
AccuRev Concepts

Manual

Version 4.9

October 2010

7-October-2010

Copyright

Copyright © AccuRev, Inc. 1995–2010

ALL RIGHTS RESERVED

This product incorporates technology that may be covered by one or more of the following

patents: U.S. Patent Numbers: 7,437,722; 7,614,038.

TimeSafe and AccuRev are registered trademarks of AccuRev, Inc.

AccuBridge, AccuReplica, AccuWork, and StreamBrowser are trademarks of AccuRev, Inc.

All other trade names, trademarks, and service marks used in this document are the property of

their respective owners.

AccuRev Concepts Manual iii

Table of Contents

Copyright .. ii

AccuRev Concepts .. 1

The AccuRev Data Repository... 3

Organization of the Repository: Storage Depots .. 3

Single Depot vs. Multiple Depots... 4

Inside a Depot: Versions and Files.. 4

Versions of Non-File Objects ... 6

Promotion: Real Versions and Virtual Versions... 6

Replication of the Repository ... 7

Archiving Data and Removing Data... 7

What is a Software Configuration?... 9

Software Configurations and Development Tasks.. 10

AccuRev Software Configurations:

The Stream Hierarchy.. 11

How Changes Migrate Through the Stream Hierarchy .. 15

Inheriting Versions From Higher-Level Streams ... 17

Pass-Through Streams .. 18

The Include/Exclude Facility.. 19

AccuRev Workspaces and Reference Trees ... 21

Using a Workspace ... 22

Putting Data Into the Repository .. 22

Getting Data Out of the Repository .. 23

The Workspace’s Built-In Stream... 23

Real Versions and Virtual Versions.. 25

Active Files and the Default Group .. 25

Updating a Workspace .. 25

Variation #1: Workspace Based on a Snapshot... 26

Variation #2: Reference Tree .. 27

Parallel and Serial Development... 27

Serial Development through Exclusive File Locking... 27

The Limited Effect of an Exclusive File Lock ... 28

Anchor-Required Workspaces .. 29

Getting Only the Files You Need: the Include/Exclude Facility .. 29

Historical Note: Sparse Workspaces... 29

AccuRev Concepts Manual iv

AccuRev Transactions .. 31

Transactions are Atomic ... 31

Transactions are Immutable .. 31

Transactions and Workspaces ... 32

Transactions and Issue Management .. 32

AccuRev/AccuWork Change Packages .. 33

Structure of a Change Package ... 33

Creating Change Package Entries... 35

Complex Change Package Entries .. 35

Updating Change Package Entries.. 37

A Little Bit of Notation... 37

Combining Two Change Package Entries .. 37

AccuRev Glossary ... 41

AccuRev Concepts Manual 1

AccuRev Concepts

The chapters in this manual describe the main concepts and facilities of the AccuRev® software

configuration management system:

• The AccuRev Data Repository

• What is a Software Configuration?

• AccuRev Software Configurations: The Stream Hierarchy

• AccuRev Workspaces and Reference Trees

• AccuRev Transactions

• AccuRev/AccuWork Change Packages

The manual concludes with a cross-referenced AccuRev Glossary.

AccuRev Concepts Manual 3

The AccuRev Data Repository

As a data management product, AccuRev’s foremost job is to provide a secure data repository for

long-term storage of your organization’s development data. AccuRev’s implementation of the

repository is straightforward and flexible; a repository can grow gracefully to span multiple disks,

possibly on multiple machines. And key product features make it easy to protect the repository

from accidental or malicious damage.

AccuRev has a simple client-server architecture. A single program, the AccuRev Server

(accurev_server), is the only program that accesses the data repository directly. This “single

point of entry” to the repository makes it easy to enforce tight security at the operating system

level.

The data repository is built around a unique database technology, which is both transaction-based

and append-only. This makes the repository extremely resistant to accidental damage. Using

“atomic” transactions means that the database won’t become corrupted, even if a power failure

occurs while the database is being modified. The append-only feature enables “live backup” of

the repository, without having to interrupt developers’ work. This means that backups can be

made as often as desired — even continually; and the more recent the backup, the less data is lost

in the event of a catastrophic hardware failure.

Organization of the Repository: Storage Depots

An AccuRev data repository consists of:

• The site slice, a central database that contains repository-wide information. (It’s the “slice” of

the repository that contains data pertaining to the entire AccuRev “site”.) This includes a user

registry and lists of global data structures.

• Any number of depots — short for “storage depots” — which contain separate sub-

repositories. Each depot implements a version-controlled directory tree. It provides protected,

permanent storage for all the versions of the files in the tree; it also includes a database that

tracks the changes to the files themselves, their names, and their organization into directories.

Alternatively (or additionally), a depot’s database can store issue records. Typically, a depot’s

issue records hold bug reports relating to the depot’s files. (For licensing purposes, AccuRev’s

issue management capability is termed “AccuWork”.)

The illustration below shows the modular structure of the AccuRev data repository. Logically, the

entire repository is located in a single directory tree on the machine where the AccuRev Server

program runs. But only the various databases must physically reside on the server machine. The

file storage areas — which typically are far larger than the databases and grow far faster — can be

located elsewhere. For example, the file storage area of depot jupiter might be located on another

disk on the AccuRev server machine, and the file storage area of depot saturn might reside within

the local area network’s disk farm.

AccuRev Concepts Manual 4

Single Depot vs. Multiple Depots

You can place all version-controlled files in a single depot, or split them among multiple depots.

In general, we advise storing all files for a given project in the same depot. By “project”, we mean

all the programs and other software deliverables that share the same development/test/release

procedures and the same release cycle. The procedures determine how a depot’s stream hierarchy

will be structured; the release cycle determines how the stream hierarchy will be used.

If Project_X and Project_Y have completely different release cycles, then put their source files in

different depots. Likewise, if Project_A requires stringent in-house regression testing and two

levels of beta-testing, whereas Project_B is mandated to “ship yesterday”, use different depots.

Note: if you use the include/exclude facility, you can have a single depot serve multiple

partially-independent or totally independent projects. See The Include/Exclude Facility on

page 19.

AccuRev has no scalability limits, so there is no problem in storing thousands, tens of thousands,

or even hundreds of thousands of files in a single depot.

Inside a Depot: Versions and Files

Let’s look inside a depot, to examine its database/file-storage-area architecture. This will help

explain how AccuRev works, and will illuminate some of its most important, and unique,

features.

depot: mars

file storage area

AccuRev/CM Data Repository

database

depot: jupiter

file storage areadatabase

depot: saturn

file storage areadatabase

"site slice"
database

AccuRev Concepts Manual 5

Developers working on their files — that’s the principal activity in any software development

environment. With AccuRev, a developer’s files are stored in an ordinary directory structure —

perhaps on the hard drive of a personal computer or laptop, perhaps in a designated area of a well-

backed-up disk farm, etc. The only thing special about such a “developer’s work area” is that

AccuRev keeps track of its association with a particular depot. (The work area is termed a

workspace — for more information, see AccuRev Workspaces and Reference Trees on page 21.)

A developer can use any software tools to create and edit files, compile and build modules and

applications. AccuRev doesn’t get involved in these operations at all, so there’s no performance

penalty. Every so often, the developer tells AccuRev to save the current contents of a file (or a

group of files). This operation, called a keep, does two things:

• Copies the current contents of the file to a container file in the depot’s file storage area.

• Creates an associated version object in the depot’s database.

This association is permanent: no matter what happens in the future, the contents of the file will

always be available, through a reference to the version object. (For now, we’ll skip the details of

how to specify a version — it’s just a bit more complicated than saying “version 45 of file

gizmo.c”.)

In addition to providing access to the actual file contents, the version object stores additional

information relating to the “keep” operation: a timestamp, the user who performed the operation,

a user-supplied comment, etc. This kind of information is often termed “metadata”.

In general, version objects are much smaller than the corresponding container files. (Developers

often work with large source files; they also work with audio, image, and multimedia files, which

can be really big.) As developers create more and more versions, the depot’s file storage area may

depot

database file storage area

version
storage file

workspace

keep
operation

modified
file

AccuRev Concepts Manual 6

grow to many gigabytes, requiring it to be split among multiple disk drives. But since the depot’s

database stores the relatively small version objects, it grows much more slowly. Most likely, it

will never outgrow its original storage location.

Versions of Non-File Objects

In all modern operating systems, files are organized into directories (or folders). Some operating

systems also support additional kinds of file system objects: symbolic links, hard links, device

files, named pipes, etc.

AccuRev provides full version-control of directories. A new version of a directory records the

renaming of the directory or the moving of the directory to another location in the depot’s

directory hierarchy.

AccuRev provides file-link and directory-link objects, which can be used to version-control hard

links and symbolic links / junction points.

Promotion: Real Versions and Virtual Versions

Software development is much more than just creating and modifying files. A typical

development project involves many phases, possibly including initial development, integration of

work done independently, internal system testing, external testing, and final production. AccuRev

uses a “promotion model” to manage files in these multiple development phases. Files progress

through the phases, one by one: when a file passes the tests (if any) mandated for a particular

phase, a user working on that phase promotes it to the next phase.

AccuRev keeps track of each promotion by creating a new version of the file. But promotion

doesn’t change the contents of a file; it only changes the file’s “approval level”. Thus, each new

version object created by promotion is merely an additional reference to (or “alias for”) the same

file in the depot’s file storage area.

promotepromotepromote

initial dvt
phase

integration
phase

internal test
phase

AccuRev Concepts Manual 7

AccuRev distinguishes between the original version, created by a keep operation, and all the

additional versions created by a promote operation:

• A real version is created by a keep (or an add, which places a new file in the depot). The

operation creates a new version object in the depot’s database, and also places a new file in the

depot’s file storage area.

• A virtual version is created by a promote. It creates a new version object in the depot’s

database, which provides an additional reference to an existing file in the file storage area.

Replication of the Repository

The AccuRev repository can be replicated at multiple sites, to support distributed development

organizations. It can also be replicated at a single site, to provide better performance. Each replica

repository can store the data for a selected subset of the master repository’s depots (or for all the

depots).

Replication is discussed in the AccuRev Administrator’s Manual.

Archiving Data and Removing Data

In a perfect world, no one makes mistakes and there’s an infinite amount of disk storage. But in

this world, you sometimes save data by mistake and your repository sometimes outstrips your

storage capacity. In general, AccuRev’s TimeSafe principle (its ability to reproduce previous

configurations) does not allow data to be removed from the repository once it has been placed

there. There’s just one exception: you can remove an entire depot from the repository.

depot

database file storage area

initial dvt
version

storage file

integration
version

internal test
version

real version virtual version

promote

promote

AccuRev Concepts Manual 8

Removing depots that were created by mistake (or, perhaps, for practice) can help to reclaim

valuable disk space. Another strategy is to “get rid” of old versions of elements, ones that you

anticipate won’t need to be used again.

AccuRev allows you to archive old versions, moving their space-consuming container files out of

the repository to offline storage. And if it turns out that you do need the versions, after all, you can

restore them from offline storage to the repository.

