
ChangeMan ZMF

REST Services Getting Started Guide

8.3

© Copyright 2023 Micro Focus or one of its affiliates

ChangeMan ZMF

Table of Contents

4About this Guide

4The REST Services Getting Started Guide

4Guide to ChangeMan ZMF Documentation

6Using the Manuals

6Searching the ChangeMan ZMF Documentation Suite

7Typographical Conventions

8Installation and Configuration

8Pre-requisites

8Instructional Video Library

9Security set up

9Run INSTALL Job

10Locate JZOS Batch Loader (JVMLDM86)

10Create the Started task proc

10Update Environment settings

11Start Tomcat

11Deploy .war files

11Enable in ZMF Admin

13Simple Installation Verification Procedure

14Running multiple instances of ZMF

16Using ZMF REST Services

16Using REST Services

17Implementing http event notifications and REST APIs into ZMF

45ZMF supplied skeleton changes

49Sending Email Notifications for ChangeMan Lifecycle Events

53Batch Job Processing Options

55Sample REXX HLL exit code

57Support for custom processes

57External 3rd Party Dependencies

59Appendix A

59Appendix A: ZMF Utilities Notes

Table of Contents

Table of Contents 2

59CMNURIBA (Easy access to http methods from ZMF batch processes)

60Processing Overview

62Checking the availability of the REST server

64CMNURIRX (Easy access to http methods from a REXX exec)

66Legal Notice

66Third-Party Notices

66Specific notices

Table of Contents

Table of Contents 3

1. About this Guide

This guide reviews the basics of REST Services.

Use this document if you are responsible for any of these tasks:

Managing software at your enterprise

Managing test environments

Developing and changing software components managed by ChangeMan ZMF

This guide assumes that you are familiar with ChangeMan ZMF and your security system.

Guide to ChangeMan ZMF Documentation

The following sections provide basic information about ChangeMan ZMF documentation.

ChangeMan ZMF Documentation Suite
The ChangeMan ZMF documentation set includes the following manuals in PDF format.

The REST Services Getting Started Guide

• •

• •

• •

Manual Description

Administrator’s Guide Describes ChangeMan ZMF features and functions with instructions for

choosing options and configuring global and application administration

parameters.

ChangeMan ZMF Quick

Reference Guide

Provides a summary of the commands you use to perform the major

functions in the ChangeMan ZMF package life cycle.

REST Services Getting

Started Guide

Getting Started Guide for ZMF REST Services (this manual).

Customization Guide Provides information about ChangeMan ZMF skeletons, exits, and utility

programs that will help you to customize the base product to fit your

needs.

Db2 Option Getting

Started Guide

Describes how to install and use the Db2 Option of ChangeMan ZMF to

manage changes to Db2 components.

ERO Concepts Discusses the concepts of the ERO Option of ChangeMan ZMF for

managing releases containing change packages.

ERO Getting Started

Guide

Explains how to install and use the ERO Option of ChangeMan ZMF to

manage releases containing change packages.

1. About this Guide

1. About this Guide 4

Manual Description

IMS Option Getting

Started Guide

Provides instructions for implementing and using the IMS Option of

ChangeMan ZMF to manage changes to IMS components.

INFO Option Getting

Started Guide

Describes two methods by which ChangeMan ZMF can communicate with

other applications:

Through a VSAM interface file.

Through the Tivoli Information Management for z/ OS

product from IBM.

Installation Guide Provides step-by-step instructions for initial installation of ChangeMan

ZMF. Assumes that no prior version is installed or that the installation will

overlay the existing version.

Java / zFS Getting

Started Guide

Provides information about using ZMF to manage application components

stored in USS file systems, especially Java application components.

Load Balancing Option

Getting Started Guide

Explains how to install and use the Load Balancing Option of ChangeMan

ZMF to connect to a ZMF instance from another CPU or MVS image.

M+R Getting Started

Guide

Explains how to install and use the M+R Option of ChangeMan ZMF to

consolidate multiple versions of source code and other text components.

M+R Quick Reference Provides a summary of M+R Option commands in a handy pamphlet

format.

Messages Explains messages issued by ChangeMan ZMF, SERNET, and System

Software Manager (SSM) used for the Staging Versions feature of ZMF.

Migration Guide Provides guidance for upgrading ChangeMan ZMF

OFM Getting Started

Guide

Explains how to install and use the Online Forms Manager (OFM) option of

ChangeMan ZMF.

SER10TY User’s Guide Gives instructions for applying licenses to enable ChangeMan ZMF and its

selectable options.

User’s Guide Describes how to use ChangeMan ZMF features and functions to manage

changes to application components.

XML Services User’s

Guide

Documents the most commonly used features of the XML Services

application programming interface to ChangeMan ZMF.

•

•

ChangeMan ZMF Documentation Suite

ChangeMan ZMF Documentation Suite 5

Using the Manuals

Use Adobe® Reader® to view ChangeMan ZMF PDF files. Download the Reader for free at

get.adobe.com/reader/ .

This section highlights some of the main Reader features. For more detailed information, see the

Adobe Reader online help system.

The PDF manuals include the following features:

Bookmarks. All of the manuals contain predefined bookmarks that make it easy for you to

quickly jump to a specific topic. By default, the bookmarks appear to the left of each online

manual.

Links. Cross-reference links within a manual enable you to jump to other sections within the

manual with a single mouse click. These links appear in blue.

Comments. All PDF documentation files that Serena delivers with ChangeMan ZMF have

enabled commenting with Adobe Reader. Adobe Reader version 7 and higher has commenting

features that enable you to post comments to and modify the contents of PDF documents.

You access these features through the Comments item on the menu bar of the Adobe Reader.

Printing. While viewing a manual, you can print the current page, a range of pages, or the

entire manual.

Advanced search. Starting with version 6, Adobe Reader includes an advanced search feature

that enables you to search across multiple PDF files in a specified directory.

Searching the ChangeMan ZMF Documentation Suite

There is no cross-book index for the ChangeMan ZMF documentation suite. You can use the

Advanced Search facility in Adobe Acrobat Reader to search the entire ZMF book set for

information that you want. The following steps require Adobe Reader 6 or higher.

Download the ZMF All Documents Bundle ZIP file and the ZMF Readme to your workstation

from the My Downloads tab on the Serena Support website.

Unzip the PDF files in the ZMF All Documents Bundle into an empty folder. Add the ZMF

Readme to the folder.

In Adobe Reader, select Edit | Advanced Search (or press Shift+Ctrl+F**).

Manual Description

ZMF Web Services User’s

Guide

Using the Manuals Documents the Web Services application programming

interface to ChangeMan ZMF.

• •

• •

• •

• •

• •

1. 1.

2. 2.

3. 3.

Using the Manuals

Using the Manuals 6

Select the All PDF Documents in option and use Browse for Location in the drop down menu

to select the folder containing the ZMF documentation suite.

In the text box, enter the word or phrase that you want to find.

Optionally, select one or more of the additional search options, such as Whole words only and

Case-Sensitive.

Click Search.

In the Results, expand a listed document to see all occurrences of the search argument in that

PDF.

Click on any listed occurrence to open the PDF document to the found word or phrase.

Typographical Conventions

The following typographical conventions are used in the online manuals and online help. These

typographical conventions are used to assist you when using the documentation; they are not

meant to contradict or change any standard use of typographical conventions in the various

product components or the host operating system.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

Convention Explanation

*italics bold UPPERCASE monospace Introduces new terms that you may not be familiar with

and occasionally indicates emphasis.

**bold Emphasizes important information and field names.

UPPERCASE Indicates keys or key combinations that you can use. For example, press the ENTER

key.

monospace Indicates syntax examples, values that you specify, or results that you receive.

monospaced

italics

Indicates names that are placeholders for values you specify; for example, filename.

vertical rule | Separates menus and their associated commands. For example, select File | Copy

means to select Copy from the File menu. Also, indicates mutually exclusive choices

in a command syntax line.

Typographical Conventions

Typographical Conventions 7

2. Installation and Configuration

This chapter presents an overview of steps to install and configure.

Pre-requisites

Sufficient memory - the Tomcat JVM startup can fail due to a restriction on memory imposed by

local exits (e.g. IEFUSI or IEALIMIT etc.). The actual amount of storage needed during initialization

varies but is in the region of between 550 and 700 Mb depending on several factors including

which version of z/OS you are running. If you do not allow the address space to get the storage it

needs then it will fail during initialization, possibly with symptoms including rc=100 and

java.lang.OutOfMemoryError: Failed to create a thread.

Note also the external requirements listed at External 3rd Party Dependencies.

Instructional Video Library

You can get further information from the following instructional videos:

Introduction to ZMF REST Services (https://youtu.be/4q1b5Ya1Mzs)

How to Subscribe to a webhook using ZMF REST Services (https://youtu.be/dU9v7EEKvWQ)

An Overview of a Sample Jenkins Process (https://youtu.be/4lEKJimFk9Y)

ZMF REST Services Overview (https://youtu.be/gyGk3PCJd-A)

How to Store ZMF Credentials for Jenkins (https://youtu.be/ZA5CtfR_IfY)

How to Install ZMF REST Server Support (https://youtu.be/mFSU0DYkAdE)

How to Activate and Use ZMF REST Server (https://youtu.be/XjNh1SojFcg)

ChangeMan ZMF 8.2 Patch 4 is a requirement.

Important

• •

• •

• •

• •

• •

• •

• •

2. Installation and Configuration

2. Installation and Configuration 8

Security set up

You will be creating a Tomcat started task as part of this installation. This started task needs to be

assigned a userid with a valid OMVS segment. To allow the file permissions on the Tomcat install

directories/files to work best you should ensure that the started task userid is connected to a group

that has an OMVS gid associated with it. The userid submitting the install job must also be

connected to this group.

Note that neither the started task userid nor the group to which it is connected needs any kind of

ZMF authority. The stc userid/group need only have full access to the directories and libraries

which are part of the Tomcat installation process.

Run INSTALL Job

Change the job card in the sample JCL INSTALL member to suit your site. Make sure you specify

the GROUP parameter to be the common group to which the started task userid and the installer

userid are connected.

Set the JCL symbolic parameters to reflect your choice of location for the Tomcat install, e.g.

&INSTJCL is the sample install JCL library. This library also contains the ZMFPARMS member

which will be referenced by the Tomcat started task. &TCHOME is where the Tomcat executables,

and subsequently deployed application archives, will be stored.

The &SUBDAT directory should be specified to be outside of the Tomcat install directory structure

(&TCHOME). It will eventually contain your event subscribers data file.

Then run the Install job which should complete with all step return codes=0.

The /usr/tomcat directory should then be populated.

// SET INSTJCL=<dsnHLQ>.ZMF822TC.CNTL
// SET TCHOME='/usr/tomcat'
// SET SUBDAT='/usr/data'
// SET TDIR='/tmp'

Security set up

Security set up 9

Locate JZOS Batch Loader (JVMLDM86)

Locating JVMLDM86 - JVMLDM86 is an executable module is supplied by IBM as part of their Java

implementation and may well have already been copied to a PDSE by your site. If it hasn't then you

can do this with the following USS process:

Create the Started task proc

Update the TCPROC member to set the CNFGLIB and JZOSLIB variables to your libraries. The

JZOSLIB is where you have the JVMLDM86 load module, e.g. CMNTP.JZOS.LINKLIB, and then

place this member in a system proclib to be run as a started task.

Update Environment settings

Then update the TCENV member with appropriate values, for example:

Choose the ports on which you want tomcat to listen, and update the SERVVARS member, with

those values, for example:

Update the ZMFPARMS member - parameters are described within the member including the

default values if any.

