

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page i

COBOL-IT® Report Writer Precompiler

CitRW® Reference Manual
Version 1.1

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page ii

COBOL-IT Report Writer Precompiler

Acknowledgement

This documentation is derived from the CitRW® Product, which is proprietary software, wholly

owned by COBOL-IT. Unauthorized reproduction or distribution of this document without the

express consent of COBOL-IT is prohibited. The CitRW® utility is provided exclusively for users

with a Subscription to the COBOL-IT® Enterprise Edition.

Copyright 2008-2018 COBOL-IT S.A.R.L. All rights reserved. Reproduction of

this document in whole or in part, for any purpose, without COBOL-IT's

express written consent is forbidden.

COBOL-IT® Report Writer Precompiler (CitRW®) is a registered trademark of COBOL-IT. All rights reserved.

COBOL-IT® Report Writer Precompiler (CitRW®) is licensed under exclusive license with SPC Systems.

Other brand and product names are trademarks or registered trademarks of the holders of those

trademarks.

Contact Information:

The Lawn
22-30 Old Bath Road Newbury, Berkshire,
RG14 1QN United Kingdom
Tel: +44-0-1635-565-200

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page iii

COBOL-IT REPORT WRITER PRECOMPILER

CitRW® REFERENCE MANUAL

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page iv

Contents

COBOL-IT REPORT WRITER PRECOMPILER ... II

Acknowledgement.. ii

COBOL-IT REPORT WRITER PRECOMPILER .. iii
Contents ... iv
Preface .. 6

1.1 Introduction and Tutorial ... 1
1.1.1 Welcome to COBOL-IT Report Writer .. 3
1.1.2 Gentle Introduction ... 4
1.1.3 More about COBOL-IT Report Writer ... 20
1.1.4 Some Shorter Forms ... 36
1.1.5 Other Features .. 37
1.1.6 Further Study .. 44

1.2 Report Files and RD Entries ... 47
1.2.1 Report Files and RD: Keyword Table .. 49
1.2.2 Report Files .. 52
1.2.3 REPORT SECTION and RD .. 61
1.2.4 ALLOW clause... 66
1.2.5 CODE clause .. 68
1.2.6 CONTROL clause .. 71
1.2.7 LINE LIMIT clause .. 79
1.2.8 OVERFLOW clauses ... 81
1.2.9 PAGE LIMIT clause .. 84

1.3 Report Group Descriptions ... 91
1.3.1 Introducing Report Groups ... 93
1.3.2 Coding Report Group Descriptions .. 97
1.3.3 BLANK WHEN ZERO clause ... 105
1.3.4 COLUMN clause .. 107
1.3.5 COLUMN-COUNTER... 113
1.3.6 COUNT clause ... 115
1.3.7 FUNCTION clause ... 117
1.3.8 GROUP LIMIT clause ... 125
1.3.9 JUSTIFIED clause .. 126
1.3.10 LINE clause ... 128
1.3.11 LINE-COUNTER .. 137
1.3.12 MULTIPLE PAGE clause ... 139
1.3.13 NEXT GROUP clause ... 142
1.3.14 OCCURS clause .. 147
1.3.15 PAGE-COUNTER ... 154
1.3.16 PICTURE clause .. 156
1.3.17 PRESENT AFTER clause ... 161
1.3.18 PRESENT WHEN clause .. 167
1.3.19 REPEATED clause .. 183

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page v

1.3.20 SIGN clause ... 188
1.3.21 SOURCE clause .. 190
1.3.22 STYLE clause .. 196
1.3.23 SUM clause ... 201
1.3.24 TYPE clause .. 226
1.3.25 USAGE clause ... 234
1.3.26 VALUE clause ... 236
1.3.27 VARYING clause .. 240
1.3.28 WRAP clause ... 245

1.4 Procedural Statements ... 251
1.4.1 Report Writer Verbs: Overview ... 253
1.4.2 GENERATE statement ... 255
1.4.3 INITIATE statement ... 261
1.4.4 Report Writer SET statements .. 263
1.4.5 SUPPRESS PRINTING statement ... 270
1.4.6 TERMINATE statement ... 272
1.4.7 USE BEFORE REPORTING directive .. 275

1.5 Special Topics ... 281
1.5.1 Multiple Reports ... 283
1.5.2 Developing User-Written Functions ... 292
1.5.3 Independent Report File Handlers .. 297

1.6 Migration from OS/VS or DOS/VS COBOL-IT Report Writer .. 314
1.6.1 Re-compiling OS/VS and DOS/VS COBOL Sources .. 315
1.6.2 Other Considerations .. 327
1.6.3 Physical Comparison of Report Writer Output .. 328
1.6.4 Unreachable Code .. 328

1.7 Appendices .. 329
 Appendix A .. 331
 Appendix B .. 341
 Appendix C .. 343
 Appendix D .. 361
 Appendix E .. 369
 Index .. 402

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 6

Preface

Note for the browsable (PDF) edition. This version is a true rendering of the
original printed document, but with color replacing lines and arrows, and many
cross-references (or “hot spots”) inserted. When reading text that refers
elsewhere, please probe for these hot spots to get there automatically. Also,
these Preface sheets were simplified for convenience.

This publication is intended for programmers engaged in the writing of new COBOL
programs using Report Writer, or the maintenance of old ones. Most of the text is
intended for the general application programmer, but there is also information in
part 5 for the systems programmer engaged in writing user extensions, such as for
special output devices.
The language described in this eigth edition includes all the extensions to the
Report Writer feature described in the ANS-85 standard and enhancements to the
language made up to May 1995.
This publication also describes the basic (ANS-68) features used in IBM* OS/VS and
DOS/VS COBOL and the many extensions introduced by IBM, Codasyl, and SPC Systems.
For this reason, the product is referred to here as new Repor Writer to distinguish
it from the built-in Report Writer of OS/VS and DOS/VS COBOL that they contain as a
subset.
This publication is a combination of all the following elements:

• tutorial (Introduction and Tutorial),

• detailed language description (Report Files and RD Entries, Report Group

Descriptions, Procedural Statements and Special Topics),

• migration guide (Migration from OS/VS or DOS/VS COBOL-IT Report Writer),

• quick reference (Appendices)

The tutorial is a step-by-step introduction, containing sufficient detail to enable
programmers to write or maintain simple Report Writer code, while giving them an
appreciation of what is possible using the more advanced features. Readers with a
knowledge of OS/VS or DOS/VS COBOL's built-in Report Writer should also read this
part.
The language description contains a formal explanation of the syntax and illustrated
explanation of the usage of each clause and statement.
The migration guide is for use in the migration of programs from OS/VS or DOS/VS
COBOL's built-in Report Writer to the new Report Writer described here. You can
obtain notification of your use of any extensions by means of a precompiler option
(see Installation and Operation).
The Appendices list and categorize the extensions, with an explanation of the error
messages and a summary of syntax and reserved words.
* IBM is a trademark of International Business Machines Corporation.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 1

1

1.1 Introduction and Tutorial

This first part is a short introduction to the principles of COBOL-IT Report Writer. After

reading it, you will be able to write or maintain simple report writer code and you will

have enough appreciation of the more advanced concepts to be able to locate the

information quickly in the main parts.

All the information given here can also be found in the more formal context of Parts 2

to 5.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 3

1.1.1 Welcome to COBOL-IT Report Writer

Introduction to this Product

This product has two separate purposes:

• To improve programmer productivity in all aspects of printed output in COBOL

by encouraging both experienced users and newcomers to make more use of

COBOL's report writer feature.

• To help users who have had experience with a version of COBOL-IT Report

Writerthat was an integral part of the compiler and want to continue to use the

same facilities.

The Report Writer features are implemented in this product by means of a precompiler,

rather than within the compiler itself. The compiler processes the intermediate source

which the precompiler automatically passes to it. The precompiler phase is made as

far as possible transparent to programmers, so that their attention is not distracted from

the original report writer source. The precompiler and the compiler cooperate closely

in a single-step operation and a final listing phase combines the output from both to

produce a single source listing, enabling you to disregard the fact that two separate

processes are involved. A description of this process will be found in Installation and

Operation.

What is Report Writer?

Report Writer is COBOL's own built-in non-procedural facility for the production of

printed output. It enables you to define and produce all the listings, reports, and

displayed summaries that would normally be required from a COBOL application, but in

far less time. It allows many more printed outputs, which might have been produced

previously using stand-alone non-COBOL report generators, to be done in COBOL,

because it reduces greatly the time and effort needed to code and test a COBOL

program with printed output.

Report writer appeared in its original form in 1961 and later entered the 1968 ANS

Standard. This version provided certain basic features that users of accounting

machines were accustomed to, such as simple accumulation, cross-footing, and

counter-rolling, as well as automatic page numbering. The implementation of report

writer described in this volume contains all the facilities of the standard ANS-68, ANS-74,

and ANS-85 report writer, plus IBM extensions, and includes many additional features

which were added in various stages since 1974, many of which appear in the proposed

ANS-9x standard. It is more suitable for the more varied and complex outputs needed

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 4

by modern applications. There is no special term for this generalized, extended version

of the language, so it is referred to in this manual simply as new Report Writer.

Compatibility With Built-In COBOL-IT Report Writer

Apart from a few insubstantial differences, listed and explained in Part 6, COBOL-IT

Report Writer includes the whole of the ANS-68 Report Writer of IBM's OS/VS COBOL and

DOS/VS COBOL, so if you will be using sources migrated from either of these, they should

work just as they did before. Customizing with the (default) option OSVS set on ensures

the highest degree of compatibility with OS/VS and DOS/VS COBOL (see Installation

and Operation.)

COBOL-IT Report Writer also has many completely new features that are not a part of

these standards, as well as enhancements to the original features. Several of them look

forward to the next ANS standard. This volume points out which features are unique to

new Report Writer in a Compatibility paragraph at the end of each section. A summary

list of all the enhancements will be found at the start of parts 2, 3, and 4, and in

Appendix A. Those ANS-68 features that were deleted or changed in the ANS-74 and

ANS-85 Standards are nevertheless retained in this product; these cases are also listed in

Appendix A.

1.1.2 Gentle Introduction

What is a Report?

Wherever you see the term report in this publication, it means any human readable

output that may be produced by a program. Nowadays, the term report is normally

used to mean a special printout or screen produced by a report generator. We use

the term in a more general sense. Any readable output, whether long or short, "one-

shot" or routine, printed or not, is a report. For instance, any of the following is a report

and could be produced by COBOL-IT Report Writer:

• Pay slips and paychecks printed on a mainframe printer;

• Invoices printed by a small remote printer;

• A small summary print produced at the end of a large update program;

• Sales of golf shoes, summarized by region and area, during the years 1985 to

1992 (a one-time, ad hoc report);

• An extremely complex print of personnel records with many variable-length lines

and fields, "printed" on microfiche.

The only requirements for a report are that it should be readable (all fields USAGE

DISPLAY only) and should consist of output only.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 5

What Does Report Writer Do?

When you write Report Writer code, you do not write a sequence of procedural

statements as you would in elementary COBOL. Instead, most of your effort is spent in

specifying the appearance of the report. The DATA DIVISION syntax enables you to

code the layout of your printout entirely in descriptive data-oriented terms. The only

"verbs" used are those that begin (INITIATE) and end (TERMINATE) the report and that

GENERATE whole blocks of lines, known as report groups.

Report writer automatically generates your print record descriptions, your intermediate

data areas, and all the procedural code needed to produce your outputs, saving you

the effort that elementary COBOL would have required. For particularly difficult or

challenging layouts, there are more advanced data clauses. By studying these in the

later parts of this publication, you will learn to produce all your outputs with COBOL-IT

Report Writer.

Although so much is performed automatically, you still retain control at the highest level

over all operations, because no report writer action takes place until one of the

statements INITIATE, GENERATE, or TERMINATE is executed. However, these statements

are sufficiently high-level to require only the simplest logic in your PROCEDURE DIVISION.

Since you may use COBOL-IT Report Writer in any COBOL program, you may use it in

any program that has to produce readable output - even if the program performs

many other tasks. COBOL-IT Report Writer does not extract the input data itself, unlike a

report generator, which means that it may be used in partnership with all types of

COBOL input: standard files, databases, and subroutine or module linkage.

Report Writer in Easy Steps

 Step 1: Find the Report Groups

Your program may have one or several report layouts. Here is an example of one

hypothetical report layout:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 6

 CRUMBLY COOKIE COMPANY ORDERS PAGE 1

 DATE TYPE QUANTITY VALUE OF ORDER

 10/04/84 GINGERBREAD 100 $20.50

 06/05/84 CHOC. CHIPS 50 $18.20

 11/06/84 LEMON CREAM 150 $110.00

 **OUT OF STOCK

 TOTALS: DEPOT NORTH-WEST $148.70

 =========

Your first task is to divide up the layout into report groups. A report group is a "block" of

lines, produced in one operation. Your layout may be built up from any number of

different report groups. You can allow the shape and contents of each report group to

vary as much as you like but, if the variations become very complex, it will be easier to

define two different report groups. The following guidelines should be used to define a

report group:

• It may consist of from one up to any number of lines, and may have any number

of fields.

• It normally fits on one page, rather than being split by a page boundary. There

are exceptions to this rule in MULTIPLE PAGE groups and REPORT HEADING and

FOOTING groups, described later.

• It may contain fields whose contents come from anywhere in the DATA

DIVISION, provided that all the fields are present in memory at the moment your

program generates the report group.

If your report structure corresponds to records in a main file or database, remember

that, unless you have a special reason for reading ahead and buffering several records,

a report group should correspond to one record from your main file or database.

(However, there is also a summary reporting feature that enables your program to

output one report group that summarizes a whole set of records.)

Mark each report group clearly. Only one instance of each group needs to be

marked, because only one description of each group is needed. You might use square

brackets in the margin of your layout. In this example, let's draw a rectangle round

each report group.

Here is the result:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 7

 CRUMBLY COOKIE COMPANY ORDERS PAGE 1

 DATE TYPE QUANTITY VALUE OF ORDER

 (A)

 10/04/84 GINGERBREAD 100 $20.50

 06/05/84 CHOC. CHIPS 50 $18.20

 (B)

 (B)

 11/06/84 LEMON CREAM 150 $110.00

 **OUT OF STOCK
 (B)

 TOTALS: DEPOT NORTH-WEST $148.70

 =========

 (C)

There are three instances of report group (B) in the picture. Only one instance needs a

"box", and it is best to draw it around the most complex case, that is, the instance with

the extra line "**OUT OF STOCK". (We want this line to be part of the same report group,

rather than a report group in its own right, because we want to ensure that it will never

be separated from the preceding line by a page advance.)

 Step 2: Decide on the TYPE of Each Report Group

Each report group can appear in one of seven basic positions in your report, indicated

by the TYPE clause. Here are their names and positions:

DETAIL or DE

This is the TYPE assumed by any group that is not of one of the special six described

below. DETAIL groups usually contain the most basic data in the report. They are

the only report groups that you GENERATE. TYPE DETAIL and the next two are

known as body groups. (They fall between the PAGE HEADING and PAGE

FOOTING, if any, on each page.)

CONTROL HEADING or CH

This group is generated automatically at the start of each different value of the

corresponding control field (as explained in Step 3 below).

CONTROL FOOTING or CF

This group is generated automatically at the end of each different value of the

corresponding control field.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 8

PAGE HEADING or PH

This group will appear at the start of each page.

PAGE FOOTING or PF

This group will appear at the end of each page.

REPORT HEADING or RH

This group will appear once, on a page by itself or before the first PAGE HEADING

(if any), at the very start of the printout.

REPORT FOOTING or RF

This group will appear once, on a page by itself or after the last PAGE FOOTING (if

any), at the very end of the printout.

Each TYPE is optional. Your report may contain any number of different DETAIL groups,

any number of different CONTROL HEADING and CONTROL FOOTING groups (up to one

of each for each control level), but only one of each of the other four.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 9

We can now assign the correct TYPEs to each group in our layout:

 CRUMBLY COOKIE COMPANY ORDERS PAGE 1

 DATE TYPE QUANTITY VALUE OF ORDER

 (A) TYPE PH

 10/04/84 GINGERBREAD 100 $20.50

 06/05/84 CHOC. CHIPS 50 $18.20

 (B)

 (B)

 11/06/84 LEMON CREAM 150 $110.00

 **OUT OF STOCK
 (B) TYPE DE

 TOTALS: DEPOT NORTH-WEST $148.70

 =========

 (C) TYPE CF

 Step 3: Code the RD Entry

Your report groups are described in the REPORT SECTION, which is the last section in

your program's DATA DIVISION. The REPORT SECTION may contain any number of

Report Descriptions. Each of these begins with an RD entry that starts in the A-margin:

 REPORT SECTION.
 RD

Follow this with a report-name of your choice. This name will be used to stand for the

report as a whole, so choose a name that is appropriate:

 REPORT SECTION.
 RD STOCK-SUMMARY

Several clauses may follow your report-name. The optional LINE LIMIT clause gives the

maximum number of columns you expect per line and is used as a safety measure

against losing data due to line overflow. The FIRST DETAIL clause (or its alternative

spellings FIRST DE or FIRST BODY GROUP) indicates on which line the main information of

each page should start. The PAGE LIMIT clause is required if your report is divided into

pages. It gives the maximum number of lines to be written to each page. The order in

which you code these clauses and phrases does not matter.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 10

 REPORT SECTION.
 RD STOCK-SUMMARY
 LINE LIMIT 132
 FIRST DETAIL 5
 PAGE LIMIT 64

There are other clauses available to mark out different regions of the page. (See 2.9

PAGE LIMIT clause.)

Our report has control totals. That is, after the change in value of a certain control field

(DEPOT), we want COBOL-IT Report Writer to produce an extra report group (the

CONTROL FOOTING). The data must arrive in the correct sequence as COBOL-IT Report

Writer does not SORT your data itself. (You might use COBOL SORT for that.) The field is

called a control and a change in its value is called a control break. You may nest as

many different levels of control as you need. You may also have corresponding

CONTROL HEADING groups to appear before the start of the detail lines for the new

control value. (In our example, there is just one level of control and no CONTROL

HEADING group). You indicate which fields are to be used to test for control breaks by

means of the CONTROL (or CONTROLS) clause. Each control represents a different

level. Your controls must be listed in hierarchical order from highest down to lowest. In

our example it is simple because there is only one level:

 REPORT SECTION.
 RD STOCK-SUMMARY
 LINE LIMIT 132
 FIRST DETAIL 5
 PAGE LIMIT 64
 CONTROL IS DEPOT.

Because the CONTROL clause is the last clause of the RD entry, you write a period (".")

after it. Here is another example of a CONTROL clause. This time, we have two control

fields and also a special all-encompassing level, known as REPORT or FINAL, that may

be used for producing grand totals for the whole report.

 CONTROLS ARE REPORT, YEAR, MONTH

LINE LIMIT, FIRST DETAIL, PAGE LIMIT, and CONTROL are not the only clauses you can

write in the RD entry. The others are described in the chapter Report Files and RD

Entries. The order in which you code the RD clauses is irrelevant.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 11

 Step 4: Code the Report Group Descriptions

 Step 4A: 01-Level Entries

Each report group is coded as a series of COBOL entries. Each entry consists of a level-

number, an optional data-name, any number of optional clauses, and a period. Each

report group must start with a 01 level-number in the A-margin:

 01

If the group is a DETAIL, follow this with a report-group data-name of your choice,

followed by the optional word TYPE and the type of the group:

 01 TYPE PH.
 ... etc ...
 01 COOKIE-LINE TYPE DE.
 ... etc ...
 01 TYPE CF.
 ... etc ...

To make your program even clearer, you may spell out the TYPE clause in full; for

instance: TYPE IS PAGE HEADING. Any number of entries, indicated by our "...", may

follow the 01-level entry, as you will shortly see.

You indicate which level of CONTROL HEADING and CONTROL FOOTING you are

describing by writing FOR name-of-control after CH and CF. (This is optional if there is

only one level, or you want ALL levels in a CONTROL FOOTING). Taking our example

with three levels above, you might code:

01 TYPE CH FOR YEAR.
 ...
01 TYPE CH FOR MONTH.
 ...

 Step 4B: LINEs and COLUMNs

After each group's 01-level entry, code a series of LINE entries, each containing a series

of COLUMN entries. COLUMN may be abbreviated as COL. (You will see, in the

chapter Report Group Descriptions, that you can also code a dummy group without

LINEs or COLUMNs.) You indicate that an entry is at a lower level by increasing the

level-number. For instance, you might choose 03 for LINE entries and 05 for COLUMN

entries:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 12

 01 TYPE PH.
 03 LINE ...
 05 COL ...

After the LINE or COL keyword you may choose one of two ways to specify positioning

for your line or field by writing either integer or +integer.

• LINE integer gives you an absolute, that is, fixed, LINE position, counting from

1 at the top of the page, to the maximum given in your PAGE LIMIT. If you

use absolute LINE clauses in a group, the integers must increase. You might

use this form for the PAGE HEADING in our example.

• LINE + integer (+ can also be written PLUS) gives you a relative LINE position.

It will cause the vertical position to move down that number of lines. For

example, LINE + 1 means place on the next line. LINE + 2 means leave one

blank line. (This form is rather like WRITE... AFTER ADVANCING..., translated

entirely into data terms, of course.) You may mix absolute and relative LINE

clauses in the same report group, provided that you begin with an absolute

LINE. LINE alone implies LINE + 1.

 CRUMBLY COOKIE COMPANY ORDERS PAGE 1

 DATE TYPE QUANTITY VALUE OF ORDER

 ◄ LINE 1

 ◄ LINE 3 or LINE + 2

• COLUMN integer gives you an absolute, i.e. fixed, COLUMN position for the

left-hand character of the field, counting character positions from 1 at the

left, up to the maximum given in your LINE LIMIT. You can also anchor the

field at its CENTER column by writing COLUMN CENTER integer, and you can

fix the field at its RIGHT column by writing COLUMN RIGHT integer. If you use

these absolute COLUMN clauses, the integers must increase within a LINE.

• COLUMN + integer (COLUMN can be shortened to COL and + can be

written PLUS) gives you a relative COLUMN position. It will cause the current

horizontal position to move right that number of positions from the last

column of the preceding field (from zero if this is the first field) to the first

column of the current field. For example, COL + 1 means place this field in

the next column without a gap, and COL + 2 means leave one column

blank.

line nos

...

column numbers ...>>>

1 20 or + 3

 1 XXXXXXXXXXXXXXXXX..YYYYYYYY

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 13

 5 or + 4

.

.

.

ZZZZZZ

Report Writer writes your report groups vertically down the page in the order in which

they are GENERATEd. DETAIL and CONTROL groups (HEADING or FOOTING), which are

known as body groups, are first checked to see whether all their lines will fit on the

current page. If your report group begins with an absolute LINE, report writer will

advance to a new page if that LINE number has been reached or passed. If your

report group begins with a relative LINE, report writer checks the size of the report

group. If there is no room, or if there is not enough room for the whole group, report

writer will advance to a new page.

Advancing to a new page involves automatically generating your PAGE FOOTING, if

you defined one, followed by your PAGE HEADING, if you defined one. If a body group

(CH, DE or CF) begins with a relative LINE, it is positioned on the FIRST DETAIL line,

irrespective of the value in the LINE clause. (If you did not code a FIRST DETAIL sub-

clause, it is assumed to be the line immediately following our PAGE HEADING, or line 1 if

there is no PAGE HEADING.)

 Step 4C: VALUEs and SOURCEs

To complete your Report Group Descriptions, you need to specify the contents of the

fields. The two most usual ways, which are sufficient for this example, are as follows:

If the contents of the field consist of fixed text, write:

 VALUE "literal", or simply: "literal"

If the contents of the report field come from a field in your COBOL DATA DIVISION, write:

PICTURE (or PIC) picture-symbols SOURCE name-of-field

Your SOURCE field may be defined in any section of your DATA DIVISION, or it may be a

special register such as LINE-COUNTER. The SOURCE keyword may be omitted. You

may use subscripts and qualifiers, for example: SOURCE BACK-PAY IN MASTER-RECORD

(4). You may also use arithmetic expressions and the word ROUNDED , if needed; for

example:

 PIC $(9)9.99 SOURCE (MONTHLY-PAY * 12) + YEARLY-BONUS ROUNDED

You must code a PICTURE clause with the SOURCE clause. This specifies the format in

which you would like the field displayed and is the same clause as in elementary

COBOL. It can be abbreviated as PIC. Here are two examples:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 14

 PIC $(8)9.99 SOURCE MONTHLY-PAY
 PIC X(32) SOURCE NAME-OF-STUDENT

The rules for storing the field work exactly as for the MOVE (or the COMPUTE) statement

of elementary COBOL. If your SOURCE refers to a CONTROL field, then you will obtain

the value before the control break if report writer is currently processing CONTROL

FOOTING groups. This is the only case where you do not obtain the value contained in

the field at that instant.

Your layout may require a page number. This is held in a special register (a dedicated

internal COBOL location) called PAGE-COUNTER. This location is set up automatically

by report writer. There are also LINE-COUNTER and COLUMN-COUNTER special registers.

Suppose that the record that supplies data for the layout above is defined in a

standard file as follows:

FD COOKIE-FILE LABEL RECORDS STANDARD.
01 COOKIE-RECORD.
 05 DEPOT PIC X(10).
 05 ORDER-DATE PIC 9(6).
 05 COOKIE-TYPE PIC X(12).
 05 QTY-ORDERED PIC 9(4) COMP.
 05 QTY-IN-STOCK PIC 9(4) COMP.
 05 ORDER-VALUE PIC S9(5)V99 COMP.

Now we are ready to complete the PAGE HEADING group and the first line of the

DETAIL group for the layout above, using these new clauses.

(A)
 REPORT SECTION
 RD STOCK-SUMMARY
 LINE LIMIT 132
 FIRST DETAIL 5
 PAGE LIMIT 64
 CONTROL IS DEPOT.
 01 TYPE PH.
 03 LINE 1.
 05 COL 12 VALUE "CRUMBLY COOKIE COMPANY ORDERS".
 05 COL 47 VALUE "PAGE".
 05 COL +2 PIC Z9 SOURCE PAGE-COUNTER.
 03 LINE 3.
 05 COL 7 VALUE
 "DATE TYPE QUANTITY VALUE OF ORDER".
 01 COOKIE-LINE TYPE DE.
 03 LINE + 2.
 05 COL 4 PIC 99/99/99 SOURCE ORDER-DATE.
 05 COL 16 PIC X(12) SOURCE COOKIE-TYPE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 15

 05 COL 29 PIC ZZZ9 SOURCE QTY-ORDERED.
 05 COL 41 PIC $(5)9.99 SOURCE ORDER-VALUE.

 Step 4D: Conditional Items

There is one item in our layout that we do not want to produce every time. This is the

message "OUT OF STOCK". We deliberately allowed for it by including it in the "box" we

drew round the typical DETAIL group. It should only be produced if the condition

QTY-ORDERED > QTY-IN-STOCK

is true. To make any item depend on a condition's being true or false, use the clause:

PRESENT WHEN condition

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 16

Report writer will then automatically test the condition when it is about to produce the

item. If the condition is false, the item is ignored. If you put the clause on a LINE entry, it

is the whole line that is ignored. (You can in fact put it at any level. When a group field

is ignored, so are all the fields within the group.) In the case here, we do want the

whole line to be ignored if the condition is false, so the following would be a valid

description for the second line for the DETAIL group:

(B)
 03 LINE PRESENT WHEN QTY-ORDERED > QTY-IN-STOCK.
 05 COL 2 VALUE "**OUT OF STOCK".

 Step 4E: Totalling

The sample layout tells you to produce a total in the CONTROL FOOTING group.

COBOL-IT Report Writer allows you to produce totals from virtually any numeric fields,

and you may do it in any TYPE of group. To produce a total, follow these two simple

steps:

1. Put a data-name at the front of the entry you want totalled.

2. In another entry, use the clause: SUM OF data-name instead of SOURCE or

VALUE.

First, you must go back to our coding for the DETAIL group above and add a data-

name to the entry for ORDER-VALUE. For example, you could re-write the last entry as:

 05 REP-ORD-VAL COL 41 PIC $(5)9.99 SOURCE ORDER-VALUE.

where REP-ORD-VAL is a new data-name of your choice. Now you can code the

CONTROL FOOTING group for our layout:

(C)
01 TYPE CF.
 03 LINE + 3.
 05 COL 16 VALUE "TOTALS: DEPOT".
 05 COL + 2 PIC X(10) SOURCE DEPOT.
 05 COL 41 PIC $(5)9.99 SUM OF REP-ORD-VAL.
 03 LINE.
 05 COL 41 VALUE "=========".

You may have any number of CONTROLS in your program, and you may have a

CONTROL HEADING as well as a CONTROL FOOTING report group for each control.

 Step 5: Code the SELECT...ASSIGN and FD

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 17

COBOL-IT Report Writer requires a standard COBOL file to which to write your output.

So, to begin with, you need a SELECT...ASSIGN clause and an FD . The FD entry may

contain any clauses that you would normally use for a report file, plus a new clause:

REPORT IS name-of-report. You should not need a record description to follow. For our

example, you might write:

(D)
 IDENTIFICATION DIVISION.
 ... (other paragraphs as normal) ...
 FILE-CONTROL.
 SELECT COOKIE-FILE ASSIGN TO UT-S-DATAIN.
 SELECT STOCK-PRINT ASSIGN TO UT-S-LIST01.
 DATA DIVISION.
 FILE SECTION.
 FD COOKIE-FILE.
 ... (description as in step 4C) ...
 FD STOCK-PRINT
 ...
 REPORT IS STOCK-SUMMARY.
 WORKING-STORAGE SECTION.
 01 WS-EOF PIC X VALUE "N".

 Step 6: Code the PROCEDURE DIVISION

Report Writer is entirely under the control of your program, but at a higher level than is

the case with elementary COBOL. This means that no action will be taken until your

program executes a report writer statement. There are three of these:

1. INITIATE name-of-report

This statement initializes your report at the start of the whole process. Your program

must do this before it is allowed to execute any other report writer statements. It does

not open the file. Name-of-report is the data-name you wrote right after the RD.

2. GENERATE detail-name

This statement generates one instance of a DETAIL report group. Detail-name is the

data-name you used to name your DETAIL report group. The GENERATE also performs

all the other actions that might be necessary before the DETAIL report group is output,

namely:

It tests for control breaks (if your report has a CONTROL clause) and, if necessary,

produces CONTROL FOOTING and CONTROL FOOTING report groups.

It checks that your DETAIL report group will fit completely on the current page

(assuming that your report has a PAGE clause). If not, it produces your PAGE FOOTING

report group (if there is one defined in your report), advances to a new page and

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 18

produces your PAGE HEADING report group (if there is one defined in your report).

Unless you explicitly allow it with a MULTIPLE PAGE clause, report writer never splits your

report group over two pages.

If it is the first occasion after the INITIATE, the GENERATE statement will output any

REPORT HEADING, your PAGE HEADING, and all your CONTROL HEADING groups before

generating your DETAIL report group.

Your CONTROL HEADING and CONTROL FOOTING report groups are also subject to the

page-fit test. They are treated similarly to DETAIL report groups. These three TYPEs are

often referred to as body groups, because they fit into the "body" of the page

(between the PAGE HEADING and FOOTING) and usually contain the most important

information.

3. TERMINATE name-of-report

This statement ends your report and produces any final items that are required at the

end of the report, namely:

• All CONTROL FOOTINGs up to the highest level defined;

• The last PAGE FOOTING (if defined);

• The REPORT FOOTING (if defined).

To produce output for a simple report layout from standard files, the following logical

structure should apply:

↓

for each input record

↓

at end-of-file

If your input is from a database, or reaches your program's DATA DIVISION by some

means other than from a standard file, you will need to replace the OPEN and CLOSE

for the input files and the READ by more appropriate statements.

 OPEN input and report files
 INITIATE report-name

 READ input file

 GENERATE detail-name

 TERMINATE report-name
 CLOSE all files

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 19

To produce a more complex layout, you would probably define several different DETAIL

report groups and decide in your program when to GENERATE one or the other. For our

example, the following would be a suitable complete PROCEDURE DIVISION:

(E)
 PROCEDURE DIVISION.
 PROGRAM-START.
 OPEN INPUT COOKIE-FILE, OUTPUT STOCK-PRINT
 INITIATE STOCK-SUMMARY
 PERFORM NEXT-RECORD
 PERFORM GENERATE-LINE THRU NEXT-RECORD
 UNTIL WS-EOF = "Y"
 TERMINATE STOCK-SUMMARY
 CLOSE STOCK-PRINT, COOKIE-FILE
 STOP RUN.
 GENERATE-LINE.
 GENERATE COOKIE-LINE.
 NEXT-RECORD.
 READ COOKIE-FILE AT END MOVE "Y" TO WS-EOF.

Place this code after the code in the code samples (D), (A), (B) and (C) (in that order)

and you have a complete program.

You may use report writer "verbs" just as you would use any other PROCEDURE DIVISION

statements. So your program may do many other tasks apart from just producing your

report output.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 20

1.1.3 More about COBOL-IT Report Writer

More about Files and Reports

You may describe as many reports as you like per program. Each report has its own RD

entry, followed by one or more Report Group Descriptions. Separate reports may either

be assigned to separate files or to the same file, in which case you could write:

 FD PRINT-FILE
 REPORTS ARE MAIN-REPORT, SUMMARY-REPORT.

This last approach is useful where you need to produce a report that has distinct

sections, perhaps with different page headings. So a single physical report (as the end-

user sees it) may consist of several different logical reports (as the programmer sees

them), all written to the same file.

You can also direct your report output to a special Independent Report File Handler,

designed to process the output from reports in a particular way. To use the special file

handler, write the extra clause: MODE IS mnemonic-name in the SELECT clause. It does

not affect the FD or any other statements in your program.

More about the RD Entry

Apart from the clauses used in our example, there are several other clauses that you

may write in your RD entry. They are all explained in detail in the chapter Report Files

and RD Entries. Here is a brief summary:

LAST DETAIL gives the last line on which a DETAIL or CONTROL HEADING report

group may appear.

LAST CF (or LAST CONTROL FOOTING or just FOOTING) gives the last line on which

a CONTROL FOOTING group may appear. If you do not specify it, a default value

is assumed for it. You can use it to ensure that a CONTROL FOOTING will never

appear at the top of a page (since there will always be space reserved for it at

the bottom of the previous page).

OVERFLOW and SUM OVERFLOW enable you to specify the action that takes

place if any arithmetic expressions or totals defined in your report groups are too

large for the report field or involve dividing by zero.

CODE is used when your output report data must have extra unprinted

information placed at the start of each record, or when you need to pass

information to a special Independent Report File Handler (see Independent

Report File Handlers). For example, if your installation has provided a file handler

to do spooling and restart, you may be required to provide a key by which restart

would be done. You would then write: CODE IS name-of-key-field.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 21

ALLOW SOURCE SUM CORR and ALLOW NO SOURCE SUM CORR determine

whether the ANS-68 or the ANS-85 rules will be used for calculating certain SUM

fields. ALLOW NO SOURCE SUM CORR is assumed in default in the version as

supplied A description of this process will be found in Installation and Operation. .

GLOBAL makes the report available to nested programs.

More about CONTROLS

Each RD entry may have a CONTROL clause, and you may write the names of any

number of fields in your program. Your control fields must have a hierarchy and must

be listed in order from the highest down to the lowest. When your program issues a

GENERATE, report writer tests each control field in order, beginning with the highest. If it

detects a change (a control break), this process ends. Report writer will then

automatically take additional action before it produces the DETAIL group, depending

on which CONTROL FOOTING or CONTROL HEADING report groups (if any) you defined.

COBOL-IT Report Writer keeps an internal copy of each of your control fields so that it

can test for a control break by comparing them with the new values on each

GENERATE. Before it produces your CONTROL FOOTING report groups, it temporarily

stores these previous values back into the control fields. So if your CONTROL FOOTING

refers to a control field, as a SOURCE for example, you will get the previous or pre-break

value, even though the original control field has changed in value.

You may also want a major heading and a major footing at the very start and end of

your report. For example, you may want to produce grand totals for the entire report.

If so, you may use the reserved word REPORT or FINAL. This is the highest possible control

level. If you use it, it must therefore be first in the list of controls in your CONTROLS

clause.

There may be fields other than totals or lines that should be produced only once after a

control break. These may be inside a report group, where you cannot make use of a

separate CONTROL HEADING. You can define them by writing:

 PRESENT AFTER NEW name-of-control-field
 or ABSENT AFTER NEW name-of-control-field

The field or line will then appear only on the first occasion after a control break at the

level you indicate. (Alternatively, if you use ABSENT AFTER..., the field or line will not

appear the first time and will appear every time thereafter until the next control break.)

You may also write PRESENT or ABSENT AFTER NEW PAGE, indicating that you want the

field or line to appear (or disappear) only on the first occasion after a page advance.

Finally, you may code both the control-field and PAGE operands in one clause.

It is possible for a report to have no DETAIL groups at all. This case is called summary

reporting. The only body groups coded are CONTROL FOOTING - and possibly

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 22

CONTROL HEADING - groups. Therefore, since you have no name of a DETAIL group to

give in your GENERATE statement, you write: GENERATE report-name.

The next example illustrates all the points made in this section. There are three levels of

control, including REPORT, each with a CONTROL FOOTING.

 RD SUBSCRIPTIONS
 FIRST DE 4 PAGE LIMIT 60
 CONTROLS REPORT, YEAR, MONTH.
 01 TYPE PH ... etc ...

 01 TYPE CF FOR MONTH LINE + 1.
 05 COL 1 PIC 9(4) SOURCE YEAR
 PRESENT AFTER NEW YEAR.
 05 COL 6 PIC XXX
 SOURCE W-MONTH-NAME (MONTH).
 05 COL 16 PIC $(5)9 SUM OF FULL.
 05 COL 28 PIC $(5)9 SUM OF OFFP.
 01 TYPE CF FOR YEAR NEXT GROUP + 1.
 03 LINE + 2.
 05 COL 1 PIC 9(4) SOURCE YEAR.

 05 COL 6 VALUE "TOTALS:".
 05 COL 16 PIC $(5)9 SUM OF FULL.
 05 COL 28 PIC $(5)9 SUM OF OFFP.
 03 LINE + 1 COLS 16 28
 VALUE "======".
 *Blank line:
 03 LINE + 1.
 01 TYPE CF FOR REPORT LINE + 1.
 05 COL 16 PIC $(5)9 SUM OF FULL.
 05 COL 28 PIC $(5)9 SUM OF OFFP.
 PROCEDURE DIVISION.
 ...
 GENERATE SUBSCRIPTIONS

 SPORTS CLUB: TENNIS SECTION

 SUBSCRIPTIONS: FULL OFF-PEAK

 1997 JAN $4000 $10000

 FEB $3000 $9000

 MAR $1500 $8000

 APR $1000 $3000

 DEC $1500 $5500

 1997 TOTALS: $26500 $43000

 ====== ======

 1998 JAN $2000 $8000

 FEB $2500 $9500

 DEC $2000 $4500

 1998 TOTALS: $34700 $12800

 ====== ======

GRAND TOTALS: $61200 $55800

There is much more about CONTROLS in the main section (see 2.6 CONTROL clause).

More about TYPEs

In the diagram on the next page, you can see all seven types of report group in use in

the same layout. You may choose any or all of the seven types in a report, and none

of them are compulsory (except that you must have at least one body group (CH, DE,

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 23

or CF)). You cannot have more than one REPORT HEADING, PAGE HEADING, PAGE

FOOTING, and REPORT FOOTING, and you cannot have more than one CONTROL

HEADING and CONTROL FOOTING for each control level. But you can code any

number of DETAIL groups.

If your report needs a particularly long or complex REPORT HEADING or REPORT

FOOTING, or if your report layout changes completely at a later stage, code a second

separate RD with its own Report Group Descriptions following and expand the REPORT

clause of your FD to include the second report-name. (You may associate as many RDs

as you like with the same FD.) For further details, see 2.2 Report Files, 2.3 REPORT

SECTION and RD, and 5.1 Multiple Reports.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 24

 SPORTS CLUB EXPENSES SUMMARY

 1999

Report showing all 7 TYPEs of group:

TYPE RH or REPORT HEADING

TYPE PH or PAGE HEADING

TYPE CH FOR SPORT
 or CONTROL HEADING FOR SPORT
 (higher control heading)

TYPE CH FOR MONTH
 or CONTROL HEADING FOR MONTH
 (lower control heading)

TYPE DE or DETAIL

TYPE CF FOR MONTH
 or CONTROL FOOTING FOR MONTH
 (lower control footing)

TYPE CF FOR SPORT
 or CONTROL FOOTING FOR SPORT
 (higher control footing)

TYPE PF or PAGE FOOTING

SPORTS CLUB EXPENSES PAGE 1

SPORT: GOLF

=====

JAN

 01 MOLE DAMAGE $350

 23 NEW CAR PARK $2250

-------------- ------

JAN GOLF TOTAL $2600

-------------- ------

FEB

--------- ------

DEC TOTAL $1400

--------- ------

YEAR GOLF TOTAL $15000

=============== ------

SPORT: CRICKET

=====

JAN

 CONTINUED ...

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 25

 END OF EXPENSES SUMMARY

TYPE RF or REPORT FOOTING

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 26

Automatic Repetition

If your report has a series of fields or lines or groups of similar layout or format, it is usually

possible to save time in coding by writing one multiple clause instead of several entries

with single-operand clauses. Here is a list of cases:

A. VALUES in Consecutive Fields

If you have consecutive fields in a line containing literals, you may code multiple

COLUMNS and VALUE clauses to avoid writing several entries:

SPORTS CLUB SUBSCRIPTIONS

TENNIS GOLF SWIMMING CRICKET

03 LINE + 1.
 05 COLS 1 9 15 25
 VALUES "TENNIS" "GOLF"
 “SWIMMING" "CRICKET".

B. SOURCES in Consecutive Fields, with Same PICTURE

If you have several consecutive fields in a line with the same PICTURE (or if you can

expand shorter PICTUREs to match longer ones), you may code multiple COLUMNS and

SOURCE clauses in one entry:

SPORTS CLUB SUBSCRIPTIONS

TENNIS GOLF SWIMMING CRICKET

$238 $340 $500 $350

05 COLS 1 8 16 26 PIC $$$$9
SOURCES TENNIS GOLF SWIMMING
CRICKET.

Here, as usual, each SOURCE field is a data item defined in the DATA DIVISION of your

program (in this particular case, a numeric item). VALUE and SOURCE clauses cannot

be combined within the same multiple clause.

Using a single entry like this also makes it easy to total a series of fields by coding just

one SUM entry:

SPORTS CLUB SUBSCRIPTIONS

TENNIS GOLF SWIMMING CRICKET TOTAL

$238 $340 $500 $350 $1428

 05 R-SUBS COLS 1 8 16 26 PIC $$$$9
 SOURCES TENNIS GOLF SWIMMING CRICKET.

 05 COL 35 PIC $(5)9 SUM OF R-SUBS.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 27

If separate entries are used, you would have to total them by writing either: SOURCE

TENNIS + GOLF + SWIMMING + CRICKET, or SUM R-TENNIS R-GOLF R-SWIMMING R-

CRICKET, placing these data-names on the entries in turn.

C. Regularly Spaced COLUMNS

If the gap between successive fields is regular, you need not give a COLUMN for each

one. Instead, you can combine an OCCURS clause and a STEP phrase:

SPORTS CLUB SUBSCRIPTIONS

 TENNIS GOLF RUGBY SQUASH

 $238 $340 $500 $350

 05 COL 1 OCCURS 4 STEP 7 PIC $$$$9

 SOURCES TENNIS GOLF RUGBY SQUASH.

You can also use OCCURS with a relative COLUMN to provide the gap, in which case

the STEP phrase is unnecessary.

D. Repeating the Same VALUE

You can combine a single VALUE with an OCCURS clause or a multiple COLUMNS

clause, in which case the VALUE is simply repeated:

 ($) ($) ($) ($)

 238 340 500 350

 05 COL 2 OCCURS 4 STEP 8 VALUE "($)".

(or 05 COLS 2, 10, 18, 26 VALUE "($)".)

A single-operand SOURCE field can be similarly repeated, although the occasions for

doing so are rarer.

E. Repeating LINE

The LINE clause also has a multiple form. You may also combine an OCCURS clause

with a single-operand LINE clause. (In the latter case, if you use STEP , as you must if the

LINE is absolute, it refers to the vertical distance.) If you use a SOURCE, the entire table

of SOURCE items must be "read into memory" first. Within the repeating LINE, you may

have multiple VALUES and SOURCES clauses. This enables you to improve clarity by

stacking your heading values in one place:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 28

 NEW OLD MEMBERS

 MEMBERS MEMBERS LEAVING

03 LINES 2, 3.
 05 COL 1 VALUES " NEW"

"MEMBERS".
 05 COL 10 VALUES " OLD"

"MEMBERS".
 05 COL 19 VALUES "MEMBERS"

 "LEAVING".

(You don’t have to code the literals vertically like this, but it does help the eye.)

F. Variable Number of Repetitions

If the number of repetitions is variable, you should use the OCCURS clause's keyword TO

and DEPENDING ON phrase, whose operand can be any data-name or arithmetic

expression. Report writer will then dynamically calculate the actual number of repeats

present on each occasion. It is valid for there to be no occurrences, so your minimum

can be zero. Any "unused" repeats are treated as ABSENT:

 FAMILY MEMBERSHIPS AMOUNT DUE

 JONES PETER MARY IAN SARAH $240

 SMITH ALAN DEBBIE $120

 ROBERTS SUSAN TOM IONA $180

03 LINE.
 05 COL 1 PIC X(10) SOURCE SURNAME.
 05 COL 11 PIC X(8)
 OCCURS 2 TO 4 DEPENDING ON NO-MEMBERS-IN-FAMILY
 STEP 9 VARYING FORENAME-SUB
 SOURCE FORENAME (FORENAME-SUB).
 05 COL 50 PIC $(4)9 SOURCE NO-MEMBERS-IN-FAMILY * SUBSCRIPTION.

The same method can be used for LINEs. If a body group has a variable number of

lines and they are all relative, report writer will take into account only those lines

actually present when applying its page-fit test.

G. SOURCE Items in a Table

If you need to output SOURCE items that are held in a table, report writer will

automatically vary an internal data-name which you can then use as a subscript. You

can specify a FROM value for the starting point and a BY value for the increment for

your subscript, but these are assumed to be 1 if you omit them:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 29

SPORTS CLUB SUBSCRIPTIONS

 TENNIS GOLF RUGBY SQUASH

 $238 $340 $500 $350

05 COL 1 OCCURS 4 STEP 7
 VARYING SPORT-NO PIC $$$$9
 SOURCE SPORT (SPORT-NO).

You choose your own data-name for the VARYING clause, but it must not be defined

anywhere as a data item in your program. You can reuse the same data-name many

times in the REPORT SECTION, except where the VARYING clauses are nested.

You may combine VARYING with a multiple COLUMNS or LINES clause, as well as with

an OCCURS clause, and you may output results in more than one dimension. In the

next example, the SPORT fields are printed in reverse order:

 SPORTS CLUB 4-YEAR SUBSCRIPTIONS

 SQUASH RUGBY GOLF TENNIS

 1996 $180 $300 $445 $290

 1997 $196 $280 $440 $310

 1998 $223 $320 $450 $320

 1999 $238 $340 $500 $350

03 LINE OCCURS 4 VARYING YEAR-NO.
 05 COL 2 PIC 9(4) SOURCE 1988 + YEAR-NO.
 05 COL 8 OCCURS 4 STEP 7 VARYING SPORT-NO FROM 4 BY -1
 PIC $$$$9 SOURCE SPORT (YEAR-NO, SPORT-NO).

