
Orbix 6.3.13

Management Programmer’s
Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2022. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2022-08-12

 Orbix Management Programmer’s Guide i i i

Contents

Preface ... 1
Contacting Micro Focus ...3

Part I Overview
Introduction to Application Management 7

Introduction to Orbix Management Tools ...7
Introduction to Java Management Extensions ...9
Introduction to the Orbix management API .. 11
Overview of Management Programming Tasks .. 12

Part II CORBA Java Management
Instrumenting CORBA Java Applications 17

Step 1—Identifying Tasks to be Managed ... 17
Step 2—Defining your MBeans ... 19
Step 3—Implementing your MBeans ... 22
Step 4—Gaining Access to an MBean Server .. 24
Step 5—Registering your MBeans ... 26
Step 6—Unregistering your MBeans .. 28
Step 7—Connecting MBeans Together ... 29
Monitoring MBean Statistics ... 30

Displaying CORBA Java Applications ... 33
Displaying MBeans ... 33
Adding Application MBeans to the Tree .. 35
Customizing your Application MBean Icons .. 36

Part III CORBA C++ Management
Instrumenting CORBA C++ Applications 41

Step 1—Identifying Tasks to be Managed ... 41
Step 2—Defining your MBeans ... 44
Step 3—Implementing your MBeans ... 49
Step 4—Initializing the Management Plugin .. 60
Step 5—Creating your MBeans ... 61
Step 6—Connecting MBeans Together ... 62
Monitoring MBean Statistics ... 65

Appendix MBean Document Type Definition69
The MBean Document Type Definition File .. 69

Glossary ..71

iv Orbix Management Programmer’s Guide

Index ..75

 Orbix Management Programmer’s Guide 1

Preface
Orbix provides support for enterprise-level management across
different platform and programming language environments. Orbix
management tools enable administrators to manage distributed
enterprise applications. This guide explains how programmers can
enable applications to be managed by Orbix management tools (for
example, Administrator).

Audience
This guide is aimed at developers writing distributed enterprise
applications who wish to enable their applications for management
by Orbix management tools. It assumes knowledge of either C++
or Java.

Organization of this guide
This guide is divided as follows:

Part I “Overview”

This introduces Orbix enterprise management, and the tools used
to manage distributed applications.

Part II “CORBA Java Management”

This explains how to enable CORBA Java applications for
management, and display them in Administrator.

Part III “CORBA C++ Management”

This explains how to enable CORBA C++ applications for
management, and display them in Administrator.

Related documentation
The document set for Orbix includes the following related
documentation:

• Management User’s Guide

• Administrator’s Guide

• CORBA Programmer’s Guide, C++ Edition

• CORBA Programmer’s Guide, Java Edition

Typographical conventions
This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer
to the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on
the screen. For example:
#include <stdio.h>

 2 Orbix Management Programmer’s Guide

Keying conventions
This guide may use the following keying conventions:

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or
path names for your particular system. For
example:
% cd /users/your_name
Note:Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is
replaced with italic words or characters.

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

% A percent sign represents the UNIX command
shell prompt for a command that does not require
root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must choose
an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

Orbix Management Programmer’s Guide 3

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product Support
Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of
additional information, such as:
• The Product Updates section of the Micro Focus SupportLine

Web site, where you can download fixes and documentation
updates.

• The Examples and Utilities section of the Micro Focus Support-
Line Web site, including demos and additional product docu-
mentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page, then click Support.

Note:
Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Also, visit:

• The Micro Focus Community Web site, where you can browse
the Knowledge Base, read articles and blogs, find
demonstration programs and examples, and discuss this
product with other users and Micro Focus specialists.

• The Micro Focus YouTube channel for videos related to your
product.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

• The name and version number of all products that you think
might be causing a problem.

• Your computer make and model.

• Your operating system version number and details of any
networking software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery Notice
email that you received from Micro Focus.

http://www.microfocus.com
http://www.microfocus.com

 4 Orbix Management Programmer’s Guide

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

• http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.
asp

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx

Part I
Overview

In this part
This part contains the following chapter:

Introduction to Application Management page 7

 6 Orbix Management Programmer’s Guide

 Orbix Management Programmer’s Guide 7

Introduction to
Application Management
This chapter gives an overview of Orbix enterprise application
management. It introduces the Orbix management tools, Sun’s Java
Management Extensions API, and the Orbix management API.

Note
The Administrator Web Console, Orbix Management Service and
Orbix Configuration Explorer are no longer automatically installed.
They are available as an optional component. To install, please
download and extract the GUI components archive and follow the
installation instructions.

The GUI components archive can be downloaded from our
Software License & Download (SLD) site, which is part of the Micro
Focus Support Portal. Among other benefits, this site provides
access to product license keys and install-kits, including the
relevant GUI components.

For more information on the SLD, please see our Support Portal
overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as
they do not fully comply with the Section 508 and WCAG
accessibility requirements and guidelines. It is intended that
future product releases will include updated GUI components that
comply with the relevant accessibility guidelines.

Introduction to Orbix Management Tools
Orbix management tools enable administrators to configure,
monitor and control distributed applications at runtime. These
tools provide seamless management of Micro Focus Orbix
products, or any applications developed using those products,
across different platform and programming language
environments. Orbix management tools include the following main
components:

• “Administrator Web Console”

• “Orbix Management Service”

• “Orbix Configuration Explorer”

• “Orbix Configuration Authority”

Administrator Web Console
The Administrator Web Console provides a web browser interface
to the Orbix management tools. It enables you to manage
applications and application events from anywhere, without the
need for download or installation. It communicates with the
management service using HTTP (Hypertext Transfer Protocol), as
illustrated in Figure 1.

https://support.microfocus.com/help/support-portal-overview.pdf

 8 Orbix Management Programmer’s Guide

Orbix Management Service
The Orbix management service is the central point of contact for
accessing management information in a domain. A domain is an
abstract group of managed server processes within a physical
location. The management service is accessed by both the
Administrator Web Console and by the Orbix Configuration
Explorer.

Orbix Configuration Explorer
The Orbix Configuration Explorer is a Java graphical user interface
(GUI) that enables you to manage your configuration settings. It
communicates with your configuration repository (CFR) or
configuration file using IIOP (Internet Inter-ORB Protocol).

Figure 1 shows the Administrator Web Console, and how it
interacts with managed applications to provide management
capability.

Orbix Configuration Authority
The Orbix Configuration Authority provides a web browser
interface to descriptive information about all Orbix configuration

Note: Managed applications can be written in C++ or
Java. The same management service process
(iona_services.management) can be used by Java and C++
applications.

Figure 1 Administrator Web Console

Orbix Management Programmer’s Guide 9

settings. You can browse and search for information about Orbix
configuration variables in your CFR or configuration file.

Integrating with Enterprise Management
Systems
Performance logging plugins enable Orbix to integrate effectively
with Enterprise Management Systems (EMS), such as IBM Tivoli™,
HP OpenView™, CA Unicenter™, or BMC Patrol™.

These systems enable system administrators and production
operators to monitor enterprise-critical applications from a single
management console. This enables them to quickly recognize the
root cause of problems that may occur, and take remedial action.

Further information
For detailed information on using the Orbix management tools,
and on how to configure EMS integration, see the Orbix
Management User’s Guide.

Introduction to Java Management Extensions
Java Management Extensions (JMX) is a standards-based API from
Sun that provides a framework for adding enterprise management
capabilities to user applications. This section explains the main
JMX concepts and shows how JMX and Orbix interact to provide
enterprise management for Java applications. This section
includes the following:

• “MBeans”

• “The MBean server”

• “Management instrumentation”

• “Standard and Dynamic MBeans”

• “Further information”

MBeans
The concept of an MBean (a managed bean) is central to JMX. An
MBean is simply an object with associated attributes and
operations. It acts as a handle to your application object, and
enables the object to be managed.

For example, a Car MBean object, with an associated speed
attribute, and start() and stop() operations, is used to represent
a car application object, with corresponding attributes and
operations. Application developers can express their application
objects as a series of related MBeans. This enables administrators
to manage these application objects using an administration
console (for example, Administrator).

The MBean server
All the MBeans created by developers are managed and controlled
by a MBean server, which is provided by JMX. All MBeans that are
created must be registered with an MBean server so that they can
be accessed by management applications, such as Orbix.

 10 Orbix Management Programmer’s Guide

Figure 2 shows a Java example of the JMX components at work. It
shows how these components interact with Orbix to provide
management capability for your application.

For simplicity, this diagram only shows one MBean. An application
might have multiple MBeans representing the application objects
that you wish to manage. In addition, new instrumentation code is
not solely confined to the MBean. You will need to add some new
code to your sever implementation (for example, to enable your
server to contact the management service).

Management instrumentation
Adding JMX management code to your application is also known
as adding management instrumentation or instrumenting your
existing application. These standard management terms are used
throughout this book.

Figure 2 shows the new management instrumentation code as an
MBean. MBeans must be added to your application to enable it for
management.

Figure 2 JMX Management and Orbix

Orbix Management Programmer’s Guide 11

Standard and Dynamic MBeans
The MBeans discussed so far in this chapter are referred to as
standard MBeans. These are ideally suited to straightforward
management scenarios where the structure of managed data is
well defined and unlikely to change often. JMX specifies another
category of MBeans called dynamic MBeans. These are designed
for when the structure of the managed data is likely to change
regularly during the lifetime of the application.

Implementing dynamic MBeans is more complex than for standard
MBeans. If your management solution needs to provide
integration with existing and future management protocols and
platforms, using dynamic MBeans could make it more difficult to
achieve this goal. The examples cited in this book use standard
MBeans only.

Further information
For more information about JMX, see the JMX Instrumentation and
Agent Specification, and Reference Implementation Javadoc.
These documents are available online at:

http://www.oracle.com/technetwork/java/javase/tech/javamanage
ment-140525.html

For information on how to integrate Administrator with other
general purpose management applications (for example, HP
OpenviewTM or CA UniCenterTM), see the "SNMP Integration"
chapter in the Orbix Management User’s Guide.

Introduction to the Orbix management API
JMX does not specify how to remotely access MBeans using
network protocols. The Orbix management API is used to enable
remote communications for MBeans. This API also enables you to
specify relationships between MBeans, and display MBeans in
Administrator. This section includes the following:

• “The IIOP adaptor”

• “Defining MBean relationships”

• “C++ Instrumentation”

The IIOP adaptor
The Orbix management API enables network communication
between the MBean server and the management service over IIOP
(Internet Inter-ORB Protocol). This is performed using an IIOP
adapter, which is contained in the ORB plugin.

Figure 2 shows an example of this IIOP communication. This
cross-platform API also enables communication for CORBA Java
and C++ servers.

Defining MBean relationships
The Orbix management API also enables you to specify
hierarchical parent–child relationships between MBeans. For
example, you may want to show relationships between your
server and its lower-level processes. These relationships can then
be displayed in the Administrator Web Console.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

 12 Orbix Management Programmer’s Guide

Figure 3 shows example parent–child relationships displayed in
the left pane of the Administrator Web Console.

C++ Instrumentation
The concept of an MBean is a Java term that comes from JMX. The
C++ version of the Orbix management API uses the generic
concept of a Managed Entity instead of an MBean. A C++
Managed Entity is functionally similar to the Java MBean. It acts as
a handle to your application object, and enables the object to be
managed.

The C++ version of the Orbix management API is defined in IDL
(Interface Definition Language).

For more details of the Orbix management API, see the Orbix
Management IDLdoc, and the Orbix Management Javadoc.