Both depot removal and archiving of versions are discussed in the AccuRev Administrator’s

Manual.

AccuRev Concepts Manual 9

What is a Software Configuration?

AccuRev is a software configuration management (SCM) product. So what’s a software

configuration? Software developers (programmers, QE engineers, tech writers, etc.) work with

information stored in files. The contents of the files change over time, as developers work on

them. The developers save the changes in new versions of the files. The organization of the files

changes, too: new files are created, old files are deleted, some files get renamed, and directory

structures get reorganized.

Take a particular set of files — for example, the files required to build and deliver an application

named Gizmo. At any given moment, this set of files is in a particular state, which can be

described in terms of version numbers:

gizmo.c version 45

frammis.c version 39

base.h verion 8

release_number.txt version 4

Gizmo_Overview.doc version 19

Gizmo_Release_Notes.doc version 3

... or in terms of time:

gizmo.c last modified 2004/11/18 14:15:03

frammis.c last modified 2004/11/18 14:15:19

base.h last modified 2004/10/08 09:09:44

release_number.txt last modified 2004/11/17 21:59:34

Gizmo_Overview.doc last modified 2004/11/20 17:25:00

Gizmo_Release_Notes.doc last modified 2004/11/21 19:29:57

That’s a software configuration — or more simply, a configuration: a particular set of versions of

a particular set of files. (AccuRev’s naming scheme for versions is slightly more complicated than

“version 45 of file gizmo.c”.)

Note: unlike some other SCM products, AccuRev keeps track of changes to both files and

directories. In this discussion, though, we’ll concentrate on files.

Suppose one of the files changes:

 ...

release_number.txt last modified 2004/11/24 07:19:18 (version 5)

 ...

(Somebody forgot to modify the release number; we’re sure that has never happened at your

organization.) You can think of this change as producing a new software configuration. But in

many situations, it’s more useful to think of this as an incremental change to an existing, long-

lived configuration — the one called “Gizmo source base” or, perhaps more precisely, “Gizmo

Version 2.5 source base”.

So in the end, is a software configuration just “a bunch of files”? Almost, but not quite. It’s

important to keep in mind that a software configuration does not contain the files themselves, but

AccuRev Concepts Manual 10

only a description or listing of the files and their versions. Think of the difference between an

entire book (big) and its table of contents (small). This crucial distinction makes it possible for

AccuRev to keep track of hundreds or thousands of software configurations, without needing an

infinite amount of disk storage.

The change described above to file release_number.txt illustrates the distinction between files

and configurations of files. The change to the contents of the file is something like this:

replace text line “RELEASE=2.5” with text line “RELEASE=2.5.1”

The change to the software configuration is something like this:

replace version 4 of file “release_number.txt” with version 5

For another example of the distinction, recall that a configuration takes into account filenames

and directory structures, too. Consider this configuration:

src/gizmo.c version 45

src/frammis.c version 39

src/base.h verion 8

src/release_number.txt version 4

doc/Gizmo_Overview.doc version 19

doc/Gizmo_Relnotes.doc version 3

Boldface shows the differences from the first configuration listed above. The file contents are

exactly the same; but one filename has changed, and the files have been organized into

subdirectories. So this is a different software configuration, even though there has been no change

to the contents of the files.

Software Configurations and Development Tasks

In most modern software development organizations, many tasks are under way concurrently. At

the beginning of this section, we listed a few: new products, new releases of existing products,

ports to different platforms, and bugfixes. In addition, consider the fact that each one of the above

tasks is often several coordinated efforts: initial development, unit testing, internal system testing,

external system (“beta”) testing, final production.

To enable all the tasks to progress smoothly at the same time, each person gets her own software

configuration — her own set of versions of the files in the repository. (A small, close-knit team

might choose to share a single configuration.)

It’s the job of the software configuration management system, such as AccuRev, to help the

organization:

• Keep track of the various configurations.

• Manage, preserve, and protect changes to the files.

• Detect conflicting changes that take place in different configurations (for example, two people

modify the same section of the same file).

• Resolve such conflicting changes.

AccuRev Concepts Manual 11

AccuRev Software Configurations:

The Stream Hierarchy

This section discusses the AccuRev implementation of software configurations. Be sure to read

the section “What is a Software Configuration?” before this section. First, we set the scene and

introduce some necessary terminology.

AccuRev’s basic job is to keep track of the changes that a development team makes to a set of

files. That’s called version control. A file under version control is called an element; developers

can create any number of versions of each element. AccuRev saves all the versions permanently

in a database called a depot.

Note: we’re oversimplifying here. AccuRev version-controls directories as well as files; and

there can be multiple depots, each one storing a separate directory tree. But the above

paragraph is enough to get us into a discussion of software configurations. For more on depots

and version-controlled files and directories, see section The AccuRev Data Repository on

page 3.

AccuRev can manage any number of configurations of a depot’s elements. Each configuration

contains one version of every element in the depot — or perhaps, just some of the elements. Here

are the basic data structures:

• A stream is a configuration of the depot that changes over time.

• A snapshot is a configuration of the depot that never changes.

• A depot’s streams and snapshots are organized into a stream hierarchy: each stream or

snapshot has one “parent”, and can have any number of “children”.

The stream hierarchy can be changed at any time: move a child to a different parent, interpose a

new stream between a child and its parent, etc. Using these structures, it’s easy and intuitive to

model many aspects of the software development process.

AccuRev Concepts Manual 12

The main idea is to enable multiple development tasks to take place concurrently, and to manage

when (and if) work done for one task is shared with other tasks. For example:

• A stream corresponds to a

development task. It might

be a long-lived project, such

as “the Release 2.5

development effort”; or it

might be a quickie, such as

“fix error message

ERR037”. When a

developer modifies an

element, the new version is recorded as a change to the configuration of a particular stream.

top-level stream
(“root stream” or
“base stream”)

2nd-level
streams

3rd-level
streams

4th-level
streams

5th-level
streams

AccuRev Concepts Manual 13

• A snapshot corresponds to a project milestone, such as “Build

451” or “Release 2.5 final build”. It’s vitally important to be able

to tell exactly which versions of which files went into Build 451,

no matter what changes were made subsequently. A snapshot

answers this need precisely and completely reliably, because it’s

a never-changing configuration.

• A “parent” snapshot acts as a

stable starting point for any

number of “child” streams.

No matter when a new child is

created, its initial

configuration is an exact copy

of the parent snapshot. This

structure is appropriate for

managing multiple bugfixes to

an old release. Each bugfix

stream starts with the versions

that were used to build the

original release — say, the

versions in snapshot “Release

2.5 final build”.

• Versions created at the bottom of the stream hierarchy rise up through the hierarchy by being

promoted from stream to stream — from child to parent, then from parent to grandparent, etc.

Promotion is one of AccuRev’s most important operations, enabling you to intuitively model a

project’s workflow.

AccuRev Concepts Manual 14

For example, after initial development work on a set of files is completed, the files are

submitted to unit testing, then to internal system testing, then to external system (“beta”)

testing, then to final production. If this workflow is too elaborate for your organization, or not

elaborate enough, just design your stream hierarchy differently. You can redesign a project’s

workflow at any time by changing the stream hierarchy.

• A parent stream provides an integration point for any number of child streams. This structure

is appropriate for a development effort that is divided into multiple tasks, to be undertaken

concurrently by different developers. As developers complete their changes, they promote the

changes to the parent “integration stream”.

If two or more

developers happen to

change the same file,

AccuRev makes sure

that the changes are

merged together. This

ensures that one person’s

work is not overwritten

accidentally by another

person’s.

AccuRev Concepts Manual 15

• Each stream

provides a change

scope for the

subhierarchy

beneath it: child

streams, grandchild

streams, etc. Once a

version has been

promoted to a

stream, that version

becomes available

to the stream’s entire

subhierarchy. In

many cases, the

newly promoted

version will appear

automatically in

(“be inherited by”)

all the descendant

streams. This auto-

integration mechanism complements the explicit integration of merging, described in the

preceding paragraph.

For example, suppose a new corporate logo has been designed and saved in a new version of

file corp_logo.png. Promoting this version to a high-level stream makes it appear instantly in

many lower-level streams where Web pages are being developed and updated.

It may be worthwhile to study the above scenarios a bit more, and to consider how your

organization might use AccuRev’s streams and snapshots in your own development environment.

As you do so, keep these two important points in mind:

• A stream is a software configuration, a specification of particular versions of particular

elements. A stream doesn’t contain copies of files stored in the depot’s file storage area; it just

contains a “matched set” of versions, selected from all the versions recorded in the depot’s

database.

• A depot’s files are organized into a directory tree; a depot’s streams are organized into a tree-

structured hierarchy. These two tree structures are different and independent of each other. In

a sense, the directory tree is a “picture” of a software application, and the stream hierarchy is a

“picture” of the software development process that creates and maintains the application.

How Changes Migrate Through the Stream Hierarchy

AccuRev provides configuration-management capabilities that are sophisticated and robust,

without sacrificing ease of use. What’s the secret? One main reason is that AccuRev sees the

development environment in the same way as a typical development team:

• Many development tasks are active concurrently, all using the same source base.

AccuRev Concepts Manual 16

• Tasks are often interrelated; they must share their changes with each other (“integration”) and

weed out inconsistencies; some tasks cannot be completed until one or more others have been

completed.

• Most tasks are accomplished by making changes to relatively few files.

• A task is completed by “delivering” a set of changes to another task. For example, a

development task might deliver its changes to an integration task, or to a testing task.

• A developer’s next task may involve changing a completely different set of files from the

previous task.

AccuRev streams neatly model all these aspects of development tasks. The (relatively few) files

that a developer changes for a task become active in a particular stream. Typically, this occurs

when the developer records new versions of the files, using the keep command. To complete the

task, or to mark an intermediate milestone, the developer delivers the changes to the parent

stream, using the promote command. The files become active in the parent stream, and they

revert to being inactive (not under active development) in the child stream.

AccuRev Concepts Manual 17

In a multiple-level stream hierarchy, several promotions are required to propagate a set of changes

all the way to the top level. Each promotion causes the file(s) to become active in the “to” stream,

and inactive in the “from” stream.

AccuRev terminology: the set of elements (files and directories) that are currently active in a

particular stream constitute the default group of that stream.

You may have gotten the impression that a given file can be active in only one stream at a time.

Not so — that would mean only one development task at a time could be actively working on the

file. AccuRev allows each file to be active in any number of streams — even all of the streams at

once. Typically, though, a file is active in just a few streams at any particular moment.

The diagram below uses contrasting colors to show how a particular file might be active in four

different streams. That is, four different versions of the same file are in use at the same time, for

various development tasks.