H. Repeating Whole Groups Horizontally

The REPEATED clause enables you to place whole groups side-by-side. On each

GENERATE, report writer will place the group in an internal buffer, until the last of each

set arrives, whereupon the whole set will be printed side-by-side. You should define

only the left-hand group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 30

 CRICKET FIXTURES

01 CRICKET-FIXTURE TYPE DE REPEATED 2 TIMES EVERY 30 COLS.
 03 LINE + 3.
 05 COL 4 VALUE "1ST" WHEN REPEATED-COUNTER = 1
 VALUE "2ND" WHEN OTHER.
 05 COL 8 VALUE "TEAM VS".
 05 COL + 2 PIC X(10) SOURCE OPPONENTS-NAME.
 03 LINE + 1 ... etc ...
 03 LINE + 1 ... etc ...

If a different DETAIL group is GENERATEd - say SOCCER-FIXTURE - or if your program issues

a TERMINATE, and there are still left-hand groups in the buffer, these buffered groups

are output first, padded out with blank entries on the right where necessary.

I. Different Levels Using the same CONTROL FOOTING

You will have noticed from some of the preceding examples that a lower CONTROL

FOOTING and a higher CONTROL FOOTING often have a very similar layout and you

may wish you could code a single report group and use it for any number of control

levels. You can do this simply by listing more than one control in the TYPE clause, for

example TYPE CF FOR REPORT, YEAR, MONTH or just CF FOR ALL. Any SUM totals are then

automatically rolled forward up to each higher level. If any CONTROL FOOTING has a

different layout from the others, you can use PRESENT WHEN CONTROL IS YEAR, PRESENT

WHEN CONTROL IS MONTH, and so on to vary it.

More about Totalling

There are many other ways to use the SUM clause to produce totals. As well as totalling

from one group to another, you may form totals within the same group. Here's how you

might enhance our four-yearly table with row and column totals. (Absorb this example

slowly.)

1ST TEAM VS OLD C.T.'S

ON 21ST APRIL

AWAY

2ND TEAM VS S.RICHMOND

ON 21ST APRIL

HOME

1ST TEAM VS OLD C.T.'S

ON 28TH APRIL

HOME

2ND TEAM VS S.RICHMOND

ON 28TH APRIL

AWAY

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 31

SPORTS CLUB 4-YEAR SUBSCRIPTIONS

 SQUASH RUGBY GOLF TENNIS TOTAL

 1996 $180 $300 $445 $290 $1215

 1997 $196 $280 $440 $310 $1226

 1998 $223 $320 $450 $320 $1313

 1999 $238 $340 $500 $350 $1428

 ----- ----- ----- ----- -----

 TOTALS $827 $1240 $1835 $1270 $5182

(Totals may also be specified

at the top or on the left.)

03 LINE OCCURS 4 VARYING YEAR-NO.
 05 COL 2 PIC 9(4) SOURCE 1995 + YEAR-NO.
 05 R-VAL COL 8 OCCURS 4 STEP 7
 VARYING SPORT-NO FROM 4 BY -1
 PIC $$$$9 SOURCE SPORT (YEAR-NO SPORT-NO).
 05 COL 37 PIC $(5)9 SUM OF R-VAL.
03 LINE COLS 8 15 22 29 37 VALUE "-----".
03 LINE.
 05 COL 1 VALUE "TOTALS".
 05 T-VAL COL 8 OCCURS 4 STEP 7 PIC $$$$9 SUM OF R-VAL.
 05 COL 37 PIC $(5)9 SUM OF T-VAL.

Report writer totals repeating values automatically along the horizontal or vertical axes.

Notice that you should not place any subscripts after the data-name that is the

operand of the SUM clause.

A SUM may be combined in an entry with a multiple COLUMN (or LINE) clause to give

you a series of totals of another repeating entry with the same number of repetitions, as

you see in the last line of this example:

 CLUB OUTGOINGS IN 1999

 MONTH BUILDINGS INTERIOR WAGES TAX

 JAN $80 $445 $2290 $121

 FEB $170 $350 $440 $2260

 DEC $190 $440 $2260 $1130

 ----- ----- ----- -----

TOTALS $3120 $1240 $13250 $34930

$1215

$1226

$1313

$1428

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 32

 03 LINE OCCURS 12 VARYING MONTH.
 05 COL 2 PIC XXX SOURCE WS-MONTH-NAME (MONTH).
 05 R-OUTGOINGS COLS 10 20 29 37 PIC $(5)9
 SOURCES BUILDINGS INTERIOR WAGES TAX.
 ...
 03 LINE.
 05 COL 2 VALUE "TOTALS".
 05 COLS 9 19 28 36 PIC $(6)9 SUM OF R-OUTGOINGS.

The total line may also be in a different group from the repeating line. If so, you might

then remove the OCCURS 12 on the first LINE entry and GENERATE the group containing

it 12 times.

As well as totalling a field using SUM, you may count the occurrences using the COUNT

clause. COUNT simply adds 1 each time instead of the value of the field. You may

COUNT the number of times any REPORT SECTION item appears, including LINEs or

whole groups. All multiple occurrences contribute to the COUNT.

You may use SUM and COUNT as terms of a SOURCE expression. Be sure to enclose

each term in parentheses. For example, to find the average amount of the subscription

of our four sports above, you may write:

01 MAIN-GROUP TYPE DE.
 05 R-SUBS COL 1 PIC $$$$9 SOURCE SPORT-SUBSCRIPTION.
 ...
 01 TYPE CF.
 05 COL 1 PIC $$$$9
 SOURCE IS (SUM OF R-SUBS) / (COUNT OF R-SUBS) ROUNDED.

(As usual, the words SOURCE IS are optional.) If the divisor (the COUNT term above)

happens to be zero, report writer will detect the error, unless you write OVERFLOW

PROCEDURE IS OMITTED in your RD statement. The action taken depends on what, if

anything, you coded in the OVERFLOW PROCEDURE clause. (By default, report writer

will detect the error and write an error message on your terminal or job log, leaving the

field blank.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 33

You may also total numeric fields directly from other sections in your DATA DIVISION.

(With the older ANS COBOL-IT Report Writer this method was necessary to obtain totals.

You coded the name of the FILE, WORKING-STORAGE, or LINKAGE SECTION item as an

operand of the SUM clause in the lowest-level CONTROL FOOTING.) With such external

items, you may use subscripts, and you may also SUM an arithmetic expression; for

instance:

 05 COL 1 PIC ZZZ9 SUM OF (WS-INCOME - WS-TAX).

If the item does not already appear as a SOURCE, this is the only method of totalling it.

So this technique is useful where you require totals of a field but do not want to show

the individual values that were added to produce the total. Its main disadvantage is

that it may not be clear to the reader of your program exactly when the values are

added into the total. See the remainder of this publication for a discussion of the

relevant rules.

More about Conditional Entries

You have already seen how a single COBOL condition may be used to decide whether

to output a report field. Multiple-choice entries are used when you have several

possible contents for a field. Just write a series of SOURCE or VALUE clauses, each

followed by PRESENT WHEN condition. (The keyword PRESENT is often omitted in a

multiple-choice entry.) The period does not come until the end. Report writer examines

all the conditions in sequence until it finds the first that is true and then uses the VALUE or

SOURCE associated with that true condition. WHEN OTHER can be used to indicate

"when none of the given conditions is true". (Compare the use of ELSE in elementary

COBOL.) Study the following example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 34

 NEW MEMBERS

 TITLE/NAME PAY MONTHLY AMOUNT DUE

 OR YEARLY?

 MR. CODER M $10

 MISS PROGRAMMER Y $120

 ANALYST Y $160

03 LINE.
 05 COL 1 VALUE "MR. " WHEN TITL = 1
 VALUE "MRS. " WHEN TITL = 2
 VALUE "MISS " WHEN TITL = 3
 VALUE "DR. " WHEN TITL = 4.
*NB: One period after last item!
 05 COL +1 PIC X(12) SOURCE SURNAME.
 05 COL 24 VALUE "M" WHEN YEARLY-FLAG = 0
 VALUE "Y" WHEN OTHER.
 05 COL 40 PIC $$$$9
 SOURCE (SUBSCRIPTION / 12) WHEN YEARLY-FLAG = 0
 SOURCE SUBSCRIPTION WHEN OTHER.

Note that the third person in our list, ANALYST, has no title because there is no WHEN

OTHER ("catch-all") in the choice of titles.

You may produce many useful effects with the PRESENT WHEN clause by causing fields

or lines, relative or absolute, to appear or disappear at certain times. If a relative entry

(COLUMN + ... or LINE + ...) follows an entry that may or may not be PRESENT, its position

is variable:

UNPAID SUBSCRIPTIONS

 TESTER (CRICKET SQUASH): $250

 CODER (RUGBY): $100

 ANALYST (TENNIS SQUASH RUGBY): $450

03 LINE.
 05 COL 1 PIC X(10) SOURCE SURNAME.
 05 COL 12 VALUE "(".
 05 COL +1 VALUE "CRICKET " PRESENT WHEN CRICKET-FLAG = 1.
 05 COL +1 VALUE "TENNIS " PRESENT WHEN TENNIS-FLAG = 1.
 05 COL +1 VALUE "SQUASH " PRESENT WHEN SQUASH-FLAG = 1.
 05 COL +1 VALUE "RUGBY " PRESENT WHEN RUGBY-FLAG = 1.
 05 COL +1 VALUE "):".
 05 COL +2 PIC $$$9 SOURCE UNPAID-SUBS.

The ABSENT WHEN clause has the same effect as PRESENT WHEN except that you write

the negative condition. Other conditional clauses are PRESENT AFTER (previously known

as GROUP INDICATE) and ABSENT AFTER. Instead of checking a standard COBOL

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 35

condition, these clauses test whether there has been a page advance or a control

break since the group was last produced. You may write PRESENT AFTER NEW PAGE,

PRESENT AFTER NEW control-id, or PRESENT AFTER NEW control-id OR PAGE:

 SURVEY OF MEMBERSHIP

 YEAR MONTH GOLF RUGBY TENNIS SQUASH

 1997 JAN 350 100 500 250

 FEB 360 120 450 260

 DEC 340 125 250 360

 1998 JAN 360 105 400 150

 FEB 260 150 250 260

Without the PRESENT AFTER

clause, the YEAR would

appear on each line.

 SURVEY OF MEMBERSHIP

 YEAR MONTH GOLF RUGBY TENNIS SQUASH

 1999 MAR 250 130 400 350

 APR 380 100 650 190

 RD MEMBERS-SURVEY
 PAGE LIMIT 60 LINE LIMIT 132
 CONTROL IS YEAR-NO.
 01 SURVEY-FIGURES TYPE DE LINE + 1.
 05 COL 1 PIC 9(4)

 SOURCE YEAR-NO PRESENT AFTER NEW YEAR-NO OR PAGE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 36

1.1.4 Some Shorter Forms

COBOL-IT Report Writer offers you several ways to shorten the amount of code you

write. You have already seen several, such as shortening COLUMN to COL. Of course,

the shorter forms may not always be clearer, and you may decide not to adopt them

all. Here are some of them:

1. The keywords TYPE, SOURCE, VALUE, and PRESENT may be omitted. This

reduces your coding effort at a cost of making your program less readable to a

maintenance programmer unfamiliar with report writer.

2. If you do not code a TYPE clause in a level-01 entry, TYPE DETAIL is implied.

3. You may write LINE and COLUMN (or COL) in the same entry, provided that

there is only one item in the LINE. So you could code:

 03 LINE + 1 COL 20 VALUE "GOLF".

 instead of:

03 LINE + 1.
 05 COL 20 VALUE "GOLF".

 If there is second item in the line, this second method is the only way.

4. You may code the LINE clause in the level-01 entry, provided that there is

only one LINE in the report group. So you could code:

 01 ACCOUNT-ENTRY TYPE DE LINE + 1.

 instead of:

01 ACCOUNT-ENTRY TYPE DE.
 05 LINE + 1.

 If there is another LINE in the report group, this second method is the only

way.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 37

1.1.5 Other Features

Variable-Length Fields

If any of your report fields are to take up a variable number of columns, use the left-shift

(or "squeeze") symbols "<" and ">" in the PICTURE. The examples below show the effect

of these symbols:

 MEMBERS AND CHILDREN'S AGES

 CODER: MANDY(7), TOM(5).

 TESTER: ALAN(11), HILARY(9), JASON(8).

 ANALYST: ANGELO(8).

 03 LINE.
 05 COL 1 PIC <X(12)> SOURCE SURNAME.
 05 COL + 1 VALUE ": ".
 05 OCCURS 1 TO 9 DEPENDING ON NUMBER-OF-CHILDREN
 VARYING R-CHILD-SUB.
 07 COL + 1 PIC <X(8)> SOURCE FORENAME (R-CHILD-SUB).
 07 COL + 1 VALUE "(".
 07 COL + 1 PIC <9>9 SOURCE AGE (R-CHILD-SUB).
 07 COL + 1 VALUE ")".
 07 COL + 1 VALUE ", " WHEN R-CHILD-SUB < NUMBER-OF-CHILDREN
 VALUE "." WHEN OTHER.

The reason why PIC <9>9 was coded rather than PIC <99> against the child's age is to

prevent a value of zero from causing the field to vanish completely. In the other cases,

the closing ">" symbol is optional.

Now imagine this same code with all the "<" and ">" symbols removed from the

PICTUREs. This is what would appear:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 38

MEMBERS AND CHILDREN'S AGES

 CODER : MANDY (07), TOM (05).

 TESTER : ALAN (11), HILARY (09), JASON (08).

 ANALYST : ANGELO (08).

Insertion Characters

As well as by using standard PICTURE symbols such as "/", "0" and "B", you can place any

additional characters into your report field by placing them within "quotes" (or

'apostrophes') within the PICTURE. For example, to print a percentage:

 PIC ZZZ9.99"%" SOURCE 100 * COST / TOTAL ROUNDED

COLUMN CENTER and RIGHT

You can specify the center or the right-hand column as an anchor point, rather than

just the left-hand column. To do so, write COLUMN CENTER or COLUMN RIGHT. (CENTRE

is an alternative spelling.) In the case of COLUMN CENTER, if your field has an even

number of characters, the odd character goes on the right. This feature saves you time

when you are working with fields of different lengths, in different lines, that should

appear centered or right-aligned in a "stack". It also simply saves you the effort of

counting out the length of a field in order to center it. See the following cases, all of

which produce the same result:

 Expenditure

 ▲ ▲ ▲

 COL 15 │ COL RIGHT 25

 COL CENTER 20

If your field is variable-length, report writer first takes the actual size of the field before it

positions it. In this way a name, title, etc. can be centered or right-aligned:

 JOHN CODER

 12 WALLINGTON ROAD

 EGHAM

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 39

03 LINE OCCURS 1 TO 5 DEPENDING ON NO-OF-ADDR-LINES
 VARYING R-ADDR-LINE.
 05 COL CENTER 20 PIC <X(32) SOURCE ADDR-LINE (R-ADDR-LINE).

NEXT GROUP Clause

Use this clause when you want to create extra space between report groups or when

you need to ensure that a particular report group is the last on the page, perhaps the

CONTROL FOOTING of a major control. With new Report Writer, this clause is necessary

only with body groups. It has the useful property that, if there is a higher-level control

break, the lower-level CONTROL FOOTING group does not affect the higher-level one,

so that, if there is room, they normally remain together on the same page.

Write the clause in your 01-level entry for the group. The form NEXT GROUP + integer will

create integer extra blank lines following the group, provided it is not the last on the

page. The form NEXT GROUP NEXT PAGE causes your group to be the last on its page.

GROUP LIMIT Clause

You may not want some particular report groups to appear below a certain line on the

page. For example, a CONTROL HEADING would seem out of place if it were last on

the page. Just code GROUP LIMIT IS integer in the 01-level entry of your group. Integer

will then be the bottom line number allowed for the last line of the group. See

immediately below for an example.

CONTROL HEADING at Top of Every Page

Many report layouts have CONTROL HEADING groups that have to appear at the top of

each page as well as after a control break. If this is required, just write the words OR

PAGE after the control-name in the TYPE clause of your CH group. The following

diagram shows this effect, and also illustrates the GROUP LIMIT clause that we discussed

above (see 1.5.5 GROUP LIMIT Clause).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 40

 CLUB EXPENDITURE 1999

 SPORT: GOLF

 =====

 21 MAR BUNKERS RESURFACED $1500

 04 AUG COFFEE ROOM TABLES $260

 12 DEC XMAS DECORATIONS $500

 SPORT: RUGBY

 =====

 03 JAN REPAIR GOALPOSTS $500

 11 FEB BARSTOOLS $80

Because of the GROUP LIMIT, the

CONTROL HEADING will not appear

after line 57.

 CLUB EXPENDITURE 1999

 SPORT: RUGBY (CONT.)

 =====

 22 APR REPAIR SHOWERS $390

A CONTROL HEADING re-appears

because of the new page even

though no control break occurred.

 RD CLUB-EXPENDITURE
 PAGE LIMIT 60 FIRST BODY GROUP 3 LINE LIMIT 132
 CONTROL IS SPORT.
 ...
 01 TYPE CH FOR SPORT OR PAGE
 GROUP LIMIT 58.
 03 LINE + 2.
 05 COL 1 VALUE "SPORT:".
 05 COL + 2 PIC X(8) SOURCE SPORT.
 05 COL + 2 VALUE "(CONT.)" ABSENT AFTER NEW SPORT.
 03 LINE VALUE "=====".

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 41

MULTIPLE PAGE Groups

If you have a large vertical table to print, perhaps a summary with one line for each

value encountered, you may be concerned that it will not always fit on one page.

Perhaps there are usually less than 60 items but you have to allow for anything up to

1000 items! To handle this, code the clause MULTIPLE PAGE on your 01-level. Report

writer will then automatically do a page advance whenever the page is full (printing

PAGE FOOTING and PAGE HEADING as usual). Thus your code would be:

01 SUMMARY-PAGES TYPE DETAIL MULTIPLE PAGE.
 03 LINE OCCURS 0 TO 1000 DEPENDING ON NO-OF-ITEMS.
 ... etc.

This feature also handles more complex layouts, perhaps a multi-page personnel profile.

Line WRAP

You may sometimes define a number of relative COLUMN entries in one line and

wonder whether they will all fit in the same line. If not, report writer will automatically

wrap your data round onto a continuation line, but only if you code a WRAP clause.

You can specify the last column before the wrap, the starting column for the

continuation and the line advance required. As an example, you may have a series of

possible error messages:

03 LINE + 3 WITH WRAP AFTER COL 120 TO COL 82 STEP 2.
 05 COL 1 PIC X(80) SOURCE INPUT-RECORD.
 05 COL + 2 "ACCOUNT NUMBER INVALID" PRESENT WHEN ...
 05 COL + 2 "AMOUNT NOT NUMERIC" PRESENT WHEN ...
 05 COL + 2 "DATES IN REVERSE ORDER" PRESENT WHEN ... etc.

FUNCTIONs

The FUNCTION clause is used when you need to produce a specially formatted or

converted report field that cannot be produced by SOURCE, SUM, or VALUE . Each

FUNCTION corresponds to a pre-written routine that is either a built-in part of the report

writer software or written by a person at your location. Examples of built-in FUNCTIONs

are:

DATE This outputs today's date, or any given date, in the order: Day-Month-Year.

MDATE This produces the same output as DATE, but in the order: Month-

Day-Year.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 42

TIME This gives the current time.

Here is an example of how to use MDATE. Let's suppose that today is May 7th, 1999.

Then if you write:

PIC 99/99/99 FUNCTION MDATE, you will obtain:

PIC <X(9)B<99,B9(4) FUNCTION MDATE,

you will obtain:

05/07/99

MAY 7, 1999

Information about developing your own functions will be found later (see 5.2

Developing User-Written Functions).

Special Print Attributes (Styles)

Nowadays all large system printers and smaller-scale printers and terminals have the

ability to produce special effects which we hardly ever make any use of in COBOL

applications. The STYLE clause enables you to make full use of any special effects that

are available without affecting your program's portability. Supposing that you wish to

highlight any "negative profits". Write:

05 COL 21 PIC -(8)9 SOURCE PROFIT
 STYLE IS HIGHLIGHT WHEN PROFIT < 0.

You will now not need to change your program when moving between, say, a personal

system, a mainframe with a laser printer, and a mainframe with an old impact printer,

except possibly to change the TYPE clause in the SELECT...ASSIGN if it is not preset as the

default. Also, the STYLE clause has no effect on the COLUMN clauses or any other part

of your source program.

Independent Report File Handlers

Normally, your report's outputs are directed to a standard print file, as though you had

written the program in elementary COBOL using WRITE AFTER ADVANCING...

statements. An Independent Report File Handler is a pre-written routine to which all the

output for a report file is directed. It may manipulate and output the data in any way

the designer chooses. Your program can be made to invoke the file handler each time

it has a line of report data, instead of implicitly executing a WRITE...AFTER ADVANCING.

Each file handler is identified by a unique "mnemonic-name" of up to four characters.

You cause your report program to use a file handler by coding your SELECT clause for

the report file in the following way:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 43

 SELECT print-file ASSIGN TO assignment-name
 MODE IS mnemonic-name.

The file handler may require you to define a CODE clause in your RD statement. This

clause is used to pass additional information to the file handler. Apart from this, no

other change need be made to your program.

Multiple Reports

Your program may need to produce several different physical reports. Of course, you

may define as many report files as you like, and each may be associated with as many

Report Descriptions as you wish. But what if several of the reports have a similar

appearance? You will not want to duplicate the code for all the Report Group

Descriptions. Instead, you may define the report just once and effectively assign it to

several files (although only one FD entry is coded). Just add the following clause to

your SELECT clause:

 DUPLICATED integer TIMES

with the integer set to the maximum number of distinct reports you need.

The DUPLICATED clause causes the special register REPORT-NUMBER to be set up. You

can MOVE any value into REPORT-NUMBER from 1 to your maximum number. This

causes report writer to channel subsequent output to the corresponding report file.

Each report is logically separate. Of course, the contents of each report are different

because your program is writing to only one of the set at any given time. The layouts

need not all be identical, since you are quite free to vary them conditionally in the

usual way. (For example, REPORT-NUMBER could be used as a subscript or within the

condition of a PRESENT WHEN clause.)

Only one FD entry is required for all the physical files associated with the multiple report.

Similarly, only one OPEN and one CLOSE are required to open and close all its files.

More details will be found later (see 5.1 Multiple Reports).

Using the Page Buffer

Some layouts are so irregular that you may wish that you could build up the page in

any order like a news-sheet editor. The Page Buffer facility enables you to do this. Just

add to your SELECT clause:

 WITH PAGE BUFFER

Now you can tackle a layout such as the following:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 44

 NEW MEMBER DETAILS

 NAME AND ADDRESS SPORTS PLAYED

The report groups in boxes have been defined separately. Normally you would not be

able to place them alongside each other. (The REPEATED clause is not appropriate as

NAME-ADDRESS-GROUP and SPORTS-GROUP are instances of different groups, not

instances of the same group.) By using the Page Buffer you may now write in the

PROCEDURE DIVISION of your program:

SET PAGE STATUS TO HOLD
 GENERATE NAME-ADDRESS-GROUP
 SET LINE TO FIRST DETAIL
 SET PAGE STATUS TO RELEASE
 GENERATE SPORTS-GROUP

You may store the groups on the page in any order. It is also possible to change the

left/right positioning of groups by means of the SET COLUMN statement. There are

several other variants of SET PAGE and SET LINE (see 4.4 Report Writer SET statements).

1.1.6 Further Study

The remainder of this volume cover the topics of this Tutorial in more detail. Since each

part is organized in alphabetical sequence, it is not advisable to read them straight

through, and the following order of topics is suggested for a first reading:

Part 2:

 Report Files, REPORT SECTION and RD;

 PAGE LIMIT clause;

 CONTROL clause.

ANDREW ANALYST

21 MITCHAM ROAD

PUTNEY

LONDON SW6

TENNIS

SQUASH

SWIMMING

01 NAME-ADDRESS-GROUP TYPE
DE.
 ...

 01 SPORTS-GROUP TYPE DE.
 ...

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

 1.6 – Further Study 45

 The rest of this part may be left to a second reading.

Part 3:

 Introducing Report Groups;

 TYPE clause;

 LINE clause;

 COLUMN clause;

 SOURCE clause, VALUE clause;

 OCCURS clause, VARYING clause;

 SUM clause;

 PRESENT WHEN clause, PRESENT AFTER clause;

 FUNCTION clause.

 The rest of this part may be left to a second reading.

Part 4:

 Report Writer Verbs: Overview;

 INITIATE statement, GENERATE statement, TERMINATE statement, excluding at first

reading the “GENERATE Processing Cycle” and “TERMINATE Processing Cycle”.

 The rest of this part may be left to a second reading.

Part 5 may also be left to a second reading.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 47

2

1.2 Report Files and RD Entries

This part contains full information about the COBOL-IT Report Writer elements that can

appear in the ENVIRONMENT DIVISION and FILE SECTION of your program, and then, in

alphabetic order, the clauses that may be used in an RD entry.

If you are migrating older programs written using OS/VS or DOS/VS COBOL's built-in

Report Writer, you should refer to the Compatibility paragraph at the end of each

section, which points out any new Report Writer features that these compilers do not

accept.

Although most of the examples that follow use UPPER-CASE text, you may also use

lower-case characters in any of the keywords and operands.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 49

1.2.1 Report Files and RD: Keyword Table

The following table lists the major keywords relevant to COBOL-IT Report Writer that may

appear in the ENVIRONMENT DIVISION, FILE SECTION, and the RD entry, with a summary

of their purposes. The third and fourth columns tell you whether or not the item is

provided by IBM's OS/VS and DOS/VS COBOL and, if so, whether COBOL-IT Report

Writer extends the facilities.

If you wish to remain compatible with OS/VS or DOS/VS COBOL, you should avoid the

new keywords and the extensions to the old ones. You will find additional information

on this subject in the compatibility paragraph at the end of each section.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 50

Report Files and RD: Keyword Table

Keyword

 Purpose

OS/VS

DOS/VS

COBOL?

Extensions to OS/VS and DOS/VS

COBOL

SELECT

(in ENVI-

RONMENT

DIVISION)

 Associates file

 with external

 medium

 yes

 ▫ MODE clause to direct output

 to Independent Report File

 Handler

 ▫ DUPLICATED clause for

 multiple report files

 ▫ WITH PAGE BUFFER for holding

 page contents before printing

 ▫ WITH RANDOM PAGE for writing

 to a cursor-controlled device

 ▫ FIRST PAGE NO ADVANCING to

 suppress initial page advance

 ▫ TYPE clause to select type

 of output device

REPORT IS

/ REPORTS

ARE (in

FD)

 Associates report

 with file

 yes

 ▫ ALL phrase

STYLE

(in FD)

 Invokes a special

 printer facility

 for the file or

 report

 no

LINE LIMIT

 Gives maximum

 report line width

 no

GLOBAL

 Makes report

 available to con-

 tained programs

 no

PAGE LIMIT

 Allocates regions

 of page for diff-

 erent group TYPEs

 yes

 ▫ DE=DETAIL

 ▫ FIRST BODY GROUP=FIRST DETAIL

 ▫ LAST DE OR CH=LAST DETAIL

 ▫ LAST CF=LAST BODY GROUP

 =FOOTING

 ▫ phrases are now positionally

 independent sub-clauses

 ▫ LIMIT, LINE(S) not required

 ▫ FIRST DETAIL/LAST DETAIL

 not required even when

 PAGE HEADING/FOOTING coded

CONTROL

 Specifies field(s)

 whose change of

 yes

 ▫ REPORT=FINAL

 ▫ controls may overlap

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 51

 contents triggers

 a control break

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 52

CODE

 Attaches non-print

 data to report

 records

 yes

 ▫ value may be of any length

 ▫ CODE IS identifier format

 ▫ CODE IS literal format

OVERFLOW

 Specifies action

 to be taken when

 expression or

 SUM overflows

 no

ALLOW

SOURCE SUM

CORR

 Selects ANS-85 or

 ANS-68 rules for

 SUMming

 no

1.2.2 Report Files

COBOL-IT Report Writer produces output records and writes them automatically to

COBOL report files when your program executes a GENERATE statement (see 4.2) or

TERMINATE statement (see 4.6). The report files are described very much like any other

output sequential files. Each must have a SELECT...ASSIGN clause in the ENVIRONMENT

DIVISION, and an FD in the FILE SECTION. They are accessed in the PROCEDURE

DIVISION through the OPEN and CLOSE statements.

If the output is to be written to a special medium, or the program is to run in any special

environment, or special treatment is to be given to the report data, the MODE clause is

used. This directs report writer to use a specific file handler instead of writing output

records in the standard way.

Your program may contain any number of report files and, if required, any number of

other files. As usual, you may code your SELECT...ASSIGN clauses and your FD entries in

any order.

 a. SELECT ...ASSIGN clause:

┌── Format

──

──┐

│ │

│ ►►─SELECT─┬──────────┬─file-name──►

│

│ └─OPTIONAL─┘ │

│ ┌─────────────┐ │

│ ▼ │ │

│ ►─ASSIGN TO assignment-

name─┬───────────────────────────┬─► │

│ └RESERVE integer-1─┬───────┬┘ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 53

│ ├─AREA──┤ │

│ └─AREAS─┘ │

└───── (Continued over)

───────────────────────────────────────┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 54

┌── Format (continued)

──┐

│

►─┬───

──┬──► │

│ └─MODE IS─┬─BATCH───────────────────────────────┬─┘

│

│ └─mnemonic─name────┬─────────────────┬┘

│

│ │ ┌───────┐ │ │

│ │ ▼ │ │ │

│ └-USING parameter─┘ │

│►─┬────────────────────────────┬──┬──────────────

────┬─► │

│ └─DUPLICATED integer-2┬─────┬┘ ├─WITH PAGE BUFFER─┤ │

│ └TIMES┘ └─WITH RANDOM PAGE─┘ │

│►─┬──────────────────────────────────────┬───────

────────► │

│ └─TYPE┬──┬┬─DEFERRED─────────────────┬─┘

│

│ └IS┘├─NONE─────────────────────┤

│

│ └─device-name─┬──────────┬─┘ │

│ └─DEFERRED─┘ │

│►┬─────────────────────────┬┬────────────────────

──┬─. ─►◄ │

│ └FIRST PAGE┬─NO─┬ADVANCING┘└other standard clauses┘ │

│ └WITH┘ │

└───

─────────────┘

b. FD entry:

┌── Format

──

──┐

│ ►►──FD file-name─┬─────────────┬─┬───────────┬──►

│

│ └┬──┬EXTERNAL─┘ └┬──┬GLOBAL─┘ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 55

│ └IS┘ ┌─────────┐└IS┘ │

│ ▼ │ │

│ ►─┬─REPORT┬──┬───┬───┬─report-name─┬──►

│

│ │ └IS┘ │ └-ALL ────────┘ │

│ └─REPORTS┬───┬─┘ ┌────────┐

│

│ └ARE┘ ▼ │ │

│ ►───STYLE┬──┬┬──────style-name─┬──►

│

│ └IS┘└──────NORMAL─────┘ │

│ ►─┬────────────────────────────────┬──►

│

│ └─standard BLOCK CONTAINS clause─┘ │

│ ►─┬─────────────────────────────────┬──►

│

│ └─standard RECORD CONTAINS clause─┘ │

│ ►─┬────────────────────────-┬──►

│

│ └─RECORDING┬────┬┬──┬mode─┘ │

│ └MODE┘└IS┘ │

│ ►─┬──────────────────────────┬──. ──►

│

│ └──other standard clauses──┘ │

│ ►─┬──────────────────────────┬──►◄

│

│ │ ┌──────────────────────┐ │

│

│ │ ▼ │ │ │

│ └─record-description-entry─┘ │

└───

─────────────┘

Select and FD: Coding Rules

You may code any other clauses after SELECT and any other clauses except LINAGE in

the FD entry that may be appropriate for an output sequential file. In particular,

a FILE STATUS clause may be used to return the status of your report file. The

order of clauses is not significant.

Each report-name is a name of up to 30 characters, formed according to the usual

rules for COBOL names. You might choose names that describes the output

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 56

produced by the report, such as REPORTS ARE MONTHLY-SALES, END-OF-YEAR-

TOTALS.

Each report-name must be the same as the report-name following an RD in your

REPORT SECTION. A report-name may be DBCS. A report-name may appear

only once in an FD entry. However, it may appear in more than one FD

provided that any INITIATE for the report-name has the UPON file-name phrase

(see 4.3 INITIATE statement) and provided that all the corresponding SELECT

statements for these files differ only in their file-name, ASSIGN clause and MODE

clause (if present).

If every report is to be written to the same file, you may write REPORTS ARE ALL. ALL must

be the only operand and REPORTS ARE ALL must be the only REPORT(S) clause in

the program.

A RECORD CONTAINS clause, or a BLOCK CONTAINS clause with the CHARACTERS

option, is required if the identifier form of the CODE clause is used in any RD

associated with the file. In all other cases, it is optional.

You should not normally specify a record-description-entry after the FD entry, because

report writer relieves you of the need to code any WRITE statements for the

report files. Your program may WRITE records to a report file independently of

report writer, provided that there is no MODE clause in the corresponding

SELECT and no CODE clause in the RD, and in this case you will of course need

to specify at least one 01-level record description following the FD entry.

An explicit WRITE to the report file may be necessary in rare instances, such as

when a downstream program will read your report file and it requires a header

or trailer which must not have a carriage control character in its first byte.

(Otherwise, a REPORT HEADING or REPORT FOOTING could be used for this

purpose: even if there are non-DISPLAY fields to be written, they could be

handled using a SOURCE referencing them as a large group field.) An

Independent Report File Handler may also be used to manipulate the output for

this purpose (see 5.3 Independent Report File Handlers).

If you do code a record description after the FD entry, and you wish to obtain fixed-

length records, you should code a RECORD CONTAINS clause, even if you have

also specified RECORDING MODE IS F. The integer of the RECORD CONTAINS

clause should agree with the size of your record and must allow for the carriage

control character if the NOADV option is in effect.

The MODE clause is used to indicate that each line of the report is to be passed to an

Independent Report File Handler, instead of being written directly to a print file.

The mnemonic-name consists of up to four alphanumeric characters . No

check is made on the availability of the file handler until execution time. The file

handler may be either the basic file handler PRNT, a user-written, or a built-in file

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 57

handler. File handlers extend the uses of report writer beyond output to "batch"

files. They have two chief uses: (a) they allow the output to be sent to any kind

of new physical device without changes to the program and (b) they allow a

"back-end" software routine to perform any additional processing on the output.

File handlers are described in a later section (see 5.3 Independent Report File

Handlers) where the supplied file handlers are also listed.

The DUPLICATED, WITH RANDOM PAGE, and WITH PAGE BUFFER features cannot be

implemented at run time by direct output and require a file handler to be

present (although their processing is handled entirely by the run time system and

not by the file handler itself). So if any of these clauses is present, but no MODE

clause has been coded, the precompiler will assume an implicit MODE PRNT

clause to be present. The same assumption is made if any report associated

with the file has a CODE clause (except when all such reports have a CODE

clause and they are all of the same length), see 2.5 CODE clause.

If the MODE clause is present, or is assumed implicitly for the reasons given in the

preceding paragraph, the following restrictions apply:

No record descriptions may follow the FD entry for that file, as you cannot WRITE

directly to a file that is processed by an Independent Report File

Handler, see 5.3 Independent Report File Handlers.

The EXTERNAL and GLOBAL attributes have no effect. (Note that a report may

still be GLOBAL, even though its corresponding file is not. Use of the

MODL file handler also allows a report file to be treated as global (see

5.3.2 Supplied File Handlers).

The clauses RESERVE integer-1 AREA(S), PADDING CHARACTER, RECORD

DELIMITER, and PASSWORD of the SELECT...ASSIGN clause and the

clauses BLOCK CONTAINS integer RECORDS, LABEL RECORD(S) IS/ARE

data-name, RECORD IS VARYING..., CODE-SET, and VALUE OF... of the FD

are not processed by the file handler and are treated as documentary

only.

No USE AFTER STANDARD ERROR/EXCEPTION PROCEDURE Declarative section

should be coded for the file.

The CANCEL and STOP RUN statements cannot be relied on to CLOSE files

implicitly, as allowed under ANS 85 for regular files.

The device-name of the TYPE clause gives the make and model of the output device,

or some other symbolic name. The TYPE clause enables the precompiler, or the

run time system, to select the correct sequence of control characters to

produce the desired special effect on the target device. (See 3.22 STYLE

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 58

clause.) Apart from the reserved name NONE (meaning that no particular

device is to be assumed) and TEST (a specially reserved name), there is a set of

special character values associated with each device-name and each of the

special effects available from the device. The physical values of these

characters and the method by which they are inserted into the output is highly

machine- and device-dependent, but quite transparent to the program.

Device-names are described in Installation and Operation.

DEFERRED means that any styles used are to be interpreted at run time, rather

than stored explicitly when the program is precompiled. This enables the same

program to operate with a number of different output devices without re-

compilation.

If DEFERRED alone is given, the program will determine the target device at run

time from the operating environment. It is then assumed that there may be an

implicit style at the FD and the RD levels at run time (unless STYLE NONE is

specified) and provision is made for them.

DEFERRED is also implied if PAGE BUFFER is coded, since the page buffer routine

must know which characters are printable and which are control characters.

DEFERRED may also be forced by any particular STYLE if the implementation

decides that the routines required to effect it cannot be included at

precompilation time.

If TYPE is not coded, the precompiler will assume a default device-name,

chosen by the user at customization time, which may be absent, i.e. NONE.

If the device-name is NONE, any STYLE clause applying to this file, other than

NORMAL, will be rejected, whether it is in the corresponding FD, any report

assigned to the file, or in a report group description.

FILE-CONTROL and FD: Operation

If you specify more than one report-name in the same REPORTS ARE clause, you will be

able to generate report data either consecutively or concurrently for the same

file. (REPORT IS and REPORTS ARE are interchangeable, however many report-

names follow.) Tips on creating more than one report concurrently will be found

later (see 5.1.4 Concurrent Reports).

The USING phrase indicates that the file handler is to be passed the parameters you

specify in addition to the parameters normally passed automatically to the file

handler on each call. The additional parameters will be first in the list of

parameters passed. Only user-written file handlers may employ additional

parameters, and their associated documentation should specify the exact

number and size of the additional parameters required because, unless these

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 59

are correct, unpredictable results may occur. Each parameter may be an

identifier or literal or any other item that would normally be allowed in the USING

phrase of a CALL statement, including their additional keywords such as LENGTH

OF, ADDRESS OF, BY CONTENT, or BY REFERENCE.

The DUPLICATED clause indicates that integer-2 copies of the report writer Report

Control Areas are to be created. For example, if you code DUPLICATED 4 TIMES,

four copies of PAGE-COUNTER, LINE-COUNTER, control-break areas, total fields,

and other internal registers or locations used by report writer will be set up under

that report-name. Each copy controls a totally separate report, passed to a

different physical file (although only one FD entry is needed). This enables you

to produce several separate reports that share an identical or similar layout

without having to re-code several similar Report Descriptions.

The WITH PAGE BUFFER clause indicates that the Page Buffer facility is to be available to

the file handler. This enables you to use the SET PAGE TO HOLD / RELEASE, SET

LINE, and SET COLUMN statements (see 4.4 Report Writer SET statements Report

Writer SET Statements) to build up your page in random fashion. A full

explanation of Independent Report File Handlers and all related clauses is given

in a later part (see 5.3 Independent Report File Handlers).

The WITH RANDOM PAGE clause indicates that the SET LINE and SET COLUMN

statements may be used (see 4.4 Report Writer SET statements) to build up your

page in random fashion. This clause is used when the output device is one

which outputs data page by page rather than line by line (such as a visual

display, or laser or page printer) and can change its "current position" to

anywhere on the page. It is similar to WITH PAGE BUFFER, except that the buffer

is in the device itself rather than in the program.

If you require normal output to a standard file, you may write MODE IS BATCH. This

prevents any use of a file handler. MODE IS BATCH cannot be used if a

DUPLICATED or WITH PAGE BUFFER clause has been coded.

If you do not code a RECORD CONTAINS clause or a BLOCK CONTAINS clause with the

CHARACTERS option, report writer will calculate the logical record length for the

report file from the longest actual line found in all the Report Descriptions

associated with the file (rounded up to a multiple of 4). The length of the CODE

field, where appropriate, and carriage control character are also added.

If you do code a RECORD CONTAINS clause (or, in its absence, a BLOCK CONTAINS

clause with the CHARACTERS option), the integer specified will be used as the

logical record length for the report file. The same integer, after subtracting the

length of the carriage control character (if the NOADV option is in effect) and

the CODE field, if appropriate, is also used to calculate a provisional value for

the maximum line width for any report associated with the file (up to the default

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 60

maximum established on customization), in case you omit the LINE LIMIT clause

in an RD entry.

If you write RECORDING MODE IS V for a standard batch file (one not produced by a

file handler), Report Writer will write variable-length records to your report file,

truncating them, where possible, immediately after the last field in the line. This

means that in most reports records will be considerably shorter, even after

allowing for the additional record descriptor bytes that precede each record. If

you also coded an optional RECORD CONTAINS clause with the format RECORD

CONTAINS lower-integer TO higher-integer CHARACTERS, the lower-integer is

used as a minimum length for all report records written to the file. Since QSAM

normally requires at least four bytes per record (plus the carriage control byte),

you should write RECORD CONTAINS 4 TO maximum-integer CHARACTERS, or, if

NOADV is in effect, then RECORD CONTAINS 5 TO maximum-integer

CHARACTERS.

If you specify a RECORDING MODE clause for a file that uses an Independent Report

File Handler, the recording mode you specify will be placed in report writer's File

Control Area for the report file, and the file handler may choose whether to act

on it or to ignore it. The records passed to a file handler are always variable-

length, irrespective of the RECORDING MODE. The file handler may process

them in this form or output them as fixed-length records. The built-in PRNT file

handler ignores the RECORDING MODE and uses the record format specified, or

implied, at run time.

You may specify EXTERNAL or GLOBAL for a file that has a REPORT(S) clause. It is not

necessary for a report file to be GLOBAL in order for it to have a GLOBAL report

associated with it.

If you write FIRST PAGE NO ADVANCING, the usual form feed is not issued at the start of

the first page after execution of the OPEN for the file. Instead, the program

assumes that the paper is already positioned on line 1 of the page. This feature

is useful for printing on pre-numbered forms when you do not want the first page

to be wasted. (You may also eliminate all form feeds using the MODE NOPF

(see 5.3.2 Supplied File Handlers).) FIRST PAGE WITH ADVANCING (the normal

default) is provided for symmetry.

Compatibility

The MODE, DUPLICATED, WITH PAGE BUFFER, FIRST PAGE NO ADVANCING and STYLE

clauses, and the concept of an Independent Report File Handler are unique to new

Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 61

1.2.3 REPORT SECTION and RD

Each of your Report Descriptions is placed in the REPORT SECTION. The ANS standards,

OS/VS COBOL, and DOS/VS COBOL all require this to be the last SECTION of the DATA

DIVISION, positioned immediately before PROCEDURE DIVISION. However, the

precompiler allows REPORT SECTION to appear anywhere in the DATA DIVISION after

FILE SECTION.

Just as the FILE SECTION consists of a series of FD entries, each with record descriptions

headed by an 01-level entry to follow, so the REPORT SECTION consists of RD entries,

each followed by Report Group Descriptions headed by an 01-level entry.

Your program may produce any number of reports, each with its own Report

Description. Each Report Description consists of an RD entry followed by any number of

Report Group Descriptions (although there are restrictions according to TYPE; see 3.24

TYPE clause). The order in which they are coded is immaterial. If several of the reports

have strong similarities, you should define the report only once and make use of the

DUPLICATED clause.

┌── Format

──

──┐

│ ┌──────────────────────┐

│

│ ▼ │ │

│ ►►──REPORT SECTION. ───report-description-entry───►◄ │

└───

─────────────┘

where report-description-entry is defined as follows:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 62

┌── Format

──

──┐

│ │

│ ►►───RD report-name─┬───────────┬───► │

│ └─IS GLOBAL─┘ │

│ ►───┬──────────────────────────────┬───►

│

│ └─ALLOW SOURCE SUM CORR clause─┘ │

│ │

│ ►───┬─────────────┬───►

│

│ └─CODE clause─┘ │

│ │

│ ►───┬────────────────┬───►

│

│ └─CONTROL clause─┘ │

│ │

│ ►───┬───────────────────┬───►

│

│ └─LINE LIMIT clause─┘ │

│ │

│ ►───┬───────────────────┬───►

│

│ └─PAGE LIMIT clause─┘ │

│ │
└───── (continued over) ───────────────────────────────────────┘

┌── Format (continued)

──┐

│ ►───┬──────────────────────────────┬───►

│

│ │ ┌────────┐ │ │

│ │ ▼ │ │ │

│ └─STYLE IS ──┬──style-name──┬──┘ │

│ └────NORMAL────┘ │

│ │

│ ►───┬─────────────────────┬──┬─────────────────┬─. ─► │

│ └─SUM OVERFLOW clause─┘ └─OVERFLOW clause─┘ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 63

│ ┌──────────────────────┐

│

│ ▼ │ │

│ ►──report-group-description──►◄ │

└───

─────────────┘

REPORT SECTION and RD: Coding Rules

All other DATA DIVISION sections, if present, should precede REPORT SECTION.

Each report-name must be unique and must be the same as one of the report-names

specified in the REPORT clause of one or more FD entries. (If a report-name

appears in more than one FD, the UPON phrase of INITIATE is required, see 4.3

INITIATE statement.) This correspondence is used to determine where the output

is to be written. Each report-name introduced in the FD must match a report-

name of an RD.

The clauses of the RD may be written in any order; the order is not significant.

Each RD entry is followed by at least one Report Group Description. These define all the

report groups (sets of one or more report lines) that may be produced in the

report. They are fully described in the next part (see 3.24 TYPE clause).

If GLOBAL is specified, the report is available to any program contained in the current

program, in the following senses:

An INITIATE, GENERATE, or TERMINATE for the GLOBAL report-name may be

issued from within a contained program, provided that the contained

program itself does not have a locally-defined report of the same name.

The contained program need not contain a REPORT SECTION.

A GENERATE for any of the DETAIL report groups of the GLOBAL report may be

issued from within a contained program, provided that the contained

program itself does not have a locally-defined report and DETAIL group

with the same names. If a GLOBAL report and a locally-defined report

have different names but share DETAIL groups with the same name,

these may be distinguished as usual by means of the IN/OF report-name

qualifier.

The special registers PAGE-COUNTER, LINE-COUNTER, LINE-LIMIT, and CODE-

VALUE of the GLOBAL report, together with any sum-counters, may be

accessed as GLOBAL items. Other report fields are not globally

accessible.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 64

The CONTROL and SOURCE fields, or any other data items used during the

processing of the GLOBAL report, are those that are accessible to the

containing - not the contained - program. Thus, SOURCE items must normally

also be GLOBAL if you wish to set up values in them and print them from within a

contained program.