Overview of Management Programming Tasks
This section gives an overview of the typical management
programming tasks. These include the following:

• “Identifying tasks to be managed”

• “Writing your MBeans”

• “Registering your MBeans with the MBean server”

• “Unregistering your MBeans”

• “Defining relationships between MBeans”

These tasks are explained in more detail in the rest of this
document.

Identifying tasks to be managed
Before adding any management code to an application, you must
decide on the application tasks that you wish the administrator to
manage.

Figure 3 Example Parent–Child Relationship

Orbix Management Programmer’s Guide 13

Deciding which tasks should be managed varies from application
to application. This depends on the nature of the application, and
on the type of runtime administration that is required. Typical
managed tasks include monitoring the status of an application (for
example, whether it is active or inactive), and controlling its
operation (for example, starting or stopping the application).

Writing your MBeans
When you have decided which parts of your application need to be
managed, you can define and implement MBeans to satisfy your
management objectives. Each MBean object must implement an
interface ending with the term MBean (for example, CarMBean).

To expose its attributes, an MBean interface must declare a
number of get and set operations. If get operations are declared
only, the MBean attributes are read-only. If set operations are
declared, the MBean attributes are writable.

Registering your MBeans with the MBean server
Registering application MBeans with the MBean server enables
them to be monitored and controlled by the Administrator.
Choosing when to register or expose your MBeans varies from
application to application. However, there are two stages when all
applications create and register MBeans:

During application initialization.
During any application initialization sequence, a set of objects is created
that represents the core functionality of the application. After these objects
are created, MBeans should also be created and registered, to enable basic
management of that application.

During normal application runtime.
During normal application runtime, new objects are created as a result of
internal or external events (for example, an internal timer, or a request from
a client). When new objects are created, corresponding MBeans can be
created and registered, to enable management of these new application
components. For example, in a bank example when a new account is
created, a new account MBean would be also be created and registered
with the MBean server.

Unregistering your MBeans
You might wish to unregister an MBean in response to an
administrator’s interaction with the system. For example, if a bank
teller session is closed, it would be appropriate to unregister a
corresponding session MBean. This ensures that the MBean will no
longer be displayed as part of the application that is being
managed.

Defining relationships between MBeans
You can use the Orbix management API to define parent–child
relationships between MBeans. These relationships are then
displayed in the Administrator Web Console, as shown in Figure 3.

Parent-child relationships are no longer displayed in the console
when the MBean is unregistered by the application (for example, if
a bank account is closed).

 14 Orbix Management Programmer’s Guide

Further information
All of these management programming tasks are explained in
detail, with examples, in the parts that follow:

• Part II CORBA Java management.

• Part III CORBA C++ management.

It is not necessary to read one part before another. You can read
these parts in any order.

Part II
CORBA Java
Management

In this part
This part contains the following chapters:

Instrumenting CORBA Java Applications page 17

Displaying CORBA Java Applications page 33

 16 Orbix Management Programmer’s Guide

 Orbix Management Programmer’s Guide 17

Instrumenting CORBA
Java Applications
This chapter explains how to use the Java Management Extensions
API and the Orbix Java Management API to enable an existing
CORBA Java application for management. It uses a banking example
application.

Step 1—Identifying Tasks to be Managed
Before adding management code to an application, you must
decide on the tasks in your application that you wish to be
managed by a system administrator. Only then should you start
thinking about adding management instrumentation code to your
existing application.

This section includes the following:

• “Existing user tasks”

• “New management tasks for administrators”

• “Planning your Programming Steps”

Existing user tasks
The First Northern Bank (FNB) example used in this chapter adds
management capabilities to an existing CORBA Java banking
application. This example application delivers standard banking
services to customers.

The existing FNB application enables bank tellers to do the
following:

• Log on and log off the system.

• Create a customer account.

• Lodge money into an account.

• Withdraw money from an account.

Figure 4 shows the user interface to these existing features.

 18 Orbix Management Programmer’s Guide

New management tasks for administrators
The new management instrumentation code added to FNB
application enables administrators to do the following:

• Monitor the back-tier server

• Monitor customer accounts

• Unload account objects from memory

• Monitor the middle-tier server

• Monitor teller sessions

• Monitor bank tellers

Administrators can perform these tasks using the Administrator
Web Console, shown in Figure 5.

Figure 4 Bank Teller Application

Figure 5 Bank Example in Administrator

Orbix Management Programmer’s Guide 19

Planning your Programming Steps
When you have identified your management tasks, you should
think carefully about how exactly you wish to add the new
management code to your existing application. For example, how
much of the new code you will add to your existing classes, and
how much will be in new classes. Depending on the size of your
application, you might wish to keep new instrumentation classes
in a separate directory.

This chapter shows how JMX management code was added to the
FNB CORBA Java application. It shows the standard programming
steps. For example, defining and implementing MBeans, and
registering and unregistering your MBeans with the MBean server.

Step 2—Defining your MBeans
When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your
management objectives. This section shows how to define
example MBean interfaces for the FNB application. It includes the
following:

• “Rules for MBean interfaces”

• “Example MBeans”

• “AccountMgrMBean interface”

• “CreditCardMBean interface”

• “BusinessSessionManagerMBean interface”

• “BusinessSessionMBean interface”

• “MBean object names”

• “Further information”

Rules for MBean interfaces
Each MBean object must implement an interface ending with the
term MBean (for example, BusinessSessionMBean).

To expose its attributes, an MBean interface must declare a
number of get() and set() operations. If only get() operations are
declared, the MBean attributes are read-only. If set() operations
are declared, the MBean attributes are writable.

To expose management operations, you must declare an
appropriate method in the MBean interface, and then implement it
in the corresponding MBean class.

Note: When instrumenting CORBA Java servers, you do not
need to make any changes to the CORBA IDL. You can enable
your application for management simply by adding new MBean
instrumentation code to your CORBA Java implementation.

 20 Orbix Management Programmer’s Guide

Example MBeans
Table 1 lists the example MBeans that are declared for the FNB
application.

AccountMgrMBean interface
The interface for the AccountMgrMBean is defined as follows:

Table 1: FNB MBeans

MBean Functionality

AccountMgrMBean This back-tier MBean represents
the bank account information
managed by an administrator.
For example, the number and
type of accounts in the bank.

CreditCardMBean This back-tier MBean represents
credit card accounts.

BusinessSessionManagerMBean This middle-tier MBean
represents the number of open
bank teller sessions in the bank.

BusinessSessionMBean This middle-tier MBean
represents the list of recent
transactions for a particular bank
teller session.

package bankobjects.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface AccountMgrMBean {

 // attributes
 public int getNumberOfAccounts();
 public int getNumberOfCreditCards();
 public int getNumberOfCurrentAccounts();
 public int getNumberOfLoadedAccounts();
 public ObjectName[] getActiveCreditCards();

 // operations
 public boolean unloadAccount (int accountNum);
}

Orbix Management Programmer’s Guide 21

CreditCardMBean interface
The interface for the CreditCardMBean is defined as follows:

BusinessSessionManagerMBean interface
The interface for the BusinessSessionManagerMBean is as follows:

BusinessSessionMBean interface
The interface for the BusinessSessionMBean is defined as follows:

MBean object names
MBean object names are used to uniquely identify an MBean.
Object names are represented by the javax.management.ObjectName
class, which extends the java.lang.Object class.

In the FNB example, the AccountMgrMBean interface declares the
following get() method for the ActiveCreditCards attribute:
public ObjectName[] getActiveCreditCards();

This returns an array of MBean object names for the associated
credit card accounts. The getActiveCreditCards() method is an
example of using an object name to connect MBeans together.

package bankobjects.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface CreditCardMBean {

 public int simpleOp ();

}

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface BusinessSessionManagerMBean {

 public int getNumberOfOpenSessions ();

}

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public interface BusinessSessionMBean {

 public String[] getRecentTransactionList();

}

 22 Orbix Management Programmer’s Guide

Further information
For information about how to specify MBean object names, see
“Step 3—Implementing your MBeans” on page 22.

For detailed information about the ObjectName class, see Oracle’s
JMX Reference Implementation Javadoc. This is available along
with the source code from
http://docs.oracle.com/javase/7/docs/api/javax/management/Ob
jectName.html.

Step 3—Implementing your MBeans
After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects typically interact
with the application they are designed to manage, enabling
monitoring and control.

For example, this section shows interaction between an MBean
(BusinessSessionManager) and the CORBA server implementation
object (BusinessSessionManagerDelegate). The MBean’s
getNumberOfOpenSessions() method calls the implementation
object’s openSessions() method. This section includes the
following:

• “Example MBean implementation”

• “The management wrapper class”

• “Management wrapper implementation”

• “Identifying MBeans”

• “Further information”

Example MBean implementation
The following code example shows the BusinessSessionManager
implementation for the BusinessSessionManagerMBean:

package fnbba.management;

import javax.management.*;
import com.iona.management.jmx_iiop.*;
import com.iona.management.jmx_iiop.Public.*;

public class BusinessSessionManager
 implements BusinessSessionManagerMBean {

 private ManagementWrapper mgmtWrapper = null;
 private ObjectName myName = null;
 private fnbba.BusinessSessionManagerDelegate myImpl = null;

 public BusinessSessionManager

(fnbba.BusinessSessionManagerDelegate myImpl){
 this.myImpl = myImpl;

try { myName = new
 ObjectName("FNBMiddleTier:name=BusinessSessionManager");
 }
 catch (Exception j) {}

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Orbix Management Programmer’s Guide 23

The management wrapper class
In this example, the MBean representing the bank teller
BusinessSessionManager uses an underlying class (the
ManagementWrapper class) to perform most of the work. The
ManagementWrapper object creates the BusinessSessionMBeans for
each bank teller session. It registers these beans with the MBean
server, and then adds them to the Administrator Web Console
display. A simplified overview is shown in Figure 6.

This is a typical MBean implementation, where the MBean uses the
functionality of other application objects (in this case, the
management wrapper) to provide the management capability. The
management wrapper performs the core management tasks (for
example, gaining access to the MBean server, and registering the
MBean with the MBean server).

 public int getNumberOfOpenSessions()
 { return myImpl.openSessions(); }

 public void remove ()
 { mgmtWrapper.removeMBean (myName);}
}

Figure 6 Bank Application Overview

 24 Orbix Management Programmer’s Guide

Management wrapper implementation
The ManagementWrapper.instance() method that creates the MBean
is defined as a static class method. This is because only one
wrapper is required by each domain displayed by Administrator.
For example, Figure 5 on page 18 shows the FNBMiddleTier node,
which has a FNBMiddleTier MBean domain. Multiple wrappers
representing multiple domains can be stored in an array of
management wrappers. For example, you could add ATM support,
which would use a separate management wrapper to manage the
ATM sessions. For more information on MBean domain names, see
“Identifying MBeans”.

The management wrapper code and the standard management
tasks that it performs are explained in the sections that follow.

Identifying MBeans
An ObjectName must be a unique name in the MBean server. It
includes an MBean domain name, separated from a list of name
and value pairs by a colon. These name value pairs can be of any
type or value. The syntax is:

domain-name:name1=value1,name2=value2,...
The object name used in the BusinessSessionManager example
represents the following simple domain and name-value pair:

FNBMiddleTier:name=BusinessSessionManager

Further information
For detailed information about the ObjectName class, see Oracle’s
JMX Reference Implementation Javadoc. This is available along
with the source code from
http://docs.oracle.com/javase/7/docs/api/javax/management/Ob
jectName.html

For another Java example, see the “Example object name” on
page 28. This shows an MBean object name that specifies
additional name-value pairs. This enables you to display more
information in the Administrator Web Console.

