
AccuRev Technical Notes

Version 4.8

August 2010

9-July-2010

AccuRev Technical Notes
Copyright © AccuRev, Inc. 1995–2010

ALL RIGHTS RESERVED

This product incorporates technology that may be covered by one or more of the following
patents: U.S. Patent Numbers: 7,437,722; 7,614,038.

TimeSafe and AccuRev are registered trademarks of AccuRev, Inc.
AccuBridge, AccuReplica, AccuWork, and StreamBrowser are trademarks of AccuRev, Inc.

All other trade names, trademarks, and service marks used in this document are the property of
their respective owners.

Table of Contents

Quick Evaluation of AccuRev
(Windows).. 1

AccuRev’s Client-Server Architecture ... 1
Downloading the Installation Program ... 1
Running the Installation Program ... 2
Starting the AccuRev Server... 2
Starting the AccuRev GUI .. 3
Setting Up AccuRev for First-Time Use... 3
Running the Quick Setup Wizard ... 3

Registering Yourself as an AccuRev User ... 3
Creating and Populating an AccuRev Depot .. 4

Beginning Work with AccuRev .. 7
Keeping Files .. 7
Promoting Files... 7

Seeing Other People's Changes... 7
Adding a New File .. 7
What's Next? ... 7

Quick Evaluation of AccuRev
(Unix/Linux) .. 9

AccuRev’s Client-Server Architecture ... 9
Downloading the Installation Program ... 9
Running the Installation Program ... 10
Starting the Server... 12
Registering Yourself as an AccuRev User .. 12
Logging in to AccuRev... 12
Creating and Populating an AccuRev Depot .. 12

Removing a Depot .. 13
Beginning Work with AccuRev .. 13

Keeping Files .. 13
Promoting Files... 13

Seeing Other People's Changes... 14
Adding a New File .. 14
What's Next? ... 14

Converting to AccuRev from
Directories Containing Baselevels ... 15

Creating a Depot ... 15
Processing the First Baselevel .. 15
AccuRev Technical Notes iii

Recording the Baselevel with a Snapshot... 16
Processing Subsequent Baselevels.. 16

Handling Additional Baselevel-to-Baselevel Differences .. 17
Cleaning Up .. 18

Creating and Using a Maintenance Stream ... 19
Creating a Snapshot .. 19
Creating a Stream Based on the Snapshot .. 19
Performing Maintenance Work... 19

Pathname Optimization:
ACCUREV_IGNORE_ELEMS and .acignore .. 21

Eligible “Whole-Workspace” Commands .. 22
GUI Counterparts to the “Whole-Workspace” Commands .. 22

Commands that Don’t Apply to the Whole Workspace.. 22
Values for ACCUREV_IGNORE_ELEMS.. 23

Examples... 24
Specifying Directories and Their Contents... 24

Setting ACCUREV_IGNORE_ELEMS on a Unix/Linux System....................................... 25
Setting ACCUREV_IGNORE_ELEMS on a Windows System .. 25
Per-Directory Pathname Optimization — the .acignore File.. 25

Techniques for Sharing Workspaces .. 27
Accessing a Windows Workspace From Multiple Windows Clients 27
Universal Access to a Workspace Located on a Share ... 28

The ‘share_map.txt’ File... 28
Workspace Location Entries ... 29

Fixing Workspace Location Entries ... 29
Fixing Machine Name Entries ... 30

Example: Samba Share ... 30

What’s the Difference between Populate and Update? ... 31
In a Nutshell 31

Example 1: Standard Update Scenario ... 32
Example 2: Restoring a Deleted File (“missing” by accident) 32
Example 3: Handling Active Elements... 32
Example 4: A Tale of Two Files... 33

Data Structures Used by Populate and Update ... 33
How the Data Structures Get Their Data .. 34

Backing Stream... 35
Workspace Stream .. 36
Workspace Tree .. 38

The Update Algorithm .. 38
Advancing the Scan Threshold ... 40
AccuRev Technical Notes iv

Incomplete Updates .. 40
Incomplete Update: Command Interrupted .. 41
Incomplete Update: Checksum Failure... 41
Performing the “Fixup” Update .. 41

Using a Trigger to Maintain a Reference Tree .. 43

Notes for CVS Users ... 45
AccuRev Workspaces vs. CVS Sandboxes... 45
Common Operations ... 45

Obtaining a copy of the source files ... 45
Placing files under version control ... 45
Bringing others’ changes into your workspace/sandbox .. 46
Saving your changes ... 46
Finding the history of files.. 46
Finding the status of files in your workspace/sandbox... 47
Removing files .. 47
Reverting changes to files... 47
Moving files .. 48
Checking out files to edit .. 48
Comparing versions of files .. 48

Version Control of Namespace-Related Changes .. 49
Twin Elements and Stranded Elements... 49

Preventing Creation of Twins in Workspaces .. 49
Reporting of Twins in Dynamic Streams ... 50
Ability to Reuse an Element Name after a Rename Operation .. 50
When a Purge Operation Causes an Element to Disappear ... 51
Detection of All Stranded Elements, Including “Twins” ... 51
Ability to Operate on Stranded Elements Using Element-IDs .. 52
More Sophisticated Analysis of Namespace-Related Changes ... 52
Change to Merge Algorithm for Namespace-Related Changes ... 52

Handling Stranded Elements... 54
Defunct element obscured by element with same name... 54

Resolving the Situation .. 55
Elements under a defunct parent... 55

Resolving the Situation .. 55
Elements under an excluded parent .. 55

Resolving the Situation .. 56
Dangling directory elements ... 56

Resolving the Situation .. 56
Elements under a non-existent (purged) parent directory... 56

Resolving the Situation .. 57
Elements under a stranded parent directory.. 57
AccuRev Technical Notes v

Notes on Cross-Links.. 59
Cross-Link Direction and Terminology.. 59
Cross-Links and Stream Namespaces... 59

Source Stream: Workspace vs. Dynamic Stream ... 61
Multiple Cross-Links: Chaining ... 62

Double Vision: Seeing an Element Multiple Times in a Workspace 63
Double Vision and the ‘accurev name’ Command .. 64

Cross-Link Overlaps ... 64

Notes on Promote-by-Issue .. 67
Promote-by-Issue Basics... 67
Promoting Issues to the Parent Stream ... 69
Cross-Promoting Issues to a Non-Parent Stream — Simple Case.. 70
Cross-Promoting Issues to a Non-Parent Stream — Patch Required 72

Changing the Way You Use the Change Palette .. 73
Working in the Workspace ... 75
Promotion / Creating a Tracking Issue ... 75
Working with the Tracking Issue.. 76
If You Process Some Elements at the Stream Level, not the Workspace Level 78

Fixing Your Mistake .. 79

Incomplete Change Packages .. 81
Overview... 81
An Example Scenario ... 81
File Purge (Revert to Backed)... 84
Reuse of Issues Across Streams.. 86
Promoting by File Instead of by Issue .. 87
Sample server_preop_trig rules .. 87
How to Troubleshoot Incomplete Change Packages .. 89
AccuRev Technical Notes vi

Quick Evaluation of AccuRev
(Windows)

If you intend to use AccuRev for personal use or are just setting it up for evaluation, these steps
will take you through a basic, single-platform installation, initial depot setup, and basic AccuRev
usage. If needed, any installation parameters that you enter can be changed at a later time.

Should you need any help during the installation or afterwards, remember that your AccuRev
download comes with 30 days of free support. Please feel free to contact us: email
support@accurev.com or call 1-800-383-8170.

AccuRev’s Client-Server Architecture

AccuRev operations use a simple client-server model:

• A user invokes a client program: either the command-line interface (CLI) program accurev,
or the graphical user interface (GUI) program acgui. The computer that client program runs
on is called the client machine.

• The client program sends each user command (as a transaction request) to the server program,
which is running on the server machine. The request is sent via TCP/IP, using a particular host
and port number combination. The server program executes the request by accessing the
AccuRev repository on the server machine. If the request modifies the repository, the server
program records the change as a transaction in one of the repository’s storage depots.

The client machine and server machine can be the same computer. (That’s the most likely setup
for a pre-sales evaluation of AccuRev.) By changing the TCP/IP host and port number
combination, a client program can “switch its attention” back and forth among multiple servers.

Downloading the Installation Program

To download the installation program:

1. Navigate to http://www.accurev.com/downloads.html.

2. Click the Download Here button, and fill out the registration form. You will receive the
license key via email, so you must provide a valid email address on the form.

3. After you complete the form, click the Generate License button. This sends an email, which
contains the AccuRev license key for the evaluation. When you get the email, save the license
key file to a location on your hard drive. This file will be used during the installation process.

The Web page that displays contains links to the installation program, AccuRev training
videos, and a Setup Guide that walks you through the process of installing both AccuRev and
a pre-built environment for investigating AccuRev’s capabilities.

4. Click the Download AccuRev button under “Step 2” at the bottom of the page to download
the installation program (AccuRev_Evaluation_Kit.exe).
AccuRev Technical Notes 1

Running the Installation Program

Note: After installation is complete, be sure to continue with the directions in this chapter.
We’ll guide you through initial depot setup and basic AccuRev usage.

1. Double-click the downloaded program to extract the AccuRev installation program and
sample data.

2. Choose a location to extract the files to, and click the Extract button. This places a folder
called AccuRev_Stage in the chosen location.

3. In the AccuRev_Stage folder, double-click the AccuRev installer
(AccuRev_<version>_Windows.exe).

4. Use the following notes to complete the installation. These instructions assume that no other
version of AccuRev is installed on this machine.

• On the Choose Install Type screen, select the Typical installation option and click Next.

The Typical option installs the program with all default settings. Use the Custom option if
you need to customize the installation location, server port number, JRE version used,
repository location or system PATH settings.

• On the Set Host and Port screen, select this machine and click Next.

Note: Selecting this machine performs a full (client and server) installation of AccuRev
on the current machine. This is the most common configuration for evaluating AccuRev.
If you already have an AccuRev Server on your network, select another host, and enter
the correct host name and port number to access that server.

• On the Select License Key File screen, use the Choose button to navigate to the license
key file that you saved during the registration process. Click Next to continue.

• On the License Agreement screen, accept the license agreement and click Install to install
the product.

• On the Install Complete screen, click Done to close the installer. The installation process
is complete.

The installer places an AccuRev shortcut is placed on the Windows desktop. This shortcut starts
the AccuRev graphical client user interface. To run the command line interface, start the Windows
command prompt and enter an AccuRev command.

Starting the AccuRev Server

If the user who installed AccuRev has administrator privileges, AccuRev is installed as a
Windows service and the AccuRev Server starts automatically. Otherwise, the AccuRev Server
will need to be started manually, by running the server_start.bat script in the AccuRev bin
directory.
AccuRev Technical Notes 2

Starting the AccuRev GUI

Double-click the AccuRev shortcut on your desktop.The main screen appears:

Setting Up AccuRev for First-Time Use

There are two ways to set up AccuRev for first-time use:

• Install the sample data included in AccuRev_Evaluation_Kit.exe.

To install sample data, double-click Set_AccuRev_Evaluation_Env.exe in the
AccuRev_Stage folder. This program will back up any existing repository on the local
machine, and replace it with the sample data.

Afterwards, you can start AccuRev and skip to Beginning Work with AccuRev on page 7.

• Run the Quick Setup wizard to use your own site-specific data for the evaluation. See Running
the Quick Setup Wizard, below, for full instructions.

Running the Quick Setup Wizard

Before you begin, make sure that any files to be placed under version control are on a disk that is
accessible from the machine where you’ve installed AccuRev.

The first time you start the GUI, the AccuRev Quick
Setup wizard should appear. If it doesn’t, run the
command Help > Quick Setup. This wizard steps you
through the process of:

• Registering yourself as an AccuRev user.

• Creating a new depot for permanent storage of a set
of files.

• Creating a new workspace to store your work.

• Placing an existing set of files under version control.

Registering Yourself as an AccuRev User

AccuRev maintains a username registry that is separate from the operating system’s username
registry. AccuRev usernames are called principal-names. Every AccuRev transaction log entry
includes the principal-name of the person who initiated the transaction.
AccuRev Technical Notes 3

The wizard prompts you to create a principal-name for yourself. If you already have a principal-
name, just enter it again in this dialog box.

The currently
active principal-
name is displayed
in the status bar at
the bottom of the
GUI window. You
can change it at
any time with the
Tools > Change
Active User
command.

Creating and Populating an AccuRev Depot

Next, the wizard
prompts you to
specify the name for
a new storage depot.
Enter a name for the
depot (e.g. brass for
a project code-
named “Brass”).

Now, you can
indicate, by
selecting Yes, that
you have a directory
tree whose files are
to be placed in the
new depot. The
alternative (if you
select No) is to
create an empty
depot.

The next steps
involve the creation
AccuRev Technical Notes 4

of a new workspace, which enables you to work with the depot’s files.

• If you selected “Yes”, indicating that you have files to be placed in the new depot:

1

2

The wizard asks “Do you want to create a workspace in a new location...”:

• Select Yes to create a workspace in new location, and copy your existing files to that new
location. The wizard will (1) prompt you to specify the location of the existing files, and
(2) prompt you to specify a location for the new workspace.

• Select No to
convert an existing
location into a
workspace. For
this alternative, the
wizard will prompt
you to specify the
existing location.
In either case, your
existing files are
copied to depot in
a series of
operations that
ends with a
Promote
command. Click
the Promote button to approve the promotion of the files. This makes the files available to
other users’ workspaces that you can create later.
AccuRev Technical Notes 5

• If you selected “No”, indicating that you want to create an empty depot:

The wizard will prompt you to specify a location for the new workspace.

Finally, the wizard displays
a message box,
summarizing the work it
has accomplished.

Note: To remove a depot
from the repository, use the
administrative command
maintain rmdepot. This
operation is irreversible!
For details, see Removing a
Depot from the AccuRev
Repository on page 93 of
the AccuRev
Administrator’s Guide.

After the Quick Setup Wizard ends, AccuRev displays the contents of the newly created
workspace. This “Explorer-style” display includes folders (navigation) and details panes. It also
includes a searches pane, with which you can locate files throughout the workspace, based on
their AccuRev status.
AccuRev Technical Notes 6

Beginning Work with AccuRev

Now that you've created a depot and populated it with files, you're ready to begin making changes
to those files. There's no need to “check out” files; simply edit them. To edit a file, double-click it.
Alternatively, right-click it and select Edit from the context menu.

Keeping Files

If you wish to keep some work that you have done, select the elements you want to keep, right-
click on the selection and choose Keep. You are prompted for a comment, which is optional. This
creates a new version in the depot, in your workspace’s stream. These versions are now visible to
other AccuRev users. You can keep a file as often as you like.

Promoting Files

When your changes are ready for other people to see, promote the file. To promote elements,
select them, right-click on them, and select Promote. Promote places your most recently kept
version of the file in the backing stream, making it available for others to use. The next time they
update their workspace, they will get a local copy of your promoted file.

Seeing Other People's Changes

To update your workspace with other people's changes, click the Update button above the
folder pane’s toolbar.

Adding a New File

Simply edit a file with your favorite editor or copy it into the workspace from another location.
When you're ready for AccuRev to add the initial version of your new file, right-click on it and
select Add to Depot. Enter a comment (optional, just as with Keep).

You can promote the new file immediately. Alternatively, you can continue editing, and promote
it at a later time.

What's Next?

This chapter has covered only the most basic installation options and features of AccuRev. See
the online help (Help > Help Contents), the AccuRev Getting Acquainted Guide, and the
AccuRev Day-to-Day Usage Guide to quickly learn more about AccuRev’s capabilities. The
AccuRev CLI User’s Guide provides details on AccuRev’s command-line interface. The complete
documentation set is available in the AccuRev doc directory.
AccuRev Technical Notes 7

AccuRev Technical Notes 8

Quick Evaluation of AccuRev
(Unix/Linux)

If you intend to use AccuRev for personal use or are just setting it up for evaluation, these steps
will take you through a basic, single platform installation, initial depot setup, and basic AccuRev
usage. Any installation parameters that you enter can be changed at a later time. You do not need
to root privileges to install and use AccuRev.