If a contained program contains a GLOBAL report with an identical report-

name, this will override the scope of original GLOBAL report until the end of the

contained program. Similarly, a DETAIL group in a GLOBAL report of a

contained program may override an identically-named one in the containing

program.

The program in which the GLOBAL report is defined must receive control at least

once before the report can be accessed, even though it need not itself contain

any procedural statements referring to the GLOBAL report.

The STYLE clause causes one or more styles to take effect for the report as a whole.

Usually this means that a certain control sequence will be sent to the printer just

after the INITIATE is executed and another control sequence just before the

TERMINATE is executed. If no STYLE clause is coded, an implicit style for the

report may take effect, if this has been defined for the output device. STYLE

NORMAL ensures that no style takes effect at the report level. Full details are

given in the next part (see 3.22 STYLE clause).

The Formats and Rules for the other clauses in the RD are given in the sections that

follow.

Compatibility

The following features are provided by new Report Writer only:

• The GLOBAL phrase, and access to GLOBAL reports,

• Use in ANS-85 contained or batched programs,

• The LINE LIMIT clause,

• The ALLOW clause,

• The OVERFLOW and SUM OVERFLOW clauses,

• The STYLE clause.

New Report Writer allows several FD's to be associated with a given report-name,

provided that the UPON phrase is used with an INITIATE for the report-name. It

does not write to more than one file simultaneously. If you wish to continue to

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 65

write to two files simultaneously, this may be achieved by means of a file

handler that performs a WRITE to each file. See 5.1 Multiple Reports.

See the end of each section for compatibility notes on the other clauses.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 66

1.2.4 ALLOW clause

This clause enables you to select whether the ANS-68 or the ANS-85 standard rules

should be used for the formation of totals.

┌── Format

──

──┐

│ │

│ ►►──ALLOW─┬────┬─-SOURCE SUM CORR──►◄ │

│ └─NO─┘ │

└───

─────────────┘

ALLOW Clause: Coding Rules

The COBOL-IT Report Writer software, as supplied, assumes:

 ALLOW SOURCE NO SUM CORR

because of the setting of the OSVS precompiler option . This default may be

altered permanently by customization, or temporarily by changing the setting of

the OSVS option in the JCL. You will need to code this clause only if you need to

override the normal default, or if your program is to be portable and it is

important to document which standard you are assuming.

ALLOW Clause: Operation

ALLOW SOURCE SUM CORR causes SOURCE SUM correlation to take effect throughout

the report. The correlation between SOURCE items in a DETAIL and SUM clauses

in a CONTROL FOOTING group is the main distinguishing feature of the ANS-68

standard. It is the only important case where the same code may give different

results under the '68 and the '85 standards. OS/VS and DOS/VS COBOL's built-in

Report Writer uses the ANS-68 standard, and this is why the supplied version has

the option OSVS set on, implying SOURCE SUM correlation. It will be important

for you to understand the effect of SOURCE SUM correlation if your report has:

• more than one DETAIL group, and

• a SUM clause referring to a data item that is defined in a section of your

DATA DIVISION (other than the REPORT SECTION).

For full details, see 3.23 SUM clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 67

If you code the word NO the effect is reversed.

Compatibility

The ALLOW clause is provided by new Report Writer only. OS/VS and DOS/VS COBOL

always act as though ALLOW SOURCE SUM CORR were assumed.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 68

1.2.5 CODE clause

This clause can be used to prefix non-printable fields to the report records. Such

information is typically of use to de-spooling software and special device handlers.

┌── Format

──

──┐

│ │

│ ►►─┬─CODE IS───┬──┬─literal───────┬────────────────►◄

│

│ └─WITH CODE─┘ ├─mnemonic-name─┤ │

│ └─identifier────┘ │

└───

─────────────┘

CODE Clause: Coding Rules

The forms CODE IS and WITH CODE are synonymous.

The CODE clause is not permitted if the associated FD entry is followed by a record

description entry. This is because it would be illogical to WRITE independently to

the file if there is also a CODE. See 2.2.2 Select and FD: Coding Rules and the

rest of this section for further details.

The literal, if coded, must be a non-numeric literal.

If an identifier operand is used, it must represent a group field or a non-edited

alphanumeric elementary field. The associated FD entry for the file must then

have either a BLOCK CONTAINS clause with the CHARACTERS option or a

RECORD CONTAINS clause, or both.

If a mnemonic-name operand is coded, there must be an entry in SPECIAL-NAMES of

the form:

 literal IS mnemonic-name

where literal is non-numeric. The value of literal is then used as the CODE value. If you

require compatibility with ANS-68 report writer, one character is the norm. For

ANS-85 compatibility, you should code a two-character literal.

If your report file description has a RECORD or BLOCK CONTAINS integer CHARACTERS

clause and there is no MODE clause after SELECT, the size of the CODE, plus the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 69

maximum line width, must not be greater than the number of CHARACTERS

specified.

Not all RD entries associated with the same report file need have a CODE clause and

all the CODE clauses need not specify an operand of the same length.

However, if the report file does not use a user-written file-handler that might

ascribe some meaning to different lengths of CODE, it may be impossible to

recognize the CODE at the front of each records and decide how long it is.

CODE Clause: Operation

The presence of a CODE clause implicitly establishes the special register CODE-VALUE in

the Report Control Area. You may alter the contents of CODE-VALUE at any

time. If there are several CODE clauses in different RDs within your program, you

must qualify CODE-VALUE by the report-name.

If you do not specify a MODE clause after the SELECT for the corresponding report file,

the value of the CODE is prefixed to every record written by report writer to the

report file. The CODE is placed immediately before the carriage control

character:

CODE ccc print data ...

If the length of the CODE is not the same for every report being written to the

file, or if some of the reports have no CODE, then a MODE PRNT clause is

assumed in default, causing the built-in PRNT file handler to be invoked.

If you do specify a MODE clause after the SELECT, CODE-VALUE will be passed to the

Independent Report File Handler in the Report Control Area. Built-in file-handlers

(PRNT, MODL, NOPF) treat the CODE in the authodox way just described, but a

user-written file handler may interpret CODE-VALUE in any desired way. Hence,

your own user-written file handler may use the CODE clause for the passing of

any additional information that is required by the file handler but does not

necessarily appear in the report line itself. See 5.3 Independent Report File

Handlers for more information.

If a literal or mnemonic-name is used, the size of CODE-VALUE is the length of literal,

and CODE-VALUE is preset to the value of literal.

If an identifier is used, the length of CODE-VALUE is the (maximum) record length given

in the RECORD CONTAINS clause, minus the LINE LIMIT. The current value of

identifier is stored in CODE-VALUE at the start of the processing for each DETAIL

or CONTROL HEADING for the report. This does not occur if the current group is

a CONTROL FOOTING, so as to ensure that only pre-control-break values will be

used. In the following example (assuming ADV is in effect) the size of CODE-

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 70

VALUE is 140 minus 132 = 8 bytes, and the field WC-ACCOUNT-REF is moved to

CODE-VALUE at the start of each non-CF body group:

 FD REPORT-FILE
 RECORD CONTAINS 140 CHARACTERS
 REPORT IS MAIN-ACCOUNTS.
 ...
 RD MAIN-ACCOUNTS
 LINE LIMIT IS 132
 CODE IS WS-ACCOUNT-REF ...

Compatibility

OS/VS and DOS/VS COBOL allow only the format: WITH CODE mnemonic-name. The

corresponding literal defined in SPECIAL-NAMES must be one character.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 71

1.2.6 CONTROL clause

This clause should be coded in your RD if your report has additional lines, such as total

lines and subheadings, that are to be produced upon a change of value in one or

more "key" fields (known as control fields or simply controls).

┌── Format

──

──┐

│ │

│ ►►──┬─CONTROL IS────┬──┬────────┬──┬────────────┬──►◄

│

│ └─CONTROLS ARE──┘ ├─REPORT─┤ │ ┌────────┐ │

│

│ └─FINAL──┘ │ ▼ │ │ │

│ └─control-id─┘ │

└───

─────────────┘

CONTROL Clause: Coding Rules

As the format shows, you may code either the special keyword REPORT (or its

equivalent, FINAL), or a list of identifiers (control-ids), or both. Commas are

optional but helpful separators here, but you should code at least one space or

new line between the operands. At least one operand must be coded.

REPORT, if present, must appear first in the list of control-ids. You may omit REPORT even

if you refer to it in the Report Description. FINAL is an alternative name for

REPORT.

Each control-id must be REPORT/FINAL or the name of an unedited data item in the

DATA DIVISION of your program. It must not be a special register in the REPORT

SECTION, such as PAGE-COUNTER. You may include qualifiers and subscripts if

necessary. A PICTURE of a control-id should not have a "V" (implied decimal

point) symbol.

You cannot use the same control-id more than once in the same CONTROL clause

(unless a redefinition is used), but you can use the same control-id in different

RDs.

If the OSVS option is in effect, control-ids may be required to be either group items or

unedited alphanumeric or numeric DISPLAY items with a maximum size. Thus

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 72

edited items and items with a USAGE of COMPUTATIONAL or INDEX are

prohibited. Details will be found in Installation and Operation. If you would like

to use such an item as a control without restrictions on its format, you can simply

REDEFINE it or use a group level item containing only the item in question:

 05 MONTH-X.
 07 MONTH PIC 99 COMP.
 05 next-item ...
 RD ... CONTROL IS MONTH-X.

It is acceptable for your control fields to overlap. The following usage is therefore

allowed:

 03 ACCOUNT-CODE.
 05 BRANCH PIC 99.
 05 FILLER PIC XX.
 ... CONTROLS ARE BRANCH, ACCOUNT-CODE ...

Coding the CONTROL clause enables you to include some additional elements in your

report description, namely:

• You can specify a CONTROL HEADING and/or a CONTROL FOOTING

group for each control-id, if needed. (See 3.24 TYPE clause.)

• You can code PRESENT/ABSENT AFTER clauses (formerly known as

GROUP INDICATE) with any of the control-ids as operand to cause report

fields, lines etc. to appear or disappear after a change in its value. (See

3.17 PRESENT AFTER clause.)

• You can defer the RESETting (zeroing) of a total field until after a change

in a higher control. (See 3.23 SUM clause.)

CONTROL Clause: Operation

You code a CONTROL clause when your report has a structure based on changes in

the value of one or more "key" or control fields, whose names you list in the

CONTROL(S) clause. Report writer does not sort your data (to do that you could

use COBOL SORT) but, assuming that your data is sequenced according to the

control fields, report writer can perform certain actions automatically, such as

the production of a CONTROL FOOTING and a CONTROL HEADING group when

its contents change. It is also possible for a single CONTROL FOOTING group to

be used for more than one level of control. (See 3.24 TYPE clause.)

In the following diagram, there are two levels of control. Two CONTROL

HEADING groups and one CONTROL FOOTING have been coded. (There is no

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 73

CONTROL FOOTING FOR YEAR.) The "boxes" around each of these groups shows

their extent.

We have used some abbreviations in the following code - for example omitting

the SOURCE and TYPE keywords - to save space. To shorten it further, you could

abbreviate CONTROL HEADING FOR YEAR and CONTROL FOOTING FOR YEAR as

CH YEAR and CF YEAR.

SPORTS CLUB NEW MEMBERS

 YEAR: 1991

 MONTH: JAN

 J.J. CODER

 K. ANALYST

 ----- ----

 JAN TOTAL: 2

 MONTH: FEB

 C. HACKER

 V. PROGRAMMER

 J.C. USER

 ----- ----

 FEB TOTAL: 3

 ... etc etc ...

 YEAR: 1992

 ... etc etc ...

RD ...

 CONTROLS ARE YEAR, MONTH.

 01 CONTROL HEADING FOR YEAR.

 03 LINE + 2.
 05 COL 3 "YEAR:".
 05 COL + 2 PIC 9(4) YEAR.

 01 CONTROL HEADING FOR MONTH.

 03 LINE + 1.
 05 COL 2 VALUE "MONTH:".
 05 COL + 2 PIC XXX MONTH.

Your CONTROL FOOTING may have
underlines etc. Include them all in the
CF group!

 01 NEW-MEMBER DETAIL.
 03 ...

 01 CONTROL FOOTING FOR MONTH.

 03 LINE COLS 5 20
 "-----" "----".
 03 LINE.
 05 COL 2 PIC XXX MONTH.
 05 COL + 2 "TOTAL:".
 05 COL 20 PIC ZZZ9
 COUNT OF NEW-MEMBER.

The preceding diagram illustrates the following important points:

Your CONTROL HEADING and CONTROL FOOTING groups are coded as

separate 01-level report groups.

You can lay out CH and CF groups exactly as you like, just as you would for a

DETAIL; report writer imposes no pre-defined format on any groups.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 74

If you need a different CONTROL HEADING at more than one level (YEAR and

MONTH in our example), you must code a new group for each level. This

means that all groups may have different layouts. In this example, this

applies also to the CONTROL FOOTING groups. (However, you can if you

wish use the same group description for both levels by coding TYPE CF

FOR YEAR, MONTH.)

Report writer produces your CONTROL HEADING group at the start of each new

value of the control. Similarly, it produces your CONTROL FOOTING

group at the end of each new value of the control.

CONTROL FOOTING groups are produced using the control values that existed

before the control break. (See next item below for a fuller description of

this.)

Both the CONTROL HEADING and the CONTROL FOOTING groups are optional

for each control-id. You may code just a CONTROL HEADING group, or

just a CONTROL FOOTING group, or neither.

The reserved word REPORT (or FINAL) is a special case representing the highest possible

control. It is not a data-name. Include this as the first of your set of controls if

you need special action to be taken once only at the beginning and end of the

report; for example, if you require grand totals to be produced for the entire

report.

Report writer keeps an internal copy of the pre-break contents of each control so that it

may detect changes in the controls, known as control breaks. Ignoring the

special case REPORT or FINAL for the moment, whenever your program issues a

GENERATE statement, the CONTROL clause causes report writer to compare the

contents of each control with its contents when the previous GENERATE was

executed. The first control is examined first, then the second and so on. If no

changes are found in any of the controls, no special action is taken. As soon as

a change is found in a control, no further controls are examined. A break in a

higher control always implies a break in all the lower controls , whether their

contents have actually changed or not. (Obviously, 1991's JANUARY is a

different month from 1992's JANUARY.) If you have more than one control, they

must therefore have a hierarchy. Here are some examples:

Structure of your data: Format of the CONTROL clause:

MONTH within YEAR CONTROLS ARE YEAR, MONTH

CITY within COUNTY within STATE CONTROLS ARE STATE, COUNTY, CITY

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 75

Your control-names must exist somewhere as data-names in the program

outside the REPORT SECTION. For example, if in the last case the data-names in

your file layout are actually written CUST-STATE, CUST-COUNTY, CUST-CITY, then

your CONTROL clause would have to be written: CONTROLS ARE CUST-STATE,

CUST-COUNTY, CUST-CITY.

When a control break is detected, if your report has CONTROL FOOTING groups, each

control field is first saved in a temporary holding area and is then overwritten

with the contents it had before the break for the duration of the production of

the CONTROL FOOTINGs. This means that your program will use the before-the-

break contents of any CONTROL field (for example in a SOURCE, or a PRESENT

WHEN) in the following TYPEs of group:

a CONTROL FOOTING;

a PAGE HEADING or PAGE FOOTING, when the page advance was caused by

a CONTROL FOOTING;

and in the following situations:

when it is used as a SOURCE or SUM operand, either as it is or as a subscript or

qualifier, or as part of an expression;

when it is used as part of a condition;

when it appears in a parameter to a FUNCTION;

when it is referenced implicitly, that is, via a redefinition, or via a group field or

subordinate field or an intersecting field.

Only control fields exhibit their before-the-break values when referenced at

CONTROL FOOTING time. To obtain the before-the-break value of a field other

than a control field, you should use a Declarative procedure to save its current

value (see 4.7.3 USE BEFORE REPORTING Directive: Operation).

After the lowest-level CONTROL FOOTING has been produced, and before any

CONTROL HEADING or DETAIL groups are output, the current contents of all

controls are restored . For a full description of the steps, see 4.2 GENERATE

statement.

Report writer will not detect a control break until your program issues a GENERATE. If a

control field in your input data changes several times but no GENERATE is issued

during that time, no control breaks will be detected.

Your CONTROL identifiers need not be chosen just from ready-made locations in your

input files or database. You may also "manufacture" them in WORKING-

STORAGE. As a simple example, you may wish to print subtotals by quarter,

although your main input gives just the months:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 76

 RD ...
 CONTROL IS W-QUARTER ...
 ...
 COMPUTE W-QUARTER = (F-MONTH-NO + 2) / 3

You cannot define more than one CONTROL HEADING or CONTROL FOOTING for a

given control-id in your report. However, cases sometimes occur when you

would like two CONTROL FOOTING report groups for the same level of control.

You may achieve this referring to the same control field under a different name,

as in the following case, where we must have two groups because the second

part begins on a new page:

 05 W-ACCT-NO-1 PIC X(6).
 05 W-ACCT-NO-2 REDEFINES W-ACCT-NO-1 PIC X(6).
 *
 REPORT SECTION.
 RD ...
 CONTROLS ARE W-ACCT-NO-1 W-ACCT-NO-2 ...
 ...
 01 GRP-A TYPE CF FOR W-ACCT-NO-2.
 03 LINE + 3. ...
 ...
 01 GRP-B TYPE CF FOR W-ACCT-NO-1.
 03 LINE NEXT PAGE. ...

Here, the two controls W-ACCT-NO-1 and W-ACCT-NO-2 are physically the

same field. Consequently, there will be a break in the higher control whenever

there is a break in the lower control, and the two CONTROL FOOTING groups,

GRP-A and GRP-B, will always appear together in that order.

Report writer will consider a control break to have taken place if there is any change in

the bit-pattern of the control field. For example, if the field is packed decimal

(COMPUTATIONAL-3), a value of (hex) 123C and (hex) 123F will be considered

different, even though they both represent the same numeric value. If this

property is undesirable, your program should MOVE such a field to a DISPLAY

field and use the DISPLAY field as the control field.

If your program has several Report Descriptions, each report is processed

independently of the others. You can decide separately for each report

whether it will have a CONTROL clause and which controls to specify. When

you issue a GENERATE for a report that has controls, report writer examines the

controls for that report only, ignoring all the others.

Non-Hierarchical Control Structures.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 77

In some report structures, there may appear to be controls which are in parallel

rather than hierarchical arrangement. For example:

 Department #

 |

 / \

 Student Id. Teacher Id.

The organization of records in your file might be:

Department A:

 STUDENT record #1

 STUDENT record #2

 STUDENT record #3

 ... etc ...

 TEACHER record #1

 TEACHER record #2

 TEACHER record #3

 ... etc ...

 Department B:

 ... etc ...

As you see, there is no hierarchical relationship between STUDENTs and

TEACHERs. You might wish to print a CONTROL FOOTING group for the STUDENT

records in each Department and a CONTROL FOOTING group of quite different

appearance for the STUDENT records. To achieve this you must regard the two

different CONTROL FOOTING groups as different versions of the same CONTROL

FOOTING and use a PRESENT WHEN clause to distinguish them (see 3.18). Make

the STUDENT-TEACHER indicator an extra lower control. Here is a skeleton

solution:

 RD ACADEMIC-LIST ...
 CONTROLS ARE DEPARTMENT-NO STU-TEA-FLAG.
 ...
 01 CF FOR STU-TEA-FLAG.
 03 PRESENT WHEN STU-TEA-FLAG = "S".
 05 LINE + 2 ... <layout for STUDENTs>
 03 PRESENT WHEN STU-TEA-FLAG = "T".
 05 LINE + 2 ... <layout for TEACHERs>

There may be other purposes for specifying an item as a control. You might include it

for the following reasons:

To trigger a PRESENT AFTER clause (or a GROUP INDICATE clause), or The RESET

Phrase of the SUM clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 78

To force a control break even though a lower control has not changed. You

might want to output just monthly totals over several years' data. If you

then declare MONTH as a control you must include YEAR too as a higher

control, because it is quite possible for JANUARY 1991 to be followed

immediately by JANUARY 1992 if you happen to have no data for

FEBRUARY to DECEMBER 1991. (Note: in this example, you could also

solve the problem by having just one control, YEAR-MONTH, if they are

contiguous.)

Because you may want to use the field as a SOURCE at CONTROL FOOTING

time and you want to obtain the previous value of the field. (See item 4

above.) For example, you might have both CUSTOMER-NUMBER and

CUSTOMER-NAME. By making CUSTOMER-NAME a control field following

CUSTOMER-NUMBER (the "true" control field), you can be sure that you

will see only the pre-break values of CUSTOMER-NAME at Control Footing

time.

For documentary purposes. The lowest-level controls need not be used at all in

the program.

If the program's SPECIAL-NAMES paragraph contains an ALPHABET clause, you

may need to use the NOXCAL option to ensure that the specified

collating sequence is used. See Installation and Operation.

Compatibility

The use of REPORT as an alternative to FINAL is unique to new Report Writer.

Only new Report Writer allows control fields to overlap.

Only new Report Writer forbids the use of a COMPUTATIONAL item as a CONTROL field

under certain circumstances. New Report Writer regards two instances of a

COMP-3 control to be different if their sign is hex C in one case and hex F in the

other, even though all the remaining digits may be equal.

Only new Report Writer checks that all the control-ids in a given CONTROL clause are

different.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 79

1.2.7 LINE LIMIT clause

This clause indicates the maximum number of columns likely to be required for the

longest line of your report. It enables report writer to check that all of your report fields

appear within the limits of the report line, and to warn you if there is any danger of data

being lost beyond the right-hand extremity of the lines.

┌── Format

──

──┐

│ │

│ ►►──LINE LIMIT IS─┬─integer────┬──►◄ │

│ └─identifier─┘ │

└───

─────────────┘

LINE LIMIT Clause: Coding Rules

The value coded gives the maximum line width, in other words the greatest number of

print columns required for your report. You may simply enter the column width

of your printer, for example: LINE LIMIT IS 132 or, if your report is clearly designed

to take up less than this number of columns, use that value instead. Do not allow

for the carriage control character.

The identifier form of the clause is used if you wish the width of your report line to

assume different values at different times. This form of the clause takes effect

only when you use either the REPEATED clause (see 3.19), or the WRAP clause

(see 3.28). The identifier must be an unedited numeric field.

If the FD entry for the corresponding report file contains a BLOCK or RECORD CONTAINS

integer CHARACTERS clause (other than BLOCK CONTAINS 0 CHARACTERS), the

value of integer, after allowing for the carriage control character (if the NOADV

option is in effect), and the size of any CODE field, must not be less the LINE

LIMIT, or its default value (see item 3 in the section below).

LINE LIMIT Clause: Operation

If any report field extends beyond the maximum line width given in your LINE LIMIT

clause, report writer will signal a fault, either at compile time or, if that is not

foreseeable, at run time.

If you use the identifier form of the clause, report writer evaluates its contents

dynamically at INITIATE time and uses that as the value for the clause. For the

purpose of checking the validity of COLUMN numbers, it will use the default

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 80

maximum value described below. The value set up by the identifier is used at

run time for the following purposes:

to vary the number of REPEATED groups that may be placed side-by-side (see

3.19 REPEATED clause),

as one means of adjusting the right margin when the WRAP clause is used to

produce line wrap round (see 3.28 WRAP clause),

to check for (illegal) line overflow in variable-position report fields when the

WRAP clause is not used.

If you omit the LINE LIMIT clause, report writer will assume a default value of the

maximum line width. This is set to 256 in the report writer software as supplied

but this default may be changed by customization to any lesser value (see

Installation and Operation).

The LINE LIMIT need not be the same as logical record length of the report file. The

latter is established from the computed maximum length of the lines of the

report, or from the RECORD or BLOCK CONTAINS clauses if present (see 2.2.3

FILE-CONTROL and FD: Operation).

An internal special register with the reserved name LINE-LIMIT is established in the Report

Control Area, containing the value specified in the LINE LIMIT clause, or its

default value.

Compatibility

The LINE LIMIT clause is unique to new Report Writer. OS/VS and DOS/VS COBOL do not

perform checks on the feasibility of COLUMN numbers.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 81

1.2.8 OVERFLOW clauses

The OVERFLOW clause tells report writer how to protect your program from arithmetic

errors, such as zero divide, that would cause an elementary COBOL program to fail.

The SUM OVERFLOW clause tells report writer what action to take if a total field

overflows - an event which is more likely to happen than with other report fields. It may

be difficult to estimate the number of digits needed for totals, since this will depend on

the number and content of items to be accumulated into the totals. Use these clauses

if you need to change the standard action.

┌── Format a

──

┐

│ │

│ ►►── OVERFLOW PROCEDURE IS─┬─OMITTED──────────────┬──►◄

│

│ ├─STANDARD─────────────┤ │

│ ├─REPLACE BY literal-1─┤ │

│ └─STOP literal-2───────┘ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│ ►►── SUM OVERFLOW PROCEDURE

IS─┬─OMITTED──────────────┬────►◄│

│ ├─STANDARD─────────────┤ │

│ ├─REPLACE BY literal-1─┤ │

│ └─STOP literal-2───────┘ │

└───

─────────────┘

OVERFLOW Clause: Coding Rules

The OVERFLOW (format a) and SUM OVERFLOW clauses (format b) are distinct clauses

and you may choose a different option for each.

If your program contains no SUM clauses, the SUM OVERFLOW clause is not required.

Similarly, if your program has no clauses of the form SOURCE arithmetic-

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 82

expression , the OVERFLOW clause is not required. In either case, the clause

may nevertheless be coded and it then has no effect.

Use the OMITTED option if your report uses arithmetic expressions or has a SUM clause

respectively but there is no likelihood of a size error.

Use the REPLACE BY option if your report may be sensitive to improbable values in the

user's data and you would like to show on the report exactly where errors have

occurred. REPLACE BY can be followed by either a numeric or a non-numeric

literal-1, whatever the PICTURE of your report field.

Use the STOP option only if SUM or arithmetic overflow is extremely unlikely but

potentially damaging and you are content for your program to execute an

"emergency" COBOL STOP in such a case.

OVERFLOW Clause: Operation

The OVERFLOW clause takes effect if your program contains clauses of the form

SOURCE arithmetic-expression. On each occasion that the expression is

evaluated a check may be made in case the result is too large for the report

field. Also, if any expression involves a division step there could be a zero divide

error, such as FIELD-A / FIELD-B when FIELD-B contains zero.

The SUM OVERFLOW clause takes effect if your program contains a SUM clause. On

each addition, a check may be performed for size error. This clause does not

affect any of the other functions of the SUM clause, such as the resetting

(zeroing) of the totals. The default in each case is STANDARD (see below).

If you choose the OMITTED option the effect is as follows:

OVERFLOW: Report writer will not perform any checks for arithmetic overflow.

This will save a small overhead on the evaluation of expressions. If a size error

occurs, then at best your report field will have some high-order digits truncated.

If a zero divide error occurs, your program will fail at run time.

SUM OVERFLOW: Report writer will not perform any checks for SUM overflow. This

will save a small overhead on totalling. If a size error occurs, at least one top

digit will be truncated and lost from the total field.

If you choose the STANDARD option, the effect is as follows:

OVERFLOW: Report writer will always check for size error, or zero divide, when it

evaluates each SOURCE expression. If this happens, your report field will be

blank and a run time error 10 will be indicated.

SUM OVERFLOW: Report writer will check for size error on each addition into a

total field. If this happens, a run time error 11 will be indicated. No adding will

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 83

take place into your total field and you will obtain the total up to the point just

after the last valid addition.

If you code the REPLACE BY option, the effect is as follows:

OVERFLOW: Report writer will check for a size error or zero divide and, if this

occurs, it will place your specified literal-1 in the SOURCE report field instead of

the erroneous value.

SUM OVERFLOW: Report writer will check for a size error and, if this occurs, it will

place your specified literal-1 in the SUM report field instead of the erroneous

value.

In either case, if you choose a numeric literal-1, this value will be stored

according to the rules of the MOVE statement. If you choose a non-numeric

literal-1, the literal will be stored, as for a MOVE, in your report field, treated as

though it were redefined as an unedited alphanumeric field (PIC X...). For

example, if overflow occurs and your report field is defined as:

 05 COL 20 PIC ZZZ9.99 SOURCE NUM-ORDERED * UNIT-PRICE.

and your RD contains the clause: OVERFLOW PROCEDURE IS REPLACE BY ZERO,

the following will appear:

0.00

and if your RD contains the clause: OVERFLOW PROCEDURE IS REPLACE BY ALL

"?", the following will appear:

???????

If you code the STOP option, report writer will execute a COBOL STOP literal-2 as soon as

an error is detected.

Compatibility

The OVERFLOW and SUM OVERFLOW clauses are unique to new Report Writer. The SUM

OVERFLOW IS OMITTED option emulates the effect of OS/VS and DOS/VS COBOL's built-

in Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 84

1.2.9 PAGE LIMIT clause

The PAGE LIMIT clause should be coded if your report is to be divided into pages. It also

allows you to sub-divide the page into regions for the headings, main data, and

footings.

┌── Format

──

──┐

│ │

│ ►►──┬──────────────────────┬──► │

│ └─HEADING IS integer-1─┘ │

│ ►─┬───────────────────────────────────┬──► │

│ └─FIRST─┬─DETAIL─────┬─IS integer-2─┘ │

│ ├─DE─────────┤ │

│ └─BODY GROUP─┘ │

│ ►─┬──┬─► │

│ └─LAST─┬─DETAIL─┬┬───────────────────┬IS┬integer-3───┬─┘ │

│ └─DE─────┘└OR┬CONTROL HEADING┬┘ └identifier-1┘ │

│ └CH─────────────┘ │

│ ►─┬──┬─► │

│ ├─LAST─┬─CONTROL FOOTING─┬─┬─IS─┬─integer-4──────┬─┘ │

│ │ ├─CF──────────────┤ │ └┬─PLUS┬integer-5┘ │

│ │ └─BODY GROUP──────┘ │ └─ + ─┘ │

│ └─FOOTING──────────────────┘ │

│ │

│ ►─PAGE─┬────────────┬─integer-6─┬───────┬──►◄ │

│ ├─LIMIT IS───┤ ├─LINE──┤ │

│ └─LIMITS ARE─┘ └─LINES─┘ │

└───

─────────────┘

PAGE LIMIT Clause: Coding Rules

The format above gives you choices of keywords, and in each case the different

keywords have the same meaning. Traditionally, the sub-clauses were referred

to as the HEADING , FIRST DETAIL, LAST DETAIL, and FOOTING phrases. We also

usually refer to the whole clause as the PAGE LIMIT clause, even though the

word LIMIT is optional.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 85

Each of the sub-clauses is optional, but none of the first four sub-clauses may be

present without the PAGE LIMIT sub-clause. You may code the sub-clauses in

any order , and they may appear anywhere in the RD statement. The order

shown follows a natural progression from the top to the bottom of the page and

is therefore recommended for maximum lucidity.

The values of integer-1, integer-2, integer-3, and integer-4 (if you code their sub-

clauses), and integer-6 represent the start and finish points of various regions of

your page, working down from the top to the bottom. Ensure that the regions

start and finish in the order shown in the diagram below (see 2.9.3). Any two

integers may be equal. All integers must lie between 1 and 9999 inclusive.

If you use the identifier form of the LAST DETAIL sub-clause, the identifier used must be

an unedited numeric field and its value at every generation of your report must

lie between the FIRST DETAIL and LAST CONTROL FOOTING positions, inclusive.

By using the + integer-5 form of the LAST CONTROL FOOTING sub-clause, you specify the

extra lines to be made available to CONTROL FOOTING groups. Ensure that you

cannot exceed the PAGE LIMIT: that is, the LAST DETAIL value (identifier-1 or

integer-3) + the LAST CF offset (integer-5) must be not greater than the PAGE

LIMIT (integer-6).

The FIRST four PAGE LIMIT sub-clauses may all be omitted. Here are some guidelines on

their use:

HEADING is never required. However, if your report has a PAGE HEADING that

begins with a relative LINE, you may use HEADING as an anchor point for

the start of that group.

FIRST DETAIL should be coded if you have a PAGE HEADING group, especially

one that might vary in depth, and you want the body of the page to

follow at a fixed position underneath it.

LAST DETAIL should be coded if you have a PAGE FOOTING group and want the

body of the page to end short of the line preceding it or if you want to

use LAST DETAIL in conjunction with LAST CF as described in the next

paragraph. Use the LAST DETAIL identifier form if you want to vary the

logical page depth dynamically.

LAST CF (or LAST CONTROL FOOTING, or FOOTING) should be coded if you have

CONTROL FOOTING groups and want to leave some space before the

PAGE FOOTING begins. (If the OSVS option is not in effect, this may be

provided automatically - see item 7 in the next section below.)

If you omit the PAGE LIMIT clause, your report will consist of one continuous stream of

output without page breaks. Your Report Group Descriptions will then not be

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 86

able to contain absolute LINE (see 3.10 LINE clause), or NEXT GROUP (see 3.13

NEXT GROUP clause), PAGE HEADING and FOOTING groups, or any form of any

clause that makes use of the keyword PAGE.

PAGE LIMIT Clause: Operation

The PAGE LIMIT clause enables report writer to assign regions to your page. The

following diagram shows how the various regions are mapped onto your page:

Regions of the Page

////////////// optional blank space ////////////

__

 PAGE

 HEADING

__

 DETAIL and CONTROL HEADING groups

 ▼

 ▼ CONTROL FOOTING groups

 body ▼ ▼

 of ▼ ▼

 page ▼ ▼

 ▼ ▼

 ▼ ▼

__

 ▼

 ▼

__

 PAGE

 FOOTING

__

////////////// optional blank space ////////////

◄ Top of physical

 page (logical LINE 1)

◄ HEADING integer-1

 reserved for PH

◄ FIRST DETAIL

 integer-2

 reserved for

 body groups

 (CH,DE,CF)

◄ LAST DETAIL

 integer-3

 for CF only

◄ FOOTING (=LAST CF)

 integer-4

 reserved for PF

◄ PAGE LIMIT

◄ Bottom of physical page

Each of your groups will be checked to fit into its appropriate region. (The

REPORT HEADING and REPORT FOOTING groups are special cases.) The fitting of

groups on the page is described in detail in the next part (see 3.10 LINE clause).

If you code a HEADING sub-clause, its value will be used in the case where you have a

PAGE HEADING or a REPORT HEADING group whose first LINE clause is relative .

Those groups will then be positioned relative to the value of HEADING minus 1.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 87

(Compare the different rule for the positioning of a relative first LINE clause in a

body group at FIRST DETAIL, see 3.10 LINE clause.)

The region between FIRST DETAIL and LAST CONTROL FOOTING inclusive is the body of

the page. Apart from the optional REPORT HEADING and REPORT FOOTING

groups, which may appear anywhere on the page, only body groups

(CONTROL HEADING, DETAIL, and CONTROL FOOTING) will appear in this region.

However, if a PAGE HEADING group encroaches into the FIRST DETAIL position, a

diagnostic message (096) will be issued and the first body group will appear

immediately after the PAGE HEADING group (as though the FIRST DETAIL were

absent - see below).

CONTROL HEADING and DETAIL groups are not allowed to appear below the LAST

DETAIL position. If LAST DETAIL is above LAST CONTROL FOOTING, your CONTROL

FOOTING groups will thereby have extra space available to them. This extra

space reduces the likelihood of the displeasing effect that results when they are

forced to the top of a page. (See 3.10 LINE clause for more details.) You can

imply this spacing by making LAST DETAIL fall short of PAGE LIMIT (or short of the

line before the PAGE FOOTING if you have one). An alternative way to indicate

this extra space is to code: LAST CONTROL FOOTING IS +integer-5.

If you code the identifier form of the LAST DETAIL sub-clause, report writer will take the

contents of the identifier at the start of each GENERATE and use that as the

value for the sub-clause.

If you use the relative form of the LAST CONTROL FOOTING sub-clause (with +), the

number of lines you specify will be added to the LAST DETAIL value to give the

LAST CONTROL FOOTING value. For example: LAST CONTROL FOOTING + 3

specifies that 3 extra lines are to be available during the page-fit for CONTROL

FOOTING groups, regardless of any variations in an identifier operand of LAST

DETAIL.

If you omit any of the first four optional sub-clauses, and report writer needs their values,

it will infer default values according to the following rules:

no HEADING: = 1; that is, the top of the logical page.

no FIRST DETAIL: a. If there is no PAGE HEADING, the value of HEADING is the

default; hence, if HEADING is allowed to default to 1, the

body of the report will begin at the top of the page.

 b. If there is a PAGE HEADING, then the line immediately

following the PAGE HEADING group, that is, the body of the

report, will start immediately after the PAGE HEADING. If

your PAGE HEADING varies in size, you may deliberately omit

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 88

FIRST DETAIL, and the body of your page will adjust itself to

take up all the space available.

no LAST DETAIL: a. If there is a LAST CONTROL FOOTING (other than the + form),

LAST DETAIL takes the same value, that is, all your body

groups will be allowed to come down to the LAST CONTROL

FOOTING position.

 b. If there is a LAST CONTROL FOOTING with the + integer-5

form, then (first line of the PAGE FOOTING) - 1 - integer-5 is

used; that is, report writer will use as much of the page as

possible, allowing for any PAGE FOOTING, and leave integer-

5 extra lines for the CONTROL FOOTING group(s).

 c. If there is no LAST CONTROL FOOTING, then the same default

is used as for LAST CONTROL FOOTING (see next).

no LAST CONTROL a. If the OSVS option is in effect and there is a LAST

FOOTING: DETAIL, this value is also used for the LAST CONTROL

FOOTING. In all other cases:

 b. If there is no PAGE FOOTING, then the PAGE LIMIT is used;

that is, your CONTROL FOOTING groups will be allowed to

come down to the bottom of the page. (If you use the

identifier form of LAST DETAIL, there is an exception to this

rule: LAST CONTROL FOOTING will be the same as LAST

DETAIL.)

 c. If there is a PAGE FOOTING group, then the last line before

the PAGE FOOTING is used. (If the PAGE FOOTING is a

relative group, this is calculated by placing the last line of

the PAGE FOOTING at the PAGE LIMIT.) Note that this default

action differs from ANS COBOL, where LAST CONTROL

FOOTING defaults to LAST DETAIL, if you specify it. This

extension has the advantage that the LAST CONTROL

FOOTING sub-clause can be omitted in most cases without

misalignment of CONTROL FOOTING groups or wastage of

space at the bottom of the page.

The following examples show some possible forms of this clause:

 a. PAGE LIMIT 60.

This form is valid for all situations because of the defaults. All your body groups

will fit between your PAGE HEADING (or line 1 in its absence) and your PAGE

FOOTING (or line 60 in its absence).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 89

 b. FIRST DE 5
 LAST CF +3
 PAGE LIMIT 60.

This reserves lines 1-4 for the PAGE HEADING and, if your report has no PAGE

HEADING, they will be left blank. Your CONTROL FOOTING groups may come

down to the line before any PAGE FOOTING, or line 60 if there is no PAGE

FOOTING, but CONTROL HEADING and DETAIL groups must end 3 lines before

that point.

 c. LAST DETAIL WS-PAGE-SIZE
 PAGE LIMIT 60.

Here the value of WS-PAGE-SIZE will be used as the lower limit for all body groups

(since the identifier form of LAST DETAIL causes LAST CONTROL FOOTING to

default to LAST DETAIL instead of to PAGE LIMIT).

Compatibility

The alternative spellings DE for DETAIL, FIRST BODY GROUP for FIRST DETAIL, LAST DETAIL

OR CONTROL HEADING / CH, LAST CONTROL FOOTING / CF, and LAST BODY

GROUP are unique to new Report Writer.

The concept that each keyword may introduce a clause in its own right is unique to

new Report Writer. OS/VS and DOS/VS COBOL require the keyword PAGE to

appear first and do not allow different phrases of the PAGE LIMIT clause to be

separated by another clause.

OS/VS and DOS/VS COBOL require the keyword LINE or LINES.

The defaults assumed by OS/VS and DOS/VS COBOL are not sufficient to allow omission

of the clauses in most cases as they are with new Report Writer. Where new

Report Writer's defaults are different from those of OS/VS COBOL and DOS/VS,

no undetectable incompatibility will result, because in these cases the different

defaults assumed by OS/VS and DOS/VS COBOL cause compilation errors.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 91

3

1.3 Report Group Descriptions

This part describes in detail every aspect of the Report Group Descriptions that follow

your RD entry in the REPORT SECTION. After the next section, the sections are in

alphabetical order for easy reference.

If you are migrating older programs written using OS/VS or DOS/VS COBOL's built-in

Report Writer, you should refer to the Compatibility paragraph at the end of each

section, which points out any new Report Writer features that these compilers do not

accept.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 93

1.3.1 Introducing Report Groups

What is a Report Group?

A report group is an uninterrupted block of report lines, from zero up to any number.

With the exception of MULTIPLE PAGE groups (see 3.12 MULTIPLE PAGE clause), the lines

in a report group are always together on the same page and are generated in a single

operation. Of the seven TYPEs, all but the DETAIL groups are produced automatically.

Your program issues at least one GENERATE statement for each DETAIL group (or for the

report as a whole), and any other groups that you have defined are automatically

generated in the correct positions relative to the DETAILS, depending on their TYPE.

Your RD entry may be followed by any number of Report Group Descriptions, but there

is a limit to the number each TYPE other than DETAIL. Each Report Group Description

begins with a 01 level-number entry in the A-margin.

More information about report groups follows or may be found later in this part (see 3.24

TYPE clause).

Report Groups: Keyword Table

The following table lists the major report writer keywords that may appear in a Report

Group Description, with a summary of their purposes. The third and fourth columns tell

you whether or not the item is provided by IBM's OS/VS and DOS/VS COBOL and, if so,

whether COBOL-IT Report Writer extends the facilities. The clauses may be found, listed

in alphabetical order by keyword, following this section.

If you wish to remain compatible with OS/VS or DOS/VS COBOL, you should avoid the

new keywords and the extensions to the old ones, possibly by using the option

described in Installation and Operation to restrict your use of extended features. You

will find additional information on this subject in the Compatibility paragraph at the end

of each section.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 94

Report Groups: Keyword Table

Keyword Purpose

OS/VS

DOS/VS

COBOL?

Extensions to OS/VS and DOS/VS

COBOL

TYPE

(01-level

only ...)

Indicates whether

group is produced

automatically,

(PH,PF,CH,CF,RH,

RF) or GENERATEd

explicitly (DE)

yes

▫ TYPE keyword optional

▫ optional FOR/ON with CH/CF

▫ CH FOR control OR PAGE form

▫ no TYPE = TYPE DETAIL

▫ multiple CONTROL FOOTING

NEXT GROUP

Provides extra

vertical space

between groups

yes

▫ PLUS can be written +

▫ optional words BODY and

 DE OR CH

▫ optional ON before NEXT PAGE

GROUP

LIMIT

Gives lowest per-

missible position

for body group

no

MULTIPLE

PAGE

Allows a group

to span several

pages

no

REPEATED

Repeats body

groups side-by-

side across page

no

LINE

(allowed

at all

levels...)

Specifies vertical

position

yes

▫ PLUS can be written +

▫ multiple form

▫ LINE alone = LINE PLUS 1

▫ LINE PLUS ZERO = LINE PLUS 0

▫ LINE without subordinate

 COLUMNs gives blank line

▫ absolute may follow relative

 if group starts with absolute

▫ RH/RF or body groups may

 occupy several pages

OCCURS

Indicates repeat-

ing item

no

VARYING

Defines internal

counter for use

as subscript, etc.

no

PRESENT/

ABSENT

WHEN

Gives condition

for printing or

skipping item

no

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 95

Keyword Purpose

OS/VS

DOS/VS

COBOL?

Extensions to OS/VS and DOS/VS

COBOL

PRESENT/

ABSENT

AFTER

Specifies intern-

al condition for

printing/skipping

no

GROUP

INDICATE

Simple form of

PRESENT AFTER

yes

▫ may be used at group level

BLANK

WHEN ZERO

Causes zero value

to be spaces

yes

▫ allowed at group level

JUSTIFIED

Changes alignment

rules for alpha-

numeric fields

yes

▫ allowed at group level

SIGN

Changes output

convention for

"S" PICTURE symbol

no

▫ LEADING literal TRAILING

 literal format for user-

 specified "signs"

WRAP

Allows data to

"wrap round" onto

continuation lines

no

STYLE

Invokes a special

printer property

no

USAGE Documentary yes ▫ DISPLAY-1 for DBCS items

COLUMN

(element-

ary level

only ...)

Specifies horiz-

ontal position

yes

▫ may be shortened to COL

▫ relative form (+ or PLUS)

▫ CENTER and RIGHT options

▫ multiple format

▫ allowed alone as dummy entry

PICTURE

Gives format in

which field is to

be presented

yes

▫ left-shift symbols <...> for

 variable left alignment

▫ optional when VALUE "literal"

▫ general insertion characters

SOURCE

Specifies field

whose contents

are to appear

in report item

yes

▫ SOURCE keyword optional

▫ arithmetic-expression format

▫ ROUNDED phrase

▫ SUM or COUNT term may be

 used as operand

▫ multiple format

▫ multiple-choice format

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 96

Keyword Purpose

OS/VS

DOS/VS

COBOL?

Extensions to OS/VS and DOS/VS

COBOL

VALUE

Specifies fixed

value for report

item

yes

▫ VALUE keyword optional

▫ multiple format

▫ assumes default PICTURE

FUNCTION

Specifies run time

routine to provide

contents of item

no

SUM

Indicates total-

ling of specified

item(s)

yes

▫ optional word OF after SUM

▫ arithmetic-expression format

▫ may be used as term in

 SOURCE expression

▫ allowed in non-CF groups

▫ may refer to SOURCE/VALUE

▫ ROUNDED phrase

▫ ANS-74/85 method (no SOURCE SUM

 correlation) available

▫ automatic check for overflow

▫ > 1 SUM clause in entry ok

COUNT

Counts appearances

of item(s)

no

PAGE-/

LINE-

COUNTER

Special registers

for page number &

vertical position

yes

▫ need not be qualified in REPORT

SECTION/DECLARATIVES

▫ adding to LINE-COUNTER creates

gap on page

COLUMN-

COUNTER

Special register

for horizontal

position

no

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 97

1.3.2 Coding Report Group Descriptions

A Report Group Description is a REPORT SECTION data structure beginning with an 01-

level entry and including any number of lower entries. It may consist of the 01-level

report group entry only. You may code any number of Report Group Descriptions after

your RD entry.