Step 4—Gaining Access to an MBean Server
After defining and implementing your MBeans, you must gain
access to an MBean Server. In the FNB example application, the
MBean server is accessed by the management wrapper object.
The management wrapper object performs the same tasks for
different MBean implementations.

This section includes the following:

• “Loading the Orbix management plugin”

Note: The MBean domain name is not related to an Orbix
configuration or location domain. This is purely a namespace for
MBeans only.

Note: You must explicitly load the management plugin
(it_mgmt) for CORBA Java applications.

http://docs.oracle.com/javase/7/docs/api/javax/management/ObjectName.html

Orbix Management Programmer’s Guide 25

• “Accessing the MBean server”

• “IT_IIOPAdaptorServer object”

• “Specifying an MBean object name”

Loading the Orbix management plugin
You must first ensure that the Orbix management plugin (it_mgmt)
is specified by your orb_plugins configuration variable in the
appropriate configuration scope.

For example, the following settings are taken from the FNB
configuration file:
FNBMiddleTier{
 orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};

FNBMainframe {
 orb_plugins = ["it_mgmt", "iiop_profile", "giop", "iiop"];
};

Accessing the MBean server
The following code extract from the ManagementWrapper class shows
how its constructor method accesses the default MBean server:

IT_IIOPAdaptorServer object
In the ManagementWrapper class, the IT_IIOPAdaptorServer object is
used to provide a reference to the MBean server. When you have
accessed the default MBeanServer using the getMBeanServer()

Note: You must ensure that all settings are made in correct
configuration scope (for example, FNBMiddleTier). Do not add the
it_mgmt plugin to the orb_plugins variable in the global
configuration scope.

 private ManagementWrapper (String ConfigDomainName) {

 adaptorServer =
(IT_IIOPAdaptorServer)com.iona.management.jmx_iiop.IT_Dynami
cLoading.getDefaultIIOPAdaptorServer();

 try {
 managedObjName = new ObjectName(ConfigDomainName);
 mBeanServer = adaptorServer.getMBeanServer();

 } catch (Exception ex) {
 System.out.println("Unexpected exception while

registering iBankMBean: " + ex);
 }

 myConfigDomain = new String (ConfigDomainName);

 processMBean
=com.iona.management.jmx_iiop.IT_DynamicLoading.

 getProcessObjectName();
 }

 26 Orbix Management Programmer’s Guide

method, you can then register your MBeans with the MBean
server.

For detailed reference information about IT_IIOPAdaptorServer, see
the Management Javadoc.

Specifying an MBean object name
The ConfigDomainName parameter passed to ManagementWrapper()
specifies the MBean object name used by the management
wrapper, and which is displayed in Administrator as an MBean
object. For example, the middle-tier fnbba server uses the
following object name:

FNBMiddleTier:name=FNBMiddleTier

For more information, see “Identifying MBeans” on page 24.

The Process MBean
The process MBean is the starting point for navigation through a
sever in the Administrator Web Console. In the console,
application MBeans are displayed as nodes that are added to the
process MBean in the navigation tree.

The ManagementWrapper obtains the process MBean’s object name
using the getProcessObjectName() method. This standard JMX call
obtains the process MBean that will be used later to add the
application MBean to the Administrator display. For more
information, see “Creating parent-child relationships” on page 28.

Step 5—Registering your MBeans
After gaining access to the MBean server, you can then register
your MBeans with the MBean server. Registering MBeans enables
them to be monitored and controlled using Administrator. This
section includes the following:

• “Example MBean registration”

• “addMBean() implementation”

• “Registering MBeans”

• “Creating parent-child relationships”

Example MBean registration
The following FNB example from the BusinessSession class first
creates a MBean for a bank teller session, and then registers it

Note: The ConfigDomainName parameter is not related to
the Orbix configuration or location domain. This is an
MBean ObjectName domain is purely a namespace for
MBeans only.

Orbix Management Programmer’s Guide 27

with the MBean server. The MBean is registered using the
management wrapper’s addMBean() method:

addMBean() implementation
The addMBean() method is implemented in the ManagementWrapper
class as follows:

Registering MBeans
You can register MBean objects using either of the following
approaches:

• Create the MBean object manually, and then register it with the
MBean server. If you choose this approach, you must use the
new() constructor and registerMBean() method.

• Create and register your MBean with the MBean server, using
the createMBean() constructor. This registers the MBean
automatically.

The FNB example uses the MBean server’s registerMBean()
method to register the MBean. The registerMBean() method takes
two parameters:

public BusinessSession (fnbba.BusinessSessionDelegate myImpl,
 String SessionName) {
 this.myImpl = myImpl;

 mgmtWrapper = ManagementWrapper.instance
("FNBMiddleTier:name=FNBMiddleTier");

 try {
 String t =new String ("FNBMiddleTier:name=" + SessionName);
 myName = new ObjectName(t);
 }
 catch (Exception j) {}

 mgmtWrapper.addMBean(this, myName);
 }

public boolean addMBean (java.lang.Object mbean, ObjectName
mbeanName)

 {
 System.out.println ("Registering mbean...");

 try {
 ObjectName tmpArray [] = new ObjectName [1];
 tmpArray [0] = mbeanName;

 mBeanServer.registerMBean(mbean, mbeanName);

adaptorServer.createParentChildRelation(processMBean,tmpArray
);
 }
 catch (Exception j) {
 System.err.println ("Exception in registering MBean " + j);
 return false;
 }
 return true;
}

 28 Orbix Management Programmer’s Guide

• The MBean object instance (mbean in this example).

• An ObjectName, which is used to identify the MBean. The object
name in this example is mbeanName. For more information on
object names, see “Identifying MBeans” on page 24.

Creating parent-child relationships
The createParentChildRelation() method adds the MBean to the
Process MBean. This is the starting point for navigation through a
sever in the Administrator Web Console. The
createParentChildRelation() method takes two parameters:

• The parent MBean ObjectName.

• The child MBean ObjectName.

For more information on the Process MBean and how it is
displayed by Administrator, see “Displaying CORBA Java
Applications”.

Step 6—Unregistering your MBeans
You might wish to unregister an MBean in response to an
administrator’s interaction with the system. For example, if an
bank teller session is closed, it would be appropriate to unregister
the corresponding BusinessSessionMBean. This ensures that the
MBean will no longer be displayed as part of the application that is
being managed. This section includes the following:

• “Example MBean unregistration”

• “The unregisterMBean() method”

Example MBean unregistration
To unregister an MBean, use the MBean server’s unregisterMBean()
method. In the FNB application, the unregisterMBean() method is
called by the management wrapper’s removeMBean() method. The
following code extract is taken from the BusinessSession class:

The removeMBean() method is implemented in the management
wrapper class as follows:

The unregisterMBean() method
When the account’s MBean has been unregistered, using the
unregisterMBean() method, it is no longer displayed by the
Administrator Web Console. All parent-child relationships between

 public void remove ()
 {
 mgmtWrapper.removeMBean (myName);
 }

public boolean removeMBean (ObjectName mbean) throws
Exception

 {
 mBeanServer.unregisterMBean (mbean);
 return true;
 }
}

Orbix Management Programmer’s Guide 29

MBeans created using the createParentChildRelation() method are
also removed.

The unregisterMBean() method takes an MBean object name as a
parameter. For more information, see “MBean object names” on
page 21.

Step 7—Connecting MBeans Together
Your application is displayed in the Administrator Web Console as
a series of related or connected MBeans, which can be monitored
by administrators.

This section explains how to connect MBeans together. There are
two different approaches:

• “Connecting MBeans using a get() method”

• “Connecting MBeans using the createParentChildRelation()
method”

Connecting MBeans using a get() method
To connect two MBeans together using a get() method, you must
create MBean methods that return MBean ObjectNames. For
example, in the FNB application the AccountMgr MBean must be
connected with the active CreditCard MBeans. The AccountMgrMBean
interface declares the following get() method for the
ActiveCreditCards attribute:
public ObjectName[] getActiveCreditCards();

This method returns an array of MBean object names for the
associated credit card accounts. If this method returns object
names that are already registered MBean names, these MBeans
are displayed in the ActiveCreditCards attribute of the CreditCard
MBean.

By using methods that return ObjectNames, you will see hyperlinks
displayed in the details view on the right of the console. You can
use these hyperlinks to navigate between managed objects like
they are web pages. The navigation tree on the left is not affected.

Connecting MBeans using the
createParentChildRelation() method
Using the get() method, hyperlinks between MBeans are displayed
in the details view, on the right of the console. Alternatively, you
can use createParentChildRelation() method to connect two
MBeans together. This enables MBeans to appear as children of
others in the tree view, on the left of the console.

The createParentChildRelation() method takes the parent and
child MBeans as parameters, and is defined as follows:
public boolean createParentChildRelation(ObjectName

parentObjName, ObjectName[] childObjNames) throws
com.iona.common.management.relation.RelationServiceException

For an example of using this method, see “addMBean()
implementation” on page 27.

 30 Orbix Management Programmer’s Guide

Monitoring MBean Statistics
Optionally, you can also monitor statistics from MBeans in your
own applications. The it_mbean_monitoring performance logging
plug-in enables you to periodically harvest statistics associated
with MBean attributes. This section includes the following:

• “MBean monitoring”

• “Configuration steps”

• “Programming steps”

MBean monitoring
The IT_MBeanMonitoring IDL interface provides the support for
monitoring MBean statistics. This interface is defined as follows:

When the it_mbean_monitoring plug-in is included in your
orb_plugins list, an initial reference is registered for the
IT_MBeanMonitoringRegistration interface.

When you resolve on your application MBean, the
IT_MBeanMonitoring API can be used to switch on, or turn off,
monitoring of an application MBean. Statistics for user monitored
MBeans will then appear in the performance logs.

module IT_MBeanMonitoring
 {

 const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
 "IT_MBeanMonitoringRegistration";

 // Interface exceptions.
 exception MBeanNotFound {};
 exception MBeanAttributeNotFound {};
 exception MBeanAttributeInvalidType {};

 // IT_MBeanMonitoring::MBeanMonitoringRegistration
 //
 // An interface which provides a means to
 // monitor and log statistics about mbeans
 // registered with the management service.

 local interface MBeanMonitoringRegistration
 {
 void monitor_attribute(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound,
 MBeanAttributeNotFound, MBeanAttributeInvalidType);

 void cancel_monitor(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound);
 };

};

Orbix Management Programmer’s Guide 31

Configuration steps
You must ensure that the it_mbean_monitoring plug-in is included
in your orb_plugins list.

In addition, the following Orbix JAR file must be included on your
classpath:

Programming steps
This example assumes that you already have an MBean with an
attribute that you want to be sampled and logged. For example,
the MBean might track the memory currently being used by the
process. The programming steps are as follows:

1 Import the following package:

2 To register your MBean with the it_mbean_monitoring plug-in,
you must first resolve on the MBean monitoring initial
reference:

3 You can then register the attribute to be monitored by
specifying your MBean details to monitor_attribute():

The mbean_friendly_name is an alternative alias that will also
appear in the log file.

Further information
For more details on Orbix performance logging, see the Orbix
Management User’s Guide.

$IT_PRODUCT_DIR/lib/./art/java_management_logging/1.2/perf_logging.jar

import com.iona.management.logging.IT_MBeanMonitoring.MBeanMonitoringRegistration;

// Resolve initial reference for MBeanMonitoringRegistration object.
MBeanMonitoringRegistration mbeanMonitoringRegistration = (MBeanMonitoringRegistration)

orb.resolve_initial_references(IT_MBeanMonitoringRegistration);

// Turn on monitoring for mbean attribute.
mbeanMonitoringRegistration.monitor_attribute("mbean_name","attribute name",

"mbean_friendly_name");

 32 Orbix Management Programmer’s Guide

 Orbix Management Programmer’s Guide 33

Displaying CORBA Java
Applications
This chapter explains how to display CORBA applications in the
Administrator Web Console in more detail. It explains the concept
of the Process MBean, how to add MBeans to the navigation tree,
and how to customize your icons.

