
ChangeManZMF

Customization Guide



© Copyright 2001-2019 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors 
(“Micro Focus”) are set forth in the express warranty statements accompanying such products 
and services. Nothing herein should be construed as constituting an additional warranty. Micro 
Focus shall not be liable for technical or editorial errors or omissions contained herein. The 
information contained herein is subject to change without notice.

Contains Confidential Information. Except as specifically indicated otherwise, a valid license is 
required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial 
Computer Software, Computer Software Documentation, and Technical Data for Commercial 
Items are licensed to the U.S. Government under vendor's standard commercial license.

Product version: 8.2 Patch 1

Publication date: June 2019



Customization Guide 3

Table of Contents

Welcome to ChangeMan® ZMF. . . . . . . . . . . . . . . . . . . . 11
Guide to ChangeMan ZMF Documentation. . . . . . . . . . . . . . . . . . . . . . . 11

ChangeMan ZMF Documentation Suite . . . . . . . . . . . . . . . . . . . . . . 11
Using the Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Searching the ChangeMan ZMF Documentation Suite. . . . . . . . . . . . 14

Using Online Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Online Tutorial  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Online Help Screens  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Online Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Preserving Vendor Versions of ChangeMan ZMF Components  . . . . . . . . . 18
Using ChangeMan ZMF To Manage ChangeMan ZMF Components  . . . . . . 18
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 ISPF Skeletons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Skeleton File Tailoring in ChangeMan ZMF  . . . . . . . . . . . . . . . . . . . . . . 22

Skeleton Naming Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Skeleton Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Skeleton Imbedding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Skeleton Maintenance Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Developing Skeletons With File Tailoring Assistance. . . . . . . . . . . . . 26
Editing Skeletons in File Tailoring Assistance  . . . . . . . . . . . . . . . . . 27
Syntax Checking in File Tailoring Assistance . . . . . . . . . . . . . . . . . . 29
Debugging Skeletons in Started Task Procedures  . . . . . . . . . . . . . . 30
ISPF Table CMNTBN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Error Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CMN$$AUD - Audit for ALL applications  . . . . . . . . . . . . . . . . . . . . . . . . 33
CMN$$JBL - JOBLIB / STEPLIB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Setting Build Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Build Parameter ISPF Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Build Parameter Skeleton Architecture . . . . . . . . . . . . . . . . . . . . . . 36
Customization Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Transmit Selected Remote Promote Components . . . . . . . . . . . . . . . . . . 38
JES Node Names and Transmission Site Names . . . . . . . . . . . . . . . . . . . 39

Chapter 3 Exposing Mainframe Resources to
Web and Desktop Applications  . . . . . . . . . . . . . . . . . . . 41
ZMF Support for z/OS Connect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



4 ChangeMan® ZMF

Table of Contents

What is z/OS Connect and How Does It Work? . . . . . . . . . . . . . . . . 42
What is ChangeMan ZMF’s Role. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ZMF Support for CICS Web Services. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Generate JSON Outputs from Input Copybooks (CMNDFHJS Skeleton) 46
Generate WSDL Outputs from Input Copybooks (CMNDFHWS Skeleton) 51
Generate Copybooks from JSON Inputs (CMNDFHJL Skeleton) . . . . . 56
Generate Copybooks from WSDL Input (CMNDFHWL Skeleton). . . . . 61

ZMF Support for CICS Bundles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 User Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
User Exit Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
User Exit Interface Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

No Access to TCA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Customizing Exits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Find the Exit You Want. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Modify Exit Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Assemble Exit Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Refresh Exit Load  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Exits Listed in SYSPRINT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Calling XML Services from User Exits . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Exit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

SEREX001  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SEREX002  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SEREX003  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
SEREX005  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
CMNEXINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
CMNEX001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CMNEX002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CMNEX003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CMNEX004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CMNEX005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CMNEX006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CMNEX007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CMNEX008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
CMNEX009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
CMNEX010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CMNEX011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CMNEX012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CMNEX014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
CMNEX015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
CMNEX016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
CMNEX019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
CMNEX020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CMNEX021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CMNEX022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CMNEX023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
CMNEX024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Table of Contents

Customization Guide 5

CMNEX025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CMNEX026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CMNEX027 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CMNEX028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CMNEX030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CMNEX031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CMNEX032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CMNEX033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CMNEX034 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
CMNEX035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
CMNEX036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
CMNEX037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
CMNEX038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
CMNEX039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
CMNEX040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
CMNEX041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
CMNEX042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
CMNEX043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CMNEX044 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CMNEX093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CMNEX101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CMNEX102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CMNEX103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
CMNEX201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
CMNEX210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
CMNEX220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 5 User Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Package User Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Package User Information Field Names  . . . . . . . . . . . . . . . . . . . . . 92
Package User Information Input Panels . . . . . . . . . . . . . . . . . . . . . 93
Package User Information and Exits  . . . . . . . . . . . . . . . . . . . . . . . 94
Implementing the Package User Information Facility . . . . . . . . . . . . 94

Staging User Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
User Options Field Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
User Option Input Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
User Options and Exits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Implementing the User Options. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
User Option Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Release ID Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Accessing Maintain Release ID Variables  . . . . . . . . . . . . . . . . . . . . 103
Creating a New Release ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Maintaining an Existing Release ID  . . . . . . . . . . . . . . . . . . . . . . . . 106
Associating a Release ID with an Application  . . . . . . . . . . . . . . . . . 108

Custom V01-V10 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Custom V01-V10 Field Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Using Custom V01-V10 Variables  . . . . . . . . . . . . . . . . . . . . . . . . . 110

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



6 ChangeMan® ZMF

Table of Contents

Chapter 6 Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
CMNBAHST - Initial History Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

CMNBAHST Input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
SYSIN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 115
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CMNBAQ00 - Prepare Input for the IBM BAQLS2JS Utility . . . . . . . . . . . . 115
CMNBAT90 - Register Build Output Modules  . . . . . . . . . . . . . . . . . . . . . 116

CMNBAT90 Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Program Execution Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
SYSIN Keyword Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 121
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CMNBAT90 Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
CMNBAT90 Example - Composite Load Module . . . . . . . . . . . . . . . . 123

CMNBILOD - Verify that an ILOD record does not already exist . . . . . . . . 126
Program Execution Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 127

 CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD  . . . . . . . . . . . . 127
Program Execution Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
CMNBKRST Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SYSIN Keyword Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Return Codes, Completion Codes, and Error Messages. . . . . . . . . . . 129
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
CMNBKRST Notes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

CMNCICS1 - CICS NEWCOPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
CMNCICS1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
SYSIN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 137
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Notes and Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

CMNCICS1 - CICS BUNDLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
CMNCICS1 - CICS PIPELINE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
CMNCICS6 - CICS CSD Extract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



Table of Contents

Customization Guide 7

Export Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Basic Format of CMNCICS6 Export Control Statement . . . . . . . . . . . 142
Import Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Basic Format of CMNCICS6 Import Control Statement . . . . . . . . . . . 143
CICS Keywords processed by CMNCICS6 . . . . . . . . . . . . . . . . . . . . 144
CEDA Language Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

CMNFIXMN - Generate SETSSI Data. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 148
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

CMNIALD0 - Impact Analysis Db2 Load  . . . . . . . . . . . . . . . . . . . . . . . . 149
CMNIALD0 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 150
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Notes or Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

CMNPMLOD - Master File XML Extractor  . . . . . . . . . . . . . . . . . . . . . . . . 151
CMNPMLOD Input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 156
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Sample CMNPMLOD Extract  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Notes or Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Sample CMNPMLOD LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
CMNPMLOD - UNLOAD to Db2 Loadable Format  . . . . . . . . . . . . . . . 159

CMNSRCPP - Assembler Macro Discovery  . . . . . . . . . . . . . . . . . . . . . . . 168
CMNSSIDN - LINK EDIT Control Preparation . . . . . . . . . . . . . . . . . . . . . 169

CMNSSIDN Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Program Execution Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
SYSIN Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
INCLIB and CMNSSIDN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 173
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
CMNSSIDN Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

 CMNUPDAT - Stacked Reverse Delta Management  . . . . . . . . . . . . . . . . 175



8 ChangeMan® ZMF

Table of Contents

CMNUPDAT Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Notes or Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

CMNWRITE - Copy And Include Management  . . . . . . . . . . . . . . . . . . . . 181
CMNWRITE Input  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SYSIN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 187
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

SERCOPY - Copy Utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
SERCOPY Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Sample JCL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
DD Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
PARM Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SYSIN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Return Codes and Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . 194
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

SERPRINT - SYSOUT Compression Facility  . . . . . . . . . . . . . . . . . . . . . . 195
Browsing Compressed Listings  . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Chapter 7 Reports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Overview of Online Report Generation . . . . . . . . . . . . . . . . . . . . . . . . . 200
Submitting a Batch Job to Generate a Report  . . . . . . . . . . . . . . . . . . . . 201
Analysis of a Sample REXX Reporting Program  . . . . . . . . . . . . . . . . . . . 201

Introductory Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Mainline Program Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Getting User Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Validating User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Initializing Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Setting Up the XML Service Call  . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Calling the Target XML Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Diagnosing Errors and Formatting Report Output  . . . . . . . . . . . . . . 208
Disconnecting from ChangeMan ZMF . . . . . . . . . . . . . . . . . . . . . . . 209

XML Services Called in Reporting Programs. . . . . . . . . . . . . . . . . . . . . . 209

Appendix A Installation Jobs and Transaction Codes . . . . . . . . . . . . . 211
X Node Data Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Installation Jobs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Other CMNBATCH Transaction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 216



Table of Contents

Customization Guide 9

Appendix B Analyzing ZMF ISPF Skeletons  . . . . . . . . . . . . . . . . . . . 217
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Analyzing Skeleton Imbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



10 ChangeMan® ZMF

Table of Contents



Customization Guide 11

Welcome to ChangeMan® ZMF
ChangeMan® ZMF is a comprehensive and fully integrated solution for Software Change 
Management systems in z/OS environments. It provides reliable and streamlined 
implementation of software changes from development into production. ChangeMan ZMF 
manages and automates the application life cycle, protects the integrity of the code 
migration process, and results in higher quality delivered code to any test environment 
and to the production environment.

Before You Begin See the Readme for the latest updates and corrections for this manual.

Objective The ChangeMan ZMF Customization Guide provides detailed information about 
ChangeMan ZMF components that you can modify for functions you need for software 
change management at your company.

Audience This document is intended for ChangeMan ZMF administrators and technical staff who are 
responsible for the installation and maintenance of ChangeMan ZMF software. This 
document assumes that you are familiar with ChangeMan ZMF functions and architecture.

Change Bars Change bars in the left margin identify substantive changes in this publication since 
ChangeMan ZMF release 8.2

Guide to ChangeMan ZMF Documentation
The following sections provide basic information about ChangeMan ZMF documentation. 

ChangeMan ZMF Documentation Suite
The ChangeMan ZMF documentation set includes the following manuals in PDF format.

Manual Description

Administrator’s Guide Describes ChangeMan ZMF features and functions with 
instructions for choosing options and configuring global 
and application administration parameters.

ChangeMan ZMF Quick 
Reference

Provides a summary of the commands you use to 
perform the major functions in the ChangeMan ZMF 
package life cycle.

Customization Guide Provides information about ChangeMan ZMF skeletons, 
exits, and utility programs that will help you to 
customize the base product to fit your needs.

Db2 Option Getting Started 
Guide

Describes how to install and use the DB2 Option of 
ChangeMan ZMF to manage changes to DB2 
components.

ERO Concepts Discusses the concepts of the ERO Option of 
ChangeMan ZMF for managing releases containing 
change packages.

ERO Getting Started Guide Explains how to install and use the ERO Option of 
ChangeMan ZMF to manage releases containing 
change packages.



12 ChangeMan® ZMF

  Welcome to ChangeMan® ZMF

ERO Messages Describes system messages and codes produced by 
ChangeMan ZMF ERO.

ERO XML Services User's 
Guide

Documents ERO functions and services available for 
general customer use. These services are also known 
as the "green" services and provide mostly search and 
query functions.

High-Level Language 
Functional Exits Getting 
Started Guide

Provides instructions for implementing and using High-
Level Language (Cobol, PL/1, and REXX) exits, driven 
consistently by all clients to enforce local business 
rules in ZMF functions.

IMS Option Getting Started 
Guide

Provides instructions for implementing and using the 
IMS Option of ChangeMan ZMF to manage changes to 
IMS components.

INFO Option Getting Started 
Guide

Describes two methods by which ChangeMan ZMF can 
communicate with other applications:
 Through a VSAM interface file.
 Through the Tivoli Information Management for 

z/OS product from IBM.

Installation Guide Provides step-by-step instructions for initial installation 
of ChangeMan ZMF. Assumes that no prior version is 
installed or that the installation will overlay the 
existing version.

Java / zFS Getting Started 
Guide

Provides information about using ZMF to manage 
application components stored in USS file systems, 
especially Java application components.

Load Balancing Option 
Getting Started Guide

Explains how to install and use the Load Balancing 
Option of ChangeMan ZMF to connect to a ChangeMan 
ZMF instance from another CPU or MVS image.

M+R Getting Started Guide Explains how to install and use the M+R Option of 
ChangeMan ZMF to consolidate multiple versions of 
source code and other text components.

M+R Quick Reference Provides a summary of M+R Option commands in a 
handy pamphlet format.

Messages Explains messages issued by ChangeMan ZMF, 
SERNET, and System Software Manager (SSM) used 
for the Staging Versions feature of ChangeMan ZMF.

Migration Guide Gives guidance for upgrading ChangeMan ZMF.

OFM Getting Started Guide Explains how to install and use the Online Forms 
Manager (OFM) option of ChangeMan ZMF.

SER10TY User’s Guide Gives instructions for applying licenses to enable 
ChangeMan ZMF and its selectable options.

User’s Guide Describes how to use ChangeMan ZMF features and 
functions to manage changes to application 
components.

Manual Description



Guide to ChangeMan ZMF Documentation

Customization Guide 13

XML Services User’s Guide Documents the most commonly used features of the 
XML Services application programming interface to 
ChangeMan ZMF.

ZMF Web Services User’s 
Guide

Documents the Web Services application programming 
interface to ChangeMan ZMF.

Manual Description



14 ChangeMan® ZMF

  Welcome to ChangeMan® ZMF

Using the Manuals
Use Adobe® Reader® to view ChangeMan ZMF PDF files. Download the Reader for free at 
get.adobe.com/reader/.

This section highlights some of the main Reader features. For more detailed information, 
see the Adobe Reader online help system.

The PDF manuals include the following features:

 Bookmarks. All of the manuals contain predefined bookmarks that make it easy for 
you to quickly jump to a specific topic. By default, the bookmarks appear to the left of 
each online manual.

 Links. Cross-reference links within a manual enable you to jump to other sections 
within the manual with a single mouse click. These links appear in blue.

 Comments. All PDF documentation files that are delivered with ChangeMan ZMF have 
enabled commenting with Adobe Reader. Adobe Reader version 7 and higher has 
commenting features that enable you to post comments to and modify the contents of 
PDF documents. You access these features through the Comments item on the menu 
bar of the Adobe Reader.

 Printing. While viewing a manual, you can print the current page, a range of pages, 
or the entire manual.

 Advanced search. Starting with version 6, Adobe Reader includes an advanced 
search feature that enables you to search across multiple PDF files in a specified 
directory. 

Searching the ChangeMan ZMF Documentation Suite
There is no cross-book index for the ChangeMan ZMF documentation suite. You can use 
the Advanced Search facility in Adobe Acrobat Reader to search the entire ZMF book set 
for information that you want. The following steps require Adobe Reader 6 or higher.

1 Download the ZMF All Documents Bundle ZIP file and the ZMF Readme to your 
workstation from the Documentation tab on the Micro Focus SupportLine website.

2 Unzip the PDF files in the ZMF All Documents Bundle into an empty folder. Add the 
ZMF Readme to the folder.

3 In Adobe Reader, select Edit | Advanced Search (or press Shift+Ctrl+F).

4 Select the All PDF Documents in option and use Browse for Location in the drop 
down menu to select the folder containing the ZMF documentation suite.

5 In the text box, enter the word or phrase that you want to find.

6 Optionally, select one or more of the additional search options, such as Whole words 
only and Case-Sensitive.

7 Click Search.

8 In the Results, expand a listed document to see all occurrences of the search 
argument in that PDF. 

9 Click on any listed occurrence to open the PDF document to the found word or phrase.

http://get.adobe.com/reader/


Using Online Help

Customization Guide 15

Using Online Help
Online help is the primary source of information about ChangeMan ZMF. Online help is 
available as a tutorial, through Help screens, and in ISPF error messages.

Online Tutorial
ChangeMan ZMF includes an online tutorial that provides information about features and 
operations, from high-level descriptions of concepts to detailed descriptions of screen 
fields.

To view the tutorial table of contents, select option T from the Primary Option Menu, or 
jump to it from anywhere in ChangeMan ZMF by typing =T and pressing ENTER.

Press PF1 from anywhere in the Tutorial for a complete list of Tutorial navigation 
commands and PF keys.

Online Help Screens
If you have questions about how a ChangeMan ZMF screen works, you can view a help 
panel by pressing PF1 from anywhere on the screen.

Online Error Messages
If you make an invalid entry on a ChangeMan ZMF screen, or if you make an invalid 
request for a function, a short error message is displayed in the upper right corner of the 
screen. Press PF1 to display a longer error message that provides details about the error 
condition.

Remember that the long message does not display automatically. Request the long 
message by pressing PF1.

Typographical Conventions
The following typographical conventions are used in the online manuals and online help. 
These typographical conventions are used to assist you when using the documentation; 
they are not meant to contradict or change any standard use of typographical conventions 
in the various product components or the host operating system.

Convention Explanation

italics Introduces new terms that you may not be familiar with and 
occasionally indicates emphasis.

bold Emphasizes important information and field names.

UPPERCASE Indicates keys or key combinations that you can use. For example, 
press the ENTER key.

monospace Indicates syntax examples, values that you specify, or results that 
you receive.



16 ChangeMan® ZMF

  Welcome to ChangeMan® ZMF

Notes
Sterling Connect:Direct® is an IBM® point-to-point file transfer software product that can 
be used to transfer files between two ChangeMan ZMF instances. The original name of the 
product was Network Data Mover (NDM). The "NDM" mnemonic persists, embedded in 
Connect:Direct and ChangeMan ZMF component names, options, and JCL examples.

monospaced 
italics

Indicates names that are placeholders for values you specify; for 
example, filename.

vertical rule | Separates menus and their associated commands. For example, 
select File | Copy means to select Copy from the File menu.
Also, indicates mutually exclusive choices in a command syntax 
line.

Convention Explanation



Customization Guide 17

Chapter 1
Introduction

The ChangeMan ZMF rules-based environment for software configuration management 
provides processes based on best practices for managing application components.

Software change management can be expressed differently in different companies. 
ChangeMan ZMF architecture allows customers to modify details of the development 
lifecycle process. While user interfaces for ChangeMan ZMF have expanded beyond the 
host environment, many key functions are based on batch processing that can be 
customized to fit your requirements.

This design provides flexibility for you to quickly modify ChangeMan ZMF to fit your needs. 
However, there are some general recommendations that you should follow to protect the 
integrity of your ChangeMan ZMF components. These recommendations are detailed in 
the sections that follow.

Preserving Vendor Versions of ChangeMan ZMF Components 18
Using ChangeMan ZMF To Manage ChangeMan ZMF Components 18
Nomenclature 18



18 ChangeMan® ZMF 

Chapter 1  Introduction

Preserving Vendor Versions of ChangeMan ZMF 
Components

Preserve the versions of components that are delivered in the ZMF installer. Do not edit 
components in the mainframe libraries unloaded from the installer. Allocate custom 
libraries to concatenate over vendor (delivered) libraries in the SERNET started procedure 
and other JCL that use ChangeMan ZMF libraries.

If you preserve the delivered version of components, you can to return to the original 
version if modifications you make do not work as expected.

Using ChangeMan ZMF To Manage ChangeMan ZMF 
Components

We recommend that you use ChangeMan ZMF to manage ChangeMan ZMF components. 
This means that you create an application in production ChangeMan ZMF and create 
library types for ISPF skeletons, ISPF panels, ISPF messages, source code, load modules, 
and JCL. The baseline or production libraries for this application are concatenated under 
the ISPSLIB, ISPPLIB, ISPMLIB, and STEPLIB of the SERNET started procedure. 

To modify a ChangeMan ZMF component such as a skeleton, you create a change 
package, check out and edit the skeleton, then promote the package to populate a test 
skeleton library concatenated in the ISPSLIB ddname of a test ChangeMan ZMF instance. 
After testing the skeleton in a test ChangeMan ZMF environment, you audit and freeze the 
package, then obtain approvals that include management responsible for your change 
management software. When the package is installed, your production ChangeMan ZMF 
automatically starts using the new version of the skeleton.

For debugging purposes, users should copy their customized skeletons to a 
CUSTOM.SKELS library, and concatenate the CUSTOM.SKELS library ahead of the skeleton 
library distributed with the ChangeMan ZMF product.

Chapter 2 ISPF Skeletons provides details on customizing ChangeMan ZMF panels and 
variables. Chapter 3 User Exits describes exit functions, where they are invoked, and 
common uses. Extensive help is built into the ISPF environment, pressing the PF1 key 
once gets you some information, pressing the PF1 key a second time for ChangeMan ZMF 
Messages will get you more information. See the ChangeMan ZMF Messages Guide for 
further message details.

Nomenclature
Mainframe components of SERNET run as started tasks under z/OS. Each SERNET 
started task is assigned a unique one-character subsystem ID.

ChangeMan ZMF runs as an application under SERNET technology. It uses the 
subsystem ID assigned to the SERNET started task, but SERNET requires the subsystem 
ID even when there is no ChangeMan ZMF application.



Nomenclature

Customization Guide 19

One occurrence of SERNET is referred to as a SERNET instance. One occurrence of 
ChangeMan ZMF is referred to as a ChangeMan ZMF instance.

The ChangeMan ZMF programs that run under SERNET are called ChangeMan ZMF server 
programs. ChangeMan ZMF programs that run in the user address space, such as the 
ChangeMan ZMF ISPF interface, are referred to as ChangeMan ZMF client programs.



20 ChangeMan® ZMF 

Chapter 1  Introduction



Customization Guide 21

Chapter 2
ISPF Skeletons

This chapter tells you how to use the flexibility of standard IBM ISPF services to build your 
own change management processes that run within the secure environment of 
ChangeMan ZMF.

Introduction 22
Skeleton File Tailoring in ChangeMan ZMF 22
CMN$$AUD - Audit for ALL applications 33
CMN$$JBL - JOBLIB / STEPLIB 34
Setting Build Parameters 35
Transmit Selected Remote Promote Components 38
JES Node Names and Transmission Site Names 39



22 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

Introduction
ChangeMan ZMF uses standard ISPF services to build batch job JCL from ISPF skeletons. 
This design provides extraordinary flexibility through standard IBM facilities. You can build 
your own batch processes inside ChangeMan ZMF for component builds and other 
processes while ChangeMan ZMF maintains the integrity of your software change 
management processes by securing development and production libraries and allowing 
only authorized access to its functions.

The ChangeMan ZMF Installation Guide describes skeletons that you must modify to bring 
up a test or demonstration ChangeMan ZMF instance and process a change package 
through the package life cycle. This chapter provides more details about customization in 
a complex ChangeMan ZMF environment.

A routine is available which allows the notification of Job Completion messages via email 
(only for z/OS 2.3 or greater). See the sample skeleton CMN$$ENT.

Skeleton File Tailoring in ChangeMan ZMF
File tailoring obtains variable values from ISPF variable pools populated by ChangeMan 
ZMF programs. It obtains ISPF skeletons from libraries concatenated under the ISPSLIB 
ddname in the SERNET started task JCL. ChangeMan ZMF file tailoring builds batch JCL to 
perform the following functions:

 Checkout in batch

 Compile, assemble, and link edit (build) procedures

 Promotion

 Audit

 Audit Auto Resolve

 Batch freeze

 Package distribution, installation, and baseline ripple

 Package backout

 Utility functions such as Component Compare, Print, and Copy (export)

 Development and management of CICS web services.

Skeletons are delivered in the CMNZMF SKELS library in the ZMF installer.

Skeleton Naming Conventions
When ChangeMan ZMF was first released, there was a rigid naming convention for 
skeletons that conveyed their purpose and their position in the skeleton imbed hierarchy. 
As the product matured and the number of skeletons multiplied, the naming conventions 
lost their rigor.

However, where you see certain structures in a skeleton name, you can still infer 
information about the skeleton.



Skeleton File Tailoring in ChangeMan ZMF

Customization Guide 23

The table below explains the conventions in this sample skeleton name:

   aaaiifff

where:

We recommend that you use an abbreviation for your company name as the first three 
characters of a skeleton name when you create a custom skeleton that is not a derivative 
of a skeleton that is delivered with ChangeMan ZMF.

Skeleton Variables
ISPF variables are used in ChangeMan ZMF skeleton logic to:

 Provide values for component names, data set names, parameters, subparameters, 
and other elements of JCL.

 Provide the conditions for file tailoring logic to include or exclude JCL statements.

Skeleton Variable Example

The following code fragment from a ChangeMan ZMF skeleton provides an example of 
both variable functions:

)SEL &DB2PCLL NE &Z                 
//STEPLIB  DD DISP=SHR,DSN=&DB2PCLL 
)ENDSEL &DB2PCLL NE &Z 

In this example, if variable DB2PCLL is not a null value (blank), then the STEPLIB 
statement is included in the JCL generated by file tailoring.

If the STEPLIB statement is included in the generated JCL, the data set name of the 
library will be the value stored in variable DB2PCLL.

Where Variables Are Defined

ISPF variables are made available for file tailoring by these ChangeMan ZMF facilities:

aaa The first three characters of the delivered ChangeMan ZMF skeletons are CMN, 
which is an abbreviation for the product name.

ii The following values usually carry the listed meaning:

$$ Subordinate skeleton in an imbed hierarchy.

IM IMS Option skeleton.

IN Install skeleton, often for the IMS Option.

JS Skeleton to insert a new JOB statement after 255 steps in generated JCL.

PR Promotion skeleton, often for the IMS Option.

RP Skeleton for promotion to a remote site.

Zn Online Forms Manager skeleton.

nn Installation job skeleton.

fff Three-character acronym or abbreviation for the skeleton function.



24 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

 ChangeMan ZMF base product programs that set variable values based on conditions 
in the package master file, component master file, files under ChangeMan ZMF 
control, and values entered by users on standard ChangeMan ZMF panels.

 Package User Information variables entered by package creators if the Package User 
Information facility is turned on by the global administrator. See "Package User 
Information" on page 92.

 Stage User Option variables set by users on the custom ChangeMan ZMF User Option 
Panel built by the administrator or technician responsible for customizing ChangeMan 
ZMF. See "Staging User Options" on page 96.

 Skeletons CMN$$DSN, CMN$$VAR, CMN$PARM, PRM$aaaa, and VAR$aaaa that you 
customize to set variables used in build processing.

 Release ID variables set by the global administrator. See "Release ID Variables" on 
page 103.

 Custom variables V01-V10 passed from ISPF panels to file tailoring for some 
ChangeMan ZMF batch jobs.

#VARLIST

Member #VARLIST in the CMNZMF SKELS library lists ISPF variables and variable tables 
defined in base ChangeMan ZMF programs.

 The variables and tables are grouped under the ChangeMan ZMF function that defines 
them.

 The variables in each table are listed.

 For each variable, the variable length and a short definition are provided.

 High level skeletons for each ChangeMan ZMF function are listed.

Skeleton Imbedding
ChangeMan ZMF uses the imbed facility of ISPF file tailoring to reduce redundancy. 
Common functions are coded in a skeleton. The common skeleton is then imbedded in 
other skeletons with the )IM control statement.

Imbedded skeletons can contain imbeds for other skeletons. ISPF file tailoring limits 
imbeds to 15 levels of imbedding, if you attempt further you will get an error with the 
skeleton name and record number that attempted to exceed that limit e.g. Exceeds 
maximum )IM level of 15, CMN014 record-3

Each ChangeMan ZMF skeleton begins with a JCL comment (except skeletons that 
generate JOB statements). This JCL comment contains the name of the skeleton. ISPF file 
tailoring passes JCL comments in skeletons directly to the output JCL. You can find the 
names of all of the ChangeMan ZMF skeletons used to generate a job by looking for JCL 
comments that look like this:

//*)IM CMNxxxxx

The sequence of these JCL comments shows the sequence of skeletons processed by ISPF 
file tailoring to generate a job. The sequence may mean that a skeleton is imbedded in a 
skeleton named previously in a JCL comment in the job.

See Appendix B, "Analyzing ZMF ISPF Skeletons" on page 217 for tables that show the 
hierarchy of imbedded ChangeMan ZMF skeletons. The appendix also provides 



Skeleton File Tailoring in ChangeMan ZMF

Customization Guide 25

instructions for analyzing skeleton imbed hierarchies, which you can use to analyze your 
customized skeleton structures.

Skeleton Maintenance Facility
ChangeMan ZMF includes a skeleton maintenance facility that the global administrator can 
use to:

 Customize skeletons

 Check skeleton syntax

 Create and maintain application-level variables called Release ID variables for use in 
file tailoring for batch job JCL.

Accessing Skeleton Maintenance

To display the Skeleton Maintenance Options menu, use one of these two methods.

 Access the Skeleton Maintenance Options panel directly by typing =A.G.S and 
pressing Enter, 

or

 Follow these steps to access the Skeleton Maintenance panel using ChangeMan 
ZMF menus:

a On the Primary Option Menu, select option A Admin.

b On the Administration Options menu, select option G Global.

c On the Global Administration Options menu, select option S Skeleton.

The Skeleton Maintenance Option menu (CMN3DSKL) is displayed. 

Options on the Skeleton Maintenance Options menu include:

 M Maintain to take you to the Maintain Release ID Variables panel where you 
create and update release ID variables. See "Developing Skeletons With File Tailoring 
Assistance" on page 26.

 A Assist to take you to the File Tailoring Assistance panel where you can edit 
skeletons and test skeleton syntax. See "Release ID Variables" on page 103.

CMN3DSKL                 Skeleton Maintenance Options
Option ===>                                                       

M  Maintain       Maintain skeleton release variables
A  Assist         File tailoring assistance of skeleton procedures

CAUTION!  Never select A Assist on a production ChangeMan ZMF instance.

When you select A Assist, ISPF skeleton libraries are immediately enqueued, and 
skeleton file tailoring cannot be executed.



26 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

Developing Skeletons With File Tailoring Assistance
We recommend that you use ChangeMan ZMF to manage ChangeMan ZMF components. 
See "Using ChangeMan ZMF To Manage ChangeMan ZMF Components" on page 18. 
However, early in the initial implementation of ChangeMan ZMF, there may be justification 
for using the File Tailoring Assistance facility in ChangeMan ZMF global administration to 
modify skeletons. 

File Tailoring Assistance automatically obtains a skeleton you want to edit or validate from 
the first occurrence of the skeleton in the ISPSLIB concatenation of the SERNET started 
task. Editing is performed in an ISPF edit session running under ChangeMan ZMF. When 
edit changes are saved, ChangeMan ZMF saves the customized skeleton back into the top 
library in the ISPSLIB concatenation. The top library in the ISPSLIB concatenation should 
be your custom skeleton library.

Advantages of Using File Tailoring Assistance

The advantages of using File Tailoring Assistance include:

 Rapid editing of skeletons.

 Automatic preservation of vendor versions of skeletons (if you properly allocate a 
custom skeleton library and concatenate it at the top of the ISPSLIB libraries in your 
started task JCL).

 Syntax checking of complex skeleton logic without creating application, component, 
and user conditions that will create variable values to exercise that logic.

 Rapid testing of skeletons from the same ChangeMan ZMF instance where they were 
edited.

Disadvantages of File Using Tailoring Assistance

The disadvantages of using File Tailoring Assistance include:

 No skeleton versions are preserved between the original vendor version and the 
current custom version that is running the ChangeMan ZMF instance.

 There is no audit trail of skeleton changes.

 There is no guarantee that variable values assigned in File Tailoring Assistance are 
available in the ChangeMan ZMF function where the file tailoring is actually 
performed.

 All libraries in the ISPSLIB concatenation are enqueued while File Tailoring Assistance 
facility is in use. Execution of batch functions on this ChangeMan ZMF instance are 
blocked.

 Skeleton developers must be granted update access to the custom skeleton library. 
This is not acceptable if the library is used to run production ChangeMan ZMF 
instances.

 When skeleton changes are saved, the changes are effective immediately. There is no 
promotion facility to test the skeleton outside of File Tailoring Assistance.

CAUTION!  For this reason, never use File Tailoring Assistance on a production 
ChangeMan ZMF instance.



Skeleton File Tailoring in ChangeMan ZMF

Customization Guide 27

Recommended Use of File Tailoring Assistance

The disadvantages listed above make the use of File Tailoring Assistance inappropriate in 
a ChangeMan ZMF instance that manages production components.

File Tailoring Assistance may be used in an initial implementation of ZMF:

1 Bring up the new ChangeMan ZMF instance

2 Use File Tailoring Assistance to perform initial skeleton modifications to get 
ESSENTIAL batch jobs to run successfully.

3 Create a ChangeMan ZMF application, and continue development of custom 
components under ChangeMan ZMF supervision.

Editing Skeletons in File Tailoring Assistance
1 Display the Skeleton Maintenance Options menu using one of these two methods.

 Access the Skeleton Maintenance Options panel directly by typing =A.G.S.A 
and pressing Enter, 

or

 On the Skeleton Maintenance Option menu, select option A Assist. The File 
Tailoring Assistance panel (CMN3DSA0) is displayed.

2 On the File Tailoring Assistance panel:

a Type E Edit in the Option line.

b Type the name of a skeleton in the Skeleton Name field. 

c Press Enter.

CMN3DSA0                   File Tailoring Assistance
Option ===>                                                     

   blank Display skeleton list               E Edit skeleton
       S Select for file tailoring           V View skeleton

Skeleton name . . . CMN11     (Blank for list; required for options E,V,S)
Release id  . . . .           (Blank for list)
Application . . . . ACTP      (Blank for list)



28 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

The skeleton you named is opened in an ISPF edit session. 

3 Use standard ISPF edit commands to change the skeleton.

4 Press PF3 or type END and press Enter to save the edit changes and return to the 
File Tailoring Assistance panel.

5 If File Tailoring assistance found the skeleton in the library at the top of the ISPSLIB 
library concatenation in the started task JCL, the updated member is saved back to 
that library. If the skeleton was found in another library lower in the concatenation, it 
is saved to the top library.

ISREDDE2   CMNTP.CMN810.C6.SKELS(CMN11) - 00.00            Columns 00001 00072
Command ===>                                                  Scroll ===> CSR
****** ***************************** Top of Data *****************************
000001 )IM CMN$$SJN
000002 //*)IM CMN11
000003 //*
000004 //*  JOB TO INSERT &PKGNAME INFORMATION IN PACKAGE MASTER AT &RMTSITE
000005 //*
000006 )CM
000007 )CM  UPDATE DDNAME CMN11ENQ WITH A VALID DATASET NAME BEFORE USING;
000008 )CM  THIS DATASET ELIMINATES CONFLICTS WITH RECORDS BEING UPDATED IN
000009 )CM  THE PACKAGE MASTER FROM THE .PACKAGE DATASET
000010 )CM
000011 )SEL &RSTTTYP EQ FTP
000012 )CM
000013 )CM   RECEIVE PACKAGE DATASET
000014 )CM
000015 )SET RCVDSN    = &PRSPKG
000016 )SET STEPID    = PACK
000017 )IM CMN$$RCV
000018 )CM
000019 )CM   RECEIVE INSTALLATION "X" DATASET
000020 )CM
000021 )SET RCVDSN    = &PRSNOD
000022 )SET STEPID    = DOTX
000023 )IM CMN$$RCV
000024 )CM
000025 )CM   RECEIVE ALL THE STAGING DATASETS
000026 )CM
000027 )CM  SPECIFY THE REQUIRED PARAMETERS FOR THE CMNSUBIR SKELETON:
000028 )CM
000029 )SET SUBDOT   = &RMLBTBL
000030 )SET SUBPARJS = 230
000031 )SET SUBNR1SK = &Z
000032 )SET SUBNR1JS = 0
000033 )SET SUBREPSK = CMN$$F08
000034 )SET SUBREPJS = 4
000035 )SET SUBNR2SK = &Z
000036 )SET SUBNR2JS = 0
000037 )SET SUBERRSK = CMN11ERR

NOTE  Editing in File Tailoring Assistance is not the same as editing a ChangeMan ZMF 
package component. In File Tailoring Assistance, you are editing directly in the skeleton 
library, and there is no compare listing or commit process when you press PF3. Your 
changes are simply saved directly into the live data set.



Skeleton File Tailoring in ChangeMan ZMF

Customization Guide 29

Syntax Checking in File Tailoring Assistance
With File Tailoring Assistance, you can check the syntax of skeletons you have modified. A 
simulated file tailoring session resolves variable substitutions and presents the resulting 
file on the screen for review.

1 Display the Skeleton Maintenance Options menu using one of these two methods.

 Access the Skeleton Maintenance Options panel directly by typing =A.G.S.A 
and pressing Enter.

or

 On the Skeleton Maintenance Option menu, select option A Assist. The File 
Tailoring Assistance panel (CMN3DSA0) is displayed.

2 On the File Tailoring Assistance panel:

a In the Application field, type the name of the application that contains the 
skeleton you want to test.

b Type the name of a skeleton in the Skeleton Name field and press Enter, or leave 
the field blank and press Enter to display the Skeleton Member List panel, then 
type S in the line command for a skeleton and press Enter. You may have to 
select a Release ID first from the Release Id List panel (CMN3DSA2)

NOTE  File Tailoring Assistance does not resolve variables with values provided by 
ChangeMan ZMF panels and functional programs. Likewise, ISPF tables are not built. You 
can provide values for variables using the Release ID Variable facility described in the 
next section.

CMN3DSA0                   File Tailoring Assistance
Option ===> S                                                 

   blank Display skeleton list               E Edit skeleton
       S Select for file tailoring           V View skeleton

Skeleton name . . . CMN11     (Blank for list; required for options E,V,S)
Release id  . . . .           (Blank for list)
Application . . . . ACTP      (Blank for list)

CMN3DSA2                        Release Id List                Row 1 to 1 of 1  
Command ===>                                                  Scroll ===> CSR   
                                                                                
   Id     Changed       User     Description                                    
S V6R1 2008/07/09 13:35 USER25                                                  
******************************* Bottom of data ******************************** 



30 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

3 The JCL created from the file tailored skeleton is displayed, at least up to the point 
where a syntax error was detected or file tailoring assistance tried to resolve a 
variable or open a table that does not exist. Error messages from file tailoring are 
displayed at the top of the JCL. 

Debugging Skeletons in Started Task Procedures
Starting in ChangeMan ZMF 5.1, ISPF file-tailoring is migrated from your TSO address 
space to file tailoring address spaces that are initiated by the SERNET started task that 
runs ZMF. You have no access to these separate address spaces, so you cannot directly 
test file tailoring for custom skeletons.

CLIST CMNDBGAS executes ChangeMan ZMF programs in your address space. You can 
run this CLIST in tools like ISPF Dialog Test to debug custom skeletons.

ISREDDE2   CMNTP.A008A.#CE259A5.#75A7E25                   Columns 00001 00072
Command ===>                                                  Scroll ===> CSR
****** ***************************** Top of Data ******************************
000001 //S8CPRMA JOB (SM-1IKF-SM),'CMN',
000002 //        CLASS=A,
000003 //        NOTIFY=USER25,
000004 //        MSGCLASS=X
000005 //*
000006 //* THE ABOVE JOB CARDS CAME FROM THE IMBED OF SKEL CMN$$JCD
000007 //*)IM CMN$$JCD
000008 //*
000009 //*  JOB REQUESTED BY USER25 ON 2014/12/02 AT 21:59
000010 //*
000011 //*)IM CMN$$DSN
000012 //*)IM CMN$$JBL
000013 //JOBLIB   DD DISP=SHR,DSN=CMNTP.CMN810.C6.LOAD
000014 //         DD DISP=SHR,DSN=CMNTP.SER810.C6.LOAD
000015 //         DD DISP=SHR,DSN=CMNTP.CMN810.LOAD
000016 //         DD DISP=SHR,DSN=CMNTP.SER810.LOAD
000017 #%
000018 //*)IM CMN$$SJN
000019 //*
000020 //*  PACKAGE FROZEN BY USER015 ON 2014/12/02 AT 21:59
000021 //*
000022 //*)IM CMN$$DSN
000023 //*)IM CMN$$JBL
000024 //JOBLIB   DD DISP=SHR,DSN=CMNTP.CMN810.C6.LOAD
000025 //         DD DISP=SHR,DSN=CMNTP.SER810.C6.LOAD
000026 //         DD DISP=SHR,DSN=CMNTP.CMN810.LOAD
000027 //         DD DISP=SHR,DSN=CMNTP.SER810.LOAD
000028 //*)IM CMN11
000029 //*
000030 //*  JOB TO INSERT ACTP000008 INFORMATION IN PACKAGE MASTER AT
000031 //*
000032 //*)IM CMN00INS
000033 //CMN00   EXEC PGM=CMNBATCH,   *** Access ChangeMan ZMF started task
000034 //             PARM='SUBSYS=6',
000035 //             COND=(4,LT)
000036 //*)IM CMN$$SPR
000037 //SER#PARM DD  DISP=SHR,DSN=CMNTP.SER810.C6.TCPIPORT

NOTE  The record numbers referenced in error messages are the skeleton record 
numbers, not records in the output JCL.



Skeleton File Tailoring in ChangeMan ZMF

Customization Guide 31

File Tailoring Procedure Names

In releases prior to ChangeMan ZMF 5.6, ISPF file-tailoring is performed by a single 
started procedure named CMNxADSP, where x is the subsystem ID of the started task 
under which ChangeMan ZMF runs.

Since ChangeMan ZMF version 5.6, ChangeMan ZMF administrators can specify up to four 
different procedures that perform the following file-tailoring functions:

 Installation JCL builds.

 Batch component builds.

 Promotion JCL builds.

 All other file-tailoring functions.

The ChangeMan ZMF global administrator identifies these procedures on the Global 
Parameters, Part 2 of 8 [CMNGGP02] panel. Refer to the ChangeMan ZMF Administrator’s 
Guide for a description of this panel.

If there is a failure in the execution of a file tailoring started task, it sends a message to 
the console log. You can use the JobID associated with the console log message to find 
the file tailoring server output in SDSF (or another sysout viewing tool) that contains 
information about the cause of the failure.

Considerations

 You must have global administrator authority to run the started task procedure 
address space programs in your TSO address space.

 CLIST CMNDBGAS uses control information that is generated by a file tailoring started 
procedure when the TRACE facility is enabled in the ZMF started task. When TRACE is 
on in the ZMF instance, the spawned file tailoring started task writes the control 
information to dynamically allocated sysout DDname RQST.

 CMNDBGAS reads the control information from a sequential file. Before executing 
CMNDBGAS, you must allocate the sequential file and copy the control information 
from the RQST sysout data set into the new file.

 The method you use to copy the RQST sysout records to a cataloged data set depends 
on the facilities and requirements at your site. The procedure described in this section 
assumes that you use your sysout viewing tool to copy that information into a 
cataloged data set.

 Execute the procedure described in this section using your test ChangeMan ZMF 
system. The TRACE facility generates a significant volume of output, which could be 
harmful in a ChangeMan ZMF instance being used by many developers.

Set Up CLIST CMNDBGAS

1 Copy member CMNDBGAS from the vendor CLIST library to your custom CLIST 
library.

2 Code an appropriate SYSOUT class for DDnames SERPRINT and RQST.

3 Replace the ALLOC statement for ddname SER#PARM with the same statement in 
your log-on CLIST for ChangeMan ZMF.

4 Replace the LIBDEF statements for ISPLLIB, ISPMLIB, and ISPPLIB with the LIBDEFs 
in your ZMF logon CLIST.



32 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

5 Replace the library concatenation in the LIBDEF ISPSLIB statement with the 
concatenation in your ZMF started procedure.

6 To ensure a clean ISPF variable environment, ensure that CLIST CMNDBGAS specifies 
a NEWAPPL() application id that does not contain ChangeMan ZMF variables in the 
profile pool member in ISPPROF.

Run CLIST CMNDBGAS

The instructions in this section assume that you use SDSF to browse spool output and are 
authorized to issue the commands shown. Substitute appropriate steps and commands if 
you do not have the required authorization or use another sysout viewing tool.

1 Turn on the TRACE facility with the following modify command:

F server,TRACE,ON,CMN,CLASS=1

where server is the jobname of the SERNET started task that runs ZMF.

2 Execute your logon CLIST to connect to ChangeMan ZMF through the ISPF interface, 
and execute the ZMF function that will file tailor the skeleton you want to test. The 
purpose of this step is to capture the control information required to run this function 
with CLIST CMNDBGAS.

3 Turn off the TRACE facility with the following modify command:

F server,TRACE,OFF,CMN,CLASS=1

where server is the jobname of the SERNET started task that runs ZMF.

4 Allocate a small sequential data set somnode.CMNADSP.REQUEST with DCB:

RECFM=FB
LRECL=1000

This file will only contain a few records.

5 Enter SDSF and set PREFIX to the name of the file tailoring started task. Display the 
SDSF queue appropriate for the SYSOUT class coded in the file tailoring started 
procedure.

6 Type ? in the line command for the file tailoring started task sysout and press Enter.

7 Type SE in the line command for the RQST ddname and press Enter to display the 
sysout data in edit mode.

8 Copy the contents of the RQST sysout data set into somnode.CMNADSP.REQUEST that 
you allocated previously:

a  In the line command for the first record, type C9999.

b On the Command line, type REPLACE and press Enter.

c On the Name line of the Edit/View Replace panel, type DSN 
somnode.CMNADSP.REQUEST and press Enter.

d Press Enter on the EDIT - Confirm Replace panel, ignoring the difference in the 
record format.

e Exit the RQST sysout data set.



CMN$$AUD - Audit for ALL applications

Customization Guide 33

9 Invoke CLIST CMNDBGAS from within a debugging environment, such as ISPF dialog 
test (Note that this CLIST is distributed in the supplied CLIST library for ChangeMan 
ZMF and will need to be updated and placed in a custom library before you can use it).

10 When prompted, enter the data set name somnode.CMNADSP.REQUEST.

ISPF Table CMNTBN
Programs running in a started task procedure address space start with a clean ISPF 
environment. To ensure that no ChangeMan ISPF tables are left open in a user’s address 
space, a TBEND is issued for each ISPF table that was created during the session. 

These TBENDs occur when you exit from a client ChangeMan ZMF session in an ISPF 
environment. ChangeMan knows which tables to TBEND by maintaining another ISPF 
table called CMNTBN. CMNTBN contains a list of all ISPF tables created during the 
ChangeMan session.

Table CMNTBN may help you when you are debugging under ISPF dialog test.

Error Codes
 User abend 6 is issued if the user cannot connect to the ChangeMan ZMF instance.

 User abend 10 is issued if the saved request block data set cannot be opened.

CMN$$AUD - Audit for ALL applications
You can modify this skeleton to include all applications in the cross-application 
considerations of package audit.

Note that the more applications you include in the scope the longer audit will take.

This is not an option selectable from the submission panel. If used it needs to be coded in 
the audit skeleton and will affect every audit job.

in CMN$$AUD replace these records:

)DOT SCOPTABL
XAP=&APPLMNE
)ENDDOT SCOPTABL

with

XAP=*

(or any number of asterisks, as long as the first character is an asterisk)

This has the same effect as getting the application-in-scope selection list up (during audit 
submission) and using SELECT ALL to select every application.



34 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

CMN$$JBL - JOBLIB / STEPLIB
We recommend against including ChangeMan ZMF load libraries in the LINKLIST. 
ChangeMan ZMF includes skeleton CMN$$JBL, which provides a standard JOBLIB 
concatenation for batch jobs submitted from the started task.

Skeleton CMN$$JBL is also used to provide ZMF libraries in a STEPLIB for plan lookup 
program CMNDB2PL in the DB2 Option. In file tailoring, the DD name defaults to JOBLIB 
unless variable &JOBLBDD is set to STEPLIB or some other value. 

Skeleton CMN$$JBL is included by these skeletons.

The delivered skeleton contains selection logic to concatenate test ZMF load libraries in 
front of production ZMF libraries for a test instance of ChangeMan ZMF. The actual data 
set names are in variables that are defined in the skeleton CMN$$DSN.

If you license the ChangeMan ZMF DB2 Option, do not include a DB2 system load library 
in skeleton CMN$$JBL. Skeletons that create JCL for DB2 bind jobs obtain the DB2 library 
name from variable &STSLOD using logic like this (example taken from CMN$$PRB):

//DB2PL   EXEC PGM=CMNDB2PL,   *** DETERMINE DB2 BIND REQUIREMENTS      
//             REGION=0M,                                               
//             COND=(4,LT)                                              
)SET JOBLBDD = STEPLIB                                                  
)IM CMN$$JBL                                                            
)SEL &STSLOD NE &Z                                                      
)SET DB2DSNLD = &STSLOD                                                 
)IM CMN$$D2X                                                            

Skeleton Description DD Name

CMN$$BRQ Routine to connect to a remote task for backouts and reverts STEPLIB

CMN$$D2J JOB statement for DB2 bind jobs JOBLIB

CMN$$JCD JOB statement for user-initiated jobs JOBLIB

CMN$$JNM JOB statement for baseline ripple and other installation jobs at 
the development instance

JOBLIB

CMN$$NTF Routine to invoke batch approval notification JOBLIB

CMN$$PRB Routine for DB2 binds at promotion or demotion STEPLIB

CMN$$RAL Routine for release audit reporting tables update STEPLIB

CMN$$RAP Routine for generate release audit reports STEPLIB

CMN$$RAU Routine for audit area STEPLIB

CMN$$RPB Routine for DB2 binds at remote promotion or demotion STEPLIB

CMN$$RPJ JOB statement for remote promotion or demotion JOBLIB

CMN$$SJN JOB statement for remote site installation or backout JOBLIB

CMN$$SPB Sample routine for promotion DB2 binds using local 
shadow libraries

STEPLIB

CMN21 Routine for DB2 binds for production library installation STEPLIB

CMN32 Routine for DB2 binds for baseline ripple STEPLIB

CMN49 Routine for DB2 binds for production library backout STEPLIB

CMN56 Routine for DB2 binds for reverse baseline ripple STEPLIB



Setting Build Parameters

Customization Guide 35

//         DD  DISP=SHR,DSN=&DB2DSNLX                                   
//         DD  DISP=SHR,DSN=&STSLOD                                     
)ENDSEL &STSLOD NE &Z                                                   

Variable &STSLOD contains the library name entered in the DB2 System Load Library field 
on the DB2 Physical Subsystems Part 1 of 2 (CMNGD2S0) panel in DB2 global 
administration.

Customization Tasks:

1 Copy skeleton CMN$$DSN from your vendor CMNZMF SKELS library to your custom 
SKELS library.

2 In the section that defines the JOBLIB, code the appropriate values to use delivered 
and CUSTOM load libraries for CMNZMF LOAD and SERCOMC LOAD libraries. This is as 
delivered (note the first half are for a test instance of ChangeMan ZMF, second half 
are for a production instance of ChangeMan ZMF):

)CM  THIS DEFINES THE VARIOUS LOAD LIBRARIES USED TO BUILD THE JOBLIB
)CM  CONCATENATION.
)CM  (CMN$$JBL)
)CM
)SET ZMFCTST = somnode.CMNZMFt.CUSTOM.LOAD
)SET SERCTST = somnode.SERCOMCt.CUSTOM.LOAD
)SET ZMFVTST = somnode.CMNZMFt.LOAD
)SET SERVTST = somnode.SERCOMCt.LOAD
)SET ZMFCPRD = somnode.CMNZMF.CUSTOM.LOAD
)SET SERCPRD = somnode.SERCOMC.CUSTOM.LOAD
)SET ZMFVPRD = somnode.CMNZMF.LOAD
)SET SERVPRD = somnode.SERCOMC.LOAD

Note that in the distributed CMN$$DSN, the commented name in brackets tells you the 
name of the relevant skeleton(s) using these variables, in this example it is CMN$$JBL.

3 If you have a ChangeMan ZMF test instance, there is logic in CMN$$JBL based on 
subsystem ID so that your test libraries are concatenated in front of the libraries you 
use to run your production ChangeMan ZMF instance. You will also need to copy and 
edit the CMN$$JBL skeleton to use the correct subsystem ID for your test instance.

Setting Build Parameters
Build process parameters are provided to skeleton file tailoring from the following 
sources:

1 Skeleton CMN$$VAR - Initializes build parameter ISPF variables to blank.

2 Skeleton CMN$PARM - Assigns system-wide values to build parameter variables.

3 Optional skeleton PRM$aaaa (where aaaa is an application mnemonic) - Overlays 
system-wide default values with application specific values.

4 Compile parm and link edit parm fields set in the user interface and stored in 
component history.



36 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

Build Parameter ISPF Variables
These are build parameter variables initialized to a null value in CMN$$VAR, then set in 
"global" skeleton CMN$PARM, and used in build process skeletons.

These are the compile parameter and link edit parameter variables used in build process 
skeletons that are set in the user interface or retrieved from component history.

Build Parameter Skeleton Architecture
Skeleton CMN$$VAR is imbedded in every build procedure main skeleton. Skeletons 
CMN$PARM and optional skeleton PRM$aaaa are imbedded in CMN$$VAR. Variables 
&COMPOPTx and &LINKOPT are put into the ISPF variable pool by ChangeMan ZMF build 
process programs.

Variable 
Name Description

&DB2PPRM1 DB2 Precompile Parameters Part 1

&DB2PPRM2 DB2 Precompile Parameters Part 2

&DB2PPRM3 DB2 Precompile Parameters Part 3

&CICSPRM1 CICS Translate Parameters Part 1

&CICSPRM2 CICS Translate Parameters Part 2

&CICSPRM3 CICS Translate Parameters Part 3

&MAPDPRM1 BMS MAP DSECT Parameters Part 1

&MAPDPRM2 BMS MAP DSECT Parameters Part 2

&MAPDPRM3 BMS MAP DSECT Parameters Part 3

&COMPPRM1 Compile Parameters Part 1

&COMPPRM2 Compile Parameters Part 2

&COMPPRM3 Compile Parameters Part 3

&PLNKPRM1 Prelink Parameters Part 1

&PLNKPRM2 Prelink Parameters Part 2

&PLNKPRM3 Prelink Parameters Part 3

Variable 
Name Description

&COMPOPT1 Compile Parameters Part 1

&COMPOPT2 Compile Parameters Part 2

&COMPOPT3 Compile Parameters Part 3

&COMPOPT4 Compile Parameters Part 4

&COMPOPT5 Compile Parameters Part 5

&LINKPRM1 Link Parameters Part 1

&LINKPRM2 Link Parameters Part 2

&LINKPRM3 Link Parameters Part 3



Setting Build Parameters

Customization Guide 37

This code fragment from skeleton CMN$$VAR shows initialization of build parameter 
variables, the imbed of skeleton CMN$PARM, and the imbed of optional skeleton 
PRM$&PROJECT. An )IM command in a skeleton will be ignored if the OPT parameter is 
given and the skeleton is not found.