┌── Format

──

──┐

│ ┌────────────────┐ │

│ ▼ │ │

│ ►►────report-group-entry ───►◄ │

└───

─────────────┘

where report-group-entry is defined as follows:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 98

┌── Format

──

──┐

│ │

│ ►►──level-number─┬───────────┬─┬─────────────┬─►

│

│ └─data-name─┘ └─TYPE clause─┘ │

│ │

│►─┬─────────────────┬┬──────────────────┬┬─────────

──────┬─► │

│ └NEXT GROUP clause┘└GROUP LIMIT clause┘└REPEATED clause┘ │

│ │

│►─┬────────────┬─┬──────────────┬─┬───────────────┬

─► │

│ └─LINE clause┘ └─COLUMN clause┘ └─PICTURE clause┘ │

│ │

│►─┬──

─────┬─► │

│ └──┬─SOURCE clause─────────────────────┬┬─────────┬─┤

│

│ ├─VALUE clause──────────────────────┤└─ROUNDED─┘ │

│

│ │ ┌──────────────┐ │ │ │

│ │ ▼ │ │ │ │

│ ├─┬─SUM clause───┬─┬──────────────┬─┘ │

│

│ │ └─COUNT clause─┘ └─RESET phrase─┘ │ │

│ └─FUNCTION clause────────────────────────────────┘

│

│ │

│►───┬──────────────────────────────┬──► │

│ ├─PRESENT/ABSENT WHEN clause───┤ │

│ ├─PRESENT/ABSENT AFTER clause──┤ │

│ ├─GROUP INDICATE clause────────┤ │

│ └─multiple-choice (see below)──┘ │

│ │

│►─┬──────────────────────┬┬───────────────────────

─────┬─► │

│ └WITH┬────┬─WRAP clause┘└┬────┬─MULTIPLE PAGE clause─┘ │

│ └─NO─┘ └─NO─┘ │

│ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 99

│►─┬──────────────┬─┬───────────────┬─┬────────────┬

─► │

│ └─OCCURS clause┘ └─VARYING clause┘ └─SIGN clause┘ │

│ │

└───── (Continued over)

───────────────────────────────────────┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 100

┌── Format (continued)

──┐

│ │

│►─┬──────────────────────┬┬────────────────┬┬──────

──────┬─► │

│ └BLANK WHEN ZERO clause┘└JUSTIFIED clause┘└USAGE clause┘ │

│ │

│►─┬───────────────┬─. ──►

│

│ └─STYLE clause──┘ │

└───

─────────────┘

where multiple-choice is defined as follows:

┌── Format

──

──┐

│ │

│ ►─┬─SOURCE clause──┬─┬─PRESENT AFTER clause─┬─► │

│ ├─VALUE clause───┤ └─PRESENT WHEN clause──┘ │

│ └─FUNCTION clause┘ │

└───

─────────────┘

Report Groups: Coding Rules

Level-numbers are used, as in any DATA DIVISION record, to establish a hierarchy of

group levels above the elementary level. The level-number at the start of each

report group must be 01. (It may be written without the leading 0, but we shall

still refer to it as the 01-level.) Choose your lower level-numbers exactly as you

would for any other COBOL logical record. (Note that OS/VS and DOS/VS

COBOL Report Writer uses the TYPE, LINE, and COLUMN clauses themselves,

rather than the level-numbers, to establish hierarchy.)

You need not place data-names on your report group entries except in the following

cases, where they are required:

On the 01-level entry of a DETAIL group, or any other group that may be

referred to in the USE BEFORE REPORTING header of a Declarative

SECTION (see 4.7 USE BEFORE REPORTING directive). When a data-name

is used at the 01-level, it gives a name to the entire report group and is

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 101

called the report-group-name or group-name. The group-name must

be unique within an RD, but you may re-use the name in another RD.

On a numeric entry referred to in a SUM clause or term. (See 3.23 SUM clause.)

On any entry at any level that is referred to in a COUNT clause or term. (See 3.6

COUNT clause.)

In all other cases it is preferable to omit data-names since an unnecessary data-

name may mislead the program-reader into thinking that it is referred to in one

of the ways above. It may also impede the precompiler's optimization.

Data-names may be DBCS.

The following general-purpose DATA DIVISION clauses can be used in a report group.

The first four may be used at both group and elementary levels (not the 01 -level

in the case of OCCURS). PICTURE and VALUE are allowed only at the

elementary level.

BLANK WHEN ZERO

JUST/JUSTIFIED

OCCURS

SIGN

PIC/PICTURE

VALUE/VALUES

but the following cannot be used in a report group:

any USAGE other than DISPLAY, such as COMPUTATIONAL

REDEFINES

SYNCHRONIZED/SYNC

RENAMES

88-level entries

In addition to the general DATA DIVISION clauses, report groups may contain

special-purpose clauses that describe the position and contents of fields. The

first four clauses, TYPE, NEXT GROUP, GROUP LIMIT, and REPEATED, can appear

only at the 01-level. The special-purpose clauses are:

TYPE indicates the type of group

NEXT GROUP creates extra space between groups

GROUP LIMIT gives a special lower limit for the group

REPEATED places groups side-by-side

LINE gives the vertical position

MULTIPLE PAGE enables a report group to span several

 pages

COLUMN gives the horizontal position

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 102

SOURCE used to capture a data field by name

SUM used to produce a total

COUNT used to produce a count

FUNCTION invokes a special formatting routine

WRAP allows data to continue on a new line

VARYING provides counters for a repeating entry

STYLE produces special printer effects

PRESENT/ABSENT controls whether or not an item, line

 WHEN/AFTER or group is output

GROUP INDICATE an older form of PRESENT AFTER

The clauses PICTURE, COLUMN, SOURCE, VALUE, SUM, COUNT, and FUNCTION can

appear only at the elementary level.

For every entry with a COLUMN clause, there must be a LINE clause either at the same

level as or at a higher level. If a given report line contains only one elementary

field (and provided the entry is not a multiple-choice entry, see 3.18 PRESENT

WHEN clause), you may combine the LINE and the COLUMN clauses in the same

entry, for instance:

 03 LINE 5 COL 60 VALUE "QUARTERLY REPORT".

There is no limit to the number of elementary fields a report line may contain. If

the report line contains several elementary fields, you must code all the

COLUMN entries within the line at a lower level than the LINE entry, for example:

 03 LINE 5.
 05 COL 60 VALUE "QUARTERLY REPORT".
 05 COL 90 VALUE "1997".

Not all the COLUMN clauses within a LINE need be at the same level, since some

or all elementary entries might be contained within non-LINE group entries; for

example:

 03 LINE 5.
 05 COL 60 VALUE "QUARTERLY REPORT".
 05 PRESENT WHEN YEAR NOT = SPACES.
 07 COL 90 VALUE "YEAR:".
 07 COL +2 PIC X(4) SOURCE YEAR.

A LINE clause must not be subordinate to another LINE clause. (If this rule is violated, the

nested LINE entries will be treated as though they were defined at the same

level as the first.)

If a given report group contains several lines, you must give all the LINE entries in that

group a level-number other than 01. If the group contains only a single report

line, you may code the LINE clause in the 01-level entry; for instance:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 103

 01 ORDER-LINE TYPE DE LINE + 1.
 05 ...

You may choose only one of five clauses: SOURCE, VALUE, SUM, COUNT, and FUNCTION

to supply the contents of an elementary item automatically, bearing in mind

that (a) SOURCE or VALUE can be repeated several times in a multiple-choice

entry (see 3.18.5 The Multiple-Choice Form), and (b) SUM (see 3.23 SUM clause)

or COUNT (see 3.6 COUNT clause) can be used as special operators in terms in

an arithmetic expression (see 3.21 SOURCE clause).

If there is no SOURCE, VALUE, SUM/COUNT, or FUNCTION clause in an elementary item,

the following conditions must be met:

The entry must have a data-name (following the level-number).

The entry must have a COLUMN clause.

If the COLUMN clause is relative, the item must have a fixed horizontal position

(that is, it must follow an item with a fixed end-column, unless it is first in

the line).

The item must have a PICTURE with none of the features that are unique to the

REPORT SECTION (that is, "<" or ">" symbols or general insertion

characters). Report writer will then expect you to fill in the report field

independently with some COBOL procedural statement.

As an example, in the following case

 05 R-PRIOR-CUST-NO COL 20 PIC 9(7).

the only way this item can receive a value is through a COBOL MOVE, ADD,

ACCEPT, or other procedural statement, which is outside the scope of report

writer and is left to you. Report writer will ensure that the report field is not

overwritten by any other field, so any value stored in the item R-PRIOR-CUST-NO

will remain there and will appear whenever the enclosing group is produced.

Note that you should not attempt to change the value of a group field, such as

a report line, in this way.

You may code the clauses of any report group entry in any order, except in the case of

a multiple-choice entry, where each SOURCE, VALUE, or FUNCTION operand is

immediately followed by WHEN condition. Details of this combination are given

later (see 3.17 PRESENT AFTER clause).

However, you may code the SUM clause more than once in the same entry. You may

also code a SOURCE, VALUE, or FUNCTION clause and its associated

PRESENT/ABSENT WHEN/AFTER clause more than once in a multiple-choice entry.

All other clauses may appear no more than once in an entry.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 104

Compatibility

The COUNT, GROUP LIMIT, VARYING, PRESENT/ABSENT WHEN/AFTER, FUNCTION,

REPEATED, MULTIPLE PAGE, STYLE, and WRAP clauses are provided by new

Report Writer only.

Only new Report Writer allows the SIGN clause in the REPORT SECTION.

Only new Report Writer allows the BLANK WHEN ZERO and JUSTIFIED clauses in a group

entry.

OS/VS and DOS/VS COBOL do not use level-numbers, apart from 01-level, to establish

hierarchy and rely instead on the keywords TYPE, LINE, and COLUMN.

OS/VS and DOS/VS COBOL allow just three hierarchic levels within the Report Group

descriptions.

OS/VS and DOS/VS COBOL do not permit REPORT SECTION entries to be the subject of

non-Report Writer procedural statements.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 105

1.3.3 BLANK WHEN ZERO clause

This causes a field with zero contents to be blanked out.

┌── Format

──

──┐

│ │

│ ►►──BLANK WHEN ZERO──►◄ │

│ │

└───

─────────────┘

BLANK WHEN ZERO Clause: Coding Rules

If you code BLANK WHEN ZERO in an elementary entry, the entry must have a numeric

PICTURE. If you code it in a group level entry, it applies to all the numeric elementary

entries within the group. (This clause is usually referred to as the BLANK WHEN ZERO

clause, even though the word WHEN is optional.)

BLANK WHEN ZERO Clause: Operation

BLANK WHEN ZERO causes a numeric field to be replaced entirely by spaces if its value

is zero. For example:

 1,009.50 19.27 20.90 160.00

 ↑

05 COL 1 PIC Z,ZZZ.99 BLANK WHEN ZERO
 OCCURS 4 STEP 10 VARYING RW-X SOURCE WS-VAL (RW-X).

You may use BLANK WHEN ZERO even if your field is not in a fixed position. It is also

permitted with a variable-length field (PICTURE symbol "<"), in which case a zero value

in a variable part has a length of zero.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 106

Compatibility

Only new Report Writer allows this clause at the group as well as the elementary level.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 107

1.3.4 COLUMN clause

The COLUMN clause specifies the horizontal positioning of a field in the report line.

┌── Format

──

──┐

│ │

│ ►►──┬──┬─COLUMN─┬──┬─NUMBER──┬──┬──┬────────┬──┬─IS──┬──► │

│ │ └─COL────┘ └─NUMBERS─┘ │ ├─LEFT───┤ └─ARE─┘ │

│ ├────COLUMNS────────────────┤ ├─CENTER─┤ │

│ └────COLS───────────────────┘ ├─CENTRE─┤ │

│ └─RIGHT──┘ │

│ ┌─────────────────────┐

│

│ ▼ │ │

│ ►──┬──┬─PLUS─┬─integer-1─┬──►◄ │

│ │ └─ + ──┘ │ │

│ └───integer-2─────────┘ │

└───

─────────────┘

COLUMN Clause: Coding Rules

COLUMN with no operands is shorthand for COLUMN + 1.

For every entry with a COLUMN clause, there must be a LINE clause at the same or a

higher level. So you may write:

 05 LINE 5 COL 20 VALUE "TITLE PAGE".

provided that there are no other entries within LINE 5. If the line has two or more

fields, you must then create a new level, as with:

 05 LINE 6.
 07 COL 5 VALUE "REPORT XYZ".
 07 COL 72 VALUE "ANNUAL RETURNS".

If you code a COLUMN entry at the same level as the preceding LINE:

 05 LINE 6 COL 5 VALUE "REPORT XYZ".
 05 COL 72 VALUE "ANNUAL RETURNS".

then Report Writer will diagnose this as invalid but will allow it as stated.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 108

COLUMN may be the only clause in an entry. The result is a blank field whose only

purpose is to shift the current horizontal position (COLUMN-COUNTER) to the

right. A blank field (absolute or relative) occupies one column's width in

addition to the usual spacing for the COLUMN. It is therefore equivalent to

coding a VALUE consisting of a single space alongside the COLUMN clause

(although doing so would be less efficient). For example, COL + 4 coded alone

in an entry shifts the current horizontal position four (not three) columns right.

(See the discussion in the next section).

The size of your item is calculated from the PICTURE clause or the size of the VALUE

"literal", and is used in combination with your COLUMN clause to check that: (a)

the line width is not exceeded (see 2.7 LINE LIMIT clause and, if you are using

automatic line wrap, see 3.28 WRAP clause), and (b) no two items overlap

(unless they both carry a PRESENT AFTER clause). If two or more items overlap in

whole or in part, report writer will diagnose this as invalid but will allow the

COLUMN positions and field sizes as coded. The later-coded entry will then

overwrite the earlier-coded entry at run time by the number of overlapping

columns and data will be lost. No run time error occurs.

Within each LINE, any absolute COLUMN numbers should be in ascending order, after

the evaluation of any PRESENT WHEN clause (see 3.18) and any PRESENT AFTER

clause (see 3.17). If this rule is broken, report writer will issue a Warning (message

250) but will allow the COLUMN positions as coded.

The RIGHT and CENTER phrases cannot be coded with the + (relative) form of this

clause.

You may write "+" with or without a space on either side.

COLUMN Clause: Operation

The COLUMN clause positions your elementary field horizontally. Here is a list of the

options:

COLUMN + integer-1. This is the relative form. It indicates that the horizontal

position within the line is to be moved integer column positions from the

last character of the preceding field to the first character of this field.

Note that the "gap" before the field will be one less than the value of the

integer. For example:

 COLUMN + 1 = "no gap"

 COLUMN + 2 = "one space before field", and so on.

If you use COLUMN + integer in the first field of a line, it is treated as

though you had written the absolute form, COLUMN integer-1, since the

initial value of the horizontal position is zero.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 109

COLUMN integer-2. This is the absolute form. It indicates that the left-hand

column of the field must appear on that fixed position within the line.

Remember that the first column in the line is COLUMN 1. LINE LIMIT is the

highest possible value of integer.

COLUMNS integer-1 integer-2 ... This is the multiple form of the clause. It

reduces your coding effort by including several operands in the same

clause. The relative multiple form, COLUMNS + integer, + integer ..., is

also allowed and you may combine both forms in the same clause.

Multiple COLUMNS are described in more detail below (see 3.4.4 Multiple

COLUMNS Clause).

COLUMN RIGHT and COLUMN CENTER are used if you wish to specify the right-

hand or center position of the field as alternative anchoring points, to

save you the effort of "counting out" the length of the field to establish its

left-hand column when you already know its center point or right-hand

column. COLUMN LEFT, the normal alignment, is provided for syntactic

completeness.

If you specify COLUMN CENTER and the field is an even number of

column positions wide, the extra character position goes to the right of

the central column. The following example shows the allowable

alternatives for a six-character field starting in column 1:

LONDON

 ↑ ↑ ↑
COLUMN 1 │ COLUMN RIGHT 6

 └─ COLUMN CENTER 3

You will get a ragged left-hand side in the case of COLUMN RIGHT and

centralization with ragged left and right , in the case of COLUMN CENTER.

By successively generating the following entry on different lines with

different values

 05 COL RIGHT 15 PIC 9<9(6) SOURCE POPULATION-COUNT.

you will obtain

1

234

56789

8765432

 ↑ column right 15

The following, generated several times with a different CITY:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 110

 05 COL CENTER 20
 "LONDON" WHEN CITY = "L"
 "BATH" WHEN CITY = "B"
 "GLASGOW" WHEN CITY = "G"
 "KINGSTON UPON HULL" WHEN CITY = "H".

gives you, for example,

LONDON

BATH

GLASGOW

KINGSTON UPON HULL

 ↑ column center 20

Note that RIGHT and CENTER may also be used with the multiple format

of the COLUMN clause discussed in 3.4.4 Multiple COLUMNS Clause).

The CENTER or RIGHT option is required if you need to center or right-

align a variable-length field - (see "<" and ">" symbols) for full details. The

output in the box above could also have been produced using a

SOURCE item thus:

 05 COL CENTER 20 PIC <X(20) SOURCE CITY-NAME.

If an elementary item has no COLUMN clause then, if the OSVS precompiler option is in

effect or a data-name is present, the item will not appear in the report. It is then

termed an unprintable item. Unprintable items are used chiefly for summing in

the following cases:

For Subtotalling and SOURCE SUM Correlation (see 3.23.5). A SOURCE clause

may be written as an unprintable item because a SUM of a certain data

item is required but its individual values are not:

 01 DUMMY-DETAIL TYPE DE.
 05 PIC 9(6) SOURCE IS WS-PAY. *> unprintable
 01 TYPE CF ...
 03 LINE ...
 05 COL 22 PIC Z(6)9 SUM WS-PAY.

For rolling forward of certain values into totals. This is report writer principal way

of forming totals. This time the unprintable item has a data-name and

the data-name is summed:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 111

 01 DUMMY-DETAIL TYPE DE.
 05 R-PAY PIC 9(6) SOURCE IS WS-PAY.
 01 TYPE CF ...
 03 LINE ...
 05 COL 22 PIC Z(6)9 SUM OF R-PAY.

For forming totals that are not printed directly but used indirectly:

 01 TYPE CF ...
 05 R-PAY PIC 9(7) SUM OF WS-PAY.
 05 R-TAX PIC 9(7) SUM OF WS-TAX.
 05 COL 22 PIC Z(6)9 SOURCE R-PAY – R-TAX.

Further examples may be found in SUM Clause.

If the precompiler option OSVS is not in effect, and any elementary entry beneath the

LINE level has no COLUMN clause, then COLUMN + 1 is assumed for the entry,

provided that the level-number is not followed by a data-name. Thus, you

could omit both COLUMN clauses in the following fragment:

 05 LINE 1.
 07 COL 1 VALUE "REPORT ".
 07 COL 8 PIC XXX SOURCE REPORT-IDENT.

Multiple COLUMNS Clause

You may use the multiple form of the COLUMN clause by placing several integer or +

integer terms after the keyword. This reduces the effort needed to code several

adjacent entries that have a similar format. Note the following points:

A multiple COLUMNS clause is functionally equivalent to an ordinary COLUMN clause

used in conjunction with an OCCURS clause (see 3.14); for example:

You may use VARYING to vary a counter that is used as a subscript in a SOURCE

clause.

You may use a simple (single-operand) VALUE, SOURCE, SUM, or FUNCTION

clause to place the same value repeatedly in each instance of the field.

You may use a multiple VALUE or SOURCE clause to place a different value in

each instance of the field.

You may place a data-name at the start of the entry and SUM the data-name

in another entry to produce a total of the instances or occurrences

collectively or individually. (To form individual totals, there must be

another multiple or occurring COLUMN clause in the entry with the SUM

clause.)

Unlike the method of repetition using the OCCURS clause, the intervals between the

entries defined by a multiple COLUMNS clause need not be regular.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 112

Your multiple COLUMNS clause will be syntactically correct if it would be correct when

written as a series of separate COLUMN entries.

Here are some examples of the multiple COLUMNS clause:

 *This places the literal in all 3 column positions:
 05 COLS 9 21 36 VALUE "-------".

 *This gives you WVAL (1) WVAL (2) and WVAL (3) in the 3
 *right-hand positions:
 05 COLUMNS RIGHT 21 31 42 PIC ZZZZ9
 VARYING R-SUB SOURCE WVAL (R-SUB).

 *This illustrates the combining of absolute and relative positions:
 05 COLUMN NUMBERS ARE 6 +3 +3 ...

The following diagram and corresponding code illustrates the usefulness of the multiple

COLUMNS clause:

 SPORTS EQUIPMENT COMPANY: WAGES SUMMARY

 AREA BASIC PAY OVERTIME COMMISSION TOTAL

 NORTH $1,420,000 $600,000 $150,500 $2,170,500

 EAST $2,100,000 $850,000 $220,000 $3,170,000

01 TYPE PH.
 03 LINE 1 COL CENTER 28 "SPORTS EQUIPMENT COMPANY: WAGES SUMMARY".
 03 LINE 2 COLS RIGHT 4 19 33 47 62 VALUES
 "AREA" "BASIC PAY" "OVERTIME" "COMMISSION" "TOTAL ".
 03 LINE 4 OCCURS 4 STEP 1 VARYING AREA-NO.
 05 COL 1 "NORTH" "EAST" "SOUTH" "WEST".
 05 R-PAY COLS RIGHT 19 33 47 PIC $$$,$$$,$$9 SOURCES
 BASIC-PAY OVERTIME TAX.
 05 COL RIGHT 62 PIC $,$$$,$$$,$$9 SUM OF R-PAY.

Compatibility

Only new Report Writer has the following features:

• Abbreviation of keyword as COL,

• Relative form (+ or PLUS),

• CENTER and RIGHT options,

• Multiple format,

• Blank entry when COLUMN clause present alone.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 113

1.3.5 COLUMN-COUNTER

COLUMN-COUNTER is a special register that, at any given instant, contains the value of

the rightmost column number of the most recently processed report field.

┌── Format

──

──┐

│ │

│ ►►──COLUMN-COUNTER──►◄ │

└───

─────────────┘

Use of COLUMN-COUNTER

COLUMN-COUNTER indicates the current horizontal position within a line. At each stage

during the processing of a line, it contains the most recent rightmost column

number on which data was placed in the line. It may also be incremented by

an "empty" (unprintable) entry containing only a COLUMN clause. Regardless of

the number of reports and report lines it contains, each program has just one

COLUMN-COUNTER.

Report writer uses COLUMN-COUNTER as a place-keeper and internal subscript while

assembling variable-length or variable-position fields in a report line. For the

sake of efficiency, it does not initialize or update COLUMN-COUNTER in a report

line consisting of fixed-length, fixed-position fields, unless you explicitly refer to it

in an item in the line.

You may use COLUMN-COUNTER in the condition of a PRESENT WHEN clause (see 3.18),

or as the operand of a SOURCE clause (see 3.21), or as a parameter to a

FUNCTION (3.7 FUNCTION clause). It cannot be used in your PROCEDURE

DIVISION, because the generating of each line is an indivisible operation.

COLUMN-COUNTER may be used to simplify the conditions that would otherwise be

required to string together a series of conditional fields:

 05 COL 30.
 05 COL + 1 "A" PRESENT WHEN A-FLAG = "Y".
 05 PRESENT WHEN B-FLAG = "Y".
 07 COL + 1 "," PRESENT WHEN COLUMN-COUNTER > 30.
 07 COL + 1 "B".

If your current group is a REPEATED group (see 3.19 REPEATED clause), or if you use the

SET COLUMN statement of the Page Buffer feature (see 4.4 Report Writer SET

statements), you should bear in mind that COLUMN-COUNTER is relative to the

left-hand boundary of the group. So it does not include the extra left-hand

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 114

margin used to offset your REPEATED groups or the extra margin you create with

SET COLUMN.

COLUMN-COUNTER should not be used in a condition where the field is to be totalled

using the SUM clause, because COLUMN-COUNTER is not updated when

totalling is performed at the start of processing for the group.

Compatibility

COLUMN-COUNTER is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 115

1.3.6 COUNT clause

The COUNT clause counts the number of appearances of any specified report field or

group item.

┌── Format

──

──┐

│ │

│ ┌─────────────────────────────────┐

│

│ │ ┌──────────────────────┐ │

│

│ ▼ ▼ │ │ │

│ ►►──COUNT OF report-section-data-name────► │

│ │

│ ►─┬─────────────────────┬─┬─────────┬──►◄ │

│ └─RESET ON control-id─┘ └─ROUNDED─┘ │

│ │

└───

─────────────┘

COUNT Clause: Coding Rules

Each data-name must be the name of any REPORT SECTION entry other than an RD. It

may even be the data-name of a group entry that contains the COUNT clause.

You may place the COUNT clause in a different report group from the item counted

(rolling forward) or in the same group (cross-footing). As with the SUM clause, if

the COUNT clause appears in a multiple CONTROL FOOTING, all but the lowest

level total is formed by rolling forward the next-lower total.

Unlike the situation with the SUM clause, the item counted need not be a numeric field.

Like the SUM clause, you may use the COUNT clause in two ways:

As a clause in its own right. You write the clause in place of a SOURCE, VALUE,

or FUNCTION clause. For example:

 05 COL 21 PIC ZZZ9 COUNT OF R-CUSTOMER-NAME.

As a term in an expression used as a SOURCE operand; for example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 116

 05 COL 21 PIC ZZ9 SOURCE IS (COUNT OF R-GAIN) - (COUNT OF R-LOSS).

You may combine SUM and COUNT terms in the same expression. For example, the

following will give you the average value of all the instances of a numeric field:

 05 COL 32 PIC ZZZZ9
 SOURCE (SUM OF PURCHASE) / (COUNT OF PURCHASE) ROUNDED.

COUNT Clause: Operation

This clause gives a count of the number of times the item referenced has appeared. In

other words, whenever the item appears in the Report, 1 is added to the count.

You cannot count items that are outside the REPORT SECTION, such as

WORKING-STORAGE items.

The item referenced may be at any level; for example:

A 01-level entry: you will obtain the number of appearances of a particular

group.

A LINE entry: you will count the number of appearances of that particular LINE.

A COLUMN entry: you will obtain a count of appearances of that particular

elementary item.

Assuming that you do not use the RESET phrase, when your COUNT field has been

output the count returns to zero. Hence, you will always obtain the count of the

number of appearances of the item since the last time the count was output.

You may use the RESET ON phrase to delay the resetting of the count to zero until a

higher-level control break occurs, in exactly the same way as you can with the

SUM clause.

If the item counted is one that repeats several times because of an OCCURS or

REPEATED clause, the count will include each repetition. An OCCURS ...

DEPENDING will count just the number of items actually output. A PRESENT

clause (or the equivalent) is also taken into account, so that items "not present"

do not contribute to the count.

You may count more than one item by writing more than one data-name as an

operand in the clause. The counts are then simply consolidated internally.

(The COUNT clause is really a special variant of the SUM clause, so other points

of interest can be found under 3.23 SUM clause.)

Compatibility

Only new Report Writer provides the COUNT clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 117

1.3.7 FUNCTION clause

The FUNCTION clause invokes a special routine to reformat or convert the data before it

appears in your report field.

┌── Format

──

──┐

│ │

│ ►►─┬─FUNCTION─┬─IS function-name─┬───────────────┬─►◄

│

│ └─FUNC─────┘ │ ┌───────┐ │ │

│ │ ▼ │ │ │

│ └─(parameter)─┘ │

└───

─────────────┘

FUNCTION Clause: Coding Rules

Function-name must be alphanumeric and must be either a standard supplied function

name or a user-written one. It may begin with a numeric character. A full list of

standard function names is given below, and you or any other person may add

new ones to the list at any time.

The FUNCTION clause may be used only at the elementary level, in place of SOURCE,

SUM, or VALUE. It is permissible for the entry to have no COLUMN or PICTURE

clause, i.e. the entry may be a dummy. You may use it in a multiple-choice

entry, if so desired.

The number of parameters you need, if any, and their formats are stated below (see

3.7.4 Built-In Functions) for each built-in function. User-written functions should

also have a description that tells you this information. Some functions take no

parameters while others allow either a fixed or a variable number.

Each parameter may be any identifier. It may also be an integer, literal, or arithmetic

expression, for example:

 FUNCTION DAYSIN (SALES-DATE + 365).

in which case the parameter is given to the Function routine as a one-word

signed binary field. You cannot use SUM or COUNT terms in the expression.

Neither can you use LENGTH OF, ADDRESS OF, BY CONTENT, or BY REFERENCE, as

part of a parameter.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 118

The FUNCTION keyword may also be used in the format FUNCTION IS function-name (...)

in a SOURCE clause or in a condition in a PRESENT WHEN clause. In such cases

function-name is a COBOL intrinsic function and is not part of the FUNCTION

clause described here.

FUNCTION Clause: Operation

The function routine behaves like a subroutine whose parameters consist of the

parameters specified in the FUNCTION clause, if any, together with information

about the size of the report field, if any, and the report field's contents, both of

which are automatically supplied by report writer. Details on the linkage to

function routines are given later (see 5.2 Developing User-Written Functions).

If you code an edited PICTURE (numeric or alphanumeric) with the FUNCTION clause,

report writer invokes the function routine using an internal intermediate field that

has the unedited equivalent of your PICTURE. This is obtained by removing all

insertion characters, including any decimal point. Also any "Z" or "*" symbol or

floating sign or currency symbols are converted to an equivalent number of "9"

symbols. The "<" symbol is also removed. For example, if your entry is as follows:

 05 COL 21 PIC $$,$$9.<99 FUNCTION MONEY (WS-VAL).

Report writer will provide the function routine with an intermediate field with a

PICTURE of 9999V99 as a parameter for receiving the output value. Report writer

then executes a MOVE from the intermediate field to your original report field.

This means that all functions, including user-written ones, can operate with

edited report fields, without function routine developers needing to allow for the

many possible edited formats.

One of the parameters report writer passes to the function routine is the size in bytes of

the report field, if any, to be output. If the PICTURE is edited, this size is the size of

the intermediate field. Using the case given in the previous paragraph, for

instance, the function routine will be told that the size is 6. The Function routine

may decide to produce different formats for the output report field, depending

on the number of bytes implied by this size. It may also simply truncate the

output value (on the left or the right) down to the number of characters

required. This can give you freedom to choose from many possible PICTUREs to

use with a function. For example, if MDATE is used, and today's date is 5th

January, 1997:

PICTURE 9(6) will give you: 010597

PICTURE 99/99/99 will give you: 01/05/97

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 119

PICTURE XXXB99B9(4) will give you: JAN 05 1997

PICTURE <X(9)B<99B9999 will give you: JANUARY 05 1997

Functions cannot detect the kind of PICTURE symbols used. For example

PICTURE XXBXXBXX produces the same result as PICTURE 99B99B99.

The clause SOURCE IS CURRENT-DATE behaves operatinally like an implicit “Function”,

since it invokes a run time routine.

Built-In Functions

The following is a list of the built-in functions.

 CTIME (Clock Time) is similar to TIME (see below) except that it uses the

12-hour clock and prints either AM or PM (or blanks at midnight (0.00)

and noon (12.00)). The (unedited) PICTURE should therefore allow for

two additional non-numeric characters. For example, PIC 99":"99BXX

could result in 11:30 PM.

 DATE (European Date) returns a date in any one of a number of

display formats in the order day/month/year. The date does not change

after the first invocation of the function.

 Number of parameters: 0 or 1.

 If no parameter is supplied, the date will be the current date at the start

of the run. If one parameter is supplied, it must be either a 7-digit date

held in a PIC S9(7) COMP-3 (packed) format in the form ccyyddds (s =

sign), or a 5-digit date held in a PIC S9(5) COMP-3 (packed) format in

the form yyddds (in which case the current century is assumed).

Report-field (PIC) lengths (excluding editing symbols):

 5 - yyddd

 6 - ddmmyy

 7 - ddMMMyy (MMM is first 3 characters of month name)

 8 - ddmmccyy (cc is century)

 9 - ddMMMccyy

 13 - ddM(9)yy (M(9) is 9-character month name)

 15 - ddM(9)ccyy

 DAY (Day-of-Week) returns the alphabetic day-of-the-week

represented by the given date.

 Number of parameters: 0 or 1.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 120

 If no parameter supplied, the current date is used. If one parameter is

supplied, it may be either a 7-digit date held in a PIC S9(7) COMP-3

(packed) format in the form ccyyddds (s = sign), or a 5-digit date held in

a PIC S9(5) COMP-3 (packed) format in the form yyddds (when the

current century is assumed), or a two- or four-byte (PIC S9(9) COMP or

PIC S9(4) COMP) location containing a value from 1 (= Monday) to 7 (=

Sunday), or a one-byte (PIC 9 DISPLAY) location containing a value from

1 to 7.

Report-field lengths (excluding editing symbols):

 3 - first 3 letters of day (MON,TUE,WED,THU,FRI,SAT,SUN)

 9 - full name of day

 DAYSIN (Days Elapsed Since Base Date) converts a binary number of

days since January 1st, 1601 to a date in the same format as for DATE.

This function is identical to MDAYS, except that the date is returned in

the order: day/month/year.

 MDATE (US Date) returns a date in any one of a number of display

formats in the order month/day/year. It is similar to the DATE function,

except that the day and month fields are reversed.

Report-field lengths (excluding editing symbols):

 5 - yyddd

 6 - mmddyy

 7 - MMMddyy (MMM is first 3 characters of month name)

 8 - mmddccyy (cc is century)

 9 - MMMddccyy

 13 - M(9)ddyy (M(9) is a 9-character month name)

 15 - M(9)ddccyy

 MDAYS (Days Elapsed - US Format) converts a binary number of days

since the Codasyl/ANSI standard base date of January 1st, 1601 to a

date in the same format as MDATE, that is, month/day/year. See MDATE

above for more information on report field lengths.

 Number of parameters: 1.

 The parameter must be the number of days since January 1st 1601

inclusive, held as one fullword binary (such as PIC S9(9) COMP). This is

the base date, 584,693 days since absolute year zero (ignoring calendar

reforms). A zero value means December 31 1600. A negative value

gives a date before December 31 1600. You may change the base

date by re-compiling the source of the FUNCTION supplied with this

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 121

product, in which case your new function should have a different name

to avoid incompatibility.

MONTH (Month Name) returns an alphabetic month name.

 not VSE

 Number of parameters: 0 or 1

 If no parameter is supplied, the current month is returned. If a parameter

is supplied, it should be either a 7-digit date held in a PIC S9(7) COMP-3

(packed) format in the form ccyyddds (s = sign), or a 5-digit date held in

a PIC S9(5) COMP-3 (packed) format in the form yyddds (when the

current century is assumed), or a two-byte (PIC 99 DISPLAY) location

containing a value from 01 to 12, or a four-byte binary (PIC S9(9) COMP)

location containing a value from 1 to 12.

Report-field lengths (excluding editing symbols):

 3 - first three characters of month (JAN,FEB,MAR,etc.)

 9 - full name of month

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 122

 MOVE (Save Register) copies any report writer special register to a

specified working location. This is a dummy function which requires no

report field and may be coded without a COLUMN or PICTURE clause. (If

the entry is not a dummy, the field will be space-filled.)

 Number of parameters: 2.

 Parameter 1 is any numeric special register, typically LINE-COUNTER or

COLUMN-COUNTER. It may also be a user-defined data-name specified

in a VARYING clause.

 Parameter 2 is any half-word binary location (PIC S9(4) COMP) to

receive the contents of parameter 1.

 This FUNCTION is used to capture on the fly the contents of a register

whose value is constantly changing. The following sample code prints

up to 12 monthly payments to print side-by-side showing only those

which are not zero and, by storing each value of the VARYING subscript

R-MONTH in LAST-MONTH for those occurrences selected, it is able to

state which month was the last to be printed.

 03 LINE.
 05 OCCURS 12 VARYING R-MONTH PRESENT WHEN PAY (R-MONTH) > 0.
 07 COL + 3 PIC ZZZZ9 SOURCE PAY (R-MONTH).
 07 FUNC MOVE (R-MONTH LAST-MONTH).
 05 COL 90 "Last month with a payment was".
 05 COL + 2 PIC X(9) FUNC MONTH (LAST-MONTH).

 RDATE (Real DATE) is similar to DATE without the optional parameter,

except that the current date is always fetched. Compare RMDATE.

 RMDATE (Real MDATE) is similar to MDATE without the optional parameter,

except that, if the date changes during the run, because the time

passes through midnight (00:00:00), the date is changed.

Report-field (PIC) lengths (excluding editing symbols):

 5 - yyddd

 6 - yymmdd

 7 - yyMMMdd (MMM is first 3 characters of month name)

 8 - ccyymmdd (cc is century)

 9 - ccyyMMMdd

 13 - yyM(9)dd (M(9) is 9-character month name)

 15 - ccyyM(9)dd

 RYDATE (Real YDATE) is similar to YDATE (see below) without the optional

parameter, except that the current date is always fetched. Compare

RMDATE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 123

 STATE (US State) returns the name of one of the US states, plus "DC".

 Number of parameters: 1

 The parameter may be either a state number with PICTURE 99 (DISPLAY)

ranging from 01 (ALABAMA) to 51 (WYOMING), in alphabetical order of

their full names, or a two-character standard abbreviation e.g. "AL" or

"WY".

 The report-field length must be at least 14. If it is less than 20, then

DISTRICT OF COLUMBIA is rendered as D.C.

 STATEF (US State or Territory) is similar to STATE (see above) except that

the five overseas territories are included, merged into the set of 51

domestic states, in alphabetical order of their full names.

 STIME (Static Time) is similar to TIME (see below) except that the time is

only fetched initially from the operating system and therefore does not

change in value throughout the program.

 TIME (Run Time) returns the current time in format hhmmsstt, where tt

is hundredths of a second, if available, otherwise zeros. The value of the

time may change on each invocation of the function.

 Number of parameters: none

Report-field (PIC) lengths:

 4 - hhmm

 6 - hhmmss

 8 - hhmmsstt

 As an example, the following example uses DAY, DATE, and TIME:

 05 COL 31 PIC <X(9) FUNC DAY.
 05 COL +2 PIC <99/<99/9(4) FUNC MDATE.
 05 COL 51 PIC 99,99,99 FUNC TIME.

 executed at 3 PM on March 7th, 1997 will result in:

 FRIDAY 3/7/1997 15,00,00

 YDATE (Date Reversed) returns a date in any one of a number of

display formats in the order year/month/day. Apart from this order, it is

similar to DATE and MDATE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 124

 ZIP (Zip Code) prints a standard US or Canadian ZIP code.

 Number of parameters: 1.

The single parameter must contain the ZIP code in the format S9(9)

COMP-3. This is then output in the form nnnnn-nnnn, but the final -nnnn is

left blank if the last four digits are 9999.

Compatibility

Only new Report Writer provides FUNCTION as an independent clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 125

1.3.8 GROUP LIMIT clause

This clause explicitly gives the lowest permissible vertical position for any line in a

specific body group.

┌── Format

──

──┐

│ │

│►►──GROUP LIMIT IS integer──►◄ │

│ │

└───

─────────────┘

GROUP LIMIT Clause: Coding Rules

Your integer must not be greater than the lower limit (LAST DETAIL, LAST CONTROL

FOOTING, or PAGE LIMIT) that would normally apply without the clause (see 2.9

PAGE LIMIT clause).

Code this clause only at the 01-level in a body group (DETAIL or CH/CF).

Your group's first LINE clause must be relative.

GROUP LIMIT Clause: Operation

When doing the page-fit test, report writer will use your integer as the bottom line

number, beneath which no part of the group may appear, instead of the usual

end-of-region values (see PAGE LIMIT clause).

This clause is especially useful in a CONTROL HEADING, which might appear misplaced if

it appeared near the bottom of the page like the DETAIL and CONTROL

FOOTING groups.

Compatibility

The GROUP LIMIT clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 126

1.3.9 JUSTIFIED clause

This clause causes a SOURCE, SUM, COUNT, VALUE, or FUNCTION clause whose operand

is shorter or longer than the target report field to fill the report field with excess spaces,

or perform truncation, on the left instead of the right.

┌── Format

──

──┐

│ │

│ ►►──┬──JUSTIFIED─┬─RIGHT──►◄ │

│ └─-JUST──────┘ │

│ │

└───

─────────────┘

JUSTIFIED Clause: Coding Rules

If you code JUSTIFIED RIGHT in an elementary entry, the entry must have an

alphanumeric PICTURE.

This clause acts on elementary-level fields, but you may also code it in a group-level

entry, including 01, where it applies to all the alphanumeric elementary entries

in the group.

JUSTIFIED Clause: Operation

The JUSTIFIED clause is retained for compatibility with ANS COBOL and acts on an

elementary field in the same way as in basic COBOL. It cannot be used for

right-flushing variable-length fields, for which COLUMN RIGHT should be used.

(See 3.4 COLUMN clause.) This is because JUSTIFIED does not consider the

contents of the sending field.

The JUSTIFIED clause takes effect when your alphanumeric SOURCE field is of a different

size from the PICTURE. The padding out with spaces or the truncation (if the

PICTURE is smaller than the field) then takes place on the left instead of the right.

In the following example, we want to output either MONTH-NUMBER (2

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 127

characters) in columns 12 and 13 or YEAR-NUMBER (4 characters) in columns 10

through 13:

 05 COL 10 PIC X(4) JUSTIFIED RIGHT
 SOURCE MONTH-NUMBER WHEN MONTH-IND = 1
 YEAR-NUMBER WHEN OTHER.

Compatibility

OS/VS and DOS/VS COBOL allow this clause only in elementary entries, but in all other

respects new Report Writer and the older compilers treat it identically.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 128

1.3.10 LINE clause

The LINE clause positions a line vertically on the page.

┌── Format

──

──┐

│ │

│ ┌─────────────────────┐

│

│ ▼ │ │

│ ►►──┬─LINE─┬─NUMBER IS───┬──┬──┬──┬─PLUS─┬─integer-1─┬──► │

│ │ └─NUMBERS ARE─┘ │ │ └─ + ──┘ │ │

│ └────LINES ARE ─────────┘ └───integer-2─────────┘ │

│ │

│ ►──┬──────────────┬──►◄ │

│ └─ON NEXT PAGE─┘ │

│ │

└───

─────────────┘

LINE Clause: Coding Rules

Here is a list of the alternative forms:

LINE + integer-1. This is the relative form. PLUS may be written in place of +. It

indicates that the line should advance integer lines from the previous

position. LINE + 0 or LINE + ZERO is allowed, indicating that no advance is

to take place. The result is that the line overprints the previous line. You

may write "+" with or without a space on either side.

LINE integer-2. This is the absolute form. It indicates that the line will appear on

that fixed position on the page. The first line on the logical page is LINE

1, corresponding to position reached on issuing a form feed. The highest

line number allowed is given by the PAGE LIMIT operand. This absolute

form is allowed only if you have a PAGE LIMIT clause in your RD.

LINE integer-2 ON NEXT PAGE. This is similar to format b but the ON NEXT PAGE

phrase forces a page advance to occur before the line is output,

irrespective of whether the group containing it would fit on the current

page.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 129

LINE ON NEXT PAGE forces the line to be output in the FIRST DETAIL position on

the next page (for a body group) or the HEADING position (for a REPORT

HEADING or REPORT FOOTING group).

LINES ARE integer-1 integer-2 ... is the multiple form of the clause. It enables you

to save coding effort by describing several lines in the same clause. You

may also write LINES + integer, + integer etc (the relative form) and may

combine both forms in the same clause. You may also write ON NEXT

PAGE after the last operand, in which case this phrase applies to the first

line in the set.

LINE alone is shorthand for LINE + 1.

The first LINE clause in each group determines whether the group as a whole is to be

relative or absolute. If the first LINE clause is relative, the group is a relative

group and all the other LINE clauses must be relative. So the entire group can

be positioned anywhere on the page, within the permitted upper and lower

limits for the group:

 ▲ ▲
 ▲ ▲

relative

report group

 LINE + ...

 LINE + ...

 ▼ ▼
 ▼ ▼

If the first LINE clause is absolute, the group is an absolute group and any of the

remaining LINE clauses may be absolute or relative . For example, the following

two arrangements of LINE clauses within a group are equivalent:

 01 TYPE PH. 01 TYPE PH.
 03 LINE 1. ... 03 LINE 1. ...
 03 LINE 2. ... 03 LINE + 1. ...
 03 LINE 4. ... 03 LINE + 2. ...

Using relative lines has the advantage that you can adjust the position of the

entire group by changing just the first LINE number.

If a group has absolute LINE clauses, except where NEXT PAGE is used, the integers must

be in increasing order. Except in the case of LINE + 0, no lines may overlap. (If

you place PRESENT WHEN condition clauses on the LINE entries, then mutually

exclusive lines may have the same line numbers. See 3.18 PRESENT WHEN

clause.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 130

A LINE need not contain any COLUMN entries (whether actual or implied by default).

The result is a blank line containing no data. For example:

 01 TYPE PH.
 05 LINE 2 VALUE "** HEADING **".
 05 LINE 4. *> (or LINE + 2.)

This causes the PAGE HEADING to occupy lines 2 to 4, although data is written

only on line 2.

One LINE clause must not be subordinate to another LINE clause. If this rule is broken, a

warning message will be issued and the previous line will be terminated; for

example:

 01 PAYMENT-LINES LINE NEXT PAGE.
 03 COLUMN 1 ...
 03 LINE PLUS 1.
 05 COLUMN 1 ...

The ON NEXT PAGE phrase may be coded only in the first LINE clause of a report group,

except when the report group entry has a MULTIPLE PAGE clause (or when this is

assumed, as in the case of REPORT HEADING and REPORT FOOTING) where

there is no restriction. (See 3.12 MULTIPLE PAGE clause.) This permits such

groups to occupy several pages.

LINE Clause: Operation

If a group is absolute, its first LINE clause indicates the starting position of the group (see

rule 3 above). The next two paragraphs cover the relative case.

Positioning of relative body groups (CH, DE, and CF)

If the group is the first body group on the page, the first line of the group is

positioned at the FIRST DETAIL position, irrespective of the integer of the

LINE clause. If you did not code a FIRST DETAIL sub-clause in your RD, the

first line will appear one line after the PAGE HEADING group, if there is

one, or at the HEADING position if not. Subsequent lines in the group are

positioned relative to each other.

If the group is not the first body group on the page, then the first line of the

group is positioned relative to LINE-COUNTER, which normally contains

the last line position of the preceding body group. (But note that a NEXT

GROUP clause or an alteration to the value of LINE-COUNTER in the

PROCEDURE DIVISION can affect this positioning.)

Page-Fit Test for Body Groups

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 131

When a report has a PAGE LIMIT clause, report writer performs a page-fit test

before outputting any body group (CONTROL HEADING, DETAIL, or CONTROL

FOOTING). This is to ensure that none of the lines of the group will be output

unless all the lines of the group will fit in the region of the page reserved for its

type of body group. (See 2.9.3 PAGE LIMIT Clause: Operation.) The type of

page-fit test performed will depend on whether the group is absolute or relative.

In all cases, remember that LINE-COUNTER contains the current vertical position,

normally the position of the line last written before this group was generated.

Absolute Page-Fit Test for Body Groups

If the first LINE is absolute, report writer takes the first LINE number as the

starting position of the group. (If any of the absolute LINE clauses are

conditional, then this "first line" need not be the first LINE number coded;

if all absolute lines are ABSENT, the group will be treated as null or

relative, as the case may be.) If LINE-COUNTER is positioned at a line

above the starting line position of the group, report writer will not skip to

a new page. In all other cases, a page advance takes place (see item

5 below) and the group is printed at the line specified on a fresh page.

The next diagram illustrates this process:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 132

*** page heading ***

*** if any ***

BODY-GROUP

*** page footing ***

*** if any ***

... GENERATE BODY-GROUP ...

01 BODY-GROUP TYPE DE.

 03 LINE 20 ...

 03 LINE 21 ...

 final LINE-COUNTER = 21

... GENERATE BODY-GROUP ...
LINE-COUNTER = 21, which is > line 20;

so page advances..

