

id Specifies the value of the id member of the TibrvMsgField
instance. The default value is 0.

type Specifies the XML Schema type of the data being used to
populate the data member of the TibrvMsgField instance.

value Specifies the value inserted into the data member of the
TibrvMsgField instance when the field is a binding-only
element.

minOccurs/
maxOccurs

Used only with elements that correspond to logical message
parts. The values must be identical to the values specified in the
schema definition.
116

tibrv:context

Synopsis <tibrv:context>

 ...

</tibrv:context>

Description The tibrv:context element specifies that the following message parts are
populated from an Artix context. The child of a tibrv:context element can be
either:

• a tibrv:msg element if the context data is a complex type.

• a tibrv:msg element if you wanted to wrap the context data with a

TibrvMsg on the wire.

• a tibrv:field element if the context data is a native XMLSchema type.

When a tibrv:msg element or a tibrv:field element are used to insert context
information into a TibrvMsg they use the element attribute in place of the name
attribute. The element attribute specifies the QName used to register the context
data with Artix bus. It must correspond to a globally defined XML Schema
element. Also, when inserting context information you cannot specify values for
any other attributes except the alias attribute.

Examples If you were integrating with a Tibco server that used a header to correlate messages
using an ASCII correlation ID, you could use the TibrvMsg binding’s context
support to implement the correlation ID on the Artix side of the solution. The first
step would be to define an XML Schema element called corrID for the context
that would hold the correlation ID. Then in your TibrvMsg binding definition you
would include a tibrv:context element in the tibrv:binding element to specify
that all messages passing through the binding will have the header. Example 42
shows a contract fragment containing the appropriate entries for this scenario.

Example 42: Using Context Data in a TibrvMsg Binding

<definitions
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 ...>
 117

CHAPTER 8 | TibrvMsg Binding
The context for corrID will be registered with the Artix bus using the QName
"http://widgetVendor.com/types/widgetTypes", "corrID".

See also For information on using contexts in Artix applications, see
Developing Artix Applications with C++.

 <types>
 <schema
 targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="corrID" type="xsd:string"/>
 ...
 </schema>
 </types>
 ...
 <portType name="correalatedService">
 ...
 </portType>
 <binding name="tibrvCorrBinding" type="correlatedService">
 <tibrv:binding>
 <tibrv:context>
 <tibrv:field element="xsd1:corrID"/>
 </tibrv:context>
 </tibrv:binding>
 ...
 </binding>
 ...
</definitions>

Example 42: Using Context Data in a TibrvMsg Binding
118

CHAPTER 9

XML Binding
Artix includes a binding that supports the exchange of XML
documents without the overhead of a SOAP envelope.

Runtime Compatibility

The XML binding’s extensions are compatible with the C++ runtime.

Namespace

The extensions used to describe XML format bindings are defined in the
namespace http://celtix.objectweb.org/bindings/xmlformat. Artix tools
use the prefix xformat to represent the XML binding extensions. Add the
following line to your contracts:

xmlns:xformat="http://celtix.objectweb.org/bindings/xmlformat"
 119

CHAPTER 9 | XML Binding
xformat:binding

Synopsis <xformat:binding rootNode="..." />

Description The xformat:binding element is the child of the WSDL binding element. It
signifies that the messages passing through this binding will be sent as XML
documents without a SOAP envelope.

Attributes The xformat:binding element has a single optional attribute called rootNode.
The rootNode attribute specifies the QName for the element that serves as the
root node for the XML document generated by Artix. When the rootNode attribute
is not set, Artix uses the root element of the message part as the root element when
using doc style messages or an element using the message part name as the root
element when using RCP style messages.

xformat:body

Synopsis <xformat:body rootNode="..." />

Description The xformat:body element is an optional child of the WSDL input element, the
WSDL output element, and the WSDL fault element. It is used to override the
value of the rootNode attribute specified in the binding’s xformat:binding
element.

Attributes The xformat:body element has a single attribute called rootNode. The rootNode
attribute specifies the QName for the element that serves as the root node for the
XML document generated by Artix. When the rootNode attribute is not set, Artix
uses the root element of the message part as the root element when using doc style
messages or an element using the message part name as the root element when
using RCP style messages.
120

CHAPTER 10

Pass Through
Binding
The pass through binding is a simple binding that passes blobs
through the message layers. The application level code must know
how to handle the incoming data.

Runtime Compatibility

The pass through binding’s extension elements are only compatible with the
C++ runtime.

Namespace

The extensions used to describe tagged data bindings are defined in the
namespace http://schemas.iona.com/bindings/tagged. Artix tools use the
prefix tagged to represent the tagged data extensions. Add the following line to
the definitions element of your contract:

xmlns:passthru="http://schemas.iona.com/bindings/passthru"
 121

CHAPTER 10 | Pass Through Binding
tagged:binding

Synopsis <passthru:binding />

Description The passthru:binding element specifies that the binding passes the message
through as a blob.
122

Part II
Ports

In this part This part contains the following chapters:

HTTP Port page 125

CORBA Port page 145

IIOP Tunnel Port page 149

WebSphere MQ Port page 153

JMS Port page 175

Tuxedo Port page 173

Tibco/Rendezvous Port page 181

File Transfer Protocol Port page 191
 123

124

CHAPTER 12

HTTP Port
Along with the standard WSDL elements used to specify the
location of an HTTP port, Artix uses a number of extensions for
fine tuning the configuration of an HTTP port.

In this chapter This chapter discusses the following topics:

Standard WSDL Elements page 126

Configuration Extensions for C++ page 127

Attribute Details page 133
 125

CHAPTER 12 | HTTP Port
Standard WSDL Elements

http:address

Synopsis <http:address location="..." />

Description The http:address element is a child of the WSDL port element. It specifies the
address of the HTTP port of a service that is not using SOAP messages to
communicate.

Attributes The http:address element has a single required attribute called location. The
location attribute specifies the service’s address as a URL.

soap:address

Synopsis <soap:address location="..." />

Description The soap:address element is a child of the WSDL port element. It specifies the
address of the HTTP port of a service that uses SOAP 1.1 messages to
communicate.

Attributes The soap:address element has a single required attribute called location. The
location attribute specifies the service’s address as a URL.

wsoap12:address

Synopsis <wsoap12:address location="..." />

Description The wsoap12:address element is a child of the WSDL port element. It specifies
the address of the HTTP port of a service that uses SOAP 1.2 messages to
communicate.

Attributes The wsoap12:address element has a single required attribute called location.
The location attribute specifies the service’s address as a URL.
126

Configuration Extensions for C++
Configuration Extensions for C++

Namespace

Example 43 shows the namespace entries you need to add to the definitions
element of your contract to use the Artix C++ runtime’s HTTP extensions.

http-conf:client

Synopsis <http-conf:client SendTimeout="..." RecieveTimeout="..."

 AutoRedirect="..." UserName="..."

 Password="..." AuthorizationType="..."

 Authorization="..." Accept="..."

 AcceptLanguage="..." AcceptEncoding="..."

 ContentType="..." Connection="..."

 Host="..." ConnectionAttempts="..."

 CacheControl="..." Cookie="..."

 BrowserType="..." Refferer="..."

 ProxyServer="..." ProxyUsername="..."

 ProxyPassword="..." ProxyAuthorizationType="..."

 ProxyAuthorization="..." UseSecureSockets="..."

 ClientCertificates="..." ClientCertificateChain="..."

 ClientPrivateKey="..." ClientPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:client element is a child of the WSDL port element. It is used
to specify client-side configuration details.

Example 43: Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >
 127

CHAPTER 12 | HTTP Port
Attributes The http-conf:client element has the following attributes:

SendTimeout Specifies the length of time, in milliseconds,
the client tries to send a request to the server
before the connection is timed out. Default is
30000.

ReceiveTimeout Specifies the length of time, in milliseconds,
the client tries to receive a response from the
server before the connection is timed out. The
default is 30000.

AutoRedirect Specifies if a request should be automatically
redirected when the server issues a redirection
reply via RedirectURL. The default is false,
to let the client redirect the request itself.

UserName Specifies the user name that the client will use
for authentication with a service. This value is
passed as an attribute in each request’s
transport header.

Password Specifies the password that the client will use
for authentication with a service. This value is
passed as an attribute in each request’s
transport header.

AuthorizationType Specifies the name of the authorization
scheme the client wishes to use.

Authorization Specifies the authorization credentials used to
perform the authorization.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client’s preferred language for
receiving responses.

AcceptEncoding Specifies what content codings the client is
prepared to handle.

ContentType Specifies the media type of the data being sent
in the body of the client request.

Host Specifies the Internet host and port number of
the resource on which the client request is
being invoked.
128

Configuration Extensions for C++
Connection Specifies if the client wants a particular
connection to be kept open after each
request/response dialog.

ConnectionAttempts Specifies the number of times a client will
transparently attempt to connect to server.

CacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

Cookie Specifies a static cookie to be sent to the
server along with all requests.

BrowserType Specifies information about the browser from
which the client request originates.

Referer Specifies the URL of the resource that
directed the client to make requests on a
particular service.

ProxyServer Specifies the URL of the proxy server, if one
exists along the message path.

ProxyUserName Specifies the username to use for
authentication on the proxy server if it
requires separate authorization.

ProxyPassword Specifies the password to use for
authentication on the proxy server if it
requires separate authorization.

ProxyAuthorizationType Specifies the name of the authorization
scheme used with the proxy server.

ProxyAuthorization Specifies the authorization credentials used to
perform the authorization with the proxy
server.

UseSecureSockets Indicates if the client wants to open a secure
connection.

ClientCertificate Specifies the full path to the
PKCS12-encoded X509 certificate issued by
the certificate authority for the client.

ClientCertificateChain Specifies the full path to the file that contains
all the certificates in the chain.
 129

CHAPTER 12 | HTTP Port
http-conf:server

Synopsis <http_conf:server SendTimeout="..." RecieveTimeout="..."

 SurpressClientSendErrors="..."

 SurpressClientRecieveErrors="..."

 HonnorKeepAlive="..." RedirectURL="..."

 CacheControl="..." ContentLocation="..."

 ContentType="..." ContentEncoding="..."

 ServerType="..." UseSecureSockets="..."

 ServerCertificate="..." ServerCertificateChain="..."

 ServerPrivateKey="..." ServerPrivateKeyPassword="..."

 TrustedRootCertificate="..." />

Description The http-conf:server element is a child of the WSDL port element. It is used
to specify server-side configuration details.

Attributes The http-conf:server element has the following attributes:

ClientPrivateKey Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate specified
by ClientCertificate.

ClientPrivateKeyPassword Specifies a password that is used to decrypt
the PKCS12-encoded private key.

TrustedRootCertificate Specifies the full path to the
PKCS12-encoded X509 certificate for the
certificate authority.

SendTimeout Sets the length of time, in milliseconds,
the server tries to send a response to the
client before the connection times out.
The default is 30000.

ReceiveTimeout Sets the length of time, in milliseconds,
the server tries to receive a client request
before the connection times out. The
default is 30000.
130

Configuration Extensions for C++
SuppressClientSendErrors Specifies whether exceptions are to be
thrown when an error is encountered on
receiving a client request. The default is
false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be
thrown when an error is encountered on
sending a response to a client. The default
is false; exceptions are thrown on
encountering errors.