Inheriting Versions From Higher-Level Streams

What about the other streams? Each stream in the hierarchy contains some version of the file; if a

file is not active in a particular stream, the stream automatically inherits an active version from a

higher-level stream. The diagram below shows how the four active versions fill out the entire

stream hierarchy:

AccuRev Concepts Manual 18

This scheme makes it easy for an organization to manage many development tasks concurrently,

each with its own software configuration in a separate stream. As changes are made for certain

tasks, AccuRev takes care of automatically applying the changes to the software configurations

used by other subsidiary tasks — except for the tasks that are actively working on the same file(s).

Just a few promote operations can effectively propagate versions to tens or even hundreds of

other streams.

Pass-Through Streams

AccuRev features a special kind of stream, called a pass-through stream. A version that is

promoted to such a stream automatically passes through to the parent stream. The file doesn’t

become active in the pass-through stream; it does become active in the parent of the pass-through

stream.

Pass-through streams are useful for grouping lower-level streams. (Most commonly, the streams

to be grouped are ones built into user workspaces. For a full discussion of workspaces, see

AccuRev Workspaces and Reference Trees on page 21.) For example, suppose a “swat team” of

four programmers often moves from project to project. AccuRev accomplishes the task of moving

a programmer from Project A to Project B by reparenting the programmer’s personal stream:

making it a child of the Project-B stream instead of the Project-A stream.

AccuRev Concepts Manual 19

Reparenting all four programmers’ personal streams from the Project-A stream to the Project-B

stream requires four separate operations. But suppose the programmers’ streams were all children

of the same pass-through stream; moving the team to a different project requires just a single

operation: reparenting the pass-through stream.

The intermediate stream level doesn’t impose any extra day-to-day work on the programmers.

The versions they promote automatically pass through the intermediate stream to the project

stream.

The Include/Exclude Facility

AccuRev has an advanced include/exclude facility, which vastly increases the flexibility of a

depot’s stream hierarchy:

• You can configure any dynamic stream (or workspace) to include just some, not all, of the

elements from its parent stream; the subhierarchy below the stream inherits this configuration.

This facility makes it easy to logically partition a source tree, so that different development

projects can work on different parts of the source code, and so that different development

groups cannot even see each other’s work.

• In any dynamic stream or workspace, you can change the backing stream of individual

elements or entire subtrees of elements. In effect, this special kind of include/exclude (termed

cross-linking) provides a way to make the stream hierarchy look different for different

elements. You can think of it as a way to draw “dotted lines” or “detours” in the stream

hierarchy, for individual elements or sets of elements.

See Getting Only the Files You Need: the Include/Exclude Facility on page 29.

AccuRev Concepts Manual 21

AccuRev Workspaces and Reference Trees

As described in AccuRev Software Configurations: The Stream Hierarchy on page 11, AccuRev

uses streams to organize your development data, as any number of projects are under way

concurrently. But streams are not the entire story:

• A stream is just a bookkeeping device, though a very sophisticated one! It’s a database

mechanism that records which versions of files are in use for a particular development task.

But what about the actual files themselves, which developers edit and build software systems

with?

• The promote command propagates an existing version of a file from a lower-level stream to a

higher-level stream. But how are new versions of files created in the first place?

In other words, how do users access AccuRev-controlled files, in order to perform their day-to-

day development tasks? The answer: through workspaces.

A workspace is an ordinary directory tree that instantiates a stream. That is, the workspace

contains files that are copies of the versions in the stream. We say that the workspace is “attached

to the stream” or “based on the stream”. And the stream is said to be the backing stream for the

workspace; we’ll explain this term in Updating a Workspace on page 25.

For example, suppose a stream contains these versions of the elements in a (very small) depot:

src/gizmo.c version 45

src/frammis.c version 39

src/base.h verion 8

src/release_number.txt version 4

doc/Gizmo_Overview.doc version 19

doc/Gizmo_Relnotes.doc version 3

A workspace attached to this stream is a directory tree containing:

• a src subdirectory, containing four files (gizmo.c, frammis.c, base.h, release_number.txt).

• a doc subdirectory, containing two files (Gizmo_Overview.doc, Gizmo_Relnotes.doc).

Another stream in the depot’s stream hierarchy might contain different versions of some or all the

files. So, for example, the contents of files release_number.txt and Gizmo_Relnotes.doc might

be different in a workspace attached to another stream.

Any number of workspaces can be attached to the same stream. A typical scenario is for all the

members of a project team to maintain workspaces attached to the stream that records the

project’s ongoing work. Conversely, a workspace can be attached to any stream. But typically,

workspaces are created only at the “leaf level” of a depot’s tree-structured stream hierarchy: if a

stream acts as the backing stream for one or more workspaces, it generally doesn’t have child

streams, too.

AccuRev Concepts Manual 22

Using a Workspace

As the name implies, a workspace provides a location for performing development tasks: editing

source files, compiling, debugging, testing, creating web sites, etc. Since a workspace is a regular

directory tree in the file system, there are no special issues involved with using software

development tools with AccuRev data. Just do it.

Here are a few points that show how easy it is to do day-to-day work in a workspace:

• A workspace need not be in any special file system location. Any place where you have

permission to store data will do.

• If you decide you need more space, you can move a workspace to another location. And you

don’t have to worry about losing track of your workspaces — AccuRev keeps track of every

workspace’s location.

• You can modify any file in a workspace at any time. Some configuration management systems

require you to perform a “check out” operation before working on a file, and keep most files

in a read-only state — but not AccuRev.

The thing that’s special about a workspace is that it provides a two-way portal to the AccuRev

data repository: you put your own changes into the repository, and you draw out the changes that

your colleagues have previously recorded there.

Putting Data Into the Repository

A workspace enables you to create new versions of the files in a particular depot. (Each

workspace is attached to a particular stream, which belongs to a particular depot.) First, you use

any development tools to work with the workspace’s copies of existing versions; then you use

AccuRev commands to store new versions in the depot. In addition to creating new versions of

existing files (keep command), you can use the workspace to add new files and directories to the

depot (add command), rename files and directories (move command), and even rearrange the

depot’s directory hierarchy (move command).

Because it’s a separate directory tree, a

workspace provides an isolated, private

development environment. The changes you

make become public only when you enter a

promote command. This creates versions of

one or more files in the attached stream. These

versions are public: your changes are now

available to be incorporated into other

workspaces attached to the same stream.

Subsequent promotions to higher-level

streams will make the changes available to an

even wider scope of workspaces.

AccuRev Concepts Manual 23

Getting Data Out of the Repository

A stream is a changing software configuration of a depot. A typical stream has new versions

entering it all the time. Some of the versions are promoted from the workspaces attached to them,

as described just above; other versions are inherited automatically from higher-level streams. (See

Inheriting Versions From Higher-Level Streams on page 17.)

As new versions enter a stream,

they become available to the

workspace(s) attached to the

stream. But AccuRev never copies

a new version of a file into your

workspace automatically. Instead,

you periodically use AccuRev

commands to update the

workspace. This replaces existing

files (or adds new ones), so that

the files in the workspace

accurately reflect the backing

stream’s current contents,

including any recently-arrived

versions. AccuRev takes care not

to “clobber” files that you’re

working on when it copies new

versions to the workspace.

The Workspace’s Built-In Stream

The diagram above, showing how data flows from a workspace into the repository, is an

oversimplification. Changes that you make in your workspace don’t actually go directly into the

backing stream. Long experience with configuration management systems has shown that users

sometimes enter changes into the repository before they’re truly ready to be shared with others —

for example, code that’s never been tested. But a delaying strategy also has its drawbacks — for

example, it increases the chances of mistakenly deleting several weeks worth of changes without

ever preserving them in the repository.

Some other version control systems use “private branches” to address these issues. AccuRev

solves the problem by building a private stream into each workspace. This built-in stream is

separate from the backing stream. Here’s a more detailed diagram showing how data flows from a

workspace into the repository; this one includes the workspace’s built-in stream.

AccuRev Concepts Manual 24

This diagram shows that in AccuRev’s client-server world, a workspace has one foot on each side

of the divide:

• The ordinary directory tree that we discussed above (the workspace tree) lives on the client

side. The development data you work with on a day-to-day basis lives entirely in the

workspace tree; it’s “just a bunch of files”.

• The built-in stream (the workspace stream) lives on the server side, in the data repository

managed by the AccuRev Server. It contains all of the workspace’s configuration management

information. And it resides, as all streams do, entirely within the database of a particular

depot.

The diagram also shows that recording a new version of a file in the backing stream is a two-step

process:

1. The keep command creates a new version in the workspace stream. Think of keep as moving

data from the client side to the server side. This command also copies the file in your

workspace tree, storing the copy in the depot’s file storage area. The data stays within the

workspace, remaining private.

2. The promote command propagates the version from the workspace’s built-in stream to the

backing stream. This command operates totally within the depot’s database. No data file is

copied to the file storage area during a promote.

Why the extra stream and the extra step? Isn’t it redundant? No, because the workspace stream

and backing stream play different roles. The whole idea of the workspace is to provide a degree of

isolation from the changes that others are making concurrently. The workspace stream makes the

isolation more flexible. It enables you to keep any number of intermediate versions of a file in

AccuRev Concepts Manual 25

your workspace, before “going public” by promote’ing the most recent version. If you decide that

you’ve headed off in the wrong direction, you can revert a file to any of those intermediate

versions and promote that version instead. No one else needs to know. You can even purge all the

work you’ve done on a file, reverting the workspace to using the version in the backing stream.

All the intermediate versions that you keep are stored permanently in the depot, even the versions

you never promote to the public stream hierarchy. Thus, the keep command provides a data-

backup capability: “save a copy of this file, just in case I ever want to restore it to its current

state”. It also means you can change your mind as many times as you like about which version of

a file should be shared with the rest of the world.

Real Versions and Virtual Versions

The difference between keep and promote highlights an important aspect of the way that

AccuRev organizes and manages development data. It also highlights the difference between

backing streams and workspace streams.

All “real” development takes place in workspaces, because that’s where the files are. The keep

command preserves the changes you’ve made to a file (Java source file, Perl script, MPEG audio

file, etc.) Accordingly, versions created by the keep command are called real versions. Real

versions live in workspaces — more precisely, every real version is created in the built-in

workspace stream of some workspace.

By contrast, the promote command does not record a new change to any file. Rather, it changes

the approval level and availability of a change that was previously recorded with keep. The

version that promote creates in a higher-level stream is called a virtual version; each virtual

version is just a pointer to, or alias for, an existing real version in some workspace stream.

Active Files and the Default Group

AccuRev keeps track of which files you’re actively working on in your workspace. This set of

files is called the workspace’s default group. It includes all the files for which you’ve recorded

changes in the repository. Typically, most of the changes are new versions, created with keep. The

default group also includes renamed or relocated files (move command) and deleted files

(defunct command).

When you promote a file’s changes from your workspace to the backing stream, the file is

removed from the workspace’s default group. This reflects the fact that you’re done working on

that file — at least for now! Similarly, a purge of your work on a file removes the file from the

workspace’s default group.

Updating a Workspace

The workspace’s two-part structure — workspace tree on the client side, workspace stream on the

server side — plays an important role in how AccuRev keeps a workspace synchronized with the

stream to which it’s attached.