The Subscribers.dat file will be created by the zmfrest application if it is not there (i.e. on first start

up). This is where the event subscriber information is held and there should be a unique location

for each REST server application that is deployed (see later for information on deploying multiple

applications).

cd /usr/lpp/java/J8.0_64/mvstools cp -X JVMLDM86 "//'CMNTP.JZOS.LOADLIB(JVMLDM86)'"

//TCPROC PROC CNFGLIB=CMNTP.TOMCAT.ZMF822TC.C7.CNTL, config XML & env script
// TCENV=TCENV, < Member of CNFLIB with STDENV script
// JZOSLIB=CMNTP.JZOS.LOADLIB, < JZOS launcher PDSE LIB
// VERSION='86', < JZOSVM version: 70,76,80,86

export JAVA_HOME=/usr/lpp/java/J8.0_64
CATALINA_HOME=/usr/tomcat
CATALINA_BASE=/usr/tomcat
IJO="-Xms64m -Xmx128m" # min and max Java heap sizes

<!ENTITY httpPort "8085"> <!-- the Tomcat HTTP port -->
<!ENTITY httpPorts "9992"> <!-- the Tomcat HTTP SSL port -->

Locate JZOS Batch Loader (JVMLDM86)

Locate JZOS Batch Loader (JVMLDM86) 10

Start Tomcat

When this has been done you can start the TomCat started task to verify success. Look out for

security errors which will occur if the permissions are not right:

Issue the STOP command to shutdown Tomcat

Deploy .war files

Edit the DEPLOY member for the zmfrest war file which copies the .war file to the webapps folder.

As soon as TomCat detects the presence of the .war files it starts activating the relevant servlets.

Enable in ZMF Admin

Once TomCat is running and the servlets are ready, Then the next step is to enable the interface in

the ZMF Global Administration Options facility (=A.G) panel CMNGAMN1.

Select option E - REST api server and then you will see panel CMNGRS01:

ICH408I USER(SERT) GROUP(CMNTP) NAME(CHANGEMAN TECH PUBS) 457
 /u/sert/Q001/TomCat/logs/localhost_access_log.2019-09-17.txt
 CL(DIRACC) FID(01E2D9C8C6E2F5000F04000688610000)
 INSUFFICIENT AUTHORITY TO OPEN
 ACCESS INTENT(-W-) ACCESS ALLOWED(OTHER R-X)
 EFFECTIVE UID(0000000586) EFFECTIVE GID(0000000024)

CMNGAMN1 Update Global Administration Options
Option ===>___
1 Parms Global parameters
2 Library Library types
3 Language Language names
4 Procedures Compiling procedures
5 Reason Codes Reason codes for unplanned packages
6 Sites Site information
7 Lock Application parameter locks
8 HLL Exits High level language exits
9 Field Names User field name substitution
C Component Component information
D Dates Installation calendar
E REST REST api server
H Housekeeping Housekeeping tasks
I Impact Impact Analysis
N Notify Global notification file
O Options Selectable options
R Reports ChangeMan ZMF batch reports
S Skeletons Skeleton procedures

Start Tomcat

Start Tomcat 11

This allows you to maintain the values used by the ZMF REST api servers. To save all changes and

leave this panel use PF3/end. To discard all changes and leave use the CANCEL primary command.

ENTER redisplays the panel with the same values, nothing is saved.

CMNGRS01 REST api server
Command===> ___________________________________

 Server procedure . . SERDTCI
 address . . d001.microfocus.com
 port . . 09992
 context . . zmfrest

 http send time-out . . 0000008
 http recv time-out . . 0000008

Enter / to select option
 _ Issue start command for procedure?
 _ Server active?
 / Poll for server using http?

 / Apply saved admin settings

Item Description

**Server

procedure

The name of the cataloged procedure which is used by ZMF to start the Tomcat

started task which will host the REST api server.

**address The DNS name or IP address of the server.

**port The port number on which the server is listening.

**context The context used by the REST api servlet running in the server address space. The

default is zmfrest.

**http send

time-out

The send time out value (in seconds) applied to connections from internal ZMF

functions to the REST api server. The range is 1 - 2678400 and the default is 2

seconds.

**http recv

time-out

The receive time out value (in seconds) applied to connections from internal ZMF

functions to the REST api server.

The range is 1 - 2678400 and the default is 2 seconds.

**Issue start

command for

procedure?

Use '/' to have ZMF issue the start command for the Tomcat procedure. If the REST

api server is required to be active then ZMF will issue the start command during

initialization if it cannot detect the presence of the relevant servlet. The same is true

should these admin definitions be applied 'in-flight'. Only select this option if you

wish to run your Tomcat started task on the same LPAR as this ZMF instance.

**Server active? Use '/' to activate REST server support within this ZMF instance. Turning this on will

prompt ZMF to fill in relevant ISPF skeleton and HLLX REXX variables supporting the

event emission processes. It will also cause ZMF to actively look for the presence of

the relevant Tomcat hosted REST servlet.

Enable in ZMF Admin

Enable in ZMF Admin 12

This completes the TomCat install and initial configuration.

Simple Installation Verification Procedure

With your ZMF instance up and running and the tomcat web apps configured correctly in ZMF

Global Admin, you should be able to contact your target ZMF with a REST call. Use the / zmfrest/

list url to get a list of ZMF REST api's up, an example: http://d001.microfocus.com:8085/zmfrest/

list

You can logon to your target ZMF using your TSO userid and password and then try driving one of

the apis via the 'prototyping' facility, for example:

Scroll down to find the 'Parms' category, then open up the two apis by clicking the row.

Get the global parameters for your target ZMF subsystem. This API requires no parameters (there

is only one set of global parms) so clicking the 'Test' button on the right brings up the next panel

where you would normally specify parameters (there are none for this call), then click on the ’Test

API’ button on that panel.

Item Description

**Poll for server

using http?

Use '/' to require ZMF to issue http requests to detect the presence of the REST

server. The default detection process is via a sysplex wide enqueue mechanism

which is more efficient than using http. However, if your Tomcat started task is not

running on the local sysplex then the http mechanism must be used.

**Apply saved

admin settings

Once any updates have been made the dialog will use the REFRESH service to take

the actions required to apply the settings, e.g. start the server, as required.

Simple Installation Verification Procedure

Simple Installation Verification Procedure 13

You should receive a list of global parameters for your target ZMF subsystem in JSON format

looking similar to this:

Running multiple instances of ZMF

The Tomcat started task will support multiple instances of ZMF simultaneously. You need a

different 'context' for each ZMF instance you wish to support. In order to do this you must copy the

zmfrest.war file to different names within the Tomcat webapps directory, e.g. zmfrestj.war was

created to support another instance (subsys=J) separately from an existing instance. Then you add

context specific qualifiers to the parameters in ZMFPARMS - an example

Running multiple instances of ZMF

Running multiple instances of ZMF 14

You will need to add the relevant 'log' DD name to the tomcat procedure, e.g.

This needs to be added for the context zmfrest, via the A.G.E panel accordingly.

#
General Parameters
#
ZMFHOST=D001.MICROFOCUS.COM
ZMFRESTHOST=D001.MICROFOCUS.COM
#
U820ALL Parameters
#
ZMFREST.ZMFSUBSYS=I
ZMFREST.ZMFNAME=U820ALL
ZMFREST.ZMFPORT=6611
ZMFREST.ZMFEVENTFILE=/u/cmndev/tomcati/Subscribers.dat
#
U820DP Parameters
#
ZMFRESTJ.ZMFSUBSYS=J
ZMFRESTJ.ZMFNAME=U820DP
ZMFRESTJ.ZMFPORT=6621
ZMFRESTJ.ZMFEVENTFILE=/u/cmndev/tomcatj/Subscribers.dat

//ZMFREST DD SYSOUT=*

For a complete list of Rest Services startup parameters, see the ZMFPARMS.JCS samples file

distributed with ChangeMan ZMF.

Note

Running multiple instances of ZMF

Running multiple instances of ZMF 15

3. Using ZMF REST Services

This chapter presents an overview of REST Services concepts.

Exposing ChangeMan ZMF function through REST Services

Development Workflow

Design Overview

Event Variables

Event Source

Event Clients

REST Services

Event Subscribers

Jenkins Attributes

Miscellaneous Attributes

Subscriber Flow Definition - Sample Screen Prints

Using application filtering with the REST server

REST Services

REST Services Extensions

REST interface

REST Services Table

ZMF supplied skeleton changes

Sending Email Notifications for ChangeMan Lifecycle Events

Batch Job Processing Options

Sample REXX HLL exit code

Support for custom processes

External 3rd Party Dependencies

Using REST Services

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

3. Using ZMF REST Services

3. Using ZMF REST Services 16

Implementing http event notifications and REST APIs into
ZMF

Overview
The purpose of this product enhancement is essentially two fold:

To expose ChangeMan ZMF events to external authorized subscribers in the form of

webhooks, and to act upon responses returned from those subscribers.

There may be from zero to any number of webhook subscribers of a given ZMF event

notification.

The webhook subscription on which support is focused in this first release is serviced by

Jenkins.

'Endpoint' support such as SonarQube, Jira, Octane etc is provided via existing Jenkins

Plugins etc.

While Jenkins is the focus, the support is generic and other products/processes may

subscribe to these webhooks. The webhook is driven using standard http messages and it is

for the webhook target to handle the message.

To take incoming 'unsolicited' requests from authorized users to perform a function within

ZMF. These will be in the form of an incoming REST api call.

Exposing ChangeMan ZMF function through REST Services
Many existing ZMF users are exploring Agile development and automated tool chains as part of a

continual improvement process for accelerating Mainframe Application development. The role of

ZMF in these processes is changing with the requirement being that ZMF now participate rather

than drive the development process as sites move to continuous integration and delivery pipelines.

A number of large ZMF sites are building workflows with a variety of proprietary and open source

technologies and want to be able to integrate their ZMF implementation into these new pipelines.

The requirement is support the user needs to be able to integrate ZMF as part of an automated

workflow by exposing ZMF functions as REST apis that will enable these functions to be initiated

from a participating subscriber in an automated workflow.

As a generic requirement it is key to make sure the api meets the standards and requirements that

are expected in this space. This means ensuring the following:

Supports a REST-based interface

Implementing http event notifications and REST api's into ZMF

1. 1.

• •

• •

• •

• •

2. 2.

1. 1.

Implementing http event notifications and REST APIs into ZMF

Implementing http event notifications and REST APIs into ZMF 17

Supports an HTTP callback (WebHook) mechanism for event notification. This will provide the

push mechanism from ZMF to whatever distributed orchestration started the workflow, such

as Jenkins. This is a specific implementation of the bidirectional support.

Provides a secure interface. Credentials are not visible in scripts and are transmitted securely.

Others use a Jenkins plug-in to generate a pass token that is passed in the REST api.

Development Workflow

A code change has been identified as a task in an agile planning tool. This drives the creation

of a simple package in ZMF.

Source members can then be checked out from the base line into a specific package. This

could be driven from an IDE task initiated by a developer or as part of an automated process.

For any given package there is a need to:

Get a member list of the package with filters on source type as an option.

Get the actual source member or members from the package.

Get build meta-data for a particular member or members.

When any components from a package are committed back to ZMF (Check in) an event is

triggered which could be used by any tool which is part of a distributed orchestration.

For coding standards or security rules analysis when a component has been checked into

ZMF then a workflow requests a component and all dependencies from a package. Source

code would be delivered as part of the request and this could then be passed by an

orchestration engine to a separate process for analysis.

As part of a workflow or process initiated by a developer a component build can be requested.

This will build the component on the mainframe based on the build metadata for the

component. When the build has completed this triggers an event.

The build status from a component build needs to available so that any errors in the build

step can be returned to an IDE or to a distributed orchestration tool.

This build process could be iterative based on the number of components in a package.

On successful build the contents of a package can then be promoted which could then trigger

automated testing.

When a code change as part of a package has been tested then this can be associated to an

existing ERO release.

2. 2.

3. 3.

1. 1.

2. 2.

3. 3.

a. a.

b. b.

c. c.

4. 4.

5. 5.

6. 6.

a. a.

b. b.

7. 7.

...

8. 8.

...

Development Workflow

Development Workflow 18

Design Overview
The ZMF/Jenkins integration implementation consists of a number of loosely coupled services.

