
ArcSight FlexConnectors
Software Version: CE 24.1

Developer's Guide to ArcSight FlexConnectors

Document Release Date: January 2024
Software Release Date: January 2024

Legal Notices
Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Copyright Notice
Copyright 2024 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors (“Open Text”) are as may be
set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. Open Text shall not be liable for technical or editorial errors or
omissions contained herein. The information contained herein is subject to change without notice.

Trademark Notices
“OpenText” and other Open Text trademarks and service marks are the property of Open Text or its affiliates. All other
trademarks or service marks are the property of their respective owners.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number

l Document Release Date, which changes each time the document is updated

l Software Release Date, which indicates the release date of this version of the software

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

https://www.microfocus.com/support-and-services/documentation

Support

Phone A list of phone numbers is available on the Technical Support
Page: https://softwaresupport.softwaregrp.com/support-contact-information

Support Web Site https://softwaresupport.softwaregrp.com/

ArcSight Product Documentation https://www.microfocus.com/documentation/arcsight/

Contact Information

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 2 of 243

https://www.microfocus.com/support-and-services/documentation
https://softwaresupport.softwaregrp.com/support-contact-information
https://softwaresupport.softwaregrp.com/
https://www.microfocus.com/documentation/arcsight/

Contents

Overview 11

FlexConnector Development Process 11
Folder Structure 11
Key Configuration Files 12

Support for IPv6 Addresses 12
Supported Event Fields 13
Modifications to Operations 13
Developer Considerations 14

FlexConnector Types 15

Event Data Format Examples 17
Log File FlexConnector 17
ID-Based Database FlexConnector 18
JSONFlexConnectors 18
Multiple Database FlexConnector 19
Regex FlexConnectors (Variable-Format File FlexConnectors) 19
Scanner FlexConnector 20
Syslog Streaming FlexConnector 20
Time-Based Database FlexConnector 21
XML File FlexConnector 21

Creating a Parser 23

Parser Structure 23
Example Parser File 24
Token Declarations 25
Token Types 26
Event Mapping 26
RequestUrl Event Field 26
Operations Table 27
Severity Mapping 28

Examples 29
Extra Processors 29
Key-Value Parsers 31

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 3 of 243

Setting Parser Properties 33
Parser Properties for a Log File FlexConnector 33
Parser Properties for all Regex FlexConnectors 34
Parser Properties for a Time-based Database FlexConnector 35

Version 36
Query 36
Timestamp 37
UniqueID 37

Parser Properties for an ID-based Database FlexConnector 37
Version 38
MaxID 39
Query 39
ID 39
UniqueID 39
Query Limit 40

Parser Properties for an XML FlexConnector 40
Namespace 41
Hop Nodes 41
Trigger Nodes 42
Token Mappings 42

Examples of Token Mappings 42
Extra Events 43

Parser Properties for a JSON Folder Follower / Multiple Folder Follower
FlexConnector 43

Trigger Node 45
Token Location and Mappings 45
JSON Parsers for Complex Event Schemas 45

Working with Hierarchical Schemas 45
Representing a JSON Array with a Key Element 47
Representing a Token Value in URI Format 48
Sample JSON Array 49

Parser Properties for Scanner FlexConnectors 49
Scanner FlexConnectors for Normal Text or XML Scan Reports 50
How Scanner FlexConnectors Parse Scan Reports 50
Parsers for Normal Text Reports 51

Getting a List of Hosts 51
Ignore or Include Line 52
Regular Expression and Token Mappings 52

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 4 of 243

Use IP 53
Invalid Vulnerabilities 53
Extra Events 53

Getting Vulnerabilities for Scanned Hosts 54
Token Mappings 55
Event Mappings 56
Severity Mappings 57
Ignore or Include Line 57

Getting Open Ports on Scanned Hosts 57
Token Mappings 58
Event Mappings 58
Ignore or Include Line 59

Getting OS and Applications (URIs) on Scanned Hosts 59
Token Mappings 60
Event Mappings 60
Ignore or Include Line 60

Parsers for XML Reports 61
Getting a List of Hosts 61

Token Mappings 62
Use IP 62
Invalid Vulnerabilities 62
Extra Events 63

Getting Vulnerabilities for Scanned Hosts 63
Token Mappings 65
Event Mappings 65
Severity Mappings 66

Getting Open Ports on Scanned Hosts 66
Token Mappings 68
Event Mappings 68

Getting OS and Applications (URIs) on Scanned Hosts 68
Token Mappings 69
Event Mappings 69

Scanner FlexConnectors for Database Scan Reports 70
Getting the Version of the Database 70

Version 70
Getting the List of Scan Jobs 71

Scan Job 71
Use IP 71

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 5 of 243

Invalid Vulnerabilities 71
Extra Queries 72
Vulnerability Query 73
Open Ports Query 75

Getting OS and Applications (URIs) on Scanned Hosts 76
Getting Scanned Hosts (Host Query) 76

Installing and Configuring the FlexConnector 78

Management of FlexConnectors 78

Prerequisites for the Installation 80

Downloading the Database Driver 80
JDBC Driver for Microsoft SQL Server 81
JDBC Driver for MySQL 81
JDBC Driver for PostgreSQL 81
JDBC Driver for Oracle 82
DB2 Driver for IBM DB2 82

Installing the Core Software 82

Copying the Created Parsers 83

Setting the Global Parameters 84

Selecting and Configuring the FlexConnector 86
ArcSight FlexConnector File 86
ArcSight FlexConnector ID-Based Database 87
ArcSight FlexConnector Time-Based Database 89
ArcSight FlexConnector JSON Multiple Folder Follower 92
ArcSight FlexConnector Multiple Database 93
ArcSight FlexConnector Multiple Folder File 94
ArcSight FlexConnector Regex File 95
ArcSight FlexConnector Regex Folder File 96
ArcSight FlexConnector REST 96
ArcSight FlexConnector Scanner Database 97
ArcSight FlexConnector Scanner Text Reports 99
ArcSight FlexConnector Scanner XML Reports 100
ArcSight FlexConnector XML File 101
ArcSight FlexConnector Syslog 101

Adding the Destination Details 102

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 6 of 243

Completing the Installation 103

Adding JDBC Driver to the Connector Appliance/ArcSight Management Center 103

Running the FlexConnector 105

Advanced Functions of FlexConnectors 106

Advanced FlexConnector Configuration Parameters 107
Parameters Common to all SmartConnectors 108
CEF Syslog Parameters 110
File Connector Parameters 112
File Folder Follower Parameters 114
Syslog Parameters 118

Syslog Daemon Parameters 119
Event Parsing (Sub-agents) Parameters 119
Event Reception Parameters 121
Raw Log Parameters 123
Event Queue Parameters 124
Event Processing Parameters 125

Syslog Pipe Parameters 126
Syslog File Parameters 126
Syslog NG Daemon Parameters 128
Raw Syslog Daemon Parameters 128
ArcSight CEF Encrypted Syslog (UDP) Parameters 129
TippingPoint SMS Syslog Extended Parameters 129

FlexConnector Creation Wizard for Delimited Log Files 130

Managing Rotation of Log Files 131
Name Following Log Rotation 131
Daily Rotation 132
Index Rotation 132
Parameters for Daily and Index Rotation 132

Using rotationschemeparams for Daily Log File Rotation 132
Using rotationschemeparams for Index Log File Rotation 134
Using wildcard for Daily and Index Log File Rotation (File Folder Follower
Only) 134

Using wildcard for Date Rotation 135
Using wildcard for Index Rotation 135

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 7 of 243

Detecting File Processing Latency 136

Categorizing Events 137
HTTP Status Code Categorization Example 137
Firewall Example 140

Merging Events 140
Parser Properties for the Merge Operation 140
Example of Merging Events 142
Sample Log Lines 142
Merge Operation Definition 143
Event Mapping Definition 144
Merged Event 145

Additional Information and Functions of Regex FlexConnectors 145
Supported Regular Expressions 146

Multi-line Parsing 148
Using the Regex Tool 151
Using Sub-Messages for Multiple File Formats 154

Default Sub-message 160
Extra Mappings 160
Conditional Mappings 163
Using Conditional Mapping in Sub-messages 164
Additional Data Mapping 165

Using the Get Additional Data Names Command 166
Using the Map Additional Data Name… Command 167
Using the Unmap Additional Data Name… Command 168
Using the Get Status Command 168

Detecting Unparsed Events 169
Supported Parser Types 169
Criteria for Parsing Events 170

Comment Expressions 172
Parsing Expressions 173
Token Expressions 173
Mapping Expressions 173
Extra-Processor Expressions 174

Criteria for Unparsed Events 174
Unparsed Events Output File 177

Additional Parser Settings 179

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 8 of 243

ArcSight Built-in Tokens 180

ArcSight Built-in Token Types 182

ArcSight Built-in Event Field Mappings 183

ArcSight Operations 189

Date and Time Format Symbols 206

Working with Map Files 207

What Are Map Files? 207

Map File Examples 207
Multiple "Getters" and "Setters" 208
Using the “No Getter” Trick 209

Map File Details 209
Controlling Map File Operation 210
Basic Map Files 210
AgentInfoAdder1 Map Files 211
Categorizer Map Files 211
Extra Processor Map Files 212

Using Ranges in Map Files 213

Using Regular Expressions in Map Files 214

Using Parser-Like Expressions in Map Files 214
More About Parser-Like Expressions Syntax 215
Operations Containing Commas 216
Backslashes in Expressions Versus in Parsers 216

Real-world Examples 216
Adding Country Names to Events 216
Getting Domain Name from Hostname 217

Appendix 218

Configuring a Connector for ArcSight ESM Domain Field Sets 219

Developing Custom Parsers for Syslog SmartConnectors 222

Developing an XML FlexConnector 224
XML FlexConnector Development 224
XML Tools 224
XML Concepts for FlexConnector Development 225

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 9 of 243

General XML Concepts 225
XML FlexConnector Concepts 226

Namespace 226
Hop Nodes 227
Trigger Nodes 227
Token Mappings 228
Extra Events 228
Examples of Token Mappings 228

Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens 229
Find the Trigger Node - the Most Important Step 229
Decide if You Need a Namespace 230
Identify Hop Nodes 230
Identify Tokens 231

Create the XML FlexConnector Parser 231
Parser Development - First Several Lines 232
Parser Development Continued - Tokens 232
Parser Development Continued - Mappings 233
Categorization 233
Copy the Parser Into the Folder 234

Install the FlexConnector 234

Troubleshooting Duplicate Events 235

Example 1: ID-based Database Connectors Only 235

Example 2: ID-based and Time-based Connectors 236

Example 3: Complex Main Query with a Join 236

Frequently Asked Questions 239

Send Documentation Feedback 243

Developer's Guide to ArcSight FlexConnectors

OpenText FlexConnectors (CE 24.1) Page 10 of 243

Overview
ArcSight provides a range of device-specific SmartConnectors with which to gather security
event information. The connectors send normalized security events to the specified
destination for storage and further processing. For information about the possible destination
types, see the ArcSight SmartConnector User Guide.

FlexConnectors are custom connectors you define to gather security events from log files,
databases, and other software and devices. FlexConnectors let you create custom connectors
that can read and parse information from third-party devices and map that information to
ArcSight’s event schema.

FlexConnector Development Process
The FlexConnector development process is as follows:

1. Decide which of the FlexConnector types to use based on the source data to be collected.

2. Provide a log file. For database connectors, this includes developing a query for pulling
events.

3. Create a parser for the FlexConnector type.

4. Install and configure the FlexConnector type.

For syslog, you install the Syslog Daemon connector.

5. Run the FlexConnector.

This guide also provides information about related topics, such as:

l Rotation of log files
l Detection of unparsed events
l Advanced parameters that can be used to tune the collection process
l Map Files
l Additional parser settings such as ArcSight operations and ArcSight built-in tokens
l Categorization of events
l Configuration of a Connector for ArcSight ESM Domain Field Sets.

Folder Structure
The following table lists the connector folder structure after connector installation and
configuration, and describes the contents of each folder.

Overview Page 11 of 243

Directory Description

$ARCSIGHT_HOME\current\bin Executables and scripts; for example, runagentsetup.bat.

$ARCSIGHT_HOME\current\config\agent Default and base configurations; for example,
agent.defaults.properties.

$ARCSIGHT_HOME\current\logs Generated logs; for example agent.log.

$ARCSIGHT_HOME\current\user\agent Connector property files and destination-specific
configurations; for example, agent.properties.

$ARCSIGHT_HOME\current\user\agent\agentdata Queue, cache, and persistence files.

$ARCSIGHT_
HOME\current\user\agent\acp\categorizer\current

Categorizaton files (ArcSight Content), which provide
additional meaning to events.

$ARCSIGHT_HOME\current\user\agent\flexagent Custom parsers that are developed for the FlexConnector.

$ARCSIGHT_HOME\current\user\agent\map Mapping files that can be used to set fields in the Security
Event object; for example, map.0.properties.

Key Configuration Files
During connector installation and configuration, several key configuration files are created. The
following table describes these files, their locations, and their purpose.

File Name Path Description

agent.log $ARCSIGHT_HOME\current
\logs

Generated log that contains information on the running of
the connector; search for ERROR to see any errors that
occurred during the running of the connector. The most
current log is agent.log, but there can be older logs in
the folder as well, such as agent.log.1 or agent.log.2.

agent.properties $ARCSIGHT_HOME\current
\user\agent

Contains configuration parameters and values, created
from the values entered during connector configuration.

agent.default.
properties

$ARCSIGHT_HOME\current\
config\agent

Contains default framework parameters; for example,
contains the syntax for enabling debugging and increasing
the agent.log file size and agent log count.

Important: Do not modify agent.default.properties
because it is overwritten when the connector is upgraded.
Make any property changes in agent.properties.

Support for IPv6 Addresses
With only a few exceptions, ArcSight SmartConnectors fully support IPv6 and IPv4 addresses
for event collection and event processing. An extra mapping was previously required to map

Developer's Guide to ArcSight FlexConnectors
Overview

Key Configuration Files Page 12 of 243

IPv6 addresses. In case the FlexConnector's destination is not an IPv6-Aware destination, the IP
Address is automatically mapped to the corresponding Device Custom IPv6 Address field.

Note: Older versions of FlexConnector and parsers continue to use Device Custom IPv6 Address
fields for IPv6 addresses.

This section provides the following information:

l Supported Event Fields
l Modifications to Operations
l Developer Considerations

Supported Event Fields
The following ArcSight event IP Address fields accept both IPv4 and IPv6 addresses, in the cases
where the destination is IPv6-Aware. For more information, see "ArcSight Built-in Event Field
Mappings" on page 183.

l Destination Address
l Destination Translated Address
l Device Address
l Device Translated Address
l Source Address
l Source Translated Address

For IPv6-aware parsers, the Device Custom IPv6 address 1, 2, and 3 fields can contain either
IPv4 or IPv6 addresses. These fields are rarely used, if so, the corresponding labels should be
set to with an appropriate value.

Modifications to Operations
The behavior of the following operations has been changed to support IPv6-aware parsers,. For
more information, see "ArcSight Operations" on page 189.

l __byteArrayToIPAddress (new parameter)
l __byteArrayToIPv6
l __getIPv4AddressEmbeddedInIPv6Address
l __hexStringToAddress
l __hexStringToIPV6Address
l __oneOfAddress

Developer's Guide to ArcSight FlexConnectors
Overview

Supported Event Fields Page 13 of 243

l __oneOfHostName
o __stringToIPv6Address

Developer Considerations
The main IPv6- aware parser and all of the SmartConnector extra processors should be marked
with the property ipv6.aware=true.

Mixed ranges are not supported (that being, where one end of the ranges is an IPv4 address
and the other is an IPv6 address).

Since the standard IP address fields (such as Device Address, Source Address, Destination
Address, and so on) support both IPv4 and IPv6 addresses, the Device Custom IPv6 Address
fields are rarely required in an IPv6-aware parser. These mappings should be redirected to the
standard address fields. If there are any addresses which do not fall into any of the normal
device, source, or destination categories, then the Device Custom IPv6 Address fields can be
used, but that would be a very rare case.

Do not use the __stringToIPv6Address or __byteArrayToIPv6 operations as they are not
relevant in IPv6-aware parsers.

Rename the __byteArrayToIPv6 operation to the new generic __byteArrayToIPAddress
operation in the parser.

- The __oneOfAddress operation returns the first non-null IP address whether an IPv4 or an
IPv6, when that operation is used in an IPv6-aware parser.

Developer's Guide to ArcSight FlexConnectors
Overview

Developer Considerations Page 14 of 243

FlexConnector Types
The FlexConnector type you select must be based on the format of the security event data.
Examples of data formats for different FlexConnector types are provided in Event Data Format
Examples.

The following table contains the available FlexConnector types and the criteria to select a
FlexConnector for your requirement.

FlexConnector Type Description

File Choose this type if the event data is in log files that use a fixed, delimited format. In
this case, each line in the text file represents a unique event, and each line contains the
same number of fields, in the same order. Fixed-format log files can be delimited by
commas, tabs, or another character, such as a pipe (‘|’).

All file-reader FlexConnectors can process GZIP and ZIP files. Other compression
formats are not supported. Compressed files are processed in batch mode only. The
connectors read the file from the beginning to the end and then stop monitoring the
file. See Log File FlexConnector and ArcSight FlexConnector File.

Database, ID-Based
Database, Time-Based
Database, Multiple

ID-Based and Time-Based
Choose ID-Based Database or Time-Based Database for devices that write security
event information to a database. Each row represents a single event, and the number
and meaning of the columns are fixed.

l ID-Based

If you use unique IDs to read events from a database, choose ID-Based Database.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See ID-
Based Database FlexConnector and ArcSight FlexConnector ID-Based Database.

l Time-Based

If you use timestamps to read events from database table rows, choose Time-
Based Database.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See Time-
Based Database FlexConnector and ArcSight FlexConnector Time-Based Database.

Multiple
Choose this type to retrieve information from multiple databases that use the same
query or retrieve different set of events using different queries from the same
database.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See Multiple
Database FlexConnector and ArcSight FlexConnector Multiple Database.

JSON FlexConnectors This type can be either a JSON Folder Follower FlexConnector or a JSON Multiple
Folder Follower FlexConnector. Choose this type for devices that write event
information to JSON files. Event information in these files is presented in standard
JSON format. This type recursively reads events from JSON-based files in a folder. See
JSONFlexConnectors and ArcSight FlexConnector JSON Multiple Folder Follower.

FlexConnector Types Page 15 of 243

FlexConnector Type Description

Multiple Folder File Choose this type for devices that write log files to multiple folders. This connector type
can read events in real time or in batch mode. See Multiple Database FlexConnector
and ArcSight FlexConnector Multiple Folder File.

Regex File Choose this type if the source log files have one event per line, but the format of each
line varies based on the type of event information. In this case, each line shares a
common section (for example, the date and hostname), but the number and content
of the other fields on the line varies.

The regular expression-based FlexConnectors require a familiarity with Java-
compatible regular expressions. See Regex FlexConnectors (Variable-Format File
FlexConnectors) and ArcSight FlexConnector Regex File.

Regex Folder File File and Regex File FlexConnectors read events in real time, one line at a time, from a
log file. However, some devices may not write to log files in real time. To read such
events, use a Regex Folder Follower FlexConnector. This connector processes all log
files in a specified folder.

The regular expression-based FlexConnectors require a familiarity with Java-
compatible regular expressions. See Regex FlexConnectors (Variable-Format File
FlexConnectors) and ArcSight FlexConnector Regex Folder File.

REST The REST FlexConnector uses REST API endpoints, JSON parser, and OAuth2
authentication to collect security events from cloud vendors (such as Salesforce or
Google Apps). See ArcSight FlexConnector REST. For detailed information about this
FlexConnector, see the ArcSight REST FlexConnector Developer’s Guide for details.

Scanner DB
Scanner Text Reports
Scanner XML Reports

Choose a Scanner FlexConnector type to import the results of a scan from a scanner
device and forward the data to ESM so that ESM can model an organization’s assets,
open ports, operating systems, applications, and vulnerabilities. The connector imports
periodic scans to ESM, which uses this information for event prioritization, reporting,
and correlation.

Database:

A database contains results for multiple scans where each scan is identified by a job
identifier (ID). The scan results are organized in multiple tables that are linked by job
IDs or other IDs. SQL query-based parsers are used to extract relevant information
from the scan results.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See Scanner
FlexConnector and ArcSight FlexConnector Scanner Database.

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

FlexConnector Types Page 16 of 243

https://www.microfocus.com/documentation/arcsight/arcsight-smartconnectors-8.4/rest_flexconnector_devguide/

FlexConnector Type Description

Text Reports:
A normal text report contains results for a single scan with each line in the report
containing a piece of information about a host. Regular expression based parsers are
used to extract relevant information from the report.

The regular expression-based FlexConnectors require a familiarity with Java-
compatible regular expressions. See Scanner FlexConnector and ArcSight
FlexConnector Scanner Text Reports.

XML Reports:

An XML report contains results for a single scan with scan results organized in the form
of nested XML elements. XQuery/XPath-based parsers are used to extract relevant
information from the report.

The XML FlexConnector require a familiarity with XML, XPath, and XQuery. See Scanner
FlexConnector and ArcSight FlexConnector Scanner XML Reports.

XML File Choose this type for devices that write event information to XML files. Event
information in these files is presented in standard XML format, using namespaces,
elements, attributes, text, and cdata. This connector type recursively reads events
from XML-based files in a folder.

The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

See XML File FlexConnector and ArcSight FlexConnector XML File. See Developing an
XML FlexConnector for a description of the development of an example of an XML
FlexConnector.

Syslog For reading events from syslog messages, choose the SmartConnector for Syslog
Daemon and define a Syslog FlexConnector sub-connector to parse syslog packets of
interest. See Syslog Streaming FlexConnector and ArcSight FlexConnector Syslog.

CounterACT This connector type, also known as Action Connector, works in conjunction with ESM.
Choose this type if third-party devices need to be controlled by ArcSight Console. For
detailed information about this FlexConnector, see the Action Connector Developer’s
Guide .

Event Data Format Examples
You choose a FlexConnector type based on the format of the event data. The following
examples illustrate the kind of source data expected by the various FlexConnector types.

Log File FlexConnector
The following is an example of a fixed-format, delimited log file. In this example, there are
three events; each has the same format composed of six tokens separated by a comma.

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

Event Data Format Examples Page 17 of 243

https://www.microfocus.com/documentation/arcsight/arcsight-esm-7.6.4/Action Connector Developer Guide/#ActionConn/Overview.htm?TocPath=Overview%257C_____0
https://www.microfocus.com/documentation/arcsight/arcsight-esm-7.6.4/Action Connector Developer Guide/#ActionConn/Overview.htm?TocPath=Overview%257C_____0

01/01/2016-11:33:00,1.1.1.1,52123,2.2.2.2,80,Invalid URL
01/01/2016-12:43:00,3.3.3.3,49123,2.2.2.2,80,Buffer Overflow Attempt
01/01/2016-13:53:00,4.4.4.4,35123,2.2.2.2,80,Web Cgi Access

ID-Based Database FlexConnector
Two rows of a security event table in a database might look like this. This example describes
two events: one with ID 123456 and another with ID 123457.

EventId
Incident
Time Signature SourceIP

Destination
IP Priority Protocol

123456 09/01/16
12:56:00

Port Scan 9.10.11.12 13.14.15.16 1 TCP

123457 09/01/16
12:54:00

ICMP Failure 1.2.3.4 5.6.7.8 3 ICMP

JSONFlexConnectors
A JSON FlexConnector can be either a JSON Folder Follower FlexConnector or a JSON Multiple
Folder Follower FlexConnector. A JSON file with event information might look like this:

{
"chunk_size":100,
"entries":[{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",
"login":"mary.jane@abc.com"

},
"created_at":"1324497497",
"event_id":"13254621",
"event_type":"FAILED_LOGIN",
"ip_address":"192.168.233.76",
"type":"event",
"session_id":null

},
{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

ID-Based Database FlexConnector Page 18 of 243

"login":"mary.jane@abc.com"
},
"created_at":"1324497544",
"event_id":"13254633",
"event_type":"FAILED_LOGIN",
"ip_address":"192.168.233.76",
"type":"event",
"session_id":null

},
{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",
"login":"mary.jane@abc.com"

},
"created_at":"1324497614",
"event_id":"13254649",
"event_type":"LOGIN",
"ip_address":"192.168.233.76",
"type":"event",
"session_id":null

}
]

}

Multiple Database FlexConnector
The Multi-Database FlexConnector reads events from more than one database or multiple
event types from different tables in the same database. For data format examples, see ID-
Based Database FlexConnector and Time-Based Database FlexConnector.

Regex FlexConnectors (Variable-Format File
FlexConnectors)
FlexConnectors , capable of processing variable-format log files, include Regex Log File, Regex
Folder Follower and Regex Multiple Folder Follower. Variable-format log files might look like
this:

Aug 21 15:28:49 beach sshd[24939]: Failed password for rajiv from
192.168.10.27 port 33654 ssh2
Aug 21 15:28:51 beach sshd[24939]: Accepted password for rajiv from
192.168.10.27 port 33654 ssh2

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

Multiple Database FlexConnector Page 19 of 243

Aug 21 15:28:51 beach PAM_unix[24948]: (ssh) session opened for user rajiv by
(uid=525)
Aug 21 15:28:53 beach PAM_unix[24948]: (ssh) session closed for user rajiv
Aug 22 00:13:23 beach sshd[6305]: Did not receive IDentification string from
192.168.10.28

Scanner FlexConnector
The following is an example scan report:

Syslog Streaming FlexConnector
A security appliance might send syslog messages with the following format:

Myapplication: Intruder Detected from 1.1.1.1 to 2.2.2.2 High

In this case, Myapplication is the name of the security appliance, Intruder Detected is the
name of the event, 1.1.1.1 and 2.2.2.2 are the source and target addresses and High refers
to the severity of the event. This message is not delimited; however, you can identify that this
message comes from the security appliance by the prefix Myapplication. Regular expressions
are a simple mechanism to identify and tokenize the message, so the format of a
FlexConnector Syslog configuration file is similar to the FlexConnector Regex Log-file. The only
difference is that the detected time and sending host will automatically be set by the syslog
daemon and only additional mappings need to be specified.

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

Scanner FlexConnector Page 20 of 243

Time-Based Database FlexConnector
Two rows of a security event table in a database might look like this. This example describes
two events: one at 12:56 and another at 12:54.

EventId
Incident
Time Signature SourceIP

Destination
IP Priority Protocol

CCC-DDD 09/01/16
12:56:00

Port Scan 9.10.11.12 13.14.15.16 1 TCP

AAA-BBB 09/01/16
12:54:00

ICMP Failure 1.2.3.4 5.6.7.8 3 ICMP

XML File FlexConnector
An XML file with event information looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
- <mycompanyReport version="1.1">
- <reportHeader>

<copyrightNotice value="Copyright 2016 MyCompany, Inc." />
<trademarkNotice value="MyCompany is a registered trademark of MyCompany,

Inc. All rights reserved." />
<productVersion value="MyCompany for Servers version 1.2.3 for Windows(R)

Operating Systems" />
<reportFile value="Memory Mapped File" />
<reportFileEncrypted value="0" />
<policyFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\policy\mc.pol" />
<configFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\bin\mc.cfg" />
<databaseFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\db\Application.twd" />
<systemName value="HOGWARTS" />
<commandLine value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\bin\MyCompany.exe --check --no-tty-output --cfgfile C:\Program
Files\MyCompany\MyCompany Trial Kit\SMTP\bin\mc.cfg -- email-report --email-
report-level 3 --report-format xml --twrfile

C:\Program Files\MyCompany\MyCompany Trial Kit\SMTP\report\Report- .twr" />
<ipAddress value="172.16.252.58" />
<creator value="SYSTEM" />
<hostID value="S-1-5-21-3494633144-188423603-1740787705" />
<creationTime raw="1117725227" value="Thu, 02 Jun 2005 10:13:47 -0500" />
<lastDBUpdateTime raw="0" value="Never" />
</reportHeader>

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

Time-Based Database FlexConnector Page 21 of 243

- <section type="NTFS" name="Windows File System">
- <rule name="SMTP Server" startPoint="C:\Program Files\MyCompany\MyCompany
Trial Kit\active_files\SMTP\bin\help">
- <ruleHeader>

<severity value="30" />
<onViolation value="" />
<match value="" />
<emailAddressList />
</ruleHeader>

- <ruleSummary>
<violationCount value="3" />
<addedCount value="0" />
<removedCount value="3" />
<changedCount value="0" />
</ruleSummary>
<errorList />

- <added>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\smtpserver.pdf" />
</added>

- <removed>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\releasenotes.txt" />
</removed>

- <changed>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\xyz.txt" />
</changed>
</rule>

- <sectionSummary>
<objectsScanned value="35" />
<sectionViolationCount value="26" />
<sectionMaxSeverity value="100" />
</sectionSummary>
</section>
</mycompanyReport>

Developer's Guide to ArcSight FlexConnectors
FlexConnector Types

XML File FlexConnector Page 22 of 243

Creating a Parser
The parser (also referred to as configuration file) is a text file containing properties (name,
value pairs) that describe how the FlexConnector parses event data. Blank lines and lines
beginning with the comment character ‘#’ are ignored. Other lines consist of a name, an equal
sign, and a value.

Note: Parsers are obfuscated for security reasons. Contact Customer Support for assistance with
parser overrides.

The REST FlexConnector is documented in the ArcSight REST FlexConnector Developer’s Guide.

This chapter provides the following information:

l Parser Structure
l Setting Parser Properties

Parser Structure
The type of information a configuration file contains depends on its FlexConnector type.
However, the following information types are common to all types of FlexConnectors:

l Token Declarations (Tokenization)
l Event Mapping (Normalization)
l Severity Mapping
l Extra Processors

Here is an example of a configuration file that contains the most common information types.

Creating a Parser Page 23 of 243

Example Parser File
FlexConnectors are controlled by a parser, which is described in more detail the examples
shown in Setting Parser Properties. The following example illustrates a simple Log File
FlexConnector parser:

comments.start.with=#
delimiter=,
token.count=5
token[0].name=Time_of_the_event
token[0].type=TimeStamp
token[0].format=yyyy-MM-dd HH:mm:ss
token[1].name=ClientIp
token[1].type=IPAddress

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Example Parser File Page 24 of 243

token[2].name=Method
token[2].type=String
token[3].name=URL
token[3].type=String
token[4].name=Status
token[4].type=String

event.deviceReceiptTime=Time_of_the_event
event.sourceAddress=ClientIp
event.deviceSeverity=Status
event.requestUrl=URL
event.requestMethod=Method

event.deviceVendor=__getVendor(“MyVendor”)
event.deviceProduct=__stringConstant(“MyProduct”)

severity.map.veryhigh.if.deviceSeverity=404,500
severity.map.medium.if.deviceSeverity=303,302
severity.map.low.if.deviceSeverity=200..204

Token Declarations
The Token Declarations section specifies the tokens that will be parsed from each input record.
Each token has a name and a type. Depending on the type, some tokens (such as TimeStamp)
have a format, as well. XML FlexConnectors also have a path expression and a context node,
which are described in Parser Properties for an XML FlexConnector.

In addition to assigning parsed tokens to events, you can also assign built-in tokens, which are
described in Event Mapping.

Parameter Description

token.count This property specifies the number of tokens that each line of the file
contains. For example, token.count=7 indicates there are seven tokens.
Token declarations are numbered from 0 to token.count-1.

token[x].name This property specifies a user-defined name for the token, this can be a
friendly name used to identify the token. For example, token
[0].name=Time_of_the_event would set the name of the token of index 0
to Time_of_the_event. Use this friendly name to identify how to map it to
the event object.

token[x].type This property specifies the data type of the object. It is important to set
the correct type so the mapping to the event object can be correctly
performed. For a list of supported types, see Token Types.

token[x].format This property modifies the type of the token, for example, when using the
TimeStamp type, the format defines the actual format of the timestamp.
See Date and Time Format Symbols.

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Token Declarations Page 25 of 243

Token Types
Token types are important because tokens can only be mapped to ArcSight event fields with
matching types. See ArcSight Built-in Token Types for descriptions of the token types. They also
listed in the ArcSight Console User’s Guide, in the Reference Guide, under "Data Fields".

Event Mapping
The Event Mapping section lists tokens by name, which are mapped to ArcSight event fields,
such as event.sourceAddress. The type of the token must match the type of the ArcSight
Event field.

In addition to the tokens that are parsed from each input record, you can also configure built-in
tokens for specific FlexConnector. Built-in tokens are predefined strings that assign values
associated with them to events. For example, if you want to set the event.deviceHostName to
the name of the syslog sender, you can set event.deviceHostName=_SYSLOG_SENDER.

For a complete list of built-in tokens available for each type of FlexConnector, see ArcSight
Built-in Tokens. For a complete list of the ArcSight event fields, see ArcSight Built-in Event Field
Mappings.

See RequestUrl Event Field for information on how to use requestUrl.

RequestUrl Event Field
The connector returns a URL when the requestUrl event field is invoked. The URL is stored in
the event table. ESM can then parse the URL to derive the following URIs:

l requestProtocol
l requestUrlAuthority
l requestUrlHost
l requestUrlPort
l requestUrlFileName
l requestUrlQuery

The requestUrl event field has the following format:

<protocol>://<authority>@<host>:<port>/<filename>?<query>

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Token Types Page 26 of 243

Note: Do not set a value for the requestUrl event field and set a value for one or more of the
URIs.

Setting a value for the requestUrl event field and one or more of the URI fields will result in error
messages such as: Attempting to set the _URL_ when _URI_ is already set.. or
Attempting to set the _URIcomponent_ when _URL_ is already set.. Set values for
either the requestUrl event field or for one or more of the other URI event fields.

The following two conditions determine the Urls used to create the requestUrl event field.

If the requestUrl event field is the result of combining URIs fields, the requestUrlAuthority
value may or may not be null. The requestUrlAuthority event field contains RFC 2396 with the
following format:<userinfo>@<host>:<port>

1. If the requestUrlAuthority field is not null, ESM combines these UrIs to derive the
value.
requestProtocol

requestUrlAuthority

requestUrlFileName

requestUrlQuery

2. If the requestUrlAuthority field is null, ESM combines these URIs to derive the value.
requestProtocol

requestUrlHost

requestUrlPort

requestUrlFileName

requestUrlQuery

Operations Table
Operations are used primarily when tokens are mapped to ArcSight event fields. The following
list contains the essential operations. ArcSight Operations describes all of the operations that
can be used when tokens are mapped to ArcSight event fields.

IP Address Operations

l __doubleToAddress
l __noDot4QuadStringsToAddress
l __numberToAddress
l __regexTokenAsAddress

Number Operations

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Operations Table Page 27 of 243

l __regexTokenAsInteger
l __safeToInteger
l __safeToLong

String Operations

l __concatenate
l __stringConstant
l __simpleMap
l __toLowerCase
l __toUpperCase

TimeStamp Operations

l __createLocalTimeStampFromGMTSecondsMillis
l __createLocalTimeStampFromSecondsSinceEpoch
l __createTimeStamp
l __useCurrentYear

Severity Mapping
The Severity Mapping section provides a severity mapping capability in order to further
categorize (or normalize) each event. For example, severity.map.low.if.deviceSeverity.

FlexConnector severity mapping must be flexible because not all devices will report severity, or
use the same format even with devices of the same type. Some use a scale of 0 to 10 levels.
Devices that don’t really provide a severity-oriented field require that you map severity to an
action, or some other event-specific field.

Your severity mappings can also reflect your environment. You might want to consider what
would normally be a Medium or Low severity event as Very-High simply because it shouldn’t be
there to begin with. Or, the opposite: you might lower the severity because the event
represents a normal situation on your network. As a general rule, map severity as accurately as
possible and use Filters to ignore noise and Rules to respond to specific incidents.

Given the possibilities for Connector Severity mapping mentioned above you should cover all
of the possible values of a device severity with a severity map line. All of the mappings follow
the same syntax:

severity.map.agent_severity.if.deviceSeverity=value

In this case, agent_severity will be one of very high, high, medium or low and value can
either be a comma-separated list of values or use the “..” notation for ranges of values.

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Severity Mapping Page 28 of 243

Examples
severity.map.veryhigh.if.deviceSeverity=OPEN-INBOUND
severity.map.low.if.deviceSeverity=DROP
severity.map.medium.if.deviceSeverity=OPEN,CLOSE
severity.map.high.if.deviceSeverity=400..599
severity.map.medium.if.deviceSeverity=300..399
severity.map.low.if.deviceSeverity=100..299

This table lists severity mappings:

ArcSight Severity Property

Very High severity.map.veryhigh.if.deviceSeverity

High severity.map.high.if.deviceSeverity

Medium severity.map.medium.if.deviceSeverity

Low severity.map.low.if.deviceSeverity

These properties cause the ArcSight Severity to be set to a specific level if the Device Severity is
one of the values specified. For example:

severity.map.veryhigh.if.deviceSeverity=404,500

This would cause a Very High severity event when the status of the request was 404 or 500.

severity.map.medium.if.deviceSeverity=303,302

This would cause a Medium severity event when the status of the request was 303 or 302.

severity.map.low.if.deviceSeverity=200..204

This would cause a Low severity event when the status of the request was 200, 201, 202, 203,
or 204.

Extra Processors
Optional. You can use the extra processor property to chain two configuration files together.
This property is useful if you need to use two or more different types of FlexConnectors for the
same data. Extra processors are particularly useful when an event has more than one type of
data in it and cannot be parsed by a single parser. This property is also referred to as parser
linking.

Extra processor definition:

extraprocessor.count= <the number of extra processors>
#index start from 0

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Examples Page 29 of 243

extraprocessor[<index>].type= <extra processor type>
extraprocessor[<index>].filename= <extra process file name>
extraprocessor[<index>].<extra processor variable>=
<extra processor parameter or conditional value>
…

This example illustrates properties that can be added to a time-based database FlexConnector,
which cause it to invoke a Regex configuration file for further processing of the
event.message:

extraprocessor.count=1
extraprocessor[0].type=regex
extraprocessor[0].filename=netiq/netiq
extraprocessor[0].field=event.message
extraprocessor[0].flexagent=true
extraprocessor[0].clearfieldafterparsing=false

One configuration file can link with many other configuration files (by setting the
extraprocessor.count to a number greater than one). In addition, there is no limit to the
number of configuration files, each containing one or more extraprocessor properties that can
be chained together.

The following table lists the extra processor types you can specify.

Extra Processor Type Description

delimited For any of the delimited parsers

json For JSON parsers

keyvalue For key-value parsers

map For a map file

ntsubparser For supported Windows application parsers

regex For any regular expression parsers

standardkeyvalue For key-value parsers with “=” as the key-value separator and “,” as the key
value pair separator

xml For XML parsers

Except for the map extra processor configuration file, all extra processor configuration files
should be placed in the \user\agent\flexagent folder. The map extra processor file should
be placed in \user\agent\fcp or \user\agent\aup\fcp. If a map configuration file exists in
both the paths, the one in \user\agent\aup\fcp overrides the one in \user\agent\fcp.

The following table lists the fields that can be used with an extra processor:

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Extra Processors Page 30 of 243

Field Name Description

field The value of this field is the input to the extra processor.

flexagent true or false

l true: The connector uses the parsers in the flexagent directory.
l false: The connector uses the parsers in the fcp directory.

clearfieldafterparsing Clear the input field after completion of parsing.

charencoding Specifies the type of character encoding.

overrideeventmappings true or false

l true: Override the mapping event field.
l false: Do not override the mapping event field.

conditionfield Specifies the condition field the extra processor uses.

conditiontype Specifies how the condition field relates to the condition values.

conditionvalues Specifies condition values. Use commas to separate multiple values.

Casesensitive true or false

l True = Use case sensitive parsing.
l False = Do not use case sensitive parsing.

concatenatevalues true or false

Applies to key-value parsers.

l If true and there is a duplicate key, do not override the value, but concatenate the
values.

l If false and there is a duplicate key, override the value.

Key-Value Parsers
Key-value parsers divide log lines into key-value pairs (key=value), extract the key-value pairs
into tokens, and then the tokens are mapped to event fields. An example of a key-value log
event:

TIME=28/09/11 08:15:00 SRC=194.168.0.12 DST=195.172.0.12 SPT=4236 DPT=80

Key-value parsers are used with keyvalue extra processors and syslog subagents use key-value
parsers for secondary processing. The configuration file name for key-value parsers is
vendor.subagent.sdkkeyvaluefilereader.properties. Key-value parsers have the
following properties:

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Key-Value Parsers Page 31 of 243

Property Description

key.delimiter Regular expression consisting of single character or string that
specifies how key value pairs are separated on a log line. For
example,

key.delimiter=\\s

key.value.delimiter Regular expression consisting of single character or string that
specifies how keys and values are separated into a single key value
pair. For example,

key.value.delimiter==

key.regexp Regular expression to capture a key. For example,

key.regexp=([^\\s]+)

text.qualifier Regular expression consisting of a single character or string that
specifies how text is separated in a log line. For example,

text.qualifier=“

trim.message true or false - True trims the leading and trailing white spaces of the
log line.

trim.tokens true or false - True trims the leading and trailing white spaces of
each token.

trim.keys true or false - True trims the leading and trailing white spaces of
each key.

Developer's Guide to ArcSight FlexConnectors
Creating a Parser

Key-Value Parsers Page 32 of 243

Setting Parser Properties
The following sections describe parser (configuration file) properties for the various connector
types.

l Parser Properties for a Log File FlexConnector
l Parser Properties for all Regex FlexConnectors
l Parser Properties for a Time-based Database FlexConnector
l Parser Properties for an ID-based Database FlexConnector
l Parser Properties for an XML FlexConnector
l Parser Properties for a JSON Folder Follower / Multiple Folder Follower FlexConnector
l Parser Properties for Scanner FlexConnectors

Parser Properties for a Log File FlexConnector
You can create a parser for a Log File FlexConnector in two ways:

l Use a text editor to add properties you need.
l Use the FlexConnector Creation Wizard, which is discussed in detail in FlexConnector

Creation Wizard for Delimited Log Files.

In addition to the properties described earlier, a Log File FlexConnector must also contain
Source Log File Format declarations. The Source Log File Format section describes how the
FlexConnector will read the source information. The following table lists the properties that
you can specify:

Property Description

comments.start.with This property specifies which lines of the log file should be ignored and which
ones are comments. In this example, you would set this property to a pound
sign (#) since every comment begins with this symbol.

contains.empty.tokens Set this property to “false” only if you are sure that the file being parsed will
never contain empty tokens. For example, in the following line:

token1,token2,,token4

token3 is empty (there are two commas together), so this flag should be set to
true. By default, this flag is set to true.

Setting Parser Properties Page 33 of 243

Property Description

delimiter This property specifies which character delimits each of the tokens of the file. In
this example, you would set this property to a comma (,) since the tokens are
separated by a comma. Other possible values are:

delimiter= backslash (\); note that there is a space after the backslash (\)

delimiter= pipe (|)

delimiter= comma (,)

start.at.line Some files will contain a fixed number of lines as a header before the actual
content starts. Using this property you can have the FlexConnector ignore those
lines before the actual processing starts. For example, the property:

start.at.line=10

would ignore the first 9 lines of the file.

text.qualifier Sometimes the tokens in a file will be surrounded by “ or another character (for
example, Excel CSV). For example, in the line:

"token1","token2","token3"

All tokens are surrounded by " so you can set this property as:

text.qualifier="

and the " will not be part of the token value.

trim.message Removes leading and trailing spaces or tab characters from the full message
before sending it to the parser.

trim.tokens Set this flag to true if you want to remove leading and trailing spaces and tab
characters from the token values. By default, this flag is false.