)SET COMPPRM1 = &Z                                                      
)SET COMPPRM2 = &Z                                                      
)SET COMPPRM3 = &Z                                                      
. . .
)CM                                                                     
)CM  SET GLOBAL (I.E. SHOP STANDARD) COMPILE, LINK, ETC. PARAMETERS.    
)CM                                                                     
)IM CMN$PARM                                                            
. . .
)CM                                                                     
)CM  PERFORM IMBED OF APPLICATION-SPECIFIC PARMS FOUND IN A "PRM$XXXX"
)CM  SKELETON MEMBER, IF THIS MEMBER EXISTS.                            
)CM                                                                     
)IM PRM$&PROJECT OPT  

These code fragments from skeletons CMN$$CO2 and CMN$$LNK (named in bold on IM 
comment) show the build parm variables in the PARM statements for a COBOL2 compile 
step and a link edit step.

//*)IM CMN$$CO2                                                         
)CM                                                                     
)CM  ROUTINE TO COMPILE COBOL2 SOURCE CODE                              
)CM                                                                     
. . .
//COBOL2&C#N  EXEC PGM=IGYCRCTL,   *** COMPILE COMPONENT &CMPNAME       
//              COND=(4,LT),                                            
//              PARM=('&COMPPRM1',                                      
)SEL &COMPPRM2 NE &Z                                                    
//             '&COMPPRM2',                                             
)ENDSEL &COMPPRM2 NE &Z                                                 
)SEL &COMPPRM3 NE &Z                                                    
//             '&COMPPRM3',                                             
)ENDSEL &COMPPRM3 NE &Z                                                 
//             '&COMPOPT')                                              
. . .

//*)IM CMN$$LNK                                                         
)CM                                                                     
)CM  ROUTINE TO LINK-EDIT A PROGRAM                                     
)CM                                                                     
. . .
//LINK&L#N!EXEC!PGM=IEWL,       *** LINK-EDIT COMPONENT &CMPNAME        
//              COND=(&CC$SUCC,LT),                                     
//              PARM=('&LINKPRM1',                                      
)SEL &LINKPRM2 NE &Z                                                    
//              '&LINKPRM2',                                            
)ENDSEL &LINKPRM2 NE &Z                                                 
)SEL &LINKPRM3 NE &Z                                                    
//              '&LINKPRM3',                                            
)ENDSEL &LINKPRM3 NE &Z                                                 
)SEL &TLODLIKE EQ N                                                     
//              'NCAL',                                                 
)ENDSEL &TLODLIKE EQ N                                                  
//              '&LINKOPT')                                             
. . .

Customization Steps
Execute these steps to set values for build parameter variables.



38 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons

1 Copy skeleton CMN$PARM from your vendor CMNZMF SKELS library to your custom 
SKELS library.

2 Assign system-wide values to build parameter variables according to language, or 
code your own selection logic.

3 If necessary, create an optional application skeleton in your CUSTOM SKELS library.

a Copy skeleton PRM$CMAN from your vendor CMNZMF SKELS library to your 
custom SKELS library.

b Rename the skeleton PRM$aaaa, where aaaa is an application mnemonic. 

c Assign application-level overrides to build parameter variables, only where they 
are different than system-wide values in skeleton CMN$PARM.

Transmit Selected Remote Promote Components
With the promotion skeletons that are delivered with ChangeMan ZMF, when you 
selectively promote components to a remote site, all components in the staging library 
are transmitted to the remote site. Only the components you selected for promotion are 
copied from the transmitted library to the promotion library.

Skeleton code is available to create remote promote JCL that sends only the components 
selected for promotion to the remote site.

This facility was created for the ERO Option where promotion originates with release area 
libraries, which are typically much larger than package staging libraries. However, the 
function can be used to enhance performance of all remote promotion jobs in ChangeMan 
ZMF, not just ERO area promotion.

If you want to enable the skeleton code that creates more efficient remote promotion 
jobs, follow the instructions in comments at the top of these skeletons.

CMN$$RPM

CMNIMRPM

CMNRPMDL

If you want the more efficient remote promotion JCL to be created for all remote 
promotion jobs in ChangeMan ZMF, not just for ERO area promotion, follow the 
instructions in the comments at the top of this skeleton.

CMN$$PMT

NOTES  Sample skeleton VAR$CMAN can be renamed VAR$aaaa, where aaaa is an 
application mnemonic, to overlay system-wide default values set in CMN$$VAR with 
application specific values. 



JES Node Names and Transmission Site Names

Customization Guide 39

JES Node Names and Transmission Site Names
Prior to ChangeMan ZMF 6.1 the values entered in the Logical Unit/System Name field 
in Global Administration Parameters and Global Site definitions were used for two 
purposes:

 JES node name that specifies where a ChangeMan ZMF batch job is run for promotion 
or install.

 Transmission site names that specify where install JCL, staging libraries, and package 
master records are transmitted from and to when they are distributed for installation.

Customers have noted that JES node names and transmission site names are not 
necessarily the same for a ChangeMan ZMF instance.

Since ChangeMan ZMF 6.1 this single field has been expanded and is now two fields: Site 
node name and Logical unit/system name on the Global Parameters - Part 1 of 
8 panel (CMNGGP01). 

 Site node name - If this is a DP, P or D site, the 'Site Name' (specified in Global 
Administration 'SITE') where packages will be installed.  If an A site, enter an easily 
recognizable name (city, department, etc.).

 Logical unit/system name - If your data transmission vehicle is Connect:Direct® or 
BDT, enter the logical unitname (the name that Connect:Direct or BDT uses to identify 
this system). If IEBCOPY, enter the system name (e.g. 'SYSA'). 

CMNGGP01                Global Parameters - Part 1 of 8        
Command ===>                                                   
                                                               
Subsystem: 6                                                   
                                                               
ChangeMan ZMF environment . . . . DP       (A/D/DP/P)          
Job entry system  . . . . . . . . JES2     (JES2 or JES3)      
Site node name  . . . . . . . . . SERT6                        
Logical unit/system name  . . . . BUCKS                        
Default unit name . . . . . . . . SYSDA                        
Default volume serial . . . . . .                              
Default non-vio unit name . . . . SYSDA                        
ChangeMan ZMF security resource . $CMNTP                       
Default job scheduler . . . . . . MANUAL   (CMN, Manual, Other)
Scheduler interval (CMN)  . . . . 010      (Minutes)           
                                                               
Enter "/" to select option                                     
  /  Allow CMN scheduler                                       
  /  Allow Manual scheduler                                    
  /  Allow Other scheduler                                     



40 ChangeMan® ZMF 

Chapter 2  ISPF Skeletons



Customization Guide 41

Chapter 3
Exposing Mainframe Resources to
Web and Desktop Applications

IBM has provided a few mechanisms to make mainframe resources available as 
Application Program Interfaces (APIs) to Web and desktop applications. These 
mechanisms include:

 z/OS® Connect.

 Several mechanisms specifically within CICS to expose CICS transactions as Web 
Services.

 Support for CICS bundles.

ChangeMan ZMF supports these mechanisms by enabling the resource artifacts to be 
staged into ZMF packages and processed through the ZMF package lifecycle.

ZMF Support for z/OS Connect 42
ZMF Support for CICS Web Services 43
ZMF Support for CICS Bundles 66



42 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

ZMF Support for z/OS Connect

What is z/OS Connect and How Does It Work?
z/OS Connect is IBM’s mechanism for exposing mainframe resources (such as a batch 
program, CICS® transaction, IMS™ transaction, and so on) to web applications and 
desktop clients as Representational State Transfer (REST)-ful APIs, using 
GET/PUT/POST/DELETE actions along with JavaScript Object Notation (JSON) message 
bodies. 

z/OS Connect runs as a started task through which external communications are routed 
to the target z/OS resource. IBM products such as CICS, IMS, MQSeries®, and so on, are 
already enabled to talk to z/ OS Connect. However, any mechanism that can call 
WebSphere® Optimized Local Adapter (WOLA) services can use z/OS Connect to talk to 
the outside world.

A z/OS resource is identified to z/OS Connect as a service. A zFS file called server.xml 
defines the method by which the z/OS resource/service is to communicate with the z/OS 
Connect started task. You simply edit this file; there is no build process. You need to be 
able to promote the file to the relevant target directory so it will be picked up by the 
relevant z/OS Connect server.

The service itself is provided by a back-end process (for example, a CICS transaction, a 
program that uses WOLA services, and so on) that is able to communicate with the z/OS 
Connect server.

A request copybook and a response copybook are required to expose the service to the 
outside world. For example, a COBOL copybook maps the data as the back-end program 
will see incoming requests and present outgoing responses. These copybook components 
are used to generate the following zFS files:

An IBM-provided utility BAQLS2JS takes the copybooks and generates these outputs. 

Once the service archive (.sar) file is created, you can use it to build an API to a web or 
desktop application. You use the IBM-supplied desktop workbench called IBM® Explorer 
for z/OS® with the z/OS Connect EE API editor. 

The output from this process is another archive, the API archive (.aar) file. 

The build process required to generate a service archive to support communications via 
the CICS IP Interconnectibility (IPIC) facility, or via native Db2 RESTful, is different to the 
z/OS Connect build processes available earlier. We cannot use the BAQLS2JS or the 
BAQJS2LS service programs to perform the generation. We must use the z/OS Connect 
Build Toolkit.

A sample build procedure is supplied, CMNBAQIP. This works on a like-SRC parameter to 
generate a (like-P, zfs) target .sar component, and listings. The service archive 

zFS File Description

serviceName_request.json The request JSON schema.

serviceName_response.json The response JSON schema.

serviceName.wsbind The data structure mapping.

serviceName.sar The service archive.



ZMF Support for CICS Web Services

Customization Guide 43

component implements the service mechanism between the HTTP requester, z/OS 
Connect, and the target CICS IPIC facility.

What is ChangeMan ZMF’s Role
The artifacts that define the service to z/OS Connect must be built under the control of 
ZMF and generated as ZMF package components. The build process is driven from a like-
SRC parameter component in a similar fashion to that described for the CICS web services 
below.

A utility program (delivered as a load module) and four skeletons (delivered as members 
of the CMNZMF.SKELS distribution library) enable this process::

Initially, outputs are built to temporary directories. These outputs are copied to the ZMF 
package staging directories only when the build process has been successful. The 
SUCCESS step execution of CMNBATCH results in all related components being activated 
in the package.

You can stage any RESTful API (.aar file) that you have developed based on this service 
definition directly into a ZMF package from the directory where it currently resides. It can 
then be processed through the package lifecycle.

The definitions for the web service itself are generated by the build process and consist of 
artifacts such as the .sar and .wsbind files and the JSON schemas.

ZMF Support for CICS Web Services
CICS provides specific mechanisms (in addition to z/OS Connect facilities described 
above) for making CICS transactions available as Web Services in either of two ways:

 Using Simple Object Access Protocol (SOAP) Web Service Definition Language (WSDL) 
files.

 Using Representational State Transfer (REST)-ful services through Http/Javascript 
Object Notation (JSON). 

CICS also provides utilities to aid in generating the artifacts required to make these 
mechanisms work and enable ChangeMan ZMF to manage them.

Module Description

CMNBAQLJ Skeleton to generate z/OS Connect JSON schema and binding.

CMNBAQJL Skeleton to generate z/OS Connect copybooks and binding from 
JSON schema

CMNBAQIP Skeleton to build a (like-P, zfs) .sar component for z/OS Connect 
and the target CICS IPIC facility

CMNBAQD2 Skeleton to build a (like-P, zfs) .sar component for z/OS Connect 
and the target Db2 RESTful service.

CMNBAQ00 Program to prepare input to the IBM-provided BAQLS2JS utility and 
CMNBATCH activation transactions.



44 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

Four different build functions are supplied as the four sample build procedures described 
below to support the development and management of CICS Web Services. Each build 
process makes use of the CMNBAQ00 program in ZMF to generate the required script with 
which the relevant IBM-supplied utility is executed. The four build functions are supplied 
by the following members of the CMNZMF.SKELS library:

Parameters are passed from a like-SRC parm component to the build; the target skeleton 
adds to these parameters to direct how CMNBAQ00 proceeds. If there are parameters 
that CMNBAQ00 needs to override in order to maintain control of the build, CMNBAQ00 
will do that. Otherwise, the parameters are passed on as is to the execution of the IBM-
supplied utility. The resulting execution generates components that are stored in the 
package and associated with the original like-SRC parameter component. 

Other generated zFS component types, for example, JSON schemas and WSDLs, will have 
their target staging directories allocated if they are missing when the generated 
components are copied back to the staging directories. 

However, you need to preallocate the needed copybook staging library. You can pre-
allocate this library with exit CMNEX0026. (See member CMNEX0026 of the 
CMNZMF.ASMSRC distribution library.) An example of the coding you might add to 

Sample 
CMNZMF.SKELS 
Library Skeleton

CICS-Supplied 
Utility Description

CMNDFHJS DFHLS2JS Creates JSON schemas and bind file for 
input language structures such as COBOL 
and PL/I copybooks. This utility is aimed 
at exposing CICS to use externally 
provided RESTful services.

CMNDFHJL DFHJS2LS Creates language structures (copybooks) 
and bind file from input JSON schemas. 
This utility is aimed at allowing CICS to 
use externally provided RESTful services.

CMNDFHWS DFHLS2WS Creates WSDLs and bind file from input 
language structures. This utility is aimed 
at exposing CICS transactions as SOAP 
services.

CMNDFHWL DFHWS2LS Create language structures and bind file 
from input WSDLs. This utility is aimed at 
allowing CICS to use externally provided 
SOAP services.



ZMF Support for CICS Web Services

Customization Guide 45

CMNEX0026 to ensure that all relevant libtypes are allocated when the source component 
is built follows:

If a CICS transaction is to be identified as a RESTful (JSON) web service, a number of 
artifacts must be generated from the development process to allow that to happen. 

A request and a response copybook is required to expose the transaction to the 
outside world (for example, a COBOL copybook mapping the data as the transaction 
program will see incoming requests and present outgoing responses). These 
copybook components are used to generate a number of zFS files as follows: 

 The request JSON schema xxx.json 

 The response JSON schema yyy.json 

 The data structure mapping zzz.wsbind 

The IBM-provided utility DFHLS2JS is used to take the copybooks and generate these 
outputs. 

*---------------------------------------------------------------------*
* Application based library type table:
*    This table is designed for generating a list of library types to
*    be passed back for processing when staging. The staging libraries
*    for the additional library types will be allocated to the package.
*
*    Each entry in this table must contain the following information.
*       1) An applications name or mask '*' with a length of 4 (CL4).
*       2) The library type being staged or a mask '*' with a length
*          of 3 (CL3).
*       3) A list of library types to process, maximum of 10.
*          0 library type would be defined as CL30' ' and CL30
*          would be decremented by 3 for each library type until
*          10 library types are added.
*
*---------------------------------------------------------------------*
X26@LTYP DS    0CL37               library type description table
*
         DC    CL4'STEV'           just STEV  
         DC    CL3'C2J'            DFHLS2JS control member
         DC    CL3'JSN'            JSON component
         DC    CL3'LSH'            zfs listings
         DC    CL24' '             the rest of them (8 spare)
*
         DC    CL4'STEV'           just STEV  
         DC    CL3'C2W'            DFHLS2WS control member
         DC    CL3'WSD'            WSDL component
         DC    CL3'LSH'            zfs listings
         DC    CL24' '             the rest of them (8 spare)
*
         DC    CL4'STEV'           just STEV  
         DC    CL3'W2L'            DFHWS2LS control member
         DC    CL3'WCP'            generated copybook
         DC    CL3'LSH'            zfs listings
         DC    CL24' '             the rest of them (8 spare)
*
         DC    CL4'STEV'           just STEV  
         DC    CL3'J2L'            DFHJS2LS control member
         DC    CL3'WCP'            generated copybook
         DC    CL3'LSH'            zfs listings
         DC    CL24' '             the rest of them (8 spare)
* end of application table
X26#LTYP EQU   (*-X26@LTYP)/37     number of entries



46 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

A CICS transaction can also be identified as a SOAP web service, there are a number 
of artifacts which must be generated from the development process to allow that to 
happen. 

A request and a response copybook is required to expose the transaction to the 
outside world (for example, a COBOL copybook mapping the data as the transaction 
program will see incoming requests and present outgoing responses). These 
copybook components are used to generate a number of zFS files as follows: 

 The WSDL xxx.wsdl. 

 The data structure mapping zzz.wsbind. 

The IBM-provided utility DFHLS2WS is used to take the copybooks and generate 
these outputs. 

Conversely, a CICS transaction may request information through a RESTful web 
service. To allow this to happen, we take in the JSON schemas that describe the 
response/request formats expected by the external service provider (as generated by 
that provider) and generate language structure copybooks to allow the CICS program 
to map those structures along with a bind file to describe the data mapping. The 
IBM-provided utility DFHJS2LS does this. 

Similarly, a CICS transaction may request information through a SOAP web service. 
To allow this to happen, we take in the WSDL file that describes the service interface 
expected by the external service provider (as generated by that provider) and 
generate language structure copybooks to allow the CICS program to map those 
structures along with a bind file to describe the data mapping. The IBM-provided 
utility DFHWS2LS does this. 

The following sections describe these build processes in detail.

Generate JSON Outputs from Input Copybooks 
(CMNDFHJS Skeleton)
This process requires an input like-SRC parameter component in which any directives 
required to be passed to the IBM-provided utility DFHLS2JS must be placed. This must 
include the names of the request and response copybooks from which the bind file and 
JSON outputs are generated. An example parameter member might look like this:

CMNDFHJS is the skeleton that contains the sample procedure to be used. CMNDFHJS has 
the following steps: 

 SERCOPY copies the input parameter member to a temporary data set which is 
passed to the subsequent execution of CMNBAQ00. 

REQMEM=ZCONREQ
RESPMEM=ZCONRESP
LANG=COBOL
MAPPING-LEVEL=4.0
CHAR-VARYING=COLLAPSE
PGMNAME=CICSCBL
URI=http://host_computer:7082/CobolService/CobolService
PGMINT=COMMAREA
SYNCONRETURN=YES



ZMF Support for CICS Web Services

Customization Guide 47

 CR8TEMP executes CMNHUTIL to create the temporary zFS directories used by the 
build. It also allocates the named temporary PDSE into which the input copybooks will 
be placed by the SYSLIB search performed by CMNBAQ00. 

 BAQ00 executes CMNBAQ00 with PARM=DFHLS2JS, which tells CMNBAQ00 we are 
working with a DFHLS2JS build process. The parameters from the SERCOPY step are 
passed as SYSIN along with extra, skeleton-generated, parameters that are used to 
direct what CMNBAQ00 is doing. For example: 

The parameters added by the skeleton are internal to CMNBAQ00 and, in general, are not 
passed to the actual execution of DFHLS2JS (unlike the parameters from the like-SRC 
component which is driving this whole process). These parameters are:

//SYSIN    DD  DISP=(OLD,DELETE),DSN=&&SOURCE(CICSCBL)
//         DD  *
PGMNAME=CICSCBL
ZMF-PKG=STEV001485
JAVA-DIR=java/J8.0_64
USS-DIR=cicsts52
SERVICE=:
PATH-PREFIX=/Service
UTILITY-LOC=/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHLS2JS
TARGET-DIR=/tmp/STEV001485/WSER58/cics/cmngen
LISTING-DIR=/tmp/STEV001485/WSER58/cics/cmnlst
COPYLIB=CMNDEV.WSER58.D180320.T012307.CICS.CPY
USER=WSER58
SSI=6D8059FA
PROC=CMNDFHJS
SRC-LTYP=C2J
JSON-LTYP=JSN
BIND-LTYP=WSB
/*

Parameter Description

PGMNAME= Is set to the input component name and is used to 
generate the names of files that are part of the build 
process. For example, the log file will be written as 
filename <PGMNAME>.log to the directory indicated by 
the LISTING-DIR parameter.

ZMF-PKG= Is set to the name of the current package and is used 
to generate appropriate CMNBATCH transactions to 
activate the generated components. 

The next four parameters are all required by the IBM-supplied DFHLS2JS shell script. 
They should be specified in exactly the same format as you would for that shell script, 
that is, whatever works with the standard IBM process will work here.

JAVA-DIR= Is an indication of where JAVA can be found.

USS-DIR= Is an intermediate zFS directory node that is used by 
the script.

SERVICE=: An extra parameter that is used by the script. This 
parameter should only be changed under direction 
from IBM.

PATH-PREFIX= Is a high-level node prepended to directory names 
built by the shell script.



48 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

UTILITY-LOC= Is where the DFHLS2JS shell script is to be found.

TARGET-DIR= Where outputs will be generated. It is a temporary zFS 
directory whose contents will be copied to the package 
staging directories if the build is successful.

LISTING-DIR= Where information output will be directed. Contents 
will be gathered up into a single listing component at 
the end of the build.

COPYLIB= The named temporary PDSE into which the request 
and response copybooks will be placed after they have 
been located in the SYSLIB concatenation.

USER= The build-submitting user, used in creating activation 
transactions for CMNBATCH later.

SSI= The build System Status Index (setssi) value for 
CMNBATCH.

PROC= Name of this build procedure, for CMNBATCH

SRC-LTYP= Library type of the input like-SRC parameter member, 
for CMNBATCH.

JSON-LTYP= Library type into which any generated JSON schemas 
will be placed, for CMNBATCH.

BIND-LTYP= Library type into which any generated wsbind files will 
be placed, for CMNBATCH. 

Parameter Description



ZMF Support for CICS Web Services

Customization Guide 49

These CMNBAQ00 internal parameters are generated within the supplied CMNDFHJS 
skeleton. An indication of how this is done is given here (from the skeleton itself):

The DFHLS2JS utility is invoked using an IBM-supplied shell script which expects the 
relevant parameters to be in a zFS file at a specific location. The shell command is 
generated by CMNBAQ00 and is passed in the output file allocated to ddname 
CMNSTDPM. This command, using the parameter values entered above, looks like this (as 
directed by IBM): 

SH /Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHLS2JS 
 java/J8.0_64
 cicsts52
 /tmp/STEV001485/WSER58/cics/cmngen/LS2JS
 :
 /Service

)CM 
)CM  The following variable definitions customize this process.
)CM  They are specified here for clarity but could just as well
)CM  be performed in CMN$$VAR.
)CM
)CM  &DFHGEN is the temporary directory where the json/bind
)CM          components will be placed. If the build is successful
)CM          they will be copied back to staging libraries.
)CM  &DFHLST is the temporary directory where all zfs hosted
)CM          listings will be placed. These will be consolidated
)CM          into the overall build listing at the end of the process.
)SETF DFHGEN    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmngen)
)SETF DFHLST    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmnlst)
)CM
)CM  &JHOME  is the home directory for Java (in the format required
)CM          by the DFHLS2JS script as supplied by IBM)
)CM  &DFHUSS is the intermediate zfs node (as required by
)CM          by the DFHLS2JS script as supplied by IBM)
)CM  &DFHSRV is the service modifier (as required by
)CM          by the DFHLS2JS script as supplied by IBM)
)CM  &DFHPFX is the path prefix (as required by
)CM          by the DFHLS2JS script as supplied by IBM)
)CM  &DFHLOC is the location for the DFHLS2JS script
)CM
)SETF JHOME     = &STR(java/J8.0_64)
)SETF DFHUSS    = &STR(cicsts52)
)SETF DFHSRV    = &STR(:)
)SETF DFHPFX    = &STR(/Service)
)SETF DFHLOC    = &STR(/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/)
)SETF DFHLOC    = &STR(&DFHLOC.DFHLS2JS)
)CM
)CM  &DFHLIB is the name of the temporary PDS used for the copybooks
)CM  e.g. DSN=yourhlq.userid.date.time.CICS.CPY
)CM
)SETF DFHLIB    = &STR(yourhlq.&STGERID)
)SETF DFHLIB    = &STR(&DFHLIB..D&SYMDEF(LYYMMDD).T&SYMDEF(LHHMMSS))
)SETF DFHLIB    = &STR(&DFHLIB..CICS.CPY)
)CM
)CM  &JSONLTP is the ZMF library type for the generated json components
)CM  &BINDLTP is the ZMF library type for the generated wsbind cmpnts
)CM
)SETF JSONLTP   = &STR(JSN)
)SETF BINDLTP   = &STR(WSB)
)CM



50 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

 The parameters used to drive the execution of the DFHLS2JS utility need to be written 
to a zFS file. This is done by passing a series of CMNHUTIL commands with ddname 
CMNHUTIL. 

 The two input copybooks are located from the SYSLIB concatenation (which is built in 
the sample skeleton like any other ZMF build SYSLIB is built) and written out to the 
named temporary library as directed by the COPYLIB= statement. 

 CMNBATCH transactions which will be used to activate the various generated 
components are written to the CMNBAT90 ddname. 

 Indication of everything that CMNBAQ00 has done is written to SYSPRINT. 

 The step that follows execution of CMNBAQ00 is RUNUTIL, which executes CMNHUTIL 
using the commands generated by CMNBAQ00 to the CMNHUTIL output ddname. This 
step sets up the input expected by the DFHLS2JS utility when it runs. 

 The step called DFHLS2JS runs BPXBATCH to execute the shell command passed from 
the CMNSTDPM ddname of the CMNBAQ00 step. This step generates the required 
outputs. 

 If the generation is successful, the next step, CPY2STG, executes CMNHUTIL to copy 
the generated components and listings back to the relevant package staging 
directories. 

 The SUCCESS step, executing CMNBATCH, makes the original like-SRC component 
active and then, directed by the CMNBAT90 output from CMNBAQ00, activates all the 
generated components. 

 Additional steps follow to deal with build failures and tidy up the intermediate working 
directories and PDSE. 

The source-to-load display for a successfully built DFHLS2JS parameter component looks 
like this:

The names of the generated components are formed as follows: 

 The LST listing takes the name of the original like-SRC component, in this case 
CICSCBL.

  The LSH has the source libtype and the literal 'list' appended, in this case 
CICSCBL.C2J.list.

 The bind component name takes the form <name>.wsbind where <name> is taken 
from one of three sources in order of preference: 

CMNSR2LD                  Source to Load Relationship          Row 1 to 4 of 4      
Command ===>                                                  Scroll ===> CSR
         Package: STEV001485      Status: DEV      Install date: 20180820
Source name . . . . CICSCBL                                                  +
Lib type  . . . . . C2J
Setssi  . . . . . . 6D8059FA

Related Load Modules:

  Name              + Type Promotion  Changed          User     Setssi
  CICSCBL             LST   0 STAGING 20180320  012422 WSER58   6D8059FA
  CICSCBL.wsbind      WSB   0 STAGING 20180320  012420 WSER58   6D8059FA
  CICSCBL.C2J.list    LSH   0 STAGING 20180320  012420 WSER58   6D8059FA
  CICSCBL_request.jso JSN   0 STAGING 20180320  012420 WSER58   6D8059FA
  CICSCBL_response.js JSN   0 STAGING 20180320  012420 WSER58   6D8059FA
******************************* Bottom of data ********************************



ZMF Support for CICS Web Services

Customization Guide 51

• From the WSBIND=xxxx/xxxx/xxxx/<name>.wsbind parameter statement 
present in the original like-SRC parameter component. This is typically how this 
value will be assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The JSON request component name takes the form <name>.json (method 1) or 
<name>_request.json (methods 2 and 3) where <name> is one of, in order: 

• From the JSON-SCHEMA-RESPONSE=xxxx/xxxx/xxx/<name>.json parameter in 
the original like-SRC parameter component. This is typically how this value will be 
assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The JSON response component name takes a similar form to the request component, 
replacing 'request' with ’response.'

Generate WSDL Outputs from Input Copybooks 
(CMNDFHWS Skeleton)
This process requires an input like-SRC parameter component in which any directives 
required to be passed to the IBM-provided utility DFHLS2WS must be placed. This must 
include the names of the request and response copybooks from which the bind file and 
WSDL outputs are generated. An example parameter member might look like this:

CMNDFHWS is the skeleton that contains the sample procedure to be used. CMNDFHWS 
has the following steps: 

 SERCOPY copies the input parameter member to a temporary dataset which is passed 
to the subsequent execution of CMNBAQ00.

 CR8TEMP executes CMNHUTIL to create the temporary zFS directories used by the 
build. It also allocates the named temporary PDSE into which the input copybooks will 
be placed by the SYSLIB search performed by CMNBAQ00. 

REQMEM=ZCONREQ
RESPMEM=ZCONRESP
SERVICE-NAME=CobolService
WSDL=/u/wser58/CobolService.wsdl
WSDL_2.0=/u/wser58/CobolService_20.wsdl
LANG=COBOL
MAPPING-LEVEL=4.0
CHAR-VARYING=COLLAPSE
PGMNAME=WSDLCBL
URI=http://host_computer:7082/CobolService/CobolService
PGMINT=COMMAREA
SYNCONRETURN=YES



52 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

 BAQ00 executes CMNBAQ00 with PARM=DFHLS2WS, which tells CMNBAQ00 we are 
working with a DFHLS2WS build process. The parameters from the SERCOPY step are 
passed as SYSIN along with extra, skeleton-generated parameters that are used to 
direct what CMNBAQ00 is doing. For example:

The parameters added by the skeleton are internal to CMNBAQ00 and, in general, are not 
passed to the actual execution of DFHLS2WS (unlike the parameters from the like-SRC 
component which is driving this whole process). These parameters are:

//SYSIN    DD  DISP=(OLD,DELETE),DSN=&&SOURCE(WSDLCBL)
//         DD  *
PGMNAME=WSDLCBL
ZMF-PKG=STEV001485
JAVA-DIR=java/J8.0_64
USS-DIR=cicsts52
SERVICE=:
PATH-PREFIX=/Service
UTILITY-LOC=/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHLS2WS
TARGET-DIR=/tmp/STEV001485/WSER58/cics/cmngen
LISTING-DIR=/tmp/STEV001485/WSER58/cics/cmnlst
COPYLIB=CMNDEV.WSER58.D180320.T045833.CICS.CPY
USER=WSER58
SSI=6D808C79
PROC=CMNDFHWS
SRC-LTYP=C2W
BIND-LTYP=WSB
WSDL11-LTYP=WSD
/*

Parameter Description

PGMNAME= Is set to the input component name and is used to generate the 
names of files that are part of the build process. For example, 
the log file will be written as filename <PGMNAME>.log to the 
directory indicated by the LISTING-DIR parameter.

ZMF-PKG= Is set to the name of the current package and is used to 
generate appropriate CMNBATCH transactions to activate the 
generated components.

The next four parameters are all required by the IBM-supplied DFHLS2WS shell script. 
They should be specified in exactly the same format as you would for that shell script, 
that is, whatever works with the standard IBM process will work here. 

JAVA-DIR= Is an indication of where JAVA can be found.

USS-DIR= Is an intermediate zFS directory node that is used by the script.

SERVICE=: An extra parameter used by the script. This parameter should 
only be changed under direction from IBM. 

PATH-PREFIX= Is a high-level node prepended to directory names built by the 
shell script.

UTILITY-LOC= Is where the DFHLS2WS shell script is to be found.

TARGET-DIR= Where outputs will be generated. It is a temporary zFS 
directory whose contents will be copied to the package staging 
directories if the build is successful.

LISTING-DIR= Where information output will be directed. Contents will be 
gathered up into a single listing component at the end of the 
build.



ZMF Support for CICS Web Services

Customization Guide 53

COPYLIB= The named temporary PDSE into which the request and 
response copybooks will be placed after they have been located 
in the SYSLIB concatenation.

USER= The build-submitting user, used in creating activation 
transactions for CMNBATCH later.

SSI= The build System Status Index (setssi) value for CMNBATCH.

PROC= Name of this build procedure, for CMNBATCH.

SRC-LTYP= Library type of the input like-SRC parameter member, for 
CMNBATCH.

WSDL11-LTYP= Library type into which any generated 1.1 WSDL will be placed, 
for CMNBATCH. A synonym for this parameter name is WSDL-
LTYP=.

WSDL20-LTYP= Library type into which any generated 2.0 WSDL will be placed, 
for CMNBATCH. If this parameter is missing, the same libtype 
specified for WSDL11-LTYP will be used.

BIND-LTYP= Library type into which any generated wsbind files will be 
placed, for CMNBATCH.

Parameter Description



54 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

These CMNBAQ00 internal parameters are generated within the supplied CMNDFHWS 
skeleton. An indication of how this is done is given here (from the skeleton itself): 

The DFHLS2WS utility is invoked using an IBM supplied shell script which expects the 
relevant parameters to be in a zFS file at a specific location. The shell command is 
generated by CMNBAQ00 and is passed in the output file allocated to ddname 
CMNSTDPM. This command, using the parameter values entered above, looks like this (as 
directed by IBM): 

SH /Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHLS2WS
 java/J8.0_64
 cicsts52
 /tmp/STEV001485/WSER58/cics/cmngen/LS2WS
 :
 /Service

)CM       
)CM  The following variable definitions customize this process.
)CM  They are specified here for clarity but could just as well
)CM  be performed in CMN$$VAR.
)CM
)CM  &DFHGEN is the temporary directory where the wsdl/bind
)CM          components will be placed. If the build is successful
)CM          they will be copied back to staging libraries.
)CM  &DFHLST is the temporary directory where all zfs hosted
)CM          listings will be placed. These will be consolidated
)CM          into the overall build listing at the end of the process.
)SETF DFHGEN    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmngen)
)SETF DFHLST    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmnlst)
)CM
)CM  &JHOME  is the home directory for Java (in the format required
)CM          by the DFHLS2WS script as supplied by IBM)
)CM  &DFHUSS is the intermediate zfs node (as required by
)CM          by the DFHLS2WS script as supplied by IBM)
)CM  &DFHSRV is the service modifier (as required by
)CM          by the DFHLS2WS script as supplied by IBM)
)CM  &DFHPFX is the path prefix (as required by
)CM          by the DFHLS2WS script as supplied by IBM)
)CM  &DFHLOC is the location for the DFHLS2WS script
)CM
)SETF JHOME     = &STR(java/J8.0_64)
)SETF DFHUSS    = &STR(cicsts52)
)SETF DFHSRV    = &STR(:)
)SETF DFHPFX    = &STR(/Service)
)SETF DFHLOC    = &STR(/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/)
)SETF DFHLOC    = &STR(&DFHLOC.DFHLS2WS)
)CM
)CM  &DFHLIB is the name of the temporary PDS used for the copybooks
)CM  e.g. DSN=yourhlq.userid.date.time.CICS.CPY
)CM
)SETF DFHLIB    = &STR(yourhlq.&STGERID)
)SETF DFHLIB    = &STR(&DFHLIB..D&SYMDEF(LYYMMDD).T&SYMDEF(LHHMMSS))
)SETF DFHLIB    = &STR(&DFHLIB..CICS.CPY)
)CM
)CM  &BINDLTP is the ZMF library type for the generated wsbind cmpnts
)CM  &WSDL1LT is the ZMF library type for the generated wsdl 1.1 cmpnts
)CM  &WSDL2LT is the ZMF library type for the generated wsdl 2.0 cmpnts
)CM                                                          (optional)
)SETF BINDLTP   = &STR(WSB)
)SETF WSDL1LT   = &STR(WSD)
)CM



ZMF Support for CICS Web Services

Customization Guide 55

 The parameters used to drive the execution of the DFHLS2WS utility need to be 
written to a zFS file. This is done by passing a series of CMNHUTIL commands with 
ddname CMNHUTIL. 

 The two input copybooks are located from the SYSLIB concatenation (which is built in 
the sample skeleton like any other ZMF build SYSLIB is built) and written out to the 
named temporary library as directed by the COPYLIB= statement. 

 CMNBATCH transactions which will be used to activate the various generated 
components are written to the CMNBAT90 ddname. 

 Indication of everything that CMNBAQ00 has done is written to SYSPRINT. 

 The step that follows execution of CMNBAQ00 is RUNUTIL, which executes CMNHUTIL 
using the commands generated by CMNBAQ00 to the CMNHUTIL output ddname. This 
step sets up the input expected by the DFHLS2WS utility when it runs. 

 The step called DFHLS2WS runs BPXBATCH to execute the shell command passed 
from the CMNSTDPM ddname of the CMNBAQ00 step. This step generates the 
required outputs. 

 If the generation is successful, the next step, CPY2STG, executes CMNHUTIL to copy 
the generated components and listings back to the relevant package staging 
directories.

 The SUCCESS step, executing CMNBATCH, makes the original like-SRC component 
active and then, directed by the CMNBAT90 output from CMNBAQ00, activates all the 
generated components. 

 Additional steps follow to deal with build failures and tidy up the intermediate working 
directories and PDSE. 

The source-to-load display for a successfully built DFHLS2WS parameter component looks 
like this:

The names of the generated components are formed as follows: 

 The LST listing takes the name of the original like-SRC component, in this case 
WSDLCBL.

 The LSH listing has the source library type and the literal 'list' appended, in this case 
WSDLCBL.C2W.list. 

CMNSR2LD                  Source to Load Relationship          Row 1 to 4 of 4      
Command ===>                                                  Scroll ===> CSR

         Package: STEV001485      Status: DEV      Install date: 20180820

Source name . . . . WSDLCBL                                                  +
Lib type  . . . . . C2W
Setssi  . . . . . . 6D808C79

Related Load Modules:
 
  Name              + Type Promotion  Changed          User     Setssi
  CobolService.wsbind WSB   0 STAGING 20180320  045905 WSER58   6D808C79
  CobolService.wsdl   WSD   0 STAGING 20180320  045905 WSER58   6D808C79
  CobolService_20.wsd WSD   0 STAGING 20180320  045905 WSER58   6D808C79
  WSDLCBL             LST   0 STAGING 20180320  045908 WSER58   6D808C79
  WSDLCBL.C2W.list    LSH   0 STAGING 20180320  045908 WSER58   6D808C79
******************************* Bottom of data ********************************



56 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

 The bind component name takes the form <name>.wsbind where <name> is taken 
from one of three sources in order of preference: 

• From the WSBIND=xxxx/xxxx/xxxx/<name>.wsbind parameter statement 
present in the original like-SRC parameter component. This is typically how this 
value will be assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The WSDL 1.1 component name takes the form <name>.wsdl where <name> is one 
of, in order: 

• From the WSDL=xxxx/xxxx/xxx/<name>.wsdl parameter in the original like-SRC 
parameter component. (WSDL_1.1= is a synonym.) This is typically how this value 
will be assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The WSDL 2.0 component name takes the form <name>.wsdl where <name> is from 
the WSDL_2.0=xxxx/xxxx/xxx/<name>.wsdl parameter in the original like-SRC 
parameter component. If this parameter is not present, no 2.0 WSDL will be 
generated. 

Generate Copybooks from JSON Inputs (CMNDFHJL 
Skeleton)
This process requires an input like-SRC parameter component in which any directives 
required to be passed to the IBM-provided utility DFHJS2LS must be placed. This must 
include the name prefixes for the request and response copybooks which will be 
generated by the process as well as the names of the request/response JSON schemas 
from which the bind file and copybooks are generated. An example parameter member 
looks like this:

CMNDFHJL is the skeleton that contains the sample procedure to be used. CMNDFHJL has 
the following steps:

 SERCOPY copies the input parameter member to a temporary data set which is 
passed to the subsequent execution of CMNBAQ00.

REQMEM=JSREQ
RESPMEM=JSRESP
JSON-SCHEMA-REQUEST=CobolService_request.json
JSON-SCHEMA-RESPONSE=CobolService_response.json
WSBIND=CobolJSON.wsbind
LANG=COBOL
MAPPING-LEVEL=4.0
CHAR-VARYING=YES
PGMNAME=CBLJSON
PGMINT=COMMAREA



ZMF Support for CICS Web Services

Customization Guide 57

 CPY$ALC dynamically allocates the named temporary PDSE into which the required 
copybooks will be generated. This library must not be allocated in the JCL of any step 
in this job; otherwise, there will be contention issues with the BPXBATCH-spawned 
process which does the writing of the copybooks to this PDSE. We also allocate a 
second version of this PDSE into which the copybooks are copied so that this version 
can be allocated in JCL by the later CMNBAT90 step without causing problems with the 
spawned process. 

 CR8TEMP executes CMNHUTIL to create the temporary zFS directories used by the 
build. 

 BAQ00 executes CMNBAQ00 with PARM=DFHJS2LS, which tells CMNBAQ00 we are 
working with a DFHJS2LS build process. The parameters from the SERCOPY step are 
passed as SYSIN along with extra, skeleton-generated parameters that are used to 
direct what CMNBAQ00 is doing. For example:

The parameters added by the skeleton are internal to CMNBAQ00 and, in general, are not 
passed to the actual execution of DFHJS2LS (unlike the parameters from the like-SRC 
component which is driving this whole process). These parameters are: 

//SYSIN    DD DISP=(OLD,DELETE),DSN=&&SOURCE(CBLJSON)
//         DD *
PGMNAME=CBLJSON
ZMF-PKG=STEV001485
STG-DIR=/cmndev/cmni/STEV/#001485
JAVA-DIR=java/J8.0_64
USS-DIR=cicsts52
SERVICE=:
PATH-PREFIX=/Service
UTILITY-LOC=/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHJS2LS
TARGET-DIR=/tmp/STEV001485/WSER58/cics/cmngen
LISTING-DIR=/tmp/STEV001485/WSER58/cics/cmnlst
COPYLIB=CMNDEV.WSER58.D180320.T055200.CICS.CPY
USER=WSER58
SSI=6D809900
PROC=CMNDFHJL
SRC-LTYP=J2L
BIND-LTYP=WSB
JSON-LTYP=JSN
CPY-LTYP=WCP
/*

Parameter Description

PGMNAME= Is set to the input component name and is used to generate the 
names of files that are part of the build process. For example, 
the log file will be written as filename <PGMNAME>.log to the 
directory indicated by the LISTING-DIR parameter.

ZMF-PKG= Is set to the name of the current package and is used to 
generate appropriate CMNBATCH transactions to activate the 
generated components.

STG-DIR= Names of the package staging directories, that is, where the 
input JSON components will be found.

The next four parameters are all required by the IBM-supplied DFHJS2LS shell script. 
They should be specified in exactly the same format as you would for that shell script, 
that is, whatever works with the standard IBM process will work here.

JAVA-DIR= Is an indication of where JAVA can be found.



58 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

USS-DIR= Is an intermediate zFS directory node that is used by the script. 

SERVICE=: An extra parameter that is used by the script. This parameter 
should only be changed under direction from IBM.

PATH-PREFIX= Is a high-level node prepended to directory names built by the 
shell script.

UTILITY-LOC= Is where the DFHJS2LS shell script is to be found. 

TARGET-DIR= Where outputs will be generated. It is a temporary zFS 
directory whose contents will be copied to the package staging 
directories if the build is successful.

LISTING-DIR= Where information output will be directed. Contents will be 
gathered up into a single listing component at the end of the 
build.

COPYLIB= The named temporary PDSE into which the request and 
response copybooks will be placed.

USER= The build-submitting user, used in creating activation 
transactions for CMNBATCH later.

SSI= The build System Status Index (setssi) value for CMNBATCH.

PROC= Name of this build procedure, for CMNBATCH.

SRC-LTYP= Library type of the input like-SRC parameter member, for 
CMNBATCH. 

JSON-LTYP= Library type from which the input JSON schemas will be taken.

CPY-LTP= Library type into which any generated copybooks will be placed, 
for CMNBATCH. 

BIND-LTYP= Library type into which any generated wsbind files will be 
placed, for CMNBATCH. 

Parameter Description



ZMF Support for CICS Web Services

Customization Guide 59

These CMNBAQ00 internal parameters are generated within the supplied CMNDFHJL 
skeleton. An indication of how this is done is given here (from the skeleton itself): 

The DFHJS2LS utility is invoked using an IBM-supplied shell script which expects the 
relevant parameters to be in a zFS file at a specific location. The shell command is 
generated by CMNBAQ00 and is passed in the output file allocated to ddname 

)CM       
)CM The following variable definitions customize this process.
)CM They are specified here for clarity but could just as well
)CM be performed in CMN$$VAR.
)CM
)CM &DFHGEN is the temp directory where the json component(s) will
)CM          be copied into from the package and where the generated
)CM          bind component will be placed. If the build is successful
)CM          the bind cmpnt will be copied back to staging directory.
)CM &DFHLST is the temporary directory where all zfs hosted
)CM          listings will be placed. These will be consolidated
)CM          into the overall build listing at the end of the process.
)SETF DFHGEN    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmngen)
)SETF DFHLST    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmnlst)
)CM
)CM &JHOME  is the home directory for Java (in the format required
)CM          by the DFHJS2LS script as supplied by IBM)
)CM &DFHUSS is the intermediate zfs node (as required by
)CM          by the DFHJS2LS script as supplied by IBM)
)CM &DFHSRV is the service modifier (as required by
)CM          by the DFHJS2LS script as supplied by IBM)
)CM &DFHPFX is the path prefix (as required by
)CM          by the DFHJS2LS script as supplied by IBM)
)CM &DFHLOC is the location for the DFHJS2LS script
)CM
)SETF JHOME     = &STR(java/J8.0_64)
)SETF DFHUSS    = &STR(cicsts52)
)SETF DFHSRV    = &STR(:)
)SETF DFHPFX    = &STR(/Service)
)SETF DFHLOC    = &STR(/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/)
)SETF DFHLOC    = &STR(&DFHLOC.DFHJS2LS)
)CM
)CM &DFHLIB is the name of the temporary PDSE into which the
)CM generated copybooks will be placed. If the build is successful
)CM they will be copied back to the relevant staging library.
)CM e.g. DSN=yourhlq.userid.date.time.CICS.CPY
)CM
)CM Note that this dsname must not be allocated by JCL to any step
)CM in this job else the USS process will get an allocation error
)CM on it. We need to copy the contents to a different temp PDSE
)CM in order to work with it in later steps, this &CPYLIB.
)CM
)SETF DFHLIB    = &STR(yourhlq.&STGERID)
)SETF DFHLIB    = &STR(&DFHLIB..D&SYMDEF(LYYMMDD).T&SYMDEF(LHHMMSS))
)SETF CPYLIB    = &STR(&DFHLIB..TEMP.CPY)
)SETF DFHLIB    = &STR(&DFHLIB..CICS.CPY)
)CM
)CM &BINDLTP is the ZMF library type for the generated wsbind cmpnts
)CM &JSONLTP is the ZMF library type for the input json cmpnt(s)
)CM &CPYLTP  is the ZMF library type for the generated copybook cmpnts
)CM
)SETF BINDLTP   = &STR(WSB)
)SETF JSONLTP   = &STR(JSN)
)SETF CPYLTP    = &STR(WCP)
)CM



60 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

CMNSTDPM. This command, using the parameter values entered above, looks like this (as 
directed by IBM): 

SH /Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHJS2LS
 java/J8.0_64
 cicsts52
 /tmp/STEV001485/WSER58/cics/cmngen/JS2LS
 :
 /Service

 The parameters used to drive the execution of the DFHJS2LS utility need to be written 
to a zFS file. This is done by passing a series of CMNHUTIL commands with ddname 
CMNHUTIL. 

 The two input JSON schemas must be present in the package in which these 
components are being built. 

 The IBM-supplied utility will generate names for the copybooks based on the prefixes 
(up to 6 bytes) specified in the REQMEM and RESPMEM parameters. The utility will 
add nn (for example, 01) to the end of the prefixes. The copybooks will be written to 
the PDSE specified in the COPYLIB= parameter. 

 CMNBATCH transactions which will be used to activate the various generated 
components (except for the generated copybooks, whose names will be generated by 
the IBM utility) are written to the CMNBAT90 ddname. 

 Indication of everything that CMNBAQ00 has done is written to SYSPRINT. 

 The RUNUTIL step follows execution of CMNBAQ00. It executes CMNHUTIL using the 
commands generated by CMNBAQ00 to the CMNHUTIL output ddname. This step sets 
up the input expected by the DFHJS2LS utility when it runs. 

 The step called DFHJS2LS runs BPXBATCH to execute the shell command passed from 
the CMNSTDPM ddname of the CMNBAQ00 step. This step generates the required 
outputs. 

 If the generation is successful, the next step, CPY4BT90, copies all generated 
copybooks to a separate temp PDSE that can be allocated to the follow-on step, in the 
JCL, without conflicting with the spawned USS process which wrote them in the first 
place. The follow-on step, BAT90CPY, executes CMNBAT90 to analyze the contents of 
the temp PDSE in order to generate the activation transactions for all generated 
copybook names. 

 Subsequently, step CPY2STG copies the generated copybooks back to the staging 
library. Step ZFS2STG copies the zFS components (that is, the bind file) to the 
relevant staging directory. 

 The SUCCESS step, executing CMNBATCH, makes the original like-SRC component 
active and then, directed by the CMNBAT90 output from CMNBAQ00, activates all the 
generated components. 

 Additional steps follow to deal with build failures and tidy up the intermediate working 
directories and PDSE. 



ZMF Support for CICS Web Services

Customization Guide 61

The source-to-load display for a successfully built DFHJS2LS parameter component looks 
like this:

The names of the generated components are formed as follows: 

 The LST listing takes the name of the original like-SRC component, in this case 
CBLJSON.

 The LSH listing has the source library type and the literal 'list' appended, in this case 
CBLJSON.J2L.list. 

 The bind component name takes the form <name>.wsbind where <name> is taken 
from one of three sources in order of preference: 

• From the WSBIND=xxxx/xxxx/xxxx/<name>.wsbind parameter statement 
present in the original like-SRC parameter component. This is typically how this 
value will be assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The request copybook component name takes the form <prefix>nn where <prefix> is 
taken from the REQMEM=<prefix> parameter statement present in the original like-
SRC parameter component, and nn is the suffix added by the IBM utility (for example, 
01). 

 The response copybook component name takes the form <prefix>nn where <prefix> 
is taken from the RESPMEM=<prefix> parameter statement present in the original 
like-SRC parameter component, and nn is the suffix added by the IBM utility (for 
example, 01). 

Generate Copybooks from WSDL Input (CMNDFHWL 
Skeleton)
This process requires an input like-SRC parameter component in which any directives 
required to be passed to the IBM-provided utility DFHWS2LS must be placed. This must 
include the name prefixes for the request and response copybooks which will be 

CMN2R2LD              Source to Load Relationship          Row 1 to 4 of 4
Command ===>                                                  Scroll ===> CSR

         Package: STEV001485      Status: DEV      Install date: 20180820

Source name . . . . CBLJSON                                                  +
Lib type  . . . . . J2L
Setssi  . . . . . . 6D809900

Related Load Modules:

  Name              + Type Promotion  Changed          User     Setssi
  CobolJSON.wsbind    WSB   0 STAGING 20180320  055235 WSER58   6D809900
  CBLJSON             LST   0 STAGING 20180320  055238 WSER58   6D809900
  CBLJSON.J2L.list    LSH   0 STAGING 20180320  055238 WSER58   6D809900
  JSREQ01             WCP   0 STAGING 20180320  055235 WSER58   6D809900
  JSRESP01            WCP   0 STAGING 20180320  055235 WSER58   6D809900
******************************* Bottom of data ********************************



62 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

generated by the process as well as the names of the WSDL from which the bind file and 
copybooks are generated. An example parameter member might look like this:

CMNDFHWL is the skeleton that contains the sample procedure. CMNDFHWL has the 
following steps: 

 SERCOPY copies the input parameter member to a temporary data set which is 
passed to the subsequent execution of CMNBAQ00.

 CPY$ALC dynamically allocates the named temporary PDSE into which the required 
copybooks will be generated. This library must not be allocated in the JCL of any step 
in this job; otherwise, there will be contention issues with the BPXBATCH-spawned 
process which does the writing of the copybooks to this PDSE. We also allocate a 
second version of this PDSE into which the copybooks are copied so that this version 
can be allocated in JCL by the later CMNBAT90 step without causing problems with the 
spawned process. 

 CR8TEMP executes CMNHUTIL to create the temporary zFS directories used by the 
build. 

 BAQ00 executes CMNBAQ00 with PARM=DFHWS2LS which tells CMNBAQ00 we are 
working with a DFHWS2LS build process. The parameters from the SERCOPY step are 
passed as SYSIN along with extra, skeleton-generated parameters that are used to 
direct what CMNBAQ00 is doing. For example:

REQMEM=WSREQ
RESPMEM=WSRESP
WSDL=/u/wser58/CobolService.wsdl
WSBIND=CobolSoap.wsbind
BINDING=WSDLCBLHTTPSoapBinding12
LANG=COBOL
MAPPING-LEVEL=4.0
CHAR-VARYING=YES
PGMNAME=WSDLCBL
URI=http://host_computer:7082/CobolService/CobolService
PGMINT=COMMAREA
SYNCONRETURN=YES

//SYSIN    DD  DISP=(OLD,DELETE),DSN=&&SOURCE(CBLWSDL) 
//         DD  *
PGMNAME=CBLWSDL
ZMF-PKG=STEV001485
STG-DIR=/cmndev/cmni/STEV/#001485
JAVA-DIR=java/J8.0_64
USS-DIR=cicsts52
SERVICE=:
PATH-PREFIX=/Service
UTILITY-LOC=/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHWS2LS
TARGET-DIR=/tmp/STEV001485/WSER58/cics/cmngen
LISTING-DIR=/tmp/STEV001485/WSER58/cics/cmnlst
COPYLIB=CMNDEV.WSER58.D180320.T082516.CICS.CPY
USER=WSER58
SSI=6D80BCEC
PROC=CMNDFHWL
SRC-LTYP=W2L
BIND-LTYP=WSB
WSDL-LTYP=WSD
CPY-LTYP=WCP
/*



ZMF Support for CICS Web Services

Customization Guide 63

The parameters added by the skeleton are internal to CMNBAQ00 and, in general, are not 
passed to the actual execution of DFHWS2LS (unlike the parameters from the like-SRC 
component which is driving this whole process). These parameters are:

Parameter Description

PGMNAME= Is set to the input component name and is used to generate the 
names of files that are part of the build process. For example, the 
log file will be written as filename <PGMNAME>.log to the 
directory indicated by the LISTING-DIR parameter.