This section gives a brief overview of the main components:

Events

Describe something that has occurred in ZMF. For example, Package Create.

Event Variables

Standardized variable names used throughout the various services.

Event Source

The source of a ZMF Event.

Event Clients

Program to forward a specific event from an Event Source to REST Services

Event Subscribers

An entity represented by a URI that subscribes to one or more ZMF Events.

REST Services

REST services provides a REST API for Change Man ZMF Services. This is a true REST API

where each transaction connects to ZMF, processes the request, disconnects from ZMF and

returns the result to the client. Also processes events sent from the event clients. Handles

sending events to multiple subscribers and custom response handling.

ZMF REST Services Extensions

A client side wrapper for ZMF REST API’s. This implements support for bulk client transactions

and helper methods that demystify ZMF data structures.

Jenkins SCM Plugin interface

A Jenkins Plugin to provide ZMF SCM functions in pipeline scripts.

Security Considerations

Security Considerations for ZMF / Jenkins Environment.

Events

The ZMF Package/Component lifecycle may be described by a series of Events. This section

identifies the published events as well as the event source. The following sources generate

events depending on the type of processing:

SKEL

ISPF Skeletons customize batch processing in ZMF. Batch processes generate Events by

imbedding the appropriate Event Skeleton (An Event Client).

HLLX

Exit routines in ZMF that provide consistent processing for multiple client types. These

routines generate Events by calling the Event Client.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Design Overview

Design Overview 19

LOG

ZMF writes Log records at many points during processing. A post-processing routine sends

the records to REST Services.

The table below lists the currently defined ZMF Events (Taken from the existing ZMF Event

Log) A review of ZMF Services is required to determine additional event points.

Events with an Asterisk are not processed. The SKEL/HLLX/LOG columns indicate if this

source is capable of generating the event. (values are Yes/No/Maybe).

• •

Event Event

Source

Description

SKEL HLLX LOG

00 N N Y major - initialize/terminate

01 Y Y Y Backout Package

02 Y N Y Install Package

03 Y N Y Temporary Change Cycle

04 Y N Y Distribute Package

05 N N Y Unauthorized Member Access

07 N N Y Generate Package Information

08 N N Y Delete Package (Physical

Delete)

09 N M Y Update Application

Information

10 note1 Y Y Revert Package

11 N N Y Update Global Information

12 Y N Y Activate Component

13 N N Y Memo Delete Package

14 N N Y Undelete Package

15 Y N Y Baseline Ripple

16 Y N Y Reverse BAseline Ripple

18 N N Y Age Installed Package

20 N Y Y Approve Package

21 N N Y Re-sync Calendar

22 N N Y Age Staging Libraries

23 note4 N Y Backout Release

Design Overview

Design Overview 20

Event Event

Source

Description

24 note4 N Y Install Release

25 note4 N Y Distribute Release

26 N N Y Delete Release

27 note4 N Y Revert Release

28 N N Y Approve Release

29 N N Y Reject Package

30 N Y Y Reject Package

31 N N Y Memo Delete Release

32 N N Y Undelete Release

33 note4 N Y Baseline Release

34 N N Y Install Release Aged

35 N N Y Block Release

36 N N Y Unblock Release

37 N N Y Create/Update Release

38 N N Y HLLX Administration

39 N N Y HLLX Commands

40 N Y Y Freeze Package

42 N Y Y Selectively Unfreeze Package

43 note2 note2 Y Demote Component

44 Y Y Y Demote Package

45 Y N Y Promote Release Area

46 Y N Y Demote Release Area

48 Y Y Y Promote Package

49 note2 note2 Y Promote Component

50 Y Y Y Audit Package

51 N N Y Alter Audit Return Code

52 Y N Y Audit Release Area

53 N N Y Approve Release Area

54 N N Y Reject Release Area

Design Overview

Design Overview 21

Event Event

Source

Description

55 N N Y Block Release Area

56 N N Y Unblock Release Area

57 Y N Y Submit package audit Auto

resolve

58 Y N Y Submit Release Audit Auto

Resolve

60 N N Y Lock package before promote

62 N N Y Unlock Package after promote

64 N Y Y scratch a component

66 N Y Y rename a component

67 Y Y Y Relink component

68 N N Y copied a component

69 N N Y Recompile Component

70 N N Y file tailoring started

71 N N Y file tailoring failed

72 N N Y file tailoring completed

78 note3 Y Y Checkin to release area

complete

79 N N Y Retrieve from release area

complete

80 N Y Y Create Package

81 note2 note2 Y Check component into release

area

82 note3 Y Y Checkout Component

83 N N Y potential checkout conflict

84 N Y Y Stage Component

85 N N Y overlay previous module

86 N Y Y delete component from

package

87 note3 Y Y Checkout Component from

release

88 N Y Y copy forward package

Design Overview

Design Overview 22

note1: Depending on whether you are working with an ALL or DP/P sites there may not be a

batch job associated with a package revert. The skels notification of this event takes place

where a batch job is used.

note2: These events may apply to many thousands of components in a single action. It makes

no sense to call the REST server for each component. The package (or area) level action event

is supported and any process driven by the package level event can use ZMF REST services to

query the package for individual components should that be necessary.

note3: A batch job is only involved, and this event emitted via the skels notification, if the

action is performed in batch mode.

note4: An ERO release ties together one or more ZMF packages. When you do anything at the

back end of a release lifecycle (e.g. install a release etc.) you are actually causing the same

action to be taken for the group of packages that make up the release. So each of these

packages will already be generating standard (i.e. base ZMF) events for these actions (e.g. 02

- Install package). For these events, you should use the 'log' emitted event.

Event Event

Source

Description

89 N N Y Retrieve component from

release

90 N N Y monitor limbo and internal

scheduler

91 N N Y Update Release Global

Approvers

92 N N Y Update Release definitions

93 N N Y Update Release Applications

94 N N Y attach package to release

95 N N Y detach package to release

96 N N Y link a release (RLM function?)

97 N N Y unlink a release (RLM function)

100 Y Y N Pre-Build

101 Y Y N Build

• •

• •

The individual component events will continue to be written to the log for post-processing.

Note

• •

• •

Design Overview

Design Overview 23

Event Variables
There are many ’Variables’ in the ZMF/Jenkins integration. Standard variable names provide

consistency for multiple services across multiple platforms. Jenkins jobs often use ’build

parameters’ to customize processing, supplied in name/value pairs. Incorrect parameter names

passed to a Jenkins process will cause a failure. These processes must use the standard names.

Parameters for Event Clients

Parameters passed from Event Clients to REST Services (QUERY/JSON)

Parameters passed from REST Services to JENKINS

Parameters passed to ZMF REST Services (QUERY/JSON)

ZMF Specific VARIABLE NAMES:

APPL

PACKAGE

LIBTYPE

COMPONENT

RELEASE

RELEASEAREA

PROMOTIONNAME

SITE

PROMOTIONLEVEL

JOBNAME

JOBNUMBER

USERID

RESTSERVER (REST Services URL to identify ZMF)

EVENTSOURCE (skel, hllx, log)

ZMF Non-specific Variables

EVENT

WAIT

RETURNCONTENT

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

Event Variables

Event Variables 24

Event Source
Events can be generated from a number of sources. The Event Source may be:

A HLLX routine: A step in ZMF batch job (ISPF SKEL) LOG Task.

Event Clients
Event Clients forward specific Events to REST Services for processing. REST Services provides a

centralized service for processing multiple subscribers and holds key information including

subscriber security. The following variables should be included in all event requests to REST

Services:

EVENT=XX

WAIT=Y/N

RETURNCONTENT=Y/N

+ All applicable ZMF Variables. See Event Variables for a list of variables

REST Services
REST Services is a centralized service for processing Events. It manages:

Subscribers through a Web Application

Receiving Event requests from Event Clients

Sending Events to one of more subscribers

Interpreting response from each subscriber

Sending response to each Event Client

REST Services will return data in JSON format. The response data is held in a tag named

EVENT_RESULT. EVENT_RESULT holds an array of JSON elements for each subscriber:

TARGET_EVENT The subscriber Event

TARGET_ID The Target ID

TARGET_URL The Target URL

This forces user scripts to use the ZMF defined variable names.

Note

•

• •

• •

• •

• •

...

• •

• •

• •

• •

• •

• •

• •

• •

Event Source

Event Source 25

TARGET_HTTP_CODE The HTTP Status code from the Target

TARGET_HTTP_MESSAGE The HTTP Status message from the Target

TARGET_JENKINS_JOB_NUMBER The Jenkins Job Number

TARGET_RESULT_URL URL to display Jenkins JOB Console output

TARGET_JOB_STATUS Jenkins Job Status

TARGET_JOBCONTENT Content of (TARGET_RESULT_URL)

TARGET_SONAR_QUBE_URL The URL to display Sonar Qube result

Event Subscribers
A ZMF Subscriber represents an entity interested in a ZMF Event. The subscriber is identified by

the following attributes:

General Attributes:

Subscriber Name A user defined friendly name for the subscriber (64 Characters)

Event The ZMF Event number (A Valid ZMF Event Number) - selected from a drop down list

URL The Subscriber URL. (256 Characters) • HTTP Method POST/GET. The HTTP Method for

this subscriber

Return Content - true/false. Flag to denote if content is expected back from the event

notification to the subscriber

Enabled true/false. Flag to enable/disable specific subscriber.

HLLX source - true/false. Set if an HLLX action can trigger this event

Skel Source - true/false. Set if the event can be triggered from an ISPF Skeleton

Log Source - true/false. Set if the event can be triggered as a result of logged event

Setting more than one of the above 3 sources to true will result in multiple triggers for the same

event. The source of the event will be supplied on the list of parameters sent to the subscriber.

Parameters QUERY/JSON Deliver parameters through QUERY String or JSON Body

AWS Subscribers now have the ability to add custom headers to all outgoing HTTP requests. The X-

API-KEY header can then be added along with the appropriate value for the subscriber. The

subscription process now includes the ability to add 4 custom header name/value pairs to the

subscriber definition. Headers are sent to the subscriber in the outbound HTTP request.

• •

• •

• •

• •

• •

• •

• •

REST Services will be responsible for managing Event Subscribers. ...

• •

• •

• •

• •

• •

• •

• •

• •

•

Event Subscribers

Event Subscribers 26

Security Attributes:

Authorization - NONE/BASIC

Userid - The userid to be used for BASIC authentication (64 Characters)

Password - The password to use for BASIC authentication (64 Characters)

ZMF Filtering Attributes Filter

Appl - filter definition that limits processing to this Application. (4 Characters)

Lib Type - filter definition that limits processing to this Library Type. (3 Characters)

Filtering allows the subscriber to refine the events received. For example, they may only want to

receive events for application "DEMO".

Jenkins Attributes:

Jenkins true/false. Flag indicating a Jenkins target.

Project Identifies the Jenkins JOB to run.

CLI use Jenkins CLI interface

Wait (true/false) Flag to signal that the process should wait for the Jenkins job to complete.

Timeout Timeout in Milliseconds (if wait = true)

Miscellaneous Attributes

Parser flag or string indicating how to parse results. This allows for specific plugins to process

subscriber results within REST Services.

ZMF Variables: (List of Requested ZMF Variables)

Each ZMF Variable represented by a YES/NO selection (See Section on ZMF Variables)

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

•

•

Jenkins Attributes:

Jenkins Attributes: 27

Subscriber Flow Definition - Sample Screen Prints
Sample screen prints of a Subscriber flow definition are shown below:

Partial List webhooks subscribers panel example

Subscriber Flow Definition - Sample Screen Prints

Subscriber Flow Definition - Sample Screen Prints 28

Example of a Component Checkout Subcription

Example showing a partial drop down list of Events that might be subscribed to

Using application filtering with the REST server

Using application filtering with the REST server

Using application filtering with the REST server 29

Subscriptions to the REST server may be filtered on application and library type such that event

notifications are only acted on if the application (or libtype) passed on the notification matches the

filter. By default all applications (and libtypes) will pass filtering. It may be that you only wish to

implement REST server notification for certain specific applications, this filtering can be

implemented at the REST server by coding a list of applications (separated by a semi-colon) in the

relevant filter field. However, this still results in unnecessary network traffic (and delay to the

application which is not taking part in event notification) as the filtering is not done until the

notification reaches the REST server. ZMF has been set up to avoid this unnecessary traffic/delay

by separate mechanisms for HLLX and skeleton processing. For skeleton processing file tailoring

only takes place for a specific package and, as such, the application is fixed for that particular file

tailoring exercise. The file tailoring programs will pass the application when they query the REST

server to see if an event has any subscribers.