Parser Properties for all Regex FlexConnectors
For Regex FlexConnectors, the regex property must be set to the regular expression:

regex=(.*) ([^\\]*) ([^\\]*)\\[\\d+\\]: (.*) password for (.*) from
(\\d+.\\d+.\\d+.\\d+) port (\\d+) ssh2

Additionally, you can configure these:

l The trim.message and trim.submessage properties that trim (remove leading and
trailing spaces or tab characters) the full message and sub-message before sending it to the
parser.

l Sub-messages that allow a Regex-based FlexConnector to switch intelligently between
regular expressions. For more information about sub-messages, see Using Sub-Messages
for Multiple File Formats.

Developer's Guide to ArcSight FlexConnectors

Parser Properties for all Regex FlexConnectors Page 34 of 243

l Optional properties in the agent.properties file that when configured allow you to
control which log files to process in a folder, whether to process the folder and subfolders
recursively, and so on. These properties are discussed in Detecting File Processing Latency.

Parser Properties for a Time-based Database
FlexConnector
The following is an example of a time-based Database FlexConnector parser:

Note: Ensure that queries conform with the schema definition so as to avoid errors such as case
sensitivity. For example, if the database fields are using all uppercase, column names in the
queries and the values in the timestamp.field and the uniqueid.field should use uppercase:

timestamp.field=TIME_STAMP

uniqueid.field=UNIQUE_ID

In addition to the common properties listed in Parser Structure, the following properties need
to be configured for time-based database FlexConnectors:

l Version
l Query
l Timestamp
l UniqueID

Developer's Guide to ArcSight FlexConnectors

Parser Properties for a Time-based Database FlexConnector Page 35 of 243

Version

Mandatory. The version properties enable you to define the order in which the parser files will
be sequentially processed. If there are multiple parser files there should be one for each
version of the database with which the FlexConnector communicates.

Note: If you are not concerned about the connector adjusting to new versions, you can skip the
version check by doing the following: set version.order=1 and omit version.query and
version.id. Note that this will remove the safeguard of checking the schema version.

l version.order—Specifies the order in which versions are checked, from the lowest
number to the highest; for example, if you have two parser files parserA and parserB and
you want to process parserB before parserA, set parserB’s version.order=1 and parserA’s
version.order=2.

l version.query—This property enables you to perform a test query against the database
to validate the database version. Specify a unique entity in the database schema that
differentiates it from other database versions. For example, version.query=SELECT
idAlert from AlertView.

l version.id—If the version.query succeeds, the deviceVersion token (described in
ArcSight Built-in Event Field Mappings) is set to the version.id. Typically, you would
assign the database version as the value for this property. However, you can assign any
integer value. For example, if the product version is 8.1, assign version.id=8.1.

Query

Mandatory. This property retrieves the rows that were inserted between the last time the
query was run and the current time. The query is executed every five seconds, but the
frequency can be configured.

For example:

query = \
SELECT \

ComputerName, ComputerDomain, Culprit, DNSName, Name, idAlert,\
Description, RepeatCount, AlertLevel, TimeRaised, TimeOfFirstEvent, \
TimeOfLastEvent, TimeResolved, CustomField1, CustomField2, \

CustomField3, CustomField4, CustomField5 \
FROM \

AlertView \
WHERE \

TimeRaised >= ? \
ORDER BY \

TimeRaised

Developer's Guide to ArcSight FlexConnectors

Version Page 36 of 243

To change the frequency at which the query is executed, set the agent[x].frequency
property in ARCSIGHT_HOME\current\user\agent\agent.properties.

All syntactically and semantically correct SQL statements are supported in SELECT queries with
the following exception:

l Only one question mark is supported in a time-based Database FlexConnector query.

Timestamp

Mandatory. Specifies the field to use to determine when to run the next query; for example,
for the query specified earlier in this section, you can set the timestamp field to
timestamp.field=TimeRaised.

UniqueID

Mandatory. Specifies the fields to use to distinguish rows with the same timestamp field; for
example, for the query specified earlier in this section, you can set the unique ID field to
uniqueid.fields=idAlert. Use a comma-separated list to specify multiple values for this
field.

Parser Properties for an ID-based Database
FlexConnector
The following is an example of the ID-based Database FlexConnector parser:

Developer's Guide to ArcSight FlexConnectors

Timestamp Page 37 of 243

Note: Ensure that queries conform with the schema definition so as to avoid errors such as case
sensitivity. For example, if the database fields are using all uppercase, the column names in the
queries and the values in the id.field and the uniqueid.field should use uppercase:
id.field=ID

uniqueid.field=UNIQUE_ID

In addition to the common properties listed in Parser Structure, the following properties should
be configured for an ID-based database FlexConnectors:

l Version
l MaxID
l Query
l ID
l UniqueID
l Query Limit

Version
Mandatory. The version properties enable you to define the order in which the parser files will
be sequentially processed. If there are multiple parser files there should be one for each
version of the database with which the FlexConnector communicates.

Note: If you are not concerned about the connector adjusting to new versions, you can skip the
version check by doing the following: set version.order=1 and omit version.query and
version.id. Note that this will remove the safeguard of checking the schema version.

l version.order—Specifies the order in which versions are checked, from the lowest
number to the highest; for example, if you have two parser files parserA and parserB and
you want to process parserB before parserA, set parserB’s version.order=1 andparserA’s
version.order=2.

l version.query—This property enables you to perform a test query against the database
to validate the database version. Specify a unique entity in the database schema that
differentiates it from other database versions. For example, version.query=SELECT
idAlert from AlertView.

l version.id—If the version.query succeeds, the deviceVersion token (described in
ArcSight Built-in Event Field Mappings) is set to the version.id. Typically, you would
assign the database version to which the configuration file pertains as the value to this
property; however, you can assign any integer value. For example, if the product version is
8.1, assign version.id=8.1.

Developer's Guide to ArcSight FlexConnectors

Version Page 38 of 243

MaxID
Mandatory. Specifies the query to use to retrieve the maximum ID present in the database
when the query is run; for example, maxid.query=select max(end_time) from
events.summary.

Query
Mandatory. This property retrieves the rows that were inserted between the last checked ID
and the maximum ID (maxid) at the current time. The query is executed every five seconds, but
this frequency is configurable.

For example:

query=SELECT events.summary.eid, hostid, hostid_b, start_time, end_time, \
alert_level \

FROM events.summary, events.host \
WHERE type=0 and events.summary.eid = events.host.eid and end_time is \

not null and end_time > ? \
ORDER BY end_time

To change the frequency at which the query is executed, set the agent[x].frequency
property in ARCSIGHT_HOME\current\user\agent\agent.properties.

All syntactically and semantically correct SQL statements are supported in SELECT queries.

ID
Mandatory. Specifies the field to use to determine when to run the next query; for example,
for the query specified earlier in this section, you can set the ID field to id.field=end_time.

UniqueID
Optional. Specifies the field to use to distinguish rows with the same ID field; for example, for
the query specified earlier in this section, you can set the unique ID field to
uniqueid.fields=eid,start_time,end_time,hostid,hostid_b.

Use a comma-separated list to specify multiple values for this field.

Note: The IDs for two events might be identical if the ID field is set to an entity such as a
timestamp. For example, if the ID field is set to end_time, two events may have the same ID. The
Unique ID field is used to distinguish such events.

Developer's Guide to ArcSight FlexConnectors

MaxID Page 39 of 243

Query Limit
Optional. Specifies the maximum number of rows to return when a query is run; for example,
query.limit=3. If default value for query.limit is set to unlimited; that is, there is no limit
imposed on the number of rows that will be returned when a query is run.

Parser Properties for an XML FlexConnector
The XML FlexConnector parser builds a tree representation of the XML log file. A root node is
at the top of the tree, hop nodes are in between, and trigger nodes are at the bottom (where
they generate events). The following is an example of an XML FlexConnector configuration file:

Developer's Guide to ArcSight FlexConnectors

Query Limit Page 40 of 243

In addition to the common properties listed in Parser Structure, the following sections list the
optional and mandatory properties for an XML FlexConnector configuration file:

l Namespace
l Hop Nodes
l Trigger Nodes
l Token Mappings
l Extra Events

Note: You can also configure optional properties in the agent.properties file that when
configured allow you to control which log files to process in a folder, whether to process the
folder and subfolders recursively, and so on. These properties are discussed in Detecting File
Processing Latency.

Namespace

Optional. However, if your XML log file uses explicit namespaces or a default namespace, you
must specify those namespaces using these properties:

l namespace.count—Specifies the number of namespaces that your XML log file uses; for
example, namespace.count=2.

l namespace.prefix—Specifies the namespace prefix to use; for example, namespace
[1].prefix=ac.

l namespace[x].prefix=default—Use when your XML file specifies a namespace but does
not use any prefixes in the file. That is, your XML file uses a default namespace.

l namespace.uri—Specifies the Uniform Resource Identifier (URI) for the namespace; for
example, namespace[0].uri=http://example.org/2003/08/sdee

Hop Nodes

Optional. Hop nodes are the nodes in the path from the root node to the event triggering
node. These nodes are necessary when tokens need to be captured from nodes other than the
triggering node or when events pertaining to a particular node need to be grouped in one
block.

Multiple hop node levels can be defined with each new level of hop nodes defined in reference
to the previously defined level. Hop nodes can also reference root nodes directly as variables.

To define hop nodes, use these properties:

l hop.node.count—Specifies the number of hop nodes; for example, hop.node.count=1
l hop.node.name—Specifies the names for the hop nodes; for example, hop.node

[0].name=host

Developer's Guide to ArcSight FlexConnectors

Namespace Page 41 of 243

l hop.node.expression—Specifies the XPath/XQuery path expressions to select the nodes;
for example, hop.node[1].expression=/audits/audit/hosts/host

Trigger Nodes

Mandatory. These are the nodes that trigger events. An XPath/XQuery path expression for a
trigger node can be the last defined hop node or the root node if no hop nodes are available.

To define trigger nodes, use this property:

trigger.node.expression=$host/applications/application

Token Mappings

Mandatory. In addition to the token properties listed in Token Declarations, you must specify
these two properties for the XML parser:

l token[x].expression—Specifies the XPath/XQuery path expression that is traversed to
obtain the value for the token. This is a mandatory property. For example,
token[0].expression=audits/audit/startDate

l token[x].node—Specifies the context node—root node, hop node, or trigger node—
relative to which the path expression is evaluated. A context node can be a hop node or a
root node. If this property is not specified, it defaults to the trigger node. For example,
token[0].node=host

Examples of Token Mappings

l A token captured from the root node:

token[0].expression=audits/audit/startDate

l A token captured from the hop node 1:

token[2].name=ip
token[2].type=IPAddress
token[2].expression=ip
token[2].node=host

l A token captured from the hop node 2:

token[5].name=protocol
token[5].expression=protocol
token[5].node=vulnref

l A token captured from the trigger node, when token[x].node is specified:

Developer's Guide to ArcSight FlexConnectors

Trigger Nodes Page 42 of 243

token[8].name=name
token[8].expression=name
token[8].node=

l A token captured from the trigger node, when token[x].node is not specified:

token[13].name=descr
token[13].expression=description

Extra Events

Optional. If you need your FlexConnector to collect different event types for the same trigger
node or from different trigger nodes, you can use this property to specify other XQuery
configuration files in the current configuration file.

To specify extra events, use these properties:

l extraevent.count—Specifies the number of extra events; for example,
extraevent.count=2

l extraevent[x].filename—Specifies the file name of the additional configuration file that
this parser should use; for example, extraevent[0].filename=ncircle_xml_
file/ncircle_xml_file.xml3.uri

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Parser Properties for a JSON Folder Follower / Multiple
Folder Follower FlexConnector
The JSON Folder Follower FlexConnector parser builds a tree representation of the JSON log
file. A root node is at the top of the tree and trigger nodes are at the bottom (where they
generate events). There may be multiple root nodes in each file. The following is an example of
a JSON Folder Follower FlexConnector/ JSON Multiple Folder Follower FlexConnector parser:

trigger.node.location=/entries

token.count=5

token[0].name=type
token[0].type=String
token[0].location=type

token[1].name=eventId
token[1].type=String
token[1].location=event_id

Developer's Guide to ArcSight FlexConnectors

Extra Events Page 43 of 243

token[2].name=eventType
token[2].type=String
token[2].location=event_type

token[3].name=sessionId
token[3].type=String
token[3].location=session_id

token[4].name=ipAddress
token[4].type=String
token[4].location=ip_address

additionaldata.enabled=true

event.deviceVendor=__stringConstant("Box")
event.deviceProduct=__stringConstant("Box.net")
event.deviceEventClassId=eventType

event.name=eventType

event.sourceUserName=created_by_name
event.sourceUserId=created_by_user_id
event.sourceHostName=ipAddress

#The code uses event.externalId to get the eventId to persist. Please don't
change this mapping. You may get duplicates if you do that

event.externalId=eventId

event.deviceReceiptTime=__createOptionalTimeStampFromString(created_at,"YYYY-
MM-DDThh:mm:ss.SSSX")

event.fileName=__oneOf(source_item_name,source_folder_name)
event.fileId=__oneOf(source_folder_id,source_item_id)
event.fileType=__oneOf(source_item_type,__ifThenElse(source_folder_
id,,,"folder"))

event.destinationUserName=__oneOf(source_name,source_user_name)
event.destinationUserId=__oneOf(source_id,source_user_id)

event.deviceCustomString1=__oneOf(created_by_login,source_login)
event.deviceCustomString1Label=__stringConstant("Source User Email Address")

event.deviceCustomString2=source_type
event.deviceCustomString2Label=__stringConstant("Source Type")

Developer's Guide to ArcSight FlexConnectors

Parser Properties for a JSON Folder Follower / Multiple Folder Follower Page 44 of 243

Note: You can also configure optional properties in the agent.properties file that when
configured allow you to control which log files to process in a folder, whether to process the
folder and subfolders recursively, and so on. These properties are discussed in Detecting File
Processing Latency.

Trigger Node
Mandatory. This is the node that triggers events.

To define trigger nodes, use this property:

trigger.node.location=/entries

Token Location and Mappings
Mandatory. In addition to the token properties listed in Token Declarations, you must specify
this property for the JSON parser:

token[x].location—Specifies the JSON path expression that is traversed to obtain the value
for the token. This is a mandatory property.

For example, token[2].location=event_type

Examples of token mappings:

l token[2].name=eventType

l token[2].type=String

l token[2].location=event_type

JSON Parsers for Complex Event Schemas
For more complex event schemas, the JSON parser can:

l Handle a hierarchical schema
l Handle an array with a key element
l Represent the value of a token in URI format

Working with Hierarchical Schemas

In some cases, a web application can have a common schema and product-specific schemas, as
illustrated in the following figure.

Developer's Guide to ArcSight FlexConnectors

Trigger Node Page 45 of 243

l The product-specific schemas could in turn have product base schemas and more specific
schemas.

l The main parser will contain the token specification for the common schema.
l The main parser will have sub-parsers that contain the token specification for the product-

specific base schemas.
l Each product base schema sub-parser will, in turn, have its own sub-parsers that contain

the token specification for the more specific product schemas.
l Each parser file will have its own event mapping specification.

The __subParse(mapFileName) format in the JSON parser supports this scenario.

When the JSON parser encounters this format specified for a token, it looks for the sub-parser.
The mapFileName points to a map file with a key and a value. The key will be matched with the
token value. The value points to the sub-parser file. The sub-parser, if found, will be processed
and the resulting SecurityEvent will be merged into the parent SecurityEvent. An error will
be logged if no sub-parser is found. The token itself will still be included in the current token
map.

For example, the following common schema has a RecordType determining the type of
operation, which can be used to determine the sub-parser file:

token[5].name=RecordType
token[5].type=string
token[5].format=__subParse(recordtype-map.csv)
token[5].location=RecordType

Developer's Guide to ArcSight FlexConnectors

Working with Hierarchical Schemas Page 46 of 243

The parameter for __subParse is the recordtype-map file path, which is a relative path to
$ARCSIGHT_HOME\user\agent\flexagent.

The main parser is located in $ARCSIGHT_HOME\user\agent\flexagent. The sub-parsers (the
.json.properties files) and the sub-parser map (the .csv files) can locate in any sub-folder
of that folder.

Also assume that the recordtype-map.csv has the following content:

1,product_admin
2,product_item
...

If the RecordType value is 2, then the product_item.jsonparser.properties file will be
processed.

Representing a JSON Array with a Key Element

Some event schemas have collections, which are arrays of JSON objects. Some of the
collections have a significant element in a JSON object that should be used to identify the rest
of the JSON elements.

For example, assume that the value of the Name field used in the JSON array illustrated in
Sample JSON Array is significant, and its value should be used to identify the element. A
desirable output of the token map could be something like the following:

ForwardTo alias1@mail.com

From

MoveToFolder

SentTo alias2@mail.com

The __collection(keyField, withPrefix, withPostfix, keyFieldMapFileName) format
in the JSON parser supports this scenario. The arguments to the __collection format have
the follow definitions:

l keyField (required)—points to the significant field.
l withPrefix (optional)—indicates if the target token names should be prefixed with the

parent key. Default value is true.
l withPostfix (optional)—indicates if the target token names should be postfixed with the

key of the value elements. Default value is true.
l keyFieldMapFileName (optional)—points to a map file which will be used to map a more

meaningful target token name.

The delimiter for the prefix and postfix is "->" .

Developer's Guide to ArcSight FlexConnectors

Representing a JSON Array with a Key Element Page 47 of 243

The __collection format can be used only on an array node. The array node itself is not part
of the current token map. The array is processed to generate a token map, which is merged
into the current token map. This format is ignored if it is applied to a non-array node, and the
node is handled as normal.

Using the JSON array in Sample JSON Array as an example, the Parameters token will be as
follows:

token[5].name=Parameters
token[5].type=String
token[5].format=__collection(Name,false,false)
token[5].location=Parameters

The format value __collection (Name,false,false) produces the following token map:

ForwardTo alias1@mail.com

From

MoveToFolder

SentTo alias2@mail.com

Changing the format value to __collection(Name) produces the following token map:

Parameters->ForwardTo->Value alias1@mail.com

Parameters->From->Value

Parameters->MoveToFolder->Value

Parameters->SentTo->Value alias2@mail.com

Changing the format value to __collection(Name,,false) produces the following token
map:

Parameters->ForwardTo alias1@mail.com

Parameters->From

Parameters->MoveToFolder

Parameters->SentTo alias2@mail.com

Representing a Token Value in URI Format

There are times when it is desirable to translate a JSON node into a URI format string. The __
uri() format in the JSON parser supports this scenario.

This format can be applied to any node.

Using the JSON array in Sample JSON Array as an example, the Parameters token will be as
follows:

Developer's Guide to ArcSight FlexConnectors

Representing a Token Value in URI Format Page 48 of 243

token[5].name=Parameters
token[5].type=String
token[5].format=__uri()
token[5].location=Parameters

The token specification above produces the following token map:

Parameters Name:"ForwardTo"|/Value:"alias1@mail.com"|/Name:"From"|/Value:""|
/Name:"MoveToFolder"|/Value:""|/Name:"SentTo"|/Value:"alias2@mail.com"

Sample JSON Array

The following code represents a JSON array.

"Parameters": [
{

"Name": "ForwardTo",
"Value": "alias1@mail.com"

},
{

"Name": "From",
"Value": "" },

{
"Name": "MoveToFolder",
"Value": ""

},
{

"Name": "SentTo",
"Value": "alias2@mail.com"

}"
]

Parser Properties for Scanner FlexConnectors
The configuration properties you can set depend on the type of source report that the
FlexConnector will process. These source report types are described in the following sections:

l Scanner FlexConnectors for Normal Text or XML Scan Reports
l Parsers for Normal Text Reports
l Parsers for XML Reports
l Scanner FlexConnectors for Database Scan Reports

Developer's Guide to ArcSight FlexConnectors

Sample JSON Array Page 49 of 243

Scanner FlexConnectors for Normal Text or XML Scan Reports
Scanner FlexConnectors that process normal text or XML scan reports are parsers that make
several passes through the scan report to extract relevant information. The first pass must be
to get a list of hosts scanned. Subsequent passes for extracting vulnerability, open ports,
operating system, and applications information can be run in any order.

Note: Avoid using // symbols which can have a huge impact on performance. For example,
$root//@startTime -- scans every node in the entire document for the startTime attribute.

To define a scanner FlexConnector for normal text or XML scan reports, you must define
parsers to retrieve the following information:

l A list of hosts scanned
l The vulnerabilities for each scanned host
l The open ports for each scanned host
l The operating system and applications running on each scanned host

The name of the parsers and properties required for each depend on whether the parser is for
processing a normal text scan report or an XML report.

How Scanner FlexConnectors Parse Scan Reports
A scanner FlexConnector obtains the following information from a scan report:

l List of hosts scanned
l List of open ports
l List of vulnerabilities
l Operating systems and applications on each host
l Any other information such as users, shares, and so on

This information is obtained by making several passes over the report. The first pass obtains a
list of hosts while subsequent passes, which can be done in any order, obtain the remaining
information.

Scanner FlexConnectors retrieve information from scan reports that provide data in normal
text or XML form use multiple parsers to obtain information in which each parser extracts
information specific to its function. That is, the first parser extracts the list of hosts and defines
the other parsers and the order in which they will run. The subsequent parsers extract the
open ports, vulnerabilities, operating system, and applications information for each host.

Developer's Guide to ArcSight FlexConnectors

Scanner FlexConnectors for Normal Text or XML Scan Reports Page 50 of 243

Scanner FlexConnectors that scan results in a database use one database parser that defines
the SQL queries required to extract information from the database. Each SQL query represents
a single pass that extracts information specific to its function as described for scanner
FlexConnectors for normal text or XML form reports. A few additional SQL queries are also
included in this FlexConnector to obtain the version of the database, obtain a list of scan jobs in
the database, and so on.

Parsers for Normal Text Reports
To create parsers for normal text reports, see the following sections:

l Getting a List of Hosts
l Getting Vulnerabilities for Scanned Hosts
l Getting Open Ports on Scanned Hosts
l Getting OS and Applications (URIs) on Scanned Hosts

Getting a List of Hosts

The configuration file for getting a list of scanned hosts must be named
vendor.scanner.sdkrfilereader.properties, where vendor is usually the name of the
scanner device vendor.

The following is an example configuration file for getting a list of hosts from a scan report:

line.include.regex=[\\w\\.-]+\\|.*

regex=([\\w\\.-]+)\\|(.*?)\\|(.*?)\\|.*

token.count=3
token[0].name=ip
token[0].type=IPAddress
token[1].name=hostname
token[2].name=mac
token[2].type=MacAddress

event.destinationAddress=ip
event.destinationHostName=hostname
event.destinationMacAddress=mac

use.ip=false

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus|

extraevent.count=3>
extraevent[0].filename=nessus_nsr_osuris
extraevent[0].name=/scanner/device/uri/aggregated

Developer's Guide to ArcSight FlexConnectors

Parsers for Normal Text Reports Page 51 of 243

extraevent[1].filename=nessus_nsr_openports
extraevent[1].name=/scanner/device/openport/aggregated
extraevent[2].filename=nessus_nsr_vulnerabilities
extraevent[2].name=/scanner/device/vulnerability/aggregated

In addition to the common properties listed in Parser Structure, the following properties need
to be configured:

l Ignore or Include Line
l Regular Expression and Token Mappings
l Use IP
l Invalid Vulnerabilities
l Extra Events

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify
lines in a scan report that need to be processed to obtain information about scanned hosts.
Lines that do not meet the criteria specified in the filter are not processed.

The include filter specifies a regular expression that a line must match for it to be processed
for extracting scanned hosts.

The ignore filter specifies a regular expression that, when matched to a line, that line is
excluded and not processed for extracting scanned hosts.

The following is the syntax for the include and ignore filters:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex=[\\w\\.-]+\\|.*
line.ignore.regex=[\\w\\.-]+\\|.*?\\|.*

Regular Expression and Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information are available, they should also be extracted.

The following regular expression extracts IP address, host name, and MAC address into these
tokens:

regex=([\\w\\.-]+)\\|(.*?)\\|(.*?)\\|.*

Developer's Guide to ArcSight FlexConnectors

Ignore or Include Line Page 52 of 243

token.count=3

token[0].name=ip
token[0].type=IPAddress
token[1].name=hostname
token[2].name=mac
token[2].type=MacAddress

event.destinationAddress=ip
event.destinationHostName=hostname
event.destinationMacAddress=mac

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while
others might report both. The Use IP property indicates whether the scan reports contain IP
addresses. When this property is set to false, it indicates that the scan report does not contain
IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector
should ignore when processing the scan report. If you want to specify multiple vulnerability
IDs, separate them with a pipe (|) character.

The syntax for this property is as follows:

invalid.vulnerability.ids=<vulnerability_ids>

For example:

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Extra Events

Mandatory. These properties specify the names and locations of other configuration files
required for parsing the scan report to extract the vulnerabilities, open ports, operating
system, and applications information.

l extraevent[x].filename—Specifies the file name of the additional configuration file; for
example, extraevent[0].filename=nessus_nsr_osuris

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Developer's Guide to ArcSight FlexConnectors

Use IP Page 53 of 243

Although you can specify the extra events in any order, you must use the following event
names (extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated
l Open ports:/scanner/device/openport/aggregated
l URIs (for operating system and applications): /scanner/device/uri/aggregated

For example:

extraevent.count=3
extraevent[0].filename=nessus_nsr_osuris
extraevent[0].name=/scanner/device/uri/aggregated

extraevent[1].filename=nessus_nsr_openports
extraevent[1].name=/scanner/device/openport/aggregated

extraevent[2].filename=nessus_nsr_vulnerabilities
extraevent[2].name=/scanner/device/vulnerability/aggregated

Getting Vulnerabilities for Scanned Hosts

The parser for getting vulnerabilities for the scanned hosts must be named
<vendor>.vulns.sdkrfilereader.properties, where vendor is usually the name of the
scanner device vendor. This parser is used to extract the following information for the scanned
hosts:

l Vulnerabilities as indicated by the vendor vulnerability IDs
l Name, description, risk or severity, solution or recommendation, if available
l External references such as CVE, Bugtraq, and so on
l Any other relevant information that is available

Note: Typically, FlexConnectors look for extra processor configurations in {ARCSIGHT_
HOME}/current/user/agent/flexagent/. The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in {ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.vulns.sdkrfilereader.properties file,
FlexConnectors look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from <vendor>.vulns.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example parser for getting vulnerabilities from a scan report:

Developer's Guide to ArcSight FlexConnectors

Getting Vulnerabilities for Scanned Hosts Page 54 of 243

regex=([\\w\\.-]+)\\|((\\w+).*?(\\d+)?.*?)\\|(\\d+)\\|(.*?)\\|(.*)

token.count=7

token[0].name=ScannedHostNameOrIp
token[1].name=ServiceDescription
token[2].name=ServiceName
token[3].name=Port
token[3].type=Integer
token[4].name=PluginId
token[5].name=Severity
token[6].name=Description

event.destinationHostName=ScannedHostNameOrIp
event.destinationServiceName=ServiceName
event.destinationPort=Port
event.transportProtocol=__regexToken(ServiceDescription,"^.*?/(\\w+).*$")
event.deviceEventClassId=__concatenateDeleting
("Nessus=",NessusID,"#",Name,"#",Risk,"#",INFO,"%CVE=",CVE,"%Bugtraq=",Bugtraq
,"%|#=/@")
event.name=__concatenate(ServiceName," - ",Severity)
event.deviceSeverity=Severity
event.message=Description

event.categoryTechnique=__stringConstant("/scanner/device/vulnerability")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)

severity.map.veryhigh.if.deviceSeverity=Security Hole,HOLE
severity.map.high.if.deviceSeverity=Security Warning
severity.map.medium.if.deviceSeverity=Security Note,NOTE,INFO,REPORT

In addition to the common properties listed in Parser Structure, the following properties need
to be configured.

l Token Mappings
l Event Mappings
l Severity Mappings
l Ignore or Include Line

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information are available, they should also be extracted,
as shown in the previous example.

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 55 of 243

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_
name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Note: Use __concatenateDeleting() instead of __concatenate() only if the Description
field contains characters such as %, |, #, =, @, which are used as delimiters in parsers. For
information about __concatenateDeleting(), see ArcSight Operations.

The value for this property is obtained by concatenating the following vulnerability information
(as indicated by the syntax above):

l Vendor vulnerability collection name

For example, “Nessus=” in the example illustrated previously in this section.
l Vendor vulnerability ID

For example, NessusID in the example illustrated previously in this section.
l Vendor vulnerability name

For example, Name in the example illustrated previously in this section.
l Risk or severity

For example, Risk in the example illustrated previously in this section.
l List of description, recommendation, and remediation (separated by the ‘#’ character)

For example, INFO in the example illustrated previously in this section.
l List of external references (separated by the ‘%’ character)

For example, "%CVE=",CVE,"%Bugtraq=",Bugtraq in the example illustrated previously in
this section.

l event.destinationHostName, event.destinationAddress,
event.destinationMACAddress, and event.destinationPort (whichever is available)

If you are setting the event.destinationPort field, it must contain the open port that the
scanner reported.

Developer's Guide to ArcSight FlexConnectors

Event Mappings Page 56 of 243

Severity Mappings

Mandatory. You must define the device severity to FlexConnector severity mapping as shown
in section #6 of the example that follows in this section.

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify
lines in a scan report that need to be processed to obtain vulnerability information about
scanned hosts. Lines that do not meet the criteria specified in the filter are not processed.

l The include filter specifies a regular expression that a line must match for it to be
processed for extracting vulnerability information about scanned hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is
excluded and not processed for extracting vulnerability information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*?\\|\\d+\\|.*?\\|.*

Getting Open Ports on Scanned Hosts

The configuration file for getting the open ports and protocols on each scanned host should be
named vendor.openports.sdkrfilereader.properties, where vendor is usually the name
of the scanner device vendor.

Note: Typically, FlexConnectors look for extra processor configurations in {ARCSIGHT_
HOME}/current/user/agent/flexagent/. The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in {ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.openports.sdkrfilereader.properties file,
FlexConnectors look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from < vendor >.openports.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example configuration file for getting an open port on each scanned host
from a scan report:

Developer's Guide to ArcSight FlexConnectors

Severity Mappings Page 57 of 243

regex=([\\w\\.-]+)\\|((.*?) \\((\\d+)/(\\w+)\\)).*

token.count=5

token[0].name=ScannedHostNameOrIp
token[1].name=Name
token[2].name=ServiceName
token[3].name=Port
token[3].type=Integer
token[4].name=TransportProtocol

event.destinationHostName=ScannedHostNameOrIp
event.name=Name
event.destinationServiceName=ServiceName
event.destinationPort=Port
event.transportProtocol=TransportProtocol
event.categoryTechnique=__stringConstant("/scanner/device/openport")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)

In addition to the common properties listed in Parser Structure, the following properties need
to be configured:

l Token Mappings
l Event Mappings
l Ignore or Include Line

Token Mappings

Mandatory. At a minimum, the IP address or host name must be extracted from the scan
report. In addition, if a MAC address and other information are available, it should also be
extracted, as shown in the example above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.
l event.transportProtocol

l event.destinationPort

The event.destinationPort field must contain the open port that the scanner reported.

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 58 of 243

l event.destinationHostName, event.destinationAddress, and
event.destinationMacAddress (whichever is available)

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify
lines in a scan report that need to be processed to obtain open ports (and protocols)
information about scanned hosts. Lines that do not meet the criteria specified in the filter are
not processed.

l The include filter specifies a regular expression that a line must match for it to be
processed for extracting open ports information about scanned hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is
excluded and not processed for extracting open ports information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*? \\(\\d+/\\w+\\).*

Getting OS and Applications (URIs) on Scanned Hosts

The configuration file for getting the operating system and applications on each scanned host
must be named <vendor>.uris.sdkrfilereader.properties, where vendor is usually the
name of the scanner device vendor.

Note: Typically, FlexConnectors look for extra processor configurations in { ARCSIGHT_
HOME}/current/user/agent/flexagent/ . The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in { ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.uris.sdkrfilereader.properties file, FlexConnectors
look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from < vendor >.uris.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example configuration file for getting operating system and applications on
each scanned host from a scan report:

Developer's Guide to ArcSight FlexConnectors

Ignore or Include Line Page 59 of 243

regex=([\\w\\.-]+)\\|.*?\\|(10336|10785|11936|18261)\\|.*?\\|(.*)
token.count=3

token[0].name=ScannedHostOrIp
token[1].name=PluginId
token[2].name=Description

event.destinationHostName=ScannedHostOrIp
event.deviceEventClassId=PluginId
event.message=Description
event.categoryTechnique=__stringConstant("/scanner/device/uri")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)
event.filePath=__getNormalizedOS(OS)

In addition to the common properties listed in Parser Structure, the following properties need
to be configured:

l Token Mappings
l Event Mappings
l Ignore or Include Line

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information is available, it should also be extracted, as
shown in the example above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.
l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information is
translated to a normalized OS asset category, as shown in the example above.

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify
lines in a scan report that need to be processed to obtain the operating system and

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 60 of 243

applications information about scanned hosts. Lines that do not meet the criteria specified in
the filter are not processed.

l The include filter specifies a regular expression that a line must match for it to be
processed for extracting the operating system and applications information about scanned
hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is
excluded and not processed for extracting the operating system and applications
information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*?\\|(?:10336|10785|11936|18261) \\|.*?\\|
(.*)

Parsers for XML Reports
To create parser files for XML reports, see the following sections:

l Getting a List of Hosts
l Getting Vulnerabilities for Scanned Hosts
l Getting Opened Ports on Scanned Hosts
l Getting OS and Application (URIs) on Scanned Hosts

Getting a List of Hosts

The configuration file for getting a list of scanned hosts needs to be named
vendor.scanner.xqueryparser.properties, where vendor is usually the name of the
scanner device vendor. In addition, this configuration file specifies the other configuration files
to use to extract information and the order in which they need to run.

The following is an example configuration file for getting a list of hosts from a scan report:

trigger.node.expression=/report/details/host_info

token.count=3

token[0].name=hostname
token[0].expression=hostname
token[1].name=ipaddr
token[1].type=IPAddress
token[1].expression=ipaddr

Developer's Guide to ArcSight FlexConnectors

Parsers for XML Reports Page 61 of 243

token[2].name=macaddr
token[2].type=MacAddress
token[2].expression=macaddr

event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.destinationMacAddress=macaddr

In addition to the common properties listed in Parser Structure, the following properties must
be configured:

l Token Mappings
l Use IP
l Invalid Vulnerabilities
l Extra Events

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information is available, it should also be extracted, as
shown in the example above.

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while
others might report both. The Use IP property indicates whether the scan reports contain IP
addresses. When this property is set to false, it indicates that the scan report does not contain
IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector
should ignore when processing the scan report. If you want to specify multiple vulnerability
IDs, separate them with a pipe (|) character.

The syntax for this property is:

invalid.vulnerability.ids=<vulnerability_ids>

For example:

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 62 of 243

Extra Events

Mandatory. These properties specify the names and locations of other configuration files
required for parsing the scan report to extract the vulnerabilities, open ports, operating
system, and applications information.

l extraevent[x].filename—Specifies the file name of the additional configuration file; for
example, extraevent[0].filename=nessus_nsr_osuris

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated.

Although you can specify the extra events in any order, you must use the following event
names (extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated
l Open ports: /scanner/device/openport/aggregated
l URIs (for operating system and applications): /scanner/device/uri/aggregated

For example:

extraevent.count=3

extraevent[0].filename=saint_xml_file.vulns
extraevent[0].name=/scanner/device/vulnerability/aggregated

extraevent[1].filename=saint_xml_file.openports
extraevent[1].name=/scanner/device/openport/aggregated

extraevent[2].filename=saint_xml_file.uris
extraevent[2].name=/scanner/device/uri/aggregated

Getting Vulnerabilities for Scanned Hosts

The configuration file for getting vulnerabilities for the scanned hosts needs to be named
vendor.vulns.xqueryparser.properties, where vendor is usually the name of the scanner
device vendor. This configuration file is used to extract the following information for the
scanned hosts:

Vulnerabilities as indicated by the vendor vulnerability IDs

l Name, description, risk or severity, solution or recommendation, if available
l External references such as CVE, Bugtraq, and so on
l Any other relevant information that is available

The following is an example configuration file for getting vulnerabilities from a scan report:

Developer's Guide to ArcSight FlexConnectors

Extra Events Page 63 of 243

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

trigger.node.expression=$host_info/vulnerability[severity!=
"Service"]

token.count=11

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

token[1].name=hostname
token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

token[5].name=description
token[5].expression=description

token[6].name=severity
token[6].expression=severity

token[7].name=cve
token[7].expression=fn:replace(cve," ","%CVE=")

token[8].name=impact
token[8].expression=impact

token[9].name=resolution
token[9].expression=resolution

token[10].name=reference

Developer's Guide to ArcSight FlexConnectors

Getting Vulnerabilities for Scanned Hosts Page 64 of 243

token[10].expression=reference

event.categoryTechnique=__stringConstant("/scanner/device/
vulnerability")
event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.deviceEventClassId=__concatenate(__concatenateDeleting
("Saint=",description,"#",description,"#",severity,"#","Impact",
impact,"Resolution",resolution," Reference",reference, "%|#=/@"),"%CVE=",cve)
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)
event.deviceReceiptTime=scan_time
event.deviceSeverity=severity
event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version
event.name=description

severity.map.veryhigh.if.deviceSeverity=critical,Critical Problem
severity.map.high.if.deviceSeverity=concern,Area of Concern
severity.map.medium.if.deviceSeverity=potential,Potential Problem
severity.map.low.if.deviceSeverity=info,service,Service

In addition to the common properties listed in Parser Structure, the following properties must
be configured:

l Token Mappings
l Event Mappings
l Severity Mappings

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information is available, it should also be extracted, as
shown in the example above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.
l event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_

name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 65 of 243

Note: Use __concatenateDeleting() instead of __concatenate() only if the Description
field contains characters such as %, |, #, =, @, which are used as delimiters in parsers. For
information about __concatenateDeleting(), see ArcSight Operations.

The value for this property is obtained by concatenating the following vulnerability information
(as indicated by the syntax above):

l Vendor vulnerability collection name=vendor vulnerability ID
l Vendor vulnerability name
l Risk or severity
l List of description, recommendation, and remediation (separated by the ‘#’ character)
l List of external references (separated by the ‘%’ character)
l event.destinationHostName, event.destinationAddress, and

destinationMACAddress (whichever is available)

Severity Mappings

Mandatory. You must define the device severity to FlexConnector severity mapping as shown
in section #6 of the example presented earlier in this section.

Getting Open Ports on Scanned Hosts

The configuration file for getting the open ports and protocols on each scanned host needs to
be named vendor.openports.xqueryparser.properties, where vendor is usually the name
of the scanner device vendor.

The following is an example configuration file for getting open port on each scanned host from
a scan report:

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

trigger.node.expression=$host_info/vulnerability[severity="Service"]

token.count=7

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

Developer's Guide to ArcSight FlexConnectors

Severity Mappings Page 66 of 243

token[1].name=hostname
token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

token[5].name=description
token[5].expression=description

token[6].name=severity
token[6].expression=severity

event.applicationProtocol=__regexToken(description,"(?:([a-zA-Z]+) ?)?\\(?
(?:\\d+/\\w+)?\\)?")
event.destinationServiceName=__regexToken(description,"(.*?) .*")

event.categoryTechnique=__stringConstant("/scanner/device/
openport")

event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.destinationPort=__regexTokenAsInteger(description,"
\\D*(\\d*).*?")
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)
event.deviceReceiptTime=scan_time
event.deviceSeverity=severity

event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version
event.name=__concatenate("Service: ",description)
event.transportProtocol=__regexToken(description,"(?:[a-zA-Z]+ ?)?\\(?(?:\\d+/
(\\w+))?\\)?")

In addition to the common properties listed in Parser Structure, the following properties need
to be configured:

l Token Mappings
l Event Mappings

Developer's Guide to ArcSight FlexConnectors

Getting Open Ports on Scanned Hosts Page 67 of 243

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information is available, it should also be extracted, as
shown in the example above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.
l event.transportProtocol

l event.destinationPort

The event.destinationPort field must contain the open port that the scanner reported.
l event.destinationHostName, event.destinationAddress, and

event.destinationMacAddress (whichever is available)

Getting OS and Applications (URIs) on Scanned Hosts

The configuration file for getting the operating system and applications on each scanned host
needs to be named vendor.uris.sdkrfilereader.properties, where vendor is usually the
name of the scanner device vendor.

The following is an example configuration file for getting operating system and applications on
each scanned host from a scan report:

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

trigger.node.expression=$host_info

token.count=5

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

token[1].name=hostname

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 68 of 243

token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

event.categoryTechnique=__stringConstant("/scanner/device/uri")
event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)

event.deviceReceiptTime=scan_time
event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version
event.filePath=__getNormalizedOS(hosttype)
event.name=__concatenate("OS: ",hosttype)

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In
addition, if a MAC address and other information is available, it should also be extracted, as
shown in the example above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.
l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information is
translated to a normalized OS asset category, as shown in the example above.

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 69 of 243

Scanner FlexConnectors for Database Scan Reports
Unlike the scanner FlexConnectors that process normal text or XML scan reports, the scanner
FlexConnector that processes database scan reports is a single configuration file. This file must
be named vendor.sdkdatabase.properties, where vendor is usually the name of the
scanner device vendor.

This file contains properties that extract the following information from a scan report:

l Version of the database
l List of scan jobs stored in the database
l Vulnerabilities, open ports, operating system, and applications for each scanned host in a

scan job
l List of hosts scanned in a scan job

Getting the Version of the Database

Version

The following version properties are used to detect and identify the version of the database or
product:

l version.id

l version.query

l version.order

For a detailed explanation of these properties, see Parser Properties for a Time-based Database
FlexConnector.

Example for FoundScan:

version.id=5.x
version.query=select Version from Version where (Name='Database') and (Version
like '5%')
version.order=3

Example for eEye Retina:

version.id=5.x
version.order=0
version.query=select count(id_) from eeye_Groups

Developer's Guide to ArcSight FlexConnectors

Scanner FlexConnectors for Database Scan Reports Page 70 of 243

Getting the List of Scan Jobs

Scan Job

The scan job properties obtain a list of scan job IDs for various scan results stored in the
database.

l Query—Obtains a list of scan job IDs for the scan jobs that have completed.
l scanjob.column—Enables you to specify the fields to display in the GUI for scan jobs when

the scanner FlexConnector is used in the interactive mode.
l scanjob.jobid.column.index, timestamp.field, uniqueid.fields, and event.name—

Required by the database parsing framework; therefore, these need to be configured.

For example:

query=select jobID,startTime,stopTime,jobDesc from jobs where jobID>? and
termStatus='Finished' order by JobId
scanjob.column.names=jobID,startTime,stopTime,jobDesc
scanjob.column.types=String,String,Integer,TimeStamp,TimeStamp
scanjob.jobid.column.index=3
timestamp.field=stopTime
uniqueid.fields=jobID
event.name=jobDesc

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while
others might report both. The use.ip property indicates whether the scan reports contain IP
addresses. When this property is set to false, it indicates that the scan report does not contain
IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector
should ignore when processing the scan report. If you want to specify multiple vulnerability
IDs, separate them with a pipe (|) character.

