
ChangeMan ZMF

Db2 Option Getting Started Guide

8.3

© Copyright 2023 Micro Focus or one of its affiliates

ChangeMan ZMF

Table of Contents

5About this Guide

5Guide to ChangeMan ZMF Documentation

9Choosing the Right Installation/Upgrade Manual

10Online Help

10Typographical Conventions

12Introduction

12Introduction

12ChangeMan ZMF Db2 Option

13Db2 Option Concepts

18Db2 Option and Component Management

23Configuring the Db2 Option

23Configuring the Db2 Option

23Overview

25Apply a Db2 Option License

26Bind Db2 Plan and Package and Grant access

27Update Global Administration

32Update Application Administration

37Configure Db2 Option Global Administration

62Define Application Logical Subsystems

83Customize Skeletons for Db2

85Installation in Other Db2 Subsystems

86DB2 Component Processing

86Db2 Component Processing

86Library Types and Sub Types

89CREATE versus ALTER

90Component Processing Summary

104Native SQL SP Lifecycle

104Native SQL SP Lifecycle

104Checkin/Stage

107Promote

Table of Contents

Table of Contents 2

108Demote

109Install

110Backout

111Skeleton changes (overview)

112Templating Examples

112Templating Examples

112Templated BIND Command Parameters

113Templated DDL/SQL

113Templating Examples

116BIND PLAN Example

121BIND PACKAGE Example

126General token templates

140CMNDB2PL - BIND Utility

140CMNDB2PL - BIND Utility

140Introduction

141CMNDB2PL DD Statements

142CMNDB2PL Operation

144Keyword Control Statements

150How CMNDB2PL Relates to ChangeMan ZMF

151CMNDB2PL Return Codes and Messages

152Sample CMNDB2PL Report

154Secondary Binding

155Stored Procedure Utilities

155Stored Procedure Utilities

155Introduction

156CMNDB2AV

158CMNDB2DQ

159CMNDB2DD

165CMNDB2SL

167CMNDB2TR

168CMNDB2DR

Table of Contents

Table of Contents 3

172Stored Procedure Walkthrough

181Bind Service Support

181Bind Service Support

181Installation and Configuration

189Process Overview

199Db2 Option User Exits

199Db2 Option User Exits

199CMNEX101 Bind Control Statement Processor

203CMNEX103 Bind Control Statement Triage

204CMNDB2DD - HLL exit

209ISPF Tables and Variables

209ISPF Tables and Variables

209ISPF Tables and Variables

213Single Entry Control Variables

215Transaction Codes

215Transaction Codes

215Detailed Job List

220Miscellaneous Transactions - at Either Site

222Examples

222Examples

222Native SQL SP Versions and Bind Deploy

238Support Use of zFS File Type for SP Components

242Glossary

243Legal Notice

243Third-Party Notices

243Specific notices

Table of Contents

Table of Contents 4

1. About this Guide

The ChangeMan ZMF Db2 Option Getting Started Guide provides instructions for installing and

using the Db2 Option of ChangeMan ZMF to manage changes to application Db2 components.

This document is intended for ChangeMan ZMF installers, administrators, and Db2 data base

administrators.

Before You Begin
See the Readme for the latest updates and corrections for this manual.

Navigating this Book

Chapter 1 - Contains information about this manual.

Chapters 2-3 describe the concepts behind the Db2 Option and how to install and configure it

to meet your needs.

Chapters 4-6 describe ChangeMan ZMF processing of Db2 components.

Chapters 7-8 and Appendixes A-C provide information about the components in the Db2

Option so you can customize the option to fit your needs.

Chapter 9 describes additional bind processing required for native Db2 REST services.

Appendix D discusses examples with templates and Native SQL Stored Procedures(SP).

Guide to ChangeMan ZMF Documentation

The following sections provide basic information about ChangeMan ZMF documentation.

• •

• •

• •

• •

• •

• •

1. About this Guide

1. About this Guide 5

ChangeMan ZMF Documentation Suite

Manual Description

Administrator's Guide Describes ChangeMan ZMF features and functions with

instructions for choosing options and configuring global and

application administration parameters.

Customization Guide Provides information about ChangeMan ZMF skeletons,

exits, and utility programs that will help you to customize the

base product to fit your needs.

Db2 Option Getting

Started Guide

Describes how to install and use the Db2 Option of

ChangeMan ZMF to manage changes to Db2 components.

ERO Concepts Discusses the concepts of the Enterprise Release Option

(ERO) of ChangeMan ZMF for managing

releases containing

change packages.

ERO Getting Started

Guide

Explains how to install and use ChangeMan ZMF ERO to

manage releases containing change packages.

ERO Messages Describes system messages and codes produced by

ChangeMan ZMF ERO.

ERO XML Services User’s

Guide

Documents ERO functions and services available for general

customer use. These services are also known as the "green"

services and provide mostly search and query functions.

High-Level Language

Exits Getting Started

Guide

Explains how to configure and call the high-level language

exits.

IMS Option Getting

Started Guide

Provides instructions for implementing and using the IMS™

Option of ChangeMan ZMF to manage changes to IMS

components.

INFO Option Getting

Started Guide

Describes two methods by which ChangeMan ZMF can

communicate with other applications: Through a VSAM

interface file and through the Tivoli® Information

Management for z/OS product from IBM®.

Installation Guide Provides step-by-step instructions for initial installation of

ChangeMan ZMF. Assumes that no prior version is installed

or that the installation will overlay the existing version.

ChangeMan ZMF Documentation Suite

ChangeMan ZMF Documentation Suite 6

Manual Description

Java / zFS Getting

Started Guide

Provides information about using ZMF to manage

application components stored in USS file systems,

especially Java® application components.

Load Balancing Option

Getting Started Guide

Explains how to install and use the Load Balancing Option of

ChangeMan ZMF to connect to a ZMF instance from another

CPU or MVS™ image.

M+R Getting Started

Guide

Explains how to install and use the M+R Option of

ChangeMan ZMF to consolidate multiple versions of source

code and other text components.

M+R Quick Reference Provides a summary of M+R Option commands in a handy

pamphlet format.

Messages Explains messages issued by ChangeMan ZMF, SERNET, and

System Software Manager (SSM) used for the Staging

Versions feature of ZMF.

Migration Guide Gives guidance for upgrading ChangeMan ZMF from

versions 7.x and 8.x to version 8.2 Patch 6.

Online Forms Manager

(OFM) Option Getting

Started Guide

Explains how to install and use the OFM option of

ChangeMan ZMF.

REST Services Getting

Started Guide

Getting Started Guide for ZMF REST Services.

SER10TY User's Guide Gives instructions for applying licenses to enable

ChangeMan ZMF and its selectable options.

User's Guide Describes how to use ChangeMan ZMF features and

functions to manage changes to application components.

XML Services User's

Guide

Documents the most commonly used features of the XML

Services application programming interface to ChangeMan

ZMF.

ZMF Quick Reference Provides a summary of the commands you use to perform

the major functions in the ChangeMan ZMF package life

cycle.

ChangeMan ZMF Documentation Suite

ChangeMan ZMF Documentation Suite 7

Using the Manuals
Use Adobe® Reader® to view ChangeMan ZMF PDF files. Download the Reader for free at

get.adobe.com/reader/.

This section highlights some of the main Reader features. For more detailed information, see the

Adobe Reader online help system.

The PDF manuals include the following features:

Bookmarks. All of the manuals contain predefined bookmarks that make it easy for you to

quickly jump to a specific topic. By default, the bookmarks appear to the left of each online

manual.

Links. Cross-reference links within a manual enable you to jump to other sections within the

manual with a single mouse click. These links appear in blue.

Comments. All PDF documentation files that Serena delivers with ChangeMan ZMF have

enabled commenting with Adobe Reader. Adobe Reader version 7 and higher has commenting

features that enable you to post comments to and modify the contents of PDF documents.

You access these features through the Comments item on the menu bar of the Adobe Reader.

Printing. While viewing a manual, you can print the current page, a range of pages, or the entire

manual.

Advanced search. Starting with version 6, Adobe Reader includes an advanced search feature

that enables you to search across multiple PDF files in a specified directory.

Searching the ChangeMan ZMF Documentation Suite
There is no cross-book index for the ChangeMan ZMF documentation suite. You can use the

Advanced Search facility in Adobe Acrobat Reader to search the entire ZMF book set for

information that you want. The following steps require Adobe Reader 6 or higher.

Download the ZMF All Documents Bundle ZIP file and the ZMF Readme to your workstation

from the My Downloads tab on the Serena Support website.

Unzip the PDF files in the ZMF All Documents Bundle into an empty folder. Add the ZMF

Readme to the folder.

In Adobe Reader, select Edit | Advanced Search (or press Shift+Ctrl+F).

Manual Description

ZMF Web Services User's

Guide

Documents the Web Services application programming

interface to ChangeMan ZMF.

• •

• •

• •

• •

• •

1. 1.

2. 2.

3. 3.

Using the Manuals

Using the Manuals 8

Select the All PDF Documents in option and use Browse for Location in the drop down menu

to select the folder containing the ZMF documentation suite.

In the text box, enter the word or phrase that you want to find.

Optionally, select one or more of the additional search options, such as Whole words only and

Case-Sensitive.

Click Search.

In the Results, expand a listed document to see all occurrences of the search argument in that

PDF.

Click on any listed occurrence to open the PDF document to the found word or phrase.

Choosing the Right Installation/Upgrade Manual

Choose the manual that fits your situation when installing or upgrading ChangeMan ZMF.

ChangeMan ZMF Release Notes
High-level descriptions of the enhancements that are delivered in the ChangeMan ZMF 8.2 major

version release and in all subsequent ZMF 8.2.x maintenance and patch releases are included in

the "Features and Fixes" section of the latest ChangeMan ZMF 8.2 Patch 6 Readme.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

Your task Manual to use

Installing ChangeMan ZMF for the first time ChangeMan ZMF Installation Guide

Building a new ChangeMan ZMF 8.2 Patch 6

instance from scratch

ChangeMan ZMF Installation Guide

Upgrading from ChangeMan ZMF 7.x or 8.x to

version 8.2 Patch 6

ChangeMan ZMF Migration Guide

(this manual)

Always see the most current Readme for your ChangeMan ZMF release in case it contains

documentation updates for the installation/upgrade manual you use.

Important

Choosing the Right Installation/Upgrade Manual

Choosing the Right Installation/Upgrade Manual 9

Online Help

Online help is the primary source of information about ChangeMan ZMF. Online help is available as

a tutorial, through help panels, and in ISPF error messages.

Online tutorial
ChangeMan ZMF includes an online tutorial that provides information about features and

operations, from high-level descriptions of concepts to detailed descriptions of panel fields.

To view the tutorial table of contents, select option T from the Primary Option Menu, or jump to it

from anywhere in ChangeMan ZMF by typing =T and pressing ENTER.

Press PF1 from anywhere in the Tutorial for a complete list of Tutorial navigation commands and

PF keys.

Online Help Panels
If you have questions about how a ChangeMan ZMF panel works, you can view a help panel by

pressing PF1 from anywhere on the panel.

Online Error Messages
If you make an invalid entry on a ChangeMan ZMF panel, or if you make an invalid request for a

function, a short error message is displayed in the upper right corner of the panel.

Press PF1 to display a longer error message that provides details about the error condition.

Remember that the long message does not display automatically. Request the long message by

pressing PF1.

Typographical Conventions

The following typographical conventions are used in the online manuals and online help. These

typographical conventions are used to assist you when using the documentation; they are not

meant to contradict or change any standard use of typographical conventions in the various

product components or the host operating system.

Convention Explanation

italics Introduces new terms that you may not be familiar with and occasionally

indicates emphasis.

Online Help

Online Help 10

Convention Explanation

bold Indicates panel titles, field names, and emphasizes important

information.

UPPERCASE Indicates keys or key combinations that you can use. For example, press

ENTER.

monospace Indicates syntax examples, values that you specify, or results that you

receive.

monospace

italics

Indicates names that are placeholders for values you specify; for

example, filename .

monospace bold Indicates the results of an executed command.

vertical rule Separates menus and their associated commands. For example, select

File

IBM® Sterling Connect:Direct® is a point-to-point file transfer software product that can be

used to transfer files between two ChangeMan ZMF instances. The original name of the

product was Network Data Mover (NDM). The NDM mnemonic persists, embedded in

Connect:Direct and ChangeMan ZMF component names, options, and JCL examples.

Note

Typographical Conventions

Typographical Conventions 11

2. Introduction

This chapter introduces you to the Db2 Option of ChangeMan ZMF.

ChangeMan ZMF Db2 Option

Db2 Option Concepts

Db2 Option and Component Management

ChangeMan ZMF Db2 Option

The Db2 Option of ChangeMan ZMF consists of proprietary programs, ISPF skeletons, and

additional ChangeMan ZMF administration parameters that let you:

Manage Db2 components and objects with automated Software Change Management (SCM)

processes in the change package lifecycle employed by ChangeMan ZMF.

Automatically perform Db2 binds in local and remote Db2 test subsystems when you promote

and demote application components.

Automatically perform binds in production environments when you install or back out

packages that contain Db2 components.

Automate the processes required to implement stored procedures during promote, demote,

Install, and back out.

Automate the processes required to implement user defined functions and triggers during

promote, demote, install, and back out.

Introduction

• •

• •

• •

• •

• •

• •

• •

• •

Db2 is not compatible with reusable ASIDs in z/OS. You should not use the z/OS START

command parameter REUSASID=YES to start a ZMF instance that includes the Db2 Option.

Note

2. Introduction

2. Introduction 12

Db2 Option Not Compatible with Reusable ASIDs
The Db2 Option of ChangeMan ZMF calls Db2, which is not compatible with reusable ASIDs, so the

Db2 Option is not compatible with reusable ASIDs. If you use z/OS START command parameter

REUSASID=YES to start a ZMF instance where the Db2 Option is licensed, the Db2 Option will not

work as expected.

To use the Db2 Option, restart the ZMF instance without the REUSASID=YES parameter in the

START command. See the Knowledgebase Solution S141854 for more information.

Db2 Option Concepts

This section defines terms and concepts used by the ChangeMan ZMF Db2 Option.

Core Db2 Option
The original support provided by the ZMF Db2 option addresses the automation of plan and

package binds throughout the lifecycle. In more recent years, support for additional objects and

processes has been introduced. This additional support requires the creation of a number of

infrastructure items (Db2 option tables etc.) and the binding of a wider range of ZMF supplied

packages. If you do not want to use this additional support, you do not need to put in place the

extra infrastructure items that it requires. You can choose to keep your overhead low and

concentrate on the original ‘core’ Db2 option support. In this section, the term ‘Core ZMF Db2

option support’ or, simply, ‘core support’ refers to the automation of program package and plan

binds (through the use of program CMNDB2PL and supporting admin).

Physical and Logical SubSystem
In the ChangeMan ZMF Db2 Option, the Db2 subsystems where test and production Db2

components run are identified as physical subsystems. Each Db2 Option physical subsystem is

associated with a local or remote site.

If you have enough Db2 resources, you can have a separate Db2 subsystem for production and for

every test environment. Every program can be bound under the same plan name and package

collection ID in each Db2 subsystem without conflict.

Most ChangeMan ZMF user sites, however, use the same Db2 subsystem for several test

environments. Some user sites use a single Db2 subsystem for production and test. Where the

same program is run in multiple environments in the same Db2 subsystem, it must be bound under

different package collection IDs and plan names to avoid conflict.

Qualifier and bind owner may also be different for the different uses of the program. The same

stored procedures can be registered in the Db2 catalog under different schemas.

Db2 Option Not Compatible with Reusable ASIDs

Db2 Option Not Compatible with Reusable ASIDs 13

http://knowledgebase.serena.com/InfoCenter/index?page=content&id=S141854

The ChangeMan ZMF Db2 Option partitions a physical Db2 subsystem with logical subsystems. A

logical subsystem is a set of rules for changing plan names, package location, package collection

ID, qualifier, bind owner, schema, and WLM environments to provide unique entries in the Db2

catalog. A logical subsystem also includes rules for managing stored procedures and triggers, as

well as what to do in promotion when a bind fails.

Logical subsystems are assigned a name, which is sometimes called a nickname. Each logical

subsystem is associated with a single physical subsystem.

Recent enhancements address the requirements of a modern Native SQL development lifecycle

such as when initiated via IBM ® Data Studio (although IBM Data Studio is not a pre-requisite, the

same Native SQL code can be hand written directly via an ISPF edit session).

Active Libraries
Automated Db2 Option functions are activated when libraries managed by ChangeMan ZMF are

changed in promotion and production environments. These libraries are defined as active libraries

in the Db2 Option. Each active library is associated with a logical subsystem. When the contents of

an active library are changed, Db2 Option functions are invoked and executed according to the

rules defined in the logical subsystem.

Bind Active Libraries
When a Db2 program is changed, or when the BIND command that references a DBRM is changed,

the DBRM for that program must be bound in the Db2 subsystem where the program is executed.

DBRM libraries and libraries containing BIND command members are defined as BIND active

libraries to trigger Db2 binds at promote, demote, install, and backout.

SQL Active Libraries
When a stored procedure, user-defined function, or trigger is added or changed, SQL must be

processed to create or change the definition in the Db2 catalog. Stored procedures may be stopped

and started to activate changes. When a database trigger is changed, it may be necessary to

recreate other triggers to maintain the original firing order. This special processing is invoked by

defining certain libraries as SQL active libraries. Promotion and production libraries that contain

stored procedures, triggers, and user-defined functions are defined as SQL active libraries.

Bind Service Active Libraries
Copying into a Bind service active library causes ChangeMan to drive the process required to define

a Db2 RESTful service at the appropriate Db2 subsystem(s).

Active Libraries

Active Libraries 14

Db2 Library Subtypes
Db2 library subtypes invoke special processing for Db2 components. There is a discussion with

more information in the Define Global Db2 Library Subtypes section under Configuring the Db2

Option.

Templates
In the ChangeMan ZMF Db2 Option, you create transformation rules to express the difference

between BIND commands (etc.) executed in various environments such as production and test.

When you promote, demote, install, or back out a Db2 program, the Db2 Option applies these

transformation rules to model BIND commands in staging or baseline libraries to create BIND

commands suitable for the target environment. The binds (etc.) are then performed automatically.

Bind service definitions are also templated in a similar way, though using a different process to

plans and packages.

Transformation rules can also be defined for parameters in DDL for stored procedures, triggers,

and user-defined functions. When you promote, demote, install, or back out a Db2 stored

procedure, trigger, or user-defined function, the Db2 Option applies the transformation rules to

model DDL statements in staging or baseline libraries to generate SQL suitable for the target

environment. The modified DDL are then actioned automatically.

There are two types of template definitions, named field templates and general token templates.

The former are applied to a set of commonly templated bind/DDL parameters and are described in

this section. The latter are more general and allow you to search for a parameter keyword before

applying a template to the values on that general keyword. General token templating is described

more fully in the Define Application Logical Subsystems section.

Transformation rules are defined in templates in the ChangeMan ZMF Db2 Option. You define a set

of templates for each Db2 Option logical subsystem.

The model BIND commands and DDL to which these templates are applied are often the BIND

commands and SQL you use in one of your production environments. If you use these production

components for your models, the templates are empty for the logical subsystem corresponding to

the production environment.

You can modify the following parameters in a BIND command by using templating:

PLAN Name

PACKAGE Location

PACKAGE Name/Collection ID

Owner

Qualifier

• •

• •

• •

• •

• •

Db2 Library Subtypes

Db2 Library Subtypes 15

If the owner or qualifier parameters are missing from the BIND command, you can insert these

parameters by coding Insert values in the logical subsystem definition. Insert values are applied

during templating when owner and qualifier are missing from the BIND command and the following

CMNDB2PL control cards are present: AUTHORITY=OWNER,INSERT and INSERTQUAL.

You can modify the following parameters in the DDL for stored procedures, triggers, and user

defined functions by using templating:

Schema

Collection ID

Qualifier

WLM environment

Owner

The following parameters can be templated directly in bind service definitions:

Collection ID

Qualifier

Owner

The template algorithms are Insert, Deploy, Search and Replace, and Positional Character

Replacement.

Insert
Insert applies only to BIND templates owner and qualifier. If these keywords are missing from a

BIND command, and control statement parameters AUTHORITY=OWNER,INSERT Db2 Option

Concepts

and INSERTQUAL are input to the Plan Lookup program CMNDB2PL, the values specified in the

logical subsystem template are added to the BIND command.

Deploy
Deploy applies only to SQL templates LOCATION, owner and qualifier. They are used if the

BIND DEPLOY mechanism is chosen for Native SQL stored procedures. The 'DEPLOY Location' is

used to route the execution of the bind deploy command from the target Db2 subsystem back to

the source Db2 subsystem for the deployment. OWNER and QUALIFIER may be specified on the

bind deploy command itself and the values for these will be templated as normal. However, if the

template process does not result in a nonblank value then anything specified in the DEPLOY

templates for these parameters will be used instead.

• •

• •

• •

• •

• •

• •

• •

• •

Templates

Templates 16

Search and Replace
BIND command parameters and DDL parameters are searched for a value specified in the logical

subsystem template. If the string is located, it is replaced by another value specified in the

template.

Positional Character Replacement
The character in a particular position of a BIND command parameter or DDL parameter is replaced

with a character specified in the logical subsystem template. Specified characters can be also be

added at the end of BIND command parameters or DDL parameter.

Templates And Change Management
Validated templates are essential to software change management for BIND commands or DDL

because you cannot test these components in a production environment. Validated templates

provide an automated transformation for these components that ensures that if they work for

promotion (test), they will also be valid for production.

Plan/package Lookup
Plan/package Lookup program CMNDB2PL is included in batch jobs that promote, demote, install,

or back out change packages that contain Db2 programs. The Plan/package Lookup program

performs two functions:

Finds the Db2 plans and packages that contain the DBRM staged in the change package and

locates the PDS members that contain BIND commands to bind the DBRM.

Applies templates to the BIND commands to transform them for use in the target Db2

environment.

The Plan/package Lookup program searches the Db2 SYSPACKAGE and SYSDBRM tables to find

packages and plans where the DBRM in the change package was bound previously. The program

then looks in staging libraries for the members that contain BIND commands for the list of plans

and packages. If the BIND command members are not in staging libraries, then the Plan Lookup

program looks in promotion and baseline libraries, in that order.

See the CMNDB2PL - BIND Utility section for a more detailed description of how the Plan/package

Lookup program works and the control statements that can alter its behavior.

BIND Fail
When you install a Db2 component into your production environment, you want the install process

to fail if the Db2 binds fail.

However, the same may not be true for your test environments. You can set a parameter in each

logical subsystem to allow the promotion process to complete successfully even if the Db2 bind

jobs fail.

• •

• •

Templates And Change Management

Templates And Change Management 17

Db2 Option and Component Management

The Db2 Option of ChangeMan ZMF manages Db2 components through a rules-based life cycle for

development, test, and install that ensures component and application integrity. The Db2 Option

automates two classes of functions for Db2 components:

Db2 binds

Db2 object management for stored procedures, triggers, and user defined functions.

Bind Processing
The ChangeMan ZMF Db2 Option binds the DBRM for programs in change packages when the

component is promoted or demoted, and when the package is installed or backed out.

Features of automated bind processing:

The Db2 catalog is searched for plans and packages that reference staged DBRM, and those

plans and packages are bound.

Parameters in BIND PLAN and BIND PACKAGE commands in staging libraries or baseline

libraries can be modified according to fixed rules to adapt the BIND commands to the Db2

subsystems used for test and production.

Stored Procedure Processing
Stored procedures are user-written application programs that can be called by SQL programs that

run either locally or remotely on any platform supported by the IBM® Db2® UDB network. The Db2

Option of ChangeMan ZMF supports external stored procedures, external SQL stored procedures,

and native SQL stored procedures.

External Stored Procedures
These are programs coded in a traditional host language like assembler, COBOL, PL/I, C or C++, or

REXX.

Db2 Option and Component Management

• •

• •

ChangeMan ZMF programs in the Db2 Option assume that BIND commands and DDL for stored

procedures, triggers, and user-defined functions are syntactically correct. BIND commands that

are input to program CMNDB2PL are parsed with IBM service routine IKJPARS to ensure that

CMNDB2PL processing is synchronized with IBM changes to BIND keyword operands.

Important

• •

• •

Db2 Option and Component Management

Db2 Option and Component Management 18

These component types are involved in managing external stored procedures:

Stored procedure source

Stored procedure Load

DBRM

Link edit control statements

DSN BIND command

Non-SQL stored procedure DDL (CREATE PROCEDURE)

External stored procedures are staged as like-source components. The source is processed by

the Db2 precompiler to create a DBRM, then compiled, prelinked (for some languages), and

link edited to create an executable load.

For a new external stored procedure, a link control member is staged to include required Db2

subroutines in the stored procedure load module. A BIND command member is staged to bind

the DBRM at promotion and install. A CREATE PROCEDURE DDL is staged to define the stored

procedure in the Db2 subsystem at promotion and install.

At promotion and install, the BIND command and CREATE PROCEDURE DDL are templated to

adapt them to the target Db2 subsystem. The DBRM for the stored procedure is bound in the

target Db2 subsystem. A DROP PROCEDURE is automatically issued, then the CREATE

PROCEDURE DDL is executed to register the stored procedure in the Db2 catalog.

The stored procedure load module is copied to the target execution library. The VARY

WLM,APPLENV=envname,REFRESH command is automatically issued to refresh the stored

procedure executable in the WLM-managed address space.

The external stored procedure source, the BIND command, and the CREATE PROCEDURE DDL

can be staged separately to make changes to the external stored procedure after the initial

installation.

External SQL Stored Procedures
External SQL stored procedures combine procedural code written in SQL with the CREATE

PROCEDURE DDL that define the procedure in the Db2 subsystem. External SQL stored procedures

are either hand coded or are generated by programs like the Db2 Data Studio which executes on a

client platform such as Windows® and forms part of the Db2 Connect.

These component types are involved in managing SQL stored procedures:

Stored procedure source

Stored procedure Load

DBRM

Link edit control statements

DSN BIND command

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Stored Procedure Processing

Stored Procedure Processing 19

An SQL language stored procedure is staged as a like-source component. The entire

component, including the CREATE PROCEDURE DDL and SQL procedural code, is translated by

the Db2 precompiler into C code. The C code is then processed like a traditional external

stored procedure module through the Db2 precompiler to create a DBRM, then compiled,

prelinked, and link edited to create an executable load.

For a new SQL stored procedure, a BIND command member is staged to bind the DBRM at

promotion and install.

At promotion and install, the BIND command is templated to adapt it to the target Db2

subsystem. The DBRM for the stored procedure is bound in the target Db2 subsystem. The

SQL language stored procedure source is processed to extract the CREATE

PROCEDURE DDL. A DROP PROCEDURE is automatically issued, then the CREATE

PROCEDURE DDL is executed to register the stored procedure in the Db2 catalog. The VARY

WLM,APPLENV=envname,REFRESH command is automatically issued to refresh the stored

procedure executable in the WLM-managed address space.

The SQL language stored procedure source and the BIND command can be staged separately

to make changes to the stored procedure after the initial installation.

Native SQL Stored Procedures
A Native SQL stored procedure is one in which the DDL, the procedural logic, and the SQL

statements are contained in a single component. Db2 builds and schedules the executable

internally and no other input is required to define this object. A Native SQL stored procedure is

staged as a like-PDS component. There is no transformation at stage, and no other component

types are required. At promotion and install, the DDL is templated to adapt it to the target Db2

subsystem. Propagation to the target Db2 subsystem is via one of DROP/CREATE, ALTER ADD

VERSION, or BIND PACKAGE DEPLOY mechanisms. Facilities are in place within the ZMF Db2

option to automate all of these deployment mechanisms.

User-Defined Functions
A user-defined function (UDF) is defined to Db2 with the CREATE FUNCTION statement and can be

referenced thereafter in SQL statements. User-defined functions can be used in place of or in

addition to built-in functions. There are two major categories of UDFs: sourced and external.

Sourced User-Defined Functions
Sourced user-defined functions are composed of existing built-in functions and previously defined

user-defined functions. The definition of a sourced UDF is made entirely within a CREATE

FUNCTION statement.

A sourced user-defined function is staged as a like-PDS component. No other components are

required.

User-Defined Functions

User-Defined Functions 20

At promotion and install, the CREATE FUNCTION statement is templated to adapt it to the target

Db2 subsystem. A DROP FUNCTION is automatically issued, then the CREATE FUNCTION

statement is executed to define the sourced UDF in the Db2 subsystem.

External User-Defined Functions
External user-defined functions are implemented by means of an externally written program and

are managed in the Db2 Option like an external stored procedure.

These component types are involved in managing external user defined functions:

Stored procedure source

Stored procedure Load

Db2 Option and Component Management

DBRM

Link edit control statements

DSN BIND command

Non-SQL stored procedure definition (CREATE PROCEDURE)

External UDFs are staged as like-source components. If the source contains imbedded SQL,

the source is processed by the Db2 precompiler to create a DBRM. The source is compiled,

prelinked (for some languages), and link edited to create an executable load.

For a new external UDF, a link control member is staged to include required Db2 subroutines in

the stored procedure load module. If the source contains imbedded SQL, A BIND command

member is staged to bind the DBRM at promotion and install. A CREATE FUNCTION statement

is staged to define the UDF in the Db2 subsystem at promotion and install.

At promotion and install, the BIND command and CREATE FUNCTION statement are templated

to adapt them to the target Db2 subsystem. The DBRM for the UDF is bound in the target Db2

subsystem. A DROP FUNCTION is automatically issued, then the CREATE FUNCTION

statement is executed to register the UDF in the Db2 catalog. The UDF load module is copied

to the target execution library, and a VARY WLM,APPLENV=envname, REFRESH command is

automatically issued to refresh the UDF executable in the WLMmanaged address space.

The external user defined function source, the BIND command, and the CREATE

FUNCTION statement can be staged separately to make changes to the external UDF after the

initial installation.

• •

• •

• •

• •

• •

• •

User-Defined Functions

User-Defined Functions 21

Database Triggers
A trigger is a set of SQL statements that is stored in a Db2 database and executed when a certain

event occurs in a Db2 table.

A trigger definition is staged as like-PDS. Trigger definitions are not transformed at stage, and no

other component types are required.

At promotion and install, the CREATE TRIGGER statement is templated to adapt it to the target Db2

subsystem. A DROP TRIGGER is automatically issued. Then the CREATE TRIGGER statement is

executed to define the trigger.

The Db2 Option looks in the Db2 catalog to see if there are multiple triggers for the same table/

event/time combination. Multiple triggers can be recreated in an order defined by the contents of

the COMMENT ON field in the CREATE TRIGGER SQL to maintain the desired trigger firing order.

Triggers are defined in CREATE TRIGGER SQL statements only. There is no external equivalent.

Db2 Object Dependency Report
The Db2 Object Dependency report is a batch report that analyzes stored procedures and user-

defined functions for dependencies that will interfere with the automatic DROP that is issued

before a CREATE is executed at promote, demote, install, or backout.

Database Triggers

Database Triggers 22

3. Configuring the Db2 Option

This chapter tells you how to set up ChangeMan ZMF and the Db2 Option to manage Db2 objects

and application components that use Db2.

Overview

Apply a Db2 Option License

Bind Db2 Plan and Package and Grant access

Update Global Administration

Update Application Administration

Configure Db2 Option Application Administration

Customize Skeletons for Db2

Installation in Other Db2 Subsystems

Overview

If you are installing ChangeMan ZMF for the first time, you can defer configuring the Db2 Option

until later, after your DBA and application developers have agreed on how they want to manage Db2

components with ChangeMan ZMF. The configuration described in this chapter does not play any

part in the processing of non-Db2 components through the ChangeMan ZMF package life cycle.

The following table appears throughout this book to tell you how to define Db2 objects and

application components that use Db2. The table also shows you how the definitions relate to other

definitions.

Configuring the Db2 Option

• •

• •

• •

• •

• •

• •

• •

• •

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

Db2 Application

Program Source

S Db2

Program

Load

Db2 Application

Program Load

L B

DBRM P D R B

3. Configuring the Db2 Option

3. Configuring the Db2 Option 23

* Db2 Active Library specification for BIND plan/pkg (B), Process SQL (S), and Bind Service (V).

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

BIND PLAN

Command

P D B B

BIND PACKAGE

Command

P D P B

External Stored

Procedure Source

S Stored

Procedure

Load

External SQL Stored

Procedure Source

S Stored

Procedure

Load

D Q S

External Stored

Procedure Load

L D S B & S

Native SQL Stored

Procedure

P D N S

General DDL (e.g.

CREATE

PROCEDURE for

external SP)

P D D S

User Defined

Function Definition

P D D S

Trigger Definition P D T S

BIND Service

command

P D V V

Service GRANT

command

P D V V

Overview

Overview 24

Apply a Db2 Option License

If you license the Db2 Option at the same time that you license ChangeMan ZMF, the license for the

option is applied when you apply the license for the base product. You do not have to take further

action to enable the Db2 Option.

If you license the Db2 Option after you apply licenses for ChangeMan ZMF and other selectable

options, use the SER10TY™ License Manager to add a license for the option. See the SER10TY User

Guide for instructions on how to apply a license. The load modules, JCL, and other components

that you need to run SER10TY are included in the SERCOMC libraries in the ChangeMan ZMF

installer

After you have applied a license, shut down the SERNET started task where ChangeMan ZMF runs

and restart the task.

Then, follow these steps to verify that the Db2 Option is activated.

Connect to ChangeMan ZMF through ISPF.

From the Primary Option Menu type =A.G.O on the Option line to jump to the Global

Selectable Options panel CMNGBSOP:

Load libraries containing external stored procedures must be PDSE. This includes staging,

promotion, baseline, and production libraries. If stored procedure load libraries are defined

as PDS, a link edit for stage, recompile, or relink of the stored procedure may fail with

message IEW2606S.

The execution load library containing stored procedures (baseline or production) must be

concatenated in the STEPLIB of the appropriate Workload Manager (WLM) managed

address space.

Bind service commands and the related grant components can be either PDSE or zFS

based.

Note

• •

• •

• •

1. 1.

2. 2.

Do not change the delivered names except to code the embedded subsystem. Program

CMNDB2SQ issues an internal SET CURRENT PACKAGESET CMNx command that determines

which DBRM is used for the ChangeMan ZMF instance that is issuing the command.

Important

Apply a Db2 Option License

Apply a Db2 Option License 25

If option 2 Db2 is highlighted, the activation is successful.

Bind Db2 Plan and Package and Grant access

If you only intend to use the core functionality of the plan/package bind automation, you need only

customize and run the DB2CORE sample JCL member (on each lpar and foreach Db2 subsystem

that could be the target of a promotion or install action). You can then skip straight to the next

section Update Global Administration. Otherwise, follow the instructions below.

Member DB2OPTN in the CNTL dataset should be copied to your CUSTOM library and edited to

define the tables required in Db2, to bind the Packages and the Plan used by the Db2 option, and

grants the minimum permissions required by the Db2 option.

If you are going to use remote Db2, then the CMNDB2VB package must be bound with the relevant

qualifier at both the local and all potential remote DB2s. In addition, at the local DB2, the CMNPLAN

plan must be bound with a package list including all the locations of all the remote DB2s where the

CMNDB2VB package may be used.

Refer to the comments in the JCL for details.

For each remote site, copy the DB2OPTNR member and follow its instructions to bind the

CMNDBSQ package into the CMNPLAN for use by the automatic bind processing (CMNDB2PL) at

each remote site (promotion and install). Note that there is an extra section not run at the end - the

last two steps, BINDPKG and BINDPLAN are not reached as there is a // null line after the GRANT

step (look for "end of Job" comment). These two steps are there as examples should you wish to

use BIND DEPLOY from two source subsystems - see the comments in the JCL.

CMNGBSOP GLOBAL Selectable Options
Option ===> __

2 Db2 Maintain Db2 information
3 INFO Specify Info/Management change rule
4 OFM Configure Online Forms Manager
5 IMS Control Region IDs and Library Sub-Type information

Do not change the delivered names except to code the embedded subsystem. Program

CMNDB2SQ issues an internal SET CURRENT PACKAGESET CMNx command that determines

which DBRM is used for the ChangeMan ZMF instance that is issuing the command.

Important

Do not change the name of the plan.

Important

Bind Db2 Plan and Package and Grant access

Bind Db2 Plan and Package and Grant access 26

DB2OPTNC and customize per the notes within, in order to perform the conversion of the SQL

package master data into the tables in Db2. This job must be run after the DB2OPTN jobs has been

run and has defined the tables.

Update Global Administration

Add special library types, and add a language and procedure for SQL stored procedures, to global

administration for the base ChangeMan ZMF product.

If you are upgrading from 8.1 or earlier, you will need to copy the member

Note

The subsystem ID embedded in the Db2 package name makes the name unique for each

ChangeMan ZMF instance in a Db2 subsystem.

All ChangeMan ZMF Db2 programs are precompiled with VERSION(AUTO) so you can have

multiple versions of the package in the Db2 catalog.

Program CMNDB2SQ executes SQL that accesses the Db2 catalog. You can optimize the

SQL that queries the SYSDBRM and SYSPACKAGE catalog tables by creating an index on

both tables on the NAME column. If you choose to create the indexes, be sure to rebind the

CMNDB2SQ package following the index creation.

The collection id for the CMNDB2AT package must always be CMNZMF.

The sample JCL members create tablespaces as UTS-Partition By Growth (UTS-PBG) with a

MAXPARTITIONS value of 1. The default values for DSSIZE are sufficient for the

tablespaces hosting the ZMF Db2 option admin tables. However, the final decision on the

values you use should rest with your database administrators and be in compliance with

your site standards.

Note

• •

• •

• •

• •

• •

Update Global Administration

Update Global Administration 27

Add Global Library Types for Db2
You assign Db2 Option functions to a library type with the Selectable Option field in the application

library type definition and with the Sub-type field in Db2 Option library type definition.

This table shows you the kinds of components managed by the Db2 Option and the library type

parameters that are required for each. Parameters that appear on library type definition panels are

shown in bold.

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

Db2 Application

Program Source

**S **Db2

Program

Load

Db2 Application

Program Load

**L B

DBRM **P **D R B

BIND PLAN

Command

**P **D B B

BIND PACKAGE

Command

**P **D P B

External Stored

Procedure Source

**S **Stored

Procedure

Load

External SQL Stored

Procedure Source

**S **Stored

Procedure

Load

**D Q S

External Stored

Procedure Load

**L **D S B & S

Native SQL Stored

Procedure

**P **D N S

General DDL (e.g.

CREATE

PROCEDURE for

external SP)

**P **D D S

User Defined

Function Definition

**P **D D S

Add Global Library Types for Db2

Add Global Library Types for Db2 28

* Db2 Active Library specification for BIND plan/pkg (B), Process SQL (S), and Bind Service (V).

Follow these steps to create global library type definitions for components managed by the Db2

Option:

From anywhere in the ChangeMan ZMF ISPF client, type =A.G.2 on the Command or Option

line and press Enter. The Global Library Types Part 1 of 2 panel CMNCGLT0 is displayed.

Follow the instructions in the ChangeMan ZMF Administrator Guide to insert a library type row

and create a new library type for each kind of Db2 component you will manage.

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

Trigger Definition **P **D T S

BIND Service

command

P D V V

Service GRANT

command

P D V V

1. 1.

2. 2.

Add Global Library Types for Db2

Add Global Library Types for Db2 29

Type S on the Line Command for each new library type row to display the Global Library Types

Part 2 of 2 panel. Note that to fully support native SQL SPs generated by Data Studio, you

need to use VB and LRECL 255 records.

Exit the Global Library Types panels and save your changes.

Add Global Language and Procedure for External SQL SPs
This is an optional step, only required if you need to continue to support External SQL SPs. External

SQL stored procedures are processed through the Db2 precompiler to translate the source into the

C language, which is then processed like an external stored procedure. Add a language for SQL

stored procedures and add stage procedure CMNSQL.

CMNCGLT0 Global Library Types Part 1 of 2 Row 5 to 41 of 41
Command ===> ___ Scroll ===> CSR

 Lib Order Lke Seq Defer Target Sel
 type Description + type Opt
 DBB Db2 BIND PLAN Commands 0 P 001 Y D
 DBR Db2 DBRM 0 P 001 Y D
 DOC Documentation 0 P Y
 ...
 OBJ Object module library 0 O Y
 PKG Db2 Bind Package Command 0 P Y D
 PRC Cataloged Procedures 0 P Y D
 SDB Db2 Program Source 0 S 003 Y LDB D
 SPD Db2 Stored Proc Definitions - Non-SQL 0 P Y D
 SPN Db2 Stored Proc Source - Native SQL 0 P Y D
 SPQ Db2 Stored Proc Source - SQL Language 0 P Y STL D
 SRC Source for Programs to be Linked Exec 0 S Y LOD
 SRS Source for subprograms to be Linked N 0 S Y LOS
 STL Db2 Stord Prod Load Modules 0 L Y D
 STP Db2 Stored Proc Source - External Lan 0 S Y STL D
 TRG Db2 Trigger Definitions 0 P Y D
 TST Test Library type 0 P Y
 UDF Db2 User-Defined Function Definitions 0 P Y D
 ...
 ZSS Shared Baseline Subprogram Source 0 S Y ZLS

On library types for stored procedure load modules, set the Data Set Type field to LIBRARY

(PDSE) on the Global Library Types Part 2 of 2 panel. If stored procedure load libraries are

defined as PDS, a link edit for stage, recompile, or relink of the stored procedure may fail with

message IEW2606S.

Important

3. 3.

Add Global Language and Procedure for External SQL SPs

Add Global Language and Procedure for External SQL SPs 30

From anywhere in the ChangeMan ZMF ISPF client, type =A.G.3 on the Command or Option

line and press Enter. The Global Language Names panel CMNGGLNG is displayed.

Insert a row and type a Language for SQL stored procedures. Language SQL is used in this

example.

Exit the Global Language Names panel and save your changes.

From anywhere in the ChangeMan ZMF ISPF client, type =A.G.4 in the Command or Option line

and press Enter. The Compile Procedure List panel is displayed.

Insert a row and type * in the Language field to display the Language Selection List panel.

Select the new language for SQL stored procedures from the Language Selection List panel.

Type CMNSQL in the Procedure field and type a description in the Description field.

Exit the Compile Procedure List panel and save your changes.

Do not confuse the CMNSQL procedure with the CMNCEE procedure that you use for external

stored procedures written in C. The CMNSQL procedure imbeds skeleton CMN$$SQP to

translate SQL code to C source before compiling and link editing the C source.

Note

1. 1.

2. 2.

CMNGGLNG Global Language Names Row 1 to 9 of 9
Command ===> ___ Scroll ===> CSR

 Language Order
 ASM 0
 C 0
 COBOL 0
 COBOLE 0
 COBOL2 0
 JAVA 0
 PLI 0
 PLIE 0
 SQL 0
**************************** Bottom of data *******************************

3. 3.

4. 4.

5. 5.

CMNPRCNN Compile Procedure List Row 1 to 21 of 21
Command ===> ___ Scroll ===> CSR

 Language Procedure Description Order
 ASM CMNASM Stage assembler source 0
 ASM CMNASMOB Stage assembler source to object 0
 ASM CMNASM2L Stage assembler source w/ 2 link edit 0
 ...
 PLI CMNPLI Stage PL/I source 0
 PLI CMNPLIOB Stage PL/I source to object 0
 PLIE CMNPLIE Stage Enterprise PL/I source 0
 SQL CMNSQL Translate, compile, and link SQL Stored Proc 0
**************************** Bottom of data *******************************

6. 6.

7. 7.

Add Global Language and Procedure for External SQL SPs

Add Global Language and Procedure for External SQL SPs 31

Update Application Administration

Add library types, a language and procedure for SQL stored procedures, baseline libraries, and

production libraries to all applications where you want to manage Db2 components.

In any particular application, you only need application administration entries for the kinds of

components you want to manage in that application.

Add Application Library Types for Db2
Follow these steps to add global library type definitions in each application with components

managed by the Db2 Option:

From anywhere in the ChangeMan ZMF ISPF client, type =A.A.2 on the Command or Option

line and press Enter to display the application - Library Types Part 1 of 2 panel.

Follow the instructions in the ChangeMan ZMF Administrator Guide to copy global library type

definitions into the application - Library Types Part 1 of 2 panel. See the Db2 library types in

this example:

Libraries containing stored procedure load modules must be PDSE. This includes staging,

promotion, baseline, and production libraries. If stored procedure load libraries are defined as

PDS, a link edit for stage, recompile, or relink of the stored procedure may fail with message

IEW2606S.

Important

1. 1.

2. 2.

...

Update Application Administration

Update Application Administration 32

Type S on the line command for the new application library types to display the application -

Library Types Part 2 of 2 panel. Note that to fully support native SQL SPs generated by Data

Studio, you need to use VB and LRECL 255 records.

Adjust the parameters from the global definition to fit the application, if necessary.

For libraries containing stored procedure load modules, the Data Set Type field should be

LIBRARY (PDSE).

Exit the application - Library Types panels and save your changes.

Add Application Language and Procedure for External SQL SPs
This is an optional step, only required if you need to continue to support External SQL SPs.

Follow these steps to add a language and procedure for External SQL stored procedures to every

application that will manage those components.

From anywhere in the ChangeMan ZMF ISPF client, type =A.A.3 on the Command or Option

line and press Enter. The application - Language Names panel is displayed.

Follow the instructions in the ChangeMan ZMF Administrator Guide to copy the global

language name for SQL started procedures into the application - Language Names panel

CMNCLLNG.