If the application does not pass filtering at the REST server then the file tailoring program will mark

that event as 'inactive' for this process and the relevant event notification steps will not be

generated in the JCL created. For HLLX the decision on whether an event is 'active' or not is taken

by the main program driving the exit calls. An HLL exit call could be for any application so the same

test (as for skels processing) cannot be made.

To avoid unnecessary traffic to the REST server from HLL exits you must code the application

selectivity yourself in the exit code, i.e. check a list of 'REST server active' applications in your exit

code prior to making a call to CMNURIRX (more information on the mechanisms used to call the

REST server from both HLL exits and batch job steps is given below).

Using application filtering with the REST server

Using application filtering with the REST server 30

REST Services
Standard ZMF Web Services provides comprehensive coverage of ZMF Services. The learning

curve is steep, as the client must implement session management to wrap requested transactions

with logon and logoff requests. This is the proper tool to use for full-function clients. ZMF REST

Services (ZRS) provide REST API’s for ZMF Services. ZRS is a wrapper on ZMF XML Services and

works in a manner similar to the XML Prototype tool in TSO. Like the prototype tool, each call

includes authentication to wrap the call with logon and logoff requests. This is standard

processing for REST, as by definition, each transaction is stateless.

ZRS Requests follow this standard URL Pattern: http://host:port/context/Request

REST Services

REST Services 31

context - is the servlet context where ZRS is deployed (typically zmfrest)

Request is the service name to call. This is an alias to the SERVICE/SCOPE/ MESSAGE

implemented in ZMF. For example, APPLPARMS represents PARMS/APP/ LIST

ZRS accepts input parameters from a QUERY String or JSON body.

Parameters use standard variable names.

Output may be in XML or JSON format. The ’accept’ header supplied by the client dictates the

output format. Some services will override this as appropriate.

REST Services Extensions
A checkin request typically references a temporary file or data set that contains the source content

to be stored in a ChangeMan package. For REST Services clients, content may now be included in

the HTTP Request body.

The REST Services checkin extension:

Permits a new value to be specified for the chkinSourceLocation parameter. This parameter

may be set to 'B' to indicate content is included in the request body.

Adds a new parameter "codepage" to the checkin request. This parameter identifies the code

page of the included content. Content is translated to the ChangeMan codepage by REST

Services. The default value is UTF-8.

Validates that the package component is locked by the user issuing the checkin request. This

validation may be disabled by specifying CHECKIN_LOCK_REQUIRED=N as a REST Services

parameter in the ZMFPARMS data set.

Validates that the package component is not being edited by another user. This validation may

be disabled by specifying CHECKIN_TEST_ENQUEUE=N as a REST Services parameter in the

ZMFPARMS data set.

REST interface
To get a detailed list of the required/optional parameters (aka API variables) applicable to a

specific REST API, this can be obtained with the following URI.

/zmfrest/list

For example within a browser: http://d001.microfocus.com:8085/zmfrest/list

From there you may filter the display to show additional required / optional parameters:

• •

• •

1. 1.

2. 2.

3. 3.

4. 4.

REST Services Extensions

REST Services Extensions 32

The REST API web application can be used to explore and prototype the ZMF REST API calls.

To place a call in a program or script you need just use the relevant url and supply the parameters

either as query parms or as a JSON body.

To authenticate your request at the target ZMF you must place your RACF userid and password into

the authentication header of the request being sent to the server.

The header value should look like this:

'Authorization':'Basic <encoding of userid:password>'

where <encoding of userid:password> is a base 64 encoding of <userid>:<password> .

REST interface

REST interface 33

REST Services Table

**Method **Name **Category **Description

GET skels/header 3Dskels Get 3D-skels header information

GET skels/variables 3Dskels Get 3d-skels variable information

GET approver/appl Approver Get application approver information

GET approver/package Approver Get package approver information

GET release/approver Approver Get release approvers information

GET release/approver/ area Approver Get release area approvers

information

GET release/approver/

associated

Approver Get release area associated approvers

information

GET release/approver/

global

Approver Get release global approvers

information

GET change-description Component Get component change description

GET component Component Get package component information

(non- generated components, e.g.

src,cpy,pds)

DELETE component Component Delete package component

GET component-

description/appl

Component Get application level component

description information

GET component-

description/appl/ find

Component Find the application level description

which applies to a component

PUT component-

description/appl/ lripple

Component Get baselined application level

component description information

PUT component-

description/appl/ ripple

Component Baseline application level component

description information

PUT component-

description/appl/ rriple

Component Reverse baseline application level

component description information

GET component-

description/global

Component Get global component description

GET component-owner/ appl Component Get component application ownership

rules

GET component-owner/

appl/check

Component Check component application

ownership rules

GET component- security/

appl

Component Get application level component

security rules

REST Services Table

REST Services Table 34

**Method **Name **Category **Description

GET component- security/

appl/check

Component Check application level component

security rules

GET component- security/

appl/find

Component Find the application level security rule

which applies to a component

GET component- security/

global

Component Get global component security

information

GET component/browse Component Browse a component

GET component/

browsebaseline

Component Browse a baseline component

GET component/

browsedependencie s

Component Browse Component Dependencies

GET component/

browsepackage

Component Browse a package component

PUT component/build Component Build a like-src component

PUT component/checkin Component Check a component into a package

PUT component/ checkout Component Check a component out into a

package

GET component/ checkouv Component Validate package status prior to

checkout

GET component/ compare Component Compare components

GET component/lct Component List LCT Load Definitions

GET component/load Component Get package generated component

information (load modules etc.)

PUT component/lock Component Lock component

GET component/ packagelist Component Get a list of package component

information

GET component/

promotionhistory

Component Get promotion history information for

a component

PUT component/rebuild Component Mass component rebuild

PUT component/ recompile Component Recompile a component

PUT component/relink Component Relink a component

PUT component/rename Component Add baseline component rename

information to a package

PUT component/scratch Component Add baseline component scratch

information to a package

REST Services Table

REST Services Table 35

**Method **Name **Category **Description

GET component/source-

include

Component Get source includes (copybooks)

information

GET component/source-

include/count

Component Get dynamic source include copybook

count

GET component/source-

include/locate

Component Get dynamic source includes

(copybooks) information

GET component/source-

include/nolocate

Component Get copybook details from source/

include or Impact Analysis

GET component/static‐
include

Component Get static subcomponent information

PUT component/unlock Component Unlock a component

GET component/utility Component Get package utility (scratch rename)

information

GET component/version Component Get save staging versions (SSV)

information

PUT component/version Component Retrieve a prior version of a package

component from the SSV store

GET component/ version-

regression/ list

Component List Component Version Regressions

GET component/worklist Component Get package worklist information

GET history Component Get component history

GET history/base Component Get latest baselined component

history

GET history/concurrent Component Get history for a component active

concurrently in different packages

GET history/current Component Get current history for a component

GET history/language Component Get Component Language

GET history/listload Component Get history for target components

associated with a source component

GET history/listname Component Get a component name-libtype list

GET history/package Component Get a list of component history for a

package

GET history/short Component Get a list of history for components in

motion

GET procedures/

designated/appl

Component Get application level component

designated procedure rules

REST Services Table

REST Services Table 36

**Method **Name **Category **Description

GET procedures/designated/

appl/ check

Component Check application level component

designated procedure rules

GET procedures/

designated/appl/find

Component Find the application level designated

procedure rule which applies to a

component

GET procedures/

designated/global

Component Get global component designated

procedure information

GET db2aplactv DB2/IMS Get application DB2 active library

information

GET db2attr DB2/IMS Get DB2 remote package attribute

information

GET db2logical/appl DB2/IMS Get application DB2 logical

subsystem information

GET db2logical/global DB2/IMS Get global DB2 logical subsystem

information

GET db2physical DB2/IMS Get global DB2 physical subsystem

information

GET db2secondary DB2/IMS List Application DB2 Secondary Bind

Definitions

GET db2token/appl DB2/IMS Get application DB2 general token

information

GET db2token/global DB2/IMS Get global DB2 general token

information

GET imscrgn/appl DB2/IMS Get application level IMS control

region information

GET imscrgn/global DB2/IMS Get global IMS control region

information

GET imsdbd/appl DB2/IMS Get application level DBD override

information

GET imsdbd/global DB2/IMS Get global DBD override information

GET imsdbd/package DB2/IMS Get package level DBD override

information

GET imspsb/appl DB2/IMS Get application level PSB override

information

GET imspsb/global DB2/IMS Get global PSB override information

GET imspsb/package DB2/IMS Get package level PSB override

information

REST Services Table

REST Services Table 37

**Method **Name **Category **Description

GET package/imsacb DB2/IMS Get package IMS ACB information

GET package/imscrgn DB2/IMS Get package IMC control region

information

GET system/db2 DB2/IMS Lists DB2 subsystem names

GET forms/global Forms Get global forms information

GET forms/package Forms Get package forms information

PUT forms/package/approve Forms Approve package forms

GET forms/package/

comment

Forms Updates the comments for an online

form in a package.

GET forms/package/detail Forms Detail package forms

PUT forms/package/reject Forms Reject package forms

PUT forms/package/submit Forms Submit package forms

GET calendar General Get installation calendar detail

GET calendar/summary General Get installation calendar summary

GET dss General Lists member hash token and

directory entries for a dataset.

PUT dss General Allocate a dataset

DELETE dss General Delete a dataset

GET dss/baseline/ mbrstats General Get member stats for a baseline

component

PUT dss/expand General Expand baseline libraries

GET dss/info General Get dataset information

GET dss/ispfinfo General Get the allocation information to be

used for allocating an ISPF file

tailoring or other temporary dataset.

DELETE dss/member General Delete a member of a dataset

GET dss/stclist General Lists the datasets allocated to the

requested ddname in the ZMF started

task.

GET fieldnames General Get ZMF field name information

GET language/appl General Get application language information

GET language/global General Get global language information

GET log General Lists activity log entries

REST Services Table

REST Services Table 38

**Method **Name **Category **Description

POST log General Creates an activity log entry

GET notifyfile/download General Downloads the global notification file.

PUT notifyfile/upload General Uploads the global notification file.

GET parameters/appl General Get application parameters

GET parameters/global General Get global parameters

GET procedures/appl General Get component compile procedures

defined to an application

GET procedures/global General Get component compile procedures

defined globally

GET reasons General Get global backout or revert reasons

GET restversion General Get Rest Services Version

GET schedule General Get CMN scheduler information

PUT schedule/hold General Hold a package in the CMN scheduler

GET schedule/release General Release a package in the CMN

scheduler

GET site/appl General Get application level site information

GET site/global General Get global site information

GET site/package General Get package site information

GET system/ environment General Lists current system environment

information

GET system/product/ users General Lists active users of a given product

GET system/properties General Lists a variety of system type

information

GET system/rest General List ZMF Rest Services Configuration

GET system/rest/refresh General Refresh ZMF Rest Services

Configuration

GET system/security- group General Lists connected security groups

GET user/notify General Sends a message to users.

GET user/notifyex General Sends message to Users via Rest

Services

GET zmf-environment General Lists information about the ZMF

environment.