The syntax for this property is as follows:

invalid.vulnerability.ids=<vulnerability_ids>

For example:

Developer's Guide to ArcSight FlexConnectors

Getting the List of Scan Jobs Page 71 of 243

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Extra Queries

Mandatory. Extra queries are used to extract the list of hosts from a scan job, their open ports,
vulnerabilities, operating system and applications on those hosts.

extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated.

Although you can specify the extra events in any order, you must use the following event
names (extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated
l Open ports: /scanner/device/openport/aggregated
l URIs (for operating system and applications):/scanner/device/uri/aggregated

The extra queries that you must configure are:

l extra.queries.count

The number of queries in the configuration file. The number is one less than the total
number of queries because the first query starts at 0. For example, if you have three
queries defined to extract operating system, open ports, and vulnerabilities, then set this
property to 2.

l last.data.query.index

The highest index number for the query that will generate events. For example, if you have
6 extra.queries configured and you set this number to 4, any queries with index number 5,
6, and 7 will not generate events; all others will do so.

l host.query.index

The index number of the query that generates a list of scanned hosts.

The property extra.queries.count determines the number of different queries that will be
executed. The order of the extra queries is important. The extra queries that generate events
should be placed first, followed by the ones that do not. There are two query index properties:
host.query.index determines the query that is used to find the hosts in the scan and
last.data.query.index determines which is the last data query that generates an event that
is displayed on the console. The rest of the queries may be used for different purposes, but
they do not generate events that are displayed on the console. For example:

extra.queries.count=4
last.data.query.index=2
host.query.index=3

Developer's Guide to ArcSight FlexConnectors

Extra Queries Page 72 of 243

Vulnerability Query

The vulnerability query extracts the following information:

l Vulnerabilities as indicated by the vendor vulnerability IDs
l Name, description, risk or severity, solution or recommendation, if available
l External references such as CVE, Bugtraq, and so on
l Any other relevant information

This query uses the order by clause to sort the results by host ID.

The following is an example of the vulnerability query defined in a configuration file:

extra.queries[0].name=/scanner/device/vulnerability/aggregated

extra.queries[0].query=select
Jobs.JobID,Jobs.EndTime,JobName,Organizations.Name \

as \
CompanyName,Hosts.IPAddress,OSName,NBName,NBWorkGroup, DNSName,Alive, \
Virtual,ICMP,IdentifyWith,Wireless,Subscan,Batch,VulnFoundID, \
VulnsFound.FaultlineID,CVE,Type,Vulns.Name \
as \
VulnName,Vulns.Description \
as \

VulnDescription,Observation,RiskText,Risk,Recommendation,ExploitDate,Simplicit
y, \
Popularity,Impact,ExploitLink,
Person,LHF,ExploitDataType,Intrusive,SANS,Vulns.Status, \
ScanConfigurations.ConfigurationName \
from \
Jobs,Organizations,Hosts,VulnsFound,Vulns, ScanConfigurations \
where \
Jobs.CustomerID = Organizations.OrgId and \
Jobs.CustomerID = Hosts.CustomerID and Jobs.ConfigurationID =
Hosts.ConfigurationID and \
Jobs.JobID = Hosts.JobID and Jobs.CustomerID = VulnsFound.CustomerID and \
Jobs.ConfigurationID = VulnsFound.ConfigurationID and Jobs.JobID =
VulnsFound.JobId \
and Hosts.HostID = VulnsFound.HostID and VulnsFound.FaultlineID =
Vulns.FaultlineID and \
Jobs.CustomerID = ScanConfigurations.CustomerID and \
Jobs.ConfigurationID = ScanConfigurations.ConfigurationID and Jobs.JobId = ? \
order by Hosts.HostID

from Vulns and VulnsFound table
extra.queries[0].event.name=VulnName

Developer's Guide to ArcSight FlexConnectors

Vulnerability Query Page 73 of 243

extra.queries[0].event.deviceSeverity=Risk
extra.queries[0].severity.map.high.if.deviceSeverity=7,8,9,10
extra.queries[0].severity.map.medium.if.deviceSeverity=4,5,6
extra.queries[0].severity.map.low.if.deviceSeverity=0,1,2,3
extra.queries[0].event.categoryTechnique=__stringConstant
("/scanner/device/vulnerability")
extra.queries[0].event.deviceEventClassId=__concatenateDeleting
("Faultline=",FaultlineID,"#",VulnName,"#",Risk,"#","Description",VulnDescript
ion,"Observation",Observation," RiskText",
RiskText,"Recommendation",Recommendation, "%CVE=",CVE,"%|#=/@")
extra.queries[1].event.destinationAddress=IPAddress
extra.queries[1].event.destinationHostName=DNSName

The following event mappings must be defined in the configuration file for the vulnerability
query:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.
l event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_

name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Note: Use __concatenateDeleting() instead of __concatenate() only if the
Description field contains characters such as %, |, #, =, @, which are used as delimiters
in parsers. For information about __concatenateDeleting(), see ArcSight Operations.

The value for this property is obtained by concatenating the following vulnerability
information (as indicated by the syntax above):
o Vendor vulnerability collection name=vendor vulnerability ID
o Vendor vulnerability name
o Risk or severity
o List of description, recommendation, and remediation (separated by the ‘#’ character)
o List of external references (separated by the ‘%’ character)

l event.destinationHostName, event.destinationAddress, and
destinationMACAddress (whichever is available)

l Device severity to FlexConnector severity mapping:

extra.queries[x].severity.map.high.if.deviceSeverity
extra.queries[x].severity.map.medium.if.deviceSeverity
extra.queries[x].severity.map.low.if.deviceSeverity

Developer's Guide to ArcSight FlexConnectors

Vulnerability Query Page 74 of 243

Open Ports Query

The open ports query extracts the ports open on the scanned hosts and transport protocols
allowed on those ports.

This query uses the order by clause to sort the results by host ID.

The following is an example of the open ports query defined in a configuration file:

extra.queries[1].name=/scanner/device/openport/aggregated
extra.queries[1].query=select
Jobs.JobID,Jobs.EndTime,JobName,Organizations.Name as \
CompanyName,Hosts.IPAddress,OSName,NBName,NBWorkGroup, \

DNSName,Alive,Virtual,ICMP,IdentifyWith,Wireless,Subscan,Batch,ServicesFound.B
anner, \
ServiceName,Services.Port,Protocol,Services.Description, \
Detail, ServicesFound.ServiceID \
from \
Jobs,Hosts,Organizations,ServicesFound,Services where \
Jobs.CustomerID = Organizations.OrgId and \>
Jobs.CustomerID = Hosts.CustomerID and Jobs.ConfigurationID =
Hosts.ConfigurationID and \
Jobs.JobID = Hosts.JobID and \
Jobs.CustomerID = ServicesFound.CustomerID and Jobs.ConfigurationID =
ServicesFound.ConfigurationID \
and Jobs.JobID = ServicesFound.JobId and Hosts.HostID = ServicesFound.HostID
and \
ServicesFound.ServiceID = Services.ServiceID and Jobs.JobId = ? \
order by Hosts.HostID

extra.queries[1].event.name=Service
extra.queries[1].event.destinationPort=Port
extra.queries[1].event.transportProtocol=Protocol
extra.queries[1].event.destinationAddress=IPAddress
extra.queries[1].event.destinationHostName=DNSName

The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.
l event.transportProtocol

l event.destinationPort

The event.destinationPort field must contain the open port that the scanner reported.

Developer's Guide to ArcSight FlexConnectors

Open Ports Query Page 75 of 243

l event.destinationHostName, event.destinationAddress, and
destinationMacAddress (whichever is available)

Getting OS and Applications (URIs) on Scanned Hosts

The OS and applications (URIs) query extracts the operating systems and applications found on
the scanned hosts.

This query uses the order by clause to sort the results by host ID.

The following is an example of the OS and applications query defined in a configuration file:

extra.queries[2].name=/scanner/device/uri/aggregated
extra.queries[2].query=Select IPAddress, DNSName, NBWorkGroup, \
OSName, EndTime from Hosts, Jobs \
where \
Jobs.CustomerID=Hosts.CustomerID and
Jobs.ConfigurationID=Hosts.ConfigurationID and \
Jobs.JobID=Hosts.JobID and Jobs.JobID=?

extra.queries[2].event.name=OSName
extra.queries[2].event.categoryTechnique=__stringConstant("/
scanner/device/uri")
extra.queries[2].event.filePath=__getNormalizedOS(OSName)
extra.queries[2].event.destinationAddress=IPAddress
extra.queries[2].event.destinationHostName=DNSName
extra.queries[2].event.destinationNtDomain=NBWorkGroup

The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.
l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information
is translated to a normalized OS asset category, as shown in the example above.

Getting Scanned Hosts (Host Query)

This query extracts the IP addresses, host names, MAC addresses of the hosts in a scan job.
Because all scanners do not provide all three pieces of information, the query extracts
whatever information is available.

This query does not generate events, but generates a list of hosts that the connector uses to
create assets and update their information in ESM.

The following is an example of the query:

Developer's Guide to ArcSight FlexConnectors

Getting OS and Applications (URIs) on Scanned Hosts Page 76 of 243

extra.queries[3].name=HostList
extra.queries[3].query= \
SELECT DISTINCT Hosts.IPAddress, Hosts.DNSName, ServicesFound.Banner \
FROM Jobs INNER JOIN Hosts ON Jobs.CustomerID = Hosts.CustomerID AND
Jobs.ConfigurationID \
= Hosts.ConfigurationID AND Jobs.JobID = Hosts.JobID \
LEFT OUTER JOIN ServicesFound ON Hosts.JobID = ServicesFound.JobID AND
Hosts.HostID \
= ServicesFound.HostID AND ServicesFound.ServiceID = 236 \
WHERE Jobs.JobID = ?

>extra.queries[3].event.destinationAddress=IPAddress
extra.queries[3].event.destinationHostName=DNSName
extra.queries[3].event.destinationMacAddress=__getLongMACAddressByString(__
regexToken(Banner,"(?s)MAC Address:\\s*(\\S+)"))

Developer's Guide to ArcSight FlexConnectors

Getting Scanned Hosts (Host Query) Page 77 of 243

Installing and Configuring the
FlexConnector
Installation and configuration consists of installing the FlexConnector core software, and then
selecting and configuring the destination for the log messages.

The installation process installs the framework, tools, and sample files necessary for
configuring a FlexConnector. Once a FlexConnector is installed, it functions the same as any
SmartConnector.

The installation directory (for example, C:\FlexConnector\current) is referred to as
$ARCSIGHT_HOME, regardless of the platform.

To successfully configure a FlexConnector, the ArcSight Manager or Logger and database
components with which the FlexConnector will communicate must be up and running. The
FlexConnector tries to connect to the destination during the configuration process. If it cannot
connect, configuration fails.

Management of FlexConnectors
There are currently two ways to manage SmartConnectors: through ArcSight Management
Center (also referred to as "ArcMC") and through ArcSightConnector Appliance. Eventually,
ArcSight Management Center will replace ArcSightConnector Appliance.

l ArcSight Connector Appliance
l ArcSight Management Center

ArcSight Connector Appliance

The ArcSightConnector Appliance is a hardware solution that incorporates a number of
onboard ArcSightSmartConnectors and a web-based user interface that provides centralized
management for SmartConnectors across a potentially large number of hosts.

FlexConnectors can generally be managed by a Connector Appliance and can be hosted on the
appliance if they are compatible with a Linux platform. The Connector Appliance ships with
several prototype FlexConnectors, including the following:

l ArcSight FlexConnector File
l ArcSight FlexConnector ID-Based DB
l ArcSight FlexConnector Multiple DB
l ArcSight FlexConnector Regex File
l ArcSight FlexConnector Regex Folder File

Installing and Configuring the FlexConnector Page 78 of 243

l ArcSight FlexConnector Time-Based DB
l ArcSight FlexConnector XML File

For detailed information and instructions for using the Connector Appliance, see the ArcSight
Connector Appliance Administrator’s Guide.

ArcSight Management Center

ArcSight Management Center includes all of the functions of ArcSightConnector Appliances,
and also the ability to manage and monitor an additional range of ArcSight products, such as
Connector Appliances, Loggers, and other ArcSight Management Centers, as illustrated in the
following figure.

ArcSight Management Center uses the concept of nodes to manage various entities. A node is
a networked ArcSight product that can be centrally managed using ArcSight Management
Center. Each node is associated with a single networked host that has been assigned either a
hostname, an IP address, or both.

A single host can include multiple nodes. For example, a single Connector Appliance (with a
single IP address or hostname) could have multiple containers, each of which could be a
separate node. In addition, a node can be in a parent or child relationship with other modes.

You can perform any of the following node management tasks:

l View managed nodes by location, host, or node type
l Add, view, edit, and delete locations for hosts

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Management of FlexConnectors Page 79 of 243

l Add nodes from a host, import hosts from a .csv file, view and delete hosts, view all hosts
in a location, move hosts to different locations, and scan hosts for new connectors or
containers

See the ArcSight Management Center Administrator’s Guide for details.

Prerequisites for the Installation
Before you proceed with the installation of a FlexConnector, ensure the following:

l You have reviewed the hardware and software requirements required for installing and
using the FlexConnector. For more information, see the Technical Requirements Guide.

l The components such as ESM, Logger, and the database, with which the FlexConnector will
communicate are up and running. For complete product information, see the
Administrator's Guide to ArcSight Platform, available on ArcSight Documentation.

l (Conditional) For adding a connector to the ArcSight Connector Appliance or ArcSight
Management Center, see the ArcSight Connector Appliance Administrator's Guide or
ArcSight Management Center Administrator's Guide available on ArcSight Documentation
for instructions.

l You have downloaded the FlexConnector executable for your operating system from the
OpenText for Micro Focus products site.

l You have local access to the machine where the FlexConnector is to be installed.
l You have administrator passwords.
l You have created the parser for the FlexConnector.
l (Conditional) For a database FlexConnector, download the database driver for the

connector to connect to the database.
l (Conditional) Avoid duplicate events when developing a database FlexConnector. For more

information, see Troubleshooting Duplicate Events

Downloading the Database Driver
Important: This section applies only to the database type of SmartConnectors, including
FlexConnectors. This section does not apply for a database connector connecting to the Sybase
database.

Before installing the database type of SmartConnector, you must download the database driver
of the respective database so that the connector can connect to the database. During the

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Prerequisites for the Installation Page 80 of 243

https://wwwtest.microfocus.com/documentation/arcsight/arcsight-smartconnectors-8.4/smartconnector-tchnical-specifications/

installation process, you will be directed to leave the wizard and copy the driver file you
downloaded to a SmartConnector folder.

l JDBC Driver for Microsoft SQL Server
l JDBC Driver for MySQL
l JDBC Driver for PostgreSQL
l JDBC Driver for Oracle
l DB2 Driver for IBM DB2

JDBC Driver for Microsoft SQL Server
Different versions of the JDBC driver are required for different SQL Server database versions.
The name of the jar file may be different for some JDBC driver versions. Make sure that you
use the correct driver for your database version.

Refer to the following information to download the correct jar file depending on the JRE
version used by the SmartConnector:

l SmartConnector Version 8.3.0 uses JRE 1.8.0_312 and supports jar files from version mssql-
jdbc-6.4.0.jre8.jar (Download Microsoft JDBC Driver 6.4 for SQL Server) to mssql-jdbc-
9.4.0.jre8.jar (Download Microsoft JDBC Driver 9.4.0 for SQL Server).

l SmartConnector Version 7.2.1 and later use JRE 1.8 and require sqljdbc42.jar (Download
Microsoft JDBC Driver 6.0 for SQL Server).

l SmartConnector Version 7.1.2 and later use JRE 1.7 and require sqljdbc41.jar (Download
Microsoft JDBC Driver 6.0 for SQL Server).

l Earlier versions of SmartConnector run JRE 1.6 and require sqljdbc4.jar (available with
Microsoft JDBC Driver 4.0 for SQL Server).

JDBC Driver for MySQL
To download the JDBC driver for MySQL, navigate
tohttp://www.java2s.com/Code/Jar/m/Downloadmysqlconnectorjar.htm#google_vignette and
download the mysql-connector.jar file.

JDBC Driver for PostgreSQL
To download the JDBC driver for PostgreSQL, navigate to
https://jdbc.postgresql.org/download/. It is recommended to download the JDBC driver for
Java 8 or a higher version. The jar file for Java 8 is postgresql-42.6.0.jar. For any other
version of Java, download the appropriate JDBC driver from the website.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

JDBC Driver for Microsoft SQL Server Page 81 of 243

https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#64
https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#94
https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#60
https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#60
https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#60
https://learn.microsoft.com/en-us/sql/connect/jdbc/release-notes-for-the-jdbc-driver?view=sql-server-ver16#60
http://www.java2s.com/Code/Jar/m/Downloadmysqlconnectorjar.htm#google_vignette
https://jdbc.postgresql.org/download/

JDBC Driver for Oracle
To download the JDBC driver for Oracle, navigate to
https://www.oracle.com/in/database/technologies/appdev/jdbc-downloads.html and
download the ojdbc8.jar file.

Important: Only the Oracle 9i, 10g, 11g, and 12c database versions are supported for the
database type of SmartConnectors and FlexConnectors.

DB2 Driver for IBM DB2
For IBM DB2, DB2 drivers are no longer provided in the connector installation due to licensing
requirements. Later versions of DB2 drivers can be found here, but you require IBM login
credentials to download the drivers. The jar file to download is db2jcc4.jar. In addition, IBM
now requires a license jar to be added to the connector to connect to the database. The jar file
to download is db2jcc_license_cu.jar.

Installing the Core Software
A FlexConnector can be installed on all ArcSight supported platforms; for the complete list, see
the SmartConnector Platform Support document, available from the OpenText SSO site.

ArcSight recommends that you do not install database connectors on the database server or
any mission critical servers as this might cause performance issues.

To install the core software:

1. Start the installation wizard by running the executable for your operating system platform.

Follow the installation wizard through the following folder selection tasks and installation of
the core connector software:

Introduction
Choose Install Folder
Choose Shortcut Folder
Pre-Installation Summary
Installing...

2. (Conditional) For a database type of FlexConnector, after the SmartConnector core
component software is installed, perform the following steps:

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

JDBC Driver for Oracle Page 82 of 243

https://www.oracle.com/in/database/technologies/appdev/jdbc-downloads.html
https://www.ibm.com/support/pages/db2-jdbc-driver-versions-and-downloads

a. Exit the installation wizard.

b. Copy the jar file associated with the version of the driver that you downloaded earlier
to $ARCSIGHT_HOME/current/user/agent/lib. For IBM DB2, you must also copy the
license jar file.

c. Copy the auth.dll authentication file from the database driver download to
$ARCSIGHT_HOME\jre\bin.

Note: If you are upgrading the SmartConnector, you must copy the authentication file
to $ARCSIGHT_HOME\jre\bin again after update because the upgrade process
overwrites the $ARCSIGHT_HOME\jre\bin directory.

d. Copy the jssecacertscertificate that you installed during the device configuration to
$ARCSIGHT_HOME/current/jre/lib/security.

Note: You must copy this file again to the installation folder after upgrading the
SmartConnector because this file gets overwritten during the upgrade process.

e. Copy thevjdbc.jar and commons-logging-1.1.jar files to $ARCSIGHT_
HOME/current/user/agent/lib. These files are located in the lib directory that was
created when you downloaded the database driver and unzipped the package.

f. Browse to $ARCSIGHT_HOME/current/bin, then double-click the runagentsetup.bat
file to start the SmartConnector Configuration Wizard.

3. Continue with copying the created parsers.

Copying the Created Parsers
The following table describes the location and filename of the parser used for each type of
FlexConnector. The vendor or database is usually named for the device vendor (such as
“superSecure”). Ensure that you copy the created parser in the location corresponding to the
type of FlexConnector you are configuring as follows:

Type Location Filename

Log file ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkfilereader.properties

Regex Log file ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkrfilereader.properties

Regex Folder
Follower

ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkrfilereader.properties

Time-based
Database

ARCSIGHT_HOME\user\agent\
flexagent\vendor
or product_name

database.sdktbdatabase.properties

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Copying the Created Parsers Page 83 of 243

Type Location Filename

ID-based
Database

ARCSIGHT_HOME\user\agent\
flexagent\vendor or product_name

database.sdkibdatabase.properties

Multi-Database ARCSIGHT_HOME\user\agent\
flexagent\vendor or product_name

database.sdktbdatabase.properties

Syslog ARCSIGHT_HOME\user\agent\flexagent\syslog vendor.subagent.sdkrfilereader.properties

XML Folder
Follower

ARCSIGHT_HOME\user\agent\flexagent vendor.xqueryparser.properties

JSON Folder
Follower

ARCSIGHT_HOME\user\agent\flexagent vendor.jsonparser.properties

Scanner (for
normal text)

ARCSIGHT_HOME\user\agent\flexagent vendor.scanner.sdkrfilereader.properties

vendor.vulns.sdkrfilereader.properties
See also Getting Vulnerabilities for Scanned
Hosts.

vendor.openports.sdkrfilereader.properties
See also Getting Open Ports on Scanned
Hosts.

vendor.uris.sdkrfilereader.properties
See also Getting OS and Applications (URIs)
on Scanned Hosts.

Scanner (for XML) ARCSIGHT_HOME\user\agent\flexagent vendor.scanner.xqueryparser.properties

vendor.vulns.xqueryparser.properties

vendor.openports.xqueryparser.properties

vendor.uris.xqueryparser.properties

Scanner (for
database)

ARCSIGHT_
HOME\user\agent\flexagent\vendor or
product_name

database.sdkdatabase.properties

Setting the Global Parameters
Note: Setting global parameters is optional.

If you choose to perform any of the operations shown in the following table, do so before
adding your connector. After installing core software, you can set the following parameters:

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Setting the Global Parameters Page 84 of 243

Global Parameter Setting

FIPS mode Set to Enabled to enable FIPS compliant mode. To enable FIPS Suite B Mode,
see the SmartConnector User Guide under "Modifying Connector Parameters"
for instructions. Initially, this value is set to Disabled.

Remote Management Set to Enabled to enable remote management from ArcSight Management
Center. When queried by the remote management device, the values you
specify here for enabling remote management and the port number will be
used. Initially, this value is set to Disabled.

Remote Management Listener
Port

The remote management device will listen to the port specified in this field. The
default port number is 9001.

Preferred IP Version When both IPv4 and IPv6 IP addresses are available for the local host (the
machine on which the connector is installed), you can choose which version is
preferred. Otherwise, you will see only one selection. The initial setting is IPv4.

The following parameters must be configured only if you are using SecureData solutions to
provide encryption. See the SecureData Architecture Guide for more information.

Global Parameter Setting

Format Preserving Encryption Data leaving the connector machine to a specified destination can be encrypted
by selecting ‘Enabled’ to encrypt the fields identified in ‘Event Fields to Encrypt
before forwarding events. If encryption is enabled, it cannot be disabled.
Changing any of the encryption parameters again will require a fresh
installation of the connector.

Format Preserving Host URL Enter the URL where the SecureData server is installed.

Proxy Server (https) Enter the proxy host for https connection if any proxy is enabled for this
machine.

Proxy Port Enter the proxy port for https connection if any proxy is enabled for this
machine.

Format Preserving Identity The SecureData client software allows client applications to protect and access
data based on key names. This key name is referred to as the identity. Enter the
user identity configured for SecureData.

Format Preserving Secret Enter the secret configured for SecureData to use for authentication.

Event Fields to Encrypt Recommended fields for encryption are listed; delete any fields you do not
want encrypted from the list, and add any string or numeric fields you wish to
be encrypted. Encrypting more fields can affect performance, with 20 fields
being the maximum recommended. Also, because encryption changes the
value, rules or categorization could also be affected. Once encryption is
enabled, the list of event fields cannot be edited.

After making your selections, click Next. A summary screen is displayed. Review the summary
of your selections and click Next. Click Continue to return to the "Add a Connector" window.
Continue the installation procedure with Selecting and Configuring the FlexConnector.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Setting the Global Parameters Page 85 of 243

Selecting and Configuring the FlexConnector
1. Select Add a Connector and click Next. If applicable, you can enable FIPS mode and enable

remote management later in the wizard after connector configuration.

2. Select a specific connector to install. The FlexConnectors are mostly grouped together
beginning with ArcSight FlexConnector. The exception is syslog FlexConnectors (choose
Syslog Daemon) . Click Next when you have made your selection.

Note: The CounterACT FlexConnector type is not documented in this guide. If you are
selecting this connector type, see the Action Connector Developer’s Guide for more details.

3. Enter the required SmartConnector parameters to configure the SmartConnector, then
click Next.

The installation wizard prompts for different parameters depending upon the type of
FlexConnector or Syslog SmartConnector selected. In addition to the parameters you can
configure through the installation wizard, you can also configure parameters directly in the
agent.properties file. Those parameters are discussed in Advanced FlexConnector
Configuration Parameters.

ArcSight FlexConnector File
Choose this type if the event data is in log files that use a fixed, delimited format. In this case,
each line in the text file represents a unique event, and each line contains the same number of
fields, in the same order. Fixed-format log files can be delimited by commas, tabs, or another
character, such as a pipe (‘|’).

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed
events to $ARCSIGHT_HOME\current\logs\events.log. For more information on
unparsed events, see Detecting Unparsed Events.

Log File Name The absolute path and name of the file that this FlexConnector will read. For example:
c:\temp\sample_data.txt

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Selecting and Configuring the FlexConnector Page 86 of 243

https://www.microfocus.com/documentation/arcsight/arcsight-esm-7.6.4/Action Connector Developer Guide/#ActionConn/Overview.htm?TocPath=Overview%257C_____0

Parameter Description

Configuration File The base name of the configuration file that describes the format of the log file. For a
connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties.

ArcSight FlexConnector ID-Based Database
Choose this type for devices that write security event information to a database. This type will
read events from the database based on unique IDs. (If the connector is to read events from
database table rows, you should select ArcSight FlexConnector Time-Based Database.)

Note:
l For Microsoft SQL Server as the database, after installing connector core software and

before configuring the ArcSight FlexConnector ID-Based DB, you will need to download an
appropriate JDBC driver for the connector to connect to the database. For more
information, see Downloading the Database Driver .

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.
l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support

ODBC connections; therefore, database connectors can only use JDBC connections. For the
same reason, the MS Access database, which uses only ODBC connections, is no longer
supported.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector ID-Based Database Page 87 of 243

Parameter Description

Database JDBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, use:
com.microsoft.sqlserver.jdbc.SQLServerDriver.

l For MySQL, use:
org.gjt.mm.mysql.Driver.

l For Oracle, use:
oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database
versions.

l For PostGreSQL, use:
org.postgresql.Driver

l For DB2 unified driver, use:
com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use:
COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use:
o net.sourceforge.jtds.jdbc.Driver

o com.sybase.jdbc4.jdbc.SybDriver - Use this URL if the password
encryption is enabled in the Sybase ASE database.

It is mandatory to place the jconn4.jar file in the following folder:
current\user\agent\lib. The jconn4.jar file is available in the Sybase ASE
database Installation directory. Example: C:\SAP\jConnect-16_
0\classes\jconn4.jar.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector ID-Based Database Page 88 of 243

Parameter Description

Database URL The JDBC URL that identifies the database.

l For Oracle, use:
jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use:
jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use:
jdbc:postgresql://host/database

l For DB2 unified driver, use:
jdbc:db2:database_name

l For DB2 Legacy CLI-based, use:
jdbc:db2://host_name: port_number/ database_name

l For Sybase, use:
o jdbc:jtds:sybase://<HostName>:<port>/<DatabaseName>

o jdbc:sybase:Tds:[HostName]:
[Port]?ServiceName=sybsecurity&ENCRYPT_PASSWORD=true - Use this
URL if the password encryption is enabled in the Sybase ASE database.

Database User The database user name.

Database Password Password for the database user.

Configuration Folder Enter the name of the folder that contains the properties file. Do not enter the full
path to the file as doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is
myfolder, then the FlexConnector will look for the configuration file in the directory:
ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:
myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:
myfolder.sdkibdatabase.properties

Query Frequency Specifies how often, in seconds, to query the database. The default is 5 seconds.

ArcSight FlexConnector Time-Based Database
Choose this type for devices that write security event information to a database. This type will
read events from database table rows. If the connector is to read events from the database
based on unique IDs, you should select ArcSight FlexConnector ID-Based Database. Each row
represents a single event, and the number and meaning of the columns are fixed. One column
represents the event timestamp and can be used to order the rows.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Time-Based Database Page 89 of 243

Notes:
l For Microsoft SQL Server as the database, after installing connector core software and

before configuring the ArcSight FlexConnector Time-Based DB, you will need to download
an appropriate JDBC driver for the connector to connect to the database. For more
information, see Downloading the Database Driver .

l Knowledge of SQL is a prerequisite for coding database FlexConnectors

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Time-Based Database Page 90 of 243

Parameter Description

Database JDBC Driver l The JDBC driver that will be used to connect to the database.
l For SQL Server, use:

com.microsoft.sqlserver.jdbc.SQLServerDriver.
l For MySQL, use:

org.gjt.mm.mysql.Driver.
l For Oracle, use:

oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database
versions.

l For PostGreSQL, use:
org.postgresql.Driver

l For DB2 unified driver, use:
com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use:
COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use:
o net.sourceforge.jtds.jdbc.Driver

o com.sybase.jdbc4.jdbc.SybDriver - Use this URL if the password
encryption is enabled in the Sybase ASE database.

It is mandatory to place the jconn4.jar file in the following folder:
current\user\agent\lib. The jconn4.jar file is available in the Sybase ASE
database Installation directory. Example: C:\SAP\jConnect-16_
0\classes\jconn4.jar.

Database URL The JDBC URL that identifies the database.

l For Oracle, use:
jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use:
jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use:
jdbc:postgresql://host/database

l For DB2 unified driver, use:
jdbc:db2:database_name

l For DB2 Legacy CLI-based, use:
jdbc:db2://host_name: port_number/ database_name

l For Sybase, use:
o jdbc:jtds:sybase://<HostName>:<port>/<DatabaseName>

o jdbc:sybase:Tds:[HostName]:
[Port]?ServiceName=sybsecurity&ENCRYPT_PASSWORD=true - Use this URL
if the password encryption is enabled in the Sybase ASE database.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Time-Based Database Page 91 of 243

Parameter Description

Database User The database user name.

Database Password Password for the database user.

Configuration Folder Enter the name of the folder that contains the properties file. Do not enter the full path
to the file as doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is
myfolder, then the FlexConnector will look for the configuration file in the directory:

ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:
myfolder.sdktbdatabase.properties

The configuration file for ID-based connectors will be named:

myfolder.sdkibdatabase.properties

Query Frequency Specifies how often, in seconds, to query the database. The default is 5 seconds.

ArcSight FlexConnector JSON Multiple Folder Follower
Choose this type for devices that write event information to JSON files. Event information in
these files is presented in standard JSON format. This connector recursively reads events from
JSON-based files in multiple folders

Parameter Description

JSON Configuration File Name
Prefix

The base name of the configuration file that describes the format of the log file.

The suffix .jsonparser.properties is appended automatically. For example,

if you specify:

vendor_product

The filename becomes:

$ARCSIGHT_HOME\user\agent\flexagent\vendor_
product.jsonparser.properties

Folder The absolute path of the directory where log files for the
FlexConnector are located. For example: c:\logs

Wildcard Enter a Wildcard that identifies the files to process. The default
wildcard is *.json

Note: Click 'Export' to copy the host name data you entered in the table to a CSV file. Click
'Import' to select a CSV file and copy it into the table rather than adding the data manually. See
the "SmartConnector User's Guide" for more information.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector JSON Multiple Folder Follower Page 92 of 243

ArcSight FlexConnector Multiple Database
Choose this type to retrieve information from multiple databases that use the same query or
retrieve different set of events using different queries from the same database.

Note:
l For Microsoft SQL Server as the database, after installing connector core software and

before configuring the ArcSight FlexConnector Multiple DB, you will need to download an
appropriate JDBC driver for the connector to connect to the database. For more
information, see Downloading the Database Driver.

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.
l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support

ODBC connections; therefore, database connectors can only use JDBC connections. For the
same reason, the MS Access database, which uses only ODBC connections, is no longer
supported.

Parameter Description

JDBC/ODBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, use:
com.microsoft.sqlserver.jdbc.SQLServerDriver.

l For MySQL, use:
org.gjt.mm.mysql.Driver.

l For Oracle, use: oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database
versions.

l For PostGreSQL, use: org.postgresql.Driver
l For DB2 unified driver, use: com.ibm.db2.jcc.DB2Driver
l For DB2 Legacy CLI-based, use: COM.ibm.db2.jdbc.net.DB2Driver
l For Sybase, use: net.sourceforge.jtds.jdbc.Driver

URL The JDBC URL that identifies the database.

l For Oracle, use: jdbc:oracle:thin:@hostname_or_IP:1521:database_name
l For MySQL, use: jdbc:mysql://hostname_or_IP:3306/database_name
l For Microsoft SQL Server 2000, use:

jdbc:microsoft:sqlserver://host:port;databasename=name
l For Microsoft SQL Server 2005 and later, use:

jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use: jdbc:postgresql://host/database
l For DB2 unified driver, use: jdbc:db2:database_name
l For DB2 Legacy CLI-based, use: jdbc:db2://host_name: port_number/

database_name

l For Sybase, use: jdbc:jtds:sybase://<HostName>:<port>/<DatabaseName>

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Multiple Database Page 93 of 243

Parameter Description

User The database user name.

Password Password for the database user.

Frequency Specifies how often, in seconds, to query the database. The default is 5 seconds.

Config Folder Enter the name of the folder that contains the properties file. Do not enter the full
path to the file as doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is
myfolder, then the FlexConnector will look for the configuration file in the directory:

ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:
myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:
myfolder.sdkibdatabase.properties

ArcSight FlexConnector Multiple Folder File
This type parses files (fixed, delimited, or using regular expressions) that are written to multiple
folders. Events can be read in real time or in batch mode.

Parameter Description

Log Unparsed Events? The default value is false. Select true for the connector to detect and log unparsed
events to $ARCSIGHT_HOME\current\logs\events.log. For more information on
unparsed events, seeDetecting Unparsed Events.

Folder The absolute path of the directory where log files for the FlexConnector are located.
For example: c:\logs

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Multiple Folder File Page 94 of 243

Parameter Description

Processing Mode If the files in the folder are not being written to in real time and are complete, select
batch. If the files are open and new log lines are being added to them, select
realtime.

Configuration File The base name of the configuration file that describes the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

Configuration Type l If the file is a fixed-format log file, select sdkfilereader.
l If the file is a variable-format log file, select sdkrfilereader.
l If the file is a keyvalue-format log file, select sdkkeyvalue.
l If the file is a CEF-format log file, select cef.

ArcSight FlexConnector Regex File
This type reads variable-format log files. Choose this type if the source log files have one event
per line, but the format of each line varies based on the type of event information. In this case,
each line shares a common section (for example, the date and hostname), but the number and
content of the other fields on the line varies. For devices that may not write to log files in real
time, use the ArcSight FlexConnector Regex Folder File.

Note: The regular expression-based FlexConnectors require a familiarity with Java-compatible
regular expressions.

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed
events to $ARCSIGHT_HOME\current\logs\events.log. For more information on
unparsed events, see “Detecting Unparsed Events.

Log File Name The absolute path and name of the file that this FlexConnector will read. For example:
c:\temp\sample_data.txt

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Regex File Page 95 of 243

Parameter Description

Configuration File The base name of the configuration file that describes the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector Regex Folder File
Choose this type to parse log files using regular expressions to which data is not written in real
time. This type recursively reads variable-format log files in a folder or multiple folders.

Note: The regular expression-based FlexConnectors require a familiarity with Java-compatible
regular expressions.

Parameter Description

Log Unparsed Events? The default value is false. Select true for the connector to detect and log unparsed
events to $ARCSIGHT_HOME\current\logs\events.log. For more information on
unparsed events, see “Detecting Unparsed Events.

Log Folder The absolute path of the directory where log files for the FlexConnector are located. For
example: c:\logs

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector REST
This type uses REST API endpoints, JSON parser, and OAuth2 authentication to collect security
events from cloud vendors (such as Salesforce or Google Apps). This FlexConnector is not

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Regex Folder File Page 96 of 243

documented in this guide. See the ArcSight FlexConnector REST Developer’s Guide for details.

ArcSight FlexConnector Scanner Database
Choose this type to import the results of a scan from a scanner device and forward the data to
ESM so that ESM can model an organization’s assets, open ports, operating systems,
applications, and vulnerabilities. The connector imports periodic scans to ESM, which uses this
information for event prioritization, reporting, and correlation.

A database contains results for multiple scans where each scan is identified by a job identifier
(ID). The scan results are organized in multiple tables that are linked by job IDs or other IDs.
SQL query-based parsers are used to extract relevant information from the scan results.

Note:
l For Microsoft SQL Server as the database, after installing connector core software and

before configuring the ArcSight FlexConnector Scanner DB, you will need to download an
appropriate JDBC driver for the connector to connect to the database. For more
information, see Downloading the Database Driver.

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.
l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support

ODBC connections; therefore, database connectors can only use JDBC connections. For the
same reason, the MS Access database, which uses only ODBC connections, is no longer
supported.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Scanner Database Page 97 of 243

https://www.microfocus.com/documentation/arcsight/arcsight-smartconnectors-8.4/rest_flexconnector_devguide/

Parameter Description

Database JDBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, use:
com.microsoft.sqlserver.jdbc.SQLServerDriver.

l For MySQL, use:
org.gjt.mm.mysql.Driver.

For Oracle, use:
oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database
versions.

l For PostGreSQL, use:
org.postgresql.Driver

l For DB2 unified driver, use:
com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use:
COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use:
net.sourceforge.jtds.jdbc.Driver

Database URL The JDBC URL that identifies the database.

l For Oracle, use:
jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use:
jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use:
jdbc:postgresql://host/database

l For DB2 unified driver, use:
jdbc:db2:database_name

l For DB2 Legacy CLI-based, use:
jdbc:db2://host_name: port_number/ database_name

l For Sybase, use:
jdbc:jtds:sybase://<HostName>:<port>/<DatabaseName>

Database User The database user name.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Scanner Database Page 98 of 243

Parameter Description

Database Password Password for the database user.

Configuration Folder Enter the name of the folder that contains the properties file. Do not enter the full
path to the file as doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is
“myfolder,” the FlexConnector will look for the configuration file in the directory:

ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:
myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:
myfolder.sdkibdatabase.properties

Mode l If the files in the folder are not being written to in real time and are complete,
select batch.

l If the files are open and new log lines are being added to them, select realtime.

ArcSight FlexConnector Scanner Text Reports
Choose this type to import the results of a scan from a scanner device and forward the data to
ESM so that ESM can model an organization’s assets, open ports, operating systems,
applications, and vulnerabilities. The connector imports periodic scans to ESM, which uses this
information for event prioritization, reporting, and correlation.

A normal text report contains results for a single scan with each line in the report containing a
piece of information about a host. Regular expression based parsers are used to extract
relevant information from the report

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed
events to $ARCSIGHT_HOME\current\logs\events.log. For more information on
unparsed events, see Detecting Unparsed Events.

Mode l If the files in the folder are not being written to in real time and are complete, select
batch.

l If the files are open and new log lines are being added to them, select realtime.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Scanner Text Reports Page 99 of 243

Parameter Description

Scan Report Folder The folder in which the scanner reports are located.

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector Scanner XML Reports
Choose this type to import the results of a scan from a scanner device and forward the data to
ESM so that ESM can model an organization’s assets, open ports, operating systems,
applications, and vulnerabilities. The connector imports periodic scans to ESM, which uses this
information for event prioritization, reporting, and correlation.

An XML report contains results for a single scan with scan results organized in the form of
nested XML elements. XQuery/XPath-based parsers are used to extract relevant information
from the report.

Note: The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

Parameter Description

Mode l If the files in the folder are not being written to in real time and are complete,
select batch.

l If the files are open and new log lines are being added to them, select realtime.

Report Folder The folder in which the SAINT scanner reports are located.

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector Scanner XML Reports Page 100 of 243

ArcSight FlexConnector XML File
Choose this type for devices that write event information to XML files. Event information in
these files is presented in standard XML format, using namespaces, elements, attributes, text,
and cdata. The connector recursively reads the events from the XML-based files in a folder.

Note: The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

Parameter Description

Folder The absolute path of the directory where log files for the FlexConnector are located. For
example: c:\logs

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix
.sdkfilereader.properties is appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-
format log files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector Syslog
Select the Syslog Daemon connector from the list of SmartConnector to install if you want to
create a Syslog FlexConnector.

Parameter Description

Network Port The port the connector listens to for syslog events.

IP The connector listens for syslog events only from this IP address. Enter (ALL) for all IP
addresses in the specified port address.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

ArcSight FlexConnector XML File Page 101 of 243

Parameter Description

Protocol Select UDP or Raw TCP as the protocol to be used to receive events.

Forwarder The CEF Forwarder mode parameter is false by default. If the destination is a Syslog
Daemon connector and you want to preserve information about the original connector,
then the CEF Forwarder mode should be set to true both in this destination and in the
receiving connector. That is, if you have a chain of connectors connected by syslog,
syslog NG, or CEF encrypted syslog (UDP), and you want to preserve information about
the original connector, the destinations should all have the CEF Forwarder mode set to
true (which is implicitly true for CEF Encrypted Syslog (UDP)), and the connectors
receiving from them should also have the CEF Forwarder mode set to true.

For example, you can configure a number of connectors to all send events using the CEF
Syslog destination type to one Syslog Daemon connector, which then sends to ESM . In
order for the events arriving at ESM to retain information about the specific connector
that collected the event, the connector’s CEF Syslog destinations should have the
Forwarder mode set to true, and the Syslog Daemon connector should also set the
Forwarder mode to true. The information will display in the original agent fields of the
events.

Adding the Destination Details
This section describes selecting the ArcSight Manager (encrypted) destination. For information
about this destination or any of the other possible destinations, see the Installation Guide for
ArcSight SmartConnectors.

1. The next window asks for the destination type; make sure ArcSight Manager (encrypted)
is selected and click Next.

2. Enter values for theManager Host Name,Manager Port, User, and Password required
parameters. This is the same ArcSight user name and password you created during the
ArcSight Manager installation. Click Next.

3. Enter a name for the SmartConnector and provide other information identifying the
connector's use in your environment. Click Next. The connector starts the registration
process.

4. The certificate import window for the ArcSight Manager is displayed. Select Import the
certificate to the connector from destination and click Next. (If you select Do not import
the certificate to connector from destination, the connector installation will end.) The
certificate is imported and the Add connector Summary window is displayed.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Adding the Destination Details Page 102 of 243

../../../../../../documentation/arcsight/arcsight-smartconnectors-8.3/AS_smartconn_install/index.html#AS_smartconn_Installation_guide.htm?TocPath=_____1
../../../../../../documentation/arcsight/arcsight-smartconnectors-8.3/AS_smartconn_install/index.html#AS_smartconn_Installation_guide.htm?TocPath=_____1

Completing the Installation
1. Review the Add Connector Summary and click Next. If the summary is incorrect, click

Previous to make changes.