ZMF-PKG= Is set to the name of the current package and is used to generate 
appropriate CMNBATCH transactions to activate the generated 
components.

STG-DIR= Names of the package staging directories, that is, where the 
input WSDL component will be found.

The next four parameters are all required by the IBM-supplied DFHLS2JS shell script. 
They should be specified in exactly the same format as you would for that shell script, 
that is, whatever works with the standard IBM process will work here.

JAVA-DIR= Is an indication of where JAVA can be found.

USS-DIR= Is an intermediate zFS directory node that is used by the script.

SERVICE=: An extra parameter that is used by the script. This parameter 
should only be changed under direction from IBM.

PATH-PREFIX= Is a high-level node prepended to directory names built by the 
shell script.

UTILITY-LOC= Is where the DFHWS2LS shell script is to be found. 

TARGET-DIR= Where outputs will be generated. It is a temporary zFS directory 
whose contents will be copied to the package staging directories 
if the build is successful.

LISTING-DIR= Where information output will be directed. Contents will be 
gathered up into a single listing component at the end of the 
build.

COPYLIB= The named temporary PDSE into which the request and response 
copybooks will be placed.

USER= The build-submitting user, used in creating activation transactions 
for CMNBATCH later.

SSI= The build System Status Index (setssi) value for CMNBATCH.

PROC= Name of this build procedure, for CMNBATCH.

SRC-LTYP= Library type of the input like-SRC parameter member, for 
CMNBATCH.

WSDL-LTYP= Library type from which the input WSDL will be taken.

CPY-LTP= Library type into which any generated copybooks will be placed, 
for CMNBATCH.

BIND-LTYP= Library type into which any generated wsbind files will be placed, 
for CMNBATCH. 



64 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

These CMNBAQ00 internal parameters are generated within the supplied CMNDFHWL 
skeleton. An indication of how this is done is given here (from the skeleton itself):

The DFHWS2LS utility is invoked using an IBM-supplied shell script which expects the 
relevant parameters to be in a zFS file at a specific location. The shell command is 
generated by CMNBAQ00 and is passed in the output file allocated to ddname 

)CM 
)CM  The following variable definitions customize this process.
)CM  They are specified here for clarity but could just as well
)CM  be performed in CMN$$VAR.
)CM
)CM  &DFHGEN is the temporary directory where the wsdl component will
)CM          be copied into from the package and where the generated
)CM          bind component will be placed. If the build is successful
)CM          the bind cmpnt will be copied back to staging directory.
)CM  &DFHLST is the temporary directory where all zfs hosted
)CM          listings will be placed. These will be consolidated
)CM          into the overall build listing at the end of the process.
)SETF DFHGEN    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmngen)
)SETF DFHLST    = &STR(&HFSTEMP/&PKGNAME/&STGERID/cics/cmnlst)
)CM
)CM  &JHOME  is the home directory for Java (in the format required
)CM          by the DFHWS2LS script as supplied by IBM)
)CM  &DFHUSS is the intermediate zfs node (as required by
)CM          by the DFHWS2LS script as supplied by IBM)
)CM  &DFHSRV is the service modifier (as required by
)CM          by the DFHWS2LS script as supplied by IBM)
)CM  &DFHPFX is the path prefix (as required by
)CM          by the DFHWS2LS script as supplied by IBM)
)CM  &DFHLOC is the location for the DFHWS2LS script
)CM
)SETF JHOME     = &STR(java/J8.0_64)
)SETF DFHUSS    = &STR(cicsts52)
)SETF DFHSRV    = &STR(:)
)SETF DFHPFX    = &STR(/Service)
)SETF DFHLOC    = &STR(/Service/usr/lpp/cicsts/cicsts52/lib/wsdl/)
)SETF DFHLOC    = &STR(&DFHLOC.DFHWS2LS)
)CM
)CM  &DFHLIB is the name of the temporary PDSE into which the
)CM  generated copybooks will be placed. If the build is successful
)CM  they will be copied back to the relevant staging library.
)CM  e.g. DSN=yourhlq.userid.date.time.CICS.CPY
)CM
)CM  Note that this dsname must not be allocated by JCL to any step
)CM  in this job else the USS process will get an allocation error
)CM  on it. We need to copy the contents to a different temp PDSE
)CM  in order to work with it in later steps, this &CPYLIB.
)CM
)SETF DFHLIB    = &STR(yourhlq.&STGERID)
)SETF DFHLIB    = &STR(&DFHLIB..D&SYMDEF(LYYMMDD).T&SYMDEF(LHHMMSS))
)SETF CPYLIB    = &STR(&DFHLIB..TEMP.CPY)
)SETF DFHLIB    = &STR(&DFHLIB..CICS.CPY)
)CM
)CM  &BINDLTP is the ZMF library type for the generated wsbind cmpnts
)CM  &WSDLLTP is the ZMF library type for the input wsdl cmpnt
)CM  &CPYLTP  is the ZMF library type for the generated copybook cmpnts
)CM
)SETF BINDLTP   = &STR(WSB)
)SETF WSDLLTP   = &STR(WSD)
)SETF CPYLTP    = &STR(WCP)
)CM



ZMF Support for CICS Web Services

Customization Guide 65

CMNSTDPM. This command, using the parameter values entered above, looks like this (as 
directed by IBM): 

SH /Service/usr/lpp/cicsts/cicsts52/lib/wsdl/DFHWS2LS
 java/J8.0_64
 cicsts52
 /tmp/STEV001485/WSER58/cics/cmngen/WS2LS
 :
 /Service

 The parameters used to drive the execution of the DFHWS2LS utility need to be 
written to a zFS file. This is done by passing a series of CMNHUTIL commands with 
ddname CMNHUTIL. 

 The input WSDL must be present in the package in which these components are being 
built. 

 The IBM utility will generate names for the copybooks based on the prefixes (up to 6 
bytes) specified in the REQMEM and RESPMEM parameters. It will add nn (for 
example, 01) to the end of the prefixes. The copybooks will be written to the PDSE 
specified in the COPYLIB= parameter. 

 CMNBATCH transactions which will be used to activate the various generated 
components (except for the generated copybooks, whose names will be generated by 
the IBM utility) are written to the CMNBAT90 ddname. 

 Indication of everything that CMNBAQ00 has done is written to SYSPRINT. 

 The RUNUTIL step follows execution of CMNBAQ00. RUNUTIL executes CMNHUTIL 
using the commands generated by CMNBAQ00 to the CMNHUTIL output ddname. This 
step sets up the input expected by the DFHWS2LS utility when it runs. 

 The step called DFHWS2LS runs BPXBATCH to execute the shell command passed 
from the CMNSTDPM ddname of the CMNBAQ00 step. This step generates the 
required outputs. 

 If the generation is successful, the next step, CPY4BT90, copies all generated 
copybooks to a separate temp PDSE which can be allocated to the follow-on step, in 
the JCL, without conflicting with the spawned USS process which wrote them in the 
first place. The follow-on step, BAT90CPY, executes CMNBAT90 to analyze the 
contents of the temp PDSE in order to generate the activation transactions for all 
generated copybook names. 

 Step CPY2STG copies the generated copybooks back to the staging library and step 
ZFS2STG copies the zFS components (that is, the bind file) to the relevant staging 
directory. 

 The SUCCESS step, executing CMNBATCH, makes the original like-SRC component 
active and then, directed by the CMNBAT90 output from CMNBAQ00, activates all the 
generated components. 

 Additional steps follow to deal with build failures and tidy up the intermediate working 
directories and PDSE. 



66 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications

The source-to-load display for a successfully built DFHWS2LS parameter component looks 
like this:

The names of the generated components are formed as follows: 

 The LST listing takes the name of the original like-SRC component, in this case 
CBLWSDL.

 The LSH listing has the source library type and the literal 'list' appended, in this case 
CBLWSDL.W2L.list. 

 The bind component name takes the form <name>.wsbind where <name> is taken 
from one of three sources in order of preference: 

• From the WSBIND=xxxx/xxxx/xxxx/<name>.wsbind parameter statement 
present in the original like-SRC parameter component. This is typically how this 
value will be assigned. 

• From the SERVICE-NAME=<name> parameter statement present in the original 
like-SRC parameter component. This is atypical for this process and is included for 
compatibility with the zosConnect build process. 

• From the PGMNAME=<name> parameter as supplied by the skeleton input. Again 
atypical, but this provides a backstop. 

 The request copybook component name takes the form <prefix>nn where <prefix> is 
taken from the REQMEM=<prefix> parameter statement present in the original like-
SRC parameter component, and nn is the suffix added by the IBM utility (for example, 
01). 

 The response copybook component name takes the form <prefix>nn where <prefix> 
is taken from the RESPMEM=<prefix> parameter statement present in the original 
like-SRC parameter component, and nn is the suffix added by the IBM utility (for 
example, 01). 

ZMF Support for CICS Bundles
ZMF supports the creation and maintenance of CICS JSON REST bundles. The build 
process is provided by member CMNBUNJL (of the CMNZMF.SKELS distribution library). 

CMNSR2LD                  Source to Load Relationship          Row 1 to 4 of 4
Command ===>                                                  Scroll ===> CSR

         Package: STEV001485      Status: DEV      Install date: 20180820

Source name . . . . CBLWSDL                                                  +
Lib type  . . . . . W2L
Setssi  . . . . . . 6D80BCEC

Related Load Modules:

  Name              + Type Promotion  Changed          User     Setssi
  CobolSoap.wsbind    WSB   0 STAGING 20180320  082623 WSER58   6D80BCEC
  CBLWSDL             LST   0 STAGING 20180320  082626 WSER58   6D80BCEC
  CBLWSDL.W2L.list    LSH   0 STAGING 20180320  082626 WSER58   6D80BCEC
  WSREQ01             WCP   0 STAGING 20180320  082623 WSER58   6D80BCEC
  WSRESP01            WCP   0 STAGING 20180320  082623 WSER58   6D80BCEC
******************************* Bottom of data ********************************



ZMF Support for CICS Bundles

Customization Guide 67

The CMNBUNJL skeleton calls the IBM-supplied utility DFHJS2LS with the BUNDLE= 
parameter to process a specified JSON schema.

The output from this process is a number of zFS files (the bundle), which are generated in 
the target directory. Typically, the build process creates a Language Environment (LE) 
language copybook (COBOL or PL/I, for example), a listing, and the bundle. Once 
installed, CICS uses these components to implement the API. 

Here is an example Source to Load Relationship (panel CMN2R2LD) display for a 
successful staging of a JSON REST schema:

In this case, a copybook (the WCP component), a listing, and three bundle components in 
the BDL libtype. The full names of the bundle components are: 

 JSONMINE/jsbinds/JSONMINE.jsbind

 JSONMINE/jsbinds/My-test-client-request.json

 JSONMINE/META-INF/cics.xml

Skeletons CMN30 and CMN30I have been enhanced with the SUBDIRS=Y parameter to 
enable the development libraries to be cleaned up after the package installation and 
baselining steps have been performed.

CMN2R2LD                 Source to Load Relationship          Row 1 to 5 of 5
Command ===>                                                 Scroll ===> CSR

         Package: STEV001489      Status: DEV      Install date: 20180820

Source name . . . . JSONMINE                                                +
Lib type  . . . . . J2B
Setssi  . . . . . . 6DB28FDD

Related Load Modules:

  Name             + Type Promotion  Changed          User     Setssi
  JNMINE01            WCP  0 STAGING 20180427  032652 WSER58   6DB28FDD
  JSONMINE            LST  0 STAGING 20180427  032655 WSER58   6DB28FDD
  JSONMINE.J2B.list   LSH  0 STAGING 20180427  032655 WSER58   6DB28FDD
  JSONMINE/jsbinds/JS BDL  0 STAGING 20180427  032652 WSER58   6DB28FDD
  JSONMINE/jsbinds/My BDL  0 STAGING 20180427  032652 WSER58   6DB28FDD
  JSONMINE/META-INF/c BDL  0 STAGING 20180427  032652 WSER58   6DB28FDD



68 ChangeMan® ZMF 

Chapter 3  Exposing Mainframe Resources to Web and Desktop Applications



Customization Guide 69

Chapter 4
User Exits

ChangeMan ZMF exits are programs that are called by base product programs. Exits 
permit you to alter the processing of base product programs depending on the 
information passed to the exit.

Introduction 70
User Exit Source 70
User Exit Interface Data 70
Customizing Exits 71
Calling XML Services from User Exits 74
Exit Descriptions 75



70 ChangeMan® ZMF 

Chapter 4  User Exits

Introduction
ZMF 8.1 provides central high-level language exit services that can be called by any client 
that can connect to ZMF. You can code the exits in any Language Environment (LE) 
compliant language as well as REXX. The same customer-supplied exit code will be 
executed regardless of which client is being used. For details of the new HLL Exits, please 
see the ChangeMan ZMF 8.1 High Level Language Functional Exits Getting Started Guide.

Please also note HLL exit points have no relation to, and do not replace, any existing ZMF 
assembler exit points described in this chapter.

Using the assembler exits, you can:

 Change defaults and settings for ChangeMan ZMF interaction with the operating 
system

 Alter what ChangeMan ZMF will do under specific component, package, or life cycle 
conditions

 Change who has authority to initiate specific ChangeMan ZMF tasks

 Change when authorized users can perform certain tasks

Common reasons for using exits include:

 Adapt ChangeMan ZMF to your data center standards and environment

 Enforce your company’s standards, processes, and procedures for software change 
management

 Implement custom processes to manage unique component build processes

 Add rule-based flexibility to standard ChangeMan ZMF processing

User Exit Source
Source for user exits is delivered in the CMNZMF ASMSRC library in the ChangeMan ZMF 
installer.

When you modify exit source, preserve the delivered version in the delivered source 
library. See "Preserving Vendor Versions of ChangeMan ZMF Components" on page 18.

User Exit Interface Data
The data passed between calling programs and exits is defined in copybooks in the 
CMNZMF ASMCPY library. This library is delivered in the ZMF installer.

Do not modify copybooks used to call exit programs. Even if you code the exit to handle 
the altered copybook, you cannot change the control block used to call the exit from the 
base product program.

Most exits exchange data with the calling program through two copybooks:

 CMNEXITS - This copybooks is common to nearly all ChangeMan ZMF exits.



Customizing Exits

Customization Guide 71

 CMNEXnnn - The name of the copybook matches the name of the exit program in 
which it is included.

Not all fields in copybooks CMNEXITS and CMNEXnnn are populated by the calling 
program. See the comments at the top of the exit program source for a list of fields in 
these copybooks that are available to the exit you are customizing.

No Access to TCA
Starting with ChangeMan ZMF 5.5, you cannot access the TCA in user exits. The TCA 
register no longer points to the TCA when an exit is called. Any attempt to reference the 
TCA in a user exit results in an S0C4 abend. 

Customizing Exits
ChangeMan ZMF exit programs are delivered inactive, except for exit CMNEXINS. Follow 
these steps to customize and activate an exit to modify ChangeMan ZMF behavior.

Find the Exit You Want
See "Exit Descriptions" on page 75 to find an exit that targets the function you want to 
modify. Review the examples in the exit description to see how the exit can be used to 
alter the target function. 

Read the comments at the top of the exit source member for more information about the 
exit. Review the sample code in the exit to see if the exit can perform the function you 
want.

Modify Exit Source
Follow these steps to modify the exit source to perform the function you want.

1 Check out the exit source in your ChangeMan ZMF application. If you do not have a 
ChangeMan ZMF application, copy the source from the delivered ASMSRC library to 
your custom ASMSRC library.

2 Edit the source to enable the exit. Comment out the following code to cause the exit 
program to be loaded at ChangeMan ZMF started task initialization:

*********************************************************************** 
*                                                                       
* Comment (or delete) the following 2 lines to activate this exit.      
*                                                                       
CMNEX014 CSECT                                                          
         DC    Y(2046)             inactive module                      
*********************************************************************** 

3 Modify the exit source. Many exits are delivered with examples that can be used as 
they are delivered, or the sample code can be modified to perform the function you 
desire. 



72 ChangeMan® ZMF 

Chapter 4  User Exits

a Some exits contain tables with entries that can be changed and extended to serve 
the purpose you need. Examine the end of the table to see how the program 
detects the end of table data, and make adjustments if necessary.

b If necessary, set the exit return code. If sample code is provided, it usually sets 
the return code to the appropriate value to communicate the exit result to the 
calling program. Valid values for return codes are described in comments at the 
top of source members.

4 Use coding techniques that will make it easy to see and understand your modifications 
when they must be updated or applied to the next release of ChangeMan ZMF.

If you comment out delivered code or overtype it, compare tools will often show the 
custom code as interleaved sets of inserted and deleted lines that are hard to 
understand. Use one of the following techniques to make code compare results easier 
to read:

• Code custom table entries as a separate copybook component, and insert a COPY 
statement into the exit code in place of the delivered sample table. To update the 
table, change the copylib member and reassemble the exit.

• Use an AGO statement to exclude delivered code, then place your custom code 
beneath the excluded code.

****                                                                    
* Valid work request number table                                       
****                                                                    
X14$VWR# DS    0CL12               valid work request number            
         AGO  .SKIP14                                                  
         DC    CL12'WORK#0000001'                                       
         DC    CL12'WORK#0000002'                                       
         DC    CL12'WORK#0000003'                                       
         DC    CL12'WORK#0000004'                                       
         DC    CL12'WORK#0000005'                                       
         DC    CL12'WORK#0000006'                                       
.SKIP14  ANOP                                                          
         DC    CL12'CUSTOM000021'  custom work request                  
         DC    CL12'CUSTOM000022'  custom work request                  
         DC    CL12'CUSTOM000023'  custom work request                  
         DC    CL12'CUSTOM000024'  custom work request                  
X14#VWR# EQU   (*-X14$VWR#)/12     maximum entries                      

5 Add comments to your custom code so you will know what you were trying to 
accomplish when you must reapply your code to a new release of ChangeMan ZMF.

Assemble Exit Source
Stage customized exit source in your ChangeMan ZMF application. If you do not manage 
ChangeMan ZMF components with ChangeMan ZMF, assemble the exit source manually.

1 Use the sample assembly JCL provided in member ASSEMBLE in the CMNZMF CNTL 
library, or use your standard assemble procedure.

2 Use these options:

• Assemble: RENT,ALIGN

• Link edit: RENT, AC=0 (Except AC=01 for CMNEX019)

3 Preserve the delivered exit load modules by link editing into a custom load library, not 
the delivered load library. See "Preserving Vendor Versions of ChangeMan ZMF 
Components" on page 18.



Customizing Exits

Customization Guide 73

4 Verify that the assemble and link edit steps completed successfully and that the link 
edit completed without unresolved external references.

5 Verify that the link edit options displayed in the directory of your custom LOAD library 
are the same as those displayed in the directory of the delivered LOAD library.

6 Test the new exit load module in a test ChangeMan ZMF instance.

Refresh Exit Load
After you assemble and link edit a customized exit, you must take further action to ensure 
that your changes take effect.

This table tells you what action to take depending on where the exit runs.

This table tells you where each exit runs.

IMPORTANT!  In particular, check directory entries for AC, AM, and RM.

Where the Exit Runs Action

SERNET started task Stop and start (recycle) the started task

ChangeMan ZMF ISPF client Exit and reenter your ChangeMan ZMF ISPF 
session

File tailoring task (CMNADSP) or batch job Rerun the task, job, or job step

Exit Name STC ISPF
TASK
/JOB Exit Name STC ISPF

TASK
/JOB

CMNEXINS Y Y Y CMNEX027 Y Y

CMNEX001 Y CMNEX028 Y Y Y

CMNEX002 Y Y CMNEX030 Y Y

CMNEX003 Y Y CMNEX031 Y

CMNEX004 Y CMNEX032 Y

CMNEX005 Y CMNEX033 Y Y

CMNEX006 Y Y CMNEX034 Y Y

CMNEX007 Y Y CMNEX035 Y Y

CMNEX008 Y Y Y CMNEX036 Y

CMNEX009 Y Y CMNEX037 Y

CMNEX010 Y CMNEX038 Y

CMNEX011 Y CMNEX039 Y

CMNEX012 Y Y CMNEX040 Y

CMNEX014 Y Y CMNEX041 Y

CMNEX015 Y CMNEX042 Y

CMNEX016 Y CMNEX043 Y Y

CMNEX019 Y Y CMNEX044 Y

CMNEX020 Y CMNEX101 Y



74 ChangeMan® ZMF 

Chapter 4  User Exits

Refresh VLF and LLA

If you put ChangeMan ZMF load libraries in the LINKLIST, you must:

1 Reload the Virtual Lookaside Facility (VLF) if it is enabled.

2 Refresh the Library Lookaside (LLA) facility.

Exits Listed in SYSPRINT
Active exits are listed in SYSPRINT for the SERNET started task at startup. Example:

SER4340I CMNSTART CMNEXINS loaded
SER4340I CMNSTART CMNEX023 loaded
SER4340I CMNSTART CMNEX026 loaded

Calling XML Services from User Exits
ChangeMan ZMF exit programs can access XML Services by calling client program 
SERXMLAC. This program is described in an appendix in the ChangeMan ZMF XML 
Services User's Guide.

Customers should be aware that mistakes in their use of SERXMLAC called from an exit 
can be fatal to the program that called the exit, including SERVER running in the started 
task.

CMNEX021 Y CMNEX102 Y

CMNEX022 Y CMNEX103 Y

CMNEX023 Y Y CMNEX201 Y

CMNEX024 Y CMNEX210 Y

CMNEX025 Y CMNEX220 Y

CMNEX026 Y Y

Exit Name STC ISPF
TASK
/JOB Exit Name STC ISPF

TASK
/JOB

NOTE  The ChangeMan ZMF Installation Guide recommends that you do not LINKLIST 
ChangeMan ZMF libraries and that you use STEPLIB and JOBLIB instead.

NOTE  These four exits are not listed in SYSPRINT even if they are active:

CMNEX044
CMNEX201
CMNEX210
CMNEX220



Exit Descriptions

Customization Guide 75

Exit Descriptions
This section describes ChangeMan ZMF exit functions. 

SEREX001

SEREX002

SEREX003

Exit Function Override the default algorithm that calculates space requirements for 
reallocating a library that has run out of space in a SERCOPY operation 
where a compress with IEBCOPY did not remedy the problem. This exit 
only affects PDS(E) libraries, not PAN, or LIB data sets.

Calling Function Reallocate staging PDS(E) data set (SERNET function)

Examples of Use Use UNIT=SYSDA parameter for reallocated PDS libraries.

Exit Function Validate or alter the first four JOB statement records in JCL before the job 
is submitted for execution. 

Calling Function Module SERSUBMT calls this exit each time a job is submitted 

Notes This exit runs in the SERNET started task address space, which provides 
security against a malicious user being able to submit jobs. See exit 
CMNEX008, which performs a similar function but executes in the address 
space of the user who submits a job rather than in the SERNET started 
task address space.
This exit, as delivered, is enabled but does not perform any JOB statement 
alterations. Follow the comments in the source code if you want to alter 
JOB statements or disable the exit.

Exit Function Allows read-only access to JES output, and only allows users to cancel, 
purge, or requeue jobs that they own. As delivered, CMNEX003 is enabled.

Notes IMPORTANT! Access to JES jobs is normally controlled by resource 
classes JESJOBS and JESSPOOL, regardless of whether SEREX003 is 
activated. If these resource classes are activated and appropriate rules 
have been established by your security administrator, we recommend that 
you disable this exit. To disable the exit, do one of the following:
 Use SERNET keyword parameter EX003=NO.
 Customize the exit as described in source code comments at the top 

of the program.



76 ChangeMan® ZMF 

Chapter 4  User Exits

SEREX005

CMNEXINS

Exit Function Provide library member level security. After a library name is checked 
against data set access rules in your security system, SEREX005 
constructs a second data set name that is checked in your security 
system:

Original DSN LIBRARY.NAME

SEREX005 DSN LIBRARY.NAME.MEMBER

Calling Function Various ChangeMan ZMF modules call this exit for every GET, PUT, DELete, 
or REName library member request.

Examples of Use To allow userIDs in group $ABC exclusive update access to LIBRARY.NAME 
members that have names starting with XYZ, leave SEREX005 enabled 
and issue these RACF commands:
ADDSD ’LIBRARY.NAME*.*’ UACC(READ)
PERMIT ’LIBRARY.NAME*.XYZ*’ ID($ABC) ACCESS(UPDATE)

Notes For this exit to function correctly, the length of the constructed data set 
name LIBRARY.NAME.MEMBER cannot exceed 44 characters. To avoid this 
limitation and to restrict access to components within the framework of 
ZMF functions and security, we recommend that you disable CMNEX005 
and use ZMF component level security. See topic "Setting Component 
Level Security" in the ChangeMan ZMF Administrator’s Guide.
IMPORTANT! As delivered, CMNEX005 is enabled.
To disable SEREX005, do one of the following:
 Use SERNET keyword parameter EX005=NO.
 Customize the exit as described in source code comments at the top 

of the program.

Exit Function Specify the data set name, space allocation, DCB attributes, and extended 
attributes for EAV (extended address volumes) of the temporary work data 
set used during logon, checkout, edit, stage, recompile, relink, file 
tailoring, browse, compare, monitor, and many utility functions.

Calling Function API Service - Component 
API Service - File tailoring 
API Service - Installation job file 
tailoring
Batch I/A table maintenance Batch 
Interface - Main driver 
Batch Interface - Main driver 
(freeze, stage) 
Batch stage called from CMNAPI 
Browse compressed listing 
Browse/print/copy baseline 
members 
Checkout from baseline/promotion 
Compare staging library to 
baseline/promotion 
Copy / Stage components 

Copy VSAM Package Master to 
sequential file
Edit package component
Edit / Browse Notification File
ISPF client main driver 
Monitor (Limbo and Scheduler) 
Promote package 
Query Package Master 
Recompile 
Relink 
Staging Versions 
Submit services
XML Services - Data set 
XML Services - Save Staging 
Versions 
XML Services - Utility Request



Exit Descriptions

Customization Guide 77

CMNEX001

CMNEX002

CMNEX003

Examples of Use Most customers use this exit to set a high level qualifier so that 
ChangeMan ZMF does not need ALTER access to every TSO user's high 
level qualifier.

Notes Sample code between AGO .label and .label ANOP statements is skipped 
by the assembler and does not appear in the assembler listing. To enable 
the code, delete or comment out the AGO statement.
A particular volume serial for temporary work data sets can be specified in 
several locations in ChangeMan ZMF. This is the search order for a 
specified volume serial:
1 X15$VOLS in CMNEX015 if this exit is enabled
2 INS$VOLS in CMNEXINS if this exit is enabled
3 DEFAULT VOLUME SERIAL field in Application Administration 

Parameters
4 DEFAULT VOLUME SERIAL field in Global Administration Parameters

Exit Function Specify who can update package information.

Calling Function Update change package information

Examples of Use Allow anyone to update package information before first approval entered.
Allow approvers who have not approved frozen package to update 
installation date.
Block changes to super or complex packages except by administrators.

Exit Function Restrict installation date by one of more of the following: Application, 
global or application administrator authority, specified date, day of week, 
package type, from install time, to install time, values in package user 
information variables.

Calling Function Create change package
Update package installation date

Examples of Use Restrict CICS changes to weekend installation dates.

Exit Function Impose a lead time for package create from the installation date using one 
or more of the following: Application, global or application administrator 
authority, specified date, day of week, package type, values in package 
user information variables.

Calling Function Create change package
Update package information

Examples of Use Enforce installation lead time standards for packages with high risk rating.
Block planned package installation date lead time less than 3 business 
days.



78 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX004

CMNEX005

CMNEX006

CMNEX007

CMNEX008

Exit Function Prohibit use of specified mnemonics when creating applications.

Calling Function Application Administration: Create new application ChangeMan ZMF

Exit Function Set requirements for application approval lists.

Calling Function Application Administration: Create/update planned and unplanned 
approval lists

Examples of Use Require at least two approvals for an unplanned approval list.
Validate approval security entity naming conventions against application 
mnemonic.

Exit Function Restrict creation of packages with specified package level by application.

Calling Function Create change package

Examples of Use Prohibit super/complex packages in specified applications.

Exit Function Restrict package installation date by administrator authority, application, 
user, installation date, package type, or package user information 
variables.

Calling Function Create change package
Update change package information

Exit Function Validate or modify JOB statement information in the first four batch job 
records.

Calling Function Submit batch job from ChangeMan ZMF online function
Build package installation JCL (X Node data set)
Build remote promote JCL

Examples of Use Prohibit use of JCLLIB, EXEC, and INCLUDE keywords in JCL coded in JOB 
statement Information fields on user and administration panels.
Override or restructure job names obtained from ChangeMan ZMF 
administration.



Exit Descriptions

Customization Guide 79

CMNEX009

The points in the package lifecycle at which CMNEX009 is called depends on whether a 
package is planned or unplanned.

For planned packages, CMNEX009 is called at package freeze if you have requested it to 
check for any of the criteria listed above. Approvers that you designate in the exit code 
are notified in addition to the approvers on the planned package list. Once approved, the 
package is installed at the scheduled time.

For unplanned packages, CMNEX009 is called at two points in the package lifecycle:

 At package freeze - Approvers that you designate in the exit code are notified in 
addition to the approvers on the unplanned package list.

 At post-approval processing (after the package has been installed) - The approver list 
is rebuilt. Approvers that you designate in the exit code are added to the planned 
package approver list and are notified in addition to the approvers on the planned list 
after the package has been installed.

Consult the comments in the source code for this exit for detailed instructions on how to 
code the conditions that the exit is to check and to add approvers if these conditions are 
true.

Exit Function Add approvals to the Planned Approval List during the package freeze or 
post-approval processes. Approvals can be added based on one or more of 
the following conditions:
 If specified library types are included in the package and have 

components staged into them
 If installations are scheduled at specified remote sites in the package
 If specified library types have scratched and/or renamed components 

included in the package

Calling Function Freeze package.

Examples of Use Add CIO approval if package user information indicates a high risk change.
Add CICS systems programmer as approver if package contains BMS Map 
change.
Add data center manager approver if package will be installed at remote 
center.
Add a DBA approver if a package contains scratched DBRM components.
Add approvers if certain Online Forms Manager (OFM) forms (pre defined 
in copybook ASMCOPY(CMNEX009) and limited to 50) are included in the 
package.

Notes Copybook CMNEX009 contains library type table X09$SLTP, with up to 100 
entries, that tells you what library types are in the package. Each entry in 
the table contains indicator X09$FTYP with three independent bit switches 
to tell you if any one of the package components in the library type is a 
staged component, a scratch utility request, or a rename utility request.
The global administrator must set the Display Package User Option 
Panel(s) field to YES on the Global Parameters - Part 4 of 6 (CMNGGP04) 
panel if you want to be able to access user variables user0101 through 
user7205 from this exit.
Refer to the notes in the sample source code in ASMSRC(CMNEX009).



80 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX010

CMNEX011

CMNEX012

CMNEX014

Exit Function Restrict who can enter a package approval by one or more of the 
following: Global or administration authority, package name, approving 
userid, date of approval, subsystem ID, package type, package level, 
approval function (A,R,C.V), approval entity, work request number, 
package creator, hierarchical order number, nearest installation date.

Calling Function Approve package

Examples of Use Prevent a package creator from approving any package, planned or 
unplanned.

Notes This exit is called after an approval panel has been submitted by the user 
but before the approval is processed.

Exit Function Set minimum library security access requirements for promotion, baseline, 
and production library configuration functions.

Calling Function Configure application libraries in application administration

Examples of Use Prevent configuration of a library for promotion if the ChangeMan ZMF 
instance does not have update access to the library.

Exit Function Compare the package create day-of-week to the specified normal business 
days-of-week to determine whether to use the unplanned approval list for 
unplanned packages.

Calling Function Create package

Examples of Use Consider Wednesday to be a non-business day so that unplanned packages 
created on Wednesday are always defined with the unplanned approval 
list.

Exit Function Validate department number and/or work request number against a 
specified list of valid values by application. Cross-edit work request 
number, department number, and package user information when flag 
X14$IVAL indicates that package user information is passed.

Calling Function Create package
Update package information
Create package user information
Update package user information



Exit Descriptions

Customization Guide 81

CMNEX015

CMNEX016

CMNEX019

Exit Function Direct dynamically allocated temporary work data sets to a specified 
VOLSER.

Calling Function Any task that involves the dynamic allocation of data sets

Notes A specific volume serial for temporary work data sets can be specified in 
several locations in ChangeMan ZMF. This is the search order for a 
specified volume serial:
1 X15$VOLS in CMNEX015 if this exit is enabled
2 INS$VOLS in CMNEXINS if this exit is enabled
3 DEFAULT VOLUME SERIAL field in Application Administration 

Parameters
4 DEFAULT VOLUME SERIAL field in Global Administration Parameters

Exit Function Modify or skip expanded copybook records written to SYSOFILE by 
CMNWRITE.

Calling Function Program CMNWRITE in build jobs

Examples of Use Create a PANVALET like exit to prefix COBOL COPYBOOK source 
statements with user defined input.

Notes CMNEX016 mimics a CA Librarian exit that modifies copybook records 
included in source with the -INC command. 
Sample code between AGO .label and .label ANOP statements is skipped 
by the assembler and does not appear in the assembler listing. To enable 
the code, delete or comment out the AGO statement.

Exit Function This exit is called before and after checkout, checkin, and build and may be 
used for any function desired at those points in component processing, 
depending on the availability of data passed from and returned to the 
calling program.

Calling Function Checkout component
Checkin component
Build component

Notes Checkin is one of the two processes that make up the stage from 
development function:
 Checkin copies a component from a library outside ZMF to a staging 

library. 
 Build transforms source into one or more executables.

Sample code between AGO .label and .label ANOP statements is skipped 
by the assembler and does not appear in the assembler listing. To enable 
the code, delete or comment out the AGO statement.
This exit was used with the ChangeMan ZMF APS Option that was retired 
with Version 6.1.



82 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX020

CMNEX021

CMNEX022

CMNEX023

Exit Function Reset return codes for package audit out-of-synch conditions.

Calling Function Package Audit

Notes Sample code between AGO .label and .label ANOP statements is skipped 
by the assembler and does not appear in the assembler listing. To enable 
the code, delete or comment out the AGO statement.

Exit Function Use library type, application, package creator, or other fields passed from 
package audit to bypass:
 SYNCHnn! processing
 Component relationship processing
 Promotion libraries in SYNCH15! processing.

Calling Function Package Audit

Notes Sample code between AGO .label and .label ANOP statements is skipped 
by the assembler and does not appear in the assembler listing. To enable 
the code, delete or comment out the AGO statement.

Exit Function Exclude specified load and non-load components from processing by 
package audit and by the impact analysis LDS build.
Include CSECT, with the same name as the composite load module, in the 
Impact Analysis Table to show LOD relationships, and in package audit 
processing to detect SYNCH8!.

Calling Function Package Audit
Impact Analysis Maintenance

Examples of Use Prevent IBM subroutines with names starting in ILBO, DLI, DFS, DFH, CEE, 
IBM, and IGZ from cluttering up the package audit report where they 
obscure important information.

Exit Function Enable the Package User Information facility. Define ISPF variable names 
used for Package User Information variables in file tailoring for installation 
JCL.

Calling Function All remote file tailoring and ISPF driven stage, recompile, and relink 
package functions



Exit Descriptions

Customization Guide 83

CMNEX024

CMNEX025

CMNEX026

CMNEX027

Exit Function Prohibit package freeze depending on one of more of the following: 
Application, global or application authority, package type, library types in 
package, installation date, installation from or to time, installation day of 
week, Package User Information variable.

Calling Function Freeze change package

Exit Function Prohibit package freeze or selective refreeze of component depending on 
compile parameters, link edit parameters, and user options used in last 
stage job. Other validations can be performed on application mnemonic, 
component library types, component names, language, compile 
procedure.

Calling Function Freeze change package
Selective refreeze

Exit Function Dynamically allocate additional staging libraries based on component type, 
user options, or other data passed to the exit.
Prohibit package component delete based on library type, member name, 
or whether component is promoted.

Calling Function Stage component
Delete component during staging

Examples of Use Allocate additional staging libraries for build processes with multiple 
outputs.

Notes Do not use CMNEX026 to control delete of related components from 
staging libraries. Use ILOD records instead.

Exit Function Override the promotion or demotion rule for individual promotion levels. 

Calling Function Promote package
Demote package
Unfreeze/refreeze
Revert

Examples of Use Specify Promotion Rule by Promotion Site/Level
Break down Promotion Rules into behaviors that can be specified 
separately for a site/Level.

Notes CMNEX027 is called twice for promotion/demotion:
 Before the promotion or demotion panel displays the history
 After promotion or demotion



84 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX028

CMNEX030

CMNEX031

CMNEX032

CMNEX033

Exit Function Set several administration options that are not included in the ISPF 
interface:
 Add extra job statements for batch processing
 Do not to release unused space in staging libraries during a freeze
 Bypass CMNAPI case conversion for lower case languages 
 Bypass expansion of duplicate %INCLUDE statements when the 

copybook does not exist in the staging library

Calling Function Extended administration options affecting various areas throughout 
ChangeMan ZMF

Notes JOB statements 5 and 6 added for batch recompile, batch freeze, and 
package audit only.

Exit Function Bypass checkout enforcement rule depending on the component library 
type.

Calling Function Stage component from development

Exit Function Bypass package audit processing based on library type.

Calling Function Package audit
Package integrity check

Exit Function Process specified library types as compressed listings (like-LST)

Calling Function Baseline browse

Exit Function Override package status validation when adding or removing participating 
packages in complex or super packages. Allow automatic close of super or 
complex packages after update if all participating packages have 
completed the package lifecycle.

Calling Function Update Complex/Super Information
Close super or complex packages



Exit Descriptions

Customization Guide 85

CMNEX034

CMNEX035

CMNEX036

CMNEX037

Exit Function Assign processing to specified library types when creating or updating 
impact analysis relationships.
Processing that can be assigned with CMNEX034:

JCL Process the specified library type as JCL when creating JCL-
Procedure, PGM Name/Symbol, and DSN Name/Symbol 
relationship records.

PRC Process the specified library type as cataloged procedures when 
creating JCL-Procedure, Pgm Name/Symbol, and DSN Name/
Symbol relationship records.

Calling Function Impact Analysis Maintenance
Baseline ripple 

Examples of Use Parse components in library type JC2 like JCL to create relationship 
records in the Impact Analysis file.

Notes Starting with ChangeMan ZMF 6.1, object components and NCAL load 
components are supported in the base product with like-object (O) and 
like-NCAL (N) in global and application administration.

Exit Function Restrict the library types displayed on the valid library selection list for 
checkout, stage, browse baseline, browse compressed listing, compare, 
scan, and scratch/rename functions.

Calling Function Checkout, stage, browse baseline, browse compressed listing, compare, 
scan, scratch/rename

Exit Function Call an edit preprocessor or different editor.

Calling Function Edit-in-stage

Examples of Use Use SMART EDIT instead of ISREDIT.
Invoke an SDF2 editor interface.

Exit Function Call an edit macro like ASG-JCLPREP or your own edit macro.

Calling Function Edit-in-stage
VIEW in edit-in-stage

Examples of Use Call edit macro for ASG-JCLPREP at end of edit-in-stage session for JCL 
members.



86 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX038

CMNEX039

CMNEX040

CMNEX041

CMNEX042

Exit Function Assign a default language for a particular library type. Specify a starting 
column and ending column for source code parsing by CMNPARSE.

Calling Function Parse source to determine language

Notes The starting column must start before the ending column.
The copy/include statement must fit between the starting and ending 
columns.

Exit Function Assign group names to a list of installation sites. Installation site group 
names are displayed on the Create: Site Information panel and Update: 
Site Information panel, and on the Site Selection List panel for those 
functions. The Query: Site Information panel shows individual site names, 
including any sites in an installation site group.

Calling Function Create package
Update package information

Notes If an installation site group includes a site that is not fully defined in an 
application, the group name is not displayed in package create or update 
in that application.
Caution! If an installation site is included in more than one installation 
site group in CMNEX039, and both groups are added to a package, then 
the site is added to the package twice, and file tailoring for package 
installation JCL will fail with messages CMN1000A and CMN8703I. 

Exit Function Enforce the use of a specific file or PDS member for package audit auto 
resolve parameters.

Calling Function Package audit

Exit Function Specify special authorization for package IMS information update.

Calling Function Updating IMS package information

Exit Function Display panel CMNEX042 for component general description and store 
information as discrete fields on the package master.

Calling Function Stage component



Exit Descriptions

Customization Guide 87

CMNEX043

CMNEX044

CMNEX093

CMNEX101

CMNEX102

Exit Function Add custom processes that are executed outside of ChangeMan ZMF at the 
end of package create.

Calling Function Create change package

Exit Function Specify like-copy library types to be excluded from package audit 
SYNCH15! processing.

Calling Function Package audit

Notes See exit CMNEX021 to bypass promotion libraries in the processing of 
SYNCH15! conditions.

Exit Function Override the default 755 permission for zFS staging libraries.

Calling Function This exit is loaded at startup and is called by LIBTYPE SERVICE ALLOCATE 
during the dynamic allocation of an zFS staging library (zFS path).

Exit Function Add, manipulate, or verify DB2 bind control processed by CMNDB2PL.

Calling Function DB2 Option binds at promotion, installation, and baseline ripple. This exit 
is called from the DB2 Option Plan Lookup Program CMNDB2PL.

Notes CMNEX101is called after DSN BIND commands are templated by 
CMNDB2PL and non-standard records set aside by CMNEX103 are restored 
to the end of the command set. BIND command sets are presented to 
CMNEX101 one command keyword per record.

Exit Function Define a collection ID for the DB2 Option that is different from the default 
of CMNx (where x is the Subsystem ID of the ChangeMan ZMF instance).
This exit is invoked from ZMF to allow the user to define a collection id 
other than that assigned by ZMF where the collection id of CMNx or 
CMNZMF will be supplied to DB2 to qualify a package to be used for  DB2 
access. See the comments within the exit code.

Calling Function Program CMNDB2SQ in all DB2 Option functions that access a ChangeMan 
ZMF collection ID under CMNPLAN, including plan lookups for DB2 binds at 
promotion, installation, and baseline ripple



88 ChangeMan® ZMF 

Chapter 4  User Exits

CMNEX103

CMNEX201

CMNEX210

CMNEX220

Exit Function Sets aside records from DSN BIND command sets before parsing in 
CMNDB2PL in preparation for templating.

Calling Function Program CMNDB2PL in the DB2 Option before keyword operand 
templating.

Examples of Use Set aside "comment" records with asterisk (*) in position 1 that control 
the behavior of CMNEX101, then restore the comment records at the 
bottom of the DSN BIND command or stored procedure DDL after 
templating.

Notes Exit program CMNEX103 is called by program CMNDB2PL to delete or set 
aside records in DSN BIND commands.
Using CMNEX103, you can take one of three actions for each DSN BIND: 
 Pass the record back for parsing and keyword operand templating.
 Drop the record.
 Withhold the record from parsing and templating, then restore the 

record at the end of the DSN BIND command set before CMNEX101 is 
called.

Exit Function Bypass processing of specified library types in ERO release audit.

Calling Function ERO Release Audit

Examples of Use Exclude a DDI library type from release audit processing.

Exit Function Validate conditions before attaching a package to an ERO release or 
detaching a package from a release.

Calling Function Attach a package to a release
Detach a package from a release

Notes If activated, this exit is called before the attach or detach function and 
after the attach or detach function. On the pre-function call anything but 
an RC=0 will halt the function. If the package is already attached to a 
release and it is being updated to a new release, the exit is actually called 
four times: a pre- and post-function call for detaching the package from 
the old release and a pre- and post-function call for attaching the package 
to the new release.
Only users with global, application, or release administrator authority can 
detach packages from a release.

Exit Function Validate conditions before checking in a component to an ERO release area 
or before retrieving a component from an area.



Exit Descriptions

Customization Guide 89

Calling Function Check components in to an ERO release
Retrieve components from a release

Notes Pre-checkin or pre-retrieve calls can alter the selected component list or 
halt all the processing. The components that are selected by this exit are 
skipped by the check-in or retrieve function. All all other components are 
selected as normal.
Post-checkin or post-retrieve calls to this exit have no effect on the 
internal processing of the check-in or retrieve operation. On post-check-in 
or post-retrieve calls, the component list only contains components that 
completed the function successfully.



90 ChangeMan® ZMF 

Chapter 4  User Exits



Customization Guide 91

Chapter 5
User Data

ChangeMan ZMF includes four facilities that enable you to enter information that can be 
used by skeleton file tailoring to customize ChangeMan ZMF functions that are executed in 
batch jobs. Some of these facilities store your data in the package master or component 
master files, and you can display that information on custom reports.

Package User Information 92
Staging User Options 96
Release ID Variables 103
Custom V01-V10 Variables 109
Summary 111



92 ChangeMan® ZMF 

Chapter 5  User Data

Package User Information
Package User Information is an optional facility that stores data in 71 fields of various 
lengths on the package master. You enter Package User Information on panels that are 
displayed when you create a package and when you update package information. The 
information stored in Package User Information fields is available for processing by 
several exits, and it is available in file tailoring for installation JCL.

The Package User Information facility is designed to be flexible so that you can customize 
it to meet your needs for package level user data. You can customize up to two data entry 
panels, selecting the fields you want to display, labeling the input fields with names you 
choose, and coding edit rules and other panel processing to satisfy your requirements. 
You can use Package User Information data in program logic in certain ChangeMan ZMF 
exit programs. You can choose your own names for the variables that are made available 
to file tailoring for install JCL.

Package user information is available in all remote file tailoring and ISPF driven stage, 
recompile and relink package functions, and all exit calls which are package driven.

Package User Information Field Names
Package User Information fields have different names on input panels, in copybook 
CMNEXITS that represents how they are stored on the package master, and in file 
tailoring for install JCL. The field names follow a convention that relates the name 
representing the data stored on the package master to the other names that refer to the 
same data. This naming convention also tells you how long the data field is.

The following example shows the names that identify a 3-byte Package User Information 
field in various ChangeMan ZMF functions. In the field naming convention:

 ll represents the length of the field in bytes.

 nn is a field identifier that is unique among fields of the same length.

There are a total of 71 Package User Information fields. They vary in length from 1 byte to 
72 bytes. This table shows how many fields of each length are stored on the package 
master:

Where Name is Used Name Modifiable? Example

Input Panels USRllnn No USR0301

Copybook CMNEXITS IXP$llnn No IXP$0301

File Tailoring USRllnn Yes USR0301

Field 
Length Count

Field Names on 
ISPF Panels

CMNEXITS Field 
Names (Package 
Master)

Default File 
Tailoring 
Variable Names

ZDDOPTS 
Variable Names

1 15 USR0101 to 
USR0115

IXP$0101 to 
IXP$0115

USR0101 to 
USR0115

UserVarLen101 - 
UserVarLen115

2 11 USR0201 to 
USR0211

IXP$0201 to 
IXP$0211

USR0201 to 
USR0211

UserVarLen201 - 
UserVarLen211

3 10 USR0301 to 
USR0310

IXP$0301 to 
IXP$0310

USR0301 to 
USR0310

UserVarLen301 - 
UserVarLen310



Package User Information

Customization Guide 93

The last column of the table show the default names for variables made available to file 
tailoring for install JCL. You can change the default variable names to names that are 
meaningful to you.

Package User Information Input Panels
Your ChangeMan ZMF global administrator activates the Package User Information feature 
by selecting the following option on the Global Parameters - Part 5 of 8 (CMNGGP05) 
panel:

_ Enable package user variables

If the Package User Information feature is activated, two sample ISPF input panels are 
displayed when you create a change package or update package information.

You can customize these panels to display and process the Package User Information 
fields that you want to use to store information on the package master.

The first Package User Information panel displayed is the Create - Sample Package 
User Panel 1 (CMNDPUP1).

4 10 USR0401 to 
USR0410

IXP$0401 to 
IXP$0410

USR0401 to 
USR0410

UserVarLen401 - 
UserVarLen410

8 10 USR0801 to 
USR0810

IXP$0801 to 
IXP$0810

USR0801 to 
USR0810

UserVarLen801 - 
UserVarLen810

16 5 USR1601 to 
USR1605

IXP$1601 to 
IXP$1605

USR1601 to 
USR1605

UserVarLen1601 - 
UserVarLen1605

44 5 USR4401 to 
USR4405

IXP$4401 to 
IXP$4405

USR4401 to 
USR4405

UserVarLen4401 - 
UserVarLen4405

72 5 USR7201 to 
USR7205

IXP$7201 to 
IXP$7205

USR7201 to 
USR7205

UserVarLen7201 - 
UserVarLen7205

Field 
Length Count

Field Names on 
ISPF Panels

CMNEXITS Field 
Names (Package 
Master)

Default File 
Tailoring 
Variable Names

ZDDOPTS 
Variable Names

CMNDPUP1             CREATE - Sample Package User Panel 1    
Command ===>                                                 
                                                             
Enter "yes" or "no" to indicate value of variable            
                                                             
  Field 1 . . . . . . . NO                                   
  Field 2 . . . . . . . NO                                   
  Field 3 . . . . . . . NO                                   
  Field 4 . . . . . . . NO                                   
  Field 5 . . . . . . . NO                                   
  Field 6 . . . . . . . NO                                   
                                                             
Enter "/" to select option                                   
  / Next panel                                               



94 ChangeMan® ZMF 

Chapter 5  User Data

If you select the Next panel option on the Create - Sample Package User Panel 1, the 
Create - Sample Package User Panel 2 (CMNDPUP2) is displayed.

Package User Information and Exits
Package User Information fields are included in copybook CMNEXITS and are available in 
every package related exit program.

These exits are for ChangeMan ZMF basic package functions:

For package audit, package user information is available in exits CMNEX020, CMNEX021, 
and CMNEX031.

For ERO, package user information is available in exit CMNEX210.

Implementing the Package User Information Facility
Follow the steps in this section to modify Package User Information components delivered 
in ChangeMan ZMF libraries so that they satisfy your needs for package level user data.

Choose Package User Information Fields

1 List the kind of data you want to store for a change package and map your list to the 
71 fields available in the Package User Information facility. 

2 Choose the shortest fields that will accommodate the data that you will store.

See "Package User Information Field Names" on page 92 for a description of the 71 
available fields.

Modify Sample Package User Information Panels

1 Copy sample Package User Information panels CMNDPUP1 and CMNDPUP2 to your 
custom panels library from the CMNZMF PANELS library unloaded from the ZMF 
installer.

CMNDPUP2             CREATE - Sample Package User Panel 2    
Command ===>                                                 
                                                             
Enter "yes" or "no" to indicate value of variable:           
                                                             
  Test Value1 . . . . . NO                                   
  Test Value2 . . . . . NO                                   
  Test Value3 . . . . . NO                                   
  Test Value4 . . . . . NO                                   

CMNEX001 CMNEX009 CMNEX024 CMNEX029 CMNEX038

CMNEX002 CMNEX010 CMNEX025 CMNEX030 CMNEX041

CMNEX003 CMNEX014 CMNEX026 CMNEX033 CMNEX043

CMNEX007 CMNEX019 CMNEX027 CMNEX036

CMNEX008 CMNEX023 CMNEX028 CMNEX037



Package User Information

Customization Guide 95

2 Modify the )BODY section of the panels to change the title displayed on the panels, 
and to display field tags that identify the data users should enter.

3 Modify the )INIT section to initialize blank fields. Modify the ZVARS statement to 
associate panel fields with the appropriate Package User Information field name.

4 Modify the )PROC section to validate information entered by the user and to perform 
cross-field edits, if required.

5 Copy sample help panels CMN12350 and CMN12355 to your custom panels library 
from the CMNZMF PANELS library unloaded from the ZMF installer. 

6 Modify the panels to describe the fields on your custom CMNDPUP1 and CMNDPUP2 
panels respectively.

Modify Exits

Package User Information fields in copybook CMNEXITS are populated with your data 
stored on the package master when the exit is called.

1 Copy the exit program source you want to modify to your custom source library from 
the CMNZMF ASMSRC library delivered in the ChangeMan ZMF installer.

2 Modify exit program logic to use the Package User Information fields in copybook 
CMNEXITS.

See Chapter 4, "User Exits" on page 69 for general instructions for enabling and coding 
ChangeMan ZMF exit programs. Coding for exit program CMNEX023 is described in the 
next topic.

Modify Exit 23 For Install JCL File Tailoring

If you want to use Package User Information in file tailoring for install JCL, you must 
enable exit program CMNEX023. This exit defines ISPF variables for Package User 
Information in the ISPF session used by file tailoring.

You can use CMNEX023 to change the names of the ISPF variables that are defined in the 
ISPF session for install JCL file tailoring. You can also use CMNEX023 to populate variables 
with other information available to the exit.

The sample code delivered in CMNEX023 shows modifications to accomplish both of these 
objectives. For example, the default file tailoring variable USR0115 is renamed to 

NOTE  Panel field name USR0199 is reserved for the Next Panel field on panel 
CMNDPUP1 to determine whether the second Package User Information panel 
CMNDPUP2 will be displayed. Even if you do not use panel CMNDPUP2, and alter the 
panel so that you do not display field USR0199 on CMNDPUP1, you must still set a 
value for this field.



96 ChangeMan® ZMF 

Chapter 5  User Data

X23PTYP, and whatever data was stored on the package master for that field is overlaid 
with the Package Type that is in CMNEXITS field IXP$PTYP.

Modify Install Skeletons

1 Copy install skeletons to your custom skeleton library from the CMNZMF SKELS library 
unloaded from the ZMF installer. 

2 Modify those skeletons to use the ISPF variables you defined in exit program 
CMNEX023.

Enable Package User Information

In Global Administration Parameters (=A.G.1), select the Enable package user 
variables field on the Global Parameters - Part 5 of 8 panel (CMNGGP05):

Staging User Options
User options are component-level user data that is stored in 57 fields of various lengths 
on the component master. You enter user options on customizable panels that are 
displayed in build processes like stage, recompile and relink. The information stored in 
user options is available in file tailoring for build processing JCL.

NOTE  When you enable exit program CMNEX023 as it is delivered in the ZMF installer, 
some Package User Information variables defined to file tailoring for install JCL will be 
modified by the sample code in the exit. Check the program comments, the variable 
names in #SPFVARS, and the procedure code at label EXT$0000 to ensure that the 
sample code will not interfere with what you want to do in file tailoring for install JCL. You 
may have to change the sample code to restore the default Package User Information 
ISPF variable names and field contents.