Should you need any help during the installation or afterwards, remember that your AccuRev
download comes with 30 days of free support. Please feel free to contact us: email
support@accurev.com or call 1-800-383-8170.

AccuRev’s Client-Server Architecture

AccuRev operations use a simple client-server model:

• A user invokes a client program: either the command-line interface (CLI) program accurev,
or the graphical user interface (GUI) program acgui. The computer that client program runs
on is called the client machine.

• The client program sends each user command (as a transaction request) to the server program,
which is running on the server machine. The request is sent via TCP/IP, using a particular host
and port number combination. The server program executes the request by accessing the
AccuRev repository on the server machine. If the request modifies the repository, the server
program records the change as a transaction in one of the repository’s storage depots.

The client machine and server machine can be the same computer. (That’s the most likely setup
for a pre-sales evaluation of AccuRev.) By changing the TCP/IP host and port number
combination, a client program can “switch its attention” back and forth among multiple servers.

Downloading the Installation Program

To download the installation program:

1. Navigate to http://www.accurev.com/downloads.html.

2. Click the Download Here button, and fill out the registration form. You will receive the
license key via email, so you must provide a valid email address on the form.

3. After you complete the form, click the Generate License button. This sends an email, which
contains the AccuRev license key for the evaluation. When you get the email, save the license
key file to a location on your hard drive. This file will be used during the installation process.

The Web page that displays contains links to AccuRev training videos and other information.

Important! Do not use the Download AccuRev button as it will download a Windows executable.

4. Navigate to http://www.accurev.com/download.htm and download the appropriate .bin file for
your version of Unix or Linux.
AccuRev Technical Notes 9

Running the Installation Program

Note: After installation is complete, be sure to continue with the directions in this chapter.
We’ll guide you through initial depot setup and basic AccuRev usage.

Start the installation process with one of the following commands:

sh ./AccuRev_<version>_<OSversion>.bin (graphical wizard)
sh ./AccuRev_<version>_<OSversion>.bin -i console (text-based wizard)

Following is a transcript of a console installation, with some annotations. Since the graphical
wizard is similar to the installer provided for Windows systems, see Quick Evaluation of AccuRev
(Windows) on page 1 for help with a graphical installation.

• Introduction and License Agreement: The wizard starts with an explanation of how to use
it, along with a license agreement. Press Enter several times to scroll through and read this
material, then type Y and press Enter to accept the license agreement

DO YOU ACCEPT THE TERMS OF THIS LICENSE AGREEMENT? (Y/N): Y

• Non-Administrator User Identity Warning: If you are not logged in as the root user, the
wizard displays a message to inform you of your options.

• Choose Install Type: The wizard has you choose between a typical installation and a custom
installation:

Select Typical or Custom Installation.

->1- Typical
2- Custom

Typical or Custom?: 1

The Typical option installs the program with many default settings and a minimum of
prompts. Use the Custom option if you need to customize AccuRev settings.

• Choose What Server to Connect To: Selecting this machine performs a full (client and
server) installation of AccuRev on the current machine. This is the most common
configuration for evaluating AccuRev. If you already have an AccuRev Server on your
network, select another host, and enter the correct host name and port number to access that
server.

What Server Would You Like to Connect to:

1- This machine
2- Another host

This machine or Another host?: 1

• Server Port Configuration: Enter the server port that AccuRev will use. If you chose this
machine in the previous step, make sure that no network applications running on this machine
use port 5050, or change the port number to one that is not used by any of the other
AccuRev Technical Notes 10

applications. If you change the port number, all other AccuRev installations that connect to
this server must perform Custom installations to specify the same alternative port number.

Server Port You Will be Using

Enter Server Port Number (default 5050):

• Choose Install Directory: The wizard suggests a default location for installing AccuRev.
This location will store the product itself, along with the repositories (“depots”) that hold
version-controlled files. If you are the root user, it suggests a public location.

Make sure the pathname specifies a directory that does not yet exist.

Where would you like to install?

 Default Install Folder: /opt/accurev

ENTER AN ABSOLUTE PATH, OR PRESS <ENTER> TO ACCEPT THE DEFAULT
 : /usr/local/accurev

INSTALL FOLDER IS: /usr/local/accurev
 IS THIS CORRECT? (Y/N): Y

• Select License Key File: The wizard prompts you for the location of the license key file that
you saved during the registration process. If you’re installing on top of an existing AccuRev
installation, the wizard first asks if you wish to replace your existing license key file. If you
don’t yet have a license key, just press Enter. When you obtain the license key file, you’ll
need to copy it to the storage/site_slice directory within the AccuRev installation area.

Choose a license key file [/home/evalUser/keys.txt]:

• Choose Link Location: Specify where symbolic links to the executables will be created.

Where would you like to create links? If you put links in your Path, you
will be able to run AccuRev easily from anywhere on your system.

 ->1- Default: /home/evalUser
 2- In your home folder
 3- Choose another location...

 4- Don't create links

ENTER THE NUMBER OF AN OPTION ABOVE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT
 : 3
ENTER THE ABSOLUTE PATH TO THE SHORTCUT DIRECTORY
 : /home/evalUser/bin

SHORTCUT DIRECTORY IS: /home/evalUser/bin
 IS THIS CORRECT? (Y/N): y
AccuRev Technical Notes 11

• Installation Complete. The installer uses your options to install AccuRev. Press Enter to exit
the installer. The AccuRev Server starts automatically.

Congratulations. AccuRev 4.6.2 has been successfully installed to:

/usr/local/bin

PRESS <ENTER> TO EXIT THE INSTALLER:

• Update $PATH: You will need to update the PATH environment variable to include the
AccuRev bin directory (for example, /usr/local/accurev/bin) so that AccuRev CLI
commands will be automatically recognized.

Starting the Server

After the installation, the AccuRev Server starts automatically. Use the following command in the
AccuRev bin directory to restart the server if needed:

accurev_server &

This sends a short message to stdout. All subsequent messages go to the server's log file.

Registering Yourself as an AccuRev User

AccuRev maintains a username registry that is separate from the operating system’s username
registry. AccuRev usernames are called principal-names. Every AccuRev transaction log entry
includes the principal-name of the person who initiated the transaction.

Use mkuser to create a new AccuRev user. In most cases, your AccuRev username (also known
as a principal-name) should match your Unix/Linux username.

accurev mkuser john_smith

Logging in to AccuRev

You must log in to AccuRev using the new user name before using the features described below:

accurev login

Creating and Populating an AccuRev Depot

Follow these steps to place an existing source tree under AccuRev's control:

1. Create a depot with mkdepot.

accurev mkdepot -p gizmo

AccuRev will store the depot in a default location. (It can easily be moved at a later time.)
AccuRev Technical Notes 12

2. A workspace is a personal area used for editing and testing your work. Transform your source
tree into a workspace with the mkws command. For example, if your sources are in
/home/jsmith/ws/my_gizmo:

accurev mkws -w my_gizmo -b gizmo -l /home/jsmith/ws/my_gizmo

The argument to the –b option should be the same as the depot name.

3. Navigate to the top directory of your source tree containing the files you wish to put into the
newly created depot:

cd /home/jsmith/ws/my_gizmo

4. To see all of the files in the workspace which need to be added, use the stat –x command.

accurev stat -x

5. Place all of the files in the workspace under AccuRev version control using the add –x
command.

accurev add -x

(You can filter out files with certain extensions if you don't want to place all the files under
version control. See the add reference page (accurev help add) for details.)

6. Make the newly added files available to other workspaces by promoting them:

accurev promote -k

Removing a Depot

A depot can be removed completely from the repository with the maintain rmdepot command.
This operation is irreversible! For details, see Removing a Depot from the AccuRev Repository on
page 93 of the AccuRev Administrator’s Guide.

Beginning Work with AccuRev

Now that you've created a depot and have populated it with files, you're ready to begin making
changes to those files. There's no need to check out files; simply edit them.

Keeping Files

If you wish to keep some work that you have done on a file, use:

accurev keep -c "comment required" <filename>

This creates a new version in the repository in your workspace’s stream. You can keep a file as
often as you like.

Promoting Files

When your changes are ready for other people to see, promote the file:

accurev promote <filename>
AccuRev Technical Notes 13

The promote command places your most recently kept version of the file in the backing stream
for others to use. The next time they update their workspace they will get a local copy of your
promoted file.

Seeing Other People's Changes

To update your workspace with other people's changes, use:

accurev update

Adding a New File

Create a file in the workspace with an editor or by copying it from another location. When you're
ready for AccuRev to add the initial version of your new file:

accurev add <filename>

Add is just like Keep, but it does not require a comment. The file must exist before you add it.
You can promote now, or continue editing and then keep and promote.

What's Next?

This chapter has covered only the most basic installation options and features of AccuRev. See
the AccuRev Getting Acquainted Guide and the AccuRev Day-to-Day Usage Guide to quickly
learn more about AccuRev’s capabilities. The AccuRev CLI User’s Guide provides details on
AccuRev’s command-line interface. The complete documentation set is available in the AccuRev
doc directory.
AccuRev Technical Notes 14

Converting to AccuRev from
Directories Containing Baselevels

Many development groups use source code provided by another group within the organization, or
from another organization altogether. Typically, the code is imported on a periodic basis as a
complete source tree, which we’ll call a “baselevel”. This note examines a scenario in which
source-code baselevels are imported into AccuRev. Suppose each baselevel is stored as a
directory tree:

D:\baselevels\gizmo1.0
D:\baselevels\gizmo2.0
D:\baselevels\gizmo2.5

It is easy to incorporate the multiple baselevels into AccuRev. Make sure you read these
instructions all the way through before trying it out.

Creating a Depot

First, create an AccuRev depot, where AccuRev permanently stores all of the data for a
programming project. For example:

accurev mkdepot -p gizmo

This creates a depot called gizmo. It has a single stream, also called gizmo.

Processing the First Baselevel

Next, populate gizmo with files from the first baselevel.

1. Go to the first baselevel directory:

cd \baselevels\gizmo1.0

2. Create a workspace to be used for importing files from the baselevel into AccuRev:

accurev mkws -w import -b gizmo -l .

Note that the command line ends with “dash-ell dot”. This creates a workspace called import,
which is based on stream gizmo (currently empty) in the current location.

3. Get a list of all of the files that AccuRev doesn't know about (which is all of them):

accurev stat -x > extfiles.list

The –x stands for external. You may see lots of files that you don’t want to put under version
control: object files, executables, text-editor backup files, etc.

4. You can have AccuRev ignore such files, by specifying patterns (wildcards) that match their
names as the value of an environment variable. (Note that case is important in this pattern-
matching). For example:

set ACCUREV_IGNORE_ELEMS=*.exe *.obj *.lnk *.err *.map (and so on)
AccuRev Technical Notes 15

(The syntax for setting environment variables varies among operating systems and command-
line processors. For more on ACCUREV_IGNORE_ELEMS, see Pathname Optimization:
ACCUREV_IGNORE_ELEMS and .acignore on page 21.)

5. Try the preceding two steps again, keep repeating this process until stat –x lists exactly the set
of files that you want AccuRev to keep track of.

6. Create initial versions of these files in the depot:

accurev add -x

This creates versions in the import workspace, but has not yet made them available to others
working on the gizmo project.

7. To make these new files public, promote them to the gizmo stream:

accurev promote -k

Recording the Baselevel with a Snapshot

At this point, you can create a snapshot of the gizmo stream. A snapshot is a special kind of
stream, whose contents can never change. (Hence, a snapshot is also called a “static stream”,
distinguishing it from a standard dynamic stream.) In this case, the snapshot will contain the
versions in the first baselevel, because that’s exactly what the gizmo stream contains at the current
time.

(The gizmo stream itself will change, as you incorporate additional baselevels. But any snapshot
you create is guaranteed to be frozen forever!)

Use the mksnap command to create the snapshot:

accurev mksnap -s gizmo1.0 -b gizmo -t now

At any time in the future, you can use snapshot gizmo1.0 to see the contents of the first baselevel.
And if you need to fix a bug that existed at this baselevel, you can create a maintenance stream
below the snapshot. See Creating and Using a Maintenance Stream on page 19.

Note: AccuRev does not implement snapshots with “version labels”, as do branch-and-label
SCM systems. Since there’s no need to attach a label to each version in the baselevel, creating
a snapshot is virtually instantaneous!

Processing Subsequent Baselevels

Now, you need to “layer” the files in the next baselevel on top of the files that you’ve already
placed under AccuRev control.

1. Change the definition of the import workspace:

cd D:\baselevels\gizmo2.0
accurev chws -w import -l . (again, “dash-ell dot”)

In effect, you’ve moved the workspace to where the files are, instead of moving the files into
the workspace! The files fall into several categories.
AccuRev Technical Notes 16

2. Make sure that all files in this baselevel have timestamps that are later than the timestamps in
the preceding baselevel:

accurev touch -R .

3. Process the files that changed from gizmo1.0 to gizmo2.0.

To AccuRev, these files appear to be modified versions of the gizmo1.0 files that you add’ed
and promote’d in the preceding section. You can list all these “modified” files:

accurev stat -m

And you can keep the new versions of the files:

accurev keep -m -c "my comment"

4. Process the files that didn’t change from gizmo1.0 to gizmo2.0.

You don’t need to do anything about these files. In particular, you don’t need to keep new
versions.

5. Process the files that didn’t exist in gizmo1.0, but do exist in gizmo2.0.

These files are external, because AccuRev hasn’t seen them before. (Just as all the files were
external when you placed the first baselevel under version control.) Add the external files to
the depot, just as you did in the preceding section:

accurev add -x

As above, you may want to use stat –x and the ACCUREV_IGNORE_ELEMS environment
variable to filter out unwanted files before entering the add command.

6. Promote the new files and changed files:

accurev promote -k

You’ve now placed two baselevels under AccuRev control. Layering the third baselevel,
gizmo2.5, on top of the second one is exactly the same as layering the second one on top of the
first. Just repeat the steps in this section.

Handling Additional Baselevel-to-Baselevel Differences

In the discussion above, we broke a baselevel’s “new layer” of files into three categories. This
was a bit oversimplified — there are additional categories to consider.

• Files that existed in one baselevel, but were deleted in the next baselevel.

You can make such files disappear from the new baselevel by defuncting them:

accurev defunct <filenames>

• Files that were renamed from one baselevel to the next.

This will appear to be (1) a file that existed in one baselevel, but was deleted from the next
baselevel, along with (2) a new file that didn’t exist in the preceding baselevel. If you know
AccuRev Technical Notes 17

that file oldname.c in the preceding baselevel was renamed to newname.c in the next
baselevel, use this series of commands to make the connection:

ren newname.c SAVEME (Unix/Linux: use the mv command)
accurev move oldname.c newname.c
ren SAVEME newname.c

Now, AccuRev knows that the element formerly known as oldname.c is henceforth to be
known as newname.c (until the next name change, that is!).

Cleaning Up

Finally, deactivate the import workspace:

accurev rmws import
AccuRev Technical Notes 18

Creating and Using a Maintenance Stream

Many software development organizations have two main streams of development: work towards
the next release, and maintenance of the previous release. Other SCM systems use a “branch
based on a label” paradigm to accomplish this. AccuRev uses snapshots (static streams).

Creating a Snapshot

At the time of the release (say, “WidgetSoft Release 1.0”), create a snapshot:

accurev mksnap -s widget1.0 -b widget -t now

This creates a new snapshot called widget1.0. The snapshot contains whatever versions the
widget stream contained at the time the mksnap command is executed. Subsequently, the widget
stream can change as new versions are promoted to it, but the widget1.0 snapshot never changes.
Instead of now, you can specify any time in the past, such as 2005/05/18 10:10:24.

Creating a Stream Based on the Snapshot

For maintenance work on this release, create a new dynamic stream based on the snapshot:

accurev mkstream -s widget_maint -b widget1.0

Initially, widget_maint will be identical to widget1.0, but it will change as people promote
changes to it.

Performing Maintenance Work

Maintenance developers use workspaces based on the widget_maint stream. For instance, to
make a maintenance fix, Mary might create a workspace like this:

accurev mkws -w widget_maint_mary -b widget_maint -l <wherever>

When Mary promotes her maintenance work, the changes will go to widget_maint.