Note
The Administrator Web Console is no longer automatically
installed. It is available as an optional component. To install,
please download and extract the GUI components archive and
follow the installation instructions.

The GUI components archive can be downloaded from our
Software License & Download (SLD) site, which is part of the Micro
Focus Support Portal. Among other benefits, this site provides
access to product license keys and install-kits, including the
relevant GUI components.

For more information on the SLD, please see our Support Portal
overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as
they do not fully comply with the Section 508 and WCAG
accessibility requirements and guidelines. It is intended that
future product releases will include updated GUI components that
comply with the relevant accessibility guidelines.

Displaying MBeans
This section explains how MBeans are displayed by Administrator.
It includes the following:

• “Administrator Web Console”

• “The Process MBean”

• “Example Process MBean”

Administrator Web Console
The Administrator Web Console is shown in Figure 7. This example
shows the managed attributes and operations for the FNB
AccountManager object. The attributes and operations displayed

https://support.microfocus.com/help/support-portal-overview.pdf

 34 Orbix Management Programmer’s Guide

correspond to those declared in “Step 2—Defining your MBeans”
on page 19.

The Process MBean
“Step 4—Gaining Access to an MBean Server” on page 25 shows
how the IT_IIOPAdaptorServer object is used to access the default
MBean server. When the IT_IIOPAdaptorServer instance is created,
the Administrator Web Console creates an entry in the navigation
tree. This entry represents the Process MBean, the first-level
MBean that is exposed. The

Process MBean is the starting point for navigation through an
application in the Administrator Web Console.

Example Process MBean
In Figure 8, the selected Process MBean in the navigation tree is
FNBMiddleTier. The MBean’s object name is displayed as:
DefaultDomain:type=Process,name=FNBMiddleTier,
Server=FNBMiddleTier,Domain=DefaultDomain,cascaded=FNBMiddleTier

Figure 7 Account Manager Example

Orbix Management Programmer’s Guide 35

The Process MBean has associated default attributes, displayed in
the details panel (for example, process type, uptime, host, and so
on).

Adding Application MBeans to the Tree
To display your application MBeans in the navigation tree of the
Administrator Web Console, you must create a parent-child
relationship between Process MBean and your application MBean.

To create parent-child relationships between your MBeans, use the
createParentChildRelation() method. This section includes the
following:

• “Creating a parent-child relationship”

• “The createParentChildRelation() method”

Creating a parent-child relationship
When create parent-child relationships your MBeans will be
displayed as children of the Process MBean in the navigation tree,
and as attributes in the details panel. Figure 8 shows the
FNBMiddleTier Process MBean in the navigation tree, and its child
MBeans listed details pane (for example, the
BusinessSessionManager MBean).

Figure 8 Bank Process MBean

 36 Orbix Management Programmer’s Guide

The following code example shows how the addMBean() method is
implemented in the ManagementWrapper class. This method calls the
createParentChildRelation() method:

The createParentChildRelation() method
The createParentChildRelation() method takes two parameters:

• The parent MBean ObjectName (in this case, the Process MBean).

• The child MBean ObjectName (in this case, an array of MBeans).

Customizing your Application MBean Icons
By default, when you add a new MBean, it is displayed using a
default blue MBean icon. You can direct Administrator to use your
own custom icons for your application MBeans.

The FNB example uses the default icons, and does not use custom
icons. The examples in this section are taken from a demo
application named iBank. The iBank example uses a bank icon to
represent a ManagediBank MBean, and a cash icon to represent a
ManagediBankAccountMBean MBean.

This section explains the following:

• “Changing the admin.war file”

• “Changing the admin.war file”

• “Accessing your custom icons”

Changing the admin.war file
You must first update the contents of the management web
console by changing the admin.war file. The admin.war file can be
found in the following directory:

public boolean addMBean (java.lang.Object mbean, ObjectName mbeanName)
 {
 System.out.println ("Registering mbean...");

 try {
 ObjectName tmpArray [] = new ObjectName [1];
 tmpArray [0] = mbeanName;

 mBeanServer.registerMBean(mbean, mbeanName);

 adaptorServer.createParentChildRelation(processMBean,tmpArray);
 }
 catch (Exception j) {
 System.err.println ("Exception in registering MBean " + j);
 return false;
 }
 return true;
}

Note: MBeans must first be registered in order for them to
appear when added to the Process MBean. For details of
how to register MBeans, see “Step 5—Registering your
MBeans” on page 26.

Orbix Management Programmer’s Guide 37

<install-dir/asp/version/etc/admin/webapps

Under this directory, create a new directory called admin. Unjar
admin.war into this directory, for example, using the following
commands:

When you have changed the admin.war file you can then edit the
image_mapping.properties file.

Updating your image mapping file
To use custom icons, you must update your
image_mapping.properties file. This file is stored in your resources
directory:

For example, the image_mapping.properties file lists all the iBank
MBeans; and for each MBean there are several entries. The
following entries are for Banking Servers type, which contains the
ManagediBank MBean:

These entries specify the images for a small icon (16x16), a larger
icon (32x32), the text displayed for the icon, and its type or group
(BankingServer).

In the first three entries in this example, the first part of the
property name denotes the classname of the MBean. For example,
"examples.ejb.management.ibank.ManagediBank".

In the remaining entries, the first part of the property name
denotes the type of the property (for example, BankingServer).
This is the type in which the MBean is grouped and displayed in
the console.

Accessing your custom icons
To access your new icons, simply copy them into your
resources/images subdirectory.

Note: You may want to make a backup copy of admin.war
before removing it.

cd admin
jar xvf ../admin.war
rm ../admin.war

UNIX <install-dir>/etc/opt/iona/domains/my-domain/resources

Windows<install-dir>\etc\domains\my-domain\resources

Type = BankingServer
examples.ejb.management.ibank.ManagediBank.small =

resources/images/bank16.gif
examples.ejb.management.ibank.ManagediBank.large =

resources/images/bank32.gif
examples.ejb.management.ibank.ManagediBank.text = "iBank"
BankingServer.small=bank16.gif
BankingServer.large=bank32.gif
BankingServer.text=Banking Server
BankingServer.type=Banking Servers

 38 Orbix Management Programmer’s Guide

When you are happy with the results you, may want to jar your
.war file again. You can do this from within the admin directory, for
example, using the following command:

You must clear out the classloading cache to see your changes
take effect. You can do this by stopping the management service
and removing the contents of the cache, for example, as follows:
rm -rf <install-dir>/var/mydomain/dbs/mgmt/cache/CJMP/*

jar cvf ../admin.war .
cd ..
rm -rf admin

Part III
CORBA C++
Management

In this part
This part contains the following chapters:

Instrumenting CORBA C++ Applications page 41

 40 Orbix Management Programmer’s Guide

 Orbix Management Programmer’s Guide 41

Instrumenting CORBA
C++ Applications
This chapter explains how to use the Orbix C++ Management API
to enable an existing CORBA C++ application for management. It
uses the CORBA instrumented_plugin demo as an example.

Note
The Administrator Web Console is no longer automatically
installed. It is available as an optional component. To install,
please download and extract the GUI components archive and
follow the installation instructions.

The GUI components archive can be downloaded from our
Software License & Download (SLD) site, which is part of the Micro
Focus Support Portal. Among other benefits, this site provides
access to product license keys and install-kits, including the
relevant GUI components.

For more information on the SLD, please see our Support Portal
overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as
they do not fully comply with the Section 508 and WCAG
accessibility requirements and guidelines. It is intended that
future product releases will include updated GUI components that
comply with the relevant accessibility guidelines.

Step 1—Identifying Tasks to be Managed
Before adding management code to an application, you must
decide on the tasks in your application that you wish to be
managed by a system administrator. Only then should you start
thinking about adding management instrumentation code to your
existing application. This section includes the following:

• “Existing functionality”

• “New management tasks”

• “Planning your programming steps”

• “Location of the management code”

Existing functionality
The instrumented_plugin example adds management capability to
an existing CORBA C++ application. This is a simple "Hello World"
application, where the client application reads the server’s object
reference from a file.

For details of how to run the instrumented plugin application, see
the README_CXX.txt file in the following Orbix directory:
install-dir\asp\version\demos\corba\pdk\instrumented_plugin

https://support.microfocus.com/help/support-portal-overview.pdf

 42 Orbix Management Programmer’s Guide

New management tasks
The new management instrumentation code added to
instrumented_plugin application enables administrators to perform
the following additional tasks:

• Monitor the status of the Hello server (active or inactive).

• Monitor the number of times that the client reads the server’s
object reference.

• Set a hello text message.

• Invoke a weather forecast with specified text values.

• Shutdown the Hello server.

Administrators can perform these tasks using the Administrator
Console, shown in Figure 9.

Planning your programming steps
When you have identified your management tasks, you should
think carefully about how exactly you wish to add the new
management code to your existing application. For example, how
much of the new code you will add to existing files, and how much
will be in new files.

In the instrumented_plugin example, the instrumentation code is
part of the service and is initialized when the service is initialized.
For larger applications, you might wish to keep new
instrumentation files in a separate directory.

This chapter explains how Orbix C++ management code was
added to the instrumented_plugin application, and shows the
standard programming steps. For example, defining and

Figure 9 Instrumented Plugin in Administrator

Orbix Management Programmer’s Guide 43

implementing your MBeans, and defining relationships between
MBeans.

Location of the management code
You should first decide where you wish to store your new
management code. All source code for the instrumented_plugin
application is stored in the following directory:

install-dir\asp\version\demos\corba\pdk\instrumented_plugin\

The management code for the CORBA C++ server is stored in the
following directory:

...\instrumented_plugin\cxx_server

The following files are discussed in detail in this chapter
• hello_mbean.h
• hello_mbean.cxx
• hello_world_impl.cxx

For larger applications, it is advised that you to store your
management code in a separate management directory. This will
make your application more modular, and easier to understand.

Instrumented plugin overview
Figure 10 shows the main components of the instrumented_plugin
application. In this simple example, there is only one C++ MBean,
the HelloBean.

Most of the key management programming tasks in this example
are performed in the HelloWorld server implementation
(hello_world_impl.cxx). For example, management initialization,
creating the MBean, and displaying MBeans in the navigation tree

Note: When instrumenting CORBA C++ servers, you do
not need to make any changes to the CORBA IDL. You can
enable your application for management simply by adding
new MBean instrumentation code to your CORBA C++
implementation files.

 44 Orbix Management Programmer’s Guide

of the console. The server implementation interacts with the
MBean implementation to perform these tasks.

Step 2—Defining your MBeans
When you have planned which parts of your application need to be
managed, you can then define MBeans to satisfy your
management objectives. This section shows how to define an
example MBean header file for the instrumented_plugin
application. This section includes the following:

• “Managed Entities and MBeans”

• “Rules for MBean declarations”

• “Example MBean declaration”

• “Example private description”

• “Further information”

Managed Entities and MBeans
The C++ version of the Orbix management API is based around
the concept of a Managed Entity. This is similar to the JMX MBeans
that are used by Java Programmers. A managed entity acts as a
handle to your application object, and enables the object to be
managed. The terms managed entity and MBean are used
interchangeably in this document.