2. The wizard now prompts you to choose whether you want to run the SmartConnector as a
stand-alone process or as a service. If you choose to run the connector as a stand-alone
process, select Leave as a standalone application, click Next, and continue with step 5.

3. If you chose to run the connector as a service, with Install as a service selected, click Next.
The wizard prompts you to define service parameters. Enter values for Service Internal
Name and Service Display Name and select Yes or No for Start the service automatically.
The Install Service Summary window is displayed when you click Next.

4. Click Next on the summary window.

5. To complete the installation, choose Exit and click Next.

Adding JDBC Driver to the Connector
Appliance/ArcSight Management Center

Note: This section is applicable only if you are using the Connector Appliance or ArcSight
Management Center.

After downloading and extracting the JDBC driver, upload the driver into the repository and
apply it to the required containers, as follows:

1. From the Connector Appliance/ArcSight Management Center, select Setup > Repositories.

2. Select JDBC Drivers from the left pane and click the JDBC Drivers tab.

3. Click Upload to Repository.

4. From the Repository File Creation Wizard, select Individual Files, then click Next.

5. Retain the default selection and click Next.

6. Click Upload and locate and select the .jar file you downloaded.

7. Click Submit to add the specified file to the repository and click Next to continue.

8. After adding all the files you require, click Next.

9. In the Name field, enter a descriptive name for the zip file (for example, JDBCdriver). Click
Next.

10. Click Done to complete the process. The newly added file is displayed in the Name field
under Add Connector JDBC Driver File.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Completing the Installation Page 103 of 243

11. To apply the driver file, select the driver .zip file and click the up arrow to invoke the
Upload Container Files wizard. Click Next.

12. Select one or more containers into which you want to upload the driver, then click Next.

13. Click Done to complete the process.

14. Add the connector through the Connector Appliance/ArcSight Management Center
interface. For more information, see the Connector Appliance/ArcSight Management
Center Online Help.

Developer's Guide to ArcSight FlexConnectors
Installing and Configuring the FlexConnector

Adding JDBC Driver to the Connector Appliance/ArcSight Management Center Page 104 of 243

Running the FlexConnector
After the FlexConnector is installed and the configuration file is created, start the
FlexConnector and test it. Before starting the new connector, make sure that the ArcSight
Manager and database or Logger are up and running.

Start the FlexConnector by opening a command window on ARCSIGHT_HOME/bin and running:

arcsight agents

For more information about running SmartConnectors, including how to establish a
SmartConnector as a service or daemon, refer to the SmartConnector User’s Guide.

The new FlexConnector should begin sending any events it receives from its device to the
ArcSight Manager. In the case of database types, note that only records created after the
connector starts will be sent as events.

Developer's Guide to ArcSight FlexConnectors
Running the FlexConnector

Running the FlexConnector Page 105 of 243

Advanced Functions of FlexConnectors
This chapter describes the advanced functions of FlexConnectors. The topics included are as
follows:

l Advanced FlexConnector Configuration Parameters
l FlexConnector Creation Wizard for Delimited Log Files
l Managing Rotation of Log Files
l Detecting File Processing Latency
l Categorizing Events
l Merging Events
l Additional Information and Functions of Regex FlexConnectors
l Detecting Unparsed Events

Advanced Functions of FlexConnectors Page 106 of 243

Advanced FlexConnector Configuration
Parameters
In addition to the parameters you configured during a FlexConnector type installation, there
are advanced parameters that you can configure to customize the FlexConnector's behavior.
The parameters can be added to or updated in the agent.properties file located in the
$ARCSIGHT_HOME/current/user/agent directory after the connector installation.

The section provides the following information:

l Parameters Common to all SmartConnectors
l CEF Syslog Parameters
l File Connector Parameters
l File Folder Follower Parameters
l Syslog Parameters

Note:

l The advanced parameters have been designed to assist developers in creating new
FlexConnectors. The advanced parameters might not be applicable to all connectors even if
they are present in the agent.properties file. If they are applicable to a connector, they
will work as described.

l Do not change any parameter value in the agent.properties file unless the parameter is
described in your connector’s guide. This section is meant for developing new
FlexConnectors, and not for changing parameters in the implemented connectors. Changing
the parameters from their default values can prevent the connectors from working.

You can customize connector behavior by using the advanced parameters described in this
appendix. These parameters can be added to or updated in the agent.properties file located
in the $ARCSIGHT_HOME/current/user/agent directory after connector installation.

Note: The folder path examples in this chapter refer to the Linux form where the path starts with
$ARCSIGHT_HOME and uses slashes. For Windows, the path starts with %ARCSIGHT_HOME% and uses
back slashes. For example:

l Linux: $ARCSIGHT_HOME/current/user/agent/agent.properties
l Windows: %ARCSIGHT_HOME%\current\user\agent\agent.properties

The agent.properties file is a plain text file. Use the appropriate editor for your operating
system to edit the content. For example, use Notepad for Windows and vi for Linux. Any
modifications to the agent.properties file should be performed very carefully with
knowledge of how parameters operate. This way, you would avoid inadvertently altering the
behavior of the SmartConnector.

Advanced FlexConnector Configuration Parameters Page 107 of 243

Parameters Common to all SmartConnectors
The following table describes the parameters that can be used with all ArcSight
SmartConnectors.

Parameter Default Description

agents[x].deviceconnection
alertinterval

60000 Connectors update internal device connectivity state
based on this interval (milliseconds).

agents[x].extractfieldnames [blank] List of event fields separated by comma; for example:
fileName, sourcePort.

This parameter is related to fieldextractor feature that
allows to populate the event field based on the file
name the connector is reading. It can be used in all
connectors that have files as input (for example any
file connector, file folder connector and a few other
connectors like DB Audit processing, Juniper Steel-
Belted Radius).

extractfieldnames, extractregex and extractsource are
used together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can
be used.

agents[x].extractregex [blank] The regular expression that will extract as many
tokens (filename, sourcePort, and so on) as the
number of fieldnames from the name of the log file.

This parameter is related to fieldextractor feature that
allows to populate the event field based on the file
name the connector is reading. It can be used in all
connectors that have files as input (for example any
file connector, file folder connector and a few other
connectors like DB Audit processing, Juniper Steel-
Belted Radius).

extractfieldnames, extractregex and extractsource are
used together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can
be used.

Developer's Guide to ArcSight FlexConnectors

Parameters Common to all SmartConnectors Page 108 of 243

Parameter Default Description

agents[x].extractsource File Name Source from which to extract the fields.

Possible Values: A constant—“File Name” or “File
Path”.

This parameter is related to fieldextractor feature that
allows to populate the event field based on the file
name the connector is reading. It can be used in all
connectors that have files as input (for example any
file connector, file folder connector and a few other
connectors like DB Audit processing, Juniper Steel-
Belted Radius).

extractfieldnames, extractregex and extractsource are
used together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can
be used.

agents[x].persistenceinterval

Note: For Syslog File connectors, the
persistenceinterval parameter must be a
positive integer to enable persistence.

0 Interval in milliseconds when persisting properties in
some connectors.

l The persisted file is located at $ARCSIGHT_
HOME/current/user/agent/
persisted.properties.

l If 0, then every change in the property value will
persist in the file. This could impact the
performance.

l If <0, then the properties file is not persisted.
l If >0, then wait for the specified interval and then

persist properties file. The property file will have
the properties specified by the connector. For
example, for legacy connectors it could contain
the file name as a key, and “true” as value if file
was processed.

agents[x].unparsedevents.log.
enabled

false The default value is false. Specify true for the
connector to detect and log unparsed events to
$ARCSIGHT_HOME/current/logs/events.log. See also
Detecting Unparsed Events.

agents[x].usefieldextractor false Indicates whether the event fields should be extracted
from the log file name.

Possible Values: true/false

This parameter is related to fieldextractor feature that
allows to populate the event field based on the file
name the connector is reading. It can be used in all
connectors that have files as input (for example any
file connector, file folder connector and a few other
connectors like DB Audit processing, Juniper Steel-
Belted Radius).

Developer's Guide to ArcSight FlexConnectors

Parameters Common to all SmartConnectors Page 109 of 243

Parameter Default Description

deviceeventcounter.maxdevicestoevent 1000 This property pertains to the DeviceEventCounter
module. It specifies the default maximum number of
devices for which the DeviceEventCounter module will
send agent:043 internal events. If an agent properties
file specifies agent.component[x].maxdevstoevent as
a legacy parameter, then it will be used instead of the
deviceeventcounter.maxdevicestoevent value.

deviceeventcounter.maxdevicestolog 1000 This property pertains to the DeviceEventCounter
module. It specifies the default maximum number of
devices for which the DeviceEventCounter module will
log the EPS status. If an agent properties file specifies
agent.component[x].maxdevicestolog as legacy
parameter, then it will be used instead of the
deviceeventcounter.maxdevicestolog value.

name.resolve.use.getallbyname true Flag to control if java.net.getAllByName is used (if
false then getByName is used, which may avoid IPv6
lookups).

CEF Syslog Parameters
The following table describes the CEF syslog parameters.

Parameter Default Description

transport.cefsyslog.header false Change to true to enable RFC 3164 headers for
the CEF Syslog destination type.

transport.cefsyslog.header.facility 4 This parameter, which is ignored unless
transport.cefsyslog.header is true, changes the
facility value used to calculate the <PRI> value in
the generated header. The range of valid values
is 0 to 23. The default value of 4 means
"security/authorization messages".

Developer's Guide to ArcSight FlexConnectors

CEF Syslog Parameters Page 110 of 243

Parameter Default Description

transport.cefsyslog.header.keepdomain false This parameter, which is ignored unless
transport.cefsyslog.header is true, controls
whether the value in deviceHostname is used as
is in the header (if the property changed to
true), or if the domain is first removed. For
example, if the deviceHostName field of an
event is server.foo.com, only "server" would
normally be used in the header. But if this
property is changed to true, then
"server.foo.com" would be used. Note that for
any events that do not have the
deviceHostName field set, this property does
not matter (the deviceAddress will be used
instead).

transport.cefsyslog.header.severitymap 7,6,5,3,2 This parameter, which is ignored unless
transport.cefsyslog.header is true, controls how
the event's agentSeverity field is converted into
an RFC 3164 severity value, which in turn is
combined with the facility value to create the
<PRI> value in the generated header. If this
property is changed, there must be 5 values,
representing agentSeverity values unknown,
low, medium, high, and very-high, respectively.
And each value must be in range of 0
(emergency) to 7 (debug). The default mapping
is unknown=>debug, low=>informational,
medium=>notice, high=>error, and very-
high=>critical.

transport.cefsyslog.header.useconadrashost true This parameter, which is ignored unless
transport.cefsyslog.header is true, controls what
to do if neither the deviceHostname nor the
deviceAddress field is set in an event. By default
the connector's own IP address is used, but that
can be disabled (leaving that part of the header
empty) by changing this property to false.

Developer's Guide to ArcSight FlexConnectors

CEF Syslog Parameters Page 111 of 243

File Connector Parameters
The following table describes the file connector parameters.

Parameter Default Description

agents[x].configfile Agent_
type/Agent_
type

Path of the config file. This is the directory where the connector
gets a parser for log(s).

agents[x].followexternal
rotation

false If property is set to false, the rotation “in place” is not followed,
the file read once, the drop in size may not be monitored. If set to
true, it will be monitored. There are different ways files are
rotated:

l If the new file has “index” suffix. For example, log1.txt,log2.txt
l If the new file has a new date stamp added. For example,

log2013-07-31.txt for daily rotation.

So, these types of rotations are captured with “rotationscheme”
and related parameters, or some rotation specified directly in file
name regex, like those based on multifolderfollower (Apache
Tomcat is an example).

If this property is set to true, the Connector will monitor the size of
the file (using the file’s name, not its inode). If the file size has
decreased, the connector will assume that the file has been
rotated.

agents[x].internalevent.
filecount.enable

false Enable/disable internal events when the number of files processed
does not meet the user defined limits.

l agents[x].internalevent.filecount.duration=n

Specifies the number of seconds.
l agents[x].internalevent.filecount.minfilecount=n

Specifies the minimum number of files that the connector
should process in the duration specified.

l agents[x].internalevent.filecount.timer.delay=n

Specifies, in seconds, the time the SmartConnector waits after
it starts monitoring and sending internal events when needed.

agents[x].internalevent.
fileend.enable

true Sends and internal event when file has completed processing.

agents[x].internalevent.
filestart.enable

true Sends an internal event when file has started to process.

agents[x].logfilename [blank] This property will be interpreted as a directory/folder. For
example:

logfilename=/home/logfiles/

Developer's Guide to ArcSight FlexConnectors

File Connector Parameters Page 112 of 243

Parameter Default Description

agents[x].onrotation None Possible Values:

l None: Nothing is done
l DeleteFile: The file is deleted on rotation
l RenameFileInTheSameDirectory: The file is renamed as per

the onrotationoptions parameter, described below on
rotation.

agents
[x].onrotationoptions

processed If the onrotation parameter is chosen as
"RenameFileInTheSameDirectory", this parameter tells what to
rename the file.

For example: If the default value is processed, on rotation, the file
sample.log is renamed to sample.log.processed.

The Unix extension cannot have spaces in it.

agents[x].preservestate false If set to true, remembers the last location read in the file
periodically, depending on the values set for the
perservedstatecount and preservedstateinterval properties.

If set to false, then nothing is written and the connector has no
record of where it left off. In this case, the values of
perservedstatecount and preservedstateinterval are ignored.

agents[x].preservedstate
count

10 The number of times the value has to change or has to be updated
before actually preserving the state.

agents[x].preservedstate
interval

30000 The number of idle milliseconds that will trigger a state
persistence.

agents
[x].rotationsleeptime

10 Used in conjunction with rotationonlywheneventexists, rotation
will not occur until the specified time has elapsed since the new
event appeared. Default is 10 seconds.

agents[x].rotationscheme Daily Possible values: Daily, Index, None

agents[x].
rotationonlywhen
eventexists

false Used only by the daily log follower in conjunction with
rotationsleeptime, no rotation occurs until there is new event in
the file or there is a new event and the time for rotationsleeptime
has elapsed since the new event appeared. Default is false - not
enabled.

agents[x].rotationscheme
params

[blank] Configure this parameter when rotationscheme parameter is set to
Daily or Index.

A filename template has the following syntax:

prefix,]dateFormat,suffix[,true|false]

For a complete description of how to use the
rotationschemeparams parameter, see Parameters for Daily and
Index Rotation

Developer's Guide to ArcSight FlexConnectors

File Connector Parameters Page 113 of 243

Parameter Default Description

agents[x].rotationdelay 30 In seconds. Specifies how long to wait after a new file is detected
before the file reader thread for the current file is terminated and
a file reader thread launches for a new file.

agents[x].startatend true The default is true. Useful when log files to be processed already
exist and contain data at connector startup or when the log file
rotation takes place. Setting this value to false will cause the entire
file to be read at every startup, which could lead to duplicate
events, unless the preservestate parameter is set to true. (Setting
preservestate to true lets the connector skip the old events and
start from the last preserved read position of the file.)

agents[x].usealternate
rotationdetection

true Use an alternate mechanism to detect log rotation. Used with
followexternalrotation parameter. The log rotation detection logic
uses a file’s length as opposed the number of bytes counted in byte
counting input stream.

Setting this value to true, compares a new file length to the
previous file length. Setting the value to false, compares a new file
length to the number of bytes read from the file (input stream).

agents[x].usenonlocking
windowsfilereader

true Does not lock the log file read by the connector on the Windows
platform.

File Folder Follower Parameters
The following table describes the File Folder Follower parameters. If you do not see the
parameter you need in the table, see File Connector Parameters .

Parameter Default Description

agents[x].delay 10000 In milliseconds. Specifies how long the connector waits to
start before processing after it detects the file for the first
time in the folder.

agents[x].encoding UTF8 Specifies the encoding or character set used in the log file.
Only Java recognized encoding is accepted. Informal
names for encoding will result in assuming UTF8 as logs
encoding value.

agents[x].fixedlinelength

Note: For SAP only

-1 If set to a positive integer, this parameter sets the line
length for an event. The length can be expressed as either
the number of characters or bytes. The -1 default value
indicates that one line represents one event. This is
because one line is typically one event.

agents[x].fixedlinelength
contains

Note: For SAP only

[Fixed Number of
Characters.]

Related to the fixedlinelength parameter. Specifies
whether the fixed length is the number of bytes or
number of characters. Possible Values are Fixed Number
Of Bytes (default) or Fixed Number Of Characters.

Developer's Guide to ArcSight FlexConnectors

File Folder Follower Parameters Page 114 of 243

Parameter Default Description

agents[x].followexternal
rotation

false Specifies whether the file reader thread is going to follow
any rotation to the file done by the external device writing
to the log. Is operational only when agents[x].
processingmode is set to realtime.

If property is set to false, the rotation “in place” is not
followed, the file read once, the drop in size may not be
monitored. If set to true, it will be monitored. There are
different ways files are rotated:

l if the new file has “index” suffix, for example,
log1.txt,log2.txt

l if the new file has a new date stamp added, for
example, log2013-07-31.txt for daily rotation

These types of rotation are captured with
“rotationscheme” and related parameters, or some
rotation specified directly in file name regex, like those
based on multifolderfollower (Apache Tomcat is an
example).

If this property is set to true, the Connector will monitor
the size of the file (using the file’s name, not its inode). If
the file size has decreased, the Connector will assume that
the file has been rotated.

agents[x].maxretries -1 Maximum number of retries before giving up on a file.

Files will be moved to the “bad” directory if unable to read
at once. Positive means retry up to maxretries times to
read again.

agents[x].minfilelength -1 Prevents processing of files smaller than the specified size.

agents[x].mode RenameFile
InTheSameDirectory

Specifies the action to perform on a log file after the
Connector has processed it. Possible actions are:

l RenameFileInTheSameDirectory—Renames the
processed log file to filename.processed.

l DeleteFile—Deletes the file once it has been
processed.

l PersistFile—Retains the file with its original name
after it has been processed. However, the Connector
remembers the files it has already processed so that
those are not processed again.

Note: The value for agents
[x].usenonlockingwindowsfilereader must be set to true in
Windows environments for the modes
RenameFileInTheSameDirectory and DeleteFile to function
correctly.

Developer's Guide to ArcSight FlexConnectors

File Folder Follower Parameters Page 115 of 243

Parameter Default Description

agents[x].modeoptions processed Specifies the extension to add to processed files.

For example, .processed.

The Unix extension cannot have spaces in it.

agents[x].monitoringinterval 30000 Specifies the amount of time (in milliseconds) that the
connector will wait before re-reading the log file. The
connector checks if file was updated; if it was, then the
connector continues to read the file.

After the file is read to the EOF, the connector checks for
new records until the value of the processingtimeout
parameter is reached. If no updates have occurred, then
the connector checks for updates only at intervals equal to
the value of the monitoringinterval parameter. If no
updates have occurred up to the value of the
processingthreshold parameter, then the connector marks
file as done and terminates reading.

The monitoringinterval parameter should be used only
when the processingmode parameter is set to realtime.
The value of the monitoringinterval parameter must be
greater than 0 and less than the value of the processing
timeout parameter (0< monitoringinterval <
processingtimeout < processingthreshold).

agents[x].processfolder
recursively

false Specifies whether to process log files in the subfolders of a
specified folder.

Possible values: true and false

When this property is set to true, the Connector traverses
the subfolders in a folder to locate log files to process.

agents[x].processinglimit 256 Set to specify the number of files to read in real time.
There is one file reader thread per file. When this limit is
reached no new files will be processed until some of the
existing files are temporarily suspended because of
inactivity or are completely processed.

agents[x].processingmode batch Specifies the mode for connector log file processing.
Possible values are:

l batch—Batch processing of the log file.
l realtime—Realtime processing of the log file.

If realtime is specified, then the properties
monitoringinterval, processingthreshold, and
processingtimeout must also be specified.

Developer's Guide to ArcSight FlexConnectors

File Folder Follower Parameters Page 116 of 243

Parameter Default Description

agents
[x].processingthreshold

3600000 Specifies the amount of time (in milliseconds) that the
connector will wait for inactivity on the realtime log file.
When the processingthreshold value is exceeded, the log
file is deleted or renamed depending on the agents
[x].mode value specified.

The processingthreshold parameter should be used only
when the processingmode parameter is set to realtime.
The value of the processingthreshold parameter must be
greater than 0 and greater than the value of the
processingtimeout parameter (0< monitoringinterval <
processingtimeoutparameter < processingthreshold).

This parameter cannot be disabled. Therefore, when
processing mode is set to 'realtime' and
'followexternalrotation' is set to 'true', the connector may
stop reading from the file over time. Although the default
value is 3600000, you can specify a larger value. The max
value is 9223372036854775807
(292,471,208.67753601074 years).

Note: When the processingthreshold value is exceeded,
the log file is deleted or renamed depending on the agents
[x].mode value specified.

agents[x].processingtimeout 120000 Specifies the threshold time (in milliseconds) for detecting
inactivity on the realtime log file. If inactivity on the log file
exceeds this value, then reading of the log file is
suspended. The log file is again checked whether to
suspend, resume or terminate after the monitoringinterval
has elapsed.

The processingtimeout parameter should be used only
when the processingmode parameter is set to realtime.
The value of the processingtimeout parameter must be
greater than 0 and less than the value of the
processingthreshold parameter (0 < monitoringinterval <
processingtimeout < processingthreshold).

agents[x].retryinterval 1000 In milliseconds. If you want to try again to process
unprocessed files (which were not processed because of
an exception, such as a busy device), use these fields.

agents[x].sleeptime 5000 Specified how long to wait before checking the folder for
new files.

Developer's Guide to ArcSight FlexConnectors

File Folder Follower Parameters Page 117 of 243

Parameter Default Description

agents[x].triggerextension .done This parameter is used only if usertriggerfile parameter is
set to true.

Specifies the file extension that the connector should look
for to identify a trigger file. Used in conjunction with
usetriggerfile. It can be any word at the end.

For example, .trigger.

agents
[x].usealternaterotation
detection

false Use an alternate mechanism to detect log rotation. Used
with followexternalrotation parameter. It tells the log
rotation detection logic to use a file’s length as opposed
the number of bytes counted in byte counting input
stream.

agents[x].usenonlocking
windowsfilereader

false Does not lock the log file read by the connector on the
Windows platform so the device writing the log can rotate
it if it chooses.

On Windows platform one process that writes into the file
can prevent the other process from reading. “true” allows
the connector to read the file regardless. Connector never
locks the file, it is always only a reader.

agents[x].usetriggerfile false Specifies whether to look for a trigger file before
processing a log file.

Possible values: true or false

A trigger file is an empty file that has the same name as
the log file, but a different extension.

This file is created by certain systems to indicate that a log
file is ready for processing.

If this property is set to true, the connector will not
process a log file until a trigger file for it has been created
in the same folder where the log file exists.

agents[x].wildcard [blank] Use the wildcard parameter to match file names for daily
or index file rotation. The wildcard parameter can be used
only for file folder follower connectors and has special
restrictions for Regex File connectors. For more
information on how to use the wildcard parameter and its
syntax, see Using wildcard for Daily and Index Log File
Rotation (File Folder Follower Only).

Syslog Parameters
This section contains information on the following Syslog parameters:

Developer's Guide to ArcSight FlexConnectors

Syslog Parameters Page 118 of 243

l Syslog Daemon Parameters
l Syslog Pipe Parameters
l Syslog File Parameters
l Syslog NG Daemon Parameters
l Raw Syslog Daemon Parameters
l ArcSight CEF Encrypted Syslog (UDP) Parameters
l TippingPoint SMS Syslog Extended Parameters

Syslog Daemon Parameters
The following sections describe the Syslog Daemon parameters.

l Event Parsing (Sub-agents) Parameters
l Event Reception Parameters
l Raw Log Parameters
l Event Queue Parameters
l Event Processing Parameters

Event Parsing (Sub-agents) Parameters

The following table describes the Syslog Event Parsing (Sub-agents) parameters.

Developer's Guide to ArcSight FlexConnectors

Syslog Daemon Parameters Page 119 of 243

Parameter Default Description

agents[x].customsubagentlist [The default is
too long to
display.]

Set this property to the restricted subagent list based on device
types in your environment. List parsers’ names separated by |
(vertical bar) and no “ “ (quotes) are allowed.

This parameter is used in conjunction with agents
[x].usecustomsubagentlist. It can help reduce the time the
connector needs to pick up the right parser.

Examples: agents[x].customsubagentlist=ciscopix_
syslog if your Connector is designed to parse cisco pix syslog
events. Or agents[x].customsubagentlist=ciscopix_
syslog|cyberguard_syslog if your Connectors are going to take
care of those 2 kinds of events.

agents[x].forwardmode false If set to true, every message is run through every available
syslog parser and the first parser whose main regex matches
the message is assumed to be the correct parser. This is very
inefficient because every message potentially must be run
through 100+ parsers. However, in this mode, the message is
less likely to be picked up by the incorrect parser.

If set to false, the connector will pick the first match parser and
save time. However, this mode may raise the chance that the
wrong parser is picked.

agents[x].usecustomsubagentlist false Set to true to use the agents[x].customsubagentlist property.
This makes the connector to consider the customized subagent
list.

Developer's Guide to ArcSight FlexConnectors

Event Parsing (Sub-agents) Parameters Page 120 of 243

Event Reception Parameters

The following table describes the Syslog Event Reception parameters.

Parameter Default Description

agents[x].encoding [blank] By default, there is no entry for agents[x].encoding in agent
property file. If you want to use an alternative value, add this
parameter manually.

If this is specified and is valid, the specified encoding (for
example, UTF-16) is used. If not, then the default depends on the
protocol: UTF-8 for Raw TCP or the platform default for UDP.
UTF-16 would be an example of a value to set the property.

agents[x].tcpbindretrytime 5000 Time between TCP bind retries (in milliseconds). Time gap to
retry to bind to a socket address.

agents[x].tcpbuffersize 10240 Raw TCP buffer (in bytes). This is the initial size. It will be
expanded if necessary, up to the value defined by
tcpmaxbuffersize parameter.

By default, tcpbuffersize is 10k and tcpmaxbuffersize is 1M. The
reason we set tcpbuffersize small is to save system resources.

Example of how these two parameters work with each other:

When a single tcp event is less than 10k in length (most of the
event won't be longer than this), nothing will be changed.

When a single tcp event is 15k in length, the connector will first
try with 10k tcpbuffersize and if failed, it will check if
tcpbuffersize exceeded the limit of tcpmaxbuffersize. If not, it will
double tcpbuffersize to 20k, and find if 20k buffer is efficient to
hold the 15k tcp event. After this event, the system will continue
with the 20k tcpbuffersize and 1M tcpmaxbuffersize.

When the single tcp event is 25k in length and the connector
finds the 20k tcpbuffersize is still not enough to hold the event, it
will double tcpbuffersize again until it can hold the event. After
this event, the system will continue to work with 40k
tcpbuffersize.

But when the tcp event is even larger than tcpmaxbuffersize, for
example 1.5M (this is rare), the connector keeps doubling its
tcpbuffersize until it reaches tcpmaxbuffersize. And then it will
truncate the 1.5M event immediately.

Notice you can also set tcpmaxbuffersize<tcpmaxbuffersize=
tcpbuffersize> at the beginning. The connector will still use
tcpbuffersize to measure the event length. When the event is
longer than tcpbuffersize, it won't try to expand; instead, it will
truncate the event immediately.

Developer's Guide to ArcSight FlexConnectors

Event Reception Parameters Page 121 of 243

Parameter Default Description

agents[x].tcpcleanupdelay -1 Idle TCP cleanup delay (in milliseconds). How often the idle TCP
socket should be cleaned up. The default value of -1 indicates the
idle TCP socket is never cleaned up.

Note that both tcpcleanupdelay and tcpmaxidletime must be set
to values greater than zero in order for idle TCP sockets to be
cleaned up. Also, if tcppeerclosedchecktimeout is set it takes
precedence.

agents[x].tcpendchar [blank] Optional message terminating hex character, can use either 0x00
or NUL.

Not defined by default.

agents[x].tcpmaxsockets 1000 Specifies the maximum number of TCP connections that
connector will accept simultaneously. Parameter value should be
any positive integer that can reasonably utilize system resource
and won't crash the system. Connector will only accept TCP
connection when the total connection is under the number
defined by this parameter, as soon as exceeded, the connection
will be rejected and print out fatal message. The default value of
this parameter is 1000, increase this value as required to
accommodate simultaneous connections from a large number of
devices.

agents[x].tcpmaxbuffersize 1 MB Maximum raw TCP buffer (in bytes). Any message larger than the
given size will be truncated. The tcpmaxbuffersize is not used to
truncate events, this value is used to limit the expansion of
tcpbuffersize, and how to cut event is determined by
tcpbuffersize. See also agents[x].tcpbuffersize.

agents[x].tcpsleeptime 50 If no data because either no sockets or sockets have no data,
then sleep this long (in milliseconds) before checking again.

agents[x].overwriterawevent false With the default value of false, if the parser for this syslog device
directly sets the rawEvent event field, the connector leaves that
value as is. And if the parser does not set that event field, then
the full syslog message is put into that event field. If this property
is changed to true, then the full syslog message is always used,
even if that means overwriting a rawEvent value that was
explicitly set by the parser.

Developer's Guide to ArcSight FlexConnectors

Event Reception Parameters Page 122 of 243

Raw Log Parameters

The following table describes the Syslog Raw Log parameters.

Parameter Default Description

agents[x].rawlogfolder

Note: rawlogfolder and all
related properties (folder
name, interval, and max
size) cannot be applied to
Syslog Pipe/File
Connector.

[blank] This parameter defines the folder used for storing raw logs files.

By default this parameter is omitted from the agent.properties
file. If you want to store raw log files add this parameter and specify
the folder where the raw log files are stored. The connector creates
the specified folder if it does not exist.

The value for this property can be an absolute path for a folder in
which to store the raw log files. For example:

agents[x].rawlogfolder=/opt/arcsight

will cause the raw log files to be stored in the /opt/arcsight folder.

Alternatively the value for this property can be a relative path. This
path is prefixed with $ARCSIGHT_HOME/current/user/agent/ to
form the full path. For example:

agents[x].rawlogfolder=arcsight

will cause the raw log files to be stored in the $ARCSIGHT_
HOME/current/user/agent/arcsight folder.

If value given for rawlogfolder contains any invalid character for path
and folder name (e.g. '<' and '>' on Windows), then the raw log files
will be stored in $ARCSIGHT_HOME/current/user/agent/agentdata.

If you want to use the rawlogfolder feature, then you must set this
parameter and also set at least one of agents[x].rawloginterval
and agents[x].rawlogmaxsize to positive values.

agents[x].rawloginterval -1 The raw log interval before each rotation (in seconds, or -1 to not
rotate based on time), if rawlogfolder is enabled.

agents[x].rawlogmaxsize -1 Raw event log maximum size in MB, or -1 to not rotate on size, if
rawlogfolder is enabled.

If both rawloginterval and rawlogmaxsize have positive values then
both values are used to control log rotation. Log rotation occurs
whenever either of the values are reached.

Developer's Guide to ArcSight FlexConnectors

Raw Log Parameters Page 123 of 243

Event Queue Parameters

The following table describes the Syslog Event Queue parameters.

Parameter Default Description

agents[x].filequeuemaxfilecount 100 File queue maximum file count. If the number passes
filequeuemaxfilecount, the connector starts to take action
to avoid filling up the disk. An action can be dropping
events or whole files may be omitted. It is important to
choose the filequeuemaxfilecount value carefully to avoid
losing data.

agents[x].filequeuemaxfilesize 10000000 File queue max file size (Bytes). Increase this parameter to
increase the size of each file in the file queue.

agents[x].usefilequeue

Note: usefilequeue and all related
properties cannot be applied to
Syslog Pipe/File connectors.

true This parameter is to determine whether Connector will
keep the raw events received into a file queue consisting
of a certain number of fix-sized files.

Possible values: true and false

When this parameter is set to true the connector stores
raw events in files as they are received and then processes
the events by reading the files. Using file queues helps
avoid event loss when bursts of events are arrive faster
than they can be processed. The values for
filequeuemaxfilecount and filequeuemaxfilesize are used
to define the file queue behavior.

When this parameter is set to false file queues are not
used and the values for filequeuemaxfilecount and
filequeuemaxfilesize are ignored.

Developer's Guide to ArcSight FlexConnectors

Event Queue Parameters Page 124 of 243

Event Processing Parameters

The following table describes the Syslog Event Processing parameters.

Parameter Default Description

agents[x].aggregationcachesize 1000 Aggregation Cache Size.

For syslog connectors the aggregation cache stores
the last event received from each distinct source.
When an event is received that indicates “last
message repeated n times” the stored event is used as
the security event, marked as “aggregated” and
annotated with the repetition count.

Parameter aggregationcachesize specifies the
maximum number of aggregation cache entries. Avoid
configurations where there are more than
aggregationcachesize sources. Aggregation is not done
for a source whose event is not stored in the cache
due to the aggregationcachesize being exceeded.

syslog.setdevicehostname
conservatively.syslog

false With the default value of false, the deviceHostName
event field is set based on where the syslog message
came from, before the parser operates. If this
property is changed to true, then the deviceHostName
event field is similarly set but after the parser
operates, and only if neither the deviceHostName nor
the deviceAddress event fields were set by the parser.

This is a container level parameter.

Developer's Guide to ArcSight FlexConnectors

Event Processing Parameters Page 125 of 243

Syslog Pipe Parameters
The following table describes the Syslog Pipe parameters. All of the parameters described
under Syslog Daemon Parameters also apply to Syslog Pipe.

Parameter Default Description

agents[x].configrestartsleeptime 5000 Time (in milliseconds) to wait before
sending the configuration restart signal to
Syslog when running on Solaris.

agents[x].sleeptime 5 Time (in seconds) to wait between file
polling after pipe has ended.

agents[x].solarissyslogconfigrestart
command

kill –HUP
‘cat/etc/syslog.pid’

Configuration restart signal to
Syslog/Command to execute after the
connector starts reading the pipe when
running on Solaris.

syslog.setdevicehostname
conservatively.syslog_pipe

false With the default value of false, the
deviceHostName event field is set based on
where the syslog message came from,
before the parser operates. If this property
is changed to true, then the
deviceHostName event field is similarly set
but after the parser operates, and only if
neither the deviceHostName nor the
deviceAddress event fields were set by the
parser.

This is a container level parameter.

Syslog File Parameters
The following table describes the Syslog File parameters. All the parameters described under
Syslog Daemon Parameters apply.

Parameter Default Description

agents
[x].internalevent.filestart.enable

true When true, an internal audit event is generated whenever the
connector opens a file for processing.

If you don’t want to receive ArcSight internal events, you can
turn this off.

agents
[x].internalevent.fileend.enable

true When true, an internal audit event is generated whenever the
connector completes processing a file.

Developer's Guide to ArcSight FlexConnectors

Syslog Pipe Parameters Page 126 of 243

Parameter Default Description

agents[x].internalevent.filecount.
enable

false This feature has the following parameters:

agents[x].internalevent.filecount.duration=nnn

Specifies the number of seconds that the connector has to
process a specified number of files.

agents[x].internalevent.filecount.minfilecount=nnn

Specifies the minimum number of files that the connector
should process in a specified number of seconds.

agents[x].internalevent.filecount.timer.delay=nnn

Specifies, in seconds, how often the connector should check to
see if the connector is compliant with the other parameters.

If agents[x].internalevent.filecount.enable=true and
all three affiliate parameters are set appropriately, every
internalevent.filecount.timer.delay second, the connector
checks if in the last internalevent.filecount.duration second,
the connector processed enough events defined by the
internalevent.filecount.minfilecount.

If not, the connector will send an internal event to the
destination with the name:

Number of files processed is less than expected value.

agents[x].startatend true If set to true, the connector receives only new lines inserted
into the file.

If set to false, when the connector starts to process a file, it
will process the whole file.

syslog.setdevicehostname
conservatively.syslog_file

false With the default value of false, the deviceHostName event
field is set based on where the syslog message came from,
before the parser operates. If this property is changed to true,
then the deviceHostName event field is similarly set but after
the parser operates, and only if neither the deviceHostName
nor the deviceAddress event fields were set by the parser.

This is a container level parameter.

Developer's Guide to ArcSight FlexConnectors

Syslog File Parameters Page 127 of 243

Syslog NG Daemon Parameters
The following table describes the Syslog NG Daemon parameters. All the parameters described
under Syslog Daemon Parameters apply.

Parameter Default Description

agents[x].syslogng.mutual.auth.
enabled

false (disabled) Determines whether mutual authentication is
enabled for TLS. If false, mutual authentication is
disabled, and the Syslog NG agent is authenticated
by the client. If true, mutual authentication is
enabled, and the client is authenticated by the
Syslog NG agent.

agents[x].syslogng.subagents.
with.ietf

generic_
syslog

List of subagents for SyslogNG (when IETF format is
enabled).

syslogng.tls.cert.file user/agent/syslog-
ng.cert

Location for the cert file to be used by Syslog NG
clients for TLS communication with the Syslog NG
agent.

This is a container level parameter.

syslogng.header (?s)^(?:\\d{1})?\\s+
(\\S+)\\s+(\\S+)\\s+
(.*)

Pattern to parse the header and extract
out SYSLOG-VERSION, TIMESTAMP, HOST, REST_
OF_MESSAGE

This is a container level parameter.

syslogng.header.tag (?s)^(\\S+)\\s+
(\\S+)\\s+(\\S+)\\s+
(-|(?:\\[\\S+@
[^\\]]+\\])+)\\s+(.*)

Pattern to parse the header and extract
out APPNAME,PROCID, MSGID, STRUCTURED_
DATA, MESSAGE

These are specific parameters for syslog input
format. They can be changed if needed, but it is a
rare occurrence.

This is a container level parameter.

syslogng.header.timestamp (?s)^(\\d{4}-\\d{2}-
\\d{2}T\\d{2}:\\d
{2}:\\d{2})(\\.\\d+)?
(Z|(?:-|\\+)\\d
{2}:\\d{2})?

Pattern to parse the time stamp.

Example of a time stamp string that could be
parsed by the default pattern: 1985-04-
12T23:20:50.52Z

This is a container level parameter.

Raw Syslog Daemon Parameters
The following table describes the Raw Syslog Daemon parameters. All of the parameters
described under Syslog Daemon Parameters and Syslog NG Daemon Parameters apply.

Developer's Guide to ArcSight FlexConnectors

Syslog NG Daemon Parameters Page 128 of 243

Parameter Default Description

agents[x].simpletimestampformat [Blank] Custom format for Captured Timestamp. This uses Java’s
SimpleDateFormat pattern syntax.

If left blank, the _parseMutableTimeStampSilently operation is
used to parse the time stamp.

ArcSight CEF Encrypted Syslog (UDP) Parameters
The following table describes the ArcSight CEF Encrypted Syslog (UDP) parameters. All of the
parameters described under Syslog Daemon Parameters apply.

Parameter Default Description

agents[x].customsubagentlist cef_syslog cef_syslog is the only supported value for this parameter.
Do not change the default for this property.

agents[x].protocol Encrypted
UDP

Encrypted UDP is the only supported value for this
parameter. Do not change the default for this property.

agents[x].usecustomsubagentlist true Indicates whether this agent uses the custom subagent list
(cef_syslog). Do not change the default for this property.

TippingPoint SMS Syslog Extended Parameters
The following table describes the TippingPoint SMS Syslog Extended parameters. All of the
parameters described under Syslog Daemon Parameters apply.

Parameter Default Description

agents[x].eventidfilepath ARCSIGHT_
HOME/user/agent/

Path for event ID file.

agents[x].syslogmode SyslogD Syslog Mode can be SyslogD, Pipe or
File. Only SyslogD is supported. Do
not change this value.

syslog.setdevicehostnameconservatively.
tippingpoint_sms_syslog

false With the default value of false, the
deviceHostName event field is set
based on where the syslog message
came from, before the parser
operates. If this property is changed
to true, then the deviceHostName
event field is similarly set but after
the parser operates, and only if
neither the deviceHostName nor the
deviceAddress event fields were set
by the parser.

This is a container level parameter.

Developer's Guide to ArcSight FlexConnectors

ArcSight CEF Encrypted Syslog (UDP) Parameters Page 129 of 243

FlexConnector Creation Wizard for Delimited Log
Files
The FlexConnector Creation Wizard is a GUI program that guides you through the process of
creating the configuration file for a FlexConnector that read events from comma-delimited or
tab-delimited log-files. The file generated by the wizard can be manually edited to include any
FlexConnector features or special operations that the wizard does not support. To illustrate
how the wizard works, assume that you have a log file named sample.log on drive W: that
contains the following content:

2003-09-23 12:07:57,Customer Zone Accessed,
38.1.123.206,192.168.10.100,POST,/search,?ID=apple,302
2003-09-23 12:07:57,Home Page Accessed,
38.41.123.206,192.168.10.100,GET,/search,?ID=candy,302

This is a comma-separated file, so you would select the Log-file FlexConnector.

1. Start the Log-file FlexConnector Wizard by executing the following command from the
ARCSIGHT_HOME/bin folder:

arcsight flexagentwizard

2. Enter or browse to the log file you want to parse and enter the name of the configuration
file. Click Next.

3. Specify the format of the log-file:

Field Description

Delimiter Choose the delimiter that the file is using, in this case ','

Other delimiter Use this option if your file contains a delimiter not listed in the “Delimiter” options

Text qualifier Sometimes the format contains a character such as a double-quote (") surrounding
the text fields. If that is the case, enter that character here. If the character is not
found it will be ignored; so for this example, use the default.

Comment identifier Lines that start with this character will be ignored (the parser will assume that they
are comments). For this case, use the default as #.

Trim fields Set to true if the fields contain leading and/or trailing spaces and you want to
remove them from the field

Contains empty fields Set to true if you are expecting to receive empty tokens. The default (true) will work
for most cases.

When you are finished entering parameters, click Next.

Developer's Guide to ArcSight FlexConnectors

FlexConnector Creation Wizard for Delimited Log Files Page 130 of 243

4. The wizard reads the specified log file and displays the field mappings. Map each of the
parsed fields to a field in the ArcSight Schema. Click Next.

5. If some of the fields contain dates, the wizard will prompt you for the correct date format
in a separate screen. If the format you need does not appear in the list, choose any format
and modify it in the generated configuration file. Choose the format and Click Next.

6. Select a vendor (or unknown) and specify a product name. If you don’t see the vendor for
your device, select Unknown and then edit the entry manually in the configuration file.
Click Next to continue.

7. Click Next to finish or to launch the connector configuration wizard.

At this point, the FlexConnector configuration-file has been created, so you can edit it
directly to make further changes, if required.

Note: If you choose to continue with registration and configuration of the connector, the wizard
will remove any existing connector and launch the FlexConnector configuration wizard again,
where you can complete the configuration of your connector with your newly-created
FlexConnector log-file configuration file. One benefit of this is that the wizard will make sure that
your connector is configured properly with the configuration file that you just created.

Managing Rotation of Log Files
For connectors that follow log files, there are three mechanisms for rotating the log files
implemented in the connector framework. See File Connector Parameters for more
information and the parameters available for log rotation.

l Name Following Log Rotation
l Daily Rotation
l Index Rotation

Several of the parameters are described here:

l Parameters for Daily and Index Rotation

Name Following Log Rotation
An example of name following log rotation would be, the device writes to xyz.log. At rotation
time, the device renames xyz.log to xyz1.log and creates a new xyz.log and begins to write
to it. The connector detects the drop in size of xyz.log and terminates the reader thread to
the old xyz.log after processing is completed. The connector creates a new reader thread to
the new xyz.log and begins processing that file. To enable this log rotation, set
followexternalrotation and filesizecheck to true.