At any given time, a workspace should contain:

• the files you’re actively working on (that is, the members of the workspace’s default group)

AccuRev Concepts Manual 26

• for each other version-controlled file in the depot, a copy of the backing stream’s version

(You can think of the active files as being in the “foreground” of the workspace, and the non-

active files as being in the “background”. Those “background files” are copies of versions in the

stream to which the workspace is attached. That’s why it’s officially called the workspace’s

backing stream.)

But a workspace often gets out of date with respect to its backing stream. Typically, each member

of a development team has his own workspace, and all the workspaces are based on the same

backing stream. For files that you’re not working on, your workspace continues to have copies of

old backing stream versions, even as your colleagues are promoting new versions of those files to

the backing stream. If the backing stream contains a file more recent than one in your workspace,

that file’s status in your workspace is stale. Updating the workspace clears the “stale” status,

restoring it to backed.

It’s the job of the update command to synchronize the workspace and its backing stream in this

way. To determine which files you’re actively working on, update looks in the workspace stream;

it considers a file to be active if you’ve created one or more new versions of it in the workspace

stream. Then, update makes sure that the workspace tree contains a copy of the backing-stream

version of each non-active file. Typically, this involves replacing old files with new files. But it

can also involve renaming, relocating, and removing files — if those kinds of changes have

recently been recorded in the backing stream.

Variation #1: Workspace Based on a Snapshot

A workspace can be based on a snapshot, instead of a stream. Initially, this might not seem to

make sense; after all, a snapshot is an unchanging software configuration, and a workspace is a

tool for getting changes in and out of the data repository (a “two-way portal”). But a snapshot-

based workspace is quite useful — for example, for performing maintenance work on a previous

product release.

When you create a snapshot-based workspace, AccuRev copies the versions in the snapshot to the

new workspace tree. (This step is just like the creation of a stream-based workspace.) For

example, you might create a workspace containing exactly the source versions that were used to

build Release 6.1 of your product. That’s the only time development data flows from the

repository to the workspace. It doesn’t make sense to update the workspace, because there’s

guaranteed to be nothing new in the snapshot. It’s a configuration that never changes.

You can make changes to the files in a snapshot-based workspace, saving the changes in the

workspace stream with the keep command. You can’t promote the changes to the snapshot,

though, because — once again — the snapshot is a configuration that never changes. In some

cases, there won’t be any need for such promotions. For example, some of the bugfixes to a

previous product release never need to be propagated elsewhere. You can just build the

maintenance release(s) in the maintenance workspace where you’ve fixed the bugs.

In other cases, you’ll want to incorporate bugfixes into ongoing development work — perhaps

Release 6.2 or 7.0 of your product. AccuRev has special facilities, including the Change Palette,

which enable you to propagate changes from a maintenance workspace (or any snapshot-based

workspace) to any stream.

AccuRev Concepts Manual 27

Variation #2: Reference Tree

Let’s go back to our original definition of a workspace: an ordinary directory tree that instantiates

a stream (or a snapshot). We expanded that definition, showing that a workspace also includes

mechanisms for creating new versions in the stream. Sometimes, though, you don’t need to create

any new versions — you just need the files. For example, you might want a complete set of your

product’s source files in order to test the speed of a new C++ compiler.

For such “just the files” purposes, you can create a reference tree instead of a workspace. A

reference tree instantiates a stream or snapshot, but doesn’t provide any mechanism for creating

new versions. Thus, you can’t use the keep or promote commands when working in a reference

tree. You can use the update command, though. Here’s a typical scenario:

• Create a reference tree named nightly, based on stream gizmo_dvt.

• Each night, perform an update of the reference tree. This retrieves new copies of the files for

which new versions appeared in the gizmo_dvt stream that day.

• After the update is complete, build the Gizmo software application using the updated sources.

You can think of a reference tree as a 1-way portal to the AccuRev data repository (in contrast to a

workspace, which is 2-way).

Parallel and Serial Development

Like other advanced configuration management systems, AccuRev supports parallel

development:

• Edit Stage. Two or more users start with the same data: a particular backing-stream version of

a file. Each user works on a copy of the file in his own workspace. He can keep as many

(private, intermediate) versions as he wishes in his workspace stream.

• Merge Stage. The merge stage begins when one of the developers promotes his private

version of the file to the backing stream. After that, each other developer must merge the

current version in the backing stream into his own work, then promote this merged, private

version. In the end, all users’ changes are incorporated into the backing stream; conflicting

changes to the file, if any, are both detected and resolved.

If two developers work on a file concurrently, a single merge-and-promote is required. If N

developers work on a file concurrently, then N–1 merge-and-promotes are required.

Serial Development through Exclusive File Locking

Parallel development is flexible and powerful, but it is not appropriate for every situation. Some

organizations don't like the extra steps involved in merging, even though merging is largely

automated. Some files cannot be merged, because they are in binary format. (The merge

algorithm handles text files only, not binary files such as bitmap images and office-automation

documents.)

Accordingly, AccuRev supports serial development through its exclusive file locking feature.

Each workspace is in parallel-development mode (exclusive file locking disabled) or is in serial-

AccuRev Concepts Manual 28

development mode (exclusive file locking enabled). You can also set file locks on individual

elements.

The serial development model places more restrictions on users in the edit stage, but it eliminates

the merge stage altogether. Here's the standard scenario, in which all the workspaces are in serial-

development mode:

1. A user starts working on a file by specifying it in a co (“checkout”) or anchor command. The

file changes from being read-only to writable.

2. AccuRev places an exclusive file lock on the file. This prevents the file from being processed

with co, anchor, or keep in other workspaces.

3. The user can edit and keep any number of private versions of the file in his workspace. Then,

the user promotes his most recently kept version to the backing stream. The exclusive file

lock guarantees that no merge will be required before this promotion.

4. After promote records the new version in the backing stream, things return to the initial state:

AccuRev releases the exclusive file lock, and the file returns to read-only status in the user’s

workspace.

5. A user in any workspace can now co or anchor the file, which starts the exclusive-file-locking

cycle again.

For more details, see Exclusive File Locking and Anchor-Required Workspaces on page 4 of the

AccuRev CLI User’s Manual.

The Limited Effect of an Exclusive File Lock

Exclusive file locking does not freeze an element completely:

• The lock applies only within the scope of a particular backing stream. It doesn't affect other

backing streams and the workspaces based on them.

• The lock acquired through workspace-level or depot-level exclusive file locking applies only

to workspaces in serial-development mode. Users in parallel-development-mode workspaces

can make changes and promote the changes to the backing stream.

A lock placed on an individual file element in a workspace applies to all sibling workspaces.

• The lock doesn’t prevent the current version in the backing stream from being promoted to

higher-level streams.

Exclusive file locking does not prevent any user from modifying any file with a text editor or IDE.

AccuRev encourages users in serial-development-mode workspaces to “ask permission first”: it

maintains files in a read-only state, and makes a file writable when a user executes a co or anchor

command on it. But users can modify a file “without asking permission”, by changing the access

mode (Unix/Linux: chmod command, Windows: attrib command or Properties window) and

then editing it. Such “unauthorized” changes can’t be sent to the AccuRev depot, though: the

exclusive file lock disallows a co, anchor, or keep.

AccuRev Concepts Manual 29

Anchor-Required Workspaces

AccuRev also offers a less-restrictive variant of exclusive file locking. Anchor-required

workspaces allow parallel development, with multiple users modifying the same file at the same

time (in their own workspaces). But as in the exclusive file locking environment, files are read-

only by default, and must be anchored (“checked out”) before they can be modified.

Getting Only the Files You Need: the Include/Exclude Facility

In some development situations, it makes sense to configure your workspace to contain a

specified subset of the depot’s elements, rather than all the elements. The benefits can be quite

significant:

• less clutter, allowing you to concentrate on the files that are important to you

• less disk space required to store your workspace on your machine

• faster backups of your workspace

• faster AccuRev processing of your workspace, especially during the Update command

AccuRev’s include/exclude mode implements this capability. You use include and exclude rules

to specify which elements in the backing stream become part of a workspace:

• An include rule can specify an individual file, an individual directory’s contents, or the

contents of an entire directory tree.

• An exclude rule can specify an individual file or an entire directory tree.

• Rules are inherited by lower-level streams and workspaces, in much the same way that

versions are inherited.

• Rules at lower levels of the directory hierarchy can refine rules at a higher level. For example,

a graphic artist might add a rule to exclude everything below the directory src, but then add

another rule to include the single subdirectory src/gui/images/icons.

• An include rule can implement a cross-link, specifying a different backing stream for an

individual element or an entire subtree. In effect, this enables different elements to have

different stream hierarchies, even though they are in the same depot.

Include/exclude rules are not restricted to workspaces — they work throughout a depot’s stream

hierarchy. Rules set in higher-level streams are inherited by lower-level streams. Using rules in

streams is a powerful way to partition a depot’s elements — for example, to restrict different

groups of developers to different parts of the source tree. See The Include/Exclude Facility on

page 19.

Historical Note: Sparse Workspaces

Prior to Version 3.5, AccuRev supported a feature similar to include/exclude mode, called sparse

workspaces. A sparse workspace started out empty; you added certain elements to the workspace

using the Populate command. Those elements were maintained in the regular manner, using

Keep, Promote, and Update. Other elements in the depot were ignored.

AccuRev Concepts Manual 30

This scheme was satisfactory for many purposes, but there were some drawbacks. For example,

an Update would not bring newly created elements into your workspace, just new versions of the

elements that you had already Populate’d.

The include/exclude facility has significant advantages over sparse workspaces:

• Include rules and exclude rules are official attributes of the workspace, maintained in the

AccuRev repository. Since AccuRev knows that a directory is included in the workspace, it

“remembers” to bring newly created elements in that directory into the workspace during

updates.

• You can use include rules and exclude rules to configure streams as well as workspaces. The

rules are inherited down the stream hierarchy. For example, to make the marketing directory

invisible to all developers, you can exclude that directory from a stream that all developers’

workspaces are based on (either directly or through multiple stream levels).

AccuRev no longer supports the creation of sparse workspaces, but you can continue to use

existing sparse workspaces that were created in older versions of AccuRev.

AccuRev Concepts Manual 31

AccuRev Transactions

The AccuRev data repository is organized into a set of depots, each of which stores the complete

revision history of a particular directory tree. Each depot has its own database. Changes to a

depot’s database are structured as a series of transactions, each of which captures all the

information involved in a particular change to the database. Thus, the entire story of how a

depot’s directory tree has evolved is contained in its transaction history.

Transactions are a well-established database technology, helping to guarantee that the database is

always in a self-consistent state. But for AccuRev, transactions are not just a low-level

mechanism for achieving database integrity. They play an essential role in organizing the user

environment. Two aspects of AccuRev transactions make this possible: atomicity and

immutability.