HonorKeepAlive Specifies whether the server honors client
requests for a connection to remain open
after a response has been sent. The default
is Keep-Alive; Keep-alive requests are
honored. false specifies that keep-alive
requests are ignored.

RedirectURL Sets the URL to which the client request
should be redirected if the URL specified
in the client request is no longer
appropriate for the requested resource.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
response from a server to a client.

ContentLocation Sets the URL where the resource being
sent in a server response is located.

ContentType Sets the media type of the information
being sent in a server response, for
example, text/html or image/gif.

ContentEncoding Specifies what additional content codings
have been applied to the information
being sent by the server.

ServerType Specifies what type of server is sending
the response to the client. Values take the
form program-name/version. For
example, Apache/1.2.5.

UseSecureSockets Indicates whether the server wants a
secure HTTP connection running over
SSL or TLS.
 131

CHAPTER 12 | HTTP Port
ServerCertificate Sets the full path to the PKCS12-encoded
X509 certificate issued by the certificate
authority for the server.

ServerCertificateChain Sets the full path to the file that contains
all the certificates in the server’s
certificate chain.

ServerPrivateKey Sets the full path to the PKCS12-encoded
private key that corresponds to the X509
certificate specified by
ServerCertificate.

ServerPrivateKeyPassword Sets a password that is used to decrypt the
PKCS12-encoded private key, if it has
been encrypted with a password.

TrustedRootCertificate Sets the full path to the PKCS12-encoded
X509 certificate for the certificate
authority. This is used to validate the
certificate presented by the client.
132

Attribute Details
Attribute Details

AuthorizationType

Description The AuthorizationType attribute corresponds to the HTTP AuthorizationType
property. It specifies the name of the authorization scheme the client wishes to
use. This information is specified and handled at the application level. Artix does
not perform any validation on this value. It is the user’s responsibility to ensure
that the correct scheme name is specified, as appropriate.

Authorization

Description The Authorization attribute corresponds to the HTTP Authorization property.
It specifies the authorization credentials the client wants the server to use when
performing the authorization. The credentials are encoded and handled at the
application-level. Artix does not perform any validation on the specified value. It
is the user’s responsibility to ensure that the correct authorization credentials are
specified, as appropriate.

Accept

Description The Accept attribute corresponds to the HTTP Accept property. It specifies what
media types the client is prepared to handle. The value of the attribute is specified
using as multipurpose internet mail extensions (MIME) types.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.

Note: If the client wants to use basic username and password-based
authentication this does not need to be set.
 133

CHAPTER 12 | HTTP Port
MIME type values MIME types are regulated by the Internet Assigned Numbers Authority (IANA).
They consist of a main type and sub-type, separated by a forward slash. For
example, a main type of text might be qualified as follows: text/html or
text/xml. Similarly, a main type of image might be qualified as follows:
image/gif or image/jpeg.

An asterisk (*) can be used as a wildcard to specify a group of related types. For
example, if you specify image/*, this means that the client can accept any
image, regardless of whether it is a GIF or a JPEG, and so on. A value of */*
indicates that the client is prepared to handle any type.

Examples of typical types that might be set are:

• text/xml

• text/html

• text/text

• image/gif

• image/jpeg

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• video/avi

• video/mpeg

See also See http://www.iana.org/assignments/media-types/ for more details.

AcceptLanguage

Description The AcceptLanguage attribute corresponds to the HTTP AcceptLanguage
property. It specifies what language (for example, American English) the client
prefers for the purposes of receiving a response.

Specifying the language Language tags are regulated by the International Organization for Standards
(ISO) and are typically formed by combining a language code, determined by
the ISO-639 standard, and country code, determined by the ISO-3166 standard,
separated by a hyphen. For example, en-US represents American English.

See also A full list of language codes is available at
http://www.w3.org/WAI/ER/IG/ert/iso639.htm.
134

http://www.iana.org/assignments/media-types/
http://www.w3.org/WAI/ER/IG/ert/iso639.htm

Attribute Details
A full list of country codes is available at
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-e
n1.html.

AcceptEncoding

Description The AcceptEncoding attribute corresponds to the HTTP AcceptEncoding
Property. It specifies what content encodings the client is prepared to handle.
Content encoding labels are regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values include zip, gzip,
compress, deflate, and identity.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Artix performs no
validation on content codings. It is the user’s responsibility to ensure that a
specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

ContentType

Description The ContentType attribute corresponds to the HTTP ContentType property. It
specifies the media type of the data being sent in the body of a message. Media
types are specified using multipurpose internet mail extensions (MIME) types.

MIME type values MIME types are regulated by the Internet Assigned Numbers Authority (IANA).
MIME types consist of a main type and sub-type, separated by a forward slash.
For example, a main type of text might be qualified as follows: text/html or
text/xml. Similarly, a main type of image might be qualified as follows:
image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• text/html

• text/text

• image/gif

• image/jpeg
 135

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

CHAPTER 12 | HTTP Port
• video/avi

• video/mpeg.

Any content that does not fit into any type in the preceding list should be
specified as application/octet-stream.

Client settings For clients this attribute is only relevant if the client request specifies the POST
method to send data to the server for processing.

For web services, this should be set to text/xml. If the client is sending HTML
form data to a CGI script, this should be set to
application/x-www-form-urlencoded. If the HTTP POST request is bound to a
fixed payload format (as opposed to SOAP), the content type is typically set to
application/octet-stream.

See also See http://www.iana.org/assignments/media-types/ for more details.

ContentEncoding

Description The ContentEncoding attribute corresponds to the HTTP ContentEncoding
property. This property specifies any additional content encodings that have been
applied to the information being sent by the server. Content encoding labels are
regulated by the Internet Assigned Numbers Authority (IANA). Possible content
encoding values include zip, gzip, compress, deflate, and identity.

The primary use of content encodings is to allow documents to be compressed
using some encoding mechanism, such as zip or gzip. Artix performs no
validation on content codings. It is the user’s responsibility to ensure that a
specified content coding is supported at application level.

See also See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more
details on content encodings.

Host

Description The Host attribute corresponds to the HTTP Host property. It specifies the internet
host and port number of the resource on which the client request is being invoked.
This attribute is typically not required. Typically, this attribute does not need to
be set. It is only required by certain DNS scenarios or application designs. For
example, it indicates what host the client prefers for clusters (that is, for virtual
servers mapping to the same internet protocol (IP) address).
136

http://www.iana.org/assignments/media-types/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

Attribute Details
Connection

Description The Connection attribute specifies whether a particular connection is to be kept
open or closed after each request/response dialog. Valid values are close and
Keep-Alive. The default, Keep-Alive, specifies that the client want to keep its
connection open after the initial request/response sequence. If the server honors
it, the connection is kept open until the client closes it. close specifies that the
connection to the server is closed after each request/response sequence.

CacheControl

Description The CacheControl attribute specifies directives about the behavior of caches
involved in the message chain between clients and servers. The attribute is used
for both client and server. However, clients and servers have different settings for
specifying cache behavior.

Client-side Table 7 shows the valid settings for CacheControl in http-conf:client.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire response.

no-store Caches must not store any part of a response or any
part of the request that invoked it.

max-age The client can accept a response whose age is no
greater than the specified time in seconds.
 137

CHAPTER 12 | HTTP Port
max-stale The client can accept a response that has exceeded its
expiration time. If a value is assigned to max-stale, it
represents the number of seconds beyond the
expiration time of a response up to which the client
can still accept that response. If no value is assigned,
it means the client can accept a stale response of any
age.

min-fresh The client wants a response that will be still be fresh
for at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of the
content in a response between a server and a client.

only-if-cached Caches should return only responses that are currently
stored in the cache, and not responses that need to be
reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications not
understanding the extended directive can at least
adhere to the behavior mandated by the standard
directive.

Table 7: Settings for http-conf:client CacheControl

Directive Behavior
138

Attribute Details
Server-side Table 8 shows the valid values for CacheControl in http-conf:server.

Table 8: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of response or any
part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revaildate expired entries that relate to
a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except that it
can only be enforced on shared caches and is
ignored by private unshared caches. If using this
directive, the public cache directive must also be
used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.
 139

CHAPTER 12 | HTTP Port
BrowserType

Description The BrowserType attribute specifies information about the browser from which
the client request originates. In the HTTP specification from the World Wide Web
consortium (W3C) this is also known as the user-agent. Some servers optimize
based upon the client that is sending the request.

Referer

The Referer attribute corresponds to the HTTP Referer property. It specifies the
URL of the resource that directed the client to make requests on a particular
service. Typically this HTTP property is used when a request is the result of a
browser user clicking on a hyperlink rather than typing a URL. This can allow
the server to optimize processing based upon previous task flow, and to generate
lists of back-links to resources for the purposes of logging, optimized caching,
tracing of obsolete or mistyped links, and so on. However, it is typically not used
in web services applications.

s-maxage Means the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by
s-maxage overrides the age specified by max-age.
If using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 8: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
140

Attribute Details
If the AutoRedirect attribute is set to true and the client request is redirected,
any value specified in the Referer attribute is overridden. The value of the
HTTP Referer property will be set to the URL of the service who redirected the
client’s original request.
 141

CHAPTER 12 | HTTP Port
ProxyServer

Description The ProxyServer attribute specifies the URL of the proxy server, if one exists
along the message path. A proxy can receive client requests, possibly modify the
request in some way, and then forward the request along the chain possibly to the
target server. A proxy can act as a special kind of security firewall.

ProxyAuthorizationType

Description The ProxyAuthorizationType attribute specifies the name of the authorization
scheme the client wants to use with the proxy server. This name is specified and
handled at application level. Artix does not perform any validation on this value.
It is the user’s responsibility to ensure that the correct scheme name is specified,
as appropriate.

ProxyAuthorization

Description The ProxyAuthorization attribute specifies the authorization credentials the
client will use to perform authorization with the proxy server. These are encoded
and handled at application-level. Artix does not perform any validation on the
specified value. It is the user’s responsibility to ensure that the correct
authorization credentials are specified, as appropriate.

Note: Artix does not support the existence of more than one proxy server
along the message path.

Note: If basic username and password-based authentication is being used by
the proxy server, this does not need to be set.

Note: If basic username and password-based authentication is being used by
the proxy server, this does not need to be set.
142

Attribute Details
UseSecureSockets

Description The UseSecureSockets attribute indicates if the application wants to open a
secure connection using SSL or TLS. A secure HTTP connection is commonly
referred to as HTTPS. Valid values are true and false. The default is false; the
endpoint does not want to open a secure connection.

RedirectURL

Description The RedirectURL attribute corresponds to the HTTP RedirectURL property. It
specifies the URL to which the client request should be redirected if the URL
specified in the client request is no longer appropriate for the requested resource.
In this case, if a status code is not automatically set in the first line of the server
response, the status code is set to 302 and the status description is set to Object
Moved.

ServerCertificateChain

Description PKCS12-encoded X509 certificates can be issued by intermediate certificate
authorities that are not trusted by the client, but which have had their certificates
issued in turn by a trusted certificate authority. If this is the case, you can use the
ServerCertificateChain attribute to allow the certificate chain of
PKCS12-encoded X509 certificates to be presented to the client for verification.
It specifies the full path to the file that contains all the certificates in the chain.