Developer's Guide to ArcSight FlexConnectors

Managing Rotation of Log Files Page 131 of 243

Daily Rotation
A typical scenario of daily rotation could be, the device writes to xyz.timestamp.log on a
daily basis. At a specified time, the device creates a new daily log and begins to write to it. The
connector detects the new log and terminates the reader thread to the previous log after
processing is complete. The connector then creates a new reader thread to the new
xyz.timestamp.log and begins processing that file. To enable this log rotation, set
rotationscheme to Daily. See also Parameters for Daily and Index Rotation.

Index Rotation
In the case of index rotation, the device writes to indexed files - xyz.log.001, xyz.log.002,
xyz.log.003 and so on. At startup, the connector processes the log with highest index. When
the device creates a log with a greater index, the connector terminates the reader thread to
the previous log after processing completes, creates a thread to the new log and begins
processing that log. To enable this log rotation, set rotationscheme to Index. See also
Parameters for Daily and Index Rotation.

Parameters for Daily and Index Rotation
Use the rotationschemeparams parameter to set the parameters for daily or index log file
rotation. The rotationschemeparams parameter can be used only if the rotationscheme
parameter is set to Daily or Index.

l Using rotationschemeparams for Daily Log File Rotation
l Using rotationschemaparams for Index Log File Rotation
l Using wildcard for Daily and Index Log File Rotation (File Folder Follower Only)

Using rotationschemeparams for Daily Log File Rotation
This section describes values for the rotationschemeparams parameter when
rotationscheme=Daily. Applications use this value to generate date coded log files (for
example, Trend Micro ScanMail).

A filename template has the following syntax:

[prefix,]dateFormat,suffix[,true|false]

Symbols used in the dateformat can be read by the connector. They do not need to be
declared as strings. For example:

Developer's Guide to ArcSight FlexConnectors

Daily Rotation Page 132 of 243

yyyy.MM.dd
yyyy-MM-dd

Any character can be used in the prefix and suffix fields except the comma (,).

To include a literal string in a field, escape it with a single quote (‘). For example:

access_,yyyyMMdd’in TimeZone: PST’,.log,true

The [prefix] and [true|false] fields are optional. The [true|false] field indicates that the
rotated file has an additional counter so it can be rotated multiple times a day. For example, to
obtain the following output:

Access.yyyyMMdd.log.1
Access.yyyyMMdd.log.2
...

the syntax would have to be:

Access.,yyyyMMdd,.log,true

If you use periods (or “full stops”) within filenames, then they must be stated within the
parameters. The commas which separate prefix,dateFormat,appendix do not replace them.
For example, to obtain this output:

Filename.yyyyMMdd.appendix

use this syntax:

Filename.,yyyyMMdd,.appendix

Example:

yyyyMMdd,log

In this example, prefix is omitted, therefore, the following comma is not required.
dateFormat is yyyyMMdd, suffix is log, and the [true|false] field is omitted. Because
[true|false] is the last field and is omitted, a comma is not required at the end.

Example:

Access,yyyyMMdd,log

In this example, prefix is Access, dateFormat is yyyyMMdd, suffix is log, and the
[true|false] field is omitted.

Example:

Access.,yyyyMMdd,

Developer's Guide to ArcSight FlexConnectors

Using rotationschemeparams for Daily Log File Rotation Page 133 of 243

In this example the prefix is Access. and yyyyMMdd is the mandatory dateFormat field. The file
does not have an suffix, but the configuration still must end with a comma to indicate that it is
the end of the file name. This syntax will produce an output such as Access.20160209.

Example:

Access,yyyyMMdd,log,true

In this example, prefix is Access, dateFormat is yyyyMMdd, suffix is log, and the
[true|false] field is set to true. Here truemeans even if the file name does not exactly
match with the above given format, if the file name ends with the suffix and starts with
prefix and also has the date in it then that file is matched.

For example: Access_v2.20150225.log

Using rotationschemeparams for Index Log File Rotation
This section describes values for the rotationschemeparams parameter when
rotationscheme=Index. For example:

my.'%03d,001,999,false’.log

The value %03d specifies how many digits are allowed before .log in the file name. In this
example, 3 digits are allowed. The value 001,999 specifies how high to count in the index. In
this example, the file rotation could go to my.999.log.

The last parameter, [true|false], is optional. The default is false, which means missing
indexes are not allowed. The connector does not stop reading the current file until the log file
with the next index appears.

When true, it specifies that the connector continues processing if there is a missing file, for
example if the device rotates the log from my.636.log to my.638.log.

Using wildcard for Daily and Index Log File Rotation (File Folder
Follower Only)
Use the agents[x].wildcard parameter to match file names when rotating log files.

Note: The Regex File connector processes only files with the specified file extension.

To process all files for Regex File connectors on the Windows platform, use the value "asterisk
dot asterisk" (*.*) . because all files have an extension by default.

To process all files for Regex File connectors on the Unix/Linux platforms, the recommended
value is "asterisk" (*). For example, if you configure this property to *.ext, then the Regex
connector will read events from only log files with the extension .ext.

Developer's Guide to ArcSight FlexConnectors

Using rotationschemeparams for Index Log File Rotation Page 134 of 243

l Using wildcard for Date Rotation
l Using wildcard for Index Rotation

Using wildcard for Date Rotation

A typical scenario could be, the device writes to xyz.timestamp.log on a daily basis. At a
specified time, the device creates a new daily log and begins to write to it. The connector
detects the new log and terminates the reader thread to the previous log after processing is
complete. The connector then creates a new reader thread to the new xyz.timestamp.log
and begins processing that file. To enable this log rotation, set wildcard to a data file format,
as shown in the following example:

agents[x].wildcard=fileName.'yyyy-MM-dd'.fileSuffix

For a data file name of myFile.2013-09-23.log, the wildcard command is:

agents[x].wildcard=foo.'yyyy-MM-dd'.log

Where myFile is the fileName, 'yyyy-mm-dd' is the date format, and .log is the fileSuffix.

Pattern matching is performed only for the portion within quotes.

Using wildcard for Index Rotation

In this case, the device writes to indexed files, for example: xyz.001.log, xyz.002.log,
xyz.003.log, and so on. At startup, the connector processes the log with highest index. When
the device creates a log with a greater index, the connector terminates the reader thread to
the previous log after processing completes, creates a thread to the new log and begins
processing that log. To enable this log rotation, set wildcard using the syntax shown in the
following example:

agents
[x].wildcard=FileName.'patternOfIndex,minValue,maxValue,ignoreMissingIndex'.fi
leSuffix

where:

l patternOfIndex is the pattern of the index. It specifies how many digits are allowed
before .log in the file name. For example, to allow a 3-digit index, enter %d03.

l minValue is the minimum value the index can take.
l maxValue is the maximum value the index can take, after which it again starts from

minValue. For example, assume that minValue=000, and maxValue=999. When the
connector finds a file with a 999 index, it will then look for a rotated file with the index 000.

l ignoreMissingIndex is a Boolean value that describes what the connector should do if a

Developer's Guide to ArcSight FlexConnectors

Using wildcard for Date Rotation Page 135 of 243

file with the next index is never created, If true, the connector checks if there is a new file
with the correct file name pattern instead of waiting for the next index-based file forever.

For example, the command:

agents[x].wildcard=myFile.'%d01,0,9,true'.log

will support the processing of log files myFile.0.log through myfile.9.log before searching
for myFile.0.log again.

Detecting File Processing Latency
File-reading FlexConnectors have internal events that are sent when the connector begins to
process a file and when the connector finishes processing the file. Another event can be
configured so that the event is sent when a specified number of files are not processed in a
specified amount of time. The events are configured in ARCSIGHT_
HOME/user/agent/agent.properties.

l internalevent.filestart.enable=true/false - the default is true.
l internalevent.fileend.enable=true/false - the default is true.
l internalevent.filecount.enable=false/true - the default is false. This event has the

following parameters:
o internalevent.filecount.duration=nnn - specifies the number of seconds that the

connector has to process a specified number of files.
o internalevent.filecount.minfilecount=nnn - specifies the minimum number of

files that the connector should process in a specified number of seconds.
o internalevent.filecount.timer.delay=nnn - specifies, in seconds, how often the

connector should check to see if the connector is compliant with the other
parameters.

Developer's Guide to ArcSight FlexConnectors

Detecting File Processing Latency Page 136 of 243

Categorizing Events
You can categorize the events collected by your FlexConnector. To understand categorization in
detail, see the Categorization White paper.

The following examples illustrate categorization for HTTP status code-based devices (such as
proxy, cache, or web servers) and for Firewall devices (which use pass/open/allow,
drop/deny/reject).

Put the categorization file in this location:

ARCSIGHT_HOME/user/agent/acp/categorizer/current/
<device_vendor>/
<device_product>.csv

In this case, <device_vendor> is the value of the event.deviceVendor field (in lower case and
with spaces or other special characters replaced by an underline). The <device_product> is
the value the event.deviceProduct field (likewise in lower case with spaces replaced by
underlines). Your FlexConnector must set these fields before you can use categorization.

HTTP Status Code Categorization Example
event.deviceEventClassId,set.event.categoryObject,
set.event.categoryBehavior,set.event.categoryTechnique,set.event.
categoryDeviceGroup,set.event.categorySignificance,set.event.
categoryOutcome
100,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational,/Success
101,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Attempt
200,/Host/Application/Service,/Communicate/Query,,/Application,/
Normal,/Success
201,/Host/Resource,/Create,,/Application,/Normal,/Success
202,/Host/Application,/Execute,,/Application,/Informational/Error,
/Failure
203,,,,/Application,,
204,/Host/Resource,/Access/Start,,/Application,/Normal,/Success
205,/Host/Resource,/Access/Start,,/Application,/Informational,/
Success

206,/Host/Resource,/Access/Start,,/Application,/Informational,/
Success
300,/Host/Resource,/Access/Start,,/Application,/Informational,/
Success
301,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
302,/Host/Application/Service,/Communicate/Query,/Redirection/

Categorizing Events Page 137 of 243

https://www.microfocus.com/documentation/arcsight/arcsight-smartconnectors-8.4/eventwhitepapercategorization/#event-categorization.htm?TocPath=Event%2520Categorization%2520Whitepaper%257C_____0

Application,/Application,/Informational,/Success
303,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
304,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
305,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational/Error,/Attempt
306,/Host/Application/Service,/Execute/Query,,/Application,/
Informational/Alert,/Failure
307,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
400,/Host/Application/Service,/Access/Start,/Traffic
Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Warning,/Failure
401,/Host/Application/Service,/Authentication/Verify,,/Application
,/Informational/Warning,/Failure
402,/Host/Application/Service,/Communicate/Query,/Traffic
Anomaly/Application Layer/Unsupported
Command,/Application,/Informational/Error,/Failure
403,/Host/Application/Service,/Authentication/Verify,,/Application
,/Informational/Warning,/Failure
404,/Host/Resource,/Access/Start,,/Application,/Informational/
Warning,/Failure
405,/Host/Application/Service,/Communicate/Query,/Traffic
Anomaly/Application Layer/Unsupported
Command,/Application,/Informational/Error,/Failure
406,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Failure
407,/Host/Application/Service,/Authentication,,/Application,/
Informational/Error,/Failure
408,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Failure
409,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Failure
410,/Host/Resource,/Access/Start,,/Application,/Informational/
Warning,/Failure
411,/Host/Application/Service,/Access/Start,/Traffic
Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Warning,/Failure
412,/Host/Application/Service,/Access/Start,,/Application,/
Informational/Warning,/Failure
413,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
414,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure

Developer's Guide to ArcSight FlexConnectors

HTTP Status Code Categorization Example Page 138 of 243

415,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
416,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
417,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
500,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
501,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
502,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
503,/Host/Application/Service,/Access/Start,,/Application,/
Informational/Error,/Failure
504,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure

Developer's Guide to ArcSight FlexConnectors

HTTP Status Code Categorization Example Page 139 of 243

Firewall Example
event.deviceEventClassId,set.event.categoryObject,
set.event.categoryBehavior,set.event.categoryDeviceGroup,
set.event.categorySignificance,set.event.categoryOutcome
OPEN,/Host/Application/Service,/Communicate/Query,/Firewall,/
Normal,/Success
pass,/Host/Application/Service,/Communicate/Query,/Firewall,/
Normal,/Success
DROP,/Host/Application/Service,/Communicate/Query,/Firewall,/
Informational/Warning,/Failure

Merging Events
Some devices send information related to an event by splitting it into multiple log lines. While
each of these log lines can be considered as separate events, in some scenarios, it is necessary
for these events to be represented as a single event. The merge operation in the parser
framework enables merging of events spread across multiple lines into a single, one log line
event.

A parser using the multi-line properties can also merge events into a single event. However,
that parser can merge only those split events that are sent consecutively by the device as log
lines. When the split events are not close to each other, the merge operation is used to merge
them into a single event.

For example, consider these log lines:

[18/Jul/2022:12:30:20 -0400] conn=8 op=0 msgId=82 - BIND uid=admin
[18/Jul/2022:12:30:25 -0400] conn=7 op=-1 msgId=-1 - LDAP connection from
10.0.xx.xxx to 10.0.xx.xx
[18/Jul/2022:12:30:30 -0400] conn=8 op=0 msgId=82 - RESULT err=0

In the aforementioned example, the first and the last log lines are identical because they have
the same conn, op, and msgId values, making them split events of a single event. The second
line is a separate event because none of its values are identical to those of the first and last log
lines. Since the two split events are not consecutively placed, they can be merged only by the
merge operation and not by using the multi-line capabilities of FlexConnectors.

Important: Presently, only parsers based on regular expressions support the merge operation.

Parser Properties for the Merge Operation
The merge operation includes defining the following properties in the parser:

Developer's Guide to ArcSight FlexConnectors

Firewall Example Page 140 of 243

l The conditions determining the events that are eligible for merging.
l The conditions determining the start of the merge operation.
l The conditions determining the end of the merge operation.
l The fields identifying which events are split events of a single event and therefore will be

merged.

In addition, you might need to specify more properties in the parser for the merge operation.
The following table lists all the properties:

Property Description

merge.count Specifies the number of merge operations that will be defined.

merge[{mergeindex}].traceenabled When set to true, all operations regarding event merging will be
logged for this merge operation.

merge[{mergeindex}].pattern.count Specifies the number of patterns that will be defined. Merge
operations require patterns to define which events will be considered
in the merge operation. If no patterns are given, then all events will be
considered for merging.

merge[{mergeindex}].pattern
[{patternindex}].token

Specifies the token that will be used for this pattern.

merge[{mergeindex}].pattern
[{patternindex}].regex

Specifies the regular expression to use for this pattern.

merge[{mergeindex}].starts.count Specifies the number of start patterns that will be defined. Merge
operations require start patterns to define which events will start a
merge operation. If no patterns are given, then all events will start the
merge operation. After the merge operation starts, it can end only
through a timeout or an end pattern match.

merge[{mergeindex}].starts
[{patternindex}].token

Specifies the token that will be used for this start pattern.

merge[{mergeindex}].starts
[{patternindex}].regex

Specifies the regular expression to use for this start pattern.

merge[{mergeindex}].starts
[{patternindex}].endspreviousmerge

When set to true, it indicates that if the start message is found within
an already merged event, then the merge processor must end the
current merge and start a new one. This property takes precedence
over all the merge[x].ends[y] properties listed in this table. Therefore,
if a start message is found before the end event, then it will end the
current event and start a new one. In addition, if the start message
contains an end message, then both the existing merged event and the
newly merged event will be sent.

Developer's Guide to ArcSight FlexConnectors

Parser Properties for the Merge Operation Page 141 of 243

Property Description

merge[{mergeindex}].ends.count Specifies the number of end patterns that will be defined. Merge
operations require end patterns to define which events will end the
merge operation. If no patterns are given, then no event will end a
merge operation. After the merge operation starts, it can end only
through a timeout.

merge[{mergeindex}].ends
[{patternindex}].token

Specifies the token that will be used for this end pattern.

merge[{mergeindex}].ends
[{patternindex}].regex

Specifies the regular expression to use for this end pattern.

merge[{mergeindex}].timeout Specifies the timeout in milliseconds for the merging operation. If the
timeout is reached then the merge operation will end and the events
will be sent. The events will be sent through a different thread, so the
event order might not be maintained.

merge[{mergeindex}].id.tokens (Required) Specifies list of tokens that will be used to group the events.

merge[{mergeindex}].id.delimiter Specifies a delimiter to use for the token list, if it is not defined then
the delimiter is ",".

merge[{mergeindex}].sendpartialevents (Optional) Specifies if each event in the merge operation must be sent
individually as it is merged with other events. Default is false.

merge[{mergeindex}].capacity (Optional) Specifies the size of the cache to hold the merged events.
Default is 1000. If the cache overflows, then events will be sent as they
are and an error will be logged.

submessage[{submessageindex}].pattern
[{patternindex}].names

Specifies a comma separated list of labels or names for the fields of the
submessages.

submessage[x].pattern
[y].names.delimiter.

(Optional) Specifies a delimiter for the submessage name list.

Example of Merging Events
This section describes the process of merging events with the help of an example.

1. Sample Log Lines

2. Merge Operation Definition

3. Event Mapping Definition

4. Merged Event

Sample Log Lines
Consider the following log lines:

Developer's Guide to ArcSight FlexConnectors

Example of Merging Events Page 142 of 243

[18/Jul/2022:12:30:20 -0400] conn=8 op=0 msgId=82 - BIND uid=admin
[18/Jul/2022:12:30:25 -0400] conn=7 op=-1 msgId=-1 - LDAP connection from
10.0.xx.xxx to 10.0.xx.xx
[18/Jul/2022:12:30:30 -0400] conn=8 op=0 msgId=82 - RESULT err=0

If these log lines have been parsed into key-value pairs with a regex, then each log line looks as
follows:

l [18/Jul/2022:12:30:20 -0400] conn=8 op=0 msgId=82 - BIND uid=admin

Date=18/Jul/2022 12:30:20
Connection=8
Operation=0
MessageId=82
OperationName=BIND
UserId=admin

l [18/Jul/2022:12:30:25 -0400] conn=7 op=-1 msgId=-1 - LDAP connection from 10.0.xx.xxx
to 10.0.xx.xx

Date=18/Jul/2022 12:30:25
Connection=7
Operation=1
MessageId=-1
OperationName=LDAP
Source=10.0.xx.xxx
Destination=10.0.xx.xx

l [18/Jul/2022:12:30:30 -0400] conn=8 op=0 msgId=82 - RESULT err=0

Date=18/Jul/2022 12:30:30
Connection=8
Operation=0
MessageId=82
OperationName=RESULT
ResultCode=0

Merge Operation Definition
Define the merge operation in the parser, for example, as follows:

merge.count=1
merge[0].pattern.count=1
merge[0].pattern[0].token=OperationName
merge[0].pattern[0].regex=(BIND|RESULT)
merge[0].starts.count=1
merge[0].starts[0].token=OperationName
merge[0].starts[0].regex=BIND
merge[0].ends.count=1
merge[0].ends[0].token=OperationName

Developer's Guide to ArcSight FlexConnectors

Merge Operation Definition Page 143 of 243

merge[0].ends[0].regex=RESULT
merge[0].id.tokens=Connection,Operation,MessageId
merge[0].timeout=60000

where:

l merge.count=1
Indicates that there is only one merge operation.

l merge[0].pattern.count=1
merge[0].pattern[0].token=OperationName
merge[0].pattern[0].regex=(BIND|RESULT)
Indicates that all the events with OperationName set to BIND or RESULT need to be
considered for merging.

l merge[0].starts.count=1
merge[0].starts[0].token=OperationName
merge[0].starts[0].regex=BIND
Indicates that the events with the OperationName set to BIND will start the merge
operation.

l merge[0].ends.count=1
merge[0].ends[0].token=OperationName
merge[0].ends[0].regex=RESULT
Indicates that the merge operation will end if it finds an event with the OperationName set
to RESULT.

l merge[0].id.tokens=Connection,Operation,MessageId
Indicates that, from the events that are considered for merging, only those events that
have identical values of the Connection, Operation, and MessageId tokens will be merged.

l merge[0].timeout=60000
Indicates that if the merge operation does not get any event with the OperationName set
to RESULT in 60 seconds, then the event is sent as-is.

Based on the merge operation defined, the first and the third event will be considered for
merging.

Event Mapping Definition
Define the mapping of the ArcSight event fields and the device-specific event (log line) fields in
the parser as follows:

event.deviceReceiptTime=Date
event.startTime=__oneOfDateTime(mergedevent.startTime,Date)
event.deviceAction=ResultCode
event.destinationUserId=UserId
event.name=__oneOf(mergedevent.name,OperationName)

Developer's Guide to ArcSight FlexConnectors

Event Mapping Definition Page 144 of 243

Or
event.name=OperationName

For the mapping of the event name, use any of the following:

l _oneOf(mergedevent.name, OperationName) if you need the name of the merged event to
be the OperationName of the event that starts the merge operation. In this case, BIND.

l OperationName if you need the name of the merged event to be the Operation Name of
the event that ends the merge operation. In this case, RESULT.

Merged Event
The parser, on performing the merge operation, creates a new merged event with the
following mapping values:

mergedevent.deviceReceiptTime=18/Jul/2022 12:30:30
mergedevent.startTime=18/Jul/2022 12:30:20
mergedevent.deviceAction=0
mergedevent.destinationUserId=admin
mergedevent.name=BIND
Or
mergedevent.name=RESULT

Note: The mergedevent.name field is set to BIND if its mapping is set to _oneOf
(mergedevent.name, OperationName), else the mergedevent.name field is set to RESULT if its
mapping is set to OperationName. The mergedevent.startTime field indicates the time at which
the merge operation begins. The rest of the merged event fields have the latest values resulting
from the merge operation.

Additional Information and Functions of Regex
FlexConnectors
1. Select Add a Connector and click Next. If applicable, you can enable FIPS mode and enable

remote management later in the wizard after connector configuration.

2. Select a specific connector to install. The FlexConnectors are mostly grouped together
beginning with ArcSight FlexConnector. The exception is syslog FlexConnectors (choose
Syslog Daemon) . Click Next when you have made your selection.

3. Enter the required SmartConnector parameters to configure the SmartConnector, then
click Next.

Developer's Guide to ArcSight FlexConnectors

Merged Event Page 145 of 243

The installation wizard prompts for different parameters depending upon the type of
FlexConnector or Syslog SmartConnector selected. In addition to the parameters you can
configure through the installation wizard, you can also configure parameters directly in the
agent.properties file. Those parameters are discussed in Advanced FlexConnector
Configuration Parameters.

Supported Regular Expressions
Regular expression-based FlexConnectors parse fields from a line-based text log file. The Regex
FlexConnector will not manipulate binary files or text files that aren’t line based. Multiple line
based regex parsers are addressed later in this document.

This table lists meta-characters:

MChar Definition Pattern Sample Matches

. Any character (except \n new-line) a.c abc, aac, acc, adc,
aec, ...

| Alternation. bill|ted ed, bill

{...} Explicit quantifier notation. ab{2}c abbc

[...] Explicit set of characters to match. a[bB]c abc, aBc

(...) Logical grouping of part of an expression. (abc){2} abcabc

* 0 or more of previous expression. ab*c ac, abc, abbc, abbbc,
...

+ 1 or more of previous expression. ab+c abc, abbc, abbbc, ...

? 0 or 1 of previous expression; also forces minimal
matching when an expression might match several
strings within a search string.

ab?c ac, abc

\ Preceding one of the above, it makes it a literal
instead of a special character. Preceding a special
matching character, see below.

a\sc a c

Developer's Guide to ArcSight FlexConnectors

Supported Regular Expressions Page 146 of 243

This table lists escape characters:

Escaped Char Description

ordinary characters Characters other than . $ ^ { [(|)] } * + ? \ match themselves.

\t Matches a tab \u0009.

\r Matches a carriage return \u000D.

\n Matches a new line \u000A.

\x20 Matches an ASCII character using hexadecimal representation (exactly two digits).

* When followed by a character that is not recognized as an escaped character, matches
that character. For example, * is the same as \x2A.

This table lists character classes:

Char Class Description

[aeiou] Matches any single character included in the specified set of characters.

[^aeiou] Matches any single character not in the specified set of characters.

[0-9a-fA-F] Use of a hyphen (–) allows specification of contiguous character ranges.

\w Matches any word character.

\W Matches any non-word character.

\s Matches any white-space character.

\S Matches any non-white-space character.

\d Matches any decimal digit. Equivalent to [0-9]

\D Matches any non-digit. Equivalent to [^0-9]

This table lists common Regex :

Data Type Regex for FlexConnector Example

IPAddress (\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3})

123.45.67.89

IPAddress:Port (\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3})\:(\\d{1,5})

123.45.67.89:25

Date & Time HTTP \\[(\\d{2}\\/\\w+\\/\\d{4}:\\d{2}:\\d
{2}:\\d{2} [+|-]\\d{4})\\]

[04/Dec/2004:00:21:37 +0000]

Date & Time (\\d{2}\\/\\d{2}\\/\\d{4} \\d{2}:\\d
{2}:\\d{2}) 01/31/2005 10:45:50

31/01/2005 22:15:10

Developer's Guide to ArcSight FlexConnectors

Supported Regular Expressions Page 147 of 243

Multi-line Parsing
Some files may contain events that are split into multiple lines. Some types parse files in which
each line is an event, but Regex Log file FlexConnectors also support reading multi-line files.

FlexConnectors will try to concatenate all the lines belonging to a single event separated by a
space. The problem becomes simpler because the events go back to being one line.

When events are split across several lines, there is typically a way to identify the message start
and end. To support multi-line messages, you need to define the message start and end in the
configuration file. The properties, in the following table, can be used for this purpose.

This table lists multi-line properties:

Property Description

multiline.starts.regex This property can be set to a regular expression that identifies when the multi-
line event starts. (This is required for multi-line files.)

multiline.ends.regex This property can be set to a regular expression that identifies when the multi-
line event ends. (This property is optional. If it is not present, it is assumed that
when a new event begins the previous one has ended.)

multiline.max.count This is an overflow protection that is not required but is recommended. The
FlexConnector will truncate the message if it reaches this specified number of
lines plus one.

multiline.delimiter By default, lines are concatenated with a space (' ') between, but this can be
changed by setting this property to a different character.

multiline.singleline.
nowaiting=(True or False)

If True, the connector does not wait for another line when the log file has a
single line without a second line. It proceeds to the next multi-line and
continues processing.

Note: Multi-line regular expression support is available only for Log File agents.

A log file that requires a multi-line FlexConnector might look like this:

|01/01/2005 11:00:50|1.1.1.1|7663|2.2.2.2|80|this
is
a
message
that
takes
multiple
lines|
|01/01/2005 11:00:51|1.1.1.1|7663|2.2.2.2|80|this
is another large message that takes
multiple lines|

Developer's Guide to ArcSight FlexConnectors

Multi-line Parsing Page 148 of 243

To parse this message with a simple FlexConnector Regex Log file, add the following multiline
property to the configuration file:

multiline.starts.regex=\|\d+/\d+/\d+ \d+:\d+:\d+\|.*

The FlexConnector will concatenate multiple lines into a single line. The events will look like
this:

|01/01/2005 11:00:50|1.1.1.1|7663|2.2.2.2|80|this is a message that takes
multiple lines|
|01/01/2005 11:00:51|1.1.1.1|7663|2.2.2.2|80|this is another large message
that takes multiple lines|

Such a log can be parsed by a standard FlexConnector Regex Log file. Another example:

multiline.ends.regex=.*\|$

In this case, the ends property is not required because an expression was defined that will
always match the start of a message.

The full FlexConnector Regex Logfile configuration file that can parse this message looks like
this:

FlexConnector Regex Configuration File

multiline.starts.regex=\\|\\d+/\\d+/\\d+ \\d+\:\\d+\:\\d+\\|.*

regex=\\|(.*?)\\|(\\S+)\\|(\\d+)\\|(\\S+)\\|(\\d+)\\|(.*)\\|

token.count=6
token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MM/dd/yyyy HH\:mm\:ss

token[1].name=SourceAddress
token[1].type=IPAddress

token[2].name=SourcePort
token[2].type=Integer

token[3].name=DestinationAddress
token[3].type=IPAddress

token[4].name=DestinationPort
token[4].type=Integer

token[5].name=Message
token[5].type=String

Developer's Guide to ArcSight FlexConnectors

Multi-line Parsing Page 149 of 243

#submessage.messageid.token=
#submessage.token=

event.sourceAddress=SourceAddress
event.destinationAddress=DestinationAddress
event.sourcePort=SourcePort
event.destinationPort=DestinationPort
event.deviceVendor=__getVendor("MyVendor")
event.message=Message
event.deviceProduct=__stringConstant("MyProduct")

This is an example of a log file that requires multi-line processing:

Multi-Line Virus Wall Log File
Date: 11/29/2004 09:44:11
Method: HTTP
From: http://www.nextern.net/downloads/pgtaff/pgtaff.cab
To: 10.0.1.19
File: pgtaff.cab
Action: The uncleanable file is deleted.
Virus: ADW_SCANPORTAL.A

Date: 11/29/2004 11:34:37
Method: HTTP
From: http://www.nextern.net/downloads/pgtaff/pgtaff.cab
To: 10.0.1.19
File: pgtaff.cab
Action: The uncleanable file is deleted.
Virus: ADW_SCANPORTAL.A

Date: 11/29/2004 12:21:32
Method: HTTP
From: http://192.168.176.227/webplugin.cab
To: 10.0.1.9
File: webplugin.cab
Action: The uncleanable file is deleted.
Virus: TROJ_ONECLICK.A

The regular expression portion of the configuration file that defines this "Virus Wall"
FlexConnector looks like this:

multiline.starts.regex=Date:.*
multiline.ends.regex=----------------------------------
regex=Date:\\s(\\d{2}\\/\\d{2}\\/\\d{4} \\d{2}:\\d{2}:\\d{2}).Method:\\s
(\\w+).From:\\s(\\S+).To:\\s(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3}).File:\\s(\\S+).Action:\\s([^\\.]+)\\..Virus:\\s(\\S+).*

The following is another example of a multi-line log file:

Developer's Guide to ArcSight FlexConnectors

Multi-line Parsing Page 150 of 243

BEA WebLogic Log File
####<30-mar-04 9:04:34 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] SmartDemo
TerminalNewSessionServlet: web application context path=[/Scort]>
####<30-mar-04 9:10:35 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '7' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] [2004.03.30 09:10:35.468]:Thread
Group for Queue: 'default'.ExecuteThread: '7' for queue: 'default'@565cd0:aa4:
[Apn2T1cX5PWUVbP4nVXhHM6U714NKT2vVLXhPid1eYtCWY602fn4!-
1600671479!169410899!3001!7002!1080666038968] !!!
com.scort.agent.terminal.servlet.ServletHelper.traceOrError Timeout on
receiving response

receive timeout=60000
mode=send and receive
>

####<30-mar-04 9:10:57 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] SmartDemo
TerminalNewSessionServlet: web application context path=[/Scort]>
####<30-mar-04 9:11:24 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)]

In this case, the regular expression portion of the configuration file looks like this:

multiline.starts.regex=####<.*
multiline.ends.regex=####
regex=####<([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <
([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)>(.*)

Using the Regex Tool
The FlexConnector Development Kit includes the FlexConnector Regex Tester (Regex Tool) that
analyzes .log (event data) files using configuration files (parsers, or .properties files), and
can also generate regular expressions to use as properties in configuration files that you create.

Use the Regex Tool only with Regex (regular expression) parsers.

See Developing Custom Parsers for Syslog SmartConnectorsfor general instructions on using
the Regex Tool to create a custom parser for a syslog SmartConnector.

To analyze log files using a parser in the Regex Tool:

1. Copy the parser file and log file you wish to analyze into this location:
ARCSIGHT_HOME\current\user\agent\flexagent

Developer's Guide to ArcSight FlexConnectors

Using the Regex Tool Page 151 of 243

2. Run the Regex Tool by executing:
ARCSIGHT_HOME\current\bin\arcsight regex

3. Select File > Load FlexAgent Regex File and browse to ARCSIGHT_
HOME\current\user\agent\flexagent to select and load the parser file (the
.properties file).

4. Select File > Load Log File and browse to ARCSIGHT_
HOME\current\user\agent\flexagent to select and load the corresponding .log file.
The first line of the file appears in the Message field, and the number of lines in the file
displays on the window title bar.

Also, you can load .csv files instead of a .log file for analysis. In this case, choose File >
Load CSV Export with Raw Event rather than File > Load Log File. The .csv file you load
must contain a header as well as the raw event data. Use this feature to parse and test raw
events that did not initially parse correctly, and that you have exported to a .csv file.

5. If you are working with a syslog connector, select Options > Treat as Syslog Subagent.
Click the check box to select.

6. Click Generate to produce a regular expression that will parse the line shown in the
Message field, as shown below:

Developer's Guide to ArcSight FlexConnectors

Using the Regex Tool Page 152 of 243

Notice that literals, such as the square brackets around the date and time, are preserved in
the generated regular expression.

Use the navigation buttons to view different lines in the log file.

7. Analyze the log file line by line using the navigation buttons.

8. Select File > Exit when data analysis is compete.

When you use the Regex Tool to analyze data, two files are generated:
l regextester.properties

l registrycache.properties

Delete these generated files when you are done with your data analysis. If you do not
delete these files, data will persist in the Regex Tool interface.

To create lines for use in configuration files (parsers):

1. Run the Regex Tool by executing:
ARCSIGHT_HOME\current\bin\arcsight regex

2. Select File > New FlexAgent Regex File.

3. Enter a name for the new .properties file. This file is generated in the location:
ARCSIGHT_HOME\current\user\agent\flexagent

The new Regex .properties file is generated containing generic Regex you can use to begin
creating a configuration file. This Regex is generated one line at a time, and does not

Developer's Guide to ArcSight FlexConnectors

Using the Regex Tool Page 153 of 243

generate an entire parser. The Regex tool lists recommended fields to tokenize and map
that are associated with the generated Regex. For example:

4. When you are done, select FlexConnector File > Save FlexConnector Regex File.

The Regex tool can also be used to edit existing configuration files by choosing File > Load
FlexConnector Regex File.

If changes do not work as expected, revert to the previously saved version of the file by
clicking ReloadParser.

Caution: The Regex tool is designed for single-line use only. You can load the entire log file
into the tool, but can only process one event at a time.

5. Select File > Exit when data analysis is compete.

Using Sub-Messages for Multiple File Formats
In some cases, the files being parsed by FlexConnectors may contain more than one message
format. For example:

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
3.3.3.3/4532 to 4.4.4.4/80 flags RST on interface outside
Nov 28 22:06:10 10.0.111.2 %PIX-3-305005: No translation group found for tcp
src inside:10.0.112.9/37 dst outside:4.5.6.7/3562
Nov 29 01:46:42 10.0.111.2 %PIX-6-305005: Translation built for gaddr 1.2.3.4
to laddr 10.0.111.9
Nov 29 01:35:15 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 2.2.2.2/0 to 3.3.3.3/0
Nov 28 12:03:21 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
1.1.1.1/3564 to 2.2.2.2/80 flags RST on interface outside
Nov 29 04:11:32 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 5.5.5.5/0 to 6.6.6.6/0

There is no easy way to define a regular expression that could match all four possible formats
in this example. For this reason, the FlexConnector Regex log-file supports using multiple
regular expressions, one for each format, by defining sub-messages.

Almost every message can be divided in two portions, one that is common to all messages and
one that varies with each message format. The common, or standard, portion requires only

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 154 of 243

one regular expression. A sub-message is defined as the non-standard portion of the message
being parsed. In the example above, divide the message:

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
199.248.65.116/3564 to 10.0.111.22/80 flags RST on interface outside

Into:

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015:

And:

Deny TCP (no connection) from 199.248.65.116/3564 to 10.0.111.22/80 flags RST
on interface outside

Identify that the first portion of the message is common to all messages; it contains the month,
the day of the month, the time, an IP address and an identifier (in this case formed by the
mnemonic %PIX (which comes from a Cisco Pix device) followed by a single digit that specifies
the device severity and finally message ID). The second portion of the message varies between
each of the messages in the example.

Usually one or more sub-messages can be identified by a message ID or format identifier. A
message ID, if available, will improve performance of the FlexConnector engine.

In the example, the message ID is the last portion of the identifier provided with each message.
Determine that all messages with message ID 106015 have the same format; likewise message
identifier 500004. Messages with message ID 305005 have slightly different formats, but they
both refer to translations.

The file described above must be parsed using a FlexConnector Regex Log file and sub-
messages. The first thing to do is to define a regular expression that will match all messages
using knowledge of the standard and non-standard part of the messages:

regex=(\S+ \d+ \d+:\d+:\d+) (\S+) %PIX-(\d)-(\d+): (.*)

This regular expression matches all the messages above and separates the standard part of the
message into tokens. The last (.*) matches everything after the %PIX identifier; that expression
group will become the sub-message to parse further.

With a common expression for all messages, now define the common tokens that are
captured:

token.count=5

token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MMM dd HH\:mm\:ss

token[1].name=PixIP

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 155 of 243

token[1].type=IPAddress

token[2].name=PixSeverity
token[2].type=String

token[3].name=SubmessageIdToken
token[3].type=String

token[4].name=SubmessageToken
token[4].type=String

Now add the common mappings:

event.deviceReceiptTime=Timestamp
event.deviceAddress=PixIp
event.deviceSeverity=PixSeverity
event.deviceEventClassId=SubmessageIdToken
event.deviceVendor=__getVendor(“CISCO”)
event.deviceProduct=__stringConstant(“PIX”)

Notice that the timestamp does not contain the year (this is typical in a syslog message). Use a
FlexConnector operation to add the current year to avoid all of the messages defaulting to the
year 1970. The operation to use is __useCurrentYear(). The corrected mappings should be:

event.deviceReceiptTime=__useCurrentYear(Timestamp)
event.deviceAddress=PixIp

event.deviceSeverity=PixSeverity
event.deviceEventClassId=SubmessageIdToken
event.deviceVendor=__getVendor(“CISCO”)
event.deviceProduct=__stringConstant(“PIX”)

Map the severity, which is also common:

severity.map.veryhigh.if.deviceSeverity=0,1
severity.map.high.if.deviceSeverity=2,3
severity.map.medium.if.deviceSeverity=4,5
severity.map.low.if.deviceSeverity=6,7

Having parsed the standard part of the message, define which token will contain the message
ID and which token will contain the sub-message to be parsed. This is accomplished by defining
the following properties:

l submessage.messageid.token=SubmessageIdToken
l submessage.token=SubmessageToken

The (submessage.messageid.token) property identifies the token that will hold the message
identifier. The (submessage.token) property identifies the token that contains the actual sub-
message.

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 156 of 243

Now define the additional regular expressions for each sub-message ID. To do this, define the
number of sub-messages that are required. In this case, there are three sub-message IDs
(106015, 305005, 500004). Define the sub-message count as 3:

submessage.count=3

Follow these steps to define the sub-message:

1. Define the corresponding sub-message ID.

2. Define the regular expression(s) to use.

3. Define the mappings to event fields.

To define the first sub-message for message ID 106015, first define the message ID:

submessage[0].messageid=106015

Next, define the number of regular expressions (also known as patterns) needed. Message
305005 will require two regular expressions but the other messages will require only one:

submessage[0].pattern.count=1

Define the regular expression to use for this message ID:

submessage[0].pattern[0].regex=Deny (\\S+) \\(no connection\\) from
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) flags
RST on interface (\\S+)

The expression captures the protocol, the source address and source port, the destination
address and destination port and finally the interface. Now define how these tokens will map
into event fields:

submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface

However, you may have noticed that the type of each token was not defined; nor were any
possible token formats. Because you can have several of these sub-messages for each file, the
sub-message engine tries to deduce the type based on the mapping. This may not always work,
so there is a way to explicitly set the types and the formats. Internally, the sub-message engine
labels each token by its position in the regular expression (like Perl). In the engine, the tokens
are named $1, $2, $3, $4, and so on, and you can set their type and format explicitly by
defining the following properties:

submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String

The format can also be defined using one sub-message property (in this case, formats are not
needed for the types specified. Use the keyword null):

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 157 of 243

submessage[0].pattern[0].formats=null,null,null,null,null,null

The combination of these last three properties:

submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface
submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String
submessage[0].pattern[0].formats=null,null,null,null,null,null

Will be internally equivalent to:

Six tokens

token.count=6

token[0].name=$1
token[0].type=String
token[0].format=null

token[1].name=$2
token[1].type=IPAddress
token[1].format=null

token[2].name=$3
token[2].type=Integer
token[2].format=null

token[3].name=$4
token[3].type=IPAddress
token[3].format=null

token[4].name=$5
token[4].type=Integer
token[4].format=null

token[5].name=$6
token[5].type=String
token[5].format=null

event.transportProtocol=$1
event.sourceAddress=$2
event.sourcePort=$3
event.destinationAddress=$4
event.destinationPort=$5
event.deviceInboundInterface=$6

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 158 of 243

Using FlexConnector operations with the mapping properties of the sub-message is also
possible. The following is an example with the sub-message for message ID 500004. The
definition of that sub-message is as follows:

submessage[1].messageid=500004
submessage[1].pattern.count=1
submessage[1].pattern[0].regex=Invalid transport field for protocol\=(\\d+),
from (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[1].pattern
[0].fields=event.applicationProtocol,event.sourceAddress,event.sourcePort,even
t.destinationAddress,event.destinationPort

Recall the original message:

Nov 29 01:35:15 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 2.2.2.2/0 to 3.3.3.3/0

Notice that the event.applicationProtocol is mapped to $1 which has the value 6. The
FlexConnector operation __getProtocolName translates protocol numbers into their
description (for example, protocol number 6 is TCP). To use this operation, define a custom
mappings property, so instead of event.applicationProtocol=$1 use
event.applicationProtocol =__getProcotolName($1). Use the following property:

submessage[1].pattern[0].mappings=__getProtocolName($1)|$2|$3|$4|$5

In this case, each of the mappings is separated by a pipe (‘|’) instead of a comma (‘,’) because
some operations could contain a comma. You can customize the delimiter if needed by setting
the property submessage[1].pattern[0].mappings.delimiter. For example:

submessage[1].pattern[0].mappings.delimiter=@
submessage[1].pattern[0].mappings=
__getProtocolName($1)@$2@$3@$4@$5

Moving on to message ID 305005, notice that the same message ID has two slightly different
formats. As mentioned before, sub-messages also support multiple regular expressions for a
single message ID. The expressions are evaluated in order and the first match that succeeds
wins. Try to order your expressions from the most specific to the most generic. The sub-
message properties for message 305005 are as follows:

submessage[2].messageid=305005
submessage[2].pattern.count=2
submessage[2].pattern[0].regex=No translation group found for (\\S+) src
inside\:(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) dst outside\:
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[2].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,

Developer's Guide to ArcSight FlexConnectors

Using Sub-Messages for Multiple File Formats Page 159 of 243

event.destinationAddress,event.destinationPort
submessage[2].pattern[1].regex=Translation built for gaddr
(\\d+\\.\\d+\\.\\d+\\.\\d+) to laddr (\\d+\\.\\d+\\.\\d+\\.\\d+)
submessage[2].pattern[1].fields=
event.destinationTranslatedAddress,event.destinationAddress

Default Sub-message
There is one more sub-message feature that can be useful situations where you do not know
every single message ID that can be received, but still want to try to parse them. In this case,
define a default sub-message to use for any message with a message ID that is not defined
(anything other than 106015, 305005, 500004, in this example, will be sent to the default sub-
message). The default sub-message can also contain multiple patterns so that you can use
several regular expressions to see if one of them matches.