Space up to start of group

(line 20) is left blank.

*** page heading ***

*** if any ***

BODY-GROUP

Relative Page-Fit Test for Body Groups

When all the LINE clauses in the group are relative, report writer

computes the total of all the integers of the LINE + clauses. This gives the

total size of the group. If the group contains LINE entries that have a

condition attached, as from a PRESENT WHEN/AFTER clause, or from an

OCCURS ... DEPENDING clause, all these clauses are evaluated first, so

that the actual number of lines about to be produced is known. The

value LINE-COUNTER + total-size-of-group is the last line on which the

group would appear if it were produced on the current page. If this last

line position is beyond the lower permitted limit of the group, the group

cannot fit on the page and a page advance takes place.

As shown by the diagram and rules under PAGE LIMIT clause, and

GROUP LIMIT clause, the lower permitted limit of the group is given by:

• The report group's own GROUP LIMIT clause, if there is one, or

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 133

• The RD's LAST DETAIL, if the group is a DETAIL or CONTROL

HEADING

• The RD's LAST CONTROL FOOTING if the group is a CONTROL

FOOTING.

The LAST DETAIL and LAST CONTROL FOOTING sub-clauses need not be

explicitly specified in your RD, as report writer will assume defaults for

them, as outlined under PAGE LIMIT Clause (see above).

The following diagram shows an example of a page-fit test.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 134

*** page heading ***

*** if any ***

BODY-GROUP

total size 3 lines

(hypothetical BODY-GROUP)

total size 3 lines

*** page footing ***

*** if any ***

RD ... FIRST DETAIL 3
 LAST DETAIL 60
 PAGE LIMIT 64

... GENERATE BODY-GROUP ...

 01 BODY-GROUP TYPE DE.

 03 LINE + 2...

 03 LINE + 1...

Initial LINE-COUNTER = 10;

10 + 3 = 13 = last LINE position;

13 not > 60, so enough room.

Later, on the same page:

... GENERATE BODY-GROUP ...

01 BODY-GROUP TYPE DE.

 03 LINE + 2...

 03 LINE + 1...

Initial LINE-COUNTER = 58;

58 + 3 = 61 = last LINE position;

61 > 60, so NOT enough room,

so page advance takes place.

 Second group produced at FIRST DETAIL

position, line 3.

*** page heading ***

*** if any ***

BODY-GROUP

total size 3 lines

Positioning of relative non-body groups (RH, PH, PF, and RF)

TYPE RH and PH: relative to HEADING minus 1. (However, in the case of the first

PH group when there is a RH group also on the first page, it is relative to

the last line of the RH group.)

TYPE PF: relative to LAST CONTROL FOOTING.

TYPE RF: relative to HEADING minus 1. (However, in the case where the RF

group does not begin on a new page, it is relative to the last line of the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 135

PF group, if there is one, or to LAST CONTROL FOOTING, if there is no PF

group.)

Page advance processing

When report writer executes a page advance, it does the following:

• If you defined a PAGE FOOTING, this is output.

• PAGE-COUNTER is incremented by 1.

• An advance is made to the top of the next page. In "batch" printing a

form feed is output, but with an Independent Report File Handler the

action may vary (see 5.3 Independent Report File Handlers). LINE-

COUNTER is then set to zero.

• If you defined a PAGE HEADING, this is output.

Multiple LINES Clause

By writing several integer or + integer terms in a LINE clause, you save time in defining a

group of lines that all have a similar layout. Note the following points:

A multiple LINES clause is functionally equivalent to a LINE with an OCCURS clause; for

example:

You may use a VARYING clause to vary an internal counter that may be used as

a subscript in a SOURCE clause within the scope of the LINE clause.

A simple (single-operand) VALUE, SOURCE, SUM, or FUNCTION is repeated in

every occurrence of the line.

You may use a multiple VALUE or SOURCE clause to place a different value in a

report field in each occurrence of the multiple LINE.

You may place a data-name at the start of the entry and SUM it into another

entry to produce a total of all the (multiple) entries.

However, in contrast to the OCCURS clause, the intervals between the lines defined by

a multiple LINES clause need not be regular.

Your multiple LINES clause will be syntactically correct if it would be correct when

written as a series of LINE clauses in separate entries.

Here are some examples of the multiple LINES clause:

 a. 03 LINES 1, 3, 4.
 b. 03 LINE NUMBERS ARE +2, +1, +1 COL 6 VALUE "----".

Here the ON NEXT PAGE phrase applies to the first of the three lines:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 136

 c. 03 LINES 1, +2, +2 ON NEXT PAGE.

The multiple LINES clause is useful in lines, such as headings, that have stacked text.

Consider the following example in conjunction with the description under

Multiple SOURCES and Multiple VALUES:

 SALES GROSS PAGE 1

 THIS LAST PROFIT

 YEAR YEAR

It may be coded as follows:

 01 TYPE PH.
 03 LINES 1 2 3.
 05 COL 1 VALUES "SALES"
 "THIS"
 "YEAR".
 05 COL 11 VALUES " "
 "LAST"
 "YEAR".
 05 COL 21 VALUES "GROSS"
 "PROFIT"
 " ".
 05 COL 35 VALUES "PAGE" " " " ".
*We use a blank "literal" or SOURCE NONE
*in any occurrence that is to be empty.
 05 COL 40 PIC ZZ9 SOURCES PAGE-COUNTER, NONE, NONE.

Of course, you do not have to code the multiple VALUES in a "stacked"

format like this, but it is suggested to aid readability.

Compatibility

• Only new Report Writer provides the following features:

• Use of + as alternative to PLUS,

• The multiple format,

• LINE PLUS ZERO as alternative to LINE PLUS 0,

• Blank entry with LINE clause only to provide blank line,

• Absolute LINE allowed to follow relative LINE,

• Absolute LINEs may advance to new pages within RH, RF, and body

groups.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 137

1.3.11 LINE-COUNTER

LINE-COUNTER is an internal special register that contains the most recent report line

number on which data was produced, or which has been advanced to by a blank LINE

clause or a NEXT GROUP clause. LINE-COUNTER may also be altered by an ordinary

PROCEDURE DIVISION statement or implicitly by Report Writer SET statements.

┌── Format

──

──┐

│ │

│ ►►─LINE-COUNTER─┬────────────────────┬─►◄

│

│ └─┬─IN─┬─report-name─┘ │

│ └─OF─┘ │

└───

─────────────┘

Uses of LINE-COUNTER

LINE-COUNTER is a special register giving the current vertical position on the page.

After a GENERATE has been executed, LINE-COUNTER will be set to the line number of

the last line occupied by the last group output. A NEXT GROUP may change it further

(see NEXT GROUP clause). You can test the value of LINE-COUNTER to determine the

vertical position on the current page.

Whenever you issue a GENERATE statement, report writer examines LINE-COUNTER to

decide where it should output the lines of the group. It is set to zero by the INITIATE and

by a page advance. Then, if your line has a LINE + integer clause, report writer uses

(LINE-COUNTER + integer) as its target line. When the page-fit test is performed for a

relative body group, report writer adds the size of your group to LINE-COUNTER to see

whether the last line will be below the group's lower limit.

 You may alter the value of LINE-COUNTER in the PROCEDURE DIVISION, but take

care! Do not reduce the value of LINE-COUNTER, or you are liable to cause too

many lines to be written to your page so that it overflows its lower limit. You may

increase its value safely. Some legitimate reasons for altering its value are:

To create an additional gap between the previous group and the next group:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 138

 ADD size-of-gap TO LINE-COUNTER

If your page is nearly full (so that LINE-COUNTER is nearly equal to the LAST

DETAIL value) this will simply cause a page advance upon the next GENERATE

instead of a gap. If your ADD statement sets LINE-COUNTER below LAST DETAIL,

no harm is done. You should note that the NEXT GROUP clause performs this

function more elegantly.

To cause a page advance, that is, to force report writer to place no more body groups

on this page, code:

 MOVE page-limit TO LINE-COUNTER

Again, coding the NEXT GROUP NEXT PAGE clause on the previous group also

performs this function better. (See 3.13 NEXT GROUP clause.)

If your REPORT SECTION has several Report Descriptions, each will have its own distinct

LINE-COUNTER. In the main-line PROCEDURE DIVISION, you will therefore need to

qualify LINE-COUNTER by the name of the report. (See 3.15 PAGE-COUNTER,

and 5.1 Multiple Reports.)

Compatibility

OS/VS and DOS/VS COBOL also allow LINE-COUNTER to be altered explicitly, but this

does not create a gap.

OS/VS and DOS/VS COBOL Report Writer require LINE-COUNTER to be qualified

wherever it is used if your program contains more than one RD.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 139

1.3.12 MULTIPLE PAGE clause

This clause allows a report group to span more than one page.

┌── Format a

──

┐

│ │

│ ►─MULTIPLE PAGE──►◄ │

│ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│ ►►─NO MULTIPLE PAGE──►◄ │

│ │

└───

─────────────┘

MULTIPLE PAGE Clause: Coding Rules

This clause can be coded in any type of group other than PAGE HEADING and PAGE

FOOTING. The RD must have a PAGE LIMIT clause.

Either MULTIPLE PAGE or NO MULTIPLE PAGE may be coded at the 01 level. Alternatively,

NO MULTIPLE PAGE may be coded on a group of one or more LINE entries,

provided that there is a MULTIPLE PAGE at the 01 level. No other nesting is

allowed.

By default, NO MULTIPLE PAGE is assumed for all body groups and MULTIPLE PAGE for

REPORT HEADING and REPORT FOOTING groups.

The MULTIPLE PAGE clause is not allowed in a group that has a REPEATED clause.

MULTIPLE PAGE Clause: Operation

The MULTIPLE PAGE clause enables a single report group to occupy any number of

consecutive pages. It allows you to code NEXT PAGE on as many LINE clauses

as you wish throughout the group (rather than just on the first). It also allows you

to define as many relative lines as you wish, irrespective of the size of the page.

Thus you can print very large tables using a single GENERATE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 140

When the group is a body group with MULTIPLE PAGE, no page-fit test is performed for

the group as a whole. Instead, each report line is subjected to an individual

page-fit test. A LINE clause with NEXT PAGE also causes a page advance to

take place. Loosely speaking then, a multiple page group may begin at any

point and cause a page advance at any point.

When a page advance is required, a PAGE FOOTING and PAGE HEADING group are

printed as usual if defined. This is the only case where groups may interrupt

another group. If the line that caused the page advance is relative, it is placed

in the FIRST DETAIL position, disregarding the integer of its LINE clause. In the

following layout, note how the "ROBINSON" group (in blue) spans three pages:

(1)

(2)

(3)

 SPORTS PLAYED

 SMITH

 RUGBY

 TENNIS

 JONES

 BADMINTON

 ROBINSON

 BADMINTON

 VOLLEYBALL

 SPORTS PLAYED

 BASKETBALL

 FISHING

 SOCCER

 TENNIS

 RUGBY

 CRICKET

 SWIMMING

 PING PONG

 JUDO

 ICE HOCKEY

(4)

(5)

(6)

 SPORTS PLAYED

 CANOEING

 ORIENTEERING

 THOMSON

 JUDO

 JOHNSON

 SNOOKER

 HARRISON

 ...

 01 SPORTS-LIST TYPE DE MULTIPLE PAGE.
 03 LINE COL 1 PIC X(20) SOURCE W-SURNAME.
 03 LINE OCCURS 1 TO 100 VARYING R-SPORT
 COL 3 PIC X(20) SOURCE W-SPORT (R-SPORT).

NO MULTIPLE PAGE can be used to prevent the lines in its scope from being split over a

page boundary. If an OCCURS clause is also present, this rule applies

separately to each occurrence. In the following example we want each set of

address lines to remain together on the page:

01 PREVIOUS-ADDRESSES MULTIPLE PAGE.
 03 OCCURS 0 TO 20 TIMES DEPENDING ON NUMBER-OF-PREV-ADDRESSES
 VARYING R-ADDR-NO
 NO MULTIPLE PAGE.
 05 LINE OCCURS 0 TO 6 TIMES VARYING R-LINE-NO
 ABSENT WHEN W-ADDR-LINE (R-ADDR-NO R-LINE-NO) = SPACES.
 07 COL 1 PIC X(64) SOURCE R-LINE (R-ADDR-NO R-LINE-NO).

At the 01 level, NO MULTIPLE PAGE merely documents the usual situation that a group

cannot span pages.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 141

Compatibility

The MULTIPLE PAGE clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 142

1.3.13 NEXT GROUP clause

This clause is used to create additional vertical space after a group, without causing

page overflow if there is no room on the page for the extra blank lines.

┌── Format

──

──┐

│ │

│ ►►──NEXT─┬─BODY──────────────────────────────┬─GROUP IS──► │

│ └─┬─DETAIL─┬─OR─┬─CONTROL HEADING─┬─┘ │

│ └─DE─────┘ └─CH──────────────┘ │

│ │

│ ►──┬──┬─PLUS─┬─integer-1─┬──►◄ │

│ │ └─ + ──┘ │ │

│ ├───integer-2─────────┤ │

│ └───ON NEXT PAGE──────┘ │

└───

─────────────┘

NEXT GROUP Clause: Coding Rules

This clause must be written only at the 01-level.

You can use the clause in any body group (DETAIL or CH/CF) and also in a REPORT

HEADING (provided that a PAGE HEADING is present) as well as in a PAGE

FOOTING (provided that a REPORT FOOTING is present).

If your report has no PAGE LIMIT clause, you can use only the + integer-1 form.

The optional words BODY and DE OR CH document the effect of the NEXT GROUP

clause in the context of the type of group in which it is coded, but they do not

have any actual effect on the clause. You can write NEXT BODY GROUP only in

a DETAIL or CONTROL HEADING group, and NEXT DE OR CH GROUP only in a

CONTROL FOOTING group.

DE OR CH may also be written: DETAIL OR CONTROL HEADING, CH OR DE, or CONTROL

HEADING OR DETAIL.

Effect of NEXT GROUP on Body Groups

Subject to certain constraints, the NEXT GROUP clause causes report writer to increase

the value of LINE-COUNTER after all the lines in the body group have been

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 143

produced, so that the next body group appears on a new page or after an

additional vertical gap.

If you write NEXT GROUP + integer-1, report writer will add integer-1 to LINE-COUNTER,

but using the LAST CONTROL FOOTING value as a maximum limit. This creates

an extra "gap" of that many lines between this group and the next, provided

that there is room for both to appear on the same page. The following diagram

shows how to use the clause to create more space after a CONTROL FOOTING:

 HOUSTON 1200

 DALLAS 500

 AUSTIN 1400

 TOTAL TEXAS 3100

 MIAMI 1500

 ORLANDO 2300

<< extra gap

<< from NEXT

<< GROUP

 TAMPA 2000

 TOTAL FLORIDA 5800

 ATLANTA 1100

 TOTAL GEORGIA 1100

<< extra

<< gap

 01 CF FOR STATE NEXT GROUP PLUS 3.
 ...

Notice that there is no "gap" after the TOTAL GEORGIA group, because it

already extends to the LAST CONTROL FOOTING position.

You might suppose that you could also get extra blank lines by writing a blank

LINE entry (containing no COLUMN entries or just a VALUE of SPACES) at the end

of the group. But this is not a satisfactory replacement for the NEXT GROUP

clause, because the blank LINE is treated as a part of the group and will affect

the page-fit test. For example, if you had written

 03 LINE + 2.

or

 03 LINE + 2.
 05 COL 1 VALUE " ".

at the end of the CF group instead of the NEXT GROUP clause in the above

example, the TOTAL GEORGIA group would have appeared at the top of the

next page, because its total depth would now be 5 lines instead of 3. Likewise,

a LINE + 2 at the front of the DETAIL group would produce unwanted blank lines

ahead of every DETAIL group.

The NEXT GROUP integer-2 (absolute) form may force the next body group to be

produced relative to the given line number. Report writer first examines the

LINE-COUNTER. If this is less than integer-2 (in other words, if that position has not

yet been reached), LINE-COUNTER is set equal to integer-2. Otherwise, report

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 144

writer sets LINE-COUNTER equal to LAST CONTROL FOOTING to ensure that no

more body groups will appear on this page and saves the value of integer-2 in

the Saved Next Group Integer location. Before the next body group, if any, is

produced, report writer sets LINE-COUNTER equal to the saved integer. It is

inadvisable to use this form of the clause unless your next body group will always

be a relative group.

If you write NEXT GROUP NEXT PAGE, report writer will set LINE-COUNTER to the LAST

CONTROL FOOTING value. This forces report writer to leave the rest of the page

blank and begin the next body group, if any, on the next page. (LAST CONTROL

FOOTING is the lowest position on which any body group can appear as

described under 2.9 PAGE LIMIT clause).

To begin on a fresh page after a control break, you may place NEXT GROUP

NEXT PAGE in the CONTROL FOOTING for that control level, as the following

example shows:

 HOUSTON 1200

 DALLAS 500

 AUSTIN 1400

 TOTAL TEXAS 3100

<<rest

of

<<page

is

<<blank.

 MIAMI 1500

 TAMPA 2000

 TOTAL FLORIDA 3500

<<rest

of

<<page

is

<<blank.

 01 CF FOR STATE NEXT GROUP NEXT PAGE.
 03 LINE VALUE "-----------------".
 03 LINE.
 05 COL 1 VALUE "TOTAL".
 05 COL + 2 PIC X(9) SOURCE STATE.
 05 COL + 1 PIC ZZZ9 SUM OF SALES.
 03 LINE VALUE "-----------------".

If you write a NEXT GROUP clause in a CONTROL FOOTING group, report writer checks

the level of the control break being processed before putting the clause into

effect. If the level of the break is higher than the level of this group, the NEXT

GROUP clause is ignored. This means that a CONTROL FOOTING's NEXT GROUP

clause can never affect the position of the next CONTROL FOOTING. As the

following example shows, the CONTROL FOOTING FOR REPORT (the grand total)

will not be forced onto a new page. To document this fact, the optional words

DE OR CH are provided in the syntax.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 145

 HOUSTON 1200

 DALLAS 500

 AUSTIN 1400

TOTAL TEXAS 3100

<<rest

of page

is

blank

 MIAMI 1500

 TAMPA 2000

TOTAL FLORIDA 3500

GRAND TOTAL 73400

===================

<<NEXT GROUP

has no

effect

on next TYPE

CF group.

 01 CF FOR STATE NEXT DE OR CH GROUP NEXT PAGE.
 ...

 01 CF FOR REPORT.
 03 LINE + 2.
 05 ...

If you should want the CONTROL FOOTING FOR REPORT to appear on a new

page in this case, you should instead code ON NEXT PAGE in its first LINE clause.

You can code a dummy report group containing only a NEXT GROUP clause, as in the

example below. When the group is processed, no output takes place, but LINE-

COUNTER will be set equal to LAST CONTROL FOOTING solely because of the

NEXT GROUP NEXT PAGE clause. This may be useful when you want to begin a

new page on change of, say, BRANCH, but there is no subtotal that would

normally justify coding a CONTROL FOOTING group. Just write:

 01 CF FOR BRANCH NEXT GROUP NEXT PAGE.

To obtain a gap of three lines at any time, as an alternative to altering LINE-

COUNTER directly, code:

 01 THREE-LINE-GAP DE NEXT GROUP + 3.

and in your Procedure Division, write: GENERATE THREE-LINE-GAP.

Effect of NEXT GROUP on Non-Body Groups

You can write a NEXT GROUP clause in a REPORT HEADING group, in which case the

group affected will be your first PAGE HEADING group, which immediately

follows the REPORT HEADING. NEXT GROUP NEXT PAGE indicates that the

REPORT HEADING is to be by itself on a separate page, rather than on the first

page above the PAGE HEADING, but this will be assumed anyway if the REPORT

HEADING will not fit above the first PAGE HEADING.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 146

You can also write NEXT GROUP in a PAGE FOOTING group, in which case it affects the

REPORT FOOTING. This form is never necessary, as the first LINE clause used in the

REPORT FOOTING is a better way to handle this case.

Compatibility

• Only new Report Writer provides the following features:

• The optional words BODY and DE OR CH.

• Optional word ON before NEXT PAGE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 147

1.3.14 OCCURS clause

The OCCURS clause is used to show regular repetition of a field or a group of fields in a

horizontal dimension, and a line or group of lines in a vertical dimension.

┌── Format

──

──┐

│ │

│ ►►─OCCURS─┬──────────────┬─integer-2 TIMES──► │

│ └─integer-1 TO─┘ │

│ │

│ ►─┬──────────────────────────────┬──►

│

│ └─DEPENDING ON─┬─identifier─┬──┘ │

│ └─expression─┘ │

│ │

│ ►─┬─────────────────────────────────┬──►

│

│ └─┬─STEP──┬─integer-3─┬─────────┬─┘ │

│ ├─WIDTH─┤ ├─LINES───┤ │

│ └─DEPTH─┘ ├─COLUMNS─┤ │

│ └─COLS────┘ │

└───

─────────────┘

OCCURS Clause: Coding Rules

The OCCURS clause must not be used at the 01-level.

You may use the OCCURS clause at any of these levels:

Below the LINE level in an elementary entry. Your field will be repeated

horizontally the number of times indicated by the operand:

 03 LINE.
 05 COL + 2 "NO" OCCURS 5.

 NO NO NO NO NO

Below the LINE level in a group entry. The whole group of fields will be repeated

horizontally the number of times indicated by the operand.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 148

 03 LINE.
 04 OCCURS 3.
 05 COL + 3 "DATE".
 05 COL + 2 "AMOUNT".

 DATE AMOUNT DATE AMOUNT DATE AMOUNT

At the LINE level. The line will be repeated vertically the number of times

indicated by the operand.

 03 LINE OCCURS 4.
 05 COL 1 "NAME".
 05 COL 21 "ADDRESS".

yielding:

NAME ADDRESS

NAME ADDRESS

NAME ADDRESS

NAME ADDRESS

Below the 01-level but above the LINE level. The whole group of lines will be

repeated vertically the number of times indicated by the operand.

 02 OCCURS 3.
 03 LINE + 2 COL 1 "NAME".
 03 LINE + 1 COL 1 "ADDRESS".

NAME

ADDRESS

NAME

ADDRESS

NAME

ADDRESS

 Each group of LINE +

clauses

 takes effect number of

times

 given in the OCCURS

clause.

These four levels are known as axes. Any fields in your group can be

repeated in this way on any of the four axes, and you may have

repetition on up to four axes by nesting the OCCURS clauses. Each of

your report groups may have any number of OCCURS clauses, provided

that the nesting limit of four is never exceeded at any one time.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 149

You may use STEP, WIDTH, or DEPTH to specify the distance between the start of

successive repetitions. Its operand indicates the number of columns or lines

between the start of one item and the start of its successor:

 05 COL 1 "PRICE" OCCURS 4 WIDTH 8 COLUMNS.

PRICE PRICE PRICE PRICE

< - 8 ->

Integer-3 of the STEP phrase must be at least as large as the field itself. WIDTH

and DEPTH are alternative keywords with the same meaning as STEP. WIDTH

may be used only in the horizontal direction and DEPTH may be used only in the

vertical direction. You can write the documentary words COLUMNS or LINES

after integer-3 to make the direction explicit. The STEP, WIDTH, or DEPTH phrase

may be coded anywhere within the entry.

A STEP phrase is expected if your repeating entry is absolute. (It is absolute if you write

COLUMN integer or LINE integer or, in the case of a group field, if the first

COLUMN or LINE in the group is absolute.) However, if you omit STEP, a

minimum value will be assumed, equal to the (maximum) size of the report field,

with a cautionary message.

If your field is relative, the STEP phrase is optional. If you omit it the distance between

repetitions is the physical size of the field, which may vary at run time if there are

"<" PICTURE symbols or if the field is a group field containing entries with a

PRESENT WHEN clause.

As the examples above illustrate (item 2 a through d), the VALUE clause is allowed

within an entry subject to an OCCURS clause.

You must code the DEPENDING ON phrase if the number of occurrences is variable.

The expression can be any COBOL numeric identifier or arithmetic expression

that has an integer value. The data items used in your expression can come

from anywhere in your program. They need not appear elsewhere as report

fields and need not reside in the same "record" as the SOURCE fields.

Integer-1 in the format above and the TO keyword are used only in conjunction with

DEPENDING ON. Integer-1 must be less than integer-2 and may be zero. If you

omit integer-1 TO and write OCCURS integer-2 TIMES DEPENDING ON, this is

taken to mean OCCURS 0 TO integer-2 TIMES DEPENDING ON.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 150

OCCURS Clause: Operation

You should use the OCCURS clause for source-code reduction when you need to

obtain automatic repetition either horizontally or vertically within a report group.

The effect is as though you had coded every entry individually.

You may use a single-operand VALUE to place the same contents in each repetition.

If you use a SOURCE clause within an entry subject to OCCURS, the same SOURCE

operand will be used to set up each occurrence. However, you may allow the

effective SOURCE operand to vary by use of the VARYING clause and making

use of the VARYING data-name as its subscript or as a term in the SOURCE

operand. (See 3.27 VARYING clause for full details and examples.)

You may also use a multiple SOURCES (see 3.21 SOURCE clause) or multiple VALUES (see

3.26.4 Multiple VALUES) to place different contents in each repetition. The

following sample layout shows both methods of combining both SOURCE and

VALUE clauses with OCCURS:

 SPORTS EQUIPMENT COMPANY: WAGES SUMMARY

AREA BASIC PAY OVERTIME COMMISSION

NORTH $1,420,000 $600,000 $150,500

EAST $2,100,000 $850,000 $220,000

SOUTH $1,870,000 $1,000,000 $350,000

WEST $970,000 $250,000 $110,000

which may be coded as follows:

 01 SUMMARY-PAGE.
 03 LINE 1 COL CENTER 25 "SPORTS EQUIPMENT COMPANY: WAGES SUMMARY".
 03 LINE 2 COLS 1 11 26 39
 VALUES "AREA" "BASIC PAY" "OVERTIME" "COMMISSION".
 03 LINE 4 OCCURS 4 STEP 1 VARYING AREA-NO.
 05 COL 1 VALUES "NORTH" "EAST" "SOUTH" "WEST".
 05 COLS RIGHT 19 33 47 PIC $$$,$$$,$$9
 SOURCES BASIC-PAY (AREA-NO), OVERTIME (AREA-NO), COMM (AREA-NO).

Notice how the series of row-heading items (NORTH, EAST, etc.) is handled: the

enclosing OCCURS at the LINE level simply steps through each item in the series

in turn.

If a PRESENT WHEN clause is coded in the same entry as an OCCURS clause, the

PRESENT WHEN applies separately to each occurrence (see 3.18.3). If the STEP

phrase is not used, an entry that is ABSENT will not take up any space, as in the

case below where non-negative values are to be skipped:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 151

LOSS-MAKING MONTHS:

MARCH $12000

JUNE $1000

OCTOBER $23000

 01 LOSS-MONTHS TYPE DE.
 03 LINE OCCURS 12 VARYING R-MONTH
 PRESENT WHEN PROFIT (R-MONTH) < 0.
 05 COL 1 PIC X(9)
 SOURCE MONTH-NAME (R-MONTH).
 05 COL 12 PIC $(6)9
 SOURCE PROFIT (R-MONTH).

The effect is similar in the horizontal direction:

 MAR JUN OCT

 120 230 100

 01 LOSS-LINE TYPE DE.
 03 LINE.
 05 COL + 3 OCCURS 12 VARYING R-MONTH
 PRESENT WHEN PROFIT (R-MONTH) < 0
 PIC XXX SOURCE MONTH-NAME (R-MONTH).
 03 LINE.
 05 COL + 2 OCCURS 12 VARYING R-MONTH
 PRESENT WHEN PROFIT (R-MONTH) < 0
 PIC ZZZ9 SOURCE PROFIT (R-MONTH).

However, if a STEP phrase is used, the spacing - in whichever direction - is regular

and even entries that are ABSENT take up their usual space:

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

 120 230 90

which may be coded as follows:

 01 LOSS-MONTHS TYPE DE.
 03 LINE.
 05 COL + 3 OCCURS 12 VARYING R-MONTH
 PIC XXX SOURCE MONTH-NAME (R-MONTH).
 03 LINE.
 05 COL 2 OCCURS 12 VARYING R-MONTH STEP 5
 PRESENT WHEN PROFIT (R-MONTH) < 0
 PIC ZZZ9 SOURCE PROFIT (R-MONTH).

Use of OCCURS...DEPENDING ON

If your report group has an OCCURS clause with a DEPENDING ON phrase, report writer

will evaluate the associated identifier or expression at run time on each

separate occasion when the report group is about to be generated. If its value

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 152

is outside the range of integer-1 TO integer-2 in your OCCURS clause, this is not

an error condition, and report writer will assume the maximum number, integer-

2.

Now that the actual number of repeats is known, report writer creates only that number

of occurrences, treating your clause as though you had written a fixed OCCURS

clause with that number as the integer. This is an important notion. Here are

some of its consequences:

If your OCCURS ... DEPENDING is in the horizontal direction and is followed by an

absolute COLUMN clause, the space not filled by excess occurrences

will be blank:

 05 COL 1 VALUE "ONE" OCCURS 5 DEPENDING ON COUNT-1 STEP 5.
 05 COL 27 VALUE "END".

If COUNT-1 contains 3, the effect is as though you had written:

 05 COL 1 VALUE "ONE" OCCURS 3 STEP 5.
 05 COL 27 VALUE "END".

ONE ONE ONE END

If your OCCURS ... DEPENDING is in the horizontal direction and is followed by a

relative COLUMN, it is positioned relative to the last actual occurrence:

 05 COL 1 VALUE "TWO" OCCURS 5 DEPENDING ON (A + B) STEP 6.
 05 COL +2 VALUE "END".

If A + B equals 3, the result is as though you had written:

 05 COL 1 VALUE "TWO" OCCURS 3 STEP 6.
 05 COL +2 VALUE "END".

TWO TWO TWO END

If your OCCURS ... DEPENDING is in the vertical direction and is followed by an

absolute LINE, excess occurrences will be blank:

 03 LINE 2 OCCURS 1 TO 4 DEPENDING ON COUNT-1 STEP 1.
 05 COL 1 VALUE "ADDRESS LINE".
 03 LINE 6.
 05 COL 1 VALUE "ZIPCODE".

If COUNT-1 contains 2, the result is as though your OCCURS 1 TO 4 clause

above were simply coded as OCCURS 2:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 153

 ADDRESS LINE << line 2

 ADDRESS LINE << line 3

 ZIPCODE << line 6

If your OCCURS ... DEPENDING is in the vertical direction and is followed by a

relative LINE, no line positions will be occupied by the unused

occurrences, and the line that follows will be relative to the last actual

occurrence.

 03 LINE + 1 OCCURS 4 DEPENDING ON COUNT-1.
 05 COL 1 VALUE "ADDRESS LINE".
 03 LINE + 1.
 05 COL 1 VALUE "ZIPCODE".

 ADDRESS LINE << line + 1

 ADDRESS LINE << line + 1

 ZIPCODE << line + 1

The page-fit test allows only for the occurrences that are actually

present. So, if the group as a whole is relative, you will have a "best fit".

For instance, if you GENERATE the above group and only three lines are

available to it, the group will fit on the page.

You may code several entries with OCCURS ... DEPENDING in the same report line and

nest horizontal and vertical repetitions to produce many varied and useful

effects. The DEPENDING expression is re-evaluated each time the item is about

to be output, so you may alter the size and shape of your report fields

dynamically and automatically. You may also use OCCURS ... DEPENDING in a

horizontal or vertical group entry.

Compatibility

The use of the OCCURS clause in the report section, and the optional phrases, are

unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 154

1.3.15 PAGE-COUNTER

This special register contains the number of the current page.

┌── Format

──

──┐

│ │

│ ►►─PAGE-COUNTER─┬────────────────────┬─►◄

│

│ └─┬─IN─┬─report-name─┘ │

│ └─OF─┘ │

└───

─────────────┘

Uses of PAGE-COUNTER

PAGE-COUNTER contains the number of the current page. It is set to 1 by the INITIATE

statement and, if your report has a PAGE LIMIT clause, is incremented by 1 on

each page advance after the initial one. So its value is 1 on the first page, 2 on

the second, and so on. The incrementing takes place between the production

of your PAGE FOOTING group, if you defined one, and your PAGE HEADING

group, if you defined one. So accessing PAGE-COUNTER in a USE BEFORE

REPORTING Declarative section for a PAGE HEADING, for example, yields the

value that applies to the new page. The TERMINATE statement leaves PAGE-

COUNTER unchanged.

You may treat PAGE-COUNTER as a numeric location (implicit PICTURE S9(9) COMP

SYNC) in any SOURCE expression or condition. For example, to print the page

number anywhere in the page, write:

 PIC ZZZ9 SOURCE IS PAGE-COUNTER.

You can change the value of PAGE-COUNTER at any time. Just treat it as any

numeric data item (except that report writer defines it automatically). As an

example, if you want to restart your page numbering from 1, after each control

break, code

 MOVE ZERO TO PAGE-COUNTER

in a Declarative SECTION for the CONTROL HEADING, so that when report writer

next does a page advance it will increment it from zero to one.

Like all of the special registers except COLUMN-COUNTER, a PAGE-COUNTER is

maintained separately for each report, because all your reports are completely

independent of each other. This also means that you must occasionally qualify

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 155

PAGE-COUNTER if you have more than one report in the program. You do this

by using report-name as a qualifier, as shown in the format at the head of this

section.

You need a qualifier only if there is ambiguity, that is, in the main-line

PROCEDURE DIVISION. In the Report Group Descriptions and in a USE BEFORE

REPORTING directive section report writer assumes that you mean "IN current-

report". However, you may still use a qualifier even in those cases, for instance

when you want to access the PAGE-COUNTER of a different report. More

information on Multiple Reports will be found later (see 5.1).

If your report contains a REPORT HEADING that is on a page by itself, the value of PAGE-

COUNTER for the first page of details will be 2, since page 1 is occupied by the

REPORT HEADING. If you want PAGE-COUNTER to be 1 on the first page of

details, you will need to code

 MOVE ZERO TO PAGE-COUNTER

after the INITIATE statement.

Compatibility

OS/VS and DOS/VS COBOL require PAGE-COUNTER to be qualified wherever it is used if

your program contains more than one RD.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 156

1.3.16 PICTURE clause

A PICTURE clause is used, as in basic COBOL, to indicate the size and format for each

report field.

┌── Format

──

──┐

│ │

│ ►►───┬─PICTURE─┬─IS character-string─►◄ │

│ └─PIC─────┘ │

└───

─────────────┘

PICTURE Clause: Coding Rules

All the available PICTURE symbols may be used, including a currency symbol defined by

a CURRENCY SIGN phrase, provided they are consistent with a DISPLAY field,

and the rules for combining them are exactly as for basic COBOL. Here are

some examples:

PIC ZZZZ9.99 reproduces the field with up to five integral places, of

which four leading zeros can be changed to a space,

followed by a decimal point and two fractional places.

PIC -$(5)9 outputs a "-" sign if the field is negative, followed by from 1

to 6 digits, with leading zeros changed to a space, and a

currency symbol placed immediately before the first digit.

PIC XXBXXBXX outputs a six-character field, with spaces inserted between

characters 2 and 3, and characters 4 and 5.

If the item is DBCS (Double-Byte Character Set), the PICTURE may contain only the

symbols G and B (representing a DBCS space). However, a PICTURE clause is

not required with a DBCS literal.

Report writer allows the additional left-shift PICTURE symbols "<" and ">" to indicate that

all or part of your field is variable-length . These symbols may be used only in

the REPORT SECTION. You may place the "<" symbol anywhere within the

PICTURE, in any number of places, provided that it is followed by one of the

following symbols: "X", "A", "9", "Z", or floating (that is, repeated) "-". (In other

words, it must appear before a symbol that represents "data", as opposed to an

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 157

"editing" symbol.) The ">" symbol may optionally be used to terminate its scope.

The effect of these symbols is described below (see 3.16.4).

Report writer also allows general insertion characters, in the REPORT SECTION only.

These are indicated by writing the characters to be inserted in "quotes" (or

'apostrophes') anywhere in the PICTURE, for example: PIC 99"."99"."99. These

insertion characters do not take a repetition factor (so that PIC "."(5)X is invalid

and must be written PIC "....."X).

You may omit the PICTURE clause in an entry that has a VALUE clause, whether

nonnumeric (when a PICTURE X(n) is assumed) or (unsigned) numeric (when a

PICTURE S9(n) DISPLAY is assumed.) (A SYMBOLIC CHARACTER is treated as a

one byte nonnumeric.) A PICTURE is required if you use ALL "literal", or a

figurative constant such as QUOTE. In the case of a multiple VALUE or multiple-

choice entry, there may be several "literals" but still no PICTURE is required.

If you use a SOURCE, SUM/COUNT, or FUNCTION clause, the PICTURE is necessary, even if

you want to display the field in exactly the same format in which it is stored.

If the OSVS precompiler option is in effect, PICTURE symbol "A" may be used even with a

literal that is not entirely alphabetic.

In common with the rest of the DATA DIVISION, PICTURE is allowed only in an elementary

entry.

PICTURE Clause: Operation

In the REPORT SECTION, the PICTURE clause plays the same role as it does in other

SECTIONs. The rest of this section and the next describe the extensions which

are unique to the REPORT SECTION.

General insertion characters may used to reduce the number of entries to be coded.

For example:

 05 COL 1 VALUE "(".
 05 COL +1 PIC 99 SOURCE W-TODAY-YY.
 05 COL +1 VALUE ".".
 05 COL +1 PIC 99 SOURCE W-TODAY-MM.
 05 COL +1 VALUE ".".
 05 COL +1 PIC 99 SOURCE W-TODAY-DD.
 05 COL +1 VALUE ")".

may be reduced to:

 05 COL 1 PIC "("99"."99"."99")" SOURCE W-TODAY.

and:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 158

 05 COL 20 PIC <9(5)>9 SOURCE LETZTE-ZAHLUNG.
 05 COL +1 VALUE "DM".

may be reduced to:

 05 COL 20 PIC <9(5)>9"DM" SOURCE LETZTE-ZAHLUNG.

and:

 05 COL 100 VALUE "Page:".
 05 COL +2 PIC ZZ9 SOURCE PAGE-COUNTER.

may be reduced to:

 05 COL 100 PIC "Page: "ZZ9 SOURCE PAGE-COUNTER.

Note that an insertion character specified in this way never has any semantic

significance. Thus "." is never treated as a decimal point for alignment purposes.

Variable-Length Fields ("<" and ">" Symbols)

If you code the "<" symbol somewhere in your PICTURE in the REPORT SECTION, report

writer takes it as referring to the following symbol and repetitions of that symbol,

until the end of the PICTURE or a change of symbol is found. (The use of

parenthesis as a shorthand for repetition does not count as a change of

symbol.) The "<" symbol itself does not contribute to the length of the field. In

the following case:

 PIC 9<99,999.<99

Report writer will divide the field into the following parts:

9 (1 character fixed)

 <99 (0 to 2 characters variable)

 ,999. (all fixed)

 <99 (0 to 2 characters variable)

The variable parts of your field are represented by those parts of your PICTURE

that follow a "<" symbol, up to a change of symbol. To mark where each

variable part ends, you may code a ">" symbol, resulting, in the above case, in:

 PIC 9<99>,999.<99>

By convention, PIC <Z(n) is taken to mean the same as the more conventional

PIC <9(n), and PIC <$(n) is understood to mean the same as PIC $<9(n-1).

When your field is output, report writer first stores the value to be output in a working

area whose PICTURE is the same as the PICTURE you coded but without the "<"

symbol(s) . It then examines each part of your field that corresponds to a

variable part of the PICTURE. If the symbol after the "<" is "X" or "A", that part is

non-numeric and report writer will delete trailing spaces (that is, it will not

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 159

advance COLUMN-COUNTER over them). If the symbol after the "<" is "9" or "Z" or

"-", that part is numeric and report writer will delete leading zeros by left-shifting

the contents of the rest of the field. After a decimal point, either explicit (.) or

implicit (V) followed by a "<" symbol, it is trailing zeros that are deleted.

When characters are deleted, any characters that follow them are pulled to the left

over them. This gives a free format effect to variable fields that have several

parts. When the field has been output, the horizontal pointer (COLUMN-

COUNTER), will point to the last character stored. If your next entry has an

absolute COLUMN, you will have a variable number of spaces from the end of

this field to the fixed starting point of the next. If, however, your next entry has a

relative COLUMN (COL +), the number of spaces between the fields will be

fixed, but the starting position of the next field will vary.

You may use the "<" and ">" symbols to split any part of your field into two fragments,

one variable and one fixed, resulting in a minimum size and a maximum size.

For example: PIC XX<XXX> means from 2 to 5 non-numeric characters; while

PIC <999>9 means from 1 to 4 numeric characters (a form that is more useful

than PIC <9(4) because a value of all zeros is reproduced as a zero).

Here are some examples of the "<" symbol:

a. If PICTURE $9999.99 gives you the result: $0000.50

 then PICTURE $9<999.<99 will give you the result: $0.5

b. If PICTURE 99/99/99 gives you the result: 21/09/00

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 160

 then PICTURE <99/<99/<99 will give you the result: 21/9/

 c. If 05 COL 1 PICTURE X(6) SOURCE TITLE.

 05 COL + 2 PICTURE X(20) SOURCE SURNAME.
 05 COL + 1 ":".

 gives you the result:
MR. SMITH

 then 05 COL 1 PICTURE <X(6) SOURCE TITLE.

 05 COL + 2 PICTURE <X(20) SOURCE SURNAME.
 05 COL + 1 ":".

will give you the result:
MR. SMITH

Special action is taken with the "," (comma) and "." (decimal point) symbols. If you write

a "<" and a series of "9" symbols before "," and the numeric value that

corresponds to them is zero, then the "," will also be deleted. Also, if you write "<"

after a "." (decimal point) and all the numeric positions after the decimal point

are zero, then the decimal point will also be deleted. For example, if your field is

described as:

 PICTURE <99,<999,<999.<99

then values of 00002345.10 and 00000001.00 will be reproduced as:

2,345.1 and: 1 respectively

Any "," or "." encountered in a numeric field after a "<" symbol turns off the effect of the

"<". If you want its effect to persist across such an insertion character, you must

turn it on again by coding another "<" symbol; for example: PIC

9,<999>,<999>.99.

Compatibility

Only new Report Writer allows the '<' and '>' symbols and general insertion characters in

quotes or apostrophes. In all other aspects of the PICTURE clause, both

implementations are compatible.

The general insertion character feature may be incompatible with Codasyl (and hence

some future standard) if quotes or apostrophes in a PICTURE are ascribed some

different significance.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 161

1.3.17 PRESENT AFTER clause

This clause is similar to the PRESENT WHEN clause (see 3.18), except that it tests a

condition arising internally within report writer's automatic control-break and page-

advance processing, rather than evaluating a general COBOL condition.

┌── Format

a──

─┐

│ │

│ ►►─┬─PRESENT─┬─AFTER NEW──┬─control-id OR PAGE─┬─►◄ │

│ └─ABSENT──┘ ├─PAGE OR control-id─┤ │

│ ├─PAGE───────────────┤ │

│ └─control-id─────────┘ │

│ │

└───

─────────────┘

┌── Format

b──

─┐

│ │

│ ►►──PRESENT JUST AFTER NEW PAGE──►◄ │

│ │

└───

─────────────┘

┌── Format

c──

─┐

│ │

│ ►►──GROUP INDICATE──►◄ │

│ │

└───

─────────────┘

PRESENT/ABSENT AFTER Clause: Coding Rules

If you specify the PAGE keyword, the RD for your report must have a PAGE LIMIT clause.

If you specify a control-id, then it must be one of the controls listed in your

CONTROL clause in the RD, except that REPORT or FINAL is always assumed to

be present in the CONTROL clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 162

You may code this clause at the group or elementary level and may nest clauses.

You may use format a in any body group (DETAIL or CH/CF), but, if you use the control-

id option in a CONTROL HEADING or CONTROL FOOTING group, the control level

you refer to must be higher than the control level of the report group in which

the PRESENT AFTER clause is coded.

You may also use format a in a PAGE HEADING or PAGE FOOTING group, but only with

the control-id option.

Format b (with the JUST phrase) can be used only in a body group.

Format c, the GROUP INDICATE clause, is provided for compatibility with current

standards. Except for one minor but useful difference in its action with OCCURS

(see below), it is equivalent to the clause:

 PRESENT AFTER NEW PAGE OR lowest-control-id

where PAGE is present if the report has a PAGE LIMIT clause, and the control-id is

present if the report has a CONTROLS clause.

For example, if the RD entry has the format:

 RD ...
 PAGE LIMIT 60 LINES
 CONTROLS BRANCH-NO ZONE-ID.

the GROUP INDICATE clause is equivalent to:

 PRESENT AFTER NEW PAGE OR ZONE-ID.

It is not advisable to refer to an item subject to PRESENT/ABSENT AFTER or GROUP

INDICATE in a SUM clause. This is because, according to the ANS standard that

applies if the option is in effect, summing takes place before the page-fit, so it

not always easy to predict whether the item to be summed will actually be

present.

PRESENT/ABSENT AFTER Clause: Operation

The PRESENT AFTER clause operates in a way similar to a PRESENT WHEN clause except

that our condition is set from within the report itself. PRESENT AFTER NEW control-

id behaves like a clause of the form:

 PRESENT WHEN this group has never yet been output
 OR a control break has occurred at that level or above
 since the last time it was output

while PRESENT AFTER NEW PAGE behaves like a clause of the form:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 163

 PRESENT WHEN this group has never yet been output
 OR a page advance has taken place
 since the last time it was output

To understand this clause fully you should therefore refer to the PRESENT WHEN

clause (see 3.18).

If you code PRESENT AFTER NEW control-id, report writer will output the field (elementary

or group field), provided that this is the first occasion this report group has been

output since the start of the report or since the last control break at the level of

control-id or above. For example, if you write PRESENT AFTER NEW BRANCH-NO,

your report field will be produced at the beginning of the report and at the first

GENERATE after each change of BRANCH-NO (or any higher control).

Otherwise, the field is ignored, together with any subordinate entries, in exactly

the same manner as with the PRESENT WHEN clause.

In the following example, the field YEAR-NO is to be output the first time only

and then whenever it has changed, while SEASON-NO is to be output the first

time and then whenever it or YEAR-NO has changed.

 YEAR SEASON NAME SPORT

 1991 WINTER CODER T.J. BADMINTON

 HACKER S. RUGBY

 MANAGER D.P. SWIMMING

 SPRING EDITOR F. RIDING

 LOAD V. CRICKET

 TESTER S. GOLF

 SUMMER DUMP J. TENNIS

 1992 SUMMER ANALYST R. SWIMMING

 ... etc ...

 RD ... CONTROLS ARE YEAR-NO, SEASON-NO.

 01 NEW-MEMBER TYPE DE LINE + 1.
 05 COL 2 PIC 9(4) SOURCE YEAR-NO PRESENT AFTER NEW YEAR-NO.
 05 COL 7 PIC X(6) SOURCE WS-SEASON (SEASON-NO)
 PRESENT AFTER NEW SEASON-NO.

As is usual with controls, a higher control break implies a control break at all the lower

levels. Thus if you code PRESENT AFTER MONTH when YEAR and MONTH are the

controls, the field will be PRESENT also after a change of YEAR, for JAN 1992 is

certainly different from JAN 1991!