Note: If the http:address element’s location attribute, or the
soap:address element’s location attribute, has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.
 143

CHAPTER 12 | HTTP Port
144

CHAPTER 13

CORBA Port
Artix supports a robust mechanism for configuring a CORBA
endpoint.

Runtime Compatibility

The CORBA transport’s extension elements are compatible with the C++
runtime.

C++ Runtime Namespace

The namespace under which the C++ runtime CORBA extensions are defined is
http://schemas.iona.com/bindings/corba. If you are going to add a C++
runtime CORBA port by hand you will need to add this to your contract’s
definition element as shown below.

corba:address

Synopsis <corba:address location="..."/>

Description The corba:address element is a child of a WSDL port element. It specifies the
IOR for the service’s CORBA object.

xmlns:corba="http://schemas.iona.com/bindings/corba"
 145

CHAPTER 13 | CORBA Port
Attributes The corba:address element has one required attribute named location. The
location attribute contains a string specifying the IOR. You have four options
for specifying IORs in Artix contracts:

• Entering the object’s IOR directly into the contract using the stringified

IOR format:

• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will

look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the corbaloc

syntax.

corba:policy

Synopsis <corba:policy poaname="..."|persistent="..."|serviceid="..." />

Description The corba:policy element is a child of a WSDL port element. It specifies the
POA polices the Artix service will use when creating the POA for connecting to
a CORBA object. Each corba:policy element can only specify one policy.
Therefore to define multiple policies you must use multiple corba:policy
elements.

IOR:22342...

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
146

Attributes The corba:policy element uses attributes to specify the policy it is describing.
The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

poaname Specifies the POA name to use when connecting to the
CORBA object. The default POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA’s ID. By default, Artix POAs
are assigned their IDs by the ORB.
 147

CHAPTER 13 | CORBA Port
148

CHAPTER 14

IIOP Tunnel Port
The IIOP tunnel transport allows you to send non-CORBA data
over IIOP. This allows you to use a number of the CORBA services.

Runtime Compatibility

The IIOP tunnel transport’s extensions are only compatible with the C++
runtime.

Namespace

The namespace under which the IIOP tunnel extensions are defined is
http://schemas.iona.com/bindings/iiop_tunnel. If you are going to add
an IIOP tunnel port by hand you will need to add this to your contract’s
definition element as shown below.

iiop:address

Synopsis <iiop:address location="..."/>

Description The iiop:address element is a child of a WSDL port element. It specifies the
IOR for the CORBA object created for the service.

xmlns:iiop="http://schemas.iona.com/bindings/iiop_tunnel"
 149

CHAPTER 14 | IIOP Tunnel Port
Attributes The iiop:address element has one required attribute named location. The
location attribute contains a string specifying the IOR. You have four options
for specifying IORs in Artix contracts:

• Entering the object’s IOR directly into the contract using the stringified

IOR format:

• Entering a file location for the IOR using the following syntax:

• Entering the object’s name using the corbaname format:

When you use the corbaname format for specifying the IOR, Artix will

look-up the object’s IOR in the CORBA name service.

• Entering the port at which the service exposes itself, using the corbaloc

syntax.

iiop:payload

Synopsis <iiop:payload type="..." />

Description The iiop:payload element is a child of the WSDL port element. It specifies the
type of payload being passed through the IIOP tunnel. If the iiop:payload element
is set, Artix will use the information to attempt codeset negotiation on the contents
of the payload being sent through the tunnel. If you do not want codeset negotiation
attempted, do not use this element in your IIOP Tunnel port definition.

Attributes The iiop:payload element has a single required element named type. The type
attribute specifies the type of data contained in the payload.

IOR:22342...

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
150

Examples If your payload contains string data and you want Artix to attempt codeset
negotiation you would use the following:

iiop:policy

Synopsis <iiop:policy poaname="..."|persistent="..."|serviceid="..." />

Description The iiop:policy element is a child of a WSDL port element. It specifies the
POA polices the Artix service will use when creating the POA for the IIOP port.
Each iiop:policy element can only specify one policy. Therefore to define
multiple policies you must use multiple iiop:policy elements.

Attributes The iiop:policy element uses attributes to specify the policy it is describing.
The following attributes are used:

See also For more information about CORBA POA policies see the Orbix
documentation.

<iiop:payload type="string"/>

poaname Specifies the POA name to use when creating the IIOP port.
The default POA name is WS_ORB.

persistent Specifies the value of the POA’s persistence policy. The
default is false; the POA is not persistent.

serviceid Specifies the value of the POA’s ID. By default, Artix POAs
are assigned their IDs by the ORB.
 151

CHAPTER 14 | IIOP Tunnel Port
152

CHAPTER 15

WebSphere MQ
Port
Artix provides a number of WSDL extensions to configure a
WebSphere MQ service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 154

Attribute Details page 160
 153

CHAPTER 15 | WebSphere MQ Port
Artix Extension Elements

Runtime Compatibility

The WebSphere MQ transport’s extension elements are only compatible with
the C++ runtime.

Namespace

The WSDL extensions used to describe WebSphere MQ transport details are
defined in the WSDL namespace http://schemas.iona.com/transports/mq.
If you are going to use a WebSphere MQ port you need to include the following
in the definitions tag of your contract:

mq:client

Synopsis <mq:client QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 AliasQueueName="..." ConnectionName="..."

 ConnectionReusable="..." ConnectionFastPath="..."

 UsageStyle="..." CorrelationStyle="..." AccessMode="..."

 Timeout="..." MessageExpiry="..." MessagePriority="..."

 Delivery="..." Transactional="..." ReportOption="..."

 Format="..." MessageID="..." CorrelationID="..."

 ApplicationData="..." AccountingToken="..."

 ApplicationIdData="..." ApplicationOriginData="..."

 UserIdentification="..." />

xmlns:mq="http://schemas.iona.com/transports/mq"
154

Artix Extension Elements
Description The mq:client element is used to configure a client endpoint for connecting to
WebSphere MQ. For an MQ client endpoint that receives replies you must provide
values for the QueueManager, QueueName, ReplyQueueManager, and
ReplyQueueName attributes. If the endpoint is not going to receive replies, you do
not need to supply settings for the reply queue.

Attributes The mq:client element has the following attributes:

QueueManager Specifies the name of the queue manager used for
making requests.

QueueName Specifies the name of the queue used for making
requests.

ReplyQueueName Specifies the name of the queue used for receiving
responses.

ReplyQueueManager Specifies the name of the queue manager used for
receiving responses.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a model
for creating dynamic queues.

AliasQueueName Specifies the local name of the reply queue when
the reply queue manager is not on the same host as
the client’s local queue manager.

ConnectionName Specifies the name of the connection Artix uses to
connect to its queue.

ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in
process. The default is false; the queue manager
runs as a separate process.

UsageStyle Specifies if messages can be queued without
expecting a response.

CorrelationStyle Specifies what identifier is used to correlate
request and response messages.

AccessMode Specifies the level of access applications have to
the queue.
 155

CHAPTER 15 | WebSphere MQ Port
Timeout Specifies the amount of time, in milliseconds,
between a request and the corresponding reply
before an error message is generated.

MessageExpiry Specifies the value of the MQ message descriptor’s
Expiry field. It specifies the lifetime of a message
in tenths of a second. The default value is
INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message descriptor’s
Priority field.

Delivery Specifies the value of the MQ message descriptor’s
Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message descriptor’s
Report field.

Format Specifies the value of the MQ message descriptor’s
Format field.

MessageID Specifies the value of the MQ message descriptor’s
MsgId field. A value must be specified if
CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor’s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information that
needs to be set in the message header.

AccountingToken Specifies the value for the MQ message
decscriptor’s AccountingToken field.

ApplicationIdData Specifies the value for the MQ message
descriptor’s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message
descriptor’s ApplOriginData field.

UserIdentification Specifies the value for the MQ message
descriptor’s UserIdentifier field.
156

Artix Extension Elements
mq:server

Synopsis <mq:server QueueManager="..." QueueName="..."

 ReplyQueueManager="..." ReplyQueueName="..."

 Server_Client="..." ModelQueueName="..."

 ConnectionName="..." ConnectionReusable="..."

 ConnectionFastPath="..." UsageStyle="..."

 CorrelationStyle="..." AccessMode="..." Timeout="..."

 MessageExpiry="..." MessagePriority="..." Delivery="..."

 Transactional="..." ReportOption="..." Format="..."

 MessageID="..." CorrelationID="..." ApplicationData="..."

 AccountingToken="..." ApplicationOriginData="..."

 PropogateTransactions="..." />

Description The mq:server element is used to configure a server endpoint for connecting to
WebSphere MQ. For an MQ server endpoint you must provide values for the
QueueManager and QueueName attributes.

Attributes The mq:server element has the following attributes:

QueueManager Specifies the name of the queue manager used for
receiving requests.

QueueName Specifies the name of the queue used to receive
requests.

ReplyQueueName Specifies the name of the queue where responses
are placed. This setting is ignored if the client
specifies a ReplyToQ in a request’s message
descriptor.

ReplyQueueManager Specifies the name of the reply queue manager.
This setting is ignored if the client specifies a
ReplyToQMgr in a request’s message descriptor.

Server_Client Specifies which MQ libraries are to be used.

ModelQueueName Specifies the name of the queue to use as a model
for creating dynamic queues.

ConnectionName Specifies the name of the connection Artix uses to
connect to its queue.
 157

CHAPTER 15 | WebSphere MQ Port
ConnectionReusable Specifies if the connection can be used by more
than one application. The default is false; the
connection is not reusable.

ConnectionFastPath Specifies if the queue manager will be loaded in
process. The default is false; the queue manager
runs as a separate process.

UsageStyle Specifies if messages can be queued without
expecting a response.

CorrelationStyle Specifies what identifier is used to correlate
request and response messages.

AccessMode Specifies the level of access applications have to
the queue.

Timeout Specifies the amount of time, in milliseconds,
between a request and the corresponding reply
before an error message is generated.

MessageExpiry Specifies the value of the MQ message descriptor’s
Expiry field. It specifies the lifetime of a message
in tenths of a second. The default value is
INFINITE; messages never expire.

MessagePriority Specifies the value of the MQ message descriptor’s
Priority field.

Delivery Specifies the value of the MQ message descriptor’s
Persistence field.

Transactional Specifies if transaction operations must be
performed on the messages.

ReportOption Specifies the value of the MQ message descriptor’s
Report field.

Format Specifies the value of the MQ message descriptor’s
Format field.

MessageID Specifies the value of the MQ message descriptor’s
MsgId field. A value must be specified if
CorrelationStyle is set to none.

CorrelationID Specifies the value for the MQ message
descriptor’s CorrelId field. A value must be
specified if CorrelationStyle is set to none.

ApplicationData Specifies any application-specific information that
needs to be set in the message header.
158

Artix Extension Elements
Options Table 12 describes the correlation between the Artix attribute settings and the
MQOPEN settings.

AccountingToken Specifies the value for the MQ message
decscriptor’s AccountingToken field.

ApplicationOriginData Specifies the value for the MQ message
descriptor’s ApplOriginData field.