Language SQL is used in this example.

CMNCLLT0 ACTP - Library Types Part 1 of 2 Row 1 to 28 of 28
Command ===> ___ Scroll ===> CSR

 Lib Order Lke Seq Defer Target Sel
 type Description + type Opt
 CPY Copybooks 0 C 001 Y
 CP2 Copybooks for Utilities 0 C 002 Y
 CTC Control Statements 0 P Y
 DBB Db2 BIND PLAN Commands 0 P 001 Y D
 DBR Db2 DBRM 0 P 001 Y D
 ...
 JVS HFS - JAVA source type 0 S Y JVL
 JVT HFS - text type 0 p Y
 LCT Linkedit Control Cards 0 P Y
 PKG Db2 Bind Package Commands 0 P Y D
 PRC Cataloged Procedures 0 P Y D
 SDB Db2 Program Source 0 S 003 Y LDB
 SPD Db2 Stored Proc Definitions - Non-SQL 0 P Y D
 SPN Db2 Stored Proc Source - Native SQL 0 P Y D
 SPQ Db2 Stored Proc Source - SQL Language 0 p Y STL D
 SRC Source for Programs to be Linked Exec 0 S Y LOD
 SRS Source for subprograms to be Linked N 0 S Y LOS
 STL Db2 Stored Proc Load Modules 0 L Y D
 STP Db2 Stored Prod Source - External Lan 0 S Y STL D
 TRG Db2 Trigger Definitions 0 P Y D
 TST Test Library type 0 p Y
 UDF Db2 User-Defined Function Definitions 0 P Y D
 ...
 ****************************** Bottom of data *********************************

3. 3.

a. a.

b. b.

4. 4.

1. 1.

2. 2.

Add Application Language and Procedure for External SQL SPs

Add Application Language and Procedure for External SQL SPs 33

Exit the application - Language Names panel and save your changes.

From anywhere in the ChangeMan ZMF ISPF client, type =A.A.4 on the Command or Option

line and press Enter. The application - Compile Procedures panel is displayed.

Follow the instructions in the ChangeMan ZMF Administrator Guide to copy the global compile

procedure for SQL started procedures into the application - Compile Procedures panel.

Exit the application - Compile Procedures panel and save your changes.

Add Baseline Libraries for Db2 Components
Add baseline libraries for each library type you added for Db2 components in this application.

From anywhere in the ChangeMan ZMF ISPF client, type =A.A.B on the Command or Option

line and press Enter. The application - Baseline Configuration Part 1 of 2 panel is displayed.

Follow the instructions in the ChangeMan ZMF Administrator Guide to insert a baseline library

type row and specify a baseline library description for each kind of Db2 component you will

manage in this application.

See the baseline configuration for Db2 library types in this example:

CMNCLLNG ACTP - Language Names Row 1 to 8 of 8
Command ===> ___ Scroll ===> CSR

 Language Order
 ASM 0
 COBOL 0
 COBOLE 0
 COBOL2 0
 JAVA 0
 PLI 0
 PLIE 0
 SQL 0
***************************** Bottom of data ******************************

3. 3.

4. 4.

5. 5.

CMNCLPRC ACTP - Compile Procedures Row 1 to 10 of 10
Command ===> ___ Scroll ===> CSR

 Language Procedure Description Order
 ASM CMNASM Stage Assembler Source 0
 C CMNCEE C build procedure 0
 COBOLE CMNCOBE Stage IBM Enterprise COBOL source 0
 COBOL2 CMNCOB2 COBOL2 source 0
 COBOL2 CMNCO2OB COBOL2 source to object 0
 JAVA CMNJAR Create Java archive 0
 JAVA CMNJAVA Stage Java source 0
 PLI CMNPLI Stage PL/I Source 0
 PLIE CMNPLIE Stage Enterprise PL/I source 0
 SQL CMNSQL Translate, compile, and link SQL Stored Proc 0
****************************** Bottom of data *****************************

6. 6.

1. 1.

2. 2.

Add Baseline Libraries for Db2 Components

Add Baseline Libraries for Db2 Components 34

Type S on the Line Command for each new library type row to display the application -

Baseline Configuration Part 2 of 2 panel.

Follow the instructions in the ChangeMan ZMF Administrator Guide to verify existing

libraries that you will use as baseline libraries or to allocate new libraries.

Ensure that the Data Set Type field for libraries containing stored procedure load modules

is LIBRARY (PDSE).

See the baseline libraries for Db2 library type DBB in this example:

CMNCBAS1 ACTP - Baseline Configuration Part 1 of 2 Row 1 to 34 of 34
Command ===> ___ Scroll ===> CSR

 Baseline
 Install storage
 Type Levels in prod means
 CPY 10 N SD
 CP2 10 N SD
 CTC 10 Y SD
 DBB 10 Y SD
 DBR 3 Y SD
 DOC 10 N SD
 HTH 3 N H
 JAR 3 Y H
 JCF 3 N H
 JCL 10 Y SD
 JCT 3 N H
 JVL 2 Y H
 JVS 2 Y H
 JVT 2 Y H
 LCT 10 N SD
 LOD 3 Y P
 LOS 3 N P
 LSH 3 N H
 LST 3 N P
 OBJ 10 N SD
 PKG 10 Y SD
 PRC 10 Y SD
 SPD 10 Y SD
 SPN 10 Y SD
 SPQ 10 Y SD
 SRC 10 N SD
 SRS 10 N SD
 STL 3 Y P
 STP 10 N SD
 TRG 10 Y SD
 TST 10 N SD
 UDF 10 Y SD
 WAR 3 Y H
 WCT 3 N H
****************************** Bottom of data *****************************

3. 3.

a. a.

b. b.

Add Baseline Libraries for Db2 Components

Add Baseline Libraries for Db2 Components 35

Exit the application - Baseline Configuration panels and save your changes.

Add Production Libraries for Db2 Components
If you specified Y in Install in Production in a baseline configuration for a Db2 component type, you

must define production libraries for that library type.

From anywhere in the ChangeMan ZMF ISPF client, type =A.A.P on the Command or Option

line and press Enter. The application - Production Libraries panel CMNCPRDL is displayed.

Follow the instructions in the ChangeMan ZMF Administrator Guide to insert a production

library type and specify a set of production libraries for each type.

See the production libraries in this example for one Db2 bind control library type and one user

defined function library type.

Exit the application - Production Libraries panel and save your changes.

CMNCBAS2 ACTP - Baseline Configuration Part 2 of 2 Row 1 to 2 of 2
Command ===> ___ Scroll ===> CSR

 Library type: DBB
 Levels maintained: 10
 Storage means: Stacked Reverse Delta

 Lvl Dataset name + Status
 0 CMNTP.S6.V810.BASE.ACTP.DBB *Verified
 009 CMNTP.S6.V810.BASE.ACTP.DBB.DELTA *Verified
**************************** Bottom of data *******************************

4. 4.

1. 1.

2. 2.

Temporary installs for stored procedures, user defined functions, and triggers are not

supported. For these library types, type NULLFULE in the second production library line.

Note

CMNCPRDL ACTP - SERT6 Production Libraries Row 8 to 16 of 16
Command ===> ___ Scroll ===> CSR

 Type Production dataset name +
 Temporary dataset name +
 Backup dataset name +
 DBB CMNTP.S6.V810.PROD.DBB
 CMNTP.S6.V810.PROD.DBB.TEMP
 CMNTP.S6.V810.PROD.DBB.BKUP
 ...
 UDF CMNTP.S6.V810.PROD.UDF
 NULLFILE
 CMNTP.S6.V818.PROD.UDF.BKUP
**************************** Bottom of data *******************************

3. 3.

Add Production Libraries for Db2 Components

Add Production Libraries for Db2 Components 36

Configure Db2 Option Global Administration

Global Administration for the ChangeMan ZMF Db2 Option defines:

Physical Db2 subsystems that are available to the Db2 Option.

Logical Db2 subsystems that are available to Db2 Application Administration to define

automated processing for Db2 components at promotion and install.

Library types that are available to Db2 Application Administration to define special Db2

component processing.

Connectors that define the relationship between a source and a target logical subsystem.

General parameters that are available to Db2 Application Administrators to set options for

processing Db2 components.

Type =A.G.O.2 on any Command or Option line and press Enter to display the Db2

Administration Options panel:

This table describes the options on the Db2 Administration Options panel:

• •

• •

• •

• •

• •

CMNGDB2M Db2 Administration Options Row 1 to 28 of 28
Option ===> __ Scroll ===> CSR

1 Physical Identify Db2 physical subsystems
2 Logical Define Db2 logical subsystems
3 Libtypes Define Db2 library type options
4 Connector Define source/target connector
G General Specify Db2 general parameters

Option Explanation

Physical Identify Db2 subsystems and define JOB information and Db2 load libraries

for Db2 Option jobs.

Logical Define rules for modifying BIND PLAN and BIND PACKAGE commands at

promotion or install. Define special processing for stored procedures and

triggers.

Libtype Set Db2 Sub Types to invoke special processing for library types that

manage Db2 components.

Connector Define the relationship between a source and a target logical subsystem.

This is used for the BIND DEPLOY mechanism for distributing Native SQL

stored procedures.

Configure Db2 Option Global Administration

Configure Db2 Option Global Administration 37

Define Physical Subsystems
Identify the Db2 subsystems where the ChangeMan ZMF Db2 Option executes functions.

On the Db2 Administration Option panel, choose option 1 Physical and press Enter. The Db2

Physical Subsystems - Part 1 of 2 panel CMNGD2SO is displayed:

This table describes fields on the Db2 Physical Subsystems - Part 1 of 2 panel:

Option Explanation

General Specify options for processing Db2 components at stage and recompile.

If you license the ChangeMan ZMF ERO Option, you must also identify the Db2 subsystem

where the ERO Db2 tables are defined.

Note

1. 1.

CMNGD2S0 Db2 Physical Subsystems - Part 1 of 2 Row 1 to 4 of 4
Option ===> __ Scroll ===> CSR

 Db2
 subsys Site Db2 System Load Library
 C105 SYS2.DB2810.SDSNLOAD
 C105 SERT6 SYS2.DB2810.SDSNLOAD
 C105 SERT6P1 SYS2.DB2810.SDSNLOAD
 C105 SERT6P2 SYS2.DB2810.SDSNLOAD
***************************** Bottom of data ******************************

Field Description

Line

Command

Type a line command to the left of a panel row:

S Display the Db2 Physical Subsystems - Part 2 of 2 panel for this

physical subsystem.

I Insert a blank row.

R Repeat an existing row. D Delete an existing row.

D Delete an existing row.

Db2 subsys Type the Db2 subsystem identifier.

Site Type the site where this Db2 subsystem runs. Your entry is validated

against sites defined in global administration of the base ChangeMan

ZMF product.

Define Physical Subsystems

Define Physical Subsystems 38

Define a physical Db2 subsystem for every Db2 subsystem where you want ChangeMan ZMF

to manage Db2 components.

On the Db2 Physical Subsystems - Part 1 of 2 panel, type S on the Line Command for a

physical subsystem row and press Enter. The Db2 Physical Subsystems - Part 2 of 2 panel

CMNGD2S1 is displayed:

This table describes fields on the Db2 Physical Subsystems - Part 2 of 2 panel:

Field Description

Type * to see the Global Site Selection List panel.

This entry must be blank for the first row, and this must reference the

physical Db2 subsystem which houses the tables

CMNx.CMNADMIN_NAMED and CMNx.CMNADMIN_GENERAL.

Db2 System

Load Library

Type the data set name of the Db2 system load library that is used for

this Db2 subsystem. You may leave this field blank if you LINKLIST

the Db2 system load library.

Also please note that the skeleton CMN$$D2X by default will use this

name to build the SDSNEXIT dataset name. See the notes in the

skeleton for more information.

If you license the ChangeMan ZMF Db2 Option, it is a reqirement that the first row on this

panel must identify a local Db2 subsystem where the Db2 Option tables are defined. The SITE

field for the first physical subsystem definition on this panel must be blank. This is the

physical Db2 subsystem which the ZMF started task connects to (via CAF connect) to

access Db2 tables required to support the ZMF Db2 Option.

If you license the ChangeMan ZMF ERO Option, the ERO Db2 tables must also reside on the

first physical Db2 subsystem as described above.

Important

2. 2.

CMNGD2S1 Db2 Physical Subsystems - Part 2 of 2
Command ===> ___

Db2 subsystem: C105
Site: SERT6
Load Library: SYS2.DB2810.SDSNLOAD

Job statement information for Db2 binds:
 //SERT6DB JOB (X170,374),SERT6,
 // CLASS=A,MSGCLASS=X
 //*
 //*

Define Physical Subsystems

Define Physical Subsystems 39

Type Job Statement Information for every physical Db2 subsystem.

Define Global Logical Subsystems
Configure logical Db2 subsystems that define automated processing for Db2 components at

promotion and install.

On the Db2 Administration Option panel, choose option 2 Logical and press Enter to display

the Db2 Logical Subsystems panel:

This table describes fields on the Db2 Logical Subsystems panel:

Field Description

Db2 Subsystem Displays the Db2 subsystem identifier.

Site Displays the site where this Db2 subsystem runs.

Load library Displays the data set name of the Db2 system load library

that is used for this Db2 subsystem.

Job statement

information for Db2

binds

Type JOB statement information for batch jobs that perform

Db2 Option functions in the Db2 subsystem for promote and

install.

1. 1.

CMNGD2LN Db2 Logical Subsystems - Part 1 of 2 Row 1 to 3 of 3
Option ===> __ Scroll ===> CSR

Line commands:
 P Specify miscellaneous parameters
 T B Bind plan/pkg process named(T) and general(B) templates
 Q G SQL process named(Q) and general(G) templates
 V H Bind service process named(V) and general(H) templates

 Logical Db2
 name subsys Site Description
 SERT7 Q10K SERT7 SERT7 D/P INSTANCE
 SERT7P1 Q10K SERT7 SERT7 PROMOTION SITE \#1
 SERT7P2 Q10K SERT7 SERT7 PROMOTION SITE \#2
**************************** Bottom of data *******************************

Field Description

Line

Command

Type a line command to the left of a panel row.

I Insert a blank row.

R Repeat an existing row.

Define Global Logical Subsystems

Define Global Logical Subsystems 40

Create a logical subsystem for every promotion level and production environment where the

Db2 Option will manage Db2 components.

On the Db2 Logical Subsystems panel, type P on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname Parameter Settings panel

CMNGD2PM is displayed:

Field Description

D Delete an existing row.

P Specify miscellaneous processing parameters.

T Specify BIND command named parameter templates.

B Specify BIND command general token templates.

Q Specify SQL process named variable templates.

G Specify SQL process general token variable templates.

V Specify BIND SERVICE command named parameter templates.

H Specify BIND SERVICE command general token templates.

Logical

name

Type a 1-8 character mnemonic for this logical Db2 subsystem. Db2

logical subsystem names must be unique across all physical

subsystems. The Logical Name is also called Db2 nickname in this

manual.

Db2 subsys Type the Db2 physical subsystem where the parameters and templates

in this logical subsystem will be used. Type * to display the Db2

Physical Subsystem List to select valid Db2 Subsys and Site

combinations.

Site Type the site where the Db2 physical subsystem runs. Type * to display

the Db2 Physical Subsystem List to select valid Db2 Subsys and Site

combinations.

Description Type a 30-character description for the logical subsystem.

2. 2.

Define Global Logical Subsystems

Define Global Logical Subsystems 41

This table describes fields on the Db2 Logical Subsystem nickname Parameter Settings

panel:

CMNGD2PM Db2 Logical Subsystems SERT6 Settings
Command ===> ___

Preferred Libtypes:
DBRM
Plan bind parameters
Package bind parameters
Service grants

General Parameters:

Enter "/" to select option
 Bind Failure is significant
 Recycle Stored Procedures where WLM Environment is . .
 Maintain Trigger Sequence
 Use Db2 versioning for Native SQL Stored Procedures

Field Description

Preferred

Libtypes

These fields are not used unless:

1. You assign Db2 subtypes B (BIND PLAN) or P (BIND PACKAGE)

or R (DBRM) to more than one library type in this application. See

Define Global Db2 Library Subtypes.

2. You customize promotion, demotion, and installation skeletons

to use the library types entered in these fields. The data in these

fields is available in ISPF variables NTDBR, NTDBB and NTDBP in

tables CMNDB2NN and CMNDB2N1.

3. The service grant libtype is only used when automating BIND

SERVICE commands.

Bind Failure is

significant

Select this to stop promote or demote processing if a Db2 bind

fails in this logical subsystem. Leave this blank to continue

promote or demote processing if a bind fails in this logical

subsystem.

Recycle Stored

Procedures

Select this to issue Db2 command VARY WLM...REFRESH to

refresh a stored procedure or external user defined function that

has changed in this logical subsystem. If not selected, then do not

automatically refresh a stored procedure or external user defined

function that has changed in this logical subsystem.

Define Global Logical Subsystems

Define Global Logical Subsystems 42

Set parameters, then press Enter to accept panel entries.

On the Db2 Logical Subsystems panel, type T on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname BIND Process Templates panel

CMNGD2L2 is displayed:

Field Description

Where WLM

Environment Is

If stored procedures are executed in one or more WLM-managed

address spaces, type the name (or pattern) for the target WLM

environment. The value of this field restricts the refresh of stored

procedures to those environments that match the name or pattern

you specify. You can wildcard this field by typing an asterisk at the

end to specify a pattern for matching WLM environments. For

example, C102* targets all WLM-managed environments whose

names begin with the characters C102.

Maintain Trigger

Sequence

Select this to drop and recreate all triggers for an event/table

combination when one trigger is changed. Triggers are ordered

according to the first 10 characters in the COMMENT ON field in

the CREATE TRIGGER SQL. If not selected, then do not drop and

recreate other triggers for an event/table combination when one

trigger is changed. The modified trigger will execute last.

Use Db2

versioning for

Native SQL

Stored

Procedures

Select this to use Db2 versioning for Native SQL stored procedures.

If not selected, then drop/create will be used for this logical

subsystem

The entries on this panel do not restrict entries on the Db2 Logical Subsystem nickname

Settings panel at the application level. The entries at the global level provide a model for

applications.

Note

3. 3.

Define Global Logical Subsystems

Define Global Logical Subsystems 43

This panel defines BIND command templating that is performed for this Db2 logical

subsystem.

How you use the fields on this panel to achieve the templating that you need is explained by

example in Templating Examples. For an introduction to templating, see Templates.

The two tables that follow explain the field names at the left of the panel and the templating

names at the top of the panel.

This first table defines the field names at the left of the Db2 Logical Subsystem nickname

BIND Process Templates panel.

Syntax of the BIND PLAN and BIND PACKAGE commands referred to in this table:

CMNGD2L2 Db2 Logical Subsystem PROD BIND Process Templates
Command ===> ___

 Templates Target Source Insert
General:
 Qualifier . . . + + +
 Owner + + +

Plan:
 Name

Package:
 Location . . . + +

Collection . . + +

All data fields on this panel, except for Plan Name, exceed the length of the displayed panel

fields. See topic "Working with Long Fields" in the ZMF User's Guide for instructions on how to

enter, update, and erase data in long panel fields.

Note

BIND PLAN(plan-name) PKLIST(location-name.collection-id.package-id)
 - OWNER(authorization-id) QUALIFIER(qualifier-name)...

BIND PACKAGE(location-name.collection-id)
 - OWNER(authorization-id) QUALIFIER(qualifier-name)...

Field Description

Qualifier Template or insert value for qualifier-name in BIND PLAN commands

and BIND PACKAGE commands. Qualifier may be up to 128 characters

long.

Bind Owner Template or insert value for authorization-id in BIND PLAN and BIND

PACKAGE commands. Bind Owner may be up to 128 characters long.

Define Global Logical Subsystems

Define Global Logical Subsystems 44

This second table defines templating fields Target, Source, and Insert on the Db2 Logical

Subsystem nickname BIND Process Templates panel in terms of the kind of templating that is

performed.

Field Description

PLAN

Name

Template for plan-name in BIND PLAN commands. Plan name may be

up to 8 characters long.

PACKAGE

Location

Template for location-name in BIND PACKAGE commands. If the

PKLTEMPLATE control statement is input to plan lookup program

CMNDB2PL, then the template is also applied to the location-name in

the PKLIST parameter of BIND PLAN commands. See the

"PKLTEMPLATE" table entry in Keyword Control Statements. Package

Location may be up to 128 characters long.

PACKAGE

Collection

Template for collection-id in BIND PACKAGE commands. If the

PKLTEMPLATE control statement is input to plan lookup program

CMNDB2PL, then the template is also applied to the collection-id in the

PKLIST parameter of BIND PLAN commands. See the "PKLTEMPLATE"

table entry in Keyword Control Statements. Package Collection may be

up to 128 characters long.

Template

Type

Field Description

Replace

characters

at an offset

Target Placeholder ? characters define the offset for

replacement characters. Example: ???S?T replaces the

fourth character of a seven-character value with S and

the sixth character with T.

Source Blank

Insert Blank

Add

characters

at end

Target Placeholder ? characters define a field that is as long or

longer than the actual data, followed by characters to be

appended to the parameter value. Example: ???S?T adds

ST to the end of a three-character value.

Source Blank

Insert Blank

Define Global Logical Subsystems

Define Global Logical Subsystems 45

Template

Type

Field Description

Replace

characters

at end

Target Character * (asterisk) indicates the start of a literal string

n characters long that will replace the last n characters of

the parameter value. Example: *ST replaces the last two

characters with ST.

Source Blank

Insert Blank

Delete

characters

at end

Target Character ¬ (not) indicates a field character that will be

replaced with a space. Since embedded spaces are

invalid in a parameter value, use ¬ to delete characters at

the end of a value. Example: ????¬¬ deletes the last two

characters of a six character value or the last character

of a five character value.

Source Blank

Insert Blank

Replace

character

string

Target Literal string that will replace the first occurrence of the

string matching the value in the Source field. The

matching string and replacing string can be different

lengths.

Source Literal string to search for.

Insert Blank

Add an

OWNER

parameter

Target Blank

Source Blank

Insert Value for the OWNER parameter.

Note: There must be no OWNER in the input BIND

command, and the following control statement must be

input to the plan lookup program CMNDB2PL:

AUTHORITY=OWNER,INSERT

Add a

QUALIFIER

parameter

Target

Define Global Logical Subsystems

Define Global Logical Subsystems 46

On the Db2 Logical Subsystems panel, type B on the line command for a logical subsystem

row and press ENTER.

The Db2 Logical Subsystem nickname BIND General Templates panel CMNGD2L5 is

displayed. From this panel, the BIND process general tokens for that particular logical

subsystem can be specified.

You can use I, R, D line commands to insert, repeat and delete rows in the table.

Template

Type

Field Description

Source Blank

Insert Value for the QUALIFIER parameter.

Note: There must be no QUALIFIER in the input BIND

command, and the following control statement must be

input to the plan lookup program CMNDB2PL:

INSERTQUAL

The entries on this panel do not restrict entries on the Db2 Logical Subsystem nickname

Templates panel at the application level. The entries at the global level provide a model for

applications.

Note

4. 4.

This facility is not part of the Core Db2 option. Only named templates are available if you

choose to use the Core option.

Note

CMNGD2 Db2 Logical Subsystem SERT7 BIND General Templates Row 1 to 21 of 21
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +
 CURRENTSERVER ???DSNP ____________________
 DEGREE 0 ____________________
 EXPLAIN NO¬ ____________________
 PATH >REMOVE< EPICPYYY
 PATH >REMOVE< EPICPXXX
 PATH ????P??? ____________________
 PKLIST CA_PRD CA_TNG
 ___________________ ____________________ ____________________
 ___________________ ____________________ ____________________

**************************** Bottom of data *******************************

Define Global Logical Subsystems

Define Global Logical Subsystems 47

Each row in this table represents a BIND process general token template. The token name

must match the particular bind parameter you wish to change. The target and source

templates work in exactly the same way as the standard 'named' templates. The new facility

within this templating process is the use of the '>REMOVE\<' target template. Use of

>REMOVE\< will exclude any sub-parameter in a list for the main parameter in question where

any part of that sub-parameter value matches the source template. This is only relevant for

parameters which support lists of values. In the above example any PATH values which match

either EPICPYYY or EPICPXXX will be removed from the list.

You can define templating for any bind parameter you wish using these general 'token'

templates. The bind command is parsed into a distinct set of paramaters and associated

values. The general token template 'name' will be matched against these parameters. The

value associated with the parameter will be transformed by the template.

If a parameter is associated with a list of subparameter values (e.g. PKLIST etc) then the

templates will be applied to each value in turn. If you wish to remove a value from a list you

can specify >REMOVE\< as the target template and, if the source template matches one or

more subparameter values in the list, then those values will be removed from the list.

There are three kinds of transformations available.

You can unconditionally override a value by using a blank source template together with a non-

blank target template. The target template can contain a mixture of wildcard place holders (?)

and constant literals. It can also contain the logical not character (¬) which will cause a blank

to replace the relevant position in the target string. If a template containing wildcards is longer

than the name being transformed then the wildcards are 'squeezed' from the right. The target

name is then overlaid with the specified constant literals.

If the template consists of a string of place holders followed by one or more literals, and the

string is longer than the target name, then the literals will be appended to the target name.

Alternatively, you can use a blank source template and specify * as the first character of the

target template. This will cause the 'n' characters following the * to replace the last 'n'

characters of the target name. Note that the wildcard placeholder (?) has no special meaning

in this kind of transformation but that ¬ still represents a blank character override.

For example, *QA applied to VAL01 and TKNVAL01 will result in VALQA and TKNVALQA

respectively.

You can also conditionally search for strings to replaced. To do this specify the search string

in the source template field. Specify the replace string in the target template field. Neither

wildcard character (? or *) has any special meaning in this kind of transformation but the ¬

character still represents a blank override. If the replacement string is shorter than the search

string then the rest of the name is 'shuffled up' as appropriate. If the replacement string is

longer and this results in field length overflow, then the rightmost characters will be lost.

The rules for the token 'name' and how it is searched for follow.

The token 'name' is up to 64 bytes in length and can consist of up to 5 words, each no longer

than 16 bytes. If the token name contains imbedded blanks then it must be enclosed in single

Define Global Logical Subsystems

Define Global Logical Subsystems 48

quotes. This is to fit in with the same facility used in SQL processing. However, unlike SQL

general token templating where we are scanning a complete SQL sentence, here we are

attempting to match the general token name with a specific bind parameter (e.g. PATH,

EXPLAIN etc.).

For example:

This will scan for the presence of the EXPLAIN parameter and will replace its value with NO

(note the not sign is required to avoid replacing YES with NOS in this case).

On the Db2 Logical Subsystems panel, type Q on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname SQL Process Templates (named)

panel CMNGD2L3 is displayed:

This panel defines SQL templating that is performed for this Db2 logical subsystem. How you

use the fields on this panel to achieve the templating that you need is explained by example in

Templating Examples. For an introduction to templating, see Templates. The two tables that

follow explain the field names at the left of the panel and the templating names at the top of

the panel.

!!!! note All data fields on this panel exceed the length of the displayed panel fields. See topic

"Working with Long Fields" in the ZMF User's Guide for instructions on how to enter, update,

and erase data in long panel fields.

This first table defines the field names at the left of the Db2 Logical Subsystem nickname SQL

Process Templates (Named) panel:

Syntax of the CREATE (and other DDL) commands referred to in this table:

 Token Name = EXPLAIN
 Target Template = NO¬
 Source Template =

5. 5.

CMNGD2L3 Db2 Logical Subsystem QAD1 SQL Process Templates (Named)
Command ===> __

 Templates Target Source Deploy

Schema ________________ + _________________ +
Collection . . ________________ + _________________ +
WLM ________________ + _________________ +

Location . . . ________________ + _________________ + ____________ +
Qualifier . . . ________________ + _________________ + ____________ +
Owner ________________ + _________________ + ____________ +

Define Global Logical Subsystems

Define Global Logical Subsystems 49

**Deploy Fields | Field | Description | |--------|-------------| | LOCATION | This value is used to route

the BIND DEPLOY command to the relevant source Db2 subsystem. Its value is picked up from

the source logical subsystem of the two tied together by the CONNECTOR definition (more

below) | | QUALIFIER | If the usual templates do not generate a non-blank qualifier then

whatever is coded here will be used in the QUALIFIER clause of the generated BIND DEPLOY

command | | OWNER | If the usual templates do not generate a non-blank owner then whatever

is coded here will be used in the OWNER clause of the generated BIND DEPLOY command |

On the Db2 Logical Subsystems panel, type G on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname SQL Process Templates (general)

panel CMNGD2L4 is displayed:

 ```
 CREATE PROCEDURE schema.procedure-name...COLLID collection-id...
 CREATE FUNCTION schema.function-name...COLLID collection-id...
 CREATE TRIGGER schema.trigger-name...ON qualifier-name.table-name...
 ```

Field Description

Schema Template for explicit schema in procedure-name, functionname, or

trigger-name in DDL. Schema may be up to 128 characters long.

WLM Template to be applied to any WLM ENVIRONMENT clause found in the

DDL for (e.g.) an external stored procedure.

Location Template applied to a location identifier in DDL (see more about this in

the DEPLOY sections below).

Qualifier Template applied to DDL qualifier clauses

Owner Template applied to DDL Package Owner clauses

6. 6.

Define Global Logical Subsystems

Define Global Logical Subsystems 50

CMNGD2L4

This panel defines SQL templating that is performed for this Db2 logical subsystem.

You can define templating for any keyword you wish using these general 'token' templates.

The token 'name' is up to 64 bytes in length and can consist of up to 5 words, each no longer than

16 bytes. If the token name contains imbedded blanks then it must be enclosed in single quotes.

ZMF will scan the SQL/DDL, squeezing white space, looking for the token words terminated by

either a blank or left parenthesis. The value of the word following on from our token name will be

templated as requested.

For example:

This will scan for the presence of SYSTEM TIME SENSITIVE in the SQL and will change any value

following this (e.g. NO) to YES.

On the Db2 Logical Subsystems panel, type V on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname Bind Service Named Templates

panel CMNGD2L6 is displayed:

 CMNGD2L4 B2 Logical Subsys PROD SQL Process Templates (Ge Row 1 to 21 of 21
 Command ===> ___ Scroll ===>

 Token name Target template Source template
 ___________________ + ___________________ + ___________________ +
 ___________________ + ___________________ + ___________________ +
 ___________________ + ___________________ + ___________________ +
 ___________________ + ___________________ + ___________________ +
 ...
 ___________________ + ___________________ + ___________________ +
 ___________________ + ___________________ + ___________________ +
 **************************** Bottom of data *******************************

ZMF will look for your keyword, i.e. the token name and will then apply the templates to
the value associated with that keyword.

Token Name = 'SYSTEM TIME SENSITIVE'
Target Template = YES
Source Template =

1. 1.

Define Global Logical Subsystems

Define Global Logical Subsystems 51

These three named parameters are templated in the same way as for package/plan binds (see

section 3 above). The underlying processes are different.

On the Db2 Logical Subsystems panel, type H on the line command for a logical subsystem

row and press ENTER. The Db2 Logical Subsystem nickname BIND Service General

Templates panel CMNGD2L7 is displayed, from which the BIND Service process general

tokens for that particular logical subsystem can be specified:

This general token processing is described in step 4 above. However, there are some extra

features which are applicable only to Bind Service processing.

When a grant SQL component is associated with the bind service process and the token name

is >GRANTEE< , the template is applied to the list of grantee userids/groups on the grant SQL

supplied to the process.

Also, if you enclose the source template in single quotes, the target template is only used if

the value to be replaced exactly matches the source template value.

Define Global Db2 Library Subtypes
Db2 library subtypes invoke special processing for Db2 components. When you defined the Global

Library Types for these components, you coded D in the Selectable Option field. Here you assign a

Db2 Sub Type to each of those library types.

On the Db2 Administration Option panel, choose option 3 Libtypes and press Enter to display the

Db2 Library Types panel:

CMNGD2L6 Db2 Logical Subsystem QAD1 Bind Service Named Templates
Command ===>

Templates Target Source

Collection . . ________________ +__________________ +
Qualifier . . . ________________ +__________________ +
Owner ________________ +__________________ +

2. 2.

CMNGD2L7 Db2 Logical Subsystem QAD1 Bind Service General Temp Row 1 to 13 of 13
Command ===> Scroll ===> CSR

 Token name + Target template + Source template +
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________

Define Global Db2 Library Subtypes

Define Global Db2 Library Subtypes 52

This table describes the fields on the Db2 Library Types panel:

CMNDGLT0 Db2 Library Types Row 1 to 11 of 11
Command ===> ___ Scroll ===> CSR

 Db2
Lib sub End SQL
type Description type sentence
PKG Db2 Bind Package Commands P
PRC Cataloged Procedures
DBB Db2 BIND PLAN Commands B
DBR Db2 DBRM R
SPD Db2 Stored Proc Definitions - Non-SQL D
SPN Db2 Stored Proc Source - Native SQL D @
SPQ Db2 Stored Proc Source - SQL Language Q @
STL Db2 Stored Proc Load Modules S
STP Db2 Stored Proc Source - External Lan
TRG Db2 Trigger Definitions T
UDF Db2 User-Defined Function Definitions D
****************************** Bottom of data *********************************

Field Description

Lib type Displays the library types from the Global Library Type definition that are

defined with a Selectable Option of D.

Description Displays the definition from the global library type.

Db2 sub

type

Type the Db2 Sub Type for special Db2 Option processing. Sub type

processing is described in the next table below.

B BIND PLAN command

D CREATE statements for stored procedures, external user defined

functions.

N Native SQL Stored Procedure definition

Q BIND PACKAGE command SQL stored procedure source

R DBRM Stored procedure load modules, REXX stored procedures

T Trigger definition source

V BIND SERVICE command or associated GRANT DDL

End SQL

sentence

Type an alternate SQL statement terminator. If the components in this

library type include SQL that uses the semicolon (;) as a statement

terminator, specify an alternate terminator for the stored procedure or

function so that the semicolon is passed through to the server. You can

specify any character except the following:

Define Global Db2 Library Subtypes

Define Global Db2 Library Subtypes 53

Define sub types, then press Enter to accept panel entries.

This table shows the processing assigned by Db2 Option library sub types:

Field Description

- comma

- underscore

- single quote

- double quote

- left hand parenthesis

- right hand parenthesis

If you leave this field blank, the default alternate SQL statement

terminator is semicolon (;).

The entries on this panel do not restrict entries on the Db2 Library Types at the application level.

The entries at the global level provide a model for applications.

Note

Sub

Type

Description Modified

Process

Sub Type Processing Description

B BIND PLAN

command.

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to template BIND parameters

for the target Db2 subsystem.

D CREATE

statements for

stored

procedures,

external user

defined

functions.

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to register the object in the Db2 catalog.

Issue a DROP before the CREATE.

N Native SQL

stored

procedure

definitions.

Promote

Demote

Install

Backout

Drop/Create, Alter add version, and bind

deploy mechanisms supported for this

library type.

Define Global Db2 Library Subtypes

Define Global Db2 Library Subtypes 54

Sub

Type

Description Modified

Process

Sub Type Processing Description

P BIND PACKAGE

command.

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to find applicable BIND PLAN

members and template parameters for the

target Db2 subsystem.

Q SQL stored

procedure

source.

Promote

Demote

Install

Backout

Process with utility program CMNDB2DQ

to remove SQL procedural code, then

process the CREATE with utility program

CMNDB2DD to register the stored

procedure in the Db2 catalog.

R DBRM Process with plan lookup program

CMNDB2PL to find applicable BIND

PACKAGE and BIND PLAN members and

template BIND parameters for the target

Db2 subsystem.

S Stored

procedure load

modules, REXX

stored

procedures.

Promote

Demote

Install

Backout

If the Recycle Stored Procedure field is

YES, issue Db2 commands VARY

WLM...REFRESH in the WLM-managed

address space to refresh the executable.

T Trigger

definition

source.

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to extract the table/event/time

combinations. If Maintain Trigger

Sequence YES, query

SYSIBM.SYSTRIGGERS with utility

program CMNDB2TR to find multiple

triggers defined for the same table/event/

time combination, then drop and recreate

those triggers to maintain the original

firing order.

Define Global Db2 Library Subtypes

Define Global Db2 Library Subtypes 55

This table shows you how the Db2 Option sub types relate to library types and other Db2 Option

parameters. Sub types are shown in bold.

Sub

Type

Description Modified

Process

Sub Type Processing Description

V BIND SERVICE

command and

associated

GRANT SQL

Promote

Demote

Install

Backout

Process with CMNDB2SV to apply

templates to incoming BIND SERVICE and

GRANT components. The templated BIND

SERVICE command is passed to an

IKJEFT01 step for processing. Any

templated GRANT DDL is passed to

CMNDB2GR for action.

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

Db2 Application

Program Source

S Db2

Program

Load

Db2 Application

Program Load

L B

DBRM P D **R B

BIND PLAN

Command

P D **B B

BIND PACKAGE

Command

P D **P B

External Stored

Procedure Source

S Stored

Procedure

Load

External SQL Stored

Procedure Source

S Stored

Procedure

Load

D **Q S

External Stored

Procedure Load

L D **S B & S

Native SQL Stored

Procedure

P D **N S

Define Global Db2 Library Subtypes

Define Global Db2 Library Subtypes 56

* Db2 Active Library specification for BIND plan/pkg (B), Process SQL (S), and Bind Service (V).

Define Source/Target Connector
On the Db2 Administration Option panel, choose option 4 Connector and press Enter to display the

Logical Subsystem Connectors - Global List panel (CMNGD2CL):

Db2 Logical Subsystem Connectors - Global List
The BIND DEPLOY mechanism for distributing Native SQL stored procedures requires both a

source and a target Db2 environment. This panel is used to 'connect' a source logical subsystem to

a target logical subsystem.

Both logical subsystem names must already exist (you can enter an asterisk in either source or

target name fields to get a list).

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/SQL/

SERVICE

General DDL (e.g.

CREATE

PROCEDURE for

external SP)

P D **D S

User Defined

Function Definition

P D **D S

Trigger Definition P D **T S

BIND Service

command

P D V V

Service GRANT

command

P D V V

CMNGD2CL Logical Subsystem Connectors - Global List Row 1 to 11 of 11
Command ===> __ Scroll ===> CSR

Connector Source Target
name name name Description
DS2UNIT STUDIO UNITV DATA STUDIO TO UNIT (DSN)
QA2PROD QAD PRODD QAD TO PRODD
QA2PROD1 QAD PRODD1 QAD TO PRODD1 (DSN1)
UNIT2PRD UNITV PRODV UNIT TO PROD (DSN)
UNIT2PR1 UNITV PRODV1 UNIT TO PROD (DSN1)
UNIT2QA UNIT QAD UNIT TO QAD
UNIT2QA1 UNITV QAD1 UNIT TO QAD1 (DSN1)
****************************** Bottom of data *********************************

Define Source/Target Connector

Define Source/Target Connector 57

Values from the source logical subsystem are used to identify the stored procedure which will be

deployed. Values from the target logical subsystem are used to specify the name and related

attributes of the stored procedure when it is deployed to the target.

If you wish to see which values will be used for your choice of source and target then select the

row once both names have been entered.

To invoke the BIND DEPLOY mechanism based on a specific connector name make the connector

name the subsystem name associated with the relevant SQL active library.

Selecting the first of the connector definitions above shows the panel CMNGD2CN thus:

If you change the source and/or target subsystem on a row then you must save the changes

before the new values will be displayed using the ’S’ line command.

Note

Field Description

CONNECTOR NAME

(Required)

Select a one to eight-character mnemonic for this connector. This

name must be unique.

SOURCE NAME

(Required)

This must be an existing logical subsystem name and specifies

the values which will be used to identify the source of the BIND

DEPLOY command.

TARGET NAME

(Required)

This must be an existing logical subsystem name and specifies

the values which will be used to specify the target of the BIND

DEPLOY command.

DESCRIPTION Use this field to describe the use intended for this connector.

Define Source/Target Connector

Define Source/Target Connector 58

Specify Global Db2 General Parameters
Define general parameters that are available to Db2 Application Administrators to set options for

processing Db2 components.

On the Db2 Administration Option panel, choose option G General and press Enter to display the

Global Db2 General Parameters panel (CMNGDPM0):

This table describes the options and values on the Global Db2 General Parameters panel.

CMNGD2CN Logical Subsystem Connector Global Model - DS2UNIT
Command ===> __

 DATA STUDIO TO UNIT (DSN)

Source STUDIO
Subsystem id . DSN
Location . . . DB2V11 +

Templates Target Source
Schema + +

Target UNITV
Subsystem id . DSN
Site LOCALVER

Templates Target Source Deploy
Collection . . UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + +
Qualifier . . .UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + + UNIT +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + + SERD +

CMNGDPM0 Global Db2 General Parameters
Command ===> ___

Enter "/" to select option
 _ Use Core Db2 Option Functions Only
 _ Use Package Name in Db2 PC version
 _ Force Pkg Name in Db2 PC version

Specify Global Db2 General Parameters

Specify Global Db2 General Parameters 59

Field Description

Use Core

Db2 Option

Functions

Only

The full functionality of the ZMF Db2 option allows you to manage various

components such as stored procedures, REST services etc. To do this you

need to define ZMF Db2 option administration tables. i.e.

CMNx.CMNADMIN_NAMED

CMNx.CMNADMIN_GENERAL

CMNZMF.CMNDB2_ATTRIBS However, if you only need to use the core

functionality of the Db2 option, i.e. managing package and plan binds,

then you can select this global parameter and the requirement for these

tables to exist goes away. If, at some later date, you unselect this option

without setting up the relevant tables and re-binding the Db2 option

packages then you will encounter runtime SQL errors in ZMF admin and

file tailoring functions.

Use

Package

Name in

Db2 PC

version

Type Y or N to set boundaries for entering the “Use Package Name in Db2

PC version” option in Db2 Application Administration. The “Use Package

Name in Db2 PC version” option determines whether the VERSION field on

the Db2 Physical Subsystems panel (CMNSTG18) is initialized to the

package ID in stage and recompile.

Select to restrict settings for “Use Package Name in Db2 PC version” in

Db2 Application Administration to be selected. In all applications, the

VERSION field on the Db2 Physical Subsystems panel is initialized to the

package ID in stage and recompile, but the field can be changed or

blanked out.

Omit to allow selection or otherwise for this option in Db2 Application

Administration.

Force Pkg

Name in

Db2 PC

version

This field is used to set boundaries for entering the “Force Pkg Name in

Db2 PC version” option in Db2 Application Administration. The “Force Pkg

Name in Db2 PC version” option determines whether the Package ID must

be used for the VERSION parameter of the Db2 precompiler on the Db2

Physical Subsystems panel (CMNSTG18) in stage and recompile. This

option must be omitted if the “Use Package Name in Db2 PC version” is

not selected.

Select this to restrict settings for “Force Pkg Name in Db2 PC version” in

Db2 Application Administration to be selected. In all applications, the

VERSION field on the Db2 Physical Subsystems panel is set to the

package ID in stage and recompile, and the field cannot be changed.

Specify Global Db2 General Parameters

Specify Global Db2 General Parameters 60

Type your choices for the general parameters, then press Enter to accept panel entries. Press PF3

to return to the Db2 Options Administration panel.

Configure Db2 Option Application Administration
Application Administration for the ChangeMan ZMF Db2 Option defines:

Logical Db2 subsystems that define automated processing for Db2 components at promotion

and install.

Active libraries that invoke Db2 Option processes at promotion and install defined by logical

subsystems.

A library type for members containing BIND PACKAGE commands.

Library types that invoke special Db2 component processing.

General parameters for processing Db2 components.

Type =A.A.O.2 on any Command or Option line and press Enter to display the application - Db2

Administration Options panel:

This table describes the options on the application - Db2 Administration Options:

Field Description

Omit to allow any entry for this option in Db2 Application Administration.

•

•

•

•

•

CMNLDB2M STEV - Db2 Administration Options
Option ===\>

1 Logical Define application Db2 logical subsystems
2 Library Define application Db2 active library information
3 Libtype Define Db2 library type options
4 Connector Define source/target logical subsystem connector
5 Secondary Define secondary bind requirements
G General Define general Db2 parameters for this application

Field Explanation

Logical Define rules for modifying BIND PLAN and BIND PACKAGE commands at

promotion or install. Define special processing for stored procedures and

triggers.

Library Define active libraries that invoke Db2 Option processing at promotion and

install as defined by logical subsystems.

Libtype Set Db2 Sub Types to invoke special processing for library types that

manage Db2 components.

Configure Db2 Option Application Administration

Configure Db2 Option Application Administration 61

Define Application Logical Subsystems

On the application - Db2 Administration Options panel, choose option 1 Logical and press

Enter to display the Db2 Logical Subsystems panel:

This table describes fields on the Db2 Logical Subsystems panel:

Field Explanation

Connector Define source/target logical subsystem connector for bind deploy of native-

SQL stored procedures.

Secondary Associate secondary bind logical subsystems to the primary bind logical

subsystem.

General Specify the use of package ID in the VERSION parameter for the Db2

precompiler.

1. 1.

CMNLD2LN Db2 Logical Subsystems Row 1 to 3 of 3
Command ===> ___ Scroll ===> CSR

Line commands:
 P Specify miscellaneous parameters
 T B Bind plan/pkg process named(T) and general(B) templates
 Q G SQL process named(Q) and general(G) templates
 V H Bind service process named(V) and general(H) templates

 Logical Db2
 name subsys Site Description
 SERT6 C105 SERT6 SERT6 D/P INSTANCE
 SERT6P1 C105 SERT6 SERT6 PROMOTION SITE #1
 SERT6P2 C105 SERT6 SERT6 PROMOTION SITE #2
****************************** Bottom of data *********************************

Field Explanation

Line

Command

Type a line command to the left of a panel row.