REST Services Table

REST Services Table 39

**Method **Name **Category **Description

GET impact/bun Impact

analysis

Get impact analysis Baseline Unique

Number (BUN) information

GET impact/component Impact

analysis

Get impact analysis component

information

GET impact/row Impact

analysis

Lists component impact analysis

information

GET baselib/listlevel Library List Baseline Levels

GET baselib/listsrd Library List Baseline SRD Levels

GET library/baseline Library Get baseline library information

GET library/production Library Get production library information

GET library/promotion Library Get promotion library information

GET library/promotion/ site Library Get promotion library site information

GET libtype/appl Library Get application level library type

information

GET libtype/global Library Get global library type information

GET libtype/package Library Get package level library type

information

GET release/libtype Library Get release area library type

information

GET release/libtype/bun Library Get release libtype and BUN

correlation information

DELETE package Package Delete a package

GET package/affapls Package Get package affected applications

information

PUT package/approve Package Approve/reject a package

PUT package/attach Package Attach a package to a release

PUT package/audit Package Submits a job to audit a package

PUT package/backout Package Backout a package

PUT package/check/

promote

Package Checks if a promote request is valid

without performing the promotion.

PUT package/cleanup/

promote

Package Performs promotion cleanup at

installation.

GET package/cmpdesc Package Get component descriptions from

package records

REST Services Table

REST Services Table 40

**Method **Name **Category **Description

GET package/ component/

integrity

Package Check the integrity of component

metadata for a package

PUT package/demote Package Demote a package

PUT package/detach Package Detach a package from a release

PUT package/forms/

refreeze

Package Refreeze package forms

PUT package/forms/

unfreeze

Package Unfreeze package forms

PUT package/freeze Package Freeze a package

GET package/gendesc Package Get package level general

descriptions

GET package/genparms Package Get package parameters

GET package/implinst Package Get package implementation

instructions

GET package/ participating Package Get participating package information

GET package/prmcmp Package Get package promoted components

information

PUT package/promote Package Promote a package

GET package/

promotionhistory

Package Get package promotion history

PUT package/ promotionlock Package Obtain a package promotion lock

GET package/

promotionoverlay

Package Lists components that would be

overlayed if a package was promoted.

PUT package/

promotionunlock

Package Release a package promotion lock

GET package/reasons Package Get backout/revert reasons for a

package

PUT package/refreeze/

nonsource

Package Refreeze non_src package

components

PUT package/refreeze/

parameters

Package Refreeze package parameters

PUT package/refreeze/sites Package Refreeze package site information

PUT package/refreeze/

source

Package Refreeze package src-lod information

REST Services Table

REST Services Table 41

**Method **Name **Category **Description

PUT package/refreeze/ utility Package Refreeze utility (scratch rename)

package information

PUT package/revert Package Revert a package

GET package/schrecs Package Get CMN scheduler information

GET package/search Package Search for packages using selection

criteria

GET package/search/

approve

Package Search for packages pending approval

GET package/search/ limbo Package Search for packages in limbo

PUT package/submit Package Request rebuild of installation jobs for

package

GET package/summary Package Get summary totals for packages

GET package/syslib Package Get package SYSLIB information

GET package/syslib/refresh Package Refresh package SYSLIB information

PUT package/unfreeze/

nonsource

Package Unfreeze non_src package

components

PUT package/unfreeze/

parameters

Package Unfreeze package parameters

PUT package/unfreeze/ sites Package Unfreeze package site information

PUT package/unfreeze/

source

Package Unfreeze package src-lod information

PUT package/unfreeze/

utility

Package Unfreeze utility (scratch rename)

package information

GET package/ userrecords Package List package user records

GET release Release Get release information

GET release/appl Release Get release application setup

information

GET release/appl/

promotion- definition

Release Get release application promotion

setup information

GET release/appl/search Release Release Application Release

Definitions

GET release/appl/syslib Release Get release application SYSLIB

information

GET release/cim Release Get release component-in-motion

metadata

REST Services Table

REST Services Table 42

**Method **Name **Category **Description

GET release/ component/

check

Release Check package components presence

in all areas of a release

GET release/hst Release Get release component history

metadata

GET release/iat Release Get release impact analysis metadata

GET release/library Release Get release library information

GET release/package Release List packages attached to a release

GET release/package/ check Release Check all package components

presence in all areas of a release

GET release/package/

search

Release Release Package Search

GET release/ packagetest Release Release Package Test

GET release/prior- release Release Get prior release information for this

release

GET release/reasons Release Get release backout and reject reason

information

GET release/release-link Release List Release LINK Definitions

GET release/search Release Search release components

GET release/sites Release Get release site information

GET release/test Release Test a release for consistency

GET release/test/detail Release Test a release for consistency

(detailed results)

GET release/area Release

Area

Get release area information

GET release/area/check-

area

Release

Area

List components which may be

eligible for check-in from an area

GET release/area/check-

package

Release

Area

List components which may be

eligible for check-in from a package

GET release/area/cim Release

Area

Get release area component-in-motion

metadata

GET release/area/

component-lock

Release

Area

List release area component locks

GET release/area/

component/ demoted

Release

Area

List release area demoted

components

REST Services Table

REST Services Table 43

**Method **Name **Category **Description

GET release/area/

component/detail

Release

Area

List Release Area Component Details

GET release/area/

component/ promoted

Release

Area

Get release area promoted

component information

GET release/area/

component/scan

Release

Area

Get list of release area components

(summary)

GET release/area/

component/scan-all

Release

Area

Get list of release area components

(detail)

GET release/area/

component/ summary

Release

Area

Sumary list of latest components in a

release area

GET release/area/hst Release

Area

Get release area component history

metadata

GET release/area/iat Release

Area

Get release area impact analysis

metadata

GET release/area/ integrity/

detail

Release

Area

Assess the integrity of release area

metadata (detailed results)

GET release/area/ integrity/

summary

Release

Area

Assess the integrity of release area

metadata (summary results)

GET release/area/

retrievearea

Release

Area

Release Retrive Area List

GET release/area/

retrievepackage

Release

Area

Release Retrieve Package List

GET release/area/start Release

Area

Get release start area information

GET release/area/syslib Release

Area

Get release area SYSLIB information

GET release/area/syslib/

allchk

Release

Area

Get release area SYSLIB libraries

(check allocations)

GET release/area/syslib/

allnoc

Release

Area

Get release area SYSLIB libraries (no

allocation check)

GET release/area/syslib/ cpy Release

Area

Get release area copybook SYSLIB

information

GET release/area/syslib/ link Release

Area

Get release area link deck (LCT)

SYSLIB information

GET release/area/syslib/

load

Release

Area

Get release area program binder

SYSLIB information

REST Services Table

REST Services Table 44

ZMF supplied skeleton changes

General note on usage: The call to the REST server will wait for a response. The REST server will

wait for a response from the process that it has been asked to initiate (i.e. a Jenkins job etc.). If the

target process returns immediately then response times need not be an issue. If you want the

target process to perform significant processing (e.g. standards checking/testing etc.) then the

response may be a long time in coming. In these batch processes this may not be a huge concern.

However, contrast this with the similar note made at the start of the following section on HLL exit

use of the REST server. Also note that the CMNURIBA program will return CC=12 for any http

response from the REST server other than one of the 2xx series. Again, contrast this with the out-

of-the-box support supplied for HLLX.

Two sample skeletons are provided to allow batch jobs generated by ZMF to call the REST server.

The call itself is coded in *CMN$$EVT* and this skeleton can be embedded anywhere. The majority of

the out-of-the-box support for ZMF generated batch job event notification is supplied via skeleton

CMNEVT (which embeds CMN$$EVT).

Existing skeletons related to 'success' notification have been modified to embed CMNEVT as

required, these are:

**Method **Name **Category **Description

GET release/area/syslib/ no-

src

Release

Area

Get release area SYSLIB information

for all but like-SRC build mechanisms

GET release/area/syslib/

source

Release

Area

Get release area SYSLIB information

for source compiles

GET release/area/test Release

Area

Test a release area for consistency

GET release/area/test/ detail Release

Area

Test a release area for consistency

(detailed results)

GET release/area/ version-

regression

Release

Area

Get release area component version

regression information

GET report/appl Report Get application report information

GET report/global Report Get global report information

GET subscriber Webhooks List Webhook Subscriptions

PUT subscriber Webhooks Update Webhook Subscription

POST subscriber Webhooks Create Webhook Subscription

DELETE subscriber Webhooks Delete Webhook Subscription

GET webhook Webhooks Test Webhook Processing

ZMF supplied skeleton changes

ZMF supplied skeleton changes 45

CMN00

CMN00INS

CMNRPMB0

Further changes have been needed to a group of skeletons that embed CMN00INS twice, so that

the REST server call is only made for a success notification. These are:

CMN20, 20I, 20T, 20TI

CMN55, 55I

Certain event notifications are generated directly via the ZMF file tailoring mechanism (i.e. the file

tailoring includes CMN$$EVT directly). This is to avoid changing more existing skeletons than is

absolutely necessary, these event ids are:

50 Package audit

52 Release area audit

57 Package audit autoresolve submitted

58 Release area autoresolve submitted

78 Checkin to release area

100 Build begins

101 Build ends

It may be that one wishes to move the location of the event notification away from that generated

by ZMF file tailoring into a skeleton of their choice. To do this the original file tailoring must be

neutralized and a sample skeleton, CMN$$EVX, has been provided to show how this can be done.

Comparison of CMN$$EVX and CMN$$EVT will reveal the changes required. New variables are

defined to indicate whether the REST server is active in general and active for specific events.

These variables are set by the job generation program (i.e. CMNVFTLR, CMNVPRFT, CMNVRPFT,

CMNVPIJB) and they will be available to all skeletons. If the user has chosen not to enable support

for the REST server in general or for a specific event then the imbedded skeleton CMN$$EVT will

do nothing. The call to the REST server is made using CMNURIBA (see example above) and every

standard variable is passed (whether it is available or not), the REST server will work out which

variables, from the list, it will use for a specific event.

The new ISPF variables are these:

EVTACTV The REST server is active if this is set to Y

EVTADDR The DNS/ip address of the REST server

EVTPORT The port number on which the REST server is listening

EVTCTX The context for the event servlet (default is zmfevent)

EVTNOxx xx or xxx is the event number (room for 3 digits if necessary). This variable will be set to

Y if the event is active (e.g. EVTNO12=Y)

ZMF supplied skeleton changes

ZMF supplied skeleton changes 46

The ZMF program that is generating these variables will check with the REST server to see if the

specific event we are processing is active. If it is active then the EVTNOxx variable will be set to Y,

else it will be set to N.

Example of SKEL to IMBED the CMN$$EVT SKEL:

The supplied skeleton, CMN$$EVT, can be further modified should one wish to save the JSON

response body as part of the job output. This is not implemented as delivered as, in most cases,

one will not wish to do this and we want to keep the skeletons as simple as possible. The way to do

this is, as mentioned in an earlier section, to add the CMNRSPNS DD statement to the CMNURIBA

step and add a following PRETTY print step. Sample CMN$$EVT modifications are shown here:

...
)CM
)CM NOTIFICATION 12
)CM
)SEL &EVTACTV EQ Y AND &EVTNO12 EQ Y
)SETF &EVENTID = &STR(12)
)IM CMN$$EVT
)ENDSEL &EVTACTV EQ Y AND &EVTNO12 EQ Y
)CM
)CM End Of Notification 12

Example SKEL For Event Client:

//*)IM CMN$$EVT &EVENTID
)SEL &LISTNO EQ &Z
)SET LISTNO = 0
)ENDSEL &LISTNO EQ &Z
)SET LISTNO = &LISTNO + 1
//*
//* Call the REST server for ZMF event number &EVENTID
//*
//EVENT&EVENTID EXEC PGM=CMNURIBA
//*
)SEL &EVENTID NE 100 AND &EVENTID NE 12
//SYSPRINT DD SYSOUT=*
)ENDSEL &EVENTID NE 100 AND &EVENTID NE 12
)SEL &EVENTID EQ 100 OR &EVENTID EQ 12
//SYSPRINT DD DISP=(,PASS),DSN=&&&&LIST9&LISTNO,
// &DEFNVKW=&DEFNVUN,SPACE=(TRK,(1,3),RLSE),
// DCB=(RECFM=FA,LRECL=133,BLKSIZE=0)
)ENDSEL &EVENTID EQ 100 OR &EVENTID EQ 12
//JSONIN DD DATA,DLM=@@
{
 "EVENT" : "&EVENTID.",
 "USERID" : "&USER.",
 "APPL" : "&PROJECT.",
 "PACKAGE" : "&PKGNAME.",
 "SITE" : "&RMTSITE.",
 "RELEASE" : "&RLSNAME.",
 "RELEASEAREA" : "&ARENAME.",
 "PROMOTIONNAME" : "&PROMNME.",
 "PROMOTIONLEVEL": "&PROMLVL.",
 "LIBTYPE" : "&CMPTYPE.",
 "COMPONENT" : "&CMPNAME."
}
@@
//SYSIN DD *
Server=&EVTADDR
Port=&EVTPORT
Context=&EVTCTX
Method=POST
/*
//*

...