Figure 10 Instrumented Plugin Application Overview

Orbix Management Programmer’s Guide 45

The Orbix C++ Management API is defined in CORBA IDL
(Interface Definition Language). For full details of the Orbix
Management API, see the Orbix Management IDLdoc.

Rules for MBean declarations
The following rules apply for C++ MBeans:

• Each MBean object must implement the declaration defined for
it in a C++ header file (in this example, hello_mbean.h).

• The following two operations must be declared and
implemented:
• get_mgmt_attribute()
• set_mgmt_attribute()
(although their implementation may be empty). These are the
only two operations for getting and setting all MBean attributes.
The name of the attribute is passed as a parameter, and the
operation determines whether to get or set the attribute.

• The invoke_method() operation must also be declared and
implemented (although its implementation may be empty).

You must declare all these methods in the MBean header file, and
then implement them in the corresponding MBean implementation
file (in this example, hello_mbean.cxx).

Example MBean declaration
The header file for the instrumented_plugin application is
hello_mbean.h. It includes the following Hello MBean declaration:

Example 1Hello MBean Declaration

#ifndef _HELLO_MBEAN_H_
#define _HELLO_MBEAN_H_

#include <omg/orb.hh>
#include <orbix_pdk/instrumentation.hh>
#include <orbix/corba.hh>
#include <it_dsa/string.h>
#include <it_dsa/list.h>
#include <it_ts/mutex.h>

class HelloWorldImpl;

class HelloMBean :
1 public virtual IT_Mgmt::ManagedEntity,

 public virtual IT_CORBA::RefCountedLocalObject {

 public:

 HelloMBean (
 HelloWorldImpl * orb_info,
 const char * name
);

 virtual ~HelloMBean();

 46 Orbix Management Programmer’s Guide

This hello_mbean.h code example is described as follows:

1 The HelloMBean class implements the IT_Mgmt::ManagedEntity IDL
interface. All entities that need to be managed must derive from
this interface. The C++ implementation of the
IT_Mgmt::ManagedEntity IDL interface is equivalent to a Java
MBean.

2 The IT_Mgmt::ManagedEntityIdentifier managed_entity_id()
operation is used to uniquely identify the managed entity.

3 The entity_type() operation returns a string indicating the type.
This demo uses HelloMBean, which is the C++ classname. The
naming service, for example, uses NamingMBean.

4 The get_mgmt_attribute(), set_mgmt_attribute(), and
invoke_method() operations all use the CORBA::Any type to access
managed entity attributes and operations.

The CORBA::Any type enables you to specify values that can
express any IDL type. For detailed information about the
CORBA::Any type, see the CORBA Programmer’s Guide (C++
version).

2 IT_Mgmt::ManagedEntityIdentifier managed_entity_id()
 IT_THROW_DECL((CORBA::SystemException));

3 char* entity_type() IT_THROW_DECL((CORBA::SystemException));

4 CORBA::Any* get_mgmt_attribute(const char* key)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown));

 void set_mgmt_attribute(
 const char* key, const CORBA::Any & new_value)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,
 IT_Mgmt::AttributeValueInvalid));

 CORBA::Any* invoke_method (const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::MethodUnknown, IT_Mgmt::InvocationFailed));

5 IT_Mgmt::ManagedEntityDescription get_description()
 IT_THROW_DECL((CORBA::SystemException));

 struct HelloParam
 {
 const char *name;
 const char *type;
 const char *description;
 };

 typedef IT_List<HelloParam> HelloParamList;
.
.
.

Example 1Hello MBean Declaration

Orbix Management Programmer’s Guide 47

5 The get_description() operation returns an XML description of
the managed entity. This is used to display information about
the managed entity in the Administrator Web Console. This is
described in more detail in the next topic.

Example private description
The hello_mbean.h file also includes the following privately
declared information:

Example 2HelloMBean Private Declaration

private:

1 struct HelloAttribute
 {
 const char * name;
 const char * type;
 const char * description;
 IT_Bool access;
 };
 typedef IT_List<HelloAttribute> HelloAttributeList;

 struct HelloOperation
 {
 const char * name;
 const char * return_type;
 const char * description;
 HelloParamList params;
 };

 typedef IT_List<HelloOperation> HelloOperationList;

 void initialize_attributes();

 void initialize_operations();

 IT_String get_attributes_XML() const;

 IT_String get_attribute_XML(HelloAttribute att) const;

 IT_String get_operations_XML() const;

 IT_String get_operation_XML(HelloOperation op) const;

 IT_String get_param_XML(HelloParam param) const;

 48 Orbix Management Programmer’s Guide

1 This privately declared information is used to display
descriptions of managed attributes and operations in the
Administrator Web Console. For example, the
initialize_attributes() function uses a HelloAttribute
structure to define a single attribute. An instance of this
attribute and anything else that you declare are pushed on to a
a list. This list is then processed by get_attributes_XML() and by
get_attribute_XML() to generate the description for display in
the Administrator Web Console.

2 These operations all throw IT_Mgmt management exceptions.
You also can specify custom management exceptions. For more
information, see “Throw the managed exceptions” on page 55.

Further information
C++ Managed entities are similar to the JMX MBeans that are
used by Java Programmers. For information about Java MBeans
see:
http://www.oracle.com/technetwork/java/javase/tech/javamanagemen

t-140525.html

2 IT_Bool validate_create_forecast_parameters(
 const IT_Mgmt::ArgumentSeq& in_parameters)
 throw (IT_Mgmt::InvocationFailed);

void throw_wrong_num_parameters()
 throw (IT_Mgmt::InvocationFailed);

 void throw_invalid_parameter(const char *param_name)
 throw (IT_Mgmt::InvocationFailed);

 void throw_bad_temp_range(const char *paramName,
 CORBA::Short minVal, CORBA::Short maxVal)
 throw (IT_Mgmt::InvocationFailed);

 void throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed);

 HelloAttributeList m_attribute_list;
 HelloOperationList m_operation_list;
 IT_String m_identity;
 IT_String m_domain;
 IT_String m_class_name;
 IT_String m_type;
 IT_String m_name;
 IT_Mutex m_mutex;

 // Attribute names
 const char* m_hit_count_name;
 const char* m_children_name;
 const char* m_message_name;

 // Operation names
 const char* m_create_forecast_name;

 HelloWorldImpl* m_hello;
};

Example 2HelloMBean Private Declaration

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Orbix Management Programmer’s Guide 49

Step 3—Implementing your MBeans
After defining your MBean interfaces, you must provide an MBean
implementation. MBean implementation objects interact with the
application they are designed to manage, enabling monitoring and
control.

For example, this section shows the interaction between an MBean
(HelloMBean) and the CORBA server implementation object
(HelloWorldImpl). This section shows example code extracts from
the MBean implementation file (hello_mbean.cxx). It includes the
following steps:

1 “Write the MBean constructor and destructor”

2 “Get the managed entity ID and entity type”

3 “Get the managed attributes”

4 “Set the managed attributes”

5 “Invoke the managed operations”

6 “Throw the managed exceptions”

7 “Get the MBean description”

Write the MBean constructor and destructor
The HelloMBean constructor and destructor are shown in the
following extract from hello_mbean.cxx:

This code extract is explained as follows:

1 The HelloMBean() constructor specifies all the key information
used to identify the MBean, and display it in the Administrator
Web Console. For example, this includes its domain name, a
Java-style class name (com.iona.hello.HelloMBean), and a
managed entity ID. For information about registering MBeans

Example 3MBean Constructor and Destructor

1 HelloMBean::HelloMBean (
 HelloWorldImpl * hello, const char *name) : m_hello(0)
{
 assert(hello != 0);
 hello->_add_ref();
 m_hello = hello;
 m_domain = m_hello->get_domain_name();
 m_class_name = "com.iona.hello.HelloMBean";
 m_type = "HelloMBean";
 m_name = "HelloService";

 m_identity = "DefaultDomain";
 //m_identity = m_domain.c_str();
 m_identity += ":type=HelloMBean,name=";
 m_identity += name;
 initialize_attributes();
 initialize_operations();
}

2 HelloMBean::~HelloMBean()
{
 m_hello->_remove_ref();
}

 50 Orbix Management Programmer’s Guide

as managed entities, see “Creating an example MBean” on
page 61.

2 The HelloMBean() destructor. For information about
unregistering MBeans as managed entities, see “Removing your
MBeans” on page 62.

Get the managed entity ID and entity type
The managed entity ID and type uniquely identify the managed
entity. The following code extract shows how to obtain the
managed entity ID and its type:

This code extract is explained as follows:

1 The ID returned by managed_entity_id() is a string that includes
the domain, type, and name, at minimum. These are the keys
that are looked up in the MBean by the management service.
The actual values are decided by the developer.

This example uses the DefaultDomain for the first string (the
domain). You can specify your own domain name instead. The
rest of the name value pairs follow, and are separated by
commas, for example:

"DefaultDomain:type=HelloMBean,name=HelloService"

2 The entity_type() operation returns a string indicating the type
of the managed entity. The entity type is formatted in a dotted
Java-style notation, which can be used by the Administrator
Web Console to display icons for an MBean. For example, this
demo uses the com.iona.hello.HelloMBean type.

Example 4Managed Entity ID and Type

1 IT_Mgmt::ManagedEntityIdentifier HelloMBean::managed_entity_id()
IT_THROW_DECL((CORBA::SystemException))

{
 return CORBA::string_dup(m_identity.c_str());
}

2 char* HelloMBean::entity_type()
 IT_THROW_DECL((CORBA::SystemException))
{
 return CORBA::string_dup(m_type.c_str());
}

Note: The domain name part of the managed entity ID is
not related to an Orbix configuration or location domain. It is
a namespace for managed entities only. For example, in a
banking application your IDs might use a BankingApp domain.

Orbix Management Programmer’s Guide 51

Get the managed attributes
The following code extract shows how to get managed MBean
attributes:

This code extract is explained as follows:

1 The get_mgmt_attribute() operation is the only operation used
for getting all MBean attributes. The name of the attribute is
passed in and the operation determines whether to get the
attribute.

2 The CORBA::Any type enables you to specify values that can
express any IDL type. For details of managed attribute types,
see “Permitted types” on page 52. For detailed information

Example 5Gettiing Managed Attributes

1 CORBA::Any* HelloMBean::get_mgmt_attribute(const char* key)
IT_THROW_DECL((CORBA::SystemException,
IT_Mgmt::AttributeUnknown))

 {
2 CORBA::Any_var retval = new CORBA::Any;

 if (strcmp(key, m_hit_count_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 *retval <<= m_hello->total_hits();
 return retval._retn();
 }

3 else if (strcmp(key, m_children_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 HelloWorldImpl::HelloWorldList children =
 m_hello->get_children();
 CORBA::AnySeq children_seq(children.size());
 children_seq.length(children.size());
 HelloWorldImpl::HelloWorldList::iterator iter =
 children.begin();

 for (int i = 0; i < children.size();i++, iter++)
 {
 IT_Mgmt::ManagedEntity_var mbean = (*iter)->get_mbean();
 children_seq[i] <<= mbean.in();
 }
 *retval <<= children_seq;
 return retval._retn();
 }

 else if (strcmp(key, m_message_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);
 CORBA::String_var message = m_hello->get_message();
 *retval <<= message.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

 52 Orbix Management Programmer’s Guide

about the CORBA::Any type, see the Orbix CORBA Programmer’s
Guide (C++ version).

3 This get_mgmt_attribute() implementation supports complex
attribute types by also getting the attributes of child MBeans.

In the instrumented_plugin example, the children attribute of
the Hello MBean gets a list of references to child MBeans.

For example, in Figure 9 on page 42, the Children attribute
and its child MBeans (hello3 and hello2) are displayed in the
Administrator Web Console.