The default sub-message is the same as a normal sub-message with no messageid property.
The definition of a default sub-message for the current example configuration file will be:

submessage[3].pattern.count=1
submessage[3].pattern[0].regex=(.*)
submessage[3].pattern[0].fields=event.message

Of course, since new sub-message is added (the default sub-message is still a sub-message),
increase the submessage.count to 4:

submessage.count=4

The default sub-message defined here will simply map the event.message to the full sub-
message. You might want to alert the user that the particular message was not fully parsed; to
do that, you can set the event.name to a fixed string, such as Unparsed message and the
deviceProduct to Unknown so that separate statistics are kept for all these messages. See
Extra Mappings for details.

Extra Mappings
Extra mappings (extramappings) is another property of the sub-message that can be used to
directly add additional mapping properties. For the example described above, the
extramappings property must be defined as:

submessage[3].pattern[0].extramappings=event.name=
__stringConstant("Unparsed event")
|event.deviceProduct=__stringConstant("Unknown")

Notice that you can add as many mappings as you require; each separated by ‘|’. The ‘|’ can
also be replaced with a different delimiter (just like the mappings delimiter):

Developer's Guide to ArcSight FlexConnectors

Default Sub-message Page 160 of 243

submessage[3].pattern[0].extramappings.delimiter=@
submessage[3].pattern[0].extramappings=event.name=
__stringConstant("Unparsed event")
@event.deviceProduct=__stringConstant("Unknown")

Now the example FlexConnector with sub-messages is complete. The full FlexConnector
configuration file looks like this:

FlexConnector Regex Configuration File

regex=(\\S+ \\d+ \\d+\:\\d+\:\\d+) (\\S+) %PIX-(\\d)-(\\d+)\: (.*)

token.count=5

token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MMM dd HH\:mm\:ss

token[1].name=PixIP
token[1].type=IPAddress

token[2].name=PixSeverity
token[2].type=String

token[3].name=SubmessageIDToken
token[3].type=String

token[4].name=SubmessageToken
token[4].type=String

submessage.messageid.token=SubmessageIdToken
submessage.token=SubmessageToken

event.deviceReceiptTime=__useCurrentYear(Timestamp)
event.deviceAddress=PixIP
event.message=SubmessageToken
event.deviceVendor=__stringConstant(CISCO)
event.deviceSeverity=PixSeverity
event.deviceProduct=__stringConstant(PIX)
event.deviceEventClassId=SubmessageIDToken

severity.map.veryhigh.if.deviceSeverity=0,1
severity.map.high.if.deviceSeverity=2,3
severity.map.medium.if.deviceSeverity=4,5
severity.map.low.if.deviceSeverity=6,7

submessage.count=4

Developer's Guide to ArcSight FlexConnectors

Extra Mappings Page 161 of 243

submessage[0].messageid=106015
submessage[0].pattern.count=1
submessage[0].pattern[0].regex=Deny (\\S+) \\(no connection\\) from
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) flags
RST on interface (\\S+)
submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface
submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String
submessage[0].pattern[0].formats=null,null,null,null,null,null
submessage[1].messageid=500004
submessage[1].pattern.count=1
submessage[1].pattern[0].regex=Invalid transport field for protocol\=(\\d+),
from (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[1].pattern[0].mappings.delimiter=@

submessage[1].pattern[0].fields=event.applicationProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort
submessage[1].pattern[0].mappings=
__getProtocolName($1)@$2@$3@$4@$5
submessage[2].messageid=305005
submessage[2].pattern.count=2
submessage[2].pattern[0].regex=No translation group found for (\\S+) src
inside\:(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) dst outside\:
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[2].pattern[0].fields=event.transportProtocol,

event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort
submessage[2].pattern[1].regex=Translation built for gaddr
(\\d+\\.\\d+\\.\\d+\\.\\d+) to laddr (\\d+\\.\\d+\\.\\d+\\.\\d+)
submessage[2].pattern[1].fields=
event.destinationTranslatedAddress,event.destinationAddress
Default sub-message descriptor
submessage[3].pattern.count=1
submessage[3].pattern[0].regex=(.*)
submessage[3].pattern[0].extramappings.delimiter=@
submessage[3].pattern[0].fields=event.message
submessage[3].pattern[0].extramappings=
event.name\=__stringConstant("Unparsed event")
@event.deviceProduct\=__stringConstant("Unknown")

Developer's Guide to ArcSight FlexConnectors

Extra Mappings Page 162 of 243

Conditional Mappings
Conditional mappings enable you to map tokens that can contain different types of
information, based on the characteristic of the event.

For example, assume the following event:

Event id is 532 type A with parameter 3.3.3.3
Event id is 533 type A with parameter root
Event id is 534 type A with parameter 3.3.3.3

In this example, the parameter token can be either an IP address or a user name.

The regular expression to parse this event is:

Event id is (\\d+) type (\\S+) with parameter (\\S+)

You can define three tokens for the above events: EVENTID, TYPE, and PARAMETER. If the event
id is 532 or 534, set the ArcSight event field event.sourceAddress to 3.3.3.3 and if the event
id is 533, set the event.sourceUserName to root.

Without conditional mappings, you will have to create two regular expressions to match the
two unique information types in this event—the IP address and the user name. Although it is
feasible to define two regular expressions for this case, if there were hundreds of messages
with unique information types, this solution will not scale well.

With conditional mappings, you can define the following mapping properties in your parser for
the above example:

regex=Event id is (\\d+) type (\\S+) with parameter (\\S+)
token.count=3
token[0].name=EVENTID
token[1].name=TYPE
token[2].name=PARAMETER
#Standard mappings
event.deviceEventClassId=EVENTID
event.deviceEventCategory=TYPE
#Conditional mappings
conditionalmap.count=1
conditionalmap[0].field=event.deviceEventClassId
conditionalmap[0].mappings.count=2
conditionalmap[0].mappings[0].values=532,534
conditionalmap[0].mappings[0].event.sourceAddress=PARAMETER
conditionalmap[0].mappings[1].values=533
conditionalmap[0].mappings[1].event.sourceUserName=PARAMETER

The properties in the Conditional mappings section above define the following logic:

Developer's Guide to ArcSight FlexConnectors

Conditional Mappings Page 163 of 243

l conditionalmap.count—Specifies the number of conditional mappings. In the above
example, one conditional mapping is defined.

l conditionalmap[x].field or conditionalmap[x].token—Specifies the field or token to
evaluate. You can only use one of these properties for each conditional mapping, and not
both.

When using conditionalmap[x].field, you must use the event.eventIdField format to
specify a value for this property. In the above example, conditionalmap
[0].field=event.deviceEventClassId.

When using conditionalmap[x].token, you must specify the token as the value. For
example, conditionalmap[0].token=PARAMETER (not shown in the above example).

l conditionalmap[x].mappings.count—Specifies the count of information types. In the
above example, 2—sourceAddress and sourceUserName.

l conditionalmap[x].mappings[x].values—Specifies a list of values to match with each
token or field defined. In the example above, conditionalmap[0].mappings[0].values
= 532, 534.

If you have more than one value, use a comma to separate them.

If this property is omitted, the conditional mapping is processed as a DEFAULT mapping that is
executed ONLY if the previous mappings did not match. This is analogous to the Else behavior
in the If…Else construct. For example, if the following conditional mapping was defined in
addition to the mappings in the above example:

conditionalmap[0].mappings[2].event.destinationAddress=PARAMETER

Then, if an event with an event id other than 532, 533, and 534 was received, its
event.destinationAddress will be set to PARAMETER. If you added the DEFAULT conditional
map as suggested above to the previous example, then you must change the conditionalmap
[0].mappings.count to 3 for the example to work.

l conditionalmap[x].mappings[x].event.{xxxx} or conditionalmap[x].mappings
[x].additionaldata.{xxx}-Specifies the mapping properties to be evaluated if
conditionalmap[x].mappings[x].valuesmatch the conditionalmap[x].field or
conditionalmap[x].token.

l conditionalmap[x].mappings[x].delimiter—Specifies the delimiter to use for the
values defined above. By default, comma (,). This property is optional.

Using Conditional Mapping in Sub-messages
You can use conditional mappings in sub-messages. For example:

submessage[3].messageid=conditionalmapsample
submessage[3].pattern.count=1

Developer's Guide to ArcSight FlexConnectors

Using Conditional Mapping in Sub-messages Page 164 of 243

submessage[3].pattern[0].regex=Event id is (\\d+) type (\\S+) with parameter
(\\S+)
submessage[3].pattern[0].fields=event.deviceEventClassId
submessage[3].pattern[0].conditionalmap.count=2
submessage[3].pattern[0].conditionalmap[0].field=event.deviceEventClassId
submessage[3].pattern[0].conditionalmap[0].mappings.count=2
submessage[3].pattern[0].conditionalmap[0].mappings[0].values=532,534
submessage[3].pattern[0].conditionalmap[0].mappings
[0].event.destinationAddress=$3
submessage[3].pattern[0].conditionalmap[0].mappings[1].values=533
submessage[3].pattern[0].conditionalmap[0].mappings
[1].event.destinationUserName=$3
submessage[3].pattern[0].conditionalmap[1].token=$2
submessage[3].pattern[0].conditionalmap[1].mappings.count=1
submessage[3].pattern[0].conditionalmap[1].mappings[0].values=B
submessage[3].pattern[0].conditionalmap[1].mappings
[0].event.destinationAddress=$3

The regular expression is divided into groups. A group is an element between two parentheses
(). Each group is represented by $number from left to right, where number is a sequentially
increasing whole number, starting at 1.

In the above example, there are three groups:

$1 -- (\\d+)

$2 -- (\\S+)

$3 -- (\\S+)

Additional Data Mapping
In some environments it is useful to map certain additional data names to normal ArcSight
schema fields. The mapping can vary based on the device vendor and product and can be
controlled from the ArcSight Console, with the mappings stored on the SmartConnector
machine.

The SmartConnector tracks whatever additional data names it encounters and reports this
information to the ArcSight Console (otherwise, spelling and capitalization errors would make
the mapping feature much more difficult to use.)

All data mapping is done through SmartConnector commands from the ArcSight Console, as
shown:

Developer's Guide to ArcSight FlexConnectors

Additional Data Mapping Page 165 of 243

Using the Get Additional Data Names Command

The Get Additional Data Names command specifies the additional data names assigned to
each device vendor or product combination since the SmartConnector started running. This
process has a default limitation of the most recent 100 device vendor/product combinations,
and the most recent 100 names for each (this limit can be changed with the SmartConnector
property agent.additionaldata.mapper.track.max.names).

The command output looks like this:

Additional Data Names Seen:
Generic (no vendor/product):

test1 [3 times]
test11
test13 [2 times]
test14 [3 times]
test15 [4 times]
test17 [5 times]
test18 [6 times]
test2 [4 times]
test20 [2 times]
test3 [5 times]
test4
test5 [3 times]

Vendor/product [vend/prod]:
test1
test10 [6 times]
test11
test12 [4 times]
test13 [2 times]
test14
test15 [2 times]
test17 [4 times]
test19 [2 times]
test2 [3 times]
test20 [4 times]
test5 [4 times]
test9

Vendor/product [vend/prod2]:
test10 [2 times]
test11 [5 times]
test12 [5 times]
test13 [7 times]
test15 [4 times]
test17 [2 times]
test18 [5 times]

Developer's Guide to ArcSight FlexConnectors

Using the Get Additional Data Names Command Page 166 of 243

test19
test2 [4 times]
test20 [6 times]
test3 [3 times]
test4 [6 times]
test6
test7
test9 [4 times]

If an additional data name appears more than once, the number of times it has been seen is
included in the command output, as shown above.

Using the Map Additional Data Name… Command

The Map Additional Data Name… command opens this dialog:

The Device vendor and Device product fields can be left blank to create a generic mapping, or
filled in for a specific mapping. The additional data name is usually one of the names shown in
the Get Additional Data Names output, but does not have to be. The ArcSight fieldmust be a
valid ArcSight event field. The command output for a successful generic mapping looks as
follows:

Successfully mapped additional data name [test11] to event field [message] for
vendor/product []

A successful device vendor/product-specific mapping has output similar to the following:

Successfully mapped additional data name [test10] to event field [message] for
vendor/product [vend/prod]

If the additional data name has not been seen, the name is still mapped, but with a warning as
follows:

Successfully mapped additional data name [foo] to event field
[deviceCustomString1] for vendor/product [vend/prod] (note that additional
data name [foo] has not been seen for vendor/product [vend/prod])

If the ArcSight field is not valid, an error similar to the following is displayed:

Failed to map additional data name [bar] to event field [messages] for
vendor/product [vend/prod] (event field [messages] is unknown)

Developer's Guide to ArcSight FlexConnectors

Using the Map Additional Data Name… Command Page 167 of 243

Using the Unmap Additional Data Name… Command

The Unmap Additional Data Name… command opens this dialog:

The Device vendor field and Device product fields can be left blank to remove a generic
mapping, or be filled to remove a specific mapping. The additional data name should be one
that was previously mapped for the specified device vendor and product combination.

The command output for a successful generic unmapping displays as follows:

Successfully unmapped additional data name [test11] for vendor/product []

A successful device vendor/product-specific unmapping has output similar to the following:

Successfully unmapped additional data name [foo] for vendor/product
[vend/prod]

If the specified additional data name was not previously mapped, the output displays as
follows:

Failed to unmap additional data name [foo] for vendor/product [vend/prod] (not
previously mapped)

Note: One additional data name can be mapped to more than one ArcSight field for the same
device vendor/product combination. In such cases, unmapping it unmaps it from all ArcSight
fields for that device vendor/product.

In the opposite case, where multiple additional data names are mapped to the same ArcSight
field for the same device vendor/product combination, the last mapping takes precedence over
previous mappings to that ArcSight field and its corresponding device vendor/product
combination.

Using the Get Status Command

The Get Status command includes the status for additional data names which are mapped to
ArcSight fields, as shown below:

NGCustomAdditionalDataMapper0................Generic mappings:test11=>message
NGCustomAdditionalDataMapper1................Mappings for
vend/prod:test10=>message, foo=>deviceCustomString1

Developer's Guide to ArcSight FlexConnectors

Using the Unmap Additional Data Name… Command Page 168 of 243

Note: Only mappings for loaded device vendor/product combinations are included. This includes
mappings for vendor/product combinations that have had mapping or unmapping commands
executed (even unsuccessful ones), and vendor/product combinations for which additional data-
laden events have been seen. Unloaded mappings on disk are not included.

Detecting Unparsed Events
The unparsed event detection feature syntactically detects unparsed events and logs them to a
separate file for easier identification. This feature can be enabled by configuring the
unparsedevents.log.enabled parameter and setting it to true. See Parameters Common to
all SmartConnectors for more information about this parameter.

To verify whether the feature is enabled, see the agent.log file. The following sample log
message indicates that the feature is enabled:

[2016-05-10 18:00:40,190][INFO]
[default.com.arcsight.agent.loadable.agent._DHCPFileAgent]
[parseParameters] Logging of unparsed events is [enabled] for SmartConnector
[dhcp_file][3vEFHnVQBABCAA9NWrEbq5g==]

This section provides the following information:

l Supported Parser Types
l Criteria for Parsing Events
l Criteria for Unparsed Events
l Unparsed Events Output File

Supported Parser Types
Connectors with the following parser types can use the unparsed event detection feature:

l Regex parser—Configuration files for this parser type have the extension
sdkrfilereader.properties.

l Key-Value parser—Configuration files for this parser type have the extension
sdkkeyvaluefilereader.properties.

l Delimited parser—Configuration files for this parser type have the extension
sdkfilereader.properties.

To determine whether a connector uses any of the these parser types, see the agent.log file.
The following sample log message indicates that the connector uses a delimited parser:

[2016-05-10 18:00:40,222][INFO]
[default.com.arcsight.agent.content.FCPContentInputStreamProvider]

Developer's Guide to ArcSight FlexConnectors

Detecting Unparsed Events Page 169 of 243

[getInputStream] Resource [dhcp_file\dhcp_file_v6.sdkfilereader.properties]
found in [Z:\\system\agent\fcp\arcsightagents.aup|dhcp_file\dhcp_file_
v6.sdkfilereader.properties.arc]

Criteria for Parsing Events
An ArcSight parser configuration file can contain any of these expressions:

l Comment Expressions
l Parsing Expressions
l Token Expressions
l Mapping Expressions
l Extra-Processor Expressions

To understand these expressions, consider the following parser file:

#
Parser file for Microsoft Windows DHCP File Agent
#Event ID Meaning
#00 The log was started.
#01 The log was stopped.
#02 The log was temporarily paused due to low disk space.
#10 A new IP address was leased to a client.
#11 A lease was renewed by a client.
#12 A lease was released by a client.
#13 An IP address was found to be in use on the network.
#14 A lease request could not be satisfied because the scope's
address pool was exhausted.
#15 A lease was denied.
#16 A lease was deleted.
#17 A lease was expired.
#20 A BOOTP address was leased to a client.
#21 A dynamic BOOTP address was leased to a client.
#22 A BOOTP request could not be satisfied because the scope's
address pool for BOOTP was exhausted.
#23 A BOOTP IP address was deleted after checking to see it was
not in use.
#24 IP address cleanup operation has began.
#25 IP address cleanup statistics.
#30 DNS update request to the named DNS server
#31 DNS update failed
#32 DNS update successful
#50+ Codes above 50 are used for Rogue Server Detection information.

#DHCP 2008 QResult: 0: NoQuarantine, 1:Quarantine,

Developer's Guide to ArcSight FlexConnectors

Criteria for Parsing Events Page 170 of 243

2:Drop Packet, 3:Probation,6:No Quarantine Information ProbationTime:Year-
Month-Day Hour:Minute:Second:MilliSecond.
#ID,Date,Time,Description,IP Address,Host Name,MAC Address,User Name,
TransactionID, QResult,Probationtime, CorrelationID,Dhcid.
#DHCP 2003 ID,Date,Time,Description,IP Address,Host Name,MAC Address

regex=(\\d+),(\\d+/\\d+/\\d+),(\\d+:\\d+:\\d+),((?:(?:.*?,)*)?.*?),(.*?),
([^,]*),([-\\+]?\\w*),?
line.ignore.regex=\\s*
comments.start.with=#

token.count=7
token[0].name=EventID
token[0].type=String
token[1].name=Date
token[1].type=Date
token[1].format=MM/dd/yy
token[2].name=Time
token[2].type=Time
token[2].format=HH:mm:ss
token[3].name=EventName
token[3].type=String
token[4].name=Address
token[4].type=String
token[5].name=HostName
token[5].type=String
token[6].name=sourceMAC
token[6].type=String

event.sourceHostName=HostName
event.deviceEventClassId=EventID
event.name=EventName
event.deviceReceiptTime=__createTimeStamp(Date,Time)
#Convert address for event id = 30 - DNS update request
event.sourceAddress=__splitAsAddress(__ifThenElse(EventID,"30",
__reverseDottedDecimalAddressByteOrder(Address),Address),,)
event.deviceProduct=__stringConstant("DHCP Server")
event.deviceVendor=__getVendor("Microsoft")
event.deviceCustomString4=__toUpperCase(__regexTokenNoWarning
(sourceMAC,"(\\S{1,6}).*"))
event.sourceMacAddress=__getLongMACAddressByHexString(sourceMAC)
event.deviceCustomString4Label=__stringConstant(MAC Vendor Prefix)
event.deviceCustomString5Label=__stringConstant(Ethernet Vendor)
event.deviceCustomNumber1=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,"(\\d+) leases.*"),))
event.deviceCustomNumber2=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,".* and (\\d+) leases.*"),))

Developer's Guide to ArcSight FlexConnectors

Criteria for Parsing Events Page 171 of 243

event.deviceCustomNumber1Label=__ifThenElse(EventID,"25",
__stringConstant(leases expired),)
event.deviceCustomNumber2Label=__ifThenElse(EventID,"25",
__stringConstant(leases deleted),)

extraprocessor.count=2
extraprocessor[0].type=map
extraprocessor[0].filename=dhcp_file/event_ref.csv
extraprocessor[1].type=map
extraprocessor[1].filename=dhcp_file/ethernet_vendor_ref.csv

Comment Expressions
The following lines in the parser file represent the comment expressions:

#
Parser file for Microsoft Windows DHCP File Agent
#Event ID Meaning
#00 The log was started.
#01 The log was stopped.
#02 The log was temporarily paused due to low disk space.
#10 A new IP address was leased to a client.
#11 A lease was renewed by a client.
#12 A lease was released by a client.
#13 An IP address was found to be in use on the network.
#14 A lease request could not be satisfied because the scope's
address pool was exhausted.
#15 A lease was denied.
#16 A lease was deleted.
#17 A lease was expired.
#20 A BOOTP address was leased to a client.
#21 A dynamic BOOTP address was leased to a client.
#22 A BOOTP request could not be satisfied because the scope's
address pool for BOOTP was exhausted.
#23 A BOOTP IP address was deleted after checking to see it was
not in use.
#24 IP address cleanup operation has began.
#25 IP address cleanup statistics.
#30 DNS update request to the named DNS server
#31 DNS update failed
#32 DNS update successful
#50+ Codes above 50 are used for Rogue Server Detection information.

#DHCP 2008 QResult: 0: NoQuarantine, 1:Quarantine, 2:Drop Packet,
3:Probation,6:No Quarantine Information ProbationTime:Year-Month-Day
Hour:Minute:Second:MilliSecond.
#ID,Date,Time,Description,IP Address,Host Name,MAC Address,User Name,

Developer's Guide to ArcSight FlexConnectors

Comment Expressions Page 172 of 243

TransactionID, QResult,Probationtime, CorrelationID,Dhcid.
#DHCP 2003 ID,Date,Time,Description,IP Address,Host Name,MAC Address

#Convert address for event id = 30 - DNS update request

Parsing Expressions
The following lines in the parser file indicate the parsing expressions. This parsing expression
indicates how an event should be broken down and tokenized by the parser.

regex=(\\d+),(\\d+/\\d+/\\d+),(\\d+:\\d+:\\d+),((?:(?:.*?,)*)?.*?),(.*?),
([^,]*),([-\\+]?\\w*),?
line.ignore.regex=\\s*
comments.start.with=#

Token Expressions
The following lines in the parser file indicate the token expressions, that is, how many tokens
to capture, the token name, token data type, and so on.

token.count=7
token[0].name=EventID
token[0].type=String
token[1].name=Date
token[1].type=Date
token[1].format=MM/dd/yy
token[2].name=Time
token[2].type=Time
token[2].format=HH:mm:ss
token[3].name=EventName
token[3].type=String
token[4].name=Address
token[4].type=String
token[5].name=HostName
token[5].type=String
token[6].name=sourceMAC
token[6].type=String

Mapping Expressions
The following lines in the parser file represent mapping expressions to indicate how the
captured tokens should be mapped to ArcSight event schema fields.

event.sourceHostName=HostName
event.deviceEventClassId=EventID
event.name=EventName

Developer's Guide to ArcSight FlexConnectors

Parsing Expressions Page 173 of 243

event.deviceReceiptTime=__createTimeStamp(Date,Time)
event.sourceAddress=__splitAsAddress(__ifThenElse(EventID,"30",
__reverseDottedDecimalAddressByteOrder(Address),Address),,)
event.deviceProduct=__stringConstant("DHCP Server")
event.deviceVendor=__getVendor("Microsoft")
event.deviceCustomString4=__toUpperCase(__regexTokenNoWarning
(sourceMAC,"(\\S{1,6}).*"))
event.sourceMacAddress=__getLongMACAddressByHexString(sourceMAC)
event.deviceCustomString4Label=__stringConstant(MAC Vendor Prefix)
event.deviceCustomString5Label=__stringConstant(Ethernet Vendor)
event.deviceCustomNumber1=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,"(\\d+) leases.*"),))
event.deviceCustomNumber2=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,".* and (\\d+) leases.*"),))
event.deviceCustomNumber1Label=__ifThenElse(EventID,"25",
__stringConstant(leases expired),)
event.deviceCustomNumber2Label=__ifThenElse(EventID,"25",
__stringConstant(leases deleted),)

Extra-Processor Expressions
The following lines in the parser file indicate the extra-processor expressions, to hand off the
event to another parser file for further processing.

extraprocessor.count=2
extraprocessor[0].type=map
extraprocessor[0].filename=dhcp_file/event_ref.csv
extraprocessor[1].type=map
extraprocessor[1].filename=dhcp_file/ethernet_vendor_ref.csv

Criteria for Unparsed Events
If an event fails to tokenize based on the parsing expression used by the parser, then it is
considered to be an unparsed event. The criteria for an event to be labeled an unparsed event
is its failure to pass the parsing expression.

Note the following considerations on parsing criteria:

l Multi-line merging parsers, token operations, sub-messages, and conditional maps are out
of scope of the detection criteria.

l Extra-processors that belong to the supported parser types are included in the detection
criteria.

Example:

Developer's Guide to ArcSight FlexConnectors

Extra-Processor Expressions Page 174 of 243

The following event line completely matches the parsing expression of the parser, hence it is
considered to be a parsed event:

11000,03/23/15,12:43:35,DHCPV6 Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,

However, the following event line with an incorrect date string of 03/23 does not match the
parsing expressions of the parser, hence it is considered to be an unparsed event:

11000,03/23,12:43:35,DHCPV6 Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,

This unparsed event also generates an exception stack trace in the agent.log file. The
following is a sample stack trace:

[2016-03-10 18:00:41,031][ERROR]
[default.com.arcsight.agent.dhcp.DhcpFileProcessor][processLine]
[java.text.ParseException: Unparseable date: "03/23"

at java.text.DateFormat.parse(DateFormat.java:357)
at com.arcsight.agent.parsers.token.DateParser.parseToken

(DateParser.java:105)
at com.arcsight.agent.sdk.parsers.SDKCustomParser.addToken

(SDKCustomParser.java:292)
at com.arcsight.agent.dhcp.DhcpSemiConfigurableParser.parseTokens

(DhcpSemiConfigurableParser.java:307)
at com.arcsight.agent.parsers.GenericParserImpl.parseValues

(GenericParserImpl.java:397)
at com.arcsight.agent.parsers.GenericParserImpl.parse

(GenericParserImpl.java:755)
at com.arcsight.agent.parsers.GenericParserImpl.parseString

(GenericParserImpl.java:806)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

parseLine(FileProcessor.java:202)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

processLine(FileProcessor.java:186)
at com.arcsight.agent.baseagents.filereader.

NameFollowingFileReaderThread.processLine
(NameFollowingFileReaderThread.java:769)

at com.arcsight.agent.baseagents.filereader.
BaseAutoConfigParserFileReaderThread.processLine
(BaseAutoConfigParserFileReaderThread.java:157)

at com.arcsight.agent.dhcp.DhcpFileReaderThread.processLine
(DhcpFileReaderThread.java:79)

at com.arcsight.agent.baseagents.filereader.FileReaderThread.run
(FileReaderThread.java:859)

at java.lang.Thread.run(Thread.java:745)

Developer's Guide to ArcSight FlexConnectors

Criteria for Unparsed Events Page 175 of 243

When an event line fails to match the parsing expression of the parser, then it is considered to
be an unparsed event. This information is logged in the agent.log file. The following is an
example message:

[2016-03-10 18:00:41,027][ERROR]
[default.com.arcsight.common.log.EventLogManager]
[logUnparsedEvent] Cannot parse raw event [11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,] with ArcSight SmartConnector
[class com.arcsight.agent.loadable.agent._DHCPFileAgent], and Parser [class
com.arcsight.agent.dhcp.DhcpSemiConfigurableParser]. Parser Result: [].
Parsing Exception: [Unparseable date: "03/23"].

If an exception occurs when parsing the event, then it is also logged in the agent.log file. The
following is an example exception message:

[2016-03-10 18:00:41,028][ERROR]
[default.com.arcsight.common.log.EventLogManager]
[logUnparsedEvent]
java.text.ParseException: Unparseable date: "03/23"

at java.text.DateFormat.parse(DateFormat.java:357)
at com.arcsight.agent.parsers.token.DateParser.parseToken(DateParser.

java:105)
at com.arcsight.agent.sdk.parsers.SDKCustomParser.addToken

(SDKCustomParser.java:292)
at com.arcsight.agent.dhcp.DhcpSemiConfigurableParser.parseTokens

(DhcpSemiConfigurableParser.java:307)
at com.arcsight.agent.parsers.GenericParserImpl.parseValues

(GenericParserImpl.java:397)
at com.arcsight.agent.parsers.GenericParserImpl.parse

(GenericParserImpl.java:755)
at com.arcsight.agent.parsers.GenericParserImpl.parseString

(GenericParserImpl.java:806)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

parseLine(FileProcessor.java:202)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

processLine(FileProcessor.java:186)
at com.arcsight.agent.baseagents.filereader.

NameFollowingFileReaderThread.processLine(
NameFollowingFileReaderThread.java:769)

at com.arcsight.agent.baseagents.filereader.
BaseAutoConfigParserFileReaderThread.processLine
(BaseAutoConfigParserFileReaderThread.java:157)

at com.arcsight.agent.dhcp.DhcpFileReaderThread.processLine
(DhcpFileReaderThread.java:79)

at com.arcsight.agent.baseagents.filereader.FileReaderThread.run
(FileReaderThread.java:859)

at java.lang.Thread.run(Thread.java:745)

Developer's Guide to ArcSight FlexConnectors

Criteria for Unparsed Events Page 176 of 243

Unparsed Events Output File
Unparsed events detected by the connector are logged to the %ARCSIGHT_
HOME%/logs/events.log (Linux) or $ARCSIGHT_HOME/logs/events.log (Windows) file. The
following is a sample message:

"Timestamp","ArcSight SmartConnector","ArcSight Parser","Parser
Result","Parsing Exception","Unparsed Event"

"2016-05-10 18:00:41.030 -0700","class com.arcsight.agent.loadable.agent._
DHCPFileAgent","class com.arcsight.agent.dhcp.DhcpSemiConfigurableParser","",
"Unparseable date: ""03/23""","11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,"

The events.log file is a CSV file containing the column headers on the first line and the
unparsed events on the following lines. The following table describes the columns in the CSV
file:

Column Name
Column
Description Sample Value Required/Optional

Timestamp The time stamp
at which the
event was
detected as an
unparsed event

2016-05-10 18:00:41.030 -0700 Required

ArcSight
SmartConnector

The ArcSight
SmartConnector
class that
detected the
unparsed event
class

com.arcsight.agent.loadable.agent._DHCPFileAgent Required

ArcSight Parser The ArcSight
parser class that
detected the
unparsed event
class

com.arcsight.agent.dhcp.DhcpSemiConfigurableParse
r

Required

Developer's Guide to ArcSight FlexConnectors

Unparsed Events Output File Page 177 of 243

Column Name
Column
Description Sample Value Required/Optional

Parser Result The parser result,
if any

Optional

Parsing
Exception

The parser
exception
message, if any

Unparseable date: "03/23" Optional

Unparsed Event The unparsed
event string

11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.local,,14,
000100011C87C704000C290FFAAF,,,,,

Required

Developer's Guide to ArcSight FlexConnectors

Unparsed Events Output File Page 178 of 243

Additional Parser Settings
This chapter provides information about all the settings that you can use while creating
parsers. The topics included are as follows:

l ArcSight Built-in Tokens
l ArcSight Built-in Token Types
l ArcSight Built-in Event Field Mappings
l ArcSight Operations
l Date and Time Format Symbols

Developer's Guide to ArcSight FlexConnectors
Additional Parser Settings

Additional Parser Settings Page 179 of 243

ArcSight Built-in Tokens
Tokens refer to the fields of the input event that will be parsed. The parsed tokens are assigned
to ArcSight event fields. In addition, you can assign built-in tokens to the event fields. Built-in
tokens are predefined strings that assign values associated with them to the event fields. For
example, if you want to set the event.deviceHostName to the name of the syslog sender, you
can set event.deviceHostName=_SYSLOG_SENDER.

This following table lists the ArcSight built-in tokens.

Token String Description

Tokens Available for Database Parsers Only

_DB_DRIVER JDBC Driver Name.

_DB_URL Database URL.

_DB_HOST Host name or IP Address of the machine hosting the
database.

_DB_PORT Port where the database is listening for SQL queries.

_DB_NAME Database name.

Tokens Available for Syslog Parsers Only

_SYSLOG_TIMESTAMP Time stamp received in the header of the syslog message.

_SYSLOG_SENDER Host name or IP address of the sender received in the
header of the syslog message. In the unusual case if the
header did not contain a host name or IP address, this will
be the address that the connector received the packet
from.

_SYSLOG_SOURCE_ADDR The actual IP address that the connector received the
syslog message from. The token value can be assigned to
the event field of your choice. (For example,
event.deviceCustomString6=_SYSLOG_SOURCE_ADDR).
The value of this token can be an IPv4 or an IPv6 address.

_SYSLOG_FACILITY Facility received in the header of the syslog message
(applies only to Syslog Daemon connector).

_SYSLOG_PRIORITY Priority received in the header of the syslog message
(applies only to Syslog Daemon connector).

Tokens Available for Syslog NG Daemon Only

_SYSLOG_APP_NAME Identifies the device or application that
originated the message.

_SYSLOG_PROCID Often used to provide the process name or
process ID associated with a Syslog system.

ArcSight Built-in Tokens Page 180 of 243

_SYSLOG_MSGID Identifies the type of message.

_SYSLOG_STRUCTURED_DATA:
STRUCTURED-DATA

Provides a mechanism to express information
in a well-defined, easily parseable and
interpretable data format, it can contain zero,
one, or multiple-structured data elements.

_
Note: Events must follow the RFC5424 standard.

Customers can obtain a value for of a built-in token if they map ESM fields in the parser's content. Ensure that the
message field is parsed by the corresponding parser.

For example:

<151>1 2017-01-24T08:57:21+01:00 NBG-ECIT225 AlarmLog 16 aleAlarm [tsvSDID@15251 SENDHOST="nbg-
ecit225" SENDHOST-IP="10.182.210.172" TSV="NBG-ELT214null"] bs_SGC_10 Diameter supervisor
processing cleared No connectivity to accounting server with realm: tcdf2.t-online.de. This
alarm will be cleared when the connectivity to the accounting server is established SGC 17-19
4294967295
we need to let value "bs_SGC_10 Diameter superviser processing cleared No connectivity to
accounting server with realm: tcdf2.t-online.de. This alarm will be cleared when the
connectivity to the accounting server is established SGC 17-19 4294967295" is parsed by the
corresponding parser then we can get data of 4 built-in tokens as below_SYSLOG_APP_NAME:
AlarmLog_SYSLOG_PROCID: 16_SYSLOG_MSGID: aleAlarm_SYSLOG_STRUCTURED_DATA: [tsvSDID@15251
SENDHOST="nbg-ecit225" SENDHOST-IP="10.182.210.172" TSV="NBG-ELT214null"]

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Tokens Page 181 of 243

ArcSight Built-in Token Types
Token types are important because tokens can only be mapped to ArcSight event fields with
matching types. Event fields and their types are listed in the ArcSight Console User’s Guide, in
the "Reference Guide", under "Data Fields".

Type Meaning Format

Date A value evaluating to a particular day. MM/dd/yyyy

Integer A number from -2147483648 to 2147483647. n/a

IPAddress For non-IPv6-aware parsers, this is an IPv4 address (for example:
1.1.1.1). This type cannot be used for IPv6 addresses. If it is, then
null will be returned.

For IPv6-aware parsers, this can be an IPv4 or an IPv6 address
(for example: fdeb:f59b:2e13:56c9:xxxx:xxxx:xxxx:xxxx).

n/a

IPv6Address An IPv6 address - 16 bytes specified as 32 hexadecimal characters
where each byte consists of two hexadecimal characters.

n/a

Long A number from -9223372036854775808 to
9223372036854775807.

n/a

MacAddress An Ethernet MAC address of the form: 00-06-3E-22-51-B9 or
00:06:3E:22:51:B9.

n/a

RegexToken This token type is useful when a simple regular expression needs
to be used to extract further information from a token.

For example: Assume that the token contained the string ‘From:
rajiv’ and the only needed part is ‘rajiv’ then the following
expression could be used:

s/From: (.*)/$1/

Substitution regular
expression of the form:

s/{exp}/{subst}/

String Any free form sequence of characters. n/a

Time A value evaluating to a particular time of day. HH:mm:ss

TimeStamp A date, a time or a date and a time. Date/time format (see Date
and Time Format Symbols)

ArcSight Built-in Token Types Page 182 of 243

ArcSight Built-in Event Field Mappings
The following table lists ArcSight event fields. See the numbered Range Notes (n) following this
table for further explanations of certain field ranges.

ArcSight Mapping Type Length Range

applicationProtocol String 31 n/a

baseEventCount Integer n/a 0 -> 231-1

bytesIn Long n/a 0 -> 263-1

bytesOut Long n/a 0 -> 263-1 -1

categoryBehavior String 1023 n/a (1)

categoryDeviceGroup String 1023 n/a (1)

categoryObject String 1023 n/a (1)

categoryOutcome String 1023 n/a (1)

categorySignificance String 1023 n/a (1)

categoryTechnique String 1023 n/a (1)

cryptoSignature String 512 n/a

customerURI String - n/a (2)

destinationAddress IP Address n/a IPv4 or IPv6 (3)

destinationDnsDomain String 255 n/a

destinationHostName String 1023 n/a

destinationMacAddress Mac Address n/a MAC (4)

destinationNtDomain String 255 n/a

destinationPort Integer n/a 0 ->65535

destinationProcessName String 1023 n/a

destinationServiceName String 1023 n/a

destinationTranslatedAddress IP Address n/a IPv4 or IPv6 (3)

destinationTranslatedPort Integer n/a 0 -> 65535

destinationTranslatedZoneURI String - n/a (2)

destinationUserId String 1023 n/a

destinationUserName String 1023 n/a

destinationUserPrivileges String 1023 n/a

destinationZoneURI String - n/a (2)

ArcSight Built-in Event Field Mappings Page 183 of 243

ArcSight Mapping Type Length Range

deviceAction String 63 n/a

deviceAddress IP Address n/a IPv4 or IPv6 (3)

deviceCustomDate1 Time Stamp n/a n/a (5)

deviceCustomDate1Label String 1023 n/a

deviceCustomDate2 Time Stamp n/a n/a (5)

deviceCustomDate2Label String 1023 n/a

deviceCustomIPv6Address1 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address1Label String 1023 Should be “Device IPv6 Address”

deviceCustomIPv6Address2 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address2Label String 1023 Should be “Source IPv6 Address”

deviceCustomIPv6Address3 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address3Label String 1023 Should be “Destination IPv6 Address”

deviceCustomNumber1 Long n/a - 263 -> 263-1

deviceCustomNumber1Label String 1023 n/a

deviceCustomNumber2 Long n/a - 263 -> 263-1

deviceCustomNumber2Label String 1023 n/a

deviceCustomNumber3 Long n/a - 263 -> 263-1

deviceCustomNumber3Label String 1023 n/a

deviceCustomString1 String 4000 n/a

deviceCustomString1Label String 1023 n/a

deviceCustomString2 String 4000 n/a

deviceCustomString2Label String 1023 n/a

deviceCustomString3 String 4000 n/a

deviceCustomString3Label String 1023 n/a

deviceCustomString4 String 4000 n/a

deviceCustomString4Label String 1023 n/a

deviceCustomString5 String 4000 n/a

deviceCustomString5Label String 1023 n/a

deviceCustomString6 String 4000 n/a

deviceCustomString6Label String 1023 n/a

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Event Field Mappings Page 184 of 243

ArcSight Mapping Type Length Range

deviceDnsDomain String 255 n/a

deviceDomain String 1023 n/a

deviceEventCategory String 1023 n/a

deviceEventClassId String 1023 n/a

deviceExternalId String 255 n/a

deviceFacility String 1023 n/a

deviceHostName String 63 n/a

deviceInboundInterface String 15 n/a

deviceMacAddress Mac Address n/a MAC (4)

deviceNtDomain String 255 n/a

deviceOutboundInterface String 15 n/a

devicePayloadId String 128 n/a

deviceProcessName String 1023 n/a

deviceProduct String 63 n/a

deviceReceiptTime Time Stamp n/a n/a (5)

deviceSeverity String 63 n/a

deviceTimeZone String 255 n/a

deviceTranslatedAddress IP Address n/a IPv4 or IPv6 (3)

deviceTranslatedZoneURI String - n/a (2)

deviceVendor String 63 n/a

deviceVersion String 31 n/a

deviceZoneURI String - n/a (2)

endTime Time Stamp n/a n/a (5)

externalId String 40 n/a

fileCreateTime Time Stamp n/a n/a (5)

fileHash String 255 n/a

fileId String 1023 n/a

fileModificationTime Time Stamp n/a n/a (5)

fileName String 1023 n/a

filePath String 1023 n/a

filePermission String 1023 n/a

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Event Field Mappings Page 185 of 243

ArcSight Mapping Type Length Range

fileSize Long n/a 0 -> 263-1

fileType String 1023 n/a

flexDate1 Time Stamp n/a n/a (5)

flexDate1Label String 128 n/a

flexNumber1 Long n/a - 263 -> 263-1

flexNumber1Label String 128 n/a

flexNumber2 Long n/a -2 63 -> 263-1

flexNumber2Label String 128 n/a

flexString1 String 1023 n/a

flexString1Label String 128 n/a

flexString2 String 1023 n/a

flexString2Label String 128 n/a

message String 1023 n/a

name String 512 n/a (9)

oldFileCreateTime Time Stamp n/a n/a (5)

oldFileHash String 255 n/a

oldFileId String 1023 n/a

oldFileModificationTime Time Stamp n/a n/a (5)

oldFileName String 1023 n/a

oldFilePath String 1023 n/a

oldFilePermission String 1023 n/a

oldFileSize Long n/a 0 -> 263-1

oldFileType String 1023 n/a

rawEvent String 4000 n/a (7)

requestClientApplication String 1023 n/a

requestContext String 2048 n/a

requestCookies String 1023 n/a

requestMethod String 1023 n/a

requestUrl String 1023 n/a

sourceAddress IP Address n/a IPv4 or IPv6 (3)

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Event Field Mappings Page 186 of 243

ArcSight Mapping Type Length Range

sourceDnsDomain String 255 n/a

sourceHostName String 1023 n/a

sourceMacAddress Mac Address n/a MAC (4)

sourceNtDomain String 255 n/a

sourcePort Integer n/a 0 -> 65535

sourceProcessName String 1023 n/a

sourceServiceName String 1023 n/a

sourceTranslatedAddress IP Address n/a IPv4 or IPv6 (3)

sourceTranslatedPort Integer n/a 0 -> 65535

sourceTranslatedZoneURI String - n/a (2)

sourceUserId String 1023 n/a

sourceUserName String 1023 n/a

sourceUserPrivileges String 1023 n/a

sourceZoneURI String - n/a (2)

startTime Time Stamp n/a n/a (5)

transportProtocol String 31 n/a (6)

Range Notes

1. Although these fields can be set using the FlexConnector properties file, the recommended
way is to create a categorization file. For more about the possible values, see the
"Categories" topic in the Console Help or the ArcSight Console User’s Guide. Also,
seeCategorizing Events.