All maintenance work is isolated from the main development stream, and vice-versa. Developers
working on the next release create their workspaces off the development stream, not the
maintenance stream. For example:

accurev mkws -w widget_justine -b widget -l <wherever>

Changes promoted from widget_justine will go to the main development stream, widget. The
changes won’t appear in the widget_maint stream.

The Change Palette in the AccuRev GUI makes it easy to migrate changes back and forth between
a main development stream (widget) and a maintenance stream (widget_maint).
AccuRev Technical Notes 19

AccuRev Technical Notes 20

Pathname Optimization:
ACCUREV_IGNORE_ELEMS and .acignore

Like most command-line programs, AccuRev’s CLI tool, accurev, accepts one or more
filename/pathname specifications as command arguments:

accurev keep base.h

accurev promote intro.doc chap*.doc

Such arguments cause the command to be invoked on a particular set of files.

But several accurev commands are capable of operating on all the files in the current workspace.
For example, this command searches the entire workspace containing the current working
directory, and lists the files that have not been placed under version control (external files):

accurev stat -x

Such “whole-workspace” commands are very powerful and useful, but they can be time-
consuming. If your workspace contains many hundreds or thousands of files, you must wait while
all the names are transmitted to the server machine, the AccuRev Server process determines the
status of each file, and information on the matching files is returned to the client machine.

This large list of files to be processed may contain a significant number of “don’t care” files. For
example, a search for external files is probably intended to locate source files (with suffixes like .c
or .cc or .java or .bas) that you’ve forgotten to place under version control. You probably don’t
care about program-generated files with suffixes like .exe (executables built in the source
directory), .bak (editor backup files), .msg (copies of mail messages, and so on — because you
don’t intend to place them under version control.

You can use the environment variable ACCUREV_IGNORE_ELEMS to specify up to 50 patterns (or
even individual filenames/pathnames). When it executes certain “whole-workspace” commands,
the accurev tool ignores all external files that match this specification. For example, setting
ACCUREV_IGNORE_ELEMS to the following value causes the stat –x command to ignore all .exe
and .bak files:

*.exe *.bak

ACCUREV_IGNORE_ELEMS is also used — in a slightly different way — by certain commands that
process a particular set of files, instead of the whole workspace.

AccuRev now supports specification of objects to be ignored on a per-directory basis, using
configuration files, in addition to the global specification in environment variable
ACCUREV_IGNORE_ELEMS. The following sections explain the details of using the environment
variable and the configuration files.
AccuRev Technical Notes 21

Eligible “Whole-Workspace” Commands

The following accurev commands use the value of ACCUREV_IGNORE_ELEMS to filter names:

Command Description

stat –x List external (non-version-controlled) files

stat –m List files that have been modified

stat –n List files that have been modified, but are not active from AccuRev’s
viewpoint (that is, are not in the workspace’s default group)

stat –p List files that are pending promotion — files that have been modified, along
with files with (kept) status

add –x Place external files under version control

update Update the workspace by incorporating versions from the backing stream
(only if USE_IGNORE_ELEMS_OPTIMIZATION is set to TRUE)

These commands apply to the entire workspace if you don’t specify any filenames/pathnames or
wildcard patterns on the command line:

accurev stat -n (“whole-workspace” command)
accurev stat -n *.doc (pattern specified; not a “whole-workspace” command)

When applying these commands to an entire workspace, the accurev tool, running on the client
machine, uses ACCUREV_IGNORE_ELEMS to filter the list of filenames before sending the list to
the AccuRev Server process. This can significantly reduce the amount of network traffic, and also
reduce the amount of file-status computation the Server process must perform.

Note: by default, the stat command also uses a timestamp-based optimization to reduce the
number of files it must process. For details, see Optimized Search for Modified Files: the Scan
Threshold on page 222 in the AccuRev CLI User’s Guide.

GUI Counterparts to the “Whole-Workspace” Commands

The AccuRev GUI also uses the ACCUREV_IGNORE_ELEMS environment variable. Working in the
searches pane of the File Browser corresponds to using the various “whole-workspace” forms of
the accurev stat command. Thus, ACCUREV_IGNORE_ELEMS is used by these search criteria:

External (stat –x)
Modified (stat –m)
Non-member (stat –n)
Pending (stat –p)

Commands that Don’t Apply to the Whole Workspace

The stat and add commands above accept filename/pathname specifications, in several forms:

• Individual filename: chap01.doc

• Individual pathname: doc/chap01.doc or /./widgets/doc/chap01.doc
AccuRev Technical Notes 22

• Wildcard pattern: *.doc or docs/*.doc

• list-file: –l my_list_of_files

Such specifications restrict the command to processing a certain set of files, not the whole
workspace (even if you also specify –x, –m, –n, or –p). Similarly, the files command processes a
certain set of files, not the whole workspace.

For these commands, the accurev tool still uses ACCUREV_IGNORE_ELEMS — but in a way that is
less efficient than for whole-workspace commands:

1. Send the list of files that match the filename/pathname specification to the AccuRev Server.

2. Use ACCUREV_IGNORE_ELEMS to filter the data that the Server returns. Only names of
external files are filtered out; files that are AccuRev elements remain in the listing, even if
they match the value of ACCUREV_IGNORE_ELEMS.

This may produce similar, or even identical results as a whole-workspace command, but the fact
that an unfiltered list is sent to, and processed by, the Server means that overall performance
won’t be as good.

Values for ACCUREV_IGNORE_ELEMS

The value of the ACCUREV_IGNORE_ELEMS environment variable must be a SPACE-separated list
of filenames, pathnames, and wildcard patterns. Some examples:

*.exe
*.exe *.doc
manuals/*.doc
*.doc README.html

You can use any of these wildcards:

• ? matches any one character

• * matches any sequence of characters (including a zero-length sequence — see note below)

• ** specifies recursion down through the directory structure

• [aekz] matches a, e, k, or z

• [a-e] matches a, b, c, d, or e

• {one,two,seven} matches one, two, or seven

Additional rules to keep in mind include:

• You can use Windows style directory separators (\) or *nix style (/) in your rules — they all
get converted to “/” internally.

• Any instances of “//” get converted to “/”.

• Starting a path spec with “/” makes that path absolute. Anything else causes AccuRev to
assume that the path is relative.
AccuRev Technical Notes 23

Examples

A simple wild card pattern such as “*.doc” matches any of these names:

chap01.doc
manuals/chap01.doc
widgetproj/src/manuals/usergd/chap01.doc

The pattern manuals/*.doc matches any of these names:

manuals/chap01.doc
manuals/chap02.doc

... but not these names:

manuals/usergd/src/chap01.doc
widgetproj/src/manuals/usergd/chap01.doc

However, using “**” to specify recursion as in manuals/**.doc or manuals/**chap*.doc will
match any occurence of *.doc or chap*.doc in any directory underneath any instance of a
manuals directory.

You can use the following pattern to ignore all items in the directory tree(s) named usergd
(including usergd itself):

usergd*

Specifying Directories and Their Contents

A typical application of ACCUREV_IGNORE_ELEMS is to have stat –x (“list all external files”)
ignore temporary build directories. That is, you want the listing to exclude both the directories
themselves and all the files within those directories. If the build directories are named build_001,
build_002, etc., you might be tempted to use this pattern:

/build_???/ or build_???/*

But this pattern matches only the contents of the directories, not the directories themselves. Note:
a directory matching the pattern that is a subdirectory of another matching directory will be
excluded. For example, in structure like build_001/build_002, build_002 will be excluded, but
build_001 will not.

Instead, use the following value for ACCUREV_IGNORE_ELEMS:

*/build_??? */build_???/*

(The single pattern */build_???* would match both directories and their contents. But it also
might coincidentally match names of some source files, such as lib/build_end.c.)
AccuRev Technical Notes 24

Setting ACCUREV_IGNORE_ELEMS on a Unix/Linux System

When setting the ACCUREV_IGNORE_ELEMS environment variable on a Unix or Linux system, be
sure to single-quote or double-quote the value, in order to protect any wildcard characters from
being expanded by the shell:

export ACCUREV_IGNORE_ELEMS="*.exe *.doc" (Bourne shell family)
setenv ACCUREV_IGNORE_ELEMS "*.exe *.doc" (C shell family)

To determine the current value of ACCUREV_IGNORE_ELEMS, use either of these commands:

env | grep ACCUREV_IGNORE_ELEMS (or a shorter ‘grep’ pattern)
echo "$ACCUREV_IGNORE_ELEMS" (don’t forget the quotes!)

Setting ACCUREV_IGNORE_ELEMS on a Windows System

On a Windows system, you can set the ACCUREV_IGNORE_ELEMS environment variable in the
System applet (on the Control Panel). Alternatively, use the set command in a Command Prompt
window:

set ACCUREV_IGNORE_ELEMS=*.exe *.doc (no quotes!)

Don’t use quote characters, even if the value includes SPACEs.

To determine the current value of ACCUREV_IGNORE_ELEMS in a Command Prompt window, use
either of these commands:

set
echo %ACCUREV_IGNORE_ELEMS%

Per-Directory Pathname Optimization — the .acignore File

AccuRev’s pathname optimization facility provides for faster performance by allowing certain
objects to be ignored during various commands — notably (external)-status objects during
whole-workspace searches. The value of environment variable ACCUREV_IGNORE_ELEMS is a
pathname pattern — or several patterns, separated by SPACEs; objects whose pathnames match a
pattern are ignored by the various commands.

AccuRev now supports specification of objects to be ignored on a per-directory basis, in addition
to the global specification in ACCUREV_IGNORE_ELEMS. One or more directories in a workspace
can contain a text file named .acignore. An .acignore file works the same way as
ACCUREV_IGNORE_ELEMS, with these exceptions:

• In an .acignore file, multiple patterns must appear on separate lines — not SPACE-separated
on a single line.

• An .acignore file applies only to its own directory. In particular, it does not apply recursively
to lower-level directories.
AccuRev Technical Notes 25

AccuRev Technical Notes 26

Techniques for Sharing Workspaces

This note describes two techniques for accessing the same workspace from multiple machines.

Accessing a Windows Workspace From Multiple Windows Clients

Multiple AccuRev users, on Windows client machines, can share a workspace that is physically
located on a Windows machine. (Or maybe there’s just one user, who wants to access a workspace
from multiple Windows client machines.)

1. Designate a directory that is above the top-level directory of the workspace tree as a Windows
“shared directory”. For example, if the workspace tree for workspace widget_maint_derek
on machine derekpc is located at C:\widget\workspaces\maintdrp, you could set the shared
directory as follows:

net share widgwork=C:\widget\workspaces

Note: the workspace tree’s top-level directory itself (maintdrp in the example above) cannot
be designated as the shared directory.

2. Determine how AccuRev records the workspace tree location, using the command accurev
show wspaces. (The pathname will always use forward slashes, even if it’s a Windows
pathname.)

• If the workspace tree location incorporates the share name ...

 widget_maint_derek /widgwork/maintdrp derekpc ...

... skip to Step 3.

• But if the workspace tree location appears as an absolute pathname ...

 widget_maint_derek C:/widget/workspaces/maintdrp derekpc ...

... you must use the chws command to change the recorded location to a pathname that
incorporates the share name. This involves mapping a network drive to the shared
directory:

> net use K: \\derekpc\widgwork
The command completed successfully.

> K:

> cd \maintdrp

> accurev chws -w widget_maint_derek -l . (“dash-ell dot”)
Changed location.
Changed machine name.

> accurev show wspaces
AccuRev Technical Notes 27

 ...
widget_maint_derek /widgwork/maintdrp derekpc ...

3. Now, all users on Windows client machines can access the workspace tree by mapping a
network drive to the shared directory. Even the user on the machine where the workspace tree
is located (derekpc in our example) must use a network drive to access the workspace tree.

> net use P: \\derekpc\widgwork
The command completed successfully.

> P:

> cd \maintdrp

> accurev info
 ...
Workspace/ref: widget_maint_derek
Basis: widget_maint
Top: P:/maintdrp

Users on different machines can map the shared directory to different drive letters, and access
the workspace as, for example, Y:\maintdrp or R:\maintdrp.

Universal Access to a Workspace Located on a Share

A workspace whose workspace tree is network-accessible through a share, can be accessed from
any client machine — running Unix/Linux or Windows. The share can be configured through
Samba/SMB or some other network file system. It must make the actual storage location available
through a machine name and a simple “share name”: a name that looks like a single pathname
component.

The ‘share_map.txt’ File

The technique in Accessing a Windows Workspace From Multiple Windows Clients on page 27
relies only on Windows operating system facilities. But the “universal workspace access”
technique requires the maintaining of a pathname-mapping file for use by the AccuRev Server. If
a “share” (that is, shared directory) has an entry in the pathname-mapping file, any workspace
located on that share can be used on all AccuRev client machines capable of accessing the
machine where the share resides.

The pathname-mapping file is a text file, share_map.txt, which must be located in the AccuRev
site_slice directory on the AccuRev Server machine. It maps share names to absolute pathnames.
Each line of share_map.txt consists of three TAB-separated fields, describing one share. For
example:

jupiter accwks /public05/accurev_workspaces

This entry says, “a share named accwks is physically located on machine jupiter, at absolute
pathname /public05/accurev_workspaces”. More generally:
AccuRev Technical Notes 28

• The first field (jupiter) names a machine where one or more workspace trees are (or will be)
located.

• The second field (accwks) specifies the share name.

• The third field (/public05/accurev_workspaces) indicates the absolute pathname of the share
on the machine. On a Windows machine, this includes the drive letter — for example,
C:/Public Directories/AccuRev Workspaces.

Notes:

• All pathnames in share_map.txt must use forward-slash characters (/), even Windows
pathnames.

• The field separator in the share_map.txt file must be single TAB character — don’t use
SPACEs. If a specification (e.g. a share name) includes a SPACE character, do not enclose the
specification in quotes.

Workspace Location Entries

The accurev show wspaces (or the GUI’s View Workspaces) command displays the repository’s
workspaces table, showing the locations of existing workspaces. The pathnames always use
forward slashes, even if they are Windows pathnames.

AccuRev can record the location as an absolute pathname on its machine:

C:/wks/light24/mnt_john (Windows)
/bigdisk/home/john/widget_devel (Unix/Linux)

Alternatively, it can record a location that incorporates a share name:

/accwks/wks_john (Windows or Unix/Linux)

Universal workspace access requires that a workspace’s location be recorded as an absolute
pathname in the workspaces table. (Note that the sharing technique described in Accessing a
Windows Workspace From Multiple Windows Clients on page 27 has the opposite requirement:
workspace locations must incorporate the share name.) In addition, the “Host” name listed in this
table for a workspace must exactly match the first field in some share_map.txt entry. Beware of
domain name discrepancies — for example, jupiter vs. jupiter.mycorp.com.

Fixing Workspace Location Entries

If a workspace located on a share has the “wrong kind” of entry in the workspaces table, fix it to
enable universal client access:

1. Make sure that share_map.txt has a valid entry for the share.

2. On any client machine that can “see” the workspace, go the top-level directory of the
workspace tree.

3. Use the chws command to change the location recorded in the workspaces table to an absolute
pathname:

> accurev chws -w <workspace-name> -l . (“dash-ell dot”)
AccuRev Technical Notes 29

You must fix each workspace location entry in this way individually.

Fixing Machine Name Entries

If there’s a discrepancy between a machine’s name in a share_map.txt entry (say, jupiter) and its
name in the workspaces table (say, jupiter.mycorp.com), change the workspace table entry:

accurev chws -w <workspace-name> -m jupiter

Example: Samba Share

Here’s an example of how it can all work in a Samba environment, elaborating on the scenario
above:

1. The organization decides that a directory, /public05/accurev_workspaces, on Unix host
jupiter will be a location where users can create workspaces that can be shared across
platforms.