I Insert a blank row. R Repeat an existing row.

D Delete an existing row.

P Specify miscellaneous processing parameters

T Specify BIND process named variable templates B Specify BIND

process general token variable templates

Q Specify SQL process named variable templates

Define Application Logical Subsystems

Define Application Logical Subsystems 62

On the Db2 Logical Subsystem panel, type I in the line command of a row below which you

want to add a physical subsystem and press Enter.

Type * in the line command for the new row, and the Db2 Logical Subsystem List panel is

displayed.

Select a global Db2 logical subsystem from the Db2 Logical Subsystem List and press Enter.

The logical subsystem is added to the Db2 Logical Subsystem panel.

On the Db2 Logical Subsystems panel, type P on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical SubsystemnicknameSettings panel (CMNGD2PM) is

displayed:

This panel defines BIND command templating that is performed for this Db2 logical

subsystem.

This table describes fields on the Db2 Logical Subsystem nickname Settings panel:

Field Explanation

G Specify SQL process general token variable templates

V Specify BIND SERVICE command named parameter templates

H Specify BIND SERVICE command general token templates

Logical

name

Type a 1-8 character mnemonic for this logical Db2 subsystem. Db2

logical subsystem names must be unique across all physical

subsystems. The Logical Name is also called “Db2 nickname” in this

manual.

Db2 subsys Type the Db2 physical subsystem where the parameters and templates

in this logical subsystem will be used.

Site Type the site where the Db2 physical subsystem runs.

Description Type a 30-character description for the logical subsystem.

2. 2.

3. 3.

4. 4.

5. 5.

CMNGD2PM Db2 Logical Subsystem SERT6 Settings
Command ===> ___

Preferred Libtypes:
DBRM
Plan bind parameters
Package bind parameters
Service grants

General Parameters:
Enter "/" to select option
 _ Bind Failure is significant
 / Recycle Stored Procedures where WLM Environment is . .
 / Maintain Trigger Sequence
 _ Use Db2 versioning for Native-SQL Stored Procedures

Define Application Logical Subsystems

Define Application Logical Subsystems 63

Field Description

Bind Failure is

significant

Select to stop promote or demote processing if a Db2 bind fails in

this logical subsystem.

Omit to continue promote or demote processing if a bind fails in this

logical subsystem.

Recycle Stored

Procedures

Select to issue Db2 command VARY WLM...REFRESH to refresh a

stored procedure or external user defined function that has changed

in this logical subsystem.

Omit this field to prevent automatically refreshing a stored

procedure or external user defined function that has changed in this

logical subsystem.

Where WLM

Environment Is

If stored procedures are executed in one or more WLM-managed

address spaces, type the name (or pattern) for the target WLM

environment. The value of this field restricts the refresh of stored

procedures to those environments that match the name or pattern

you specify.

You can wildcard this field by typing an asterisk at the end to specify

a pattern for matching WLM environments. For example, C102*

targets all WLM-managed environments whose names begin with

the characters C102.

Use Db2

versioning for

Native SQL

Stored

Procedures

Select this to use Db2 versioning for Native SQL stored procedures.

Instructs ZMF to keep track of active versions during Native SQL

Stored Procedure deployment. Resets the active version during

demote/backout instead of re-presenting the prior version of the SP

definition.

If not selected, then do not use Db2 versioning for Native SQL stored

procedures.

Define Application Logical Subsystems

Define Application Logical Subsystems 64

Set parameters, then press Enter to accept panel entries.

On the Db2 Logical Subsystems panel, type T on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname Bind Process Templates panel is

displayed:

Field Description

Maintain

Trigger

Sequence

Select to drop and recreate all triggers for an event/table

combination when one trigger is changed. To use this facility you

must arrange for the 'comment on' value for the trigger to start with

CMNFIRE#nn. Triggers are then ordered according to the nn in this

text. When more than one trigger is defined for a particular event/

table combination, the triggers will 'fire' in the order in which they

were created. When we change a trigger definition we drop and then

recreate it thereby altering the execution sequence. If this parameter

is set to '/' then we will drop and recreate, without change, all the

other trigger definitions for this event/table combination in order to

maintain the required firing sequence.

Omit this field to not drop and recreate other triggers for an event/

table combination when one trigger is changed. The modified trigger

will execute last.

Preferred

Libtypes

These fields are not used unless:

1. You assign Db2 subtypes B (BIND PLAN) or P (BIND PACKAGE) or

R (DBRM) to more than one library type in this application. See

Define Application Db2 Library Subtypes

2. You customize promotion, demotion, and installation skeletons to

use the library types entered in these fields. The data in these fields

is available in ISPF variables NTDBR, NTDBB and NTDBP in tables

CMNDB2NN and CMNDB2N.

3. The service grant libtype is only used when automating BIND

SERVICE commands.

The entries on this panel are not restricted by entries on the Db2 Logical Subsystem

nickname Parameter Settings at the global level. The entries at the global level are only a

model for applications.

Note

6. 6.

Define Application Logical Subsystems

Define Application Logical Subsystems 65

This panel defines BIND command and schema templating that is performed for this Db2

logical subsystem.

How you use the fields on this panel to achieve the templating that you need is explained by

example in Templating Examples. For an introduction to templating, see Templates.

The two tables that follow explain the field names at the left of the panel and the templating

names at the top of the panel.

This first table defines the field names at the left of the Db2 Logical Subsystem nickname

BIND Process Templates panel:

Syntax of the BIND PLAN and BIND PACKAGE commands referred to in this table:

CMNGD2L2 Db2 Logical Subsystem PROD BIND Process Templates
Command ===> ___

 Templates Target Source Insert
General:
 Qualifier . . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + ______________ + PROD +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + ______________ + SERD +

Plan:
 Name __________ __________

Package:
 Location . . . ________________ + _______________ + _______________
 Collection . . ________________ + _______________ + _______________

All data fields on this panel, except for Plan Name, exceed the length of the displayed panel

fields. See topic "Working with Long Fields" in the ZMF User's Guide for instructions on how to

enter, update, and erase data in long panel fields.

Note

BIND PLAN(plan-name) PKLIST(location-name.collection-id.package-id)
 - OWNER(authorization-id) QUALIFIER(qualifier-name)...

BIND PACKAGE(location-name.collection-id)
 - OWNER(authorization-id) QUALIFIER(qualifier-name)...

Field Description

Qualifier Template or insert value for qualifier-name in BIND PLAN commands

and BIND PACKAGE commands. Qualifier may be up to 128 characters

long.

Bind

Owner

Template or insert value for authorization-id in BIND PLAN and BIND

PACKAGE commands. Bind Owner may be up to 128 characters long.

Define Application Logical Subsystems

Define Application Logical Subsystems 66

This second table defines templating fields Target, Source, and Insert on the Db2 Logical

Subsystem nickname BIND Process Templates panel in terms of the kind of templating that is

performed.

Field Description

Plan Name Template for plan-name in BIND PLAN commands. Plan name may be

up to 8 characters long.

Package

Location

Template for location-name in BIND PACKAGE commands. If the

PKLTEMPLATE control statement is input to plan lookup program

CMNDB2PL, then the template is also applied to the location-name in the

PKLIST parameter of BIND PLAN commands. See the PKLTEMPLATE

table entry in the Program Level Control Statements section under

CMNDB2PL - BIND Utility. Package Location may be up to 128

characters long.

Package

Collection

Template for collection-id in BIND PACKAGE commands. If the

PKLTEMPLATE control statement is input to plan lookup program

CMNDB2PL, then the template is also applied to the collection-id in the

PKLIST parameter of BIND PLAN commands. See the PKLTEMPLATE

table entry in the Program Level Control Statements section under

CMNDB2PL - BIND Utility. Package Collection may be up to 128

characters long.

Template

Type

Field Description

Replace

characters at

an offset

Target Placeholder ? characters define the offset for

replacement characters.

Example: ???S?T replaces the fourth character of a

seven-character value with S and the sixth character

with T.

Source Blank

Insert Blank

Add

characters at

end

Target Placeholder ? characters define a field that is as long or

longer than the actual data, followed by characters to

be appended to the parameter value.

Example: ???S?T adds ST to the end of a three-

character value.

Define Application Logical Subsystems

Define Application Logical Subsystems 67

Template

Type

Field Description

Source Blank

Insert Blank

Replace

characters at

end

Target Character * (asterisk) indicates the start of a literal

string n characters long that will replace the last n

characters of the parameter value.

Example: *ST replaces the last two characters with ST.

Source Blank

Insert Blank

Delete

characters at

end

Target Character ¬ (not) indicates a field character that will be

replaced with a space. Since embedded spaces are

invalid in a parameter value, use ¬ to delete characters

at the end of a value.

Example: ????¬¬ deletes the last two characters of a six

character value or the last character of a five character

value.

Source Blank

Insert Blank

Replace

character

string

Target Literal string that will replace the first occurrence of the

string matching the value in the Source field. The

matching string and replacing string can be different

lengths.

Source Literal string to search for.

Insert Blank

Add an

OWNER

parameter

Target Blank

Source Blank

Insert Value for the OWNER parameter.

Define Application Logical Subsystems

Define Application Logical Subsystems 68

Define templates, then press Enter to accept panel entries.

Create a logical subsystem for every promotion level and production environment in the

application where the Db2 Option will manage Db2 components.

On the Db2 Logical Subsystems panel, type B on the Line Command for a logical subsystem

row and press Enter.

The Db2 Logical Subsystem nickname Bind General Templates panel CMNLD2L5 is

displayed.

Template

Type

Field Description

Note: There must be no OWNER in the input BIND

command, and the following control statement must be

input to the plan lookup program CMNDB2PL:

AUTHORITY=OWNER,INSERT

Add a

QUALIFIER

parameter

Target Blank

Source Blank

Insert Value for the QUALIFIER parameter.

Note: There must be no QUALIFIER in the input BIND

command, and the following control statement must be

input to the plan lookup program CMNDB2PL:

INSERTQUAL

The entries on this panel are not restricted by entries on the Db2 Logical Subsystem

nickname Bind Process Templates at the global level. The entries at the global level are only

a model for applications.

Note

7. 7.

This facility is not part of the Core Db2 option. Only named templates are available if you

choose to use the Core option.

Note

Define Application Logical Subsystems

Define Application Logical Subsystems 69

On the Db2 Logical Subsystems panel, type Q on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname SQL Templates (Named) panel

CMNGD2L3 is displayed:

On the Db2 Logical Subsystems panel, type G on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname SQL Process Templates (General)

panel is displayed:

Refer to the explanation of the Global equivalent for these - CMNGD2L4 B2 Logical Subsystem

PROD SQL Process Templates (Ge Row 1 to 21 of 21).

CMNLD2L5 Db2 Logical Subsystem QAD1 Bind General Templates Row 1 to 13 of 13
Command ===> Scroll ===> CSR

 Token name + Target template + Source template +
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________

8. 8.

CMNGD2L3 Db2 Logical Subsystem PROD SQL Process Templates (Named)
Command ===> ___

 Templates Target Source Deploy

 Schema PROD¬¬¬¬¬¬¬¬¬¬¬¬ + ______________ +
 Collection . . ________________ + ______________ +
 WLM ________________ + ______________ +

 Location . . . + + _______________
 Qualifier . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _______________ + PROD
 Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _______________ + SERD

9. 9.

CMNGD2L4 B2 Logical Subsys PROD SQL Process Templates (Ge Row 1 to 21 of 21
Command ===> ___ Scroll ===> CSR

 Token name Target template Source template

 ____ ________________ + ________________ + ________________ +
 ____ ________________ + ________________ + ________________ +
 ____ ________________ + ________________ + ________________ +
 ____ ________________ + ________________ + ________________ +
 ...
 ____ ________________ + ________________ + ________________ +
 ____ ________________ + ________________ + ________________ +
****************************** Bottom of data *****************************

Define Application Logical Subsystems

Define Application Logical Subsystems 70

On the Db2 Logical Subsystems panel, type V on the Line Command for a logical subsystem

row and press Enter. The Db2 Logical Subsystem nickname Bind Service Named Templates

panel CMNGD2L6 is displayed:

These three named parameters are templated in the same way as for package/plan binds (see

section 6 above). The underlying processes are different.

On the Db2 Logical Subsystems panel, type H on the line command for a logical subsystem

row and press ENTER. The Db2 Logical Subsystem nickname BIND Service General

Templates panel CMNLD2L7 is displayed, from which the BIND Service process general

tokens for that particular logical subsystem can be specified:

This general token processing is described in step 7 above. However, there are some extra

features which are applicable only to Bind Service processing.

When a grant SQL component is associated with the bind service process and the token name

is >GRANTEE< , the template is applied to the list of grantee userids/groups on the grant SQL

supplied to the process.

Also, if you enclose the source template in single quotes, the target template is only used if

the value to be replaced exactly matches the source template value.

10. 10.

CMNGD2L6 Db2 Logical Subsystem QAD1 Bind Service Named Templates
Command ===>

Templates Target Source

Collection . . ________________ +__________________ +
Qualifier . . . ________________ +__________________ +
Owner ________________ +__________________ +

11. 11.

CMNLD2L7 Db2 Logical Subsystem QAD1 Bind Service General Temp Row 1 to 13 of 13
Command ===> Scroll ===> CSR

 Token name + Target template + Source template +
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________
____ ______________________ ______________________ ______________________

Define Application Logical Subsystems

Define Application Logical Subsystems 71

Define Application Active Libraries
Automated Db2 Option functions are activated when libraries managed by ChangeMan ZMF are

changed in promotion and production environments. These libraries are defined as active libraries

in the Db2 Option. See Active Libraries for details.

Follow these steps to define active libraries in your Db2 application:

On the application - Db2 Administration Options panel, choose option 2 Library and press Enter to

display the Db2 Active Library List panel:

The following table describes fields on the Db2 Active Library List panel:

For stored procedures, user defined functions, and triggers, use production libraries instead of

baseline libraries for Db2 active libraries at installation.

Note

CMNLD2AL Db2 Active Library List Row 1 to 10 of 10
Command ===> ___ Scroll ===> CSR

 Logical Bind
 name /SQL Db2 active library name
 ____ SERT6 B CMNTP.S6.V810.PROD.DBB
 ____ SERT6 B CMNTP.S6.V810.PROD.DBR
 ____ SERT6 B CMNTP.S6.V810.PROD.LOD
 ____ SERT6 B CMNTP.S6.V810.PROD.PKG
 ____ SERT6 S CMNTP.S6.V810.PROD.SPD
 ____ SERT6 S CMNTP.S6.V810.PROD.SPN
 ____ SERT6 S CMNTP.S6.V810.PROD.SPQ
 ____ SERT6 S CMNTP.S6.V810.PROD.STL
 ____ SERT6 S CMNTP.S6.V810.PROD.TRG
 ____ SERT6 S CMNTP.S6.V810.PROD.UDF
 ____ SERT6 V /cmntp/S6/V810/Prod00/BSG
 ____ SERT6 V /cmntp/S6/V810/Prod00/BSZ
 ****************************** Bottom of data ********************************

Field Description

Line

Command

Type a line command to the left of a panel row.

I Insert a blank row.

R Repeat an existing row.

D Delete an existing row.

Logical name Type a Db2 logical subsystem, or connector, name that is already defined

in Db2 application administration.

Define Application Active Libraries

Define Application Active Libraries 72

This table shows you how the BND/SQL/SERVICE field relates to library types and other Db2 Option

parameters. BND/SQL/SERVICE values are shown in bold.

Field Description

Type * to see the Db2 Logical Subsystem List panel from which you may

select a logical subsystem name. The Logical Name is also called Db2

nickname in this manual.

Type Type an indicator for the kind of processing invoked when the active

library is updated:

B Activate Db2 bind processing.

S Activate stored procedure processing, which includes stored

procedures, user defined functions, and triggers.

V Activate Db2 Bind Service processing.

Db2 active

library name

Type the fully qualified data set name of a library or zFS directory name,

that is monitored for change and will invoke Db2 Option bind, stored

procedure, or bind service processing. Library types and subtypes that

should be coded as active libraries:

Bind processing - BIND PLAN command library, BIND PACKAGE

command library, Load module library, and DBRM libraries

Stored procedure processing - Stored procedure library. See the table

below.

Bind service processing - BIND SERVICE command library GRANT

authority to service DDL library

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL/

Service

Db2 Application

Program Source

S Db2

Program

Load

Db2 Application

Program Load

L **B

DBRM P D R **B

Define Application Active Libraries

Define Application Active Libraries 73

* Db2 Active Library specification for BIND plan/pkg (B), Process SQL (S), and Bind Service (V).

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL/

Service

BIND PLAN

Command

P D B **B

BIND PACKAGE

Command

P D P **B

External Stored

Procedure Source

S Stored

Procedure

Load

External SQL Stored

Procedure Source

S Stored

Procedure

Load

D Q **S

External Stored

Procedure Load

L D S **B & S

Native SQL Stored

Procedure

P D N **S

General DDL (e.g.

CREATE PROCEDURE

for external SP)

P D D **S

User Defined

Function Definition

P D D **S

Trigger Definition P D T **S

BIND Service

command

P D V **V

Service GRANT

command

P D V **V

Define Application Active Libraries

Define Application Active Libraries 74

Define Application Db2 Library Subtypes
Db2 library subtypes invoke special processing for Db2 components. When you defined the

Application Library Types for these components, you coded D in the Selectable Option field. Here

you assign a Db2 Sub Type to each of those library types.

On the application - Db2 Administration Option panel, choose option 3 Libtypes and press Enter.

The application - Db2 Library Types panel (CMNDLLT0) is displayed:

This table describes the fields on the application - Db2 Library Types panel:

CMNDLLT0 STEV - Db2 Library Types Row 1 to 12 of 12
Command ===> ___ Scroll ===> CSR

Lib Sub End SQL
type Description type sentence
DBR Db2 DBRM's R _
DBP Db2 Bind Package Commands P _
PKG Db2 Package Bind Control P _
DBB Db2 Bind Plan Commands B _
STL Db2 External Stored Procedure Load S _
XPQ Db2 External SQL stored proc Source D #
SPD Db2 Stored Procedure Definition D #
NSQ Native SQL Stored Procedures N #
DDL Data Definition Language D @
BSP Bind Service PDSE based components V _
BSZ Bind Service zFS based components V _
BSG Bind Service Grant components V _
****************************** Bottom of data *********************************

Field Description

Lib type Displays the library types from the Global Library Type definition that are

defined with a Selectable Option of D.

Description Displays the definition from the global library type.

Sub type Type the Db2 Sub Type for special Db2 Option processing. Sub type

processing is described in the next table below.

B BIND PLAN command

D CREATE statements for stored procedures, external user defined

functions.

N Native SQL stored procedure

P BIND PACKAGE command

S External SQL stored procedure load modules, REXX stored procedures

T Trigger definition source

Define Application Db2 Library Subtypes

Define Application Db2 Library Subtypes 75

Define the Db2 sub types, then press Enter to accept panel entries.

This table shows the processing assigned by Db2 Option library sub types:

Field Description

V BIND SERVICE command or associated GRANT DDL.

End SQL

sentence

Type an alternate SQL statement terminator. If the components in this

library type include SQL that uses the semicolon (;) as a statement

terminator, specify an alternate terminator for the stored procedure or

function so that the semicolon is passed through to the server.

You can specify any character except the following:

- comma

- underscore

- single quote

- double quote

- left hand parenthesis

- right hand parenthesis

If you leave this field blank, the default alternate SQL statement

terminator is semicolon (;).

Sub

Type

Description Modified

Process

Sub Type Processing Description

B BIND PLAN

command

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to template BIND parameters

for the target Db2 subsystem.

D CREATE

statements for

stored

procedures,

external user

defined

functions.

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to register the object in the Db2 catalog.

Issue a DROP before the CREATE.

Define Application Db2 Library Subtypes

Define Application Db2 Library Subtypes 76

Sub

Type

Description Modified

Process

Sub Type Processing Description

N Native SQL

stored

procedures

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to register the stored procedure in the Db2

catalog.

P BIND PACKAGE

command

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to find applicable BIND PLAN

members and template parameters for the

target Db2 subsystem.

Q SQL stored

procedure

source

Promote

Demote

Install

Backout

Process with utility program CMNDB2DQ

to remove SQL procedural code, then

process the CREATE with utility program

CMNDB2DD to register the stored

procedure in the Db2 catalog.

R DBRM Process with plan lookup program

CMNDB2PL to find applicable BIND

PACKAGE and BIND PLAN members and

template BIND parameters for the target

Db2 subsystem.

S Stored

procedure load

modules, REXX

stored

procedures

Promote

Demote

Install

Backout

If the Recycle Stored Procedure field is

YES, issue Db2 command VARY

WLM...REFRESH in the WLM-managed

address space to refresh the executable.

T Trigger

definition

source

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to extract the table/event/time

combinations. If Maintain Trigger

Sequence YES, query

SYSIBM.SYSTRIGGERS with utility

program CMNDB2TR to find multiple

triggers defined for the same table/event/

time combination, then drop and recreate

those triggers to maintain the original

firing order.

Define Application Db2 Library Subtypes

Define Application Db2 Library Subtypes 77

This table shows you how the Db2 Option sub types relate to library types and other Db2 Option

parameters. Sub types are shown in bold.

Sub

Type

Description Modified

Process

Sub Type Processing Description

V BIND SERVICE

command and

associated

GRANT SQL

Promote

Demote

Install

Backout

Process with CMNDB2SV to apply

templates to incoming BIND SERVICE and

GRANT components. The templated BIND

SERVICE command is passed to an

IKJEFT01 step for processing. Any

templated GRANT DDL is passed to

CMNDB2GR for action.

If you create a change package and then change an existing library type definition, the new

library type behavior is not expressed in the package. If you create a change package and then

define a new library type, the library type behavior in the package is set when the first

component is checked out in that library type.

Note

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL

Db2 Application

Program Source

S Db2 Program

Load

Db2 Application

Program Load

L B

DBRM P D **R B

BIND PLAN Command P D **B B

BIND PACKAGE

Command

P D **P B

External Stored

Procedure Source

S Stored

Procedure

Load

External SQL Stored

Procedure Source

S Stored

Procedure

Load

D **Q S

Define Application Db2 Library Subtypes

Define Application Db2 Library Subtypes 78

* Db2 Active Library specification for BIND plan/pkg (B), Process SQL (S), and Bind Service (V).

Define Source/Target Connector
The BIND DEPLOY mechanism for distributing Native SQL stored procedures requires both a

source and a target Db2 environment. This option is used to "connect" a source logical subsystem

to a target logical subsystem.

It is not part of the "core" Db2 option functionality.

On the application - Db2 Administration Option panel, choose option 4 Connector and press Enter.

The application - Db2 Logical Subsystem Connectors panel (CMNLD2CL) is displayed:

The connector definition must already exist at the global level. You can enter an asterisk in the line

command to get a list of pre-defined connectors from which you can select.

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL

External Stored

Procedure Load

L D **S B & S

Native SQL Stored

Procedure

P D **N S

General DDL (e.g.

CREATE PROCEDURE

for external SP)

P D **D S

User Defined Function

Definition

P D **D S

Trigger Definition P D **T S

BIND Service

command

P D **V V

Service GRANT

command

P D **V V

CMNLD2CL Logical Subsystem Connectors for Appl - STEV Row 1 to 1 of 1
Command ===> Scroll ===> CSR

 Connector Source Target
 name name name Description
 ABC PRODLCL1 PRODLCL2 TEST
******************************* Bottom of data ********************************

Define Source/Target Connector

Define Source/Target Connector 79

Values from the source logical subsystem are used to identify the stored procedure that will be

deployed. Values from the target logical subsystem are used to specify the name and related

attributes of the stored procedure when it is deployed to the target.

If you wish to see which values will be used for your choice of source and target, select the row

once any update has been saved.

To invoke the BIND DEPLOY mechanism based on a specific connector name, make the connector

name the subsystem name associated with the relevant SQL active library.

This table describes the fields on the application - Db2 Logical Subsystem Connectors panel:

Define Secondary Bind Requirements
This option is used to allow the administrator to associate secondary bind logical subsystem

names with those of primary bind logical subsystems.

The secondary names will be added to a secondary bind logical subsystem ISPF table

(CMNDB22N) from which additional bind steps may be created each time binds are generated for

the primary logical subsystem.

On the application - Db2 Administration Option panel, choose option 5 Secondary and press Enter.

The application - Db2 Secondary Binding panel (CMNLD2LB) is displayed:

Field Description

Connector

Name

The 8 character name by which this connector definition will be

referenced. It must be unique within connector and logical subsystem

names.

Source Name An existing logical subsystem name describing the source location of

the required bind deploy command.

Target Name An existing logical subsystem name describing the target location of the

required bind deploy command.

Description Free form text describing this connector definition.

Define Secondary Bind Requirements

Define Secondary Bind Requirements 80

This table describes the fields on the application - Db2 Secondary Binding panel:

CMNLD2LB Db2 Secondary Binding Row 1 to 5 of 5
Command ===> Scroll ===> CSR

Enter END command to save changes or CANCEL to exit without saving changes.
Enter * in either name field for local DB2 logical subsystem list.

 Primary Secondary Promotion
 Logical Logical Level Name Active Description (Secondary)
 Name Name
 PRODUCTN QA 30 QA Y QA (2NDARY BINDS)
 PRODUCTN SYSTEST 20 SYSTEST Y SYSTEM (2NDARY BINDS)
 PRODUCTN UNIT 10 UNIT Y UNIT (2NDARY BINDS)
 QA SYSTEST 20 SYSTEST Y SYSTEM (2NDARY BINDS)
 QA UNIT 10 UNIT Y UNIT (2NDARY BINDS)
******************************* Bottom of data ********************************

Field Description

Primary

Logical

Name

A pre-existing logical subsystem name where the primary bind, for this

definition, will take place. You can enter an asterisk in this field to get a

list of existing logical subsystem names.

Secondary

Logical

Name

A pre-existing logical subsystem name where the secondary binds, for

this definition, will take place. You can enter an asterisk in this field to get

a list of existing logical subsystem names.

Promotion

Level

This is the promotion level you wish to be associated with the secondary

logical subsystem for this secondary bind. This will be used, via the

relevant skeleton, to create an appropriate library concatenation for

DBRMLIB (etc.). You can enter an asterisk in this field to get a list of

allowed promotion levels for the remote site associated with the

secondary logical subsystem.

Promotion

Name

This is the nickname associated with this promotion level (display field

only).

Active This definition will only be acted on if this field is set to Y.

Define Secondary Bind Requirements

Define Secondary Bind Requirements 81

Specify Application Db2 General Parameters
Set options for processing Db2 components.

On the application - Db2 Administration Options panel, choose option G General and press Enter to

display the application - Db2 General Parameters panel (CMNLDPM0):

This table describes the options and values on the application - Db2 General Parameters panel.

Type your choices for the general parameters, then press Enter to accept panel entries.

Field Description

Description The description associated with the secondary logical subsystem name

(display field only).

CMNLDPM0 ACTP - Db2 General Parameters
Command ===> ___

Enter "/" to select option
 _ Use package name in Db2 PC version
 _ Force package name in Db2 PC version

Field Description

Use Package

Name in Db2 PC

version

Select with / to determine whether the VERSION field on the Db2

Physical Subsystems panel (CMNSTG18) is initialized to the package

ID in stage and recompile.

When selected, initializes the VERSION field on the Db2 Physical

Subsystems panel to the package ID.

When not selected, initializes the VERSION field on the Db2 Physical

Subsystems panel to blank.

Force Pkg

Name in Db2 PC

version

Select this to determine whether the Package ID must be used for the

VERSION parameter for the Db2 precompiler in stage and recompile.

This option must be blank if the “Use Package Name in Db2 PC

version” field is blank.

If selected, then display the VERSION field in browse mode on the Db2

Physical Subsystems panel (CMNSTG18) in stage and recompile so

that the field cannot be changed.

If not selected, then display the VERSION field on the Db2 Physical

Subsystem panel in edit mode so it can be changed.

Specify Application Db2 General Parameters

Specify Application Db2 General Parameters 82

Press PF3 to return to the application - Db2 Options Administration panel.

Customize Skeletons for Db2

You must customize a skeleton to set the DBRM library type for the Db2 precompiler, and you may

want to modify skeletons that execute plan lookup program CMNDB2PL.

Set DBRM Library Type for Db2 Precompile
Modify skeleton CMN$$VAR to set the library type for DBRM created by the Db2 Precompiler in

skeleton CMN$$PDB.

Make sure you are working in a CUSTOM SKELS library and not the delivered skeleton library.

Edit member CMN$$VAR.

Find "SET PREFERRED LIBTYPES".

Read the instructions under that heading and choose a method to set the library type for

DBRM in one or more applications.

Uncomment the provided code, or code your own solution to set variable DBRMLTP.

Modify Plan Lookup Parameters In Skeletons
Plan lookup program CMNDB2PL is included in seven skeletons. The function of program

CMNDB2PL is controlled by keyword parameters input through the SYSIN ddname. The values of

these keywords in the delivered skeletons will be suitable for many user sites. However, there is an

interaction between these keyword options and the definition of logical subsystems in the Db2

Option.

See CMNDB2PL - BIND Utility for detailed descriptions of each CMNDB2PL keyword option. Modify

the skeletons below if you need to change the values for these options:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Skeleton Purpose

CMN$

$PRB

Bind Db2 plans and packages for promotion/ demotion at local sites.

CMN$

$PB2

Secondary binding at local sites.

CMN$

$RPB

Bind Db2 plans and packages for promotion/ demotion at remote sites.

Customize Skeletons for Db2

Customize Skeletons for Db2 83

SQL Processing In Skeletons
Modify the skeletons below if you need to change the way SQL is processed - observe the

comments in each. Refer also to Stored Procedure Utilities:

Skeleton Purpose

CMN$

$RB2

Secondary binding at remote sites.

CMN$

$SPB

Bind Db2 plans and packages for promotion/demotion using shadow

promotion libraries at the development ChangeMan ZMF instance.

CMN$

$SB2

Secondary binding using shadow promotion libraries.

CMN21 Bind Db2 plans and packages for install at production ChangeMan ZMF

instances.

CMN$

$IB2

Secondary binding for install in production.

CMN32 Bind Db2 plans and packages for baseline ripple at development

ChangeMan ZMF instances.

CMN$

$BB2

Secondary binding for baseline ripple.

CMN49 Bind Db2 plans and packages for backout at production ChangeMan ZMF

instances.

CMN56 Bind Db2 plans and packages for backout (reverse baseline ripple) at

development ChangeMan ZMF instances.

Skeleton Purpose

CMN$

$PSQ

Local promote/demote - This routine presents SQL/DDL components to

local Db2.

CMN$

$RSQ

Remote promote / demote - This routine presents SQL/DDL components to

remote Db2.

SQL Processing In Skeletons

SQL Processing In Skeletons 84

Bind Service Processing In Skeletons
Modify the skeletons below if you need to change the way SQL is processed - observe the

comments in each. Refer also to Bind Service Support for more information.

Installation in Other Db2 Subsystems

You must bind the DBRM for program CMNDB2SQ in all Db2 subsystems where ChangeMan ZMF

will perform binds or manage stored procedures, user defined functions, and triggers for promote,

demote, install, and backout.

A ZMF license is required on every LPAR that runs CMNDB2PL.

If you also intend to use ZMF support for native SQL versions and bind deploy then there are further

binds required. These are detailed in the supplied DB2OPTN and DB2OPTNR sample JCL

components.

Skeleton Purpose

CMN$

$SQL

Install/backout - This routine processes install and backout for SQL/DDL

components to Db2.

Skeleton Purpose

CMN$

$BSV

Install/backout - This routine templates BIND SERVICE command

parameters as well as related GRANT DDL. The templated bind commands

are processed by IKJEFT01 and the templated GRANT DDL is presented to

Db2.

CMN$

$PSV

The same as CMN$$BSV but used for local promote/demote.

CMN$

$RSV

The same as CMN$$BSV but used or remote promote/demote.

Bind Service Processing In Skeletons

Bind Service Processing In Skeletons 85

4. DB2 Component Processing

This chapter describes how the Db2 Option processes application components.

Library Types and Sub Types

CREATE versus ALTER

Component Processing Summary

Library Types and Sub Types

Application Db2 component processing is defined by:

Like processing for the library type

Db2 Option library sub type

Library Types
Like all other component processing in ChangeMan ZMF, basic processing for Db2 components at

stage are determined by the like parameter of the library type definition. For example, like-source

components are processed by a transform procedure to create executables.

Additional processing for Db2 components is determined by sub-types you assign to a library type

in Db2 Option administration. (Prior to ChangeMan ZMF 8.1 some Db2 component processing was

determined by reserved library types.)

Setting the Selectable Option to D on a library type definition makes that library type available for

setting a sub-type in Db2 Option administration.

Db2 Component Processing

• •

• •

• •

• •

• •

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL\

Db2 Application

Program Source

S Db2 Program

Load

Db2 Application

Program Load

L B

DBRM P D R B

4. DB2 Component Processing

4. DB2 Component Processing 86

This table shows library types you must define to process various kinds of Db2 components.

* Db2 Active Library specification for BIND/SQL action.

Library Sub Types

Db2 Component Like Target Type Sel

Opt

Sub

Typ

BIND/

SQL\

BIND PLAN Command P D B B

BIND PACKAGE

Command

P D P B

External Stored

Procedure Source

S Stored

Procedure

Load

External SQL Stored

Procedure Source

S Stored

Procedure

Load

D Q S

External Stored

Procedure Load

L D S B & S

Native SQL Stored

Procedure

P D N S

General DDL (e.g.

CREATE PROCEDURE

for external SP)

P D D S

User Defined Function

Definition

P D D S

Trigger Definition P D T S

Library Sub Types

Library Sub Types 87

Sub

Type

Description Modified

Process

Sub Type Processing Description

B BIND PLAN

statements

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to template BIND parameters

for the target Db2 subsystem. Note: Only 1

PLAN per member can be specified. Refer

to Chapter 6, "CMNDB2PL - BIND Utility" as

a reference to how CMNDB2PL adds Plans

and Packages to the ’to be bound’ list.

D CREATE

statements for

stored

procedures,

external user

defined

functions.

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to register the object in the Db2 catalog.

Issue a DROP before the CREATE.

N Native SQL

stored

procedure

definitions

Promote

Demote

Install

Backout

Drop/Create, Alter add version, and bind

deploy mechanisms supported for this

library type.

P BIND PACKAGE

statements

Promote

Demote

Install

Backout

Process with plan lookup program

CMNDB2PL to find applicable BIND PLAN

members and template parameters for the

target Db2 subsystem.

Q SQL stored

procedure

source

Promote

Demote

Install

Backout

Process with utility program CMNDB2DQ

to remove SQL procedural code, then

process the CREATE with utility program

CMNDB2DD to register the stored

procedure in the Db2 catalog.

R DBRM Process with plan lookup program

CMNDB2PL to find applicable BIND

PACKAGE and BIND PLAN members and

template BIND parameters for the target

Db2 subsystem.

Library Sub Types

Library Sub Types 88

Db2 Option library sub types enable additional processing for Db2 components at promote,

demote, install, and backout. This table describes that processing by sub type.

CREATE versus ALTER

There are several ways to change the Db2 catalog definition of a stored procedure, user defined

function, or trigger.

DROP the Db2 object and execute a CREATE with the new definition.

Execute an ALTER that includes only the parameters you want to modify in the definition.

For Native SQL SPs you can use ALTER to ADD a new VERSION.

For all but Native SQL SPs, we recommend that you always stage a CREATE member to

change a definition. The Db2 Option issues a DROP automatically before it executes a CREATE

definition.

If you use CREATE, then the latest version of the complete object definition is available in

baseline for checkout. If you use ALTER, the next time you check out the definition, you can

only see the parameters in the definition that you changed in the last ALTER. You can look in

prior versions kept by ChangeMan ZMF for the complete definition, but you will have these

difficulties.

To come up with a complete, current definition, you have to apply the changes in each ALTER

to the last CREATE definition.

Sub

Type

Description Modified

Process

Sub Type Processing Description

S Stored

procedure load

modules, REXX

stored

procedures

Promote

Demote

Install

Backout

If the Recycle Stored Procedure field is

YES, issue Db2 commands VARY

WLM...REFRESH in the WLM-managed

address space to refresh the executable.

T Trigger

definition

source

Promote

Demote

Install

Backout

Process with utility program CMNDB2DD

to extract the table/event/time

combinations. If Maintain Trigger

Sequence YES, query

SYSIBM.SYSTRIGGERS with utility

program CMNDB2TR to find multiple

triggers defined for the same table/event/

time combination, then drop and recreate

those triggers to maintain the original

firing order.

1. 1.

2. 2.

3. 3.

4. 4.

CREATE versus ALTER

CREATE versus ALTER 89

If you install more ALTERs for an object than the number of prior versions of the component

type kept by ChangeMan ZMF, the CREATE will be lost.

There are cases where you cannot use CREATE. When a Db2 object has dependencies, it can

be difficult to DROP the object.

When dependencies exist, you may have no alternative than to use ALTER to change the

definition. If you must use ALTER, we recommend that you include the entire CREATE definition

as comments inside the ALTER SQL member.

For Native SQL SPs the same considerations apply but, in addition, you may wish to use ALTER

ADD VERSION

To add a new version of an SP to the target Db2 catalog. The ZMF Db2 option supplies

mechanisms to aid with the automation of activating new and dropping old versions of native

SQL SPs.

Component Processing Summary

This section provides a summary of the processing performed by the ChangeMan ZMF base

product and the Db2 option for each kind of Db2 component.

Programs with Imbedded SQL

Library Types

Stage (Like-S)
Language is a high-level language such as COBOL or assembler.

Db2 Precompile is YES.

5. 5.

Component Lib Type or Like Sub Type

Source Like-S

DBRM Like-P R

Load Like-L

Action Object

Copy to staging library (if not there) Source

Delete from staging library DBRM Load

Component Processing Summary

Component Processing Summary 90

Audit

Promote/Demote

Install/Backout

Action Object

Precompile (extract SQL) DBRM

Compile with high level language procedure. Object

Link edit object Load

Build relationship to source PM records

Copy to staging library DBRM Load

Action Object

Examine relationships to package components

Examine relationships to baseline components

Action Object

Copy members to promotion library DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

Action Object

Baseline ripple or copy to production library Source DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Audit

Audit 91

BIND Commands

Library Types

Stage (Like-P)

Audit

Promote/Demote

Install/Backout

Action Object

Execute bind Db2 Catalog

Component Lib Type or Like Sub Type

Plan BIND commands Like-P B

Package BIND commands Like-P P

Action Object

Copy to staging library (if not there)

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library

Template BIND command BIND

Execute bind Db2 Catalog

Action Object

Baseline ripple or copy to production library

Template BIND command BIND

BIND Commands

BIND Commands 92

Procedure Definition DDL

Library Types

Stage (Like-P)

Audit

Promote/Demote

Install/Backout

Action Object

Execute bind Db2 Catalog

Component Lib Type or Like Sub Type

Procedure Definition Like-P D

Action Object

Copy to staging library (if not there) Procedure Defn

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library Procedure Defn

Implement Procedure Definition Db2 Catalog

Action Object

Baseline ripple or copy to production library Procedure Defn

Procedure Definition DDL

Procedure Definition DDL 93

Stored Procedures – External

Library Types

Stage (Like-S)
Language is a high-level language such as COBOL or assembler.

Db2 Precompile is YES.

Audit

Action Object

Implement Procedure Definition Db2 Catalog

Component Lib Type or Like Sub Type

Source Like-S

DBRM Like-P R

Load Like-L S

Action Object

Copy to staging library (if not there) Source

Delete from staging library DBRM Load

Precompile (extract SQL) DBRM

Compile with high level language procedure Object

Link edit object Load

Build relationship to source PM records

Copy to staging library DBRM Load

Action Object

Examine relationships to package components

Stored Procedures – External

Stored Procedures – External 94

Promote/Demote

Install/Backout

Stored Procedures – External SQL

Library Types

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

Action Object

Baseline ripple or copy to production library Source DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

Component Lib Type or Like Sub Type

Source Like-S Q

DBRM Like-P R

Stored Procedures – External SQL

Stored Procedures – External SQL 95

Stage (Like-S)
Language invokes procedure CMNSQL.

Db2 Precompile is YES.

Audit

Promote/Demote

Component Lib Type or Like Sub Type

Load Like-L S

Action Object

Copy to staging library (if not there) Source

Delete from staging library DBRM Load

Convert to SQL source to C C-source

Precompile C (extract SQL) DBRM

Compile with C language procedure Object

Link edit object Load

Build relationship to source PM records

Copy to staging library DBRM Load

Action Object

Examine relationships to package components

Examine relationships to baseline components

Action Object

Copy members to promotion library Source DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

Extract Procedure Definition DDL from source SQL Procedure Defn

Implement Procedure Definition Db2 Catalog

Stored Procedures – External SQL

Stored Procedures – External SQL 96

Install/Backout

Stored Procedures - Native SQL
Native SQL stored procedure deployment mechanisms:

Drop/Create

Alter Add Version

Bind Package Deploy

There is no build process for these components. All processing takes place at the Db2 subsystem

which is the target for the promotion/install/etc. For BIND DEPLOY the relevant bind command is

issued to the target Db2 subsystem but routed for execution to the source subsystem. The BIND

DEPLOYs from the source to the target.

Action Object

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

Action Object

Baseline ripple or copy to production library Source DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

Extract Procedure Definition DDL from source SQL Procedure Defn

Implement Procedure Definition Db2 Catalog

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

• •

• •

• •

Stored Procedures - Native SQL

Stored Procedures - Native SQL 97

Library Types

Stage

Audit

Promote/Demote

Install/Backout

Component Lib Type or Like Sub Type

Source Like-P N

Action Object

Copy to staging library (if not there) Source

Action Object

No Action

Action Object

Copy member to promotion library Source

Implement procedure definition (via templates if

defined)

Source, where bind deploy not in

use

Deploy procedure definition Bind deploy from source Db2

catalog

Activate procedure version If Db2 versioning in use

Action Object

Copy member to production library Source

Implement procedure definition (via templates if

defined)

Source, where bind deploy not in

use

Deploy procedure definition Bind deploy from source Db2

catalog

Stored Procedures - Native SQL

Stored Procedures - Native SQL 98

Stored Procedures – REXX
REXX stored procedures:

Require REXX support to be active in the target Db2 subsystem. (The DBA or system

programmer configures this support.)

Run only in WLM-managed address spaces.

During the build process, all you have to do is place the source for the REXX stored procedure in the

SYSEXEC concatenation of the started task associated with the target WLM-managed address

space.

Library Types

Stage

Audit

Promote/Demote

Action Object

Activate procedure version If Db2 versioning in use

• •

• •

Component Lib Type or Like Sub Type

Source Like-P S

Action Object

Copy to staging library (if not there) Source

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library Source

Stored Procedures – REXX

Stored Procedures – REXX 99

Install/Backout

User Defined Functions - External

Library Types

Stage (Like-S)
Language is high level language such as COBOL or assembler.

Db2 Precompile is YES.

Action Object

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

Action Object

Baseline ripple or copy to production library Source

VARY WLM,APPLENV=envname,REFRESH WLM-managed address space

Component Lib Type or Like Sub Type

Source Like-S

DBRM Like-P R

Load Like-L

Action Object

Copy to staging library (if not there) Source

Delete from staging library DBRM Load

Precompile (extract SQL) DBRM

Compile Object

Link edit object Load

Build relationship to source PM records

User Defined Functions - External

User Defined Functions - External 100

Audit

Promote/Demote

Install/Backout

User Defined Functions - Source

Action Object

Copy to staging library DBRM Load

Action Object

Examine relationships to package components

Examine relationships to baseline components

Action Object

Copy members to promotion library DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

Action Object

Baseline ripple or copy to production library Source DBRM Load

Determine which plans/packages to bind

Template BIND command BIND

Execute bind Db2 Catalog

User Defined Functions - Source

User Defined Functions - Source 101

Library Types

Stage (Like-P)

Audit

Promote/Demote

Install/Backout

Database Triggers

Library Types

Component Lib Type or Like Sub Type

Function Definition Like-P D

Action Object

Copy to staging library (if not there) Function Defn

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library Function Defn

Implement Function Definition Db2 Catalog

Action Object

Baseline ripple or copy to production library Function Defn

Implement Function Definition Db2 Catalog

Component Lib Type or Like Sub Type

Trigger Definition Like-P T

Stage (Like-P)

Action Object

Database Triggers

Database Triggers 102

Audit

Promote/Demote

Install/Backout

Component Lib Type or Like Sub Type

Copy to staging library (if not there) Trigger Defn

Action Object

Examine relationships to baseline components

Action Object

Copy members to promotion library Trigger Defn

Implement Trigger Definition Db2 Catalog

Reorder Triggers in correct sequence Db2 Catalog

Action Object

Baseline ripple or copy to production library Trigger Defn

Implement Trigger Definition Db2 Catalog

Reorder Triggers in correct sequence Db2 Catalog

Database Triggers

Database Triggers 103

5. Native SQL SP Lifecycle

This chapter discusses various actions in the lifecycle.