CMNGGP05                Global Parameters - Part 5 of 8      
Command ===>                                                 
                                                             
Audit package lock  . . . . OPTIONAL (Always/Never/Optional) 
                                                             
Enter "/" to select option                                   
     Job name increment override                             
     Use zprefix in batch jobs                               
     Suppress msgs in dis/ins/bas jobs                       
     Create component work records                           
     Force audit of unplanned packages                       
     Allow link packages                                     
     Memo delete empty packages only                         
  /  Enable package user variables                           
     Enable component user variables                         
     Add user variables to package list table                
     Allow component in multiple applications                
     Auto scratch load member with source                    
     Run health checks                                       
  Approval Restrictions                                      
     Package creator cannot approve                          
     Package worker cannot approve                           
     Only 1 approval per user                                



Staging User Options

Customization Guide 97

User option settings are included in designated compile procedures, so you can lock down 
these fields that determine how build processing is performed. User options can be 
validated by exit program CMNEX025 to ensure that prohibited values are not used before 
a component is installed.

Using a combination of user options and custom compile procedure skeletons, you can 
create highly flexible build processes that fits your unique needs. 

User Options Field Names
The 57 user option fields vary in length from 1 byte to 72 bytes. This table shows user 
option field lengths and the names of the fields at key points in component build 
processing:

Field 
Length Count

Field Names 
on ISPF 
Panels

CMNEX025 
Field Names

CMNEX026 
Field Names

File Tailoring 
Variable 
Names

ZDDOPTS 
Variable Names

1 20 USROP01 to 
USROP20

X25$UO01 to 
X25$UO20

X26$OP01 to 
X26$OP20

USROP01 to 
USROP20

UserOption01 to 
UserOption20

1 5 CUSR011 to 
CUSR015

X25$0101 to 
X25$0105

CUSR011 to 
CUSR015

UserOption101 to 
UserOption105

2 3 CUSR021 to 
CUSR023

X25$0201 to 
X25$0203

CUSR021 to 
CUSR023

UserOption201 to 
UserOption223

3 3 CUSR031 to 
CUSR033

X25$0301 to 
X25$0303

CUSR031 to 
CUSR033

UserOption301 to 
UserOption303

4 3 CUSR041 to 
CUSR043

X25$0401 to 
X25$0403

CUSR041 to 
CUSR043

UserOption401 to 
UserOption403

8 5 CUSR081 to 
CUSR085

X25$0801 to 
X25$0805

CUSR081 to 
CUSR085

UserOption801 to 
UserOption805

10 2 CUSR101 to 
CUSR102

X25$1001 to 
X25$1002

CUSR101 to 
CUSR102

UserOption1001 to 
UserOption1002

16 2 CUSR161 to 
CUSR162

X25$1601 to 
X25$1602

CUSR161 to 
CUSR162

UserOption1601 to 
UserOption1602

34 2 CUSR341 to 
CUSR342

X25$3401 to 
X25$3402

CUSR341 to 
CUSR342

UserOption3401 to 
UserOption3402

44 2 CUSR441 to 
CUSR442

X25$4401 to 
X25$4402

CUSR441 to 
CUSR442

UserOption4401 to 
UserOption4402

64 5 CUSR641 to 
CUSR645

X25$6401 to 
X25$6405

CUSR641 to 
CUSR645

UserOption6401 to 
UserOption6405

72 5 CUSR721 to 
CUSR725

X25$7201 to 
X25$7205

CUSR721 to 
CUSR725

UserOption7201 to 
UserOption7205



98 ChangeMan® ZMF 

Chapter 5  User Data

User Option Input Panels
On stage, recompile, and relink panels that have not been customized, if you select the 
Other options field, four User Options panels (CMNUSR01/2/3/4) are displayed in a 
series.

CMNUSR01                      User Options Part 1                              
Command ===>                                                                   
                                                                               
  Name: ACPSRCEE                                                              +
  Type: SRC        Language: COBOL2                                            
                                                                               
  Compile only . . . . .        IMS DLITxxx entry . . .                        
  CICS precompile  . . .        Drop include stmts  . .                        
  Easytrieve object  . .        User option 06  . . . .                        
  User option 07 . . . .        User option 08  . . . .                        
  User option 09 . . . .        User option 10  . . . .                        
  User option 11 . . . .        User option 12  . . . .                        
  User option 13 . . . .        User option 14  . . . .                        
  User option 15 . . . .        User option 16  . . . .                        
  User option 17 . . . .        User option 18  . . . .                        
  User option 19 . . . .        User option 20  . . . .                        
                                                                               
Enter "/" to select option                                                     
  / Mixed Case                                                                 

CMNUSR02                      User Options Part 2                              
Command ===>                                                                   
                                                                               
  Name: ACPSRCEE                                                              +
  Type: SRC        Language: COBOL2                                            
                                                                               
 Additional build parameters:                                                  
                                                                               
 CUSR641                                                                       
 CUSR642                                                                       
 CUSR643                                                                       
 CUSR644                                                                       
 CUSR645                                                                       
                                                                               
Enter "/" to select option                                                     
  / Mixed Case                                                                 



Staging User Options

Customization Guide 99

The panels shown here are the sample CMNUSR01, CMNUSR02, CMNUSR03, and 
CMNUSR04 panels that are delivered on the ChangeMan ZMF installer. You can customize 
these panels to display and process the user options fields that you want to use.

CMNUSR03                      User Options Part 3                              
Command ===>                                                                   
                                                                               
  Name: ACPSRCEE                                                              +
  Type: SRC        Language: COBOL2                                            
                                                                               
 Additional component attributes:                                              
                                                                               
 CUSR011 . . . .      CUSR081 . . . .           CUSR021 . . . .                
 CUSR012 . . . .      CUSR082 . . . .           CUSR022 . . . .                
 CUSR013 . . . .      CUSR083 . . . .           CUSR023 . . . .                
 CUSR014 . . . .      CUSR084 . . . .                                          
 CUSR015 . . . .      CUSR085 . . . .                                          
                                                                               
 CUSR031 . . . .      CUSR041 . . . .           CUSR101 . . . .                
 CUSR032 . . . .      CUSR042 . . . .           CUSR102 . . . .                
 CUSR033 . . . .      CUSR043 . . . .                                          
                                                                               
Enter "/" to select option                                                     
  / Mixed Case                                                                 

CMNUSR04                      User Options Part 4                              
Command ===>                                                                   
                                                                               
  Name: ACPSRCEE                                                              +
  Type: SRC        Language: COBOL2                                            
                                                                               
 Additional component attributes:                                              
                                                                               
 CUSR161 . . . .                                                               
 CUSR162 . . . .                                                               
 CUSR341 . . . .                                                               
 CUSR342 . . . .                                                               
 CUSR441 . . . .                                                               
 CUSR442 . . . .                                                               
                                                                               
 CUSR721 - CUSR725                                                             
                                                                               
                                                                               
                                                                               
                                                                               
                                                                               
Enter "/" to select option                                                     
  / Mixed Case                                                                 



100 ChangeMan® ZMF 

Chapter 5  User Data

User Options and Exits
User options variables are available in two exits.

Implementing the User Options
Follow the steps in this section to modify user options components delivered in 
ChangeMan ZMF libraries so that they satisfy your needs for build processing.

Choose User Options Fields

1 Plan how you want user options to store information at the component level and to 
control build processing. Identify how you want user options to control file tailoring to 
create build job JCL, set build process parameters, manage target library types with 
CMNEX026, and any other use you can devise.

2 Map each user option variable to the purpose it will serve and the values that will be 
valid. Choose the shortest fields that will accommodate the data that you will store.

See "User Options Field Names" on page 97 for a description of the 57 available fields.

3 Mock up one or more prototype Stage User Options panels, and choose field tags that 
will fit in the available space.

Modify Sample Stage User Options Panels

1 Copy sample Stage User Options panels CMNUSR01-04 into your custom panels 
library from the CMNZMF PANELS library unloaded from the installer.

2 Modify the )BODY section of the panels to display field tags that identify the data 
users should enter in each user option field. To enhance usability, group user options 
that serve a similar purpose under panel subheadings.

3 Modify the )INIT section to initialize blank fields. Modify the .ZVARS = statement to 
associate panel fields with the appropriate user option field name.

4 Modify the )PROC section to validate information entered by the user and to perform 
cross field edits, if required. Set the value of variable USRPAN to the member name of 
the next Stage User Options panel, and set USRPAN to blank for the last panel in the 
chain.

Exit Function

CMNEX025 Prohibit package freeze or selective refreeze of Source and Load 
depending on compile parameters, link edit parameters, and user 
options used in the last stage job.

CMNEX026 Dynamically allocate additional staging libraries based on component 
type, user options, and other data passed to the exit. Define 
relationships between library types so that when a component is 
deleted, components with the same name in related library types are 
also deleted. Prohibit delete based on library type, member name, or 
whether component is promoted.
Note: Only the first twenty 1-byte user options (panel field names 
USROP01 to USROP20) are available in this exit. 



Staging User Options

Customization Guide 101

5 Copy sample help panel CMNHMSC9 to your custom panels library from the CMNZMF 
PANELS library unloaded from the ZMF installer. Modify the panel to describe the user 
options on your custom CMNUSR01 panel. Create new help panels for the other Stage 
User Options panels. Code the help panel member names in the .HELP = statement in 
the )INIT section of each Stage User Options panel.

6 Verify that your customized Stage User Options panels and help panels look like you 
want when accessed from these panels.

 CMNCMPH2 Compile and Link Edit Options

 CMNQRY22 Query Compile and Link Edit Options

 CMNRCMP1 Recompile Job Information

 CMNRCMP3 Recompile Job Information

 CMNRLNK1 Relink Job Information

 CMNSTG04 Stage Build

 CMNSTG05 Stage Mass Build Edit

Modify Exits

User options fields in copybooks CMNEX025 and CMNEX026 are available in copybooks 
CMNEX025 and CMNEX026 respectively.

1 Copy the exit program source you want to modify to your custom source library from 
the CMNZMF ASMSRC library delivered on the ChangeMan ZMF installer. 

2 Modify exit program logic to use the user options.

See Chapter 4, "User Exits" on page 69 for general instructions for enabling and coding 
ChangeMan ZMF exit programs.

Modify Build Skeletons

1 Copy stage process skeletons to your custom skeleton library from the CMNZMF 
SKELS library unloaded from the ZMF installer.

2 Modify those skeletons to use the user options variables.

User Option Example
The sample CMNUSR01 panel contains five examples of user options that are fully coded 
in the compile procedure skeletons delivered with ChangeMan ZMF. You can change these 
examples to use USROP01-USROP05 for any purpose you choose. 

NOTE  Skeleton CMN$$VAR is imbedded in every compile procedure skeleton delivered 
with ChangeMan ZMF. Use this skeleton to:

 Translate ChangeMan ZMF ISPF variable names into names that are meaningful to 
you

 Convert a value in a single user option into multiple variables

 Set one or more variables for file tailoring from combinations of user options



102 ChangeMan® ZMF 

Chapter 5  User Data

This section describes how the first example user option is used to create stage job JCL 
that creates object but does not link edit the object into a load module.

User Option Panel CMNUSR01

In the )BODY section of panel CMNUSR01, the first user option (USROP01) is labeled 
“Compile only”. In the )PROC section, a VER command ensures that Y and N are the only 
acceptable values for data entered in that field otherwise message CMN132 is issued.

Help panel CMNHMSC9 should be updated to describe this first user option and its 
purpose.

Variable Skeleton CMN$$VAR

In skeleton CMN$$VAR, near the top, the value of variable USROP01 is tested. If the value 
is Y, variable COMPONLY is set to Y. If USROP01 is N, COMPONLY is set to N.

Search skeleton CMN$$VAR for occurrences of COMPONLY to see how other variables are 
set for Object processing. 

Compile Procedure CMNCOB2

In compile procedure CMNCOB2, variable COMPONLY is tested for value equal to Y and 
also for not Y (NE Y). Some skeleton code is selected when the value of COMPONLY is Y, 
and link edit skeletons CMN$$SSI and CMN$$LNK are only included when COMPONLY is 
not Y (NE Y). 

HLLX exit requirements

This replaces ISPF dialog panel logic prior to display of the first panel. If you change the 
first user panel names from the defaults in only the ISPF panel and not the HLLX exit, the 
UV command will not work correctly. 

Subsequent panels displays ABCUSR02, ABCUSR03 etc are done as they are today by 
setting USRPAN to the next panel name in the series.

A simple REXX example follows, if the user is ABCD233 then  change the default src and 
non-src names as follows:

if userid = "ABCD233" then
do
   if userPanel = "CMNUSR01" then             
   do                                        
      userPanel = "ABCUSR01"                  
   end                                      
   if userPanel = "CMNUSR11" then             
   do                                        
      userPanel = "ABCUSR11"                                   
   end                                      
end

The code must include the Boolean "if" logic about the default panel names, otherwise 
each time a subsequent panel is called into the exit it will be changed to ABCUSR01/11 
and not display any more. In essence this is a 'what to do first time through', subsequent 
panels are displayed as per usual by setting the USRPAN variable on  the user panel



Release ID Variables

Customization Guide 103

E.G. without the first time "if" logic, if you set the panels to be ABCUSR01-04, when 
ABCUSR02 is processed by the exit it will be changed to ABCUSR01 again and the panel 
loop logic will terminate prematurely.

Release ID Variables
Release ID variables are sets of global-level variables created and set by the global 
administrator. An application administrator can associate one of these release ID variable 
sets with an application. These variables are available to file tailoring for all batch jobs 
submitted for an application. You can define up to 54 variables under each release ID.

The original intent of release ID variables was to make it easy to change release numbers 
for system libraries by including release version variables in system data set names used 
in ChangeMan ZMF skeletons. Customers have found many ways to use release ID 
variables to add flexibility to their custom skeletons.

Release ID variables are defined and updated in the Maintain option of the ChangeMan 
ZMF Skeleton Maintenance facility.

Accessing Maintain Release ID Variables
Display the Maintain Release ID Variables panel using one of these two methods.

 Access the Skeleton Maintenance Options panel directly by typing =A.G.S.M and 
pressing Enter, 

or

 Follow these steps to access the Maintain Release ID Variables panel using 
ChangeMan ZMF menus:

a On the Primary Option Menu, select option A Admin.

b On the Administration Options menu, select option G Global.

CAUTION!  If you define more than 54 release ID variables, only 54 are kept and only 53 
are available during processing. The 54th variable, if defined, will have a null value during 
processing. No warning is issued.

CAUTION!  Use caution when designing skeleton customization around release ID 
variables. These variables and values must be entered and maintained by hand in the 
ChangeMan ZMF instance that you use to manage components in your production 
environment. As a more reliable alternative, consider coding variables in skeleton 
CMN$$VAR. You can manage a skeleton like CMN$$VAR with ChangeMan ZMF, which will 
guarantee that what you test is what you install in production.



104 ChangeMan® ZMF 

Chapter 5  User Data

c On the Global Administration Options menu, select option S Skeletons. The 
Skeleton Maintenance Options menu (CMN3DSKL) is displayed.

d On the Skeleton Maintenance Options menu, select option M Maintain. 

The Maintain Release ID Variables panel (CMN3DSM0) is displayed. 

This table describes the fields on the Maintain Release ID Variables panel.

Creating a New Release ID
Follow these steps to create a new release ID and new release ID variables.

CMN3DSKL                 Skeleton Maintenance Options             
Option ===>                                                       
                                                                  
M  Maintain       Maintain skeleton release variables             
A  Assist         File tailoring assistance of skeleton procedures

CMN3DSM0                 Maintain Release Id Variables                 
Option ===>                                                            
                                                                       
   blank Display release id list             D Delete release id       
       R Rename release id                   S Select release id       
                                                                       
Release id . . . . .       (Blank for list; required for options S,R,D)
New release id . . .       (If option R selected)                      
                                                                       
Enter "/" to select option                                             
  / Confirm delete (if option D selected)                              

Field Description

Option Type one of the following options, or leave the Option line blank 
and type a line command next to a component name. 

S Select the release ID typed in the Release ID field.

R Rename the release ID typed in the Release ID field 
using the new name typed in the New Release ID field.

D Delete the release ID typed in the Release ID field.

blank Display the Release ID List panel where you use line 
commands to take action against existing release IDs.

C Cancel entries on this panel and return to the previous 
panel. (Long form: CANCEL)

RELEASE ID Type a 1-4 character release ID when Option S, R, or D is selected.

NEW RELEASE 
ID

Type a new name for a release ID when Option R is selected.

CONFIRM 
DELETE

Type Y or N to determine whether a confirmation panel is displayed 
before ChangeMan ZMF deletes a release ID.

Y Display the Confirm Delete panel before a release ID is 
physically deleted.

N Delete a release ID without displaying the Confirm Delete 
panel.



Release ID Variables

Customization Guide 105

1 On the Maintain Release Id Variables panel (CMN3DSM0):

a Type S in the Option line.

b Type a 1-4 character name in the Release id field. The name cannot start with a 
number.

2 Press Enter to display the releaseID - Skeleton Variables panel (CMN3DSM2). 

CMN3DSM0                 Maintain Release Id Variables                 
Option ===> s                                                          
                                                                       
   blank Display release id list             D Delete release id       
       R Rename release id                   S Select release id       
                                                                       
Release id . . . . . v8r1  (Blank for list; required for options S,R,D)
New release id . . .       (If option R selected)                      
                                                                       
Enter "/" to select option                                             
  / Confirm delete (if option D selected)                              

CMN3DSM2                  V8R1 - Skeleton Variables          Row 1 to 21 of 21  
Command ===>                                                  Scroll ===> CSR   
                                                                                
Release id description: Test Release number 1                                   
                                                                                
    Variable Description                      Value                             
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
                                                                                
******************************* Bottom of data ******************************** 



106 ChangeMan® ZMF 

Chapter 5  User Data

This table describes the fields on the releaseID - Skeleton Variables panel.

3 On the releaseID - Skeleton Variables panel, type a Release id description and 
type information in the Variable, Description, and Value fields for each new 
variable.

4 Press PF3 to save the new release ID.

Maintaining an Existing Release ID
Follow these steps to maintain an existing release ID.

1 On the Maintain Release Id Variables panel, press Enter to display the Release 
Id List panel (CMN3DSM1). 

Field Description

Command Type one of the following commands with the appropriate 
parameter, or leave the command line blank and type a line 
command next to a release ID variable. 

LOCATE 
variable

Locate a variable. (Abbreviation: L)

SAVE Save changes on this panel. (Abbreviation: S)

COPY 
releaseID

Copy an existing release ID variable list to this 
list. (Abbreviation: CO)

REFRESH Refresh the variable list from the package 
master. (Abbreviation: R)

CANCEL Cancel updates on this panel. (Abbreviation: 
CA)

Release id 
description

Type a description for this release ID.

Line Command Type one of the following line commands.

I Insert a line

R Repeat a line

D Delete a line

Variable Type a variable name to be used in ISPF skeletons. Do not 
precede the name with ampersand (&) unless you intend for 
the ampersand to be part of the variable name.

Description Type a description of the variable.

Value Type a 1-32 character value for the variable. 
If you need a longer variable value, such as a long data set 
name, you can string two variables together in skeleton code.

CMN3DSM1                        Release Id List                Row 1 to 1 of 1 
Command ===>                                                  Scroll ===> CSR  
                                                                               
  Id   New  Changed          User     Description                    Request   
  V8R1      2015/02/24 00:58 USER015  Test Release number 1                    
******************************* Bottom of data ********************************



Release ID Variables

Customization Guide 107

This table describes fields on the Release Id List panel.

2 Using commands with parameters typed in the Command line, or using line 
commands types on a release ID row, specify the action required for each release ID 
and the press Enter. The requested action appears in the Request field on the 
Release ID List panel. Clear a request with the CLEAR command or the C line 
command.

3 When you are satisfied with the information in the Request column, press PF3 to exit 
the panel and execute the requests.

Field Description

Command Type one of the following commands with appropriate 
parameters, or leave the command line blank and type a line 
command next to a release ID. 

LOCATE 
releaseID

Locate the specified release ID. 
(Abbreviation: L)

SELECT 
releaseID

Select the specified release ID for edit. 
(Abbreviation: S)

CLEAR 
releaseID

Clear the previous request for the specified 
release ID. (Abbreviation: CL)

DELETE 
releaseID

Delete the specified release ID.

REFRESH Refresh the Release Id List panel from the 
package master. (Abbreviation: REF)

RENAME 
oldreleaseID 
newreleaseID

Rename the specified old release Id to a 
specified new name (Abbreviation: REN)

CANCEL Cancel updates on this panel. (Abbreviation: 
CA)

Line Command Type one of the following line commands.

S Select a release ID for edit.

R Rename the release ID to the new name specified in the 
New field.

D Delete the release ID.

C Clear the request made for this release ID.

Id Displays the release ID

New Type a new release ID name when the R line command or the 
RENAME command is used.

Changed Displays the last date and time the release ID was changed.

User Displays the TSO ID of the person who created the release ID 
or changed it last.

Description Displays the release ID description.

Request Displays the request made on this panel that will be processed 
when you exit from the panel. If you cancel these requests are 
not processed.



108 ChangeMan® ZMF 

Chapter 5  User Data

If you requested a Select for a release ID, the releaseID - Skeleton Variables 
panel is displayed when you exit. This table describes the fields on the releaseID - 
Skeleton Variables panel.

4 On the releaseID - Skeleton Variables panel, make the additions and changes you 
want, then press PF3 to save the updated release ID values.

Associating a Release ID with an Application
To make release ID variables available for file tailoring, you must associate the release ID 
with an application by specifying the release ID in Application Administration parameters.

Follow these steps to add a release ID to an application.

1 Display the application Parameters - Part 1 of 3 panel by typing =A.A.1 and 
pressing Enter. As an alternative, you can use the ChangeMan ZMF menu hierarchy to 
reach the panel:

a On the Administration Options panel, select Option A Application.

b On the Update Application Administration Options panel, input the application 
you want to modify, and select Option 1 Parms.

Field Description

Command Type one of the following commands with the appropriate 
parameter, or leave the command line blank and type a line 
command next to a release ID variable. 

LOCATE 
variable

Locate a variable. (Abbreviation: L)

SAVE Save changes on this panel. (Abbreviation: S)

COPY 
releaseID

Copy an existing release ID variable list to this 
list. (Abbreviation: CO)

REFRESH Refresh the variable list from the package 
master. (Abbreviation: R)

CANCEL Cancel updates on this panel. (Abbreviation: 
CA)

Release id 
description

Type a description for this release ID.

Line Command Type one of the following line commands.

I Insert a line

R Repeat a line

D Delete a line

Variable Type a variable name to be used in ISPF skeletons. Do not 
precede the name with ampersand (&) unless you intend for 
the ampersand to be part of the variable name.

Description Type a description of the variable.

Value Type a 1-32 character value for the variable. 
If you need a longer variable value, such as a long data set 
name, you can string two variables together in skeleton code.



Custom V01-V10 Variables

Customization Guide 109

The application Parameters - Part 1 of 4 panel (CMNGLP01) is displayed.

2 Type a release ID in the Optional Skeleton Release ID field, or use * for a list to 
select from.

3 Repeatedly press Enter to cycle through all application Parameters panels until 
you are returned to the Update Application Administration Options panel.

Custom V01-V10 Variables
Custom variables V01 through V10 were added to ChangeMan ZMF early in its 
development so you can pass information from ISPF panels to skeleton file tailoring when 
file tailoring is performed in an address space that is different from your ChangeMan ZMF 
session.

Originally all file tailoring could be performed in your own ISPF ChangeMan ZMF session 
address space, but you could choose to have file tailoring performed in a separate address 
space for some functions so that your terminal can be released for other work. This choice 
is displayed on ChangeMan ZMF ISPF panels as an option for Batch processing.

In ChangeMan ZMF version 5 and later, file tailoring for some functions, such as building 
install JCL, is always performed in a separate address space. However, you can still use 
the Batch option for freeze to pass custom V01-V10 variable information to the skeleton 
file tailoring that builds install JCL.

Data in custom V01-V10 variables is not stored on the package master or the component 
master. You customize ChangeMan ZMF ISPF panels to add new fields, you assign values 
to custom V01-V10 variables, and you customize ChangeMan ZMF skeletons to use the 
custom V01-V10 variables to meet your needs.

CMNGLP01               ACTP Parameters - Part 1 of 4                         
Command ===>                                                                 
                                                                             
Application description  . . . . ACTP Accounts Payable (Base ZMF)            
Skeleton release id  . . . . . .              (* for list)                   
Normal business hours: from  . . 0001                                        
                         to  . . 2300                                        
Audit level  . . . . . . . . . . 4            (0,1,2,3,4,5)                  
Checkout enforcement rule  . . . 1            (1,2,3)                        
Entity check if rule 2 . . . . .                                             
Staging restriction level  . . . 1            (1,2,3)                        
Entity check if level 2  . . . .                                             
Promotion/demotion rule  . . . . 0            (0,1,2,3,4)                    
Cmnaudrc entity check  . . . . .                                             
Audit package lock . . . . . . . ALWAYS       (Always/Never/Optional)        
                                                                             
Enter "/" to select option                                                   
     Keep baseline by site                                                   
  /  Allow temporary packages                                                
     Disallow concurrent checkout                                            
     Allow checkout to personal lib                                          
     Overlay prior staged module                                             
     Validate version during staging                                         



110 ChangeMan® ZMF 

Chapter 5  User Data

Custom V01-V10 Field Names
Custom V01-V10 Variables have the same name on ISPF panels and in skeleton file 
tailoring.

There are a total of ten Custom V01-V10 fields. They are either 8 or 72 characters long.

Using Custom V01-V10 Variables
When you assign a value to a V01-V10 variable in the panel that initiates the following 
functions, you can use that V01-V10 variable in logic in the skeleton that is file tailored.

 Batch checkout from baseline/promotion

 Batch checkout from package component list (copied forward at create package)

 Staging Versions panel imbedded in batch checkout

 Batch stage from development

 Batch mass stage

 Batch selective mass stage

 Batch recompile

 Batch mass recompile

 Batch selective mass recompile

 Relink

 Full and selective promote

 Full and selective demote

The Save Previous Version panel (CMNCMP03) displayed in batch checkout is a special 
case. This panel is not always displayed for batch checkout, so if it is not displayed, V01-
V10 retain the values assigned on the Checkout panel (CMNCKOT1). If the Save 
Previous Version panel (CMNCMP03) is displayed, values assigned to V01-V10 replace 
values set on the Checkout panel (CMNCKOT1).

If you attempt to use variable names V01-V10 to pass values from ChangeMan ZMF 
panels to file tailoring performed in your ChangeMan ZMF session address space, your 
variable values might not be available to file tailoring. ChangeMan ZMF programs that 
initiate batch file tailoring clear the value of V01-V10 in the ChangeMan ZMF ISPF session 
before processing any panel information.

You cannot use values assigned to custom variables V01-V10 in file tailoring for any of the 
following functions:

 Freeze from Package List (F1 and F2 on CMNLIST3)

Field 
Length Count

Field Names on 
ISPF Panels

CMNEXITS Field Names 
(Package Master)

File Tailoring 
Variable Names

8 5 V01, V02, V03, 
V04, V05

Not applicable Same as ISPF 
panels

72 5 V06, V07, V08, 
V09, V10

Not applicable Same as ISPF 
panels



Summary

Customization Guide 111

 Freeze Package List Options (F1 and F2 on CMNLIST5)

 Online freeze

 Batch freeze

Summary
The following tables summarizes the data that is presented in this chapter.

User Data 
Facility Description Data Entry

Data 
Stored

Package User 
Information

 71 fields per package

 1-72 character fields

2 ISPF package information 
panels provided for your 
customization

Package 
record

Staging User 
Options

 57 fields per component

 1-72 character fields

4 ISPF component staging 
panel provided for your 
customization *

Component 
record

Release ID 
Variables

 54 fields per release ID

 1 release ID per 
application

 32 characters in each 
field

Global Administration ISPF 
panel

Global 
record

Custom V01-
V10 Variables

 10 fields

 8 and 72 character fields

You add to standard ISPF 
panels for batch processes

Not stored



112 ChangeMan® ZMF 

Chapter 5  User Data



Customization Guide 113

Chapter 6
Utilities

This chapter describes utility programs used in ChangeMan ZMF batch processes. Use the 
information provided to modify the behavior of these utilities to provide custom 
ChangeMan ZMF functions that fit your requirements.

CMNBAHST - Initial History Record 114
CMNBAQ00 - Prepare Input for the IBM BAQLS2JS Utility 115
CMNBAT90 - Register Build Output Modules 116
CMNBILOD - Verify that an ILOD record does not already exist 126
CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD 127
CMNCICS1 - CICS NEWCOPY 132
CMNCICS1 - CICS BUNDLE 139
CMNCICS1 - CICS PIPELINE 140
CMNCICS6 - CICS CSD Extract 141
CMNFIXMN - Generate SETSSI Data 146
CMNIALD0 - Impact Analysis Db2 Load 149
CMNPMLOD - Master File XML Extractor 151
CMNSRCPP - Assembler Macro Discovery 168
CMNSSIDN - LINK EDIT Control Preparation 169
CMNUPDAT - Stacked Reverse Delta Management 175
CMNWRITE - Copy And Include Management 181
SERCOPY - Copy Utility 190
SERPRINT - SYSOUT Compression Facility 195

IMPORTANT!  The utilities described in this chapter are stand-alone programs that run 
in batch jobs under z/OS with JCL. These utilities are not written to be called by other 
programs, REXX execs, or other macro language routines or scripts.



114 ChangeMan® ZMF 

Chapter 6  Utilities

CMNBAHST - Initial History Record
Utility program CMNBAHST adds an initial component history record for a component in a 
baseline library that has never been checked out to a package and processed through a 
change package life cycle. This program also removes history for specified components.

Use this utility is when you first bring a library of components under ChangeMan ZMF 
control by adding the library as a baseline library in application administration. With 
CMNBAHST, you can set component information like language, compile procedure, 
compile parameters, binder options, and user options for members in the new baseline 
without checking out and staging the components.

You cannot add component history for a component that already has component history. 

Program CMNBAHST connects to the ChangeMan ZMF instance specified in the SUBSYS 
execution parameter, and it updates the component master coded in the started 
procedure. When you run CMNBAHST, the ChangeMan ZMF instance must be running.

CMNBAHST Input
 Execution parameters in the program PARM statement

 Keyword parameters in the SYSIN DD statement

 Baseline libraries specified in application administration

 Component master specified in the started procedure JCL

Output
Updated component master

Sample JCL
Sample JCL is delivered in member CMNBAHST in the delivered CMNZMF CNTL library.

DD Statements
This table describes DD statements for program CMNBAHST.

DDNAME I/O Purpose

SER#PARM Input PDS(E) library containing information used to connect to the 
ChangeMan ZMF server through TCP/IP. This library must contain 
a member named #SERx, where x is the one-character 
subsystem ID of the ChangeMan ZMF instance.

SYSIN Input File containing 80-byte keyword parameter records.



CMNBAQ00 - Prepare Input for the IBM BAQLS2JS Utility

Customization Guide 115

PARM Options
The PARM parameter is required in the EXEC statement for CMMBAHST. This table 
describes CMMBAHST options that are input through the PARM parameter.

SYSIN Parameters
Keyword parameters for program CMNBAHST that are input to SYSIN are described in 
comments in job CMNBAHST delivered in the CMNZMF CNTL library.

Additional notes:

 Records with * in the first position are considered comments.

 Blank records are skipped.

 Library types, languages, and compile procedures specified in keyword parameters 
are validated against definitions in global administration. If the validation fails, 
processing for the component is skipped.

Return Codes and Error Messages
Return codes for program CMNBAHST are described in comments in job CMNBAHST 
delivered in the CMNZMF CNTL library.

Program messages are written to SYSPRINT for step HISTORY.

Reporting
Program results are written to SYSPRINT for step HISTORY.

CMNBAQ00 - Prepare Input for the IBM BAQLS2JS 
Utility

The CMNBAQ00 utility is used to prepare the input to the IBM BAQLS2JS utility. z/OS 
Connect and the four skeletons that call utility program CMNBAQ00 to develop and 
manage the components needed to support CICS web services, as well as the parameters 
they pass to CMNBAQ00, are described in detail in "Exposing Mainframe Resources to Web 
and Desktop Applications" on page 41.

Parameter Use Description

SUBSYS= Required Specifies the one-character subsystem ID of the ChangeMan ZMF 
instance.

USER= Required Userid of the person or entity that executes CMNBAHST. A userid 
is required for CMNBAHST to connect to ChangeMan ZMF server 
programs. This userid is not used to determine security 
authorization.



116 ChangeMan® ZMF 

Chapter 6  Utilities

CMNBAT90 - Register Build Output Modules
CMNBAT90 creates transactions for CMNBATCH with information about build output PDS 
components. CMNBATCH processes these transactions to register the generated 
components in the package master. CMNBAT90 is included in build procedures for stage, 
recompile, and relink.

If a build output PDS component is a true load module created by the binder (link edit), 
CMNBAT90 collects additional information for CMNBATCH transactions:

 Subprogram-to-load relationships imbedded in statically linked composite load 
modules

 Information about statically linked subprograms that were not created in this build 
process

CMNBAT90 has two methods for analyzing the structure of a composite load module:

 Scan the SYSPRINT listing from the binder - This is the default method and the most 
accurate. The binder must be executed with the MAP and LIST options to generate 
binder listing information that is required for CMNBAT90.

 Scan the members in the load library output from the binder. - This is a legacy 
method, which works well in many cases. However, the binder listing scan method 
was added because of exceptions discussed in "CMNBAT90 Notes" on page 121.

Unless otherwise indicated by the BINDLIST= execution parameter, CMNBAT90 attempts 
to use the binder listing scan to analyze the structure of load modules. If this method is 
not successful, CMNBAT90 automatically changes to the load library scan. Either method 
can be forced with the BINDLIST= execution parameter.

CMNBAT90 Input
 Program execution parameters 

 Keyword SYSIN statements 

 Binder listing

 Load library concatenation matching the SYSLIB concatenation in the binder step

 Library containing build output components

Output
 Transactions for program CMNBATCH

 List of the input keyword statements

 Program messages

NOTE  CMNBAT90 is not used in build procedures for components stored in zFS 
directories.



CMNBAT90 - Register Build Output Modules

Customization Guide 117

Sample JCL
This build job JCL fragment, which was file tailored from skeleton CMN$$PDB, shows a 
CMNBAT90 step that creates CMNBATCH transactions to register a DBRM in the package 
master.

//BT90DBR EXEC PGM=CMNBAT90, *** RECORD DBR NAMES
//             COND=(4,LT),
//             PARM='BINDLIST=XLMOD'
//SYSPRINT DD DISP=(,PASS),DSN=&&LIST21D1,
//            UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),
//            DCB=(RECFM=FBM,LRECL=133,BLKSIZE=0)
//BAT90IN  DD DISP=(OLD,PASS),DSN=&&DBRMLIB
//BAT90OUT DD DISP=(MOD,PASS),DSN=&&BAT90CTL,
//            UNIT=SYSDA,SPACE=(CYL,(2,1)),
//            DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//SYSIN    DD *
PKG=ACTP000041
SLT=SRC
SNM=ACPSRCD1
SID=USER015
SSI=67B2BC9B
LNG=COBOL2
PRC=CMNCOB2
LLT=DBR
SUP=YES
//SYSUDUMP DD SYSOUT=*
//ABNLIGNR DD DUMMY

This build job JCL fragment, which was file tailored from skeleton CMN$$LNK, shows a 
CMNBAT90 step that creates CMNBATCH transactions to register a composite load module 
in the package master.

//BT90LOD EXEC PGM=CMNBAT90, *** RECORD LOD NAMES                   
//             COND=(4,LT)                                          
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST51L1,                         
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                   
//             DCB=(RECFM=FBM,LRECL=133,BLKSIZE=0)                  
//BAT90IN  DD  DISP=(OLD,PASS),DSN=&&LOAD                           
//BAT90OUT DD  DISP=(MOD,PASS),DSN=&&BAT90CTL,                      
//             UNIT=SYSDA,SPACE=(CYL,(2,1)),                        
//             DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)                    
//BAT90LST DD  DISP=(OLD,PASS),DSN=&&LIST50L1                       
//BAT90WRK DD  DISP=(,DELETE),DSN=&&BAT90WRK,                       
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                   
//             DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)                  
//*)IM CMN$$SYL                                                     
//BAT90LIB DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000038.LOD          
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.PROM.S6P1IT.LOD           
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.OBJ             
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOS             
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOD             
//         DD  DISP=SHR,DSN=CEE.SCEELKED                            
//*)IM CMN$$SYL END                                                 
//* ADDITIONAL SYSIN CONTROL CARDS BELOW COME FROM IMBED OF CMN$$ILC
//SYSIN    DD  *                                                    
PKG=ACTP000038                                                      
SLT=LOS                                                             
SNM=ACPSRS00                                                        
SID=USER015                                                         
SSI=67BCF0C2                                                        
LNG=COBOL2                                                          
PRC=CMNCOB2                                                         
RLK=YES                                                             
SUP=NO                                                              
LLT=LOD                                                             



118 ChangeMan® ZMF 

Chapter 6  Utilities

SLB=ACTPLODCMNTP.S6.ACTP.STG6.#000038.LOD                           
SLB=ACTPLODCMNTP.S6.V810.PROM.S6P1IT.LOD                            
SLB=ACTPOBJCMNTP.S6.V810.BASE.ACTP.OBJ                              
SLB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                              
SLB=ACTPLODCMNTP.S6.V810.BASE.ACTP.LOD                              
ILB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                              
//SYSUDUMP DD  SYSOUT=*                                             
//ABNLIGNR DD DUMMY

DD Statements
This table describes DD statements for CMNBAT90.

DDNAME I/O Purpose

SYSIN Input 80-byte keyword statements with information for the CMNBATCH 
transactions

BAT90IN Input Library containing the build output components to be registered in 
the package master.

BAT90WRK I/O Temporary CMNBAT90 work data set

BAT90LST Input SYSPRINT list from the binder step
Note: BAT90LST is only required for the binder listing scan 
method of analyzing load modules.

BAT90LIB Input Load library concatenation that matches the SYSLIB 
concatenation in the binder step
Note: BAT90LIB is only required for the load module scan method 
of analyzing load modules. CMNBAT90 searches this library 
concatenation to determine the library where each statically 
linked subprogram originated.

BAT90OUT Output Transaction records for input to CMNBATCH

SYSPRINT Output List of SYSIN keyword statements, program messages



CMNBAT90 - Register Build Output Modules

Customization Guide 119

Program Execution Parameters
The PARM= statement is not required for program CMNBAT90. This table describes 
execution parameters that may be used with program CMNBAT90.

SYSIN Keyword Statements
CMNBAT90 keyword statements are input to the program through the SYSIN ddname. 
Format rules include:

 Keyword options must start in position 1

 Comment records are designated by * in position 1

 Blank SYSIN records are permitted

This table describes the keyword statements for CMNBAT90.

Parameter Use Description

BINDLIST= Optional Force the behavior of CMNBAT90 for analyzing build output for 
statically linked subprograms. Valid values:

XLMOD Suppress load module analysis. Use this option when 
the build output members at DDname BAT90IN are 
either non-load modules, or load modules that cannot 
contain statically linked subprograms, like BMS MAP 
load or IMS MFS load. Abbreviation: X

YES Scan the binder listing at the BAT90LST DD statement 
for statically linked subprograms.

NO Scan every load module in the library at the BAT90IN 
DD statement for statically linked subprograms.

If the BINDLIST execution parameter is omitted, then CMNBAT90:
1 Assumes that the library at DDname BAT90IN contains load 

modules that may contain statically linked subprograms.
2 Opens DDname BAT90LST to scan the binder listing for 

statically linked subprograms. If that fails, then CMNBAT90...
3 Scans load modules in the library at DDname BAT90IN for 

statically linked subprograms.

Option Use Description

* in position 1 Optional Comment.

PKG= Required Package name (10 characters)

SLT= Required Input library type (like-source library type for stage and 
recompile, like-NCAL library type for relink)

SNM= Required Input member name (like-source member name for stage and 
recompile, link edit control member name for relink)

SID= Required Stage user’s userid

SSI= Required SETSSI for the new load module

LNG= Required Language name

PRC= Required Compile procedure

RLK= Optional RLK=YES indicates that the build is a recompile or relink. Omitting 
this keyword indicates that the build is a stage job.



120 ChangeMan® ZMF 

Chapter 6  Utilities

SUP= Optional YES Suppress the component activation messages issued by 
a stage  job.

NO Issue a component activation messages from a stage  
job. Value is always NO for recompile or relink.

LLT= Required Target load library type

SLB= Required Binder SYSLIB library data set information. The data for this 
keyword is a string of made up of the following:

Char Data

4 Application

3 Library type

44 Data set name

8 ERO origin of this library - Values:

Staging Package staging library

Baseline Application baseline library

Current ERO current release

Prior ERO prior release

8 ERO Release

8 ERO release area

Note: SLB keyword statements are created by skeleton 
CMN$$ILC using the same ISPF tables and selection logic as 
CMN$$SYL uses to create the SYSLIB library concatenation for the 
binder and for CMNBAT90. If you customize CMN$$SYL, then you 
must customize skeleton CMN$$ILC in a parallel manner.

ILB= Required Binder INCLIB library data set information. The data for this 
keyword is a string of made up of the following:

Char Data

4 Application

3 Library type

44 Data set name

8 ERO origin of this library - Values:

Staging Package staging library

Baseline Application baseline library

Current ERO current release

Prior ERO prior release

8 ERO Release

8 ERO release area

Note: ILB keyword statements are created by skeleton CMN$$ILC 
using the same ISPF tables and selection logic as CMN$$ILL uses 
to create the INCLIB library concatenation for the binder. If you 
customize CMN$$ILL, then you must customize CMN$$ILC in a 
parallel manner.

Option Use Description



CMNBAT90 - Register Build Output Modules

Customization Guide 121

Return Codes and Error Messages
This table describes program return codes for CMNBAT90.

Program messages are documented in the ChangeMan ZMF Messages manual.

Reporting
Program CMNBAT90 lists input keyword statements in a report at the SYSPRINT DD 
statement. This is an example of the report.

CMNBAT90 Notes
1 Best results are obtained when CMNBAT90 can scan the binder listing to obtain the 

name of the library that provided each statically linked subprogram. This is the default 
behavior of CMNBAT90.

2 The binder must be run with options LIST and MAP for the binder listing to display the 
information needed by CMNBAT90. If binder options LIST and MAP, are not used, 

Return 
Code Description

0 Successful execution

4 CMNBAT90 finished, but the scan method was changed or the relationship analysis 
was incomplete; see messages at the SYSPRINT DD statement.

8 CMNBAT90 failed; see messages at the SYSPRINT DD statement.

12 System error; see messages

NOTE  CMNBAT90 always sets RC=4 for build output components that were not created 
by the binder. For these components, execution parameter BINDLIST=NO suppresses 
message CMN4574A but not message CMN4575A.

ChangeMan(R) ZMF      CMNBATCH - 8.1.0  2015/02/24  22:21:07          
Attempting to initiate dialog with ChangeMan ZMF subtask              
Session established with ChangeMan ZMF subtask                        
SYSIN: ACTP000038 90 RTP=ILOD                                         
SYSIN: ACTP000038 90 SLT=LOS                                          
SYSIN: ACTP000038 90 SNM=ACPSRS00                                     
SYSIN: ACTP000038 90 SID=USER015                                      
SYSIN: ACTP000038 90 SSI=67BCF0C2                                     
SYSIN: ACTP000038 90 LNG=COBOL2                                       
SYSIN: ACTP000038 90 PRC=CMNCOB2                                      
SYSIN: ACTP000038 90 RLK=Y                                            
SYSIN: ACTP000038 90 LLT=LST                                          
SYSIN: ACTP000038 90 LNM=ACPSRS00                                     
Component ACPSRS00 is in ACTIVE status and the package master         
 LOAD record has been updated accordingly.                  ACTP000038
 LOAD COMPONENT ACTIVATED.                                  ACTP000038
 LOAD COMPONENT ACTIVATION LOGGED.                          ACTP000038
 HISTORY RECORD has been updated accordingly.               ACTP000038
SYSIN: ACTP000038 90 CID=                                             
END OF DATA ON SYSIN - TERMINATING                                    
Session terminated with ChangeMan ZMF started task                    



122 ChangeMan® ZMF 

Chapter 6  Utilities

CMNBAT90 displays message CMN4581A in SYSPRINT, the step return code is set to 
RC=4, and the load module scan is performed instead of the binder listing scan.

3 When CMNBAT90 must analyze a load module to obtain information about statically 
linked subprograms, that information will be incomplete if any of the following are 
true:

• The library concatenation at the BAT90LIB DD statement does not exactly match 
the concatenation at the SYSLIB DD statement in the binder step.

• INCLUDE link edit control statements are used to statically link application object 
modules or load modules from libraries that are not in the concatenation at the 
BAT90LIB DD statement. Example:

INCLUDE INCLIB(subpgm1)
INCLUDE PRODLIB(subpgm2)

• The contents of multiple load libraries are combined using a skeleton like 
CMN$$XPL to get around the limit of 128 extents in the binder SYSLIB DD 
statement.

4 There must be an SLB= or ILB= SYSIN keyword statement for each ZMF managed 
library in the link edit SYSLIB and INCLIB concatenations. If you use INCLUDE link 
edit control statements that reference a different DDname, you must add an ILB= 
keyword statement for each ZMF managed library in the concatenation under that 
DDname. See “SLB and ILB Keyword Statements” below.

5 Statically linked PL/I subprograms are discovered more accurately using 
BINDLIST=YES. Specifically, PL/I subprograms that have not been cycled through 
ZMF and do not have ChangeMan ZMF format IDR data will be recognized successfully 
only if you use BINDLIST=YES.

6 CMNBAT90 is not used to create CMNBATCH transactions for compressed listings 
created in build jobs. CMNBATCH transactions for LST components are generated in 
file tailoring for skeleton CMN$$PCP.

SLB and ILB Keyword Statements

To correctly build CMNBATCH transactions for package master relationship records, 
CMNBAT90 must find the application and library type for each statically linked subprogram 
that the binder (linkage editor) obtains from a ZMF managed library.

CMNBAT90 uses the following process to get the application and library type for statically 
linked subprograms.

1 Skeleton CMN$$ILC constructs SLB= and ILB= keyword statements for input to 
CMNBAT90. These records contain a library name and the corresponding application 
and library type. See "SLB=" on page 120 and "ILB=" on page 120 for the record 
formats.

• For every ZMF managed library in the link edit SYSLIB concatenation, CMN$$ILC 
constructs an SLB= statement. The CMN$$ILC logic that builds SLB= statements is 
the same as the logic in CMN$$SYC that builds the SYSLIB concatenation.

• For every ZMF managed library in the link edit INCLIB concatenation for relink, 
CMN$$ILC constructs an ILB= statement. See "INCLIB and CMNSSIDN" on page 
173 for information about INCLIB. The CMN$$ILC logic that builds ILB= 
statements is the same as the logic in CMN$$ILL that builds the INCLIB 
concatenation.



CMNBAT90 - Register Build Output Modules

Customization Guide 123

2 CMNBAT90 finds the name of the library that provided each statically linked 
subprogram to the linkage editor by either:

• Analyzing the binder listing (preferred), or by...

• Searching the library concatenation at the BAT90LIB DD statement, which is built 
by skeleton CMN$$SYL and should mirror the SYSLIB concatenation in the link edit 
step.

3 CMNBAT90 uses the name of the library where a statically linked subprogram 
originated to get the application and library type for the subprogram from SLB= and 
ILB= information.

CMNBAT90 Example - Composite Load Module
The example in this section shows input and output for CMNBAT90 from a relink job for 
composite load module ACPSRC50 that contains statically linked subprograms ACPSRS5A, 
ACPSRS5B, ACPSRS5C, and ACPSRS00.

Binder and CMNBAT90 JCL

This JCL fragment shows job steps for the binder and for CMNBAT90 that were file tailored 
from ISPF skeleton CMN$$LNK. Notice the temporary files for the binder listing and the 
library containing the link edited load module that are passed from the binder to 
CMNBAT90. This JCL fragment also shows matching libraries in:

 Load library concatenation at the SYSLIB DD statement for the binder at the LINK 
step

 Load library concatenation at the BAT90LIB DD statement for CMNBAT90

 SLB= keyword statements in the SYSIN DD statement for CMNBAT90

In the same way, INCLIB concatenations match ILB keyword statements.

//LNK     EXEC PGM=IEWL,       *** LINK-EDIT COMPONENT ACPSRS00
//             COND=(4,LT),                                    
//             PARM=('LIST,XREF,MAP,RENT',                     
//             '')                                             
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST50L1,                    

IMPORTANT!  

 If you customize the concatenation of ZMF managed libraries in the SYSLIB DD 
statement, either by customizing skeleton CMN$$SYL logic or by hard coding ZMF 
libraries, you must customize CMN$$ILC in the same manner.

 If you customize the concatenation of ZMF managed libraries in the INCLIB DD 
statement for relink, either by customizing skeleton CMN$$ILL logic or by hard 
coding ZMF libraries, you must customize CMN$$ILC in the same manner.

 If your link edit control statements refer to other DD names, you must manually code 
an ILB= statement for each library concatenated at that DD statement. Example:

INCLUDE ACTRLIB(ACRSCN00)

//ACTRLIB   DD DISP=SHR,DSN=CMNTP.S4.V711.BASE.ACTR.LCN

ILB=ACTRLCNCMNTP.S4.V711.BASE.ACTR.LCN



124 ChangeMan® ZMF 

Chapter 6  Utilities

//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),              
//             DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)             
//SYSUT1   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                    
//*)IM CMN$$OBL                                                
//*)IM CMN$$SYL                                                
//SYSLIB   DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000038.LOD     
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.PROM.S6P1IT.LOD      
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.OBJ        
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOS        
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOD        
//         DD  DISP=SHR,DSN=CEE.SCEELKED                       
//*)IM CMN$$SYL END                                            
//*)IM CMN$$ILL                                                
//INCLIB   DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOS        
//SYSLMOD  DD  DISP=(OLD,PASS),DSN=&&LOAD                      
//SYSLIN   DD  DISP=(OLD,DELETE),DSN=&&NULLIN                  
//         DD  DISP=(OLD,PASS),DSN=&&LCT                       
//*)IM CMN$$CND                                                
//*                                                            
//BT90LOD EXEC PGM=CMNBAT90, *** RECORD LOD NAMES              
//             COND=(4,LT)                                     
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST51L1,                    
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),              
//             DCB=(RECFM=FBM,LRECL=133,BLKSIZE=0)             
//BAT90IN  DD  DISP=(OLD,PASS),DSN=&&LOAD                      
//BAT90OUT DD  DISP=(MOD,PASS),DSN=&&BAT90CTL,                 
//             UNIT=SYSDA,SPACE=(CYL,(2,1)),                   
//             DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)               
//BAT90LST DD  DISP=(OLD,PASS),DSN=&&LIST50L1                  
//BAT90WRK DD  DISP=(,DELETE),DSN=&&BAT90WRK,                  
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),              
//             DCB=(RECFM=FBA,LRECL=121,BLKSIZE=0)             
//*)IM CMN$$SYL                                                
//BAT90LIB DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000038.LOD     
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.PROM.S6P1IT.LOD           
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.OBJ             
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOS             
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.LOD             
//         DD  DISP=SHR,DSN=CEE.SCEELKED                            
//*)IM CMN$$SYL END                                                 
//* ADDITIONAL SYSIN CONTROL CARDS BELOW COME FROM IMBED OF CMN$$ILC
//SYSIN    DD  *                                                    
PKG=ACTP000038                                                      
SLT=LOS                                                             
SNM=ACPSRS00                                                        
SID=USER015                                                         
SSI=67BCF0C2                                                        
LNG=COBOL2                                                          
PRC=CMNCOB2                                                         
RLK=YES                                                             
SUP=NO                                                              
LLT=LOD                                                             
SLB=ACTPLODCMNTP.S6.ACTP.STG6.#000038.LOD                           
SLB=ACTPLODCMNTP.S6.V810.PROM.S6P1IT.LOD                            
SLB=ACTPOBJCMNTP.S6.V810.BASE.ACTP.OBJ                              
SLB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                              
SLB=ACTPLODCMNTP.S6.V810.BASE.ACTP.LOD                              
ILB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                              
//SYSUDUMP DD  SYSOUT=*                                             
//ABNLIGNR DD  DUMMY                                                
//*)IM CMN$$CND                                                     
//*)IM CMN$$PAS                                                     
//CPYLOD  EXEC PGM=SERCOPY,    *** COPY TO LOD STAGING LIB          
//             REGION=3M,                                           
//             COND=(4,LT),                                         
//             PARM=('RETRY,REALLOC',                               
//             'OUTDSN(CMNTP.S6.ACTP.STG6.#000038.LOD)')            



CMNBAT90 - Register Build Output Modules

Customization Guide 125

//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST1001,                         
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                   
//             DCB=(RECFM=FBM,LRECL=121,BLKSIZE=0)                  
//SYSUT1   DD  DISP=(OLD,DELETE),DSN=&&LOAD                         
//SYSUDUMP DD  SYSOUT=*                                             
//ABNLIGNR DD  DUMMY                                                

SYSPRINT Report of Keyword Input

This is an extract from the compressed listing for the relink job showing the SYSPRINT 
report of CMNBAT90 keyword input.

********************************************************************************
* DDNAME: BT90LOD.SYSPRINT                                                     *
********************************************************************************
                                                                                
ChangeMan(R) ZMF      CMNBAT90 - 8.1.0  TUESDAY FEBRUARY 24, 2015  22:21:02     
SYSIN: PKG=ACTP000038                                                           
SYSIN: SLT=LOS                                                                  
SYSIN: SNM=ACPSRS00                                                             
SYSIN: SID=USER015                                                              
SYSIN: SSI=67BCF0C2                                                             
SYSIN: LNG=COBOL2                                                               
SYSIN: PRC=CMNCOB2                                                              
SYSIN: RLK=YES                                                                  
SYSIN: SUP=NO                                                                   
SYSIN: LLT=LOD                                                                  
SYSIN: SLB=ACTPLODCMNTP.S6.ACTP.STG6.#000038.LOD                                
SYSIN: SLB=ACTPLODCMNTP.S6.V810.PROM.S6P1IT.LOD                                 
SYSIN: SLB=ACTPOBJCMNTP.S6.V810.BASE.ACTP.OBJ                                   
SYSIN: SLB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                                   
SYSIN: SLB=ACTPLODCMNTP.S6.V810.BASE.ACTP.LOD                                   
SYSIN: ILB=ACTPLOSCMNTP.S6.V810.BASE.ACTP.LOS                                   
CMN5400I - Time of day at end of job: 22:21:03 - Condition Code on exit: 00     

IEBGENER of Transactions for CMNBATCH

This is a listing of the component registration transactions created by CMNBAT90 for 
processing by CMNBATCH. Hex values display as blanks here, but notice the CID= 
transactions that provide information about subprogram load modules that were not 
created in this relink job. This information is recorded in subprogram-to-load relationship 
records in the package master.