2. The system administrator on jupiter turns that directory into a Samba share, named accwks.
Here’s the relevant excerpt from the Samba smb.conf file on host jupiter:

[accwks]
 comment = All users
 path = /public05/accurev_workspaces
 browseable = yes
 guest ok = yes
 writeable = yes

3. The AccuRev administrator makes this entry in the share_map.txt file, in the AccuRev
Server’s site_slice directory.

jupiter accwks /public05/accurev_workspaces

4. User john, working on a Windows machine, wants to creates a workspace on the share. First,
he makes the share accessible as a network drive:

net use T: \\jupiter\accwks

5. Then john creates his workspace on this network drive:

accurev mkws -w shrwks_john -b dvt_stream -l T:\wks_john

A show wspaces command indicates that the AccuRev Server uses an absolute pathname to
record the new workspace’s location on jupiter:

shrwks_john /public05/accurev_workspaces/wks_john jupiter ...

6. john can now use this workspace from any client machine that can access the machine where
the share resides.
AccuRev Technical Notes 30

What’s the Difference between Populate and Update?

AccuRev users sometimes confuse the two commands Populate and Update. These commands
seem similar because they both bring new data into your workspace. But they are quite different,
both in their usage pattern — most people use Update far more often — and in what they
accomplish. Understanding the difference between these two commands will enable you to
choose the right command at the right time (always useful!), and will deepen your knowledge of
how AccuRev really works.

Note: the AccuRev CLI command accurev pop corresponds to the GUI’s Populate
command.

This note starts with a brief statement of the difference between Populate and Update, along with
a few examples. Then, we present a full discussion of the data structures and mechanisms
involved in these commands.

In a Nutshell ...

The essential difference between Populate and Update concerns time. Roughly speaking, your
workspace contains an informal “baseline” (the contents of the shared backing stream, at a
particular moment) plus “changes” (the modifications that you make to some of the files). The
Update command advances the workspace’s baseline from the time of the workspace’s last
update to the present moment. This incorporates into the workspace data recently placed in the
backing stream by other team members.

Note: AccuRev actually tracks the workspace’s baseline in terms of transactions, not
timestamps.

The Populate command doesn’t advance a workspace’s baseline at all, but leaves it “stuck in the
past”. Instead, Populate simply restores the appropriate “old” version of one or more elements
that are currently missing from the workspace.

The two commands also differ in their scope: Update always processes the entire workspace;
Populate processes just a selected set of elements or directory subtrees.

The capsule description above uses imprecise language, such as “advancing the workspace’s
baseline” and “old version”. The following description is more precise, using AccuRev-specific
terminology. The terms are explained fully in section Data Structures Used by Populate and
Update on page 33 below.

The Update command changes both the workspace stream and the workspace tree:

• It advances the workspace stream’s update level to the depot’s most recent transaction — say,
from current update level 32155 to new update level 34002. This allows a new set of versions
— in this case, some or all the versions created by transactions 32156 through 34002 — to
flow into the workspace stream from the backing stream.

• It copies the contents of the workspace stream’s new versions from the repository’s
file-storage area to the workspace tree.
AccuRev Technical Notes 31

By contrast, the Populate command changes the workspace tree only, not the workspace stream.
In particular, it doesn’t change the workspace stream’s update level. Populate merely fixes a
discrepancy between the workspace stream and the workspace tree: a certain version of a file is in
the workspace stream, but there is no actual file in the workspace tree — that is, the file’s status is
(missing). To fix this situation, you invoke Populate, which copies the version currently in the
workspace stream to the workspace tree.

Note: it would be incorrect to conclude that Update never processes (missing) elements, and
that Populate only processes (missing) elements. Examples 3 and 4 below show that
exceptions exist for both these “rules”.

Example 1: Standard Update Scenario

You’ve just finished a coding project, so you’re not actively working on any files in your
workspace. Other team members create new versions of files red, white, and blue in their
workspaces, then promote those versions to the team’s backing stream. You invoke the Update
command, which copies the most recent versions of red, white, and blue from the backing stream
to your workspace.

Example 2: Restoring a Deleted File (“missing” by accident)

Since you have complete control over the files in the workspace tree, it’s easy to accidentally
delete a version-controlled file with an operating-system command or a third-party tool. If you do
this, AccuRev knows that the file should be there, because a version of the element still exists in
the workspace stream. Thus, the File Browser continues to list the element, but shows it as
(missing) from the workspace tree. You select the element and invoke Populate to fix the
accidental deletion.

Example 3: Handling Active Elements

Update and Populate differ in how they handle elements that are active (are in the workspace’s
default group). The Update story is simple: it never overwrites the file in the workspace tree.
Populate usually doesn’t overwrite the file, but there are a couple of cases to consider.

• It doesn’t need to overwrite a file that you’ve kept and not subsequently edited, because the
active version in the workspace stream is identical to the file in the workspace tree.

• But if you have subsequently edited the file in the workspace
tree, so that the element status is (modified)(member), then
you can order Populate to overwrite the file and clobber those
subsequent edits. This can also happen with a file that you’ve
edited, but never kept, so that its status is (modified).

Be careful — (modified) files will also be overwritten if you
invoke Populate with both the Recursive and Overwrite
options on a directory that directly or indirectly contains the
active element.
AccuRev Technical Notes 32

Example 4: A Tale of Two Files

Let’s see how Update and Populate differ in this situation:

You have a workspace that is completely up to date. You delete two files, named blue and
green. Someone creates a new version of blue in another workspace, and then promotes it to
your workspace’s backing stream.

If you select both blue and green in the File Browser, then invoke Populate, the two files that you
deleted are restored to the workspace tree. This does not bring in the new backing-stream version
of blue, because that version is not in the workspace stream — it’s too new, having been created
after your workspace’s most recent update.

If you invoke Update instead of Populate, the workspace tree gets the new version of blue. No
version of green is copied to the workspace tree, because Update only handles new versions —
ones that enter your workspace stream as a result of advancing its update level.

Data Structures Used by Populate and Update

The simplicity of AccuRev’s day-to-day usage model stems, in large part, from the fact that you
don’t need to worry about the “big picture” of your organization’s development scheme and
process. Instead, you only need to concern yourself with:

• the workspace in which you maintain your private copies of version-controlled files

• the workspace’s backing stream, a “data switchboard” that organizes the sharing of files’
changes with other members of your development team

The illustration below shows how a workspace and its backing stream typically appear in the
AccuRev StreamBrowser:

workspace

backing stream

But a workspace actually consists of two parts:

• the workspace tree, an ordinary directory tree (“just a bunch of files”)

• the workspace stream, which contains all of the workspace’s configuration management
information

So the picture looks more like this:
AccuRev Technical Notes 33

workspace stream workspace tree

server client

 workspace

backing stream machine machine

The above illustration shows one important difference between a workspace’s two parts: the
workspace tree lives in “AccuRev client space”, while the workspace stream lives in “AccuRev
Server space”. The following table summarizes all the important differences.

Workspace Stream Workspace Tree

Resides in the database of an AccuRev depot,
located on the AccuRev server machine

A standard directory tree, located on your
client machine (or in other user-accessible
storage)

Managed by the AccuRev Server process Managed by you, the individual user

Contains all version control and
configuration management information for
the workspace, such as version-IDs

Contains no version control or configuration
management information

Contains no actual files, just version objects
that point to files in permanent storage

Contains only files and directories, which you
can edit, compile, copy, etc.

Operating system commands and tools never
change data here

Operating system commands and tools can
change data here

The sections below expand on these differences.

How the Data Structures Get Their Data

Each of the data structures introduced above — backing stream, workspace stream, and
workspace tree — is different in the way it gets changes (i.e. new data) from other parts of the
development environment.
AccuRev Technical Notes 34

Backing Stream

The backing stream is, in most cases, a dynamic stream. (It can also be a snapshot or a time-based
stream.) A dynamic stream is a changing configuration of its depot. At any given moment, it
(logically) contains a simple table that indicates particular versions of a set of elements. For
example:

Element Version-ID

doc garnet_dvt\1

doc\chap01.doc garnet_dvt\5

doc\chap02.doc garnet\3

doc\chap03.doc garnet_dvt\2

src garnet\1

src\garnet.c garnet_dvt\12

src\commands.c garnet_dvt\7

tools garnet\3

tools\start.sh garnet_dvt\6

tools\end.sh garnet\2

At any given moment, a dynamic stream’s versions fall into two categories:

• passive versions: versions that the stream inherits from its parent stream. Inheritance is
automatic and instantaneous: as soon as a new version enters the parent stream, it is inherited
at once by the child stream.

• active versions: versions that have been Promoted to the stream, (usually) from lower-level
workspaces and substreams. This set of versions constitutes the stream’s default group.

passive versions

active versions

lower-level workspaces
and streams promote
versions to garnet_dvt
stream

contents of a
dynamic stream

In the configuration table above, all the garnet_dvt\... version-IDs indicate active versions in the
garnet_dvt stream. All the garnet\... version-IDs indicate passive versions, inherited from the
parent stream, named garnet.
AccuRev Technical Notes 35

Workspace Stream

The workspace stream is the “behind the scenes” part of your workspace. It lives inside the
AccuRev repository, located on the AccuRev server machine. In many ways, it resembles a
dynamic stream:

• It’s a changing configuration of one of the repository’s depots.

• It logically contains a particular version of some or all of the depot’s elements.

• It doesn’t contain actual files, but is logically just a table of elements and version-IDs.

Note: when creating a new version of a file, the Keep command copies the file to the
repository’s file-storage area, not to the workspace stream itself. The workspace stream just
gets a version-ID for the new version; the version-ID serves as a pointer to the file in the
file-storage area.

• It contains active versions, created by explicit user commands: Add, Keep, Rename,
Defunct, etc. The new versions preserve in the repository the changes that you’ve made to
files in your workspace tree. (There’s only one way to create an active version in a dynamic
stream: the Promote command.)

• It also contains passive versions, inherited from its parent stream, the workspace’s backing
stream.

The last item is where the crucial difference between workspace streams and dynamic streams
comes into play. The versions inherited by the workspace stream are not the ones currently in the
backing stream, but the versions that were in the backing stream when the workspace was last
updated. This is called the workspace’s update level. More precisely, AccuRev records the
number of the depot’s most recent transaction — say, transaction #32155 — as the workspace
stream’s update level. So we can rephrase the principle:

The workspace stream inherits from the backing stream versions that were created in
transactions up to and including the workspace’s update level.

workspace stream

backing stream

update
level:

32155

versions
created before

update-level
transaction are

inherited

versions
created after
update-level
transaction are
not inherited
AccuRev Technical Notes 36

Note: the update level of a workspace stream is very much like the optional basis time of a
dynamic stream. Both mechanisms restrict the flow of versions to a child stream from its
parent stream, based on a point in the depot’s development history.

Thus, a workspace stream is not updated dynamically when changes occur to its parent stream. It
gets new versions from the backing stream only when you issue an Update command. This is
how AccuRev implements the workspace’s user-controlled “privateness”, isolating it from the
changes regularly being recorded in the backing stream by other team members.

To summarize: at any given moment, a workspace stream contains:

• a set of passive, inherited versions, created in transactions that do not exceed the workspace’s
update level. (A file that you’ve Promote’d since the last update is an exception. The version
is passive, but was created after the workspace’s update.)

• a set of active versions, which you’ve created in that workspace with such AccuRev user
commands as Add, Keep, Rename, and Defunct.

passive versions

workspace stream

active
versions

AccuRev commands issued by
user create new versions in
workspace stream

update
level

contents of a
workspace stream

Roughly speaking, the set of versions in the workspace stream indicates what data currently
should be in your workspace tree. Examples:

• The workspace stream contains active version garnet_dvt_mfj\9 of file commands.c, which
you created with the Keep command. This means your workspace tree should contain a file
commands.c that matches the repository file referenced by version-ID garnet_dvt_mfj\9.

• The workspace stream contains passive version garnet_dvt\6 of file start.sh. This means
your workspace tree should contain a file start.sh that matches the repository file referenced
by the version in the backing stream, garnet_dvt\6.

If you modify a file without Keep’ing it (or modify it again after Keep’ing it), the file in the
workspace tree does not exactly match the version in the workspace stream. AccuRev indicates
this by reporting the file’s status as (modified).
AccuRev Technical Notes 37

Workspace Tree

The workspace tree is an ordinary directory tree, located in your personal disk storage. You can
modify the contents of the workspace tree in two basic ways:

• By invoking operating system commands, text-editing tools, IDEs, etc.

• By invoking AccuRev commands to copy existing versions from the repository to the
workspace tree. This can either overwrite existing files in the workspace tree or add new files.
Both the Populate and Update commands copy versions from the workspace stream to the
workspace tree. (So do a couple of other commands, such as Send to Workspace.)

text editor

OS command

IDE

Update
command

Populate
command

contents of a
workspace tree

The Update Algorithm

This section describes the processing of the Update command in detail. It’s not as simple as “get
all the new versions”, because AccuRev takes care not to overwrite version-controlled files that
you have changed, but whose changes have not yet been preserved in the repository.

1. AccuRev first searches the workspace tree for such “at-risk” files, by performing a CLI stat
(file status) command on your workspace:

• It uses the –n option to stat, which restricts the search to version-controlled files that you
have modified but are not in the workspace’s default group — the status of such
“non-member” files includes the (modified) indicator but not the (member) indicator. It’s
safe to ignore default-group files, because these are never affected by an Update.

• It uses timestamp optimization to speed the file search: it ignores files whose timestamps
precede the workspace’s scan threshold (the time that the workspace was most recently
updated or otherwise searched for modified files). If you modify a file by overwriting it
with a file with an old timestamp, the file will be ignored in this step. This can cause
problems in Step 5 below.

• If environment variable USE_IGNORE_ELEMS_OPTIMIZATION is set to TRUE (the value is
case-insensitive), then it uses the value of environment variable
ACCUREV_IGNORE_ELEMS to ignore certain pathnames in the file search. If an ignored file
actually has (modified) status, an error will occur in Step 5 below.

• To make sure that a file with a recent timestamp has actually been modified, it compares
the file with the version currently in the workspace stream by performing a checksum.
AccuRev Technical Notes 38

(This means that simply modifying a file’s timestamp with a touch command won’t
prevent the file from being overwritten by Update. You have to make a real change to the
file.)

2. If the preceding step found any “non-member” files — modified, but not in the default group
— the Update command in AccuRev releases prior to Version 4.6 terminated immediately,
without updating any file. Starting in Version 4.6, the Update command can sometimes
proceed, even in the presence of such files:

• A non-member file that is not due to be updated, because there is no newer version in the
backing stream, does not prevent the update from proceeding.

• A non-member file that is due to be updated has (modified)(overlap) status. By default,
the presence of one or more such files causes the update to terminate immediately, without
updating any file. But you might be able to enable the update to proceed if you invoke an
update option — update –m in the CLI, user preference Update Resolves Trivial
Merges in the GUI. With this option invoked, the update proceeds only if a trivial merge
can be performed for each file with (modified)(overlap) status. (The backing-stream
version can be merged with the workspace-tree file automatically, because there are no
conflicts that require manual intervention.)

3. AccuRev notes the number of the repository’s latest transaction, and sets that number as the
workspace’s target update level.

4. AccuRev decides which recently created versions in the repository should be delivered to the
workspace tree. A version is a candidate for delivery if it became visible in the workspace’s
backing stream by one of the transactions between the workspace’s current update level and
the newly set target update level.

5. AccuRev attempts to deliver all those versions to the workspace tree. Each time it is about to
overwrite a file in the workspace tree, AccuRev first makes sure it won’t be “clobbering”
unpreserved changes: it checksums the existing file to confirm that it matches the current
version in the workspace stream (the version at the current update transaction level).

Note: it’s sometimes OK for the workspace tree to already contain the new version (the
version at the target update level). See Incomplete Updates below for an explanation.

If a file about to be overwritten fails this checksum step, AccuRev reports a “crc mismatch”
and the Update command terminates immediately. The most common cause of this error is
your having overwritten the file in such a way that it gets an old timestamp. Such a file
escapes detection in Step 1, but gets caught here — just in the nick of time to avoid being
clobbered.

If the checksum succeeds, the file is safe to overwrite, so AccuRev updates it — finally! The
update can be a replacement of the file’s contents, a change in its pathname, or both.