Checkin/Stage

Promote

Demote

Install

Backout

Skeleton changes (overview)

Checkin/Stage

Stage From Development
There is a new option on the 'Stage from Development' panel CMNSTG02:

If you choose that option, you are presented with a new panel from which you can stage the SP into

the package:

Native SQL SP Lifecycle

• •

• •

• •

• •

• •

• •

CMNSTG02 Stage from Development
Command ===> ___

 Package: STEV000288 Status: DEV Install date: 20161120
 Change rqst: 00000001 Location: HERE

ISPF Library:
 Project ZMFSD
 Group DB2
 Type JCL
 Member ________ (Blank/pattern for list; * for all members)

Other partitioned, sequential or HFS dataset:
 DSN ___ +
 Org ____ (PDS, Seq, PAN, LIB, Oth, HFS)

Library type ____ (Blank for list)
Stage name ___ +
Stage mode 1 (1-Online, 2-Batch)

Enter "/" to select option
 / Confirm request _ Expand HFS subdirectories
 _ Lock component _ Display component user options
 / Extract Stored Procedure from Db2 catalog

5. Native SQL SP Lifecycle

5. Native SQL SP Lifecycle 104

The fields available on this panel (CMNSTG25) are:

CMNSTG25 Stage Native-SQL SP from Db2
Command ===> ___

 Package: STEV000288 Status: DEV Install date: 20161120

Stored Procedure:
 Db2 id DSN
 Location . . . _____________________
 Schema ZMFSD ___ +
 Name NTVSQL01 __ +
 Version . . . ___ +
 Version Ind . _____________________

Component:
 Name NTVSQL01
 Library type. NSQ

Enter "/" to select option
 / Add package information to component
 _ Lock component in package

Stored

Procedure

Description

Db2 id Enter the subsystem id of the Db2 instance you would like ZMF to contact

to look for the stored procedure (SP) to be staged into the package. If

location is left blank then the SP must reside in the catalog of this Db2

instance. This Db2 subsystem must be contactable by ZMF and must be

at least Db2 v11.

Location If the Stored Procedure is located at a remote Db2 instance you can

specify its location here. The usual requirements for DRDA access to

remote Db2 tables, from the Db2 ID specified above, must be in place.

Schema This is the (up to 128 byte) schema name used to identify the SP definition

to be extracted.

Name This is the (up to 128 byte) name of the SP.

Version This is the (up to 64,122 for DBCS, byte) Db2 version identifier for the

Native SQL SP you wish to extract. If this, and the next, field is left blank

then ZMF will extract the version with the greatest routineid.

Version In This indicator is used only if the Version field is left blank. It allows the

user to extract one of the First, Latest, or Active versions of the SP. You

can enter the whole word or just the first character i.e. F, L, or A. any other

value is invalid:

Stage From Development

Stage From Development 105

If the SP component is being entered directly via ISPF edit then the member can be staged directly

into the package.

In order to enable client-pack, batch, and general access to this, this new function has been

implemented as an extension to the existing CHECKIN service.

All these values may, optionally, be controlled via new HLL exits taken at new points for this new

function. The internal exit names are:

BULD0025 pre-panel CMNSTG25

BULD0125 post-panel CMNSTG25

The data interface for the checkin/build function (BULD) has been extended to pass these new

attributes (more info in the next section).

Stored

Procedure

Description

First: The version of the SP with the earliest CREATEDTS will be staged.

Latest: The version of the SP with the latest of either CREATEDTS or

ALTEREDTS will be staged.

Active: The currently active version of the SP will be staged.

Component Description

Name The 8 byte name of the component to be staged into the package. This is

usually the same name as the SP itself (and leaving this field blank will

ensure this is so). If the SP name is longer than 8 bytes then you will have

to choose an 8 byte component name yourself.

Library

Type

The library type to be used to stage the component. This must be a Db2

indicated library type with a subtype of N.

Option Description

Add package

information to

component

If selected this will result in comments being added to the top of the

extracted SP component. These comments identify the package

being used as the vehicle for the deployment of this SP ("The first

three (optional) comment lines have been added by ZMF.").

Lock component

in package

Selecting this option will cause the component to be locked in the

package. This sets the same variable as the same option on

CMNSTG02.

Stage From Development

Stage From Development 106

Promote

Promotion of the SP results in its deployment to the target Db2 subsystem. The target of the

promotion must be covered by a logical Db2 subsystem definition and, by default, the standard

templating provided by that definition will be applied.

There are 3 methods which may be used to promote (and install) native SQL SPs:

Drop/Create
This process does not differ to a great extent from the existing promotion mechanism for DDL in

general. Facilities exist whereby the administrator can provide their own validation and

manipulation routine. Changes required for test promotion levels (and, quite often, different target

production environments) are made by the promotion (or installation) mechanism as the

component is applied to the target environment. This is the methodology that the existing Db2

templating mechanisms follow. The facilities for native SQL SPs extend this method to allow the

administrator to take control of both validation and manipulation of the SP component. This is

implemented as an HLL exit point from CMNDB2DD where control is passed to a routine of the

sites choosing (specified via SYSIN parameters). The incoming DDL is already allocated to the

step and is available to be read from that ddname. The exit can request the termination of the

process (and issue error messages), it will also be in a position to replace the incoming DDL values

and pass the updated DDL either directly to Db2 (i.e. let CMNDB2DD apply the DDL directly) or

output it to a dataset to be passed on to whichever Db2 processing utility the user site wishes to

use. This is not a 'standard' HLL exit because the promotion job must be able to run on an LPAR

other than the one where HLLX is running, and there may be no direct means of communicating

back to ZMF in order to drive HLLX, so the exit is called directly from the execution of CMNDB2DD.

The invocation method is very similar to standard HLLX, you will be able to code this exit in REXX

or any LE-language.

Alter Add Version
If versioning has been requested in the admin definition for the logical subsystem then a row

indicating the current active version will be written to the 'Db2 Object Attribute Table' to allow for a

potential future demote action. A separate (optionally held) job will be submitted to activate the

new version of all Native SQL SPs included in this promotion. If allowed to execute immediately

then the changed SP will be activated at time of promote, else at a time later when the job is

released. Indication of the current active version (i.e. prior to activating the just promoted version)

is kept in the local CMNZMF.CMNDB2_ATTRIBS table.

These actions are implemented jointly between CMNDB2DD and CMNDB2AV. The keyword

SPVERSION=YES is used to have CMNDB2DD generate activation transactions which are written to

an external file. CMNDB2AV picks up these transactions and, based on their content, proceeds to

save prior active version information and then activate the newly promoted SP.

Promote

Promote 107

Bind Deploy
When this deployment method is chosen we will route the relevant bind deploy command to the

originating Db2 subsystem as indicated in the admin definitions. This is achieved from

CMNDB2DD running on the target site and issuing a remote call to IBMs stored procedure called

ADMIN_COMMAND_DSN. The location of the source subsystem will be provided on the call to this

SP and it will issue the bind deploy command to the source Db2. The usual remote promotion job

which executes at the target site will contain the ALTER request required to activate the new

version of the SP.

These actions are, again, implemented by a combination of CMNDB2DD and CMNDB2AV.

CMNDB2DD issues the BIND DEPLOY command (which is routed via a call to srclocation.

SYSPROC.ADMIN_COMMAND_DSN) as a result of the SPVERSION=BOTH keyword. This results in

version activation transactions being written to an external file and the BIND DEPLOY command

being issued. Note that CMNDB2DD waits for confirmation that the

BIND DEPLOY has worked before proceeding. If it fails for some reason then messages are written

to the CMNDB2DD SYSPRINT dataset and it finishes with rc=8. As a result, the CMNDB2AV

activation process does not run. If all goes well then the BIND DEPLOY will have distributed the new

version of the SP to the target Db2 subsystem and the ensuing CMNDB2AV execution will activate

it.

Demote

Drop/Create
The current action for a demote of a DDL/SQL component is that CMNDB2DD will attempt to re-

instate the prior version of the component via DROP/CREATE. To do this it searches the

concatenation allocated to the SQLIN ddname (which is built starting from the next highest level

library), using the first matching member name it finds to do the create. If the member name was

not found when searching the SQLIN concatenation then CMNDB2DD picks up the DDL from the

STGLIB ddname (which points at the current level promotion library) and uses the information

found within to issue a DROP request only (i.e. it assumes that this SP was a new one and there is

nothing to replace it with once it has been demoted).

Once CMNDB2DD has completed the target component is then removed from the current level

promotion library.

Some sites may prefer to use mechanisms other than CMNDB2DD to process the DDL. In order to

make this easier an option is available to pass the DDL built by CMNDB2DD to an external file

which can then be processed by whatever utility the site wishes (this was also mentioned above for

promote).

Bind Deploy

Bind Deploy 108

Alter Add Version
If versioning is active then CMNDB2DD will not attempt to drop/create using the concatenation

hierarchy. Instead we will use the information maintained in the 'Db2 Object Attribute' table to take

steps to activate the prior version. The version being demoted will be dropped and the SP

component will be removed from the promotion library. The relevant row in the 'Db2 Object

Attribute' table will also be deleted.

CMNDB2DD keyword SPVERSION=YES is used to generate the relevant activation transactions

required for CMNDB2AV to activate the recorded prior version for this SP. The version being

demoted is also dropped.

Bind Deploy
SPVERSION=UNDO causes CMNDB2DD to generate version activation transactions which will

reverse the activation sequence so that the prior recorded version is activated. This is different

from SPVERSION=YES only in that different templates are used to identify the schema of the target

SP as there are two values to take into account (the source and target Db2 locations).

Install

The install processes specific to Native SQL SPs are similar to those for promotion. The

differences being in the (usual) way that install jobs are distributed and scheduled.

Install usually implements a 'promotion cleanup' for executable components. This is based on the

concatenated execution environment approach, i.e. once the component has been installed into

production then you don't need separate copies it in all the test environments. This is, generally, not

appropriate for SPs and we need to leave the promotion/test Db2 alone. Note that ChangeMan

ZMF allows for this to be controlled via promotion admin definitions (see details below).

Install skeleton changes
The install mechanism for Stored Procedures (and other Db2 objects such as UDFs and Triggers)

has been divorced from CMN20 and implemented as part of CMN21.

Some advantages of this are:

1) Job routing:

Job cards specific to the target Db2 subsystem can be defined for Db2 Bind processing. These are

different to the job cards for rest of Promote/Install jobs. Note that LPAR on which the target Db2

runs may be different from the one where the rest of the installation runs.

Alter Add Version

Alter Add Version 109

Refer to panel CMNGD2S1, reached via =A.G.O.2 then 1 - Identify Db2 Physical Subsystems, then

select the row desired to update or create the Jobcards.

See also skeleton CMN$$D2J

2) Db2 skeleton variables:

The full range of Db2 variables which may be used in skeletons are only generated if there is a need

to generate a CMN21 job (i.e. if there are binds to be done). For a package containing just DDL

related components none of these variables are available.

Backout

Backout is similar to demote with the obvious difference in the way the jobs are structured.

Once the SP backout is successful then the active version row for this subsystem and this package

will be removed (it will be re-established should the SP be installed again).

If versioning is not active then backout will consist of DROP/CREATE using the re-instatedfrom-

backup version of the SP component.

Backout skeleton changes

The backout mechanism for Stored Procedures (and other Db2 objects such as UDFs and Triggers)

has been divorced from CMN50 and implemented as part of CMN49. The same advantages apply

as for the install skeletons.

CMNGD2S1 Db2 Physical Subsystems - Part 2 of 2
Command ===> ___

Db2 subsystem: DSN
Site: U810DP
Load Library: DSNB10.SDSNLOAD

Job statement information for Db2 binds:
 //DB2FORDP JOB (X170,374),GLOBAL,CLASS=A,MSGCLASS=X,
 // REGION=0M,TIME=(10)
 //*__
 /*JOBPARM S=S0W1

Backout

Backout 110

Skeleton changes (overview)

There are 3 main functional skeletons related to Native SQL stored procedures. These are the ones

already in use for general Db2 object management, viz:

These have been changed to add new sections dedicated to the management of Native SQL SPs.

Existing facilities have been left in place and are selected via \&DB2SUBT NE N, the new sections

require \&DB2SUBT EQ N.

Additional sysin parameters are specified for the CMNDB2DD step which relate specifically to

Native SQL SP management. Some of these are driven by the admin settings for the target logical

subsystem and some are simply hardcoded in the skeleton.

If SP version management is required (driven via admin and the ISPF variable \&SQACTV EQ YES)

then a job is submitted from this process which will activate the required version of the SP. The job

makes use of the CMN$$D2J jobcard skeleton, which is filled out with information related to the

physical Db2 subsystem hosting the target logical subsystem (from Global Db2 option admin). A

facility is in place whereby, if not already present, a TYPRUN=HOLD parameter will be added to the

jobcard (given sufficient room on the last active jobcard line). This is done by setting ISPF variable

\&D2TYPR to a value of HOLD prior to imbedding CMN$$D2J, this is how the skeleton is delivered.

Use of the CMN$$SQL skeleton has been moved from CMN20 (general install) and CMN50

(general backout) to CMN21 (Db2 specific install) and CMN49 (Db2 specific backout).

CMN$$PSQ Local promote/demote
CMN$$RSQ Remote promote/demote
CMN$$SQL Install

Skeleton changes (overview)

Skeleton changes (overview) 111

6. Templating Examples

This chapter provides examples of how you can achieve your BIND command and SQL templating

needs, using the fields on the Db2 Logical Subsystem BIND or SQL Templates panel in the

ChangeMan ZMF Db2 Option. Refer also to Examples for a detailed account of setting up for native

SQL stored procedure versioning and the bind deploy mechanisms.

Templated BIND Command Parameters

Templated DDL/SQL

Templating Examples

BIND PLAN Examples

BIND PACKAGE Example

General token templates

Templated BIND Command Parameters

A BIND command member is obtained from the staging libraries in your change package. If the

BIND command member is not staged, it is obtained from baseline libraries. (Promotion libraries

are searched after staging libraries if the BIND is performed for promotion or demotion).

Templates defined in the logical subsystem in the Db2 Option are applied to provide BIND

parameters that are suitable for the target Db2 environment.

You can alter these parameters in a BIND command by using templating:

PLAN Name

PACKAGE Location

PACKAGE Name/Collection ID

OWNER

QUALIFIER

Templating Examples

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

6. Templating Examples

6. Templating Examples 112

Templated DDL/SQL

DDL/SQL to define or change a Db2 stored procedure, user defined function, or trigger is obtained

from the staging libraries in your change package. Unlike BIND command members, DDL/SQL is

never actioned from promotion or baseline libraries.

Templates defined in the logical subsystem in the Db2 Option are applied to provide DDL/ SQL that

is suitable for the target Db2 environment.

You can modify many parameters in the definitions for stored procedures, triggers, and user

defined functions by using both named parameter templates and general token templates

(described elsewhere in this manual). The CMNDB2DD HLL exit is also available for DDL/SQL

validation and manipulation.

Templating Examples

Typical templating examples include:

Replacing characters at an offset

Adding characters at the end

Replacing characters at the end

Deleting characters at the end

Replacing a character string with another string

Adding an OWNER parameter

Adding a QUALIFIER parameter

BIND Command Keyword Option Order The ChangeMan ZMF Db2 Option uses IBM service

routine IKJPARS to parse BIND commands. This ensures that Db2 Option processing is

synchronized with changes that IBM might make to BIND keyword operands.

IKJPARS does not attempt to maintain the order of keyword operands in a BIND command that

it parses. Therefore, keyword operands sent to IKJEFT01 from the ZMF Db2 Option may be in a

different order than in the original BIND command member in a staging, promotion, baseline, or

production library.

Important

• •

• •

• •

• •

• •

• •

• •

Templated DDL/SQL

Templated DDL/SQL 113

Replace Characters At an Offset
Use ? (question marks) in the Target field to define the offset of characters you want to change in a

parameter value.

Add Characters at the End
Use ? (question marks) in the Target field to define an offset that is as long or longer than an input

parameter value, followed by characters that you want to add to the end of the value.

Replace Characters at the End
Use * (asterisk) followed by n characters in the Target field to define the n characters you want to

replace at the end of a parameter value.

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

ABCDEFG ??X??**YZ ABXDE**YZ

ABCDEFG **X XBCDEFG

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

ABCDEFG ???????**XYZ ABCDEFG**XYZ

ABCDEFG ?????????**X ABCDEFG**X

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

ABCDEFG ***XYZ ABCD**XYZ

Replace Characters At an Offset

Replace Characters At an Offset 114

Delete Characters at the End
Use ¬ (not) in the Target field to specify a parameter value character that you want to replace with

a space. Since spaces are not valid in the middle of a parameter value, use ¬ to delete characters

at the end of a value.

Replace a Character String with Another String
Use the Source field to specify a string to be replaced in a parameter value and use the Target field

to define the string to replace it. The search string and the replace string may be different lengths.

Add an Owner Parameter
Specify a value in the Insert field to add an OWNER parameter and value. To insert an OWNER

parameter, the following must be true:

There is no OWNER= parameter in the input BIND command.

 This control statement is input to the plan lookup program CMNDB2PL at DDname CMNPLCTL:

 AUTHORITY=OWNER,INSERT

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

ABCDEFG ***X ABCDEF**X

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

ABCDEFG ????**¬¬¬ ABCD

ABCDEFG **WXYZ¬¬¬¬¬ **WXYZ

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

ABCDEFG XYZ **ABC XYZDEFG

ABCDEFG WXYZ **DEF ABCWXYZG

Delete Characters at the End

Delete Characters at the End 115

Add a Qualifier Parameter
Specify a value in the Insert field to add a QUALIFIER parameter and value. To insert a QUALIFIER

parameter, the following must be true:

There is no QUALIFIER= parameter in the input BIND command.

This control statement is input to the plan lookup program CMNDB2PL at DDname

CMNPLCTL:

BIND PLAN Example

INSERTQUAL

BIND PLAN Example

This section presents a simple example of how a production BIND PLAN command can be

modified by templates in the Db2 Option so that the same application can be bound for unit testing,

systems testing, and production execution in the same Db2 subsystem.

CMNDB2PL - BIND Command describes the process used by plan lookup program CMNDB2PL to

determine what plans and packages need to be bound and to locate the required BIND command

member. This example assumes that the BIND PLAN command member is staged in the change

package that is being promoted and installed.

This is the production BIND PLAN command in member PRDAPPL1, which is staged in the change

package:

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

 **XYZ **OWNER(XYZ)

•

• •

Input Parameter

Value

 Logical Subsystem Fields Templated Output

Value

Target Source

**Insert

 **XYZ **QUALIFIER(XYZ)

Add a Qualifier Parameter

Add a Qualifier Parameter 116

These are the active libraries defined for the application in the Db2 Option on panel CMNLD2AL:

Promote to Unit Test
When the change package containing BIND PLAN member PRDAPPL1 is promoted to the unit test

level, PRDAPPL1 in the staging library is copied to library CMNTP.UNIT.ACTP.PLANBIND.

This is an active library for the application in the Db2 Option. This active library is associated with

the UNIT logical subsystem, so the BIND command in member PRDAPPL1 is templated according

to the rules in logical subsystem UNIT.

This is the Db2 Logical Subsystem UNIT Templates panel CMNGD2L2:

BIND PLAN(PRDAPPL1) -
PKLIST (COLLP.*) -
QUALIFIER(APPL1P) -
ACTION (REPLACE) -
ISOLATION (CS) -
RETAIN -
EXPLAIN (NO) -
VALIDATE(BIND) -
ACQUIRE(USE) -
RELEASE(COMMIT)

CMNLD2AL Db2 Active Library List Row 1 to 9 of 9
Command ===\> __ Scroll ===\> CSR

 Logical Bind
 name /SQL Db2 active library name

_____ UNIT B CMNTP.UNIT.ACTP.LOADLIB
_____ UNIT B CMNTP.UNIT.ACTP.PKGBIND
_____ UNIT B CMNTP.UNIT.ACTP.PLANBIND
_____ SYST B CMNTP.SYST.ACTP.LOADLIB
_____ SYST B CMNTP.SYST.ACTP.PKGBIND
_____ SYST B CMNTP.SYST.ACTP.PLANBIND
_____ PROD B CMNTP.PROD.ACTP.LOADLIB
_____ PROD B CMNTP.PROD.ACTP.PKGBIND
_____ PROD B CMNTP.PROD.ACTP.PLANBIND

****************************** Bottom of data ******************************

For a new output BIND OWNER command when OWNER is not present, requires the CMN$

$PRM skeleton to be modified with the INSERT value for the AUTHORITY= statement. See Add

an Owner Parameter.

Note

Promote to Unit Test

Promote to Unit Test 117

Staged BIND PLAN command member PRDAPPL1 is compared to the BIND command after

CMNDB2PL applies templates from logical subsystem UNIT:

The templated BIND command is executed in the promotion job.

CMNGD2L2 Db2 Logical Subsystem UNIT Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . ?????T + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + UNIT +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name TST PRD

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . ????T + __________________ + __________________

Input BIND Command Output BIND Command

BIND PLAN(PRDAPPL1) -

PKLIST (COLLP.*) -

QUALIFIER(APPL1P) -

ACTION (REPLACE) -

ISOLATION (CS) -

RETAIN -

EXPLAIN (NO) -

VALIDATE(BIND) -

ACQUIRE(USE) -

RELEASE(COMMIT)

BIND PLAN(TSTAPPL1) -

PKLIST (COLLT.*) -

QUALIFIER(APPL1T) -

ACTION (REPLACE) -

ISOLATION (CS) -

RETAIN -

EXPLAIN (NO) -

VALIDATE(BIND) -

ACQUIRE(USE) -

RELEASE(COMMIT) -

OWNER(UNIT)

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order.

Note

Promote to Unit Test

Promote to Unit Test 118

Promote to System Test
When the change package containing BINDPLAN member PRDAPPL1 is promoted to the system

test level, PRDAPPL1 in the staging library is copied to library CMNTP.SYST.ACTP.PLANBIND.

This is an active library for the application in the Db2 Option. This active library is associated with

the SYST logical subsystem, so the BIND command in member PRDAPPL1 is templated according

to the rules in logical subsystem SYST.

This is the Db2 Logical Subsystem SYST Templates panel:

Staged BIND PLAN command member PRDAPPL1 is compared to the BIND command after

CMNDB2PL applies templates from logical subsystem SYST:

CMNGD2L2 Db2 Logical Subsystem SYST Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . ?????S + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + SYST +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name SYS PRD

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . ????S + __________________ + __________________

Input BIND Command Output BIND Command

BIND PLAN(PRDAPPL1) - BIND PLAN(SYSAPPL1) -

PKLIST (COLLP.*) - PKLIST (COLLS.*) -

QUALIFIER(APPL1P) - QUALIFIER(APPL1S) -

ACTION (REPLACE) - ACTION (REPLACE) -

ISOLATION (CS) - ISOLATION (CS) -

RETAIN - RETAIN -

EXPLAIN (NO) - EXPLAIN (NO) -

VALIDATE(BIND) - VALIDATE(BIND) -

ACQUIRE(USE) - ACQUIRE(USE) -

RELEASE(COMMIT) RELEASE(COMMIT) -

Promote to System Test

Promote to System Test 119

The templated BIND command is executed in the promotion job.

Install and Baseline Ripple
When the change package containing BIND PLAN member PRDAPPL1 is baselined, PRDAPPL1 in

the staging library is copied to library CMNTP.PROD.ACTP.PLANBIND.

This is an active library for the application in the Db2 Option. This active library is associated with

the PROD logical subsystem, so the BIND command in member PRDAPPL1 is templated according

to the rules in logical subsystem PROD.

This is the Db2 Logical Subsystem PROD Templates panel:

Staged BIND PLAN command member PRDAPPL1 is compared to the BIND command after

CMNDB2PL applies templates from logical subsystem PROD:

Input BIND Command Output BIND Command

OWNER(SYST)

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order.

Note

CMNGD2L2 Db2 Logical Subsystem PROD Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . __________________ + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + PROD +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name ________ ________

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . __________________ + __________________ + __________________

Input BIND Command Output BIND Command

BIND PLAN(PRDAPPL1) - BIND PLAN(PRDAPPL1) -

PKLIST (COLLP.*) - PKLIST (COLLP.*) -

Install and Baseline Ripple

Install and Baseline Ripple 120

The templated BIND command is executed in the installation job.

BIND PACKAGE Example

This section presents a simple example of how a production BIND PACKAGE command can be

modified by templates in the Db2 Option so that the same DBRM can be bound for unit testing,

systems testing, and production execution in the same Db2 subsystem.

CMNDB2PL - BIND Command describes the process used by plan lookup program CMNDB2PL to

determine what plans and packages need to be bound and to locate the required BIND command

member. This example assumes that the BIND PACKAGE command member is in the baseline

library and that no other binds are required.

This is the production BIND PACKAGE command stored in the baseline library for application

program PROGRAM1:

Input BIND Command Output BIND Command

QUALIFIER(APPL1P) - QUALIFIER(APPL1P) -

ACTION (REPLACE) - ACTION (REPLACE) -

ISOLATION (CS) - ISOLATION (CS) -

RETAIN - RETAIN -

EXPLAIN (NO) - EXPLAIN (NO) -

VALIDATE(BIND) - VALIDATE(BIND) -

ACQUIRE(USE) - ACQUIRE(USE) -

RELEASE(COMMIT) RELEASE(COMMIT) -

OWNER(PROD)

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order. |

Note

BIND PACKAGE Example

BIND PACKAGE Example 121

These are the active libraries defined for the application in the Db2 Option:

Promote to Unit Test
When the change package containing PROGRAM1 is promoted to the unit test level, the load

module for Db2 program PROGRAM1 is copied to library CMNTP.UNIT.ACTP.LOADLIB.

This is an active library for the application in the Db2 Option. This active library is associated with

the UNIT logical subsystem, so the BIND PACKAGE command in baseline member PROGRAM1 is

templated according to the rules in logical subsystem UNIT.

This is the Db2 Logical Subsystem UNIT Templates panel CMNGD2L2:

BIND PACKAGE(COLLP) -
MEMBER(PROGRAM1) -
QUALIFIER(APPL1P) -
SQLERROR(NOPACKAGE) -
VALIDATE(BIND) -
ISOLATION(CS) -
RELEASE(DEALLOCATE) -
EXPLAIN(YES) -
FLAG(I) -
ENABLE(*) -
ACTION(REPLACE)

CMNLD2AL Db2 Active Library List Row 1 to 9 of 9
Command ===\> __ Scroll ===\> CSR

 Logical Bind
 name /SQL Db2 active library name

_____ UNIT B CMNTP.UNIT.ACTP.LOADLIB
_____ UNIT B CMNTP.UNIT.ACTP.PKGBIND
_____ UNIT B CMNTP.UNIT.ACTP.PLANBIND
_____ SYST B CMNTP.SYST.ACTP.LOADLIB
_____ SYST B CMNTP.SYST.ACTP.PKGBIND
_____ SYST B CMNTP.SYST.ACTP.PLANBIND
_____ PROD B CMNTP.PROD.ACTP.LOADLIB
_____ PROD B CMNTP.PROD.ACTP.PKGBIND
_____ PROD B CMNTP.PROD.ACTP.PLANBIND

****************************** Bottom of data ******************************

Promote to Unit Test

Promote to Unit Test 122

Baseline BIND PACKAGE command member PROGRAM1 is compared to the BIND PACKAGE

command after CMNDB2PL applies templates from logical subsystem UNIT.

The templated BIND PACKAGE command is executed in the promotion job.

CMNGD2L2 Db2 Logical Subsystem UNIT Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . ?????T + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + UNIT +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name TST PRD

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . ????T + __________________ + __________________

Input BIND Command Output BIND Command

BIND PACKAGE(COLLP) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1P) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE)

BIND PACKAGE(COLLT) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1T) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE) OWNER(UNIT)

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order.

Note

Promote to Unit Test

Promote to Unit Test 123

Promote to System Test
When the package is promoted to the system test level, the load module for Db2 program

PROGRAM1 is copied to library CMNTP.TEST.ACTP.LOADLIB.

Since this is an active library in the Db2 Option, the BIND command for PROGRAM1 is templated

according to the rules in the logical subsystem named SYST.

This is the Db2 Logical Subsystem SYST Templates panel CMNGD2L2:

Baseline BIND PACKAGE command member PROGRAM1 is compared to the BIND PACKAGE

command after CMNDB2PL applies templates from logical subsystem SYST.

CMNGD2L2 Db2 Logical Subsystem SYST Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . ?????S + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + SYST +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name SYS PRD

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . ????S + __________________ + __________________

Input BIND Command Output BIND Command

BIND PACKAGE(COLLP) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1P) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE)

BIND PACKAGE(COLLS) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1S) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE) -

OWNER(SYST)
...

Promote to System Test

Promote to System Test 124

The templated BIND PACKAGE command is executed in the promotion job.

Install and Baseline Ripple
When the package is baseline rippled, the load module for Db2 program PROGRAM1 is copied to

library CMNTP.PROD.ACTP.LOADLIB.

Since this is an active library in the Db2 Option, the BIND command for PROGRAM1 is templated

according to the rules in the logical subsystem named PROD.

This is the Db2 Logical Subsystem PROD Templates panel:

Baseline BIND PACKAGE command member PROGRAM1 is compared to the BIND PACKAGE

command after CMNDB2PL applies templates from logical subsystem PROD.

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order.

Note

CMNGD2L2 Db2 Logical Subsystem PROD Templates
Command ===\> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . __________________ + __________________ + __________________ +
 Bind owner . . . __________________ + __________________ + PROD +

 WLM Env __________________ + __________________ + __________________

 Plan:
 Name ________ ________

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . __________________ + __________________ + __________________

Install and Baseline Ripple

Install and Baseline Ripple 125

The templated BIND PACKAGE command is executed in the installation job.

General token templates

General token templates are provided to give the ability to implement your own automated changes

for SQL and BIND components as they are moved through the lifecycle, without having to wait for

specific keyword support to be programmed into the relevant utilities.

SQL general token templating
Sysin supplied to CMNDB2DD to implement a general token template:

TOKENNAME=

TOKENSRCT=

TOKENTGTT=

The parameters allow one to define one's own SQL parameters to be templated via 'standard'

CMNDB2DD templating. Freeform token processing will take place in addition to and after all the

existing fixed name clause processing (e.g. after the likes of owner, qualifier etc. templating). Lists

of subparameters are supported by applying the relevant template to each of the subparameters in

turn. Subparameters in a list can be removed by having the source template match the individual

list entry and using target template of >REMOVE\<.

Input BIND Command Output BIND Command

BIND PACKAGE(COLLP) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1P) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE)

BIND PACKAGE(COLLP) -

MEMBER(PROGRAM1) -

QUALIFIER(APPL1P) -

SQLERROR(NOPACKAGE) -

VALIDATE(BIND) -

ISOLATION(CS) -

RELEASE(DEALLOCATE) -

EXPLAIN(YES) -

FLAG(I) -

ENABLE(*) -

ACTION(REPLACE) -

OWNER(PROD)

The order of keyword options in the output BIND command may not match the input order. See

BIND Command Keyword Option Order.

Note

General token templates

General token templates 126

TOKENNAME= specifies a string which will be looked for in the SQL. This may include imbedded

blanks as long as the whole string is enclosed in single quotes. If there are no imbedded blanks

then quotes are optional. Strings including imbedded blanks must not contain more than 5

subwords (and each subword must be 16 bytes or less – this should cover all sensible

requirements).

In the SQL, to be recognized the token name may be preceded by either a blank or a comma, and

followed by a blank or a left hand bracket.

The next word following the token will be templated according to the standard rules with the

(optional) source template being supplied via TOKENSRCT and the (required) target template by

TOKENTGTT.

As many of these groups as one needs may be specified. They are processed sequentially. The

code applies the template to each found occurrence of TOKENNAME (it doesn’t stop looking after

the first found, only stopping when the current SQL sentence is exhausted). The resulting SQL is

then subject to the next set of TOKEN templates and so on.

The TOKENNAME value may be up to 64 bytes The TOKEN template fields may be up to 128 bytes

and can be specified across lines as per the other fixed name templates.

An example is:

TOKENNAME='ORDER BY'

TOKENSRCT=NAME

TOKENTGTT=CREATOR

This will look for the clause ‘order by’ in the SQL it will then look beyond that clause for the first

word following on from there and, in this case, if it finds NAME it will replace it with CREATOR.

BIND general token templating
As CMNDB2PL parses the BIND command as a TSO command, each command parameter, and its

subparameters, are addressed as discrete variables in the program. As such, the general token

templating feature implemented for the BIND process is different to that for the SQL process.

Instead of parsing the command string as a whole looking for one or more parameter strings, we

match the exact general token name against those known to the program.

Apart from this difference, BIND processing general templating is similar to that implemented for

the SQL process.

Bind parameters currently supported by general token templating are given here:

BIND general token templating

BIND general token templating 127

General token templates allow collection names in the PKLIST bind parameter to be individually

templated and, as required, removed from the PKLIST.

This section presents 4 test examples, one plan and 3 package bind control components.

Plan member (DBB)

TEST1:

TEST2:

ACQUIRE
CACHESIZE
COPY
CURRENTDATA
CURRENTSERVER
DBPROTOCOL
DEGREE
DISCONNECT
DYNAMICRULES
ENCODING
EXPLAIN
FLAG
IMMEDWRITE
ISOLATION
KEEPDYNAMIC
LIBRARY
MEMBER
OPTHINT
OWNER
PACKAGE name
PATH
PKLIST
PLAN name
QUALIFIER
RELEASE
REOPT
REPLVER
ROUNDING
SQLERROR
SQLRULES
VALIDATE

BIND PLAN(TEST1) -
 PKLIST(CA_TNG_SUBROUTINES.*, -
 AD_SHR_ROUTINES.*, -
 CR_UTILITIES.*) -
 OWNER (DBPPMGS) -
 QUALIFIER (DB2PMGS) -
 VALIDATE (RUN) -
 ISOLATION (CS) -
 RELEASE (COMMIT) -
 EXPLAIN (YES) -
 ACTION (REPLACE) -
 PATH(DB2PRTB,MGS)
Package members (PKG)

BIND general token templating

BIND general token templating 128

TEST3:

TEST4:

Here are the admin panels for a promotion logical subsystem for which there are active bind

libraries defined. First the named templates:

BIND PACKAGE(TEST2CCA0P05) MEMBER(EI58VUSP) VALIDATE(BIND) -
 ISOLATION(CS) EXPLAIN(YES) CURRENTDATA(YES) -
 CURRENTSERVER(DB2DSNX) DEGREE(0) ACTION(REPLACE) -
 PATH(EPICPM05,EPICPMCR,EPICPMCN,EPICPMCF,EPICPMCS,EPICPXXX,EPICPYYY, -
 EPICPMCY,EPICPMCT,EPICPMCU,EPICPMCY,EPICPMCT,EPICPMCU)

BIND PACKAGE(TEST3) -
 OWNER (ASCMG) -
 MEMBER (EI58VUSP) -
 QUALIFIER (EPICPO05) -
 VALIDATE (BIND) -
 ISOLATION (CS) -
 EXPLAIN (NO) -
 CURRENTDATA (YES) -
 DEGREE (1) -
 ACTION (REPLACE) -
 PATH
 (EPICPM05,EPICPMCR,EPICPMCN,EPICPMCF,EPICPMCS,EPICPXXX,EPICPYYY, -
 EPICPMCY,EPICPMCT,EPICPMCU, -
 EPICPMCY,EPICPMCT,EPICPMCU) |

BIND PACKAGE(TEST4) -
 OWNER(ASCMG) -
 MEMBER(EI58VUSP) -
 QUALIFIER(EPICPO05) -
 VALIDATE(BIND) -
 ISOLATION(CS) -
 EXPLAIN(YES) -
 CURRENTDATA(YES) -
 CURRENTSERVER(XXXPROD) -
 DEGREE(1) -
 ACTION(REPLACE) -
 PATH(EPICPM05)

BIND general token templating

BIND general token templating 129

And the general templates:

This set of definitions created a CMNDB2PL step with CMNPLCTL input which looked like this:

CMNGD2L2 Db2 Logical Subsystem UNIT2 Bind Named Templates
Command ===> ___

 Templates Target Source Insert
 General:
 Schema __________________ + __________________ + __________________
 Qualifier . . . DEV + __________________ + DEV +
 Bind owner . . . DEV + __________________ + DEV +

 Plan:
 Name ________ ________

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . __________________ + __________________ + __________________

CMNLD2AL Db2 Logical Subsystem UNIT1 BIND General Template Row 1 to 6 of 6
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +
_____ CURRENTSERVER ???DSNT ______________________
_____ DEGREE 1 ______________________
_____ EXPLAIN YES ______________________
_____ PATH ????U??? ______________________
_____ PKLIST >REMOVE< CR_UTIL
_____ PKLIST UA_SHR AD_SHR

******************************** Bottom of data ********************************

BIND general token templating

BIND general token templating 130

When the job ran the bind control output generated looked like this:

TYPE=PROMOTE
 AUTHORITY=OWNER,INSERT
 INSERTQUAL
 *EARLYCHECK
 *IGNORENOSUBSYS
 *TRACE
 USEREXIT=(ASM,NOUNLOAD)
 USERID=SDOWNES
 PACKAGE=STEV000365
 PROJECT=STEV
 NOBASEDBBRC=12
 WARNINGRC=4
 USEDB2PACKAGE
 *NODB2PLAN
 *FREEPLAN
 *CREATECC
 *IGNORENODBRM
 *PKLTEMPLATE
 DB2ID=D20L
 LOGICAL=UNIT1
 PLANTGT=
 PLANSRC=
 PKGETGT=
 PKGESRC=
 LOCNTGT=
 LOCNSRC=
 QUALIFIER=DEV
 QUALTGT=DEV
 QUALSRC=
 OWNER=DEV
 OWNRTGT=DEV
 OWNRSRC=
 TOKENNAME=PKLIST
 TOKENSRCT=AD_SHR
 TOKENTGTT=UA_SHR
 TOKENNAME=PKLIST
 TOKENSRCT=CR_UTIL
 TOKENTGTT=
 >REMOVE<
 TOKENNAME=PATH
 TOKENSRCT=
 TOKENTGTT=????U???
 TOKENNAME=EXPLAIN
 TOKENSRCT=
 TOKENTGTT=YES
 TOKENNAME=DEGREE
 TOKENSRCT=
 TOKENTGTT=1
 TOKENNAME=CURRENTSERVER
 TOKENSRCT=
 TOKENTGTT=???DSNT
 REMOTEID=STEVEPRM

BIND general token templating

BIND general token templating 131

DSN SYSTEM(D20L)
 BIND PACKAGE(TEST2CCA0P05) +
 OWNER(DEV) +
 QUALIFIER(DEV) +
 PATH(+
 EPICUM05,+
 EPICUMCR,+
 EPICUMCN,+
 EPICUMCF,+
 EPICUMCS,+
 EPICUXXX,+
 EPICUYYY,+
 EPICUMCY,+
 EPICUMCT,+
 EPICUMCU,+
 EPICUMCY,+
 EPICUMCT,+
 EPICUMCU) +
 ACTION(REPLACE) +
 CURRENTDATA(YES) +
 CURRENTSERVER(DB2DSNT) +
 DEGREE(1) +
 EXPLAIN(YES) +
 ISOLATION(CS) +
 VALIDATE(BIND) +
 MEMBER(EI58VUSP)

BIND PACKAGE(TEST3) +
 OWNER(DEVMG) +
 QUALIFIER(DEVCPO05) +
 PATH(+
 EPICUM05,+
 EPICUMCR,+
 EPICUMCN,+
 EPICUMCF,+
 EPICUMCS,+
 EPICUXXX,+
 EPICUYYY) +
 ACTION(REPLACE) +
 CURRENTDATA(YES) +
 DEGREE(1) +
 EXPLAIN(YES) +
 ISOLATION(CS) +
 VALIDATE(BIND) +
 MEMBER(EI58VUSP)
BIND PACKAGE(TEST4) +
OWNER(DEVMG) +
QUALIFIER(DEVCPO05) +
PATH(+
 EPICUM05) +
ACTION(REPLACE) +
CURRENTDATA(YES) +
CURRENTSERVER(XXXDSNT) +
DEGREE(1) +
EXPLAIN(YES) +
ISOLATION(CS) +
VALIDATE(BIND) +
MEMBER(EI58VUSP)

BIND PLAN(TEST1) +

BIND general token templating

BIND general token templating 132

A production install logical subsystem was set up with the following admin settings, first the

named templates:

 OWNER(DEVPMGS) +
 QUALIFIER(DEVPMGS) +
 PATH(+
 DB2PUTB,+
 MGSU) +
 RELEASE(COMMIT) +
 ACTION(REPLACE) +
 EXPLAIN(YES) +
 ISOLATION(CS) +
 VALIDATE(RUN) +
 PKLIST(CA_TNG_SUBROUTINES.*,+
 UA_SHR_ROUTINES.*)
END

In the TEST2 package the owner and qualifier parameters were missing but have been inserted

(as directed) by the templating process. In all other cases the owner and qualifier have had their

first three characters overlaid by DEV. This is not new functionality, just a test of existing

processes.

In all cases the fifth character of the path name has been replaced by U and this has occurred

for each of the subparameters in the list. In TEST1 one of the PATH subparameters is not long

enough to have its fifth character replaced by U (i.e. MGS) so the U has been appended (i.e.

MGSU).

Where CURRENTSERVER is present it has had positions 4-7 replaced with DSNT

DEGREE has been set to 1

EXPLAIN has been set to YES.

The PKLIST in TEST1 has had the CR_UTILITIES.* entry removed (as it matched with one of the

source templates for PKLIST where the target template was >REMOVE<). And the

AD_SHR_ROUTINES.* entry has been changed to UA_SHR_ROUTINES.*

Notes

BIND general token templating

BIND general token templating 133

And the general templates:

When the same 4 components were installed the following bind control was generated:

CMNLD2AL Db2 Logical Subsystem PRODN BIND Named Templates
Command ===> __

 Templates Target Source Insert
 General:
 Qualifier . . . PROD + __________________ + PROD +
 Owner PROD + __________________ + PROD +

 Plan:
 Name __

 Package:
 Location . . . __________________ + __________________ + __________________
 Collection . . __________________ + __________________ + __________________

CMNLD2AL Db2 Logical Subsystem UNIT1 BIND General Template Row 1 to 6 of 6
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +
_____ CURRENTSERVER ???DSNP ______________________
_____ DEGREE 0 ______________________
_____ EXPLAIN NO¬ ______________________
_____ PATH >REMOVE< EPICPXXX
_____ PATH >REMOVE< EPICPYYY
_____ PATH ????P???
_____ PKLIST CA_PRD CA_TNG

******************************** Bottom of data ********************************

BIND general token templating

BIND general token templating 134

DSN SYSTEM(D20L)
 BIND PACKAGE(TEST2CCA0P05) +
 OWNER(PROD) +
 QUALIFIER(PROD) +
 PATH(+
 EPICPM05,+
 EPICPMCR,+
 EPICPMCN,+
 EPICPMCF,+
 EPICPMCS,+
 EPICPMCY,+
 EPICPMCT,+
 EPICPMCU,+
 EPICPMCY,+
 EPICPMCT,+
 EPICPMCU) +
 ACTION(REPLACE) +
 CURRENTDATA(YES) +
 CURRENTSERVER(DB2DSNP) +
 DEGREE(0) +
 EXPLAIN(NO) +
 ISOLATION(CS) +
 VALIDATE(BIND) +
 MEMBER(EI58VUSP)
 BIND PACKAGE(TEST3) +
 OWNER(PRODG) +
 QUALIFIER(PRODPO05) +
 PATH(+
 EPICPM05,+
 EPICPMCR,+
 EPICPMCN,+
 EPICPMCF,+
 EPICPMCS) +
 ACTION(REPLACE) +
 CURRENTDATA(YES) +
 DEGREE(0) +
 EXPLAIN(NO) +
 ISOLATION(CS) +
 VALIDATE(BIND) +
 MEMBER(EI58VUSP)
 BIND PACKAGE(TEST4) +
 OWNER(PRODG) +
 QUALIFIER(PRODPO05) +
 PATH(+
 EPICPM05) +
 ACTION(REPLACE) +
 CURRENTDATA(YES) +
 CURRENTSERVER(XXXDSNP) +
 DEGREE(0) +
 EXPLAIN(NO) +
 ISOLATION(CS) +
 VALIDATE(BIND) +
 MEMBER(EI58VUSP)
 BIND PLAN(TEST1) +
 OWNER(PRODMGS) +
 QUALIFIER(PRODMGS) +
 PATH(+
 DB2PPTB,+
 MGSP) +
 RELEASE(COMMIT) +

BIND general token templating

BIND general token templating 135

Simple bindcntl can also be used for testing etc e.g.:

 ACTION(REPLACE) +
 EXPLAIN(NO) +
 ISOLATION(CS) +
 VALIDATE(RUN) +
 PKLIST(CA_PRD_SUBROUTINES.*,+
 AD_SHR_ROUTINES.*,+
 CR_UTILITIES.*)
END

In the TEST2 package the owner and qualifier parameters were missing but have been inserted

(as directed) by the templating process. In all other cases the owner and qualifier have had their

first four characters overlaid by PROD. This is not new functionality, just a test of existing

processes.

In all cases the fifth character of the path name has been replaced by P and this has occurred

for each of the subparameters in the list. In TEST1 one of the PATH subparameters is not long

enough to have its fifth character replaced by P (i.e. MGS) so the U has been appended (i.e.

MGSP). The original bind component already had P in the 5th position in most cases.

Where CURRENTSERVER is present it has had positions 4-7 replaced with DSNP.

DEGREE has been set to 0.

EXPLAIN has been set to NO.

Values EPICPXXX and EPICPYYY have been removed where they have been found in any PATH

list.