PropogateTransactions Specifies if local MQ transactions should be
included in flowed transactions. Default is true.
 159

CHAPTER 15 | WebSphere MQ Port
Attribute Details

Server_Client

Description The Server_Client attribute specifies which shared libraries to load on systems
with a full WebSphere MQ installation.

Parameters Table 9 describes the settings for this attribute for each type of WebSphere MQ
installation.

Table 9: Server_Client Attribute Settings

MQ
Installation

Server_Clien
t Setting

Behavior

Full The server shared library (libmqm) is loaded
and the application will use queues hosted
on the local machine.

Full server The server shared library (libmqm) is loaded
and the application will use queues hosted
on the local machine.

Full client The client shared library (libmqic) is
loaded and the application will use queues
hosted on a remote machine.

Client The application will attempt to load the
server shared library (libmqm) before
loading the client shared library(libmqic).
The application accesses queues hosted on a
remote machine.

Client server The application will fail because it cannot
load the server shared libraries.

Client client The client shared library (libmqic) is
loaded and the application accesses queues
hosted on a remote machine.
160

Attribute Details
AliasQueueName

Description The AliasQueueName attribute specifies the local name of the reply queue when
the service’s queue manager is running a different host from the client. Using this
attribute ensures that the server will put the replies on the proper queue. Otherwise,
the server will receive a request message with the ReplyToQ field set to a queue
that is managed by a queue manager on a remote host and will be unable to send
the reply.

Effect of AliasQueueName When you specify a value for the AliasQueueName attribute in an mq:client
element, you alter how Artix populates the request’s ReplyToQ field and
ReplyToQMgr field. Typically, Artix populates the reply queue information in the
request’s message descriptor with the values specified in ReplyQueueManager
and ReplyQueueName. Setting AliasQueueName causes Artix to leave
ReplytoQMgr empty and to set ReplyToQ to the value of AliasQueueName. When
the ReplyToQMgr field of the message descriptor is left empty, the sending queue
manager inspects the queue named in the ReplyToQ field to determine who its
queue manager is and uses that value for ReplyToQMgr. The server puts the
message on the remote queue that is configured as a proxy for the client’s local
reply queue.

Examples If you had a system defined similar to that shown in Figure 1, you would need to
use the AliasQueueName attribute setting when configuring your WebSphere MQ
client. In this set up the client is running on a host with a local queue manager
QMgrA. QMgrA has two queues configured. RqA is a remote queue that is a proxy
for RqB and RplyA is a local queue. The server is running on a different machine
whose local queue manager is QMgrB. QMgrB also has two queues. RqB is a local
 161

CHAPTER 15 | WebSphere MQ Port
queue and RplyB is a remote queue that is a proxy for RplyA. The client places its
request on RqA and expects replies to arrive on RplyA.

The Artix WebSphere MQ port definitions for the client and server for this
deployment are shown in Example 44. AliasQueueName is set to RplyB because
that is the remote queue proxying for the reply queue in server’s local queue
manager. ReplyQueueManager and ReplyQueueName are set to the client’s local
queue manager so that it knows where to listen for responses. In this example,
the server’s ReplyQueueManager and ReplyQueueName do not need to be set
because you are assured that the client is populating the request’s message
descriptor with the needed information for the server to determine where replies
are sent.

Figure 1: MQ Remote Queues

Example 44: Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>
162

Attribute Details
UsageStyle

Description The UsageStyle specifies if a message can be queued without expecting a
response. The default value is Requester.

Options The valid settings for UsageStyle are described in Table 10.

Examples In Example 45, the WebSphere MQ client wants a response from the server and
needs to be able to associate the response with the request that generated it. Setting
the UsageStyle to responder ensures that the server’s response will properly
populate the response message descriptor’s CorrelID field according to the
defined correlation style. In this case, the correlation style is set to correlationId.

Table 10: UsageStyle Settings

Attribute Setting Description

Peer Specifies that messages can be queued without
expecting any response.

Requester Specifies that the message sender expects a response
message. This is the default.

Responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Example 45: MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster" ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId"/>
 163

CHAPTER 15 | WebSphere MQ Port
CorrelationStyle

Description The CorrelationStyle attribute specifies how WebSphere MQ matches both the
message identifier and the correlation identifier to select a particular message to
be retrieved from the queue (this is accomplished by setting the corresponding
MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the MatchOptions field in
MQGMO to indicate that those fields should be used as selection criteria).

Options The valid correlation styles for an Artix WebSphere MQ port are messageId,
correlationId, and messageId copy.

Table 11 shows the actions of MQGET and MQPUT when receiving a message using
a WSDL specified message ID and a WSDL specified correlation ID.

Note: When a value is specified for ConnectionName, you cannot use
messageId copy as the correlation style.

Table 11: MQGET and MQPUT Actions

Artix Port
Setting

Action for MQGET Action for MQPUT

messageId Set the CorrelId of the
message descriptor to
value of the MessageID.

Copy the value of the
MessageID onto the
message descriptor’s
CorrelId.

correlationId Set CorrelId of the
message descriptor to
that value of the
CorrelationID.

Copy value of the
CorrelationID onto
message descriptor’s
CorrelId.

messageId copy Set MsgId of the message
descriptor to value of the
messageID.

Copy the value of the
MessageID onto message
descriptor’s MsgId.
164

Attribute Details
AccessMode

Description The AccessMode attribute controls the action of MQOPEN and MQPUT in the Artix
WebSphere MQ transport.

Table 12: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek peek opens a queue to browse messages. Equivalent to
MQOO_BROWSE. This setting is not valid for remote queues.

send send has the same effect as send+setall for backward
compatibility reasons.

send+setall send+setall opens a queue to put messages into. The
queue is opened for use with subsequent MQPUT calls.
Equivalent to:

MQOPEN => MQOO_SET_ALL_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_SET_ALL_CONTEXT

You can specify different authorizations using other
send+ settings (for example, send+setid).

send+setid Equivalent to:

MQOPEN => MQOO_SET_IDENTITY_CONTEXT |
MQOO_OUTPUT

MQPUT => MQPMO_SET_IDENTITY_CONTEXT

send+passall Equivalent to:

MQOPEN => MQOO_PASS_ALL_CONTEXT | MQOO_OUTPUT
MQPUT => MQPMO_PASS_ALL_CONTEXT

send+passid Equivalent to:

MQOPEN => MQOO_PASS_IDENTITY_CONTEXT |
MQOO_OUTPUT

MQPUT => MQPMO_PASS_IDENTITY_CONTEXT

send+none Equivalent to MQOO_OUTPUT only. This setting has no
associated authorization level.
 165

CHAPTER 15 | WebSphere MQ Port
MessagePriority

Description The MessagePriority attribute specifies the value for the MQ message
descriptor’s Priority field. Its value must be greater than or equal to zero; zero
is the lowest priority. Special values for MessagePriority include highest (9),
high (7), medium (5), low (3) and lowest (0). The default is normal.

Delivery

Description The Delivery attribute specifies the value of the MQ message descriptor’s
Persistence field.

receive
(default)

receive opens a queue to get messages using a
queue-defined default. Equivalent to
MQOO_INPUT_AS_Q_DEF. The default value depends on
the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive
exclusive

receive exclusive opens a queue to get messages with
exclusive access. Equivalent to MQOO_INPUT_EXCLUSIVE.
The queue is opened for use with subsequent MQGET calls.
The call fails with reason code MQRC_OBJECT_IN_USE if
the queue is currently open (by this or another
application) for input of any type.

receive shared receive shared opens queue to get messages with
shared access. Equivalent to MQOO_INPUT_SHARED. The
queue is opened for use with subsequent MQGET calls. The
call can succeed if the queue is currently open by this or
another application with MQOO_INPUT_SHARED.

Table 12: Artix WebSphere MQ Access Modes

Attribute Setting Description
166

Attribute Details
Options Table 13 describes the settings for Delviery.

To support transactional messaging, you must make the messages persistent.

Transactional

Description The Transactional controls how messages participate in transactions and what
role WebSphere MQ plays in the transactions.

Options The values of the Transactional attribute are explained in Table 14.

When the transactional attribute to internal for an Artix service, the
following happens during request processing:

1. When a request is placed on the service’s request queue, MQ begins a

transaction.

2. The service processes the request.

3. Control is returned to the server transport layer.

4. If no reply is required, the local transaction is committed and the request is

permanently discarded.

Table 13: Delivery Attribute Settings

Artix WebSphere MQ

persistent MQPER_PERSISTENT

not persistent (Default) MQPER_NOT_PERSISTENT

Table 14: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No rollback
actions will be taken if errors occur.

internal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a flowed transaction with
WebSphere MQ serving as an enlisted resource
manager.
 167

CHAPTER 15 | WebSphere MQ Port
5. If a reply message is required, the local transaction is committed and the

request is permanently discarded only after the reply is successfully placed

on the reply queue.

6. If an error is encountered while the request is being processed, the local

transaction is rolled back and the request is placed back onto the service’s

request queue.

Examples Example 46 shows the settings for a WebSphere MQ server port whose requests
will be part of transactions managed by WebSphere MQ. Note that the Delivery
attribute must be set to persistent when using transactions.

ReportOption

Description The ReportOption attribute is mapped to the MQ message descriptor’s Report
field. It enables the application sending the original message to specify which
report messages are required, whether the application message data is to be
included in them, and how the message and correlation identifiers in the report or
reply message are to be set. Artix only allows you to specify one ReportOption
per Artix port. Setting more than one will result in unpredictable behavior.

Options The values of this attribute are explained in Table 15.

Example 46: MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>

Table 15: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. You should never specifically set
ReportOption to none; it will create validation errors
in the contract.
168

Attribute Details
coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns the
destination queue, when the message is placed on the
destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type of
report is generated by the queue manager when an
application retrieves the message from the destination
queue in a way that causes the message to be deleted
from the queue.

exception Corresponds to MQRO_EXCEPTION. exception specifies
that exception reports are required. This type of report
can be generated by a message channel agent when a
message is sent to another queue manager and the
message cannot be delivered to the specified
destination queue. For example, the destination queue
or an intermediate transmission queue might be full, or
the message might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This type
of report is generated by the queue manager if the
message is discarded prior to delivery to an application
because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard indicates
that the message should be discarded if it cannot be
delivered to the destination queue. An exception report
message is generated if one was requested by the
sender

Table 15: ReportOption Attribute Settings

Attribute Setting Description
 169

CHAPTER 15 | WebSphere MQ Port
Format

Description The Format attribute is mapped to the MQ message descriptor’s Format field. It
specifies an optional format name to indicate to the receiver the nature of the data
in the message.

Options The value may contain any character in the queue manager's character set, but it
is recommended that the name be restricted to the following:

• Uppercase A through Z

• Numeric digits 0 through 9

In addition, the FormatType attribute can take the special values none, string,
event, programmable command, and unicode. These settings are described in
Table 16.

Table 16: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name is
specified.

string Corresponds to MQFMT_STRING. string specifies
that the message consists entirely of character
data. The message data may be either
single-byte characters or double-byte characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not supported in
Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have the
same structure as programmable commands.
170

Attribute Details
When you are interoperating with WebSphere MQ applications hosted on a
mainframe and the data needs to be converted into the systems native data
format, you should set Format to string. Not doing so will result in the
mainframe receiving corrupted data.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/csq
zac03/csqzac030d.htm#Header_12.