If AccuRev is processing files with (modified)(overlap) status (see Step 2 above regarding
update -m), it automatically merges the backing-stream version with the file in the workspace
tree, instead of simply overwriting the file. No checksum is of the workspace-tree file is
performed for such elements.
AccuRev Technical Notes 39

6. If all the recently created versions identified in Step 4 were successfully delivered to the
workspace:

• The target update level becomes the workspace’s current update level, indicating a
successful, complete update.

• The workspace’s scan threshold, used for the stat –n timestamp optimization (Step 1), is
set to the time that this successful update began.

Advancing the Scan Threshold

The timestamp optimization is most effective when it enables AccuRev to ignore as many files as
possible. Accordingly, AccuRev takes advantage of opportunities to validly advance the scan
threshold to a later time:

• If a workspace is completely up-to-date, the Update command advances the scan threshold
anyway, setting it to the time the command began. (Thus, an unnecessary Update doesn’t “do
nothing”.)

• The CLI command stat –n advances the scan threshold to the point in time just before the
earliest timestamp among the files it finds (modified files that are not members of the
workspace’s default group). This preserves the validity of the timestamp optimization
principle: for file elements that are not in the workspace’s default group, the timestamp of a
modified file is later than the workspace’s scan threshold.

If stat –n does not find any non-member modified files, it advances the scan threshold to the
time that the command began.

If stat –nO finds non-member modified files whose timestamps precede the scan threshold, it
moves the scan threshold backward, in order to preserve the timestamp optimization principle
described above.

Incomplete Updates

The Update command is not implemented as an atomic operation, and it is not recorded as an
AccuRev transaction. Transactions are used to organize and serialize changes to the central
repository, not to the workspace trees that implement user “sandboxes”. An Update can take a
significant amount of time, and is sometimes interrupted before it completes — by user request,
by network failure, by loss of telephone connection, etc.

For purposes of discussion, assume that your workspace, talon_dvt_mary, has a current update
level of 84, that the highest transaction in the repository is 109, and that 45 files in your
workspace would be involved in a complete Update. You can monitor transaction levels using the
CLI command show wspaces:

• Before the update the output of show wspaces might include:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 84 84 1 0

The first 84 indicates the workspace’s target update level; the second 84 indicates the current
update level.
AccuRev Technical Notes 40

• The Update command sets the target update level to 109, then proceeds. If Update processes
all files successfully, it raises the current update level to the target:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 109 109 1 0

But if the Update does not complete successfully, the target update level remains unchanged.
A subsequent show wspaces reveals that the target update level differs from current update
level:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 109 84 1 0

The differing update levels — target vs. current — is the telltale sign that the most recent
Update did not complete successfully.

Incomplete Update: Command Interrupted

Consider the case in which Update was interrupted — say, after it had processed 29 out of the 45
files to be updated. When a subsequent Update command is issued:

• The checksum of the 29 files will succeed, because those files are already at the target
transaction level.

• The checksum of the 16 files will fail, because those files are still at the current update
transaction level.

(See Step 5 above for a discussion of the checksum process.)

Incomplete Update: Checksum Failure

Now consider the case of an incomplete Update, due to one or more “crc mismatch” errors.
Suppose that only 42 out of 45 files are updated, because 3 files fail the checksum match. You
must fix the problem before issuing another Update.

If those three files had been overwritten by mistake, you can restore the proper versions using the
Revert to Backed Version command (CLI: purge). Then, a second Update brings the new
versions of those 3 files into the workspace.

Performing the “Fixup” Update

When it begins executing an Update command, AccuRev determines whether the preceding
update of the workspace completed successfully or not:

• The Update completed successfully if the target and current update levels are the same.

• The Update was incomplete if the target and current update levels differ.

If the preceding update was incomplete, AccuRev performs two updates at once. First, it performs
a “fixup” update that completes the preceding update; then it performs an additional update (if
necessary), to process changes made to the backing stream after the incomplete update. During
the “fixup” update, AccuRev avoids the unnecessary work: it does not retransfer files that were
successfully delivered to the workspace during the incomplete update.

Example:
AccuRev Technical Notes 41

• Your workspace’s current update level is 84, and the highest transaction in the repository is
109.

• You issue an Update, but it fails to complete. At this point, the workspace’s target update
level is 109, but its current update level is still 84.

• You wait until after lunch break to reissue the Update command. At this point, the highest
transaction in the repository is 137.

• AccuRev performs a “fixup” update, which brings the current update level to the original
target update level, 109. Then, it advances the target update level to 137 and performs another
update. If this update succeeds, it advances the current update level to 137.
AccuRev Technical Notes 42

Using a Trigger to Maintain a Reference Tree

Reference trees allow you to have a physical copy of the most recent sources for a stream. They
are available for reference, thus the name reference tree. Snapshots never change, so they only
need to be updated once using update –r and then you can forget about them.

To create a reference tree, use the mkref command. To keep a reference tree up to date with its
associated stream, you need to run update on the reference tree every time versions are promoted
to the stream.

AccuRev supplies the following trigger scripts to automate this procedure:

server_post_promote.pl

A general-purpose script, which can be used to perform various tasks after completion of
every promote command. In this case, we're going to have it call the update_ref.pl script.

update_ref.pl

A script that invokes the update command to update the files in a reference tree. On a
Unix/Linux machine, this script must be setUID-root.

The indirection is necessary for security purposes.

To enable the automatic updating of one or more reference trees, follow these steps:

1. Make sure the following Perl scripts are installed in some directory on the search path of the
AccuRev Server process’s user identity:

server_post_promote.pl
update_ref.pl

See Operating-System User Identity of the Server Process on page 9 of the AccuRev
Administrator’s Guide.

2. Edit both the server_post_promote.pl and update_ref.pl scripts, and follow the step-by-step
instructions contained within them.

3. Windows only: convert the Perl scripts to Windows batch files:

pl2bat server_post_promote.pl
pl2bat update_ref.pl

4. Tell AccuRev to run the server_post_promote script after every promote command:

accurev mktrig server-post-promote-trig server_post_promote.pl (Unix/Linux)
accurev mktrig server-post-promote-trig server_post_promote (Windows)

For more information, see the descriptions of mkref, mktrig, and show triggers commands.
AccuRev Technical Notes 43

AccuRev Technical Notes 44

Notes for CVS Users

This note contains information that will be helpful for CVS users who are migrating to AccuRev.

AccuRev Workspaces vs. CVS Sandboxes

Each directory in a CVS sandbox has a subdirectory named CVS. This subdirectory stores
metadata: where the versions were checked out from and the version number of each file. Only
these directories record the relationship between files in the sandbox and the repository. If you
move a sandbox, CVS doesn’t care because you are simultaneously moving the CVS
subdirectories.

With AccuRev, the relationship between a workspace and the repository is tracked by the
AccuRev Server. No metadata is stored in the workspace itself. AccuRev tracks the client
machine where each workspace resides and the pathname of its top-level directory. If you move a
workspace to a different location, you must inform AccuRev of the move using the chws
command.

Common Operations

This section lists common version-control operations, and describes how to perform them with
CVS, with the AccuRev CLI, and with the AccuRev GUI.

Obtaining a copy of the source files

CVS

cvs checkout <module>

AccuRev CLI

accurev mkws –w <workspace-name> –b <backing-streamname> –l <workspace-location>

AccuRev GUI

File > New > Workspace

Placing files under version control

CVS

cvs add <file(s)>

AccuRev CLI

accurev add <file(s)>

AccuRev GUI

Select files, right-click, Add to Depot
AccuRev Technical Notes 45

Bringing others’ changes into your workspace/sandbox

CVS

1. cvs update –dP

2. Edit any merge conflicts.

AccuRev CLI

1. accurev update

2. accurev merge –o (edit any merge conflicts for each file)

AccuRev GUI

1. Click Update button.

2. Choose Overlap search.

3. Select files, right-click, Merge.

Saving your changes

CVS

cvs commit

AccuRev CLI

accurev keep –m

accurev promote –k

AccuRev GUI

1. Choose Modified search.

2. Select files, right-click, Keep.

3. Choose Kept search.

4. Select files, right-click, Promote.

Finding the history of files

CVS

cvs history [<file(s)>]

AccuRev CLI

accurev hist [<file(s)>]
 ... or ...
accurev hist –a
AccuRev Technical Notes 46

AccuRev GUI

1. Select file, right-click, History > Show History.
 ... or ...
1. Admin > Depots

2. Right-click depot, History.

Finding the status of files in your workspace/sandbox

CVS

cvs status <file(s)>

AccuRev CLI

accurev stat <file(s)>
 ... or ...
accurev files <file(s)>

AccuRev GUI

Automatically displayed in File Browser

Removing files

CVS

1. cvs remove <file(s)>

2. cvs commit

AccuRev CLI

1. accurev defunct <file(s)>

2. accurev promote <file(s)>

AccuRev GUI

1. Select files, right-click, Defunct.

2. Select files, right-click, Promote.

Reverting changes to files

CVS

cvs unedit <file(s)>

AccuRev CLI

accurev purge <file(s)>
AccuRev Technical Notes 47

AccuRev GUI

Select files, right-click, Revert to > Backed Version.
 ... or ...
Select files, right-click, Revert to > Most Recent Version.

Moving files

CVS

1. cp <old-name> <new-name>

2. cvs remove <old-name>

3. cvs add <new-name>

AccuRev CLI

1. accurev move <old-name> <new-name>

2. accurev promote <new-name>

AccuRev GUI

1. Select file, right-click, Rename.

2. Select file, right-click, Promote.

Checking out files to edit

CVS

cvs edit <file(s)>

AccuRev CLI

not necessary; just start editing the file

AccuRev GUI

not necessary; just start editing the file with right-click, Edit.

Comparing versions of files

CVS

cvs diff –r <rev1> –r <rev2> <file>

AccuRev CLI

accurev diff –v <rev1> –V <rev2> <file>

AccuRev GUI

1. right-click file, History > Browse Versions.

2. right-click version, Diff Against > Other Version, click other version
AccuRev Technical Notes 48

Version Control of Namespace-Related Changes

AccuRev SCM includes both management of changes to the contents of files and changes to the
pathnames of files and directories (folders). During the course of development — and in
particular, during periodic “refactoring” of the source code base — developers may make several
kinds of namespace-related changes to the pathnames of version-controlled elements:

• Changing the names of files (for example, from framework.java to gizmo_arch.java)

• Changing the names of directories (for example, from src to gizmo_src)

• Moving files and directories to different locations in the source tree (for example, moving file
commands.java from directory gizmo_src to a subdirectory named gizmo_src/lib)

AccuRev records each change to the pathname of a file or directory element as a new version of
that element. As with content changes, all such namespace-related changes originate in
workspaces, and are subsequently promoted up the stream hierarchy.

Version 3.8 introduced significant improvements to the handling of namespace-related changes.
These improvements make AccuRev more flexible and intuitive, and they reduce the likelihood of
creating “twins” unintentionally.

Twin Elements and Stranded Elements

The improvements affect these areas of namespace-related functionality:

• Handling of “twin” elements — Two or more distinct elements are described as twins if they
have the same pathname within a depot. (Some SCM environments use the term “evil twins”;
we won’t make that judgment.) AccuRev now tracks element names consistently, provides
better information about the existence of twins, and provides tools for resolving unintended
twin situations.

• Detection of “stranded” elements — an element is stranded in a particular workspace or
stream if (1) it is active in that workspace or stream, but (2) does not have a pathname in that
workspace or stream. AccuRev includes significant improvements to the detection and
reporting of stranded elements.

These two areas are related. If a stream contains a set of twins at a particular pathname, only one
of those elements is visible at that pathname, for most purposes. The other twin(s) are stranded.

The following sections describe the changes to namespace-related functionality in detail.

Preventing Creation of Twins in Workspaces

Two checks performed by the Add to Depot command (CLI command: add) help to prevent
twins from being created:

• If the user’s workspace currently contains a defunct element at the same pathname, the Add to
Depot command is cancelled.
AccuRev Technical Notes 49

• If an element with the same pathname currently appears in the workspace’s parent stream —
and the element does not have (defunct) status in the parent stream — the Add to Depot
command is cancelled. If the element is (defunct) in the parent stream, an Add to Depot
command succeeds.

In previous releases, the first check was performed for renamed elements as well as for defuncted
elements. This check no longer takes place — see Ability to Reuse an Element Name after a
Rename Operation below.

Reporting of Twins in Dynamic Streams

The checks described in the preceding section apply to workspaces only, not to dynamic streams.
There are various ways to create twins in dynamic streams — for example:

Defunct an existing element in a workspace, and promote the change to the parent stream.
Then create a new element at the same pathname (in the same workspace or in a sibling
workspace), and promote the new element to the parent stream. The parent stream now
contains two elements at the same pathname — one is defunct, the other is “live”.

If a set of two or more twins exists in a dynamic stream (or snapshot), the File Browser shows
only the one “live” element in the folders view and in the results of a Default Group or Defunct
search. (If every element in a set of twins has (defunct) status, the most recently defuncted
element is deemed to be “live”.)

In this situation, all the other twins in the set have (stranded) and (twin) status. These elements
are displayed by the File Browser’s Stranded search, and by the AccuRev CLI command stat –i:

> accurev stat -s tin_dvt -i
\.\doc\new.doc e:20 tin_dvt\2 (4\2) (defunct) (member) (stranded) (twin)

For more information, see Detection of All Stranded Elements, Including “Twins” below.

Ability to Reuse an Element Name after a Rename Operation

AccuRev now offers improved support for “refactoring” operations over previous releases. Now,
all element renamings and directory hierarchy overhauls can be completed and tested in the
developer’s workspace, before any changes are promoted to the parent stream.

This flexibility stems from the fact that after an element Rename operation (CLI command:
move), the element’s former name becomes available for reuse immediately. (Previous releases
“reserved” the former name, in case the change was purged from the workspace — see When a
Purge Operation Causes an Element to Disappear below.)

Here’s a simple refactoring example:

> accurev move brass.h util.h
Moving \.\src\brass.h to \.\src\util.h

> copy c:\temp\temp_new_brass.h .\brass.h
 1 file copied

> accurev add brass.h
AccuRev Technical Notes 50

Added and kept element \.\src\brass.h

> accurev promote util.h
Validating elements.
Promoting elements.
Promoted element \.\src\util.h

> accurev promote brass.h
Validating elements.
Promoting elements.
Promoted element \.\src\brass.h

Note that util.h (formerly named brass.h) must be promoted first, to “free” the name brass.h in
the parent stream. Then the new element named brass.h can be promoted.

When a Purge Operation Causes an Element to Disappear

The preceding section describes new flexibility for refactoring. But it does introduce a
complication: what happens if you rename an element, create a new element at the same
pathname, then invoke Revert to Backed (CLI command: purge) on the renamed element?

The renamed element cannot revert to its old pathname, because there’s a new element at that
pathname. Accordingly, the original element simply disappears from your workspace. This
element does not assume (stranded) status — the purge operation makes the element inactive in
the workspace, and (stranded) status applies only to active elements.

Note that at this point, your workspace contains a new element at the given pathname, and the
parent stream contains the original element at that pathname. Attempting to promote the new
element would produce a “name already exists in parent stream” error. These steps remove the
original element from the parent stream: (1) defunct the original element in the workspace, using
defunct –e; (2) promote this change to the parent stream.

Detection of All Stranded Elements, Including “Twins”

The File Browser’s Stranded search, and equivalently, the AccuRev CLI command stat –i now
detect all known cases of stranded files:

• Defunct elements in same workspace/stream as a “live” element at the same pathname
(“twins”)

• Elements located in a directory that is, itself, stranded

• Elements located in a directory that is defunct

• Elements located in a directory that is excluded from the workspace/stream

• Elements located in a directory that has been purged from the workspace/stream

• Elements with a “pathname cycle”

Stranded files are reported with the status flag (stranded). If a stranded file happens to be a twin
of another element, it is also reported with the status flag (twin).
AccuRev Technical Notes 51

The final case, “pathname cycle”, occurs when two sibling workspaces make contradictory
changes to the depot’s directory hierarchy, then promote the changes to the common parent
stream. For example, one workspace might move directory src under directory util, while another
workspace moves util under src. When both the changes are promoted to the parent stream,
AccuRev won’t be able to determine the correct pathname for these directories and the elements
under them. The two directories assume (stranded) status, and the elements under these
directories become inaccessible.