The PKLIST in TEST1 has had the CA_TNG_ROUTINES. entry changed to CA_PRD_ROUTINES.

Notes

BIND general token templating

BIND general token templating 136

Named templates:

General templates:

Bind output:

CBLDB201.PKG:

BIND PACKAGE(PROD) MEMBER(CBLDB201) ACT(REP) ISO(CS) -
 EXPLAIN(YES) VALIDATE(BIND) RELEASE(COMMIT) -
 QUALIFIER(PROD)

CBLDB201.DBB:

BIND PLAN(CBLDB201) -
 PKLIST(PROD.CBLDB201) -
 ACT(REP) -
 EXPLAIN(YES) -
 ISOLATION(CS) -
 QUALIFIER(PROD)

CMNLD2L Db2 Logical Subsystem UNIT2 BIND Named Templates
Command ===>

 Templates Target Source Insert
 General:
 Qualifier . . . UNIT¬¬¬¬ + __________________ + UNIT +
 Owner SERD¬¬¬¬ + __________________ + SERD +

 Plan:
 Name _________

 Package:
 Location . . . __________________ + __________________ +
 Collection . . UNIT + PROD +

CMNLD2L4 Db2 Logical Subsystem UNIT2 BIND General Template Row 1 to 4 of 4
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +
_____ EXPLAIN NO¬ ___________________
_____ ISOLATION UR CS
_____ PKLIST UNIT PROD
_____ VALIDATE RUN¬ ___________________

******************************** Bottom of data ********************************

BIND general token templating

BIND general token templating 137

IKJ56644I NO VALID TSO USERID, DEFAULT USER ATTRIBUTES USED
READY
DSN SYSTEM(D20L)
DSN
 BIND PACKAGE(UNIT) OWNER(SERD) QUALIFIER(UNIT) RELEASE(COMMIT) ACTION(REP)
 EXPLAIN(NO) ISOLATION(UR) VALIDATE(RUN) MEMBER(CBLDB201)
DSNT254I -D20L DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = D20L.UNIT.CBLDB201.()
 ACTION ADD
 OWNER SERD
 QUALIFIER UNIT
 VALIDATE RUN
 EXPLAIN NO
 ISOLATION UR
 RELEASE COMMIT
 COPY
 APREUSE
 APCOMPARE
 APRETAINDUP
 BUSTIMESENSITIVE YES
 SYSTIMESENSITIVE YES
 ARCHIVESENSITIVE YES
 APPLCOMPAT V12R1M500
 DESCSTAT YES
 APREUSESOURCE
DSNT255I -D20L DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = D20L.UNIT.CBLDB201.()
 SQLERROR NOPACKAGE
 CURRENTDATA NO
 DEGREE 1
 DYNAMICRULES
 DEFER
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE INHERITFROMPLAN
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(00037)
 PLANMGMT OFF
 PLANMGMTSCOPE STATIC
 CONCURRENTACCESSRESOLUTION
 EXTENDEDINDICATOR
 PATH
DSNT275I -D20L DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = D20L.UNIT.CBLDB201.()
 QUERYACCELERATION
 GETACCELARCHIVE
 CONCENTRATESTMT
DSNT232I -D20L SUCCESSFUL BIND FOR
 PACKAGE = D20L.UNIT.CBLDB201.()
DSN
 BIND PLAN(CBLDB201) OWNER(SERD) QUALIFIER(UNIT) ACTION(REP) EXPLAIN(NO)
 ISOLATION(UR) PKLIST(UNIT.CBLDB201)
DSNT252I -D20L DSNTBCM1 BIND OPTIONS FOR PLAN CBLDB201
 ACTION REPLACE
 OWNER SERD
 VALIDATE RUN
 ISOLATION UR
 ACQUIRE USE
 RELEASE COMMIT

BIND general token templating

BIND general token templating 138

 EXPLAIN NO
 DYNAMICRULES RUN
 PROGAUTH DISABLE
DSNT253I -D20L DSNTBCM1 BIND OPTIONS FOR PLAN CBLDB201
 NODEFER PREPARE
 CACHESIZE 3072
 QUALIFIER UNIT
 CURRENTSERVER
 CURRENTDATA NO
 DEGREE 1
 SQLRULES DB2
 DISCONNECT EXPLICIT
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(00037)
 CONCURRENTACCESSRESOLUTION
 PATH
DSNT200I -D20L BIND FOR PLAN CBLDB201 SUCCESSFUL
DSN
END

BIND general token templating

BIND general token templating 139

7. CMNDB2PL - BIND Utility

This chapter describes how program CMNDB2PL works and how to change its behavior by

changing control statements that are input to the program.

Introduction

CMNDB2PL DD Statements

CMNDB2PL Operation

Keyword Control Statements

How CMNDB2PL Relates to ChangeMan ZMF

CMNDB2PL Return Codes and Messages

Sample CMNDB2PL Report

Secondary Binding

Introduction

Program CMNDB2PL is the Plan Lookup program. This program is central to the

ChangeMan ZMF Db2 Option facility that performs binds at promote, demote, install, and backout.

Plan Lookup program CMNDB2PL is designed to ensure a consistent Db2 plan/package

environment as changes to Db2 application components progress through the ChangeMan ZMF

package lifecycle to production.

Program CMNDB2PL queries the Db2 catalog tables looking for relationships between staged

DBRMs and Db2 plans/packages in the catalog. These relationships indicate that a bind may be

required.

CMNDB2PL also implements the ChangeMan Db2 logical subsystem concept, applying templates

to staged or baselined BIND commands to derive the plan names and/or collection IDs which are

relevant to the target logical subsystem.

The end product of this processing is a set of BIND command statements that is passed to a

subsequent TSO step for execution in the target physical Db2 subsystem.

CMNDB2PL - BIND Utility

• •

• •

• •

• •

• •

• •

• •

• •

7. CMNDB2PL - BIND Utility

7. CMNDB2PL - BIND Utility 140

CMNDB2PL DD Statements

The table in this section describes DD statements used by program CMNDB2PL to collect

information and output BIND commands.

Variable stssys is embedded in some ddnames for CMNDB2PL, and it is resolved in ISPF file

tailoring for the promote, demote, install, and backout skeletons. stssys is the Db2 physical

subsystem where the binds are executed.

DDNAME Description

CMNPLCTL Input for CMNDB2PL control statements. See Keyword Control

Statements for control statement formats and definitions.

CMNPLDBB Input for a list of BIND PLAN members in the change package. Member

statement format: MBR=*member

CMNPLPKG Input for a list of BIND PACKAGE members in the change package.

Member statement format: MBR=*member

CMNPLDBR Input for a list of DBRM members in the change package. Member

statement format: MBR=*member

DBBSSTG Input for the BIND PLAN staging library.

DBBSBAS Input for the BIND PLAN baseline, production, or temporary install library.

PKGSSTG Input for the BIND PACKAGE staging library

PKGSBAS Input for the BIND PACKAGE baseline, production, or temporary install

library.

stssysBCTL Output sequential file containing BIND commands for promotion or

permanent installs

CMNDB2PL DD Statements

CMNDB2PL DD Statements 141

CMNDB2PL Operation

This section describes how Plan Lookup program CMNDB2PL operates and the factors and

variables that can influence the way it works when building bind control for a Db2 Option logical

subsystem. The sequence of operations presented here is not exactly the order that the program

performs every function.

The control statements at ddname CMNPLCTL are scanned to validate the syntax. If an error

is found, the program ends with RC=12, and this message is displayed: CMN7005I Control

Card Error

BIND PLAN members listed in ddname CMNPLDBB and BIND PACKAGE members listed in

ddname CMNPLPKG are added to “plans to be bound” list. Each entry in this list is flagged

with the assigned library type.

CMNDB2PL attempts to add BIND PLAN member names and BIND PACKAGE member names

to the “plans to be bound” list for all DBRM members listed in ddname CMNPLDBR. This

process is traced for one DBRM to make it easier to understand.

If control statement USEDB2PACKAGE is present, program CMNDB2PL queries the Db2

catalog table SYSIBM.SYSPACKAGE to find packages that reference the DBRM. If a

package name is returned from the query, the program name is matched against member

names in libraries concatenated at ddnames PKGSSTG and PKGSBAS. If a match is found,

the program name is added to the “plans to be bound list”.

If control statement NODB2PLAN is omitted or commented out, program CMNDB2PL

queries the Db2 catalog table SYSIBM.SYSDBRM to find plans that reference the DBRM.

The SYSIBM.SYSDBRM query returns the names of all plans referencing the DBRM.

However, CMNDB2PL only wants those plans from the Db2 catalog that are associated

with the target logical subsystem. It applies the template for the target logical subsystem

to the member names in libraries concatenated at ddnames DBBSSTG and DBBSBAS. If a

templated plan name matches a plan name returned from the Db2 catalog query, the

untemplated plan name is added to the “plans to be bound” list.

If no BIND PACKAGE member name or templated BIND PLAN name matches the names

returned from the Db2 catalog scans, the name of the DBRM is added to a “bind statement

required list”.

DDNAME Description

stssysTMP Output PDS library containing BIND command members. This library is not

used by delivered Db2 Option functions.

1. 1.

2. 2.

3. 3.

a. a.

b. b.

c. c.

CMNDB2PL Operation

CMNDB2PL Operation 142

If the “plans to be bound” list is empty, and control statement NODBRMFOUND is omitted or

commented out, CMNDB2PL stops with a RC=12 and the message, NO PLANS HAVE BEEN

FOUND TO BIND is printed.

The output ddname stssysBCTL for the sequential BIND command file is opened and

command DSN SYSTEM(stssys) is written as the first record.

If the “plans to be bound” list is not empty, duplicates are removed from the list, and each

remaining name in the list is processed individually. The libraries concatenated at ddnames

DBBSSTG and DBBSBAS or at PKGSSTG and PKGSBAS are searched for the first member

name that matches a name on the “plans to be bound list”.

If a match is found, the BIND command member is read, and templates for the target

logical subsystem are applied. Unless control statement USEREXIT=(NONE) is input, a call

is made to exit program CMNEX101, where user written functions can further modify the

BIND command. The modified BIND command is written to the sequential file at ddname

syssysBCTL to be used in a subsequent bind job step.

If no match is found, and if control statements CREATECC and USEREXIT are input to

CMNDB2PL, exit program CMNEX101 is called to execute user written functions to create

an appropriate BIND command. The new BIND command is written to the sequential file at

ddname stssysBCTL to be used in a subsequent bind job step.

If no match is found, and control statement CREATECC is not input to CMNDB2PL, the

name is added to a “not found list”, and at the end processing, CMNDB2PL displays this

list as “Bind statements required.” If a BIND member is not found for promote or install, a

return code 12 is issued with the message:

CMN7011I CMNDB2PL is terminating due to errors

If a member is not found for demote or backout, and the Db2 source program is not “new”,

a return code 12 is issued unless a different return code is specified on control statement

NOBASEDBBRC.

An END command is written to ddname stssysBCTL as the last records and the file is closed.

This file of BIND commands is passed to a job step the performs the binds.

The file at ddname stssysBCTL is scanned to ensure that every staged DBRM is referenced by

a MEMBER statement in a BIND command. If there is a DBRM that is not referenced,

CMNDBRPL terminates with RC=12 and issues this message:

CMN7034A Staged DBRM {dbrm name} is not referenced by any plans

You can suppress this return code and error message by using CMNDB2PL control statement

IGNORENODBRM.

4. 4.

5. 5.

6. 6.

a. a.

b. b.

c. c.

d. d.

7. 7.

8. 8.

CMNDB2PL Operation

CMNDB2PL Operation 143

BIND Command Keyword Option Order

Keyword Control Statements

The following figure shows a sample control statement input to program CMNDB2PL. Detailed

descriptions of each keyword are in the sections that follow.

BIND Command Keyword Option Order CMNDB2PL uses IBM service routine IKJPARS to parse

BIND commands. This ensures that Db2 Option processing is synchronized with changes that

IBM might make to BIND keyword operands.

IKJPARS does not attempt to maintain the input order of keyword operands that it parses.

Therefore, keyword operands in a BIND command that CMNDB2PL sends to exit programs

CMNEX101, CMNEX103, and finally to IKJEFT01 may be in a different order than in the original

BIND command member in a staging, promotion, baseline, or production library.

Important

Keyword Control Statements

Keyword Control Statements 144

Control Statement Syntax
An asterisk in the first position of a program level control statement record disables the statement

(comments it out). If a control statement is disabled, the action opposite from that expressed in

the keyword name (or defined in this chapter) is in effect.

//CMNPLCTL DD *
TYPE=INSTALL
*AUTHORITY=OWNER,INSERT
AUTHORITY=OWNER
*INSERTQUAL
*EARLYCHECK
*IGNORENOSUBSYS
*TEMPDS
*TRACE
USEREXIT=(ASM,NOUNLOAD)
USERID=USER239
PACKAGE=GENL000018
PROJECT=GENL
NOBASEDBBRC=12
WARNINGRC=4
USEDB2PACKAGE
*NODB2PLAN
*FREEPLAN
*CREATECC
*IGNORENODBRM
*PKLTEMPLATE
DB2ID=C105
LOGICAL=SERT4
PLANTGT=
PLANSRC=
PKGETGT=
PKGESRC=
LOCNTGT=
LOCNSRC=
QUALIFIER=
QUALTGT=
QUALSRC=
OWNER=
OWNRTGT=
OWNRSRC=
REMOTEID=SERT4

Control Statement Syntax

Control Statement Syntax 145

Program Level Control Statements
These keyword control statements are input once for each execution of Plan Lookup program

CMNDB2PL. The options controlled by these keywords are in effect for all components and logical

subsystems processed by the program.

AUTHORITY=

Specifies whether BIND authorization is by OWNER ID or JOB card. If this control statement is

omitted, the default is: AUTHORITY=OWNER

BINDPACKAGETYPE

This control statement is obsolete with ZMF 7.

CREATECC

Sets an indicator for exit program CMNEX101 to create a BIND command when none is found in
staging or baseline libraries. The new BIND command is written to ddname stssysBCTL. See the source

code for MNEX101.

EARLYCHECK

Validate the connection to all Db2 subsystems at beginning of processing.

CMNDB2PL builds an internal table that contains all of the Db2 subsystem IDs that will be
processed for the job. When EARLYCHECK is specified, CMNDB2PL performs an “early” Db2 connect for
each Db2 subsystem ID contained in this table. The NOEARLYCHECK keyword is no longer valid.

Option Definition

**OWNER Required either when the SERNET instance userid has been granted

SYSADM or SYSCTRL authority, or when the SERNET userid has one or

more secondary authorization IDs, one for each possible owner that can

be specified.

Each set of logical Db2 subsystem control statements for CMNDB2PL

must include an OWNER= control statement, even if the owner ID is left

blank.

Add an OWNER option to a BIND command if one is not present.

**OWNER,

INSERT

If INSERT is not specified, OWNER templating is performed only if an

OWNER option is included in the BIND command.

JOBID authorization is used when the ChangeMan started task is

authorized to submit jobs for other users through USER= field on the

JOB card.

**JOBID No OWNER= control statements can be included in the input at ddname

CMNPLCTL.

Program Level Control Statements

Program Level Control Statements 146

FREEPLAN

Create a FREE PLAN command if a BIND PLAN command member cannot be found and CMNDB2PL control
statement TYPE= is DEMOTE or BACKOUT.

IGNORENODBRM

Bypass RC=12 and error message “CMN7034A Staged DBRM {dbrm name} is not referenced by any plans.”
...when a staged DBRM cannot be matched with a MEMBER statement in the output BIND command file
at ddname stssysBCTL.

Issue warning message.

IGNORENOSUBSYS

Bypass RC=12 and error message “CMN7025A Unable to establish connection to Db2 subsystem:
{subsystem id}.”... ...when CMNDB2PL cannot connect to a Db2 subsystem. Skip all processing for
the Db2 subsystem and go on to the next one.

INSERTQUAL

Add a QUALIFIER parameter to a BIND command if one is not present and the QUALIFIER= control
statement is not blank.

LEGACYCOMMENTS=YES/NO

Allow comments in the bind component to be indicated by an asterisk in column 1. Default is NO.

The default prevents the possibility of losing the third collection in (e.g.) the following set
of bind parameters:

If YES then .COLLID3. is treated as a comment. See the Note below.

NOBASEDBBRC=

Specifies the return code that CMNDB2PL issues when processing a new DBRM where no previous BIND
command member is found. Valid values are numeric digits (00-99) representing the return code to
be issued. The default return code is 04 if this control statement is not present.

NOCATALOGDUPCHECK

Directs CMNDB2PL to bypass duplicate bind checking in a run that relies completely on Db2 catalog
driven binds (i.e. there are no plan or package bind control members being processed, just
DBRMs). The usual process is to eliminate all duplicate binds generated by the Db2 catalog
information. If you prefer to post-process this list of duplicate binds, you can use this keyword
to direct CMNDB2PL to bypass duplicate bind checking.

NODB2PLAN

Bypass the query to SYSIBM.SYSDBRM table to determine if any staged DBRMs are referenced by Db2
plans. Use this control statement if plan binds are executed outside of ChangeMan ZMF and only
package bind processing is managed by CMNDB2PL.

BIND PLAN (WILDLOC) PKLIST -
(COLLID1.*, -
COLLID2.*, -
.COLLID3., -
COLLID4.*)

Program Level Control Statements

Program Level Control Statements 147

PACKAGE=

Specifies the change package ID. The change package ID is not used by CMNDB2PL but it is passed
to exit program CMNEX101.

PKLTEMPLATE

Enables templating for the collection IDs and location in the PKLIST of BIND PLAN commands.
Without this control statement, Db2 package names will be templated in BIND PACKAGE commands, but
the collection IDs and location in BIND PLAN will not be templated.

PROJECT=

Application mnemonic.

TEMPDS

Write templated BIND command members to the library at ddname stssysTMP when TYPE=BACKOUT or

TYPE=INSTALL.

The NOTMP keyword is no longer valid.

TEMPDSNHLQ

High level qualifier for the named temporary dataset allocated to hold DSN BIND records before
parsing. The high level qualifier returned by CMNEXINS is used if this keyword is not specified.

TRACE

Turn on a trace facility to print diagnostics at ddname SERPRINT from CMNDB2PL calls to CMNDB2CB
and CMNDB2SQ for Db2 SQL calls.

TYPE=

Indicates the type of operation for which BIND commands are being constructed.

TYPE= must be the first control statement at ddname CMNPLCTL. There is only one TYPE control
statement for an execution of CMNDB2PL.

Valid values:
PROMOTE
DEMOTE
INSTALL
BACKOUT
STAGE is accepted, but it processes the same as PROMOTE.

USEDB2PACKAGE

Query Db2 table SYSIBM.SYSPACKAGE to determine if any staged DBRMs are referenced by Db2 packages
so that BIND PACKAGE commands can be built. Comment out this control keyword to bypass the query.

USEREXIT=

Specifies the language and load mode for exit program CMNEX101.
Format: USEREXIT=(language,mode)

Valid values for language:

ASM (assembly language) is the only valid language.

Valid values for mode:

UNLOAD: Load a fresh copy of the exit load after each invocation when your program is not
reusable.

Program Level Control Statements

Program Level Control Statements 148

NOUNLOAD: Leave the program resident after the initial LOAD of the user exit. This is the default
mode.
USEREXIT=(NONE) bypasses parsing for CMNEX101. You may use this form of the control statement To
enhance the efficiency of CMNDB2PL if you do not used CMNEX101.

USERID=

Identifies the authorization ID (TSO userid) of the person who issued a promotion or demotion
request. For install or backout, USERID identifies the authorization ID of the person who
generated the install JCL by freezing the package or issuing a request to rebuild the install JCL
from freeze or approval.

Not used by CMNDB2PL but passed to exit program CMNEX101.

WARNINGRC=

Specifies the return code CMNDB2PL issues when it issues warnings for taking default actions. The
default for warnings is RC=04.

Valid values are numeric digits representing the desired return code to be issued.

Logical Subsystem Level Control Statements
These keywords specify values that are defined for the target logical subsystem.

The values for the LOGICAL=, DB2ID=, REMOTEID= statements are defined on the Db2 Logical

Subsystem panel in application administration for the Db2 Option. The values for the rest of the

control statements listed in this section are defined on the Db2 Logical Subsystem nickname

Templates panel.

If the Db2 Active Library List panel for an application directs program CMNDB2PL to process

multiple logical subsystems, then a set of these control statements is input to CMNDB2PL for each

logical subsystem that is processed.

CMNDB2PL has always assumed that an asterisk in column 1 means a comment card in the

bind parameter member. This is not IBM-standard but was (and is) a mechanism used to

communicate to the ZMF exit CMNEX101. This, however, meant that genuine bind parameters

with an asterisk in column 1 are also treated as comments. We recommend not relying on an

asterisk in column 1 of the bind parameters to indicate a comment but, if your processes need

to do this, then LEGACYCOMMENTS=YES will allow you to do so (but don't code genuine bind

parameters with an asterisk in column 1).

Note

Control

Keyword

Description

DB2ID= Name of the physical subsystem.

Logical Subsystem Level Control Statements

Logical Subsystem Level Control Statements 149

How CMNDB2PL Relates to ChangeMan ZMF

This table shows when CMNDB2PL performs certain operations in the ChangeMan ZMF life cycle.

Some of these operations are controlled by keyword control statements. See Keyword Control

Statements.

Control

Keyword

Description

LOCNSRC= Source template for PACKAGE location ID.

LOCNTGT= Target template for PACKAGE location ID.

LOGICAL= Name (nickname) of the logical subsystem. Not used by CMNDB2PL but

passed to exit program CMNEX101.

OWNER= Insert value for OWNER. Required if AUTHORITY=OWNER or

AUTHORITY=OWNER,INSERT. Prohibited if AUTHORITY=JOBID.

OWNRSRC= Source template for OWNER.

OWNRTGT= Target template for OWNER.

PKGESRC= Source template for PACKAGE collection ID.

PKGETGT= Target template for PACKAGE collection ID.

PLANSRC= Source template for PLAN name.

PLANTGT= Target template for PLAN name.

QUALIFIER= Insert value for QUALIFIER.

QUALSRC= Source template for QUALIFIER.

QUALTGT= Target template for QUALIFIER.

REMOTEID= Site for the physical subsystem. The site may be a local or remote site.

Not used by CMNDB2PL but passed to exit program CMNEX101.

TYPE Verify BIND

member exists in

baseline

Read stage BIND

command members

Write templated

BIND command to

PDS

PROMOTE Yes, if not in stage Yes No

DEMOTE Yes No No

How CMNDB2PL Relates to ChangeMan ZMF

How CMNDB2PL Relates to ChangeMan ZMF 150

CMNDB2PL Return Codes and Messages

This table shows the return codes issues by program CMNDB2PL:

Use these control statements allow the bind step to process when CMNDB2PL encounters a

problem. See Program Level Control Statements.

These keyword control statements modify the return code issued by CMNDB2PL.

NOBASEDBBRC=

WARNINGRC=

These control statements bypass error conditions:

IGNORENODBRM

IGNORENOSUBSYS

TYPE Verify BIND

member exists in

baseline

Read stage BIND

command members

Write templated

BIND command to

PDS

INSTALL Yes, if not in stage Yes Yes

BACKOUT Yes No Yes

Return

Code

Description

RC=00 No errors are detected and no warnings are issued.

RC=04 Warning is issued. Warnings can usually be ignored, but care must be taken

with warnings about default actions. Example 1: If no AUTHORITY= card is

specified in the control statements, AUTHORITY=OWNER is assumed. Example

2: If no SERNET instance subsystem ID is passed as a program parameter,

then CMNDB2PL assumes a “null” subsystem and issues the warning return

code.

RC=12 Severe error, processing is halted. ## Modify Return Codes

• •

• •

• •

• •

CMNDB2PL Return Codes and Messages

CMNDB2PL Return Codes and Messages 151

Messages
All messages issued by plan lookup program CMNDB2PL are explained in the ChangeMan ZMF

Messages Guide.

Sample CMNDB2PL Report

The following is an annotated sample report from CMNDB2PL: This section of the report shows the

plan being used for Db2 queries by CMNDB2PL.

The next section prints copies of the control card input. Messages for any errors found in the input

records are interspersed with the control cards. An error message immediately follows the control

card that caused the error.

This section contains a list of all BIND PACKAGE and BIND PLAN members in this change package.

These BIND commands are passed to the bind utility after the templates have been applied.

ChangeMan(R) ZMF DB2 Option Plan Lookup Program WEDNESDAY FEBRUARY 3, 2016 (2016/034) 01:35:12
CMNDB2PL - 8.1.0 10/10/2014 11.24

DB2 Plan Used by ChangeMan ZMF Call Attach Facility:
Using plan (CMNPLAN)

Control card input (DDNAME = CMNPLCTL)

 1 ==> TYPE=INSTALL
 2 ==> AUTHORITY=OWNER
 3 ==> USEREXIT=(ASM,NOUNLOAD)
 4 ==> USERID=USER239
 5 ==> PACKAGE=ACTP000084
 6 ==> PROJECT=ACTP
 7 ==> NOBASEDBBRC=12
 8 ==> WARNINGRC=4
 9 ==> USEDB2PACKAGE
 10 ==> DB2ID=C105
 11 ==> LOGICAL=SERT7
 12 ==> PLANTGT=
 13 ==> PLANSRC=
 14 ==> PKGETGT=
 15 ==> PKGESRC=
 16 ==> LOCNTGT=
 17 ==> LOCNSRC=
 18 ==> QUALIFIER=
 19 ==> QUALTGT=
 20 ==> QUALSRC=
 21 ==> OWNER=
 22 ==> OWNRTGT=
 23 ==> OWNRSRC=
 24 ==> REMOTEID=SERT7

Messages

Messages 152

This section contains a list of all DBRMs in this change package. This list is used when the query is

built to find the list of all plans in the affected Db2 catalogs that reference these DBRMs.

Since NODB2PLAN was specified, the Db2 catalog query for existing DBRMs is not executed. If

NODB2PLAN had been commented out, a query for existing DBRM’s would be issued at this point.

The required BIND command members are listed. The origin of the BIND command requirement is

one of the following:

A staged BIND PLAN member, indicated by DD: DBBSSTG.

A staged BIND PACKAGE member, indicated by DD pkgbindSSTG.

A plan that was found in the Db2 catalog that contained one of the staged DBRMs, indicated

by DB2:SYSDBRM.

A package found in SYSIBM.SYSPACKAGE, indicated by DB2:SYSPACKAGE.

If no BIND command members are found for any plan, CMNDB2PL terminates with a return code of

12, and lists all such DBRMs.

Staged bind control statements in this change package (DDNAME = CMNPLPKG)

 1 ==> MBR=ACPSRCD1

Staged DBRMs in this change package (DDNAME = CMNPLDBR)

 1 ==> MBR=ACPSRCD1

•

•

•

•

The following bind control statements are required:

Origin of Staged Actual Logical Plan Package
Location Owner Qualifier DB2 Remote Reject
Bind Reqmt. Name Name Subsys Template Template
Template Template Template Subs ID

DD:PKGSSTG GNLSDB01 GNLSDB01
S3P1UT ?????????????????? ???????????????? ???????? ????????
C105 SERT3P1

Sample CMNDB2PL Report

Sample CMNDB2PL Report 153

Secondary Binding

Secondary binding uses CMNDB2PL to produce bind parameters for logical subsystems other than

the primary logical subsystem (i.e. the target of the promote etc. action).

In addition to generating the relevant bind parameters CMNDB2PL (for TYPERUN=PROMOTE or

INSTALL) will check consistency tokens in the Db2 catalog to see if the secondary bind is actually

needed.

This functionality is affected by the following, secondary bind only, CMNPLCTL parameters.

All the other template keywords refer to the requirements of the secondary logical subsystem.

PKG2TGT/SRC are required to allow CMNDB2PL to form the appropriate collection id in order to

query the catalog for the latest consistency token for the bind that has just taken place for the

primary logical subsystem.

If this consistency token is already present for the secondary collection id then no bind is required.

Control Keyword Description

SECONDARYBIND Requests secondary bind processing for this execution.

PKG2TGT= The target template for the primary logical subsystem PACKAGE

collection id.

PKG2SRC= The source template for the primary logical subsystem PACKAGE

collection id.

Secondary Binding

Secondary Binding 154

8. Stored Procedure Utilities

This chapter discusses the stored procedure utilities available with the Db2 Option.

Introduction

CMNDB2AV

CMNDB2DD

CMNDB2SL

CMNDB2TR

CMNDB2DR

Stored Procedure Walkthrough

Introduction

This table lists the utilities that support management of Db2 stored procedures, triggers, and user

defined functions in the Db2 Option.

Stored Procedure Utilities

• •

• •

• •

• •

• •

• •

• •

Program

Name

Functional Description Library

Sub-

type

Type of Component

CMNDB2AV Activate SP versions N Native SQL stored

procedure

CMNDB2DQ Extract CREATE SQL from SQL

stored procedure source. Pass

SQL to utility CMNDB2DD to

define the stored procedure.

Q SQL stored

procedure

CMNDB2DD Execute CREATE SQL statements

to register stored procedures,

user defined functions, and

triggers in a Db2 catalog.

D N T

(Q)

CREATE SQL

statement

8. Stored Procedure Utilities

8. Stored Procedure Utilities 155

CMNDB2AV

This program is designed to aid the automation of the activation of various versions of the same

stored procedure. It is driven by SYSIN parameters (described below) which are, normally, prepared

by CMNDB2DD. CMNDB2DD passes these parameters to a subsequent job step which submits a

new job to activate the new version of the SP.

CMNDB2AV requires the presence of the CMNZMF.CMNDB2_ATTRIBS table in the target Db2

subsystem. It also requires the CMNDB2AT package to be bound using the CMNZMF collection id.

Here is a description of the sysin parameters followed by the actions taken for each function type.

Program

Name

Functional Description Library

Sub-

type

Type of Component

CMNDB2SL Recycle stored procedures and

external user defined functions in

a WLM-managed address space.

S Stored procedure

and external user

defined function

load modules,

REXX stored

procedure.

CMNDB2TR Drop and recreate triggers to

maintain the current firing order

when a trigger for the same

table/event/time is changed or

added.

T Trigger

CMNDB2DR Report CREATE PROCEDURE and

CREATE FUNCTION in a change

package that have dependencies

that will interfere with the DROP

automatically issued by the Db2

Option before the CREATE is

executed.

D Q CREATE SQL

Parameter Description

FUN=ADDNEW /

REACTIVATE /

BACKOUT

Specifies which function is being performed. If FUN= is not set

to one of these three values then CMNDB2AV will end without

doing anything. Specifically, if CMNDB2DD has decided there is

nothing to do it will pass FUN=DO_NOTHING to this program.

CMNDB2AV

CMNDB2AV 156

Note the last three parameters may be longer than will fit on one 80 byte card image. If this is the

case then a non-blank character (which is ignored) is placed in col 80 and the value is continued

from the start of the next card image. E.g.

What each function type does:

Parameter Description

ZMF=CMNx This specifies the ZMF subsystem under whose direction the

current action is taking place. Note that it is possible that the

same Db2 subsystem could be targeted by more than one ZMF.

This value ensures that rows written to the CMNDB2_ATTRIBS

table are unique to each ZMF.

PKG=aaaannnnnn The package associated with the current action.

DB2=ssss The Db2 subsystem which is the target of this action.

SCM= The schema of the SP whose version is to be activated.

NAM= The name of the SP whose version is being activated.

VER= The SP version. This has different meanings depending on the

FUN= type. E.g. for ADDNEW it is the version to be activated. For

REACTIVATE it indicates the version of the SP which is being

deactivated. For BACKOUT it is ignored (and not generated by

CMNDB2DD).

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
SCM=AREALLY8101234567820123456783012345678401234567850123456786012345678701234R+
EALLYLONGSCHEMA

Function Description

ADDNEW Extracts the current active version for the SP from the target Db2 catalog.

Writes a row to CMNDB2_ATTRIBS to note this version was the 'prior active'

version for the SP. Issues the activation request for the new version as

indicated by the VER= sysin parameter.

CMNDB2AV

CMNDB2AV 157

CMNDB2DQ

Program CMNDB2DQ runs at promote, demote, install, and backout. It dynamically calls the Db2

precompiler to extract the SQL required to define an object to Db2, removing any procedural code

within the CREATE object definition. It can be used for any SQL component type, but program

CMNDB2DQ is required when processing SQL language stored procedures.

The CREATE SQL extracted by this program is written to a file that is passed to utility program

CMNDB2DD where the SQL is executed to register the Db2 objects in Db2 catalogs.

This table shows the skeletons that include program CMNDB2DQ and where those skeletons are

used.

Function Description

BACKOUT 1) Gets the current active version of the SP from the Db2 catalog.

2) Extracts the recorded 'prior version from the CMNDB2_ATTRIBS row for

this zmfid/zmf package/location/schema/SP name.

3) Issues the activation request for the 'prior version' as obtained in 2).

4) Drops the version obtained in 1).

5) Removes the CMNDB2_ATTRIBS row for this zmfid/zmf package/

location/schema/SP name.

Skeleton ...embedded in

skeletons

Skeleton Description

CMN$

$PSQ

CMN$$PRM Perform promotion or demotion to local sites.

CMNIMPRM IMS Option: Perform promotion or demotion to local

sites.

CMN$

$RSQ

CMNRPICR IMS Option: Perform remote promotion or demotion.

CMNRPMCR Perform promotion or demotion to remote sites.

CMN$

$SQL

CMN21 Used to perform db2 binds and/or ddl processing for

installation of packages into production libraries and

db2 catalogs.

CMNDB2DQ

CMNDB2DQ 158

Keyword Control Statements
This table describes the keyword options that control the behavior of program CMNDB2DQ.

Return Codes and Messages
Program CMNDB2DQ calls the Db2 precompiler. The return codes from the precompiler are

passed through as CMNDB2DQ return codes.

CMNDB2DD

Program CMNDB2DD executes DDL/SQL at promote, demote, install and backout to register stored

procedures, triggers, and user defined functions in the Db2 catalog.

The program reads a specified member from a concatenation of SQL libraries, parses the records

in the member into SQL sentences using a specified terminator, applies all relevant templates and

offers the SQL sentences to the target Db2 subsystem. Further manipulation of the DDL/SQL may

be achieved using general token templates and/or the HLLX exit facility. The results of the

execution may also, optionally, be passed in an output dataset to be processed by some other Db2

utility of your choosing.

Program CMNDB2DD writes to ddname TRIGGER the tablename/event combinations for which a

trigger has been added or updated. This file is passed to utility program

CMNDB2TR.

This table shows the skeletons that include program CMNDB2DD and where those skeletons are

used.

Skeleton ...embedded in

skeletons

Skeleton Description

CMN49 Used to perform db2 binds and/or ddl processing for

backout of packages from production libraries and

db2 catalogs.

Keyword Description

NOTFOUNDRC= Return code set if the requested SQL component (MBR=) is not found

in the library concatenation at ddname SQLIN. Valid values: 0 to 99

Default: 8 Comment: Set to 0 for demotion and backout functions.

MBR= Name of SQL component to be processed. The number of MBR control

statements is not limited.

Keyword Control Statements

Keyword Control Statements 159

Keyword Options
This list describes the keyword options that control the behavior or program CMNDB2DD. Default

values are in italics:

ACTION=PROMOTE/DEMOTE/INSTALL/BACKOUT This setting is used by the Native SQL SP

version process. See description of keyword SPVERPKGRC. The value is also passed to the HLL

exit if it is active

AUTODROP=YES/NO Autodrop facility issues a DROP command for a procedure, trigger, or user

defined function before processing CREATE SQL for the object.

BINDDEPLOY= Specify any extra clauses to be included in the generated BIND DEPLOY command

for a native SQL stored procedure. The value for this keyword is freeform text and whatever you put

here will be appended to the command asis. You may specify as many BINDDEPLOY= keywords as

you wish. An example might be BINDDEPLOY=QUERYACCELERATION(ENABLE).

CMP= Synonym for MBR=. See MBR=.

DB2ID= Db2 subsystem ID to which SQL should be presented. The DB2ID keyword control

statement must precede one or more MBR keyword control statements.

DEPLOYFROMLOCATION= This is the Db2 location to which CMNDB2DD will route the call to

ADMIN_COMMAND_DSN in order to execute the BIND DEPLOY request. The value is populated

from the 'Deploy' value for location on the source logical subsystem definition.

Skeleton ...embedded in

skeletons

Skeleton Description

CMN$$PSQ CMN$$PRM Perform promotion or demotion to local sites.

CMNIMPRM IMS Option: Perform promotion or demotion to local

sites.

CMN$$RSQ CMNRPICR IMS Option: Perform remote promotion or demotion.

CMNRPMCR Perform promotion or demotion to remote sites.

CMN$$SQL CMN21 Used to perform db2 binds and/or ddl processing for

installation of packages into production libraries and

db2 catalogs.

CMN49 Used to perform db2 binds and/or ddl processing for

backout of packages from production libraries and

db2 catalogs.

Keyword Options

Keyword Options 160

DEPLOYQUAL=

DEPLOYOWNER= If standard templating processes result in a blank value for qualifier and/or

owner when a bind deploy command has been requested then any values entered for these

parameters will be used on the command (cf. bind insert values). Values for both the templates

and these 'deploy' fields will be provided by the target logical subsystem definition.

DROPRC= Return code set if the requested SQL action is DROP and the component is not found in

the Db2 catalog.

Valid values: 0 to 99

Default: 0

ERRSTOPAFT= Number of SQL errors allowed before the program is terminated.

Valid values: 0 to 99999999

Default: 0

HLLX=(name,type) This parameter indicates that a HLL exit be taken by CMNDB2DD. This does not

use the standard HLLX scheduling system as CMNDB2DD needs to be able to run on remote z/OS

images. However, the call mechanism is the same, i.e. the exit can be coded in REXX or any

LEsupported language.

The purpose is to allow you to manipulate the DDL being processed by CMNDB2DD directly using

your own business logic. It will also allow them to stop CMNDB2DD from continuing should it

decide to do so.

The 'name' sub-parameter specifies the external name of the HLL exit (i.e. the REXX exec name of

LE program name). The 'type' sub-parameter must be either REXX or LE as appropriate.

LINEFEED=YES/NO If this is set to YES then CMNDB2DD will insert a linefeed character (EBCDIC

x'25') to the end of each physical line of SQL code. This is useful during formatting by various

debug tools. Default is NO. Note that Data Studio inserts its own linefeed characters

MBR= Name of SQL component to be processed in the Db2 subsystem specified in the preceding

DB2ID keyword control statement.

NOTFOUNDRC= Return code set if the requested SQL component (MBR=) is not found in the library

concatenation at ddname SQLIN.

Valid values: 0 to 99

Default: 8

Comment: Set to 0 for demotion and backout functions.

Keyword Options

Keyword Options 161

PASSTHRU=YES/NO The usual method that CMNDB2DD employs is to present DROP/CREATE DDL

directly to the target Db2 subsystem. Customers may wish to do this using other utilities but may

also wish to avail themselves of the facilities offered by CMNDB2DD. This new parameter allows

them to do this. If PASSTHRU=YES is specified then the resulting DDL, as manipulated by this

program, is then written to an output ddname rather than being presented to Db2. The ddname

used is:

//ssssOUT

Where ssss is the Db2 subsystem id currently being processed (i.e. as directed by the DB2ID= sysin

parameter). The output DCB is checked for compatibility with the SQLIN ddname. The member read

from SQLIN is directed by the MBR= sysin parameter and this same member name is used to write

to ssssOUT.

The following message will be seen in sysprint:

CMNDD033I Sentence passed to ssssOUT, no action taken at target Db2 subsystem. The ssss is

resolved to the actual subsystem id in the message.

SPVERPKGRC=n 8 is the default. This is the return code set should the ZMF id and package name

check, described in the keyword ACTION for demote/backout, fail.

SPVERSION= NO YES ONLY COMMAND BOTH UNDO Lets CMNDB2DD know whether Native SQL

SP versioning is supported.

YES: As well as the standard templating/presentation of the SP SQL to Db2 we also take actions

designed to activate the correct SP version at the target Db2 subsystem. This is done by writing

transactions (intended for CMNDB2AV) to the VERSION DDname. In the supplied skeletons this

ddname is passed to a subsequent job submission step which submits an execution of

CMNDB2AV to act on these transactions

ONLY: Do not present SQL to Db2, extract version information and write to the VERSION ddname

only.

COMMAND: Generate the relevant BIND DEPLOY command and call

location.SYSPROC.ADMIN_COMMAND_DSN to execute it.

BOTH: Equivalent to ONLY and COMMAND - take both actions.

UNDO: This takes the same action as ONLY but uses the COLLID templates to generate the schema

of the SP whose version information we need (ONLY uses the SCHEMA templates). This action is

required during demote and backout.

Keyword Options

Keyword Options 162

SQLTERM= Alternate SQL statement terminator. If the input includes SQL that uses the semicolon

(;) as a statement terminator, specify an alternate terminator for the input so that the semicolon is

passed through to the server.

You can specify any character except the following:

- blank

- comma

- underscore

- single quote

- double quote

- left parenthesis

- right parenthesis

If you omit this keyword parameter, the default SQL statement terminator is semicolon (;).

SQUEEZE=YES/NO If this is set to YES then superfluous blanks will be stripped out from the SQL

sentence prior to it being presented to Db2. YES is the default for legacy reasons. If you wish to be

able to view the Db2 object back directly from the Db2 catalog using a debugger or some other tool

then you will want to use SQUEEZE=NO.

SRCCOLLIDTEMPLATE= Source template for COLLID parameter in SQL definitions for stored

procedures and user defined functions.

SRCQUALTEMPLATE= Source template for explicit table qualifier in SQL definitions.

SRCSCHEMATEMPLATE= Source template for schema in SQL definitions.

SRCWLMTEMPLATE= Source template for WLM application environment.

TEST= Program trace facility.

Valid values:

YES/NO

Default: NO

TGTCOLLIDTEMPLATE= Target template for COLLID parameter in SQL definitions for stored

procedures and user defined functions.

TGTQUALTEMPLATE= Target template for explicit table qualifier in SQL definitions.

TGTSCHEMATEMPLATE= Target template for schema in SQL definitions.

TGTWLMTEMPLATE= Target template for WLM application environment.

Keyword Options

Keyword Options 163

TOKENNAME=

TOKENSRCT=

TOKENTGTT= The parameters allow you to define your own DDL parameters to be template via

'standard' CMNDB2DD templating. Freeform token processing will take place in addition to and

after all the existing fixed name clause processing (e.g. after the likes of owner, qualifier etc.

templating).

TOKENNAME= specifies a string which will be looked for in the DDL. This may include imbedded

blanks as long as the whole string is enclosed in single quotes. If there are no imbedded blanks

then quotes are optional. Strings including imbedded blanks must not contain more than 5

subwords (and each subword must be 16 bytes).

In the DDL, to be recognized, the token name may be preceded by either a blank or a comma, and

followed by a blank or a left hand bracket.

The next word following the token will be templated according to the standard rules with the

(optional) source template being supplied via TOKENSRCT and the (required) target template by

TOKENTGTT.

As many of these groups as you need may be specified. They are processed sequentially.

The code applies the template to each found occurrence of TOKENNAME (it doesn't stop looking

after the first found, only stopping when the current SQL sentence is exhausted). The resulting DDL

is then subject to the next set of TOKEN templates and so on.

The TOKENNAME value may be up to 64 bytes The TOKEN template fields may be up to 128 bytes

and can be specified across lines as per the other fixed name templates.

TOLSTDNUM=YES/NO If this is set to YES then the last 8 bytes of each 'card image' is ignored. YES

is the default for legacy reasons, 80 byte card images being the standard format for DDL/SQL.

Variable length records have been supported for some time (e.g. Data Studio generated SQL needs

VB,255), in anything other than standard 80 byte card images you should use TOLSTDNUM=NO.

TRACKTRIGGER=YES/NO Write to ddname TRIGGER the tablename/event combinations for which

a trigger has been added or updated.

ZMFID=CMNx This is the ZMF subsystem id which owns the package associated with this action.

It is used in the SP version validation process for demote/backout. It is also passed on in the

VERSION ddname transactions.

ZMFPACKAGE=aaaannnn nn This is the ZMF package name associated with this action. It is used

in the SP version validation process for demote/ backout as. It is also passed on in the VERSION

ddname transactions.

Keyword Options

Keyword Options 164

See the description of the Db2 Logical Subsystem nickname Templates panel in Define Global

Logical Subsystems for an explanation of Source and Target templates. See Templating Examples

to see how the Source and Target fields interact to modify templated fields in SQL.

A new DB2ID control statement makes program CMNDB2DD disconnect from the current

subsystem and connect to the new one. The number of MBR control statements that follow a

DB2ID control statement is not limited.

Return Codes and Messages

CMNDB2SL

Program CMNDB2SL runs at promote, demote, install, and backout to recycle stored procedures

and user defined functions that have been changed. This program searches the Db2 catalog for

procedures and functions defined on an external (load module) name. It uses the VARY

WLM...REFRESH command to recycle these objects in the WLM-managed address space.

This table shows the skeletons that include program CMNDB2SL and where those skeletons are

used.

Return Code Description

00 Success

04 Warnings Issued

08 SQL errors

12 Parameter errors

16 Other unrecoverable errors

Skeleton ...embedded in

skeletons

Skeleton Description

CMN$

$PST

CMN$$PRM Perform promotion or demotion to local sites.

CMNIMPRM IMS Option: Perform promotion or demotion to local

sites.

CMNRPMCR Perform promotion or demotion to remote sites.