Example of SKEL to IMBED the CMN$$EVT SKEL:

Example of SKEL to IMBED the CMN$$EVT SKEL: 47

The file tailoring programs have been changed to allow for the supplied skeletons to call the REST

server as necessary. They each call the REST server during initialization to see whether the REST

server is active in general and if the events they will be generating are subscribed to.

The triggers to embed the calls to the REST server will only be active if the REST server is active

and the specific event is subscribed to. Those who don't use the REST server will see no changes to

the generated JCL.

//*)IM CMN$$EVT &EVENTID
//* Modified to produce JSON body output
//* Modified to produce JSON body output
//* Modified to produce JSON body output
)SEL &LISTNO EQ &Z
)SET LISTNO = 0
)ENDSEL &LISTNO EQ &Z
)SET LISTNO = &LISTNO + 1
//*
//* Call the REST server for ZMF event number &EVENTID
//*
//EVENT&EVENTID EXEC PGM=CMNURIBA
//*
)SEL &EVENTID NE 100 AND &EVENTID NE 12
//SYSPRINT DD SYSOUT=*
)ENDSEL &EVENTID NE 100 AND &EVENTID NE 12
)SEL &EVENTID EQ 100 OR &EVENTID EQ 12
//SYSPRINT DD DISP=(,PASS),DSN=&&&&LIST9&LISTNO,
// &DEFNVKW=&DEFNVUN,SPACE=(TRK,(1,3),RLSE),
// DCB=(RECFM=FA,LRECL=133,BLKSIZE=0)
)ENDSEL &EVENTID EQ 100 OR &EVENTID EQ 12
//CMNRSPNS DD DISP=(,CATLG),DSN=CMNDEV.&USER..JSON.TEMP&EVENTID.,
// SPACE=(CYL,(1,1)),UNIT=SYSDA
//JSONIN DD DATA,DLM=@@
{
 "EVENT" : "&EVENTID.",
 "USERID" : "&USER.",
 "APPL" : "&PROJECT.",
 "PACKAGE" : "&PKGNAME.",
 "SITE" : "&RMTSITE.",
 "RELEASE" : "&RLSNAME.",
 "RELEASEAREA" : "&ARENAME.",
 "PROMOTIONNAME" : "&PROMNME.",
 "PROMOTIONLEVEL": "&PROMLVL.",
 "LIBTYPE" : "&CMPTYPE.",
 "COMPONENT" : "&CMPNAME."
}
@@
//SYSIN DD *
Server=&EVTADDR
Port=&EVTPORT
Context=&EVTCTX
Method=POST
/*
//*
//PRETTY EXEC PGM=IKJEFT01,REGION=0M
//REMOVE DD DISP=(OLD,DELETE),DSN=CMNDEV.&USER..JSON.TEMP&EVENTID
//SYSEXEC DD DISP=SHR,DSN=SYS1.SAMPLIB
)SEL &EVENTID NE 100 AND &EVENTID NE 12
//SYSTSPRT DD SYSOUT=*
)ENDSEL &EVENTID NE 100 AND &EVENTID NE 12
)SEL &EVENTID EQ 100 OR &EVENTID EQ 12
//SYSTSPRT DD DISP=(,PASS),DSN=&&&&LIST8&EVENTID.,
// UNIT=SYSALLDA,SPACE=(CYL,(1,5),RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=27930)
)ENDSEL &EVENTID EQ 100 OR &EVENTID EQ 12
//SYSTSIN DD *
HWTJSPRT CMNDEV.&USER..JSON.TEMP&EVENTID
//*

Example of SKEL to IMBED the CMN$$EVT SKEL:

Example of SKEL to IMBED the CMN$$EVT SKEL: 48

CMNVFTLR prepends the build job JCL stream with a call to the REST server for event 100 (build

job begins), it appends the JCL with a call to the REST server for event 101 (build job ends). It also

sets variables for event no 12 (component activation) which prompt the generated JCL to embed

CMN$$EVT alongside the SUCCESS step. It also appends the package audit JCL stream with a call

for event no 50 (package audit). CMNVPRFT and CMNVRPFT set variables for event no 44

(package demote) and 48 (package promote).

CMNVPIJB sets variables immediately prior to file tailoring the relevant job stream into the 'x'

dataset member. It does this for events 01 (package backout), 02 (package install), 03 (temporary

package cycle), 10 (package revert), 15 (baseline ripple), and 16 (reverse ripple).

Sending Email Notifications for ChangeMan Lifecycle
Events

Rest Services now provides the ability to send email notifications for ChangeMan lifecycle events.

Several new parameters may be used to customize the Email Notification feature. These

parameters are specified in the Rest Services ZMFPARMS Data Set.

Parameter Name Valid

Value

Required Default Description

EMAIL_NOTIFICATIONS Y/N Y Y Enables Rest Services Email

Notifications.

EMAIL_HOST Y The SMTP Email Server

Name.

EMAIL_PORT Y The SMTP Email Port

Number.

EMAIL_SOURCE Y Specifies the email

sender. Emails will be sent

from this email address.

EMAIL_SUBSCRIBER_FILE Y The z/FS File for Email

Subscriber Definitions.

EMAIL_DOMAIN N Valid domain names for

subscriber emails. This

parameter may be specified

multiple times.

EMAIL_CONFIRMATION Y/N Y Specifies that subscribers

will be sent a confirmation

email to validate the email

address.

Sending Email Notifications for ChangeMan Lifecycle Events

Sending Email Notifications for ChangeMan Lifecycle Events 49

Usage notes

Email Notifications use LOG events exclusively. Log events must be sent from ZMF to Rest

Services to be broadcast to subscribers. Log Events emission must be configured in the

ALFFLTR Data Set in ZMF.

Rest Services provides the ability to list, create, update, and delete email subscriptions. The

URL for these subscription services is zmfrest/email, where zmfrest is the rest services

context name.

Email subscriptions specify one or more lifecycle events, along with a set of filters that provide

precise control of events that result in an email notification. Filters are available for the

following common event properties: Application, Package, Library Type, Component, Release,

Release Area, Site, Promotion Name, Promotion Level. The above properties are not present in

all events. Filtering only occurs when the property value is present, meaning the filter will pass

when the property is not present.

Filters support multiple segments separated by ";". For example an application filter for

applications SNET and CZMF is specified as SNET;CZMF. Trailing "" may be used to match on

multiple values. For example an application filter of A;B* matches any application starting with

A or B.

AT/TLS may be configured to implement SSL communications between Rest Services and the

SMTP server.

Email notifications on the Rest Services user interface
The Rest Services UI includes several items that accommodate this functionality:

Parameter Name Valid

Value

Required Default Description

EMAIL_DEBUG Y/N N N Enables debug processing

in the java mail runtime.

This may be used to

diagnose problems sending

email to the SMTP server.

• •

• •

• •

• •

• •

Usage notes

Usage notes 50

The Home Display includes an Email Subscriptions item.

Email Subscriptions is on the main menu of the Navigation bar. Download, Samples, About,

and Trace menu items found on this menu on versions prior to 8.3 are now on a dropdown

menu.

The Email Subscriptions page permits list, create, update and delete of email subscriptions.

Users may manipulate their own subscription data. Administrators may update all

subscription entries.

Screen Prints of this functionality are displayed:

Home screen with Email Subscriptions options

Email Subscription List Page

• •

• •

• •

Email notifications on the Rest Services user interface

Email notifications on the Rest Services user interface 51

Subscription Form

Email Subscriber List (Administrators only)

Email notifications on the Rest Services user interface

Email notifications on the Rest Services user interface 52

Batch Job Processing Options

Handling ZMF Calls that Run Asynchronously Via a Batch Job
Many ZMF Services run in batch jobs. A call for these services results in a message indicating the

process was initiated, but the process does not complete until a file tailoring process is run, and

the resulting job has run to completion. This can be problematic if you are using Rest Services to

create pipelines that require a process to complete before initiating the next process.

To address this, Wait/Timeout options are available for all ZMF services that run in batch jobs

through Rest Extensions. When wait is requested, Rest Services determines the JOBNAME/JOBID

of the Batch process and waits for the JOB to complete before returning a response to the client.

All batch processes are updated with the following request parameters:

waitForCompletion = Y/N/J

Parameter values:

N – Do not wait for job to complete (the default).

Y – Wait for Job to complete.

J – Wait for File tailoring to complete.

waitTimeout = value

where value indicates how long to wait for process completion (in minutes). The default value is

10.

When a wait option is specified, the response will be updated. The following tags may be present if

processing is bypassed or an error condition occurs during processing:

extensionBypassMessage – A message indicating the reason wait processing was bypassed.

extensionErrorMessage – A message indicating an error occurred during wait processing.

The following tags are added as a result tag (array). If multiple jobs are submitted, more than one

result may be returned.

jobname – The jobname

jobid – The jobid

The following tags are added only if WAIT=Y is specified:

jobComplete – Indicates whether the job ran to completion (true or false).

completioncode – The job completion code (set only when jobComplete = true).

Batch Job Processing Options

Batch Job Processing Options 53

errormessage – An error occurred obtaining job status about the job.

joblaststatus – The last job status when job has not completed.

Wait processing is supported for the following Package Services: Audit, Backout, Revert, Promote,

Demote, Freeze.

Wait processing is also supported for the following Component Services: Build, Recompile, Relink,

Rebuild.

The following example illustrates how the response may be updated. This sample shows the

response to a batch checkout with waitForCompletion=Y specified.

Be sure to configure HTTP client timeout values when using wait options
Be sure to configure HTTP Clients with an appropriate socket timeout value. These calls may not

work properly if default values are used. For example, the Apache HTTP Client uses a default

socket timeout of 5 minutes. If this value is unchanged, socket timeout conditions are reflected

back to the client and the response from Rest Services will never be received. Rest Services may

issue a "Client Closed Connection" message when this occurs.

Default Job Cards
To simplify Job Card processing, you can use the Rest Services DEFAULT_JOBCARDS option to

provide default job cards for all batch processes. Default Job Card processing is enabled by

specifying the following parameter in ZMFPARMS:

DEFAULT_JOBCARDS=Y/N

The default is N.

Template Job cards with variables can be specified in ZMFPARMS to further customize

processing. Default values are shown below.

{
 "message": "CMN8704I - Checkout service submitted",
 "reasonCode": "8704",
 "returnCode": "0",
 "result": [
 {
 "jobname": "WSER27B",
 "jobid": "J0616061",
 "jobComplete": true,
 "completioncode": "0"
 }
]
}

Default Job Cards

Default Job Cards 54

The following variables can be specified in the ZMFPARMS JOBCARD parameters.

&USERJOB& - A JOBNAME consisting of the userid and a random 1 character suffix (A-Z).

&USERID& - The user submitting the request.

&API& - The name of the currently running API (build/freeze - etc).

When found in the templates, these variables are replaced with values from the current

environment.