ACTP    !     RTP=ILOD                                                          
ACTP    !     SLT=LOS                                                           
ACTP    !     SNM=ACPSRC50                                                      
ACTP    !     SID=USER239                                                       
ACTP    !     SSI=5F4E19A9                                                      
ACTP    !     PRC=CMNCOB2                                                       
ACTP    !     RLK=YES                                                           
ACTP    !     LLT=LOD                                                           
ACTP    !     SUP=NO                                                            
ACTP    !     LNM=ACPSRC50                                                      
ACTP    !     CID=ACPSRS5A 5F0EF2BC ACTP000034 ACTP LOS I                       
ACTP    !     CID=ACPSRS5B 5F0EEC33 ACTP000031 ACTP LOS I                       
ACTP    !     CID=ACPSRS5C 5F0EEC32 ACTP000031 ACTP LOS I                       
ACTP    !     CID=ACPSRS00 5F0EEC28 ACTP000031 ACTP LOS I                       
ACTP    !     CID=                                                              



126 ChangeMan® ZMF 

Chapter 6  Utilities

CMNBILOD - Verify that an ILOD record does not 
already exist

Utility program CMNBILOD is used to verify that an ILOD record does not already exist for 
a component.

When a SRC component build is requested, all existing 'ILOD' (i.e. SRC-LOD relationship) 
records associated with that SRC are deleted from the package master metadata. When 
program CMNBILOD executes within the staging job it checks that there are still no ILOD 
records. If none are found, the build job is allowed to proceed and the component can be 
activated in the expected manner.

If program CMNBILOD finds that ILOD records do exist, however, it will stop the stage job 
completing with a message like

Out of sync situation: component tied to DB2TST1.DBR 

This is primarily to prevent any 'orphan' ILOD records being allowed to slip through 
unnoticed and to potentially allow unwanted components to make it into baseline or 
production libraries.

This means that any prior build job submitted for a SRC component must either be 
completed, or cancelled prior to execution, before a subsequent build job is submitted.

Program Execution Parameters
The PARM= statement is required for program CMNBILOD. This table describes execution 
parameters that are used with program CMNBILOD:

DD Statements
This table describes DD statements for CMNBILOD.

NOTE  See the description below for return code 8, this is signifying that the load/target 
component is already linked to another component. Build jobs must complete before the 
next build job is started for the same component. If you have two build jobs running at 
the same time, the second build job will complete with a return code of 8, with an out of 
synch situation encountered.  To resolve the return code 8, start the submit process 
again for the component.

Parameter Use Description

SUBSYS= Optional Specifies ChangeMan subsystem, default is blank.

USER= Required TSO ID to use to connect.

DDNAME I/O Purpose

SYSIN Input Required. Component information PKN=package name, 
LNM=component type, LTP=component type.

SYSPRINT Output Program messages.



CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD

Customization Guide 127

Return Codes and Error Messages
This table describes program return codes for CMNBILOD 

 CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD
Utility program CMNBKRST performs the following three functions the ChangeMan ZMF 
VSAM package master, component master, and long name component master VSAM KSDS 
files:

 Unload (backup) - The records in the VSAM KSDS files are written to separate QSAM 
files. In each output file, CMNBKRST writes a header record with the date/time that 
the file is created.

 Forward Recovery - The records in the three QSAM unload files are written to 
initialized VSAM KSDS files. Forward recovery records in a sequential copy of the 
CMNRECV file are written to the appropriate VSAM file if the record time/date is more 
recent than the QSAM unload file header date/time.

 Load (restore) - The forward recovery function is executed. However, if no forward 
recovery records are input to CMNBKRST, or if there are no recovery records that are 
more recent than the date/time in the QSAM unload file headers, then no forward 
recovery records are applied, and the operation is effectively a VSAM file load.

Program Execution Parameters
The PARM= statement is always required for program CMNBKRST, and it must have a 
value. This table describes execution parameters that may be used and the program 
functions invoked by each.

Return 
Code Description

00 Successful execution.

04 An application error has ocurred. 

06 Started task inactive or a connection error.

08 Load/target component already linked to another component.

PARM=  Function Description

BACKUP Unload Tells CMNBKRST to perform the unload function

RESTORE Forward 
recovery

Tells CMNBKRST to perform the forward recovery function. 

Load Tells CMNBKRST to perform the forward recovery function. 
However, if no forward recovery records are input to CMNBKRST, or 
if there are no recovery records that are more recent than the 
date/time in the QSAM unload file headers, then no forward 
recovery records are applied, and the forward recovery is 
effectively a VSAM file load.



128 ChangeMan® ZMF 

Chapter 6  Utilities

CMNBKRST Input and Output
This table shows the inputs and outputs for the three functions performed by CMNBKRST.

Sample JCL
This sample JCL executes the unload (backup) function of CMNBKRST for the package 
master, the component master, and the long name component master. There is a sample 
named BACKUP in the distributed CNTL library, step named BACKUP.

//BACKUP  EXEC PGM=CMNBKRST,   *** BACKUP VSAM MASTER FILES 
//             REGION=4M,                                   
//             PARM=BACKUP                                  
//SYSPRINT  DD SYSOUT=*                                     
//SYSUDUMP  DD SYSOUT=*                                     
//CMNPMAST  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNPMAST   
//CMNCMPNT  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNCMPNT   
//CMNCMPNL  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNCMPNL   
//CMNPQSAM  DD DISP=(,CATLG),                               
//             DSN=CMNTP.S6.V810.BACKUP.CMNPMAST(+1),       
//             UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),           
//             DCB=(RECFM=VB,LRECL=5000,BLKSIZE=0)          
//CMNCSQSM  DD DISP=(,CATLG),                               
//             DSN=CMNTP.S6.V810.BACKUP.CMNCMPNT(+1),       
//             UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),           
//             DCB=(RECFM=VB,LRECL=5000,BLKSIZE=0)          
//CMNCLQSM  DD DISP=(,CATLG),                               
//             DSN=CMNTP.S6.V810.BACKUP.CMNCMPNL(+1),       
//             UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),           
//             DCB=(RECFM=VB,LRECL=5000,BLKSIZE=0)          

This sample JCL executes the forward recovery or load (restore) function of CMNBKRST 
for the package master, the component master, and the long name component master.

//BKRST   EXEC PGM=CMNBKRST,   *** RESTORE MASTER FILES FROM LATEST
//             REGION=4M,COND=(4,LT),      BACKUP AND APPLY CHANGES
//             PARM=RESTORE                                   
//SYSPRINT  DD SYSOUT=*                                       

PARM= 
(Function)

Input Output

BACKUP 
(Unload)

 Program execution parameter
 VSAM KSDS package master 
 VSAM KSDS component master
 VSAM KSDS short name 

component master

 QSAM unload package master
 QSAM unload component master
 QSAM unload long name 

component master
 SYSPRINT report

RESTORE 
(Forward 
Recovery)

 Program execution parameter
 QSAM forward recovery file
 QSAM unload package master
 QSAM unload component master
 QSAM unload long name 

component master

 VSAM KSDS package master 
 VSAM KSDS component master
 VSAM KSDS short name 

component master
 SYSPRINT report

RESTORE 
(Load)

 Program execution parameter
 QSAM unload package master
 QSAM unload component master
 QSAM unload long name 

component master

 VSAM KSDS package master
 VSAM KSDS component master
 VSAM KSDS short name 

component master
 SYSPRINT report



CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD

Customization Guide 129

//SYSUDUMP  DD SYSOUT=*                                       
//CMNPMAST  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNPMAST     
//CMNCMPNT  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNCMPNT     
//CMNCMPNL  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNCMPNL     
//CMNPQSAM  DD DISP=SHR,DSN=CMNTP.S6.V810.BACKUP.CMNPMAST(0)  
//CMNCSQSM  DD DISP=SHR,DSN=CMNTP.S6.V810.BACKUP.CMNCMPNT(0)  
//CMNCLQSM  DD DISP=SHR,DSN=CMNTP.S6.V810.BACKUP.CMNCMPNL(0)  
//CMNRQSAM  DD DISP=(OLD,DELETE),DSN=&&RECV                   
//*  Add additional recovery datasets from CLEARRCV as needed 
//SORTSTAT  DD SYSOUT=*                                       
//SYSOUT    DD SYSOUT=*                                       
//SORTWK01  DD UNIT=SYSDA,SPACE=(CYL,10)                      
//SORTWK02  DD UNIT=SYSDA,SPACE=(CYL,10)                      
//SORTWK03  DD UNIT=SYSDA,SPACE=(CYL,10)                      
//SORTWK04  DD UNIT=SYSDA,SPACE=(CYL,10)                      

DD Statements
This table describes DD statements for CMNBKRST.

* See "CMNBKRST Input and Output" on page 128.

SYSIN Keyword Statements
There are no SYSIN keyword parameters for CMNBKRST.

Return Codes, Completion Codes, and Error Messages
When CMNBKRST encounters a problem:

 Diagnostic messages are displayed in the SYSPRINT data set.

 If an error condition would result in a return code of 8 or greater:

• CMNBKRST forces an abend.

• The return code is displayed in the USER COMPLETION CODE.

• This message is displayed on the operator console (WTO): UNACCEPTABLE 
RETURN CODE - ABEND.

DDNAME I/O Purpose

CMNPMAST * Package master VSAM KSDS

CMNCMPNT * Component master VSAM KSDS

CMNCMPNL * Long name component master VSAM KSDS

CMNPQSAM * Package master QSAM unload file

CMNCSQSM * Component master QSAM unload file

CMNCLQSM * Long name component master QSAM unload file

CMNRQSAM Input QSAM copy of forward recovery CMNRECV VSAM file

SYSPRINT Output CMNBKRST record count report

IMPORTANT!  Always check messages in SYSOUT for the CMNBKRST job step, 
especially if CMNBKRST abends.



130 ChangeMan® ZMF 

Chapter 6  Utilities

This table describes program return codes for CMNBKRST.

CMNBKRST issues no numbered messages, so there are no CMNBKRST messages in the 
ChangeMan ZMF Messages manual.

Reporting
Program CMNBKRST lists record counts in a report at the SYSPRINT DD statement. 

This is an example of the report when CMNBKRST is run with PARM=BACKUP.

This is an example of the report when CMNBKRST is run with PARM=RESTORE, but no 
forward recovery records are input.

Return 
Code Description

0 Successful execution

4 CMNBKRST finished, but an abnormal condition was encountered; see SYSOUT

8-16 Fatal error; see SYSPRINT.

NOTE  Record counts for QSAM unload files do not include the header created by 
CMNBKRST.

CMNBKRST - EXECUTION BEGINS: 2013/06/01  20:05:55             
           FUNCTION: BACKUP                                   
           INPUT PACKAGE MASTERS:                     0003007 
           OUTPUT PACKAGE MASTERS:                    0003007 
           INPUT SHORT NAME COMPONENT MASTERS:        0001134 
           OUTPUT SHORT NAME COMPONENT MASTERS:       0001134 
           INPUT LONG NAME COMPONENT MASTERS:         0000000 
           OUTPUT LONG NAME COMPONENT MASTERS:        0000000 
           END OF JOB; RC=0000                                

CMNBKRST - EXECUTION BEGINS: 2013/06/01  20:57:29                      
           FUNCTION: RESTORE                                           
           PACKAGE MASTER BACKUP TAKEN:               20130601/20402449
           SHORT NAME COMPONENT MASTER BACKUP TAKEN:  20130601/20402449
           LONG NAME COMPONENT MASTER BACKUP TAKEN:   20130601/20402449
           INPUT RECOVERY RECORDS:                    0000000          
           INPUT PACKAGE MASTERS:                     0003007          
           OUTPUT PACKAGE MASTERS:                    0003007          
           INPUT SHORT NAME COMPONENT MASTERS:        0001134          
           OUTPUT SHORT NAME COMPONENT MASTERS:       0001134          
           INPUT LONG NAME COMPONENT MASTERS:         0000000          
           OUTPUT LONG NAME COMPONENT MASTERS:        0000000          
           END OF JOB; RC=0000                                         



CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD

Customization Guide 131

This is an example of the report when CMNBKRST is run with PARM=RESTORE, and 
forward recovery records are input and applied.

CMNBKRST Notes
1 There are situations where you can use IDCAMS in place of CMNBKRST to unload and 

load the three ChangeMan ZMF VSAM KSDS master files. For example, housekeeping 
jobs to reorganize the VSAM files can use IDCAMS. However, IDCAMS backups cannot 
be used for forward recovery, so periodic "backups" of the package master, 
component master, and long name component master should always use CMNBKRST 
instead of IDCAMS.

2 It is important to keep package and component data synchronized, so you should 
unload, forward recover, and load the three VSAM files as a set.

However, CMNBKRST skips processing for a file if you code DUMMY in the input and 
output DD statements for the file. This sample JCL unloads only the long name 
component master VSAM file.

//BACKUP  EXEC PGM=CMNBKRST,   *** BACKUP VSAM MASTER FILES   
//             REGION=4M,                                     
//             PARM=BACKUP                                    
//SYSPRINT  DD SYSOUT=*                                       
//SYSUDUMP  DD SYSOUT=*                                       
//CMNPMAST  DD DUMMY                                          
//CMNCMPNT  DD DUMMY                                          
//CMNCMPNL  DD DISP=SHR,DSN=CMNTP.S6.V810.CMNZMF.CMNCMPNL     
//CMNPQSAM  DD DUMMY                                          
//CMNCSQSM  DD DUMMY                                          
//CMNCLQSM  DD DISP=(,CATLG),                                 
//             DSN=CMNTP.S6.V810.BACKUP.CMNCMPNL(+1),         
//             UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE),             
//             DCB=(RECFM=VB,LRECL=5000,BLKSIZE=0)            

3 When you run CMNBKRST to forward recover a corrupted or lost ZMF VSAM master 
file, you can input multiple sequential copes of CMNRECV forward recovery files. 
These files are:

 Concatenated at DDname CMNRQSAM

 Input in any order

 May have overlapping date ranges

CMNBKRST - EXECUTION BEGINS: 2013/06/01  20:32:05                       
           FUNCTION: RESTORE                                            
           PACKAGE MASTER BACKUP TAKEN:               20130601/19535684 
           SHORT NAME COMPONENT MASTER BACKUP TAKEN:  20130601/19535684 
           LONG NAME COMPONENT MASTER BACKUP TAKEN:   20130601/19535684 
           INPUT RECOVERY RECORDS:                    0001169           
           INPUT PACKAGE MASTERS:                     0002993           
           OUTPUT PACKAGE MASTERS:                    0003007           
           PACKAGE RECOVERY RECORDS USED:             0000073           
           INPUT SHORT NAME COMPONENT MASTERS:        0001130           
           OUTPUT SHORT NAME COMPONENT MASTERS:       0001134           
           SHORT NAME CMPNT RECOVERY RECORDS USED:    0000012           
           INPUT LONG NAME COMPONENT MASTERS:         0000000           
           OUTPUT LONG NAME COMPONENT MASTERS:        0000000           
           LONG NAME CMPNT RECOVERY RECORDS USED:     0000000           
           END OF JOB; RC=0000                                          



132 ChangeMan® ZMF 

Chapter 6  Utilities

CMNCICS1 - CICS NEWCOPY
Utility program CMNCICS1 refreshes an application load module in a CICS region after 
ChangeMan ZMF has updated that program in a DFHRPL library.

CMNCICS1 is the driver program for CICS newcopy in ChangeMan ZMF. It validates SYSIN 
input by verifying that the keyword parameters are grouped and sequenced properly, and 
then it calls subprogram CMNCICS2 to initiate newcopy commands.

Subprogram CMNCICS2 executes newcopy processing in CICS regions that run on the 
same LPAR as the batch job that executes CMNCICS1. CMNCICS2 calls subprogram 
CMNEMTP using the CICS external call interface (ECI) to execute newcopy processing in 
CICS regions that run on different LPARs in the same SYSPLEX.

CMNCICS1 or CMNEMTP verifies whether the program to be newcopied is present in a 
specified library in the DFHRPL concatenation unless this function is suppressed by a 
CMNCICS1 execution parameter.

There are six options for executing CICS newcopy processing:

NOTE  "Newcopy" is used as a generic term that refers to the CICS load module refresh 
process that includes PHASEIN as well as NEWCOPY. Where sample commands here 
show subparameter NEWCOPY or NEW, you can substitute PHASEIN or PHA. NEWCOPY is 
the default where nothing is specified.

Option Description

SRB Compatibility: CICS/ESA 4.1 and below

LPAR: The batch job that executes CMNCICS1 must be on the same 
LPAR as the CICS region where the program is refreshed.

Method: CMNCICS2 schedules SRB to the CICS region to alter the PPT 
and force a program refresh.

CICS Trans ID: None

Comments: If used with CICS Transaction Server 1.2 and above, CMNCICS1 
gives RC=0 but the target CICS program is not refreshed.

ESA Compatibility: CICS/ESA 4.1 and below

LPAR: The batch job that executes CMNCICS1 must be on the same 
LPAR as the CICS region where the program is refreshed.

Method: CMNCICS2 uses access registers of the CICS address space to 
alter the PPT and force a program refresh.

CICS Trans ID: None

Comments: If used with CICS Transaction Server 1.2 and above, CMNCICS1 
gives RC=0 but the target CICS program is not refreshed.



CMNCICS1 - CICS NEWCOPY

Customization Guide 133

OPR Compatibility: All CICS releases

LPAR: The batch job that executes CMNCICS1 must be on the same 
LPAR as the CICS region.

Method: CMNCICS2 issues an operator modify command to execute CICS 
supplied operator transaction CEMT under the master console 
terminal control in the target CICS region:
F CICS cicsid,’CEMT SET PROG(pgmname) NEW’

CICS Trans ID: CEMT

Comments: CEMT returns many messages to the master console for each 
NEWCOPY

OPS Compatibility: CICS TS 1.2 and above

LPAR: The batch job that executes CMNCICS1 must be on the same 
LPAR as the CICS region where the program is refreshed.

Method: CMNCICS2 issues an operator modify command to execute 
ChangeMan ZMF transaction SEMT that is processed by program 
CMNEMTP in the target CICS region:
F CICS cicsid,’SEMT SET PROG(pgmname) NEW’

CICS Trans ID: SEMT
 Processed by ZMF program CMNEMTP
 Executes a subset of CEMT commands
 Executes with the same authority as CEMT 
 Returns only one message to the OS console

OPQ Compatibility: CICS TS 1.2 and above

LPAR: The batch job that executes CMNCICS1 must be on the same 
LPAR as the CICS region where the program is refreshed.

Method: CMNCICS2 issues an operator modify command to execute 
ChangeMan ZMF transaction SEMQ that is processed by program 
CMNEMTP in the target CICS region:
F CICS cicsid,’SEMQ SET PROG(pgmname) NEW’

CICS Trans ID: SEMQ
 Processed by ZMF program CMNEMTP
 Executes a subset of CEMT commands
 Executes with the same authority as CEMT 
 Suppresses all messages to the OS console

XCI Compatibility: CICS TS 1.2 and above

LPAR: The batch job that executes CMNCICS1 must be on the same 
SYSPLEX as the CICS region where the program is refreshed, 
but it may be on a different LPAR.

Method: CMNCICS2 uses the CICS EXCI facility to call program CMNEMTP 
in the target CICS region. CMNEMTP issues command: 
EXEC CICS SET PROGRAM(program) NEWCOPY

CICS Trans ID: SEML – This is a dummy transaction ID required for the EXCI 
interface.

Comments: XCI is the only way to issue a NEWCOPY in a CICS region that is 
running on a different LPAR than the batch job that executes 
CMNCICS1.

Option Description



134 ChangeMan® ZMF 

Chapter 6  Utilities

CMNCICS1 Input
 PARM execution parameters

 SYSIN keyword parameter statements

Output
 Altered PPT or MODIFY commands or EXEC CICS SET PROGRAM... commands, all to 

initiate newcopy.

 Program execution listing

 Program return code

Sample JCL
JCL to execute program CMNCICS1 is file tailored from skeleton CMN$$CNC, which you 
customize and imbed as needed in skeletons for promotion, demotion, installation, 
backout, baseline ripple, and reverse baseline ripple.

//JOBLIB    DD DISP=SHR,DSN=CMNTP.S4.V710.CMNZMF.CUSTOM.LOAD           
//          DD DISP=SHR,DSN=CMNTP.S4.V710.CMNZMF.LOAD                  
//          DD DISP=SHR,DSN=CMNTP.S4.V710.SERCOMC.CUSTOM.LOAD          
//          DD DISP=SHR,DSN=CMNTP.S4.V710.SERCOMC.LOAD                 
//          DD DISP=SHR,DSN=SYS2.CICSTS22.CICS.SDFHEXCI  *FOR XCI ONLY 
...
//CILCNC  EXEC PGM=CMNCICS1,   *** CICS NEWCOPY FOR CIL                 
//             COND=(4,LT),                                             
//             PARM=(XCI)                                               
//SYSPRINT  DD DISP=(,PASS),DSN=&&LISTCNC,                              
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                       
//             DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)                     
//SYSIN     DD *                                                        
  TARGET=CICSC102                                                       
    DFHRPL=CMNTP.S4.V610.PROD.ACTP.CIL                                  
      PROGRAM=GNLCIS10                                                  
/*

DD Statements
This table describes the DD statements for program CMNCICS1.

IMPORTANT!  XCI is the only option where RC=0 indicates that the newcopy was 
executed successfully. Options OPR, OPS, and OPQ issue operator commands which do 
not return a status code.

DDNAME I/O Purpose

SYSIN Input Input file containing 80-byte keyword parameter records

SYSPRINT Output Report file that displays information from the execution of
CMNCICS1

CMNIN Input Alternate for DD name SYSIN

CMNOUT Output Alternate for DD name SYSPRINT



CMNCICS1 - CICS NEWCOPY

Customization Guide 135

PARM Options
The PARM parameter is required in the EXEC statement for CMNCICS1.

The subparameters in the PARM statement are positional and are separated by commas..

//CILCNC  EXEC PGM=CMNCICS1,
//             PARM=(option,check,prefix)

This table describes CMNCICS1 options that are input through the PARM parameter.

SYSIN Parameters
Keyword parameters are input to CMNCICS1 through the SYSIN ddname.

//SYSIN    DD  *
PREFIX=prefix
TARGET=cicsid,setoption
  DFHRPL=loadlib
    PROGRAM=pgmname
    PROGRAM=pgmname
    PROGRAM=pgmname

 Keyword parameters start in positions 1-60. 

 Keyword parameters may be indented to show hierarchy and groupings.

 Each SYSIN record should contain only one keyword parameter.

Parameter Use Description

option Required 3 character code for the method used to execute the newcopy 
function. Valid values:
SRB
ESA
OPR
OPS
OPQ
XCI
Options are described in in the table page 132.

check Optional Controls whether the library named in the DFHRPL= SYSIN 
statement is checked to see if it contains the load module named 
in the PROGRAM= SYSIN statement. Valid values:

CHECK Check the RPL library for the presence of the module 
to be newcopied. This is the default value if this 
subparameter is not coded.

NOCHECK Do not check the RPL library for the presence of the 
module to be newcopied.

DFHRPL verification is performed by CMNCICS1 for options SRB, 
ESA, OPR, OPS, and OPQ. Verification is performed by CMNEMTP 
for option XCI.

prefix Optional Code 3 characters to replace the first 3 characters of ChangeMan 
ZMF CICS transactions SEMT, SEMQ, and SEML.
The resulting transIDs must be valid, and they must be defined in 
any CICS region where they will execute.
Note: Replacement characters may be coded in the PREFIX= 
keyword  parameter for program CMNCICS1 instead of in the 
PARM statement. See "SYSIN Parameters" below.



136 ChangeMan® ZMF 

Chapter 6  Utilities

 Blank SYSIN records are permitted.

 Comment records are designated by * in position 1.

 A maximum of 65,535 DFHRPL= parameters may be input for each TARGET= 
parameter.

 A maximum of 65,535 PROGRAM= parameters may be input for each TARGET= 
parameter.

This table describes keyword parameters that are input to CMNCICS1 through the SYSIN 
DD statement. 

Parameter Use Description

* in Position 1 Optional Denotes a comment.

PREFIX= Optional Code 3 characters to replace the first 3 characters of ChangeMan 
ZMF CICS transactions SEMT, SEMQ, and SEML. 
The resulting transIDs must be valid, and they must be defined in 
any CICS region where they will execute.
If multiple PREFIX records are input, only the last one is retained.
Note: Replacement characters may be coded in the PARM 
statement for program CMNCICS1 instead of in this SYSIN 
keyword statement. See "PARM Options" on page 135.

TARGET= Required The TARGET keyword parameter can have two arguments 
separated by a comma:

cicsid An identifier for the target CICS region, 1-8 
characters. The type of identifier depends on the 
option you are using.

CICS region 
name

Use the CICS region name if you 
are using options SRB, ESA, OPR, 
OPS, or OPQ.

VTAM APPLID Use the CICS region VTAM APPLID 
for option XCI.

setoption The option to be executed by the SET 
PROGRAM(pgmname) command.

NEW Execute NEWCOPY. This is the default 
option.

PHA Execute PHASEIN.

Examples:
TARGET=CICSA,PHA
TARGET=CICSA,NEW
TARGET=CICSA

DFHRPL = Required Load library in the CICS region DFHRPL where the CICS program 
resides. Must be a fully qualified data set name, up to 44 
characters.

PROGRAM = Required Name of the program to newcopy, 1-8 characters.



CMNCICS1 - CICS NEWCOPY

Customization Guide 137

Return Codes and Error Messages
Messages issued by ChangeMan ZMF are described in the ChangeMan ZMF Messages 
book. This section contains additional information that will be helpful in diagnosing 
problems with the CMNCICS1 newcopy utility..

Return 
Code Description

04 An error was detected before the newcopy method was executed, but the step was 
allowed to finish with non-fatal return code. See the messages in SYSPRINT.
Examples: 
CMN7210E TARGET CICS not active on system
CMN7205E CMNCICS1 Group has no DFHRPL statements at all

08 An error was detected before the newcopy method was executed, and the step 
issued a fatal return code. See the messages in SYSPRINT.
Examples:
CMN7207E CMNCICS1 DFHRPL dataset failed to allocate
CMN7206E CMNCICS1 DFHRPL dataset does not exist

20 Problem allocating or opening the external CICS interface pipe; these types of 
errors indicate a problem with inter-system communications or the lack of an EXCI 
connection in the target CICS.

28 Indicates a problem with the DPL (Distributed Program Link) to program CMNEMTP; 
these types of problems indicate an error in the installation of the trans IDs or 
program within the target CICS.

36 With CICS abend AXFQ, indicates that the transaction profile parameter INBFMH is 
not set to ALL. See the CICS resource definition examples provided here.

Message Number Description

CMN7213E CICS RETURNED ERRORS | CICS regions returned errors when doing 
newcopy
Explanation: CMNCICS2 attempted a CICS NEWCOPY/PHASEIN for an 
application program, but the application program is not found in the target 
region. Only programs that have been defined in the CICS system 
definition file (CSD) and installed on the running CICS system are 
accessible to ZMF newcopy facilities.
Solution: Create a definition for the application program in the target 
CICS region.

CMN7214E EXCI FAILURE | Unable to establish EXCI session with target CICS
Explanation: CMNCICS2 is unable to allocate or open an EXCI connection 
to the target CICS region to perform a NEWCOPY/PHASEIN. The NEWCOPY 
is not performed.
Solution: Ensure the target CICS region is running, and that the EXCI 
connection has been properly installed.

CMN7215E INSTALL ERROR | ZMF newcopy support not installed in target CICS
Explanation: CMNCICS2 is unable to start the SEML transaction in the 
target CICS region to perform NEWCOPY/PHASEIN. The NEWCOPY is not 
performed.
Solution: See the ChangeMan ZMF Installation Guide for the steps to 
install the SEML transaction in the target CICS region.



138 ChangeMan® ZMF 

Chapter 6  Utilities

Reporting
The SYSPRINT DD statement for CMNCICS1 displays the following information:

 Program  name and title.

 Keyword parameter records input to SYSIN.

 Information and error messages.

Example:

Notes and Comments
The examples below show the difference in message volume between option OPR and 
OPS. The SYSLOG output is also visible in the CICS JESMSGLG.

This is the JCL, and SYSPRINT output from option OPS, and SYSLOG output.

                                                                                
CMNCICS1           CICS NEW PROGRAM UTILITY                                     
                                                                                
  TARGET=CICSC101                                                               
    DFHRPL=USER.SERENA.CICSLOAD                                                 
      PROGRAM=ACCT01                                                            
                   CMN7209E Program ACCT01 was not found in DFHRPL library      

JCL:
//USER015B JOB ,,CLASS=A,NOTIFY=&SYSUID,   
//         COND=(4,LT),MSGLEVEL=(1,1),MSGCLASS=X,
//         REGION=4M                             
//JOBLIB    DD DISP=SHR,DSN=CMNTP.CMN810.LOAD    
//          DD DISP=SHR,DSN=CMNTP.SER810.LOAD    
//*                                              
//LCXCNC  EXEC PGM=CMNCICS1,   *** CICS NEWCOPY  
//             PARM=(OPS,CHECK)                  
//SYSPRINT  DD SYSOUT=*                          
//SYSIN     DD *                                 
   TARGET=CICSC102,PHA                           
   DFHRPL=USER.SERENA.CICSLOAD                   
   PROGRAM=CMNEMTP                               
**************************** Bottom of Data *****

SYSPRINT:
CMNCICS1           CICS NEW PROGRAM UTILITY
                                           
   TARGET=CICSC102,PHA                     
   DFHRPL=USER.SERENA.CICSLOAD             
   PROGRAM=CMNEMTP                         
**************************** Bottom of Data *****

SYSLOG:
S0296623 00000080  +SEMT SET PROG(CMNEMTP) PHA              
                              Set command completed normally
S0296623 00000080  +Resp=0000 Resp2=0000                    



CMNCICS1 - CICS BUNDLE

Customization Guide 139

This is the JCL and SYSPRINT output from option OPR, and also the output to the SYSLOG.

CMNCICS1 - CICS BUNDLE
The SYSIN for CMNCICS1 may also specify BUNDLE keywords following the TARGET 
keyword.
The format of the keyword is:  BUNDLE=bundlename where bundlename is the name 
of the bundle as defined by the CICS system definition (CSD). The bundle keyword results 
in the deployment of a CICS transaction SEMB, which invokes CMNBUND, a new 
component in 8.2.0. Therefore, the ZMF resource definitions must be installed in each of 

//USER015C JOB ,,CLASS=A,NOTIFY=&SYSUID,         
//         COND=(4,LT),MSGLEVEL=(1,1),MSGCLASS=X,
//         REGION=4M                             
//********************************************** 
//*  FROM USER015.JCL.CNTL(CICSJOB1)             
//*                                              
//*  JOB TO DO A CICS NEWCOPY                    
//********************************************** 
//JOBLIB    DD DISP=SHR,DSN=CMNTP.CMN810.LOAD    
//          DD DISP=SHR,DSN=CMNTP.SER810.LOAD    
//*                                              
//LCXCNC  EXEC PGM=CMNCICS1,                     
//             PARM=(OPR,CHECK)                  
//SYSPRINT  DD SYSOUT=*                          
//SYSIN     DD *                                 
   TARGET=CICSC102                               
   DFHRPL=USER.SERENA.CICSLOAD                   
   PROGRAM=CMNEMTP                               
**************************** Bottom of Data *****

CMNCICS1           CICS NEW PROGRAM UTILITY      
                                                 
   TARGET=CICSC102                               
   DFHRPL=USER.SERENA.CICSLOAD                   
   PROGRAM=CMNEMTP                               
******************************** BOTTOM OF DATA *

 SDSF OPERLOG  C001     02/25/2015     0W                       COLUMNS 41- 120
 COMMAND INPUT ===>                                            SCROLL ===> CSR 
S0296623 00000080  + 581                                                       
     581 00000080    Program(CMNEMTP)                                          
     581 00000080    Length(0000009664)                                        
     581 00000080    Language(Assembler)                                       
     581 00000080    Progtype(Program)                                         
     581 00000080    Status( Enabled )                                         
     581 00000080    Sharestatus( Private )                                    
     581 00000080    Copystatus( Notrequired )                                 
     581 00000080    Cedfstatus( Cedf )                                        
     581 00000080    Dynamstatus(Notdynamic)                                   
S0296623 00000080  + Rescount(000) 582                                         
     582 00000080    Usecount(0000000002)                                      
     582 00000080    Dataloc(Any)                                              
     582 00000080    Execkey(Uexeckey)                                         
     582 00000080    Executionset( Fullapi )                                   
     582 00000080    Concurrency(Quasirent)                                    
     582 00000080    Remotesystem()                                            
     582 00000080    Runtime( Notknown )                                       
     582 00000080    Jvmclass(                                                 
     582 00000080   )                                                          
S0296623 00000080  + Jvmclass( 583                                             
     583 00000080   )                                                          
     583 00000080    Jvmclass(                                                 
     583 00000080   )                                                          
     583 00000080    Jvmclass(                                                 
     583 00000080   )                                                          
     583 00000080    Jvmclass(                         )                       
     583 00000080    Hotpooling( Nothotpool )                                  
     583 00000080    Jvmprofile(DFHJVMPR)                                      
     583 00000080    NORMAL                                                    
S0296623 00000080  + RESPONSE: NORMAL TIME:  01.47.49  DATE: 02.25.15 584      
     584 00000080    SYSID=C102 APPLID=CICSC102                                



140 ChangeMan® ZMF 

Chapter 6  Utilities

the potential target CICS regions. The CSD component CMN820G in the installation library 
has the suggested CSD define statements.
In the case of bundle, the ESA and SRB methods are not valid. Any of the operator 
commands or the XCI method is preferred.

The CMNBUND logic is as follows:

 Verify that the BUNDLE exists

 Discard the BUNDLE

 Wait until the BUNDLE is completely discarded.

 Install the BUNDLE

 Check to see that the BUNDLE is installed.

For example:

//SYSIN     DD *
  TARGET=CICSname
  BUNDLE=Bundlename

CMNCICS1 - CICS PIPELINE
The SYSIN for CMNCICS1 may also specify PIPELINE keywords following the TARGET 
keyword.

The format of the keyword is:  PIPELINE=pipeline where pipeline is the name of the 
pipeline as defined by the CICS system definition (CSD). The pipeline keyword results in 
the deployment of a CICS transaction SEMT, which invokes CMNEMTP, a new component 
in 8.1.0. Therefore, the ZMF resource definitions must be installed in each of the potential 
target CICS platforms. The CSD component CMN820G in the installation library has the 
suggested CSD define statements.

In the case of pipeline, the ESA and SRB methods are not valid. Any of the operator 
commands or the XCI method is preferred.

The CMNEMTP logic is as follows:

 Verify that the PIPELINE exists

 Perform PIPELINE SCAN

For example:

//SYSIN     DD *
  TARGET=CICSname
  PIPELINE=Pipename



CMNCICS6 - CICS CSD Extract

Customization Guide 141

CMNCICS6 - CICS CSD Extract
The CICS CSD interface lets you extract defined table entries in a CICS CSD file, and 
translate the results into an editable format. This process is controlled by specifying 
keywords in the SYSIN data stream.

Export Option
Program CMNCICS6 validates the CMNIN file by verifying the keywords (DFHCSD, 
EXPORT, IGROUP, and OGROUP) are grouped and sequenced properly. 

A group consists of one DFHCSD card, one EXPORT card, one or more IGROUP cards (up 
to 256), and one OGROUP card. You can specify up to 256 groups in a single execution.

 For each DFHCSD/EXPORT keyword pair, CMNCICS6 will issue a GETMAIN for a work 
area.

 For each DFHCSD card read CMNCICS6 will lock the VSAM data set specified.

 For each EXPORT card read CMNCICS6 will allocate the PDS data set allocated.

 For each IGROUP and the OGROUP card read CMNCICS6 will build an entry in the 
work area.

Once all of the data has been read and the work areas built, CMNCICS6 will allocate the 
SORTWORK data sets. For each work area built, CMNCICS6 will open a member in the 
PDS data set named by the OGROUP specified. SORT is invoked specifying E15 (input) 
and E35 (output) exits. The E15 (input) SORT exit will read data from the PDS member 
and translate the GROUP name to that specified in OGROUP. The E35 (output) SORT exit 
will translate each record into an 'editable' member in the PDS.

A typical job stream to execute CMNCICS6 EXPORT Option follows.

 The DFHCSD keyword must specify a fully qualified cataloged VSAM data set name 
not exceeding 44 characters in length.

 The EXPORT keyword must specify a fully qualified PDS data set name not exceeding 
44 characters in length.

 The IGROUP keyword must specify a valid GROUP entry on the CICS CSD data set 
specified with the DFHCSD keyword and must not exceed 8 characters in length.

 The OGROUP keyword must not exceed 8 characters in length.



142 ChangeMan® ZMF 

Chapter 6  Utilities

Basic Format of CMNCICS6 Export Control Statement
The following is an example of JCL for export executing CMNCICS6:

This table describes placeholders in the CMNIN parameter statements.

Import Option
The purpose of this interface is to let you add CICS table entries to a CICS CSD file from 
an edited format. The input data is usually created by the CSD export process. The import 
process is controlled by specifying certain keywords in the SYSIN data stream.

Program CMNCICS6 validate SYSIN by verifying the keywords are grouped and sequenced 
properly. DFHCSD and IMPORT are the valid SYSIN keywords.

A grouping consists of one DFHCSD card, and one IMPORT card. You can specify up to 256 
groups in a single execution.

 For each DFHCSD/IMPORT keyword pair, CMNCICS6 will issue a GETMAIN for a work 
area.

 For each DFHCSD card read CMNCICS6 will lock the VSAM data set specified.

 For each IMPORT card read CMNCICS6 will allocate the PDS data set allocated.

//CHGMAN6 JOB (account)
//*
//*  JCL for EXPORT
//*
//STEPONE EXEC PGM=CMNCICS6
//STEPLIB DD DSN=somnode.SERENA.CMNZMF.VxRxMx.LOAD,DISP=SHR
//        DD DSN=somnode.SERENA.SERCOMC.VxRxMx.LOAD,DISP=SHR
//CMNOUT  DD SYSOUT=*
//CMNIN   DD   *
DFHCSD=VSAM data set name
EXPORT=PDS data set name
IGROUP=input group
IGROUP=input group
IGROUP=input group
 .
 .
 .
OGROUP=output group
DFHCSD=VSAM data set name
EXPORT=PDS data set name
IGROUP=input group
IGROUP=input group
IGROUP=input group

Subparameters Description

VSAM data set name Test data set name of the CICS-defined CSD where IGROUP clusters 
will be read.

PDS data set name Test data set name of the ChangeMan ZMF PDS where the OGROUP 
members will be written.

input group Name of an application-defined group name residing in the CICS CSD 
VSAM data set.

output group Name of the production-defined group name for this application



CMNCICS6 - CICS CSD Extract

Customization Guide 143

 Once ALL the SYSIN cards are read and the work areas built, CMNCICS6 will allocate 
the SORTWORK data sets.

 For each work area built, CMNCICS6 will read each member, and for each member 
invoke SORT, specifying the E15 (input) and E35 (output) exits.

 The E15 (input) SORT exit will read the PDS member and translate the member into a 
VSAM data record.

 The E35 (output) SORT exit will add or update the CSD file from the VSAM data 
record.

A typical job stream to execute CMNCICS6 IMPORT Option follows.

 The CMNIN data stream can start in any column. Multiple imports can be specified.

 The DFHCSD keyword must specify a fully qualified cataloged VSAM data set name 
not exceeding 44 characters in length.

 The IMPORT keyword must specify a fully qualified PDS data set name not exceeding 
44 characters in length.

Basic Format of CMNCICS6 Import Control Statement
The following is an example of JCL for export executing CMNCICS6:

This table describes placeholders in the CMNIN parameter statements.

//CHGMAN6 JOB (account)
//*
//*  JCL for IMPORT
//*
//STEPONE EXEC PGM=CMNCICS6
//STEPLIB DD   DSN=somnode.SERENA.CMNZMF.VxRxMx.LOAD,DISP=SHR
//        DD   DSN=somnode.SERENA.SERCOMC.VxRxMx.LOAD,DISP=SHR
//CMNOUT  DD   SYSOUT=*
//CMNIN   DD   *
  DFHCSD=VSAM data set name
    IMPORT=PDS data set name
  DFHCSD=VSAM data set name
    IMPORT=PDS data set name
  DFHCSD=VSAM data set name
    IMPORT=PDS data set name
 .
 .
 .
  DFHCSD=VSAM data set name
    IMPORT=PDS data set name

Term Description

VSAM data set name is the production DATA SET name of the CICS defined CSD where the 
clusters will be written.

PDS data set name is the production DATA SET name of the ChangeMan ZMF PDS from 
which the members will be read.



144 ChangeMan® ZMF 

Chapter 6  Utilities

CICS Keywords processed by CMNCICS6
This CMNCICS6 assembler code defines the CICS keywords and their default values for 
PROGRAMS, MAPSETS, TRANSACTIONS and PROFILES:

*
*    Definition and defaults for programs
*
PPTDEF   DS    0D
 DC CL80'DEFINE Group()'
 DC CL80'        PROGram()'
 DC CL80'        Language(Cobol)         cobol | assembler | pli | rpg'
 DC CL80'        RELoad(No)              no | yes'
 DC CL80'        RESident(No)            no | yes'
 DC CL80'        RSl(00)                 0 -24 | public'
 DC CL80'        Status(Enabled)         enabled | disabled'
 DC X'FF'

*
*    Definition and defaults for mapsets
*
MAPDEF   DS    0D
 DC CL80'DEFINE Group()'
 DC CL80'        Mapset()'
 DC CL80'        RSl(00)                 0 -24 | public'
 DC CL80'        Status(Enabled)         enabled | disabled'
 DC X'FF'

*
*    Definition and defaults for transactions
*
PCTDEF   DS    0D
 DC CL80'DEFINE Group()                                          '
 DC CL80'        TRansaction()                                   '
 DC CL80'        PROGram()                                       '
 DC CL80'        TWasize(00000)           0 - 32767              '
 DC CL80'        PROFile(DFHCICST)                               '
 DC CL80'        PArtitionset()                                  '
 DC CL80'        STatus(Enabled)          enabled | disabled     '
 DC CL80'        PRIMedsize(00000)        0 - 65520              '
 DC CL80'*    REMOTE ATTRIBUTES                                  '
 DC CL80'        REMOTESystem()                                  '
 DC CL80'        REMOTEName()                                    '
 DC CL80'        TRProf()                                        '
 DC CL80'        Localq()                 no | yes               '
 DC CL80'*    SCHEDULING                                         '
 DC CL80'        PRIOrity(001)            0 - 255                '
 DC CL80'        TClass(No)               no | 1 - 10            '
 DC CL80'*    ALIASES                                            '
 DC CL80'        TAskreq()                                       '
 DC CL80'        Xtranid()                                       '
 DC CL80'*    RECOVERY                                           '
 DC CL80'        DTimout(No)              no | 1 - 7000          '
 DC CL80'        Indoubt(Backout)         backout | commit | wait'
 DC CL80'        REStart(No)              no | yes               '
 DC CL80'        SPurge(No)               no | yes               '
 DC CL80'        TPurge(No)               no | yes               '
 DC CL80'        DUmp(Yes)                yes | no               '
 DC CL80'        TRACe(Yes)               yes | no               '
 DC CL80'*    SECURITY                                           '
 DC CL80'        Extsec(No)               no | yes               '
 DC CL80'        TRANsec(01)              1 - 64                 '
 DC CL80'        RSL(00)                  0 - 24 | public        '
 DC CL80'        RSLC(No)                 no | yes | external    '
 DC X'FF'



CMNCICS6 - CICS CSD Extract

Customization Guide 145

If the functionality of the CMNCICS6 utility meets the current requirements of your 
installation, you may continue to maintain your existing PROGRAM and TRANSACTION 
definitions with the CMNCICS6 utility. If your installation requires use of PROGRAM or 
TRANSACTION definition parameters that are not supported by CMNCICS6 (for example, 
the DATALOCATION parameter), or if you wish to use ChangeMan/ZMF to control other 
RDO resource types (for example, TERMINAL definitions) you must use DFHCSDUP.

The DFHCSDUP utility is supplied by IBM as part of CICS. It does not provide the richness 
of functionality of CMNCICS6 (multiple DFHCSD statements, IMPORT EXPORT statements) 
but does support all CICS RDO parameters.

Here is the sample JCL to unload existing definitions from the DFHCSD. The primary 
purpose of this step would be to pull the definitions out of a test CICS, so that they could 
be maintained in ZMF:

*
*    Definition and defaults for profiles
*
PRFDEF   DS    0D
 DC CL80'DEFINE Group()                                               '
 DC CL80'         profile()                                           '
 DC CL80'         scrnsize(default)        default | alternate        '
 DC CL80'         modename()                                          '
 DC CL80'         printercomp(no)          no | yes                   '
 DC CL80'*    JOURNALLING                                             '
 DC CL80'         journal(no)              no | 1 - 99                '
 DC CL80'         msgjrnl(no)              no | input | output | inout'
 DC CL80'*    PROTECTION                                              '
 DC CL80'         msginteg(no)             no | yes                   '
 DC CL80'         onewte(no)               no | yes                   '
 DC CL80'         protect(no)              no | yes                   '
 DC CL80'*    PROTOCOLS                                               '
 DC CL80'         dvsuprt(all)             all | nonvtam | vtam       '
 DC CL80'         inbfmh(no)               no | all | dip | eods      '
 DC CL80'         raq(no)                  no | yes                   '
 DC CL80'         logrec(no)               no | yes                   '
 DC CL80'*    RECOVERY                                                '
 DC CL80'         nepclass(000)            0 - 255                    '
 DC CL80'         rtimout(no)              no | 1 - 7000              '
 DC X'FF'

//STEP1   EXEC PGM=DFHCSDUP,REGION=0M,                                
//             PARM='CSD(READWRITE),PAGESIZE(60),NOCOMPAT'            
//STEPLIB  DD DSN=cicshlq.SDFHLOAD,DISP=SHR                           
//******************************************************************* 
//** THIS JCL WILL UNLOAD AN EXISTING DFHCSD GROUP IN A FORMAT THAT** 
//** WILL ALLOW IT TO BE LOADED TO ANY OTHER DFHCSD LIBRARY        ** 
//******************************************************************* 
//DFHCSD   DD  DISP=SHR,DSN=cicshlq.DFHCSD                            
//SYSPRINT DD SYSOUT=*                                                
//CBDOUT DD SYSOUT=A                                                  
//SYSIN DD *                                                          
EXTRACT GROUP(XXXXXXXX) USERPROGRAM(DFH0CBDC) OBJECTS                
/*                                                                    



146 ChangeMan® ZMF 

Chapter 6  Utilities

Here is the sample JCL to upload new definitions from ZMF to the DFHCSD.  The input to 
this step would be the resource definition stored in ZMF.  Existing resource definitions 
created by CMNCICS6 will work without any changes required:

CEDA Language Review
OGROUP members of the PDS subject to ChangeMan ZMF control will have identical 
format to those supplied and documented in the IBM publication CICS/VS Resource 
Definition Online. CMNCICS6 will read these members and create VSAM records for each 
definition in an identical manner to the online CICS transaction CEDA.

Although multiple CSD files have been used by more prudent installations, the control of a 
CSD file by ChangeMan ZMF implies that a production CSD file should be kept separate 
from a testing CSD file and that the testing file can be subject to change using CEDA 
whereas the production system should have these resource definition online (RDO) 
transactions disabled. This eliminates the probability of unauthorized changes to the 
production environment outside of ChangeMan ZMF control.

In the IBM publication, the RDO defined defaults are shown in parentheses. The required 
keywords are shown in their entirety. Ranges of values are shown with valid limits.

CMNCICS6 assumes that all source has been exported from a valid CSD file. Therefore, 
any syntactical errors introduced by users of external editors will cause entries to be 
ignored by CMNCICS6. Default values will be assigned as shown.

For example, the following is the definition for a program. The information here is the 
same as that used by CEDA to build a PPT entry.

CMNFIXMN - Generate SETSSI Data
Program CMNFIXMN checks the SETSSI in the IDR record of load modules to ensure that 
it contain information compatible with ChangeMan ZMF processing. If a SETSSI is 
incompatible, CMNFIXMN can update it. CMNFIXMN can also ensure that the load library 
directory contains the correct SETSSI value.

ChangeMan ZMF audit uses the load module SETSSI as a date/time stamp to discover 
out-of-synch conditions. When a load module is built by ZMF, the SETSSI is set to an 

//STEP1   EXEC PGM=DFHCSDUP,REGION=0M,                               
//             PARM='CSD(READWRITE),PAGESIZE(60),NOCOMPAT'           
//STEPLIB  DD DSN=cicshlq.SDFHLOAD,DISP=SHR                          
//*******************************************************************
//** THIS JCL WILL UPLOAD CICS RESOURCE DEFINITIONS TO THE DFHCSD    **
//*******************************************************************
//DFHCSD   DD  DISP=SHR,DSN=cicshlq.DFHCSD                           
//SYSPRINT DD SYSOUT=*                                               
//SYSIN DD *

PROGram(pgmname)
Language(COBOL)                    COBOL | Assembler | Pl1
RELoad(No)                         No | Yes
RESident(No)                       No | Yes
RSl(00)                            0-64 | Public
Status(Enabled)                    Enabled | Disabled



CMNFIXMN - Generate SETSSI Data

Customization Guide 147

eight-byte alphanumeric representation of a four byte binary number that is the number 
of seconds between January 1, 1960 and the link date of the load module.  To improve the 
efficiency of ZMF programs that use the SETSSI, it is also stored in the directory of the 
load library.

If you add a load module or a load library to ChangeMan ZMF, the SETSSI may be blank or 
it may not contain the same value that ZMF would calculate. This may prevent audit from 
detecting out-of-synch conditions. CMNFIXMN prepares your load modules and load 
libraries for management by ChangeMan ZMF.

CMNFIXMN can be run in two modes. When you use the REPORT execution parameter, 
CMNFIXMN executes the SETSSI check and report its findings for each load module, but 
no updates are done. After you examine the report, you can run CMNFIXMN with 
execution parameter EXECUTE to update the load modules and the load library directory.

Input
Load library containing load modules that were not built by ChangeMan ZMF.

Output
Load library where all load module SETSSI are compatible with ChangeMan ZMF 
processing and the load library directory contains SETSSI values.

Sample JCL
Sample JCL is delivered in member CMNFIXMN in the delivered CMNZMF CNTL library.

DD Statements
This table describes DD statements for CMNFIXMN.

PARM Options
The PARM parameter is required in the EXEC statement for CMNFIXMN. You must use one 
of the PARM values listed in this table. There is no default value.

DDNAME I/O Purpose

LOD I/O Load library to be updated with SETSSI.

SYSPRINT Output Report of mock directory updates or actual updates.

Parameter Use Description

REPORT Alternative Produces a report of current SETSSI and ZMF calculated 
SETSSI. No updates are performed.

EXECUTE Alternative Produces a report of current SETSSI and ZMF calculated 
SETSSI, and where they are different, updates load modules 
and the load module directory.



148 ChangeMan® ZMF 

Chapter 6  Utilities

Return Codes and Error Messages
This table lists return codes for CMNFIXMN.

This table lists abend codes for CMNFIXMN.

Reporting
This is a sample from a report from CMNFIXMN executed with PARM=REPORT.

Return 
Code Description

0 OK. No errors encountered.

4 Linkage date not found.

Abend 
Code Description

U01 Unable to open   //SYSPRINT DD

U02 Unable to open //LOD DD

U03 LOD Library record format not undefined (not allocated as RECFM=U)

U04 Unable to load //LOD DD (probably sequential)

U10 Unable to stow //LOD DD (probably directory full)

CMN (MVS-8.1.0) JOB EXECUTION: DATE=WEDNESDAY FEBRUARY 25, 2015  TIME=12:21:06 
CMN INVOCATION: PGM(CMNFIXMN - PROCESS SETSSI ROUTER)  COMPILE(20141010 11.58) 
                                                                               
 PARM='REPORT'                                                                 
 PARM interpretation: REPORT; mock execution, NO UPDATES!                      
                                                                               
 LOD library DSNAME=USER015.ISPLLIB                                            
                                                                               
Now a report of a mock update follows; NO UPDATES!                             
                                                                               
Module                 Dir      Module   Module     SSI    Update              
Name     Alias-Of Exec SETSSI   SETSSI   Link Date  Type   Dir                 
-------- -------- ---- -------- -------- ---------- ------ ------              
CLS               Yes  MISSING  61257D9E 2011/08/24 Genned Yes    <MOCK UPDATE>
COLOURS           Yes  610A8BE2 610A8BE2 2011/08/04 Actual No                  
CURPOS            Yes  MISSING  61008925 2011/07/27 Genned Yes    <MOCK UPDATE>
DELINKI           Yes  MISSING  56D592F0 2006/03/01 Genned Yes    <MOCK UPDATE>
HELLOW            Yes  MISSING  64809EE4 2013/06/06 Genned Yes    <MOCK UPDATE>
...
S0C1              Yes  MISSING  662ECC1F 2014/04/28 Genned Yes    <MOCK UPDATE>
S0C4              Yes  MISSING  662ECD14 2014/04/28 Genned Yes    <MOCK UPDATE>
                                                                               
      33 Total members                                                         
       9 ALIAS notations                                                       
       0 Considered Not Executable                                             
       0 Directory SETSSI unusable, replaced by module SETSSI                  
      23 Directory SETSSI missing, replaced by module SETSSI                   
       0 Directory SETSSI does not match module, replaced                      
       1 Directory SETSSI matches module, no action taken                      
                                                                               
CMNFIX30: PO(pdse) PROGRAM LIBRARY PROCESSOR COMPLETED.  RETURN CODE=00        
CMNFIXMN: ROUTER PROCESSING COMPLETED.  RETURN CODE=00                         



CMNIALD0 - Impact Analysis Db2 Load

Customization Guide 149

CMNIALD0 - Impact Analysis Db2 Load
Prior to ChangeMan ZMF 6.1, impact analysis data was stored in sequential files or in Db2 
tables. Some customers created their own applications to use the Db2 tables.