Return Codes and Messages

Return Codes and Messages 165

Keyword Options
This table describes the keyword options that control the behavior or program CMNDB2SL.

A new DB2ID control statement makes program CMNDB2SL disconnect from the current

subsystem and connect to the new one. The number of MBR control statements that follow a

DB2ID control statement is not limited.

Return Codes and Messages

Skeleton ...embedded in

skeletons

Skeleton Description

CMN$

$STP

CMN20/CMN20I Used to perform Db2 binds and/or ddl processing

for installation of packages into production libraries

and Db2 catalogs.

CMN50/CMN50I Used to perform Db2 binds and/or DDL processing

for backout of packages from production libraries

and Db2 catalogs.

Keyword Description

TEST= Program trace facility. Valid values: YES/NO Default: NO

DB2ID= Db2 subsystem ID to which Db2 commands should be presented. The

DB2ID keyword control statement must precede one or more MBR

keyword control statements.

WLMENVMASK= WLM application environment mask.

MBR= External (load module) name of stored procedure or user defined

function to be recycled.

Return Code Description

00 Success

04 Warnings Issued

08 Command errors

12 Parameter errors

Keyword Options

Keyword Options 166

CMNDB2TR

Program CMNDB2TR runs at promote, demote, install, and backout to maintain the firing order of

existing triggers when a new trigger is added or an existing trigger is changed by utility program

CMNDB2DD.

This program reads a file created by utility program CMNDB2DD that lists CREATE TRIGGER

definitions have been executed. Program CMNDB2TR queries SYSIBM.SYSTRIGGERS to see if

multiple triggers have been defined for the same table/ event/time combination. If multiple triggers

are defined, then triggers with CMNFIRE#nn coded on the COMMENT ON field are dropped and

recreated in the nn sort sequence. All other triggers are then recreated in the original CREATEDTS

order.

CREATE TRIGGER SQL executed by CMNDB2TR is built from the Db2 catalog entries.

This table shows the skeletons that include program CMNDB2TR and where those skeletons are

used.

Return Code Description

16 Other unrecoverable errors

Skeleton ...embedded in

skeletons

Skeleton Description

CMN$

$PSQ

CMN$$PRM Perform promotion or demotion to local sites.

CMNIMPRM IMS Option: Perform promotion or demotion to local

sites.

CMN$

$RSQ

CMNRPICR IMS Option: Perform remote promotion or demotion.

CMNRPMCR Perform promotion or demotion to remote sites.

CMN$

$SQL

CMN21 Job to perform Db2 binds and/or DDL processing for

installation of packages into production libraries and

Db2 catalogs.

CMNDB2TR

CMNDB2TR 167

Return Codes and Messages

CMNDB2DR

Db2 Object Dependency Report
The Db2 Object Dependency report is a batch report that analyzes stored procedures and user

defined functions for dependencies that will interfere with the automatic DROP that is issued

before a CREATE is executed at promote, demote, install, or backout.

Run this report for each package that contains CREATE PROCEDURE or CREATE FUNCTION

statements for stored procedures and user defined functions to find potential problems with the

automatic DROP that is issued before each CREATE SQL is processed.

Program CMNDB2DR reads specified members in a PDS library of Db2 object definitions. It parses

the contents of each member looking for any of:

It extracts the name of the object to be created and reports on any other objects which are

dependent on this object.

Program CMNDB2DR can be run in batch using member CMNDB2DR delivered in the CMNZMF

CNTL library.

Skeleton ...embedded in

skeletons

Skeleton Description

CMN49 Job to perform Db2 binds and/or DDL processing for

backout of packages from production libraries and

Db2 catalogs.

Return Code Description

00 Success

04 Warnings Issued

08 SQL errors

12 Parameter errors

16 Other unrecoverable errors

CREATE PROCEDURE
CREATE FUNCTION

Return Codes and Messages

Return Codes and Messages 168

The program can also be initiated online from the Db2 Object Dependency Report panel

CMNDB2OD, which is accessed from:

The Define or Generate ChangeMan Batch Reports panel in global administration at =A.G.R,

option 5 Db2

The Define or Generate ChangeMan Batch Reports panel in application administration at

=A.A.R, option 5 Db2

The Submit ChangeMan Batch Reports panel at =6, option 2 Db2.

This table describes the fields on the Db2 Object Dependency Report panel.

• •

• •

• •

CMNDB2OD Db2 Object Dependency Report
Command ===> __

 Package ACTP000070
 Target Db2 subsystem . . C105

Job Statement Information:

 //USER015N JOB (SM-1IKF-SM),'DB2 OBJECT',
 // CLASS=A,MSGCLASS=X,NOTIFY=USER015
 //*
 //*

Field Description

Package id Type the ID of the package that you want to analyze. The package is

scanned for Db2 components which may contain user defined function

or stored procedure definitions. The batch job will analyze the catalog

tables in the target Db2 subsystem to see if any objects exist that are

dependent on the components in this package.

Target Db2

subsystem

Type the identifier of the target Db2 subsystem.

Job

Statement

Information

Specify a valid JOB statement for that batch job that will be submitted

when you press Enter.

...

Db2 Object Dependency Report

Db2 Object Dependency Report 169

Keyword Options
This table describes the keyword options that control the behavior or program CMNDB2DR.

A new DB2ID control statement makes program CMNDB2DR disconnect from the current

subsystem and connect to the new one. The number of MBR control statements that follow a

DB2ID control statement is not limited. Report output (excerpts):

Keyword Description

TEST= Program trace facility.

Valid values: YES/NO

Default: NO

AUTHID= The userid or qualifier to be used when no explicit schema is provided.

NOTFOUNDRC= Return code set if the requested SQL component (MBR=) is not found

in the library concatenation at ddname SQLIN.

Valid values: 0 to 99

Default: 8 Comment: Set to 0 for demotion and backout functions.

INOPRC= Return code set if the automatic DROP will work but will cause

dependent objects to be made inoperative.

Valid values: 0 to 99

Default: 8

FAILRC= Valid values: 0 to 99

Default: 8

Return code set if the automatic DROP will fail.

DB2ID= Db2 subsystem ID to which SQL should be presented. The DB2ID

keyword control statement must precede one or more MBR keyword

control statements.

MBR= Name of SQL component to be processed in the Db2 subsystem

specified in the preceding DB2ID keyword control statement.

Keyword Options

Keyword Options 170

Return Codes and Messages

ChangeMan(R) ZMF CMNDB2DR - 8.1.0 DB2 object dependency report

CMNDB2DR Processing begins at 15:35:29 on 02/04/2016
--

CMNDB2DR SYSIN: TEST=NO
CMNDB2DR SYSIN: AUTHID=JPRESTO
CMNDB2DR SYSIN: NOTFOUNDRC=4
CMNDB2DR SYSIN: INOPRC=8
CMNDB2DR SYSIN: FAILRC=8
CMNDB2DR SYSIN: DB2ID=S10G

CMNDR014I Now connected to DB2 subsystem : C105

--

CMNDB2DR SYSIN: MBR=SQLNAT01

CMNDR024I Member contains procedure : JPRESTO.SQLNAT01
CMNDR025I No dependencies found for this object

--
CMNDB2DR Processing completed at 15:35:30 on 02/04/2016 MAX RC = 00

Return Code Description

00 Success

04 Warnings Issued

08 DROP errors

12 Parameter errors

16 Other unrecoverable errors
...

Return Codes and Messages

Return Codes and Messages 171

Stored Procedure Walkthrough

This section is kept for documentation of legacy processes, see the section on Native SQL stored

procedures for more current practices.

Here we show the ZMF Db2 Option stage and promotion processes for SQL stored procedure

SQL00002 from the sample used by Db2 Connect (IBM Db2 Connect User's Guide, SC09-4835).

Staging stored procedure SQL00002 displays the following panel.

CMNSTG01 STAGE: ACTP000072 Components Row 1 to 1 of 1
Command ===> ___ Scroll ===> CSR

 Name + Type Status Changed Procname User Request
b SQL00002 SPQ INCOMP 20160204 202145 JPRESTO *BUILD
******************************* Bottom of data ********************************

ISRBROBA NTP.S6.ACTP.STG6.\#000072.SPQ(SQL00002) - 01 Line 00000000 Col 001 080
Command ===> ___ Scroll ===> CSR
********************************* Top of Data **********************************
CREATE PROCEDURE USER15.PROCEDURE2 ()
 RESULT SETS 1
 LANGUAGE SQL
 EXTERNAL NAME SQL00002
 COLLID TEST
 WLM ENVIRONMENT C105SP
 RUN OPTIONS 'TEST(ALL,*,,VADTCPIP&192.168.1.3:*)'
P1: BEGIN
 DECLARE cursor1 CURSOR WITH RETURN FOR
 SELECT SCHEMA, NAME FROM SYSIBM.SYSROUTINES;
 OPEN cursor1;
END P1
******************************** Bottom of Data ********************************

CMNSTG04 Stage: Build HISTORY ASSUMED
Command ===> __

 Package: ACTP000072 Status: DEV Install Date: 20160229

Staged name SQL00002 +
Library type . . . SPQ - DB2 Stored Proc Source - SQL Language
Dataset name . . . CMNTP.S6.ACTP.STG6.\#000072.SPQ +

Language SQL (Blank for list)
Compile procedure CMNSQL (Blank for list; ? for designated proc.)
Compile parms _________________________________
Pgm binder parms _________________________________

Enter "/" to select option
 / Db2 processing
 / Other Db2 options
 _ Other options
 _ Suppress messages

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 172

Language SQL is associated with compile procedure CMNSQL.

Skeleton CMN$$CEE is customized to provide STEPLIB data set names.

Skeleton CMN$PARM is customized to provide execution parameter CCSID(1047) for the Db2

precompiler in skeleton CMN$$PDB. The default CCSID pair for a z/OS 1.8 LE environment is

(1047,819), where 1047 indicates the EBCDIC IBM-1047 codepage and 819 indicates the ASCII

ISO8859-1 codepage.

Job statement information:
 //USER015D JOB (SM-1IKF-SM),'TEST',
 // CLASS=A,MSGCLASS=X,NOTIFY=JPRESTO
 //*
 //*

...

ISRSUPC - MVS/PDF FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- ISPF FOR z/OS 2013/01/31 16.08 PAGE 6
NEW: CMNTP.S4.V71201.CMNZMF.CUSTOM.SKELS(CMN$$CEE) OLD: CMNTP.S0.V712.CMNZMF.SKELS(CMN$$CEE)

 LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
 // REGION=0M, 00008 00008
 // COND=(4,LT), 00009 00009
 // PARM=('&COMPPRM1', 00010 00010
)SEL &COMPPRM2 NE &Z 00011 00011
 // '&COMPPRM2', 00012 00012
)ENDSEL &COMPPRM2 NE &Z 00013 00013
)SEL &COMPPRM3 NE &Z 00014 00014
 // '&COMPPRM3', 00015 00015
)ENDSEL &COMPPRM3 NE &Z 00016 00016
 // '&COMPOPT') 00017 00017
I - //STEPLIB DD DISP=SHR,DSN=CBC.SCCNCMP RPL= 2 00018 00018
D - //STEPLIB DD DISP=SHR,DSN=somnode.SCCNCMP
I - // DD DISP=SHR,DSN=CEE.SCEERUN 00019 00019
D - // DD DISP=SHR,DSN=somnode.SCEERUN
)IM CMN$$SYC MAT= 1 00020 00020
I - // DD DISP=SHR,DSN=CEE.SCEEH.H RPL= 1 00021 00021
D - // DD DISP=SHR,DSN=somnode.SCEEH.H
)SEL &DB2PC EQ Y MAT= 1 00022 00022
I - // DD DISP=SHR,DSN=SYS2.DB2810.SDSNC.H RPL= 1 00023 00023
D - // DD DISP=SHR,DSN=somnode.SDSNC.H
)ENDSEL &DB2PC EQ Y MAT= 65 00024 00024
)CM 00025 00025
)CM DEFAULT OPTIONS FOR SQL STOREDP PROCEDURE GENERATED C 00026 00026
)CM 00027 00027
 //SYSLIN DD DISP=(,PASS),DSN=&&&&OBJECT&C\#N(&CMPNAME), 00028 00028
 // UNIT=SYSDA,SPACE=(CYL,(1,1,1)), 00029 00029
 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200) 00030 00030
 //SYSPRINT DD DISP=(,PASS),DSN=&&&&LIST30C&C\#C, 00031 00031
 // UNIT=&DEFNVUN,SPACE=(CYL,(5,5),RLSE), 00032 00032
 // DCB=(RECFM=FBM,LRECL=133,BLKSIZE=23275) 00033 00033
*** CHANGE SECTION CUTOFF ******************************

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 173

The EBCDIC CCSID for Db2 subsystem C105 is 1047, which can be viewed in the Subsystem

Parameters panel DSNTIPF.

This is the DBB for SQL00002.

ISRSUPC - MVS/PDF FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- ISPF FOR z/OS 2013/01/31 16.08 PAGE 39
NEW: CMNTP.S4.V71201.CMNZMF.CUSTOM.SKELS(CMN$PARM) OLD: CMNTP.S0.V712.CMNZMF.SKELS(CMN$PARM)

 LISTING OUTPUT SECTION (LINE COMPARE)

ID SOURCE LINES TYPE LEN N-LN# O-LN#
 ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
)SET LINKPRM2 = &Z 00575 00575
)SET LINKPRM3 = &Z 00576 00576
)CM 00577 00577
)ENDSEL &LNGNAME EQ SASC 00578 00578
)CM 00579 00579
)CM 00580 00580
)CM SQL 00581 00581
)CM 00582 00582
)SEL &LNGNAME EQ SQL 00583 00583
)CM DB2 PRECOMPILE 00584 00584
I -)SET DB2PPRM1 = HOST(C),MARGINS(1,80),CCSID(1047) RPL= 1 00585 00585
D -)SET DB2PPRM1 = HOST(C),MARGINS(1,80)
)SET DB2PPRM2 = &Z MAT= 22 00586 00586
)SET DB2PPRM3 = &Z 00587 00587
)CM COMPILE 00588 00588
)SET COMPPRM1 = /OPTFILE(DD:SYSOPTF) 00589 00589
)SET COMPPRM2 = &Z 00590 00590
)SET COMPPRM3 = &Z 00591 00591
)CM SYSOPTF DD 00592 00592
)SET COMPOPT1 = NOSEQUENCE,MARGINS(1,80) 00593 00593
)SET COMPOPT2 = &Z 00594 00594
)SET COMPOPT3 = &Z 00595 00595
*** CHANGE SECTION CUTOFF ******************************

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 174

Stage job steps for stored procedure SQL00002 are shown in this job output.

Package promotion job steps are shown in the following job output.

ISRBROBA NTP.S6.ACTP.STG6.\#000072.DBB(SQL00002) - 01 Line 00000000 Col 001 080
Command ===> Scroll ===> CSR
******************************** Top of Data **********************************
BIND PLAN(SQL00002) PKLIST(CMN6.SQL00002) ACT(REP) -
 ISO(CS) EXPLAIN(NO) VALIDATE(BIND) ACQUIRE(USE) RELEASE(COMMIT)
******************************* Bottom of Data ********************************

...

 J E S 2 J O B L O G -- S Y S T E M C 0 0 1 -- N O D E M P 3 J E S 2

20.29.41 J0984224 ---- THURSDAY, 04 FEB 2016 ----
20.29.41 J0984224 IRR010I USERID SERT IS ASSIGNED TO THIS JOB.
20.29.45 J0984224 ICH70001I SERT LAST ACCESS AT 20:25:07 ON THURSDAY, FEBRUARY 4, 2016
20.29.45 J0984224 $HASP373 USER015D STARTED - INIT 1 - CLASS A - SYS C001
20.29.46 J0984224 - --TIMINGS (MINS.)-- -----PAGING COUNTS----
20.29.46 J0984224 -STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK SERV WORKLOAD PAGE SWAP VIO SWAPS
20.29.46 J0984224 -SERCOPY 00 200 253 .00 .00 .0 38740 BATCH 0 0 0 0
20.29.49 J0984224 -WRITE 00 739 748 .00 .00 .0 52102 BATCH 0 0 0 0
20.29.50 J0984224 -SQL2C 00 479 226 .00 .00 .0 21822 BATCH 0 0 0 0
20.29.51 J0984224 -DB2PC 00 363 154 .00 .00 .0 15849 BATCH 0 0 0 0
20.29.52 J0984224 -BT90DBR 00 127 178 .00 .00 .0 8612 BATCH 0 0 0 0
20.30.21 J0984224 -C 00 22496 6925 .01 .00 .4 9536K BATCH 639 0 0 0
20.30.22 J0984224 -SSIDN 00 105 105 .00 .00 .0 16501 BATCH 0 0 0 0
20.30.24 J0984224 -PLKED 00 650 1115 .00 .00 .0 27544 BATCH 0 0 0 0
20.30.24 J0984224 -ALOC 00 15 11 .00 .00 .0 926 BATCH 0 0 0 0
20.30.24 J0984224 -ALOCIN 00 34 26 .00 .00 .0 3963 BATCH 0 0 0 0
20.30.26 J0984224 -LNK 00 328 195 .00 .00 .0 45995 BATCH 0 0 0 0
20.30.27 J0984224 -BT90STL 00 234 155 .00 .00 .0 38530 BATCH 0 0 0 0
20.30.28 J0984224 -CPYSTL 00 258 225 .00 .00 .0 49494 BATCH 0 0 0 0
20.30.29 J0984224 -CPYDBR 00 145 123 .00 .00 .0 18455 BATCH 0 0 0 0
20.30.31 J0984224 -SUCCESS 00 852 589 .00 .00 .0 73243 BATCH 0 0 0 0
20.30.32 J0984224 -CHKCOND 00 13 9 .00 .00 .0 955 BATCH 0 0 0 0
20.30.32 J0984224 -FAILURE FLUSH 0 0 .00 .00 .0 0 BATCH 0 0 0 0
20.30.33 J0984224 -PRINT 00 487 491 .00 .00 .0 58834 BATCH 0 0 0 0
20.30.34 J0984224 -COMPLST 00 143 171 .00 .00 .0 17747 BATCH 0 0 0 0
20.30.35 J0984224 -ILODLST 00 693 521 .00 .00 .0 45988 BATCH 0 0 0 0
20.30.37 J0984224 -USER015D ENDED. NAME-TEST TOTAL TCB CPU TIME= .03 TOTAL ELAPSED TIME= .8
20.30.37 J0984224 $HASP395 USER015D ENDED
------ JES2 JOB STATISTICS ------
 04 FEB 2016 JOB EXECUTION DATE
 510 CARDS READ
 2,104 SYSOUT PRINT RECORDS
 0 SYSOUT PUNCH RECORDS
 113 SYSOUT SPOOL KBYTES
 0.92 MINUTES EXECUTION TIME

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 175

This is the SYSPRINT output from promotion job step DDQSPQ.

This is the SYSPRINT output from promotion job step SQLSPQ. This step interrogates Db2

subsystem C105 for an existing procedure named USER15.PROCEDURE2 and DROPS it.

The new procedure is then templated and CREATED in Db2 C105.

 J E S 2 J O B L O G -- S Y S T E M C 0 0 1 -- N O D E M P 3 J E S 2

15.22.18 J0994386 ---- TUESDAY, 09 FEB 2016 ----
15.22.18 J0994386 IRR010I USERID SERT IS ASSIGNED TO THIS JOB.
20.29.45 J0994386 ICH70001I SERT LAST ACCESS AT 15:20:23 ON TUESDAY, FEBRUARY 9, 2016
20.29.45 J0994386 $HASP373 USER015D STARTED - INIT 1 - CLASS A - SYS C001
20.29.46 J0994386 - --TIMINGS (MINS.)-- -----PAGING COUNTS----
20.29.46 J0994386 -STEPNAME PROCSTEP RC EXCP CONN TCB SRB CLOCK SERV WORKLOAD PAGE SWAP VIO SWAPS
20.29.46 J0994386 -DDQSPQ 00 522 238 .00 .00 .0 27448 BATCH 0 0 0 0
20.29.49 J0994386 -PCLIBER FLUSH 0 0 .00 .00 .0 0 BATCH 0 0 0 0
15.22.21 J0994386 -SQLSPQ 00 208 133 .00 .00 .0 31762 BATCH 0 0 0 0
15.22.23 J0994386 -DB2PL 00 644 479 .00 .00 .0 247K BATCH 0 0 0 0
15.22.23 J0994386 -C105BND 00 218 94 .00 .00 .0 39113 BATCH 0 0 0 0
15.22.24 J0994386 -CPY1SPQ 00 59 61 .00 .00 .0 7094 BATCH 0 0 0 0
15.22.24 J0994386 -CPY1DBR 00 58 58 .00 .00 .0 7085 BATCH 0 0 0 0
15.22.25 J0994386 -CPY1LST 00 57 71 .00 .00 .0 7938 BATCH 0 0 0 0
15.22.26 J0994386 -CPY1STL 00 126 59 .00 .00 .0 14397 BATCH 0 0 0 0
15.22.26 J0994386 -CPY1PKG 00 57 56 .00 .00 .0 6823 BATCH 0 0 0 0
15.22.27 J0994386 -CPY1DBB 00 57 61 .00 .00 .0 7183 BATCH 0 0 0 0
15.22.27 J0994386 VARY WLM,APPLENV=C105SP,REFRESH
15.22.27 J0994386 -STPSTL 00 164 99 .00 .00 .0 14238 BATCH 0 0 0 0
15.22.40 J0994386 -SUCCESS 00 708 501 .00 .00 .2 52102 BATCH 0 0 0 0
15.22.40 J0994386 -CHKCOND 00 16 10 .00 .00 .0 1262 BATCH 0 0 0 0
15.22.40 J0994386 -FAILURE FLUSH 0 0 .00 .00 .0 0 BATCH 0 0 0 0
15.22.41 J0994386 -PRINT 00 97 117 .00 .00 .0 6706 BATCH 0 0 0 0
15.22.41 J0994386 -CLNLCL FLUSH 0 0 .00 .00 .0 0 BATCH 0 0 0 0
15.22.41 J0994386 -USER015B ENDED. NAME-PROMOTE TOTAL TCB CPU TIME= .01 TOTAL ELAPSED TIME= .3
15.22.41 J0994386 $HASP395 USER015B ENDED
------ JES2 JOB STATISTICS ------
 09 FEB 2016 JOB EXECUTION DATE
 354 CARDS READ
 1,293 SYSOUT PRINT RECORDS
 0 SYSOUT PUNCH RECORDS
 70 SYSOUT SPOOL KBYTES
 0.39 MINUTES EXECUTION TIME

...

********************************* TOP OF DATA **********************************

CMNDB2DQ: Extract SQL procedure definition from source

--

CMNDB2DQ: Processing member SQL00002

--

CMNDB2DQ: Processing completed max RC - 00
******************************** BOTTOM OF DATA ********************************

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 176

This is the SYSPRINT output from promotion job step DB2PL. No templating is used in this

example.

ChangeMan(R) ZMF CMNDB2DD - 8.1.0 Dynamic implementation of SQL/DDL components
CMNDB2DD Processing begins at 15:22:20 on 02/09/2016
 --
CMNDB2DD SYSIN: TEST=YES
CMNDB2DD SYSIN: ERRSTOPAFT=0
CMNDB2DD SYSIN: DROPRC=4
CMNDB2DD SYSIN: SQLTERM=@
CMNDB2DD SYSIN: SQUEEZE=YES
CMNDB2DD SYSIN: TOLSTDNUM=YES
CMNDB2DD SYSIN: LINEFEED=NO
CMNDB2DD SYSIN: SRCSCHEMATEMPLATE=
CMNDB2DD SYSIN: TGTSCHEMATEMPLATE=
CMNDB2DD SYSIN: SRCCOLLIDTEMPLATE=
CMNDB2DD SYSIN: TGTCOLLIDTEMPLATE=
CMNDB2DD SYSIN: SRCQUALTEMPLATE=
CMNDB2DD SYSIN: TGTQUALTEMPLATE=
CMNDB2DD SYSIN: SRCOWNERTEMPLATE=
CMNDB2DD SYSIN: TGTOWNERTEMPLATE=
CMNDB2DD SYSIN: SRCWLMTEMPLATE=
CMNDB2DD SYSIN: TGTWLMTEMPLATE=
CMNDB2DD SYSIN: DB2ID=C105
CMNDB2DD SYSIN: MBR=SQL00002
SQLIN: Input cards follow ...

CREATE PROCEDURE USER15 . PROCEDURE2 () RESULT SETS 1 LANGUAGE SQL EXTE
RNAL NAME SQL00002 COLLID TEST WLM ENVIRONMENT C105SP RUN OPTIONS 'TEST(
ALL,*,,VADTCPIP&192.168.1.3:*)' P1 : BEGIN DECLARE CURSOR1 CURSOR WITH R
ETURN FOR SELECT SCHEMA , NAME FROM SYSIBM . SYSROUTINES ; OPEN CURSOR1
; END P1

CMNDD018I Statement generated by autodrop option:
DROP PROCEDURE USER15.PROCEDURE2 RESTRICT

CMNDD020I Generated drop processed successfully
CMNDD003I Work committed

CMNDD001I Templated SQL sentence extracted from member SQL00002 :

CREATE PROCEDURE USER15 . PROCEDURE2 () RESULT SETS 1 LANGUAGE SQL EXTE
RNAL NAME SQL00002 COLLID TEST WLM ENVIRONMENT C105SP RUN OPTIONS 'TEST(
ALL,*,,VADTCPIP&192.168.1.3:*)' P1 : BEGIN DECLARE CURSOR1 CURSOR WITH R
ETURN FOR SELECT SCHEMA , NAME FROM SYSIBM . SYSROUTINES ; OPEN CURSOR1
; END P1

CMNDD002I Sentence processed successfully.
CMNDD003I Work committed

CMNDB2DD Processing completed at 15:22:21 on 02/09/2016 MAX RC = 00

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 177

This is output from the promotion job DB2 BIND PACKAGE and BIND PLAN, step C105BND. No

templating is used for the stored procedure walkthrough.

ChangeMan(R) ZMF DB2 Option Plan Lookup Program TUESDAY FEBRUARY 9, 2016 (2016/040) 15:22:22
CMNDB2PL - 8.1.0 10/10/2014 11.24

DB2 Plan Used by ChangeMan ZMF Call Attach Facility:
Using plan (CMNPLAN)

Control card input (DDNAME = CMNPLCTL)

 1 ==> TYPE=PROMOTE
 2 ==> AUTHORITY=OWNER,INSERT
 3 ==> INSERTQUAL
 4 ==> USEREXIT=(ASM,NOUNLOAD)
 5 ==> USERID=JPRESTO
 6 ==> PACKAGE=ACTP000072
 7 ==> PROJECT=ACTP
 8 ==> NOBASEDBBRC=12
 9 ==> WARNINGRC=4
 10 ==> USEDB2PACKAGE
 11 ==> PKLTEMPLATE
 12 ==> DB2ID=C105
 13 ==> LOGICAL=UNIT
 14 ==> PLANTGT=
 15 ==> PLANSRC=
 16 ==> PKGETGT=
 17 ==> PKGESRC=
 18 ==> LOCNTGT=
 19 ==> LOCNSRC=
 20 ==> QUALIFIER=
 21 ==> QUALTGT=
 22 ==> QUALSRC=
 23 ==> OWNER=
 24 ==> OWNRTGT=
 25 ==> OWNRSRC=
 26 ==> REMOTEID=UNIT

Staged bind control statements in this change package (DDNAME = CMNPLPKG)

 1 ==> MBR=SQL00002

Staged bind control statements in this change package (DDNAME = CMNPLDBB)

 1 ==> MBR=SQL00002

Staged DBRMs in this change package (DDNAME = CMNPLDBR)

 1 ==> MBR=SQL00002

The following bind control statements are required:

Templated fields which are over-long will be truncated in the following table.
See above (control card input) for full length templates.

Origin of Staged Actual Logical Plan Package Location Owner Qualifier DB2
Remote Reject
Bind Reqmt. Name Name Subsys Template Template Template Template Template Subs
ID

DD:PKGSSTG SQL00002 SQL00002 UNIT ?????????????????? ???????????????? ???????? ???????? C105
UNIT
DD:DBBSSTG SQL00002 SQL00002 UNIT ???????? ?????????????????? ???????????????? ???????? ???????? C105
UNIT

Ending Status:

CMN7099I CMNDB2PL ending. No errors were encountered.

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 178

This is output from promotion job step STPSTL, which executes ZMF stored procedure utility

CMNDB2SL. This utility issues z/OS commands to REFRESH the WorkLoad Manager APPlication

ENVironment - refer to logical subsystem settings for the application.

IKJ56644I NO VALID TSO USERID, DEFAULT USER ATTRIBUTES USED
READY
DSN SYSTEM(C105)
DSN
 BIND PACKAGE(CMN6) ACTION(REP) EXPLAIN(NO) ISOLATION(CS) VALIDATE(BIND) MEMBER(SQL00002)
DSNT254I -C105 DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = C105.CMN6.SQL00002.()
 ACTION REPLACE
 OWNER SERT
 QUALIFIER SERT
 VALIDATE BIND
 EXPLAIN NO
 ISOLATION CS
 RELEASE
 COPY
DSNT255I -C105 DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = C105.CMN6.SQL00002.()
 SQLERROR NOPACKAGE
 CURRENTDATA YES
 DEGREE 1
 DYNAMICRULES
 DEFER
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(01047)
 PATH
DSNT232I -C105 SUCCESSFUL BIND FOR
 PACKAGE = C105.CMN6.SQL00002.()
DSN
 BIND PLAN(SQL00002) ACQUIRE(USE) RELEASE(COMMIT) ACTION(REP) EXPLAIN(NO) ISOLATION(CS) VALIDATE(BIND)
PKLIST(CMN6.SQL00002)
DSNT252I -C105 DSNTBCM1 BIND OPTIONS FOR PLAN SQL00002
 ACTION REPLACE
 OWNER SERT
 VALIDATE BIND
 ISOLATION CS
 ACQUIRE USE
 RELEASE COMMIT
 EXPLAIN NO
 DYNAMICRULES RUN
DSNT253I -C105 DSNTBCM1 BIND OPTIONS FOR PLAN SQL00002
 NODEFER PREPARE
 CACHESIZE 1024
 QUALIFIER SERT
 CURRENTSERVER
 CURRENTDATA YES
 DEGREE 1
 SQLRULES DB2
 DISCONNECT EXPLICIT
 NOREOPT VARS
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(01047)
 PATH
DSNT200I -C105 BIND FOR PLAN SQL00002 SUCCESSFUL
DSN
END

...

Stored Procedure Walkthrough

Stored Procedure Walkthrough 179

As shown above in the Db2 Connect Control Center, SQL PROCEDURE2 was created by OWNER

SERT with external name SQL00002. The same data shown in the Control Center screenshot can

be retrieved using TSO/SPUFI.

ChangeMan(R) ZMF CMNDB2SL - 8.1.0 Recycle Stored Procedures and Functions

CMNDB2SL Processing begins at 15:22:27 on 02/09/2016
--

CMNDB2SL SYSIN: TEST=NO CMNDB2SL SYSIN: DB2ID=C105
CMNDB2SL SYSIN: WLMENVMASK=C105*
CMNDB2SL SYSIN: MBR=SQL00002 VARY WLM,APPLENV=C105SP,REFRESH

CMNDB2SL Processing completed at 15:22:27 on 02/09/2016 MAX RC = 00

Stored Procedure Walkthrough

Stored Procedure Walkthrough 180

9. Bind Service Support

Installation and Configuration

Process Overview

Installation and Configuration

The support assumes that REST service versioning is active on the target Db2 subsystem. This is

the default for a certain level of service on Db2 version 12. If not, the following IBM sample is used

to activate it:

The following members of the CMNZMF.CNTL distribution library have changed:

DB2OPTN

DB2OPTNR

These jobs are described in more detail below.

DB2OPTN
The following columns in the CMNADMIN_NAMED table were added in ZMF 8.2 Patch 4 to support

the bind service function:

SERVICE_COLLECTION_SRC IS 'Source template for COLLID - Bind service' ,

SERVICE_COLLECTION_TGT IS 'Target template for COLLID - Bind service' ,

SERVICE_OWNER_SRC IS 'Source template for OWNER - Bind service' ,

SERVICE_OWNER_TGT IS 'Target template for OWNER - Bind service' ,

SERVICE_QUALIFIER_SRC IS 'Src template for QUALIFIER - Bind service' ,

SERVICE_QUALIFIER_TGT IS 'Tgt template for QUALIFIER - Bind service');

And the PROCESS_IND column in the CMNADMIN_GENERAL table can take a value of ‘V’ for Bind

Service.

Bind Service Support

• •

• •

DSN1210.SDSNSAMP(DSNTIJR2)

•

•

• •

• •

• •

• •

• •

• •

9. Bind Service Support

9. Bind Service Support 181

DB2OPTNR
The CMNDB2VB package must now be bound at remote site Db2 subsystems – this program now

performs access to Db2 catalog tables on behalf of the Bind Service process. This bind has been

added:

And the package added to the CMNPLAN pklist:

Customers who are installing ZMF 8.2 Patch 4 and later releases from scratch can use sample JCL

with these changes already in place.

Existing customers will have to make sure that they include CMNDB2VB in their remote site binds

and include it in the CMNPLAN pklist (if they wish to make use of the new support).

There is a Package Master conversion involved in adding this support; but this processing is

included in the standard Package Master conversion task for converting to ZMF 8.2 Patch 4 and

later releases.

Skeleton Changes
There are several skeletons addressing bind service support:

CMN$$PSV local promote/demote of bind service components

CMN$$RSV remote promote/demote of bind service components

CMN$$BSV install/backout of bind service components.

Existing skeletons have been changed to imbed these new skeletons, for example:

CMN$$PRM, CMNIMPRM imbed CMN$$PSV

CMNRPMCR, CMNRPICR imbed CMN$$RSV

CMN21, CMN49 imbed CMN$$BSV

BIND PACKAGE(CMNx) MEMBER(CMNDB2VB) ACT(REP) ISO(CS) -
 EXPLAIN(NO) VALIDATE(RUN) RELEASE(COMMIT) -
 ENCODING(EBCDIC) DBPROTOCOL(DRDA)

 BIND PLAN(CMNPLAN) -
 PKLIST(CMNx.CMNDB2SQ -
 CMNx.CMNDB2VB -
 CMNZMF.CMNDB2AT -
 *.CMNDB2SQ) -
 ACT(REP) ISO(CS) RETAIN -

EXPLAIN(NO) VALIDATE(BIND) ACQUIRE(USE) RELEASE(COMMIT)

END

• •

• •

• •

• •

• •

• •

DB2OPTNR

DB2OPTNR 182

ZMF Global Administration Changes

Create the Library Type Definitions
If the libtype is PDS/E based, use an LRECL of 80. In the entries that follow the libtypes used mostly

for testing are BSZ for bind service and BSG for grants.

All library types must be given the D (Db2) selectable option Panel CMNCGLT0.

In the ZMF Db2 option administration, each of these library types needs a Db2 subtype of ‘V’ panel

CMNDB2UP:

You need to define all the logical subsystems that your applications may use (this is normal). Panel

CMNGD2LN - No change here apart from a new set of templates specifically for Bind Service:

CMNCGLT0 Global Library Types Part 1 of 2 Row 211 to 213 of 213
Command ===> ___ Scroll ===> CSR

 Lib Order Lke Seq Defer Target Sel
 type Description + type Opt
_____ BSP Bind Service PDSE based components 0 P ___ Y ___ D
_____ BSZ Bind Service zFS based components 0 P ___ Y ___ D
_____ BSG Bind Service Grant components 0 P ___ Y ___ D
******************************* Bottom of data *********************************

CMNDB2UP Db2 Library Types Row 15 to 17 of 17
Command ===> ___ Scroll ===> CSR

 Db2
Lib sub End SQL
type Description type sentence
BSP Bind Service PDSE based components V __
BSZ Bind Service zFS based components V __
BSG Bind Service Grant components V __
******************************** Bottom of data ********************************

ZMF Global Administration Changes

ZMF Global Administration Changes 183

If you use line action P against a logical subsystem, you can set the library type that will be used to

process bind service grants – this is a new field on panel CMNGD2PM:

Use Db2 Versioning for Native SQL Stored Procedures
Using V allows you to specify model templates (specific values are left to the application

definitions). For example panel CMNGD2L6:

CMNGD2LN Db2 Logical Subsystems

Command ===> ___ Scroll ===> CSR

Line commands:
P Specify miscellaneous parameters
T B Bind plan/pkg process named(T) and general(B) templates
Q G SQL process named(Q) and general(G) templates
V H Bind service process named(V) and general(H) templates

 Logical Db2
 name subsys Site Description
_____ BASELINE D10L U900DP U900DP BASELINE
_____ PRODLCL1 D10L U900DP U820DP PRODUCTION \#1
_____ PRODLCL2 D10L U900DP U820DP PRODUCTION \#2
_____ PRODRMT1 D10L U900P U820P PRODUCTION \#1
_____ PRODRMT2 D10L U900P U820P PRODUCTION \#2
_____ SYSTEST1 D10L STEVEPRM REMOTE PROMOTION FOR STEV
_____ UNIT1 D10L STEVEPRM REMOTE PROMOTION FOR STEV
******************************* Bottom of data *********************************

CMNGD2PM Db2 Logical Subsystem PRODRMT1 Settings
Command ===> __

Preferred Libtypes:
DBRM DBR
Plan bind parameters DBB
Package bind parameters PKG
Service grants BSG

General Parameters:

Enter "/" to select option
 / Bind Failure is significant
 / Recycle Stored Procedures where WLM Environment is . . ____________________
 / Maintain Trigger Sequence
 / Use Db2 versioning for Native SQL Stored Procedures

ZMF Global Administration Changes

ZMF Global Administration Changes 184

And H the general token templates panel CMNGD2L7:

as stated earlier, values are usually left to the application level administration.

ZMF Application Administration Changes
Again, using a sample application named STEV, we have the library types panel CMNCLLT0:

This time we need to define their baseline repositories panel CMNCBAS1:

This should be followed either by an I/A extract and reload or just use XML, for example:

CMNGD2L6 Db2 Logical Subsystem PRODRMT1 Bind Service Named Templates
Command ===> __

Templates Target Source

Collection . . _________________ + _________________ +
Qualifier . . _________________ + _________________ +
Owner _________________ + _________________ +

CMNGD2L7 Db2 Logical Subsystem PRODRMT1 Bind Service General Row 1 to 13 of 13
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +

CMNCGLT0 STEV - Library Types Part 1 of 2 Row 211 to 213 of 213
Command ===> ___ Scroll ===> CSR

 Lib Order Lke Seq Defer Target Sel
 type Description + type Opt
_____ BSG Bind Service Grant components 0 P ___ Y ___ D
_____ BSG Bind Service PDSE based components 0 P ___ Y ___ D
_____ BSZ Bind Service zFS based components 0 P ___ Y ___ D
******************************* Bottom of data *********************************

CMNCBAS1 STEV - Baseline Configuration Part 1 of 2 Row 5 to 24 of 51
Command ===> __ Scroll ===> CSR

 Baseline
 Install storage
 Type Levels in prod means
_____ BSG 2 Y H
_____ BSP 10 Y SD
_____ BSZ 2 Y H

ZMF Application Administration Changes

ZMF Application Administration Changes 185

And so on.

You need to provide some promotion definitions, for example panel CMNLRPM3:

And some production libraries/directories panel CMNCPRDL:

<?xml version="1.0"?>
<service name="IMPACT">
<scope name="BUN">
<message name="CREATE">
<header>
<subsys>M</subsys>
<product>CMN</product>

</header>
<request>
<appl>STEV</appl>
<libType>BSZ</libType>
<libLike>P</libLike>
<baseline>/cmndev/STEV/Base00/BSZ</baseline>

</request>
</message>

</scope>
</service>

CMNLRPM3 STEV/STEVEPRM - Promotion Libraries Row 2 to 6 of 23
Command ===> ___ Scroll ===> CSR

Promotion name: UNIT1 Level: 10

 Syslib Cleanup
 Lib exclude Level Target libraries
_____ BSG Y Y /cmndev/STEV/promo10/BSG + Shadow
 /cmndev/STEV/promo10/BSG + Library 1
 + Library 2
 + Library 3
_____ BSP Y Y WSER58.PROMO10.BSP + Shadow
 WSER58.PROMO10.BSP + Library 1
 + Library 2
 + Library 3
_____ BSZ Y Y /cmndev/STEV/promo10/BSZ + Shadow
 /cmndev/STEV/promo10/BSZ + Library 1
 + Library 2
 + Library 3

ZMF Application Administration Changes

ZMF Application Administration Changes 186

Then, in the Db2 option definitions, you need to identify the new libtypes with subtype V panel

CMNDB2UP:

In the Db2 active library definitions you associate a target library/directory with a Db2 logical

subsystem. For example panel CMNLD2AL:

Now we consider the zFS libtypes BSZ and BSG. You have to set up the logical subsystems to do

what you want them to do. For example panel CMNGD2LN:

CMNCPRDL STEV - U900P Production Libraries Row 1 to 6 of 6
Command ===> ___ Scroll ===> CSR

 Type Production dataset name +
 Temporary dataset name +
 Backup dataset name +
_____ BSG /cmndev/STEV/U900P/Prod00/BSG
 /cmndev/STEV/Temp/BSG
 /cmndev/STEV/U900P/Prod01/BSG
_____ BSP WSER58.PROD.BSP
 WSER58.TEMP.BSP
 WSER58.PROD.BSP.BKUP
_____ BSZ /cmndev/STEV/U900P/Prod00/BSZ
 /cmndev/STEV/Temp/BSZ
 /cmndev/STEV/U900P/Prod01/BSZ

CMNDB2UP STEV - Db2 Library Types Row 8 to 10 of 10
Command ===> ___ Scroll ===> CSR

Lib Sub End SQL
type Description type sentence
BSP Bind Service PDSE based components V __
BSZ Bind Service zFS based components V __
BSG Bind Service Grant components V __

CMNLD2AL Db2 Active Library/Directory List Row 6 to 26 of 35
Command ===> ___ Scroll ===> CSR

Logical
name Type Db2 active library or directory name
PRODLCL1 V /cmndev/STEV/U900DP/Prod00/BSG +
PRODLCL1 V /cmndev/STEV/U900DP/Prod00/BSZ +
PRODRMT1 V /cmndev/STEV/U900P/Prod00/BSZ +
PRODRMT1 V /cmndev/STEV/U900P/Prod00/BSG +
UNIT1 V /cmndev/STEV/promo10/BSZ +
UNIT1 V /cmndev/STEV/promo10/BSG +

ZMF Application Administration Changes

ZMF Application Administration Changes 187

Using UNIT1 as an example:

Use P to set the grant libtype panel CMNGD2PM:

Use V to set the named templates panel CMNGD2L6:

And, use H to set the general token templates panel CMNGD2L5:

CMNGD2LN Db2 Logical Subsystems Row 1 to 6 of 6
Command ===> ___ Scroll ===> CSR

Line commands:
 P Specify miscellaneous parameters
 T B Bind plan/pkg process named(T) and general(B) templates
 Q G SQL process named(Q) and general(G) templates
 V H Bind service process named(V) and general(H) templates

 Logical Db2
 name subsys Site Description
_____ PRODLCL1 D10L U900DP U900DP PRODUCTION \#1
_____ PRODLCL2 D10L U900DP U900DP PRODUCTION \#2
_____ PRODRMT1 D10L U900P U900P PRODUCTION \#1
_____ PRODRMT2 D10L U900P U900P PRODUCTION \#2
_____ SYSTEST1 D10L STEVEPRM REMOTE PROMOTION FOR STEV
_____ UNIT1 D10L STEVEPRM REMOTE PROMOTION FOR STEV
******************************* Bottom of data ********************************

•

CMNGD2PM Db2 Logical Subsystem UNIT1 Settings
Command ===> __

Preferred Libtypes:
DBRM DBR
Plan bind parameters DBB
Package bind parameters PKG
Service grants BSG

General Parameters:
Enter "/" to select option
 / Bind Failure is significant
 _ Recycle Stored Procedures where WLM Environment is . . ____________________
 _ Maintain Trigger Sequence
 _ Use Db2 versioning for Native SQL Stored Procedures

•

CMNGD2L6 Db2 Logical Subsystem UNIT1 Bind Service Named Templates
Command ===> __

Templates Target Source

Collection DEVU + PRD +
Qualifier WSER58¬¬¬¬¬¬¬¬¬¬ + _________________ +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +

•

ZMF Application Administration Changes

ZMF Application Administration Changes 188

Here we see the special general token template that will only be used for authorization ids in a bind

service grant list. From the ISPF help panel CMN94033:

As an example of standard search and replace templating, against this list of grantees:

General Token name: >GRANTEE< source template: PRD target template: DEV results in: DEV, DEV1,

ISOL8, ADEV.

As an example of 1-to-1 search and replace templating:

General Token name: >GRANTEE< source template: ‘PRD’ target template: DEV results in: DEV,

PRD1, ISOL8, APRD.

Process Overview

Bind service components come in two flavors:

There is the bind service component itself, which consists of the bind service command and

any related service SQL. The bind command is placed first in the component and terminated

with a semicolon. The SQL follows on from the semicolon (see below for examples).

There is the service package grant component, which specifies the userids/groups who are

allowed to execute the service package.