2. Although URI fields can be set using the FlexConnector properties file, these are really links
to resources in the database. Therefore, it is recommended that those fields be set using
the network-model and customer-setting features.

3. This can be an IPv4 address (from 0.0.0.0 to 255.255.255.255) or an IPv6 address
(xxxx:xxxx:xxxx:xxxx:xxxx:xxxx).

4. This is a MAC address: XX:XX:XX:XX:XX:XX or XX-XX-XX-XX-XX-XX.

5. This is a timestamp stored as milliseconds since January 1, 1970.

6. The options are: TCP, UDP, ICMP, IGMP, ARP.

7. Set PreserveRawEvent to Yes to have the connector automatically preserve the original
event log received from the device. With the default No, you can configure this field. To
find the PreserveRawEvent field in the ArcSight Console interface, go to the Connectors
resource tree > Configure > Default tab > Content >Processing section >

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Event Field Mappings Page 187 of 243

PreserveRawEvent.

8. For a non-IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3)
should consistently use 1 for device, 2 for source, and 3 for destination. The labels for
them will automatically be set if the IPv6 address field is set, but if your ArcSight Console
parser sets them explicitly, it should use the exact strings shown above.

For an IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3) can
contain either IPv4 or IPv6 addresses. In practice, these fields should rarely be used. If they
are, the labels should be set to an appropriate value.

9. The name field is mandatory.

See ArcSight Built-in Tokens for a list of ArcSight built-in tokens.

Developer's Guide to ArcSight FlexConnectors

ArcSight Built-in Event Field Mappings Page 188 of 243

ArcSight Operations
The following table describes all of the operations that can be used when tokens are mapped
to ArcSight event fields.

Operation Return Type Definition and Comments

__BASE64Decode String The parameter is a single Base-64 encoded string,
which is decoded to bytes, and then converted to a
string using the platform's default character set.

__byteArrayToIPAddress IPAddress This operation takes a byte array representation of an
IPv4 or IPv6 address as a parameter and returns an
IPAddress object. This operation can be used only for
IPv6-aware parsers.

__byteArrayToIPv6 IPAddress This parameter returns an IPv6 address stored as an
IPAddress object. Use this parameter for mapping to
event fields or additional fields which can have an IPv6
address type. Use this operation only in a non-IPv6-
aware parser. For an IPv6-aware parser use the __
byteArrayToIPAddress operation.

__byteArrayToIPv6String String The parameter returns the string representation of an
IPv6 address stored in a byte array.

__concatenate String The parameters can be literal strings or other values of
various types. The result is a string that consists of all
of these parameters concatenated together.

__concatenate("Active",protocol," Ports:
",portnum)

__concatenate("CompanyName: [",
CompanyName,"]")

__concatenate("PF: ",PassOrBlock)

__concatenateDeleting String The last parameter is a literal string containing a set of
characters to delete. The other parameters can be
literal strings or other values of various types. The
result is a string that consists of all of these parameters
(except the last) concatenated together, with the
specified characters deleted from the non-literal
parameters. For example, if the parameters are
“Literal”, “Foobar”, and “r” (where the first and third
parameters are literal), then the result would be
“LiteralFooba”. Note that the “r” in “Foobar” was
deleted but the “r” in “Literal” was not.

ArcSight Operations Page 189 of 243

Operation Return Type Definition and Comments

__contains Boolean This operation searches for one string within another
and returns true if it is found and false otherwise. For
example, like

__contains(stringInWhichToSearch,
stringToFind)

__containsFromList Boolean This operation tries to match a string (the first
operand, which is searched in) with a list of comma-
separated strings and returns true when a string match
is found. Otherwise returns false. For example,

__containsFromList(stringInWhichToSearch ,
firstStringToFind, secondStringToFind)

__convertMSDNSURL String This operation converts a Microsoft DNS URL in the
form:

(n)nchars(m)mchars(0)

To a normal URL:

nchars.mchars

__createLocalTimeStampFromSeconds
MicrosZone

TimeStamp The parameters are 2 long integer numbers and a
string. The first parameter is the number of seconds
since January 1, 1970, while the second is the number
of microseconds within the second. These are
combined into a TimeStamp. If the third parameter is a
valid time zone name, the number of seconds is
interpreted relative to January 1, 1970 in that time
zone. Otherwise GMT is used. Some of the precision of
the microseconds is currently lost.

__createLocalTimeStampFromGMT
SecondsMillis

TimeStamp The 2 parameters are each long integer numbers. The
first is the number of seconds since January 1, 1970
GMT, while the second is the number of milliseconds
within the second. They are combined into a
TimeStamp. __
createLocalTimeStampFromGMTSecondsMillis(tv_
sec,tv_msec)

__createLocalTimeStampFromGMT
Second Nanoseconds

TimeStamp The 2 parameters are each long integer numbers. The
first is the number of seconds since January 1, 1970
GMT, while the second is the number of nanoseconds
within the second. They are combined into a
TimeStamp. Some of the precision of the nanoseconds
is currently lost.

__createLocalTimeStampFrom
NanoSeconds

TimeStamp The parameter is a long integer number. It is the
number of nanoseconds since January 1, 1970 GMT. It
is converted into a TimeStamp. Some of the precision
of the nanoseconds is currently lost.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 190 of 243

Operation Return Type Definition and Comments

__createLocalTimeStampFromNTP TimeStamp The parameter is a string. It should contain the number
of seconds since January 1, 1970 GMT before a decimal
point, and the number of microseconds after the
decimal point. They are combined into a TimeStamp.

__createLocalTimeStampFromSeconds
SinceEpoch

TimeStamp The parameter is a single long integer number, which is
the number of seconds since January 1, 1970 GMT. It is
converted into a TimeStamp, with the fractional
seconds set to zero.

__createLocalTimeStampFrom SecondsSinceEpoch
(srcTimestamp)

__createOptionalTimeStamp
FromString

TimeStamp The parameters are two strings. The first string is date
and time specified by default in the yyyy-MM-dd
HH:mm:ss format. The second, optional parameter
specifies the format for the first string if it needs to be
different from the default. If the value of the first
string is null, nothing is mapped. Otherwise the value is
mapped using the format specified for the second
parameter, if present, or the default format.

__createRuleFiringInfo String This operation takes an arbitrary number of
parameters. Each can be either a literal string or a
value of some other type. The result is simply the
parameters concatenated together as a long string,
with commas between the parameters. The
parameters which are not literal strings are converted
to strings.

__createSafeLocalTimeStamp TimeStamp The first parameter is a string, which is the date/time
to parse, while the second is a literal string, which is
the format (same style as the format for the Date,
Time, and TimeStamp tokens). The string is parsed and
returned as a TimeStamp. Most errors result in the
current time being returned.

__createTimeStamp TimeStamp The first parameter is a Date and the second
parameter is a Time. They are combined into a single
TimeStamp an returned. Everything is assumed to be in
local time.

__createTimeStamp(date,time)

__createTimeStampByHexEncodedTime TimeStamp The parameter is a single string of 12 hexadecimal
digits, with 2 each for year (0 means 1970), month (0-
11), day (1-31), hou (0-23), minute (0-59), and second
(0-59). The milliseconds are implicitly set to zero, and
the numbers are interpreted as local time. The
resulting TimeStamp is returned.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 191 of 243

Operation Return Type Definition and Comments

__createTimeStampByStartTimeElapsed TimeStamp The parameters are 2 strings. The first is the starting
time in ddMMMyyyy hh:mm:ss format, while the
second is an elapsed time in hh:mm:ss format. The
result is a TimeStamp for the ending time, assuming
the starting time is a local time.

__createTimeStampForOpsecStartTime TimeStamp The parameter is a single string in ddMMMyyyy
HH:mm:ss format. It is parsed and the resulting
TimeStamp, interpreted as being local time, is
returned.

__createTimeStampStringFrom
SecondsMicros

String The parameters are 2 long integer numbers. The first
parameter is the number of seconds since January 1,
1970 GMT, while the second is the number of
microseconds within the second. These are combined
into a TimeStamp and then into a string. Some of the
precision of the microseconds is currently lost.

__currentTimestampInSeconds Long Any parameters are ignored. The current time,
expressed as the number of seconds since January 1,
1970 GMT, is returned as a long integer.

__divide Integer The first parameter is the numerator and the second
parameter is the denominator. The result is an integer
with the value of the numerator divided by the
denominator, rounded to the nearest integer.

__doubleToAddress IPAddress This is the same as the numberToAddress operation
except that the parameter is a double-precision
floating-point number.

__doubleToAddress(DestIP)

__extractNTDomain String The only parameter is a string. If it contains a back
slash, the part of the string up to but not including that
backslash is returned. Otherwise the entire string is
returned.

__extractNTUser String The only parameter is a string in the form
'domain\user', where domain is an NT domain and
user is an NT user name. The user name is returned. If
there is no backslash in the string, it is returned
unchanged.

__extractProtocol String The only parameter is a string. If the string contains
any of the defined protocol strings (TCP, ICMP, UDP,
IGMP, or RTSP), just that string is returned (the search
is case- insensitive, and the first protocol found is
returned). If none of the protocol strings is found, the
whole string is returned.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 192 of 243

Operation Return Type Definition and Comments

__firstOfPositiveInteger Integer This operation takes an arbitrary number of integer
number parameters. The first one which is positive is
returned. If no positive parameter is found, null is
returned.

__foundScanHostName String The host name is returned in most cases. The
exception is if the string is “[Unknown]”, in that case
null is returned.

__getCVEStringFor String The only parameter is a string, which should be a CVE
identifier. What is returned is “CVE|id” where id is the
identifier. Note that the separator character is a
vertical bar.

__getDeviceDirection Enumeration
(Integer)

The only parameter is a string. If it is one of the
defined inbound strings (e.g., “in” or “incoming”), then
the inbound constant (0) is returned. If it is one of the
defined outbound strings (e.g., “outbound” or “=>”),
then the outbound constant (1) is returned. Otherwise
the unknown constant (Integer.MIN_VALUE, -
2147483648) is returned.

__getIPv4AddressEmbeddedIn
IPv6Address

IPAddress The operation extracts and returns an IPv4 address
embedded in an IPv6 address. The return parameter is
an IPv4 address. The input parameter is an IPv6
address in byte array format.

To assign the IPv4 address to an IPv4 address event
field in a non-IPv6-aware parser:

__getIPv4AddressEmbeddedInIPv6Address (__
stringToIPv6Address("::ffff:10.14.11.140"))

__getIpV6AddressFromHighLow String This operator takes two string parameters consisting of
decimal numbers and returns a string representation
of an IPv6 address. The numbers are a decimal
representation of the first four and last four segments
of the IPv6 address.

__getLongMACAddressByHexString MacAddress The parameter is a 12-character hexadecimal string,
which is converted to a MAC address.

__getLongMACAddressByString MacAddress The only parameter is a string. It is a MAC address,
which is a 6-part hexadecimal address separated by
colons or dashes. It is returned.

__getManhuntPriority String The two parameters are both long integers, with the
first representing the severity and the second
representing the reliability. The result is a string
containing the product of the two values, divided by
256.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 193 of 243

Operation Return Type Definition and Comments

__getNormalizedOS String The only parameter is a string. This string is looked up
in a map that comes from an AUP file. If found, the
result is returned. Otherwise a string of the form
“/Operating System/param” is returned, where param
is the parameter string, with any slashes replaced by
dashes. For example, “OS/2” would become
“/Operating System/OS-2” (unless OS/2 appeared in
the os.mappings.csv map, in which case that value
would be returned).

__getNotZeroPort Integer The only parameter is a string. If it is null, not a valid
integer, or zero, then null is returned.

Otherwise (it is a valid non-zero integer), the numeric
value is returned.

__getOriginator Enumeration
(Integer)

The only parameter is a string. If the string is “Source”,
the result is the source constant (0). If the string is
“Destination”, the result is the destination constant
(1). Otherwise the unknown constant (Integer.MIN_
VALUE, - 2147483648) is returned.

__getOriginatorFromSourcePort Enumeration
(Integer)

The parameters are an Integer (the port number) and a
literal integer. If neither is null and the port is less than
the limit specified in the second (literal) parameter,
then the destination constant (1) is returned.
Otherwise the source constant (0) is returned.

__getProtocolName String The only parameter is an Integer, which is converted
into a string for the matching protocol, as defined in
RFC 1700. If the parameter is null, null is returned. And
if the parameter is out of range, then the number itself
is returned as a string.

__getProtocolNameFromString String This operation is like the getProtocolName operation,
except that the parameter is a string instead of an
integer. If the string does not contain a valid integer,
then the string is returned unchanged.

__getSymantecNSPriority String The two parameters are both long integers, with the
first representing the severity and the second
representing the reliability. The result is a string
containing the product of the two values, divided by
10.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 194 of 243

Operation Return Type Definition and Comments

__getTimeZone String The only parameter is a string. If the string does not
represent a valid timezone, it returns null. If the string
is in the general timezone format, it returns the passed
parameter. If the string is an offset in the RFC 822
format (such as "-08:00"), the return string is found by
offset into the "timezones" list in agent.properties.

Valid RFC 822 formats that are not found in
agent.properties will return a reasonable default
string.

__getTrendMicroHost Name String The single parameter is a string. If it is null, null is
returned. If it contains a backslash, then the part
before the backslash is returned. If it contains an '@' or
a '.', null is returned.

Otherwise, the original string is returned.

__getTrendMicroUser String The first parameter is a string. If it contains a backslash
that is not the final character of the string, then the
part after the backslash is returned. If it contains an
'@' or a '.', null is returned. Otherwise, the second
parameter (which is a string if specified) is returned if
specified. A null is returned if the second parameter is
not specified.

__getTypeEnumeration (Integer) The only parameter is a literal string. If it is
“correlation” or “correlated”, then the correlation
constant (2) is returned. If it is “aggregated,” then the
aggregated constant (1) is returned. Otherwise the
base constant (0) is returned. The comparisons are
made case- insensitively.

__getVendor String This is a synonym for the stringConstant operation.

__getVulnerabilityCategory String The only parameter is a literal integer, which should be
in the range 0 to 4. The values returned are:

l /scanner/device/vulnerability for 0
l /scanner/device/openport for 1
l /scanner/device/user for 2
l /scanner/device/banner for 3
l /scanner/device/uri for 4

__getXForceStringFor String If the one string parameter is not null, it is returned
with 'X-Force|' prepended to it. If it is null, then null is
returned.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 195 of 243

Operation Return Type Definition and Comments

__hexStringToAddress IPAddress This is similar to the noDotStringFormatToAddress
operation, except that the parameter is in
hexadecimal. In other words, it should be 8
hexadecimal digits, where each set of 2 digits is a part
of the IP address, zero-filled and with no dots. For
example, “C0A80A0C” would become the IP address
192.168.10.12.

Use this operation only with IPv6-aware parsers for
both IPv4 and IPv6 addresses.

__hexStringToLong Long The one string parameter represents a hexadecimal
value. If it starts with '0x' or '$', those are removed
before parsing the value. The result is returned as a
long integer.

__hexStringToIPV6Address IPAddress For non-IPv6-aware parsers, this operator takes as
input a 32-character string consisting of hexadecimal
digits and converts it to an IPv6 address. If the length is
8 characters, as it would be for an IPv4 address, the
return value is null. Any other input size results in an
exception.

For IPv6-aware parsers, this operation is obsolete and
should not be used.

__hexStringToString String The parameter is a single string, which should consist
of hexadecimal digits. It is converted to an array of
bytes (two hexadecimal digits per byte), which is then
converted to a string using UTF-8 encoding (RFC 3629).
If the input is null, the result is also null.

__hourMinuteSecondsToSeconds Long The parameter is a single string, in HH:mm:ss format.
The duration is converted to seconds and returned.

__ifAorBThenElse String There are five parameters. Each can be either a literal
string or a regular string (although other types are
converted to strings). If the first parameter is equal to
the second or the first parameter is equal to the third
parameter, then the fourth parameter is returned.
Otherwise, the fifth parameter is returned.

__ifGreaterOrEqual String The four parameters are strings. If either of the first
two parameters is null, null is returned and an error is
logged. Otherwise, those two parameters are parsed
as integers and compared. Any parsing errors treat the
value as zero. If the first parameter is numerically
larger than the second, then the third parameter is
returned. Otherwise, the fourth parameter is returned.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 196 of 243

Operation Return Type Definition and Comments

__ifPositive String There are three parameters. If the first (integer)
operand is positive, return the second (string) operand;
otherwise, return the third (string) operand.

__ifThenElse String There are four parameters. Each can be either a literal
string or a regular string (although other types are
converted to strings). The first two parameters are
compared, and if they are equal, then the third
parameter is returned as the result. Otherwise (if the
first two parameters differ), the fourth parameter is
returned.

__ifThenElseAddress IPAddress There are four parameters. The first two parameters
are string. The first two parameters are compared, and
if they are equal, then the third parameter is returned
as the result.

Otherwise (if the first two parameters differ), the
fourth parameter is returned.

__ifTrueThenElse String There are three parameters. The first is a Boolean
value (true or false), and if it is true, then the second
parameter is returned; if the Boolean value is false,
then the third parameter is returned.

__integerConstant Integer The parameter is a single literal integer, which is
returned. If a literal string which is not a valid integer is
passed instead, then null is returned.

__integerToLong Long The parameter is a single integer number, which is
converted to a long integer number and returned. If
the parameter is null, the returned value is too.

__length Integer This operation retrieves the length of the operand
string.

__longToDot4QuadAddress String The parameter is a single long integer number, which is
converted to an IP address in the same manner as for
the numberToAddress operation, but is then converted
to a 4-part dotted string. For example, 16909060
would become the string “1.2.3.4”.

__longToInteger Integer The parameter is a single long integer number, which is
converted to an integer number (possibly truncating it)
and returned. If the parameter is null, the returned
value is too.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 197 of 243

Operation Return Type Definition and Comments

__longToString String This operation returns the string representation of a
long object. The optional second operand is the radix
(integer, minimum value is 2). The optional third
operand is the minimum length (integer, minimum
value is 0), and the result will be left-padded with
zeroes, if needed to achieve that minimum length. This
is useful in making numbers comparable as strings.

__longToTimeStamp TimeStamp The parameter is a single long integer number, which is
the number of milliseconds since January 1, 1970 GMT.
It is converted into a TimeStamp.

__noDot4QuadStringsToAddress IPAddress The parameters are 4 strings, each of which is a
decimal number, and in the normal order for IP
addresses. For example, the strings “192”, “168”, “10”,
“12” would become the IP address 192.168.10.12.

__noDot4QuadStringsToAddress (src_ip1,src_
ip2,src_ip3,src_ip4)

__noDotStringFormatTo Address IPAddress The parameter is a single string of 12 decimal digits,
where each set of 3 digits is a part of the IP address,
zero-filled and with no dots. For example,
“192168010012” would become the IP address
192.168.10.12.

__numberToAddress IPAddress The parameter is a single long integer number, which is
converted to an IP address with the least signifigant
byte of the number corresponding to the rightmost
part of the address. For example, 16909060 would
become the IP address 1.2.3.4.

__numberToAddress(IPAddress)

__oneOf String This operation takes an arbitrary number of
parameters. Each can be either a literal string or a
regular string. The first one that is not null and not
zero-length is returned.

__oneOfAddress IPAddress For non-IPv6-aware parsers, this operation returns
only the first non-null IPv4 address. For IPv6-aware
parsers, this operation returns the first non-null IPv4 or
IPv6 address.

__oneOfDateTime TimeStamp The parameters are any number of TimeStamp tokens.
The first token, which is not null, is returned.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 198 of 243

Operation Return Type Definition and Comments

__oneOfHostName String For non IPv6-aware parsers, this operation works like
the oneOf operation, but any parameter which looks
like an IP address (4 decimal numbers separated by 3
periods) is skipped.

For IPv6-aware parsers, this operation works like the
oneOf operation, but any parameter which looks like
an IPv4 or IPv6 address is skipped.

__oneOfInteger Integer This works like the oneOf operation, but the result is
then parsed as an integer number and returned. If the
value is not a valid number, null is returned.

__oneOfLong Long This works like the oneOf operation, but the result is
then parsed as a long integer number and returned. If
the value is not a valid number, null is returned.

__oneOfMac MacAddress This works like the oneOf operation, but the result is
then parsed as a MAC address (a six octet hexadecimal
representation, separated by colons) and returned. For
example, 00:08:74:4C:7F:1D. If the value is not a valid
MAC address, null is returned.

__oneOfNetBIOSName String This works like the oneOf operation, except for the
removal of one or two leading backslashes, if present,
before returning the result.

__parseMultipleTimeStamp TimeStamp The first parameter is a timestamp value, passed as a
string. If it is null, null is returned. Otherwise, the
second and any additional parameters are constant
time stamp formats (as defined for Java's
SimpleDateFormat class). They are used to attempt to
parse the first parameter. The result of the first one
that works, without throwing an exception, is returned
as a TimeStamp. If none of the formats works, an
exception is thrown.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 199 of 243

Operation Return Type Definition and Comments

__parseMutableTimeStamp TimeStamp The parameter is a single string, which can be in one of
these formats:

l MMM dd HH:mm:ss
l MMM dd HH:mm:ss.SSS zzz
l MMM dd HH:mm:ss.SSS
l MMM dd HH:mm:ss zzz
l MMM dd yyyy HH:mm:ss
l MMM dd yyyy HH:mm:ss.SSS zzz
l MMM dd yyyy HH:mm:ss.SSS
l MMM dd yyyy HH:mm:ss zzz

If this operation has been called before successfully,
the same format is tried first. If one of the first four
formats (which do not include a year) is used, then the
year is changed as described for the
setYearToCurrentYear operation. If no format works, a
fatal error is written to the log and null is returned.

__parseMutableTimeStampSilently TimeStamp This is the same as the _parseMutableTimeStamp
operation, except that when no format works, no fatal
error is written to the log.

__parseSignedLong Long This is the same as the safeToLong operation, except
that a leading “+” sign is also allowed.

__product Integer Each parameter is either an integer variable or a string
constant that can be a floating-point value. The result
is an integer with the value of the product of the
parameters multiplied together and rounded to the
nearest integer.

__regexToken String This operation takes two strings as parameters. The
first is the string to parse. The second is the regular
expression (a literal string). If the regular expression is
blank or null then the result is the same as the first
argument. Otherwise the string to parse is parsed
using the regular expression, and the first matching
group (expression inside parentheses) is returned as a
string. For example, if the parameters are “foobar” and
“fo+(o.*)(r)”, the result will be “oba”.

__regexToken(proto,".*?/(.*)")

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 200 of 243

Operation Return Type Definition and Comments

__regexTokenAsAddress IPAddress For non-IPv6-aware parsers, this operation is similar to
the regexToken operation: it takes two string
parameters, and the result (expected to be in four-part
dotted decimal format) is then converted from a string
to an IP address. That is, if the parameters are
“foo/192.168.10.12/bar” and “[a-z]+\/([0- 9\.]+)\/bar”,
the result will be the IP address 192.168.10.12.

__regexTokenAsAddress (dst,"(.*?)[:].*")

For IPv6-aware parsers, this operation can return both
IPv4 and IPv6 addresses.

__regexTokenAsInteger Integer This is like the regexToken operation, also taking 2
string parameters, except that the result is then
converted from a string to an integer (or null if it is not
a valid number).

__regexTokenAsInteger (port,".*?:(\\d+)")

__regexTokenAsInteger (dst,".*?:(\\d+)[:
].*")

__regexTokenAsLong Long This is like the regexToken operation, also taking 2
string parameters, except that the result is then
converted from a string to a long integer (or null if it is
not a valid number).

__regexTokenFindAndJoin String There are five string parameters. The first parameter is
the string to be processed. The second is a regular
expression with at least one capturing group. The third
is an optional join delimiter. The fourth and fifth are
optional strings to prepend and append to the final
result, respectively. The operation repeatedly attempts
to find the regular expression in the string to be
processed, starting each time at the end of where the
regular expression was last found. Each time it is
found, the capturing groups from the regular
expression are added to the result, with the join
delimiter between them. Finally, the prepend and
append strings are added, if they are not null.

__regexTokenMultiLine String This operation works similarly to the regexToken
operation. The main difference is that it can work with
multiline input text.

__regexTokenMultiLineNoWarning String This operation works similarly to the
regexTokenMultiLine operation. The main difference is
that if the regular expression does not match, no
warnings are logged.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 201 of 243

Operation Return Type Definition and Comments

__regexTokenNoWarning String This operation works similarly to the regexToken
operation. The primary differences are that 1) the
regular expression has to match the entire string, not
just be found in it, and 2) if the regular expression does
not match, there is no warning logged.

__replaceAll String The three parameters are all strings. The first is the
starting string, the second is the regular expression,
and the third is the replacement string. Each place the
regular expression is found in the starting string is
replaced by the replacement string, and the result is
returned. Note that the replacement string can contain
references to capturing groups in the regular
expression, in the form '$n', where n is 0 to 9.

__replaceFirst String The three parameters are all strings. The first is the
starting string, the second is the regular expression,
and the third is the replacement string. The first place
the regular expression is found in the starting string it
is replaced by the replacement string, and the result is
returned. Note that the replacement string can contain
references to capturing groups in the regular
expression, in the form '$n', where n is 0 to 9.

__reverseDottedDecimalAddress
ByteOrder

String The parameter is an IP address passed as a string,
which must have exactly 3 dot characters. The result is
an IP address returned as a string, but with the 4 parts
reversed in order. For example, passing '2.1.168.192'
will result in '192.168.1.2' being returned.

__safeToDate TimeStamp This operation works like the
createOptionalTimeStampFromString operation,
except that if errors occur, null is returned.

__safeToInteger Integer The parameter is a single string, which is converted to
an integer, or null if the string is not a valid number.
Useful for log formats that use "-" to specify null values
on integer fields, such as Microsoft Windows XP SP2
Personal Firewall.

__safeToInteger(bytes)

__safeToInteger(srcPort)

__safeToLong Long The parameter is a single string, which is converted to
a long integer, or null if the string is not a valid
number.

__safeToLong(time_taken)

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 202 of 243

Operation Return Type Definition and Comments

__safeToRoundedLong Long The parameter is a string that is parsed as a number
(which can have a fractional part) and then rounded to
the nearest long integer and returned. If the string is
not a valid number, null is returned.

__scientificNotationToStringOperation String This operation converts data from double (scientific
notation) to a original data string.

__setYearToCurrentYear TimeStamp The parameter is a single TimeStamp, for which the
year is forcibly set to the current year, plus or minus
one (depending in part on the syslog.future.limit
property). This is used for TimeStamps that do not
have a defined year.

__signedNumberToAddress IPAddress The parameter is a long integer that is returned as an
IP address, but with the byte-order reversed.

__simpleMap String There are n+1 or n+2 parameters. The first parameter
is a string which is to be looked up in the map. The
next n parameters are the map, in the form of string
literals each of which has a key, an equals sign, and a
value. If the key matches the first parameter, then the
value for that key is returned. If the final parameter is a
single character, it is used as the delimiter instead of
the equals sign. For example, if the parameters are (all
literal except the first): “Foo”, “Bar=17”, “Foo=34”,
then the returned value will be “34”. If no key
matches, null is returned.

__simpleMap(FileInfected,"0=No", "1=Yes","=")

__simpleMap(Type,"8=Success", "16=Failure")

__split String This operation takes three parameters. The first is the
string to split (a string). The second is the delimiter (a
literal string). The third is the index (a literal integer). If
the delimiter or the index is blank or null, then the
result is the same as the first argument. Otherwise the
string to split is split around occurrences of the
delimiter, with the index'th string returned. For
example, if the parameters are “The string to split,” “ “
(space), and “2”, the result will be “string”.

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 203 of 243

Operation Return Type Definition and Comments

__splitAsAddress IPAddress For non-IPv6-aware parsers, this operation is like the
split operation: it takes three string parameters, and
the result (expected to be in four-part dotted decimal
format) is then converted from a string to an IP
address. That is, if the parameters are
“foo/192.168.10.12/bar”, “/”, and 2, the result will be
the IP address 192.168.10.12.

For IPv6-aware parsers, this operation converts the
result to an IPv4 or IPv6 address.

__splitAsInteger Integer This is like the split operation, also taking 3 string
parameters, except that the result is then converted
from a string to an integer (or null if it is not a valid
number).

__splitAsLong Long This is like the split operation, also taking 3 string
parameters, except that the result is then converted
from a string to a long integer (or null if it is not a valid
number).

__stringConstant String This takes a single string literal parameter, and returns
it.

__stringConstant("Example")

__stringToIPv6Address IPAddress In a non-IPv6-aware parser, this operation takes a
string representation of an IPv6 address as input and
returns a value of type IPv6 address.

This operation should not be used in a IPv6-aware
parser. Instead, use the IP Address token parser or
directly map the IPv6 address string to event fields.

__stringTrim String The parameter is a string, that is returned with any
leading or trailing whitespace characters removed.

__subtract Integer The two parameters must be integer variables, or can
be string constants that are floating- point values. The
result is an integer with the value of the first
parameter minus the second and rounded to the
nearest integer.

__sum Integer Each parameter must be an integer variable, or can be
a string constants that are floating-point values. The
result is an integer with the value of the sum of the
parameters added together and rounded to the
nearest integer

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 204 of 243

Operation Return Type Definition and Comments

__toHex String The parameters are a long integer number and a literal
integer. The value of the first parameter is converted
to hexadecimal and returned, padded to the number
of digits specified by the second parameter, and
preceded by “0x”. Note that odd lengths are rounded
down, and if the specified length is insufficient some of
the bits of the first parameter are simply lost. For
example, with parameters of 65535 and 8, the result is
“0x0000FFFF”. With parameters of 65535 and 3, the
result is “0xFF” (the 3 is rounded down to 2, and the
high-order bits of 65535 are lost).

__toLongTimeStamp Long The parameter is a single string, which is a date and
time in yyyy-MM-dd HH:mm:ss format. The string is
parsed, interpreting it as local time, and the resulting
date in returned as the long integer number of
milliseconds since January 1, 1970 GMT.

__toLowerCase String The parameter is a single string, which is converted to
lowercase and returned.

__toLowerCase(protocol)

__toUpperCase String The parameter is a single string, which is converted to
uppercase and returned.

__toUpperCase(protocol)

__useCurrentYear TimeStamp The parameter is a single TimeStamp, which is
returned with its year changed to the current year. The
calculation is done in the local timezone, which will
affect the result near either end of the year.

__useCurrentYear(date)

Developer's Guide to ArcSight FlexConnectors

ArcSight Operations Page 205 of 243

Date and Time Format Symbols
The FlexConnector uses SimpleDateFormat.

For information about Sate and Time format symbols, refer to the Date and Time Patterns
section in the Java SE Documentation help.

Sample date formats:

l yyyy-MM-dd HH:mm:ss

l yyyy.MM.dd G 'at' HH:mm:ss z - Use single quotes around text that is not meant to be
interpreted as date format characters.

Example: 2016.07.04 AD at 12:08:56 PDT
l EEE, MMM d, ''yy - Use two single quotes to insert a single quote.

Example: Wed, Jul 4, '16

Date and Time Format Symbols Page 206 of 243

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html#iso8601timezone

Working with Map Files
The following topics are covered in this chapter:

l What Are Map Files?
l Map File Examples
l Map File Details
l Using Ranges in Map Files
l Using Regular Expressions in Map Files
l Using Parser-Like Expressions in Map Files
l Real-world Examples

What Are Map Files?
Map files are actual physical files, located in the connector itself. Map files operate on events
after they are collected and parsed, but before they are sent to the destination, conditionally
changing one or more event fields. There are several parts of the connector code that use map
files:

l Basic map files, which operate on events early in the event flow
l AgentInfoAdder1map files, which operate on events later in the event flow, and can be

made to operate differently when there are multiple destinations and/or multiple
connectors running in one container

l The categorizer modules use map files to do their work
l Map file “extra processors” can be specified in FlexConnector parsers

Note: Map files are kept in memory for performance reasons, so large ones will affect the
memory usage of the connector.

Map File Examples
A map file is a comma-separated file that you can edit in a text editor (such as Notepad or vi,
which do not add formatting) or in a spreadsheet. The following is an example of a simple map
file. In this document, map file examples are shown in tables for clarity.

Note: If you use a spreadsheet application to create or edit your map files, be sure to save the
resulting files in the comma-separated value (CSV) format.

Working with Map Files Page 207 of 243

The first line normally defines the event fields that will be looked at ("getters") and those that
will be potentially set ("setters"). Optionally, there can be a line before that, starting with
!Flags, that controls certain values (see Controlling Map File Operation). In that case, it's the
second line that defines the "getters" and "setters." A simple example without a !Flags line
is:

event.destinationPort set.event.applicationProtocol

20 ftp

21 ftp

80 http

110 pop3

In this example, the applicationProtocol event field is set based on the value of the
destinationPort event field, but only if the destinationPort is one of the values in the
“getter” column. If destinationPort is 21, applicationProtocol will be set to ftp, but if
destinationPort is 22, applicationProtocol will not be set at all, because the value 22 does
not appear in the destinationPort “getter” column.

There is a duplicate value (ftp) in the applicationProtocol column, which is allowed because
it is a “setter”, but not in the destinationPort column, in which a duplicate value would be an
error.

This example would look like this in a text editor:

event.destinationPort,set.event.applicationProtocol
20,ftp
21,ftp
80,http
110,pop3

Multiple "Getters" and "Setters"
More complicated map files can have multiple “getter” columns (the row is only used if all
column values match the event) and/or multiple “setter” columns (to set more than one field).

The following is an example with two "getters:"

event.deviceCustomNumber1 event.deviceEventCategory set.event.deviceEventCategory

1 1 Vulnerability - Buffer/Heap Overflow

3 1 Vulnerability - Configuration Error

1 2 Malicious Code - Worm

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Multiple "Getters" and "Setters" Page 208 of 243

In this case, if the deviceCustomNumber1 and deviceEventCategory event fields are both 1,
then the value for the deviceEventCategory event field is changed to Vulnerability-
Buffer/Heap Overflow. If they are 3 and 1, respectively, the value is set to Vulnerability-
Configuration Error, and if the values are 1 and 2, the value is set to Malicious Code-
Worm. Any other combination leaves the deviceEventCategory event field unchanged.

This example (and the next one) also shows that you can have a "getter" event field also
appear as a "setter."

The following is an example with two "setters:"

event.name set.event.name set.event.deviceEventClassId

accept(2) AUE_ACCEPT AUE_ACCEPT

access(2) AUE_ACCESS AUE_ACCESS

acct(2) AUE_ACCT AUE_ACCT

In this case, the name event field is looked up to both replace the name event field and set the
deviceEventClassId event field.

Also, you can have both multiple "getters" and multiple "setters" in the same map file.

Using the “No Getter” Trick
By having no “getters,” you can set one or more fields to specific constant values,
unconditionally. For example:

set.event.message

Map file was here

This type of map file always has exactly two lines. It can have more than one column if you
want to set more than one field, like this:

set.event.message set.event.deviceCustomString1

Map file was here And also here

Map File Details
This section provides information about the various map file types and how to control the map
files. The topics included are as follows:

l Controlling Map File Operation
l Basic Map Files

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Using the “No Getter” Trick Page 209 of 243

l AgentInfoAdder1 Map Files
l Categorizer Map Files
l Extra Processor Map Files

Controlling Map File Operation
Any map file can be controlled with an optional initial line starting with !Flags, that can be
omitted. If this line is present, it precedes the line that defines the "getters" and "setters." It is
a comma-separated line similar to the rest of the file, but the number of columns do not have
to match the other lines. The line must begin with !Flags, followed by one or more of the
following flags, with commas in between:

Flag Description

Overwrite allow fields that are already set to be overwritten

Overwrite- fields that are already set will not be overwritten

CaseSens "getters" are case sensitive

CaseSens- "getters" are case insensitive

TrimGetters any leading or trailing whitespace or tabs are
removed from "getters"

TrimGetters- any leading or trailing whitespace or tabs are not
removed from "getters"

TrimSetters any leading or trailing whitespace or tabs are
removed from "setters"

TrimSetters- any leading or trailing whitespace or tabs are not
removed from "setters" are

EnfrcUniqID duplicate "getter" values are treated as fatal errors

EnfrcUniqID- duplicate "getter" values are treated as warnings

Note: The minus sign after the flag reverses its meaning.

For example, the following would make "getters" case insensitive, not allow overwriting fields,
and not remove any leading or trailing whitespace or tabs from "setters":

!Flags,CaseSens-,Overwrite-,TrimSetters-

Basic Map Files
Place basic map files in the user/agent/map directory under the ArcSight home directory of
the connector file system. Name the files map.0.properties, map.1.properties, and so on.

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Controlling Map File Operation Page 210 of 243

Basic map files are named as properties files (with the .properties extension), but they are
actually CSV files.

New or changed map files will be automatically applied approximately every five minutes. Also,
you can use the Reload custom map files command in the ArcSight Console to reload the basic
map files on demand. See the ArcSight Console User’s Guide, "Managing SmartConnector",
"Sending Control Commands to SmartConnectors", under the "Categorizer" mapper category.

The files are numbered so that the connector knows what order to apply them, since changes
made by one map file may affect a later map file. The numbering sequence must stay
consecutive and files cannot be skipped. For example, the sequence 0, 1, 2, 3 is valid. The
sequence 0, 1, 3 is not, and will cause the reading of the files to be stopped at 1 in this
example.

By default, basic map files overwrite the values in event fields. Any leading or trailing
whitespace or tabs are removed (trimmed) from "getters" and "setters", "getters" are case
sensitive, and duplicate "getters" generate warnings. Any of these default behaviors can be
changed with the !Flags line.

AgentInfoAdder1 Map Files
Put the files in the user/agent/aup/acp directory under the ArcSight home directory. Or use
the user/agent/aup/<id>/acp directory for destination/connector-specific files, where <id>
is replaced with the actual ID of the connector or destination. Name the files
AgentInfoAdder1.map.10.csv, AgentInfoAdder1.map.11.csv, and so on.

The AgentInfoAdder1map files are numbered starting at 10, not 0 or 1, since files 0 to 9 are
reserved for internal map files that are not visible to users. The files are numbered so that the
connector knows what order to apply them, since changes made by one map file may affect a
later map file. If there is a missing number (like files 10 and 12 but not file 11), no files after the
missing number will be processed. Restart the connector to reload AgentInfoAdder1map files.

AgentInfoAdder1 map files will not overwrite event fields that are already set. By default,
leading and trailing spaces are removed from “getter” and “setter” values before processing.
“Getter” values are not case sensitive. If two rows have duplicate “getters”, a warning is
logged. This is the default behavior of basic map files. These default behaviors can be modified
by using the !Flags line.

Categorizer Map Files
Connectors categorize events, whichis to say that the category fields (for example,
categorySignificance and categoryTechnique) are set. The mechanism described here can

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

AgentInfoAdder1 Map Files Page 211 of 243

categorize events that otherwise would not be categorized. And in fact that is key, because any
event that has already been categorized will not be modified.

Put the files under the user/agent/aup/acp/categorizer/current directory under the
ArcSight home directory. Under that, create a directory that matches the deviceVendor field
of the events you want to categorize, and under that create a map file named for the
deviceProduct field of the events you want to categorize, with the .csv extension. The
deviceVendor and deviceProduct names must be modified as follows:

l Convert any uppercase letters to lowercase.
l Convert any characters that are not letters or digits to underscore characters.

For example, if the events will have deviceVendor set to "Giant Corp" and deviceProduct set
to "It's a Big Product", then you would create
user/agent/aup/acp/categorizer/current/giant_corp/it_s_a_big_product.csv.

This map file is just like any other map file, though they often only have one getter, on the
deviceEventClassId field, and generally only set the category fields (categoryObject,
categoryBehavior, categoryTechnique, categoryDeviceGroup, categorySignificance,
and categoryOutcome).

You can use the Reload custom categorizations command in the ArcSight Console to reload
the categorizer map files on demand. See the ArcSight Console User’s Guide, "Managing
SmartConnectors", "Sending Control Commands to SmartConnectors", under the "Categorizer"
mapping category.

Categorizer map files can overwrite the values in event fields, though that rarely matters since
events that have any of the category fields set will not be processed. Leading and trailing
spaces are removed from “getter” and “setter” values before processing. The "getter” values
are not case sensitive. If two rows have duplicate “getters”, a warning is logged.

Extra Processor Map Files
See Extra Processors for general information on extra processors. An example of parser
contents follows:

extraprocessor.count=1
extraprocessor[0].type=map
extraprocessor[0].filename=customvendor/customproduct.csv
extraprocessor[0].allowoverwrite=false
extraprocessor[0].casesensitive=false
extraprocessor[0].charencoding=US-ASCII
extraprocessor[0].trimgettertokens=false
extraprocessor[0].trimsettertokens=false

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Extra Processor Map Files Page 212 of 243

In this case the map file is the user/agent/aup/fcp/customvendor/customproduct.csv file.
The other optional properties let you change the default operation, which allows overwriting
values, is case sensitive, removes leading or trailing whitespace or tabs from "getters" and
"setters", and uses the platform's default character encoding. The map file is just like any other
map file, and operates on the event after the parser and any extra processors earlier in the list
(if extraprocessor.count is greater than 1) is finished. If you need more than one map file,
adjust extraprocessor.count accordingly and specify them.

Using Ranges in Map Files
You can use ranges in map files to simplify map file creation. For example, a map file that lists
many source addresses can be quite large:

event.sourceAddress set.event.deviceCustomString1

1.0.1.0 China

1.0.1.1 China

1.0.1.2 China

1.0.1.3 China

...763 more addresses...

1.0.3.255 China

The above example would list 768 addresses, if the entire map file was shown.

Using a range in a map file, you can create a simpler file that does the same task. For example:

range.event.sourceAddr
ess

set.event.deviceCustomStri
ng1

1.0.1.0-1.0.3.255 China

The resulting map file is easier to create, and is smaller and less prone to typing errors.

Ranges can be used on:

l Number event fields like sourcePort or fileSize
l IP address fields like sourceAddress and deviceCustomIPv6Address1 (each range in the

map file must be either IPv4 or IPv6, meaning it cannot have an IPv4 starting address and
an IPv6 ending address, or vice versa. For IPv6-aware parsers, the map file should expect
the possibility of either IP address type in any IP address field. For a non-IPv6-aware parser,
the map file would only expect IPv4 in the normal fields and IPv6 in the
deviceCustomIPv6Address fields)

l MAC address event fields like destinationMacAddress

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Using Ranges in Map Files Page 213 of 243

Additional details pertaining to ranges:

l IPv6 addresses can use the :: and dotted-quad formats. In IPv6-aware parsers, IPv6
addresses can be used where they were previously not valid.

l MAC addresses must be in hexadecimal with colon separators
l Use the hyphen character as the separator between the lower bound and upper bound in

the range
l Avoid overlapping ranges in the same column

Using Regular Expressions in Map Files
You can use regular expressions in map files to provide look up functionality to set field values.
For example:

regex.event.sourceUserN
ame

set.event.deviceCustomStr
ing1

.*?arcsight.com.* ArcSight

.*?somesoft.com.* Somesoft

In this example, the sourceUserName event field is looked up to see if it matches either of the
regular expressions, and if it does, the deviceCustomString1 event field is set accordingly.