To allow customers to continue using those applications, program CMNIALD0 extracts 
baseline unique number (BUN) data and component relationship data from impact 
analysis data stores introduced in ChangeMan ZMF 6.1. The program formats that data in 
records ready for load to Db2 tables CMNBUN and CMNBASE.

Execution JCL for program CMNIALD0 is delivered in sample JCL member LDS2DB2 in the 
CNMZMF CNTL library. This member also includes a Db2 load step for tables CMNBUN and 
CMNBASE.

The JCL also includes Db2 DDL for an expanded CMNBASE Db2 table with impact analysis 
relationship data that was added with ChangeMan ZMF 6.1. The extract files created by 
program CMNIALD0 contain data to populate the new fields.

CMNIALD0 Input
 BUN information extracted from the impact analysis LDS by program CMNIALU0 in the 

impact analysis unload process

 Relationship information extracted from the impact analysis LDS by program 
CMNIALU0 in the impact analysis unload process

 Other impact analysis information read from the IALDS impact analysis LDS

Output
 Sequential file of data ready for load to the CMNBUN Db2 table

 Sequential file of data ready for load to the CMNBASE Db2 table or to the extended 
CMNBASE table.

Sample JCL
Sample JCL to execute program CMNIALD0 is delivered in member LDS2DB2 in the 
CMNZMF CNTL library. 

The sample JCL also includes:

 Job step to execute Db2 procedure DSNUPROC to load Db2 tables CMNBUN and 
CMNBASE

 Sample LOAD statements for an extended CMNBASE table

 Sample DDL to create the extended CMNBASE table and indexes.



150 ChangeMan® ZMF 

Chapter 6  Utilities

DD Statements
This table describes DD statements for program CMNIALD0.

PARM Options
There are no program execution parameters for program CMNIALD0, so there is no PARM 
parameter in the EXEC statement.

Return Codes and Error Messages
Error messages are written to DD statement CMNPRINT.

Reporting
This is a sample report from program CMNIALD0.

Notes or Comments
 Read the comments in sample JCL member LDS2DB2 in the CMNZMF CNTL library.

 For input to program CMNIALD0, use the BUNSPACE and RELSPACE files created by 
program CMNIALU0 in sample JCL member LDSUNLD. Do not use files created by 
program CMNIA000 that is executed in the online impact analysis data extract 
(skeleton CMN$$IAX) or in sample JCL member IMPACT.

DDNAME I/O Purpose

CMNIMPCT Input Impact analysis LDS

BUNSPACE Input BUNSPACE sequential file written by program CMNIALU0 in 
sample JCL member LDSUNLD

RELSPACE Input The RELSPACE sequential file written by program CMNIALU0 in 
sample JCL member LDSUNLD

BUNDB2 Output Reformatted BUN records

RELDB2 Output Reformatted relationship records

CMNPRINT Output Report of records read and records reformatted and written. See 
"Reporting" on page 150.

CAUTION!  Use the BUNSPACE and RELSPACE files created by program CMNIALU0 in 
sample JCL member LDSUNLD. Do not use files created by program CMNIA000 that is 
executed in the online impact analysis data extract (skeleton CMN$$IAX) or in sample 
JCL member IMPACT.

20150225 13474033 ChangeMan(R) ZMF      CMNIALD0 - 8.1.0 Impact Analysis Reformat for DB2
20150225 13474033 Phase I begins                                                
20150225 13474035              55 BUN records read                              
20150225 13474035              55 BUN records reformatted, written              
20150225 13474035 Phase I  ends                                                 
20150225 13474040 Phase II begins                                               
20150225 13474058              96 relation records read                         
20150225 13474058              96 relation records reformatted, written         
20150225 13474058 Phase II  ends                                                



CMNPMLOD - Master File XML Extractor

Customization Guide 151

 The impact analysis LDS is not accessed through the started task, so the started task 
can be up or down.

 In job step LDS2DB2 in sample JCL member LDS2DB2:

• The STEPLIB concatenation (or the JOBLIB concatenation if you do not use 
STEPLIB) must be authorized or the Db2 load step will fail.

• You might need to add SYSUT1 and SORTWKnn data sets. Check your DSNUPROC  
cataloged procedure.

DDL for CMNBUN and CMNBASE

This is the DDL for Db2 tables CMNBUN and CMNBASE. (DDL for the extended CMNBASE 
table is included in sample JCL member LDS2DB2.)

CREATE TABLE CMNx.CMNBUN                                    
        (INT_BUN         INTEGER      NOT NULL WITH DEFAULT,
         TXT_APPL        CHAR(4)      NOT NULL WITH DEFAULT,
         TXT_LIBTYPE     CHAR(3)      NOT NULL WITH DEFAULT,
         TXT_LIKE        CHAR(3)      NOT NULL WITH DEFAULT,
         TXT_LIKI        CHAR(1)      NOT NULL WITH DEFAULT,
         TXT_DSNAME      CHAR(44)     NOT NULL WITH DEFAULT)
        IN database.cmnspace2;                              
 COMMIT WORK;
CREATE TABLE CMNx.CMNBASE                                  
        (COMPNAME       CHAR(32)      NOT NULL WITH DEFAULT,
         COMPTYPE       INTEGER       NOT NULL WITH DEFAULT,
         RELATION       CHAR(3)       NOT NULL WITH DEFAULT,
         TOWHAT         CHAR(44)      NOT NULL WITH DEFAULT,
         TOWHATYP       INTEGER       NOT NULL WITH DEFAULT)
        IN database.cmnspace1;                              
 COMMIT WORK;  

CMNPMLOD - Master File XML Extractor
Data extract program CMNPMLOD (previously called SERPMLOD) uses XML Services to 
provide you with access to package master and component master data while insulating 
you from changes in how ChangeMan ZMF data is stored. Extracted data is delivered as 
XML Service replies, with each reply in a separate sequential file.

Program CMNPMLOD can be run against production master file data or against backup 
data, but the data must be stored in VSAM files. CMNPMLOD does not require ChangeMan 
ZMF to be running. CMNPMLOD is available only in batch. 

Sample JCL for CMNPMLOD is now delivered in member EXEPMLOD in the vendor 
CMNZMF.CNTL library.

A LIST facility has been introduced which shows which services are currently supported. 
To use this function, specify an execution PARM. For example:

//PMLOD EXEC PGM=CMNPMLOD,PARM=’LIST’

Output is routed to SYSPRINT and consists of output thus:
DDname     Service  Scope    Message  Unloadable Description 
--------   -------- -------- -------- ---------- ----------------------------------------------- 
CMN$GPRM : PARMS    GBL      LIST     Yes        Global parameters 
CMN$GSIT : SITE     GBL      LIST     Yes        Global sites 
CMN$GPRC : PROCS    GBL      LIST     Yes        Global procedures 
CMN$GLTP : LIBTYPE  GBL      LIST     Yes        Global library types 



152 ChangeMan® ZMF 

Chapter 6  Utilities

CMN$UFNS : FLDNAMES SERVICE  LIST     Yes        Field name substitutions
...

CMNPMLOD Input
 Package master

 Component master

 Long name component master

 XML services MAPDATA file

Output
One or more QSAM files containing master file data in XML format, or SYSPRINT output 
with PARM LIST.

Sample JCL
The following is a sample job for a CMNPMLOD step that extracts one type of package 
master data (global compile procedures).

//CMNPMLD EXEC PGM=CMNPMLOD,REGION=0M                              
//STEPLIB  DD  DISP=SHR,DSN=CMNTP.CMN810.LOAD                      
//         DD  DISP=SHR,DSN=CMNTP.SER810.LOAD                      
//*===============================================================*
//* ChangeMan ZMF master files                                     
//CMNPMAST DD  DISP=SHR,DSN=CMNTP.S6.V810T06.CMNZMF.CMNPMAST       
//CMNCMPNT DD  DISP=SHR,DSN=CMNTP.S6.V810T06.CMNZMF.CMNCMPNT       
//CMNCMPNL DD  DISP=SHR,DSN=CMNTP.S6.V810T06.CMNZMF.CMNCMPNL       
//*Note: CMNELDSP is obsolete as of ZMF 7.1.3                      
//*CMNELDSP DD  DISP=SHR,DSN=somnode.subsys.CMNELCTX               
//*===============================================================*
//* XML DATASPACE BACKUP                                           
//MAPDATA  DD  DISP=SHR,DSN=CMNTP.SER810.MAPDATA                   
//*===============================================================*
//* TRACES AND DUMPS                                               
//SERPRINT DD  SYSOUT=*                                            
//SYSUDUMP DD  SYSOUT=*                                            
//*===============================================================*
//* GLOBAL XML DOCUMENT FILES                                      
//CMN$GPRM DD  DISP=(,CATLG),DSN=USER015.CMN$GPRM.XMLDATA,         
//             UNIT=SYSDA,SPACE=(TRK,(10,10),RLSE),                
//             DCB=(RECFM=VB,LRECL=4096,BLKSIZE=0)                 

This is  an excerpt of what was created in the CMN$GPRM data set by the JCL above:

********************************* Top of Data ********
<?xml version="1.0"?>                                 
 <service name="PARMS">                               
 <scope name="GBL">                                   
 <message name="LIST">                                
<result>                                         
 <cmnEnvironment>3</cmnEnvironment>              
 <enablePanBaseLib>N</enablePanBaseLib>          
 <enableLibrBaseLib>N</enableLibrBaseLib>        
 <enableLLamBaseLib>N</enableLLamBaseLib>        
 <enableOtherBaseLib>N</enableOtherBaseLib>      
 <allowStageOverlay>Y</allowStageOverlay>        



CMNPMLOD - Master File XML Extractor

Customization Guide 153

 <autoScratchLoadMbr>N</autoScratchLoadMbr>      
 <enableJes2Spool>Y</enableJes2Spool>            
 <disableCalendar>N</disableCalendar>            
 <useSerCompress>N</useSerCompress>              
 <createCmpWorkRecs>N</createCmpWorkRecs>        
 <showUserPanels>Y</showUserPanels>              
 <allowOnlyOneApproval>N</allowOnlyOneApproval>  
 <keepBaselineBySite>N</keepBaselineBySite>      
...
 <enableDisplayOrderDbdOverride>N</enableDisplayOrderDbdOverride>  
 <enableDisplayOrderPsbOverride>N</enableDisplayOrderPsbOverride>  
 <enableDisplayOrderXmlReport>N</enableDisplayOrderXmlReport>      
 <enableDisplayOrderApplication>N</enableDisplayOrderApplication>  
 <enableDisplayOrder3dSkel>N</enableDisplayOrder3dSkel>            
 </result>                                                         
   </message>                                         
  </scope>                                            
 </service>                                           
******************************** Bottom of Data ******

DD Statements
This table describes DD statements for program CMNPMLOD.

Extract processing is triggered by the presence of an output DD statement with a ddname 
that matches an XML service name.

The ddnames you can use to trigger extracts of package master and component master 
data are described in the following subtopics.

Global Records:

DDNAME I/O Purpose

CMNPMAST Input Package master VSAM KSDS

CMNCMPNT Input Component master VSAM KSDS

CMNCMPNL Input Long name component master VSAM KSDS

MAPDATA Input MAPDATA sequential file created by the XMLLOAD job that creates 
the XMLSPACE VSAM LDS that is coded in the started task JCL

SERPRINT Output Program messages

SYSPRINT Output LIST output

CMN$ssss Output One or more sequential files containing extracted master file data 
in XML format, where CMN$ssss is the XML service name

DD Name Service Scope Message Description

CMN$GPRM PARMS GBL LIST General Parameters

CMN$GSIT SITE GBL LIST Global Sites

CMN$GPRC PROCS GBL LIST Procedure Names

CMN$GLTP LIBTYPE GBL LIST Global library types

CMN$UFNS FLDNAMES SERVICE LIST Field name substitutions

CMN$RESN REASONS SERVICE LIST Reason Codes

CMN$GLNG LANGUAGE GBL LIST Globel languages



154 ChangeMan® ZMF 

Chapter 6  Utilities

Package Records

Package "I" Records

CMN$GRPT REPORT GBL LIST Global report definitions

CMN$GICR IMSCRGN GBL LIST IMS System Information

CMN$GIDO IMSOVRD GBL_DBD LIST IMS DBD Overrides

CMN$GIPO IMSOVRD GBL_PSB LIST IMS PSB Overrides

CMN$GOFM FORMS GBL LIST Global forms definitions

CMN$GDBP DB2ADMIN GBL_PHYS LIST Db2 Physical Subsystem

CMN$GDBL DB2ADMIN GBL_LOGL LIST Db2 Logical Subsystem

CMN$HLLA HLLEXIT ADMIN LIST HLLX admin/exit definitions

CMN$SCHD SCHEDULE SERVICE LIST Global scheduler information

CMN$3DSH SKELS GBL_HEDR LIST Global 3d-skels header 
information

CMN$3DSV SKELS GBL_VAR LIST Global 3d-skels variables

DD Name Service Scope Message Description

CMN$PPRM PACKAGE GEN_PRMS LIST Package Information

CMN$PDSC PACKAGE GEN_DESC LIST Package Description

CMN$PIMI PACKAGE IMP_INST LIST Implementation Inst.

CMN$PSCD PACKAGE SCH_RECS LIST Scheduling Information

CMN$PLTP LIBTYPE PKG LIST Library Types

CMN$PAPR APPROVER PKG LIST Approval/Reject/Checkoff

CMN$PPPK PACKAGE PRT_PKGS LIST Participating Packages

CMN$PAAR PACKAGE AFF_APLS LIST Affected Applications

CMN$PRBR PACKAGE REASONS LIST Revert/Backout Reasons

CMN$PURC PACKAGE USR_RECS LIST Package User Records

DD Name Service Scope Message Description

CMN$PSCC CMPONENT PKG_COMP LIST Source components

CMN$PILC CMPONENT PKG_LOD LIST Load Information

CMN$PUTL CMPONENT PKG_UTIL LIST Scratch/Rename info.

CMN$PISC CMPONENT SRC_INCL LIST Source to Includes

CMN$PCUW CMPONENT PKG_WRKL LIST Component Work List

CMN$PICR PACKAGE IMS_CRGN LIST IMS Control Region

CMN$PIAS PACKAGE IMS_ACB LIST IMS ACB statements

CMN$PIDO IMSOVRD PKG_DBD LIST IMS DBD overrides

CMN$PIPO IMSOVRD PKG_PSB LIST IMS PSB Overrides

CMN$PLNK PACKAGE PKG_LINK LIST Linked Packages

DD Name Service Scope Message Description



CMNPMLOD - Master File XML Extractor

Customization Guide 155

Application Records

ERO Records

CMN$PINC CMPONENT LOD_SUBR LIST Load to included CSECTs

CMN$PSIT SITE PKG LIST Site Information

CMN$PPRH PACKAGE PRM_HIST LIST Package promote history

CMN$PPCH CMPONENT PRM_HIST LIST Component promote history

DD Name Service Scope Message Description

CMN$APRM PARMS APL LIST Application parameters

CMN$ASIT SITE APL LIST Sites, Jobcards

CMN$ALTP LIBTYPE APL LIST Library Types

CMN$ALNG LANGUAGE APL LIST Language Names

CMN$AAPR APPROVER APL LIST Approval List

CMN$ADBA DB2ADMIN APL_ACTV LIST Application Db2 active libraries

CMN$APRC PROCS APL LIST Procedure Names

CMN$ARPT REPORT APL LIST Application report definitions

CMN$AICR IMSCRGN APL LIST Application IMS control regions

CMN$AIDO IMSOVRD APL_DBD LIST Application IMS DBD overrides

CMN$AIPO IMSOVRD APL_PSB LIST Application IMS PSB overrides

CMN$BASL BASELIB SERVICE LIST Baseline Libraries

CMN$PRDL PRODLIB SERVICE LIST Production Libraries

CMN$PRMS PROMLIB SITE LIST Promotion Site Information

CMN$PRML PROMLIB LIBRARY LIST Promotion Site Libraries

DD Name Service Scope Message Description

CMN$RLSM RLSMRLSE SERVICE LIST Release Data

CMN$RGAP RLSMAPPR GLOBAL LIST Release Global Approvers

CMN$RASC RLSMAPPR ASCAPPRV LIST Release Area Approvers

CMN$RARE RLSMAREA SERVICE LIST Release Area Data

CMN$RAPL RLSMAPPL SERVICE LIST Release Application Data

CMN$RLTP RLSMLTYP SERVICE LIST Release Library Type

CMN$RAAP RLSMAPPR RELEASE LIST Release security entity data

CMN$RPRD RLSMRLSE PRIOR LIST Release Prior Release

CMN$RRBR RLSMRLSE REASONS LIST ERO revert/backout reasons

CMN$RSYD RLSMAPPL SYSLIB  LIST Release Application Syslib

CMN$RPRM RLSMAPPL PROMOTE LIST Release Promotion

DD Name Service Scope Message Description



156 ChangeMan® ZMF 

Chapter 6  Utilities

Component Records

PARM Options
No PARM parameter is required in the EXEC statement for CMNPMLOD except when 
invoking the LIST function or the Unload function to extract records to load into Db2 or 
another database.

Return Codes and Error Messages
This table describes return codes for CMNPMLOD.

CMN$RCLK RLSMAREA CMP_LOCK LIST Release Component Lock

CMN$RPKG RLSMRLSE PACKAGE LIST ERO release packages

DD Name Service Scope Message Description

CMN$GCGD CMPONENT GBL_CDSC LIST Global Description

CMN$ACGD CMPONENT APL_CDSC LIST Application Description

CMN$GCSC CMPONENT GBL_SECR LIST Component Security

CMN$ACSC CMPONENT APL_SECR LIST Application Security

CMN$CHIS CMPONENT HISTORY LIST Component History

CMN$GDCP CMPONENT GBL_DPRC LIST Designated Compile Procs

CMN$ADCP CMPONENT APL_DPRC LIST Application Designated Procs

Return 
Code Description

04 There was a B37 condition for one or more output files, but processing continued 
for other output DD statements. See JESMSGLG.

DD Name Service Scope Message Description



CMNPMLOD - Master File XML Extractor

Customization Guide 157

Reporting
This is an example of EXEPMLOD job output at the JESMSGLG DD statement.

Sample CMNPMLOD Extract
This is the first 16 records of CMNPMLOD program output into the data set used at the 
CMN$GPRC DD statement.

Notes or Comments
 Execution parameter REGION=0M is suggested. The storage required to process up to 

64 extract files can be substantial.

 DD statements CMNPMAST, CMNCMPNT, and CMNCMPNL are optional, but you must 
input either the package master file or the two component masters.

• If you are extracting data from the package master only, you can omit DD 
statements CMNCMPNT and CMNCMPNL.

********************************* TOP OF DATA *************************************************************************
                    J E S 2  J O B  L O G  --  S Y S T E M  C 0 0 1  --  N O D E  M P 3 J E S 2                        
                                                                                                                       
19.02.02 J0620680 ---- SUNDAY,    22 MAR 2015 ----                                                                     
19.02.02 J0620680  IRR010I  USERID USER015  IS ASSIGNED TO THIS JOB.                                                   
19.02.02 J0620680  ICH70001I USER015  LAST ACCESS AT 18:47:31 ON SUNDAY, MARCH 22, 2015                                
19.02.02 J0620680  $HASP373 USER015G STARTED - INIT 1    - CLASS A        - SYS C001                                   
19.02.04 J0620680  +SER6702I SERNET XML Dsect Cross Reference. Created: 30 Jan 2015 16:48:44                           
19.02.04 J0620680  +SER6710I CMNPMSEQ processing - 00001402 records read - key  JHFS 000000                            
19.02.04 J0620680  +SER6708I CMN$GPRM Closed - 00000145 records written                                                
19.02.04 J0620680  -                                              --TIMINGS (MINS.)--            -----PAGING COUNTS----
19.02.04 J0620680  -STEPNAME PROCSTEP    RC   EXCP   CONN    TCB    SRB  CLOCK   SERV  WORKLOAD  PAGE  SWAP   VIO SWAPS
19.02.04 J0620680  -CMNPMLD              00    391    290    .00    .00     .0  51156  BATCH        0     0     0     0
19.02.04 J0620680  -USER015G ENDED.  NAME-PACKAGE CACHE LOAD   TOTAL TCB CPU TIME=    .00 TOTAL ELAPSED TIME=    .0    
19.02.04 J0620680  $HASP395 USER015G ENDED                                                                             
------ JES2 JOB STATISTICS ------                                                                                      
  22 MAR 2015 JOB EXECUTION DATE                                                                                       
          128 CARDS READ                                                                                               
          189 SYSOUT PRINT RECORDS                                                                                     
            0 SYSOUT PUNCH RECORDS                                                                                     
           11 SYSOUT SPOOL KBYTES                                                                                      
         0.04 MINUTES EXECUTION TIME                                                                                   
******************************** BOTTOM OF DATA ***********************************************************************

<?xml version="1.0"?>                                              
 <service name="PROCS">                                            
 <scope name="GBL">                                                
 <message name="LIST">                                             
<result>                                                           
 <procName>CMNCOB2</procName>                                      
 <language>COBOL2</language>                                       
 <procDesc>Stage COBOL2 source</procDesc>                          
 <displayOrderNo>00000</displayOrderNo>                            
 </result>                                                         
<result>                                                           
 <procName>CMNSQL</procName>                                       
 <language>SQL</language>                                          
 <procDesc>Translate, compile, and link SQL Stored Proc</procDesc> 
 <displayOrderNo>00000</displayOrderNo>                            
 </result>                                                         
<result>                                                           
 <procName>CMNMAPGN</procName>                                     
 <language>ASM</language>                                          
 <procDesc>CICS BMS MAP Gen</procDesc>                             
 <displayOrderNo>00000</displayOrderNo>                            
 </result>                                                         



158 ChangeMan® ZMF 

Chapter 6  Utilities

• If you are extracting data from the component masters only, you can omit DD 
statement CMNPMAST.

 Use BLSR to reduce EXCP on the VSAM package master and to shorten job runtimes. 
Specify BLSR in your JCL as follows:

//CMNPMAST  DD SUBSYS=(BLSR,'DDNAME=CMNPMALT','STRNO=255')           
//CMNPMALT  DD DISP=SHR,DSN=CMNTP.S6.V810T06.CMNZMF.CMNPMAST  * Package Master

 Output extract XML files all have DCB attribute LRECL=4096. However, you can use 
RECFM FB or VB.

• In FB files, XML statements occupy the complete 4096 record, with a record break 
on a new result.

• In VB files, each XML tag is on separate record.

 XML extract file space requirements depend broadly on the type of data being 
extracted.

• For global and application data extracts, a few tracks should suffice depending on 
the number of library types, sites, applications, etc. in your ChangeMan ZMF 
system.

• For package data extracts, the space required is proportional to the number of 
packages in your system. As an example, for PACKAGE PARMS LIST allow 1 
cylinder of standard 3390 space per 90 packages on the package master.

 If a B37 abend occurs on an XML extract file, the extract to the affected file is 
suspended, but extracts to other files continue. The job ends with RC=04.

Sample CMNPMLOD LIST
This is the (minimal) JCL required:

//PMLODLST EXEC PGM=CMNPMLOD,PARM='LIST'
//STEPLIB  DD   DISP=SHR,DSN=CMNTP.CMN820.LOAD
//         DD   DISP=SHR,DSN=CMNTP.SER820.LOAD
//SYSPRINT DD SYSOUT=*                        

Here are the first few records of the SYSPRINT output:.

Note the unloadable column specifies whether the record type can be extracted in a 
format compatible with Db2 LOAD.

********************************* TOP OF DATA ***********************************************
                                                                                             
 List of service output currently supported by CMNPMLOD at 8.2.0 follows:                    
                                                                                             
 DDname     Service    Scope      Message    Unloadable   Description                        
 --------   --------   --------   --------   ----------   -----------------------------------
                                                                                             
 CMN$GPRM : PARMS      GBL        LIST          Yes       Global parameters                  
 CMN$GSIT : SITE       GBL        LIST          Yes       Global sites                       
 CMN$GPRC : PROCS      GBL        LIST          Yes       Global procedures                  
 CMN$GLTP : LIBTYPE    GBL        LIST          Yes       Global library types               
 CMN$UFNS : FLDNAMES   SERVICE    LIST          Yes       Field name substitutions           
 CMN$RESN : REASONS    SERVICE    LIST          Yes       Global reason code information     
 CMN$GLNG : LANGUAGE   GBL        LIST          Yes       Global languages                   
 CMN$GRPT : REPORT     GBL        LIST          Yes       Global report definitions          
 CMN$GICR : IMSCRGN    GBL        LIST          Yes       Global IMS control regions         
 CMN$GIDO : IMSOVRD    GBL_DBD    LIST          Yes       Global IMS DBD overrides           
 CMN$GIPO : IMSOVRD    GBL_PSB    LIST          Yes       Global IMS PSB overrides           
 CMN$GOFM : FORMS      GBL        LIST          No        Global forms definitions           
 CMN$GDBP : DB2ADMIN   GBL_PHYS   LIST          Yes       Global Db2 physical subsystems     



CMNPMLOD - Master File XML Extractor

Customization Guide 159

CMNPMLOD - UNLOAD to Db2 Loadable Format
Standard CMNPMLOD produces XML as output. If you want to load package master/
component master data into Db2, you can use PARM=UNLOAD to do this. 

The prime purpose of CMNPMLOD is to extract package master/component master data 
and present it in a format that does not change with each release. The standard 
mechanism for doing this is to generate XML in the same way as the ZMF XML services. In 
this way each piece of data is tagged with the name associated with that data. This 
information can be parsed with no further input.

PARM=UNLOAD provides output in a format that can be directly loaded into Db2 (or any 
other DBMS).

This facility has been tailored specifically for use with Db2 in that the DDL and LOAD utility 
statements required to create and load a Db2 table with the results of the CMNPMLOD 
unload extract are generated at the same time as that output. If you are not going to use 
Db2, you can still make use of the LOAD utility statements to define the format of the 
output:

 Db2 users can use the PARM=UNLOAD execution parameter to generate package 
master record output along with the DDL and LOAD utility parameters that can be 
used to load the package master information directly into a Db2 table. This method 
uses the least amount of DASD for the unload file but requires all columns to be 
loaded.

 Db2 users who want to load a subset of the available columns to a Db2 table can use 
the PARM=UNLOADFIXED execution parameter to generate fixed position data in the 
unload record along with associated DDL and LOAD utility parameters. The DDL can 
be modified to generate a table with the desired sub-selection columns. Similarly, the 
LOAD parameters can be modified to load just the columns of interest. This method 
uses more DASD but the unload file can be discarded once the load has completed.

 Non-Db2 users who want to load data to a database of choice can use 
PARM=UNLOADFIXED to produce fields at fixed locations in the output record and 
then use the sample DDL/LOAD parameters to build the utility control information 
they need to load to their target database.

We make use of the existing DD name method to select the data to be output. For 
example, if the DD statement CMN$ALTP is present, the program will generate output as 
provided by the libtype.apl.list service.

To generate Db2-loadable data, instead of xml, into the CMN$xxxx file you need to specify 
the execution parameter PARM=UNLOAD. For example:

       
     //PMLOD   EXEC PGM=CMNPMLOD,PARM='UNLOAD'

//*
//CMNPMAST DD SUBSYS=(BLSR,'DDNAME=CMNPMALT','STRNO=255')
//CMNPMALT DD DISP=SHR,DSN=CMNTP.S7.CMNPMAST
//CMNPMSEQ DD DISP=SHR,DSN=CMNTP.S7.CMNPMAST
//CMNCMPNT DD DISP=SHR,DSN=CMNTP.S7.CMNCMPNT
//CMNCMPNL DD DISP=SHR,DSN=CMNTP.S7.CMNCMPNL
//MAPDATA  DD DISP=SHR,DSN=CMNTP.S7.MAPDATA
//SERPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*



160 ChangeMan® ZMF 

Chapter 6  Utilities

//CMN$ALTP DD DISP=(,CATLG),
//            DSN=CMNTP.PMLOD.ALTP.UNLOAD,
//            UNIT=SYSDA,SPACE=(CYL,(5,10),RLSE),
//            DCB=(RECFM=VB,LRECL=4096,BLKSIZE=0)

Note that the 4096 LRECL with a RECFM of VB will suffice for all service output, except for 
CMN$BASL where an LRECL of 12000 is recommended.

This execution will dynamically allocate two further data sets, namely DDL$ALTP and 
LOD$ALTP. They will be allocated to SYSOUT. However, if these DDnames are precoded in 
the JCL, those allocations are used instead. (See information on the sample EXEPMUNL 
member of the CMNZMF.CNTL distribution library below).

The first of these DDnames will contain the DDL required to define the table that will hold 
this data. In this example, the DDL is as follows (but will vary depending on the service 
output that has been requested):

DROP TABLESPACE dbname.CMN$ALTP;
COMMIT WORK;

CREATE TABLESPACE CMN$ALTP IN dbname
       FREEPAGE 0 PCTFREE 10
       CLOSE NO BUFFERPOOL BP0
       USING STOGROUP SYSDEFLT
       SEGSIZE 32 LOCKSIZE PAGE;
COMMIT WORK;

CREATE TABLE CMNx.CMN$ALTP
    (APPLNAME CHAR(4)
    ,LIBTYPE CHAR(3)
    ,LIKETYPE CHAR(1)
    ,MANAGEMENTCLASS CHAR(8)
    ,STORAGECLASS CHAR(8)
    ,UNITNAME CHAR(8)
    ,VOLUME CHAR(6)
    ,SPACETYPE CHAR(3)
    ,PRIMARYSPACE CHAR(8)
    ,SECONDARYSPACE CHAR(8)
    ,DIRBLOCKS CHAR(6)
    ,RECORDFORMAT CHAR(3)
    ,RECORDLENGTH CHAR(6)
    ,BLOCKSIZE CHAR(6)
    ,LIBRARYVERSION CHAR(1)
    ,ISPDSELIBTYPE CHAR(1)
    ,ISPDSLIBTYPE CHAR(1)
    ,ISSYSMANAGED CHAR(1)
    ,ISPDSEOBJECT CHAR(1)
    ,ISIMSLIBTYPE CHAR(1)
    ,ISSSVALLOWED CHAR(1)
    ,ISSSVENFORCED CHAR(1)
    ,ISDB2LIBTYPE CHAR(1)
    ,CHKOUTCOMPONENTGENDESC CHAR(1)
    ,CHKOUTACTIVITYFILE CHAR(1)
    ,DEFERSTAGELIBCREATION CHAR(1)
    ,INCLUDEUTILITYINFO CHAR(1)
    ,TARGETLOADLIBTYPE CHAR(3)
    ,TARGETACTIVITYFILE CHAR(3)
    ,LIBTYPEDESC VARCHAR(44)
    ,IMSENTITY CHAR(1)
    ,SSVOPTION CHAR(8)
    ,DDLSQLSUBTYPE CHAR(1)
    ,STOREDPROCSUBTYPE CHAR(1)
    ,TRIGGERSUBTYPE CHAR(1)
    ,PLANBINDCONTROLSUBTYPE CHAR(1)
    ,PACKAGEBINDCONTROLSUBTYPE CHAR(1)
    ,SQLSTOREDPROCDEFINITION CHAR(1)
    ,DBRMSUBTYPE CHAR(1)
    ,NATIVESQLSPDEFINITION CHAR(1)



CMNPMLOD - Master File XML Extractor

Customization Guide 161

    ,DB2SQLTERMINATIONCHAR CHAR(1)
    ,LIBRARYSEQUENCENO CHAR(3)
    ,ISHFSLIBTYPE CHAR(1)
    ,EATTR CHAR(1)
    ,DISPLAYORDERNO CHAR(5)
    )

IN dbname.CMN$ALTP;
COMMIT WORK;

Column names are the same as the XML tag names. (If any tag name is greater then 30 
bytes, which is the Db2 maximum length for a column name, it is truncated from the left.)

The default database name is dbname and the table qualifier is 'CMNx'. However these 
names may be changed by adding to the execution parameter. For example:

//PMLOD   EXEC PGM=CMNPMLOD,PARM='UNLOAD,SCD820,CMNI'

will replace the database name with SCD820 and the qualifier with CMNI

The second DDname, LOD$ALTP, contains the Db2 load utility parameters required to load 
this data to the table:

LOAD DATA INDDN UNLD     LOG NO  REPLACE  NOCOPYPEND
EBCDIC  CCSID(01047,00000,00000) INTO TABLE
"CMNx"."CMN$ALTP" (
 "APPLNAME"
      POSITION(*)           CHAR(4)
 ,"LIBTYPE"
      POSITION(*)           CHAR(3)
 ,"LIKETYPE"
      POSITION(*)           CHAR(1)
 ,"MANAGEMENTCLASS"
      POSITION(*)           CHAR(8)
 ,"STORAGECLASS"
      POSITION(*)           CHAR(8)
 ,"UNITNAME"
      POSITION(*)           CHAR(8)
 ,"VOLUME"
      POSITION(*)           CHAR(6)
 ,"SPACETYPE"
      POSITION(*)           CHAR(3)
 ,"PRIMARYSPACE"
      POSITION(*)           CHAR(8)
 ,"SECONDARYSPACE"
      POSITION(*)           CHAR(8)
 ,"DIRBLOCKS"
      POSITION(*)           CHAR(6)
 ,"RECORDFORMAT"
      POSITION(*)           CHAR(3)
 ,"RECORDLENGTH"
      POSITION(*)           CHAR(6)
 ,"BLOCKSIZE"
      POSITION(*)           CHAR(6)
 ,"LIBRARYVERSION"
      POSITION(*)           CHAR(1)
 ,"ISPDSELIBTYPE"
      POSITION(*)           CHAR(1)
 ,"ISPDSLIBTYPE"
      POSITION(*)           CHAR(1)
 ,"ISSYSMANAGED"
      POSITION(*)           CHAR(1)
 ,"ISPDSEOBJECT"
      POSITION(*)           CHAR(1)
 ,"ISIMSLIBTYPE"
      POSITION(*)           CHAR(1)
 ,"ISSSVALLOWED"



162 ChangeMan® ZMF 

Chapter 6  Utilities

      POSITION(*)           CHAR(1)
 ,"ISSSVENFORCED"
      POSITION(*)           CHAR(1)
 ,"ISDB2LIBTYPE"
      POSITION(*)           CHAR(1)
 ,"CHKOUTCOMPONENTGENDESC"
      POSITION(*)           CHAR(1)
 ,"CHKOUTACTIVITYFILE"
      POSITION(*)           CHAR(1)
 ,"DEFERSTAGELIBCREATION"
      POSITION(*)           CHAR(1)
 ,"INCLUDEUTILITYINFO"
      POSITION(*)           CHAR(1)
 ,"TARGETLOADLIBTYPE"
      POSITION(*)           CHAR(3)
 ,"TARGETACTIVITYFILE"
      POSITION(*)           CHAR(3)
 ,"LIBTYPEDESC"
      POSITION(*)           VARCHAR
 ,"IMSENTITY"
      POSITION(*)           CHAR(1)
 ,"SSVOPTION"
      POSITION(*)           CHAR(8)
 ,"DDLSQLSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"STOREDPROCSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"TRIGGERSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"PLANBINDCONTROLSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"PACKAGEBINDCONTROLSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"SQLSTOREDPROCDEFINITION"
      POSITION(*)           CHAR(1)
 ,"DBRMSUBTYPE"
      POSITION(*)           CHAR(1)
 ,"NATIVESQLSPDEFINITION"
      POSITION(*)           CHAR(1)
 ,"DB2SQLTERMINATIONCHAR"
      POSITION(*)           CHAR(1)
 ,"LIBRARYSEQUENCENO"
      POSITION(*)           CHAR(3)
 ,"ISHFSLIBTYPE"
      POSITION(*)           CHAR(1)
 ,"EATTR"
      POSITION(*)           CHAR(1)
 ,"DISPLAYORDERNO"
      POSITION(*)           CHAR(5)
 )

This format of output is variable in length. To save space any field over 16 bytes in length 
is presented as varchar. For example, for CMN$ADCP we have:

LOAD DATA INDDN UNLD     LOG NO  REPLACE  NOCOPYPEND
EBCDIC  CCSID(01047,00000,00000) INTO TABLE
"CMNx"."CMN$ADCP" (
 "COMPONENT"
      POSITION(*)           VARCHAR
 ,"COMPONENTTYPE"
      POSITION(*)           CHAR(3)
 ,"APPLNAME"
      POSITION(*)           CHAR(4)
 ,"BUILDPROC"
      POSITION(*)           CHAR(8)
 ,"COMPILEOPTIONS"
      POSITION(*)           VARCHAR



CMNPMLOD - Master File XML Extractor

Customization Guide 163

 ,"LINKOPTIONS"
      POSITION(*)           VARCHAR
 ,"LANGUAGE"
      POSITION(*)           CHAR(8)
 ,"USEDB2PRECOMPILEOPTION"
      POSITION(*)           CHAR(1)
 ,"FORCEASSIGNEDBUILDPROC"
      POSITION(*)           CHAR(1)
 ,"USEROPTION01"
      POSITION(*)           CHAR(1)
 ,"USEROPTION02"
      POSITION(*)           CHAR(1)
 ,"USEROPTION03"
      POSITION(*)           CHAR(1)
 ,"USEROPTION04"
      POSITION(*)           CHAR(1)
 ,"USEROPTION05"
      POSITION(*)           CHAR(1)
 ,"USEROPTION06"
      POSITION(*)           CHAR(1)
 ,"USEROPTION07"
      POSITION(*)           CHAR(1)
 ,"USEROPTION08"
      POSITION(*)           CHAR(1)
 ,"USEROPTION09"
      POSITION(*)           CHAR(1)
 ,"USEROPTION10"
      POSITION(*)           CHAR(1)
 ,"USEROPTION11"
      POSITION(*)           CHAR(1)
 ,"USEROPTION12"
      POSITION(*)           CHAR(1)
 ,"USEROPTION13"
      POSITION(*)           CHAR(1)
 ,"USEROPTION14"
      POSITION(*)           CHAR(1)
 ,"USEROPTION15"
      POSITION(*)           CHAR(1)
 ,"USEROPTION16"
      POSITION(*)           CHAR(1)
 ,"USEROPTION17"
      POSITION(*)           CHAR(1)
 ,"USEROPTION18"
      POSITION(*)           CHAR(1)
 ,"USEROPTION19"
      POSITION(*)           CHAR(1)
 ,"USEROPTION20"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0101"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0102"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0103"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0104"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0105"
      POSITION(*)           CHAR(1)
 ,"USEROPTION0201"
      POSITION(*)           CHAR(2)
 ,"USEROPTION0202"
      POSITION(*)           CHAR(2)
 ,"USEROPTION0203"
      POSITION(*)           CHAR(2)
 ,"USEROPTION0301"
      POSITION(*)           CHAR(3)
 ,"USEROPTION0302"



164 ChangeMan® ZMF 

Chapter 6  Utilities

      POSITION(*)           CHAR(3)
 ,"USEROPTION0303"
      POSITION(*)           CHAR(3)
 ,"USEROPTION0401"
      POSITION(*)           CHAR(4)
 ,"USEROPTION0402"
      POSITION(*)           CHAR(4)
 ,"USEROPTION0403"
      POSITION(*)           CHAR(4)
 ,"USEROPTION0801"
      POSITION(*)           CHAR(8)
 ,"USEROPTION0802"
      POSITION(*)           CHAR(8)
 ,"USEROPTION0803"
      POSITION(*)           CHAR(8)
 ,"USEROPTION0804"
      POSITION(*)           CHAR(8)
 ,"USEROPTION0805"
      POSITION(*)           CHAR(8)
 ,"USEROPTION1001"
      POSITION(*)           CHAR(10)
 ,"USEROPTION1002"
      POSITION(*)           CHAR(10)
 ,"USEROPTION1601"
      POSITION(*)           CHAR(16)
 ,"USEROPTION1602"
      POSITION(*)           CHAR(16)
 ,"USEROPTION3401"
      POSITION(*)           VARCHAR
 ,"USEROPTION3402"
      POSITION(*)           VARCHAR
 ,"USEROPTION4401"
      POSITION(*)           VARCHAR
 ,"USEROPTION4402"
      POSITION(*)           VARCHAR
 ,"USEROPTION6401"
      POSITION(*)           VARCHAR
 ,"USEROPTION6402"
      POSITION(*)           VARCHAR
 ,"USEROPTION6403"
      POSITION(*)           VARCHAR
 ,"USEROPTION6404"
      POSITION(*)           VARCHAR
 ,"USEROPTION6405"
      POSITION(*)           VARCHAR
 ,"USEROPTION7201"
      POSITION(*)           VARCHAR
 ,"USEROPTION7202"
      POSITION(*)           VARCHAR
 ,"USEROPTION7203"
      POSITION(*)           VARCHAR
 ,"USEROPTION7204"
      POSITION(*)           VARCHAR
 ,"USEROPTION7205"
      POSITION(*)           VARCHAR
 )

The Db2 load utility works out the location of each field to account for the varchar nature 
of much of the data. This format is typically of use only if you are using Db2 and if you will 
be loading all columns to your table. If desired, you can work these positions out for 
yourself, each CHAR data item is exactly the length as specified, each VARCHAR begins 
with a 2-byte length followed by the data item with the length just specified (that is, the 
length does not include the length 2 bytes. For example, XL2'0008',CL8'12345678'), each 
value follows on immediately from the one before. This data format takes up the least 
amount of space in the output extract file.



CMNPMLOD - Master File XML Extractor

Customization Guide 165

The sample EXEPMUNL member of the CMNZMF.CNTL distribution library is provided to 
show how to extract, create a table, and load it in one job, discarding the extract. For 
example:

//*       ddnames are processed sequentially.
//*
//* The output file, CMN$xxxx, is in a format which may be used
//* to immediately load a DB2 table.
//*
//* The DDL$xxxx file contain DDL which can be used to create a table
//* to hold the output fields.
//*
//* The LOD$xxxx contains a DB2 load command for this data but it can
//* also be used to show the format of the output file records for
//* use by other DBMS load processes.
//*
//* If no records are found for the requested record type then
//* CMNPMLOD will end with rc=6 to prevent further steps from
//* executing.
//*
//JOBLIB   DD  DISP=SHR,DSN=somnode.CMNZMF.LOAD
//         DD  DISP=SHR,DSN=somnode.SERCOMC.LOAD
//         DD  DISP=SHR,DSN=DSNvrm.SDSNEXIT
//         DD  DISP=SHR,DSN=DSNvrm.SDSNLOAD
//*
//* Execute the ZMF extract utility with the UNLOAD parm
//*
//PMLOD   EXEC PGM=CMNPMLOD,REGION=0M,
//             PARM='UNLOAD,datbase,qual'
//*
//CMNPMAST DD  SUBSYS=(BLSR,'DDNAME=CMNPMALT','STRNO=255')
//CMNPMALT DD  DISP=SHR,DSN=somnode.CMNZMF.CMNPMAST
//CMNPMSEQ DD  DISP=SHR,DSN=somnode.CMNZMF.CMNPMAST
//CMNCMPNT DD  DISP=SHR,DSN=somnode.CMNZMF.CMNCMPNT
//CMNCMPNL DD  DISP=SHR,DSN=somnode.CMNZMF.CMNCMPNL
//*
//* XML dataspace backup
//*
//MAPDATA  DD  DISP=SHR,DSN=somnode.SERCOMC.MAPDATA
//*
//* Traces and dumps
//*
//SERPRINT DD  SYSOUT=*
//SYSUDUMP DD  SYSOUT=*
//*
//* DB2 unload output
//*
//CMN$xxxx DD DISP=(,PASS),DSN=&&UNLOAD,
//            UNIT=SYSDA,SPACE=(CYL,(ppp,sss),RLSE),
//            DCB=(RECFM=VB,LRECL=4096,BLKSIZE=0)
//*CMN$BASL   DCB=(RECFM=VB,LRECL=12000,BLKSIZE=0)
//*
//* Sample Drop/Create DDL
//*
//DDL$xxxx DD DISP=(,PASS),DSN=&&DDL,
//            UNIT=SYSDA,SPACE=(TRK,(1,1)),
//            DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//*
//* Sample DB2 LOAD command
//*
//LOD$xxxx DD DISP=(,PASS),DSN=&&LOAD,
//            UNIT=SYSDA,SPACE=(TRK,(1,1)),
//            DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)
//*
//* Drop/Create the table required to hold this data
//*



166 ChangeMan® ZMF 

Chapter 6  Utilities

//CREATE  EXEC PGM=IKJEFT01,COND=(4,LT),
//             DYNAMNBR=20
//SYSTSPRT  DD SYSOUT=*
//SYSTSIN   DD *
 DSN SYSTEM(ssss)
 RUN  PROGRAM(DSNTIAD) PLAN(DSNTIAvr) -
      LIB('DB2ssss.RUNLIB.LOAD')
//SYSPRINT  DD SYSOUT=*
//SYSIN     DD DISP=(OLD,DELETE),DSN=&&DDL
//*
//* Load the data into the table
//*
//LOAD     EXEC PGM=DSNUTILB,
//             PARM='ssss'
//SYSPRINT  DD SYSOUT=*
//UNLD      DD DISP=(OLD,DELETE),DSN=&&UNLOAD
//SYSUT1    DD UNIT=SYSDA,SPACE=(CYL,10)
//SORTOUT   DD UNIT=SYSDA,SPACE=(CYL,10)
//SYSMAP    DD UNIT=SYSDA,SPACE=(CYL,10)
//UTPRINT   DD SYSOUT=*
//SYSIN     DD DISP=(OLD,DELETE),DSN=&&LOAD

An easier way to extract specific items of data (at the cost of using more DASD for the 
extract), or to extract data for loading into a DBMS other than Db2, is to force each item 
(whether CHAR or VARCHAR) to occupy the maximum width. This format is requested 
using the PARM='UNLOADFIXED' execution parameter. For example:

//PMLOD   EXEC PGM=CMNPMLOD,PARM='UNLOADFIXED'

or

//PMLOD   EXEC PGM=CMNPMLOD,PARM='UNLOADFIXED,SCD820,CMNI'

Using this mechanism, for example, the format of the LOAD parameters produced in the 
LOD$ALTP ddname now looks like this (and the data output to CMN$ALTP matches this 
different format):

LOAD DATA INDDN UNLD     LOG NO  REPLACE  NOCOPYPEND
EBCDIC  CCSID(01047,00000,00000) INTO TABLE
"CMNx"."CMN$ALTP" (
 "APPLNAME"
      POSITION(00001:00004) CHAR(4)
 ,"LIBTYPE"
      POSITION(00005:00007) CHAR(3)
 ,"LIKETYPE"
      POSITION(00008:00008) CHAR(1)
 ,"MANAGEMENTCLASS"
      POSITION(00009:00016) CHAR(8)
 ,"STORAGECLASS"
      POSITION(00017:00024) CHAR(8)
 ,"UNITNAME"
      POSITION(00025:00032) CHAR(8)
 ,"VOLUME"
      POSITION(00033:00038) CHAR(6)
 ,"SPACETYPE"
      POSITION(00039:00041) CHAR(3)
 ,"PRIMARYSPACE"
      POSITION(00042:00049) CHAR(8)
,"SECONDARYSPACE"
     POSITION(00050:00057) CHAR(8)
,"DIRBLOCKS"
     POSITION(00058:00063) CHAR(6)
,"RECORDFORMAT"
     POSITION(00064:00066) CHAR(3)
,"RECORDLENGTH"
     POSITION(00067:00072) CHAR(6)



CMNPMLOD - Master File XML Extractor

Customization Guide 167

,"BLOCKSIZE"
     POSITION(00073:00078) CHAR(6)
,"LIBRARYVERSION"
     POSITION(00079:00079) CHAR(1)
,"ISPDSELIBTYPE"
     POSITION(00080:00080) CHAR(1)
,"ISPDSLIBTYPE"
     POSITION(00081:00081) CHAR(1)
,"ISSYSMANAGED"
     POSITION(00082:00082) CHAR(1)
,"ISPDSEOBJECT"
     POSITION(00083:00083) CHAR(1)
,"ISIMSLIBTYPE"
     POSITION(00084:00084) CHAR(1)
,"ISSSVALLOWED"
     POSITION(00085:00085) CHAR(1)
,"ISSSVENFORCED"
     POSITION(00086:00086) CHAR(1)
,"ISDB2LIBTYPE"
     POSITION(00087:00087) CHAR(1)
,"CHKOUTCOMPONENTGENDESC"
     POSITION(00088:00088) CHAR(1)
,"CHKOUTACTIVITYFILE"
     POSITION(00089:00089) CHAR(1)
,"DEFERSTAGELIBCREATION"
     POSITION(00090:00090) CHAR(1)
,"INCLUDEUTILITYINFO"
     POSITION(00091:00091) CHAR(1)
,"TARGETLOADLIBTYPE"
     POSITION(00092:00094) CHAR(3)
,"TARGETACTIVITYFILE"
     POSITION(00095:00097) CHAR(3)
,"LIBTYPEDESC"
     POSITION(00098) VARCHAR
,"IMSENTITY"
     POSITION(00144:00144) CHAR(1)
,"SSVOPTION"
     POSITION(00145:00152) CHAR(8)
,"DDLSQLSUBTYPE"
     POSITION(00153:00153) CHAR(1)
,"STOREDPROCSUBTYPE"
     POSITION(00154:00154) CHAR(1)
,"TRIGGERSUBTYPE"
     POSITION(00155:00155) CHAR(1)
,"PLANBINDCONTROLSUBTYPE"
     POSITION(00156:00156) CHAR(1)
,"PACKAGEBINDCONTROLSUBTYPE"
     POSITION(00157:00157) CHAR(1)
,"SQLSTOREDPROCDEFINITION"
     POSITION(00158:00158) CHAR(1)
,"DBRMSUBTYPE"
     POSITION(00159:00159) CHAR(1)
,"NATIVESQLSPDEFINITION"
     POSITION(00160:00160) CHAR(1)
,"DB2SQLTERMINATIONCHAR"
     POSITION(00161:00161) CHAR(1)
,"LIBRARYSEQUENCENO"
     POSITION(00162:00164) CHAR(3)
,"ISHFSLIBTYPE"
     POSITION(00165:00165) CHAR(1)
,"EATTR"
     POSITION(00166:00166) CHAR(1)
,"DISPLAYORDERNO"
     POSITION(00167:00171) CHAR(5)
)



168 ChangeMan® ZMF 

Chapter 6  Utilities

Note that the field positions are now each at an explicit, fixed, location in the extract 
record (as given by the POSITION sub-parameter).

A comparison of DASD usage for the worst case scenario, that is, CMN$CHIS, shows the 
following for a test subsystem, which had 328,574 component master history records at 
the time these extracts were run:

Standard XML: 510 Cyls
UNLOAD: 179 Cyls
UNLOADFIXED: 913 Cyls

Other records, less populous and with fewer fields per record, will not show such a wide 
spread.

CMNSRCPP - Assembler Macro Discovery
The CMNSRCPP utility program discovers assembler macros in assembler source code. It 
can also discover copybooks in assembler source code and may be used to replace 
CMNWRITE for this function. CMNSRCPP executes after the assembly (unlike CMNWRITE 
which executes before the assembly). CMNSRCPP processes two kinds of sidefile:

 ADATA - Information about both macros and copybooks included by the assembler are 
passed in the SYSADATA output to CMNSRCPP. CMNSRCPP then records the details as 
source-to-copy records in the current package.

 Output produced by the assembler LIBRARY exit. We have written our own assembler 
LIBRARY exit, CMNHLALX, which will pass on information only about macros to 
CMNSRCPP. This mechanism allows CMNWRITE to be used as well as CMNSRCPP in 
case you rely on some other feature of CMNWRITE (that is, other than the copybook 
detection feature). So, in this case, CMNWRITE will detect and write source-to-copy 
records for copybooks and CMNSRCPP will add source-to-copy records for macros. 

The output from CMNSRCPP (which appears after the assembler output) looks a lot like 
the copybook analysis produced by CMNWRITE. The SYSIN to this utility is similar too with 
the TYP= keyword assigning library types to syslib libraries. The only significant 
differences in SYSIN are:

 CLR=YES or NO

CLR=YES is the default. This parameter tells CMNSRCPP whether (YES) to delete all 
pre-existing source-to-copy records for the component in the current package before 
proceeding. That is, we are using CMNSCRPP to record both macros and copybooks.

CLR=NO means that pre-existing source-to-copy records will not be deleted. CLR=NO 
should only be specified where CMNWRITE will have cleared the source-to-copy 
records before adding entries for copybooks. CMNSRCPP then adds entries for macros 
only.

 XCL=library.name

This parameter tells CMNSRCPP to ignore macros and copybooks drawn from this 
library. It allows us to ignore library macros and copybooks over which ZMF has no 
control. In our skeletons we currently have these libraries specified:

XCL=SYS1.MACLIB

XCL=SYS1.MODGEN



CMNSSIDN - LINK EDIT Control Preparation

Customization Guide 169

XCL=TCPIP.SEZACMAC

CMNSSIDN - LINK EDIT Control Preparation
Program CMNSSIDN prepares link edit control statements for the link edit step in stage, 
recompile, and relink. 

If there are no link edit control statements for the object or load being processed, 
program CMNSSIDN fabricates the necessary statements and passes them to the 
subsequent link edit step. The fabricated link edit control statement are not kept after the 
link edit step.

If you provide link edit control statements in a package staging library or in a baseline 
member, CMNSSIDN processes those control statement, sometimes modifying them, and 
passes them to the subsequent link edit step. The control statements in the staging or 
baseline member are not changed.

Whether CMNSSIDN modifies existing link edit control statements, or how it fabricates 
control statements from scratch, is determined by:

 Object created by previous compile or recompile processing.

 CMNSSIDN program execution parameters included in the JCL when skeleton 
CMNSSIDN is file tailored.

 CMNSSIDN program SYSIN keyword options included in the JCL when skeleton 
CMNSSIDN is file tailored.

CMNSSIDN Input
 Object code in a sequential file from a compile step.

 Link edit control statements from a dynamically allocated staging or baseline library.

 Optional program execution parameters.

 Keyword options read through SYSIN.

Output
Link edit control statements ready for a link edit step.

NOTE  File tailoring for skeleton CMN$$LNK may add INCLUDE statements for CICS 
language interface modules to the link edit control passed from program CMNSSIDN and 
input the SYSLIN ddname for the linkage editor.



170 ChangeMan® ZMF 

Chapter 6  Utilities

Sample JCL
This is a sample job fragment that illustrates what a CMNSSIDN step can look like. This 
JCL was created from skeleton CMN$$SSI by ISPF file tailoring.

DD Statements
This table describes DD statements for CMNSSIDN.