Table 16: FormatType Attribute Settings

Attribute Setting Description
 171

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER 15 | WebSphere MQ Port
172

CHAPTER 16

Tuxedo Port
Artix can connect to applications that use BEA’s Tuxedo as their
messaging backbone.

Runtime Compatibility

The Tuxedo transport’s extension elements are only compatible with the C++
runtime.

Namespace

The extensions used to describe a Tuxedo port are defined in the namespace
http://schemas.iona.com/transports/tuxedo. When a Tuxedo endpoint is
defined in a contract, the contract will need the following namespace declaration
in the contract’s definition element:

tuxedo:server

Synopsis <tuxedo:server>

 <tuxedo:service ...>

 ...

 </tuxedo:service>

</tuxedo:server>

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 173

CHAPTER 16 | Tuxedo Port
Description The tuxedo:server element is a child of a WSDL port element. It contains the
definition of a Tuxedo endpoint.

tuxedo:service

Synopsis <tuxedo:service name="...">

 <tuxedo:input .../>

 ...

</tuxedo:service>

Description The tuxedo:service element is the child of a tuxedo:server element. It specifies
the bulletin board name used to post and receive messages. It has a number of
tuxedo:input child elements that provide a map to the operations from which
messages are routed.

Attributes The tuxedo:service element has a single required attribute called name. The name
attribute specifies the bulletin board name for the service.

tuxedo:input

Synopsis <tuxedo:input operation="..." />

Description The tuxedo:input element specify which of the operations bound to the port
being defined are handled by the Tuxedo service.

Attributes The tuxedo:input element has a single required attribute called operation. The
operation attribute specifies the WSDL operation that is handled by the Tuxedo
service. The value must correspond the value of the name attribute of the
appropriate WSDL operation element.
174

CHAPTER 17

JMS Port
JMS is a powerful messaging system used by Java applications.

In this chapter This chapter discusses the following topics:

C++ Runtime Extensions page 176
 175

CHAPTER 17 | JMS Port
C++ Runtime Extensions

Namespace

The WSDL extensions used to describe JMS transport details for the C++
runtime are defined in the namespace
http://celtix.objectweb.org/transports/jms. If you are going to use a
JMS port you need to include the following in the definitions tag of your
contract:

jms:address

Synopsis <jms:address destinationStyle="..."

 jndiConnectionFactoryName="..."

 jndiDestinationName="..."

 jndiReplyDestinationName="..."

 jmsDestinationName="..."

 jmsReplyDestinationName="..."

 connectionUserName="..." connectionPassword="...">

 <jms:JMSNamingProperty ... />

 ...

</jms:address>

Description The jms:address element specifies the information needed to connect to a JMS
system.

Attributes The jms:address element has the following attributes:

xmlns:jms="http://celtix.objectweb.org/transports/jms"

destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting
to the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which Artix connects.
176

C++ Runtime Extensions
jms:JMSNamingProperty

Synopsis <jms:JMSNamingProperty name="..." value="..." />

Description The jms:JMSNamingProperty element is a child of the jms:address element. It
is used to provide the values used to populate the properties object used when
connecting to a JNDI provider.

Attributes The jms:JMSNamingProperty element has the following attributes:

JNDI property names The following is a list of common JNDI properties that can be set:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

• java.naming.security.protocol

• java.naming.security.authentication

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destination where replies are sent. This
attribute allows you to use a user defined
destination for replies.

jmsDestinationName Specifies the JMS name of the JMS
destination to which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the JMS
destination where replies are sent. This
attribute allows you to use a user defined
destination for replies.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.

name Specifies the name of the JNDI property to set.

value Specifies the value for the specified property.
 177

CHAPTER 17 | JMS Port
• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to use in these attributes, check your JNDI
provider’s documentation and consult the Java API reference material.

jms:client

Synopsis <jms:client messageType="..." />

Description The jms:client element is a child of the WSDL port element. It is used to specify
the types of messages being used by a JMS client endpoint and the timeout value
for a JMS client endpoint.

Attributes The jms:client element has the following attributes:

jms:server

Synopsis <jms:server useMessageIDAsCorrelationID="..."

 durableSubscriberName="..."

 messageSelector="..." transactional="..." />

Description The jms:server element is a child of the WSDL port element. It specifies settings
used to configure the behavior of a JMS service endpoint.

messageType Specifies how the message data will be packaged as a JMS
message. text specifies that the data will be packaged as a
TextMessage. binary specifies that the data will be
packaged as an ObjectMessage.
178

C++ Runtime Extensions
Attributes The jms:server element has the following attributes:

useMessageIDAsCorrealationID Specifies whether JMS will use the message
ID to correlate messages. The default is
false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message
selector to use.

transactional Specifies whether the local JMS broker will
create transactions around message
processing. The default is false.
 179

CHAPTER 17 | JMS Port
180

CHAPTER 18

Tibco/Rendezvous
Port
Artix provides a number of attributes to define a TIB/RV service.

In this chapter This chapter discusses the following topics:

Artix Extension Elements page 182

Attribute Details page 187
 181

CHAPTER 18 | Tibco/Rendezvous Port
Artix Extension Elements

Runtime Compatibility

The Tibco/Rendezvous transport’s extensions are only compatible with the C++
runtime.

Namespace

The extensions used to describe a Tibco/Rendezvous endpoint are defined in the
namespace http://schemas.iona.com/transports/tibrv. When a Tibco
endpoint is defined in a contract, the contract will need the following namespace
declaration in the contract’s definition element:

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
182

Artix Extension Elements
tibrv:port

Synopsis <tibrv:port serverSubject="..." clientSubject="..."

 bindingType="..." callbackLevel="..."

 responseDispatchTimeout="..." transportService="..."

 transportNetwork="..." transportDeamon="..."

 transportBatchMode="..." cmSupport="..."

 cmTransportServerName="..." cmTransportClientName="..."

 cmTransportRequestOld="..." cmTransportLedgerName="..."

 cmTransportSyncLedger="..."cmTransportRelayAgent="..."

 cmTransportDefaultTimeLimit="..."

 cmListenerCancelAgreement="..."

 cmQueueTransportServerName="..."

 cmQueueTransportWorkerWeight="..."

 cmQueueTransportWorkerTasks="..."

 cmQueueTransportSchedulerWeight="..."

 cmQueueTransportSchedulerHeartbeat="..."

 cmQueueTransportSchedulerActivation="..."

 cmQueueTransportCompleteTime="..." />

Description The tibrv:port element is the child of a WSDL port element. It specifies the
properties used to configure an endpoint that use Tibco/Rendezvous as its
messaging backbone. The element’s attributes specify the information needed to
configure the transport layer. The serverSubject attribute is required to be set
and its value must match on both the server side and the client side.

Attributes The tibrv:port element has the following attributes:

serverSubject Specifies the subject to which the
server listens. This parameter must
be the same between client and
server.

clientSubject Specifies the prefix to the subject
that the client listens to. The default
is to use a uniquely generated name.

bindingType Specifies the message binding type.
 183

CHAPTER 18 | Tibco/Rendezvous Port
callbackLevel Specifies the server-side callback
level when TIB/RV system advisory
messages are received.

responseDispatchTimeout Specifies the client-side response
timeout.

transportService Specifies the UDP service name or
port for TibrvNetTransport.

transportNetwork Specifies the binding network
addresses for TibrvNetTransport.

transportDaemon Specifies the TCP daemon port for
TibrvNetTransport. The default is to
use 7500 for the TRDP daemon, or
7550 for the PGM daemon.

transportBatchMode Specifies if the TIB/RV transport
uses batch mode to send messages.
The default is false; The endpoint
will send messages as soon as they
are ready.

cmSupport Specifies if Certified Message
Delivery support is enabled. The
default is false; CM support is
disabled.

cmTransportServerName Specifies the server’s
TibrvCmTransport correspondent
name.

cmTransportClientName Specifies the client
TibrvCmTransport correspondent
name. The default is to use a
transient correspondent name.

cmTransportRequestOld Specifies if the endpoint can request
old messages on start-up. The default
is false; the endpoint cannot request
old messages on start-up.

cmTransportLedgerName Specifies the TibrvCmTransport
ledger file. The default is to use an
in-process ledger that is stored in
memory.
184

Artix Extension Elements
cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. The default is
false; the endpoint does not use a
synchronous ledger.

cmTransportRelayAgent Specifies the endpoint’s
TibrvCmTransport relay agent. If
this attribute is not set, the endpoint
does not use a relay agent.

cmTransportDefaultTimeLimit Specifies the default time limit for a
Certified Message to be delivered.
The default is no time limit.

cmListenerCancelAgreements Specifies if Certified Message
agreements are canceled when the
endpoint disconnects. The default is
false; agreements remain in place
after disconnecting.

cmQueueTransportServerName Specifies the server’s
TibrvCmQueueTransport
correspondent name.

cmQueueTransportWorkerWeight Specifies the endpoint’s
TibrvCmQueueTransport worker
weight. The default is
TIBRVCM_DEFAULT_WORKER_WEIGHT.

cmQueueTransportWorkerTasks Specifies the value of the endpoint’s
TibrvCmQueueTransport worker
tasks parameter. The default is
TIBRVCM_DEFAULT_WORKER_TASKS.

cmQueueTransportSchedulerWeight Specifies the value of the
TibrvCmQueueTransport scheduler
weight parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

cmQueueTransportSchedulerHeartbeat Specifies the value of the
TibrvCmQueueTransport scheduler
heartbeat parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.
 185

CHAPTER 18 | Tibco/Rendezvous Port
cmQueueTransportSchedulerActivation Specifies the value of the
TibrvCmQueueTransport scheduler
activation parameter. The default
is
TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

cmQueueTransportCompleteTime Specifies the value of the
TibrvCmQueueTransport complete
time parameter. The default is 0.
186

Attribute Details
Attribute Details

bindingType

Description The bindingType attribute specifies the message binding type.

Options Artix TIB/RV ports support three types of payload formats as described in
Table 17.

callbackLevel

Description The callbackLevel attribute specifies the server-side callback level when
TIB/RV system advisory messages are received.

Options It has three settings:

• INFO

• WARN

• ERROR (default)

Table 17: TIB/RV Supported Payload formats

Value Payload Formats TIB/RV Message Implications

msg TibrvMsg The message data is encapsulated in a
TibrvMsg described by the binding
section of the service’s contract.

xml SOAP, tagged data The message data is encapsulated in a
field of TIBRVMSG_XML with a null name
and an ID of 0.

opaque fixed record length
data, variable record
length data

The message data is encapsulated in a
field of TIBRVMSG_OPAQUE with a null
name and an ID of 0.
 187

CHAPTER 18 | Tibco/Rendezvous Port
responseDispatchTimeout

Description The responseDispatchTimeout attribute specifies the client-side response
receive dispatch timeout. The default is TIBRV_WAIT_FOREVER.

transportService

Description The transportService attribute specifies the UDP service name or port for
TibrvNetTransport. The default is rendezvous. If no corresponding entry exists
in /etc/services, 7500 for the TRDP daemon, or 7550 for the PGM daemon will
be used. This parameter must be the same for both client and server.

transportNetwork

Description The transportNetwork attribute specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host for
the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must be
interoperable between the client and the server.

cmTransportServerName

Description The cmTransportServerName attribute specifies the server’s TibrvCmTransport
correspondent name. The default is to use a transient correspondent name. This
parameter must be the same for both client and server if the client also uses
Certified Message Delivery.