Transactions are Atomic

A user command that modifies elements is recorded as a single transaction in the depot’s

database, no matter how many elements are involved. For example, if a user enters a keep

command to create new versions of 12 files, a single transaction records all 12 versions. What if

something goes wrong (for example, a network failure) while AccuRev is processing those 12

files? The entire transaction is cancelled, and no new version is created of any file. We use the

term atomic to describe this “all or nothing” aspect of AccuRev transactions.

The atomicity of transactions makes life simpler for the user. He never needs to worry about how

to finish up the work of a partially-successful command. If a command fails, he just fixes the

problem that caused the failure and enters exactly the same command again. Atomicity also

means that AccuRev’s view of the various changes applied to the repository matches the user’s

view.

Note: AccuRev does not record every change in a transaction, only changes to your

development data. Thus, keeping a new version is recorded in a transaction, as is

promote’ing an existing version to a higher-level stream. But no transaction is recorded when

you create a new stream or change the location of a workspace.

Transactions are Immutable

Once a transaction is recorded in a depot’s database, it’s there permanently. There is no way to

revise or delete an existing transaction — we describe the transaction as immutable. (And we

describe the depot’s database as being “append-only”.) This property is essential to successful

configuration management. Users must be able to recreate previous configurations with absolute

reliability. The immutability of transactions means that users can reproduce any previous

configuration, not just a few configurations that they happened to designate with a “save” or

“label” command.

AccuRev does make it easy to undo the effect of a transaction. For example, the revert command

reinstates an old version of one or more files. But this is accomplished by recording an additional

transaction, not by removing any existing transaction.

AccuRev Concepts Manual 32

Transactions and Workspaces

This section describes how AccuRev uses a depot's transaction history to efficiently manage the

contents of the depot's workspaces.

Over time, the version-controlled files in a workspace change in two ways: you modify certain

files yourself, using text editors and other development tools; and you periodically use the update

command to get copies of the files that your colleagues have modified. Accordingly, at any given

moment the version-controlled files in a workspace fall into two categories:

• Files placed in the workspace by the ‘update’ command. All of these files are unmodified

copies of the versions in the workspace’s backing stream at the time of its most recent update.

Some of these files may have been placed in the workspace during previous updates.

Typically, some files are copied into the workspace when it is originally created and are never

touched thereafter, because no new versions of the files are ever created in the backing stream.

AccuRev records the fact that the workspace is up-to-date as of the transaction that most

recently precedes the time of the update. (This is completely accurate — no new versions

could have been created between that transaction and the update.) This transaction is called

the current update level of the workspace.

• Files that you’ve worked on in the workspace. These are files that you’ve modified (or

newly created), and whose changes you’ve preserved with the keep (or add) command. You

may also have promote’d the latest version you created to the workspace’s backing stream.

AccuRev can quickly fulfill a request to update the workspace, because it doesn’t need to

consider every file in the depot. Instead, it needs to process only the files that have gotten new

versions since the workspace’s last update. It accesses these versions by examining the set of

transactions between the workspace’s current update level and the most recent transaction. When

the update is complete, the most recent transaction becomes the workspace’s new update level.

Transactions and Issue Management

The atomicity of transactions makes it efficient to implement the integration between AccuRev’s

basic version-control facility and its issue-management facility (AccuWork). Suppose a particular

AccuWork issue record contains a bug report. When you fix the bug by modifying five files,

you’ll want to note this fact in the issue record. AccuRev can simply note the single promote

transaction that placed the fixed versions of the five files in the backing stream. Alternatively, you

can have AccuRev keep track of the individual versions in the issue record; in this case, the issue

record acts as a change package, recording all the versions that were created to implement a

particular bugfix or new feature.

AccuRev Concepts Manual 33

AccuRev/AccuWork Change Packages

Any version-control system must be able to keep track of the changes that developers make to

individual files. A full-fledged configuration management system, like AccuRev, should be able

to handle questions like these:

“What were all the changes made to source files in order to fix bug #457?”

“Have all the changes made to fix bug #457 been handed off to the QA Group” (That is, have

the appropriate versions been promoted to the QA stream?)

AccuRev can handle such questions through its change package facility. (Change packages are

available in the AccuRev Enterprise product only.)

Structure of a Change Package

A change package is a collection of element versions; for example:

version kestrel_dvt_jjp/13 of element /./src/brass.c

version kestrel_dvt_jjp/14 of element /./src/brass.h

version kestrel_dvt_jjp/16 of element /./src/commands.c

The basic idea is that this set (or “package”) of versions contains all the changes required to

implement a certain development project. But we need to refine this idea. Consider that version

14 of brass.h probably contains more than just the changes for that development project. For

example:

• Versions 1-7 might have been created years ago, when the product was first developed

• Versions 8 and 9 might have been minor tweaks, performed last month

• Versions 10-14 are the only versions with changes for the development project in question

So we need a way to express the idea that only the “recent changes” to brass.h, those in versions

10-14, are to be included in the change package. AccuRev accomplishes this by defining each

change package entry using two versions: a user-specified head version and an older,

automatically-determined basis version The “recent changes” to be included in the change

package were made by starting with the basis version (version 9 in this example) and Keep’ing

one or more new versions (versions 10, 11, 12, 13, and 14 in this example).

In the AccuRev GUI, the head version of a change package entry is usually identified simply as

the “Version”.

Note: the Patch command uses the same “recent changes” analysis to determine which

changes in the “from” version are to be incorporated into the “to” version.

Where should the change package entry for brass.h be recorded? AccuRev already provides a

mechanism for keeping track of development activities: the AccuWork issue-management facility.

Each task — fixing a bug, creating a new feature, etc. — is tracked by a particular AccuWork

issue record. So it makes sense to implement change packages using issue records.

AccuRev Concepts Manual 34

Each issue record includes a Changes section that acts as an “accumulator” for versions’ changes.

Here’s how the above example of a change package would appear in an issue record’s edit form:

This change package has entries for three elements:

• brass.c: The basis version, 5/10 was created in the user’s own workspace. This indicates that

the user promoted 5/10 to the backing stream. AccuRev assumes that this change was for

another task, not the one covered by this issue record. Then, the user turned his attention to the

current task, creating additional versions up to and including 5/13, the head version.

• chap03.doc: This change began when the user updated his workspace, bringing in version 4/7

of the element (which had originally been created in another workspace, then was promoted to

the backing stream). Then, the user created one or more versions in his own workspace, up to

and including version 5/11, the head version.

• tools.readme: Similarly, this change began when the user updated his workspace, bringing in

version 12/3, originally created in another workspace. The user created one or more versions

in his workspace, ending with version 5/9, the head version.

Each change package can include at most one entry for a given element. This rule helps to ensure

that the changes in a given change package are consistent with each other. See Updating Change

Package Entries on page 37.

AccuRev Concepts Manual 35

Creating Change Package Entries

You can add entries to a change package manually: right-

click a version in the File Browser, Version Browser, or

History Browser, and then select the Send to Issue

command from the context menu. The selected version

becomes the head version of the change package entry;

AccuRev automatically determines the corresponding

basis version. As the examples above suggest, AccuRev

uses an algorithm that determines the set of “recent

changes” to the element, made in a single workspace.

In the Version Browser, a variant command, Send to

Issue (specifying basis), enables you to pick the basis

version, rather than allowing AccuRev to determine it

automatically.

You can also invoke the Send to Issue command on the

Changes tab of an issue record. This copies an existing

change package entry to a different change package (issue

record).

AccuRev can record change package entries

automatically, whenever the Promote command is invoked in a workspace. For example, suppose

issue record #3 represents a particular bug (and its fix). Whenever a developer promotes one or

more versions whose changes address that bug, he specifies issue #3 at a prompt. AccuRev

automatically creates a change package entry in issue #3 for each promoted version.

Automatic recording of change package entries is enabled through the change-package-level

integration between AccuRev configuration management and AccuWork issue management. For

more on both these integrations, Integrations Between AccuRev and AccuWork on page 81 of the

AccuRev Administrator’s Guide.

Complex Change Package Entries

All change package entries are recorded in terms of real versions (those created in users’

workspaces), even though there may be corresponding virtual versions (created by promoting the

real versions from workspaces to dynamic streams). In all the examples shown above, each

change package entry is a series of consecutive real versions created in the same workspace —

that is, each change package entry records a particular patch to the element.

But the change package facility can also track ongoing changes to elements — changes made at

different times, and in different workspaces. To support this capability, AccuRev defines a change

package entry in a more general way than a patch:

A change package entry for an element consists of all the real versions in the element’s

version graph between a specified basis version and a specified head version. Between-ness is

determined both by direct predecessor-successor connections (created, for example, by Keep)

AccuRev Concepts Manual 36

and by merge connections (created by Merge). Patch connections are not considered in this

determination; the basis version itself is not part of the change package entry.

The following Version Browser excerpts show the range of complexity that a change package

entry can have. In fact, these excerpts show how the same change package entry can change over

time, becoming more complex.

These illustrations suggest the following definition for a change package entry, which is

equivalent to the definition above:

A change package entry for an element consists of the element’s entire version graph up to the

specified head version, minus the entire version graph up to the specified basis version. For

these purposes, the version graph includes direct predecessor-successor connections and

merge connections, but not patch connections.

AccuRev Concepts Manual 37

Updating Change Package Entries

When you want to create change package entry for a particular element, but an entry for that

element already exists in the change package, AccuRev attempts to combine the new entry with

the existing one. (Recall that there can be at most one entry for a given element in a given change

package.) This produces an updated entry that includes all the changes.

A Little Bit of Notation

To help explain how AccuRev performs “change package arithmetic” to combine and update

entries, we’ll use a simple notation. Suppose a change package entry contains the set of an

element’s versions defined by these specifications:

the head version is H

the basis version is B

We’ll use the ordered pair [B,H] to indicate this change package entry.

Combining Two Change Package Entries

Now, suppose a new change is to be combined with the existing change package entry [B,H].

There are several cases, each handled differently by AccuRev:

• Case 1: [B,H] + [H,X] — This simple case typically arises when you think you’re done with

a task and record your work as change package entry [B,H] — but it turns out that more work

on the same element is required. So you (or a colleague) start where you left off, with version

H, and make changes up to version X. Then, you want to incorporate the new set of changes

[H,X] into the same change package.

In this case, it’s clear that the two series of changes can be viewed a single, uninterrupted

series — starting at version B and ending with version X. That is:

[B,H] + [H,X] = [B,X]

Accordingly, AccuRev updates the change package entry automatically — keeping B as the

“Basis Version” and changing the “Version” from H to X.

AccuRev Concepts Manual 38

• Case 2: [B,H] + [J,X] (where H is an ancestor of J: “change package gap”) — This case

typically arises when you do work on a task at two different times, and someone else has

worked on the same element in between.

In this example, a colleague updated her workspace to bring in your original changes, created

versions 9 and 10 in her workspace, and promoted her changes. You then updated your

workspace to bring in her changes, and made a new set of changes.