Program Execution Parameters
The PARM= statement is not required in CMNSSIDN execution JCL. Any parameter that 
can be input though the program PARM= statement can be input through a SYSIN control 
statement using the OPT= keyword. If a parameter is input through both the PARM= 
statement and an OPT= SYSIN control statement, the SYSIN control statement takes 
precedence.

//SSIDN   EXEC PGM=CMNSSIDN,   *** PROCESS LINK-EDIT CONTROL CARDS
//             COND=(4,LT)                                        
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST40S1,                       
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                 
//             DCB=(RECFM=FA,LRECL=133,BLKSIZE=0)                 
//SYSUDUMP DD  SYSOUT=*                                           
//ABNLIGNR DD  DUMMY                                              
//OBJ      DD  DUMMY                                              
//LCT      DD  DISP=(,PASS),DSN=&&LCT,                            
//             UNIT=SYSDA,SPACE=(TRK,(1,5)),                      
//             DCB=(RECFM=F,LRECL=80,BLKSIZE=0)                   
//STG      DD  DISP=(,PASS),DSN=&&NULLLCT,                        
//             UNIT=SYSDA,SPACE=(TRK,(1,1,1),RLSE),               
//             DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)         
//SYSIN    DD  *                                                  
BAS=CMNTP.S6.V810.BASE.ACTP.LCT                                   
LCT=ACPSRS00                                                      
SSI=67BCF0C2                                                      
PKG=ACTP000038                                                    
RLK=Y                                                             
UIL=Y                                                             
OPT=CALL                                                          

DDNAME I/O Purpose

OBJ Input Sequential file containing object code from a compile step. 
This DD statement is omitted for relink.

LCT Output Sequential file containing control statements for a linkage edit or 
binder step.

STG Input Staging library for link edit control members.

SYSIN Input File containing 80-byte keyword option records.

SYSPRINT Output File that displays information from the execution of CMNSSIDN:
See "Reporting" on page 187.



CMNSSIDN - LINK EDIT Control Preparation

Customization Guide 171

This table describes program parameters for program CMNSSIDN.

SYSIN Control Statements
CMNSSIDN keyword options are input to the program through the SYSIN ddname.

 Keyword options must start in position 1.

Parameter Use Description

CALL Optional Pass INCLUDE statements found in staging or baseline link edit 
control member to the output file at ddname LCT.
Default: Omitting this parameter and the NCAL parameter is the 
same as coding CALL.

NCAL Optional Do not pass INCLUDE statements found in staging or baseline link 
edit control member to the output file at ddname LCT.
Default: Omitting this parameter and the CALL parameter is the 
same as coding CALL.

NAME Optional Pass NAME statements found in staging or baseline link edit 
control member to the output file at ddname LCT. If no NAME 
statement is found in a stored link edit control member, or if 
there is no stored member, fabricate a NAME statement and write 
to ddname LCT.
Default: Omitting this parameter and the NONAME parameter is 
the same as coding NAME.

NONAME Optional Do not pass NAME statements found in staging or baseline link 
edit control members to the output file at ddname LCT. Suppress 
fabrication of NAME statement if no NAME statement is found in a 
stored link edit control member, or if there is no stored member.
Default: Omitting this parameter and the NAME parameter is the 
same as coding NAME.

DLITASM Optional Generate these link edit control statements and write to the 
output LCT file.
INCLUDE SYSLIB(DFSLI000)
  ENTRY DLITASM

DLITCBL Optional Generate these link edit control statements and write to the 
output LCT file.
INCLUDE SYSLIB(DFSLI000)
  ENTRY DLITCBL

DLITPLI Optional Generate these link edit control statements and write to the 
output LCT file.
INCLUDE SYSLIB(DFSLI000)
  ENTRY DLITPLI

OBJECT Optional Change object processing as follows:
 Copy object code from ddname OBJ to ddname LCT.
 Fabricate SETSSI and IDENTIFY statements and write to 

ddname LCT.
 Copy any non-object from ddname OBJ to ddname LCT. 

Non-object in an object deck is usually a NAME link edit control 
statement generated by the Easytrieve compiler or by the COBOL 
compiler when the NAME option is used.
Use the OBJECT parameter when staging or recompiling 
Easytrieve source or COBOL source when the NAME option of the 
COBOL compiler is used.



172 ChangeMan® ZMF 

Chapter 6  Utilities

 A SYSIN record should contain only one keyword option.

 Blank SYSIN records are not permitted.

 Comment records are designated by * in position 1.

This table describes keyword options input to CMNSSIDN through the SYSIN ddname.

Option Use Description

* in Position 1 Optional Denotes a comment.

BAS=library Required Specifies a baseline library for link edit control members.

CST=Y Optional Forces CMNSSIDN use the first CSECT name in the object 
ESD for the generated NAME statement written to ddname 
LCT.
Default: The default for this option is CST=N.

LCT=member Required Specifies a link edit control member to input to program 
CMNSSIDN.
Default: If you omit this control statement, the output load 
module name will be set to TEMPNAME.

NID=csect Optional Suppresses generation of an IDENTIFY statement for the 
specified CSECT. Up to 64 NID= control statements can be 
input to CMNSSIDN.

OPT=parameter Optional Inputs program execution parameters through the SYSIN 
ddname.
Program execution parameters are described in "Program 
Execution Parameters" on page 170. Example:
OPT=NCAL
Note: Each OPT= keyword specifies only one CMNSSIDN 
execution parameter, but there can be multiple OPT= 
keyword option records input to SYSIN. The following are 
functionally equivalent:

PARM='NAME,CALL,OBJECT'

...and...

//SYSIN    DD *
OPT=NAME
OPT=CALL
OPT=OBJECT

PKG=packageID Required Specifies the package ID of the component being processed. 
The package ID is part of the ChangeMan ZMF fingerprint 
that CMNSSIDN creates for the IDENTIFY statement that is 
fabricated and written to ddname LCT.
Default: If you omit this control statement, the package ID in 
the fingerprint is set to 10 spaces.

RLK=Y Optional Indicates that there is no object input to CMNSSIDN.
Default: The default for this option is RLK=N.

RMB=csect Optional Indicates that package audit auto resolve has found a CSECT 
that must be replaced in the composite load module named in 
LCT=member. If there is no link edit control for 
LCT=member, then CMNSSIDN fabricates a REPLACE 
statement for the specified CSECT and writes the statement 
to ddname LCT.
See "INCLIB and CMNSSIDN" on page 173.



CMNSSIDN - LINK EDIT Control Preparation

Customization Guide 173

INCLIB and CMNSSIDN
Skeleton CMN$$ILL builds a library concatenation at ddname INCLIB for relink job JCL. 
INCLIB contains staging, promotion, and baseline libraries for the relink target load library 
type.

However, ddname INCLIB is not always referenced when a relink is executed. CMNSSIDN 
fabricates an INCLUDE INCLIB(member) statement when:

1 A relink job is initiated by package audit auto resolve to replace one or more statically 
linked subprograms in composite load module member.

2 There are no link edit control statements for member in baseline or staging libraries. 
(The composite load module member was created with the Automatic Call Library 
facility of the linkage editor when member source was staged or recompiled.)

Return Codes and Error Messages
This table describes user abend codes for program CMNSSIDN.

Reporting
Program CMNSSIDN reports input keyword options, program execution parameters, what 
link control statement libraries it used, and the output link edit control statements it wrote 
to output ddname LCT. The report is written to the SYSPRINT ddname.

SSI=hexvalue Required Specifies the hexadecimal value in the SETSSI statement 
written to ddname LCT. This number is also included in the 
ChangeMan ZMF fingerprint in the IDENTIFY statement 
fabricated by CMNSSIDN and written to ddname LCT.
Default: If you omit this control statement, the SETSSI in the 
fingerprint is set to zeros.

UIL=Y Optional Indicates when CMNSSIDN fabricates a REPLACE link edit 
control statement, it will fabricate an INCLUDE 
INCLIB(member) rather than INCLUDE SYSLIB(member) and 
write it to ddname LCT.
See "INCLIB and CMNSSIDN" on page 173.
Default: The default for this option is UIL=N.

Code Cause

S000 U0005 Unable to open //SYSPRINT.

S000 U0006 Unable to open //SYSIN.

S000 U0007 Unable to open //OBJ when PARM=OBJECT or OPT=OBJECT in //SYSIN is 
specified.

S000 U0008 Unable to open //LCT.

S000 U0009 Read error on baseline or staging LCT member.

Option Use Description



174 ChangeMan® ZMF 

Chapter 6  Utilities

This is an example of the report.

CMNSSIDN Examples
 Stage simple program without link edit control member

 Stage simple program with link edit control member

********************************************************************************
* DDNAME: SSIDN.SYSPRINT                                                       *
********************************************************************************
                                                                                
ChangeMan(R) ZMF      CMNSSIDN - 8.1.0  TUESDAY FEBRUARY 24, 2015  20:46:47     
 PARM=''                                                                        
SYSIN: BAS=CMNTP.S6.V810.BASE.ACTP.LCT                                          
SYSIN: LCT=ACPSRC1A                                                             
SYSIN: SSI=67BCDAA5                                                             
SYSIN: PKG=ACTP000038                                                           
SYSIN: RLK=                                                                     
SYSIN: UIL=                                                                     
SYSIN: OPT=CALL                                                                 
Options compiled from PARM/SYSIN follow:                                        
 NAME        - Allow "NAME" directive.                                          
 CALL        - Allow "INCLUDE" directives.                                      
END OF DATA ON "OBJ" DETECTED                                                   
STAGING "LCT" OPENED                                                            
STAGING "LCT" MEMBER NOT FOUND                                                  
ATTEMPTING TO ALLOCATE BASELINE "LCT"                                           
BASELINE "LCT" ALLOCATED                                                        
BASELINE "LCT" OPENED                                                           
BASELINE "LCT" MEMBER NOT FOUND                                                 
FABRICATING LCT CARDS FROM SCRATCH                                              
       <...+....1....+....2....+....3....+....4....+....5....+....6....+....7.>.
LCT:           SETSSI 67BCDAA5                                                  
LCT:         IDENTIFY ACPSRC1A('ACPSRC1A/67BCDAA5/ACTP000038')                  
LCT:            NAME  ACPSRC1A(R)                                               

Input LCT None

Output LCT FABRICATING LCT CARDS FROM SCRATCH                            
       <...+....1....+....2....+....3....+....4....+....5....+
LCT:           SETSSI 67BCDAA5                                
LCT:         IDENTIFY ACPSRC1A('ACPSRC1A/67BCDAA5/ACTP000038')
LCT:            NAME  ACPSRC1A(R)                             

Input LCT        <...+....1....+....2....+....3....+....4....+....5....+
LCT:    NAME  ACPSRS5C(R)                                     

Output LCT PROCESSING MEMBER IN BASELINE "LCT"                           
       <...+....1....+....2....+....3....+....4....+....5....+
LCT:           SETSSI 53F61C58                                
LCT:         IDENTIFY ACPSRS5C('ACPSRS5C/53F61C58/ACTP000082')
LCT:    NAME  ACPSRS5C(R)                                     



CMNUPDAT - Stacked Reverse Delta Management

Customization Guide 175

 Relink composite load using link edit control member

 Relink initiated by audit auto resolve for composite load without link edit 
control member (link edited with Automatic Call Library facility)

 CMNUPDAT - Stacked Reverse Delta Management
Program CMNUPDAT manages the current and prior versions of text components that use 
stacked reverse delta (SRD) storage means in baseline libraries.

Differences between component versions are stored as reverse deltas (SRD) that can be 
applied to the full current version to create prior versions. The current version of a 
component is stored in a baseline PDS(E), library, and all deltas for the component are 
stored in a single PDS(E) member with the same name in a delta library.

Program CMNUPDAT performs four functions:

 Baseline Ripple - Compare the staging library member to the baseline library 
member to create a set of delta records. Add the delta records to the front of the 
member in the SRD library, effectively rippling prior versions down the stack. Discard 
the oldest set of delta records if the set exceeds the maximum number of versions. 
Replace the current baseline member with the staging library member.

 Reverse Baseline Ripple (Backout) - Apply the latest delta records in the SRD 
library member to the current baseline library member to create the prior version. 
Replace the baseline library member with this prior version. Delete the latest delta 
records in the SRD library member, effectively reverse rippling the stack of prior 
versions. 

 Scratch - Compress the baseline library member into a set of delta records. Add the 
delta records to the front of the member in the SRD library, effectively rippling prior 

Input LCT        <...+....1....+....2....+....3....+....4....+....5....+
LCT:    INCLUDE SYSLIB(ACPSRS5A)                              
LCT:    INCLUDE SYSLIB(ACPSRS5B)                              
LCT:    INCLUDE SYSLIB(ACPSRS5C)                              
LCT:    INCLUDE SYSLIB(ACPSRS00)                              
LCT:        NAME  ACPSRC50(R)                                 

Output LCT PROCESSING MEMBER IN BASELINE "LCT"                           
       <...+....1....+....2....+....3....+....4....+....5....+
LCT:    INCLUDE SYSLIB(ACPSRS5A)                              
LCT:    INCLUDE SYSLIB(ACPSRS5B)                              
LCT:    INCLUDE SYSLIB(ACPSRS5C)                              
LCT:    INCLUDE SYSLIB(ACPSRS00)                              
LCT:           SETSSI 53F7E98A                                
LCT:        NAME  ACPSRC50(R)                                 

Input LCT None

Output LCT FABRICATING LCT CARDS FROM SCRATCH                            
       <...+....1....+....2....+....3....+....4....+....5....+
LCT:          REPLACE  ACPSRS1B                               
LCT:          INCLUDE INCLIB(ACPSRC1A)                        
LCT:           SETSSI 53F7EADF                                
LCT:            NAME  ACPSRC1A(R)                             



176 ChangeMan® ZMF 

Chapter 6  Utilities

versions down the stack. Discard the oldest set of delta records if the set exceeds the 
maximum number of versions. Delete the member from the baseline library.

 Copy - Apply the required sets of delta records to the baseline library member to 
recreate the requested prior version. Copy this prior version to a specified data set. (If 
the specified data set is a staging library, this is checkout of a prior version.)

Special cases, like baseline ripple for a new component or scratch for a component that 
has no prior versions execute these same functions while managing empty baseline and/
or SRD library members.

CMNUPDAT Input and Output
Input and output for CMNUPDAT depend on the function being performed.

Sample JCL
This is a ChangeMan ZMF installation job fragment that shows a CMNUPDAT step for 
baseline ripple. This JCL was created from skeleton CMN30SRD by ISPF file tailoring.

Function Input Output

Baseline Ripple Staging library
Baseline library
Baseline SRD library

Baseline library
Baseline SRD library

Reverse Baseline Ripple 
(Backout)

Baseline library
Baseline SRD library

Baseline library
Baseline SRD library

Scratch Baseline library Baseline library
Baseline SRD library

Copy Baseline library
Baseline SRD library

PDS member or staging 
library.

//UPDSRC  EXEC PGM=CMNUPDAT,   *** RIPPLE SRC COMPONENTS     
//             REGION=4M,                                    
//             COND=(4,LT),                                  
//             PARM='APPLY,REALLOC,MAXLEVEL(9)'              
//*)IM CMN$$ENQ                                              
//SYSUT3   DD  DISP=(MOD,DELETE),                            
//             DSN=CMNTP.S6.V810.BASE.ACTP.SRC.ENQ,          
//             UNIT=SYSDA,SPACE=(CYL,(5,5))                  
//SYSUT4   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                  
//CMNUPDAT DD  SYSOUT=*                                      
//SYSPRINT DD  SYSOUT=*                                      
//ABNLIGNR DD  DUMMY                                         
//SYSUDUMP DD  SYSOUT=*                                      
//BASELIB  DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.SRC      
//DELTALIB DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.SRC.DELTA
//STAGELIB DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000039.SRC   
//SYSIN    DD  *                                             
ACTCOB01                                                     



CMNUPDAT - Stacked Reverse Delta Management

Customization Guide 177

DD Statements
This table describes DD statements for program CMNUPDAT.

PARM Options
The PARM parameter is required in the EXEC statement for CMNUPDAT. This table 
describes CMNUPDAT options that are input through the PARM parameter.

DDNAME I/O Purpose

SYSUT3 N/A Creates an enqueue to single thread jobs

SYSUT4 I/O Temporary work data set

CMNUPDAT O Listing from the process that was executed. Examples:
 SERCMPAR listing of text differences that were converted into 

delta records
 CMNDELTA listing that shows delta records that were applied 

to create a prior version

SYSPRINT O Listing that displays actions taken for each member processed.

BASELIB I/O Baseline library.
Note: This DD name can be changed with the BASELIB(ddname) 
subparameter of the PARM statement.

DELTALIB I/O Stacked reverse delta library. Must be RECFM=FB. If incorrect, 
message CMN5114A - Stacked reverse delta minus baseline must 
be RECFM=FB
Note: This DD name can be changed with the DELTALIB(ddname) 
subparameter of the PARM statement.

STAGELIB I Output PDS(E) library for generated member. This DD statement 
must refer to a PDS(E). If you want to print the generated 
member, use this library as input to IEBGENER.
Note: This DD name can be changed with the STAGELIB(ddname) 
subparameter of the PARM statement.

SYSIN I Members to be processed. Multiple member names that are coded 
on the same SYSIN record are delimited by space or comma. 
Names may be coded be on multiple SYSIN records. This DD 
statement is ignored if the MEMBER(mem,...) subparameter of 
the PARM statement is used.

Parameter Use Description

Program function Required Specifies the function to be performed. Code one of the 
following:

APPLY Baseline ripple

RESTORE Reverse baseline ripple (backout)

DELETE Scratch

COPY Recreate a prior version and copy to another 
library or data set.

These function are described at the top of section 
"CMNUPDAT - Stacked Reverse Delta Management" on page 
175.

COMPRESS Optional Indicates that the baseline library uses compressed format.



178 ChangeMan® ZMF 

Chapter 6  Utilities

RETRY Optional If an out-of-space condition occurs in an output PDS library, 
compress the PDS and retry.

REALLOC Optional If more space is required for an output library, reallocate the 
library.

ABEND Optional Abend program CMNUPDAT if any error occurs.

BASELIB(ddname) Optional Specifies an alternate ddname for the baseline library.
Default: BASELIB

DELTALIB(ddname) Optional Specifies an alternate ddname for the delta library.
Default: DELTALIB

STAGELIB(ddname) Optional Specifies an alternate ddname for the staging library.
Default: STAGELIB

ALLMEM Optional Process all members. This parameter is ignored if the 
MEMBER() execution parameter is used or if members are 
listed in SYSIN.

MEMBER(mem,...) Optional Specifies the members to be processed. Member names are 
separated by commas. If this parameter is coded, SYSIN is 
ignored. If this parameter is omitted, the member names 
are read from SYSIN.

VERSION(n) Optional Specifies the number of prior level deltas to apply for the 
RESTORE or COPY function.
Default: 1 (the level prior to the current baseline version)

MAXLEVEL(n) Optional Sets the maximum number of prior levels saved in the delta 
member to n. Delta records for level n+1 are discarded 
when a new set of delta records is added.
Default: No limit
Example: If application administration specifies 10 levels for 
a baseline configuration, then n = 9.

Parameter Use Description



CMNUPDAT - Stacked Reverse Delta Management

Customization Guide 179

Notes or Comments
When stacked reverse delta files are created in the baseline ripple process, special 
characters and codes are inserted in delta records to tell ChangeMan ZMF how to apply 
delta records and uncompress text.

These are the special characters and codes that you should avoid in text managed by the 
SRD storage means.

TEXT(a) Optional Specifies comparison parameters for creating delta records.
Default: TEXT(PANEL)
Note: Differences in spaces, and commas in the use of 
COBOL, are ignored. Precede any of the subparameters 
below with the $ character to flag as changed any line where 
the only difference is in the use of spaces (and commas in 
the case of COBOL). Examples: TEXT($.) or $COBOL

. (period) The first four records are analyzed to identify 
the target language to determine the kind of 
text compare that should be done.

COBOL Positions 7 through 72 are compared.

PANEL
REPORT
SCRIPT

Positions 1 through 80 are compared.

ALC
BAL
JCL
PASCAL
C
CLIST
FORTRAN
PL/1
PL/I
PL1
PLI
NATURAL
REXX
RPG

Positions 1 through 72 are compared.

Parameter Use Description

CAUTION!  If your components include the codes and characters used by program 
CMNUPDAT, do not use SD-Stacked Reverse Delta for the baseline storage means in 
application baseline configuration. Use P - Standard PDS instead.

Special Characters 
and Codes Notes

<UPDATE>

<ADD>

<DELETE>

<NULL>

<STATS



180 ChangeMan® ZMF 

Chapter 6  Utilities

<*STAMP

<*END.OF.MEMBER>

<*END.OF.DELTA.DECK>

<n, n is any integer.

<n> n is any integer, and the rest of the record must be blank for this 
to be detected as ZMF SRD reserved text. This is to avoid conflict 
with Focus code in the format "<n> text".

X'FF03' This code is reserved for the first byte of SRD members. Members 
starting with x'FF03' that are not compressed may be incorrectly 
processed as compressed in the following cases:
 Print and copy baseline components in ChangeMan ZMF ISPF 

option 1.B.
 Compare of staging component to promotion or baseline 

when the library type is LST but the component is not a 
compressed listing. LST is currently reserved for compressed 
listings.

Special Characters 
and Codes Notes



CMNWRITE - Copy And Include Management

Customization Guide 181

CMNWRITE - Copy And Include Management
CMNWRITE is executed as a step in a ChangeMan ZMF stage (compile or build) job. It 
parses source code and selectively expands copybooks into the source. The expanded 
source is written to the file at DD statement SYSOFILE, which is then used as input into a 
precompiler or compiler.

CMNWRITE attempts to resolve copybook names by searching PDS(E) libraries 
concatenated at the SYSLIB DD statement. After searching SYSLIB libraries, CMNWRITE 
searches any CA Panvalet and CA Librarian libraries that are named in SYSIN keyword 
control statements.

CMNWRITE can process copybooks nested up to 99 levels.

For copybooks that are resolved, including nested copybooks, CMNWRITE writes source-
to-copy relationship records to the package master. Audit uses these records to find 
SYNCH5, SYNCH15, and SYNCH16 errors in package components. These records are also 
used to create relationship records used by impact analysis.

If a copybook name is successfully resolved, but in-line expansion is either not required or 
not possible, CMNWRITE writes the copybook to a separate PDS at DD statement SYSUT3, 
which is included at the bottom of the SYSLIB concatenation in the subsequent precompile 
or compile step.

If a copybook is expanded in the source, CMNWRITE can generate comment box at the 
top of the expanded code that displays its level of nesting and member information from 
the library where it was found.

CMNWRITE Input
 Execution parameters in the program PARM statement

 Keyword parameters in the SYSIN DD statement

 Source code in a PDS or sequential file

 PDS libraries to be searched for copybooks

 CA Panvalet libraries to be searched for copybooks

 CA Librarian files to be searched for copybooks

Output
 Source code with copybooks expanded in-line

 Source code comments for every expanded copybook showing ISPF statistics for the 
copybook, the level of nesting under the source member, and the number of lines in 
the copybook

 A PDS library containing copybooks that have not been expanded in-line

CAUTION!  If you omit CMNWRITE from a custom build process for like-source 
components that use copybooks, audit will be unable to detect some out-of-synch 
conditions.



182 ChangeMan® ZMF 

Chapter 6  Utilities

 SYSPRINT output displaying the library search order and a report of copybooks 
detected

Sample JCL
This is a fragment from a stage job submitted by ChangeMan ZMF. This JCL was created 
by file tailoring skeleton CMN$$WRT.

DD Statements
This table describes DD statements for CMNWRITE.

//*)IM CMN$$WRT                                                 
//WRITE   EXEC PGM=CMNWRITE,   *** PARSE/EXPAND COMPONENT CTST  
//             COND=(4,LT),                                     
//             PARM=('SUBSYS=6,USER=USER015',                   
//             '')                                              
//*)IM CMN$$SPR                                                 
//SER#PARM DD  DISP=SHR,DSN=CMNTP.SER814.C6.TCPIPORT            
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST10W1,                     
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)                
//*)IM CMN$$SYC                                                 
//SYSLIB   DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000081.CPY      
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.CPY         
//         DD  DISP=SHR,DSN=CMNTP.S6.V810.BASE.ACTP.CP2         
//SYSIFILE DD  DISP=(OLD,PASS),DSN=&&SOURCE(CTST)               
//SYSOFILE DD  DISP=(,PASS),DSN=&&WRITE,                        
//             UNIT=SYSDA,SPACE=(CYL,(1,1)),                    
//             DCB=(RECFM=FB,LRECL=80,BLKSIZE=0)                
//SYSUT3   DD  DISP=(,PASS),DSN=&&CPYLIB,                       
//             UNIT=SYSDA,SPACE=(CYL,(1,1,20),RLSE),            
//             DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)       
//ABNLIGNR DD  DUMMY                                            
//SYSUDUMP DD  SYSOUT=*                                         
//SYSIN    DD  *                                                
TYP=CPY/CMNTP.S6.ACTP.STG6.#000081.CPY                          
TYP=CPY/CMNTP.S6.V810.BASE.ACTP.CPY                             
TYP=CP2/CMNTP.S6.V810.BASE.ACTP.CP2                             
CMP=CTST.SRC                                                    
LNG=COBOL2                                                      
PKG=ACTP000081                                                  
//*)IM CMN$$CND                                                 
//*)IM CMN$$CO2                                                 

DDNAME I/O Purpose

SER#PARM Input PDS(E) library containing information used to connect to the 
ChangeMan ZMF server through TCP/IP. This library must contain 
a member named #SERx, where x is the one-character 
subsystem ID of the ChangeMan ZMF instance.

SYSIFILE Input File containing source code. This DD statement must point to a 
sequential file or a PDS(E) member.

SYSIN Input File containing 80-byte keyword control records.

SYSLIB Input PDS libraries containing copybook members. The library 
concatenation for this DD statement is usually built by skeleton 
CMN$$SYC.



CMNWRITE - Copy And Include Management

Customization Guide 183

CA Panvalet and CA Librarian libraries are specified in SYSIN keyword control statements 
and are dynamically allocated. See "SYSIN Parameters" on page 183. These libraries are 
searched after the SYSLIB concatenation is exhausted.

PARM Options
The PARM parameter is required in the EXEC statement for CMNWRITE. This table 
describes CMNWRITE options that are input through the PARM parameter.

SYSIN Parameters
CMNWRITE keyword parameters are input to CMNWRITE through the SYSIN ddname.

 Keyword parameters must start in positions 1-60.

 A SYSIN record should contain only one keyword parameter.

 Blank SYSIN records are permitted.

 Comment records are designated by * in position 1.

SYSOFILE Output Sequential file containing source code with expanded copybooks. 
The file written by this DD statement is passed to precompile or 
compile steps.

SYSPRINT Output Report file that displays information from the execution of 
CMNWRITE:
See "Reporting" on page 187.

SYSUT3 Output PDS containing copybook members that could be detected in the 
input source code but were not expanded in the source written to 
SYSOFILE. The library created from this DD statement can be 
included at the bottom of the SYSLIB concatenation for 
precompile and compile steps.

Parameter Use Description

SUBSYS= Required Specifies the one-character subsystem ID of the ChangeMan ZMF 
instance.

USER= Required Userid of the person or entity that executes CMNWRITE. A userid 
is required for CMNWRITE to connect to ChangeMan ZMF server 
programs. This userid is not used to determine security 
authorization.

EXPAND Optional Indicates whether or not to expand copybooks in source code 
output to SYSOFILE.

EXPAND Expand detected copybooks in output source and 
write unexpanded copybooks to SYSUT3. This is 
the default value.

NOEXPAND Do not expand detected copybooks in output 
source and write all detected copybooks to 
SYSUT3.

DDNAME I/O Purpose



184 ChangeMan® ZMF 

Chapter 6  Utilities

This table describes keyword parameters input to CMNWRITE through the SYSIN ddname.

Parameter Use Description

* in Position 1 Optional Denotes a comment.

CMP= Optional Specifies a component name and library type. Format:
CMP=cccccccc.ttt  where

cccccccc Component name

ttt Library type 

If the component cannot be found in the component master, the 
return code is set to at least 4. See "CMNWRITE and Audit" on 
page 189.

COBSYN= Optional Defines a synonym for COBOL or Assembler COPY verb. Multiple 
synonyms are allowed. Code a separate COBSYN= for each 
synonym.
Note: Copybooks resolved using this parameter are not expanded 
in-line. These copybooks are written to the PDS at the SYSUT3 DD 
statement for input to the compile step in the SYSLIB 
concatenation.

EOSPERIOD= Optional This parameter was introduced for backward compatibility when 
the default function of CMNWRITE was modified to require an 
end-of -sentence period for COBOL COPY statements so that the 
COPY REPLACING statement could be correctly parsed. 

OPTIONAL Do not require end-of-sentence periods for 
COBOL COPY statements. Using this parameter 
may affect detection of the COPY REPLACING 
phrase. 

EXPAND= Options Provides finer control over the copy and include structures that 
CMNWRITE detects and expands.

ALL Default - Expand all types of copy

PANVALET Only expand CA Panvalet ++INCLUDE

LIBRARIAN Only expand CA Librarian -INC

COPY Only expand COBOL/Assembler COPY

PLI Only expand PL/1 %INCLUDE

CEE Only expand C #include

SQL Only expand EXEC SQL INCLUDE

NONE No expansion (like the NOEXPAND program 
parameter)

Notes:
 Any combination of the above is valid.
 ALL overrides everything but NONE. 
 NONE overrides everything.
 PARM=NOEXPAND overrides all EXPAND keyword 

parameters.

FAPIW= Optional Specifies a substitution character for FIS Systematics EXEC API 
PROC member name processing that is enabled by SYSIN 
parameter SITE=FIDE.



CMNWRITE - Copy And Include Management

Customization Guide 185

LIB= Optional Specifies the DSN of a CA Librarian baseline library to be searched 
for copybooks.
 Up to ten PAN= and LIB= keyword parameters may be input 

in any combination.
 These libraries are searched in the order the LIB= and PAN= 

records are read in SYSIN.
 Libraries specified in LIB= and PAN= keyword parameters are 

searched after the SYSLIB concatenation is exhausted.

LIBSYN= Optional Defines a synonym for CA Librarian -INC verb. Multiple synonyms 
are allowed. Code a separate LIBSYN= for each synonym.
Note: Copybooks resolved using this parameter are not expanded 
in-line. These copybooks are written to the PDS at the SYSUT3 DD 
statement for input to the compile step in the SYSLIB 
concatenation.

LNG= Optional Determines how CMNPARSE analyzes source code to find copy 
and include statements:

Value Source Parsed As Language...

AS Assembler

BAL Assembler

C (C followed by a blank)

C+ (C+ followed by a blank)

EZ Easytrieve

FORT FORTRAN

MFS IMS MFS

PL PL/I

blank CMNPARSE attempts to differentiate between 
Assembler and COBOL

Notes:
 If PL, then source will be searched for %INCLUDE.
 If C, then source will be searched for #INCLUDE.
 In all languages, source is searched for CA Panvalet 

++INCLUDEs and CA Librarian -INC. 
 Any characters coded after those listed above are ignored. 

However, if the codes above are not complete, the language 
may be incorrectly identified. For example, CPLUS would be 
considered COBOL since it is not followed by a blank or plus 
sign and blank. However, PL2 would still be considered PL/I.

Parameter Use Description



186 ChangeMan® ZMF 

Chapter 6  Utilities

OPT= Optional Output formatting option

FLOWER Default - Add a comment "flower box" at the top 
of each copybook that is expanded in the source 
and written to SYSOFILE.

NOFLOWER Suppress the comment flower box in expanded 
copybooks.

CONTINUE Specifies that existing ISIC records for this 
component are NOT deleted. Use this 
subparameter in the second CMNWRITE step of a 
dual compile scenario where the first CMNWRITE 
step creates ISIC records and the second 
CMNWRITE step creates more. Existing ISIC 
entries are cached. Duplicate entries in the 
second CMNWRITE step are not added. The 
existing entries with possibly older copybook data 
are retained. This may be needed to ensure that 
certain SYNCH conditions are not missed

PAN= Optional Specifies the DSN of a CA Panvalet baseline library to be searched 
for copybooks.
 Up to ten PAN= and LIB= keyword parameters may be input 

in any combination. 
 These libraries will be searched in the order the LIB= and 

PAN= records are read in SYSIN. 
 Libraries specified in LIB= and PAN= keyword parameters are 

searched after the SYSLIB concatenation is exhausted.

PKG= Optional Specifies the change package ID. 
 If the package cannot be found in the package master, the return 
code is set to at least 4. See "CMNWRITE and Audit" on page 189.

PLISYN= Optional Defines a synonym for PL/1 %INCLUDE verb. Multiple synonyms 
are allowed. Code a separate PLISYN= for each synonym.
Note: Copybooks resolved using this parameter are not expanded 
in-line. These copybooks are written to the PDS at the SYSUT3 DD 
statement for input to the compile step in the SYSLIB 
concatenation.

PVSYN= Optional Defines a synonym for CA Panvalet ++INCLUDE verb. Multiple 
synonyms are allowed. Code a separate PVSYN= for each 
synonym.
Note: Copybooks resolved using this parameter are not expanded 
in-line. These copybooks are written to the PDS at the SYSUT3 DD 
statement for input to the compile step in the SYSLIB 
concatenation.

SITE=FIDE Optional Enables wild card substitution in FIS Systematics EXEC API PROC 
member name before the member is expanded.

Parameter Use Description



CMNWRITE - Copy And Include Management

Customization Guide 187

Return Codes and Error Messages

Reporting
The SYSPRINT DD statement for CMNWRITE displays the following information:

 Program version.

TYP= Optional 
but 
Recom-
mended

Specifies the library type, data set name, and origin of a like-copy 
library. Format:
TYP=ttt/L/pppppppppp  where

ttt Library type

L Like-copy library data set name

pppppppppp Package ID of a participating package
(Generated by file tailoring only if cross 
pollination of copybooks from associated 
participating packages is in effect.)

 TYP= parameters are created in skeleton file tailoring 
(CMN$$WRT) to identify which application and library type 
supplied each copybook that is processed. This information is 
stored in the package master and is used by package audit to 
discover SYNCH15 errors. 

 If you omit TYP= parameters, CMNWRITE will not fail, but 
audit will not detect SYNCH15 errors.

 TYP= parameters have no effect on the library search order 
of CMNWRITE.

Note:
If you customize the SYSLIB concatenation in CMN$$SYC to 
include like-copy baseline libraries from other applications, use 
the following TYP= format to avoid SYNCH15:
TYP=ttt/L/aaaa  where

ttt Library type

L Like-copy library data set name

aaaa Application ID of the specified library

Return 
Code Description

0 Successful execution.

4 Refer to the short and long messages displayed within the job.

6 Unable to connect to ChangeMan ZMF instance; resubmit job under an active 
ChangeMan ZMF instance.

8 Package master I/O error; check all messages displayed within job. 

12 System error; see messages.

Parameter Use Description

CAUTION!  A non-zero return code from CMNWRITE can lead to invalid SYNCH5, 
SYNCH15, and SYNCH16 audit errors. See "CMNWRITE and Audit" on page 189.



188 ChangeMan® ZMF 

Chapter 6  Utilities

 PARM input.

 Keyword parameters input to SYSIN.

 Copybook library search order.

 Summary report of copybook members and hierarchy.

The summary report from the sample CMNWRITE JCL above might look like this: 

In this report, the hierarchy of nested components is indicated by the LV column. If a 
copybook is not expanded inline into the source and is written to SYSUT3 instead, the LV 
number is preceded by "N," and message CMN5420I is printed beneath the component 
list.

Notes

COPY and INCLUDE Variations

This table displays examples of source code COPY and INCLUDE statements that 
CMNWRITE can detect. This is not an exhaustive list of statements that CMNWRITE can 
process.

********************************************************************************                                                     
* DDNAME: WRITE.SYSPRINT                                                       *                                                     
********************************************************************************                                                     
                                                                                                                                     
ChangeMan(R) ZMF      CMNWRITE - 8.1.4  SUNDAY NOVEMBER 26, 2017  21:51:24                                                           
 PARM='SUBSYS=6,USER=USER015,'                                                                                                       
 PARM interpretation: ChangeMan ZMF subsystem "6"                                                                                    
  Expansion of uncovered COPY/Include variations                                                                                     
                                                                                                                                     
SYSIN: TYP=CPY/CMNTP.S6.ACTP.STG6.#000081.CPY                                                                                        
SYSIN: TYP=CPY/CMNTP.S6.V810.BASE.ACTP.CPY                                                                                           
SYSIN: TYP=CP2/CMNTP.S6.V810.BASE.ACTP.CP2                                                                                           
SYSIN: CMP=CTST.SRC                                                                                                                  
SYSIN: LNG=COBOL2                                                                                                                    
SYSIN: PKG=ACTP000081                                                                                                                
CMN7500I - Attempting to initiate dialog with started task.                                                                          
CMN1400I - Session established with ChangeMan ZMF started task.                                                                      
Library search order: PDS/CMNTP.S6.ACTP.STG6.#000081.CPY               (CPY)                                                         
                      PDS/CMNTP.S6.V810.BASE.ACTP.CPY                  (CPY)                                                         
                      PDS/CMNTP.S6.V810.BASE.ACTP.CP2                  (CP2)                                                         
 LV -MEMBER--- VV.MM --CREATE-- --LAST CHANGED--  SIZE  INIT -USERID- -- L I B R A R Y   N A M E ----------------- ---FINGERPRINT--- 
                                                             --- C O M P O N E N T   D E S C R I P T I O N ---(IF ANY)---------------
 00 CTST       01.02 2012/07/01 2017/11/26 21:51     7     7 USER015  SYS17330.T215123.RA000.USER0157.SOURCE.H09   AF94653D-000000CD 
 01 COPYHELO   01.03 2012/07/01 2017/11/26 21:50     1     1 USER015  CMNTP.S6.ACTP.STG6.#000081.CPY               7A3EDE59-00000023 
CMN1410I - Session terminated with ChangeMan ZMF started task.                                                                       
CMN5400I - Time of day at end of job: 21:51:24 - Condition Code on exit: 0                                                           
           Record count in ====> 00007                                                                                               
           Record count out ===> 00014                                                                                               

Format Action Comment

01 COPY ABC. Expanded COBOL variation

COPY “ABC”. Expanded COBOL variation

COPY ABC Expanded Assembler format

COPY ABC Noted as resolved 
but not expanded

COBOL format

COPY ABC REPLACING... Noted as resolved 
but not expanded

COBOL variation

01 FIELD-NAME. COPY ABC. Noted as resolved 
but not expanded

COBOL variation

#INCLUDE <abc> Expanded “C” variation

#INCLUDE “abc” Expanded “C” variation



CMNWRITE - Copy And Include Management

Customization Guide 189

Note 1: When PL/I source contains %XINCLUDE statements, you must suppress 
copybook expansion in CMNWRITE with one of the following:

 NOEXPAND subparameter of the PARM= statement

 SYSIN keyword parameter EXPAND=NONE

CMNWRITE and Audit

CMNWRITE writes ISIC records to the package master. ISIC records contain source-to-
copy information from stage that is used by audit to evaluate source-to-copy relationships 
in package components to find SYNCH5, SYNCH15, and SYNCH16 errors.

Audit may report invalid SYNCH5, SYNCH15, and SYNCH16 errors if CMNWRITE does not 
write ISIC records because:

 CMNWRITE yields a non-zero return code.

 The package specified in the PKG= keyword parameter cannot be found.

 The component specified in the CMP= keyword parameter cannot be found.

 The stage process does not contain CMNWRITE.

Keyword Option OPT=NOFLOWER

By default, CMNWRITE adds a comment "flower box" at the top of each copybook that is 
expanded in the source and written to SYSOFILE. This comment box displays ISPF 
statistics from directory of the library where the copybook member was found. A typical 
flower box looks like this: 

You can suppress this comment flower box by specifying OPT=NOFLOWER in SYSIN.

Skeleton Variable COPYLIBA

+INCLUDE abc Expanded PL/1 variation

++INCLUDE ABC Expanded CA Panvalet, any language

%INCLUDE DDNAME(MEMBERNAME) Expanded PL/1 variation

%XINCLUDE DDNAME(MEMBERNAME) See Note 1 PL/I variation

-INC ABC Expanded CA Librarian, any language

EXEC SQL INCLUDE ABC END-EXEC Expanded Any language, can cross up to 
three lines. EXEC and the SQL 
must appear on the same line.

EXEC API
    PROC APIC?PRC (PARM1,
                               PARM2,
                               PARM3)
END EXEC

? set to value in 
SYSIN parameter 
FAPIW=

FIS Systematics COBOL

000006               *#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#
000007               * COPY COPYHELO                                                   
000008               * 1 COPYHELO 01.03 2012/07/01 2017/11/26 21:50     1     1 USER015
000009               *#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=#

Format Action Comment



190 ChangeMan® ZMF 

Chapter 6  Utilities

CMNWRITE writes copybooks that can be detected and resolved but not expanded to DD 
statement SYSUT3. Skeleton CMN$$WRT builds the SYSUT3 library to temporary data set 
&&CPYLIBA.

Skeleton CMN$$WRT also sets variable CPYLIBA to YES. Skeleton CMN$$SYC adds the 
&&CPYLIBA data set to the SYSLIB concatenation if variable CPYLIBA is YES. In skeletons 
delivered with ChangeMan ZMF, variable CPYLIBA is not reset to NO until the end of 
procedures where CMN$$SYC might be imbedded multiple times. 

Do not customize skeletons to reset variable CPYLIBA to NO until after all imbeds of 
CMN$$SYC that must include &&CPYLIBA in the SYSLIB concatenation.

Recursive Nesting and C++ Headers

Programming language C++ implicitly allows recursive copy structures by requiring each 
programmed function to include all headers it will use. Compiler directives #ifndef and 
#define prevent looping in the resulting definitions. It is beyond the scope of CMNWRITE 
to interpret these compiler directives, so the NOEXPAND program parameter or the 
EXPAND=NONE SYSIN parameter should be used with C++ source to allow the C++ 
compiler to resolve these potentially recursive structures.

CMNWRITE must still analyze source and copybooks to provide source/copy information 
for audit, so beginning with ChangeMan ZMF 5.2, it records the names of all copybooks it 
encounters in a nest structure. As it begins a new level of a nest, it checks the new 
copybook name against those that have previously been encountered in this chain. If the 
name is found, then CMNWRITE assumes that a recursion has been discovered, and it will 
not search this copybook for copy or include commands.

Modifying Copybook Records With CMNEX016

CMNWRITE processes source code containing CA Librarian -INC statements where the 
source and copybooks reside in PDS(E) libraries rather than CA Librarian libraries. Exit 
program CMNEX016 mimics a CA Librarian exit that modifies copybook records included in 
source with the -INC command.

If CMNEX016 is enabled, it is called by CMNWRITE before each copybook record is written 
to the file at DD statement SYSOFILE. You can add logic to CMNEX016 to modify or skip 
copybook records before they are written to SYSOFILE.

The source for CMNEX016 is delivered in the CMNZMF ASMSRC library. See program 
comments for more information.

SERCOPY - Copy Utility
Program SERCOPY provides enhanced copy services for ChangeMan ZMF batch jobs and 
internal processes. Some copy functions are provided by proprietary programs, and other 
functions may be provided by calls to standard IBM copy utilities.

SERCOPY performs these functions:

 Copy partitioned data set member.

 Copy sequential data set.

 Compress Expand compressed listings.



SERCOPY - Copy Utility

Customization Guide 191

 Add, reset, or update ISPF statistics

 Dynamically reallocate PDS libraries during a copy function.

 SERENQ, Enqueue/dequeue data set

SERCOPY Input
 Partitioned data set or sequential data set.

 Keyword parameters in the PARM statement.

 Member names in the SYSIN statement.

Output
 Members in partitioned data set.

 SYSPRINT output.

Sample JCL
The following is a sample job fragment showing a SERCOPY step.

DD Statements
This table describes DD statements for SERCOPY.

//SERCOPY EXEC PGM=SERCOPY,    *** COPY CTST FROM STAGING      
//             REGION=3M,                                      
//             PARM=('INDSN(CMNTP.S6.ACTP.STG6.#000081.SRC)',  
//             'MEMBER=CTST')                                  
//SYSPRINT DD  DISP=(,PASS),DSN=&&LIST00,                      
//             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)               
//ABNLIGNR DD  DUMMY                                           
//SYSUT2   DD  DISP=(,PASS),DSN=&&SOURCE(CTST),                
//             UNIT=SYSDA,SPACE=(CYL,(1,2,1),RLSE),            
//             DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)      
//SYSUT3   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                    
//SYSUT4   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                    

DDNAME I/O Purpose

SYSIN Input Member list for copies if MEMBER keyword parameter is not coded 
in the PARM statement

SYSPRINT Output Report file that displays information from the execution of 
SERCOPY

SYSUT1 Input PDS if INDSN and INFILE keyword parameters are not coded in 
the PARM statement

SYSUT2 Output PDS if OUTDSN and OUTFILE keyword parameters are not coded 
in the PARM statement

SYSUT3 I/O Work data set

SYSUT4 I/O Work data set



192 ChangeMan® ZMF 

Chapter 6  Utilities

The data set in DD statement SYSUT1 is dynamically allocated if keyword parameter 
INDSN or INFILE is coded in the PARM statement.

The data set in DD statement SYSUT2 is dynamically allocated if keyword parameter 
OUTDSN or OUTFILE is coded in the PARM statement.

PARM Options
The PARM parameter is required in the EXEC statement for SERCOPY. This table describes 
SERCOPY options that are input through the PARM parameter. Note that the default 
setting for the STATSA/STATSB/STATSE parameters (if these are not specified) is that the 
copied member will have the same type of statistics as the input member.

Parameter Description

ABEND ABEND if error is encountered.

ALIAS Copy all alias entries for members selected.

BSAM Perform internal copy rather than IEBCOPY.

COMPRESS(n) Compress data using compression type n. For low compression n=2. For 
high compression n=7.

CSTATS Copy existing ISPF statistics and add statistics to copied members if 
none exist.

EXPAND Decompress data if compressed.

FULL Copy all members.

INDSN(dsname) Specifies DSN for input data set. If this parameter is specified, the input 
data set name is dynamically allocated. Mutually exclusive with 
parameter INFILE.

INFILE(ddname) Specifies ddname for input data set. Default is SYSUT1.

LIST List member names in IEBCOPY message output.

LMOD Copy using IEBCOPY COPYMOD.

MEMBER(mem,...) Specifies list of member names to be copied. 
If this parameter is omitted, the member names are read from SYSIN 
statements containing one or more member names per line in free form 
format. 
If this parameter is omitted and SYSIN is missing or empty, or if 
MEMBER() is specified, a FULL copy is performed. 
Members can be renamed during the copy operation by specifying each 
member name to be renamed in the following format:
     oldname/newname

MFS Input is MFS data set with non-standard member names. This 
parameter forces the BSAM option.

NOREPL Do not replace like named members.

OSTATS Reset these ISPF statistics on copied members and add statistics if none 
exist:
Changed
MM
VV

OUTDSN(dsname) Specifies DSN for output data set. If this parameter is specified, the 
output data set is dynamically allocated. Mutually exclusive with 
parameter OUTFILE. 



SERCOPY - Copy Utility

Customization Guide 193

SYSIN Parameters
If the MEMBER keyword parameter is omitted from the PARM statement, the members 
copied by SERCOPY must be specified in SYSIN records.

 Member names in SYSIN records are coded in free-form format with members listed 
in the same record separated by spaces or comma.

 Members may be renamed in the copy process by coding the old name and new name 
separated by a forward slash:

OLDNAME/NEWNAME

 If the MEMBER keyword parameter is omitted from the PARM statement, and no 
members are specified in SYSIN records, all members in the input PDS are copied to 
the output PDS.

OUTFILE(ddname) Specifies ddname for output data set. Default is SYSUT2.

PDSCOMP Compress after copy operation.

PRINT(ddname) Specifies ddname for output print data set. Default is SYSPRINT.

REALLOC Reallocate if more space required.

RETRY Retry on x37 abend (compress).
This parameter is incompatible with the AUTOCMPX=YES of PDSFAST®. 
See "PDSFAST" on page 195

RSTATS Initialize all ISPF statistics on all copied members, including members 
that did not have statistics.

STATSA Extended ISPF stats will be turned on automatically when the line count 
reaches 64k.

STATSB Basic ISPF stats will be set.

STATSE Extended ISPF stats will be set.

USERID(tsoid) Specifies the ID for ISPF statistics for copied members.
Statistics added to members with CSTATS parameter.
Statistics in all members copied with OSTATS parameter.
Statistics in all members copied with RSTATS parameter.
Statistics added to members with VSTATS parameter.

USTATS Update these ISPF these statistics on copied members and add statistics 
if none exist:
Changed
Increment VV by +1
Reset MM to 00

VSTATS Update these ISPF these statistics on copied members and add statistics 
if none exist:
Increment VV by +1
Reset MM to 00

Parameter Description



194 ChangeMan® ZMF 

Chapter 6  Utilities

Return Codes and Error Messages
This table describes return codes for SERCOPY.

Comments

Automatic Library Reallocation

If the RETRY parameter is specified and SERCOPY encounters a space allocation problem 
while performing a PDS copy function (an x37 condition), it will attempt to recover by 
compressing the library using IEBCOPY. 

If the problem persists and the REALLOC parameter is specified, SERCOPY will 
dynamically reallocate the target library to increase space and/or directory entries.

SERCOPY calls program SERREAL to reallocate the target data set. SERREAL determines 
the current size of the data set and sets new space allocations based on the following:

 If directory blocks are insufficient, they are increased 50%, plus 8 blocks.

 If directory blocks are not the only problem, they are increased 25%, plus 8 blocks.

 If directory blocks are sufficient, then library space is increased on a sliding scale 
depending on the size of the current data set:

• If the existing data set is small (10 tracks), space is at least doubled.

• If the existing data set is large (400 tracks), space is increased by only 20%.

The default unit for the space allocation is blocks (BLKS). 

Exit program SEREX001 can be used to override the default generic device (SYSDA) or 
space unit (BLKS) used by SERREAL in dynamic space reallocation.

Step and JOB Enqueue

ChangeMan ZMF batch jobs file tailored from skeletons will execute one at a time if they 
target the same output data set with SERCOPY. You can increase the efficiency of 
ChangeMan ZMF batch processing by enqueuing SERCOPY output data sets at the step 
level.

To protect the directory of PDS libraries targeted by SERCOPY, skeleton CMN$$ENQ is 
imbedded in each job step that executes SERCOPY. CMN$$ENQ catalogs a work data set 
with DISP=(MOD,DELETE) in DD statement SYSUT3. CMN$$ENQ uses a consistent rule to 
create the work data set name from the SERCOPY output data set name.

Only one job is allowed to allocate the same cataloged data set name. If more than one 
job targets the same library with SERCOPY, only one job will be allowed to allocate the 

Return 
Code Description

00-16 Same as IEBCOPY/IEBGENER

20 IEBCOPY/IEBGENER ABEND (completion code in R0)

24 Dynamic allocation error (SVC 99 error in R0) or open error on control statement 
data set

28 Input parameter syntax error



SERPRINT - SYSOUT Compression Facility

Customization Guide 195

same work data set name at a time, and all of the other jobs will be made to wait. This 
effectively single threads all jobs that target the same PDS with SERCOPY.

You may enqueue the SERCOPY output library at the step level by specifying the data set 
name in the SERCOPY PARM statement:

1 Code the SERCOPY output DSN in the PARM statement in subparameter OUTDSN:

//COPY1 EXEC PGM=SERCOPY,REGION=3072K,
//  PARM=’&OPT,OUTDSN(dsname)’

The data set name specified in OUTDSN must already be catalogued.

2 Delete the SYSUT2 DD statement from the SERCOPY step JCL.

3 Remove the imbed for CMN$$ENQ from the skeleton that executes SERCOPY.

4 Add these two ddnames to the SERCOPY step JCL:

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(5,5))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(5,5))

PDSFAST

If you are using PDSFAST with AUTOCMPX=YES, you must remove the RETRY parameter 
for SERCOPY in the skeleton JCL. You can only use one or the other compression 
technique (that of PDSFAST or SERCOPY). 

Reporting
The SYSPRINT DD statement for SERCOPY displays output from the copy utility used to 
copy members from the input PDS to the output PDS.

SERPRINT - SYSOUT Compression Facility
ChangeMan ZMF has a facility that makes it possible to eliminate the paper printing and 
subsequent storage, and access and traceability problems of any application's SYSOUT 
listings. This facility gathers files destined to SYSOUT queues, concatenates them, and 
compresses them into a single component of a PDS. You can use this facility regardless of 
whether or not your shop has converted to ChangeMan ZMF. 

Each listing data set normally queued to a SYSOUT class is redirected to a temporary file 
with accurate DCB attributes and adequate disk space to hold it. The recommended 
DSNAME of each passed file is &&LISTxxx, where LIST could be some other recognizable 
character string but LIST is very meaningful. For example:

//SYSPRINT  DD SYSOUT=*

could be converted to:

//SYSPRINT  DD DISP=(,PASS),DSN=&&LIST010,
//             UNIT=SYSDA,SPACE=(CYL,(1,2),RLSE),
//             DCB=(RECFM=FBA,LRECL=121,BLKSIZE=2420)
//* or         DCB=(RECFM=VBM,BLKSIZE=4088)

There could be multiple converted SYSOUT definitions per job step. The only restriction is 
that each temporary DSNAME must start with the same character string (LIST) and 



196 ChangeMan® ZMF 

Chapter 6  Utilities

suffixed with an alphanumeric string that makes it unique within the job. It is further 
recommended that the suffix be at least two numeric digits in ascending order with 
adequate spacing to keep it manageable. The DCB attributes of each passed file are 
independent of one another. Since SERPRINT is unable to handle VIO data sets, it is 
required that the files are allocated on non-VIO devices. To accommodate this 
requirement, a new variable, DEFAULT NON-VIO UNIT NAME has been added to Global 
Admin panel CMNGGP01. Make sure your SYSPROG/STORAGE ADMIN has designated this 
UNIT for NON-VIO usage.