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 164

If you code PRESENT AFTER NEW PAGE, report writer will produce the entry if this is the first

occasion this group has been produced since the start of the report or since the

last page advance. Otherwise, again, the field is not output.

As the following example shows, it may cause the entry to be produced at any

position within the page provided the group containing it has not yet appeared

on the page. If you want the entry to appear only if this group is also the first

body group of the page, you should instead use the form: PRESENT JUST AFTER

NEW PAGE. In the example that follows, this would prevent the subheading

UNFILLED ORDERS from being printed in the body of the page.

In the following example, one group has a subheading for unfilled order details

and we want this subheading to appear only the first time that the group is

printed on the page:

 SPORTS RETAIL STOCK SUMMARY

 ITEM QTY IN STOCK

 GOLF 5 IRON 3

 SQUASH RACKET 20

 TENNIS SOCKS 4

 UNFILLED ORDERS: NAME QTY DATE

 SIMKINS 10 JUL 01

 MABBOT 6 AUG 20

 SWIMMING TRUNKS 18

 RIDING HAT 0

 ADRIAN 1 JUN 20

 01 UNFILLED-ORDER TYPE DE.
 03 LINE + 1 PRESENT AFTER NEW PAGE.
 05 COLS 6 22 33 40 VALUES "UNFILLED ORDERS:" "NAME" "QTY" "DATE".

 03 LINE + 1.
 05 COL 22 PIC X(10) SOURCE NAME.
 ... etc ...

If you write PAGE OR control-id (this order can be reversed), the field will be produced if

either or both conditions arise. For instance, you might want the YEAR-NO and

SEASON fields in the examples above (see above) to be printed again at the

start of a new page even though there may have been no change. In this

case, you must write:

 05 ... PRESENT AFTER NEW YEAR-NO OR PAGE
 05 ... PRESENT AFTER NEW SEASON-NO OR PAGE

There may be a field, line, etc. that you would like produced the first time only. To

accomplish this, use PRESENT AFTER NEW REPORT. (REPORT or FINAL is the highest

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 165

control level and is always assumed even if not coded in the CONTROL clause.)

In the next example, it is in the PAGE HEADING:

 ** START OF REPORT **

 UNPAID SUBSCRIPTIONS PAGE 1

 UNPAID SUBSCRIPTIONS PAGE 2

 UNPAID SUBSCRIPTIONS PAGE 3

 01 TYPE PH.
 03 LINE + 1 PRESENT AFTER NEW REPORT.
 05 COL 15 VALUE "** START OF REPORT **".
 03 LINE + 1.
 05 COL 2 VALUE "UNPAID SUBSCRIPTIONS".
 ... etc ...

To anchor the vertical starting line of this relative group, you may include a

HEADING sub-clause in your RD.

If you write ABSENT instead of PRESENT, the clause will have exactly the opposite effect.

In other words, the field will be produced whenever it would have been ignored

and vice versa. In the next example, we use it to produce a "(CONTINUED)"

message in our PAGE HEADING. It will appear on every page except the first

page after each new control value. (This message is also useful in CONTROL

HEADING groups.)

 PAGE 1 AREA 1

 PAGE 2 AREA 1 (CONTINUED)

 PAGE 3 AREA 2

 01 TYPE PH LINE 60.
 05 COL 1 "PAGE:".
 05 COL + 2 PIC <999 SOURCE PAGE-COUNTER.
 05 COL 90 "AREA:".
 05 COL 96 PIC 9 SOURCE AREA-NO.

 05 COL 100 "(CONTINUED)" ABSENT AFTER NEW AREA-NO.

If there is an OCCURS clause, or a multiple LINES or COLUMNS clause, in the same entry,

the PRESENT AFTER applies to the entire set of repetitions, so the occurrences are

either all present or all absent. (Compare GROUP INDICATE immediately

below.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 166

GROUP INDICATE behaves differently from the equivalent PRESENT AFTER clause if it is

subject to OCCURS. As soon as the first occurrence of the GROUP INDICATE

item has been output, the GROUP INDICATE is switched off. Hence the GROUP

INDICATE clause only enables one entry to be output (the leftmost of topmost,

depending on the axis), whereas PRESENT AFTER affects each occurrence

equally and is switched off only when the whole table has been output. This

fact can be put to practical use if you want some text to appear with the first

entry only:

ADDRESS: 345 MERMAID STREET

 RYE

 SUSSEX

 ENGLAND

 01 ADDRESS-GROUP TYPE DE.
 03 LINE OCCURS 10 TIMES VARYING R-LINE
 ABSENT WHEN ADDR-LINE (R-LINE) = SPACES.

 05 COL 1 VALUE "ADDRESS:" GROUP INDICATE.

 05 COL 11 PIC X(32) SOURCE ADDR-LINE (R-LINE).

(Note that if you want "ADDRESS:" to be printed again each time ADDRESS-

GROUP is GENERATEd you need to ensure that a control break occurs on each

GENERATE of ADDRESS-GROUP.) Using GROUP INDICATE in this example is better

than coding PRESENT WHEN R-LINE = 1, since the latter will not work here if the

first occurrence of ADDR-LINE might contain spaces.

If you use the PRESENT AFTER clause at the 01-level of a DETAIL group:

 01 DETAIL-GROUP TYPE DE PRESENT AFTER NEW BRANCH-NO.
 ...

and you require this group to appear as soon as there is a change to the control

BRANCH-NO, your program should GENERATE this group before every other

GENERATE for the report. In spite of any appearance to the contrary, you may

rest assured that the PRESENT AFTER clause will not make a group appear if your

program does not GENERATE it.

Compatibility

Only new Report Writer provides the PRESENT/ABSENT AFTER clause.

New Report Writer allows GROUP INDICATE to appear at any level - not only at

elementary level.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 167

1.3.18 PRESENT WHEN clause

This clause places a general COBOL condition on any report entry. By evaluating the

condition, report writer determines whether your entry is to be output as normal or

skipped.

┌── Format a

──

┐

│ │

│ ►►──┬──PRESENT─┬─┬─WHEN───┬─┬─condition─────────────┬─►◄

│

│ └─-ABSENT──┘ └─UNLESS─┘ └-CONTROL IS control-id─┘ │

│ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│ ►►───PRESENT WHEN OTHER──►◄ │

│ │

└───

─────────────┘

PRESENT/ABSENT WHEN Clause: Coding Rules

The condition may be any valid COBOL conditional expression. You are not restricted

to simple conditions. For example, the following compound condition is quite

acceptable:

 PRESENT WHEN SALARY > 20000 AND (AGE < 20 OR MARITAL-STATUS = "M" OR "D")

Each of the data items you use in your condition may come from any COBOL

SECTION (but see the note Use of Total Fields in 3.23.4 if you use SUM fields from

the REPORT SECTION itself). You may optionally place parentheses "()" around

the whole conditional expression for clarity. The symbols ">=" (greater than or

equal to) and "<=" (less than or equal to) are allowed. For more information,

you should refer to your COBOL language reference under conditional

expressions, for a list of the many varied ways of forming COBOL conditions.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 168

The CONTROL IS control-id form if allowed only if the current group is a multiple

CONTROL FOOTING, that is, one with a TYPE CONTROL FOOTING clause with

more than one control-id operand, or TYPE CONTROL FOOTING FOR ALL.

The keyword PRESENT is implied if omitted. Experience has shown that your code will be

clearer if you include the PRESENT keyword in the single form of the clause but

omit it in the multiple-choice form described below and in the following

example:

 05 COL 11 PIC ZZ9 VALUE "OVER LIMIT" PRESENT WHEN AMT > 100.
 05 COL 21 VALUE "BLACK" WHEN IND = 1
 VALUE "RED" WHEN IND = 2
 VALUE "WHITE" WHEN OTHER.

The keyword ABSENT gives the clause the exact opposite meaning from the same

clause with PRESENT; ABSENT WHEN condition is equivalent to PRESENT WHEN

NOT (condition). So you may find it more expressive to write:

 ABSENT WHEN AGE < 21 AND LOCN = "NY"

rather than:

 PRESENT WHEN AGE NOT < 21 OR LOCN NOT = "NY".

Whenever we refer to the PRESENT WHEN clause, you can assume that this term

includes the ABSENT WHEN form.

PRESENT UNLESS is an older syntax, synonymous with ABSENT WHEN.

You may write these clauses in any report group entry other than the RD itself. An entry

that has a PRESENT WHEN clause is often referred to as a conditional entry. The

same field may be subject to any number of PRESENT WHEN clauses at any

number of different levels. The following sample group has one of the clauses in

all the possible positions:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 169

 01 TYPE PH ABSENT WHEN PREPRINTED = "Y". *>group level
 03 LINE 2.
 05 COL 20 "HACKNEY BEAUTY SUPPLIES".
 05 COL 60 "END OF YEAR"
 PRESENT WHEN THIS-MONTH = 12. *>elementary level
 03 PRESENT WHEN FILE-END = "N". *>group of lines
 04 LINE "AMOUNT DATE".
 04 LINE PRESENT WHEN LAST-YEAR = "Y". *>LINE level
 05 COL 1 "LAST YR LAST YR".
 05 ABSENT WHEN YEAR-NO = ZERO. *>group of columns
 06 COL 50 "YEAR:".
 06 COL +2 PIC 9999 SOURCE YEAR-NO.

If you nest more than one PRESENT WHEN clause by writing one clause in a higher entry

and another in a lower entry beneath it, as in the preceding example, the outer

condition takes precedence over the inner condition. It is up to you to ensure

that both conditions can be true at the same time. Report writer will not check

for contradictory combinations of conditions such as:

 03 LINE 1 PRESENT WHEN A = 1.
 05 COL 5 "X" PRESENT WHEN A = 2.

Here, if A is not 1, the whole LINE will not be output and that is an end to the

matter: the test for A = 2 is short-circuited and the "X" will never be output.

PRESENT/ABSENT WHEN Clause: Operation

Report writer tests the condition operand of your PRESENT WHEN clause each time it

begins the processing of the report group. If the condition is true, the field is

output normally. If the condition is false, the entry is ignored. (For ABSENT WHEN

, this rule applies vice versa.) If the entry is a group entry, all the entries beneath

it, including all its elementary entries, are also ignored. When report writer

"ignores" your entry, it treats the entry, for that instant only, as though you had

not coded it. Imagine the entry drawn in a rectangle of paper and imagine

that you have a blank card that you can place over the rectangle to "mask" it

out:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 170

03 LINE 3. Mask for CITY-FLAG NOT = 1

 05 COL 1 PIC X(6) SOURCE CITY
 PRESENT WHEN CITY-FLAG = 1.

 ◄--
 ◄--

 05 COL 8 PIC XXX SOURCE REGN. Mask for INS-FLAG = 1

 05 ABSENT WHEN INS-FLAG = 0.
 07 COL 13 "POLICY NO.:".
 07 COL 25 PIC X(20)
 SOURCE POLICY-NO.

 ◄--

 ◄--

 05 COL 50 PIC X(20) SOURCE NAME.

Remember, when the PRESENT WHEN is not on an elementary entry, your

masking "card" must be large enough to cover all the lower-level entries, down

to elementary level, as far as the next entry at the same level or higher. Now, to

find out what will be produced when an entry is ABSENT, just cover the entry with

the mask, so that it disappears from view. The remaining entries are what report

writer "sees" at that instant, and therefore what it will output. For example,

suppose that the field CITY-FLAG is 1 and INS-FLAG is zero in the example above.

What will report writer produce? Just move the mask over the INS-FLAG group

entry, as shown above, and this is what results:

 03 LINE 3.
 05 COL 1 PIC X(6) SOURCE CITY.
 05 COL 8 PIC XXX SOURCE REGN.
 05 COL 50 PIC X(20) SOURCE NAME.

Keeping this simple principle in mind, consider the practical applications

described in the following paragraphs:

To "blank out" a field with an absolute COLUMN, place your PRESENT WHEN on the

absolute COLUMN entry and follow it with another absolute COLUMN entry:

 03 LINE 4.

 05 COL 4 PIC ZZZ9 SOURCE HOUSE-NUMBER
 PRESENT WHEN HOUSE-NO-FLAG = 1.

 05 COL 10 PIC X(20) SOURCE STREET-NAME.

If HOUSE-NO-FLAG is not 1, the entry in column 4 disappears. Because the

following column is in an absolute position, the first entry is blank:

 22 LONDON ROAD

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 171

 DARK LANE

 ↑ no house number

This method also enables you to blank out an absolute LINE entry from a set of

absolute LINE entries, leaving a gap in the printed output.

To insert a conditional field into the report line so that it displaces the fields that follow,

simply make the entries that follow relative:

 01 AMOUNT-LINE TYPE DETAIL LINE + 1.

 05 COL 13 VALUE "DEBIT " PRESENT WHEN AMOUNT < ZERO.

 05 COL +1 PIC 9<9(6) SOURCE AMOUNT.

1056

532

 DEBIT 12

21

 DEBIT 250

When triggered by the PRESENT WHEN,

the field in COLUMN 13 displaces the

relative field that follows rightwards.

The word DEBIT displaces the next field to the right because the next field has a

relative COLUMN clause (COL +1). Place your "mask card" over the DEBIT entry

and you will see what occurs when its group is not produced: the AMOUNT field

is the first and only field to be produced, and its COLUMN number is +1. It

therefore appears in column 1.

Similarly, the HOUSE-NUMBER field in the previous paragraph could be treated

as a conditional insertion item by revising the code as follows. (The "<" symbol

eliminates the gap after short HOUSE-NUMBERs.)

 03 LINE 4.
 05 COL 2.
 *COL 4 can be coded here instead of COL +2:

 05 COL +2 PIC <9999 SOURCE HOUSE-NUMBER
 PRESENT WHEN HOUSE-NO-FLAG = 1.

 05 COL +2 PIC X(20) SOURCE STREET-NAME.

This time, if HOUSE-NO-FLAG is not 1, there is no "gap" because the item that

follows is relative.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 172

 22 LONDON ROAD

 DARK LANE

 ↑ no house number, but this time no gap

To place one of a series of alternative entries into the same column positions, code

several entries, each with a PRESENT WHEN clause.

Take care that the conditions are mutually-exclusive so that none of the fields

can overlap:

 05 COL 1 PIC X(16) SOURCE SURNAME.
 05 COL 21 VALUE "MINOR" PRESENT WHEN AGE < 16.
 05 COL 20 PIC ZZ9 SOURCE AGE PRESENT WHEN AGE > 15 AND < 65.
 05 COL 18 VALUE "OLD TIMER" PRESENT WHEN AGE > 64.

 GOLIGHTLY 27

 THOMPSON MINOR

 PREWITT OLD TIMER

Notice that the conditional fields need not all start in the same column and that

the column numbers need not be strictly in sequence, provided that they are in

sequence when we mask out the entries that are ABSENT.

If all your entries start in the same column and are all literals or identifiers with the

same PICTURE, you will find it more convenient to use a multiple-choice entry.

(See 3.18.5 The Multiple-Choice Form, below.)

You can also use the technique shown here to choose one LINE from a set of

alternative absolute LINE entries.

To string out (concatenate) a number of conditional fields along the report line, where

any combination could be present, use a series of relative conditional entries:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 173

 NAME ... SPORTS PLAYED ...

 JENKINS RUGBY TENNIS GOLF SWIMMING

 LLOYD GOLF

 BURKE TENNIS SWIMMING

 01 TYPE PH LINE 1 " NAME ... SPORTS PLAYED ...".
 01 SPORTS-LINE TYPE DE LINE + 1.
 05 COL 1 PIC X(12) SOURCE NAME.
 05 COL 14.
 05 COL + 2 VALUE "RUGBY" PRESENT WHEN RUGBY-FLAG = "Y".
 05 COL + 2 VALUE "TENNIS" PRESENT WHEN TENNIS-FLAG = "Y".
 05 COL + 2 VALUE "GOLF" PRESENT WHEN GOLF-FLAG = "Y".
 05 COL + 2 VALUE "SWIMMING" PRESENT WHEN SWIMMING-FLAG = "Y".

The dummy entry specifying COL 14 gives you an anchor point at which to

begin. It ensures that the first sport-field will appear in column 16.

If you include many optional fields using relative COLUMNS, you may run the risk

of causing line overflow if a large number happen to be present. If you want

report writer to "wrap the data round" on to a continuation line, you must code

a WRAP clause (see 3.28). Otherwise, it will truncate the line and create a run

time line overflow message.

A similar problem might arise if you define an entry in an absolute column

following your series of optional entries. If there were too many entries present,

report writer might signal a run time column overlap error. If there is a risk of line

overflow or column overlap, you must do some extra processing before you

GENERATE the line, to make certain that no more than the maximum number of

fields will be present.

To print one or more of a series of conditional lines in a report group, use relative LINE

clauses and code your PRESENT WHEN clauses at the LINE level or above:

 MEMBER: PHILLIPS AGE: 34

 AGE OF SPOUSE: 30

 NO. OF CHILDREN: 3

 BASIC SUBSCRIPTION: $230

 GOLF SUBSCRIPTION: $80

 MEMBER: THOMPSON AGE: 25

 BASIC SUBSCRIPTION: $290

In this example, the lines showing AGE OF SPOUSE and NO. OF CHILDREN are not

to be produced unless there is a "family membership" condition, and the line

showing GOLF SUBSCRIPTION is not to appear unless the member plays golf.

Here is some suitable report writer code:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 174

 01 MEMBER-RECORD TYPE DE.
 03 LINE + 2.
 05 COL 1 “MEMBER:" ... etc ...
 03 PRESENT WHEN FAMILY-MEM-FLAG = "Y".
 04 LINE + 1.
 05 COL RIGHT 30 "AGE OF SPOUSE:".
 05 COL 34 PIC <99 SOURCE SPOUSE-AGE.
 04 LINE + 1 ABSENT WHEN NO-CHILDREN = ZERO.
 05 COL RIGHT 30 "NO. OF CHILDREN:".
 05 COL 34 PIC 9 SOURCE NO-CHILDREN.
 03 LINE + 1.
 05 COL RIGHT 30 "BASIC SUBSCRIPTION:".
 05 COL 34 PIC $9<99 SOURCE BASIC-SUB.
 03 LINE + 1 PRESENT WHEN GOLF-FLAG = "Y".
 05 COL RIGHT 30 "GOLF SUBSCRIPTION:".
 05 COL 34 PIC $9<99 SOURCE GOLF-SUB.

Because report writer only "sees" the lines that have not been "masked out", it

performs a sophisticated page-fit test. Report writer will test the availability of

only the number of lines that will actually be output. If THOMPSON in the above

example begins on line 59 of a 60-line page, his record will appear on that

page because at that particular instant the DETAIL group is actually only 2 lines

in depth.

The form CONTROL IS control-id is a special condition that can be used only in a

PRESENT WHEN clause within a multiple CONTROL FOOTING. It is true if the level

of the CONTROL FOOTING currently being generated is that of control-id. For

example, if the TYPE clause is:

 01 TYPE CF FOR COUNTY, CITY, STREET.

you may introduce any amount of variation for each level by coding, for

instance:

 05 PRESENT WHEN CONTROL IS CITY.
 07 COL 1 "Name of city:".
 07 COL +2 PIC X(20) SOURCE CITY.

If PRESENT WHEN is used in the same entry as an OCCURS clause or a multiple SOURCES

or VALUES, the PRESENT WHEN applies to each occurrence individually.

Effect of PRESENT WHEN on SUM

The general principles of the PRESENT (or ABSENT) WHEN clause apply when you use it

with a SUM clause or with an item that is totalled. Report writer acts according to

certain vital principles, as follows:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 175

Only those SUM operands that were PRESENT when they were processed will be added

to a total field. An item will not be added if it is subject to a PRESENT WHEN and

the condition is false. This means that you may total a series of "optional" fields

and obtain a total that is true in the sense that only the fields that are processed

appear in the total field. (The word processed includes the case of unprintable

fields - those having no COLUMN clause - which do not appear in the report.)

The following example illustrates this principle:

 SPORTS CLUB MEMBERSHIP PAYMENT NOTICE

 NAME: T.S. ANALYST

 BASIC SUBSCRIPTION: $25

 PLAYER'S SUBSCRIPTION: $20

 SQUASH SUPPLEMENT: $40

 TOTAL DUE PLEASE: $85

 NAME: A.J. CODER

 INITIATION FEE: $40

 BASIC SUBSCRIPTION: $25

 PLAYER'S SUBSCRIPTION: $20

 GOLF SUPPLEMENT: $150

 SQUASH SUPPLEMENT: $40

 TOTAL DUE PLEASE: $275

 01 PAYMENT-NOTICE TYPE DE.
 ...
 03 LINE PRESENT WHEN NEW-MEMBER-FLAG = "Y".
 05 COL 4 VALUE "INITIATION FEE".
 05 R-JOIN COL 31 PIC $$$9 SOURCE WS-JOIN-FEE.

 03 LINE.
 05 COL 4 VALUE "BASIC SUBSCRIPTION".
 05 R-BASIC COL 31 PIC $$$9 SOURCE WS-BASIC-SUB.

 03 LINE PRESENT WHEN PLAYER-FLAG = "Y".
 05 COL 4 VALUE "PLAYER'S SUBSCRIPTION".
 05 R-PLAYER COL 31 PIC $$$9 SOURCE WS-PLAYER-SUB.
 ... etc ...

 03 LINE.
 05 COL 11 VALUE "TOTAL DUE PLEASE".
*SUM clause shows total of only the fields that appear in report
 05 COL 30 PIC $$$$9
 SUM OF R-JOIN, R-BASIC, R-PLAYER, R-GOLF, R-SQUASH.

If you write a SUM clause and a PRESENT WHEN together in the same entry, the total will

not appear in the report if the entry is not present . But neither will it be cleared

to zero, because no total is cleared until it has been output. Values will continue

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 176

to be accumulated in the total field even though the SUM entry may not always

be present. In other words, the PRESENT WHEN in the SUM entry can delay the

generating and clearing of your total field but it has no effect on the totalling

itself.

These facts may be utilized if you wish to generate a number of fields

repeatedly but delay the appearance of their cross-foot total. In the following

example, we have a variable number (up to 31) of fields, but only up to five will

fit on a line. The total also occupies a field in the line. The following solution

takes advantage of the fact that if a DEPENDING ON operand is higher than the

maximum, the maximum (in this case 5) is assumed. (This problem can also be

resolved now using the WRAP clause.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 177

 DONATIONS TO SPORTS MEMORIAL FUND: BY MONTH 1992

 JAN

 DAY AMOUNT DAY AMOUNT DAY AMOUNT DAY AMOUNT DAY AMOUNT

 2 $200 4 $150 11 $50 15 $90 21 $60

 26 $100 28 $60 TOTAL: $710

 FEB

 DAY AMOUNT DAY AMOUNT DAY AMOUNT DAY AMOUNT DAY AMOUNT

 1 $150 3 $240 7 $120 9 $210 11 $160

 12 $210 14 $40 17 $20 19 $80 23 $180

 24 $210 25 $60 28 $210 TOTAL: $1890

 01 DONATION-SUBHEADS TYPE DE.
 03 LINE + 2 COL 1 PIC XXX SOURCE MONTH.
 03 LINE.
 05 COL 3 OCCURS 5 STEP 13 VALUE "DAY AMOUNT".
 01 DONATION-AMOUNTS-LINE TYPE DE LINE.
 05 OCCURS 0 TO 5 DEPENDING ON W-ENTRIES-LEFT STEP 13
 VARYING R-SUB FROM DONATIONS-THIS-MONTH - W-ENTRIES-LEFT + 1.
 07 COL 4 PIC Z9 SOURCE W-DAY (R-SUB).
 07 R-AMOUNT COL 9 PIC $(4)9 SOURCE W-AMOUNT (R-SUB).
 05 PRESENT WHEN W-ENTRIES-LEFT < 5.
 07 COL + 2 VALUE "TOTAL:".
 07 COL + 1 PIC $(5)9 SUM OF R-AMOUNT.
 ...
 PROCEDURE DIVISION.
 ...
 GENERATE DONATION-SUBHEADS
 PERFORM GENERATE-LINE VARYING W-ENTRIES-LEFT
 FROM DONATIONS-THIS-MONTH BY -5 UNTIL W-ENTRIES-LEFT < 0
 ...
 GENERATE-LINE.
 GENERATE DONATION-AMOUNTS-LINE.

To accumulate a series of totals split up by some category, that is into separate

"pigeonholes" or "buckets", you may use a series of unprintable SUM fields

partitioned by a series of mutually exclusive (and exhaustive) PRESENT WHEN

condition clauses. Suppose that you wish to print "Sales of Ice Cream" and you

want to total separately the sales of Vanilla, Strawberry and Chocolate flavors.

This is done by splitting up the sales entry invisibly into vanilla, strawberry and

chocolate sales, as though we were actually splitting it thus at the place where

it is printed. We then SUM each unprintable entry to form three separate totals:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 178

 ICE CREAM SALES YEAR 1992

 DATE FLAVOR SALES AMOUNT ($)

 JAN 01 VANILLA 1000

 FEB 02 STRAWBERRY 11000

 FEB 28 CHOCOLATE 5500

 MAR 12 CHOCOLATE 4500

 APR 03 VANILLA 6000

 SUMMARY OF TOTALS BY FLAVOR:

 VANILLA 32000

 STRAWBERRY 12500

 CHOCOLATE 15000

01 ICE-SALES-LINE TYPE DE.
 03 LINE.
 05 COL 3 PIC XXXB99 SOURCE SALES-DATE.
 05 COL 18 VALUE "VANILLA" WHEN SALES-FLAVOR = "V"
 "STRAWBERRY" WHEN SALES-FLAVOR = “S”
 "CHOCOLATE" WHEN SALES-FLAVOR = "C".
 05 COL RIGHT 47 PIC Z(6)9 SOURCE SALES-AMOUNT.
 05 R-VANILLA PIC 9(7) SOURCE SALES-AMOUNT
 PRESENT WHEN SALES-FLAVOR = "V".
 05 R-STRAWBERRY PIC 9(7) SOURCE SALES-AMOUNT
 PRESENT WHEN SALES-FLAVOR = "S".
 05 R-CHOCOLATE PIC 9(7) SOURCE SALES-AMOUNT
 PRESENT WHEN SALES-FLAVOR = "C".
01 TYPE CF.
 03 LINE + 2 COL 3 "SUMMARY OF TOTALS BY FLAVOR".
 03 LINE + 2.
 05 COL 18 VALUE "VANILLA".
 05 COL RIGHT 47 PIC Z(7)9 SUM R-VANILLA.
 03 LINE.
 05 COL 18 VALUE "STRAWBERRY".
 05 COL RIGHT 47 PIC Z(7)9 SUM R-STRAWBERRY.
 03 LINE.
 05 COL 18 VALUE "CHOCOLATE".
 05 COL RIGHT 47 PIC Z(7)9 SUM R-CHOCOLATE.

If you have a larger, or variable, number of categories, it will be easier to

defined repeating values and totals using OCCURS. Suppose that the flavors

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 179

VANILLA, STRAWBERRY etc. are held in a table W-FLAVOR OCCURS 20. The

following code could now replace the corresponding entries used above:

 05 R-SALE OCCURS 20 TIMES VARYING R-FLAVOR-NO PIC 9(7)
 PRESENT WHEN R-FLAVOR = W-FLAVOR (R-FLAVOR-NO).
 ...
 03 LINE OCCURS 20 VARYING R-FLAVOR-NO.
 05 COL 18 PIC X(16) SOURCE W-FLAVOR (R-FLAVOR-NO).
 05 COL RIGHT 47 PIC Z(7)9 SUM R-SALE.

The Multiple-Choice Form

┌── Format

──

──┐

│ │

│

┌───

───┐ │

│ ▼ │ │

│ ►►──┬─SOURCE clause──┬PRESENT

WHEN─┬─condition───────────┬─► │

│ ├─VALUE clause───┤ └CONTROL IS control-id┘ │

│ └─FUNCTION clause┘ │

│ │

│

►─┬──┬─────►◄

│

│ └─┬─SOURCE clause───┬─PRESENT WHEN OTHER─┘ │

│ ├─VALUE clause────┤ │

│ └─FUNCTION clause─┘ │

└───

─────────────┘

If you need to specify a series of alternative contents for a particular elementary field,

you can do it with a single entry, instead of several separate entries containing

PRESENT WHEN clauses. You code the entry with several SOURCE, VALUE, or

FUNCTION clauses, each followed immediately by a PRESENT WHEN clause.

One of the PRESENT WHEN clauses, and only one, may be of the form PRESENT

WHEN OTHER. It is normally placed last in the list (although this is not syntactically

required).

Report writer scans your WHEN conditions, starting with the first in the order of coding,

until it finds a condition that is true. It then uses the SOURCE, VALUE, or FUNCTION

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 180

clause preceding that PRESENT WHEN clause and ignores all the remaining

PRESENT WHEN and SOURCE, VALUE or FUNCTION clauses. So your conditions

need not be mutually exclusive: the testing is on a "first-come-first-served" basis.

Here is an example:

 05 COL 23 PIC ZZZ9 SOURCE INCOME WHEN TYP-IND = "A"
 SOURCE TAX WHEN TYP-IND ALPHABETIC
 SOURCE INCOME - TAX WHEN TYP-IND = "1" OR "2".

The contents of TAX will be produced when TYP-IND is between "B" and "Z"

inclusive.

If your conditions do not cover all the possibilities, you have three choices:

Put WHEN OTHER instead of WHEN condition against the entry you would like to

act as the catch-all, default, or wastebasket:

 05 COL 25 VALUE "TOO BIG" WHEN AMOUNT > 99999
 VALUE "TOO SMALL" WHEN AMOUNT < 100
 VALUE "JUST RIGHT" WHEN OTHER.

Code an extra "choice" using WHEN OTHER to indicate an error:

 05 COL 100 VALUE "LONDON" WHEN CITY-CODE = "LN"
 VALUE "BRISTOL" WHEN CITY-CODE = "BR"
 ...
 VALUE "UNKNOWN CITY" WHEN OTHER .

Leave it as it is. If there is a case not covered by your multiple-choice entry, the

whole field will then simply be ABSENT. For example:

 05 COL 1 VALUE "DEAR".
 05 COL +2 VALUE "MR" WHEN TITLE-CODE = 1
 VALUE "MRS" WHEN TITLE-CODE = 2
 VALUE "MISS" WHEN TITLE-CODE = 3.
 05 COL +2 PIC X(20) SOURCE SURNAME.

If SMITH has TITLE-CODE equal to 0, this will result in:

 DEAR SMITH

If you specify only VALUE literal clauses without a PICTURE clause, they may be of

different sizes, as in the preceding example. The actual size of the field

produced will be that of the chosen value. Since SURNAME above has a

relative COLUMN, you will obtain:

 DEAR MR SMITH

 or DEAR MRS SMITH

 or DEAR MISS SMITH

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 181

You cannot repeat the PICTURE clause in an entry (nor any of the other clauses other

than SOURCE, VALUE, and FUNCTION), so if your choices need different PICTUREs

you must usually code a series of separate entries. However, you may still be

able to choose a PICTURE that suits each of the choices, such as PIC ZZZ9 to

cover both PIC ZZZ9 and PIC ZZ9, and thus still be able to use a single entry with

a multiple-choice PRESENT WHEN clause.

You can form a SUM of a multiple-choice entry. Report writer will select the correct

choice (if any) before adding it to the total:

 05 PAYMENT COL 33 PIC ZZZZ9
 AMOUNT - TAX WHEN CAT = 1
 AMOUNT - TAX - CALIFORNIA-TAX WHEN CAT = 2
 AMOUNT - EXPORT-TAX WHEN CAT = 3.
 ...
 05 ... SUM OF PAYMENT ...

This adds only the one correct choice each time.

You can use the CONTROL IS control-id form of condition anywhere in a multiple-choice

entry. For example:

 01 TYPE CF FOR STATE COUNTY CITY.
 03 LINE + 2.
 05 COL 1 VALUE "Totals for".
 05 COL + 2 VALUE "state" WHEN CONTROL IS STATE
 VALUE "county" WHEN CONTROL IS COUNTY
 VALUE "city" WHEN OTHER.

You can use multiple SOURCE and VALUE clauses within your multiple-choice entry. For

example:

 05 COLS 23 43 64 PIC ZZZ,ZZ9.99
 SOURCES VAL-1 VAL-2 VAL-3 WHEN TYP = "D"
 SOURCES (- VAL-1) (- VAL-2) (- VAL-3) WHEN OTHER.

You cannot place a multiple-choice entry at the same level as a LINE clause. The

construct:

 03 LINE 1 COL 1 VALUE "WHITE" WHEN SHADE = 0
 "BLACK" WHEN SHADE = 1.

is therefore illegal and must be replaced by:

 03 LINE 1.
 05 COL 1 VALUE "WHITE" WHEN SHADE = 0
 "BLACK" WHEN SHADE = 1.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 182

Compatibility

Only new Report Writer provides the PRESENT / ABSENT WHEN clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 183

1.3.19 REPEATED clause

The REPEATED clause arranges body groups side-by-side across the page.

┌── Format

──

──┐

│ │

│ ►►─REPEATED─┬integer-1

TIMES─┬─────────────────────────┬┬►◄ │

│ │ └┬EVERY┬integer-2┬COLUMNS┬┘│ │

│ │ └WIDTH┘ └COLS───┘ │ │

│ └┬───────────────┬─┬EVERY┬integer-2┬COLUMNS┬┘ │

│ └integer-1 TIMES┘ └WIDTH┘ └COLS───┘ │

└───

─────────────┘

REPEATED Clause: Coding Rules

Write this clause at the 01-level of body groups (DETAIL or CH/CF) only.

You must code either the TIMES phrase or the EVERY/WIDTH phrase, or (preferably) both.

EVERY and WIDTH have the same meaning.

Code only the left-hand report group. Report writer will automatically offset successive

groups to the right of the left-hand group.

If you use the EVERY/WIDTH phrase, draw an imaginary "smallest box" around your

group:

 aaaaaaaaaaaa aa aaaaaaaaaaaa

bbbbbbbbbbb

 ccccccccccc cccc

 ddddddd ddddddddddddddddddddddd

▲ ▲

└─leftmost column rightmost column─┘

The width of your box must not be greater than the EVERY/WIDTH integer-2. If

any of your lines can have a variable rightmost column position, you must use

the maximum expected size while drawing your box, but report writer cannot

always predict the actual size at precompilation time. If the actual width of the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 184

group then causes it to encroach into the area occupied by the group to its

right, a run time error will be issued.

There are no other restrictions on the size of your group or the clauses that you can use

within it. For example, you may specify any number of LINES.

If you omit the TIMES phrase, report writer will examine your EVERY/WIDTH phrase and

calculate how many repetitions of the group it can fit within the LINE LIMIT. If

you use the identifier form of the LINE LIMIT clause, report writer will do this

dynamically when you GENERATE the groups.

If you omit the EVERY/WIDTH phrase, report writer will examine your TIMES phrase and

will calculate how widely it can space the repeats of your group at regular

intervals. You cannot use the identifier form of the LINE LIMIT clause in this case.

The rightmost column of the rightmost REPEATED group must not go beyond the LINE

LIMIT. This possibility can arise only if you use both the TIMES phrase and the

EVERY/WIDTH phrase. In all other cases, report writer does the fit for you and

makes sure that the repeats will fit side-by-side without violating the LINE LIMIT.

The REPEATED clause is not allowed in a report group that has no LINE clauses.

REPEATED Clause: Operation

If you code a REPEATED clause in a DETAIL group, report writer will place consecutive

groups side-by-side:

group #1

group #2

group #3

Each instance of the group is produced by one GENERATE. For example, to

produce the above 3-up pattern, you would issue three successive GENERATEs.

Each instance may display different data and may differ from its companions in

certain characteristics by virtue of any PRESENT or OCCURS... DEPENDING

clauses that you have coded.

Report writer sets up a buffer to hold your repetitions. If your group is REPEATED three

times, as in the diagram above, this is what happens:

First GENERATE: The group is not produced but is placed in the buffer; the

special register REPEATED-COUNTER is set to 1.

Second GENERATE: The second group is also not produced but is placed in

the buffer; REPEATED-COUNTER is set to 2.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 185

Third GENERATE: All three groups are produced side-by-side, with the

second and third groups offset by the number of columns

given in the EVERY phrase. The buffer is then cleared,

ready for the next three groups. REPEATED-COUNTER is

reset to zero.

The starting point for the repetitions is given by the COLUMN numbers in your

group description. These will become the COLUMN numbers of the left-hand

group. The following example shows the effect obtained:

 01 ADDRESS-LABEL REPEATED 3 TIMES EVERY 20 COLUMNS.
 03 LINE + 2.
 05 COL 20 VALUE "xxxx".
 05 COL 26 VALUE "yyyyy".
 03 LINE + 1.
 05 COL 23 VALUE "zzzzzz".

xxxx yyyyy

 zzzzz

xxxx yyyyy

 zzzzz

xxxx yyyyy

 zzzzz

└───

──────────────┘

└─────────────────┘ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

 ▲ 20 23 26 40 43 46 60 63 66

 : : : :

 : └───────────────────┴───────────────────┘

 : └──────────────────┘

19-column offset ▲

at start: decided 20-column offset

by your choice of 20 between repetitions:

for first COLUMN from EVERY phrase

If a different body group is produced, no more groups are placed side-by-side and any

groups already in the buffer are output. Any unused repetitions will result in

blanks on the right-hand side. The effect of writing:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 186

 INITIATE report

 GENERATE group-A

 GENERATE group-A

 GENERATE group-A

 GENERATE group-A

 GENERATE group-A

 GENERATE group-B

 TERMINATE report

is shown in the following:

group-A group-A group-A

group-A group-A (blank entry)

group-B

where group-A and group-B are DETAIL groups and A is REPEATED 3 TIMES.

Group B may also be REPEATED, but even if it is also REPEATED 3 TIMES, it will not

be printed alongside group A, but will start a new series of repetitions. The same

effect is seen if your program issues a TERMINATE when there are groups still in

the buffer. report writer will first produce them with blank unused entries on the

right, so that no data will be lost.

If you need to have different groups placed side-by-side, you will have to define a

single group and use the PRESENT WHEN clause above several LINE entries to

create the impression of different groups at run time.

If a control break occurs that results in a CONTROL HEADING or CONTROL FOOTING

group, it has the same effect as when you GENERATE a different DETAIL group.

That is to say, any groups in the buffer are first output. This is true even if your

CONTROL group is a dummy (with no LINE clauses to cause output). Briefly, your

groups always appear in chronological order.

If a clause in your group references LINE-COUNTER (in a condition or as a SOURCE), you

will always obtain its correct effective value. report writer updates LINE-

COUNTER just as though the group were actually being output, although the

group is being placed in a buffer in memory. Then, when the next group is

GENERATEd, LINE-COUNTER immediately reverts to the value it had at the start of

the preceding group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 187

The page-fit test is applied to each repetition in turn. So, if your REPEATED group has a

depth that may vary (because of a PRESENT WHEN clause or an

OCCURS...DEPENDING at LINE level), room must exist for the largest group that

has been GENERATEd in the current "pass" across the line.

You may place a REPEATED clause in a CONTROL HEADING or CONTROL FOOTING

group, but this is of no use except when you use summary reporting (GENERATE

report-name), because there is no other way that the same CONTROL HEADING

or CONTROL FOOTING group can appear twice in succession.

Compatibility

The REPEATED clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 188

1.3.20 SIGN clause

The SIGN clause enables a printable sign character to be produced automatically

when the PICTURE has an "S" symbol.

┌── Format a

──

┐

│ │

│

►►─┬─────────┬─┬─LEADING──┬─┬────────────────────┬──►

◄ │

│ └─SIGN IS─┘ └─TRAILING─┘ └─SEPARATE CHARACTER─┘ │

│ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│

►►─┬─────────┬┬──────────────────┬┬────────────────

───┬─►◄ │

│ └─SIGN IS─┘└─LEADING literal-1┘└─TRAILING literal-2┘ │

│ │

└───

─────────────┘

SIGN Clause: Coding Rules

If you write a SIGN clause in an elementary entry, the entry must have a numeric

PICTURE with an "S" symbol.

This clause acts on elementary fields, but you may also code it in a group level entry,

where it applies to all numeric elementary entries within the group whose

PICTUREs begin with the "S" symbol.

Format b is unique to the REPORT SECTION. Each literal must be a single character non-

numeric literal. At least one of the phrases must be present.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 189

SIGN Clause: Operation

The use of the format a SIGN clause has been superseded by the "+" and "-" symbols of

the PICTURE clause. It is included for consistency with basic COBOL standards.

Refer to your COBOL language reference for further information.

The format b SIGN clause enables you to place symbols of your choice on the left or

the right of any signed printed item to represent a negative amount. The

LEADING literal (if specified) is placed immediately before the first character of

the report field. If leading spaces are suppressed with the Z or floating currency

symbol, the literal is placed immediately before the first non-space character.

The TRAILING literal (if specified) is placed in the last character position. For

example, to place parentheses around a negative payment (a common

accounting requirement), you would code:

 PIC SZZZ9 SIGN IS LEADING "(" TRAILING ")" SOURCE PAY

which would output a value of -12 as: (12)

while a value of -1234 appears as: (1234)

This feature can be made to work for positive values by specifying the negative

of the source (SOURCE (- PAY) in the case above).

Compatibility

The use of the SIGN clause in the report section is allowed only by new Report Writer,

which uniquely provides the LEADING literal TRAILING literal phrases.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 190

1.3.21 SOURCE clause

This clause specifies the source field (or expression) that provides the contents of a field

in your report. The source field is usually outside the REPORT SECTION, but may also be

implicitly defined within it.

┌── Format

──

──┐

│ │

│ ┌────────────┐ │

│ ▼ │ │

│ ►►─┬─────────────┬─┬─identifier─┬─┬─────────┬─►◄

│

│ ├─SOURCE IS───┤ └─expression─┘ └─ROUNDED─┘ │

│ └─SOURCES ARE─┘ │

│ │

└───

─────────────┘

SOURCE Clause: Coding Rules

Any valid COBOL identifiers or arithmetic expressions may be used as operands,

including any COBOL term that may be the source item of a MOVE or

COMPUTE; for example, report writer special registers such as PAGE-COUNTER,

GLOBAL or EXTERNAL items, and special compiler registers such as LENGTH OF.

Each operand may be subscripted and/or qualified if necessary. For example:

 SOURCE IS MIN-STOCK IN MAIN-RECORD (AREA-NO, DISTRICT-NO)

The operand may have as many qualifiers, subscripts or indexes as are normally

permitted for the subject of a MOVE statement. Relative subscripting and

reference modification may be used.

You must also code a PICTURE clause in the same entry (unlike VALUE, which need not

have a PICTURE). The PICTURE used must be compatible with the PICTURE of the

operand(s). If you are in any doubt, look at the description of the identifier

where it is originally defined in the FILE, WORKING-STORAGE or LINKAGE SECTION

of your program. Ensure that its PICTURE is unedited and that you are not

attempting to produce a COMPUTATIONAL field from a PICTURE X format. The

two PICTUREs may be of unequal length, in which case there will be truncation

or space-filling on the right (for a non-numeric field) or truncation or zero-filling

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 191

on the left (for a numeric field). The rules for the SOURCE statement are exactly

those of the MOVE or COMPUTE statements of procedural COBOL.

The SOURCE IS and SOURCES ARE keywords may be omitted, except when immediately

following a VARYING clause. We shall still refer to the clause as a SOURCE

clause, however.

An expression may be any arithmetic expression containing any of the following

symbols and keywords:

+ for addition

- for subtraction

* for multiplication

/ for division

** for forming an exponent

(and) to prioritize evaluation or to "structure" the code for

documentation

SUM for a total (automatically reset to zero after output)

COUNT to show the number of times another REPORT SECTION item has

appeared (also reset to zero after output)

In addition, the expression may have any number of identifiers, and these may

be subscripted or qualified. Here are some examples of expressions:

SOURCE IS NUMBER-ORDERED * UNIT-PRICE / 100

SOURCE IS ((SUM OF REP-SALARY) / NUMBER-IN-DEPARTMENT (DEPT-NO))

The rules for forming an expression are exactly as for the COBOL PROCEDURE

DIVISION, as described in your COBOL language reference. For more informa-

tion, see 3.23 SUM clause. The effect of a potential zero divide or size error

depends on the choice of action on overflow. (See 2.8 OVERFLOW clauses.)

The ROUNDED phrase may be used in the same entry if you use a numeric PICTURE that

has fewer digits to the right of the decimal point than the SOURCE identifier. It

will ensure that the value produced is the numerically closer of the two possible

values, instead of always truncating the unwanted digits. You can use

ROUNDED with a single identifier as well as with an expression. (So you need not

code "+ 0" for ROUNDED to be legal.) In the following example:

 05 COL 20 PIC 999 SOURCE SALARY ROUNDED.

if SALARY contains 100.50 or 100.60 or 100.99, the value produced will be 101,

not 100.

For more details of the ROUNDED keyword, see in your COBOL language refer-

ence under the COMPUTE verb. ROUNDED is a clause in its own right and thus

may be written at any location in the entry. If you have a multiple form of the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 192

SOURCE clause, or more than one such clause (see 3.21.4 Multiple SOURCES),

ROUNDED will affect all of them wherever applicable.

You can indicate a multiple-choice entry by appending WHEN or UNLESS condition to

the SOURCE clause, and then coding further consecutive pairs of SOURCE and

WHEN/UNLESS clauses in the same entry (see 3.18.5 The Multiple-Choice Form).

SOURCE Clause: Operation

Rules for Generating Report Field

The effect of the SOURCE clause is best described by reference to the COBOL

MOVE or COMPUTE statements, because it obeys identical rules:

Form of SOURCE clause

identifier (without ROUNDED)

identifier ROUNDED

arithmetic-expression (without

ROUNDED)

arithmetic-expression

 ROUNDED

Equivalent procedural statement

MOVE identifier TO report-field

ADD ZERO, identifier GIVING report-field

ROUNDED

COMPUTE report-field = expression

COMPUTE report-field ROUNDED

 = expression

The special registers CURRENT-DATE and TIME-OF-DAY of OS/VS COBOL and

DOS/VS COBOL make use of the conceptual data items DATE and TIME.

If the report field has "<" PICTURE symbols, or begins in a variable position, report

writer will not store the result directly in the report field, but will use an

intermediate area.

Reference to controls

If the SOURCE clause refers, directly or indirectly, to a CONTROL operand, and

the SOURCE is fetched at CONTROL FOOTING time, the contents of the control

identifier before the control break will be used. This means you will obtain

before-the-break contents for your control fields in the following report groups:

In every CONTROL FOOTING;

In the PAGE FOOTING and PAGE HEADING, if the page advance was caused

by a CONTROL FOOTING group.

This rule applies whether the CONTROL operand is used as a SOURCE by itself, or

as a subscript, or as part of an expression. It also applies if you refer to the

CONTROL operand via a redefinition, or via a group field that contains it, or a

subordinate field. This is because the pre-break values are temporarily stored

directly back in the control fields outside the REPORT SECTION while CONTROL

FOOTING processing is being done.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 193

One important consequence of this rule is that, if you use fields defined under

an FD in the FILE SECTION as controls, your program must not execute any report

writer statements - not even a TERMINATE - after the input file releases the

buffers. The correct order for "close down" is therefore:

 TERMINATE report
 CLOSE all report files and input files

See 2.6 CONTROL clause, and 4.2 GENERATE statement for further details.