Permitted types
The following basic types are permitted for managed attributes:
CORBA::Short
CORBA::Long
CORBA::LongLong
CORBA::Float
CORBA::Double
CORBA::Boolean
CORBA::Octet
CORBA::String
CORBA::WString

In addition, you can use ManagedEntity references to connect one
Managed Entity and another. These will be displayed as hyperlinks
on the web console. Finally, you can use CORBA::AnySeq to create
lists of any of the permitted types already listed.

Set the managed attributes
The following code extract shows how to set managed MBean
attributes:

Example 6Setting Managed Attributes

1 void HelloMBean::set_mgmt_attribute(const char* key,
 const CORBA::Any & new_value

IT_THROW_DECL((CORBA::SystemException,
 IT_Mgmt::AttributeUnknown, IT_Mgmt::AttributeReadOnly,

IT_Mgmt::AttributeValueInvalid))
 {
 if (strcmp(key, m_message_name) == 0)
 {
 CORBA::TypeCode_var tc(new_value.type());
 CORBA::TCKind kind = tc->kind();

 if (kind != CORBA::tk_string)
 {
 throw new IT_Mgmt::AttributeValueInvalid();
 }
 const char *new_message;
 new_value >>= new_message;

Orbix Management Programmer’s Guide 53

This code extract is explained as follows:

1 The set_mgmt_attribute() operation is the only operation used
for setting all MBean attributes. The name of the attribute is
passed in and the operation determines whether to set the
attribute.

The CORBA::Any type enables you to specify values that can
express any IDL type. For detailed information about the
CORBA::Any type, see the Orbix CORBA Programmer’s Guide
(C++ version).

2 The set_message() function enables you to set the text message
for the hello greeting that is returned by the Hello object. For
example, Figure 9 on page 42, shows an example text greeting
for the Message attribute in the Administrator Web Console.

2 m_hello->set_message(new_message);
 }
 else if (strcmp(key, m_hit_count_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else if (strcmp(key, m_children_name) == 0)
 {
 throw new IT_Mgmt::AttributeReadOnly();
 }
 else
 {
 throw new IT_Mgmt::AttributeUnknown();
 }
}

Example 6Setting Managed Attributes

 54 Orbix Management Programmer’s Guide

Invoke the managed operations
The following code extract shows how to invoke MBean
operations:

Example 7Invoke Operations

1 CORBA::Any* HelloMBean::invoke_method(const char* method_name,
 const IT_Mgmt::ArgumentSeq& in_parameters,
 IT_Mgmt::ArgumentSeq_out out_parameters)
 IT_THROW_DECL((CORBA::SystemException,IT_Mgmt::MethodUnknown
 IT_Mgmt::InvocationFailed))
 {
 CORBA::Any_var retval = new CORBA::Any;
 if (strcmp(method_name,m_create_forecast_name) == 0)
 {
 IT_Locker<IT_Mutex> lock(m_mutex);

 out_parameters = new IT_Mgmt::ArgumentSeq(0);
 out_parameters->length(0);

 CORBA::String_var forecast;
 CORBA::Short min_temp, max_temp;
 const char *prospect;

 if (in_parameters.length() != 3)
 {
 throw_wrong_num_parameters();
 }

2 validate_create_forecast_parameters(in_parameters);

 in_parameters[0].value >>= min_temp;
 if (min_temp < COLDEST_MIN_TEMP || min_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("minimumTemperature",
 COLDEST_MIN_TEMP,HOTTEST_MAX_TEMP);
 }

 in_parameters[1].value >>= max_temp;
 if (max_temp < COLDEST_MIN_TEMP || max_temp >
 HOTTEST_MAX_TEMP)
 {
 throw_bad_temp_range("maxmimumTemperature",
 COLDEST_MIN_TEMP, HOTTEST_MAX_TEMP);
 }

 in_parameters[2].value >>= prospect;
 if (max_temp < min_temp)
 {
 throw_max_must_be_greater_than_min();
 }

Orbix Management Programmer’s Guide 55

This code extract is explained as follows:

1 The invoke_method() operation is the only operation used for
invoking all MBean operations. The name of the operation is
passed in and the invoke_method() operation determines
whether to invoke the operation.

The CORBA::Any type enables you to specify values that can
express any IDL type. For detailed information about the
CORBA::Any type, see the Orbix CORBA Programmer’s Guide
(C++ version).

2 In this example, the validate_create_forecast_parameters()
function checks that the weather forecast values entered are of
the correct type (short or string). The rest of the code checks
that the temperature values entered do not fall outside the
range of the predeclared const values:

3 The set_forecast_parameters() and get_forecast() functions
enable you to create and invoke your own weather forecast.
Figure 9 on page 42, shows example parameter values for the
CreateForecast operation in the Administrator Web Console.
This operation takes the following parameters:

• min_temp (short)
• max_temp (short)
• prospect (string)

Throw the managed exceptions
Before throwing management exceptions, you must first declare
them in your MBean implementation file, for example:

3 m_hello->set_forecast_parameters(
 min_temp,
 max_temp,
 prospect
);

 forecast = m_hello->get_forecast();
 *retval <<= forecast.in();
 return retval._retn();
 }
 else
 {
 throw new IT_Mgmt::MethodUnknown();
 }
}

Example 7Invoke Operations

static const CORBA::Short COLDEST_MIN_TEMP = -100;
static const CORBA::Short HOTTEST_MAX_TEMP = 150;

static const char *BAD_TEMP_RANGE_EX =
 "com.iona.demo.pdk.instrumentedplugin.BadTempRange";
static const char *MAX_MUST_BE_GREATER_THAN_MIN_EX =
 "com.iona.demo.pdk.instrumentedplugin.MaxMustBeGreaterThanMin";
static const char *INVALID_PARAM_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_PARAM_NAME = "paramName";
static const char *BAD_TEMP_RANGE_EX_MIN_VAL = "minVal";
static const char *BAD_TEMP_RANGE_EX_MAX_VAL = "maxVal";

 56 Orbix Management Programmer’s Guide

The following code shows two example functions that are used to
throw management exceptions:

Custom exception messages
You can specify custom messages using the exception-ia.properties
file, which is located in the following directory:
<install-dir>\e2a\etc\domains\sample-domain\resources

For example, the entry in this file for the throw_bad_temp_range()
operation is as follows:

Example 8Throwing Management Exceptions

void HelloMBean::throw_bad_temp_range(
 const char *paramName,
 CORBA::Short minVal,
 CORBA::Short maxVal) throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;
 IT_Mgmt::PropertySeq_var properties = new
 IT_Mgmt::PropertySeq(3);
 properties->length(3);
 properties[0].name = BAD_TEMP_RANGE_EX_PARAM_NAME;
 properties[0].value <<= paramName;
 properties[1].name = BAD_TEMP_RANGE_EX_MIN_VAL;
 properties[1].value <<= minVal;
 properties[2].name = BAD_TEMP_RANGE_EX_MAX_VAL;
 properties[2].value <<= maxVal;
 err.id = (const char *) BAD_TEMP_RANGE_EX;
 err.error_params = properties;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

void HelloMBean::throw_max_must_be_greater_than_min()
 throw (IT_Mgmt::InvocationFailed)
{
 IT_Mgmt::InvocationFailed ex;
 IT_Mgmt::InvocationError err;

 err.id = (const char *) MAX_MUST_BE_GREATER_THAN_MIN_EX;
 ex.error_details = err;

 throw IT_Mgmt::InvocationFailed(ex);
}

com.iona.demo.pdk.instrumentedplugin.BadTempRange=Bad
temperature range entered for parameter %paramName%.
The temperature must be between %minVal% and %maxVal%.

Orbix Management Programmer’s Guide 57

Get the MBean description
The following code shows how the MBean descriptions are
obtained for display in the Administrator Web Console:

Figure 11 Instrumented Plugin Custom Exception

Example 9Getting the MBean description

1 IT_Mgmt::ManagedEntityDescription
HelloMBean::get_description()
IT_THROW_DECL((CORBA::SystemException))

{
 IT_String xml_str =
 "<?xml version=\"1.0\"?>"
 "<?rum_dtd version=\"1.0\" ?>"
 "<mbean>"
 "<class_name>";
 xml_str += m_class_name;
 xml_str +=
 "</class_name>"
 "<domain>";
 xml_str += m_domain;
 xml_str +=
 "</domain>"
 "<type>";
 xml_str += m_type;
 xml_str +=
 "</type>"
 "<identity>";
 xml_str += m_identity;
 xml_str +=
 "</identity>"
 "<description>";
 xml_str += "Hello Service";
 xml_str +=
 "</description>";
 xml_str += get_attributes_XML();
 xml_str += get_operations_XML();
 xml_str += "</mbean>";

 return CORBA::string_dup(xml_str.c_str());
}

2 void HelloMBean::initialize_attributes()
{
 m_hit_count_name = "TotalHelloCalls";

 HelloAttribute total_hits =
 {

 58 Orbix Management Programmer’s Guide

 m_hit_count_name, "long",
 "The total number of successful calls to
 HelloWorld::request_number() "
 "since the Hello Service started",
 IT_FALSE
 };
 m_attribute_list.push_back(total_hits);

 m_children_name = "Children";

 HelloAttribute children =
 {
 m_children_name, "list",
 "The list of children of this MBean",
 IT_FALSE
 };

 m_attribute_list.push_back(children);

 m_message_name = "Message";

 HelloAttribute message =
 {
 m_message_name, "string",
 "Message that this object emits",
 IT_TRUE
 };

 m_attribute_list.push_back(message);
}

3 IT_String HelloMBean::get_attributes_XML() const
{
 IT_String xml_str("");

 HelloAttributeList::const_iterator iter =
 m_attribute_list.begin();
 while (iter != m_attribute_list.end())
 {
 xml_str += get_attribute_XML(*iter);
 iter++;
 }
 return xml_str;
}

Example 9Getting the MBean description

Orbix Management Programmer’s Guide 59

This code extract is explained as follows:

1 The get_description() operation returns an XML string
description of the managed entity, which is displayed by
Administrator. This description normally includes the managed
entity’s attributes and operations (with parameters and return
types). This string must be exact in order to parse correctly.
This code example includes the class_name, domain and type
attributes in the description.

2 The rest of the functions are local to this particular
implementation, and are not defined in IDL. The
initialize_attributes() function uses a locally-defined
structure (HelloAttribute) to define a single attribute.
HelloAttribute is declared in hello_mbean.h. An instance of this
attribute and anything else that you declare are pushed on to a
list, including child MBeans.

3 The HelloAttributeList is then processed by
get_attributes_XML() and by get_attribute_XML() to generate
the description for display in the Administrator Web Console.

There are similar functions for displaying the operations and
their parameters in the console (get_operation_XML(),
get_operations_XML() and get_param_XML()).

For full details of the mbean.dtd file used to display the XML string
description, see “MBean Document Type Definition”.

IT_String HelloMBean::get_attribute_XML
 (HelloAttribute att) const
{
 IT_String xml_str =
 "<managed_attribute>"
 "<name>";
 xml_str += att.name;
 xml_str +=
 "</name>"
 "<type>";
 xml_str += att.type;
 xml_str +=
 "</type>"
 "<description>";
 xml_str += att.description;
 xml_str +=
 "</description>"
 "<property>"
 "<name>Access</name>"
 "<value>";
 xml_str += att.access ? "ReadWrite" :

"Read";
 xml_str +=
 "</value>"
 "</property>"
 "</managed_attribute>";
 return xml_str;
}
.
.
.