Sample REXX HLL exit code

General note on usage: All HLL exits may have an impact on the client user interface. Especially, for

example, if an HLL exit does a significant amount of processing the user will be ’locked’ in their

interaction with ZMF in general. This may cause a frustrating end-user experience. For that reason

it is recommended (and the samples supplied follow this recommendation) that HLL exits be used

to simply notify the REST server of events and not to expect significant synchronous processing by

the target process before returning to the REST server. Use of the post-service HLL exits (supplied

in the samples) is recommended for event notification purposes. The target process should return

immediately to the REST server even if significant processing has been initiated. The user will

remain locked by HLLX until the target process has returned to the REST server and the REST

server has, in turn, returned to the HLL exit. Also note that the out-of-the-box support is placed after

the function service has completed (i.e. we are notifying the REST server that something has

already happened). No check is (or should be) made on the success or otherwise of the call to the

REST server. There is no point as the ZMF function has already been completed and whatever

happens the other side of the REST server is of no consequence to that ZMf action. Note that the

REST server will differentiate between the call origins for the same event so that the target process

can decide whether to undergo significant synchronous processing for the event (e.g. as driven

from a batch job step via the zmfevent/event/skel urn) or not (e.g. when driven from an HLL exit via

the zmfevent/event/hllx urn).

When the HLLX address space starts up (and when a HLLX RELOAD is requested) the ZMF settings

for the REST server are passed to it. If the REST server is active then it will query all HLLX

supported events to see if there are subscribers. For all subscribed-to events the relevant (HLLX

TCA) variable will be set to Y. When the HLL REXX exit is called CMNREXCI (our REXX initialization

exit) has access to all these variables and will set the relevant REXX variables for use by the target

HLL exit.

JOBCARD1=//&USERJOB& JOB 0,'&API&',CLASS=A,MSGCLASS=X
JOBCARD2=//* JOB SUBMITTED BY &USERID& THROUGH REST SERVICES
JOBCARD3=//*
JOBCARD4=//*

Sample REXX HLL exit code

Sample REXX HLL exit code 55

The supplied sample exit points for calling the REST server from an HLL exit are these:

The REXX variable 'evSrvActive' is defined for all HLL exits and set to Y or N to denote whether

HLLX has found the REST server to be active. RES 3 pp;T server exit code should only ever be

executed if evSrvActive='Y'.

The following REXX variables are defined and set only if evSrvActive='Y':

evSrvAddress: The DNS/ip address of the REST server (e.g. in our test cases this was set to

'd001.microfocus.com')

evSrvPort: The port on which the REST server is listening (e.g. 09992 in our test case)

evSrvContext The context for the target event servlet (default is zmfevent)

Event HLL exit name Description Sample exit name

01 RVRT01XB Backout Package HXRRVEV

10 RVRT01XM Revert Package HXRRVEV

20 APRV01XM Approve Package HXRAPEV

30 APRV01XM Reject Package HXRAPEV

40 FREZ01XM/FREZ01XR Freeze Package HXRFREV

42 FREZ01XU Selectively Unfreeze Package HXRFREV

44 PRDM01XD Demote Package HXRPREV

48 PRDM01XP Promote Package HXRPREV

50 AUDT01JB Audit Package HXRAUEV

64 SCRN01XM Scratch component HXRSCEV

66 SCRN01XM Rename component HXRSCEV

67 BULD01XL Relink component HXRBUEV

78 RCKI01CI Checkin to area is complete HXRRCEV

80 PCRE01XM Create Package HXRPCEV

82 CKOT01XM Checkout Component HXRCKEV

84 BULD01XC Stage Component HXRBUEV

86 BULD01XD Delete component from pkg HXRBUEV

87 CKOT01XM Checkout from release HXRCKEV

88 PCRE01XM Copy forward package HXRPCEV

100 BULD00XB Pre-build of component HXRBUEV

101 BULD01XB Post-build of component HXRBUEV

• •

• •

• •

Sample REXX HLL exit code

Sample REXX HLL exit code 56

evSrvEvent/nn/: where /nn/ or /nnn/ is set to the specific event id (e.g. evSrvEvent01). These

variables are set to Y or N depending on whether or not the event is active (i.e. subscribed to

at the eventserver).

Look at the sample code for an HLL exit that is invoked at 5 HLL exit points relating to 5 different

events, in member HXRBUEV of the SAMPLE library.

Support for custom processes

Note that there is nothing to prevent one from placing a call to the REST server in any skeleton or

HLL exit if they so wish. We are providing out-of-the-box solutions for what we consider to be the

most useful events but one may have requirements that we haven't catered for.

If the supplied sample skeletons and/or HLL exits do not provide the support that a site is looking

for then they can use the supplied /examples/ and place calls to the REST server wherever they

like. It would be in the interest of the user, and users in general, if they communicated what they are

doing to us so that we can take a view on including that support as a sample in future releases.

External 3rd Party Dependencies

IBM z/OS Client Web Enablement toolkit
The CMNURIxx utilities rely on the use of the z/OS Client Web Enablement toolkit which is supplied

as part of z/OS. However, this use also has certain requirements of the environment in which it

runs. The userid under which it is running needs to have an OMVS segment defined. The toolkit

code itself runs under a POSIX(ON) LE enclave (which it will establish itself if not present).

For further information on the IBM z/OS Client Web Enablement toolkit refer to the IBM

documentation: z/OS Client Web Enablement toolkit https://www.ibm.com/docs/en/zos/2.2.0?

topic=languages-zos-client-web-enablement-toolkit.

IBM Application Transparent Transport Layer Security AT-TLS
All secure communication (SSL) on z/OS must be implemented using AT-TLS. This may include

communication between:

Event Clients to Event Services, Event Services to Subscribers, Clients to Rest Services, Rest

Services to ChangeMan ZMF.

JAVA V8 for Z/OS

JAVA V8 is required to run Tomcat and ZMF Servlets on Z/OS.

• •

Support for custom processes

Support for custom processes 57

https://www.ibm.com/docs/en/zos/2.2.0?topic=languages-zos-client-web-enablement-toolkit
https://www.ibm.com/docs/en/zos/2.2.0?topic=languages-zos-client-web-enablement-toolkit

JZOS Batch Launcher

The JZOS Batch Launcher is required to run Tomcat and Java programs on Z/OS

Jenkins 2.164 (Minimum)

Minimum version is 2.164

Jenkins should be run with a V8 JRE.

IBM Application Transparent Transport Layer Security AT-TLS

IBM Application Transparent Transport Layer Security AT-TLS 58

4. Appendix A

This appendix presents more information about facilities available.

In this section:

CMNURIBA (Easy access to http methods from ZMF batch processes)

Processing overview

Checking the availability of the event server

CMNURIRX (Easy access to http methods from a REXX exec)

CMNURIBA (Easy access to http methods from ZMF batch
processes)

This program is designed to allow easy access to HTTP methods (GET, POST, etc) from traditional

batch processes. It makes use of the z/OS HTTP Web Enablement Toolkit (supplied as part of the

operating system). As such, it requires the userid under which it is running to be defined with an

OMVS segment. It also establishes (or re-uses) a POSIX(ON) LE enclave. It works with URI's, HTTP

headers, and JSON bodies.

The utility can be used to request an external action via an HTTP request, wait for the response,

and decide whether to continue with the job based on that response.

Direction on what CMNURIBA is to do is given via SYSIN parameters, these are described below:

Appendix A: ZMF Utilities Notes

• •

• •

• •

• •

Parameter Value

SERVER= Specify the IP address or DNS name which will process the HTTP method

PORT= Defines the port on which this server is listening for us

CONTEXT= REST servlet context, default is zmfrest

HTTPTIMEOUT= Defines how long, in seconds that we should wait for a response (default is 300, i.e.

5 mins)

TRACE= YES/NO. Verbose output produced with TRACE=YES - also requires the HTPTRACE

ddname to be allocated. Internally produced trace output is written to SYSPRINT,

HTTP toolkit generated trace output is written to HTPTRACE.

URN= Specifies the target resource name for the operation (default is//event/ skel or /

zmfevent/event/skel if no context specified, i.e. the REST server as used by skeleton

processing)

4. Appendix A

4. Appendix A 59

Also, if a JSON body is required on the request (e.g. for a POST method) this is input (as is) via the

JSONIN dd statement (see example below). Note that each JSON clause must be completed within

80 bytes at this time (e.g. like a card image). This may change in future should the need for longer

clauses be identified.

Processing Overview

SYSIN is read to establish the parameters to be used in this request. All sysin keywords must start

on a new line and must not extend beyond column 72. Some of the parameters have the potential

to be longer than this allows for, these are SERVER, URN, and any PARMs. This potential is catered

for by using an asterisk as a continuation character. All text including and after the asterisk is

ignored and the next sysin card image is read. All text from the beginning of the card image

(including spaces) is appended to the text already read in for this keyword. For example:

is the same as

Any query parameters are appended to the URN prior to issuing the HTTP request. For a

METHOD=POST request, if the JSONIN DD statement is present then we build a JSON body to

passed along with the POST headers.

An attempt is made to connect to the target server:port and, if successful, the relevant request is

sent and we await confirmation from the server. Any response is checked for a 'good' status code

(2xx) which will result in a RC=0 for the job step, else we have an RC=12. If there is a bad response

then the response body (if any) is echoed out in SYSPRINT. If TRACE=YES is on then the response

body is written to SYSPRINT regardless of the result. Note that a future enhancement could be to

allow the user to define what is an acceptable response.

Example of JCL for GET request:

This example issues a GET request to a server with query parms. Here's some JCL for the 'activate

component' event, this would be inserted as a batch job step in the build job:

Parameter Value

METHOD= Defines the HTTP method to be used (only GET and POST needed at this time)

PARM= Defines the query parameter to be appended to the header, there can be many of

these (see example below).

SERVER=d001.micro*
focus.com

SERVER=d001.microfocus.com

Processing Overview

Processing Overview 60

The HTPTRACE dataset is a sequential file with RECFM=V,LRECL=1028,BLKSIZE=1032

The above request is converted into a connection, to http://d001.microfocus.com:8080 and the

HTTP GET method is issued using this connection, targeted at the following URN:

/zmfevent/event/skel?EVENT=12&PACKAGE=ZSRV000123&APPL=ZSRV&LIBTYPE=JAV&COMPONENT=TESTSRC

Example of JCL for POST request with JSON body:

//GOGOGO EXEC PGM=CMNURIBA,REGION=0M
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//HTPTRACE DD DISP=SHR,DSN=WSER58.HTTP.TRACE.OUTPUT
//SYSIN DD *
 Server=d001.microfocus.com
 Port=8085
 Trace=YES
 Method=GET
 Parm=EVENT=12
 Parm=PACKAGE=ZSRV000123
 Parm=APPL=ZSRV
 Parm=LIBTYPE=JAV
 Parm=COMPONENT=TESTSRC

//GOGOGO EXEC PGM=CMNURIBA,REGION=0M
//* //SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//HTPTRACE DD DISP=SHR,DSN=WSER58.HTTP.TRACE.OUTPUT
//JSONIN DD DATA,DLM=@@
 {
 "EVENT": "12",
 "PACKAGE" : "ZSRV000123",
 "APPL" : "ZSRV",
 "LIBTYPE" : "JAV",
 "COMPONENT": "TESTSRC"
 }
 @@ //SYSIN DD *
 Server=d001.microfocus.com
 Port=8085
 Trace=YES
 Method=POST

...

Processing Overview

Processing Overview 61

Checking the availability of the REST server

Sample JCL member RSTCHECK can be used to, in general, check the availability of the REST

server and, specifically, check whether a webhook for a specific event id is subscribed to. See the

listing of RSTCHECK below for further details:

The following shows the same job steps with specific values. Note that if the REST server is

available and the specific event id is subscribed to then the job will receive a 200 http code from

the server and the step will end with cc=0. If the event id is not subscribed to then http code 418

will be received and the job step will end with cc=12. If the event server cannot be contacted then

some other http code may be presented and further information in the trace dataset may be of use.

...