The gathering and concatenation of each file is done by component SERPRINT. For 
example:

//SERPRINT EXEC PGM=SERPRINT,COND=EVEN,
//              PARM=('INDSN(LIST*)',
//              'OUTFILE(PRINT1,PRINT2)')
//PRINT1   DD   DISP=(,PASS),DSN=&&LIST,
//              UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),
//              DCB=(RECFM=VBM,LRECL=133,BLKSIZE=23476)
//PRINT2   DD   SYSOUT=*,DCB=(RECFM=VBM,LRECL=133,BLKSIZE=23476)

The specification of COND=EVEN is important. Before, when spooling directly to a 
SYSOUT queue, you could see all that had been spooled up to the point of any surprising 
ABEND. With this facility, those passed file contents can only be viewed by SERPRINT's 
post-processing capabilities and any previous step that ABENDs would normally flush this 
step unless COND=EVEN has been specified.

The PARM is critical. It dictates the input file structure to search for and the output file or 
files to put the concatenation out to. There are two forms for input file structure:

//             PARM=('INDSN(LIST*)',...

and

//             PARM=('INFILE(STEP10.SYSPRINT,...

The use of INFILE is not recommended as it refers to procedure step names and 
DDNAMEs which is rather inflexible. The recommended approach is to use INDSN which 
dictates the low order node prefix structure to search for. The searching process involves 
the Scheduler Work Area (SWA) Manager above or below the XA line. Each discovered file 
is read and each record is converted to VBM - variable blocked machine control characters 
with trailing blanks truncated.

Each output file DDNAME is specified by the keyword OUTFILE in the PARM. In the 
recommended example above, DDNAMEs PRINT1 and PRINT2 are targets for the 
concatenated output. PRINT1 is passed as a sequential file to be compressed. PRINT2 is 
written directly to a SYSOUT queue for browsing and potential redirection to paper listing 
or deletion. Each concatenated file is preceded by a banner detailing where it came from. 
For example:

DDNAME: procstep.stepname.ddname

As suggested above, procstep is the step name (if any) that invoked the procedure; 
stepname is the actual step name within the JCL stream that invoked a program that 
wrote to DDNAME ddname. A trailing statistics record is written detailing records and 
bytes used. For example:

<STATS: RECS=nnnn BYTES=nnnnnnn>

The output file that is passed (in this case, PRINT1) is targeted for input to component 
SERCOPY. The example that follows is in Skeleton notation but could be modified slightly 
to use symbolic substitution in a cataloged procedure:



SERPRINT - SYSOUT Compression Facility

Customization Guide 197

//COMP     EXEC PGM=SERCOPY,REGION=4M,
//  PARM='COMP,IN(SYSUT1),OUT(SYSUT2),MEMBER(&CMPNAME),REALLOC'
//SYSPRINT DD  SYSOUT=*
//SYSUT1   DD  DISP=(OLD,DELETE),DSN=&&&&LIST
//SYSUT2   DD  DISP=SHR,DSN=&STGLIB.LST

The PARM dictates that a compress (COMP) is to be performed using file SYSUT1 as input, 
file SYSUT2 as output, and whatever component name substitution for &CMPNAME is file 
tailored. If the component already exists in the output library, it is replaced by the new 
one coming in. If an x37 ABEND occurs, it is intercepted internally, an IEBCOPY compress 
is invoked on the output library, and the compression is re-initiated. If another x37 
ABEND occurs, the output library is dynamically reallocated with larger dimensions 
elsewhere and the compression re-initiated. Without the REALLOC keyword, no 
reallocation is attempted. 

Beginning with release 4.1.0, the calculation method of determining the compression 
ratio, displayed at the end of a decompressed listing, has been changed.

The formula for calculation of compression percentage follows:

C = (T1 - T2) / T1 *100

where:

C = compression percentage

T1 = bytes full

T2 = bytes compressed

If T1 is 1,000,000 bytes and T2 is 600,000 bytes, we get:

(1,000,000 - 600,000) / 1,000,000 = 40% compression.

In the previous compression routine, using the Huffman algorithm, number of bytes full 
(T1) was passed using the largest possible size of each record read BEFORE truncating to 
ragged right.

T1 is used as the summation of bytes into SERCOPY which already has had considerable 
white space stripped off - often 30%.

The only real statistic that counts is how much space is saved on the disk pack.

Browsing Compressed Listings
The ability to browse a compressed listing is implicit within ChangeMan ZMF but can also 
be used outside by either a specialized CLIST or submitted batch job to decompress the 
component and subsequently browsing the sequential data set. We deliver a CLIST called 
CMNBRWCL and associated panels to perform just such a function. It is the user's 
responsibility to incorporate this ability into their ISPF panel mechanism. You can however 
simply (from within a ChangeMan ZMF session) use the command TSO %CMNBRWCL and 

NOTE  Alg=2 garners compression is nearly as good as the old Huffman algorithm but 
without the overhead of having to pass the entire file twice. The full expansion to VBM 
means to ragged right. Formerly, the compression statistics appended to the listing 
expansion were based on the full number of bytes of the flat right listing concatenation. 
Now compression is more accurate in that it is based on the actual number of ragged 
right byte summation.



198 ChangeMan® ZMF 

Chapter 6  Utilities

the selection panel CMNLSTB0 will display. Supply the Dataset and Member and you can 
see the decompressed listing:

Also note that at the bottom of the decompressed file are statistics within banners 
detailing the amount of compression attained. The calculation is based on the actual 
number of bytes needed to hold the compressed file divided by the number of bytes in the 
composite decompressed file(s). For example:

**************************************
* Compression Statistics             *
*                                    *
* Number of records:    494          *
* Bytes expanded:    36,552          *
* Bytes compressed:   8,240          *
* Compression ratio:  77.46%         *
**************************************

There are other vendor products for storing listings on line but they do not discern which 
is the latest or the one that corresponds to what you have executed in production. Any 
kind of file that can be sent to a SYSOUT spooling can be incorporated with this 
mechanism.

CMNLSTB0                   Browse Compressed Listing           
Command ===>                                                   
                                                               
Compressed listing library:                                    
                                                               
Dataset . . . . CMNTP.S6.COMM.STG6.#000001.LST                    
Member  . . . . COMSRS00     (blank for member selection list) 



Customization Guide 199

Chapter 7
Reports

REXX programs that call XML services generate the reports that are supplied with 
ChangeMan ZMF. This chapter provides guidelines for the experienced REXX programmer 
who needs to develop new reports or customize the reports that are shipped with 
ChangeMan ZMF.

Overview of Online Report Generation 200
Submitting a Batch Job to Generate a Report 201
Analysis of a Sample REXX Reporting Program 201
XML Services Called in Reporting Programs 209



200 ChangeMan® ZMF         

Chapter 7  Reports

Overview of Online Report Generation
Global administrators, application administrators, and users can run the reports that ship 
with ChangeMan ZMF:

 The global administrator determines the reports that an application administrator can 
run. The ChangeMan ZMF Administrator’s Guide describes the reports that global and 
application administrators can run and shows how to access them online.

 An application administrator determines the reports that the user can run. The 
ChangeMan ZMF User’s Guide describes the reports that users can run and shows how 
to access them online.

You can request a report online or submit the request as a batch job. For security 
purposes, both methods require that the TSO userid of the requesting user be passed to 
the target XML service. Thus, report access is determined by the security authorization of 
the user who submits the report request.

The steps that the global administrator, application administrator, or user takes to 
generate ChangeMan ZMF reports online are:

1 The administrator or user specifies the appropriate report option and selects the 
desired report from an online menu:

 The global administrator selects the target report from the Report Selection List 
(CMNREPT6) panel (option =A.G.R.2).

 The application administrator selects the target report from the Report Selection 
List (CMNREPT6) panel (option =A.A.R.2).

 The ChangeMan ZMF user selects the target report from the Report Selection List 
(CMNREPT6) panel (option = 6.1).

2 The selected report corresponds to a member of the REXX program library. For 
example, report 010 corresponds to member CMN010 in the REXX program library. 
When the ChangeMan ZMF administrator or user selects a report to generate online, 
ChangeMan ZMF submits a batch job, passing it the name of the target reporting 
program and the reporting option (application name or pattern, package name or 
pattern, and so on) that the administrator or user has specified.

3 The target REXX program:

 Validates the input.

 Sets up the appropriate REXX stem variables.

 Calls the appropriate XML service, passing it the stem variable to process. The 
program may call more than one XML service. The XML services that the target 
reporting program calls are identified in the program comments.

 Formats the information returned by the target XML service and sends report 
output to DDname SYSTSPRT. All reports include print-control characters in 
column 1. Therefore, the SYSTSPRT statement in the CMN$$RPT member of the 
vendor-supplied CMNZMF.SKELS library and in the REPORTS member of the 
CMNZMF.CNTL library specify the attributes RECFM=FBA and LRECL=133.

4 You use a facility such as the Spool Display and Search Facility (SDSF) to view the 
report. 



Submitting a Batch Job to Generate a Report

Customization Guide 201

Submitting a Batch Job to Generate a Report
As an alternative to selecting a report to generate online through the ChangeMan ZMF 
client, you can submit your own batch job outside of ChangeMan ZMF to generate a 
report. To do so:

1 Customize the REPORTS member of the CNTL library as follows (according to the 
comments in member REPORTS):

 Supply a valid JOB statement.

 Supply the appropriate variables for the target report.

 Specify the appropriate library names in the DD statements.

2 Submit the job.

Notes on the Batch
JCL

Note the following items about the JCL that is submitted for execution when you select a 
report to generate online in ChangeMan ZMF or submit a batch job:

 The SYSEXEC DD concatenation identifies where the REXX reporting programs are 
located. Not all installations have the optional REXX compiler. Therefore, the REXX 
source programs for the batch reports are shipped. If you have the REXX compiler at 
your installation, you can compile these source programs and store them in the 
CEXEC library if you wish. If you do, be sure to add the name of the CEXEC compiler 
library to the top of the SYSEXEC DD concatenation.

 You always need a SER#PARM DD statement to identify the system to which you want 
to connect.

 TCP/IP is used for communication across address spaces when a report is run. TCP/IP 
messages are written to SYSPRINT.

 Diagnostic messages are written to SERPRINT.

 Report output is written to SYSTSPRT.

 If an abend should occur when you are running a report, information about the abend 
is written to SERABEND and SYSABEND.

Analysis of a Sample REXX Reporting Program
All of the REXX reporting programs that are shipped with ChangeMan ZMF have the same 
structure. We describe program CMN010 in this section to illustrate how the reporting 
programs work and give you guidelines for customizing them if you wish. You can also use 
the program as a model to develop your own reporting programs.

The source code for report 010, Summary of Planned and Unplanned Packages, is in 
member CMN010 of the REXX program library. 

NOTE  The ChangeMan ZMF ISPF client does not have to be running, but the started task 
does. The batch job connects directly to the SERNET started task.



202 ChangeMan® ZMF         

Chapter 7  Reports

Introductory Comments
The following code excerpt is typical of the introductory commentary in each reporting 
program. The introductory comments:

1 Have the word REXX on the first line (required in all REXX programs).

2 Identify the report number and title. In this example the report number is CMN010 
and the title is Summary of Planned and Unplanned Packages.

3 Identify the XML services that are called to provide information for the report. Two 
XML services are called in this example: PARMS and PACKAGE. See the XML Services 
User Guide for a description of the XML services that the reporting programs call.



Analysis of a Sample REXX Reporting Program

Customization Guide 203

4 Identify the parameters that the program passes to the SERXMLRC program, which 
handles communication between the reporting program and the target XML service.

Mainline Program Logic
The mainline logic of all the reporting programs is the same. Mainline program logic 
performs the following functions:

1 Gets the input from the user. (See "Getting User Input" on page 204.)

/* REXX                                                               */  1
/* ****************************************************************** */
/* Copyright 2003-2012 (C) SERENA Software, Inc.                      */
/* Licensed material.  All rights reserved.                           */
/* ChangeMan is a registered trademark of SERENA (R) Software Inc.    */
/* ****************************************************************** */
/* USE OF THE SAMPLE CODE CONTAINED HEREIN IS SUBJECT TO THE TERMS    */
/* CONDITIONS OF THE LICENSE AGREEMENT LOCATED IN THE MEMBER LICENSE  */
/* ****************************************************************** */
/* Date       Author            Reason                                */
/* 2003-06-01 Serena            Original version                      */
/* ****************************************************************** */
/* REXX CMN010 Summary of Planned and Unplanned Packages              */  2
/*                                                                    */
/* This report makes use of two XML Services                          */  3
/*                                                                    */
/*   Service     Scope    Message   Description                       */
/*                                                                    */
/* 1 PARMS       APL      LIST      Obtain the list of Appl. names    */
/* 2 PACKAGE     SUMMARY  SERVICE   Obtain counts about Package types */
/*                                  and statuses                      */
/*                                                                    */
/* Parameters                                                         */  4
/*                                                                    */
/* Application name         1 to 4 character mnemonic which may       */
/*                          include the asterisk '*' character to     */
/*                          represent a wild card. If omitted '*'     */
/*                          is assumed. Omission is indicated by a '.'*/
/*                          in the parm list.                         */
/*                                                                    */
/* Subsystem letter         1 character indicative of the ChangeMan   */
/*                          system that is being reported upon. Must  */
/*                          be present. A '.' indicates the default   */
/*                          subsystem of ' ' (blank).                 */
/*                                                                    */
/* TSO userid               1 to 8 character TSO id used to perform   */
/*                          security checking. Required parameter.    */
/*                                                                    */
/* Test switch              An indicator with the value 'T' which     */
/*                          specifies that diagnostic trace           */
/*                          information is to be sent to the          */
/*                          SERPRINT DD. The default is no value      */
/*                          other words Tracing is Off.               */
/*                          Since this is the last parm a positional  */
/*                          placeholder is not required.              */
/*                                                                    */
/* ****************************************************************** */



204 ChangeMan® ZMF         

Chapter 7  Reports

2 Calls a subroutine in the program to validate the user input. (See "Validating User 
Input" on page 204.)

3 Calls a subroutine in the program to initialize the variables that will be passed to the 
target XML service. (See "Initializing Variables" on page 206.)

4 Calls a subroutine to set up the XML service call. (See "Setting Up the XML Service 
Call" on page 207.)

5 Calls a subroutine that makes the call to the target XML service. (See "Calling the 
Target XML Service" on page 207.)

6 Calls a subroutine to format and print the output.

7 Calls a subroutine to disconnect from ChangeMan ZMF.

These subroutines appear in the Subroutines section of the reporting program. Selected 
subroutines that are called in our sample CMN010 program are described below. You may 
want to consider the annotations given for the code excerpts below while you are looking 
at a complete program source listing.

Getting User Input
The ARG instruction is used to get the user input. The variable names in the ARG 
instruction correspond to XML tags in the XML services that the program will be calling. 

Here’s the ARG instruction used in program CMN010:

                                                                                     

The arguments are:

 The name of the target application, a pattern that identifies all applications that match 
the pattern, or an asterisk that identifies all applications that are defined to the target 
ChangeMan ZMF subsystem.

 The name of the target ChangeMan ZMF subsystem.

 The ID of the requesting TSO user.

 A test switch (optional). This switch, if present, requests that diagnostic trace 
information be written to the SERPRINT DDname.

Validating User Input
The program calls the common program CMN000 to validate the user input parameters.

The parameters may vary slightly from report to report but as a general rule they consist 
of an application name/package number, a subsystem letter, a userid and finally, a test 
option which should only be used under the direction of Customer Support. For example 
parts of the validation in CMN000 are as follows:

CAUTION!  Be sure to use variable names in the program that differ from the XML tags 
to avoid double substitution of variable values.

/* Read input parms */
arg appname subname tsoname tst . 



Analysis of a Sample REXX Reporting Program

Customization Guide 205

. 

In this example:

1 The application name must be from 1 to 4 characters if it is supplied.

2 The ChangeMan ZMF subsystem name must be 1 character or blank.

3 The TSO userid of the requester must be present and be from 1 to 8 characters.

4 The test switch, if passed, must have the value T or X. If you are having problems, 
Customer support may ask you to specify the test switch. If so, diagnostic messages 
are written to the SERPRINT DDname.

/* Validate Parms */                                                            
                                                                                
Validate_Parms:                                                                 
                                                                                
  /* applname must be 1 to 4 characters if present */                                                         1

if length(applname) > 4  then                     
  do                                              
    call Error_Message 'Application name too long'
  end                                             

...

  /* subsystem must be 1 character from the approved list */                                             2
  subsyslt = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789#@$ '                         
  if length(subname) > 1 | pos(subname,subsyslt) = 0 then                       
    do                                                                          
      call Error_Message 'Subsystem Letter invalid'                             
    end                                                                         
...      
                                                                          
  /* userid must be present and 1 to 8 chars */                                                                  3
  if length(tsoname) > 8 | length(tsoname) < 1 then                             
    do                                                                          
      call error_message 'Userid invalid'                                       
    end                                                                         

...
                                                                                
  /* test switch must be 'T' or ’X’  if present */                                                                              4
/* it can also be absent or denoted with placeholder '.' */        
                                                                   
Select                                                             
  when tst='T' then nop                                            
  when tst='X' then nop                                            
  when tst='.' then nop                                            
  when tst=' ' then nop                                            
  otherwise                                                        
   do                                                              
    call Error_Message 'Test Switch invalid: must be T, X or blank'
   end                                                             
end                                                                ...



206 ChangeMan® ZMF         

Chapter 7  Reports

Initializing Variables
The following code excerpt shows the subroutine that program CMN010 uses to initialize 
the variables:

In our sample CMN010 program:

1 The user can input a period or asterisk for the application name or leave it blank. The 
program treats any of these values as if the user had specified the asterisk to signify 
all applications that are defined in the target ChangeMan ZMF subsystem.

2 If the subsystem ID is presented to the program as a period or is not supplied, the 
program assumes a blank subsystem ID.

3 The program initializes the grand totals to be printed in the report.

4 The program sets up line and page counters.

/* Initialize Variables */                                          
                                                                    
Init_Variables:                                                     
                                                                    
  if appname = '.' | length(appname) = 0 then /* appl name default */    1
    do                                                              
      appname = '*'                                                 
  /* end if */                                                      
                                                                    
  if subname = '.' | length(subname) = 0 then /* subsys default */       2
    do                                                              
      subname = ' '                                                 
    end                                                             
  /* end if */                                                      
                                                                    
  /* initialize grand totals */                                     
                                                                         3
    GTSimple  = 0                                                   
    GTComplex = 0                                                   
    GTSuper   = 0                                                   
    GTPart    = 0                                                   
    GTPPerm   = 0                                                   
    GTPTemp   = 0                                                   
    GTUPerm   = 0                                                   
    GTUTemp   = 0                                                   
                                                                    
  /* set date /time for report header */                            
                                                                    
  headdate=date()                                                   
  headtime=time()                                                   
                                                                    
  /* set page counter variables */                                  
                                                                    
  pchar  =' ' /* asa required, make null if not FBA */              
    linect = 99 /* expire the line counter to force headings on page 1 */ 4
    lines  = 55 /* print 55 data lines per page */                  
    linelen = 132 /* report line length (lrecl-1) */                
    pagect = 0  /* page counter */                                  
return



Analysis of a Sample REXX Reporting Program

Customization Guide 207

Setting Up the XML Service Call
All XML services expect the calling REXX reporting program to pass a stem variable. 
Here’s the subroutine in our sample CMN010 program that sets up the stem variable that 
is to be passed to the PARMS APPL LIST service. Note that the variable names used in the 
reporting program should differ from the XML tag names to avoid double-substitution of 
variable values.

A userid of the following form is required on any stem that is passed for security checking:
SER1.Userid = tsoname /* userid to use for security validation */

You can code the tsoname as a string, for example, "abcdefg", or use the REXX function 
USERID(), which will substitute the current TSO userid or, in the case of a batch job, the 
TSO userid of the job submitter. SERNET will not allow the tsoname to differ from the real 
userid of the user who is executing or submitting the job.

Calling the Target XML Service
This Serxmlrc subroutine invokes the SERXMLRC program to make the target XML service 
call. SERXMLRC is the interface between all ChangeMan ZMF reporting programs and the 
target XML services. SERXMLRC is a member of the SERCOMC.LOAD library. You must use 
an ADDRESS instruction in REXX to link to this program through the LINKMVS host 
command environment. 

SERXMLRC expects a REXX stem variable as input, and constructs the service request 
block from the information that is supplied in the stem variable.

After the target service completes execution, the reporting program checks the return 
code from the service call and processes the results that the service returned if the call 
was successful. 

Note that the SERXMLRC program does not tailor the result set returned by the target 
XML service. Thus, the statements following the call to SERXMLRC save only the fields 
that the reporting program needs (the application name or names, in this example) and 
drops the returned stem variable to minimize the storage used by the REXX variable pool. 

Here’s an excerpt from the CMN010 sample program. The excerpt shows:

1 The instruction that calls the SERXMLRC subroutine in the program.

/* Set variables for XML call */                              
                                                              
Init_XMLStem1:                                                
     rxrc          = 0       /* initialize our return code */ 
     stem          = "SER1." /* set outgoing stem name */     
     SER2.         = ""      /* initialize outgoing stem */   
     SER1.         = ""      /* initialize outgoing stem */   
     SER1.Subsys   = subname /* subsystem name to query */    
     SER1.Userid   = tsoname /* userid */                     
     SER1.Test     = tst     /* set test value */             
     SER1.Product  = "CMN "  /* set product */                
     SER1.Service  = "PARMS" /* set service*/                 
     SER1.Message  = "LIST"  /* set message */                
     SER1.Scope    = "APL"   /* set scope   */                
     SER1.applname = appname /* set application name */       
                             /* set result set to return */   
     SER1.includeInResult.1 = "applName"                      
Return



208 ChangeMan® ZMF         

Chapter 7  Reports

2 The code for the Serxmlrc subroutine, which invokes the SERXMLRC interface 
program.

3 Drop the stem variable to conserve storage.

Diagnosing Errors and Formatting Report Output
The error and output-formatting subroutines in the reporting programs are fairly 
straightforward, so we do not comment on them here:

 Report output is written to the SYSTSPRT DDname.

 Diagnostic messages are written to the SERPRINT DDname.

Use an output display facility such as SDSF to view report output.

/* make first xml service call */                                        
                                                                         
call Serxmlrc                                                                                                              1

/* for each application returned perform 2nd XML call */         
                                                                 
do jx=1 to SER1.result.0                                         
  call Init_XMLStem2                /* set up 2nd XML call */    
  call Serxmlrc                     /* make 2nd XML call */      
  if rxrc=0 then call Output_result /* if ok, print out result */
end                                                              
                                                                 
/* Print out totals */                                           
                                                                 
call Output_Totals                                               
                                                                 
/* terminate ZMF session */                                      
                                                                 
call Disconnect                                                  

...

Serxmlrc:                                                                                                                   2
  address LINKMVS "SERXMLRC stem"                                        
  rxrc=rc                                                                
  if rxrc<>0 then call Diagnose_Error                                    
Return                                                                   

...

/* Disconnect and set return code */
                                    
Disconnect:                         
                                    
 arg exitcode                       
 if exitcode =' ' then exitcode ='0'
 call Init_XMLstem0                 
 call Serxmlrc                      
 drop SER0.                                                                                          3
 exit exitcode                      



XML Services Called in Reporting Programs

Customization Guide 209

Disconnecting from ChangeMan ZMF
To explicitly disconnect from ChangeMan ZMF, you must issue an XML disconnect service 
call with the following service, scope, and message attributes:

<service name="        ">
<message name="DISCONCT">
<scope name="SERVICE">

Note that a blank is required in the service name attribute.

See the disconnect code above in the frame. You must ensure that you exit the REXX 
program if a nonzero return code appears in the reply message. Do not issue a second 
disconnect request or an infinite loop may result.

The following return codes, which signify REXX environmental errors, can originate from 
calls to SERXMLRC:

None of these return codes sets a message as there may be no way to pass a message 
back by means of the stem variable. All other errors should pass through the STATUSxxx 
stem variable.

XML Services Called in Reporting Programs
Refer to the ChangeMan ZMF XML Services User’s Guide for a description of the XML 
services that the ChangeMan ZMF reporting programs call.

Return 
Code Meaning

24 Error returned from the IRXEXCOM call.

28 Error in loading IRXEXCOM the first time.

32 No input stem variable was passed.



210 ChangeMan® ZMF         

Chapter 7  Reports



Customization Guide 211

Appendix A
Installation Jobs and Transaction Codes

This appendix shows how ChangeMan ZMF installation jobs run in a series that is 
distributed across D or DP instances and P instances (or against production libraries in a 
DP instance) to distribute, install baseline, backout, and revert change packages.

X Node Data Sets 212
Installation Jobs 213
Other CMNBATCH Transaction Codes 216



212 ChangeMan® ZMF 

Appendix A  Installation Jobs and Transaction Codes

X Node Data Sets
When installation JCL is created for a change package, a PDS is created for each 
installation site. The name of the PDS follows this format:

This library is often referred to as the X node data set.

The members in this library contain all of the jobs associated with the distribution, 
installation, baseline ripple, DB2 bind, backout, revert, and temporary package 
component delete processes for the package. Member names in the X node data set 
follow this naming convention:

 The JCL in each X node data set member is file tailored from the skeleton with name 
CMNtt, where tt is the two character transaction code. (The name of the skeleton that 
is actually used may have a suffix, such as I if the ChangeMan ZMF IMS Option is 
licensed.)

 Installation jobs are often referred to by their transaction code. For example, "the 30 
job" means the job for transaction code 30 that was file tailored from the CMN30 
skeleton and is in X node data set member appl30pp.

 Before customization, installation job names follow the same naming convention as 
the X node data set members that contain them. Exit program CMNEX008 can be 
used to customize the job names, but the member names in the X node data set stay 
the same.

Since a P instance site may not be on the same LPAR or have shared DASD with the D or 
DP instance where the X node data set is created, a copy of each X node data set is 

devmodel.X.sitename

where:

devmodel DEV MODEL DSNAME on the Global Parameters - Part 6 of 7 
panel (CMNGGP06)

X Fixed node name to distinguish the library from package staging 
libraries.

sitename Site on the function:SITE INFORMATION panel (CMNPRSTI) 
for the package
Note: There will be no sitename node for packages residing on an 
A instance.

applttpp

where:

appl Three or four character application mnemonic

tt Two character transaction code

pp Last digits of the package number:
 Two digits where the application mnemonic is four characters
 Three digits where the application mnemonic is three 

characters



Installation Jobs

Customization Guide 213

transmitted to its target site in the distribution phase of the package installation process. 
The naming convention for the transmitted production X node data set is:

The contents of the production X node data set are exactly the same as the development 
X node data set for the same site.

Installation Jobs
The table in this section shows the installation jobs for a package created on a D or DP 
instance.

 Each job is described by two columns:

• Job - The two character transaction code

• Action - What the job does

 There are two sets of columns in the table:

• Development Center - Jobs that run on the A, D, or DP instance.

• Production Site - Jobs that run on a P instance.

prdmodel.X.sitename

where:

prdmodel PRD MODEL DSNAME on the Global Parameters - Part 6 of 7 
panel (CMNGGP06)

X Fixed node name to distinguish the library from package staging 
libraries.

sitename Site on the function:SITE INFORMATION panel (CMNPRSTI) 
for the package

Development Center Production Site

Job Action Job Action

10  Package is audited and/or frozen.
 Jobs are created in ...X.&node.
 Package is approved.
 Job 10 is submitted to initiate the 

distribution.
 CMNBATCH transaction 10 says 

distribution initiated and status is 
changed to DIS.

 Vehicle is asked to submit job 11 
at remote site.



214 ChangeMan® ZMF 

Appendix A  Installation Jobs and Transaction Codes

11 Staging libraries are sent to remote 
site.

10  Staging libraries are received 
including QSAM package master.

 Job 11 is submitted.

11  CMNBATCH transaction 11 
overlays package records (on 
PM) with QSAM package master; 
proper node record is time 
stamped; status is DIS.

 Job 14 is submitted. (Only if 
IEBCOPY is not used.)

14 Job 14 requests vehicle to submit 15 
at DEV site.

17 Job 17 is submitted if external (not 
internal) scheduler is used.

18 Job 18 requests vehicle to submit 19 
at DEV site.

15 Job 15 is submitted. (Only if IEBCOPY 
is used.)

15 CMNBATCH transaction 15 stamps 
acknowledgment of distribution.

19 Notification to package creator that 
distribution failed.

21 Perform DB2 bind for production 
installation. (INSTALL IN PROD = 
YES).

20 Job 20 is submitted to check if 
package was previously installed, if 
not, then it begins installation.

20 CMNBATCH transaction 20 changes 
package status to INS.

20 Job 24 is submitted. (Only if IEBCOPY 
is not used.)

20t If Temporary, Job 20t runs to install 
members into Temporary libraries.

24 Requests vehicle to submit 25 at DEV 
site.

28 Requests vehicle to submit 29 at DEV 
site.

25 CMNBATCH transaction 25 changes 
package status to INS.

29 Notification to package creator that 
installation failed.

25 If Permanent, Job 30 is submitted.

30 Job 30 is submitted if system 
environment is ALL.

Development Center Production Site

Job Action Job Action



Installation Jobs

Customization Guide 215

30 CMNBATCH transaction 30 changes 
package status to BAS and ripples the 
baseline.

30 Delete members from promotion 
libraries based on promotion level 
and library type.

31 If Temporary, Job 31 runs to delete 
members from temporary libraries.

31t CMNBATCH transaction 31 changes 
package status to TCC (Temporary 
Change Cycled) and date/time 
stamp. Submit job 35.

32 Performs DB2 bind for production 
installation (INSTALL IN PROD = NO).

34t Requests vehicle to submit 35t at 
DEV site.

35t Package status updated to TCC and 
date/time stamped when all remote 
sites have been cycled.

38t Requests vehicle to submit 39t at 
DEV site.

39t Notification to package creator that 
the package cycle failed.

CASE: A permanent change must be 
backed out.
Operator makes human decision to 
back out (full) particular package. 
Enters backout reasons on panel and 
ChangeMan ZMF instance copies 
package to same flat file that was 
sent from development center. Job 50 
is submitted.

49 Job 21 runs the DB2 bind for 
production backout (INSTALL IN 
PROD = YES).

50  Backs out the change by copying 
back from BKUP Libraries.

 Changes package status to BAK.
 Job 54 is submitted if IEBCOPY is 

used, else job 51.

50 If system environment is ALL, job 55 
is submitted.

51 Job 51 transmits a QSAM package 
master to the development center 
and requests a vehicle to submit job 
54.

Development Center Production Site

Job Action Job Action



216 ChangeMan® ZMF 

Appendix A  Installation Jobs and Transaction Codes

Other CMNBATCH Transaction Codes
The following table shows other CMNBATCH transaction codes that occur on the 
development center and production site.

54  Reads flat package and transmits 
reasons.

 Updates backout reasons into 
correct package.

55 Job 55 is submitted to reverse ripple 
the baseline if all remote sites are 
backed out.

55 Status is changed to BAK; * node 
record is date and time stamped.

56 Job 32 runs the DB2 bind for 
production backout (INSTALL IN 
PROD = NO).

58 Job 58 requests vehicle to submit 59 
at DEV site.

59 Notification to package creator that 
package backout failed.

64 Job 64 requests vehicle to submit 65 
at DEV site.

65 Status is changed to DEV.

Development Center Production Site

Job Action Job Action

CMNBATCH 
Transaction Explanation

 05 Submits a job based on:
 STE=site
 NOD=node
 SUB=jobname

65 Reverts package back to development:
 Reset general component freeze flag
 Reset all major date/time stamps
 Set revert date/time stamp at remote site

80  Promotes or demotes a package
 Checks out components with or without package association

90 Activates a component

92 Deletes staging libraries

93 Resynchronizes the implementation calendar

94 Deletes change package records

96 Decrements the Implementation Calendar when packages are deleted

99 This transaction is invoked to notify you any time there is a job failure.



Customization Guide 217

Appendix B
Analyzing ZMF ISPF Skeletons

This appendix shows how ChangeMan ZMF ISPF skeletons are imbedded in other 
skeletons. ISPF file tailoring processes this hierarchy of skeletons to build ChangeMan 
ZMF job JCL.

This chapter is intended to provide information that will help customers modify 
ChangeMan ZMF base product functions and build custom functions to support change 
management processes at their company.

Introduction 218
Analyzing Skeleton Imbeds 218



218 ChangeMan® ZMF 

Appendix B  Analyzing ZMF ISPF Skeletons

Introduction
This chapter presents information to help you analyze skeletons. The initial information 
you may want may be obtained from the $$$INDEX member, followed by the comments 
within each skeleton (where it is present).

Analyzing Skeleton Imbeds
The information in this chapter was assembled by analyzing skeleton libraries using the 
ISPF Search-For Utility (=3.14). 

You can analyze skeleton imbeds yourself by searching skeleton libraries for ’)IM ’, the 
operator in the ISPF skeleton imbed statement in column 1:

ISRSFSPR                      Search-For Utility                               
Command ===>                                                                   
                                                                               
Search String  . . ’)IM ’                                                      
                                                                               
ISPF Library:                                                                  
   Project . . .                                                               
   Group . . . .          . . .          . . .          . . .                  
   Type  . . . .                                                               
   Member  . . .                 (Blank or pattern for member selection list,  
                                   "*" for all members)                        
Other Partitioned, Sequential or VSAM Data Set:                                
   Data Set Name . . . CMNTP.CMN820.SKELS(*)                                   
   Volume Serial . . .           (If not cataloged)                            
                                                                               
Listing Data Set . . . USER015.SRCHFOR.LIST                                    
Data Set Password  . .           (If Search-For data set password protected)   
                                                                               
Enter "/" to select option               Execution Mode        Output Mode     
   Specify additional search strings     1  1. Foreground      1  1. View      
   Mixed Mode                               2. Batch              2. Browse    
   Bypass selection list                                                       



Analyzing Skeleton Imbeds

Customization Guide 219

The following panel shows a snippet of the results of a search:

Notice that many ChangeMan ZMF skeletons begin with a JCL comment containing the 
skeleton name (unless they require a jobcard, when that has to come first):

//*)IM CMN$$ASM

Alternatively they may have a skeleton comment to the same effect, i.e.

)CM IM CMNJLCIC
or
)CM )IM CMNJLDB2

You will need to read the comments in the skeleton, as there may be relevant instructions, 
i.e.

)CM APPLY THE FOLLOWING IMBED TO APPLY PACKAGE SCRATCH/RENAMES 
)CM TO THE TARGET PROMOTION LIBRARIES                          
)CM                                                            
)CM )IM CMN$$PSR                                               

The only effective includes are the ones that start in column 1, e.g. lines 245, 26, 63, 13, 
36, 20, 120, 156 and 203 above.

1  ISRSUPC   -   MVS/PDF FILE/LINE/WORD/BYTE/SFOR COMPARE UTILITY- ISPF FOR z/OS
  LINE-#  SOURCE SECTION                    SRCH DSN: USER015.CMN820.SKELS
                                                                        
                                                                        
  CMN$$ACB                    --------- STRING(S) FOUND ----------------
                                                                        
       1  //*)IM CMN$$ACB                                               
      30  //*)IM CMN$$ACB END                                           
                                                                        
  CMN$$ARE                    --------- STRING(S) FOUND ----------------
                                                                        
       1  //*)IM CMN$$ARE                                               
     245  )IM CMN$$XVP                                                  
     247  //*)IM CMN$$ARE END                                           
                                                                        
  CMN$$ASM                    --------- STRING(S) FOUND ----------------
                                                                        
       1  //*)IM CMN$$ASM                                               
      26  )IM CMN$$SYC                                                  
      63  )IM CMN$$OPT                                                  
      64  //*)IM CMN$$ASM END                                           
                                                                        
  CMN$$ASN                    --------- STRING(S) FOUND ----------------
                                                                        
       1  //*)IM CMN$$ASN                                               
      13  )IM CMN$$SPR                                                  
      36  )IM CMN$$XVP                                                  
                                                                        
  CMN$$AUD                    --------- STRING(S) FOUND ----------------
                                                                        
       1  //*)IM CMN$$AUD                                               
      20  )IM CMN$$SPR                                                  
     120  )IM CMN$$SPR                                                  
     156  )IM CMN$$SEX                                                  
     176  //*)IM CMN$$SPR                                               
     203  )IM CMN$$XVP                                                  



220 ChangeMan® ZMF 

Appendix B  Analyzing ZMF ISPF Skeletons

By searching backward through JCL generated by file tailoring from ChangeMan ZMF 
skeletons, you can get information about the hierarchy of imbeds that was used by ISPF 
file tailoring to build the JCL. However, there is no way to tell from the JCL comments if a 
skeleton was imbedded in a previously listed skeleton or if both were imbedded in another 
skeleton and processed serially.

This JCL fragment from a stage job shows that skeletons CMN$$DSN, CMN$$JBL, 
CMNCOB2, CMN$$VAR, CMN$PARM, and CMN$$WRT were processed by ISPF file tailoring 
to build the JCL. In fact, skeletons CMN$$VAR and CMN$$XSC are imbedded in procedure 
skeleton CMNCOB2, and skeleton CMN$PARM is imbedded in CMN$$VAR.

Note also that there is often logic to determine if a skeleton is used, and that a given 
skeleton may appear several times in the calling skeleton, for example CMN$$CBL which 
includes CMN$$SPR, which for the first include of CMN$$SPR is subject to 5 separate )SEL 
statements:

000010 //*                                                                
000011 //*)IM CMN$$DSN                                                    
000012 //*)IM CMN$$JBL                                                    
000013 //JOBLIB   DD DISP=SHR,DSN=CMNTP.CMN812.C6.LOAD                    
000014 //         DD DISP=SHR,DSN=CMNTP.SER812.C6.LOAD                    
000015 //         DD DISP=SHR,DSN=CMNTP.CMN812.LOAD                       
000016 //         DD DISP=SHR,DSN=CMNTP.SER812.LOAD                       
000017 //*)IM CMNCOB2                                                     
000018 //*)IM CMN$$VAR                                                    
000019 //*  USROP01 = Y                                                   
000020 //*)IM CMN$PARM                                                    
000021 //* SEL  =  AND OBJLIB = Y                                         
000022 //*)IM CMN$$XSC                                                    
000023 //SERCOPY EXEC PGM=SERCOPY,    *** COPY ACPSRCEE FROM STAGING      
000024 //             REGION=3M,                                          
000025 //             PARM=('INDSN(CMNTP.S6.ACTP.STG6.#000032.SRC)',      
000026 //             'MEMBER=ACPSRCEE')                                  
000027 //SYSPRINT DD  DISP=(,PASS),DSN=&&LIST00,                          
000028 //             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),                  
000029 //             DCB=(RECFM=FBM,LRECL=121,BLKSIZE=0)                 
000030 //ABNLIGNR DD  DUMMY                                               
000031 //SYSUT2   DD  DISP=(,PASS),DSN=&&SOURCE(ACPSRCEE),                
000032 //             UNIT=SYSDA,SPACE=(CYL,(1,2,1),RLSE),                
000033 //             DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=0)          
000034 //SYSUT3   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                        
000035 //SYSUT4   DD  UNIT=SYSDA,SPACE=(CYL,(5,5))                        
000036 //*)IM CMN$$WRT                                                    
000037 //WRITE   EXEC PGM=CMNWRITE,   *** PARSE/EXPAND COMPONENT ACPSRCEE 
000038 //             COND=(4,LT),                                        
000039 //             PARM=('SUBSYS=6,USER=USER015',                      
000040 //             '')                                                 
000041 //*)IM CMN$$SPR                                                    
000042 //SER#PARM DD  DISP=SHR,DSN=CMNTP.SER812.C6.TCPIPORT               
000043 //SYSPRINT DD  DISP=(,PASS),DSN=&&LIST10W1,                        
000044 //             UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE)                   
000045 //*)IM CMN$$SYC                                                    
000046 //SYSLIB   DD  DISP=SHR,DSN=CMNTP.S6.ACTP.STG6.#000032.CPY         
000047 //         DD  DISP=SHR,DSN=CMNTP.S6.V812.BASE.ACTP.CPY            



Analyzing Skeleton Imbeds

Customization Guide 221

000005 )SEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE L                  
000006 )SEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE A                  
000007 )SEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE V                  
000008 )SEL &STORMNS NE H                                                     
- - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 82 Line(s) not Displayed
000091 )SEL &LIBORG EQ LIB                                                    
- - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  9 Line(s) not Displayed
000101 )IM CMN$$SPR                                                           
- - -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 40 Line(s) not Displayed
000142 )ENDSEL &LIBORG EQ LIB                                                 
000143 )ENDSEL &STORMNS NE H                                                  
000144 )ENDSEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE V               
000145 )ENDSEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE A               
000146 )ENDSEL &STORMNS EQ P OR &SKLBLVL EQ 0 AND &STORMNS NE L               

Another point to be aware of is the use of JCL IF-THEN-ELSE constructs which will also 
affect execution at run time of the JCL. See near the end of CMN$$ILD:

)CM  DELETE CMNBAT90 OUTPUT IF WE GET ILOD CONFLICT - CLEAR IT OUT
)CM   FOR CMN99 STEP                                              
)CM                                                               
//CHKVILOD IF (VFYILOD&L#N..RUN = TRUE) THEN                      
//DLTILOD&L#N EXEC PGM=IEFBR14,                                   
//             COND=(8,GT,VFYILOD&L#N)                            
//BAT90CTL DD  DISP=(MOD,DELETE,DELETE),                          
//             UNIT=SYSDA,SPACE=(CYL,0),                          
//             DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=0),        
//             DSN=&&&&BAT90CTL                                   
//CHKVILOD ENDIF                                                  



222 ChangeMan® ZMF 

Appendix B  Analyzing ZMF ISPF Skeletons



Customization Guide 223

Index

A
abend

CMNSSIDN
CMNSSIDN

abend 173
Adobe Acrobat 14
auditing

CMNWRITE 189

B
baseline

ripple 175

C
CEDA language review 146
Checkout Options panel (CMNMCKOT) 104, 105, 

106, 108
CICS CSD extract 139
CMNBAHST 114
CMNBAT90 116, 126, 127
CMNCICS6 139
CMNEX001 77
CMNEX002 77
CMNEX003 77
CMNEX004 78
CMNEX005 78
CMNEX006 78
CMNEX007 78
CMNEX008 78
CMNEX009 79
CMNEX010 80
CMNEX011 80
CMNEX012 80
CMNEX014 80
CMNEX015 81
CMNEX019 81
CMNEX020 82
CMNEX021 82
CMNEX022 82
CMNEX023 82
CMNEX024 83
CMNEX025 83
CMNEX026 83
CMNEX027 83

CMNEX028 84
CMNEX030 84
CMNEX031 84
CMNEX032 84
CMNEX033 84
CMNEX034 85
CMNEX035 85
CMNEX036 85
CMNEX037 85
CMNEX038 86
CMNEX039 86
CMNEX040 86
CMNEX041 86
CMNEX042 86
CMNEX043 87
CMNEX101 87
CMNEX102 87
CMNEX103 88
CMNEX201 88
CMNEXINS 76
CMNFIX10

abend codes 148
CMNFIXMN 146
CMNIALD0 149
CMNIALU0 149
CMNPMLOD 151
CMNSSIDN 169
CMNUPDAT 175
CMNWRITE 181

DD statements 182
compressed listings

browsing 197
COPY 188
COPY management 181
copy utility 190
customizing ChangeMan ZMF 17

D
DB2

impact analysis 149
DD statements

CMNWRITE 182
SERCOPY 191



224 ChangeMan® ZMF  

Index

E
exits

user 69
extract

masterfile 151

H
history initial 114

I
imbedding skeletons 24
impact analysis

DB2 149
Import option 142
INCLUDE 188
INCLUDE management 181

L
language

CEDA review 146
link edit control 169

M
masterfile

extract 151

N
naming conventions 22

O
options

SYSIN 119, 171

P
panels

Checkout Options (CMNMCKOT) 104, 105, 
106, 108

parameters
SYSIN 135, 183

R
refreshing VLA and LLA 74
reports

customizing 200–209
requesting a report online 200
submitting a batch job 201
summary 188

REPORTS member of CNTL library 201
REXX program library 200
ripple baseline 175

S
Sample CMNPMLOD LIST 158
SER#PARM DD statement 201
SERABEND DD statement 201
SERCOPY 190

DD statements 191
SEREX001 75
SETSSI generate 146
skeleton variables 23
skeletons

imbedding 24
with file tailoring 26

source load relationships 116, 126, 127
statements

COPY 188
INCLUDE 188

syntax checking
with file tailoring 29

SYSABEND DD statement 201
SYSEXEC DD concatenation 201
SYSIN options 119, 171
SYSIN parameters 135, 183
SYSTSPRT DD statement 201

U
user exits

CMNEX001 77
CMNEX002 77
CMNEX003 77
CMNEX004 78
CMNEX005 78
CMNEX006 78
CMNEX007 78
CMNEX008 78
CMNEX009 79
CMNEX010 80
CMNEX011 80
CMNEX012 80
CMNEX014 80
CMNEX015 81



Index

Customization Guide 225

CMNEX019 81
CMNEX020 82
CMNEX021 82
CMNEX022 82
CMNEX023 82
CMNEX024 83
CMNEX025 83
CMNEX026 83
CMNEX027 83
CMNEX028 84
CMNEX030 84
CMNEX031 84
CMNEX032 84
CMNEX033 84
CMNEX034 85
CMNEX035 85
CMNEX036 85
CMNEX037 85
CMNEX038 86
CMNEX039 86
CMNEX040 86
CMNEX041 86
CMNEX042 86
CMNEX043 87
CMNEX101 87
CMNEX102 87
CMNEX103 88
CMNEX201 88
CMNEXINS 76
defined 69
SEREX001 75

utilities 113
CMNWRITE 181
SERCOPY 190

utility
CMNBAHST 114
CMNBAT90 116, 126, 127
CMNCICS6 139
CMNFIXMN 146
CMNIALD0 149
CMNIALU0 149
CMNPMLOD 151
CMNSSIDN 169
CMNUPDAT 175
SERCOPY 190

X
XML services

used in reporting 207–208



226 ChangeMan® ZMF  

Index


	Welcome to ChangeMan® ZMF
	Guide to ChangeMan ZMF Documentation
	ChangeMan ZMF Documentation Suite
	Using the Manuals
	Searching the ChangeMan ZMF Documentation Suite

	Using Online Help
	Online Tutorial
	Online Help Screens
	Online Error Messages

	Typographical Conventions
	Notes

	Introduction
	Preserving Vendor Versions of ChangeMan ZMF Components
	Using ChangeMan ZMF To Manage ChangeMan ZMF Components
	Nomenclature

	ISPF Skeletons
	Introduction
	Skeleton File Tailoring in ChangeMan ZMF
	Skeleton Naming Conventions
	Skeleton Variables
	Skeleton Variable Example
	Where Variables Are Defined
	#VARLIST

	Skeleton Imbedding
	Skeleton Maintenance Facility
	Accessing Skeleton Maintenance

	Developing Skeletons With File Tailoring Assistance
	Advantages of Using File Tailoring Assistance
	Disadvantages of File Using Tailoring Assistance
	Recommended Use of File Tailoring Assistance

	Editing Skeletons in File Tailoring Assistance
	Syntax Checking in File Tailoring Assistance
	Debugging Skeletons in Started Task Procedures
	File Tailoring Procedure Names
	Considerations
	Set Up CLIST CMNDBGAS
	Run CLIST CMNDBGAS

	ISPF Table CMNTBN
	Error Codes

	CMN$$AUD - Audit for ALL applications
	CMN$$JBL - JOBLIB / STEPLIB
	Setting Build Parameters
	Build Parameter ISPF Variables
	Build Parameter Skeleton Architecture
	Customization Steps

	Transmit Selected Remote Promote Components
	JES Node Names and Transmission Site Names

	Exposing Mainframe Resources to Web and Desktop Applications
	ZMF Support for z/OS Connect
	What is z/OS Connect and How Does It Work?
	What is ChangeMan ZMF’s Role

	ZMF Support for CICS Web Services
	Generate JSON Outputs from Input Copybooks (CMNDFHJS Skeleton)
	Generate WSDL Outputs from Input Copybooks (CMNDFHWS Skeleton)
	Generate Copybooks from JSON Inputs (CMNDFHJL Skeleton)
	Generate Copybooks from WSDL Input (CMNDFHWL Skeleton)

	ZMF Support for CICS Bundles

	User Exits
	Introduction
	User Exit Source
	User Exit Interface Data
	No Access to TCA

	Customizing Exits
	Find the Exit You Want
	Modify Exit Source
	Assemble Exit Source
	Refresh Exit Load
	Refresh VLF and LLA

	Exits Listed in SYSPRINT

	Calling XML Services from User Exits
	Exit Descriptions
	SEREX001
	SEREX002
	SEREX003
	SEREX005
	CMNEXINS
	CMNEX001
	CMNEX002
	CMNEX003
	CMNEX004
	CMNEX005
	CMNEX006
	CMNEX007
	CMNEX008
	CMNEX009
	CMNEX010
	CMNEX011
	CMNEX012
	CMNEX014
	CMNEX015
	CMNEX016
	CMNEX019
	CMNEX020
	CMNEX021
	CMNEX022
	CMNEX023
	CMNEX024
	CMNEX025
	CMNEX026
	CMNEX027
	CMNEX028
	CMNEX030
	CMNEX031
	CMNEX032
	CMNEX033
	CMNEX034
	CMNEX035
	CMNEX036
	CMNEX037
	CMNEX038
	CMNEX039
	CMNEX040
	CMNEX041
	CMNEX042
	CMNEX043
	CMNEX044
	CMNEX093
	CMNEX101
	CMNEX102
	CMNEX103
	CMNEX201
	CMNEX210
	CMNEX220


	User Data
	Package User Information
	Package User Information Field Names
	Package User Information Input Panels
	Package User Information and Exits
	Implementing the Package User Information Facility
	Choose Package User Information Fields
	Modify Sample Package User Information Panels
	Modify Exits
	Modify Exit 23 For Install JCL File Tailoring
	Modify Install Skeletons
	Enable Package User Information


	Staging User Options
	User Options Field Names
	User Option Input Panels
	User Options and Exits
	Implementing the User Options
	Choose User Options Fields
	Modify Sample Stage User Options Panels
	Modify Exits
	Modify Build Skeletons

	User Option Example
	User Option Panel CMNUSR01
	Variable Skeleton CMN$$VAR
	Compile Procedure CMNCOB2
	HLLX exit requirements


	Release ID Variables
	Accessing Maintain Release ID Variables
	Creating a New Release ID
	Maintaining an Existing Release ID
	Associating a Release ID with an Application

	Custom V01-V10 Variables
	Custom V01-V10 Field Names
	Using Custom V01-V10 Variables

	Summary

	Utilities
	CMNBAHST - Initial History Record
	CMNBAHST Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	SYSIN Parameters
	Return Codes and Error Messages
	Reporting

	CMNBAQ00 - Prepare Input for the IBM BAQLS2JS Utility
	CMNBAT90 - Register Build Output Modules
	CMNBAT90 Input
	Output
	Sample JCL
	DD Statements
	Program Execution Parameters
	SYSIN Keyword Statements
	Return Codes and Error Messages
	Reporting
	CMNBAT90 Notes
	SLB and ILB Keyword Statements

	CMNBAT90 Example - Composite Load Module

	CMNBILOD - Verify that an ILOD record does not already exist
	Program Execution Parameters
	DD Statements
	Return Codes and Error Messages

	CMNBKRST - VSAM MASTER UNLOAD, RECOVER, LOAD
	Program Execution Parameters
	CMNBKRST Input and Output
	Sample JCL
	DD Statements
	SYSIN Keyword Statements
	Return Codes, Completion Codes, and Error Messages
	Reporting
	CMNBKRST Notes

	CMNCICS1 - CICS NEWCOPY
	CMNCICS1 Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	SYSIN Parameters
	Return Codes and Error Messages
	Reporting
	Notes and Comments

	CMNCICS1 - CICS BUNDLE
	CMNCICS1 - CICS PIPELINE
	CMNCICS6 - CICS CSD Extract
	Export Option
	Basic Format of CMNCICS6 Export Control Statement
	Import Option
	Basic Format of CMNCICS6 Import Control Statement
	CICS Keywords processed by CMNCICS6
	CEDA Language Review

	CMNFIXMN - Generate SETSSI Data
	Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	Return Codes and Error Messages
	Reporting

	CMNIALD0 - Impact Analysis Db2 Load
	CMNIALD0 Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	Return Codes and Error Messages
	Reporting
	Notes or Comments
	DDL for CMNBUN and CMNBASE


	CMNPMLOD - Master File XML Extractor
	CMNPMLOD Input
	Output
	Sample JCL
	DD Statements
	Global Records:
	Package Records
	Package "I" Records
	Application Records
	ERO Records
	Component Records

	PARM Options
	Return Codes and Error Messages
	Reporting
	Sample CMNPMLOD Extract
	Notes or Comments
	Sample CMNPMLOD LIST
	CMNPMLOD - UNLOAD to Db2 Loadable Format

	CMNSRCPP - Assembler Macro Discovery
	CMNSSIDN - LINK EDIT Control Preparation
	CMNSSIDN Input
	Output
	Sample JCL
	DD Statements
	Program Execution Parameters
	SYSIN Control Statements
	INCLIB and CMNSSIDN
	Return Codes and Error Messages
	Reporting
	CMNSSIDN Examples

	CMNUPDAT - Stacked Reverse Delta Management
	CMNUPDAT Input and Output
	Sample JCL
	DD Statements
	PARM Options
	Notes or Comments

	CMNWRITE - Copy And Include Management
	CMNWRITE Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	SYSIN Parameters
	Return Codes and Error Messages
	Reporting
	Notes
	COPY and INCLUDE Variations
	CMNWRITE and Audit
	Keyword Option OPT=NOFLOWER
	Skeleton Variable COPYLIBA
	Recursive Nesting and C++ Headers
	Modifying Copybook Records With CMNEX016


	SERCOPY - Copy Utility
	SERCOPY Input
	Output
	Sample JCL
	DD Statements
	PARM Options
	SYSIN Parameters
	Return Codes and Error Messages
	Comments
	Automatic Library Reallocation
	Step and JOB Enqueue
	PDSFAST

	Reporting

	SERPRINT - SYSOUT Compression Facility
	Browsing Compressed Listings


	Reports
	Overview of Online Report Generation
	Submitting a Batch Job to Generate a Report
	Analysis of a Sample REXX Reporting Program
	Introductory Comments
	Mainline Program Logic
	Getting User Input
	Validating User Input
	Initializing Variables
	Setting Up the XML Service Call
	Calling the Target XML Service
	Diagnosing Errors and Formatting Report Output
	Disconnecting from ChangeMan ZMF

	XML Services Called in Reporting Programs

	Installation Jobs and Transaction Codes
	X Node Data Sets
	Installation Jobs
	Other CMNBATCH Transaction Codes

	Analyzing ZMF ISPF Skeletons
	Introduction
	Analyzing Skeleton Imbeds

	Index