Example 9Getting the MBean description

 60 Orbix Management Programmer’s Guide

Step 4—Initializing the Management Plugin
After defining and implementing your MBeans, you should then
initialize the management plugin in your server implementation.
The instrumented_plugin example adds the additional
instrumentation code to the existing server implementation file.

Alternatively, for a larger application, you could create a separate
instrumentation class, which is called by your server
implementation.

Example management initialization
The following code extract is also from the server implementation
file (hello_world_impl.cxx). It shows how the management plugin
is initialized in the instrumented_plugin application:

This hello_world_impl.cxx code extract is described as follows:

1 The get_string() operation obtains the managed entity domain
name. For more information, see “Get the managed entity ID
and entity type” on page 50.

2 Like any other Orbix service, the management service must be
initialized by your server implementation. The
resolve_initial_references() operation obtains a reference to
the management instrumentation interface, IT_Instrumentation.
This is then narrowed to the IT_Mgmt::Instrumentation type.

A managed entity must be registered with the instrumentation
interface to be displayed in the Administrator Web Console.

Example 10Management Initialization

void HelloWorldImpl::initialize_management() IT_THROW_DECL(())
 {

1 if (!m_config->get_string("domain_name", m_domain_name))
 {
 cerr << "Couldn't get domain_name from config" << endl;
 m_domain_name = "<unknown domain>";
 }
 try
 {
 CORBA::Object_var obj;
 CORBA::String_var process_object_name;

2 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }
.
.
.

Orbix Management Programmer’s Guide 61

Step 5—Creating your MBeans
After initializing the management service plugin, you can then
create your MBeans in your server implementation. This section
includes the following:

• “Creating an example MBean”.

• “Removing your MBeans”.

Creating an example MBean
The following is a continuation of the example in the last section,
taken from the server implementation file. It shows how the
MBean is created for the instrumented_plugin application:

This hello_world_impl.cxx code extract is described as follows:

1 You must create the MBean using the new() method, and
register it as a managed entity using the new_entity()
operation.

2 This gets the string that specifies the process object. The
process object is displayed as the parent of the HelloMBean in
the navigation tree of the Administrator Web Console. For more
information about the process name, see “The Process MBean”
on page 62.

Example 11Creating an MBean

void HelloWorldImpl::initialize_management()
 IT_THROW_DECL(())
{
 .
 .
 .
 // Create and register the Hello MBean
 IT_Mgmt::ManagedEntity_var hello_mbean_ref;

 1 hello_mbean_ref = m_hello_mbean_servant =
 new

HelloMBean(this,m_name.in());
 instrument->new_entity(hello_mbean_ref);

 if (m_is_parent)
 {

 2 //Get the Process ObjectName
 process_object_name =

instrument->get_process_object_name();

3 // Add the MBean as a child of the Process MBean.
 instrument->create_parent_child_relationship(
 process_object_name,
 hello_mbean_ref->managed_entity_id()
);
 }
.
.
}

 62 Orbix Management Programmer’s Guide

3 This creates a parent-child relationship between your MBean
and the Process MBean. The
create_parent_child_relationship() operation takes two
parameters:

• The parent MBean name (in this case, the Process MBean).

• The child MBean name (in this case, a reference to the
HelloMBean).

Creating a parent-child relationship adds the MBean to the
navigation tree of the console.

Removing your MBeans
You might wish to remove an MBean in response to an
administrator’s interaction with the system. For example, in a
banking application, if an account is deleted from the bank, it
would be appropriate to remove the corresponding MBean for the
account.

Removing an MBean unregisters it as a managed entity. This
ensures that the MBean will no longer be displayed as part of the
managed application.

To remove an MBean, use the remove_entity() operation. When
the account’s MBean has been removed, it is no longer displayed
in the Administrator Web Console. The remove_entity() operation
takes the managed entity name as a parameter.

The instrumented_plugin application is a simple example that does
not remove any MBeans.

Further information
For full details of the Orbix Management API, see the Orbix
Management IDLdoc.

Step 6—Connecting MBeans Together
Applications are displayed in the Administrator Web Console as a
series of related or connected MBeans, which can be monitored by
administrators. This section explains how to connect your
application MBeans together.

The Process MBean
The management service plugin creates a Process MBean when it
is first loaded. A Process MBean is the default starting point in the
console for navigation within a managed process. In the
instrumented_plugin application, the HelloMBean is a child of the
Process MBean.

Figure 12 shows the Process MBean for the instrumented_plugin
application. The Process MBean has associated default attributes,

Orbix Management Programmer’s Guide 63

displayed in the details pane (for example, process type, time
running, hostname, and so on).

Creating parent–child relationships
Use the create_parent_child_relationship() operation to connect
two MBeans together. This enables MBeans to appear as children
of others in the navigation tree on the left of the console.

“Creating an example MBean” on page 61 shows how to use this
operation to add your application MBean as a child of the Process
MBean. In Example 12, the add_child() function shows how to add
further child MBeans created by your application to the navigation
tree.

Figure 12 Instrumented Plugin Process MBean

Example 12Creating Child MBeans

void HelloWorldImpl::add_child(HelloWorldImpl *child)
 IT_THROW_DECL(())
{
 // Lock mutex
 try
 {

1 CORBA::Object_var obj;
 obj = m_orb->resolve_initial_references("IT_Instrumentation");
 IT_Mgmt::Instrumentation_var instrument;
 instrument = IT_Mgmt::Instrumentation::_narrow(obj);

 if (CORBA::is_nil(instrument))
 {
 throw IT_String("Instrumentation reference is nil");
 }

 CORBA::String_var my_name, child_name;

 64 Orbix Management Programmer’s Guide

This hello_world_impl.cxx code extract is described as follows:

1 The resolve_initial_references() operation obtains a reference
to the management instrumentation interface,
IT_Instrumentation. This is then narrowed to the
IT_Mgmt::Instrumentation type. All managed entities must be
registered with the instrumentation interface to be displayed in
the Administrator Web Console.

2 The managed_entity_id() operation is used to uniquely identify
the managed entity.

3 The create_parent_child_relationship() operation takes the
parent MBean and the child MBean as parameters.

4 This adds the child MBean to the list of MBeans. These steps
add the child MBean to the tree for display in console. For
example, Figure 13 shows a child MBean for the
instrumented_plugin application (in this example, hello3).

2 my_name = m_hello_mbean_servant->managed_entity_id();

 IT_Mgmt::ManagedEntity_var childMBean = child->get_mbean();

 child_name = childMBean->managed_entity_id();

3 instrument->create_parent_child_relationship(
 my_name.in(),
 child_name.in()
);

4 m_children.push_front(child);
 }
 catch(IT_Mgmt::ManagementBindFailed& ex)
 {
 cerr << "Management bind failed: " << ex << endl;
 m_is_managed = IT_FALSE;
 }
 .
 .
 .
}

Example 12Creating Child MBeans

Orbix Management Programmer’s Guide 65

Monitoring MBean Statistics
Optionally, you can also monitor statistics from MBeans in your
own applications. The it_mbean_monitoring performance logging
plug-in enables you to periodically harvest statistics associated
with MBean attributes. This section includes the following:

• “MBean monitoring”

• “Programming steps”

MBean monitoring
The IT_MBeanMonitoring IDL interface provides the support for
monitoring MBean statistics. This interface is defined as follows:

Figure 13 Instrumented Plugin Child MBean

module IT_MBeanMonitoring
 {

 const string MANAGEMENT_MBEAN_MONITORING_INITIAL_REF =
 "IT_MBeanMonitoringRegistration";

 // Interface exceptions.
 exception MBeanNotFound {};
 exception MBeanAttributeNotFound {};
 exception MBeanAttributeInvalidType {};

 // IT_MBeanMonitoring::MBeanMonitoringRegistration
 //
 // An interface which provides a means to
 // monitor and log statistics about mbeans
 // registered with the management service.

 66 Orbix Management Programmer’s Guide

When the it_mbean_monitoring plug-in is included in your
orb_plugins list, an initial reference is registered for the
IT_MBeanMonitoringRegistration interface.

When you resolve on your application MBean, the
IT_MBeanMonitoring API can be used to switch on, or turn off,
monitoring of an application MBean. Statistics for user monitored
MBeans will then appear in the performance logs.

Programming steps
This example assumes that you already have an MBean with an
attribute that you want to be sampled and logged. For example,
the MBean might track the memory currently being used by the
process. The programming steps are as follows:

1 Include the following header files:

2 To register your MBean with the it_mbean_monitoring plug-in,
you must first resolve on the MBean monitoring initial
reference:

 local interface MBeanMonitoringRegistration
 {
 void monitor_attribute(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound,
 MBeanAttributeNotFound, MBeanAttributeInvalidType);

 void cancel_monitor(
 in string object_name,
 in string attribute_name,
 in string alias) raises (MBeanNotFound);
 };

};

#include <orbix_pdk/mbean_monitoring_registration.hh>

try {
 Object_var obj = orb->resolve_initial_references(

IT_MBeanMonitoring::MANAGEMENT_MBEAN_MONITORING_INITIAL_REF
);

 m_mbean_monitoring_registration =
 MBeanMonitoringRegistration::_narrow(obj);
 }
 catch(const ORB::InvalidName&)
 {
...

}

Orbix Management Programmer’s Guide 67

1 You can then register the attribute to be monitored by
specifying your MBean details in a call to monitor_attribute():

The mbean_friendly_name is an alternative alias that will also
appear in the log file.

Further information
For more details on Orbix performance logging, see the Orbix
Management User’s Guide.

try {
 m_mbean_monitoring_registration->monitor_attribute(

"mbean_name", "attribute_name", "mbean_friendly_name");
 }
 catch (...)
 {
 // do nothing.
 }

 68 Orbix Management Programmer’s Guide

 Orbix Management Programmer’s Guide 69

MBean Document Type
Definition
This appendix lists the contents of the mbean.dtd file used to
generate the display of the Administrator Web Console.

Note
The Administrator Web Console is no longer automatically
installed. It is available as an optional component. To install,
please download and extract the GUI components archive and
follow the installation instructions .

The GUI components archive can be downloaded from our
Software License & Download (SLD) site, which is part of the Micro
Focus Support Portal. Among other benefits, this site provides
access to product license keys and install-kits, including the
relevant GUI components.

For more information on the SLD, please see our Support Portal
overview:

https://support.microfocus.com/help/support-portal-overview.pdf

The GUI components have been separated from the product as
they do not fully comply with the Section 508 and WCAG
accessibility requirements and guidelines. It is intended that
future product releases will include updated GUI components that
comply with the relevant accessibility guidelines.

The MBean Document Type Definition File
The mbean.dtd file used to generate the XML used in the display
of the Administrator Web Console. For example, the
get_description() operation returns an XML string description of
the managed entity, which is then displayed by the console. This
description normally includes the managed entity’s attributes and
operations (with parameters and return types).

https://support.microfocus.com/help/support-portal-overview.pdf

 70 Orbix Management Programmer’s Guide

mbean.dtd contents
The contents of the mbean.dtd file are as follows:

<!-- MBean is the top level element -->
<!ELEMENT mbean (class_name, domain, identity, agent_id,

description, notification_listener*, notification_filter*,
notification_broadcaster*, constructor*, operation*,
managed_attribute*)>

<!-- IMMEDIATE MBEAN PROPERTIES -->
<!ELEMENT class_name (#PCDATA)>
<!ELEMENT domain (#PCDATA)>
<!ELEMENT identity (#PCDATA)>
<!ELEMENT agent_id (#PCDATA)>

<!-- COMMON ELEMENT TYPES -->

<!-- type = void | byte| char | double | float | long | longlong
| short | boolean | string | list | ref | UNSUPPORTED -->

<!ELEMENT type (#PCDATA)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT param (name, type, description)>

<!-- NOTIFICATION details - note no recipients are shown for the
broadcasts -->

<!ELEMENT notification_listener EMPTY>
<!ELEMENT notification_filter EMPTY>
<!ELEMENT notification_broadcaster EMPTY>

<!-- CONSTRUCTORS -->
<!ELEMENT constructor (name, description, param*)>

<!-- OPERATIONS -->
<!ELEMENT operation (name, type, description, param*)>

<!-- MANAGED ATTRIBUTES -->
<!ELEMENT managed_attribute (name, type, description, property*)>

<!-- PROPERTIES -->
<!-- name = Access -->
<!ELEMENT property (name, value)>
<!-- value = ReadWrite | ReadOnly | INACCESSIBLE -->
<!ELEMENT value (#PCDATA)>

 Orbix Management Programmer’s Guide 71

Glossary
Administration
All aspects of installing, configuring, deploying, monitoring, and
managing a system.