When AccuRev tries to combine the change [B,H] and the change [J,X] into a single change

package entry, it detects that version H and version J are not the same, but that H is a direct

ancestor of J. Thus, there is a simple “gap” in the potential combined change package entry

(in this example, consisting of your colleague’s versions 9 and 10).

Probably, your colleague was not working on the same task when she made her changes. (If

she had been, she would have added her changes to the same change package, as in Case 1.)

On the other hand, it’s probably OK to include the entire, uninterrupted series of versions

[B,X] in your change set — this includes both your original changes and your new changes

(and, harmlessly, your colleague’s changes, too).

Accordingly, AccuRev can “span the gap” between the two change set entries, in order to

create a single, combined entry.

• Case 3: [B,H] + [K,X] (where H is not an ancestor of K: “change package merge required”)

— This case typically arises when developers in workspaces that do not share the same

backing stream try to use the same change package. There is no simple “gap” between the

existing change package entry and the new one — which means there is no way to combine

them into a single change package entry, according to definitions in Complex Change

Package Entries on page 35.

AccuRev Concepts Manual 39

AccuRev signals this situation with a “change package merge required” message, and cancels

the current operation. You can remedy this situation by performing a merge at the element

level. (There is no merge operation defined at the change package level.) In the example

above, merging version H and version X would create a new version; a change package entry

with the new version as its head can be combined with the existing entry.

AccuRev Concepts Manual 41

AccuRev Glossary

3-way merge

The kind of algorithm that AccuRev uses to combine the contents of two versions

(contributors) of a text-file element: it compares the two files line-by-line with a third version,

the closest common ancestor of the contributors.

access control list

A data structure that controls the rights of one or more users, or groups of users, to access the

data within a particular depot or stream.

access mode

(Unix/Linux only) The standard set of permissions (user/group/others, read/write/execute), as

they apply to a particular file element.

AccuRev home directory

A subdirectory, named .accurev, of your operating-system home directory (or of the directory

specified by environment variable ACCUREV_HOME). This subdirectory stores your

preferences file and other AccuRev configuration files.

AccuRev Server

The program that manages the AccuRev repository and handles commands issued by

AccuRev client programs.

ACL

A set of entries (“permissions”) that controls the rights of individual users or user groups to

access the data within a particular depot or stream.

active

An element is said to be active in a workspace or stream if a new version of the element has

been created there, and that version has not been either (1) promoted to the parent stream or

(2) purged from the workspace or stream. An issue record is said to be active in a workspace

or stream if the head version of one or more of its change package entries is in the stream's

default group. See default group, backed, passive.

add

The operation that places a file or directory, located in a user’s workspace tree, under version

control.

ancestor

In the version graph of an element, version A is an ancestor of version B is there is a direct line

of descent (possibly including merges) from A to B. See predecessor (or direct ancestor). “A

is an ancestor of B” is equivalent to “B is a descendant of A”.

AccuRev Concepts Manual 42

ancestry

The entire set of versions of an element. See version graph.

anchor

A “checkout”-type operation, which declares that a file element is under development in the

current workspace. AccuRev records the fact that the element is “active” by adding it to the

workspace’s default group. With exclusive file locking, anchoring a file in one workspace

prevents it from being made active in sibling workspaces.

anchor-required

An optional setting on a workspace, specifying that the workspace’s file elements are to be

read-only until the user performs a checkout operation (GUI: Anchor command; CLI: anchor

or co command).

anyuser

A security-related keyword: describes the set of users who do not have passwords. See

authuser.

archive

An operation that transfers the storage files for one or more versions from a depot’s file

storage area to its gateway area. After the archived storage files are copied to off-line storage,

the disk storage within the gateway area can be reclaimed.

atomic

An important characteristic of AccuRev transactions: the entire transaction (including all

specified files) must be performed successfully; if not, the entire transaction is cancelled, as if

it were never attempted.

authuser

A security-related keyword: describes the set of users who have passwords. See anyuser.

backed

An element has “backed” status in a workspace or stream if it is not currently active there.

This means that the workspace/stream inherits the version of the element that is currently in

the workspace/stream’s parent stream (also called the backing stream).

backing chain

The “path” (sequence of streams) through the depot’s stream hierarchy, leading from a

particular workspace or stream up to the depot’s root stream.

backing stream

(“parent stream”, “basis stream”) The stream that is just above a given workspace or stream in

a depot’s stream hierarchy. The given workspace/stream inherits versions from the backing

stream.

AccuRev Concepts Manual 43

base rule

The include/exclude rule that makes the top-level directory of a depot appear in the depot’s

root stream.

base stream

(“root stream”) The top-level stream in a depot’s stream hierarchy.

basis stream

(“parent stream”, “backing stream”) The stream that is just above a given workspace or

stream in a depot’s stream hierarchy. The given workspace/stream inherits versions from the

basis stream.

basis time

A date-timestamp setting for a stream, affecting which versions the stream inherits from its

parent stream: for each element, the version inherited is the one that was in the parent stream

at the basis time. See snapshot.

basis version

A particular ancestor of the version specified in a patch, revert, diff, or co command. The

series of versions between the basis version and the specified version constitute the “recent

changes” to be patched into (or removed from) the target. Similarly, a change package entry

consists of all the versions between a specified basis version and a specified head version.

binary

See element type.

change package

A set of entries, each in the form of a basis version/head version pair, recorded on the

Changes tab of an issue record. The change package records the changes to one or more

elements, made to implement the feature or bugfix described in that issue record. Each entry

in the change package describes changes to one element: the changes between the basis

version and the head version. See patch.

change package dependency

A relationship between the change package of an issue record (A) and the change packages of

one or more other issue records (B,C,D, ...), expressing the fact that promote’ing A would also

cause some or all of the changes in B,C,D, ... to be promoted.

Change Palette

The AccuRev GUI tool that enables users to perform merge and promote operations involving

any streams, not just a workspace and its parent stream.

change section

In a text-file merge (or patch) operation, a location where the two contributors being merged

differ from each other. The Merge tool highlights and counts the change sections. It also tracks

AccuRev Concepts Manual 44

the conflicting changes (conflicts) — the subset of change sections in which both contributors

differ from the closest common ancestor. Conflicts must be resolved by human intervention.

See difference section.

checkout

An operation that makes a file active in a workspace, without recording any new changes to

the file in the repository. In an exclusive file locking or anchor-required workspace, a

checkout transitions the file from read-only to writable.

checkpoint

Stopping to save a version of an element, then proceeding to make additional changes to the

element.

client program

An AccuRev CLI or GUI program through which users submit commands to be executed by

the AccuRev Server.

closest common ancestor

(of two versions of an element) The most recent version that is an ancestor of two specified

versions. Used in a merge operation to minimize the amount of work required to combine the

contents of the two specified versions. See merge, version graph.

coalesce

If a promote-by-issue operation (a standard child-to-parent promote, not a cross-promote)

involves multiple issues whose change packages include the same element, AccuRev attempts

to combine those entries into a single, valid change package entry. If the element’s change

package entries cannot be coalesced (caused, for example, by a “gap”), the promote operation

fails.

If this occurs, proceed as described in section “Cross-Promoting Issues to a Non-Parent

Stream — Patch Required” in AccuRev Technical Notes.

concurrent development

(“parallel development”) The practice of having two or more users concurrently work on the

same project — modifying the same version-controlled elements. See serial development.

configuration

A set of element versions — one version of each element. Typically, the set of versions

currently in a particular workspace or stream.

conflict

See conflicting change.

AccuRev Concepts Manual 45

conflicting change

The situation in which both contributors to a merge operation differ from the closest common

ancestor at the same text line (or set of lines). Also, the situation in which both contributors

have pathnames that differ from the closest common ancestor, and from each other.

container file

The ordinary file, located in the file storage area of the AccuRev repository, that contains the

permanent copy of a version created in a workspace with the keep command.

content change

A change to the contents of a file element, recorded in a new version created with the keep

command. For a symbolic-link element, a change to the target pathname is a content change.

For an element-link element, a change to the target element is not considered a content change

to the link. See namespace change.

contributor

Either of two versions of an element, which are to be combined in a merge operation,

producing a new version of the element. This can involve both content changes and

namespace changes.

cross-link

An include/exclude mode operation (“Include from Stream” or incl –b) that includes an

element in a workspace or stream, specifying an alternative backing stream for that element.

Cross-linking a directory also cross-links the entire subtree below it. Cross-linked elements

have (xlinked) status.

cross-promotion

A promote operation that propagates one or more versions from a dynamic stream to another

stream that is not its direct parent. See parent stream.

current change

See current difference.

current depot

CLI: the depot associated with the workspace that contains current working directory. GUI:

the depot whose data appears in the currently visible GUI tab. The current depot’s name is

displayed in the status bar at the bottom of the GUI window.

current difference

The currently highlighted difference section (Diff tool) or change section (Merge tool).

current version

The version of an element that currently appears in a particular workspace or stream. (It’s also

possible that a given workspace/stream might not contain any version of a given element.)

AccuRev Concepts Manual 46

The current version can be directly active in the workspace/stream; if not, it is inherited from

the parent stream. See passive.

current workspace

The workspace whose data is displayed in the current tab; or the workspace from which the

current tab was invoked.

cyclical

In a change-package dependency display, refers to the situation in which issue A depends on

issue B and issue B depends on issue A.

deep overlap, deep underlap

An overlap or underlap that is not in the current workspace or stream, but in the parent stream

or another stream higher up in the stream hierarchy.

default group

The set of elements that are currently active in a particular workspace or stream.

default query

An AccuWork query that you’ve designated to be executed automatically in certain situations:

when you open a new Queries tab; when AccuRev prompts you to specify one or more issue

records in a co command; when you execute promote and an AccuRev/AccuWork integration

is enabled.

defunct

A particular kind of change to an element in a workspace or stream: that the element is to be

deleted. The element disappears from the workspace or stream. Somewhat counter-intuitively,

it also becomes active in the workspace or stream, because defuncting is a change that can be

promoted to the parent stream (or can be undone with a purge operation). A defunct operation

is originally recorded as a new version of the element in some workspace. Promoting this

version up the stream hierarchy causes the element to disappear from the higher-level streams.

dependency

See change package dependency.

depot

The portion of the AccuRev repository that stores the entire history of a particular directory

tree. See element, version.

depot-relative pathname

A pathname that begins with /./ (Unix/Linux) or \.\ (Windows), indicating the path from the

top-level directory of a depot to a particular element.

descendant

See ancestor.

AccuRev Concepts Manual 47

diff

An operation that compares the contents of two versions of a text-file element.

difference section

In a text-file-comparison operation, a location where the two files (or two versions of the same

file) differ from each other. The Diff tool highlights and counts the difference sections. See

change section.

direct ancestor

See predecessor.

direct

An issue record is “in” a stream indirectly if its versions were propagated to the stream with a

promote-by-issue operation (a cross-promote, not a standard child-to-parent promote).