Note: If only the TibrvNetTransport is used and there is no server return
response for a request, then not setting a timeout value causes the client to
block forever.
188

Attribute Details
cmQueueTransportServerName

Description The cmQueueTransportServerName attribute specifies the server’s
TibrvCmQueueTransport correspondent name. If this property is set, the server
listener joins to the distributed queue of the specified name. This parameter must
be the same among the server queue members.
 189

CHAPTER 18 | Tibco/Rendezvous Port
190

CHAPTER 19

File Transfer
Protocol Port
Artix can use an FTP server as a middle-tier message broker.

Runtime Compatibility

The FTP transport’s extensions are compatible with the C++ runtime.

Namespace

The extensions used to describe a File Transfer Protocol (FTP) port are defined
in the namespace http://schemas.iona.com/transports/ftp. When an FTP
endpoint is defined in a contract, the contract will need the following namespace
declaration in the contract’s definition element:

xmlns:ftp="http://schemas.iona.com/transports/ftp"
 191

CHAPTER 19 | File Transfer Protocol Port
ftp:port

Synopsis <ftp:port host="..." port="..." requestLocation="..."

 replyLocation="..." connectMode="..." scanInterval="...">

 <ftp:properties>

 ...

 </ftp:properties>

</ftp:port>

Description The ftp:port element is a child of a WSDL port element. It defines the
connection details for an FTP endpoint. It may contain an ftp:properties element.

Attributes The ftp:port element has the following attributes:

ftp:properties

Synopsis <ftp:properties>

 <ftp:property ... />

 ...

</ftp:property>

Description The ftp:properties element defines a number of file naming properties used by
the endpoint for storing requests and replies. It contains one or more ftp:property
elements.

host Specifies the domain name or IP address of the machine
hosting the FTPD used by the endpoint.

port Specifies the port number on which the endpoint will
contact the FTPD.

requestLocation Specifies the path on the FTPD host the endpoint will use
for requests. The default is /.

replyLocation Specifies the path on the FTPD host the endpoint will use
for replies. The default is /.

connectMode Specifies the connection mode used to connect to the
FTPD. Valid values are passive and active. The default
is passive.

scanInterval Specifies the interval, in seconds, at which the request and
reply directories are scanned for updates. The default is 5.
192

ftp:property

Synopsis <ftp:property name="..." value="..." />

Description The ftp:property element defines specific file naming properties to use when
reading and writing messages on the FTPD host. The properties are defined by
the implementation used for the naming scheme classes. Artix provides a default
implementation. However, a custom naming scheme implementation may have
different properties.

Attributes The ftp:property element has the following attributes:

Default Naming Properties The default naming implementation provided with Artix supports the following
properties:

name Specifies the name of the property to set.

value Specifies the value of the property.

staticFilenames Determines if the endpoint uses a static,
non-unique, naming scheme for its files. Valid
values are true and false. The default is true.

requestFilenamePrefix Specifies the prefix to use for file names when
staticFilenames is set to false.
 193

CHAPTER 19 | File Transfer Protocol Port
194

Part III
Other Extensions

In this part This part contains the following chapters:

Routing page 197

Security page 207

Codeset Conversion page 211
 195

196

CHAPTER 21

Routing
Artix provides a number of WSDL extensions for defining how
messages are routed between services.

Runtime Compatibility

The extensions described below are only recognized by the Artix router.

Namespace

The Artix routing elements are defined in the
http://schemas.iona.com/routing namespace. When describing routes in an
Artix contract your contract’s definition element must have the following
entry:

routing:expression

Synopsis <routing:expression name="..." evaluator="..."

 ...

</routing:expression>

Description The routing:expression element is a child of the WSDL definitions element.
It specifies an XPATH expression that evaluates messages for content-based
routing.

xmlns:routing="http://schemas.iona.com/routing"
 197

CHAPTER 21 | Routing
Attributes The routing:expression requires the following two attributes:

routing:route

Synopsis <routing:route name="..." mulitRoute="...">

 ...

</routing:route>

Description The routing:route element is the root element of each route described in a
contract.

Attributes The routing:route element takes the following attributes:

Options Standard routes define a single source/destination pair. When the mulitRoute
attribute is specified, your route description will contain more than one
destination.

Setting the multiRoute attribute has the following effects:

• fanout instructs Artix to send messages from the source to all the listed

destinations.

• failover instructs Artix to move through the list of destinations until it

can successfully send the message.

• loadBalance instructs Artix to use a round-robin algorithm to spread

messages across all of the listed destinations.

routing:source

Synopsis <routing:source service="..." port="..." />

name Specifies a string that is used to refer to the expression when
defining routes.

evaluator Specifies the name of the grammar used in the expression.
Currently the only valid value is xpath.

name Specifies a unique identifier for the route. This attribute is
required.

multiRoute An optional attribute that specifies how messages are sent to
the listed destinations. Values are fanout, failover, or
loadBalance. Default is to route messages to a single
destination.
198

Description The routing:source element is a child of a routing:route element. It specifies
the port from which the route will redirect messages. A route can have several
source elements as long as they all meet the compatibility rules for port-based
routing.

Attributes The routing:source element requires two attributes:

routing:query

Synopsis <routing:query expression="...">

 <routing:desitination id="..." ... />

 ...

</routing:query>

Description The routing:query element is a child of a routing:route element. It specifies the
destinations for a content-based route. The child routing:destination elements
must use the id attribute to specify the value used to select the destination.

Attributes The routing:query element has one attribute:

routing:destination

Synopsis <routing:destination value="..." service="..."

 port="..." route="..." />

Description The routing:destination element is a child of a routing:route element. It
specifies the port to which the source messages are directed. The destination must
be compatible with all of the source elements.

service Specifies the WSDL service element in which the source
port is defined.

port Specifies the name of the WSDL port element from which
messages are being received. The router will create a proxy
to listen for messages on this port.

expression Specifies the value of the name attribute from the
routing:expression element defining the XPATH expression
used to select the destination of the message. The query
selects the destination with the id value that matches the
result of applying the expression to the message content.
 199

CHAPTER 21 | Routing
Attributes The routing:destination element has the following attributes:

routing:transportAttribute

Synopsis <routing:transportAttribute>

 ...

</routing:transportAttribute>

Description The routing:transportAttribute element is a child of a routing:route element.
It defines routing rules based on the transport attributes set in a message’s header
when using HTTP, CORBA, or WebSphere MQ. The criteria for determining if
a message meets the transport attribute rule are specified using the following child
elements:

• routing:equals

• routing:greater

• routing:less

• routing:startswith

• routing:endswith

• routing:contains

• routing:empty

• routing:nonempty

A message passes the rule if it meets each criterion specified by the child
elements.

Transport attribute rules are defined after all of the operation-based routing rules
and before any destinations are listed.

value Specifies the value of the content-based routing query that
triggers the destination. This attribute is required when the
element is the child of a routing:query element and ignored
otherwise.

service Specifies the WSDL service element in which the
destination port is defined.

port Specifies the name of the port WSDL element to which
messages are routed.

route Specifies a linked route to use for selecting the ultimate
destination. When this attribute is used, you should not use
the service attribute or the port attribute.
200

Examples Example 47 shows a route using transport attribute rules based on HTTP header
attributes. Only messages sent to the server whose UserName is equal to JohnQ
will be passed through to the destination port.

routing:equals

Synopsis <routing:equals contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:equals element is a child of a routing:transportAttribute element.
It defines a rule that is triggered when the specified attribute equals the value given.
It applies to string or numeric attributes.

Attributes The routing:equals element has the following attributes:

Example 47: Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string are
ignored. The default is no; case is considered when
evaluating string data.
 201

CHAPTER 21 | Routing
routing:greater

Synopsis <routing:greater contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:greater element is a child of a routing:transportAttribute element.
It defines a rule that is triggered when the value of the specified attribute is greater
than the value given. It applies to numeric attributes.

Attributes The routing:greater element has the following attributes:

routing:less

Synopsis <routing:less contextName="..."

 contextAttributeName="..."

 value="..." />

Description The routing:less element is a child of a routing:transportAttribute element. It
defines a rule that is triggered when the value of the specified attribute is less than
the value given. It applies to numeric attributes.

Attributes The routing:less element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.
202

routing:startswith

Synopsis <routing:startswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:startswith element is a child of a routing:transportAttribute
element. It applies to string attributes and tests whether the attribute starts with
the specified value.

Attributes The routing:startswith element has the following attributes:

routing:endswith

Synopsis <routing:endswith contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:endswith element is a child of a routing:transportAttribute element.
It applies to string attributes and tests whether the attribute ends with the specified
value.

Attributes The routing:endswith element has the following attributes:

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string are
ignored. The default is no; case is considered when
evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.
 203

CHAPTER 21 | Routing
routing:contains

Synopsis <routing:contains contextName="..."

 contextAttributeName="..."

 value="..."

 ingnorecase="..." />

Description The routing:contains element is a child of a routing:transportAttribute element.
It applies to string or list attributes. For strings, it tests whether the attribute
contains the value. For lists, it tests whether the value is a member of the list.

Attributes The routing:contains element has the following attributes:

routing:empty

Synopsis <routing:empty contextName="..."

 contextAttributeName="..." />

Description The routing:empty element is a child of a routing:transportAttribute element. It
applies to string or list attributes. For lists, it tests whether the list is empty. For
strings, it tests for an empty string.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string are
ignored. The default is no; case is considered when
evaluating string data.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

value Specifies the value against which the specified
attribute is evaluated.

ignorecase Specifies whether the case of characters in a string are
ignored. The default is no; case is considered when
evaluating string data.
204

Attributes The routing:empty element has the following attributes:

routing:nonempty

Synopsis <routing:nonempty contextName="..."

 contextAttributeName="..." />

Description The routing:nonempty element is a child of a routing:transportAttribute element.
It applies to string or list attributes. For lists, it passes if the list is not empty. For
strings, it passes if the string is not empty.

Attributes The routing:nonempty element has the following attributes:

Transport Attribute Context Names

The contextName attribute is specified using the QName of the context in which
the attribute is defined. The contexts shipped with Artix are described in
Table 18.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

contextName Specifies the QName of the context in which the
desired transport attributes are stored.

contextAttributeName Specifies the QName of the transport attribute the rule
evaluates.

Table 18: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a server.

corba:corba_input_attributes Contains the data stored in
the CORBA principle
 205

CHAPTER 21 | Routing
mq:MQConnectionAttributes Contains the attributes used
to connect to an MQ queue.

mq:MQIncomingMessageAttributes Contains the attributes in the
message header of an MQ
message.

bus-security Contains the attributes used
by the security service to
secure your services.

Table 18: Context QNames

Context QName Details
206

CHAPTER 22

Security
Artix uses a special WSDL extension element to specify security
policies for endpoints.

Runtime Compatibility

The security extensions are only compatible with C++ runtime.