//jobname JOB (account),'Check REST Server', <=== Change Accordingly
// CLASS=?,NOTIFY=?, <=== Change Accordingly
// MSGCLASS=? <=== Change Accordingly
//**
//*
//* This job tests the connection to the REST server in general and,
//* specifically, whether a particular event is active (i.e. is
//* subscribed to).
//*
//* The operation is traced (in case there are problems to resolve)
//* and the trace output is written to the HTPTRACE ddname.
//*
//* <your.server.address> and <its port> must be replaced with values
//* for your particular implementation.
//*
//* The supplied JCL tests whether the skel notified event id 52 is
//* active, but you can test of any event id you wish by changing
//* the number.
//*
//* Replacing skel in the URN by hllx or log will test whether
//* hllx or log notified events are active, i.e. one of
//*
//* URN=/zmfrest/query/skel/52
//* URN=/zmfrest/query/hllx/52
//* URN=/zmfrest/query/log/52
//*
// * You can test whether an event is subcribed to for a specific
// * application by adding the appl as a filter, e.g.
// *
// * URN=/zmfrest/query/skel/52?appl=DEMO
// *
// **

//JOBLIB DD DISP=SHR,DSN=somnode.CMNZMF.LOAD
// DD DISP=SHR,DSN=somnode.SERCOMC.LOAD
//*
//*
//DELTRACE EXEC PGM=IEFBR14
//DD1 DD DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,0),
// DSN=yourhlq.HTTP.TRACE.OUTPUT
//*
//TSTEVSRV EXEC PGM=CMNURIBA,REGION=0M
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//HTPTRACE DD DISP=(,CATLG),DSN=yourhlq.HTTP.TRACE.OUTPUT,
// UNIT=SYSDA,SPACE=(CYL,(1,10),RLSE),
// DCB=(RECFM=V,LRECL=1028,BLKSIZE=0)
//SYSIN DD *
Server=<your.server.address>
Port=<its port>
Context=<event servlet context, default is zmfevent>
Trace=YES
Method=GET
URN=/zmfevent/query/skel/52

...

Checking the availability of the REST server

Checking the availability of the REST server 62

Formatting JSON responses from the REST server
Any response from the REST server is, by default, echoed in SYSPRINT via 100 byte wrapped-

around output. Normally you may not be interested in anything other than the return code from the

REST server. However, in some circumstances you may have invoked a process that returns a

result set/messages that you wish to keep as part of, for example, the build output for a

component.

If the response is supplied as JSON then we can use the IBM supplied 'pretty print' mechanism

(SYS1.SAMPLIB(HWTJSPRT)) to format the JSON into something more readable. To do this you

need only add a CMNRSPNS dd statement to the CMNURIBA step to write the response to a named

temporary file and following this with an execution of HWTJSPRT on this named temporary file.

Note that the response is no longer written to SYSPRINT in this case.

An example of doing this for a specific event 100 invocation is shown below, the extra JCL

statements are the CMNRSPNS DD statement in the EVENT100 step and the whole of the PRETTY

step.

//*
//DELTRACE EXEC PGM=IEFBR14
//DD1 DD DISP=(MOD,DELETE),UNIT=SYSDA,SPACE=(TRK,0),
// DSN=WSER58.HTTP.TEMP.OUTPUT
/*
//*
//TSTEVSRV EXEC PGM=CMNURIBA,REGION=0M
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//HTPTRACE DD DISP=(,CATLG),DSN=WSER58.HTTP.TEMP.OUTPUT,
// UNIT=SYSDA,SPACE=(CYL,(1,10),RLSE),
// DCB=(RECFM=V,LRECL=1028,BLKSIZE=0)
//SYSIN DD *
Server=d001.microfocus.com
Port=09992
Trace=YES
Method=GET
URN=/zmfevent/query/skel/52

...

Formatting JSON responses from the REST server

Formatting JSON responses from the REST server 63

CMNURIRX (Easy access to http methods from a REXX
exec)

This program is a wrapper to the same engine as driven by CMNURIBA (note: this is common

module CMNURI00), it does the same things except in a more REXX exec 'friendly' fashion.

Originally intended for execution from a ZMF HLL exit written in REXX, but it could be executed

from any REXX exec.

Note that the default URN implemented by CMNURIRX is /<context>/event/hllx or /zmfevent/

event/hllx if context is not specified, i.e. the REST server as used by HLL exits. The equivalent

SYSIN and JSONIN parameters are passed to CMNURIRX via stem variables. Output from the

program (like sysprint from the batch version) is also passed back via a stem variable. It's easiest

to see how this works from an example. The following was implemented into an HLLX REXX exec:

//*
//* Call the REST server for ZMF event number 100
//*
//EVENT100 EXEC PGM=CMNURIBA
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CMNRSPNS DD DISP=(,CATLG),DSN=WSER58.JSON.TEMPOUT,
// SPACE=(CYL,(1,1)),UNIT=SYSDA
//JSONIN DD DATA,DLM=@@
{
 "EVENT" : "100",
 "USERID" : "WSER58",
 "APPL" : "ZSRV",
 "PACKAGE" : "ZSRV000007",
 "SITE" : "",
 "RELEASE" : "",
 "RELEASEAREA" : "",
 "PROMOTIONNAME" : "D002DEV",
 "PROMOTIONLEVEL": "10",
 "LIBTYPE" : "JAV",
 "COMPONENT" : "com/serena/sercmn/zmf/constants/IAccessTypes.java"
}
@@
//SYSIN DD *
Server=d001.microfocus.com
Port=09992
Context=zmfevent
Method=POST
/*
//*
// PRETTY EXEC PGM=IKJEFT01,REGION=0M
// REMOVE DD DISP=(OLD,DELETE),DSN=WSER58.JSON.TEMPOUT
// SYSEXEC DD DISP=SHR,DSN=SYS1.SAMPLIB
// SYSTSPRT DD DISP=(,PASS),DSN=&&LIST05,
// UNIT=SYSALLDA,SPACE=(CYL,(1,5),RLSE),
// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=27930)
// SYSTSIN DD *
HWTJSPRT WSER58.JSON.TEMPOUT

...

CMNURIRX (Easy access to http methods from a REXX exec)

CMNURIRX (Easy access to http methods from a REXX exec) 64

Here we have three stem variables, zmfUriParm (for input parameters), zmfUriMsg (for output

messages) and zmfUriJson (for input JSON body statements). The input stem variables are

populated as if you were supplying sysin and JSON to the batch CMNURIBA utility. The output

message stem variable is accessed as you would any stem variable and you can see it being

'SAY'ed in the above REXX.

The rootnames of these stem variables (i.e. without the ending period) are set in the three simple

variables inStem, outStem, jsonStem and passed, in that order, as parameters to a LINKMVS call to

CMNURIRX.

/* REXX */
proceed = 'YES'
inStem = 'ZMFUriParm'
outStem = 'ZMFUriMsg'
jsonStem = 'ZMFUriJson'

Say '---'
Say 'HLL exit point FREZ00XM - prior to package freeze service'
Say ' This exit is being called prior to the freeze of'
Say ' package: 'packageId
Say '---'
Say ' '

ZMFUriParm.0 = 4
ZMFUriParm.1 = 'Server=d001.microfocus.com'
ZMFUriParm.2 = 'Port=8085'
ZMFUriParm.3 = 'Trace=NO'
ZMFUriParm.4 = 'Method=POST'
ZMFUriJson.0 = 4
ZMFUriJson.1 = '{'
ZMFUriJson.2 = ' "EVENT" : "40",'
ZMFUriJson.3 = ' "PACKAGE" : "'packageId'" '
ZMFUriJson.4 = '}'

Call SYSCALLS 'SIGOFF'

address LINKMVS 'CMNURIRX inStem outStem jsonStem'

If RC = 0 then
 Do
 Say 'Pre-freeze Jenkins pipeline has completed successfully'
 End
Else
 Do
 Say 'Pre-freeze Jenkins pipeline was unsuccessful, messages follow'
 If ZMFUriMsg.0 <> 0 then
 Do i = 1 to ZMFUriMsg.0
 Say ZMFUriMsg.i
 End
 proceed = "NO"
 shortMsg = "Jenkins process failed"
 longMsg = "Failure of Jenkins pipeline has caused this freeze to fail."
 End
exit 0

CMNURIRX (Easy access to http methods from a REXX exec)

CMNURIRX (Easy access to http methods from a REXX exec) 65

5. Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use

restrictions, U.S. Government rights, patent policy, and FIPS compliance, see https://

www.microfocus.com/about/legal/.

© Copyright 2023 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors

("Micro Focus") are set forth in the express warranty statements accompanying such products and

services. Nothing herein should be construed as constituting an additional warranty. Micro Focus

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

Third-Party Notices

Additional third-party notices, including copyrights and software license texts, can be found in a

'thirdpartynotices' file in the root directory of the software.

Specific notices

In accordance with the GNU General Public License version 2 with Classpath Exception, you are

entitled to the complete OpenJDK source code that went into the JRE used by this product which

includes the source code for 3 subclasses of that standard OpenJDK; MultipleGradientPaint,

MultipleGradientPaintContext and TypeResolver. Please contact product support if you wish to

obtain the source code. This source code will be available for 3 years from the general availability

date for version 17.0 SP1.

5. Legal Notice

5. Legal Notice 66

	ChangeMan ZMF
	8.3
	© Copyright 2023 Micro Focus or one of its affiliates

	1. About this Guide
	The REST Services Getting Started Guide
	Guide to ChangeMan ZMF Documentation
	ChangeMan ZMF Documentation Suite

	Using the Manuals
	Searching the ChangeMan ZMF Documentation Suite
	Typographical Conventions

	2. Installation and Configuration
	Pre-requisites
	Instructional Video Library
	Security set up
	Run INSTALL Job
	Locate JZOS Batch Loader (JVMLDM86)
	Create the Started task proc
	Update Environment settings
	Start Tomcat
	Deploy .war files
	Enable in ZMF Admin
	Simple Installation Verification Procedure
	Running multiple instances of ZMF

	3. Using ZMF REST Services
	Using REST Services
	Implementing http event notifications and REST APIs into ZMF
	Implementing http event notifications and REST api's into ZMF
	Overview

	Exposing ChangeMan ZMF function through REST Services
	Development Workflow
	Design Overview
	Event Variables
	ZMF Specific VARIABLE NAMES:
	ZMF Non-specific Variables

	Event Source
	Event Clients
	REST Services
	Event Subscribers
	General Attributes:
	Security Attributes:
	ZMF Filtering Attributes Filter

	Jenkins Attributes:
	Miscellaneous Attributes
	Subscriber Flow Definition - Sample Screen Prints
	Partial List webhooks subscribers panel example
	Example of a Component Checkout Subcription
	Example showing a partial drop down list of Events that might be subscribed to

	Using application filtering with the REST server
	REST Services
	REST Services Extensions
	REST interface
	REST Services Table

	ZMF supplied skeleton changes
	Example of SKEL to IMBED the CMN$$EVT SKEL:

	Sending Email Notifications for ChangeMan Lifecycle Events
	Usage notes
	Email notifications on the Rest Services user interface
	Home screen with Email Subscriptions options
	Email Subscription List Page
	Subscription Form
	Email Subscriber List (Administrators only)

	Batch Job Processing Options
	Handling ZMF Calls that Run Asynchronously Via a Batch Job
	waitTimeout = value
	Be sure to configure HTTP client timeout values when using wait options

	Default Job Cards

	Sample REXX HLL exit code
	Support for custom processes
	External 3rd Party Dependencies
	IBM z/OS Client Web Enablement toolkit
	IBM Application Transparent Transport Layer Security AT-TLS

	4. Appendix A
	Appendix A: ZMF Utilities Notes
	CMNURIBA (Easy access to http methods from ZMF batch processes)
	Processing Overview
	Checking the availability of the REST server
	Formatting JSON responses from the REST server

	CMNURIRX (Easy access to http methods from a REXX exec)

	5. Legal Notice
	Third-Party Notices
	Specific notices