Any other kind of promotion causes an issue record to be “in” a stream directly.

directory

(“folder”) A file system object that can contain files and other directories. Each version of a

directory records a change to its name and/or pathname location in the depot’s directory

hierarchy.

directory link

This term is no longer used. See element link and symbolic link.

double vision

The appearance of two or more versions of an element in the same workspace or stream, each

version at a different pathname. This is a possible side-effect of cross-linking the element (or a

higher-level directory).

dynamic stream

A stream whose configuration changes over time, with new versions promoted from child

workspaces and/or from other dynamic streams. It also inherits versions from its parent

stream.

edit-by-diff

The Diff tool feature enables you to edit your workspace’s version of an element while you’re

comparing it with another version.

edit form

(AccuWork) A fill-in-the-blanks form for displaying and changing the field values of issue

records.

EID

See element-ID.

AccuRev Concepts Manual 48

element

A file or directory that is under AccuRev version control. See version.

element-ID

The unique, immutable integer identifier by which AccuRev tracks the changes to a particular

file element or directory element. An element’s name or pathname can change, but its

element-ID never changes.

element link

(element-link element) An element whose contents is a pointer to another element, which

must be in the same depot. The target element can be a directory element, a file element,

another element link, or a symbolic link.

element type

The kind of data stored in versions of a file element. Different versions of the same element

can have different element types. Three element types exist: text, ptext, and binary. Text and

binary are relatively self-explanatory, but ptext is a special case. When AccuRev copies a text

file from the repository to a workspace (such as through an update or pop command), it gives

it line terminators appropriate for the machine where the workspace exists. Binaries are

copied exactly as they exist in the repository. However, if you declare a text file to be a ptext

file, it will be copied to and from the repository with no line termination changes, just like a

binary. For more information, see the description of the add command in the AccuRev CLI

User’s Guide.

exclude rule

See include rule.

exclusive file locking

An AccuRev feature that enforces serial development: when a file becomes active in one

workspace, an exclusive file lock prevents the file from becoming active in sibling

workspaces.

executable bits

(Unix/Linux only) The data items in a file’s access mode that controls the ability of users to

invoke the file as an executable program.

external

A file or directory that is located within a workspace tree but has not been placed under

version control has “external” status.

File Browser

The Explorer-like tool in the AccuRev GUI that shows the contents of a workspace or stream.

file link

This term is no longer used. See element link and symbolic link.

AccuRev Concepts Manual 49

file storage area

The portion of a depot in which AccuRev maintains a permanent copy (“storage file”) of each

newly created file version. See metadata.

filter

Same as an AccuRev search. See also stream filter, user/group filter.

folder

(“directory”) A file system object that can contain files and other folders. Each version of a

folder records a change to its name and/or pathname location in the depot’s folder hierarchy.

from version

One of the contributor versions in a merge operation. In a typical merge, it’s the version in the

parent stream that is to be combined with the version in the user’s workspace.

gateway area

A directory with a depot’s slice, but outside the depot’s file storage area, where version

container files are staged for offline archiving. The gateway area is also used to restore

archived versions’ storage files.

group

A named set of AccuRev users. Each user can belong to multiple groups, and groups can be

nested.

head version

The version of an element that, along with a basis version, specifies that element’s entry in a

change package. Equivalently, the head-version/basis-version pair specifies a patch to that

element.

header section

(AccuWork) The section of a multiple-page edit form that always remains visible as you

switch from page to page.

History Browser

The AccuRev GUI tool that displays the set of transactions that affect a particular data

structure: depot, stream, file, etc.

immutable

The “permanence” property of an AccuRev transaction: the transaction cannot be deleted or

modified in any way.

include rule

User-defined include rules and exclude rules specify which elements are to appear in a given

stream or workspace. Rules can apply to individual files or directories, or to entire directory

AccuRev Concepts Manual 50

trees. Rules for a stream are inherited by its subsidiary streams and workspaces, but can be

overridden at lower levels.

include/exclude

The facility of streams and workspaces that enables users to specify which elements are to

appear. See include rule.

incomplete

This term has the same meaning in a change-package dependency situation as in the Stream

Issues tab: some, but not all, of an issue’s change package entries are “in” the stream.

indicator

See status indicator.

indirect

See direct.

inherit

The facility by which versions in higher-level streams automatically propagate to lower-level

streams. If an element is not currently active in a stream or workspace, the stream/workspace

inherits the version of the element that appears in its parent stream.

invisible

Describes a data structure that has been deactivated (remove command), and so does not

appear in default GUI displays or CLI listings.

issue record

(AccuWork) A set of data, consisting of fields and values, which represents one AccuWork

issue in the current depot. Each issue record implements a bug report, feature description, etc.

issue schema

(AccuWork) The set of specifications that define the structure of issue records in a depot: data

fields and their value types/ranges, edit-form layout, field validations.

keep

The operation (keep command) that creates a new version of a file element in a workspace,

permanently recording that version in the AccuRev repository.

kept

Refers to a version that has been created with a keep operation.

lock (dynamic stream)

A control on the ability to perform promote and include/exclude operations involving the

stream.

AccuRev Concepts Manual 51

lock (file element)

A control on the file element, requiring (1) users must anchor the file before editing it, and (2)

if a user has anchored the file, users in sibling workspaces cannot anchor or edit the file.

login

Establishing a particular user identity (“username”) with the login command. The username

must have been created previously. AccuRev licenses specify a maximum number of

currently-active usernames.

master repository

The primary data repository that logs all transaction activity processed by the AccuRev

master server. All storage depots are created in the master repository, from which they can

later be replicated.

master server

The instance of the AccuRev Server process that handles all transactions that change the

status of elements in the master repository. Only the master server can write data to the

repository. See replica server.

member

An element has member status in a workspace or stream if one of its versions is in the default

group of that workspace or stream. An element with member status is said to be active in that

workspace or stream; otherwise, it’s passive.

merge

An operation that combines the contents of two versions (contributors) of the same element.

To merge the contents of text files, AccuRev uses a “3-way merge” algorithm: it compares the

two files line-by-line with a third file, the version that is the closest common ancestor of the

other two. Merging of namespace changes also takes into account the closest common

ancestor.

metadata

Information stored in the AccuRev repository other than the contents of file versions.

Metadata is stored in the repository database; file contents are stored in the file storage area.

modified

A file element has “modified” status in a workspace if the file’s contents have changed since

the last time the user kept a new version of the file or updated the entire workspace.

multiple-columns mode

The mode of a table displayed by the AccuRev GUI in which you can define a hierarchical

sort order for the rows, using the values in two or more of the table’s columns. See single-

column mode.

AccuRev Concepts Manual 52

namespace change

A change to the pathname of a file or directory element: either renaming the element in place

or moving the element to a different location in the depot’s directory hierarchy.

non-conflicting change

In a merge operation, a change that occurs in just one contributor (not both of them). Such a

change can be merged automatically, without requiring a decision from the user.

optimization

A heuristic algorithm that AccuRev uses to speed the performance of certain operations on

users’ workspaces. In the timestamp optimization, AccuRev ignores files created/modified

before the workspace’s most recent scan threshold. In the pathname optimization, AccuRev

ignores files whose pathnames match a pattern specified in environment variable

ACCUREV_IGNORE_ELEMS. See search.

overlap

Version X, in a workspace or stream, has “overlap” status if the parent stream’s current

version of the element contains changes that are not reflected in version X. (That is, the parent

stream’s version is not an ancestor of version X.) Such a version cannot be promoted to the

parent stream; the user must create a new version with a merge operation, combining version

X with the parent stream’s version. The new, merged version can then be promoted. Similarly,

an overlap can exist between the versions in two dynamic streams. See deep overlap, deep

underlap, underlap.

parallel development

(“concurrent development”) The practice of having two or more users concurrently work on

the same project — modifying the same version-controlled elements. See serial development.

parent stream

(“backing stream”, “basis stream”) The stream that is just above a given workspace or stream

in a depot’s stream hierarchy. The given workspace/stream inherits versions from the parent

stream.

pass-through stream

When a version is nominally promoted to pass-through stream X, the version automatically

“passes through” X: it is actually promoted to the parent stream.

passive

An element that is not active in a workspace or stream is said to be passive in that workspace

or stream. Passive versions can be overwritten by an update operation.

patch

A set of versions of a text-file element -- typically, containing the “recent changes” made in

one workspace. Also, the merge-like operation that incorporates those changes into another

AccuRev Concepts Manual 53

version of the same element. See merge, basis version, head version, change package, reverse

patch.

pathname optimization

One of AccuRev’s optimizations, which improves the performance of workspace searches to

determine the status of elements.

pending

An element has “pending” status in a workspace if the version in the workspace has changes

that have not yet been promoted to the parent stream. The set of pending elements includes

both kept elements and modified elements.

permission

See ACL.

predecessor

(direct ancestor) The real version from which a given version was derived. A version and its

predecessor are not necessarily located in the same workspace stream. In the Version Browser,

a version and its predecessor are connected by a black line. (Exception: a version created by

the revert command is connected to its predecessor by a dashed blue line.)

preferences file

An XML-format file, named preferences.xml, stored in the .accurev subdirectory of your

AccuRev home directory.

principal-name

The username of an AccuRev user, recorded in the AccuRev repository.

private query

(AccuWork) A query that appears in the Queries pane only for the user who created it. See

public query.

promote

The operation (promote command) that transitions a version from being active in one

workspace or stream to being active in the parent stream (or some other stream). This

operation creates a new virtual version in the parent stream; the virtual version provides an

alias for the real version, which was originally created in some user’s workspace. See version.

ptext

See element type.

public query

(AccuWork) A query that appears in the Queries pane for all users. See private query.

AccuRev Concepts Manual 54

purge

The operation (CLI: purge command; GUI: Revert to Backed command) that discards the

changes made to an element in a given workspace or stream.

query

A set of search criteria that selects AccuWork issue records, based on the records’ field values.

Within each depot containing issue records, one of the queries designated as the default query,

to be invoked automatically in certain situations calling for the user to specify one or more

issue records.

real version

A version of an element, created in some user’s workspace, recording a change to the

contents, type, and/or pathname of the element. See version, virtual version.

recent changes

A set of versions of a particular file element; representing the changes made to accomplish

some task (or any set of related changes). The recent changes start with the current version (or

another selected version), termed the head version; they extended backward to (but do not

include) the corresponding basis version.

reclaim

An operation that deletes archived storage file from a depot’s gateway area, to reduce the

amount of disk storage required for the depot’s slice.

reference tree

A directory tree in users’ disk storage that instantiates a particular dynamic stream or

snapshot. It contains a copy of the current version of each element in the stream or snapshot.

A reference tree based on a dynamic stream can be updated, to incorporate the stream’s recent

changes.

reparent

The operation that changes the parent stream of a particular workspace or stream.

replica repository

A copy of part or all of the contents of the master repository that must be resynchronized

regularly to remain current. New transaction records are written to the master repository only,

making resynchronization necessary.

replica server

The instance of the AccuRev Server process that is associated with a replica repository on the

same machine. It can directly service client programs’ repository-read requests, but forwards

repository-write requests to the master server.