Namespace

The elements Artix uses for specifying security policies are defined in the
http://schemas.iona.com/bus/security namespace. When defining security
policies in an Artix contract your contract’s definition element must have the
following entry:

bus-security:security

Synopsis <bus-security:security enableSecurity="..."

 is2AuthorizationActionRoleMapping="..."

 enableAuthorization="..."

 authenticationCacheSize="..."

 authenticationCacheTimeout ="..."

 securityType="..."

 securityLevel="..."

xmlns:bus-security="http://schemas.iona.com/bus/security"
 207

CHAPTER 22 | Security
 authorizationRealm="..."

 defaultPassword="..." />

Description The bus-security:security element is a child of a WSDL port element. It’s
attributes specify security policies for the endpoint.

Attributes The bus-security:security element has the following attributes:

enableSecurity Specifies if the service should loud the
ASP plug-in. Default is false.

is2AuthorizationActionRoleMapping Specifies the URL of the action role
mapping file the Artix security
framework uses to authenticate
requests for this endpoint.

enableAuthorization Specifies if the endpoint should use the
Artix security framework for
authentication. Default is false.

enableSSO Specifies if the service can use
single-sign on (SSO). Default is false.

authenticationCacheSize Specifies the maximum number of
credentials stored in the authentication
cache. A value of -1 (the default)
means unlimited size. A value of 0
disables the cache.

authenticationCacheTimeout Specifies the time (in seconds) after
which a credential is considered stale.
A value of -1 (the default) means an
infinite time-out. A value of 0 disables
the cache.

securityLevel Specifies the level from which security
credentials are picked up.

The following options are supported by
the Artix security framework:

• MESSAGE_LEVEL—Get security

information from the transport

header. This is the default.

• REQUEST_LEVEL—Get the

security information from the

message header.
208

See also For more information about Artix security policies, see The Artix
Security Guide.

authorizationRealm Specifies the Artix authorization realm
to which an Artix server belongs. The
value of this variable determines which
of a user's roles are considered when
making an access control decision.The
default is IONAGlobalRealm.

defaultPassword Specifies the password to use on the
server side when the client credentials
originate either from a CORBA
Principal (embedded in a SOAP
header) or from a certificate subject.
The default is default_password.
 209

CHAPTER 22 | Security
210

CHAPTER 23

Codeset
Conversion
For transports that do not natively support codeset conversion
Artix has the ability to perform codeset conversion.

Runtime Compatibility

The extension elements used to configure codeset conversion are only
compatible with the C++ runtime.

Namespace

The elements Artix uses for defining codeset conversion rules are defined in the
http://schemas.iona.com/bus/i18n/context namespace. When defining
codeset conversion rules in an Artix contract your contract’s definition
element must have the following entry:

i18n-context:client

Synopsis <i18n-context:client LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 211

CHAPTER 23 | Codeset Conversion
Description The i18n-context:client element is a child of a WSDL port element. It
specifies codeset conversion rules for Artix endpoints that are acting as servers.

Attributes The i18n-context:client element has the following attributes for defining how
message codesets are converted:

i18n-context:server

Synopsis <i18n-context:server LocalCodeSet="..." OutboundCodeSet="..."

 InboundCodeSet="..." />

Description The i18n-context:server element is a child of a WSDL port element. It
specifies codeset conversion rules for Artix endpoints that are acting as servers.

Attributes The i18n-context:server element has the following attributes for defining how
message codesets are converted:

LocalCodeSet Specifies the client’s native codeset. Default is the codeset
specified by the local system’s locale setting.

OutboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.

InboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in OutboundCodeSet.

LocalCodeSet Specifies the server’s native codeset. Default is the codeset
specified by the local system’s locale setting.

OutboundCodeSet Specifies the codeset into which replies are converted.
Default is the codeset specified in InboundCodeSet.

InboundCodeSet Specifies the codeset into which requests are converted.
Default is the codeset specified in LocalCodeSet.
212

Index

A
adding a SOAP header 37, 45
arrays

mapping to a fixed binding 92
mapping to a tagged binding 99
mapping to a TibrvMsg 111
mapping to CORBA 67

Artix contexts
using in a TibrvMsg 117

Artix reference
mapping to CORBA 73

attribute based routing 200

B
bus-security:security 208

authenticationCacheSize attribute 208
authenticationCacheTimeout attribute 208
authorizationRealm attribute 209
defaultPassword attribute 209
enableAuthorization attribute 208
enableSecurity attribute 208
enableSSO attribute 208
is2AuthorizationActionRoleMapping attribute 208
securityLevel attribute 208

C
choice complexType

mapping to a fixed binding 90
mapping to a tagged binding 101

complex types
mapping to a TibrvMsg 115
mapping to CORBA 60

corba:address 145
location attribute 146

corba:alias 66
name attribute 66
repositoryID attribute 66
type attribute 66

corba:anonsequence 70
bound attribute 70
elemtype attribute 70
name attribute 70

type attribute 70
corba:array 67

bound attribute 67
elemtype attribute 67
name attribute 67
repositoryID attribute 67
type attribute 67

corba:binding 56
bases attribute 56
repositoryID attribute 56

corba:case 65
label attribute 65

corba:enumerator 62
corba:exception 69

name attribute 69
repositoryID attribute 69
type attribute 69

corba:fixed 63
digits attribute 63
name attribute 63
repositoryID attribute 63
scale attribute 63
type attribute 63

corba:member 60
idltype attribute 60
name attribute 60

corba:object
binding attribute 74
name attribute 74
repositoryID attribute 74
type attribute 74

corba:operation 56
name attribute 57

corba:param 57
idltype attribute 57
mode attribute 57
name attribute 57

corba:policy 146
persistent attribute 147
poaname attribute 147
serviceid attribute 147

corba:raises 58
exception attribute 58
 213

INDEX
corba:return 58
idltype attribute 58
name attribute 58

corba:sequence 68
bound attribute 68
elemtype attribute 68
name attribute 68
repositoryID attribute 68

corba:typeMapping 59
targetNamespace attribute 59

corba:union 64
discriminator attribute 64
name attribute 64
repositoryID attribute 64
type attribute 64

corba:unionbranch 64
default attribute 65
idltype attribute 64
name attribute 64

D
defining a fixed message body 84
defining a tagged message body 97
defining a TibrvMsg 115
durable subscriptions 179

E
enumerations

mapping to a fixed binding 88
mapping to a tagged binding 98
mapping to CORBA 61

exceptions
mapping to CORBA 58, 69
mapping to SOAP 38, 46

F
failover routing 198
fanout routing 198
fixed:binding 83

encoding attribute 84
justification attribute 84
padHexCode attribute 84

fixed:body 84
encoding attribute 85
justification attribute 85
padHexCode attribute 85

fixed:case 90
fixedValue attribute 91

name attribute 91
fixed:choice 90

discriminatorName attribute 90
name attribute 90

fixed:enumeration 88
fixedValue attribute 89
value attribute 89

fixed:field 85
bindingOnly attribute 86
fixedValue attribute 86
format attribute 86
justification attribute 86
name attribute 85
size attribute 86

fixed:operation 84
discriminator attribute 84

fixed:sequence 92
counterName attribute 93
name attribute 93
occurs attribute 93

ftp:port 192
connectMode 192
host 192
port 192
replyLocation 192
requestLocation 192
scanInsterval 192

ftp:properties 192
ftp:property 193

name 193
value 193

H
http:address 126

location attribute 126
http-conf:client 127

Accept attribute 133
AcceptEncoding attribute 135
AcceptLanguage attribute 134
Authorization attribute 133
AuthorizationType attribute 133
AutoRedirect attribute 128
BrowserType attribute 140
CacheControl attribute 137

cache-extension directive 138
max-age directive 137
max-stale directive 138
min-fresh directive 138
no-cache directive 137
214

INDEX
no-store directive 137
no-transform directive 138
only-if-cached directive 138

ClientCertificate attribute 129
ClientCertificateChain attribute 129
ClientPrivateKey attribute 130
ClientPrivateKeyPassword attribute 130
ConnectionAttempts attribute 129
Connection attribute 137
ContentType attribute 128
Cookie attribute 129
Host attribute 136
Password attribute 128
ProxyAuthorization attribute 142
ProxyAuthorizationType attribute 142
ProxyPassword attribute 129
ProxyServer attribute 142
ProxyUserName attribute 129
ReceiveTimeout attribute 128
Referer attribute 140
SendTimeout attribute 128
TrustedRootCertificate attribute 130
UserName attribute 128
UseSecureSockets attribute 143

http-conf:server 130
CacheControl attribute 137

cache-extension directive 140
max-age directive 139
must-revalidate directive 139
no-cache directive 139
no-store directive 139
no-transform directive 139
private directive 139
proxy-revelidate directive 139
public directive 139
s-maxage directive 140

ContentEncoding attribute 136
ContentLocation attribute 131
ContentType attribute 131
HonorKeepAlive attribute 131
ReceiveTimeout attribute 130
RedirectURL attribute 143
SendTimeout attrubute 130
ServerCertificate 132
ServerCertificateChain 143
ServerPrivateKey attribute 132
ServerPrivateKeyPassword attribute 132
ServerType attribute 131
SuppressClientReceiveErrors attribute 131

SuppressClientSendErrors attribute 131
TrustedRootCertificate attribute 132
UseSecureSockets attribute 143

I
i18n-context:client 212

InboundCodeSet 212
LocalCodeSet 212
OutboundCodeSet 212

i18n-context:server 212
InboundCodeSet 212
LocalCodeSet 212
OutboundCodeSet 212

IDL types
fixed 62
Object 73
sequence 68
typedef 66

iiop:address 149
location attribute 150

iiop:payload 150
type attribute 150

iiop:policy 151
persistent attribute 151
poaname attribute 151
serviceid attribute 151

IOR 145, 149

J
jms:address 176

connectionPassword attribute 177
connectionUserName attribute 177
destinationStyle attribute 176
jmsDestinationName attribute 177
jmsReplyDestinationName 177
jndiConnectionFactoryName attribute 176
jndiDestinationName attribute 176
jndiReplyDestinationName 177

jms:client 178
messageType attribute 178

jms:JMSNamingProperty 177
name attribute 177
value attribute 177

jms:server 178
durableSubscriberName attribute 179
messageSelector attribute 179
transactional attribute 179
useMessageIDAsCorrealationID attribute 179
 215

INDEX
JNDI
connection factory 176

L
load balancing 198

M
message broadcasting 198
mime:content 50

part attribute 51
type attribute 51

mime:multipartRelated 50
mime:part 50

name attribute 50
mq:client 155

AccessMode attribute 165
AccountingToken attribute 156
AliasQueueName attribute 161
ApplicationData attribute 156
ApplicationIdData attribute 156
ApplicationOriginData attribute 156
ConnectionFastPath attribute 155
ConnectionName attribute 155
ConnectionReusable attribute 155
CorrelationId attribute 156
CorrelationStyle attribute 164
Delivery attribute 166
Format attribute 170
MessageExpiry attribute 156
MessageId attribute 156
MessagePriority attribute 166
ModelQueueName attribute 155
QueueManager attribute 155
QueueName attribute 155
ReplyQueueManager attribute 155
ReplyQueueName attribute 155
ReportOption attribute 168
Server_Client attribute 160
Timeout attribute 156
Transactional attribute 167
UsageStyle attribute 163
UserIdentification attribute 156

mq:server 157
AccessMode attribute 165
AccountingToken attribute 159
ApplicationData attribute 158
ApplicationOriginData attribute 159
ConnectionFastPath attribute 158