Application Server
A software platform that provides the services and infrastructure
required to develop and deploy middle-tier applications. Middle-tier
applications perform the business logic necessary to provide web
clients with access to enterprise information systems. In a multi-tier
architecture, an application server sits beside a web server or
between a web server and enterprise information systems.
Application servers provide the middleware for enterprise systems.

CORBA
Common Object Request Broker Architecture. An open standard
that enables objects to communicate with one another regardless
of what programming language they are written in, or what
operating system they run on.

Configuration
A specific arrangement of system elements and settings.

Controlling
The process of modifying the behavior of running software
components, without stopping them.

Details Pane
The display pane on the right hand side of the Administrator Web
Console user interface.

Deployment
The process of distributing a configuration or system element into
an environment.

Domain
An abstract grouping of managed server processes and hosts within
a physical location. Processes within a domain share the same
configuration and distributed application infrastructure. A domain
is equivalent to an Orbix configuration domain.

Event
An occurrence of interest, which is emitted from a managed entity.

Host
Generic term used to describe a computer, which runs parts of a
distributed application.

Installation
The placement of software on a computer. Installation does not
include Configuration unless a default configuration is supplied.

 72 Orbix Management Programmer’s Guide

Instrumentation
Code instructions that monitor specific components in a system (for
example, instructions that output logging information on screen.)
When an application contains instrumentation code, it can be
managed using a management tool such as Administrator.

Invocation
A request issued on an already active software component.

JRE
Java Runtime Environment. A subset of the Java Development Kit
required to run Java programs. The JRE consists of the Java Virtual
Machine, the Java platform core classes and supporting files. It does
not include the compiler or debugger.

JMX
Java Management Extensions. Sun’s standard for distributed
management solutions. JMX provides tools for building distributed,
Web-based solutions for managing devices, applications and
service-driven networks.

Managed Application
An abstract description of a distributed application, which does not
rely on the physical layout of its components.

Managed Entity
A generic manageable component (C++ or Java). Managed entities
include managed domains, servers, containers, modules, and
beans.

A managed entity acts as a handle to your application object, and
enables the object to be managed. The terms managed entity and
MBean are used interchangeably in this document.
Managed Server
A set of replicated managed processes. A managed process is a
physical process which contains an ORB and which has loaded the
management plugin. The managed server can be an EJB application
server, CORBA server, or any other instrumented server that can
be managed by Administrator.

Managed Process.
A physical process which contains an ORB and which has loaded the
management plugin.

Management
To direct or control the use of a system or component. Sometimes
used in a more general way meaning the same as Administration.

MBean

A JMX term used to describe a generic manageable object.

An MBean acts as a handle to your application object, and enables
the object to be managed. The terms managed entity and MBean
are used interchangeably in this document.

Orbix Management Programmer’s Guide 73

Monitoring
Observing characteristics of running instances of software
components. Monitoring does not change a system.

Navigation Tree
The tree on the left hand side of the Administrator Web Console.

Node
A node represents a host machine on which the product is installed.
The management service and managed servers are deployed on
nodes.

ORB
CORBA Object Request Broker. This is the key component in the
CORBA architecture model. It acts as the middleware between
clients and servers.

Process
This is the operating system execution environment in which system
and application programs execute. A Java Virtual Machine (JVM) is
a special type of process that runs Java programs. A process that
is not running Java programs is referred to as a standard or C++
process.

Process MBean
The is the first-level MBean that is exposed for management of an
application. It is the starting point for navigation through an
application in the Administrator Web Console

Resource
This represents shared data or services provided by a server.
Examples of J2EE resources include JDBC, JNDI, JMS, JCA, and so
on. Examples of CORBA resources include naming service,
implementation repository, trading service, notification service, etc.

Server
This is a collection of one or more processes on the same or different
nodes that execute the same programs. The processes in a server
are tightly coupled, and provide equivalent service. This means that
the calling client does not care which process ends up servicing the
request.

Runtime Administration, Runtime Management
Encompasses the running, monitoring, controlling and stopping of
software components.

SNMP
Simple Network Management Protocol. The Internet standard
protocol developed to manage nodes on an IP network. It can be
used to manage and monitor all sorts of devices (for example,
computers, routers, and hubs)

Starting
The process of activating an instance of a deployed software
component.

 74 Orbix Management Programmer’s Guide

Stopping
The process of deactivating a running instance of a software
component.

Web Services
Web services are XML-based information exchange systems that
use the Internet for direct application-to-application interaction.
These systems can include programs, objects, messages, or
documents.

XML
Extensible Markup Language. XML is a simpler but restricted form
of Standard General Markup Language (SGML). The markup
describes the meaning of the text. XML enables the separation of
content from data. XML was created so that richly structured
documents could be used over the web. See http://www.w3.org/XML/

http://www.w3.org/XML/

Orbix Management Programmer’s Guide 75

Index

A
Administrator

Web Console 7

C
CFR 8
CORBA, definition 71
createMBean() method 27
createParentChildRelation() method 35
create_parent_child_relationship()
operation 62

custom exception messages 56

D
documentation

.pdf format 4
updates on the web 4

domains
definition 71
introduction 8

dynamic MBeans 11

E
EJB, definition 71
entity_type() operation 46

G
get_attributes_XML() function 48
get_description() operation 47
get_forecast() function 55
get_mgmt_attribute() operation 45
get_string() operation 60

H
HelloAttributeList 59
HelloMBean() constructor 49
HelloMBean() destructor 50
HelloMBean class 46
HelloWorldImpl object 49

I
iBank example 19, 42
IIOP 8
initialize_attributes() function 48
instrumentation, definition 72
instrumented_plugin example 41
invoke_method() operation 45
iona_services.management process 8
IT_IIOPAdaptorServer object 25
IT_MBeanMonitoring 30, 65
it_mbean_monitoring 30, 65
IT_Mgmt::Instrumentation type 60

J
JMX

definition 72
introduction 9

M
Managed Entity 12
managed_entity_id() operation 46
management instrumentation

programming steps 10
management service, overview 8
mbean.dtd file 59
MBeans

creating 26
defining interfaces 19
domain name 24
dynamic 11
identifying 24
implementing 22, 49
introduction 9
monitoring C++ 65
monitoring Java 30
object names 21
Process MBean 28, 34, 62, 73
registering 26
standard 11
unregistering 13, 28
viewing in IONA Administrator 33

MBeans, definition 72
MBean server

gaining access to 24
introduction 9

monitor_attribute() 31, 67

N
new() method 27
new_entity() operation 61

O
ObjectName parameter 24
object names, for MBeans 21
ORB, definition 73
Orbix Configuration Authority 8
Orbix Configuration Explorer 8

P
performance logging 30
permitted attribute types, C++ 52
Process MBean 28, 34, 62, 73
programming steps

for management instrumentation 10

 76 Orbix Management Programmer’s Guide

R
registerMBean() method 27
remove_entity() operation 62
resolve_initial_references() operation 60

S
set_forecast_parameters() function 55
set_message() function 53
set_mgmt_attribute() operation 45
SNMP, definition 73
standard MBeans 11

U
unregisterMBean() method 28

V
validate_create_forecast_parameters()
function 55

W
Web Services, definition 74

X
XML, definition 74

	Preface
	Contacting Micro Focus

	Overview
	In this part
	Introduction to Application Management
	Introduction to Orbix Management Tools
	Administrator Web Console
	Orbix Management Service
	Orbix Configuration Explorer
	Orbix Configuration Authority
	Integrating with Enterprise Management Systems
	Further information

	Introduction to Java Management Extensions
	MBeans
	The MBean server
	Management instrumentation
	Standard and Dynamic MBeans
	Further information

	Introduction to the Orbix management API
	The IIOP adaptor
	Defining MBean relationships
	C++ Instrumentation

	Overview of Management Programming Tasks
	Identifying tasks to be managed
	Writing your MBeans
	Registering your MBeans with the MBean server
	Unregistering your MBeans
	Defining relationships between MBeans
	Further information

	CORBA Java Management
	In this part
	Instrumenting CORBA Java Applications
	Step 1—Identifying Tasks to be Managed
	Existing user tasks
	New management tasks for administrators
	Planning your Programming Steps

	Step 2—Defining your MBeans
	Rules for MBean interfaces
	Example MBeans
	AccountMgrMBean interface
	CreditCardMBean interface
	BusinessSessionManagerMBean interface
	BusinessSessionMBean interface
	MBean object names
	Further information

	Step 3—Implementing your MBeans
	Example MBean implementation
	The management wrapper class
	Management wrapper implementation
	Identifying MBeans
	Further information

	Step 4—Gaining Access to an MBean Server
	Loading the Orbix management plugin
	Accessing the MBean server
	IT_IIOPAdaptorServer object
	Specifying an MBean object name
	The Process MBean

	Step 5—Registering your MBeans
	Example MBean registration
	addMBean() implementation
	Registering MBeans
	Creating parent-child relationships

	Step 6—Unregistering your MBeans
	Example MBean unregistration
	The unregisterMBean() method

	Step 7—Connecting MBeans Together
	Connecting MBeans using a get() method
	Connecting MBeans using the createParentChildRelation() method

	Monitoring MBean Statistics
	MBean monitoring
	Configuration steps
	Programming steps
	Further information

	Displaying CORBA Java Applications
	Displaying MBeans
	Administrator Web Console
	The Process MBean
	Example Process MBean

	Adding Application MBeans to the Tree
	Creating a parent-child relationship
	The createParentChildRelation() method

	Customizing your Application MBean Icons
	Changing the admin.war file
	Updating your image mapping file
	Accessing your custom icons

	CORBA C++ Management
	In this part
	Instrumenting CORBA C++ Applications
	Step 1—Identifying Tasks to be Managed
	Existing functionality
	New management tasks
	Planning your programming steps
	Location of the management code
	Instrumented plugin overview

	Step 2—Defining your MBeans
	Managed Entities and MBeans
	Rules for MBean declarations
	Example MBean declaration
	Example private description
	Further information

	Step 3—Implementing your MBeans
	Write the MBean constructor and destructor
	Get the managed entity ID and entity type
	Get the managed attributes
	Set the managed attributes
	Invoke the managed operations
	Throw the managed exceptions
	Get the MBean description

	Step 4—Initializing the Management Plugin
	Example management initialization

	Step 5—Creating your MBeans
	Creating an example MBean
	Removing your MBeans
	Further information

	Step 6—Connecting MBeans Together
	The Process MBean
	Creating parent–child relationships

	Monitoring MBean Statistics
	MBean monitoring
	Programming steps
	Further information

	MBean Document Type Definition
	The MBean Document Type Definition File
	mbean.dtd contents

	Glossary
	Index