The regular expression “getter” event field must be a string field, and the value in each event is
matched against all of the regular expressions in that column. Unlike with ranges, it’s more
difficult to avoid regular expressions that “overlap,” and the rule is that in that case the first
one wins.

If you combine regular expressions with ranges, and there are no overlapping ranges
(overlapping ranges are not recommended), it is best to put the ranges before (to the left of)
the regular expressions, for performance reasons.

Using Parser-Like Expressions in Map Files
You can use parser-like expressions in map files to extend the functionality of map files.

Here is an example with three input events:

deviceCustomNumber1 deviceCustomString1 deviceCustomString3

1 “ Leading and trailing ” “Whatever”

10 “Anyone reading this?” “Overwrite with this”

17 “ Hello ” “. . . there!”

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Using Regular Expressions in Map Files Page 214 of 243

These are the resulting deviceCustomString1 values that we want for those three events:

deviceCustomString1

“Leading and trailing”

“Overwrite with this”

“ Hello ”

Unlike ranges and regular expressions, this feature isn’t about the “getters,” but about the
“setter(s)”. In this example, we want to remove (trim) leading and trailing spaces from
deviceCustomString1 when the number is 1, and copy the value of deviceCustomString3
into deviceCustomString1 if the number is 10. For any other number, no change is desired.

Here is an example of a map file that can achieve the result shown above:

event.deviceCustomNumber1
set.expr
(deviceCustomString1|deviceCustomString3).event.deviceCustomString1

1 __stringTrim(deviceCustomString1)

10 deviceCustomString3

Additional details:

l The “getter” column (or columns) controls which row, if any, is used
l In the header line, the expression “setter” lists what event fields might be used in the

expressions in that column, inside the parentheses, and what event field will be set, at the
end

l Then one of the actual expressions below that is evaluated and the result put into the
event field

Note: Operations (such as __stringTrim) are described in ArcSight Operations.

In this case deviceCustomString1 and deviceCustomString3 are listed inside the parentheses in
the header row since they are used as described in More About Parser-Like Expressions Syntax.

More About Parser-Like Expressions Syntax
For parser-like expressions, the “setter” header has several parts:

l Two constant parts: “set.expr(“ and “).event.”
l Between those is the list of event fields and/or additional data fields that might be used in

the expressions, separated by pipes (two pipes separate event fields from additional data)
l The one event field that will be set to the result of the expression

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

More About Parser-Like Expressions Syntax Page 215 of 243

Note: Expression “setters” cannot be used to set additional data fields, only event fields.

Below is a “no getter” example:

set.expr(deviceCustomNumber1|deviceCustomNumber2||addnumber).event.deviceCustomNumber3

"_sum(deviceCustomNumber1,deviceCustomNumber2,_safeToInteger(addnumber))"

This example sets deviceCustomNumber3 to the sum of deviceCustomNumber1,
deviceCustomNumber2, and (if it is a valid number) the additional data field addnumber.

Operations Containing Commas
When an operation contains any commas, most commonly with operations that have multiple
arguments (for example, __regexToken), use quotes around the entire operation, and then
change any quote characters that are now inside the outer quotes to two quote characters.
The CSV parsing code will turn those doubled quote characters back into one quote character.
For example:

"__regexToken(proto,"".*?/(.*)"")"

Backslashes in Expressions Versus in Parsers
In parsers you must use \\ to represent one backslash character, but in these expressions you
do not need to use the double backslash. Parsers are properties files, which use backslashes for
quoting. Map files are CSV files (regardless what the file extension is), which use actual quotes
for quoting.

Real-world Examples
This section contains the following information:

l Adding Country Names to Events
l Getting Domain Name from Hostname

Adding Country Names to Events
In the following example, the goal is to add new fields to events that contain the name of the
source and destination countries, based on the sourceAddress and destinationAddress
event fields.

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Operations Containing Commas Page 216 of 243

The data divides the IPv4 address space into many ranges, each of which is associated with a
particular country. The map files are large enough (order of magnitude 100K lines) that you
might need to increase the connector heap size. The resulting map file would look like this:

range.event.sourceAddress set.additionaldata.SCN

1.0.0.0-1.0.0.255 Australia

1.0.1.0-1.0.3.255 China

1.0.4.0-1.0.7.255 Australia

. . . additional lines in the map file . . .

This example uses the range feature on an IPv4 event field. A second map file with the same
data is also needed for the destinationAddress event field.

Getting Domain Name from Hostname
The map file example below uses the last two part of a hostname to get the domain name only.

set.expr(sourceHostName).event.deviceCustomString2

"__regexToken(sourceHostName,""*\.([^\.]+\.[^\.]+)$"")"

This table shows the results of this map file:

soureHostName deviceCustomString2

14-202-33-238.static.tpgi.com.au com.au

bzq-79-181-26-177.red.bezeqint.net bezeqint.net

dynamic-27-121-217-28.goi.ne.jp ne.jp

05405efe.skybroadband.com skybroadband.com

dail-95-105-128-25-orange.orange.sk orange.sk

host-19-157-66-217.spbmts.ru spbmts.ru

118-160-227-230.dynamic.hinet.net hinet.net

Developer's Guide to ArcSight FlexConnectors
Working with Map Files

Getting Domain Name from Hostname Page 217 of 243

Appendix
The topics included in the Appendix are as follows:

l Configuring a Connector for ArcSight ESM Domain Field Sets
l Developing Custom Parsers for Syslog SmartConnectors
l Developing an XML FlexConnector

Developer's Guide to ArcSight FlexConnectors
Appendix

Appendix Page 218 of 243

Configuring a Connector for ArcSight ESM
Domain Field Sets
This appendix applies to Oracle-based ESM and provides information on configuring a
FlexConnector for ESM domain field sets, which allow you to map additional data.

ArcSight ESM offers a series of special user-configurable fields called domain fields that you
can use to leverage additional data available in an event, and that identifies a business-related
attribute. When events come in to the ArcSight Manager, they are evaluated against the
available domain field sets. If the event matches the fields in a domain field set, the event is
tagged as relevant to that domain. These fields then are displayed in the Event Inspector and
anywhere that domain field set is referenced.

Before creating a FlexConnector or modifying an existing connector to send additional data to
support domain field sets, create the domain fields and domain field sets from the ArcSight
Console as described in Domain Field Sets in the ArcSight ESM User's Guide.

Supported data types include:

FlexConnector Data Type ESM Data Type

String String

Long Long

TimeStamp Date

IPAddress (IPv4) IPv4Address

Integer Number

IPv6Address IPv6Address

Double (Floating Point) Floating Point

You can modify an existingFlexConnector or create a new FlexConnector to take advantage of
the fields you have defined as part of the domain field set. For example, the following is a
domain field set for credit card transactions:

Field Type

Credit Card Number Integer (Number)

Transaction Amount Double (Floating Point)

Currency String

Transaction Host IP IPv6Address

Transaction Time TimeStamp (Date)

Configuring a Connector for ArcSight ESM Domain Field Sets Page 219 of 243

Assuming these fields are not defined in a current parser, you will need to add mappings for
these fields in the FlexConnector parser as additional data fields.

For example, for this sample domain field set, you can add the following entries to the
FlexConnector parser you are developing:

token[0].name=Credit Card Number
token[0].type=Integer

token[1].name=Transaction Amount
token[1].type=Double

token[2].name=Currency
token[2].type=String

token[3].name=Transaction Host IP
token[3].type=IPAddress

token[4].name=Transaction Time
token[4].type=TimeStamp

additionaldata.Credit Card Number=Credit Card Number
additionaldata.Transaction Amount=Transaction Amount
additionaldata.Currency=Currency
additionaldata.Transaction Host IP=Transaction Host IP
additionaldata.Transaction Time=Transaction Time

The connector processes the additional data fields with the data type you assigned along with
the token names.

If you have an existing FlexConnector, you can modify your parser to include the new fields for
a domain field set as shown in the following example. To modify the parser of an existing
SmartConnector that you have installed, contact Professional Services or your ArcSight
representative for assistance.

The domain field set for this example includes the following fields:

Field Type

Credit Card Number Integer (Number)

Credit Card Holder String

Transaction Host IP IPAddress (for IPv6-aware parsers, this can be an IPv4 or IPv6 address)

Transaction Time TimeStamp (Date)

In this example, your existing parser contains entries such as the following:

token[9].name=abc
token[9].type=TimeStamp

Developer's Guide to ArcSight FlexConnectors

Configuring a Connector for ArcSight ESM Domain Field Sets Page 220 of 243

token[10].name=def
token[10].type=Integer

token[11].name=ghi
token[11].type=IPAddress

token[12].name=jkl
token[12][.type=String

token[13][.name=mno
token[13].type=Long

You can use currently defined tokens to assign data types to your new domain feature set
fields by adding these additional data fields. Transaction Time will assume the data type of the
jkl field (TimeStamp).

When you add this... Then...

additionaldata.Credit Card Number=abc Credit Card Number assumes the data type of the abc field (Integer)

additionaldata.Credit Card Holder=def Credit Card Holder assumes the data type of the def field (String)

additionaldata.Transaction Host IP=ghi Transaction Host IP assumes the data type of the ghi field (IPAddress)

additionaldata.Transaction Time=jkl Transaction Time assumes the data type of the jkl field (TimeStamp)

These additional data fields associate your newly created fields with the data types of fields
already defined in the parser.

After modifying the parser, restart the connector. When the connector comes back online, it
sends the added fields to the ArcSight Manager.

Developer's Guide to ArcSight FlexConnectors

Configuring a Connector for ArcSight ESM Domain Field Sets Page 221 of 243

Developing Custom Parsers for Syslog
SmartConnectors
This section provides general instructions on developing a custom parser for a Syslog
SmartConnector with the help of the Regex Tool. This section assumes that you are aware of
Syslog SmartConnectors and their basic and advanced configurations.

Before you proceed, ensure that the following are present:

l A Raw Syslog SmartConnector to generate raw syslog events that serve as the input to the
Regex tool.

l The Regex tool to create a custom parser for the Syslog SmartConnector. You can get the
Regex tool by installing a Test Alert Connector on your desktop machine or on another
machine where you have GUI access.

l A Syslog SmartConnector with which the custom parser will be tested.

Note: . The Raw Syslog SmartConnector can be installed either on the same machine where the
Syslog SmartConnector is present or on a different machine.

To create a custom parser for a Syslog SmartConnector:

1. Run the Raw Syslog SmartConnector to receive raw syslog events from the syslog server or
servers.

2. Extract the raw syslog from the Raw Syslog destination specified in the Raw Syslog
SmartConnector configuration, and then save a sample of the log in a desired location on
the machine where the Regex tool has been installed.

Important: Consider the following:
l Do not pull the raw syslog events from Logger, because it does not format the output

correctly.
l If you are extracting the raw syslog events from ESM, then you need to open the raw

syslog events file and do the following:

a. Remove double quotes (") at the beginning of the lines. The command in vi is
:s/^"//

b. Remove double quotes (") at the end of the lines. The command in vi is :s/"$//

c. Replace adjacent instances of double quotes (") with single quotes ('). The
command in vi is :s/""/"/g

3. Run the Regex tool present in the following location: $ARCSIGHT_
HOME\current\bin\arcsight regex

4. Select File > Load Log File and browse to the location where you saved the sample log file
in step 2, select the file, and then load it. The first line of the file is displayed in the

Developing Custom Parsers for Syslog SmartConnectors Page 222 of 243

Message field, and the number of lines in the file is displayed on the window title bar. The
tool can hold up to 5000 lines from the file.

5. Select Options > Treat as Syslog SubAgent. The Regex tool will automatically detect the
syslog header if the header is in the correct format (that is, timestamp hostname/hostIP).

If the header is not in the correct format, do any of the following:

a. Set the syslog.headers.ip value in the agent.properties file to parse the timestamp
and hostname/IP address from the header. You can copy the default value from
$ARCSIGHT_HOME\current\config\agent\agent.defaults.properties to
$ARCSIGHT_HOME\current\user\agent\agent.properties, and modify the value to
match the header.

b. If the events do not have a syslog header, then just parse the whole line in your flex
parser.

6. Select File > New FlexAgent Regex File to create a new parser.

7. Specify the name of the parser as myProduct_
syslog.subagent.sdkrfilereader.properties, wheremyProduct is the device for
which you are creating a new parser, and then complete the parser configuration. For a list
of the syslog tokens that can be used in the parser for mapping to event fields, see
ArcSight Built-in Tokens.

8. On the machine where the Syslog SmartConnector is present, copy the parser you created
to the following folder: $ARCSIGHT_HOME\current\user\agent\flexagent\syslog

9. Stop the connector if it is already running, and then delete the syslog.properties file.
This step ensures that any associations between the new events and other parsers, such as
generic_syslog, are removed.

Note: You need not save a copy of this file because the connector rebuilds it when the
connector is run again.

10. (Conditional) To modify any configurations of the connector before you start it again to
test the new parser, see theManaging SmartConnector Configurations section in the
ArcSight SmartConnector Installation and User Guide.

11. Start the connector and send the events to the events' syslog listener.

12. View the results in ESM or Logger and verify that the events are being parsed properly.

Developer's Guide to ArcSight FlexConnectors

Developing Custom Parsers for Syslog SmartConnectors Page 223 of 243

Developing an XML FlexConnector
You can create an XML FlexConnector to recursively read events from XML-based files in a
folder. Choose the XML FlexConnector for devices that write event information to XML files,
such as vulnerability scanners that produce XML reports.

The following topics are covered:

l XML FlexConnector Development
l XML Tools
l XML Concepts for FlexConnector Development
l Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens
l Create the XML FlexConnector Parser
l Install the FlexConnector

XML FlexConnector Development
Use XML tools to read the XML log files that you are using as your source for your parser. The
sections below breakdown parser development, categorization, and XML FlexConnector
installation.

XML Tools
You can use various XML query tools to edit XML documents, find information in XML
documents, or to extract elements and attributes from XML documents to use in parser
creation.

XML query tools include XPath and XQuery, which are available from:

l http://www.w3schools.com/xpath (XPath is a language for finding information in XML
documents)

l http://www.w3schools.com/xquery (XQuery is a tool for finding and extracting elements
and attributes from XML documents)

These pages contain additional information on using XQuery:

l http://www.stylusstudio.com/xquery_primer.html
l http://www.stylusstudio.com/xquery_flwor.html
l http://www.xqueryfunctions.com/xq/alpha.html (XQuery function library; useful for

building expressions)

These are some XML editors:

Developing an XML FlexConnector Page 224 of 243

http://www.w3schools.com/xpath
http://www.w3schools.com/xquery
http://www.stylusstudio.com/xquery_primer.html
http://www.stylusstudio.com/xquery_flwor.html
http://www.xqueryfunctions.com/xq/alpha.html

l http://www.mindfusion.eu/product1.html (XML Viewer)
l http://www.stylusstudio.com/xml_download.html (Stylus Studio XML)
l http://www.altova.com/download-trial.html (Altova XML Spy)

Tools like these are useful for parser creation. Try these or you might other similar tools on the
web that you like better.

XML Concepts for FlexConnector Development
The following are some useful XML concepts that will help you develop your XML
FlexConnector:

l General XML Concepts
l XML FlexConnector Concepts

General XML Concepts
These are some concepts that are common to XML files, but that are good for you to keep in
mind when you are creating your parser:

The following example of an XML file is annotated to highlight the code that corresponds with
these key concepts:

1. Root Node

2. Leaf Nodes

3. Intermediate Nodes

4. Attributes

5. Text

Developer's Guide to ArcSight FlexConnectors

XML Concepts for FlexConnector Development Page 225 of 243

http://www.mindfusion.eu/product1.html
http://www.stylusstudio.com/xml_download.html
http://www.altova.com/download-trial.html

XML FlexConnector Concepts
These are some concepts that are specific to XML FlexConnector parsers:

l Namespace
l Hop Nodes
l Trigger Nodes
l Token Mappings
l Extra Events

Namespace

Use if your XML log file uses explicit namespaces or a default namespace in the header. Using
namespaces allows you to differentiate between elements that have the same name in the
schema, but actually refer to different content.

Specify those namespaces using these properties:

l namespace.count—Specifies the number of namespaces that your XML log file uses; for
example, namespace.count=2.

l namespace.prefix—Specifies the namespace prefix to use; for example, namespace
[1].prefix=ac.

l namespace[x].prefix=default—Use when your XML file specifies a namespace but does
not use any prefixes in the file. That is, your XML file uses a default namespace.

l namespace.uri—Specifies the Uniform Resource Identifier (URI) for the namespace; for
example, namespace[0].uri=http://example.org/2003/08/sdee

Developer's Guide to ArcSight FlexConnectors

XML FlexConnector Concepts Page 226 of 243

For example:

namespace.count=2

namespace[0].prefix=default
namespace[0].uri=http://www.mycompany.com/ids/2014/09/example

namespace[1].prefix=ac
namespace[1].uri=http://www.yourcompany.com/fds/acfg

Hop Nodes

Optional. Hop nodes are the nodes in the path from the root node to the event triggering
node. These nodes are necessary when tokens need to be captured from nodes other than the
triggering node or when events pertaining to a particular node need to be grouped in one
block. Select nodes other than the trigger node that contain relevant security event
information to be hop nodes.

Multiple hop node levels can be defined with each new level of hop nodes defined in reference
to the previously defined level. Hop nodes can also reference root nodes directly as variables.

To define hop nodes, use these properties:

l hop.node.count—Specifies the number of hop nodes; for example, hop.node.count=1
l hop.node.name—Specifies the names for the hop nodes; for example, hop.node

[0].name=host

l hop.node.expression—Specifies the XPath/XQuery path expressions to select the nodes;
for example, hop.node[1].expression=/audits/audit/hosts/host

For example:

hop.node.count=1
hop.node[0].name=host
hop.node[0].expression=/audits/audit/hosts/host

Trigger Nodes

Mandatory. These are the nodes that trigger events. An XPath/XQuery path expression for a
trigger node can be the last defined hop node or the root node if no hop nodes are available.

The number of trigger nodes determines the number of events that are generated using your
parser. The parser will generate an event each time the trigger node is discovered in the log
file.

To define trigger nodes, use a property like this:

trigger.node.expression=$host/applications/application,$host/
vulnerablities/vulnerability

Developer's Guide to ArcSight FlexConnectors

Hop Nodes Page 227 of 243

Token Mappings

Mandatory. In addition to the token properties listed in Token Declarations, you must specify
these properties for the XML parser:

l token[x].expression—Specifies the XPath/XQuery path expression that is traversed to
obtain the value for the token. This is a mandatory property.

For example, token[0].expression=audits/audit/startDate
l token[x].node—Specifies the context node (root node, hop node, or trigger node)

relative to which the path expression is evaluated. A context node can be a hop node or a
root node. If this property is not specified, it defaults to the trigger node.

For example, token[0].node=host

Extra Events

Optional. If you need your FlexConnector to collect different event types for the same trigger
node or from different trigger nodes, you can use this property to specify other XQuery
configuration files in the current configuration file.

To specify extra events, use these properties:

l extraevent.count—Specifies the number of extra events; for example,
extraevent.count=2

l extraevent[x].filename—Specifies the file name of the additional configuration file that
this parser should use; for example, extraevent[0].filename=ncircle_xml_
file/ncircle_xml_file.xml3.uri

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Examples of Token Mappings

A token captured from the root node: token[0].expression=audits/audit/startDate

l A token captured from the hop node 1:

token[2].name=ip
token[2].type=IPAddress
token[2].expression=ip
token[2].node=host

l A token captured from the hop node 2:

token[5].name=protocol
token[5].expression=protocol
token[5].node=vulnref

Developer's Guide to ArcSight FlexConnectors

Token Mappings Page 228 of 243

l A token captured from the trigger node, when token[x].node is specified:

token[8].name=name
token[8].expression=name
token[8].node=

l A token captured from the trigger node, when token[x].node is not specified:

token[13].name=descr
token[13].expression=description

Prepare to Write the Parser - Identify Namespace,
Nodes, and Tokens
Before writing the parser, examine your source XML log files and complete the following tasks:

l Find the Trigger Node - the Most Important Step
l Decide if You Need a Namespace
l Identify Hop Nodes
l Identify Tokens (including attributes and nodes as needed)

Find the Trigger Node - the Most Important Step
Look at the XML log file and find which node that all events have in common. When you
determine this, you can use this node as the trigger node. The trigger node will generate
events. In the XML example below, the trigger node identified is EventHeader:

Developer's Guide to ArcSight FlexConnectors

Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens Page 229 of 243

Decide if You Need a Namespace
You will need a namespace if a namespace is declared in the header of your XML source file. If
you find an element or a node with a colon (:) in its name, the first part of that element or
node is its namespace, and must be declared in the parser. See Namespace for more
information.

In the following example, elements with colons are circled.

Identify Hop Nodes
Optionally, identify which node or nodes other than the trigger node contain relevant
information for security events. See Hop Nodes for details.

In the following example, the trigger node, Attributes, is indicated by an arrow.

In this example, the trigger node is Attributes, so the hop nodes could be:

hop.node.count=2
hop.node[0].name=header

Developer's Guide to ArcSight FlexConnectors

Decide if You Need a Namespace Page 230 of 243

hop.node[0].expression=//EventHeader
hop.node[1].name=role
hop.node[1].expression=$header//RoleAttributes

You can think of hop nodes as variable declarations for long expression paths. For example, if
you have to jump three nodes down before finding the trigger and the information to be
parsed, you can declare this a named "constant" path in the hop nodes. You can then use this
as a variable for the token expression instead of typing the entire path repeatedly.

Identify Tokens
Identify which information you want to extract from each event. Tokens are attributes or text
under any node. See Token Declarations for more information.

In the following example, tokens are identified by arrows.

Create the XML FlexConnector Parser
To create the parser, use the information on namespaces, hop nodes (not used in this
example), trigger nodes, and tokens you gathered when you examined the source XML file.

l Parser Development - First Several Lines
l Parser Development Continued - Tokens
l Parser Development Continued - Mappings
l Categorization
l Copy the Parser Into the Folder

Developer's Guide to ArcSight FlexConnectors

Identify Tokens Page 231 of 243

Parser Development - First Several Lines
This is an example of the top portion of a parser:

namespace.count=4
namespace[0].prefix=default
namespace[0].uri=urn:arcsight:MF:event
namespace[1].prefix=event
namespace[1].uri=urn:arcsight:MF:event
namespace[2].prefix=addn
namespace[2].uri=urn:arcsight:MF:addn
namespace[3].prefix=eventMain
namespace[3].uri=urn:arcsight:MF:event:main

Tokenization Section
trigger.node.expression=//EventHeader
additionaldata.enabled=true
token.count=25

Parser Development Continued - Tokens contains examples of tokens, and continues after the
line token.count=25.

Parser Development Continued - Tokens
Use the XML tools listed in XML Tools to create expressions for the tokens. All expressions are
relative to the trigger node. Expressions are shown in the example below, which is a
continuation of the parser stared in the previous section:

Developer's Guide to ArcSight FlexConnectors

Parser Development - First Several Lines Page 232 of 243

Parser Development Continued - Mappings
Map tokens to event fields, and add severity mappings. Note that all unmapped tokens are
passed as additional data fields. See the following example:

Note that severity mappings are often overlooked, and are key to event normalization. These
mappings are required. See Severity Mapping for details on adding severity mappings.

Categorization
Add categorization to your parser. This section is required. This is an are that is often
overlooked, and is important because categorization is used for event normalization. For
example:

For more about the possible values, see the "Categories" topic in the Console Help or the
ArcSight Console User’s Guide. Also, see Categorizing Events.

Developer's Guide to ArcSight FlexConnectors

Parser Development Continued - Mappings Page 233 of 243

Copy the Parser Into the Folder
After you develop the parser file, you must copy it into this location: ARCSIGHT_
HOME\current\user\agent\flexagent. This is the required location of the custom parsers
you develop for the FlexConnector.

Install the FlexConnector
To install a connector to parse event information presented in standard XML schema, select
ArcSight FlexConnector XML File from the list of SmartConnectors to install.

Parameter Description

Folder The absolute path of the directory where log files for the FlexConnector are located. For
example:

c:\logs

Configuration File The base name of the configuration file that describes the format of the log file. The
suffix .xqueryparser.properties is appended automatically. For example, if you
specify:

log

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\log.xqueryparser.properties

Run the connector either as a service or standalone.

Developer's Guide to ArcSight FlexConnectors

Copy the Parser Into the Folder Page 234 of 243

Troubleshooting Duplicate Events
This section provides guidelines that can be used to troubleshoot duplicate events or to avoid
duplicate events when developing a database FlexConnector.

Duplicate events are ignored and not forwarded to ESM or other destinations. Duplicate events
caused by the connector can result in lost events. Reasons for connector-caused duplicate
events include: primary key not used as ID field, uniqueid.fields that are not unique to only
one event, and incorrect queries.

Typical parser queries can be divided into two groups:

l simple main query - queries one event table or view.
l complex main query - queries one event table or view with left outer join to secondary

tables, views and sub-queries.

Some duplicate events can originate in the connector’s parser with either of the following:

l Main query
l Id.field and unique.idfields for the ID-based DB connector or the timestamp.field

and unique.idfields for the time-based DB connector

If the combination of fields is not unique for each event, then duplicate events will occur.

A uniqueid.field can be one or more table fields separated by commas.

You can identify duplicate events by errors in the agent log file such as the following:

[..][ERROR][…][processQuery] Event with duplicate ID …, ignoring

Example 1: ID-based Database Connectors Only
This example is for ID-based database connectors only and shows a simple main query with id
field.

query= select evt. ID, evt.SourceHost,… FROM Events as evt
WHERE evt.ID > ? order by ID
id.field=ID

Usually, the ID used in the where clause condition and the id.field should be the table’s primary
key.

If a duplicate event occurs, that means the id.field is not the primary key. To fix the issue:

Developer's Guide to ArcSight FlexConnectors
Troubleshooting Duplicate Events

Troubleshooting Duplicate Events Page 235 of 243

l If possible, change the id.field to be the primary key.
l If the id.field cannot be changed to become a unique primary key for each event, add

one or more table fields to the uniqueid.field so that the id.field and
uniqueid.field combination is unique for each event.

Example 2: ID-based and Time-based Connectors
For ID-based database connectors:

query= select evt. ID, evt.IDX,… FROM Events as evt
WHERE evt.ID > ? order by ID
id.field=ID
uniqueid.field=IDX

If duplicate events occur, then the id.field is not the primary key and the combination of
id.field and unique.idfield is also not unique to each event. To fix the issue, you should
extend uniqueid.field to add more fields to it. Add one more field to uniqueid.field and
then test the connector until the Event with duplicate ID error messages do not occur.

For time-based database connectors:

query=select evt.ReceivedTime, evt.IDX,… FROM Events as evt
WHERE evt.ReceivedTime >= ? order by evt.ReceivedTime
timestamp.field= ReceivedTime
uniqueid.field=IDX

If duplicate events occur, then the timestamp.field is not the primary key and the
combination of timestamp.field and unique.idfield is also not unique to each event. To fix
the issue, you should extend uniqueid.field to add more fields to it. Add one more field to
uniqueid.field and then test the connector until the Event with duplicate ID error
messages do not occur.

Example 3: Complex Main Query with a Join
This example is for a complex main query with a join.

select evt. ID, etype. EventTypeID ,etype.EventName FROM Events as evt
Left Join EventType as etype on evt.EventTypeID=etype.EventTypeID
WHERE evt.AutoID > 0 order by ID

The following tables shows the join condition relationship between evt.EventTypeID and
etype.EventTypeID.

Developer's Guide to ArcSight FlexConnectors
Troubleshooting Duplicate Events

Example 2: ID-based and Time-based Connectors Page 236 of 243

If evt.EventTypeID is a "many-to-one" or "one-to-one" relationship with etype.EventTypeID
as shown in the following table:

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 2 update

2

The query result will be the same number of events as in the Events table and no duplicate
events as shown in the following table.

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 1 select

2 2 update

However, if evt.EventTypeID is “one-to-many” relationship to etype.EventTypeID as shown
in the following table:

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

2 1 insert

2 update

The query result will be one more event as compared to the Events table and a duplicate event
will happen as shown in the following table:

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 1 insert

2 2 update

One way to find out, if the duplicate event is caused by the join condition, is to run two
queries: the original query and the query without the join:

select evt. ID, etype. EventTypeID ,etype.EventName FROM Events as evt
Left Join EventType as etype on evt.EventTypeID=etype.EventTypeID
WHERE evt.AutoID > 0 order by ID

Without the join:

select evt. ID FROM Events as evt WHERE evt.AutoID > 0 order by ID

Developer's Guide to ArcSight FlexConnectors
Troubleshooting Duplicate Events

Example 3: Complex Main Query with a Join Page 237 of 243

If the total number of rows returned by the original query is equal to the query without the
join, then the duplicate event is not caused by the join condition. You can then debug the
duplicate event error using Example 1: ID-based Database Connectors Only and Example 2: ID-
based and Time-based Connectors.

If the total number of rows returned by the original query is greater than the query without the
join, then the issue is caused by join condition and the query must be modified to fix the
duplicate event.

Developer's Guide to ArcSight FlexConnectors
Troubleshooting Duplicate Events

Example 3: Complex Main Query with a Join Page 238 of 243

Frequently Asked Questions
For general troubleshooting information, participate in the ArcSight user community located at
https://community.softwaregrp.com. Many questions are answered there.

Where should I look for FlexConnector error and warning messages?

Examine the agent.log file located in ARCSIGHT_HOME\current\logs. Look for lines
containing [ERROR] and [WARN].

What data types are supported in SQL server database?

These are the supported SQL server data types. For other data types, the CASTing function
might be required.

tinyint
bit
smallint
numeric
bigint
varbinary
float
char
varchar
nvarchar
ntext
timestamp

Why does my connection to SQL Server fail/hang?

Check agent.log for the underlying error as the user interface error does not show the root
cause. Oracle has released Java 6 update 30 (6u30) that behaves differently from JRE 6u29,
causing possible database connection problems for SQL Server database connectors using JDBC
connection. These connection problems can occur with JRE 1.6.0_29 (6u29) and later versions.

Microsoft recommends using JRE 6u30 (and above) instead of JRE 6u29. Apply the "SQL Server
2008 R2 Service Pack 1 Cumulative Update 6" patch to the SQL server if you are experiencing
connection failures or hangs.

How do I define multiple trigger nodes for an XML FlexConnector?

Specify multiple triggers. To do so, specify each trigger node in its own properties file, with one
for each extra event or trigger node.

I have successfully developed a FlexConnector with a connector type daemon but now need
to change the connector type from Syslog daemon to Syslog file. How do I implement this
change?

Frequently Asked Questions Page 239 of 243

https://community.softwaregrp.com/

Use the same properties files in the same location, but remove the agent.properties file
from user/agent. Re-install it as a Syslog File Connector.

Can host names take values with spaces?

No. Host names that include spaces are invalid.

Is there a way to perform a one-time query to get past events?

Yes, set the startatdate parameter in ARCSIGHT_
HOME\current\user\agent\agent.properties file, as follows:

For a time-based FlexConnector:

agents[x].startatdate=01/01/1970 00:00:00

For an ID-based FlexConnector:

agents[x].startatid=0

My database has date and time in two columns. How can I map this to a timestamp?

The two columns will need to be concatenated and possibly converted to strings using SQL
functions so that they can be mapped to a single ArcSight event field.

What does the error “Unable to detect DB version” mean?

This error indicates that the connector property version.query in the configuration file is
invalid, returns no data, or there is a database connection problem.

Are there best practices for writing regular expressions?

Try to be as specific as possible. For example, to parse a string "abc,def,ghi," do not use:

".*,.*,.*" or

".*?,.*?,.*?" or

"\\S+,\\S+,\\S+"

Instead, use:

"[^,]+,[^,]+,[^,]+"

This is because the first examples will cause the pattern matcher to compute all the
possibilities. Of course, if the string is space-separated, S+makes sense.

The .* expression is not recommended. Never use more than one of these in a regular
expression, preferably at the end. A question mark (?) is also not recommended. Never use
more than one.

How do I parse a timestamp in the RFC 5424 format?

Use “T” in the timestamp, which represents the RFC 5424 syslog time format. For example:

Developer's Guide to ArcSight FlexConnectors
Frequently Asked Questions

Frequently Asked Questions Page 240 of 243

2012-01-17:2012-01-17T10:39:32+08:00

with this format

yyyy-MM-dd'T'HH\:mm\:ssZ

Should I include comments in my connector configuration (parser) file?

Yes, comments can be helpful. Use the # sign at the beginning of each comment line to indicate
that it is a comment. You can also include some sample events in your comments that you used
to help you write the parser.

How do I keep track of the contents of device custom string field?

If you are populating deviceCustomString1, fill in deviceCustomSting1Label=_
stringConstant (describe the contents of deviceCustomString1). If a number of bytes go
into deviceCustomString1, then Number of Bytesmust be included in
deviceCustomString1Label.

How can I identify my events?

Add deviceVendor, deviceProduct, deviceVersion to your configuration file.

How do I specify format for a datestamp extracted from a file name?

In agent.properties, add the format after the field your are populating. For example:

agents[0].extractfieldnames=deviceCustomDate1(yyyymmdd)

Can FlexConnectors directly read compressed files (such as .zip)?

Yes.

What can I do if events are not being collected?

If an event or events are not being collected, include do.unparsed.events=true in the
configuration file.

Where can I find errors and messages related to FlexConnector operation?

Examine the agent.log file to look for errors and warnings.

I cannot always find Regex Tool errors. Where do some of the Regex Tool errors appear?

FlexConnector Regex Tool can write errors to the command window where the tool was
launched.

Developer's Guide to ArcSight FlexConnectors
Frequently Asked Questions

Frequently Asked Questions Page 241 of 243

How can I enable debug mode logging for a FlexConnector?

Enabling debug mode logging increases the amount of FlexConnector log information. With
debug mode logging enabled, the agent.log files are created quickly, so limit the amount of
time the FlexConnector is in debug mode to 10 to 15 minutes.

To enable debug mode logging:

1. Add the following two lines to ARCSIGHT_HOME\current\user\agent\agent.properties:
l log.global.debug=true

l log.channel.file.property.package.com.arcsight=0

2. After you complete your troubleshooting, remove the two above lines from the
agent.properties file.

Developer's Guide to ArcSight FlexConnectors
Frequently Asked Questions

Frequently Asked Questions Page 242 of 243

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by
email. If an email client is configured on this computer, click the link above and an email
window opens with the following information in the subject line:

Feedback on Developer's Guide to ArcSight FlexConnectors (FlexConnectors CE 24.1)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail
client, and send your feedback to MFI-Documentation-Feedback@opentext.com.

We appreciate your feedback!

Send Documentation Feedback Page 243 of 243

mailto:MFI-Documentation-Feedback@opentext.com?subject=Feedback on FlexConnectors Developer's Guide to ArcSight FlexConnectors (CE24.1)

	Overview
	FlexConnector Development Process
	Folder Structure
	Key Configuration Files

	Support for IPv6 Addresses
	Supported Event Fields
	Modifications to Operations
	Developer Considerations

	FlexConnector Types
	Event Data Format Examples
	Log File FlexConnector
	ID-Based Database FlexConnector
	JSONFlexConnectors
	Multiple Database FlexConnector
	Regex FlexConnectors (Variable-Format File FlexConnectors)
	Scanner FlexConnector
	Syslog Streaming FlexConnector
	Time-Based Database FlexConnector
	XML File FlexConnector

	Creating a Parser
	Parser Structure
	Example Parser File
	Token Declarations
	Token Types
	Event Mapping
	RequestUrl Event Field
	Operations Table
	Severity Mapping
	Examples

	Extra Processors
	Key-Value Parsers

	Setting Parser Properties
	Parser Properties for a Log File FlexConnector
	Parser Properties for all Regex FlexConnectors
	Parser Properties for a Time-based Database FlexConnector
	Version
	Query
	Timestamp
	UniqueID

	Parser Properties for an ID-based Database FlexConnector
	Version
	MaxID
	Query
	ID
	UniqueID
	Query Limit

	Parser Properties for an XML FlexConnector
	Namespace
	Hop Nodes
	Trigger Nodes
	Token Mappings
	Examples of Token Mappings

	Extra Events

	Parser Properties for a JSON Folder Follower / Multiple Folder Follower FlexC...
	Trigger Node
	Token Location and Mappings
	JSON Parsers for Complex Event Schemas
	Working with Hierarchical Schemas
	Representing a JSON Array with a Key Element
	Representing a Token Value in URI Format
	Sample JSON Array

	Parser Properties for Scanner FlexConnectors
	Scanner FlexConnectors for Normal Text or XML Scan Reports
	How Scanner FlexConnectors Parse Scan Reports
	Parsers for Normal Text Reports
	Getting a List of Hosts
	Ignore or Include Line
	Regular Expression and Token Mappings
	Use IP
	Invalid Vulnerabilities
	Extra Events
	Getting Vulnerabilities for Scanned Hosts

	Token Mappings
	Event Mappings
	Severity Mappings
	Ignore or Include Line
	Getting Open Ports on Scanned Hosts

	Token Mappings
	Event Mappings
	Ignore or Include Line
	Getting OS and Applications (URIs) on Scanned Hosts

	Token Mappings
	Event Mappings
	Ignore or Include Line

	Parsers for XML Reports
	Getting a List of Hosts
	Token Mappings
	Use IP
	Invalid Vulnerabilities
	Extra Events
	Getting Vulnerabilities for Scanned Hosts

	Token Mappings
	Event Mappings
	Severity Mappings
	Getting Open Ports on Scanned Hosts

	Token Mappings
	Event Mappings
	Getting OS and Applications (URIs) on Scanned Hosts

	Token Mappings
	Event Mappings

	Scanner FlexConnectors for Database Scan Reports
	Getting the Version of the Database
	Version
	Getting the List of Scan Jobs

	Scan Job
	Use IP
	Invalid Vulnerabilities
	Extra Queries
	Vulnerability Query
	Open Ports Query
	Getting OS and Applications (URIs) on Scanned Hosts
	Getting Scanned Hosts (Host Query)

	Installing and Configuring the FlexConnector
	Management of FlexConnectors
	Prerequisites for the Installation
	Downloading the Database Driver
	JDBC Driver for Microsoft SQL Server
	JDBC Driver for MySQL
	JDBC Driver for PostgreSQL
	JDBC Driver for Oracle
	DB2 Driver for IBM DB2

	Installing the Core Software
	Copying the Created Parsers
	Setting the Global Parameters
	Selecting and Configuring the FlexConnector
	ArcSight FlexConnector File
	ArcSight FlexConnector ID-Based Database
	ArcSight FlexConnector Time-Based Database
	ArcSight FlexConnector JSON Multiple Folder Follower
	ArcSight FlexConnector Multiple Database
	ArcSight FlexConnector Multiple Folder File
	ArcSight FlexConnector Regex File
	ArcSight FlexConnector Regex Folder File
	ArcSight FlexConnector REST
	ArcSight FlexConnector Scanner Database
	ArcSight FlexConnector Scanner Text Reports
	ArcSight FlexConnector Scanner XML Reports
	ArcSight FlexConnector XML File
	ArcSight FlexConnector Syslog

	Adding the Destination Details
	Completing the Installation
	Adding JDBC Driver to the Connector Appliance/ArcSight Management Center

	Running the FlexConnector
	Advanced Functions of FlexConnectors
	Advanced FlexConnector Configuration Parameters
	Parameters Common to all SmartConnectors
	CEF Syslog Parameters
	File Connector Parameters
	File Folder Follower Parameters
	Syslog Parameters
	Syslog Daemon Parameters
	Event Parsing (Sub-agents) Parameters
	Event Reception Parameters
	Raw Log Parameters
	Event Queue Parameters
	Event Processing Parameters

	Syslog Pipe Parameters
	Syslog File Parameters
	Syslog NG Daemon Parameters
	Raw Syslog Daemon Parameters
	ArcSight CEF Encrypted Syslog (UDP) Parameters
	TippingPoint SMS Syslog Extended Parameters

	FlexConnector Creation Wizard for Delimited Log Files
	Managing Rotation of Log Files
	Name Following Log Rotation
	Daily Rotation
	Index Rotation
	Parameters for Daily and Index Rotation
	Using rotationschemeparams for Daily Log File Rotation
	Using rotationschemeparams for Index Log File Rotation
	Using wildcard for Daily and Index Log File Rotation (File Folder Follower Only)
	Using wildcard for Date Rotation
	Using wildcard for Index Rotation

	Detecting File Processing Latency
	Categorizing Events
	HTTP Status Code Categorization Example
	Firewall Example

	Merging Events
	Parser Properties for the Merge Operation
	Example of Merging Events
	Sample Log Lines
	Merge Operation Definition
	Event Mapping Definition
	Merged Event

	Additional Information and Functions of Regex FlexConnectors
	Supported Regular Expressions
	Multi-line Parsing

	Using the Regex Tool
	Using Sub-Messages for Multiple File Formats
	Default Sub-message
	Extra Mappings
	Conditional Mappings
	Using Conditional Mapping in Sub-messages
	Additional Data Mapping
	Using the Get Additional Data Names Command
	Using the Map Additional Data Name… Command
	Using the Unmap Additional Data Name… Command
	Using the Get Status Command

	Detecting Unparsed Events
	Supported Parser Types
	Criteria for Parsing Events
	Comment Expressions
	Parsing Expressions
	Token Expressions
	Mapping Expressions
	Extra-Processor Expressions

	Criteria for Unparsed Events
	Unparsed Events Output File

	Additional Parser Settings
	ArcSight Built-in Tokens
	ArcSight Built-in Token Types
	ArcSight Built-in Event Field Mappings
	ArcSight Operations
	Date and Time Format Symbols

	Working with Map Files
	What Are Map Files?
	Map File Examples
	Multiple Getters and Setters
	Using the “No Getter” Trick

	Map File Details
	Controlling Map File Operation
	Basic Map Files
	AgentInfoAdder1 Map Files
	Categorizer Map Files
	Extra Processor Map Files

	Using Ranges in Map Files
	Using Regular Expressions in Map Files
	Using Parser-Like Expressions in Map Files
	More About Parser-Like Expressions Syntax
	Operations Containing Commas
	Backslashes in Expressions Versus in Parsers

	Real-world Examples
	Adding Country Names to Events
	Getting Domain Name from Hostname

	Appendix
	Configuring a Connector for ArcSight ESM Domain Field Sets
	Developing Custom Parsers for Syslog SmartConnectors
	Developing an XML FlexConnector
	XML FlexConnector Development
	XML Tools
	XML Concepts for FlexConnector Development
	General XML Concepts
	XML FlexConnector Concepts
	Namespace
	Hop Nodes
	Trigger Nodes
	Token Mappings
	Extra Events
	Examples of Token Mappings

	Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens
	Find the Trigger Node - the Most Important Step
	Decide if You Need a Namespace
	Identify Hop Nodes
	Identify Tokens

	Create the XML FlexConnector Parser
	Parser Development - First Several Lines
	Parser Development Continued - Tokens
	Parser Development Continued - Mappings
	Categorization
	Copy the Parser Into the Folder

	Install the FlexConnector

	Troubleshooting Duplicate Events
	Example 1: ID-based Database Connectors Only
	Example 2: ID-based and Time-based Connectors
	Example 3: Complex Main Query with a Join

	Frequently Asked Questions
	Send Documentation Feedback