Ability to Operate on Stranded Elements Using Element-IDs

The CLI now provides improved tools for relieving situations involving stranded elements. The
move, defunct, and undefunct commands now support the –e option, which enables you to
specify an element by its element-ID, rather than by its pathname. This is necessary for situations
in which the desired element does not have a pathname in the workspace or stream.

See Handling Stranded Elements on page 54.

More Sophisticated Analysis of Namespace-Related Changes

AccuRev now distinguishes between these two changes to the pathname of an element:

• Renaming of the directory in which the element resides. This is not considered a change to the
element itself; it is a change to the parent-directory element.

• Moving of the element from its current directory to another directory in the depot. This is
considered a change to the element itself (and not a change to either of the parent-directory
elements).

For example, suppose that file element commands.java resides in directory cmd_interface. A
colleague changes the name of the directory to cli in her workspace, then promotes the change to
the parent stream. When you update your workspace, the pathname of the file changes from
.../cmd_interface/commands.java to .../cli/commands.java, as a “side effect” of the change to
the parent directory. Note that this is not a change to the commands.java file element itself.

On the other hand, if the colleague moves file commands.java to another directory, say
.../cmd_interface/utils/commands.java, this is a change to the file element. When you update
your workspace, the pathname of the file changes accordingly (unless you have made a
namespace-related change to the file, in which case a merge is required).

AccuRev implements this scheme by tracking an element’s parent directory by its element-ID
(which never changes), rather than by its name (which can change, and can vary from stream to
stream).

Change to Merge Algorithm for Namespace-Related Changes

The algorithm used by the Merge command (both in the GUI and the CLI) now uses the more
sophisticated analysis described in the preceding section. Merge may perform two separate
namespace-related steps:

• Element name merge — required when the simple name of the element being merged differs
in the two contributor versions.
AccuRev Technical Notes 52

• Path merge — required when the parent directory of the element being merged differs in the
two contributor versions.

Often, either or both of these steps will be performed automatically by Merge. If only one of the
two contributors differs from the versions’ closest common ancestor, then that contributor’s
change is applied automatically.

(Note that Merge may also need to perform a third step — a content merge — for a file element.)

The following example of the CLI merge command involves both kinds of namespace-related
changes: (1) a file’s simple name has been changed by two users, john and mary; (2) each user
has moved the file to different sibling directory.

> accurev merge file01.mary
Current element: \.\dir02\sub03\file01.mary
most recent workspace version: 4/2, merging from: 5/5
common ancestor: 5/3

Both “path” and “element name” conflicts must be resolved manually, but
the contributors’ contents can be merged automatically.

Path merge will be required.
Element name merge will be required.
Automatic merge of contents successful. No merge conflicts in contents.

Path conflict for \.\dir02\sub03\file01.mary

John moved the file from directory sub02 to directory sub01 (which has element-ID 68).
Mary moved the file from directory sub02 to directory sub03 (which has element-ID 82).

Resolve path conflict by choosing path from:

(1) common ancestor: \.\dir02\sub02\ [eid=75]
(2) backing stream : \.\dir02\sub01\ [eid=68]
(3) your workspace : \.\dir02\sub03\ [eid=82]

Actions: (1-3) (s)kip (a)bort (h)elp

action ? [3] 2

John renamed the file from from file01.txt to file01.john.
Mary renamed the file from from file01.txt to file01.mary.

Resolve name conflict by choosing name from:

(1) common ancestor: \.\dir02\sub01\file01.txt
(2) backing stream : \.\dir02\sub01\file01.john
(3) your workspace : \.\dir02\sub01\file01.mary
AccuRev Technical Notes 53

Actions: (1-3) (s)kip (a)bort (h)elp

action ? [3] 3

The content merge is performed automatically.

Actions: keep, edit, merge, over, diff, diffb, skip, abort, help

action ? [keep]

Moving \.\dir02\sub03\file01.mary to \.\dir02\sub01\file01.mary
Kept element \.\dir02\sub01\file01.mary

Handling Stranded Elements

As described above, an AccuRev workspace or stream can contain one or more elements that are
stranded. An element is stranded in a particular workspace or stream if it is a member of the
default group, but cannot be accessed because there is no pathname to the element in that
workspace or stream. An element can be stranded in one stream but not be stranded in other
streams.

In the AccuRev GUI, stranded elements are listed in the File Browser’s Stranded filter. In the
CLI, the command stat –i lists stranded elements. A stranded element is listed by its element-ID,
along with a pathname that was once (but is not currently) valid in that stream.

The sections below describe the ways in which elements can become stranded, along with
procedures for handling each situation.

Defunct element obscured by element with same name

Elements under a defunct parent

Elements under an excluded parent

Dangling directory elements

Elements under a non-existent (purged) parent directory

Elements under a stranded parent directory

Defunct element obscured by element with same name

This occurs in the parent stream of two workspaces if:

• The user in workspace #1 defuncts an element, then promotes this change to the parent
stream.

• The user in workspace #2 updates the workspace (to incorporate the defuncting), creates a
new element with the same name, then promotes the new element to the parent stream.
AccuRev Technical Notes 54

At this point, the defuncted element is stranded in the parent stream. It cannot be promoted to the
“grandparent” stream by name, because it doesn’t have a name in the parent stream. The new
element cannot be promoted to the grandparent stream at all, because the name in the grandparent
stream belongs to the defuncted element.

Note: through repeated add-promote-defunct-promote cycles, it’s possible to have multiple
elements with defunct status in the parent stream, all of which were created at the same
pathname.

Resolving the Situation

To get the defuncted element out of the way, promote it by element-ID to the grandparent stream:
promote –e <eid> –s <parent_stream>.

To recover the defuncted element in workspace #1, use undefunct –e <eid> on the defuncted
element. This has the side effect of making the new element inaccessible in workspace #1.
Depending on your needs, use defunct –e or move –e on the new element.

Elements under a defunct parent

This occurs in the parent stream of two workspaces if:

• The user in workspace #1 defuncts a directory element, then promotes this change to the
parent stream.

• The user in workspace #2 modifies a file element in that directory, then keeps and promotes it
to the parent stream.

At this point, the file element is stranded in the parent stream. In addition, the user in workspace
#1 cannot access the file element by name.

Resolving the Situation

To propagate the file element’s change to the grandparent stream, promote it by element-ID:
promote –e <eid> –s <parent_stream>.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element in workspace #1 is to first undefunct the directory,
which makes the file visible again.

Elements under an excluded parent

This occurs in the parent stream of two workspaces if:

• The user in workspace #1 modifies a file element in that directory, then keeps and promotes it
to the parent stream.

• The user in workspace #2 sets a rule that excludes a directory element from the parent stream
(excl –s <parent-stream> <directory-name>).

At this point, the file element is stranded in the parent stream. In addition, the user in either
workspace cannot access the file element by name (after updating the workspace).
AccuRev Technical Notes 55

Resolving the Situation

To propagate the file element’s change to the grandparent stream, promote it by element-ID:
promote –e <eid> –s <parent_stream>.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element in either workspace is to first remove the exclude rule
(clear command) from the parent stream, and then update the workspace. This makes the file
visible again.

Dangling directory elements

This contradictory situation — a particular directory seems to be both above and below another
directory — occurs in the parent stream of two workspaces if:

• The user in workspace #1 moves directory A under directory B, then promotes directory A.

• The user in workspace #2 moves directory B under directory A, then promotes directory B.

At this point, both directories are stranded in the parent stream. An update of workspace #1 causes
directory B to be removed; an update of workspace #2 causes directory A to be removed.

Resolving the Situation

The only way to untangle this knot of inconsistency is to checkout (co command) a previous
version of each directory that has the “correct” (that is, consistent with the other directory)
pathname, then promote these old versions to the parent stream.

The simplest way to do this is to specify the transaction that created the directory at its correct
pathname: co –t <add-transaction-number>. But this method can be “messy” if the add
transaction also created other elements, such as the files within the directory.

Another method is to use a workspace under a time-based stream to see the relevant directories
with their correct pathnames. Checkout the “old” directory versions, promote these versions from
the workspace to the time-based stream, then use promote –s <time-based-stream> –S
<parent-stream> to promote to the parent stream.

Note: with either method, you’ll probably need to use the –O option to the promote
command, in order to avoid the need to merge the “old” directory versions.

Elements under a non-existent (purged) parent directory

This occurs in the parent stream of a workspace if:

• The user creates a new directory and file within the new directory, and promotes both new
elements to the parent stream.

• The user purges (GUI: Revert to Backed) the new directory from the parent stream.

At this point, the new file is stranded in the parent stream.
AccuRev Technical Notes 56

Resolving the Situation

You cannot propagate the file element’s change to the grandparent stream, because the new
directory never existed in that stream.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element is to first checkout (co command) the version of the
directory that was originally created in the workspace. The simplest way to do this is to specify
the transaction that created the directory: co –t <add-transaction-number>. But this method can
be “messy” if the add transaction also created other elements.

Another method is to use a workspace under a time-based stream to see the directory before it was
purged from the parent stream. Checkout the directory, promote it from the workspace to the
time-based stream, then use promote –s <time-based-stream> –S <parent-stream> to promote
to the parent stream.

Note: with either method, you’ll probably need to use the –O option to the promote
command, in order to avoid the need to merge the “old” directory version.

Elements under a stranded parent directory

To access an element under a stranded parent directory, restore the accessibility of the parent, as
described in the sections above. This restores the accessibility of the element in question.
AccuRev Technical Notes 57

AccuRev Technical Notes 58

Notes on Cross-Links

This note clarifies and supplements the basic documentation of AccuRev’s cross-link feature,
introduced in Version 4.5.

Cross-Link Direction and Terminology

A cross-link is created in a workspace by the Include from Stream command (CLI: incl –b). The
command name implies that a connection is being established from a specified backing stream to
the workspace. But an existing cross-link is listed by the CLI command lsrules like this:

xlink <pathname> from <workspace> to <backing-stream>

That is, the direction of the cross-link “arrow” is the opposite of the direction implied by the
“include from” command name. When describing a cross-link, we use this terminology:

• The workspace (or stream) where the cross-link has been created is the cross-link’s source
stream.

• The designated backing stream is the cross-link’s target stream.

In CLI messages, “cross-link” is abbreviated to “xlink”.

Cross-Links and Stream Namespaces

Each AccuRev stream (including snapshot streams and workspace streams) provides a
namespace: a set of pathnames to some or all of the depot’s elements. For example:

\.\doc
\.\src
\.\tools
\.\doc\chap01.doc
\.\doc\chap02.doc
\.\src\commands.c
\.\src\topaz.c
\.\src\topaz.h
\.\tools\cmdshell
\.\tools\perl
\.\tools\python
\.\tools\tools.readme
\.\tools\cmdshell\bash
\.\tools\cmdshell\csh
\.\tools\cmdshell\bash\end.sh
\.\tools\cmdshell\bash\start.sh
\.\tools\cmdshell\csh\end.csh
\.\tools\cmdshell\csh\start.csh
\.\tools\perl\add_cr.pl
\.\tools\perl\remove_cr.pl
AccuRev Technical Notes 59

\.\tools\python\setup.py
\.\tools\python\vars.py

Since this set of depot-relative pathnames defines a hierarchy, it’s often clearer to list the
pathnames component-by-component, like this:

\.\
doc

chap01.doc
chap02.doc

src
commands.c
topaz.c
topaz.h

tools
tools.readme
...

To locate an element, AccuRev interprets its specified pathname component-by-component (just
like the operating system does). The cross-links facility provides a way to make AccuRev switch
namespaces in the middle of the pathname-interpretation process.

Note:

For example, consider this pathname:

\.\tools\cmdshell\csh\end.csh

And suppose you’ve created a cross-link at
subdirectory cmdshell, with workspace W as the
source stream and stream S as the target stream.
AccuRev will process the pathname,
component-by-component, as illustrated here:

• Pathname components up to and including the
cross-linked component, are interpreted in the
original (source stream) namespace.

• Additional pathname components, if any, are
interpreted in the new (target stream) namespace.

Note that in workspace W, you continue to access the cross-linked element, subdirectory
cmdshell, through its “local” name in the workspace’s namespace. It’s quite possible (but you
don’t need to know) that this element has a different name — even a different pathname — in the
target stream:

\.\tools\shell_scripts
\.\tools\common\scripts\
\.\scripting
... etc.
AccuRev Technical Notes 60

Pathname components below “cmdshell” are interpreted in the namespace of stream S, the target
stream. For example, if script end.csh has been renamed in stream S to topaz_exit.csh, then that’s
the name you must use in workspace W, as well:

\.\tools\cmdshell\csh\topaz_exit.csh

The File Browser and the CLI commands stat and files make this namespace-switching
transparent: AccuRev shows you the element names and pathnames that will enable you to access
the data from your current workspace or stream context.

Source Stream: Workspace vs. Dynamic Stream

The example in the preceding section uses a workspace as the “source stream”. The same
pathname-interpretation principles apply if the source stream is a dynamic stream.

But the basic difference between workspace streams and dynamic streams affects the way
cross-links work in them:

• In a dynamic stream, the Include from Stream command incorporates all changes from the
target stream immediately. This reflects the fact that a dynamic stream inherits versions from
its backing stream automatically and instantly.

• In a workspace, the Include from Stream command respects the workspace’s update level.
That is, it incorporates only those changes that occurred in the target stream before the
workspace’s most recent update. A subsequent Update command will bring in the more
recent changes from the target stream.

Example: to see how cross-links work with a workspace’s update level, suppose that the
following changes have been made in stream topaz_mnt:

• directory element \.\tools\cmdshell\cmd has been Defunct’ed

• directory element \.\tools\cmdshell\csh has been renamed to \.\tools\cmdshell\c_shell

• file element \.\tools\cmdshell\c_shell\start.csh has been edited

You use the Include from Stream command to create a cross-link from your workspace to
stream topaz_mnt, at pathname \.\tools\cmdshell. The immediate change to your workspace
depends on its update level:

• If the changes in stream topaz_mnt occurred after your workspace’s most recent update, you
won’t see the changes immediately in your workspace: directory cmd will still exist, directory
csh won’t be renamed to c_shell, and you won’t see the edits to file start.csh. But the status of
these elements includes the (stale) indicator, showing that the changes are in the backing
stream, waiting to be incorporated:

.\tools\cmdshell\cmd topaz\1 (9\1) (backed) (xlinked) (stale)

.\tools\cmdshell\csh topaz\1 (9\1) (backed) (xlinked) (stale)

.\tools\cmdshell\csh\start.csh topaz\2 (9\4) (backed) (xlinked) (stale)

At this point, performing an Update will bring the changes into the workspace.

• If the changes in stream topaz_mnt occurred before your workspace’s most recent update, all
those changes will be brought into the workspace immediately.
AccuRev Technical Notes 61

The procedure in the first bulleted paragraph can be described as “Include then Update”; the
second bulleted paragraph’s case can be described as “Update then Include”. The final result is
the same in both cases: the changes to the cross-linked elements in their new backing stream are
incorporated into your workspace. We consider the second case to be an AccuRev best practice:

Best Practice:

Update your workspace before performing an Include from Stream command

If you Update first, other backing-stream changes won’t be “mixed in” with the Include from
Stream changes during the next workspace update. Moreover, fully establishing the link from
your workspace to the target stream will involve a single step (Include), rather than two steps
(Include then Update).

Note: because it respects — but does not change — your workspace’s update level, Include
from Stream more closely resembles the Populate command than the Update command.

Multiple Cross-Links: Chaining

AccuRev can traverse two or more cross-links in the same pathname. For example, you might use
this pathname in workspace W:

/./aaa/bbb/ccc/DDD/eee/fff/GGG/hhh/foo.java

And suppose there are two cross-links:

• At subdirectory DDD, a cross-link from workspace W to stream S1

• At subdirectory GGG, a cross-link from stream S1 to stream S2

As AccuRev traverses the pathname
component-by-component, it
interprets the components as
illustrated here. As it progresses down
the pathname, AccuRev also traverses
a “chain” of cross-links:

• start in workspace W, then ...