ConnectionName attribute 157
ConnectionReusable attribute 158
CorrelationId attribute 158
CorrelationStyle attribute 164
Delivery attribute 166
Format attribute 170
MessageExpiry attribute 158
MessageId attribute 158
MessagePriority attribute 166
ModelQueueName attribute 157
PropogateTransactions attributes 159
QueueManager attribute 157
QueueName attribute 157
ReplyQueueManager attribute 157
ReplyQueueName attribute 157
ReportOption attribute 168
Server_Client attribute 160
Timeout attribute 158
Transactional attribute 167
UsageStyle attribute 163

P
passthru:binding 122
POA policies 146, 151
port address

HTTP 126
primitive types

mapping to a fixed binding 85
mapping to a tagged binding 98
mapping to a TibrvMsg 106, 116
mapping to CORBA 54
mapping to FML 80

R
reply queue

queue manager 155, 157
queue name 155, 157

request queue
queue manager 155, 157
queue name 155, 157

routing:contains 204
contextAttributeName attribute 204
contextName attribute 204
ignorecase attribute 204
value attribute 204

routing:destination 199
port attribute 200
route attribute 200
216

INDEX
service attribute 200
value attribute 200

routing:empty 204
contextAttributeName attribute 205
contextName attribute 205

routing:endswith 203
contextAttributeName attribute 204
contextName attribute 203
ignorecase attribute 204
value attribute 204

routing:equals 201
contextAttributeName attribute 201
contextName attribute 201
ignorecase attribute 201
value attribute 201

routing:expression 197
evaluator attribute 198
name attribute 198

routing:greater 202
contextAttributeName attribute 202
contextName attribute 202
value attribute 202

routing:less 202
contextAttributeName attribute 202
contextName attribute 202
value attribute 202

routing:nonempty 205
contextAttributeName attribute 205
contextName attribute 205

routing:query 199
routing:route 198

multiRoute attribute 198
failover 198
fanout 198
loadBalance 198

name attribute 198
routing:source 199

port attribute 199
service attribute 199

routing:startswith 203
contextAttributeName attribute 203
contextName attribute 203
ignorecase attribute 203
value attribute 203

routing:transportAttribute 200

S
sequence complexType

mapping to a fixed binding 92

mapping to a tagged binding 99
service failover 198
soap:address 126

location attribute 126
soap:binding 33

style attribute 33
transport attribute 34

soap:body 35
encodingStyle attribute 37
namespace attribute 37
parts attribute 37
use attribute 36

encoded 36
literal 36

soap:fault 38
name attribute 39
use attribute 39

encoded 36
literal 36

soap:header 37
encodingStyle attribute 38
message attribute 38
namespace attribute 38
part attribute 38
use attribute 38, 46

encoded 36
literal 36

soap:operation 34
soapAction attribute 35
style attribute 35

specifying a password
HTTP 128

specifying a user name
HTTP 128

T
tagged:binding 95, 96, 122

fieldNameValueSeparator attribute 96
fieldSeparator attribute 96
flattened attribute 96
ignoreCase attribute 97
ignoreUnknownElements attribute 97
messageEnd attribute 96
messageStart attribute 96
scopeType attribute 96
selfDescribing attribute 96
unscopedArrayElement attribute 96

tagged:body 97
tagged:case 102
 217

INDEX
name attribute 102
tagged:choice 101

alias attribute 101
discriminatorName attribute 101
name attribute 101

tagged:enumeration 98
value attribute 98

tagged:field 98
alias attribute 98
name attribute 98

tagged:operation 97
discriminator attribute 97
discriminatorStyle attribute 97

tagged:sequence 99
alias attribute 100
name attribute 100
occurs attribute 100

tibrv:array 111
elementName attribute 112
integralAsSingleField attribute 112
loadSize attribute 112
sizeName attribute 112

tibrv:binding 107
stringAsOpaque attribute 108
stringEncoding attribute 108

tibrv:context 117
tibrv:field 116

alias attribute 116
element attribute 116
id attribute 116
maxOccurs attribute 116
minOccurs attribute 116
name attribute 116
type attribute 116
value attribute 116

tibrv:input 109
messageNameFieldPath attribute 109
messageNameFieldValue attribute 109
stringAsOpaque attribute 110
stringEncoding attribute 109

tibrv:msg 115
alias attribute 115
element attribute 115
id attribute 115
maxOccurs attribute 115
minOccurs attribute 115
name attribute 115

tibrv:operation 108
tibrv:output 110

messageNameFieldPath attribute 111
messageNameFieldValue attribute 111
stringAsOpaque attribute 111
stringEncoding attribute 111

tibrv:port 183
bindingType attribute 187
callbackLevel attribute 187
clientSubject attribute 183
cmListenerCancelAgreements attribute 185
cmQueueTransportCompleteTime attribute 186
cmQueueTransportSchedulerActivation

attribute 186
cmQueueTransportSchedulerHeartbeat attribute 185
cmQueueTransportSchedulerWeight attribute 185
cmQueueTransportServerName attribute 189
cmQueueTransportWorkerTasks attribute 185
cmQueueTransportWorkerWeight attribute 185
cmSupport attribute 184
cmTransportClientName attribute 184
cmTransportDefaultTimeLimit attribute 185
cmTransportLedgerName attribute 184
cmTransportRelayAgent attribute 185
cmTransportRequestOld attribute 184
cmTransportServerName attribute 188
cmTransportSyncLedger attribute 185
responseDispatchTimeout attribute 188
serverSubject attribute 183
transportBatchMode attribute 184
transportDaemon attribute 184
transportNetwork attribute 188
transportService attribute 188

timeouts
HTTP 128
MQ 156, 158

transactions
MQ 167

tuxedo:binding 80
tuxedo:field 81

id attribute 81
name attribute 81

tuxedo:fieldTable 81
type attribute 81

tuxedo:input 174
operation attribute 174

tuxedo:operation 81
tuxedo:server 174
tuxedo:service 174

name attribute 174
218

INDEX
U
unions

mapping to a fixed binding 90
mapping to a tagged binding 101
mapping to CORBA 64

W
wsoap12:address 126

location attribute 126
wsoap12:binding 41

style attribute 41
transport attribute 42

wsoap12:body 43
encodingStyle attribute 45
namespace attribute 45
parts attribute 45
use attribute 44

literal 44
wsoap12:fault 46

name attribute 47
namespace attribute 47
use attribute 47

literal 44
wsoap12:header 45

encodingStyle attribute 46
message attribute 45
namespace attribute 46
part attribute 45
use attribute

literal 44
wsoap12:operation 43

soapAction attribute 43
soapActionRequired attribute 43
style attribute 43

wsoap12/
fault

encodingStyle attribute 47

X
xformat:binding 120

rootNode attribute 120
xformat:body 120

rootNode attribute 120
 219

INDEX
220

	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Bindings
	SOAP 1.1 Binding
	Runtime Compatibility
	soap:binding
	soap:operation
	soap:body
	soap:header
	soap:fault

	SOAP 1.2 Binding
	Runtime Compatibility
	wsoap12:binding
	wsoap12:operation
	wsoap12:body
	wsoap12:header
	wsoap12:fault

	MIME Multipart/Related Binding
	Runtime Compatibility
	Namespace
	mime:multipartRelated
	mime:part
	mime:content

	CORBA Binding and Type Map
	CORBA Binding Extension Elements
	Runtime Compatibility
	C++ Runtime Namespace
	Primitive Type Mapping
	corba:binding
	corba:operation
	corba:param
	corba:return
	corba:raises

	Type Map Extension Elements
	corba:typeMapping
	corba:struct
	corba:member
	corba:enum
	corba:enumerator
	corba:fixed
	corba:union
	corba:unionbranch
	corba:case
	corba:alias
	corba:array
	corba:sequence
	corba:exception
	corba:anonsequence
	corba:anonstring
	corba:object

	Tuxedo FML Binding
	Runtime Compatibility
	Namespace
	FML\XMLSchema Support
	tuxedo:binding
	tuxedo:fieldTable
	tuxedo:field
	tuxedo:operation

	Fixed Binding
	Runtime Compatibility
	Namespace
	fixed:binding
	fixed:operation
	fixed:body
	fixed:field
	fixed:enumeration
	fixed:choice
	fixed:case
	fixed:sequence

	Tagged Binding
	Runtime Compatibility
	Namespace
	tagged:binding
	tagged:operation
	tagged:body
	tagged:field
	tagged:enumeration
	tagged:sequence
	tagged:choice
	tagged:case

	TibrvMsg Binding
	Runtime Compatibility
	Namespace
	TIBRVMSG to XMLSchema Type Mapping
	tibrv:binding
	tibrv:operation
	tibrv:input
	tibrv:output
	tibrv:array
	tibrv:msg
	tibrv:field
	tibrv:context

	XML Binding
	Runtime Compatibility
	Namespace
	xformat:binding
	xformat:body

	Pass Through Binding
	Runtime Compatibility
	Namespace
	tagged:binding

	Ports
	HTTP Port
	Standard WSDL Elements
	http:address
	soap:address
	wsoap12:address

	Configuration Extensions for C++
	Namespace
	http-conf:client
	http-conf:server

	Attribute Details
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	RedirectURL
	ServerCertificateChain

	CORBA Port
	Runtime Compatibility
	C++ Runtime Namespace
	corba:address
	corba:policy

	IIOP Tunnel Port
	Runtime Compatibility
	Namespace
	iiop:address
	iiop:payload
	iiop:policy

	WebSphere MQ Port
	Artix Extension Elements
	Runtime Compatibility
	Namespace
	mq:client
	mq:server

	Attribute Details
	Server_Client
	AliasQueueName
	UsageStyle
	CorrelationStyle
	AccessMode
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format

	Tuxedo Port
	Runtime Compatibility
	Namespace
	tuxedo:server
	tuxedo:service
	tuxedo:input

	JMS Port
	C++ Runtime Extensions
	Namespace
	jms:address
	jms:JMSNamingProperty
	jms:client
	jms:server

	Tibco/Rendezvous Port
	Artix Extension Elements
	Runtime Compatibility
	Namespace
	tibrv:port

	Attribute Details
	bindingType
	callbackLevel
	responseDispatchTimeout
	transportService
	transportNetwork
	cmTransportServerName
	cmQueueTransportServerName

	File Transfer Protocol Port
	Runtime Compatibility
	Namespace
	ftp:port
	ftp:properties
	ftp:property

	Other Extensions
	Routing
	Runtime Compatibility
	Namespace
	routing:expression
	routing:route
	routing:source
	routing:query
	routing:destination
	routing:transportAttribute
	routing:equals
	routing:greater
	routing:less
	routing:startswith
	routing:endswith
	routing:contains
	routing:empty
	routing:nonempty
	Transport Attribute Context Names

	Security
	Runtime Compatibility
	Namespace
	bus-security:security

	Codeset Conversion
	Runtime Compatibility
	Namespace
	i18n-context:client
	i18n-context:server

	Index