Multiple SOURCES

If you use the multiple form of the SOURCE clause by writing more than one identifier or

expression after the keyword, you will avoid the effort of coding several separate

entries. Note the following:

You may include the keyword NONE to indicate that a particular field is to have no

contents stored in it. It is then treated as ABSENT. An example of the use of

NONE will be found under the LINE clause (see 3.10.4 Multiple LINES Clause).

Your entry must be subject to at least one of the following:

A fixed OCCURS clause (not OCCURS...DEPENDING), or

A multiple LINES clause, or

A multiple COLUMNS clause.

The number of terms in your multiple SOURCES must equal the total number of

repetitions the entry is subject to in all dimensions, or the number of repetitions of

one or more of the inner dimension(s). For example, with the following layout:

 03 LINE OCCURS 4.
 04 OCCURS 3.
 05 COLS +2, +1 PIC... SOURCES ARE

The number of SOURCES should be either 2 (just the inner dimension), 6 (the

product of the inner two dimensions), or 24 (all the repetitions).

If the terms cover more than one dimension, they are distributed along the innermost

dimension, periodically stepping to the next entry in the outer dimension(s). For

example:

03 LINE 2 STEP 1 OCCURS 3.
 05 COL 2 STEP 5 OCCURS 4 PIC XXX SOURCES ARE
 MONTH-NAME(1) MONTH-NAME(2) MONTH-NAME(3) MONTH-NAME(4)
 MONTH-NAME(8) MONTH-NAME(6) MONTH-NAME(7) MONTH-NAME(5)
 MONTH-NAME(9) MONTH-NAME(10) MONTH-NAME(11) MONTH-NAME(12).

will result in:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 194

 JAN FEB MAR APR

 AUG JUN JUL MAY

 SEP OCT NOV DEC

This technique is useful when your SOURCE items are not already conveniently

arranged in a table or when, as in the case above, the order is irregular.

If there are two or more dimensions and the number of terms matches only the inner

dimension(s), the terms are recycled from the first SOURCE operand for each

repetition of some outer dimension. For example, in the following case:

 03 LINE OCCURS 4.
 05 COLS 1, 6, 11 PIC... SOURCES ARE JAN, FEB, MAR.

the values of JAN, FEB and MAR will be repeatedly stored in each line.

However, you may vary the contents actually stored by allowing a VARYING

operand to advance in step with each occurrence of the outer dimension and

by using it as a subscript in the lower-level entry:

03 LINE OCCURS 4 VARYING LINE-SUB.
 05 COLS 1, 6, 11 PIC... SOURCES ARE
 QTR-MO-1 (LINE-SUB), QTR-MO-2 (LINE-SUB), QTR-MO-3 (LINE-SUB).

If a ROUNDED phrase is present in the entry, every SOURCE item will be rounded.

The multiple SOURCES may be used as one or more of the alternatives within a multiple-

choice entry. You need not use a multiple SOURCES in every alternative:

05 COLS 1, 12, 25 PIC ZZ,ZZZ,ZZZ9
 SOURCES BASIC-AMOUNT TAX EXTRA WHEN REBATE-FLAG = "N"
 (- BASIC-AMOUNT) (- TAX) (- EXTRA) WHEN OTHER.

You may omit the SOURCE keyword, except when immediately following a VARYING

clause.

Other examples of the multiple SOURCES clause will be found under 3.4.4 Multiple

COLUMNS Clause and 3.10.4 Multiple LINES Clause.

Compatibility

All aspects of the following features are unique to new Report Writer:

• SOURCE keyword being optional,

• Arithmetic-expression format,

• ROUNDED phrase,

• Use of SUM or COUNT term as operand,

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 195

• Multiple format,

• Multiple-choice format.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 196

1.3.22 STYLE clause

This clause enables the program to make use of any special effects provided by the

printer or output device.

┌── Format

──

──┐

│ ┌────────┐ │

│ ▼ │ │

│ ►►──STYLE IS─┬─style-name───┬────────────────┬─┬──►◄

│

│ │ └─WHEN condition─┘ │ │

│ └───NORMAL────────────────────────┘

│

└───

─────────────┘

STYLE Clause: Coding Rules

STYLE may be coded at any level, including in the FD (see 2.2 Report Files) or RD (see

2.3 REPORT SECTION and RD). The WHEN condition phrase cannot be used in

the FD or RD entry. STYLE cannot be used if the device-name of the

corresponding file is NONE (see 2.2.2 rule 11 above).

NORMAL may be coded instead of a style-name, meaning that no special effect is to

be produced. It must be the only style-name in the clause and there must not

be a WHEN condition phrase.

Apart from NORMAL, each style-name names a style or special effect that must be

obtainable from the output device. The type of output device in use is given in

the TYPE phrase of the SELECT statement. The style-names available are either

predefined or user-defined for the particular output device. This check, and the

processing of the styles themselves, may be delayed until run time by writing

DEFERRED in the TYPE phrase. This enables the program to run, in theory, with a

variety of different output devices, even when they are widely dissimilar. For a

mainframe, special device handling is usually the province of a user-written

report file handler - see Installation and Operation. For example, STYLE

HIGHLIGHT might be implemented by any of the following means:

shadow printing,

switching to a different font,

printing in larger letters,

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 197

on a screen, by displaying intense,

"double-hammering" on an impact line-printer.

The following are standard device-independent style-names. The first two are available

with every TYPE of printer (other than TYPE NONE). The last two are available

with all printers except the most basic.

UNDERLINE causes the report field to be underscored. It is used for

headings.

HIGHLIGHT causes the report field to stand apart from the others,

normally by appearing in bold or intense. It is used to give

emphasis to certain fields.

ALT-FONT causes the report field to appear in a second contrasting

font or typeface, such as italic.

GRAPHIC causes the report field to appear in a third contrasting font.

The remaining style-names used in the examples that follow are purely

for the purpose of illustration, and are not necessarily available on any

particular device.

Style-names are grouped into mutually-exclusive classes. Styles HIGHLIGHT, ALT-FONT

and GRAPHIC are mutually-exclusive but UNDERLINE belongs to a separate

(one-member) class. The classes are defined in the Printer Description File. It is

not valid to code two styles belonging to the same class in the same entry. Thus

the following clause is not valid:

 STYLE IS ALT-FONT GRAPHIC

However it is valid to place different members of the same class in nested

entries, in which case the prevalent style is noted and restored at the end of the

nested entry. Thus, in the following entries, TOMATO is RED while all the other

entries are GREEN:

 03 LINE.
 05 STYLE GREEN.
 07 COL 1 PIC X(20) SOURCE BEAN.
 07 COL 21 PIC X(20) SOURCE TOMATO STYLE RED.
 07 COL 41 PIC X(20) SOURCE ARTICHOKE.
 07 COL 61 PIC X(20) SOURCE PEA.

The STYLE clause cannot be repeated in an entry. Hence, if a multiple-choice entry is

required, with a different STYLE on each choice, separate entries must be

coded.

If STYLE is used in a report that uses the PAGE BUFFER feature it should not be coded in a

Report Group Description at a level higher than the LINE level.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 198

No style-name may be the same as one which is already in effect. For example, the

following is illegal:

 05 LINE STYLE IS ALT-FONT.
 07 COL 1 STYLE IS ALT-FONT UNDERLINE.

The STYLE clause cannot be used on an unprintable elementary entry.

STYLE Clause: Operation

Report writer implements the STYLE feature in one of three ways:

By inserting non-printable control characters, or escape sequences, into the

report data, before or after the data affected, or both.

By re-printing a line or part of a line without advancing the carriage. This

method is commonly used to highlight text and occasionally to produce

an underline effect.

By some special technique chosen and implemented by the user (see

Independent Report File Handlers).

The method of implementation of each style is defined explicitly for each TYPE

of device, and may be altered by the user.

The STYLE clause is transparent to the layout of the report. That is, it does not affect any

of the other clauses or entries in the report description. For example, COLUMN

numbers are unchanged, even though report writer may be inserting extra

control sequences into the report lines. You can therefore simply add STYLE

clauses to enhance existing programs.

Several STYLE names can be combined in one clause, for example:

 STYLE HIGHLIGHT UNDERLINE

Here the different characteristics are simply superimposed on each other (but

see next item).

The scope of the STYLE clause is decided by the level of the entry in which it is coded,

thus:

In an elementary entry, the STYLE clause applies only to the elementary field, for

example:

 03 LINE.
 05 COL 1 PIC X(20) SOURCE CUST-NAME.
 05 COL 25 PIC $(5)9.99 SOURCE ACCOUNT-BALANCE.
 05 COL 37 PRESENT WHEN ACCOUNT-BALANCE < 0
 VALUE "IN ARREARS" STYLE HIGHLIGHT.

In a LINE entry, the STYLE clause applies to the whole line, as in:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 199

 03 LINE STYLE EXTRA-WIDE.
 05 COL 1 "Annual Report".
 05 COL 31 PIC X(40) SOURCE COMPANY-NAME.
 05 COL 75 PIC "Year: "X(4) SOURCE ACCOUNT-YEAR.

In a report group entry, the STYLE clause applies to the whole group, for

example:

 01 WARNING-NOTICE TYPE DE STYLE RED ITALIC.
 ...

In an RD entry, the STYLE clause applies to the entire report:

 RD PERSONNEL-SHEETS
 STYLE IS LANDSCAPE.

If any control characters are output, this happens during the execution

of each INITIATE or TERMINATE for the report, or both.

In an FD entry, the STYLE clause applies to the entire report file:

 FD REPORT-FILE
 REPORT IS PERSONNEL-SHEETS
 STYLE IS LOAD-COURIER-FONT-1 LOAD-HELVETICA-FONT-2
 SWITCH-ON-SWITCH-OFF.

If any control characters are output, this happens during the execution

of each OPEN or CLOSE for the file, or both.

The WHEN clause causes the STYLE to take effect only when the condition is true, for

example:

 03 LINE + 2 STYLE LARGE WHEN WS-PAPER-WIDTH > 80.
 05 COL 21 PIC ZZZ9 SOURCE PERCENTAGE
 STYLE UNDERLINE WHEN PERCENTAGE > 100.

Since you can only code STYLE once per entry, you cannot vary the STYLEs in a multiple-

choice entry, and instead must code separate entries, as here:

05 COL 15 PRESENT WHEN W-VAL > 0 VALUE "POSITIVE" STYLE HIGHLIGHT.
05 COL 15 PRESENT WHEN W-VAL = 0 VALUE "ZERO" STYLE ALT-FONT.
05 COL 15 PRESENT WHEN W-VAL < 0 VALUE "NEGATIVE" STYLE GRAPHIC.

If STYLE is defined on an elementary field that has suppressed zeros or trailing spaces,

the STYLE will apply only to the characters printed. For example, the coding:

 05 COL 11 PIC ZZZZZ9 SOURCE W-PAYMENT STYLE UNDERLINE.
 05 COL + 2 VALUE "PAYMENT OVERDUE".

might result in:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 200

15 PAYMENT OVERDUE

3156 PAYMENT OVERDUE

152722 PAYMENT OVERDUE

If you do not want this effect, code the STYLE clause at a group level, e.g.

 05 STYLE UNDERLINE.
 07 COL 11 PIC ZZZZZ9 SOURCE W-PAYMENT.

Compatibility

The STYLE clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 201

1.3.23 SUM clause

This clause automatically forms totals from any other numeric field. You may also use it

as a term in an arithmetic-expression in a SOURCE clause.

┌── Format

──

──┐

│ │

│

┌───

───┐ │

│ │

┌──────────────────────────────────────┐ │ │

│ ▼ ▼ │ │ │

│ ►►──SUM OF─┬─-report-section-data-

name────────────────┬────► │

│ └─┬─identifier───┬──┬───────────────────┬──┘

│

│ └─expression───┘ │ ┌────────┐ │ │

│ │ ▼ │ │ │

│ └─UPON group-name───┘ │

│ ►──┬─────────────────────┬─┬─────────┬──►◄

│

│ └─RESET ON control-id─┘ └─ROUNDED─┘ │

│ │

└───

─────────────┘

SUM Clause: Coding Rules

There are two ways to code the SUM clause:

As a clause in its own right. You write the clause in place of a SOURCE, VALUE,

or FUNCTION clause. For example:

 05 COL 21 PIC ZZZ9 SUM OF SALE.

As a term in an expression; for example

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 202

 05 COL 21 PIC ZZZ9
 SOURCE IS ((SUM OF REVENUE) + (SUM OF TAX)) / 100.

This type of expression can only be used as a SOURCE operand

(although, as usual, the SOURCE keyword is optional). You cannot use a

SUM term as part of a condition or, for instance, as a parameter to a

FUNCTION.

The item summed can be either of two things:

The name of any numeric data item in your REPORT SECTION (other than a

FUNCTION entry). To use this, you must place a data-name on the item

in the REPORT SECTION you want to total. Suppose you need to form a

total from the following report field:

 05 COL 41 PIC 99999 SOURCE WAGES.

Just place a data-name of your own choosing on it, such as:

 05 R-WAGES COL 41 PIC 99999 SOURCE WAGES.

and you may now write SUM OF R-WAGES in another item in your report

to form a total. This is called a REPORT SECTION SUM clause. A REPORT

SECTION SUM operand never has any subscripts or arithmetic symbols -

you can write only: SUM OF data-name.

The data item referred to in the SUM clause may be qualified by the

report-name, as in SUM R-PAYMENT IN SUMMARY-REPORT. By default, the

qualifier is the same report as the one in which the SUM is defined. So if

the same data-name appears in more than one report, it may be

referred to by a SUM clause in its own report without qualification. (It

cannot be referred to by a SUM in a different report without a qualifier.)

This means that you can duplicate a complete report description with

SUM clauses without changing any of the data-names on SUM entries.

A numeric identifier or expression from outside the REPORT SECTION. In this form,

it is similar in appearance to the operand of a SOURCE clause. This is

called a non-REPORT SECTION SUM clause.

(Unless a naming convention is observed, there is no way of telling from

the data-name whether the SUM clause references a REPORT SECTION

SUM or not. In the examples in this volume, we sometimes use a prefix

such as "R-" to designate a REPORT SECTION item, so that "SUM OF R-..."

will be recognized as a REPORT SECTION SUM. Observing a standard like

that will make your REPORT SECTION easier to follow.)

A SUM clause may total several items, and you may combine REPORT SECTION

and non-REPORT SECTION items; for example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 203

 SUM OF W-BASIC, R-BONUS, R-OVERTIME

where W-BASIC is a non-REPORT SECTION item, R-BONUS is a REPORT SECTION

item in a different report group and R-OVERTIME is a REPORT SECTION item in the

same report group. In this case, the total field is always the sum of the individual

totals that would be formed from each of its items. You should then interpret

the remarks in the remainder of this section for each of the single SUM operands

individually. This is not similar to the multiple SOURCES clause (despite their

syntactic similarity), since only one printable item is defined with the SUM clause.

Your report may contain as many entries with SUM clauses as you wish, in any TYPE of

group (even RH). Only elementary entries can have a SUM clause.

If you code the UPON phrase, each group-name must be the name of a DETAIL group

and should not be the same as the group you are currently defining. The group-

name may be qualified. If not, the current report is assumed.

If your SUM clause is in a DETAIL group and the operand of your SUM clause is not in the

REPORT SECTION (a rare situation), your report should contain more than one

DETAIL group and you should logically code the UPON phrase, in order to

specify on which GENERATE you want adding to take place.

If you code the RESET phrase, the control-id operand must be one of those defined in

the CONTROL clause of your report (including REPORT, whose presence is

assumed there). If you are currently defining a CONTROL FOOTING group, the

level of the control in your RESET ON should be higher than the level of this

group. (It may also be equal to the level of the current group, in which case

resetting occurs at the normal time, and the phrase is therefore redundant.)

The RESET phrase cannot be defined anywhere in a multiple CONTROL FOOTING group.

You may code the SUM clause more than once in an entry. The effect of this is to add

together the totals formed from each of the clauses. Hence:

 SUM A SUM B gives the same result as SUM A B

(and, if A and B are non-REPORT SECTION items, SUM (A + B)). This separation is

essential only if you need to use a certain UPON phrase with one but not the

other, for example:

 ... SUM A UPON DETAIL-1 SUM B UPON DETAIL-2.

ANS-85 note. Since a reference-modified identifier is regarded as non-numeric, you

cannot SUM it, either directly as the operand of your SUM clause, or indirectly by

naming a REPORT SECTION item where it is used as a SOURCE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 204

SUM Clause: Operation

Report writer performs the totalling, presenting, and resetting (to zero) of your totals

completely automatically. These three stages are covered in the next three numbered

paragraphs.

Totalling

The method used for totalling depends on whether the item referred to by SUM

is a data-name on a REPORT SECTION entry (called henceforth a "REPORT

SECTION SUM "), or not.

REPORT SECTION SUM

Whenever the originating data item named in your SUM clause is output

in the report, the item it references is also added into the (internal) total

field. If the REPORT SECTION data item totalled contains a SOURCE or

VALUE clause, the amount added to the total is the SOURCE or VALUE

operand outside the REPORT SECTION, not the intermediate REPORT

SECTION field. For example, if you write:

 05 R-FLD1 COL 1 PIC 999 VALUE 100.
 05 R-FLD2 COL 5 PIC 9999 SOURCE W-PAYMENT.
 ...
 05 ... SUM OF R-FLD1, R-FLD2.

the fields added into the total will be 100 and W-PAYMENT, not the report

fields R-FLD1 and R-FLD2. Thus, if W-PAYMENT has a PICTURE of 9(5)V99

rather than 9(4), the full originating value - not the truncated value that

appears in the report line - will be added.

There are two names used to distinguish two cases of REPORT SECTION

SUMming:

i. Cross-Footing

In the next illustration, the item to be totalled is in the same report

group as your SUM clause:

 FURNITURE SALES THIS YEAR BY QUARTER

 SPRING SUMMER FALL WINTER TOTAL

 $2300 $3400 $1600 $3500 $2000

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 205

 01 YEARS-SALES TYPE DE LINE + 1.
 05 R-QUARTER COL 3 STEP 10 OCCURS 4 VARYING SEASON
 PIC $(6)9 SOURCE QTLY-SALE (SEASON).
 05 COL +10 PIC $(7)9 SUM OF R-QUARTER.

The SUM entry may appear earlier in the report group than the item

it is totalling and this may be carried on to any number of stages.

Thus the physical order of totals and items being totalled within a

single group is immaterial. Report writer decides for itself the order

in which totalling must be done. Hence the correct result is

obtained by coding for example:

 05 R-A ... SUM OF R-B ...
 05 R-B ... SUM OF R-C ...
 05 R-C ... SUM OF R-D ... etc.

However, you must avoid circular dependencies such as:

 05 R-A ... SUM OF R-A ...
 or
 05 R-A ... SUM OF R-B ...
 05 R-B ... SUM OF R-A ...

ii. Rolling Forward

In the next illustration, the item to be totalled is in a different group

from your SUM clause:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 206

 FURNITURE SALES CITY: DENVER

 THIS YEAR LAST YEAR

 ARMCHAIRS $3500 $2000

 SETTEES $300 $200

 WRITING DESKS $2200 $1200

 DINING TABLES $1700 $2300

 TOTALS $3500 $2000

 ------- -------

 01 SALES-DETAIL-LINE DETAIL LINE + 1.
 05 COL 1 PIC X(20) SOURCE DESCRIPTION.
 05 R-SALES COLS RIGHT 31 41 PIC $(6)9
 SOURCES VAL-THIS-YR, VAL-LAST-YEAR.
 01 SALES-TOTALS CF FOR CITY.
 03 LINE + 2.
 05 COL 1 VALUE "TOTALS".
 05 COLS RIGHT 31 41 PIC $(7)9 SUM OF R-SALES.
 03 LINE + 1 COLS RIGHT 31 41 VALUE "-------".

In this example, the "boxes" contain instances of the different report

groups. The values to be added appear in a DETAIL, and the total is

in a CONTROL FOOTING.

You may use also this method of summing between any reasonable

combination of groups, namely any of the following:

• Lower CONTROL FOOTING to higher CONTROL FOOTING,

• DETAIL to DETAIL,

• Any group to a REPORT FOOTING,

• Any body group to a PAGE FOOTING,

• PAGE FOOTING to a CONTROL FOOTING.

Frequently there are several items that could be rolled forward to

produce the same result. For example, your YEAR totals are the

total of the twelve MONTH totals; they are also the total of your fifty-

two WEEK totals and your 365 DAY totals. Rolling forward the

immediately-lower-level total (such as MONTH totals into YEAR

totals) is the most efficient technique.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 207

Non-REPORT SECTION SUM

Here totals are gradually accumulated from values held outside the

REPORT SECTION. This method was much used in the earlier versions of

report writer and you may possess some old programs that use it. This is

usually referred to as subtotalling. Because the identifier or expression

lies outside the REPORT SECTION, it is not as clear as it is with a REPORT

SECTION SUM clause exactly when the values are added into the total,

so the following rules are important:

i. If SOURCE SUM correlation is in effect (see 3.23.5 Subtotalling and

SOURCE SUM Correlation), adding takes place when any DETAIL is

being GENERATEd that contains the same identifier as a SOURCE

item as the identifier appearing in the SUM clause.

ii. If the UPON phrase is used, adding takes place when a DETAIL

group specified in that phrase is GENERATEd.

iii. If SOURCE SUM correlation is not in effect and there is no UPON

phrase, adding takes place on each GENERATE that refers to the

report.

Almost all totalling can also be accomplished by means of REPORT

SECTION SUM clauses.

Presenting the total

When the entry containing you SUM is output, the (unedited) total to-date is

used as an internal "source" for the contents of the field. Thus, if you had coded:

 05 COL 5 PIC $$,$$$,$$9.99 SUM R-PAYMENT.

the internal total field (which is fully described below under Use of Total Fields) is

MOVEd to this report field, and edited according to the given PICTURE,

according to the same rules as the SOURCE clause.

Resetting the total

The total is reset (cleared to zero) at the end of the processing for the report

group in which it is defined, unless you override this using the RESET phrase as

described below (see 3.23.7 The RESET Phrase). Thus the total field remains

available for use anywhere in the same group (within a SOURCE for instance)

before its contents are erased.

When adding a value into the total, the report writer code obeys the rules of the ADD

statement. Unless you coded SUM OVERFLOW PROCEDURE IS OMITTED in the RD,

a SIZE ERROR test is always done and if there is size error, a run time error is

signalled at once.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 208

If the SUM clause appears in a multiple CONTROL FOOTING group, the SUM clause has

its usual effect in the lowest level group and in the higher levels acts by rolling

forward each previous level. For example, in the following structure:

 01 TYPE CF FOR STATE COUNTY CITY.
 ...
 05 COL 1 PIC ZZZ9 SUM OF W-PAY.

the SUM clause acts like three different SUM clauses. At the lowest level (CITY), it

behaves as defined (by subtotalling W-PAY). The CITY total is then rolled

forward into the COUNTY total on change of CITY and the COUNTY total is rolled

forward into the STATE total on change of COUNTY.

Summing a Repeated Item

If you wish to sum a repeating item, you may form totals along any of four

different axes. These are, from minor to major:

Axis 1: COLUMN Axis

Axis 2: COLUMN-Group Axis (below LINE and above COLUMN)

Axis 3: LINE Axis

Axis 4: LINE-Group Axis (above LINE and below report group)

Report writer will automatically total the repetitions of your field along any axes

necessary to form the total. The direction of the adding depends not on the

syntax of the clause you use but on where you place it. If your SUM clause has

no repetitions at all (is not subject to an OCCURS clause or a multiple LINE or

COLUMN clause), report writer will total all occurrences of the field. You can

thus total a REPORT SECTION table of any number of dimensions. If your SUM

clause is part of a repeating report field, then the item being summed must

repeat the same number of times along the same axes as the SUM entry. Your

field will be output along any of the axes shared and totalled along any of the

axes not shared by the SUM entry. An example will make this clearer. In the

following case, the field R-QUARTER has an OCCURS clause in two axes: the LINE

axis and the COLUMN axis.

 SALES OF SPORTS GEAR YEARLY BY QUARTER

 SPRING SUMMER FALL WINTER

 1988 $2300 $3400 $1600 $3500

 1989 $3200 $3600 $2700 $3000

 1990 $3500 $4000 $3400 $4300

 1991 $3600 $4300 $3800 $4500

 1992 $3800 $4200 $3900 $4750

The following code produces this layout:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 209

01 SALES-DETAIL TYPE DE.
 03 LINE + 1 OCCURS 5 VARYING YEAR-NO.
 05 COL 1 PIC 9(4) SOURCE 1987 + YEAR-NO.
 05 R-QUARTER COL 6 PIC $(6)9 OCCURS 4 STEP 10 VARYING SEASON
 SOURCE SALE (YEAR-NO SEASON).

To obtain row totals, code the SUM clause as an entry at a level within the same

LINE as the items referred to in SUM. (The entry below is named ROW-TOTAL but

you may choose any data-name). To obtain column totals, place the SUM

clause within a separate LINE and give it the same number of horizontal

repetitions as its operand. (The entry below is arbitrarily named COL-TOTAL.)

The final result is as follows:

 SALES OF SPORTS GEAR YEARLY BY QUARTER

 SPRING SUMMER FALL WINTER TOTAL

 1988 $2300 $3400 $1600 $3500 $10800

 1989 $3200 $3600 $2700 $3000 $12500

 1990 $3500 $4000 $3400 $4300 $15200

 1991 $3600 $4300 $4800 $4500 $17200

 1992 $3800 $4200 $3900 $4750 $16650

TOTALS $16400 $19500 $16400 $20050 $72350

01 SALES-DETAIL TYPE DE.
 03 LINE + 1 OCCURS 5 VARYING YEAR-NO.
 05 COL 2 PIC 9(4) SOURCE 1987 + YEAR-NO.
 05 R-QUARTER COL 8 PIC $(6)9 OCCURS 4 STEP 10
 VARYING SEASON SOURCE SALE (YEAR-NO SEASON).
 05 ROW-TOTAL COL 48 PIC $(7)9 SUM OF R-QUARTER.

 03 LINE + 3.
 05 COL 1 VALUE "TOTALS".
 05 COL-TOTAL COL 7 PIC $(7)9 OCCURS 4 STEP 10
 SUM OF R-QUARTER.
 05 ALL-TOTAL COL 47 PIC $(7)9 SUM OF COL-TOTAL.

Notice that the field ALL-TOTAL could also have been coded as SUM OF R-

QUARTER (which is less efficient) or SUM OF ROW-TOTAL. Also notice that the

data-names ROW-TOTAL and ALL-TOTAL are not referenced and could have

been omitted.

You may require just a single total of all the entries (the "corner" total in the above

illustration), without any row or column totals. Just write the ALL-TOTAL entry

alone:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 210

 $72350

 05 ALL-TOTAL COL 47 PIC $(7)9 SUM OF R-QUARTER.

Other Axes

The examples shown earlier cover only two out of the four possible axes. You

may also SUM along the other two axes, that is: groups of COLUMNs and groups

of LINEs. As an example of groups of COLUMNs, take this layout, where we total

the four weeks in each month horizontally:

 SPORTS CLUB QUARTERLY INCOME SPRING QUARTER PAGE 1

 ITEM TOTAL TOTAL WEEKS TOTAL WEEKS TOTAL WEEKS

 QTR APR 1 2 3 4 MAY 1 2 3 4 JUN 1 2 3 4

GOLF 2580 670 300 200 70 100 1100 450 600 50 0 810 140 90 200 380

SQUASH 980 410 200 40 120 50 340 250 30 0 60 230 60 45 25 100

TENNIS 1810 450 200 70 90 90 590 300 160 40 90 770 200 320 160 90

01 INCOME-TABLE TYPE DE.
 03 LINE +1 OCCURS 5 VARYING SPORT.
 05 PIC X(6) SOURCE SPORT-NAME (SPORT).

 05 R-QTR COL 7 PIC Z(4)9 SUM OF R-MONTH.
 (or: SUM OF R-WEEK.)

 05 OCCURS 3 STEP 22 VARYING MONTH FROM 4.
 07 R-MONTH COL 12 SUM OF R-WEEK PIC Z(4)9.
 07 R-WEEK COL 17 STEP 4 OCCURS 4 VARYING WEEK
 PIC ZZZ9 INCOME (SPORT, MONTH, WEEK).

This example also illustrates the fact that cross-foot totals need not appear to

the right, or below, the figures from which they are formed.

If your program contains more than one report, you are not restricted only to rolling

forward within one report. A SUM clause in one report may refer to a named

numeric data item in a different report. As with totalling in a single report, the

value of the referenced field is added whenever the field is output. (This does

not apply to non-REPORT SECTION summing, however, when SOURCE SUM

correlation is in effect: see 2.4 ALLOW clause.) Note that all total fields in a

Report are cleared by the INITIATE statement for the report. Therefore, if you

need to SUM from one report to another, be sure that both are INITIATEd at the

start of the processing.

A PRESENT WHEN clause may test the value of any total fields referenced in its

condition-operand. However, it should then not contain within its scope either

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 211

an entry with a SUM clause or an entry that is summed by a SUM clause. See

3.18.4 Effect of PRESENT WHEN on SUM.

Totalling Unprintable Items

You may total unprintable items in your REPORT SECTION. This is useful when you

want to print the totals only, not the unprinted individual values. In the next

example, the report computes a yearly total from 12 unprinted monthly values:

 YEARLY EXPENDITURE

 1991 $2300.00

◄──

 1992 $3766.50

─ ─

 jan + feb + ... + dec

 03 LINE.
 05 COL 2 PIC 9(4) SOURCE YEAR.
 05 R-EXPENSE PIC 9(6)V99 OCCURS 12
 VARYING MONTH SOURCE F-EXPENSE (MONTH).
 05 COL 7 PIC $(6)9.99 SUM OF R-EXPENSE.

It is not possible to accumulate in an instant a single total all the entries in a table

outside your REPORT SECTION without using an intermediate unprintable table

as in the example above. However, you may use a non-REPORT SECTION SUM

clause to accumulate - over time - single entries in a table into a corresponding

matching number of totals, typically in a CONTROL FOOTING. Since your SUM

operand is not in the REPORT SECTION, you may use subscripts with it, just as you

would in the SOURCE clause:

 SPORTS CLUB REVENUE REPORT

 END-OF-REPORT SUMMARY:

TOTALS: GOLF TENNIS SWIMMING SQUASH RESTAURANT

 $32400 $19500 $16400 $20050 $72350

 01 CF FOR REPORT.
 03 LINE ...
 05 COL 7 STEP 11 OCCURS 5 VARYING SPORT
 PIC $(6)9 SUM OF W-SPORT-REVENUE (SPORT).

If the SUM operand is not in the REPORT SECTION, you may also total arithmetic

expressions, such as:

 05 COL 54 PIC ZZZZ9 SUM OF (W-INCOME - W-TAX) * 100.

An evaluation is performed for the expression on every GENERATE, before the

result is added into the total field, so the use of this technique is less efficient -

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 212

and more susceptible to rounding errors - than a method using unprintable

intermediate totals. (The accumulation is not affected by the status of SOURCE

SUM correlation.)

Use of Total Fields

If you give a data-name to an entry that contains a SUM clause (not a SUM term that is

part of an expression), report writer will relate the data-name to its own (internal)

total field, not to the (edited) external field in the report line, as would be the

case with a SOURCE, VALUE, or FUNCTION clause. (The total field is called a

sum-counter in older texts, but total field is clearer as it does not conflict with the

COUNT clause.) Compare these two cases:

With SOURCE etc.:

 05 R-PAYMENT COL 21 PIC $(7)9.99 SOURCE IS WS-PAYMENT.

$$$$$$$9.99 ◄◄◄ report line

└─ Field R-PAYMENT is actual report-line field, except when

referenced in a SUM clause, in which case WS-PAYMENT is what is

added.

With SUM:

 05 TOT-PAYMENT COL 21 PIC $(7)9.99 SUM OF WS-PAYMENT.

◄◄ Field TOT-PAYMENT is the REPORT SECTION's

 internal total field.

 ↓

$$$$$$$9.99 ◄◄◄ report line

↑

└ Report line field has no name.

The internal total field is a pure numeric, signed COMPUTATIONAL field with as many

integral and fractional digits as the SUM entry. Hence, no precision will be lost

when the total field is stored in the report field. If the SUM clause refers to a

REPORT SECTION item, the precision of the total field is increased if necessary so

that it has at least as many integral and fractional digits as the entry being

totalled. Hence the total will have at least the precision of the field being

totalled, rounding or truncation taking place, if indicated, when the field is

output, not while it is being accumulated. Here are some examples:

 PICTURE in SUM Entry PICTURE of SUM Operand PICTURE of Internal Total

 if in REPORT SECTION

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 213

 99999 (not in REPORT SECTION) S9(5) COMP

 ZZZ9.99 ZZ9.99 S9(4)V99 COMP

 $(6)9- $(5)9.99- S9(6)V99 COMP

Note that the total field is always signed, even if the report line field is not

signed, so the adding into the total field is always algebraic.

Accessing the Total Fields

You may access the internal total field directly in the following four ways.

In a SOURCE Clause

You may capture an internal total field with a SOURCE clause, either as its

single operand or as a term in an operand that is an expression. The

value you obtain depends on the category of the total field you access,

as follows:

i. SOURCE Refers to Total Field Defined in the Same Report Group

You will always obtain a true value of the total as specified. The position of the

SOURCE clause within the group is immaterial, as report writer always computes

the totals before producing any of the group's report lines (which is when

SOURCE operands are filled in).

This feature is useful when you wish to form an unprintable total from a non-

REPORT SECTION field without loss of precision and then output it

ROUNDED . You might wish to form totals to cents precision and output

them to the nearest dollar. You should then write two entries in the same report

group, one of which has no COLUMN clause and is therefore unprintable, as in

this example:
 *the first item is unprintable:
 05 TOTAL-FIELD PIC S9(6).99 SUM OF WS-FIELD.
 *the second item prints its contents:
 05 COL 21 PIC -(6)9 SOURCE TOTAL-FIELD ROUNDED.

If you had written instead:

 05 COL 21 PIC -(6)9 SUM OF WS-FIELD.

the internal total field would have the implied PICTURE S9(6) COMP,

so you would lose precision each time the (truncated) value of WS-

FIELD is added in. Truncation would not arise if the SUM operand

were a REPORT SECTION data-name, since the precision of the

summed field is then also taken into account in establishing the

required precision of the sum field.

Alternatively, you may make use of report writer's less efficient but

highly accurate default PICTURE S9(12)V9(6) for SUM terms in

SOURCE clauses, by coding:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 214

 05 COL 21 PIC -(6)9 SOURCE (SUM OF WS-FIELD).

The next example uses an arithmetic expression involving total fields:

 05 COL 10 VALUE "TOTAL INCOME:".
 05 R-TOT-INCOME COL + 2 PIC Z(6)9 SUM OF INCOME.
 05 COL 35 VALUE "TOTAL TAX:".
 05 R-TOT-TAX COL + 2 PIC Z(6)9 SUM OF TAX.
 05 COL 55 VALUE "NET PAY:".
 05 COL + 2 PIC Z(6)9 SOURCE (R-TOT-INCOME - R-TOT-TAX).

It would also have been correct to code the last entry as:

 05 COL + 2 PIC Z(6)9 (SUM OF INCOME) - (SUM OF TAX).

However, the first code shown is more economical since we are

printing the individual totals R-TOT-INCOME and R-TOT-TAX already

elsewhere and can therefore re-use them in the expression instead

of summing them again.

ii. SOURCE Refers to Total Field Not Defined in Same Group (Snapshots)

If the SUM total field referred to in turn refers to a non-REPORT

SECTION item (subtotalling) or to an entry in a different report group

(rolling forward), you will obtain at that instant the up-to-date

accumulated value, a technique which is useful for obtaining

brought forward and carried forward totals, as in the layout on the

following page:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 215

 SPORTS CLUB CASH BOOK

 01/01/83 BAR $200.00

 01/01/83 LOAN $150.00

 07/04/83 PETTY CASH $50.00

 CARRIED FORWARD: $2200.50

 << First Page

 Grand total field TOT-CASH

 is being accumulated while

 these fields are output.

 SPORTS CLUB DONATIONS

 BROUGHT FORWARD: $2200.50

 08/05/83 ADVERTISING $200.00

 09/06/83 RESTAURANT $300.00

 GRAND TOTAL: $5503.00

 =========== ========

 CARRIED FORWARD: $5503.00

 << Last Page

 WORKING-STORAGE SECTION.
 01 WS-TOT-CASH PIC S9(4)V99 COMP.
 REPORT SECTION.
 ...
 01 TYPE PH.
 03 LINE 1 COL 1 VALUE " SPORTS CLUB DONATIONS".
 03 LINE + 2 ABSENT AFTER NEW REPORT.
 05 COL 1 VALUE "BROUGHT FORWARD:".
 05 COL 25 PIC $(5)9.99 SOURCE WS-TOT-CASH.
 01 CASH-ENTRY TYPE DE LINE.
 05 ...
 05 P-CASH COL 26 PIC $(4)9.99 SOURCE CASH.
 01 TYPE CF FINAL.
 03 LINE.
 05 COL 1 VALUE "GRAND TOTAL:".
 05 TOT-CASH COL 26 PIC $(4)9.99 SUM OF P-CASH.
 01 TYPE PF LINE 60.
 05 COL 1 VALUE "CARRIED FORWARD".
 05 COL 25 PIC $(5)9.99 SOURCE WS-TOT-CASH.
 ...
 PROCEDURE DIVISION.
 ...
 GENERATE CASH-ENTRY
 MOVE TOT-CASH TO WS-TOT-CASH

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 216

We reference a SUM total field in a SOURCE to capture a snapshot

of the running total. The SUM entry is gradually accumulated over a

certain part of the report, so we obtain any number of versions of it

at any state up to the eventual total. This, incidentally, gives us an

alternative to the RESET phrase for forming cumulative (running)

totals.

In the sample code we save the SUM total field procedurally in a

working location (WS-TOT-CASH) after each GENERATE and use that

in the SOURCE for the next cycle. This is done for two reasons:

It is independent of whether or not the option is in effect. The

(standard but "less logical") option does rolling forward and

subtotalling before the page-fit test (see GENERATE Processing

Cycle), so our total fields will already have been updated by the

new value of CASH and we would otherwise have to subtract it

again in the SOURCE to get the true total. The option corrects this

anomaly, but there is a second problem:

Whichever option is in effect, the total field is reset to zero

immediately after its CONTROL FOOTING group has been output, so

it cannot appear in the PAGE FOOTING beneath it (the last page in

our example, since the group is a CF FINAL). Hence the use of WS-

TOT-CASH which is the current total "suspended from the last

GENERATE".

If we did not wish to print a grand total field from which to

"snapshot" the values, we could define the total as an unprintable

item (with no COLUMN clause).

In a PRESENT WHEN clause

You may test the value of a total field in a PRESENT WHEN's condition to

control what is produced in the report group. The effective value will be

the same as for the case with SOURCE above. However, if you do this,

do not code any SUM clauses or any summed entries within the scope of

your PRESENT WHEN clause. This avoids a deadlock situation where

summing depends on conditions and conditions depend on summing.

A useful example is the common requirement to suppress zero totals.

The code should be as follows:

 04 TOTAL-CASH PIC 9(4) SUM OF CASH.
 04 LINE + 2 PRESENT WHEN TOTAL-CASH NOT = ZERO.
 05 COL 1 "TOTAL = ".
 05 COL 11 PIC ZZZ9 SOURCE TOTAL-CASH.

TOTAL-CASH is an unprintable SUM entry that is - as necessary - outside

the scope of the PRESENT WHEN. (If your entire LINE is subject to the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 217

PRESENT WHEN, place your unprintable field in another LINE of the same

group. Since it is unprintable, its placement is immaterial.)

You may use the total field even if it is defined later in the same group

because totalling is completed for each group before production of any

of the report lines begins.

In the Main-Line PROCEDURE DIVISION

You may capture the contents of a subtotalled or rolled forward total

field in a main-line COBOL procedural statement. As an example of the

use of this property, you may move a total field into a record in a

different output file. This will save you the effort and inefficiency of

totalling the same field independently. However, the contents of an

unconditional cross-foot total will always be zero, because it will always

have been output as soon as it was totalled. (A total field is reset to zero

at the end of the report group in which it is defined, unless the RESET

phrase defers this action – see 3.23.7 The RESET Phrase.)

You may also procedurally alter (that is, ADD TO, SUBTRACT FROM etc.)

the value of any named total field at any time. Of course, if you do so

the results that appear in the total fields will be different from those you

would expect if report writer alone were accumulating the totals. You

may also need to handle any possible size errors in the total field. The

values you added or subtracted will be reset with the rest of the value at

the usual time.

Total fields are cleared to zero by the INITIATE statement. They will also

normally be zero after execution of the TERMINATE statement. This is

because they are always cleared after being output, and the

TERMINATE statement outputs all CONTROL FOOTING groups and any

PAGE FOOTING and REPORT FOOTING. However, if a SUM clause was

coded in another type of group, such as a DETAIL, that is not

automatically output when your program issues the TERMINATE, there

could be a non-zero total waiting in vain to be output. Also, if the SUM

clause was conditional, the field with the SUM might have been absent

on the last occasion, in which case a non-zero total might still be waiting

to be output. In all these cases, report writer will issue a run time error

and the total will be cleared if and when your program issues another

INITIATE for the corresponding report.

In a Declarative SECTION

You may also access total fields in a USE BEFORE REPORTING Declarative

SECTION for any report group. As is the case with reference to sum totals

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 218

in a SOURCE, described above (see a(ii)), the state of any total fields you

may access depends on whether the OSVS option is in effect or not.

Any cross-foot totals for the group will already have been calculated in

all cases.

If OSVS is in effect, any rolling forward (from this group into a different

group) and subtotalling (if this is a DETAIL group, or a PH or PF triggered

by a DETAIL group) are done before entry to the Declarative SECTION.

Hence you will obtain all totals fully updated. (See 4.2.4 GENERATE

Processing Cycle.)

If OSVS is not in effect, by contrast, any rolling forward and subtotalling

are done after entry to the Declarative SECTION. So, especially if your

group is a PAGE FOOTING (or HEADING), you will obtain an accurate

value of the total at that "physical point" in the report.

Precision of SUM terms

If you use SUM or COUNT as a term in a SOURCE's expression, report writer will

assign the internal total field with PICTURE S9(12)V9(6) COMP , irrespective of the

PICTURE of the report field.

Subtotalling and SOURCE SUM Correlation

Subtotalling is the term used when your SUM clause or SOURCE clause SUM term

specifies a non-REPORT SECTION operand, that is, an item in your FILE, WORKING-

STORAGE, or LINKAGE SECTION. OS/VS and DOS/VS COBOL-IT Report Writer, which is

based on ANS-68, depends on subtotalling for forming most totals. With report writer,

you should rely instead on rolling forward, by giving a data-name to a DETAIL group's

SOURCE entry, so that there is no need to worry about when the items are added into

the total fields. However, there are still times when subtotalling might be preferred, such

as when you are creating total lines in a summary report and have not coded SOURCE

items in a DETAIL group to refer to. The rules of operation are as follows:

Report writer adds the SUM operands ("addends") directly into the total field, following

the normal rules of the ADD statement. If there is a size error, the same action

takes place as for REPORT SECTION SUM totals, as described above.

SOURCE SUM Correlation.

The decision as to when to add the items depends on whether SOURCE SUM

correlation is in effect. This is the chief difference between the ANS-68 standard

used in OS/VS and DOS/VS COBOL, which automatically applies SOURCE SUM

correlation, and the ANS-74 and ANS-85 standards, which do not. You will

observe a difference only when the following circumstances occur

simulataneously:

When your report has more than one DETAIL group; and

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 219

When your program SUMs an operand that is also a non-REPORT SECTION

SOURCE operand in one or more of the DETAIL groups.

Otherwise, report writer will not apply SOURCE SUM correlation. SOURCE SUM

correlation is in effect if:

The precompiler was installed with the OSVS option set on, or

You code an ALLOW SOURCE SUM CORR clause in your RD.

SOURCE SUM correlation is not in effect if:

Your system was installed with the OSVS option set off (ANS74 or ANS85), or,

You code an ALLOW NO SOURCE SUM CORR clause in your RD.

If SOURCE SUM correlation is in effect, report writer takes each non-REPORT SECTION

operand specified in your SUM clause and scans the DETAIL groups of your

report to establish whether the same item is coded in more than one of them as

a SOURCE operand. (The SOURCE keyword may, as usual, have been omitted.)

Arithmetic expressions are not examined. Redefinitions of the same item and

differences in subscripts or qualifiers (apart from interchanging the words IN and

OF) mean that there is no match. All your DETAIL groups are scanned in this

way. The appearance of the same operand more than once as a SOURCE in

the same DETAIL counts as only a single match. If a match is found, report writer

will add the item into the total field only when the DETAIL or DETAILs that contain

your item are GENERATEd. If no match is found, report writer will add the item

into the total field on every GENERATE for that report.

Using a dummy DETAIL group for Summary Reporting.

With the ANS-68 standard of OS/VS and DOS/VS COBOL, a corresponding

SOURCE was required for every SUM. This meant that in a totals only report, a

dummy DETAIL group needed to be defined, as in the following sample:

 RD SUMMARY-REPORT
 CONTROL IS STATE.
 01 DUMMY-GROUP TYPE DETAIL.
 05 SOURCE IS WS-PAY-THIS-YEAR.
 05 SOURCE IS WS-PAY-LAST-YEAR.
 01 TYPE CF FOR STATE.
 03 LINE PLUS 2.
 05 COLUMN 1 PIC ZZZ9 SUM WS-PAY-THIS-YEAR.
 05 COLUMN 11 PIC ZZZ9 SUM WS-PAY-LAST-YEAR.
 ...
 GENERATE DUMMY-GROUP

Although report writer accepts this code unaltered, the dummy group is now

unnecessary - even if SOURCE SUM correlation is in effect. The dummy group in

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 220

the example above may be deleted and the GENERATE replaced by GENERATE

report-name:

 RD SUMMARY-REPORT
 CONTROL IS STATE.
 01 TYPE CF FOR STATE.
 03 LINE PLUS 2.
 05 COLUMN 1 PIC ZZZ9 SUM WS-PAY-THIS-YEAR.
 05 COLUMN 11 PIC ZZZ9 SUM WS-PAY-LAST-YEAR.
 ...
 GENERATE SUMMARY-REPORT

More details will be found under Summary Reporting (see GENERATE statement).

If SOURCE SUM correlation is not in effect, report writer will add every operand of the

SUM clause into the total field on every GENERATE for the report.

Three Methods of Subtotalling

In the items just preceding, you observe that, if SOURCE SUM correlation is not in effect,

adding into your total field will take place on each GENERATE for the report. This may

not be suitable, especially when you have several DETAIL groups. If you have two

record types, say SALARY and NAME-ADDRESS, with DETAIL groups that correspond to

these, and you want the total of SALARY, you will clearly want the field SALARY to be

added only when your program generates the SALARY DETAIL group. There are three

ways of avoiding this problem, which are illustrated below.

The recommended method of report writer is to place a data-name on the entry to be

totalled (omitting the COLUMN clause if it is not be printed), and SUM the item

using that data-name.