CMNGD2L5 Db2 Logical Subsystem UNIT1 BIND General Template Row 1 to 3 of 3
Command ===> ___ Scroll ===> CSR

 Token name + Target template + Source template +
_____ >GRANTEE< DBCORP4 'DBCORPR'
_____ >GRANTEE< TGENID1 'GENID1'
_____ >GRANTEE< TGENID3 'GENID2'
******************************* Bottom of data ********************************

There is a special form of general token templates implemented for this
function. This is only applied to any grant SQL components associated
with the bind service process.
If the token name is >GRANTEE< then the template will be applied to
the list of grantee userids/groups on the grant SQL supplied to the
process.

An extension to the search and replace algorithm is available (for this
function only). If you put the source template in single quotes then
the target template will only be used if the value to be replaced
exactly matches the source template value.

PRD, PRD1, ISOL8, APRD:

•

•

Process Overview

Process Overview 189

Both sets of components have templates applied to them so that the production version of the

components can be modified to be applied to the various test levels through the lifecycle.

These components can be hosted by PDS/E library types or by zFS library types. The latter are

more useful as the component (both flavors) must have the same name as the service itself. Db2

allows the service name to be up to 128 bytes in length (a PDS/E libtype would restrict this to 8

bytes).

An example of a bind service component in a package staging directory is:

The component name is Get_Area_Regression_Info, which is the same as the service name.

The bind service command is terminated by the semicolon on line 10. The service SQL is on line

11.

The bind service command will result in a Db2 package being created which will have a name the

same as the NAME clause and a collection id the same as the SERVICE clause.

Templates are provided to allow the ZMF processes (promote, and so on) to change the collection

id, the qualifier, and the owner.

General token templates will also be provided for anything else. Only the bind service command

itself is templated; the SQL is not touched.

Clauses such as the qualifier will be applied by Db2 to the SQL it executes on behalf of the service

call.

For now, each bind parameter and SQL line must be completed within the first 72 columns of the

component (just like a standard bind command).

This is an example of the bind service grant component associated with this bind service

component (that is, it has the same name, different libtype):

VIEW /cmndev/cmnj/STEV/#000445/BSZ/Get_Area_Regression_Info
Command ===> __
*********************************** Top of Data *******************************
000001 BIND SERVICE(PRD) +
000002 NAME("Get_Area_Regression_Info") +
000003 SQLENCODING(EBCDIC) +
000004 DESCRIPTION('CREATED USING BIND SERVICE') +
000005 PATH(PRD , SCHEMA1 , +
000006 SCHEMA2, +
000007 SCHEMA3) +
000008 QUALIFIER(CMNJ) +
000009 ISOLATION(UR) +
000010 OWNER(WSER58) ;
000011 CALL GETAREA_REGINFO (:AREANAME)
*********************************** Bottom of Data ****************************

...

Process Overview

Process Overview 190

You can have as many GRANTs as you like in this component, separated by semicolons. The

authorization id’s can be listed all on one GRANT or separated onto individual GRANTs or a mixture.

Once again, templating will be applied to the collection id (PRD in the above example). There is a

special general token template (>GRANTEE<) which can be used against the authorization id list

(see below).

The GRANT SQL must be contained within the first 80 bytes of each record.

Batch Utility Overviews

CMNDB2SV – Process Bind Service Parameter/SQL and Grant Request Components
This program takes the bind service component and splits it up into the bind command and the

associated SQL for the service. It also processes any related grant request components.

Bind parameters and grant requests are templated as described above. There are (potentially) three

resultant parameter sets output for each named service:

The bind command for the service

The SQL associated with the service

The grant and/or revoke requests associated with the service.

The bind parameters and the SQL are passed to a subsequent execution of IKJEFT01, which will

run the binds. The grant requests are passed to a subsequent execution of CMNDB2GR (details

below).

Here is some typical JCL showing the promotion of the components associated with two Db2

REST services:

VIEW /cmndev/cmnj/STEV/#000445/BSG/Get_Area_Regression_Info
Command ===> __
************************************ Top of Data *********************************
000001 GRANT EXECUTE ON PACKAGE PRD."Get_Area_Regression_Info" TO DBCORPR, GENID1,
000002 GENID2, GENID12;
*********************************** Bottom of Data *******************************

1. 1.

2. 2.

3. 3.

Batch Utility Overviews

Batch Utility Overviews 191

The skeletons are set up to cope with bind service and grant requests components at the same

time, or individually.

 //SRVBSZ EXEC PGM=CMNDB2SV, *** BIND SERVICE PROCESS
 // COND=(4,LT), *** FOR LIBTYPE BSZ
 // REGION=0M
 //SYSPRINT DD SYSOUT=*
 //SERPRINT DD SYSOUT=*
 //SYSUDUMP DD SYSOUT=*
 //CMNZFSIN DD PATH='/cmndev/CMNKP/STEV/#000436/BSZ',
 // PATHOPTS=ORDONLY
 //CMNGRANT DD PATH='/cmndev/CMNKP/STEV/#000436/BSG',
 // PATHOPTS=ORDONLY
 //*
 //SYSIN DD *
 TYPE=PROMOTE
 DB2ID=D10L
 LOGICAL=UNIT1
 GENERATEREVOKES=YES
 COLLSRC=PRD
 COLLTGT=DEVU
 QUALSRC=
 QUALTGT=WSER58¬¬¬¬¬¬¬¬¬¬
 OWNRSRC=
 OWNRTGT=SERD¬¬¬¬¬¬¬¬¬¬¬¬
 TOKNAME=>GRANTEE<
 TOKNSRC='DBCORPR'
 TOKNTGT=DBCORP4
 TOKNAME=>GRANTEE<
 TOKNSRC='GENID1'
 TOKNTGT=TGENID1
 TOKNAME=>GRANTEE<
 TOKNSRC='GENID2'
 TOKNTGT=TGENID3
 FILE=SQL00001,zFScomponentName001
 FILE=SQL00002,zFScomponentName002
 /*
 //*
 //* OUTPUT TEMPORARY FILES FOR THE BIND SERVICE COMPONENT SQL
 //*
 //SQL00001 DD DISP=(,PASS),DSN=&&SQL00001,
 // UNIT=SYSDA,SPACE=(TRK,(5,10),RLSE),
 // DCB=(DSORG=PS,LRECL=80,RECFM=FB,BLKSIZE=0)
 //SQL00002 DD DISP=(,PASS),DSN=&&SQL00002,
 // UNIT=SYSDA,SPACE=(TRK,(5,10),RLSE),
 // DCB=(DSORG=PS,LRECL=80,RECFM=FB,BLKSIZE=0)
 //*
 //* OUTPUT TEMPORARY FILE FOR THE BIND SERVICE PARAMETERS
 //*
 //D10LBCTL DD DISP=(MOD,PASS),DSN=&&D10LBCTL,
 // UNIT=SYSDA,SPACE=(TRK,(15,1),RLSE),
 // DCB=(DSORG=PS,LRECL=80,RECFM=FB,BLKSIZE=0)
 //*
 //* OUTPUT TEMPORARY FILE FOR THE GRANT SQL
 //*
 //D10LGCTL DD DISP=(MOD,PASS),DSN=&&D10LGCTL,
 // UNIT=SYSDA,SPACE=(TRK,(15,1),RLSE),
 // DCB=(DSORG=PS,LRECL=80,RECFM=FB,BLKSIZE=0)

Batch Utility Overviews

Batch Utility Overviews 192

The output DDnames for the service SQL are generated dynamically by skeleton logic – these same

DDnames must be used by the follow-on IKJEFT01 step.

One of the bind service parameters is SQLDDNAME, which is used by the bind service command to

find the SQL associated with the service. This DDname, if specified in the input component, is

ignored (and, in fact, stripped out); we generate our own SQLDDNAME parameter value for each

service being processed.

The input bind service components are read from the CMNZFSIN ddname (if the staging library is a

zFS libtype; CMNPDSIN if not). The separator between the bind parms and the associated SQL is a

semicolon. For example:

Note that the SQLDDNAME parm is included above. CMNDB2SV will remove this before adding our

own. (In this example we will replace it with SQLDDNAME(SQL000001.)

After separating the two parts of the component, CMNDB2SV will apply templates as specified in

the sysin. (See below for full list of sysin parms for CMNDB2SV).

It will restructure the bind parameters to make applying templates more tractable. In this example,

the bind parms written to D10LBCTL, after templates have been applied, look like this:

If Grant request components are present, these components are also restructured. They are broken

up into one grant request per service and authorization id and templates applied (especially note

the >GRANTEE< special template described above).

For example, the grant request component for this particular service looks like this:

 BIND SERVICE(PRD) -
 NAME("zFScomponentName001") -
 SQLDDNAME(SQL) -
 SQLENCODING(EBCDIC) -
 DESCRIPTION('From an ERO package') -
 QUALIFIER(SCD) -
 ISOLATION(UR) -
 OWNER(WSER58) ;
 SELECT * FROM CMNADMIN_GENERAL
 WHERE PROCESS_IND = 'V'

 BIND SERVICE(DEVU) +
 NAME("zFScomponentName001") +
 SQLENCODING(EBCDIC) +
 DESCRIPTION('From an ERO package') +
 QUALIFIER(WSER58) +
 ISOLATION(UR) +
 OWNER(SERD) +
 SQLDDNAME(SQL00001)

Batch Utility Overviews

Batch Utility Overviews 193

Note that grant request parms must be contained within the first 80 bytes of the record.

After templating CMNDB2SV, put the following out to DDname D10LGCTL:

CMNDB2SV will query the Db2 catalog to see whether a grant request is actually needed. If the

request is already satisfied, it will not be passed on (to avoid unnecessary SQL errors stating that

the grantee already has the privilege, sqlcode +562). Requests to grant privileges to the current

authorization id (that is, the RACF userid of the promotion (and so on) job being run) will not be

propagated (to avoid -554 sql errors).

Similarly, if GENERATEREVOKES=YES is used, and if catalog grantee’s exist that are not reflected in

the grant component for this service, then REVOKE requests will be generated to have them

removed from the catalog.

Revoke requests for the current authorization id will not be generated (that is, they would lead to

-555 sql errors).

The skeletons are set up to cope with just bind service components, just grant components, or both

in any one run.

SYSIN parameters for CMNDB2SV (records that start with an asterisk are comments and are

ignored):

 GRANT EXECUTE ON PACKAGE PRD."zFScomponentName001" TO DBCORPR,
 GENID1, EROID, GENID3, BILYBOB, GENID12;

 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO DBCORP4;
 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO TGENID1;
 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO EROID;
 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO GENID3;
 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO BILYBOB;
 GRANT EXECUTE ON PACKAGE DEVU."zFScomponentName001" TO GENID12;

SYSIN Parameter Description

TYPE=[PROMOTE/

DEMOTE/ INSTALL/

BACKOUT

Processing differs slightly for each type of ZMF lifecycle

action. There is no default.

TRACE=YES/NO Db2 CAF traffic will be traced to SERPRINT (default is NO).

AUTOFREE=YES/NO If the service to be bound is already present at the target

Db2, do we issue a FREE SERVICE first? Note that there is

no such thing as ACTION(REPLACE) for a service bind. If

the service is already present, the bind will fail. The default

for the AUTOFREE parm is YES.

Batch Utility Overviews

Batch Utility Overviews 194

You can specify as many TOKNAME, TOKNSRC, TOKNTGT general token triplets as you need.

SYSIN Parameter Description

GENERATEREVOKES=YES/

NO

When processing grant requests, do we want to generate

REVOKE requests for ids that currently have authority for

the target bind service but that do not appear in the

(templated) list presented in the grant component? For

example, if userid WSER58 has execute authority on

DEVU.”zFScomponentName001” will we generate a

REVOKE for it based on the fact that it doesn’t appear in

the list presented above? The default for the

GENERATEREVOKES parm is NO. If this parm is set to YES

then, in the example above, CMNDB2SV would generate

this REVOKE request: REVOKE EXECUTE ON PACKAGE

DEVU."zFScomponentName001" FROM WSER58 NOT

INCLUDING DEPENDENT PRIVILEGES; DB2ID=ssss where

ssss is the target Db2 subsystem id for this set of

processes. There is no default.

LOGICAL=*xxxxxxxx The ZMF logical subsystem name that has generated the

templates and so on for this run. This name is only used in

messaging; CMNDB2SV makes no actual connection to

ZMF.

COLLSRC= The source template for the collection id. The collection id

is the value specified in the BIND SERVICE() parameter and

is used by Db2 to qualify the package name for the service.

COLLTGT= The target template for the collection id.

QUALSRC= The source template for the qualifier.

QUALTGT= The target template for the qualifier.

OWNRSRC= The source template for the owner.

OWNRTGT= The target template for the owner.

TOKNAME= The name of a general token (>GRANTEE< is a special

case, see above).

TOKNSRC= The source template for this token.

TOKNTGT= The target template for this token.

Batch Utility Overviews

Batch Utility Overviews 195

The case of the SYSIN keywords is not significant. Also, where the keyword value is unambiguous

(for example, YES/NO, PROMOTE/INSTALL/and so on) the specified value is not case-sensitive.

CMNDB2SV will generate the SQL for this service into a temporary dataset which will be passed to

the bind step.

CMNDB2SV itself does not change anything in the Db2 catalog. For example, in the above step you

could specify this:

SYSIN Parameter Description

FILE=sqlddname,

*ff

zFS file name to be read from the CMNZFSIN DD

statement to be parsed for DDL/SQL to be

templated and passed through to the ddddBCTL

ddname.

MBR=sqlddname, *mmmmmmmm MVS member name to be read from the

CMNPDSIN DD statement to be parsed for DDL/

SQL to be templated and passed through to the

ddddBCTL ddname. For both FILE= and MBR=, the

first parameter, sqlddname, is intended to be

generated by the file tailoring process. This name

will be inserted into the SQLDDNAME= bind service

parameter and will be added to the follow-on bind

step.

For isolation testing purposes you can replace the output ddnames in the CMNDB2SV step with

SYSOUT to see what the program has generated without actually doing anything.

Note

Batch Utility Overviews

Batch Utility Overviews 196

CMNDB2GR - Process Grant Requests Passed by CMNDB2SV
Note that we could equally well process the grant requests using the IBM-supplied sample program

DSNTEP2. However, some value is added with the CMNDB2GR utility.

The program reads the grant/revoke requests passed by CMNDB2SV (or anything else for that

matter) and presents them to the target Db2 and reports back on the success of the operation.

It allows you to create a list of SQL codes which are of no significance as well as to set a return

code of your choosing should any of the requests fail. Typical JCL, taken from a promote job, looks

like this:

The available SYSIN parameters are (records that start with an asterisk are comments and are

ignored):

 //*
 //* OUTPUT TEMPORARY FILES FOR THE BIND SERVICE COMPONENT SQL
 //*
 //SQL00001 DD SYSOUT=*
 //SQL00002 DD SYSOUT=*
 //*
 //* OUTPUT TEMPORARY FILE FOR THE BIND SERVICE PARAMETERS
 //*
 //D10LBCTL DD SYSOUT=*
 //*
 //* OUTPUT TEMPORARY FILE FOR THE GRANT SQL
 //*
 //D10LGCTL DD SYSOUT=*

 //D10LGRN EXEC PGM=CMNDB2GR, *** PERFORM GRANTS
 // COND=(4,LT)
 //SYSPRINT DD SYSOUT=*
 //SERPRINT DD SYSOUT=*
 //SYSUDUMP DD SYSOUT=*
 //*
 //* GRANT SQL
 //*
 //CMNGRANT DD DISP=(OLD,DELETE),DSN=&&D10LGCTL
 //SYSIN DD *
 db2Id=D10L
 ignoreSQLcode=-556
 /*

SYSIN Parameter Description

TRACE=YES/NO Db2 CAF traffic will be traced to SERPRINT. Default is NO.

ERRORRC=*nnn Set up to three-digit step completion code should any of

the requests be deemed to have failed. Default is 8.

DB2ID=*ssss The target Db2 subsystem id for this set of processes. No

default.

Batch Utility Overviews

Batch Utility Overviews 197

The case of the SYSIN keywords is not significant. Also, where the keyword value is unambiguous

(for example, YES/NO, PROMOTE/INSTALL/and so on) the specified value is not case-sensitive.

SYSIN Parameter Description

IGNORESQLCODE=-nnnnn or

+*nnnnn

An SQL code that is not to be considered as an error

situation. That is, the step condition code will remain zero

if this sqlcode is encountered for one or more requests.

You can code up to 1,024 of these parameters.

PROMOTE The promote action will attempt to bind the Db2 REST

service requests and process any grant components

included in the promotion.

DEMOTE The demote action will free the Db2 REST services. No

grant/revoke processing will take place. Freeing a service

will result in authorities granted to that service being

dropped from the catalog anyway.

INSTALL The install action will attempt to bind the Db2 REST

service requests and process any grant components

included in the install.

BACKOUT The backout action will attempt to bind the Db2 REST

service requests and process any grant components

included in the original install but based on the

components as they exist in the backout library (if they

exist).

Batch Utility Overviews

Batch Utility Overviews 198

10. Db2 Option User Exits

This appendix describes the exit programs used in the ChangeMan ZMF Db2 Option.

CMNEX101 Bind Control Statement Processor

CMNEX103 Bind Control Statement Triage

CMNDB2DD - HLL exit

CMNEX101 Bind Control Statement Processor

Exit program CMNEX101 lets you modify BIND PLAN and BIND PACKAGE commands beyond what

is allowed by logical subsystem templating in the ChangeMan ZMF Db2 Option. You can create

BIND commands that are not found in staging and baseline libraries.

Plan lookup program CMNDB2PL can call the user exit program CMNEX101 twice during the

processing of a BIND command record set:

CMNEX101 is called if no BIND command members are found for a staged DBRM and if

keyword CREATECC is input to CMNDB2PL. User code in the exit can create the missing BIND

command, which is passed back to CMNDB2PL and written to the output ddname

stssysBCTL.

CMNEX101 is called before each templated BIND command record set is written to ddname

stssysBCTL. The exit can examine the BIND command records passed from CMNDB2PL and:

Accept the BIND command records and let CMNDB2PL write the records to the output

BIND command file as they are.

Modify or replace the BIND command records and pass them back to CMNDB2PL for

output.

Reject the BIND command set, tell CMNDB2PL to exclude the records from the output

BIND command file, but let CMNDB2PL to continue processing the next BIND command.

Reject the BIND command set, tell CMNDB2PL to exclude the records from the output

BIND command file, let CMNDB2PL to continue processing the next BIND command, but

have CMNDB2PL terminate with a return code that will stop job processing.

Reject the BIND command set and tell CMNDB2PL terminate immediately with a return

code that will stop job processing.

Db2 Option User Exits

• •

• •

• •

1. 1.

2. 2.

a. a.

b. b.

c. c.

d. d.

e. e.

10. Db2 Option User Exits

10. Db2 Option User Exits 199

CMNDB2PL Parameter Passed to CMNEX101
CMNDB2PL passes data to exit program CMNEX101 in the communication area defined by

copybook CMNEX101, which is delivered in the CMNZMF ASMCPY library.

See copybook CMNEX101 for a list of the fields passed to CMNEX101 and a description of each

field or indicator.

Activating CMNEX101
Activate exit program CMNEX101 by commenting out the line of code displayed below:

CMNEX101 Process
See the program comments for a description of CMNEX101 processing, particularly the comments

under these headings:

Accessing PKLIST elements

Accessing DBRM list elements

CMNEX101 Usage Scenarios
As the following three scenarios illustrate, three types of CMNDB2PL requests are passed to

CMNEX101. These request types reside within the CMNEX101 copybook and are represented by

the X101$IND indicator and X101CNT field.

Scenario 1

Input Request: TM X101$IND,X101$CC

Keyword operands in a BIND command that CMNDB2PL sends to exit program CMNEX101 may

be in a different order than in the original BIND command in a staging, promotion, baseline, or

production library. See BIND Command Keyword Option Order.

Important

CMNEX101 RMODE ANY
* Comment (or delete) the following 1 line to activate this exit.
 DC Y(2046) inactive module

• •

• •

• •

CMNDB2PL Parameter Passed to CMNEX101

CMNDB2PL Parameter Passed to CMNEX101 200

Create bind control statements for members not found in the specified staging or baseline

libraries.

X101WORK is provided to CMNEX101 as a work area to build the necessary bind control

statements.

Output Request: OI X101$IND,X101$CC

RETCODE field must be set to a value of ‘4’.

The X101WORK work area must contain the bind control statements created for the

members not found in the processed staging or baseline libraries.

X101CNT is required to contain the number of bind control statements placed in the work

area represented by X101WORK.

Example of a Create Request:

Activate CMNEX101. See Activating CMNEX101.

Assemble and link edit using the reentrant parameter.

Create a DBB member that does not exist in the target DD names DBBSSTG and

DBBSBAS.

Specify SYSIN parameter CREATCC.

Invoke CMNDB2PL with this DBB member name.

The ___BCTL DD output will contain an example of bind control cards that have been

created for the DBB member.

Scenario 2

Input Request: TM X101$IND,X101$CHK

A set of bind control statements are passed to CMNEX101.

X101BIND work area contains the set of bind control statements.

X101CNT contains the number of bind control statements passed in the X101BIND work

area.

Output Request A: OI X101$IND,X101$REP

RETCODE field must be set to a value of ‘4’.

X101WORK work area must contain the set of bind control statements that will replace

the set of bind control statements represented in the X101BIND work area.

X101CNT is required to contain the number of bind control statements passed in the

X101WORK work area.

Example of a Replace Request:

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

CMNEX101 Usage Scenarios

CMNEX101 Usage Scenarios 201

Activate CMNEX101. See Activating CMNEX101.

Assemble and link edit using the reentrant parameter.

Create a DBB member named TSTMBR2 in the staging library.

Invoke CMNDB2PL with this DBB member name.

The ___BCTL DD output will contain an example of bind control cards that have been

replaced the original contents of the TSTMBR2 member.

Output Request B: OI X101$IND,X101$ADD

RETCODE field must be set to a value of ‘4’.

101WORK work area must contain the bind control statements that will be added

(appended) to the bind control statement set represented in the X101BIND word area.

X101CNT is required to contain the number of bind control statements passed in the

X101WORK work area.

Example of an Add Request:

Activate CMNEX101. See Activating CMNEX101.

Assemble and link edit using the reentrant parameter.

Create a DBB member named TSTMBR1 in the staging library.

Invoke CMNDB2PL with this DBB member name.

The ___BCTL DD output will contain an example of bind control cards that have been

added the original contents of the TSTMBR1 member.

Scenario 3

Input Request: X101CNT equal to =F’1’

This is a request for the set of bind control statements that was previously passed to

CMNEX101. If needed, CMNDB2PL allows CMNEX101 to perform a cleanup process.

CMNEX101 Return Codes
Before returning to CMNDB2PL, CMNEX101 will issue one of the following return codes (in register

15).

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Code Explanation

00 The BIND command records passed by CMNDB2PL are acceptable and to be

used as is.

CMNEX101 Return Codes

CMNEX101 Return Codes 202

CMNEX103 Bind Control Statement Triage

Program CMNDB2PL calls exit CMNEX103 and passes BIND statement images immediately prior

to parsing them for keywords.

CMNEX103 strips records you designate out of the BIND command set and writes them to a

ChangeMan ZMF temporary data set that is allocated by CMNDB2PL. Retained records are later

appended to the end of the BIND command set after templating and before exit CMNEX101 is

called.

BIND commands that are input to CMNDB2PL are parsed with IBM service routine IKJPARS to

ensure that CMNDB2PL processing is synchronized with IBM changes to BIND keyword operands.

IKJPARS does not pass along "comment" records with asterisk (*) in position 1, which some user

sites use to control the behavior of exit program CMNEX101.

Sample code in exit program CMNEX103 shows you how to preserve comment records that are

input to CMNDB2PL.

Code Explanation

04 CMNEX101 made changes to the BIND command records and placed them in

the third work area. The number of records in the third work area is indicated in

the communications area. CMNDB2PL will write the modified records to

ddname stssysBCTL.

08 Indicates that CMNEX101 rejects the passed BIND command record set.

CMNDB2PL will not write this set of BIND command records to the output

ddname stssysBCTL, but it will continue processing with the next set of BIND

command records. CMNDB2PL will issue the warning return code.

12 CMNEX101 rejects the passed BIND command record set, but CMNDB2PL is to

continue processing with the next set of BIND command records. CMNDB2PL

will terminate with RC=12 after processing all BIND command sets.

16 Indicates that CMNEX101 rejects the passed BIND command record set, and

CMNDB2PL will terminate immediately with RC=12.

Keyword operands in a BIND command that CMNDB2PL sends to exit program CMNEX103 may

be in a different order than in the original BIND command member in a staging, promotion,

baseline, or production library. See BIND Command Keyword Option Order.

Important

CMNEX103 Bind Control Statement Triage

CMNEX103 Bind Control Statement Triage 203

CMNDB2DD - HLL exit

This HLL exit, while developed with Native SQL SPs in mind, can apply equally well to any DDL/SQL

object which is processed by CMNDB2DD.

As mentioned in the description of the new CMNDB2DD sysin parameter 'HLLX=', CMNDB2DD now

takes a High Level Language user exit. However, note that the mechanism for this is not via the

standard HLLX stc call process. CMNDB2DD calls the exit directly itself and only makes use of the

existing HLLX 'paradigm' in that it can call either a REXX exec or an LE-enabled language load

module. If the exit is a REXX exec then the JCL for the CMNDB2DD step must include a //

HLLXREXX dd statement from which the exec will be loaded. If it is an LE-program then it will be

loaded from the usual places (step/joblib).

The SQL sentence currently being processed is written to a temporary file with the ddname of

DDLIN, the exit can work with that ddname, read the DDL from the file, validate or change it. If

validation fails then the relevant 'proceed' variable can be set to 'NO' and a message can be sent

back to CMNDB2DD which will issue that message and terminate with RC=8.

Otherwise, on return from the exit, CMNDB2DD will re-read the SQL from the DDLIN ddname (i.e.

including any changes made by the exit) and will continue to process the modified SQL sentence as

directed by the other sysin parameters.

The 'data interface' to this exit is as follows. Shown here in COBOL and PL/I copybook format, and

equivalent REXX variable names:
...

CMNDB2DD - HLL exit

CMNDB2DD - HLL exit 204

COBOL copybook
...
01 DB2D.

 * HLL DATA ITEMS FOR CMNDB2DD CALLED EXIT

 03 DB2DGO PIC X(3).
 * PROCEED? YES/NO
 03 DB2DMSG PIC X(128).
 * MESSAGE
 03 DB2DACTN PIC X(8).
 * CURRENT ACTION
 03 DB2DDB2S PIC X(4).
 * DB2 SUBSYSTEM ID
 03 DB2DZMFI PIC X(4).
 * ZMF SUBSYSTEM ID
 03 DB2DZPKG PIC X(10).
 * ZMF PACKAGE
 03 DB2DEXTN PIC X(8).
 * EXTERNAL EXIT NAME
 03 DB2DCMPN PIC X(8).
 * COMPONENT
 03 DB2DUSER PIC X(8).
 * USERID
 03 DB2DSLOC PIC X(128).
 * SRC LOCN TEMPLATE
 03 DB2DTLOC PIC X(128).
 * TGT LOCN TEMPLATE
 03 DB2DDLOC PIC X(128).
 * DEPLOY FROM LOCATION
 03 DB2DSCOL PIC X(128).
 * SRC COLLID TEMPLATE
 03 DB2DTCOL PIC X(128).
 * TGT COLLID TEMPLATE
 03 DB2DSSCM PIC X(128).
 * SRC SCHEMA TEMPLATE
 03 DB2DTSCM PIC X(128).
 * TGT SCHEMA TEMPLATE
 03 DB2DSAUT PIC X(128).
 * SRC AUTHID TEMPLATE
 03 DB2DTAUT PIC X(128).
 * TGT AUTHID TEMPLATE
 03 DB2DSQUL PIC X(128).
 * SRC QUAL TEMPLATE
 03 DB2DTQUL PIC X(128).
 * TGT QUAL TEMPLATE
 03 DB2DDQUL PIC X(128).
 * DEPLOY QUAL
 03 DB2DSOWN PIC X(128).
 * SRC OWNER TEMPLATE
 03 DB2DTOWN PIC X(128).
 * TGT OWNER TEMPLATE
 03 DB2DDOWN PIC X(128).
 * DEPLOY OWNER
 03 DB2DSWLM PIC X(54).
 * SRC WLM TEMPLATE
 03 DB2DTWLM PIC X(54).
 * TGT WLM TEMPLATE

...

COBOL copybook

COBOL copybook 205

PL/I copybook

REXX variable names

...
/*THE API DATA AREA MAP FOLLOWS */
 DCL 1 DB2D,
 2 DB2DGO CHAR(3), /*PROCEED? YES/NO */
 2 DB2DMSG CHAR(128), /*MESSAGE */
 2 DB2DACTN CHAR(8), /*CURRENT ACTION */
 2 DB2DDB2S CHAR(4), /*DB2 SUBSYSTEM ID */
 2 DB2DZMFI CHAR(4), /*ZMF SUBSYSTEM ID */
 2 DB2DZPKG CHAR(10), /*ZMF PACKAGE */
 2 DB2DEXTN CHAR(8), /*EXTERNAL EXIT NAME */
 2 DB2DCMPN CHAR(8), /*COMPONENT */
 2 DB2DUSER CHAR(8), /*USERID */
 2 DB2DSLOC CHAR(128), /*SRC LOCN TEMPLATE */
 2 DB2DTLOC CHAR(128), /*TGT LOCN TEMPLATE */
 2 DB2DDLOC CHAR(128), /*DEPLOY FROM LOCATION */
 2 DB2DSCOL CHAR(128), /*SRC COLLID TEMPLATE */
 2 DB2DTCOL CHAR(128), /*TGT COLLID TEMPLATE */
 2 DB2DSSCM CHAR(128), /*SRC SCHEMA TEMPLATE */
 2 DB2DTSCM CHAR(128), /*TGT SCHEMA TEMPLATE */
 2 DB2DSAUT CHAR(128), /*SRC AUTHID TEMPLATE */
 2 DB2DTAUT CHAR(128), /*TGT AUTHID TEMPLATE */
 2 DB2DSQUL CHAR(128), /*SRC QUAL TEMPLATE */
 2 DB2DTQUL CHAR(128), /*TGT QUAL TEMPLATE */
 2 DB2DDQUL CHAR(128), /*DEPLOY QUAL */
 2 DB2DSOWN CHAR(128), /*SRC OWNER TEMPLATE */
 2 DB2DTOWN CHAR(128), /*TGT OWNER TEMPLATE */
 2 DB2DDOWN CHAR(128), /*DEPLOY OWNER */
 2 DB2DSWLM CHAR(54), /*SRC WLM TEMPLATE */
 2 DB2DTWLM CHAR(54); /*TGT WLM TEMPLATE */

...
proceed
messageText
currentAction
db2Subsystem
zmfSubsystemId
zmfPackage
externalName
component
userId
srcLocationTemplate
tgtLocationTemplate
deployFromLocation
srcCollIdTemplate
tgtCollIdTemplate
srcSchemaTemplate
tgtSchemaTemplate
srcAuthIdTemplate
tgtAuthIdTemplate
srcQualifierTemplate
tgtQualifierTemplate
deployQualifier
srcOwnerTemplate
tgtOwnerTemplate
deployOwner
srcWlmTemplate
tgtWlmTemplate

...

PL/I copybook

PL/I copybook 206

REXX Rample
...
Sample REXX showing the changing of the version to be the package id:
/* REXX */
/* */
/* Show all CMNDB2DD API fields */
/* Show DDL/SQL on input */
/* Change the version to be the ZMF package id */
/* Show DDL/SQL passed back to CMNDB2DD */
/* */

proceed = "YES"

say " "
say "---"
say " CMNDB2DD HLLX "
say "---"
say " "
say "currentAction : "currentAction
say "db2Subsystem : "db2Subsystem
say "zmfSubsystemId : "zmfSubsystemId
say "zmfPackage : "zmfPackage
say "externalName : "externalName
say "component : "component
say "srcLocationTemplate : "srcLocationTemplate
say "tgtLocationTemplate : "tgtLocationTemplate
say "deployFromLocation : "deployFromLocation
say "srcCollIdTemplate : "srcCollIdTemplate
say "tgtCollIdTemplate : "tgtCollIdTemplate
say "srcSchemaTemplate : "srcSchemaTemplate
say "tgtSchemaTemplate : "tgtSchemaTemplate
say "srcAuthIdTemplate : "srcAuthIdTemplate
say "tgtAuthIdTemplate : "tgtAuthIdTemplate
say "srcQualifierTemplate : "srcQualifierTemplate
say "tgtQualifierTemplate : "tgtQualifierTemplate
say "deployQualifier : "deployQualifier
say "srcOwnerTemplate : "srcOwnerTemplate
say "tgtOwnerTemplate : "tgtOwnerTemplate
say "deployOwner : "deployOwner
say "srcWlmTemplate : "srcWlmTemplate
say "tgtWlmTemplate : "tgtWlmTemplate
say " "
"execio * diskr DDLIN (stem ddl. finis"

say " "
say "+---+"
say "| DDL/SQL as supplied to HLL exit follows |"
say "+---+"
say " "
Do i = 1 to ddl.0
 Say ">"ddl.i"<"
End

Do i = 1 to ddl.0

 ix = pos('VERSION ',ddl.i)
 if ix = 0 then iterate

 ix = ix + 8
 endofit = substr(ddl.i,ix)
 versn = subword(endofit,1,1)
 pastver = subword(endofit,2)
 replace = substr(ddl.i,1,ix-1) || zmfPackage || " " || pastver || '25'x
 ddl.i = replace

End
...

REXX Rample

REXX Rample 207

messageText = "VERSION has been set to package id."
"execio * diskw DDLIN (stem ddl. finis"

say " "
say "+---+"
say "| DDL/SQL as modified by HLL exit follows |"
say "+---+"
say " "
Do i = 1 to ddl.0
 Say ">"ddl.i"<"
End

exit 0

...

REXX Rample

REXX Rample 208

11. ISPF Tables and Variables

The following pages describe ISPF Dialog Manager tables and variables used in the ChangeMan

ZMF Db2 Option.

ISPF Tables

Single Entry Control Variables

ISPF Tables and Variables

The following pages describe ISPF Dialog Manager tables and variables used in the ChangeMan

ZMF Db2 Option.

ISPF Tables
This section lists the ISPF tables used in file tailoring to create Db2 processing steps in jobs for

promote, demote, install, backout, baseline ripple, and reverse baseline ripple.

For the list of variables in each of these tables, search for the table name in member #VARLIST in

the CMNZMF SKELS library.

CMNDB2S1 - Db2 Physical Subsystem Table
Each row in table CMNDB2S1 describes a physical subsystem defined for the ZMF instance. All

physical subsystems for the ZMF instance are included in this table.

Values for the ISPF variables in this table are set on global administration panels for the Db2

option. These panels include:

Db2 Physical Subsystems - Part 1 of 2 (CMNGD2S0)

Db2 Physical Subsystems - Part 2 of 2 (CMNGD2S1)

ISPF Tables and Variables

• •

• •

ZMF skeletons do not use these ISPF tables consistently across different package processes

such as promotion and installation. Before you apply Db2 Option customization designed for

one package process to skeletons for a different package process, examine the delivered

skeletons to see that you are using the appropriate ISPF tables.

Caution

• •

• •

11. ISPF Tables and Variables

11. ISPF Tables and Variables 209

CMNDB2SS - Db2 Physical Subsystem Table for BIND
Table CMNDB2SS contains only those physical subsystems where Db2 BIND processing is required

by the current action. Each row is initially formed from equivalent rows in CMNDB2S1. That is,

when a component will be copied into a library that is listed in the Db2 BIND active library table

CMNDB2AL, the logical subsystem listed for the active library is used to get a logical subsystem

definition, which contains a physical subsystem that is used to copy a row from CMNDB2S1 to

CMNDB2SS.

However, information about bind failure significance is also gathered from these logical

subsystems. The "bind failure significance" variable (STBINDF) forms a key for this table so that

you may have up to two rows for each physical subsystem. (STBINDF can be "YES" or "NO.")

This structure allows CMNDB2SS to be used in the skeletons to generate zero, one, or two

CMNDB2PL/BIND step couplets for each physical subsystem, depending on whether:

No logical subsystems active in this promote/demote target this physical subsystem (zero).

All such logical subsystems have the same setting for bind failure significance (one).

There is a mix of bind failure significance settings (two).

CMNDB2S2 - Db2 Physical Subsystem Table (With Bind Failure)
This table has the same global scope as CMNDB2S1 but it is constructed with "bind failure"

information (STBINDF), in a similar way to CMNDB2SS.

There are currently no delivered skeletons which make use of this table but it is available for use.

CMNDB2S2 has been chosen so as not to upset the existing use of CMNDB2S1.

CMNDB2N1 - Db2 Logical Subsystem Table
Each row in table CMNDB2N1 describes a logical subsystem defined in the application that is

being processed in file tailoring. All logical subsystems for the application are included in this table.

Values for the ISPF variables in this table are set on application administration panels for the Db2

option. These panels include:

Db2 Logical Subsystems (CMNLD2LN)

Db2 Logical Subsystem logical subsys Parameter Settings (CMNGD2PM)

Db2 Logical Subsystem logical subsys Templates (CMNGD2L2)

• •

• •

• •

• •

• •

• •

ISPF Tables

ISPF Tables 210

CMNDB2NN - Db2 Logical Subsystem Table for BIND
Table CMNDB2NN contains a subset of the rows in table CMNDB2N1. The information for a logical

subsystem is identical in both tables, but CMNDB2NN contains only those logical subsystems

where Db2 BIND processing is required.

When a component will be copied into a library that is listed in the Db2 BIND active library table

CMNDB2AL, the logical subsystem listed for the active library is used to copy a row from table

CMNDB2N1 into table CMNDB2NN.

CMNDB22N - Db2 Logical Subsystem Table for Secondary BIND
Table CMNDB22N contains rows describing secondary bind requirements for this action. These

requirements are defined using application admin in the ZMF Db2 option.

The primary bind logical subsystem is assigned when a component will be copied into a library that

is listed in the Db2 BIND active library table CMNDB2AL.

If there are one or more secondary bind definitions linking the primary bind logical subsystem to

other logical subsystems then a row will be written to this table for each such association.

The table is similar to CMNDB2NN in content but has added fields for the secondary bind process

(see list below).

In the sample skeletons this table is used during file tailoring to generate CMNDB2PL/ BIND steps

to address secondary bind requirements in the same job as the primary bind.

CMNDB2NN - Db2 Logical Subsystem Table for BIND

CMNDB2NN - Db2 Logical Subsystem Table for BIND 211

CMNDB2NQ - Db2 Logical Subsystem Table for SQL/Stored

Procedure
Table CMNDB2NQ contains a subset of the rows in table CMNDB2N1. The information for a logical

subsystem is identical in both tables, but CMNDB2NQ contains only those logical subsystems

where SQL/stored procedure processing is required.

When a component will be copied into a library that is listed in the SQL/stored procedure active

library table CMNSQLAL, the logical subsystem listed for the active library is used to copy a row

from table CMNDB2N1 into table CMNDB2NQ.

TABLE NAME: CMNDB22N DESCRIPTION: Secondary binds for plan/pkg

 NOTE: The field values are those that apply to the secondary
 logical
 subsystem. This table can be used to drive binds for the
 secondary logical subsystem if binds have already been
 generated for the primary logical subsystem.

TABLE VARIABLE VARIABLE VARIABLE
COLUMN NAME LENGTH DESCRIPTION
------ -------- -------- -------------------------
01 NT2NAM 08 Primary logical subsystem name
02 NT2COLT 128 Primary Pkg ID target template
03 NT2COLS 128 Primary Pkg ID source template
04 NTNNAM 08 Secondary logical subsys name
05 NTSSYS 04 Db2 logical subsystem ID
06 NTPLVL 02 Associated promotion level
07 NTPNME 08 Associated promotion name
08 NTBDID 128 Db2 insert bind owner ID
09 NTTOTPT 128 Db2 owner target template
10 NTSOTPT 128 Db2 owner source template
11 NTTMPT 24 Db2 PLAN target template
12 NTSTMPT 24 Db2 PLAN source template
13 NTPTMP 128 Db2 PKG ID target template
14 NTSPTMP 128 Db2 PKG ID source template
15 NTTLTPT 128 Db2 location ID target template
16 NTSLTPT 128 Db2 location ID source template
17 NTQUAL 128 Db2 qualifier
18 NTSQTPT 128 Db2 qualifier source template
19 NTTQTPT 128 Db2 qualifier target template
20 NTBINDF 03 Fail action if bind fails
21 NTREMT 08 Db2 logical remote site
22 NTPRMLV 02 Associated promotion level
23 NTPRMNM 08 Associated promotion name
24 NTDBR 03 Preferred DBRM libtype

CMNDB2NQ - Db2 Logical Subsystem Table for SQL/Stored Procedure

CMNDB2NQ - Db2 Logical Subsystem Table for SQL/Stored Procedure 212

CMNDB2AL - Db2 BIND Active Library Table
This table lists the Db2 Option active libraries for BIND processing in the application being

processed in file tailoring.

Values for the ISPF variables in this table are set in application administration for the Db2 Option

on the Db2 Active Library List panel (CMNLD2AL). Table CMNDB2AL contains only those active

libraries where the BIND/SQL field is set to B.

CMNSQLAL - Db2 SQL/Stored Procedure Active Library Table
This table lists the Db2 Option active libraries for SQL/stored procedure processing in the

application being processed in file tailoring.

Values for the ISPF variables in this table are set in application administration for the Db2 Option

on the Db2 Active Library List panel (CMNLD2AL). Table CMNSQLAL contains only those active

libraries where the BIND/SQL field is set to S.

CMNSQLTK - Db2 General Token Table for SQL/DDL operations
This table lists the token name (64), token source template (128) and token target template (128).

Single Entry Control Variables

This table describes key ISPF variables that control file tailoring for the Db2 Option. For other

variables used in file tailoring for the Db2 Option, see skeleton CMN$$VAR and member #VARLIST

in the CMNZMF SKELS library.

Field Definition

RUNDB2PL Set to YES when an active library has been targeted by load or BIND

components, and there are staged BIND or DBRM components in the

change package.

DBBSTG Set to YES when a change package contains a BIND component.

DBRSTG Set to YES by when a change package contains a DBRM component.

PKGSTG Set to YES when a change package contains a BIND PACKAGE component.

PKGTYPE Set to the library type in Db2 Option administration with Db2 Subtype P.

CMNDB2AL - Db2 BIND Active Library Table

CMNDB2AL - Db2 BIND Active Library Table 213

Field Definition

REBPKG Set to Y if there are load members in the change package related to source

in component history that have status BAS and the Db2 Precompile

indicator set to Y.

BIND2ND Set to Y if secondary bind requirements exist for this primary bind.

Single Entry Control Variables

Single Entry Control Variables 214

12. Transaction Codes

Detailed Job List

Miscellaneous Transactions - at Either Site

Detailed Job List

Each job is part of specific transactions that are all created for a change package during Freeze

processing. The transaction name (member name of Job JCL Library) is built using the application

mnemonic, a transaction code, and the last 2 or 3 digits of the change package number. Thus, job

10 for change package number ABC 20, would be named:

ABC10020. The following table shows the detailed job list.

Transaction Codes

• •

• •

DEVELOPMENT

CENTER

REMOTE SITE

Job Action Job Action

Package is audited

and/or frozen. Jobs are

created in “...X.&node”.

Package is approved.

Job 10 is submitted to

initiate the distribution.

10 CMNBATCH

transaction '10' says

distribution initiated

and status is changed

to DIS. Vehicle is asked

to submit job 11 at

remote site.

11 Staging libraries are

sent to remote site.

10 Staging libraries are received

including QSAM package

master. Job 11 is submitted.

12. Transaction Codes

12. Transaction Codes 215

DEVELOPMENT

CENTER

REMOTE SITE

11 CMNBATCH transaction ‘11’

overlays package records (on

PM) with QSAM package

master; proper node record is

time stamped; status is DIS.

Job 14 is submitted (only if

IEBCOPY is not used).

14 Job 14 requests vehicle to

submit 15 at DEV site.

17 Provided the scheduler is

external, submits job 20

(permanent package) or job

30T (temporary package).

18 Requests vehicle to submit 19

at DEV site.

15 Job 15 is submitted

(only if IEBCOPY is

used).

15 CMNBATCH

transaction ‘15’ stamps

acknowledgment of

distribution.

19 Notification to the user

specified in the Notify

user field that

distribution failed.

21 Perform Db2 bind for

production installation

(INSTALL IN PROD = YES).

20 Submitted to check if

package was previously

installed, if not, then it begins

installation.

Detailed Job List

Detailed Job List 216

DEVELOPMENT

CENTER

REMOTE SITE

20 CMNBATCH transaction ‘20’

changes package status to

‘INS’.

20 Job 24 is submitted. (Only if

IEBCOPY is not used.)

20t If Temporary, Job 20t runs to

install members into

Temporary libraries.

24 Requests vehicle to submit 25

at DEV site.

28 Requests vehicle to submit 29

at DEV site.

25 CMNBATCH

transaction ‘25’

changes package

status to ‘INS’.

29 Notification to the user

specified in the Notify

user field that the

installation failed.

25 If Permanent, Job 30 is

submitted.

30 Submitted if system

environment is ‘ALL’.

30 CMNBATCH

transaction ‘30’

changes package

status to ‘BAS’ and

ripples the baseline.

30 Delete members from

Promotion Libraries

based on promotion

level and library type.

Detailed Job List

Detailed Job List 217

DEVELOPMENT

CENTER

REMOTE SITE

31 If Temporary, Job 31 runs to

delete members from

Temporary libraries.