AccuRev Concepts Manual 55

repository

The directory tree and database, which together store all software configuration management

data managed by AccuRev. This data is maintained by the AccuRev Server, responding to

requests made through AccuRev client programs. Users never manipulate the repository

directly.

repository database

The portion of the repository that stores data other than the contents of element versions. See

file storage area.

reverse patch

An operation that removes a selected set of changes from the current version of a text-file

element. See patch, change package.

revert

An operation that “removes” a selected set of changes from a specified version, by creating a

new version that does not contain the change.

root stream

(“base stream”) The top-level stream in a depot’s stream hierarchy.

scan threshold

The time at which a workspace’s most recent search for modified files was initiated. Such

searches are performed by the update and files commands, and by certain forms of the stat

command. In the GUI, several of the File Browser searches include a search for a workspace’s

modified files. See update level.

SCM

Acronym for software configuration management.

search

An operation that determines all the elements in a workspace or stream that have a particular

status.

serial development

The practice of ensuring that multiple users do not work concurrently on the same file under

version control. See parallel development.

server

See AccuRev Server.

session file

A file in the .accurev subdirectory of your home directory, which establishes your user

identity for a particular AccuRev Server.

AccuRev Concepts Manual 56

sibling

Two or more workspaces or streams that have the same parent stream. Pass-through streams

“don’t count” -- that is, all workspaces that promote versions to the same stream are

considered siblings, even if some of them are direct children of the stream, while others are

children of an intervening pass-through stream.

single-column mode

The mode of a table displayed by the AccuRev GUI in which the rows are sorted on the values

in one of the table’s columns. See multiple-columns mode.

site slice

The subdirectory tree within the AccuRev repository that stores repository-wide information

(such as AccuWork configuration data, workflow configuration data, server preferences, and

triggers). By default, the top-level directory of this subtree is named site_slice. See repository

database.

slice

The subdirectory tree that contains the depot’s file storage area. By default, the top-level

directory of this subtree has the same name as the depot itself.

snapshot

An immutable (“frozen”, “static”) stream that captures the configuration of another stream at

a particular time. A snapshot cannot be renamed or modified in any way.

stage

See workflow stage.

stale

An element has “stale” status in a workspace if it is not currently active in the workspace, but

a new version of the element has entered the parent stream. An update operation will

overwrite the stale version with the parent stream’s new version.

static stream

An AccuRev snapshot. The term “static stream” emphasizes the fact that snapshots are part of

a depot’s stream hierarchy.

status

The state of an element, from a version control perspective, in a particular workspace or

stream.

status indicator

A keyword (usually enclosed in parentheses) that reports the AccuRev-level status of a

particular element in a particular workspace or stream. Commonly, multiple status indicators

apply to an element.

AccuRev Concepts Manual 57

storage file

See container file.

stranded

An element has (stranded) status in a workspace or stream if it’s currently active, but cannot

be accessed through the file system. This can occur in several situations:

• There is no pathname to the element, because the element’s directory (or a higher-level

directory) was removed from the workspace or stream by the defunct command or an

exclude rule.

• (dynamic stream only) There are one or more defunct elements at a given pathname, along

with one non-defunct element. The defunct element(s) have (stranded) status.

• The element’s directory (or a higher-level directory) is cross-link’ed, making another

version appear at the pathname of the active version.

stream

The AccuRev data structure that implements a configuration of the elements in a particular

depot. The configuration of a dynamic stream changes over time; the configuration of a

snapshot (static stream) never changes. Each workspace has its own private workspace

stream. See workspace, stream hierarchy, stream path.

stream-ID

An integer that uniquely identifies a stream, snapshot, or workspace with its depot. Changing

the name of a stream or workspace does not affect its stream-ID.

stream filter

A list of streams, which is used to define a subset of a depot’s stream hierarchy that includes

the stream path and all children of each stream in the filter. This subset is used to build the

StreamBrowser display and populate lists of streams in the AccuRev GUI as long as stream

filtering is in effect.

stream hierarchy

The tree-structured collection of streams — including snapshots and workspace streams —

for a particular depot.

stream lock

See lock (dynamic stream).

stream path

A sequence of streams that starts at the root stream and ends at the stream being referenced.

See also stream.

AccuRev Concepts Manual 58

StreamBrowser

The GUI tool that provides both graphical and tabular view of a depot’s stream hierarchy. It

has commands for comparing streams, promote’ing versions between streams, and other

stream-based operations.

symbolic link

(symbolic-link element) An element whose contents is a pathname. The pathname can point to

AccuRev data (that is, a location inside a workspace) or non-AccuRev data.

target

element link, symbolic link: the file system location that the link points to.

target transaction

The most recent transaction at the time of a workspace’s most recent update. The update

command attempts to load versions created in transactions up to and including the target

transaction.

text

See element type.

time-based stream

A stream that has a basis time, affecting which versions it inherits from its parent stream.

Unlike a snapshot, the basis time can be changed.

time-spec

A specification of a particular date/time combination, used in various contexts: creating

snapshots, viewing portions of the history of an element, etc.

TimeSafe

The aspect of AccuRev’s architecture that guarantees the reproducibility of any previous

configuration of a stream, a depot, or the entire repository.

timestamp optimization

One of AccuRev’s optimizations, which improves the performance of workspace searches to

determine the status of elements.

timewarp

A situation in which the discrepancy between a client machine’s system clock and the

AccuRev Server machine’s system clock exceeds the allowable limit.

to version

One of the contributor versions in a merge operation. In a typical merge, it’s the version in a

user’s workspace that is to be combined with the version in the parent stream.

AccuRev Concepts Manual 59

transaction

A record in the AccuRev repository database that indicates a particular change: promoting of

a set of versions, changing the name of a stream, modification to an issue record, etc. Each

transaction has an integer transaction number, which is unique within the depot.

transaction-level integration

The AccuRev facility that records the transaction number of a promote operation in a user-

specified AccuWork issue record. This facility is enabled on a depot-by-depot basis by a

trigger.

transaction history

The set of transactions related to a particular depot, stream, element, or other AccuRev data

structure that changes over time.

transaction level

The number of the most recently completed transaction for a particular depot. See update

level.

transition

See workflow transition.

trigger

The AccuRev facility that enables user-defined procedures (trigger scripts) to be performed

automatically before or after certain operations take place.

trigger script

The executable program that implements a user-defined procedure, to be invoked when a

trigger fires. Also called a trigger program.

twins, evil twins

Two or more elements with the same pathname in a dynamic stream. Example: (1) an element

is defuncted in a workspace, (2) the element is promote’d to the backing stream, (3) another

element is created at the same pathname in the same workspace or a sibling workspace, (4) the

new element is promoted to the backing stream.

undefunct

The operation (undefunct command) that undoes the effect of a previous defunct operation,

restoring a previously removed element back to a workspace. (The element must then be

promote’d to be visible to other streams.)

underlap

Similar to overlap: for both underlap and overlap, the version in the parent stream is not an

ancestor of your version. With an underlap (but not an overlap), your version is an ancestor of

the parent stream’s version; that is, the parent-stream version already contains all the changes

AccuRev Concepts Manual 60

in your version. Deep underlaps can occur in the stream hierarchy, just like deep overlaps. See

deep overlap, deep underlap.

update

The operation (update command) that copies new versions of elements into a workspace from

its parent stream.

update level

The most recent (highest-numbered) transaction whose changes have been incorporated into a

workspace, through an update operation. See scan threshold, transaction level, target

transaction.

user

A person who uses an AccuRev client program to access (read and/or change) the data in the

AccuRev repository. Access is granted only to those who login with a “username” that was

previously registered in the AccuRev repository.

user/group filter

A subset of AccuRev users or groups, which is used to limit the data displayed in parts of the

AccuRev GUI.

validation

(AccuWork) A rule, specified on the Validations subtab of the Schema Editor, that controls a

particular edit-form field. This can take various forms, including specifying a default value,

making a field required, and modifying the list of choices in a multiple-choice listbox. See

issue schema.

version

A particular revision of an element, reflecting a content change (files only) or a namespace

change (files and directories). All versions are originally created in workspaces, and can

subsequently be promoted to dynamic streams. The original (workspace) version is termed a

real version. Each promotion to a dynamic stream creates a virtual version, which serves as an

alias for (pointer to) the original real version.

version-ID

The unique identifier for a version, consisting of two parts: (1) the name or number of the

workspace or stream in which the version was created; (2) an integer. Examples:

talon_dvt_mary/14, 245\19.

Version Browser

The AccuRev GUI tool that displays the version graph of an element.

version control

The discipline of keeping track of the changes made over time to a file or directory.

AccuRev Concepts Manual 61

version graph

The directed-graph data structure that shows the ancestry of an element. The nodes are all the

versions of an element, and whose lines indicate how later versions were derived from earlier

versions. The Version Browser displays the version graph of an element.

version specification

Identifies a particular version of one or more elements. It can be a version-ID; in many

contexts, it can be a stream or workspace name/number, which indicates the version currently

in that stream/workspace.

version tools

AccuRev GUI tools that provide access to historical versions of elements. The Version

Browser provides easy access to all versions of an element. The History Browser provides

access to versions through the transactions in which they were created. The Stream Version

Browser provides easy access to the version that currently appears in a given stream.

virtual version

In a dynamic stream, a version of an element, created by the promote command, which serves

as an alias for (reference to) a previously created real version. In a workspace stream, a

version created by the co or anchor command, referring to the real version that the command

“checked out”. See checkout.

workflow

A directed graph, defined in the Workflow subtab of the AccuWork Schema Editor. The

graph's nodes are the workflow stages that an AccuWork issue record can pass through. The

graph's arrows are the workflow transitions that users invoke to migrate issue records from

stage to stage.

workflow query

An AccuWork query, automatically composed in the Stream Browser or a Queries tab, and

then executed in order to determine which issue records are “in” a particular workflow stage.

workflow stage

A node in an AccuWork workflow, representing one of the steps in the “lifetime” of an issue

record. See workflow transition.

workflow transition

An arrow in an AccuWork workflow, pointing to a particular workflow stage. This represents

one step that an issue record can take through the workflow. A transition has two components:

a transition action (such as “Finish Dvt”) and a workflow stage (such as “Implemented”) that

is the arrow's destination. Each workflow transition can be configured to start from any

number of stages.

AccuRev Concepts Manual 62

workspace

A location in which one or more users perform their work, using files under version control.

Each workspace consists of a workspace stream in the repository and a workspace tree in the

user’s disk storage.

workspace name

The name by which users refer to a workspace. A workspace name always ends with

_<principal_name>, to indicate the user who own its. The default workspace naming

convention, used by the mkws command, is <backing_stream_name>_<principal_name>.

workspace stream

The private stream that is built into a workspace. All new versions of elements are originally

created in workspaces; AccuRev records these versions in workspace streams.

workspace tree

The ordinary directory tree, located in the user’s disk storage, in which the user performs

development tasks and executes AccuRev commands.