• cross-link to stream S1, then ...

• cross-link to stream S2

“Chaining” of cross-links can continue to any number of levels. The same principle applies
repeatedly: a cross-linked pathname component is interpreted in the source stream’s namespace;
subsequent non-cross-linked components are interpreted in the target stream’s namespace.

But you must take care when “chaining” cross-links in this way. It is possible to create ambiguous
configurations, which AccuRev handles by removing the affected elements. See Cross-Link
Overlaps on page 64.
AccuRev Technical Notes 62

A special case of cross-link chaining occurs when you create a configuration in which two or
more cross-links occur at the same pathname component. For example, consider again this
pathname:

\.\tools\cmdshell\csh\end.csh

And suppose there is a chain of two cross-links at the same pathname component:

• At subdirectory cmdshell, a cross-link from workspace W to stream S1

• At subdirectory cmdshell, a cross-link from stream S1 to stream S2

In workspace W, the subdirectory will continue to have its “original” name, cmdshell. But the
subtree under the subdirectory will come from the stream S2 namespace. By extension, you could
chain any number of cross-links at the cmdshell component: W > S1 > S2 > S3 > S4 ... As above,
the directory retains its “original” name in the workspace, and the workspace sees the directory’s
subtree as it exists in the final target stream.

Double Vision: Seeing an Element Multiple Times in a Workspace

One consequence of AccuRev’s cross-link facility is that two (or more) different versions of the
same element can appear at different pathnames in the same workspace or stream. We call this
phenomenon double vision. This is not an error — at least, not from AccuRev’s perspective.
Seeing the same element twice might be exactly what you intended, or it might signify that you’ve
left some refactoring work unfinished.

Here’s an example: suppose you are tasked with doing some cleanup on the Topaz project’s
development tree:

• Flatten out the subdirectories under tools.

• Move file tools.readme to the depot’s root directory, and rename it to README-tools.txt.

• Improve the source file comments in the src directory.

You perform this work in your workspace, named topaz_refact. But when the dust settles, you
find that the programs in the tools subdirectory no longer work. You are not sure whether the
problem is in the tools directory or the src directory. So you decide to “back out” your refactoring
of the tools directory, by cross-linking to the known-to-work version of the tools directory in
snapshot stream topaz_2.3.9.

Now, you have two different versions of the “README” element in your workspace! In your
refactoring, you created a new version in your workspace, at pathname \.\README-tools.txt:
AccuRev Technical Notes 63

But your workspace now cross-links to the Release 2.3.9 version of the tools subdirectory, which
contains the Release 2.3.9 version of the same element, at pathname \.\tools\tools.readme:

This case of double-vision is clearly an error, reflecting the fact that your refactoring work is still
ongoing. In other cases, you might want two (or more) versions of a commonly used source file,
say topaz.h, to appear in a workspace. Perhaps several different versions of the file are required,
in order to build different executables using that file. Version skew is the executables’ other
dependencies might mandate the different versions of topaz.h.

Double Vision and the ‘accurev name’ Command

The accurev name command lists the pathname for a given element (specified by element-ID) in
your workspace. It can also list the pathname for a specific version of an element, or the version in
a specific stream:

accurev name -e 28
accurev name -v topaz_mnt -e 116

In a double vision situation, the name command can list all of an element’s pathnames in a
workspace or stream:

> accurev name -e 28 -v topaz_refact
\.\tools\tools.readme
\.\README-tools.txt

Cross-Link Overlaps

Section Multiple Cross-Links: Chaining on page 62 describes how a set of cross-links can define
a “chain” of backing streams to be used at different components in a pathname:

start interpreting
pathname in
workspace W

switch from
workspace W
to stream S1

switch from
stream S1
to stream S2

Chaining works correctly if each switch to the next link in the chain occurs at the same pathname
component or at a lower component. But here’s a situation that violates this rule:
AccuRev Technical Notes 64

start interpreting
pathname in
workspace W switch from

stream S1
to stream S2

switch from
workspace W
to stream S1

In this case, the second link in the cross-link chain (S1 > S2) occurs at a higher pathname
component, DDD, than the first link (W > S1, at component GGG). AccuRev recognizes this
situation as a cross-link overlap.

When a workspace that
has a cross-link overlap
gets updated, AccuRev
removes the subtree
below the component
where the first link was
created.

AccuRev Technical Notes 65

AccuRev Technical Notes 66

Notes on Promote-by-Issue

This technical note describes AccuRev’s promote-by-issue feature, both reviewing the basic
concepts and presenting several usage scenarios. This information supplements and updates the
basic documentation of promote-by-issue in the AccuRev GUI’s help screens. The most
important points are:

• In some cases, promote-by-issue requires you to create an additional version of one or more
elements, using the Patch or Merge command. You must create a new AccuWork issue,
called a tracking issue, to enable AccuRev to account for the additional version(s).

• For certain usage scenarios, you must use the Change Palette in a way that might differ from
your previous usage procedure.

Promote-by-Issue Basics

(This section paraphrases the information in section “Viewing a Stream's Current Development
Activity” of the “Stream Browser” help topic for the AccuRev GUI.)

The Stream Browser can show the development activity
currently taking place in each stream or workspace. A
control below the stream or workspace opens or closes a
subwindow that displays the details of the development
activity. The activity details can appear in several ways —
by element, by transaction, or by issue record.

Use the development-activity mode controls at the right side
of the Stream Browser toolbar to determine how the activity details will be displayed. (The icons
on the controls below the streams and workspace change accordingly.) You can change modes
either before or after opening a development-activity subwindow.

When displaying a stream's activity by issue record, the subwindow displays the issue records that
are in a particular stream:
AccuRev Technical Notes 67

(This display is the same as the results of a Show Active Issues or Stream Diff by Issues
command. In this note, all the examples use the Stream Browser’s development activity
subwindow, but you can perform promote-by-issue operations in these other contexts, also.)

Promote-by-issue involves selecting one or more issue records and performing any of the
following operations:

• Invoking the Promote command from the subwindow’s toolbar or the context menu of the
issue(s).

• Drag-and-drop’ing the issue record(s) onto another stream or workspace in the Stream
Browser display. The destination can be the parent (backing) stream, another dynamic stream,
or one of your workspaces. This invokes a Promote or Send to Workspace operation on all
the elements in the selected issue record(s).

You can also drag-and-drop the subwindow control to another stream. This performs the Promote
or Send to Workspace operation on all the issue records in the subwindow (even if only some of
them are currently selected).

The following sections explore several promote-by-issue scenarios.

Note: in the remainder of this technical note, we shorten the term “issue record” to “issue”.
AccuRev Technical Notes 68

Promoting Issues to the Parent Stream

In many cases, promote-by-issue is simple and easy. You promote one or more issues to the
parent stream ...

... and the issues simply move into the parent stream:

Note: if the Promote command fails with a “merge required” error, you must perform a merge
for one or more elements in the source workspace (or a workspace below the source stream).
When promoting the merged version(s), assign them to the same issues as the original
version(s).
AccuRev Technical Notes 69

Cross-Promoting Issues to a Non-Parent Stream — Simple Case

Similarly, in many cases cross-promoting from one dynamic stream to another dynamic stream
proceeds without complication. First, you perform a drag-and-drop operation:

This populates the Change Palette with the versions in the selected issues. If the Promote
command is enabled when you select all the elements, you can proceed to propagate all the issues
(and their versions) to the destination stream:

AccuRev Technical Notes 70

(In this case, issue #11 consists of element start.csh, and issue #18 consists of element end.sh.)
Back in the Stream Browser, the promoted issues now appear in the destination stream:
AccuRev Technical Notes 71

Cross-Promoting Issues to a Non-Parent Stream — Patch Required

In this scenario, your intention is the same as in the preceding one — to cross-promote the
versions in one or more issues from one dynamic stream to another. You start the same way, with
a drag-and-drop operation from stream brs34_able to stream brs34_baker:

As before the elements in the issue(s)’ change packages are loaded into the Change Palette. But in
this scenario, one or more of the elements is listed with (patch) status:

This occurs when the element’s change-package entry does not contain the complete set of
changes to the element that (1) are in the source stream and (2) have not yet been promoted to the
destination stream:
AccuRev Technical Notes 72

Changing the Way You Use the Change Palette

In the situation described in the preceding section, you might be accustomed to dealing with the
(patch)-status element separately from the other elements. But do not proceed in this manner!
Instead, close the Change Palette tab without propagating any of the changes to the destination
stream.

Note: What happens if you proceed to use the Change Palette in the traditional way,
processing the (patch)-status element separately? See If You Process Some Elements at the
Stream Level, not the Workspace Level on page 78 for an explanation.

Now, populate another instance of the Change Palette with a drag-and-drop operation of the same
issue(s) from the source stream to a workspace below the destination stream:

The new Change Palette display is similar to that of the previous instance. Process the elements as
indicated below:
AccuRev Technical Notes 73

What about (overlap) status? If you have made changes to one or more of these elements in
this workspace, some of the elements will have (overlap) status. For such elements, you can
use Merge instead of Send to Workspace.

If an element has both (patch)
and (overlap) status, use the
Patch command, not the
Merge command. AccuRev
warns you if you attempt to
merge. In this case, click
Cancel and invoke the Patch
command instead.

After you have processed all the elements in the issue(s), each Patch’ed element is listed at the
bottom of the Change Palette:

Although you might be accustomed to promoting Patch’ed and Merge’d elements from the
Change Palette, do not proceed in this manner. Instead, close the Change Palette tab without
invoking Promote.
AccuRev Technical Notes 74

Working in the Workspace

At this point, the selected issue(s) have been propagated to the workspace below the destination
stream. Each issue is listed in the workspace’s development activity subwindow with a special
variant of the issue icon:

This icon indicates that AccuRev will track changes made in this workspace to the issue(s)’
elements. For each Patch’ed element, the new version created by the Patch command is one such
change. You can create any number of additional versions of both the Patch’ed elements and the
elements you processed with Send to Workspace.

Promotion / Creating a Tracking Issue

When your work on the issue is finished, you must use promote-by-issue to send your changes to
the workspace’s backing stream (the original destination stream of the cross-promote). Don’t use
promote-by-element or promote-by-transaction, which would defeat AccuRev’s ability to track
changes related to the selected issue(s). When you invoke the Promote command, AccuRev
prompts you to specify an additional issue, called a tracking issue. This is the mechanism that
AccuRev uses to record the changes made in this workspace to the original issue(s)’ elements.
AccuRev Technical Notes 75

A single tracking issue can keep track of the additional changes for any number of original issues.
Thus, it makes sense to select New Issue the first time you need to specify a tracking issue, and
select Use Existing on subsequent uses of promote-by-issue in the same workspace. You might
also need to select Use Existing if you’re not allowed to create new issues — for example, if
you’ve integrated a third-party issue-tracking system with AccuWork.

Either way, an AccuWork edit form
appears, in which fill in the fields of the new
or existing tracking issue. As usual, click
the edit form’s Save button when you are
finished filling in the fields.

AccuRev automatically proceeds with your
original command, Promote: its prompts
you for a comment, then sends the versions from the workspace to the original destination stream.
The cross-promotion of the original issue(s) is now complete — after just a bit of a detour!

Working with the Tracking Issue

The Stream Browser shows that the original issue (in our example, #8) has been promoted from
the source stream (brs34_able) to the destination stream (brs34_baker). The tracking issue (#11)
records the additional changes to issue #8’s elements that have been propagated to the destination
stream.
AccuRev Technical Notes 76

AccuRev Version 4.6 introduced change package dependency tracking, whose goal is to ensure
that a Promote operation sends a self-contained, consistent set of changes to the destination
stream. A tracking issue and the corresponding original issue(s) are connected by a change
package dependency: the tracking issue depends on the original issue(s).

The best way to monitor such connections is with a Relationship field whose type is Track. For
example, when issue #8 is viewed in an edit form, its connection to issue #11 might be displayed
like this:

As with all change package
dependencies, AccuRev warns
you if you attempt to promote
a tracking issue without its
dependencies, the original
issue(s). In this situation, don’t
click Proceed! It’s important
always to promote both the
original issue(s) and the tracking issue at the same time. So the correct procedure is to Cancel,
select both the original and tracking issues, then invoke Promote again.

As you propagate issues up (or across) the stream hierarchy, you must continue to obey this same
rule:
AccuRev Technical Notes 77

Always promote original issues and the corresponding tracking issues at the same time.

If you attempt to Promote an original issue alone, without including its tracking issue, AccuRev
refuses:

If You Process Some Elements at the Stream Level, not the Workspace Level

Section Changing the Way You Use the Change Palette on page 73 describes a new way to use the
Change Palette, but does not describe what occurs if you continue to use the old way. This section
provides the details.

Suppose you have populated the Change Palette with a drag-and-drop operation, as illustrated
below:
AccuRev Technical Notes 78

If you proceed to Promote elements add_cr.pl and tools.readme to the destination stream and
Patch element commands.c to a workspace below the destination stream, you create the
following situation:

(This is a composite picture — the Stream Browser displays the development activity for only one
stream at a time.) Issue #6 has been “taken apart” by the Promote/Patch sequence in the Change
Palette. The issue is not completely “in” stream brs71_baker, nor is it completely “in” workspace
brs71_baker_john. Switching to the Stream Browser’s file mode confirms that issue #6 has been
“taken apart”.

(Again, this is a composite picture.) Two of issue #6’s three elements have been sent to one
destination, and the third element has been sent to another destination.

Fixing Your Mistake

If you get yourself into this situation,
what is the remedy? First, use Revert to
Backed to “undo” all the Promote(s).
Then, switch the Stream Browser back to
issue mode, and proceed as described in
section Changing the Way You Use the
Change Palette on page 73. That is,
drag-and-drop the original issue(s) to the
workspace below the original destination
stream. (In this example, drag-and-drop
issue #6 to workspace
brs71_able_john.)
AccuRev Technical Notes 79

You have now “reunited” the changes to all of
the issue(s)’ elements at a single destination.
The Stream Browser confirms this.

AccuRev Technical Notes 80

Incomplete Change Packages

AccuRev change packages provide a powerful tool for dealing with a set of element versions as a
group. However, if you do not institute and follow some best practice policies, you can encounter
error messages warning of missing versions when you promote by issue. This section describes
the three most common causes of these warnings, how to correct them, and how to avoid them in
the future.

Overview

The formal definition of an incomplete change package is "Some of the versions of elements
associated with the change package are not part of the current stream."

But what does this really mean? How did this happen? And how do you fix it? Better yet, how do
you avoid getting into this situation in the first place?

There are three typical scenarios that result in incomplete change packages:

• Purge ("Revert to Backed" in the GUI) operations on individual files.

• Reuse of issues across multiple streams.

• Promote by File (instead of Promote by Issue) operations.

All three of these result in the same situation: one or more of the files in your change package will
not have the correct version in the current stream.

An Example Scenario

Here is a very simple stream environment that we will use to illustrate a typical incomplete
change package situation:

Assume that workspace stream_1_3_WS_1 contains three source code files:
AccuRev Technical Notes 81

You modify file_001.c and file_002.c to address issue #0002, and promote them from your
workspace to the parent stream (stream_1_3).

Note: You must have the change package integration enabled in the Schema Editor to be
prompted for an issue when you promote from a workspace. If you don’t see the Select Issue
(Change Package) dialog when you promote, you need to enable the integration. See
“Change-Package-Level Integration” in the AccuRev Administrator’s Guide for details.

At this point, if you go to the stream browser and select Show Active Issues by right-clicking
over stream 1_3, you will see issue #2 and the files that you just promoted. Make sure that
Include Incomplete Issues is not checked to confirm that this is a complete change package. If
AccuRev Technical Notes 82

you were ready to continue promoting this package up the stream hierarchy, you could do so by

selecting issue #2 and clicking the promote icon ().

This is the correct way to promote change package files higher up the stream hierarchy.

But what if somebody had done one of the three operations listed above, which caused, for
example, only the backed version of file_002.c to appear in stream_1_3?

This first thing you might notice is that the issue does not appear unless the Include Incomplete
Issues checkbox is enabled. And when it is, the Promote icon is grayed out when you select issue
#2, and file_002.c appears with a gray band.