31t CMNBATCH transaction ‘31’

changes package status to

‘TCC’ (Temporary Change

Cycled) and date/time stamp.

Submit job 35.

32 Performs Db2 bind for

production installation

(INSTALL IN PROD = NO).

34t Requests vehicle to submit

35t at DEV site.

35t Package status

updated to TCC and

date/time stamped

when all remote sites

have been cycled.

38t Requests vehicle to submit

39t at DEV site.

39t Notification to the user

specified in the Notify

user field that the

package cycle failed.

CASE: A permanent change

must be backed out. Operator

makes human decision to

back out (full) particular

package. Enters backout

reasons on panel and Started

Task copies package to same

flat file that was sent from

development center. Job 50 is

submitted.

Detailed Job List

Detailed Job List 218

DEVELOPMENT

CENTER

REMOTE SITE

49 Job 49 runs the Db2 bind for

production backout (INSTALL

IN PROD = YES).

50 Backs out the change by

copying back from BKUP

Libraries. Changes package

status to ‘BAK’. Job 54 is

submitted if IEBCOPY is used,

else job 51.

50 If system environment is ‘ALL’,

job 55 is submitted.

51 Job 51 transmits a QSAM

package master to the

development center and

requests a vehicle to submit

job 54.

54 Reads flat package and

transmits reasons;

updates backout

reasons into correct

package.

55 Job 55 is submitted to

reverse ripple the

Baseline if all remote

sites are backed out.

55 Status is changed to

‘BAK’, * node record is

date and time

stamped.

56 Job 56 runs the Db2 bind for

production backout (INSTALL

IN PROD = NO).

58 Job 58 requests vehicle to

submit 59 at DEV site.

Detailed Job List

Detailed Job List 219

Miscellaneous Transactions - at Either Site

The following table shows the miscellaneous transactions.

DEVELOPMENT

CENTER

REMOTE SITE

59 Notification to the user

specified in the Notify

user field that the

package backout

failed.

64 Job 64 requests vehicle to

submit 65 at DEV site.

Package is audited

and/or frozen. Jobs are

created in “...X.&node”.

Package is approved.

Job 10 is submitted to

initiate the distribution.

Transaction Explanation

CMNBATCH

transaction ‘05’

Submits a job based on:

STE=site

NOD=node

SUB=jobname

CMNBATCH

transaction ‘65’

Reverts package back to development:

Reset general component freeze flag.

Reset all major date/time stamps.

Set revert date/time stamp at remote site.

CMNBATCH

transaction ‘80’

Promotes or demotes a package. Checks out components with

or without package association.

CMNBATCH

transaction ‘90’

Activates a component.

CMNBATCH

transaction ‘92’

Deletes Staging libraries.

Miscellaneous Transactions - at Either Site

Miscellaneous Transactions - at Either Site 220

Transaction Explanation

CMNBATCH

transaction ‘93’

Synchronizes the implementation calendar.

CMNBATCH

transaction ‘94’

Deletes Change Package records.

CMNBATCH

transaction ‘96’

Decrements the Implementation Calendar when packages are

deleted.

CMNBATCH

transaction ‘99’

This transaction is invoked to notify the user any time there is a

job failure.

Miscellaneous Transactions - at Either Site

Miscellaneous Transactions - at Either Site 221

13. Examples

Native SQL SP Versions and Bind Deploy

Support Use of zFS File Type for SP Components

Native SQL SP Versions and Bind Deploy

The following are some screen shots designed to show various aspects of the Native SQL stored

procedure support using Db2 versioning and the BIND DEPLOY distribution methodology.

Note that the 'standard' processes associated with the drop/create methodology are similar to the

existing DDL processes. There are added facilities such as the HLL exit point and the PASSTHRU

facility which are described elsewhere in this document.

This section is intended to help you get to grips with support for Db2 versioning and BIND DEPLOY.

In this example, we are using Data Studio to generate/change the stored procedure definitions/

SQL. Data Studio then deploys to our target Db2 subsystem (in this case this is DSN on U001).

We then stage from the Db2 catalog directly into a ZMF package and proceed to promote to a local

site (using Db2 versioning but not bind deploy) and to remote site (using both Db2 versioning and

bind deploy). The install to production uses versioning/bind deploy and we install to U810DP

(which is the DSN Db2 subsystem) and U810P (which is for the DSN1 subsystem).

The library type for our Native SQL SP components is NSQ.

Here are some admin definitions.

First, the local site promote library. Note that the 'Cleanup Level' flag is set to 'N'. It is assumed that

users will not want their promoted SPs to be dropped automatically as there is no concept of a

search hierarchy for SPs in the same way as their might be for load modules.

When we promote to this level we will copy the SP component (which is a PDS member) to the

library shown.

Examples

• •

• •

13. Examples

13. Examples 222

Enter N in this field if cleanup is to be skipped for this library type at this level during a promotion or

the installation of a package.

Similarly, for the remote site promotion:

And here are the production library definitions for sites U810DP (the local DP site) and U810P (the

'remote' P site - not really remote) - U810DP:

and U810P:

CMNLRPM3 STEV/LOCALVER - Promotion Libraries Row 1 to 1 of 1
Command ===> ___ Scroll ===> CSR

Promotion name: UNIT Level: 10

 Syslib Cleanup
 Lib exclude Level Target libraries
_____ NSQ Y N ZMFSD.VUNIT.NSQ + Shadow
 ZMFSD.VUNIT.NSQ + Library 1
 _____________________________________ + Library 2
 _____________________________________ + Library 3

CMNLRPM3 STEV/REMOTEVER - Promotion Libraries Row 1 to 1 of 1
Command ===> __ Scroll ===> CSR

Promotion name: UNIT Level: 10

 Syslib Cleanup
 Lib exclude Level Target libraries
_____ NSQ Y N ZMFSD.VQA1.NSQ + Shadow
 ZMFSD.VQA1.NSQ + Library 1
 _____________________________________ + Library 2
 _____________________________________ + Library 3

CMNCPRDL STEV - U810DP Production Libraries Row 5 to 10 of 10
Command ===> ___ Scroll ===> CSR

 Type Production dataset name +
 Temporary dataset name +
 Backup dataset name +
_____ NSQ ZMFSD.PROD.NSQ
 NULLFILE
 ZMFSD.PROD.NSQ.BKUP
...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 223

None of the above is new, just standard ZMF admin.

Now, turning to the Db2 option admin. Here is the list of logical subsystems we are working with.

We have one logical subsystem per target 'environment'

All of these logical subsystems have the following 'Use Db2 versioning' set in the 'miscellaneous

parameters'. Without this you will be using the standard Drop/Create paradigm.

Here are what the different logical subsystems have specified for the SQL templates.

CMNCPRDL STEV - U810P Production Libraries Row 2 to 3 of 3
Command ===> ___ Scroll ===> CSR

 Type Production dataset name +
 Temporary dataset name +
 Backup dataset name +
_____ NSQ ZMFSD.PROD1.NSQ
 NULLFILE
 ZMFSD.PROD1.NSQ.BKUP
...

CMNLD2LN Db2 Logical Subsystems Row 1 to 4 of 4
Command ===> ___ Scroll ===> CSR

Line commands:
 P Specify miscellaneous parameters
 T Specify BIND process variable templates
 Q Specify SQL process named variable templates
 G Specify SQL process general token variable templates

 Logical Db2
 name subsys Site Description
_____ PRODV DSN U810DP PROD USING VERSION + DEPLOY
_____ PRODV1 DSN1 U810P PROD ON DSN1 USING VER/DEPLOY
_____ QAD1 DSN1 REMOTVER QA ON DSN1 USING VER/DEPLOY
_____ UNITV DSN LOCALVER UNIT TEST WITH VERSION

CMNGD2PM Db2 Logical Subsystem UNITV Settings
Command ===> __

Preferred Libtypes:
DBRM DBR
Plan bind parameters DBB
Package bind parameters PKG

General Parameters:
Enter "/" to select option
 _ Bind Failure is significant
 _ Recycle Stored Procedures where WLM Environment is . .
 _ Maintain Trigger Sequence
 / Use Db2 versioning for Native-SQL Stored Procedures

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 224

Note that most of these values are used to generate the names used at the target subsystem. So,

in the case of UNITV below, the stored procedures will have whatever schema they have specified

in the code replaced with 'UNIT', i.e. UNIT.spname

The DEPLOY location (highlighted in red) is slightly different in that it used when the logical

subsystem is defined as the 'source' subsystem for the deploy action. More about this below but, in

effect, the bind deploy request is sent to the source subsystem location as specified here.

In our test subsystems we had the following locations defined:

 DSN DB2V11
 DSN1 SOW1DSN1

CMNGD2L3 Db2 Logical Subsystem UNITV SQL Process Templates (Named)
Command ===> __

 Templates Target Source Deploy

 Schema UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 Collection UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 WLM ________________ + _________________ +

 Location ________________ + _________________ + DB2V11 +
 Qualifier UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + UNIT +
 Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + SERD +

...

CMNGD2L3 Db2 Logical Subsystem QAD1 SQL Process Templates (Named)
Command ===> __

 Templates Target Source Deploy

 Schema QA¬¬¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 Collection QA¬¬¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 WLM ________________ + _________________ +

 Location ________________ + _________________ + DB2V11 +
 Qualifier QA¬¬¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + QA +
 Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + SERD +

...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 225

Having defined our logical subsystems we now need to tell the various ZMF actions when to use

them. This is done (as usual) using the active library definitions. The first one below says that when

ZMF delivers to ZMFSD.VUNIT.NSQ then Db2 actions will be governed by the UNITV logical

subsystem. In this case we will create/alter a version of the SP and then activate that new version,

according to the templates/values associated with the UNITV logical subsystem.

The others all target something called a connector, rather than a traditional logical subsystem. If an

active library targets a connector you are requesting the distribution to be performed via BIND

DEPLOY (see below for more on connectors).

CMNGD2L3 Db2 Logical Subsystem PRODD SQL Process Templates (Named)
Command ===> __

 Templates Target Source Deploy

 Schema PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 Collection PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 WLM ________________ + _________________ +

 Location ________________ + _________________ + DB2V11 +
 Qualifier PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + PROD +
 Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + SERD +

...

CMNGD2L3 Db2 Logical Subsystem PRODD1 SQL Process Templates (Named)
Command ===> __

 Templates Target Source Deploy

 Schema PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 Collection PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ +
 WLM ________________ + _________________ +

 Location ________________ + _________________ + DB2V11 +
 Qualifier PROD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + PROD +
 Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + _________________ + SERD +

...

CMNLD2AL Db2 Active Library List Row 1 to 4 of 4
Command ===> ___ Scroll ===> CSR

 Logical Bind
 name /SQL Db2 active library name
_____ UNITV S ZMFSD.VUNIT.NSQ
_____ UNIT2QA1 S ZMFSD.VQA1.NSQ
_____ UNIT2PRD S ZMFSD.PROD.NSQ
_____ UNIT2PR1 S ZMFSD.PROD1.NSQ

...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 226

There is a new Db2 subtype which is used to indicate that we are processing a Native SQL stored

procedure (NSQ):

To use BIND DEPLOY we have to define connectors. These connect two different logical

subsystems as source and target for a BIND DEPLOY operation. The source values are sued to find

the pre-existing stored procedure and the target values tell Db2 how to define the copy of the

stored procedure at the target location. In this test we have 2 connectors, all deploying from the

UNITV logical subsystem to 3 different targets.

When you define a connector all you are doing is specifying the source and target logical

subsystem names, along with a description for it. There is nothing more you can define. Once you

have saved the connector away, if you select the definition from the list you will get a (output only)

indication of the values which will be used by the BIND DEPLOY operation. For example, for

UNIT2PRD we see these values:

CMNDLLT0 STEV - Db2 Library Types Row 1 to 11 of 11
Command ===> ___ Scroll ===> CSR

Lib Sub End SQL
type Description type sentence
DBR DB2 DBRM's R _
DBP DB2 Bind Package Commands P _
PKG DB2 Package Bind Control P _
DBB DB2 Bind Plan Commands P _
STL DB2 External Stored Procedure Load S _
XPQ DB2 External SQL stored proc Source D #
SPQ Native SQL Stored Procedure _ _
MPQ Native SQL Stored Procedure metadata _ _
SPD DB2 Stored Procedure Definition D #
NSQ Native SQL Stored Procedures N #
DDL Data Definition Language D @

...

CMNLD2CL Logical Subsystem Connectors for Appl - STEV Row 1 to 3 of 3
Command ===> ___ Scroll ===> CSR

 Connector Source Target
 name name name Description
_____ UNIT2PRD UNITV PRODD UNIT TO PROD (DSN)
_____ UNIT2PR1 UNITV PRODD1 UNIT TO PROD (DSN1)
_____ UNIT2QA1 UNITV QAD1 UNIT TO QA (DSN1)
******************************* Bottom of data *******************************

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 227

The source location for the bind deploy is DB2V11 (which is hosted by subsystem DSN) and the

schema used to define the SP at that location is, in this case, UNIT.

The target location for the bind deploy will be determined by ZMF when the process runs but the

logical subsystem we are using is PRODD (which is defined for site U810DP and hosted by the DSN

Db2 subsystem). We will use PROD as the schema for the target SP and use a qualifier of PROD

and an owner of SERD.

All of these values are taken from either the source or target logical subsystem definition as

specified for this connector.

Here are the values which will be used by the other connectors in this example:

CMNLD2CN Application STEV Logical Subsystem Connector - UNIT2PRD
Command ===> __

 UNIT TO PROD (DSN)

Source UNITV
Subsystem id . DSN
Location . . . DB2V11 +

Templates Target Source
Schema UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + +

Target PRODD
Subsystem id . DSN
Site U810DP

Templates Target Source Deploy
Collection . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + +
Qualifier . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + + PROD +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + + SERD +

CMNLD2CN Application STEV Logical Subsystem Connector - UNIT2PR1
Command ===> __

 UNIT TO PROD (DSN1)

Source UNITV
Subsystem id . DSN
Location . . . DB2V11 +

Templates Target Source
Schema UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + +

Target PRODD1
Subsystem id . DSN1
Site U810P

...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 228

That's it for admin. Most of it is no different to the kind of Db2 option admin which preexisted. The

major differences being the 'Use Db2 versioning' setting in miscellaneous parameters and the

whole area of connectors being used to define BIND DEPLOY usage.

Now to see some output from the lifecycle processes. We have used Data Studio to generate a

change to a pre-existing stored procedure. Data Studio runs its own proprietary deployment

method (consisting of OCO stored procedures) so we let it complete deployment and pick up the

SP from the target Db2 catalog.

In this example we are generating a stored procedure which has a name longer than 8 bytes

(LONG_NAME_SP_NUMBER_3), the max length for the name is 128 bytes. Note that, the ZMF

package component for this SP will be a member name which, of course, is restricted to 8 bytes. To

make things consistent it is best to keep the SP name the same as the component name. However,

the only downside to this is that there is no formal tieup between the component name and the SP

name.

The SP presented here is a simple example (we are interested in the process not the SP itself).

Here we are about to deploy version V2 to our target development Db2 subsystem.

Two things of note here:

The version identifier is a freeform 64 byte field (122 bytes if you use DBCS). There is no

ordinal sense to this field. While the default first version of an SP is assigned the version V1 by

Templates Target Source Deploy
Collection . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + +
Qualifier . . PROD¬¬¬¬¬¬¬¬¬¬¬¬ + + PROD +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + + SERD +

...

CMNLD2CN Application STEV Logical Subsystem Connector - UNIT2QA1
Command ===> __

 UNIT TO QA (DSN1)

Source UNITV
Subsystem id . DSN
Location . . . DB2V11 +

Templates Target Source
Schema UNIT¬¬¬¬¬¬¬¬¬¬¬¬ + +

Target PRODD1
Subsystem id . DSN1
Site REMOTVER

Templates Target Source Deploy
Collection . . QA¬¬¬¬¬¬¬¬¬¬¬¬¬¬ + +
Qualifier . . QA¬¬¬¬¬¬¬¬¬¬¬¬¬¬ + + QA +
Owner SERD¬¬¬¬¬¬¬¬¬¬¬¬ + + SERD +

1. 1.

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 229

Db2 and we are adding here a new version of the same stored procedure called V2, there is no

ordinal meaning to V1 and V2.

The SP has been given a schema (ZMFSD, my userid, in this case). This is important to allow

the lifecycle templating to work

The deployment mechanism gives you various options. The one of interest here is the 'Alter

duplicates' flag. As far as Db2 is concerned there is a single entity (i.e. stored procedure) called

ZMFSD.LONG_NAME_SP_NUMBER_3 at the target Db2 subsystem. This deployment is attempting

to create another version of the same item, this is a duplicate item. Setting the 'Alter duplicates'

flag tells the deployment to change the DDL (which, at the moment, say CREATE PROCEDURE) to

ALTER PROCEDURE … ADD VERSION …

This is what we want for this example which makes use of Db2 versioning of Native SQL SPs

2. 2.

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 230

At this point the SP is in the target Db2 catalog. Because this is a change to an existing ZMF

managed component we need to check it out into our target package before we can stage the

changed version. This is where having the same name for the component as the SP comes in

useful. Because we have an SP name longer than 8 bytes then we have to know the name of the

component used to 'shadow' the SP in the Db2 catalog. In this case it is LONGSP03.NSQ.

Once LONGSP03.NSQ has been checked out we can then stage the new version which Data Studio

has deployed to a local Db2 subsystem (DSN in our case).

Using S1 against the package gives us the familiar stage-from-development panel, with a new

option.

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 231

Having chosen that option we are presented with a new panel from which we can stage the SP into

the package (see the help panel for a description of what all the fields mean):

The software goes to the Db2 catalog, extracts the SP code, and attempts to stage it into the

package. We get an overlay warning.

CMNSTG02 Stage from Development
Command ===> __

 Package: STEV000288 Status: DEV Install date: 20161120
 Change rqst: 00000001 Location: HERE

ISPF Library:
 Project ZMFSD
 Group DB2
 Type JCL
 Member __________ (Blank/pattern for list; * for all members)

Other partitioned, sequential or HFS dataset:
 DSN ___ +
 Org _____ (PDS, Seq, PAN, LIB, Oth, HFS)

Library type _____ (Blank for list)
Stage name ___ +
Stage mode 1 (1-Online, 2-Batch)

Enter "/" to select option
/ Confirm request _ Expand HFS subdirectories
_ Lock component _ Display component user options
/ Extract Stored Procedure from Db2 catalog

CMNSTG25 Stage Native-SQL SP from Db2
Command ===> __

 Package: STEV000288 Status: DEV Install date: 20161120

Stored Procedure:
 Db2 id DSN
 Location . . . __________________
 Schema ZMFSD +
 Name LONG_NAME_SP_NUMBER_3 +
 Version . . . __ +
 Version Ind. . __________________

Component:
 Name LONGSP03
 Library type . NSQ

Enter "/" to select option
 / Add package information to component
 _ Lock component in package

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 232

On confirmation of the overlay the checkin service runs and stages the component to the package,

we get the following message from checkin:

If we look at the component in the package we can see the SP definition as it was delivered to Db2

by Data Studio (note that we are now ALTERing the proc).

The first three (optional) comment lines have been added by ZMF.

CMNSTG25 Stage Native-SQL SP from Db2
Command ===> __

 Package: STEV000288 Status: DEV Install date: 20161120
 +------------------------ Stage Warning ----------------------+
Stored | CMNSTGWP |
 Db2 | Command ===> __ |
 LocSch | | +
 SchNam | Staging Member: | +
 NamVer | LONGSP03 | +
 Ver | Will overlay ZMFSD version. |
 | |
Compon | |
 Nam | |
 Lib +---+

Enter "/" to select option
 / Add package information to component
 _ Lock component in package

...

CMN408I - STEV000288 Component LONGSP03.NSQ ACTIVATED 20160222 112807. CN(INTERNAL)

-- +ZMF+--+
-- | Pkg: STEV000288 Ltp: NSQ Uid: ZMFSD Time: 2016/02/22-11.28.07 |
-- +ZMF+--+
ALTER PROCEDURE ZMFSD.LONG_NAME_SP_NUMBER_3
 ADD VERSION V2 ()
 ISOLATION LEVEL CS
 RESULT SETS 1
 LANGUAGE SQL
P1: BEGIN
-- ###
-- # Returns all tables created by ZMFV2
-- ###
 -- Declare cursor
 DECLARE cursor1 CURSOR WITH RETURN FOR

 SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR = 'ZMFV2'
 ORDER BY NAME;

 -- Cursor left open for client application
 OPEN cursor1;
END P1

...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 233

The component is now active in the package.

We first promote it to the LOCALVER site, first promotion level. This delivers the component to

ZMFSD.VUNIT.NSQ and, as a result of the active library definition and the fact that this libtype is

Db2 indicated with a Db2 subtype of N, we take a number of options in the promotion skeleton.

CMNDB2DD is informed that the target logical subsystem is using Db2 versioning for Native SQL

SPs, it issues (amongst others) the following messages:

We can see that the schema for the SP has been templated using the target logical subsystem

settings (i.e. it has been replaced by UNIT), and the resulting definition has been presented to Db2

and processed successfully. Also, message CMNDD037I indicates that version information has

been written to the VERSION DDname. This information is passed on to a subsequent job

(submitted via internal reader from the promotion job) which is (optionally) held.

When it runs that job uses the version information passed to it to activate the new SP version

delivered by the promote action:

As part of this activation process information about the currently active version is written to the

local CMNZMF.CMNDB2_ATTRIBS table (for use by any future demotion). So, at this point in time,

the active version is V2 and the prior active version has been recorded as V1.

CMNDD041I Not a CREATE, autodrop will do nothing at this time.
CMNDD037I Stored Procedure version information has been written to the
 VERSION DDname.
CMNDD001I Templated SQL sentence extracted from member LONGSP03 :
-- +ZMF+--+
-- | Pkg: STEV000288 Ltp: NSQ Uid: ZMFSD Time: 2016/02/22-11.28.07 |
-- +ZMF+--+
ALTER PROCEDURE UNIT .LONG_NAME_SP_NUMBER_3
 ADD VERSION V2 ()
 ISOLATION LEVEL CS
 RESULT SETS 1
 LANGUAGE SQL
P1: BEGIN
-- ###
-- # Returns all tables created by ZMFV2
-- ###
 -- Declare cursor
 DECLARE cursor1 CURSOR WITH RETURN FOR

 SELECT NAME FROM SYSIBM.SYSTABLES WHERE CREATOR = 'ZMFV2'
 ORDER BY NAME;
 -- Cursor left open for client application
 OPEN cursor1;
END P1
CMNDD002I Sentence processed successfully.
CMNDD003I Work committed

CMNAV003I Statement generated for SP activation:
ALTER PROCEDURE UNIT.LONG_NAME_SP_NUMBER_3 ACTIVATE VERSION V2
CMNAV004I Version activation completed successfully

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 234

Moving on to the promotion to remote site REMOTVER and the first level defined there. This

delivers the component to ZMFSD.VQA1.NSQ and, as a result of the active library definition (which

targets a connector, see above) and the fact that this libtype is Db2 indicated with a Db2 subtype of

N, the promotion skeleton is driven to use the BIND DEPLOY mechanism for distributing the SP.

CMNDB2DD is supplied a series of settings from the source and target logical subsystems as

identified by the target connector from the active library definition. As a result the following BIND

DEPLOY command is built. It is routed back to the source Db2 subsystem via a remote call to the

IBM supplied stored procedure ADMIN_COMMAND_DSN. The location identified for the source

logical subsystem is used to do this, in this case the remote call is to

DB2V11.ADMIN_COMMAND_DSN and that call is presented with the following command text. Note

that the location for the deployment (S0W1DSN1 in this case) is determined by CMNDB2DD at run

time. CMNDB2DD is actually running at the target, it sends the deploy command back to the source

using the remote call.

As well as issuing the BIND DEPLOY we also generate version information and submit the

'activation' job as before. When it runs it activates this newly deployed version of the SP:

What happens on a demote? Here we have requested a demote for the component we just

promoted to site REMOTVER. Again, there is no presentation of SQL/DDL to Db2 but also, no BIND

DEPLOY either (as BIND DEPLOY is all about delivering an SP to another location, not removing it).

However, version information is written (using a different transaction code, one of which indicates

a demote) and the activation job is submitted.

To be clear, there is no presentation of SQL/DDL to Db2 at the target location. The distribution

of the Native SQL SP is performed by the BIND DEPLOY command.

Note

CMNDD045I BIND DEPLOY processing requested, command(s) will be sent to
 location: DB2V11
BIND PACKAGE(S0W1DSN1.QA) +
 DEPLOY(UNIT.LONG_NAME_SP_NUMBER_3) +
 COPYVER(V2) +
 OWNER(SERD) +
 QUALIFIER(QA) +
 ACTION(REPLACE)

DSNT232I -DSN0 SUCCESSFUL BIND FOR
 PACKAGE = S0W1DSN1.QA.LONG_NAME_SP_NUMBER_3.(V2)

CMNAV003I Statement generated for SP activation:
ALTER PROCEDURE QA.LONG_NAME_SP_NUMBER_3 ACTIVATE VERSION V2
CMNAV004I Version activation completed successfully

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 235

When it runs it uses the information in the CMNZMF.CMNDB2_ATTRIBS table to decide which

version of the SP to re-instate. It also drops the version of the SP that was just promoted:

Moving on to the install, we have an install to both a local site, U810DP, and a remote site, U810P.

Both are set up to be delivered via BIND DEPLOY and, in the CMN21 job, we see for U810DP the

following:

CMNDD041I Not a CREATE, autodrop will do nothing at this time.
CMNDD037I Stored Procedure version information has been written to the
 VERSION DDname.

CMNAV003I Statement generated for SP activation:
 ALTER PROCEDURE QA.LONG_NAME_SP_NUMBER_3 ACTIVATE VERSION V1

CMNAV004I Version activation completed successfully

CMNAV016I Statement generated to drop the demoted version of this SP:
 ALTER PROCEDURE QA.LONG_NAME_SP_NUMBER_3 DROP VERSION V2

CMNAV018I Version dropped successfully.

CMNDD045I BIND DEPLOY processing requested, command(s) will be sent to
 location: DB2V11

 BIND PACKAGE(DB2V11.PROD) +
 DEPLOY(UNIT.LONG_NAME_SP_NUMBER_3) +
 COPYVER(V2) +
 OWNER(SERD) +
 QUALIFIER(PROD) +
 ACTION(REPLACE)

DSNT254I -DSN0 DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = DB2V11.PROD.LONG_NAME_SP_NUMBER_3.(V2)
 ACTION ADD
 OWNER SERD
 QUALIFIER PROD
 VALIDATE RUN
 EXPLAIN NO
 ISOLATION CS
 RELEASE COMMIT
 COPY
 APREUSE
 APCOMPARE
 APRETAINDUP
 BUSTIMESENSITIVE YES
 SYSTIMESENSITIVE YES
 ARCHIVESENSITIVE YES
 APPLCOMPAT V11R1

...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 236

Notice that the messages fed back by the deployment (actually, from the deployment via the

ADMIN_COMMAND_DSN SP) are much more verbose when the deployment is from/to the same

Db2 subsystem (DSN in this case). We also see the activation job submitted:

The install to the U810P site proceeds along similar lines:

DSNT255I -DSN0 DSNTBCM2 BIND OPTIONS FOR
 PACKAGE = DB2V11.PROD.LONG_NAME_SP_NUMBER_3.(V2)
 SQLERROR NOPACKAGE
 CURRENTDATA NO
 DEGREE 1
 DYNAMICRULES RUN
 DEFER
 REOPT NONE
 KEEPDYNAMIC NO
 IMMEDWRITE NO
 DBPROTOCOL DRDA
 OPTHINT
 ENCODING EBCDIC(01047)
 PLANMGMT OFF
 PLANMGMTSCOPE STATIC
 CONCURRENTACCESSRESOLUTION
 EXTENDEDINDICATOR
 PATH
DSNT232I -DSN0 SUCCESSFUL BIND FOR
 PACKAGE = DB2V11.PROD.LONG_NAME_SP_NUMBER_3.(V2)

CMNAV003I Statement generated for SP activation:
 ALTER PROCEDURE PROD.LONG_NAME_SP_NUMBER_3 ACTIVATE VERSION V2

CMNAV004I Version activation completed successfully

CMNDD045I BIND DEPLOY processing requested, command(s) will be sent to
 location: DB2V11

BIND PACKAGE(S0W1DSN1.PROD) +
 DEPLOY(UNIT.LONG_NAME_SP_NUMBER_3) +
 COPYVER(V2) +
 OWNER(SERD) +
 QUALIFIER(PROD) +
 ACTION(REPLACE)

DSNT232I -DSN0 SUCCESSFUL BIND FOR
 PACKAGE = S0W1DSN1.PROD.LONG_NAME_SP_NUMBER_3.(V2)

CMNAV003I Statement generated for SP activation:
 ALTER PROCEDURE PROD.LONG_NAME_SP_NUMBER_3 ACTIVATE VERSION V2

CMNAV004I Version activation completed successfully
...

Native SQL SP Versions and Bind Deploy

Native SQL SP Versions and Bind Deploy 237

Support Use of zFS File Type for SP Components

Overview
Native SQL Db2 stored procedures can have names up to 128 bytes in length and can be case

sensitive. PDS member names are restricted to a maximum length of 8 bytes, which are not case

sensitive.

To remove the restriction of PDS member names on the names of Native SQL stored procedures,

ZMF allows stored procedures with long names to be stored and managed in ZMF as zFS-based

library types.

Component Design
The following aspects of component design enable ZMF to store and manage Native SQL stored

procedures as zFS-based library types.

ZMF Administrative Functions
You define a zFS libtype with a Db2 subtype of N. Follow the instructions in the ChangeMan ZMF

Administrator’s Guide to copy global library type definitions into the application - Library Types Part

1 of 2 (CMNCLLT0) panel. See the Db2 library type NSZ in the following examples:

And define the target directories as active:

CMNCLLT0 STEV - Library Types Part 1 of 2 Row 1 to 28 of 28
Command ===> ___ Scroll ===> CSR

 Lib Order Lke Seq Defer Target Sel
 type Description + type Opt
___ NSZ Native SQL stored procs hosted by zFS 0 P Y D

CMNDGLT0 STEV - Db2 Library Types Row 11 to 11 of 11
Command ===> ___ Scroll ===> CSR

Lib Sub End SQL
type Description type sentence
NSZ Native SQL stored procs hosted by zFS N @

Support Use of zFS File Type for SP Components

Support Use of zFS File Type for SP Components 238

The usual invocation of CMNDB2DD to process these components will be generated for the various

actions, for example, promote/demote, install/backout, and so on.

CMNDB2DD Program Processing
This program (member CMNDB2DD of the CMNZMF.LOAD distribution library) detects whether the

SQLIN and STGLIB input DDnames point to a library or a zFS path name. Appropriate I/O routines

are used to access the stored procedure definition.

If PASSTHRU=YES is selected, the output (templated) procedure definition is written either to a

library member or a to a zFS file depending on what is allocated to the xxxxOUT DD statement.

A synonym for the MBR= sysin parameter is CMP=. (They mean the same thing:

CMP=longNameStoredProcedure; or MBR=longNameStoredProcedure).

The data interface to the High-Level Language (HLL) exit includes a long component name

(Language Environment [LE] field name is DB2DCMPL, REXX variable name is 'longComponent').

The original short name fields remain in place (DB2DCMPN and REXX 'component'). The long

format name is always filled in. The short format name is only filled in if the component name is 8

or fewer bytes in length.

Skeletons
The following skeletons use PATH= and PATHOPTS DD parameters when the indicated library type

is a zFS libtype.

CMN$$PSQ (local promote/demote)

CMN$$RSQ (remote promote/demote)

CMN$$SQL (install/backout)

CMNSTGER Processing
The ISPF function program CMNSTGER, which allows you to stage a component directly from Db2

into a package, has been changed to handle a target zFS libtype, as shown in the Stage Native SQL

SP from Db2 (CMNSTG25) panel in the following example:

 Db2 Active Library/Directory List Row 8 to 28 of 38
Command ===> ___ Scroll ===> CSR

 Logical
 name Type Db2 active library or directory name
 PRODLCL1 S /cmndev/STEV/U900DP/Prod00/NSZ +
 PRODRMT1 S /cmndev/STEV/U900P/Prod00/NSZ +
 UNIT1 S /cmndev/STEV/promo10/NSZ +

• •

• •

• •

Component Design

Component Design 239

The following messages are displayed when panel content is processed:

If the component name is missing, the same name as the stored procedure name is used but with

any double or single quotes removed.

CMNVCOMP Component Checkin Service
This service also allows for the checkin of long name stored procedure components direct from

Db2 into a zFS library type. The double quotes on the stored procedure name are not actually

necessary: both the ISPF client and the service itself will strip both double and single quotes from

stored procedure names before using them. The quotes are tolerated because Db2 requires them

to avoid folding everything to upper case. We rely on the MIXCASE variable in the ISPF client and

just take names as is (no folding) in the service.

CMNSTG25 Stage Native SQL SP from Db2
Command ===>

 Package: STEV001561 Status: DEV Install date: 20221111

Stored Procedure:
 Db2 id D10L
 Location
 Schema WSER58 +
 Name "zFSnativeSQLstoredProcedure001" +
 Version +
 Version Ind . .

Component:
 Name +
 Library type. . NSZ

Enter "/" to select option
 / Add package information to component
 _ Lock component in package
 / Mixed Case

CMN408I - STEV001561 Component zFSnativeSQLstoredProcedure001.NSZ
 ACTIVATED 20200522 085455. CN(INTERNAL)

and:

CMN2575I - zFSnativeSQLstoredProcedure001 component staged from D10L

Component Design

Component Design 240

Backward Compatibility
All existing PDS member based facilities are unchanged.

Installation and Configuration
No environmental changes are needed to implement this enhancement to stored procedure names.

You need only define one or more zFS library types to be Db2 enabled with a Db2 subtype of N

(native SQL stored procedure).

<?xml version="1.0"?>
<service name="CMPONENT">

<scope name="SERVICE">
<message name="CHECKIN">

<header>
<subsys>L</subsys>
<product>CMN</product>

</header>
<request>

<package>STEV001561</package>
<component>"zFSnativeSQLstoredProcedure001"</component>
<componentType>NSZ</componentType>
<chkInSourceLocation>D</chkInSourceLocation>
<sourceDb2Subsys>D10L</sourceDb2Subsys>
<sourceDb2Schema>WSER58</sourceDb2Schema>
<addZmfInfoToDb2Object>Y</addZmfInfoToDb2Object>
<listCount>00001</listCount>
<targetComponent>zFSnativeSQLstoredProcedure001</targetComponent>

</request>
</message>

</scope>
</service>

Component Design

Component Design 241

14. Glossary

Active Libraries

An Active library, as used in this document, is a promotion, production, or baseline library that
contains Db2 components. The library can contain Db2 program load modules, BIND commands, or
stored procedures. When a change to an active library is detected, either BIND processing or
stored procedure processing is included in the promotion or installation process JCL.

DBRM

DBRM is a Db2 Data Base Request Module. A DBRM is the output of the Db2 precompiler after it has
processed a source module containing SQL statements.

Rebind

This manual frequently refers to the process of rebinding plans. In fact, plans processed by
ChangeMan are actually not rebound, but bound with the REPLACE option. In Db2, the REBIND command
does not use information external to the catalog, such as a DBRM in a PDS. Instead, the REBIND
command used the SYSIBM.SYSDBRM and SYSIBM.SYSPLAN tables.
BIND with the REPLACE option, however, uses information in DBRM PDSs to replace a plan in the
catalog. Since ChangeMan is processing change SRC components, there is a high probability that
the related DBRMs have new time stamps, and need to be updated in Db2 plans.

SPUFI

SPUFI is an acronym for SQL Processor Using File Input. SPUFI can be used to directly enter SQL
statements without having to write a program to process those statements.

SQL

SQL is Structured Query Language, the data manipulation language for Db2.

Versioning

Versioning in Db2 is the ability to run multiple versions of a program. Multiple versions of a
program can exist with the same Collection Id and NAME combination. The sequence of concatenation
of load libraries determines which program executes and Db2 will find a matching package ready
for execution amongst the many that are available.

14. Glossary

14. Glossary 242

15. Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use

restrictions, U.S. Government rights, patent policy, and FIPS compliance, see https://

www.microfocus.com/about/legal/.

© Copyright 2023 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors

("Micro Focus") are set forth in the express warranty statements accompanying such products and

services. Nothing herein should be construed as constituting an additional warranty. Micro Focus

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

Third-Party Notices

Additional third-party notices, including copyrights and software license texts, can be found in a

'thirdpartynotices' file in the root directory of the software.

Specific notices

In accordance with the GNU General Public License version 2 with Classpath Exception, you are

entitled to the complete OpenJDK source code that went into the JRE used by this product which

includes the source code for 3 subclasses of that standard OpenJDK; MultipleGradientPaint,

MultipleGradientPaintContext and TypeResolver. Please contact product support if you wish to

obtain the source code. This source code will be available for 3 years from the general availability

date for version 17.0 SP1.

15. Legal Notice

15. Legal Notice 243

	ChangeMan ZMF
	8.3
	© Copyright 2023 Micro Focus or one of its affiliates

	1. About this Guide
	Before You Begin
	Navigating this Book
	Guide to ChangeMan ZMF Documentation
	ChangeMan ZMF Documentation Suite
	Using the Manuals
	Searching the ChangeMan ZMF Documentation Suite

	Choosing the Right Installation/Upgrade Manual
	ChangeMan ZMF Release Notes

	Online Help
	Online tutorial
	Online Help Panels
	Online Error Messages

	Typographical Conventions

	2. Introduction
	Introduction
	ChangeMan ZMF Db2 Option
	Db2 Option Not Compatible with Reusable ASIDs

	Db2 Option Concepts
	Core Db2 Option
	Physical and Logical SubSystem
	Active Libraries
	Bind Active Libraries
	SQL Active Libraries
	Bind Service Active Libraries

	Db2 Library Subtypes
	Templates
	Insert
	Deploy
	Search and Replace
	Positional Character Replacement

	Templates And Change Management
	Plan/package Lookup
	BIND Fail

	Db2 Option and Component Management
	Bind Processing
	Stored Procedure Processing
	External Stored Procedures
	External SQL Stored Procedures
	Native SQL Stored Procedures

	User-Defined Functions
	Sourced User-Defined Functions
	External User-Defined Functions

	Database Triggers
	Db2 Object Dependency Report

	3. Configuring the Db2 Option
	Configuring the Db2 Option
	Overview
	Apply a Db2 Option License
	Bind Db2 Plan and Package and Grant access
	Update Global Administration
	Add Global Library Types for Db2
	Add Global Language and Procedure for External SQL SPs

	Update Application Administration
	Add Application Library Types for Db2
	Add Application Language and Procedure for External SQL SPs
	Add Baseline Libraries for Db2 Components
	Add Production Libraries for Db2 Components

	Configure Db2 Option Global Administration
	Define Physical Subsystems
	Define Global Logical Subsystems
	CMNGD2L4

	Define Global Db2 Library Subtypes
	Define Source/Target Connector
	Db2 Logical Subsystem Connectors - Global List

	Specify Global Db2 General Parameters
	Configure Db2 Option Application Administration

	Define Application Logical Subsystems
	Define Application Active Libraries
	Define Application Db2 Library Subtypes
	Define Source/Target Connector
	Define Secondary Bind Requirements
	Specify Application Db2 General Parameters

	Customize Skeletons for Db2
	Set DBRM Library Type for Db2 Precompile
	Modify Plan Lookup Parameters In Skeletons
	SQL Processing In Skeletons
	Bind Service Processing In Skeletons

	Installation in Other Db2 Subsystems

	4. DB2 Component Processing
	Db2 Component Processing
	Library Types and Sub Types
	Library Types
	Library Sub Types

	CREATE versus ALTER
	Component Processing Summary
	Programs with Imbedded SQL
	Library Types
	Stage (Like-S)

	Audit
	Promote/Demote
	Install/Backout

	BIND Commands
	Library Types
	Stage (Like-P)
	Audit
	Promote/Demote
	Install/Backout

	Procedure Definition DDL
	Library Types
	Stage (Like-P)
	Audit
	Promote/Demote
	Install/Backout

	Stored Procedures – External
	Library Types
	Stage (Like-S)
	Audit
	Promote/Demote
	Install/Backout

	Stored Procedures – External SQL
	Library Types
	Stage (Like-S)
	Audit
	Promote/Demote
	Install/Backout

	Stored Procedures - Native SQL
	Library Types
	Stage
	Audit
	Promote/Demote
	Install/Backout

	Stored Procedures – REXX
	Library Types
	Stage
	Audit
	Promote/Demote
	Install/Backout

	User Defined Functions - External
	Library Types
	Stage (Like-S)
	Audit
	Promote/Demote
	Install/Backout

	User Defined Functions - Source
	Library Types
	Stage (Like-P)
	Audit
	Promote/Demote
	Install/Backout

	Database Triggers
	Library Types
	Audit
	Promote/Demote
	Install/Backout

	5. Native SQL SP Lifecycle
	Native SQL SP Lifecycle
	Checkin/Stage
	Stage From Development

	Promote
	Drop/Create
	Alter Add Version
	Bind Deploy

	Demote
	Drop/Create
	Alter Add Version
	Bind Deploy

	Install
	Install skeleton changes

	Backout
	Skeleton changes (overview)

	6. Templating Examples
	Templating Examples
	Templated BIND Command Parameters
	Templated DDL/SQL
	Templating Examples
	Replace Characters At an Offset
	Add Characters at the End
	Replace Characters at the End
	Delete Characters at the End
	Replace a Character String with Another String
	Add an Owner Parameter
	Add a Qualifier Parameter

	BIND PLAN Example
	Promote to Unit Test
	Promote to System Test
	Install and Baseline Ripple

	BIND PACKAGE Example
	Promote to Unit Test
	Promote to System Test
	Install and Baseline Ripple

	General token templates
	SQL general token templating
	BIND general token templating

	7. CMNDB2PL - BIND Utility
	CMNDB2PL - BIND Utility
	Introduction
	CMNDB2PL DD Statements
	CMNDB2PL Operation
	BIND Command Keyword Option Order

	Keyword Control Statements
	Control Statement Syntax
	Program Level Control Statements
	Logical Subsystem Level Control Statements

	How CMNDB2PL Relates to ChangeMan ZMF
	CMNDB2PL Return Codes and Messages
	Messages

	Sample CMNDB2PL Report
	Secondary Binding

	8. Stored Procedure Utilities
	Stored Procedure Utilities
	Introduction
	CMNDB2AV
	CMNDB2DQ
	Keyword Control Statements
	Return Codes and Messages

	CMNDB2DD
	Keyword Options
	Return Codes and Messages

	CMNDB2SL
	Keyword Options
	Return Codes and Messages

	CMNDB2TR
	Return Codes and Messages

	CMNDB2DR
	Db2 Object Dependency Report
	Keyword Options
	Return Codes and Messages

	Stored Procedure Walkthrough

	9. Bind Service Support
	Bind Service Support
	Installation and Configuration
	DB2OPTN
	DB2OPTNR
	Skeleton Changes
	ZMF Global Administration Changes
	Create the Library Type Definitions
	Use Db2 Versioning for Native SQL Stored Procedures

	ZMF Application Administration Changes

	Process Overview
	Batch Utility Overviews
	CMNDB2SV – Process Bind Service Parameter/SQL and Grant Request Components
	CMNDB2GR - Process Grant Requests Passed by CMNDB2SV

	10. Db2 Option User Exits
	Db2 Option User Exits
	CMNEX101 Bind Control Statement Processor
	CMNDB2PL Parameter Passed to CMNEX101
	Activating CMNEX101
	CMNEX101 Process
	CMNEX101 Usage Scenarios
	Scenario 1
	Scenario 2
	Scenario 3

	CMNEX101 Return Codes

	CMNEX103 Bind Control Statement Triage
	CMNDB2DD - HLL exit
	COBOL copybook
	PL/I copybook
	REXX variable names
	REXX Rample

	11. ISPF Tables and Variables
	ISPF Tables and Variables
	ISPF Tables and Variables
	ISPF Tables
	CMNDB2S1 - Db2 Physical Subsystem Table
	CMNDB2SS - Db2 Physical Subsystem Table for BIND
	CMNDB2S2 - Db2 Physical Subsystem Table (With Bind Failure)
	CMNDB2N1 - Db2 Logical Subsystem Table

	CMNDB2NN - Db2 Logical Subsystem Table for BIND
	CMNDB22N - Db2 Logical Subsystem Table for Secondary BIND
	CMNDB2NQ - Db2 Logical Subsystem Table for SQL/Stored Procedure
	CMNDB2AL - Db2 BIND Active Library Table
	CMNSQLAL - Db2 SQL/Stored Procedure Active Library Table
	CMNSQLTK - Db2 General Token Table for SQL/DDL operations

	Single Entry Control Variables

	12. Transaction Codes
	Transaction Codes
	Detailed Job List
	Miscellaneous Transactions - at Either Site

	13. Examples
	Examples
	Native SQL SP Versions and Bind Deploy
	Support Use of zFS File Type for SP Components
	Overview
	Component Design
	ZMF Administrative Functions
	CMNDB2DD Program Processing
	Skeletons
	CMNSTGER Processing
	CMNVCOMP Component Checkin Service
	Backward Compatibility
	Installation and Configuration

	14. Glossary
	15. Legal Notice
	Third-Party Notices
	Specific notices