For steps on how to troubleshoot and identify the cause of your incomplete change package, see
How to Troubleshoot Incomplete Change Packages at the end of this section. But first, here are
details about each of the three main scenarios.
AccuRev Technical Notes 83

File Purge (Revert to Backed)

Scenario:

You fix an issue and then promote the affected files from your workspace to an integration stream.
For some reason, somebody decides to perform a purge (Revert to Backed) on one of the files.
When it's time to promote the change package from the integration stream to its parent stream,
you discover that the change package is incomplete and the promote icon is grayed out. This is,
in fact, exactly what happened in An Example Scenario above.

You can tell that this is the case by right-clicking on the “missing” file (file_002.c) and selecting
Browse Versions.

The second, disconnected box for version 2 is the tip-off that the file was purged, and the tooltip
message confirms the action.

How do you fix it?:

If you determine that the purge was a good idea, and that the change package doesn't require the
purged file, your simplest fix is to remove it: go to the Changes tab for the issue, select the file and
then click remove. Once you have done this, the issue will no longer appear when Include
Incomplete Issues is checked, and you will be able to promote the change package further up the
stream hierarchy.

However, if it turns out that the purge was a mistake, you'll need to reverse it. Because AccuRev
is TimeSafe, you can’t just make the purge disappear like it never happened. But what you can do
is send that version of the file to your workspace (right-click the version in the Version Browser
and select Send To Workspace and re-promote it. When the file becomes active in your
workspace, it will not have the same version number—in this example it will now be version “3”
instead of the original version “2”, and will become version “4” when you keep it. After you
AccuRev Technical Notes 84

promote it, the change package in the parent stream will again be complete, and the version
browser will no longer show the purged version as a disconnected box.

How do you prevent this from happening in the future?:

If you need to purge a file, first make sure that it is not part of a change package. Pay attention to
any error message that tries to warn you against making a mistake.

You typically want to click No in response to such a warning.

If the file is a part of a change package, and you still want to purge the file, then perform a Revert
by Change Package instead: in the Stream Browser, right-click the stream from which you wish
to revert the change package and click Show History. Then select the promotion operation you

wish to reverse, and click the revert icon (). Make the adjustments you need in your
workspace, and then re-promote the modified change package.

You can also prevent non-administrators from purging files in streams by customizing the
server_preop_trig trigger. See Sample server_preop_trig rules below for more information.
AccuRev Technical Notes 85

Reuse of Issues Across Streams

Scenario:

In the previous sections, you worked on issue #0002 in workspace stream_1_3_WS_1 and
promoted the following files against it:

• file_001.c

• file_002.c

But what if this issue also applied to a different release being handled in a different stream -- in
this case, the hierarchy under stream_2_1. In that stream, the fix needs to be made in a different
set of files:

• file_002.c

• file_003.c

You perform the changes to these files in workspace stream_2_3_WS_2. Even worse, somebody
else continues to work on issue #2 in the original stream and adds a new file named file_004.c
which doesn’t even exist in Stream 2. Both developers promote their changes against the same
issue, one from workspace stream_1_3_WS_1 and the other from stream_2_3_WS_2.

Now the change package is incomplete in both streams: the modified versions of file_002.c and
file_003.c are not available under Stream 1, nor does the new file_004.c exist under Stream 2. If
you do a Show Active Issues in both of the parent streams, you see two different incomplete
change packages, each missing different files.

How do you fix it?:

Don't try to cross-promote or merge the missing files. Instead:

1. Create a new issue for Stream 2.

2. Open the original issue and select the files which were added when promoted into Stream 2.

3. Right click and select Send to Issue.

4. Select the new issue created in Step 1 to send the selected file(s) to.
AccuRev Technical Notes 86

You will now see the original issue as complete in Stream 1, and the new issue as complete in
Stream 2.

How do you prevent this from happening in the future?:

Make it a policy to not use the same issue to address problems in multiple streams. If you need to
fix the same issue in another stream, create a new issue for that stream and promote files against
that issue.

Promoting by File Instead of by Issue

Scenario:

Similar to the previous examples, you work on issue #0002 in workspace stream_1_3_WS_1 and
promote the following files against it:

• file_001.c

• file_002.c

Later, in the backing stream(stream_1_3), somebody promotes file_002.c (but not file_001.c) to
its parent stream (stream_1_2). This leaves the change package for issue 2 complete in
stream_1_3, but now it appears as an incomplete change package in stream_1_2.

How do you fix it?

This one is easy: simply promote the entire change package from stream_1_3 to its parent
stream_1_2. Since file_002.c has already been promoted, it is ignored, but file_001.c gets
promoted, making the change package complete.

How do you prevent this from happening in the future?:

Make it a policy to always promote by issue. Avoid promoting by file. You can enforce this policy
by customizing the server_preop_trig trigger to disable promotion by file and only allow
promotions to occur via issue. See Sample server_preop_trig rules below for more information.

Sample server_preop_trig rules

You can use AccuRev triggers to help prevent some of the actions that can lead to incomplete
change packages. For general information about these triggers, see the discussion of
server_preop_trig in the Administrator’s Guide, and the sample server_preop_trig.pl file
in the AccuRev installation examples folder. The Perl snippets below take the examples provided
in the sample server_preop_trig.pl file one step further and show how you can prevent non-
administrators from purging files from higher-level streams, and how to enforce promote-by-issue
in non-workspace streams.

CUSTOMIZE ME
Add to (or replace) the example code below to
implement validation for the PROMOTE command.
##

EXAMPLE VALIDATION:
only a user listed as an administrator can promote versions
AccuRev Technical Notes 87

to a stream in the "admin_stream" list

#if (defined($admin_stream{$stream2}) and `$::AccuRev ismember $principal "$admingrp"` == 0)
{

print TIO "Promoting to a stream identified as an 'admin stream' disallowed:\n";
print TIO "server_preop_trig: You are not in the $admingrp group.\n";
close TIO;
exit(1);
#}

EXAMPLE VALIDATION:
only a user listed as an administrator can run the Promote
command without entering a comment
if ($comment eq "" and `$::AccuRev ismember $principal "$admingrp"` == 0) {

print TIO "Empty comments for 'promote' command disallowed:\n";
print TIO "server_preop_trig: You are not in the $admingrp group.\n";
close TIO;
exit(1);

}
end of EXAMPLE VALIDATION

#This will prevent users from promoting or cross promoting individual files.
#Only users defined in the $admingrp group will be allowed to promote by file.
#This will prevent issues from becoming incomplete which can cause coalescing problems.

#foreach my $changepackage (keys(%{$$xmlinput{'changePackagePromote'}})){
#my @issues = (@{$$xmlinput{'changePackagePromote'}[0]{'changePackageID'}});
my @noissue = (@{$$xmlinput{'changePackagePromote'}});

foreach my $issue (@noissue) {
#foreach my $issue (@issues) {
#print "Array Issue num = $issue\n";

if ($issue == 0 and `$::AccuRev ismember $principal "$admingrp"` == 0){
print TIO "Promotion by file is disallowed.\n";
print TIO "You need to promote by issue, please select the issue which needs promotion and

promote\n";
print TIO "Only users in the $admingrp group are able to promote by file as this can cause

incomplete issues.\n";
close TIO;
exit(1);
}

}

end of EXAMPLE VALIDATION

no problems, allow command to proceed
close TIO;
exit(0);

}

end of validation for PROMOTE command

####
Validation for PURGE command
####

if ($command eq "purge") {
at this point, the following variables will have meaningful values:
$hook Trigger name
$command AccuRev command being run
$principalUsername of person invoking command
$ip IP address of AccuRev client machine
$stream1 Stream from which versions are being purged
$depotDepot name
$fromClientPromoteData passed from pre-promote-trig script
@elems Element list
AccuRev Technical Notes 88

CUSTOMIZE ME
Add to (or replace) the example code below to
implement validation for the PURGE command.
##

EXAMPLE VALIDATION:
only a user listed as an administrator can promote versions
to a stream in the "admin_stream" list

#if (defined($admin_stream{$stream1}) and `$::AccuRev ismember $principal "$admingrp"` == 0)
{

print TIO "Purging from a stream identified as an 'admin stream' disallowed:\n";
print TIO "server_preop_trig: You are not in the $admingrp group.\n";
close TIO;
exit(1);
#}
end of EXAMPLE VALIDATION

#Prevent users from purging elements so AccuWork issue will not become incomplete in streams.
unless ($stream1=~/_$principal/ or `$::AccuRev ismember $principal "$admingrp"` == 1) {

print TIO "You can not perform \"Revert to Backed\" or purge operations in streams.\n";
print TIO "This will prevent CR's from disappearing in streams due to them becoming

incomplete issues.\n";
print TIO "Only users in the $admingrp group will be authorized to preform this

operation.\n";
close TIO;
exit(1);

}

no problems, allow command to proceed
close TIO;
exit(0);

}

end of validation for PURGE command

How to Troubleshoot Incomplete Change Packages

Use the following steps to identify incomplete change packages and their causes. Then you can
use the information above to fix the situation and avoid it in the future.

Note: There is an excellent training video on the AccuRev web site covering these
troubleshooting steps. Web addresses change over time, so go to www.accurev.com and
search for “training videos”. This one is titled “Incomplete Change Packages”.

1. To see if an incomplete change package exists in a stream, go to the Stream Browser, right-
click over the stream, and select Show Active Issues.

2. Make sure that Include Incomplete Issues is checked, and look for any grayed out issues.

3. If you see a grayed out issue, select it. This displays the change package files in the lower
pane. At least one of these will be grayed out and have a status of “missing”.

4. Make note of the values in the “Version” and “Basis Version” columns. The first number
(before the slash) identifies the stream and the second number (after the slash) identifies the
file version that should exist in that stream.
AccuRev Technical Notes 89

5. To identify the stream names for these numbers, go to the Stream Browser and display the
tabular mode. Look for the number under the column labeled “#”, and identify its name under
the “Name” column.

6. To figure out why the file is missing, use the Version Browser:

• If the version is simply missing from this stream, but exists in the child stream, then it is
likely that one or more of the files from the change package were promoted individually
(rather than by issue) and this file was not. (See Promoting by File Instead of by Issue
above.)

• If the version shows a disconnected box in the Version Browser, the problem is due to a
purged file. (See File Purge (Revert to Backed) above.)

• If the version is missing from this stream, and doesn’t exist in the child stream but appears
to exist in a different stream hierarchy, it is likely that the same issue was used to fix a
problem in two different streams. (See Reuse of Issues Across Streams above.)

Note: There is one additional incomplete change package scenario that you may encounter: if the
issue contains only one file, the issue may not appear as incomplete when it should. You need to
go to the Show Active Issues display and ensure that the Include Hierarchy checkbox is enabled
for this situation to be displayed.
AccuRev Technical Notes 90

	AccuRev Technical Notes
	Table of Contents
	Quick Evaluation of AccuRev (Windows)
	AccuRev’s Client-Server Architecture
	Downloading the Installation Program
	Running the Installation Program
	Starting the AccuRev Server
	Starting the AccuRev GUI
	Setting Up AccuRev for First-Time Use
	Running the Quick Setup Wizard
	Registering Yourself as an AccuRev User
	Creating and Populating an AccuRev Depot

	Beginning Work with AccuRev
	Keeping Files
	Promoting Files

	Seeing Other People's Changes
	Adding a New File
	What's Next?

	Quick Evaluation of AccuRev (Unix/Linux)
	AccuRev’s Client-Server Architecture
	Downloading the Installation Program
	Running the Installation Program
	Starting the Server
	Registering Yourself as an AccuRev User
	Logging in to AccuRev
	Creating and Populating an AccuRev Depot
	Removing a Depot

	Beginning Work with AccuRev
	Keeping Files
	Promoting Files

	Seeing Other People's Changes
	Adding a New File
	What's Next?

	Converting to AccuRev from Directories Containing Baselevels
	Creating a Depot
	Processing the First Baselevel
	Recording the Baselevel with a Snapshot

	Processing Subsequent Baselevels
	Handling Additional Baselevel-to-Baselevel Differences

	Cleaning Up

	Creating and Using a Maintenance Stream
	Creating a Snapshot
	Creating a Stream Based on the Snapshot
	Performing Maintenance Work

	Pathname Optimization: ACCUREV_IGNORE_ELEMS and .acignore
	Eligible “Whole-Workspace” Commands
	GUI Counterparts to the “Whole-Workspace” Commands

	Commands that Don’t Apply to the Whole Workspace
	Values for ACCUREV_IGNORE_ELEMS
	Examples
	Specifying Directories and Their Contents

	Setting ACCUREV_IGNORE_ELEMS on a Unix/Linux System
	Setting ACCUREV_IGNORE_ELEMS on a Windows System
	Per-Directory Pathname Optimization — the .acignore File

	Techniques for Sharing Workspaces
	Accessing a Windows Workspace From Multiple Windows Clients
	Universal Access to a Workspace Located on a Share
	The ‘share_map.txt’ File
	Workspace Location Entries
	Fixing Workspace Location Entries
	Fixing Machine Name Entries

	Example: Samba Share

	What’s the Difference between Populate and Update?
	In a Nutshell ...
	Example 1: Standard Update Scenario
	Example 2: Restoring a Deleted File (“missing” by accident)
	Example 3: Handling Active Elements
	Example 4: A Tale of Two Files

	Data Structures Used by Populate and Update
	How the Data Structures Get Their Data
	Backing Stream
	Workspace Stream
	Workspace Tree

	The Update Algorithm
	Advancing the Scan Threshold
	Incomplete Updates
	Incomplete Update: Command Interrupted
	Incomplete Update: Checksum Failure
	Performing the “Fixup” Update

	Using a Trigger to Maintain a Reference Tree
	Notes for CVS Users
	AccuRev Workspaces vs. CVS Sandboxes
	Common Operations
	Obtaining a copy of the source files
	Placing files under version control
	Bringing others’ changes into your workspace/sandbox
	Saving your changes
	Finding the history of files
	Finding the status of files in your workspace/sandbox
	Removing files
	Reverting changes to files
	Moving files
	Checking out files to edit
	Comparing versions of files

	Version Control of Namespace-Related Changes
	Twin Elements and Stranded Elements
	Preventing Creation of Twins in Workspaces
	Reporting of Twins in Dynamic Streams
	Ability to Reuse an Element Name after a Rename Operation
	When a Purge Operation Causes an Element to Disappear
	Detection of All Stranded Elements, Including “Twins”
	Ability to Operate on Stranded Elements Using Element-IDs
	More Sophisticated Analysis of Namespace-Related Changes
	Change to Merge Algorithm for Namespace-Related Changes

	Handling Stranded Elements
	Defunct element obscured by element with same name
	Resolving the Situation

	Elements under a defunct parent
	Resolving the Situation

	Elements under an excluded parent
	Resolving the Situation

	Dangling directory elements
	Resolving the Situation

	Elements under a non-existent (purged) parent directory
	Resolving the Situation

	Elements under a stranded parent directory

	Notes on Cross-Links
	Cross-Link Direction and Terminology
	Cross-Links and Stream Namespaces
	Source Stream: Workspace vs. Dynamic Stream
	Multiple Cross-Links: Chaining

	Double Vision: Seeing an Element Multiple Times in a Workspace
	Double Vision and the ‘accurev name’ Command

	Cross-Link Overlaps

	Notes on Promote-by-Issue
	Promote-by-Issue Basics
	Promoting Issues to the Parent Stream
	Cross-Promoting Issues to a Non-Parent Stream — Simple Case
	Cross-Promoting Issues to a Non-Parent Stream — Patch Required
	Changing the Way You Use the Change Palette
	Working in the Workspace
	Promotion / Creating a Tracking Issue
	Working with the Tracking Issue
	If You Process Some Elements at the Stream Level, not the Workspace Level
	Fixing Your Mistake

	Incomplete Change Packages
	Overview
	An Example Scenario
	File Purge (Revert to Backed)
	Reuse of Issues Across Streams
	Promoting by File Instead of by Issue
	Sample server_preop_trig rules
	How to Troubleshoot Incomplete Change Packages