If SOURCE SUM correlation is in effect and both the SOURCE operand and the SUM

operand names are identical, the item will be added, as expected, only when

the SALARY group is GENERATEd.

Using the UPON phrase. You may use this whether or not SOURCE SUM correlation is in

effect, because UPON overrides its effect. By writing UPON SALARY-GRP (where

SALARY-GRP is the 01-level name of your DETAIL group), you ensure that the item

will be added into the total only when the SALARY-GRP DETAIL group is

GENERATEd.

The next example compares these methods:

 SPORTS CLUB OFFICERS: SALARIES

 NAME: J.C. CODER SALARY: $10000

 <- SALARY group

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 221

 BANK: BARCLAYS

 1 FARNHAM ROAD, TENTERDEN

 NAME: T.A. ANALYST SALARY: $12000

 BANK: ...

 TOTAL SALARIES: $89000

 <- NAME-ADDRESS group

Method Using REPORT SECTION SUM (recommended)

 01 SALARY-GRP TYPE DE LINE + 1.
 ...
 05 R-SALARY COL 50 PIC $(6)9 SOURCE SALARY.
 01 NAME-ADDRESS DE ...
 01 CF ...
 ...
 05 COL 49 PIC $(7)9 SUM OF R-SALARY.

Using SOURCE SUM Correlation:

 RD ...
 *Following may be omitted if set on customization.
 ALLOW SOURCE SUM CORR.
 01 SALARY-GRP DE LINE + 1.
 ...
 05 COL 50 PIC $(6)9 SOURCE SALARY.
 01 NAME-ADDRESS DE ...
 01 CF ...
 ...
 *Correlation between SOURCE and SUM.
 05 COL 49 PIC $(6)9 SUM OF SALARY.

Using the UPON Phrase:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 222

 01 SALARY-GRP TYPE DE LINE + 1.
 ...
 05 COL 50 PIC $(6)9 SOURCE SALARY.
 01 NAME-ADDRESS TYPE DE ...
 01 TYPE CF ...
 ...
 *UPON phrase indicates "ADD only when SALARY-GRP generated".
 05 COL 49 PIC $(6)9 SUM OF SALARY UPON SALARY-GRP.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 223

The RESET Phrase

In all our examples presented earlier in this section, the total field is reset to zero at the

end of the processing for the group in which it has appeared. Sometimes you will not

want this to happen. Such a case is called a cumulative (or running) total. Here the

total is not necessarily cleared or reset after it has been output. Values then continue

to be added into the total. You will have seen above that you can capture cumulative

totals by "taking a snapshot" of a higher-level total field. Another method is to use the

RESET phrase. Its operand states at which (normally higher) level of control break, if any,

the total field is to be cleared. If you specify RESET ON REPORT (or RESET ON FINAL), the

total field will not be reset after the final control footing has been presented, during the

execution of the TERMINATE.

For example, by writing:

 03 COL 20 PIC ZZZ9.99 SUM OF ACC-BAL RESET ON BRANCH-CODE.

you ensure that the total field is not cleared until a new BRANCH-CODE is reached.

Here is an example of a cumulative total:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 224

 SPORTS CLUB. SALES OF TENNIS SHOES

 DATE AMOUNT CUMULATIVE

 010270 100.00

 010370 150.00

 TOTALS JAN 350.00 350.00

 020770 50.00

 TOTALS FEB 50.00 400.00

 030370 100.00

 160370 40.00

 270370 60.00

 TOTALS MAR 200.00 600.00

 ...etc...

 050171 100.00

 270171 200.00

 TOTALS JAN 300.00 300.00

< cumulative and

< normal totals

same

< first time

< cumulative total

< is not cleared

< before adding

50.00

< total reset after

< change of YEAR.

 RD ...
 CONTROLS YEAR MONTH.
 01 CF FOR MONTH.
 ...
 05 COL 21 PIC ZZZ9.99 SUM OF AMOUNT.
 05 COL 33 PIC ZZZ9.99 SUM OF AMOUNT RESET ON YEAR.

Compatibility

The following features are unique to new Report Writer:

• Optional word OF after keyword,

• SUM operand can be an expression formed from non-REPORT SECTION

items,

• SUM as a term in an expression in a SOURCE clause,

• SUM clause in report groups other than of TYPE CONTROL FOOTING,

• The ROUNDED phrase.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 225

OS/VS and DOS/VS COBOL Report Writer, in common with ANS-68 and ANS-74 requires

that any REPORT SECTION item whose data-name is the operand of a SUM must

itself be a SUM entry, that is, only SUM entries may be rolled forward or used for

cross footing. OS/VS and DOS/VS COBOL Report Writer always assumes SOURCE

SUM correlation. It uses the ANS-68, not the ANS-74, rules.

The automatic check for overflow is unique to new Report Writer. A migrated program

which produced truncated totals will now produce blank fields instead, plus run

time error message 11. In the unlikely event that this truncation is intentional, the

clause SUM OVERFLOW PROCEDURE IS OMITTED should be placed in the RD.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 226

1.3.24 TYPE clause

This clause is used at the 01-level to indicate which of the seven possible types of report

group is being defined.

┌── Format

──

──┐

│ │

│►►┬───────┬┬┬REPORT

HEADING─┬───────────────────────────┬──►◄ │

│ └TYPE IS┘│└RH─────────────┘ │ │

│ ├┬PAGE HEADING─┬─────────────────────────────┤

│

│ │└PH───────────┘ │ │

│ ├┬CONTROL HEADING─┬┬────────────────────────┬┤

│

│ │└CH──────────────┘└┬ON─┬control-id┬───────┬┘│

│

│ │ └FOR┘ └OR PAGE┘ │ │

│

├┬DETAIL─┬───────────────────────────────────┤ │

│ │└DE─────┘ │ │

│ ├┬CONTROL FOOTING─┬─┬─────────────────────┬──┤

│

│ │└CF──────────────┘ │ ┌────────┐ │ │

│

│ │ │ ▼ │ │ │ │

│ │ └┬─ON─┬─┬─control-id─┬┘ │ │

│ │ └─FOR┘ └─ALL────────┘ │ │

│ ├┬PAGE FOOTING─┬─────────────────────────────┤

│

│ │└PF───────────┘ │ │

│ └┬REPORT FOOTING─┬───────────────────────────┘

│

│ └RF─────────────┘ │

└───

─────────────┘

where control-id is an identifier in the CONTROL(S) clause, or the word REPORT or FINAL.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 227

TYPE Clause: Coding Rules

Write the TYPE clause at the 01-level entry only. You may omit the keywords TYPE IS. If

you do not code a TYPE clause for a group, it will be assumed to be TYPE DETAIL.

All TYPEs of report group are optional, whatever the circumstances, but every report

must have at least one body group (CONTROL HEADING, DETAIL, or CONTROL

FOOTING).

PAGE HEADING, PAGE FOOTING and the OR PAGE phrase of CONTROL HEADING groups

are allowed only if you have a PAGE LIMIT clause in the RD.

In the CONTROL HEADING and CONTROL FOOTING forms each control-id operand must

be chosen from the list of controls in your CONTROL clause, including REPORT (or

FINAL) which is always assumed present.

If CONTROL HEADING is coded with no control-id operand, there must not be more than

one control-id in the CONTROL(S) clause. The clause is then taken to mean

CONTROL HEADING FOR control-id, if there is just one control-id in the

CONTROL(S) clause, or CONTROL HEADING FOR REPORT if there is no

CONTROL(S) clause at all.

If more than one (different) control-id is coded in the CONTROL FOOTING form, the result

is a set of multiple CONTROL FOOTING report groups. The control-ids need not

be coded in any particular order and need not form a consecutive hierarchic

sequence. For example, if the CONTROLS clause is:

 CONTROLS ARE STATE CITY STREET

it is permissible to code:

 01 TYPE CF FOR STATE, STREET.

which means the same as

 01 TYPE CF FOR STREET, STATE.

If a CONTROL FOOTING is required for all levels of control, ALL may be coded

instead of the exhaustive list of control-ids.

If a DETAIL group also has the same format as some CONTROL FOOTINGs, it is

usually worth the effort to define it as the lowest-level CONTROL FOOTING

group, and force a lowest-level control break on each GENERATE, in order to

make full use of this feature. In this case summary reporting is used (see 4.2

GENERATE statement) and each totalled value, generated by a SUM clause, will

be the "total" of just a single value in the case of the lowest CONTROL FOOTING.

If CONTROL FOOTING is coded with no control-id operand, it is taken to mean CONTROL

FOOTING FOR ALL or, CONTROL FOOTING FOR control-id , if there is just one

control-id in the CONTROL(S) clause, or CONTROL FOOTING FOR REPORT if there

is no CONTROL(S) clause at all.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 228

In any report you may have any number of DETAIL report groups, but only one PAGE

HEADING, PAGE FOOTING, REPORT HEADING, REPORT FOOTING, and each

control-id may appear in only one CONTROL HEADING and only one CONTROL

FOOTING group. If CONTROL FOOTING FOR ALL is coded, it must be the only

CONTROL FOOTING in the report.

The physical order of report group descriptions is irrelevant. For example, the PAGE

HEADING group need not necessarily appear before the DETAIL and PAGE

FOOTING. Report writer produces them in the correct sequence according to

the rules for page-fit and control break testing. However, for ease of

maintenance, the order implied in the format above is recommended. Also, it is

helpful if CONTROL HEADING groups are coded in major-to-minor order and

CONTROL FOOTING groups in minor-to-major order, paralleling the sequence in

which these groups will be presented in the report.

In a report with a PAGE LIMIT clause, if your group contains any absolute LINE clauses,

report writer will check that each line of the group will lie within the region of the

page appropriate to the TYPE of the group. Refer to the diagram of the regions

of the page (see 2.9.3 PAGE LIMIT Clause: Operation). REPORT HEADING and

REPORT FOOTING groups may appear anywhere on the page from the

HEADING position onwards. If your group contains only relative LINE clauses,

and the report has a PAGE LIMIT clause, report writer will check at compilation

time that your group is not larger than the appropriate region of the page,

allowing for any other groups that may share that region (that is, a REPORT

HEADING appearing above the first PAGE HEADING, or a REPORT FOOTING

appearing below the last PAGE FOOTING).

All the CONTROL HEADING groups with an OR PAGE phrase must be able to fit on the

page above any other DETAIL or CONTROL HEADING group. Stated precisely:

(a) each DETAIL or other CONTROL HEADING must either have only relative LINE

clauses or must begin with an absolute LINE which is higher than the highest

possible line number produced by the CONTROL HEADING groups with an OR

PAGE phrase, and (b) the LAST DETAIL value must be sufficient to

accommodate the largest such combination.

TYPE Clause: Operation

You use the TYPE clause to indicate, implicitly, where and how your group is to be

produced in the report. Here is a summary of how each TYPE is handled:

REPORT HEADING

This group will appear once, at the very start of the report. (See 4.2.3 GENERATE

Statement: Operation.)

PAGE HEADING

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 229

This group will be produced as the first group in each page. (See 3.10.3 LINE

Clause: Operation.)

CONTROL HEADING

This group will appear automatically at the start of each different actual value

of the corresponding control. (See 2.6 CONTROL clause.) If you code the OR

PAGE phrase, the report group will also be triggered by a page advance. See

3.24.4 below for full details.

DETAIL

All the remaining report groups that are not of one of the other six types are of

TYPE DETAIL. DETAIL groups are the only report groups that can be GENERATEd

explicitly by the program. The remaining six TYPEs of report group are produced

automatically whenever necessary before the DETAIL group is processed. (Note

that with summary reporting , the other six TYPES are the only ones that can be

produced. See 4.2.2 GENERATE Statement: Coding Rules.)

CONTROL FOOTING

This group will appear automatically at the end of each different actual value

of the corresponding control or controls. (See 2.6 CONTROL clause.)

PAGE FOOTING

This group will be produced as the last group in each page (except on a page

occupied only by a REPORT HEADING and immediately after a REPORT

FOOTING). (See 3.10.3 LINE Clause: Operation.)

REPORT FOOTING

This group will appear once, at the very end of the report. (See 4.6 TERMINATE

statement.)

RH and PH together

If your report contains both a REPORT HEADING and a PAGE HEADING group,

report writer will attempt to place them both in the Page Heading region of the

page. If it can do this without overlap, without overflowing the region, and

without violating any of the above rules, then your REPORT HEADING group will

be produced on the first page of the report, above the PAGE HEADING. If the

PAGE HEADING has relative LINE clauses, it begins relative to the last line of the

REPORT HEADING. If, despite this, you require the REPORT HEADING to appear

on a page by itself, you should code NEXT GROUP NEXT PAGE in the 01-level

entry of the REPORT HEADING, to suppress this check.

If you want the REPORT HEADING to appear on the first page above the PAGE

HEADING and "push it down" so that your DETAIL groups start lower on the first

page than they do on the remaining pages, you should omit the FIRST DETAIL

sub-clause. Your DETAIL groups will then begin on the line following the PAGE

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 230

HEADING . To get extra space before your first DETAIL group, you may define a

blank LINE entry at the end of your PAGE HEADING:

 RD ...
 PAGE LIMIT 60. *> no FIRST DETAIL clause
 01 TYPE RH.
 03 LINE 1.
 05 COL 1 VALUE "END OF YEAR REPORT".
 03 LINE + 1.
 05 COL 1 VALUE "******************".
 03 LINE + 2. *> blank lines for first sheet layout
 01 TYPE PH.
 03 LINE + 1.
 05 COL 1 VALUE "WOLFITDOWN PETFOODS".
 03 LINE + 2. *> blank lines before DETAILs begin

You may also achieve the same result without using a REPORT HEADING, by

including all the lines in a single PAGE HEADING and using a PRESENT AFTER

REPORT clause (see 3.17 PRESENT AFTER clause).

PF and RF together

If your report contains both a PAGE FOOTING and a REPORT FOOTING group,

report writer will attempt to place them both in the Page Footing region of the

page. If it can do this without overlap, without overflowing the region, and

without violating any of the above rules, then your REPORT FOOTING group will

be produced on the last page of the report, below the PAGE FOOTING. If the

REPORT FOOTING has relative LINE clauses, it begins relative to the last line of the

PAGE FOOTING. If, despite this, you require the REPORT FOOTING to appear on

a page by itself, you should code an ON NEXT PAGE phrase in the first LINE

clause of the REPORT FOOTING, to suppress this check.

The OR PAGE Phrase of the CONTROL HEADING

You may add the OR PAGE phrase after the control-id operand for TYPE CONTROL

HEADING. This causes your CONTROL HEADING to be produced at the top of each

page. This enables you to repeat essential "key" information after your regular PAGE

HEADINGs. The precise rules of operation are as follows:

If your report contains any such TYPE CH groups with the OR PAGE phrase, the CONTROL

HEADING group will be presented after a control break at the relevant level,

exactly as when the PAGE option is not present, but in addition, the actions on

page advance processing are modified as follows:

If a DETAIL group causes a page advance then, after the usual page advance

has taken place, the CONTROL HEADING group is printed. If more than

one TYPE CH group has the OR PAGE option, these CONTROL HEADING

groups are printed in hierarchic order, from highest to lowest. Each

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 231

CONTROL HEADING is, of course, printed on the new page, irrespective

of whether or not it would fit on the previous page.

If a CONTROL HEADING group causes a page advance, the same action

occurs as in (a) above, except that the CONTROL HEADING group that

caused the page advance is output only once on the new page,

whether it has the OR PAGE phrase or not.

If a CONTROL FOOTING group causes a page advance, the same action

occurs as for a DETAIL except that no CONTROL HEADINGS below the

level of the CONTROL FOOTING are printed.

If a group has CH FOR PAGE without a control-id, it will be treated as equivalent to CH

FOR PAGE OR REPORT.

The following shows the layout you might require:

 ** HEADING ** PAGE 1

 YEAR: 1991

 MONTH: 01

 20

 30

 TOTAL FOR MONTH: 50

 MONTH: 02

 10

 20

 TOTAL FOR MONTH: 30

 MONTH: 03

 20

 30

 40

 (A)

 ** HEADING ** PAGE 2

 YEAR: 1991

 MONTH: 03

 50

 TOTAL FOR MONTH: 140

 MONTH: 09

 20

 30

 TOTAL FOR MONTH: 50

 MONTH: 11

 20

 40

 10

 TOTAL FOR MONTH: 70

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 232

(B)

 ** HEADING ** PAGE 3

 YEAR: 1991

 MONTH: 12

 10

 20

 30

 10

 20

 30

 10

 20

 30

 10

 TOTAL FOR MONTH: 190

 (C)

 ** HEADING ** PAGE 4

 YEAR: 1991

 TOTAL FOR YEAR: 530

 YEAR: 1992

 MONTH: 01

 20

 10

 ... etc.

Note the following labelled points in the diagram:

(A) Because of the OR PAGE phrases, both CH groups re-appear at the top of the page

even though neither control has changed.

(B) When a control break occurs and the corresponding CH group will not fit on the current

page, it appears once only at the top of the new page, even though it has an OR

PAGE phrase.

(C) If a CF group causes a page advance, the CH groups are produced at the top of the

next page, but only those at the same level or above that of the CF group.

The following is the report writer code required to produce this layout:

 RD REP-ONE
 PAGE LIMIT 40
 CONTROLS ARE YEAR, MONTH.

 01 PH LINE 1.
 05 COL 1 "** HEADING **".
 05 COL 19 "PAGE".
 05 COL 21 PIC Z9 SOURCE PAGE-COUNTER.

 01 CH FOR YEAR OR PAGE LINE + 1.
 05 COL 1 "YEAR:".
 05 COL + 2 PIC 9(4) SOURCE YEAR.

 01 CH FOR MONTH OR PAGE LINE + 1.
 05 COL 1 "MONTH:".
 05 COL + 2 PIC 99 SOURCE MONTH.

 01 REP-DET TYPE DE LINE + 1.
 05 COL 1 "........".
 05 PVAL COL + 2 PIC ZZZ9 SOURCE WVAL.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 233

 01 TYPE CF FOR MONTH LINE + 1.
 05 COL 1 "TOTAL FOR MONTH:".
 05 M-TOT COL + 2 PIC ZZZ9 SUM OF PVAL.

 01 TYPE CF FOR YEAR LINE + 1.
 05 COL 1 "TOTAL FOR YEAR:".
 05 COL + 2 PIC ZZZ9 SUM OF M-TOT.

Compatibility

All aspects of the following features are unique to new Report Writer:

• Allowing the TYPE keyword to be omitted,

• The optional words ON and FOR,

• The OR PAGE phrase of CONTROL HEADING,

• Default of DETAIL if the TYPE clause is omitted.

• The multiple CONTROL FOOTING option.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 234

1.3.25 USAGE clause

This clause is allowed for documentary purposes in the REPORT SECTION, for consistency

with basic COBOL, or to emphasize that an entry is DBCS.

┌── Format

──

──┐

│ │

│ ►►───┬───────────┬─┬─DISPLAY───┬───►◄ │

│ └─USAGE IS──┘ ├─DISP──────┤ │

│ └─DISPLAY-1─┘ │

│ │

└───

─────────────┘

USAGE Clause: Coding Rules

The USAGE clause may be coded at any level, but no item may be subject to both

USAGE DISPLAY and USAGE DISPLAY-1.

DISP is synonymous with DISPLAY.

Only non-DBCS items may be subject to USAGE DISPLAY and only DBCS items may be

subject to USAGE DISPLAY-1.

No other forms of the USAGE clause are permitted in the REPORT SECTION.

USAGE Clause: Operation

DISPLAY is retained for consistency with basic COBOL but it is never required.

USAGE DISPLAY-1 indicates that the item (or items if on a group level) is DBCS (Double-

Byte Character Set), such as Japanese Kanji. However, it is not required in the

REPORT SECTION, since it is implied by the presence of a DBCS PICTURE string

(containing the symbols "G" and "B" only) or a DBCS literal, of the form G"so...si"

or G'so...si' where so and si are the shift-out and shift-in characters. DBCS items

are stored with a shift-out character on the left and a shift-in on the right. Each

double-byte character occupies one print column position even though it takes

up two bytes of memory. COLUMN numbers (absolute or relative) take this into

account. Spaces inserted between DBCS items are the regular (non-DBCS)

space.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 235

Compatibility

OS/VS and DOS/VS COBOL Report Writer and new Report Writer treat USAGE DISPLAY

identically. OS/VS and DOS/VS COBOL do not handle DBCS fields.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 236

1.3.26 VALUE clause

This clause may be used whenever the report field to be output consists of a fixed literal

value.

┌── Format

──

──┐

│ ┌───────┐ │

│ ▼ │ │

│ ►►───┬────────────┬─literal-1─►◄ │

│ ├─VALUE IS───┤ │

│ └─VALUES ARE─┘ │

└───

─────────────┘

VALUE Clause: Coding Rules

You may specify a numeric or non-numeric literal, including a figurative constant, or a

DBCS literal. An ANS-85 SYMBOLIC CHARACTER is also permitted.

Unless you specify ALL or a figurative constant, you do not need a PICTURE clause. For

example:

 05 COL 21 VALUE "*** ALL-IN SPORTS CLUB ***".

You may use 'apostrophes' instead of "quotes" if your current compiler options

expect them. The Precompiler accepts either delimiter at the start of a literal,

scanning for the same delimiter to close the literal. Continued literals are also

permitted. As usual, two quotes juxtaposed within a "literal" signify a single

quote as part of the value, and similarly for apostrophe.

You may use the ALL "literal" form or a numeric literal or figurative constant, but in all

these cases you must specify a PICTURE. Here is an easy method of coding a

repeated value:

 05 COL 1 PIC X(24) VALUE ALL "XOX".

which gives you the repeated pattern: XOXXOXXOXXOXXOXXOXXOX

If the item is defined as DBCS by virtue of its PICTURE clause or USAGE DISPLAY-1 clause,

the literal must also be DBCS. However a PICTURE clause is not required, a

PICTURE of G(n) where n is the number of double bytes being assumed in

default.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 237

Any literal may also be hexadecimal. However, it is inadvisable to use this facility to

insert printer control characters into your print data, since these will (a) make

your program non-portable and unreadable (b) put your COLUMN positions out

of alignment. The STYLE clause is designed specifically for this purpose and has

none of these drawbacks. (See 3.22 STYLE clause.)

VALUE Clause: Operation

The VALUE clause results in the specified fixed literal appearing in your report field.

Assuming that your program does not alter the value by overwriting the report

field procedurally (which it can do if the field is named), the value will be

unchanged throughout the report.

Report writer will either "pre-set" (fill in) your report field with the specified literal at

compile time; or it may move the literal into the report field at run time, in cases

where the report field is in a variable position, or where the report line cannot

hold pre-set values because it is subject to an OCCURS clause.

If the item is DBCS, it is stored in the report line with each double-byte character

occupying one column position. (See 3.25 USAGE clause.)

Multiple VALUES

If you use the multiple form of the VALUE clause, by writing more than one literal after

the keyword, it will save you the effort of coding several separate entries. Note the

following:

If you wish to place no value in a particular occurrence, you may simply code a space

character: " ".

Your entry must be subject to at least one of the following:

A fixed OCCURS clause (not OCCURS...DEPENDING), or

A multiple LINES clause, or

A multiple COLUMNS clause.

All the literals must be either DBCS or non-DBCS.

The rule for the number of literals allowed in your multiple VALUE is similar to that of the

multiple SOURCES clause (see 3.21.4 Multiple SOURCES); that is, it must exactly

equal either the total number of repetitions in all the dimensions of the entry, or

the product of the numbers of repetitions of one or more of the inner

dimension(s). For example, with the following layout:

 03 LINE OCCURS 2.
 04 OCCURS 3.
 05 COLS +3, +3, +3, +1 VALUES ARE

the number of literals should be either 4 (just the inner dimension), 12 (the

product of the inner two dimensions), or 24 (all the dimensions).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 238

If the literals cover more than one dimension, they are distributed along the innermost

dimension, periodically stepping to the next entry in one or more outer

dimensions. For example:

03 LINES 2 STEP 1 OCCURS 3.
 05 COL 2 STEP 5 OCCURS 4
 VALUES "JAN" "FEB" "MAR" "APR"
 "MAY" "JUN" "JUL" "AUG"
 "SEP" "OCT" "NOV" "DEC".

will result in:

JAN FEB MAR APR

MAY JUN JUL AUG

SEP OCT NOV DEC

If there are two or more dimensions and the number of terms matches only the inner

dimension(s), the series of literals is re-cycled from the first operand for each of

the outer repetitions. For example, the following case:

03 LINE OCCURS 4.
 05 COLS 1 13 VALUES
 "THIS YEAR" "SOME TIME".

will result in:

THIS YEAR SOME TIME

THIS YEAR SOME TIME

THIS YEAR SOME TIME

THIS YEAR SOME TIME

The multiple VALUE operand may be used as one or more of the alternatives in a

multiple-choice entry. You need not use a multiple VALUE in every alternative:

 05 COLS 1 12 25 VALUES
 "BLEU" "ROUGE" "JAUNE" WHEN LANGUAGE = "F"
 "BLAU" "ROT" "GELB" WHEN LANGUAGE = "G"
 "BLUE" "RED" "YELLOW" WHEN LANGUAGE = "E"
 "????" WHEN OTHER.

If, as is usual, you omit a PICTURE clause, the size of each field is the size of its

corresponding literal, as seen in the following example:

 05 COLS 1 +2 +2 VALUES "CAESAR" "QUELLED" "VERCINGETORIX".

which yields:

 CAESAR QUELLED VERCINGETORIX

This is also true of multiple-choice entries.

In all cases, you may omit the VALUE keyword.

Other examples of the multiple VALUE clause will be found under 3.4.4 Multiple

COLUMNS Clause and 3.10.4 Multiple LINES Clause).

Compatibility

Only new Report Writer provides the following features:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 239

• The VALUE keyword being optional,

• DBCS and hexadecimal literals in the REPORT SECTION,

• PICTURE clause being optional with a non-numeric literal,

• The multiple VALUE format.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 240

1.3.27 VARYING clause

This clause enables you to vary the value of a numeric counter (typically for use

elsewhere as a subscript) during the production of a repeating field.

┌── Format

──

──┐

│ │

│

┌───┐ │

│ ▼ │ │

│ ►►─VARYING─data-name┬─────────────────┬┬───────────────┬───►◄│

│ └FROM expression-1┘└BY expression-2┘ │

│ │

└───

─────────────┘

VARYING Clause: Coding Rules

You may write any number of different data-name operands in this clause, each with

an optional associated FROM and BY phrase.

Your entry must also have either an OCCURS clause (see 3.14) or a Multiple COLUMNS

Clause (see 3.4.4) or a Multiple LINES Clause (see 3.10.4).

Your data-names must not be defined already anywhere else in the program and you

should not attempt to define them separately. Report writer creates a

description for them itself, internally. (This is similar to the way COBOL handles

index-names.)

You can re-use the same data-names in different VARYING clauses, provided that you

do not do this when the clauses are nested (enclosed one within the other). For

example, you could write VARYING R-LINE on each repeating LINE, and

VARYING R-COL on each repeating COLUMN, throughout your program.

If you intend FROM 1, you may omit the FROM phrase and report writer will infer it.

Likewise, if you intend BY 1, you may omit the BY phrase and report writer will

infer it. (FROM 1 and BY 1 are the most usual requirements, so these assumptions

are convenient.)

Each expression may be any integer, or an identifier, or an arithmetic expression,

provided that the result has an integer value. The expression may contain data-

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 241

names of an enclosing VARYING clause. It can also use a data-name of the

same VARYING clause, but only in its BY expression. It must not contain data-

names of an enclosed VARYING clause, or of any other VARYING clause. Thus

the following are legal:

 a. 05 OCCURS 3 VARYING R-MONTH.
 07 OCCURS 4 VARYING R-INDEX FROM R-MONTH.

 b. 05 OCCURS 3 VARYING R-MONTH FROM 1 BY (R-MONTH + 1).

but the following are illegal:

 c. 05 OCCURS 3 VARYING R-INDEX FROM R-MONTH.
 07 OCCURS 4 VARYING R-MONTH.
 ...

 d. 05 OCCURS 3 VARYING R-MONTH FROM (R-MONTH + 1).

 e. 05 OCCURS 3 VARYING R-MONTH.
 ...
 05 OCCURS 3 VARYING R-MONTH FROM R-MONTH.

VARYING Clause: Operation

When report writer is about to produce the first occurrence, it places the FROM value in

an internal named data item set up implicitly by the VARYING clause. This is

repeated, in the order given in the clause, for any additional data-names that

may have been specified in the VARYING clause.

When report writer is about to produce each of the remaining occurrences, it adds the

BY value to the data item. This is also repeated, in the order given in the clause,

for any additional data-names that may have been specified in the VARYING

clause.

The VARYING clause enables you to produce different source-items or values in

successive appearances of a repeated field. Here are some examples:

To generate the numbers 1 through 10 in a line:

 1 2 3 4 5 6 7 8 9 10

03 LINE.
 05 COL + 5 PIC Z9 OCCURS 10 VARYING COL-INDEX SOURCE COL-INDEX.

To output a two-dimensional array in Working-Storage into a two-dimensional

array in your report (for example daily costs for four seven-day weeks):

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 242

 WEEK 1 $19 $230 $34 $56 $378 $270 $9

 WEEK 2 $340 $236 $43 $23 $248 $0 $354

 WEEK 3 $120 $134 $58 $442 $98 $739 $121

 WEEK 4 $39 $0 $800 $344 $801 $89 $387

 03 LINE OCCURS 4 VARYING WEEK-NO.
 05 COL 1 "WEEK".
 05 COL 6 PIC 9 SOURCE WEEK-NO.
 05 COL 9 PIC $$$9 OCCURS 7 STEP 6 VARYING DAY-NO
 SOURCE WS-VALUE (WEEK-NO DAY-NO).

You could display each week's entries from right to left by writing:

 VARYING DAY-NO FROM 7 BY -1.

Now let's display the same entries, except that they are all held in a one-

dimensional array of twenty-eight entries. (This example is important.)

 03 LINE OCCURS 4 VARYING START-DAY-NO FROM 1 BY 7,
 WEEK-NO FROM 1 BY 1.
 05 COL 1 "WEEK".
 05 COL 6 PIC 9 SOURCE WEEK-NO.
 05 COL 9 PIC $$$9 OCCURS 7 STEP 6
 VARYING DAY-NO FROM START-DAY-NO BY 1
 SOURCE WS-VALUE (DAY-NO).

As each week is processed, START-DAY-NO takes values 1, 8, 15 and 22.

DAY-NO takes the seven values 1 to 7, then 8 to 14, then 15 to 21, then

22 to 28 in turn, each time starting with the new value of START-DAY-NO.

In the clause VARYING START-DAY-NO FROM 1 BY 7, the phrase FROM 1

could have been omitted and in the clause VARYING DAY-NO FROM

START-DAY-NO BY 1, the phrase BY 1 could have been omitted.

To "fold round" a large array in boustrophedon ("as the ox turns") sequence (if

NO-ACROSS is the horizontal repeat factor):

 03 LINE OCCURS ... TIMES
 VARYING INIT FROM 1 BY ((NO-ACROSS - 1) * INCR) + NO-ACROSS,
 INCR FROM 1 BY (- INCR - INCR).
 05 ... OCCURS 0 TO 100 TIMES DEPENDING ON NO-ACROSS ...
 VARYING SUBSCRIPT FROM INIT BY INCR
 SOURCE TABLE-ENTRY (SUBSCRIPT).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 243

─►

◄─

─►

◄─

 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11

21 22 23 24 25 26 27 28 29 30

40 39 38 37 36 35 34 33 32 31

─►

◄─

─►

◄─

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 244

To produce a pyramid-shaped design:

 *

 03 LINE OCCURS 6 VARYING SUB-1 FROM 5 BY -1
 SUB-2 FROM 1 BY 2.
 05 COL + 1 OCCURS 0 TO 5 DEPENDING ON SUB-1.
 05 COL + 1 VALUE "*" OCCURS 1 TO 11 DEPENDING ON SUB-2.

Note that VARYING can also be used with a multiple COLUMN or LINE, as the

following example shows:

 03 LINES 2 3 4 VARYING LINE-INDEX.
 05 COLS 10 20 31 52 VARYING COL-INDEX PIC ZZZ9
 SOURCE SALES (LINE-INDEX COL-INDEX).

To set up a "running index" which continues each time from its latest value, do not code

something like VARYING R-WEEK FROM R-WEEK + 1 , but calculate the starting

value explicitly.

To give your counter a series of values, say W-CNT (1), W-CNT (2), which are not formed

by simple incrementing, write:

 VARYING R-MOD FROM 0 BY 1
 R-COUNTER FROM W-CNT (1) BY W-CNT (R-MOD) - R-COUNTER

By experimenting with the VARYING clause, you will discover many novel and surprising

uses.

Compatibility

The VARYING clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 245

1.3.28 WRAP clause

The WRAP clause is used to produce an automatic wrap round to a new continuation

line when the next field will not fit on the current line.

┌── Format a

──

┐

│ │

│ ►►─WITH

WRAP──┬───────────────────────────────────┬──► │

│ └─AFTER─┬─COLUMN─┬─┬─integer-1────┬─┘ │

│ └─COL────┘ └─identifier-1─┘ │

│ ►───┬────────────────────────────────┬──►

│

│ └─TO─┬─COLUMN─┬─┬─integer-2────┬─┘ │

│ └─COL────┘ └─identifier-2─┘ │

│ ►───┬──────────────────────┬──►◄

│

│ └─STEP integer-3 LINES─┘ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│ ►►─ WITH NO WRAP─►◄ │

│ │

└───

─────────────┘

WRAP Clause: Coding Rules

The AFTER phrase gives the rightmost column number that any field may occupy before

wrap round becomes necessary. If integer-1 is specified, it must lie in the range 1

to maximum line width. Its value acts as a maximum line width for any lines in its

scope. The rightmost column position of every entry with an absolute COLUMN

must therefore not exceed integer-1. If identifier-1 is specified, a similar check is

made at run time. If the phrase is omitted, a value of the LINE LIMIT is assumed

for integer-1 and, if the identifier form of LINE LIMIT is in use, its value will be

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 246

computed, as usual, at INITIATE time. Thus, by default, lines are allowed to

reach the usual page width before wrap round.

The TO phrase gives the column number at which printing continues after wrap round. If

integer-2 is specified, it must lie in the range 1 to maximum line width. If

identifier-2 is specified, a similar check is made at run time. If the phrase is

omitted, a value of 1 is assumed for integer-2. Thus, by default, a line wraps

round to column 1.

The STEP phrase gives the relative vertical offset for any continuation lines. If the phrase

is omitted, a value of 1 is assumed for integer-3 . Thus, by default, a line is

continued onto the immediately following line. If a PAGE LIMIT clause is present

in the RD, the value of integer-3 is used by the precompiler in calculating the

(maximum) vertical size of the group to check that it will fit correctly into its

assigned region of the page.

WRAP may be coded either (a) in an entry containing a LINE clause or (b) at a higher

level having one or more LINE entries beneath it. This second possibility allows

you to avoid repeating the same clause in several LINE entries.

Only relative COLUMN entries are allowed to cause wrap round. If a LINE entry has a

WRAP clause, the COLUMN entries forming the description of the line must end

in one or more relative COLUMN entries. Entries with absolute COLUMN numbers

still cannot exceed the maximum line width.

A superfluous WRAP clause is not permitted. So the COLUMN entries (in particular the

trailing relative COLUMN entries) must be such that the LINE LIMIT could be

exceeded. (If this is not foreseeable at precompilation time, it will be assumed

that this could happen at run time.)

If the WRAP clause is coded at a higher level with more than one LINE entry beneath it,

it is sufficient if at least one of the LINE clauses obeys these rules. For example, it

is permissible to code the WRAP clause at the 01-level, even if only one of LINE

entries in the group can cause wrap round. However, in general any number -

even all - the LINE entries in a report may be capable of causing wrap round.

The format b NO WRAP clause is allowed only at a level subordinate to a format a

WRAP clause. The entry containing NO WRAP must represent more than one

physical elementary printable field. No other nesting of the clause is permitted.

WRAP Clause: Operation

The WRAP clause causes data to wrap round automatically to a new continuation line

when the next field or group of fields will not fit on the line. It may be used in

any TYPE of report group. The point where wrap round begins is always after a

complete elementary field. Hence a horizontal "fit test" is performed before

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 247

each field is output, unless it has an absolute COLUMN or is known to fit.

(Compare the "page-fit test" performed in the vertical direction.) If the field's

right-hand column would extend beyond the column position given in the AFTER

phrase, the line is output without the field and then space-filled. The field in

question is now placed in the new line, starting in the column position given in

the TO phrase. The initial spacing implied by the "PLUS integer" of the COLUMN

clause is ignored. The vertical line spacing is given by the STEP phrase.

If the identifier form of the AFTER or TO phrase is used, the identifier's current

value is used.

The following complete example shows how a variable number of error

messages may be output:

 VALIDATION REPORT

 NAME AMOUNT DATE MESSAGE(S)

 JONES A0.00 09/11/89 AMOUNT NON-NUM.

 TIMSON 80.00 44/32/89 INVALID DATE

 RO%ERS X0.0Y 44/32/89 NOT ALPHA AMOUNT NON-NUM.

 INVALID DATE

 SMITH 100.00 12/01/89

 col 36 ↑ col 64 ↑

 RD VALIDATION-REPORT
 PAGE LIMIT 60.
 01 VALIDATION-DATA TYPE DE.
 03 LINE + 1 WRAP AFTER COL 64 TO COL 36.
 05 COL 1 PIC X(20) SOURCE name.
 05 COL 15 PIC X(8) SOURCE amount.
 05 COL 26 PIC X(8) SOURCE date.
 05 COL + 3 "NOT ALPHA" PRESENT WHEN name invalid.
 05 COL + 3 "AMOUNT NON-NUM." PRESENT WHEN amount invalid.
 05 COL + 3 "INVALID DATE" PRESENT WHEN date invalid.

The phrase AFTER COL 64 gives the last column that can be occupied by any

field in the line. The phrase TO COL 36 gives the starting column for the wrap

round. STEP 1 is assumed in default, so continuation is onto the next line. Note

that the initial spacing implied by the "+ 3" of the first COLUMN clause on the

new line is ignored.

As well the conditional case just described, where the continuation line appears in

exceptional circumstances, it is possible (though less useful) for the wrap round

to occur every time, as in this example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 248

 03 LINE + 2 WRAP AFTER COL 30 TO COL 11.
 05 COL 1 PIC X(30) SOURCE W-SURNAME.
 05 COL + 3 PIC X(20) SOURCE W-GIVEN-NAME (1).
 05 COL + 3 PIC X(20) SOURCE W-GIVEN-NAME (2).

which is exactly equivalent to:

 03 LINE + 2.
 05 COL 1 PIC X(30) SOURCE W-SURNAME.
 03 LINE + 1.
 05 COL 11 PIC X(20) SOURCE W-GIVEN-NAME (1).
 05 COL + 3 PIC X(20) SOURCE W-GIVEN-NAME (2).

Horizontal Fit Test

The "fit test" takes into account a field's variable length. By changing the

PICTUREs in the previous example to make them variable length, we have the

following, more common, situation:

 01 FULL-NAME TYPE DE.
 03 LINE + 2 WRAP AFTER COL 30 TO COL 11.
 05 COL 1 PIC X<X(29)> SOURCE W-SURNAME.
 05 COL + 3 PIC X<X(19)> SOURCE W-GIVEN-NAME (1).
 05 COL + 3 PIC X<X(19)> SOURCE W-GIVEN-NAME (2).

The following sample output shows one of each possible outcome:

 JONES THOMAS EDWARD

 PIETRASZEWSKI HILDEGAARD

 GRAZYNA

 HAUBENSTOCK-MASTELLONE

 FERRUCCIO EMILIO

 PILGERSTORFER-TARTSHOFF

 PHILOMELA

 CLYTAEMNESTRA

The longer names in this layout are a good example of the rare conditions that

have to be allowed for, but which, without this special feature, often take up a

disproportionate amount of programming effort.

If the containing group is a body group beginning with a relative LINE clause, the

continuation lines are taken into account during the group's page-fit test. For

example, if only two lines are available for the printing of the last group in the

preceding example, a new page would be started:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 249

 PILGERSTORFER-TARTSHOFF

 PHILOMELA

 CLYTAEMNESTRA

whereas in all the other instances the group would fit on the current page.

When an OCCURS clause or a Multiple LINES Clause is coded at the same level as

WRAP, the WRAP clause applies separately to each occurrence.

NO WRAP indicates that the entries subject to NO WRAP must appear together in the

same line. The horizontal "fit test" is therefore performed before the entire set of

fields is output to ensure that they are not to split over a line boundary.

(Compare NO MULTIPLE PAGE which does the same for the page boundary.)

When an OCCURS clause is coded at the same level as NO WRAP, the NO

WRAP clause applies separately to each occurrence. The following example

lists names across several lines, keeping initials and surnames together:

 RD NAMES-LIST
 PAGE LIMIT 60
 LINE LIMIT 40.
 01 NAMES-GROUP TYPE DE.
 02 LINE + 2 WRAP.
 03 NO WRAP OCCURS 1 TO 50 TIMES DEPENDING ON NO-OF-NAMES
 VARYING R-NAME-NO.
 04 COL + 1 OCCURS 4 TIMES VARYING R-INTL-NO
 PIC X"." SOURCE W-INTL (R-NAME-NO R-INTL-NO)
 ABSENT WHEN W-INTL (R-NAME-NO R-INTL-NO) = SPACE.
 04 COL + 2 PIC <X(20) SOURCE W-SURNAME (R-NAME-NO).
 04 COL + 2.

 J. SMITH P.J. ROBINSON E.G.H. MARSHALL

 P. TOMLINSON E.T. MILLINGTON

 F.L.J. LAVENSTEIN

Compatibility

The WRAP clause is unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 251

4

1.4 Procedural Statements

COBOL-IT Report Writer will not act until your program executes a procedural

statement. Three main commands or "verbs", INITIATE, GENERATE, and TERMINATE, are

sufficient to produce most of the output from your Report Descriptions. INITIATE and

TERMINATE are performed at the beginning and the end, respectively, of the processing

for your report; while GENERATE is executed repeatedly, producing one DETAIL (except

in summary reporting), preceded by any of the other TYPEs of group that may be

needed as page breaks and/or control breaks are encountered.

As with the two preceding parts, users migrating from OS/VS or DOS/VS COBOL may

refer to the Compatibility paragraph following each section.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 253

1.4.1 Report Writer Verbs: Overview

The three main report writer verbs INITIATE, GENERATE, and TERMINATE may be used in

the same way as any other COBOL verb and may be used anywhere in the program

except in a USE BEFORE REPORTING Declarative SECTION.

Of the remaining procedural statements, the USE BEFORE REPORTING directive (see 4.7)

enables you to write a section of code in the DECLARATIVES portion that is to be

performed automatically just before the specified report group is output, and the

Report Writer SET statements (see 4.4) make it possible to place report groups irregularly

on the page.

Sequence of Operations

For a single report using a simple file as input, the normal sequence of operations is as

follows:

 1. (once at start)

 OPEN INPUT input file

 OPEN OUTPUT or EXTEND report file

 2. (once at start) INITIATE report

 3. (for each record

 in input file)
 GENERATE detail groups or report

 4. (once at end) TERMINATE report

 5. (once at end) CLOSE input file, report file

with the following basic plan for the PROCEDURE DIVISION:

 OPEN INPUT input-file OUTPUT report-file
 INITIATE report-name
 read first input record
 PERFORM UNTIL END-OF-FILE = 1
 GENERATE detail-group
 * or GENERATE report-name if doing summary reporting
 read next input record
 END-PERFORM
 TERMINATE report-name
 CLOSE input-file report-file

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 254

Keyword Table

The following table lists the PROCEDURE DIVISION elements associated with COBOL-IT

Report Writer with a summary of their purposes. The third and fourth columns tell you

whether or not the item is part of the current standard (ANS 85) COBOL and, if so,

whether COBOL-IT Report Writer extends the facilities.

Report Writer Verbs: Keyword Table

Keyword Purpose

OS/VS

DOS/VS

COBOL?

Extensions to OS/VS and DOS/VS

COBOL

INITIATE

 Prepares report

 for processing

yes

 ▫ INITIATE...UPON file-name

 ▫ report may be GLOBAL

GENERATE

 Handles main

 report processing

yes ▫ improved order of totalling,

 page-fit and DECLARATIVES

 if NOOSVS option used

 ▫ report may be GLOBAL

TERMINATE

 Concludes all

 processing for

 report

yes ▫ report may be GLOBAL

USE BEFORE

REPORTING

 Invokes SECTION in

 DECLARATIVES when

 named report group

 is printed

yes ▫ may specify DETAIL group

 ▫ may be GLOBAL

SUPPRESS

PRINTING

 Prevents data

 being printed for

 a report group

no

MOVE 1 TO

PRINT-SWITCH

 Alternative to

 SUPPRESS PRINTING

yes

SET PAGE/

LINE/COLUMN

 Controls PAGE

 BUFFER operations

no

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 255

1.4.2 GENERATE statement

The GENERATE statement is COBOL-IT Report Writer's main verb for the production of

output. It passes control to report writer to allow it to perform all the necessary

mechanical tasks, including any control-break and page-break processing needed

before producing all the lines and fields described in your DETAIL group, if specified.

┌── Format

──

──┐

│ │

│ ►►──GENERATE─┬─detail-group-name─┬─►◄ │

│ └─report-name───────┘ │

└───

─────────────┘

GENERATE Statement: Coding Rules

If GENERATE detail-group-name is coded, it must be the name of a DETAIL group coded

in the current program, or in a GLOBAL report defined in a containing program.

(The group-name appears immediately after the 01 level-number.) You may

qualify the detail-group-name with the report-name, as in: GENERATE MAIN-

DETAIL IN SUMMARY-REPORT. This is necessary if your detail-group-name is not

unique in the REPORT SECTION.

The form GENERATE report-name has a special significance and is known as summary

reporting. It causes any DETAIL group to be suppressed, so do not use this form

unless you require only CONTROL HEADING or CONTROL FOOTING groups in the

body of the report at the point that you execute the GENERATE. If you use this

form, you must have at least one CONTROL HEADING or CONTROL FOOTING

group in the report.

GENERATE must not appear in a USE BEFORE REPORTING directive Declarative.

GENERATE Statement: Operation

The GENERATE statement causes report writer to perform three main actions in an

average report:

It tests for control breaks, producing CONTROL FOOTING and HEADING groups

where necessary,

It performs a page-fit test, outputting PAGE FOOTING and PAGE HEADING

groups where necessary; (these may also be produced as a result of a

CONTROL HEADING or CONTROL FOOTING),

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 256

It generates each line in the DETAIL group, unless you are doing summary

reporting (GENERATE report-name).

Once a report has been INITIATEd, your program may execute any number of

GENERATE statements for each DETAIL group in the report. If your Report

Description contains several DETAIL groups, you may code a sequence of

different GENERATE statements in any part of the program and, in this way, build

up any required report layout. You may also write a GENERATE for the same

DETAIL group in more than one place in the program.

Summary reporting, where you code the report-name instead of a DETAIL group-name

after the GENERATE, has the following effects:

No DETAIL group is output.

Any rolling forward of SUM operands takes place as usual, except for any rolling

forward from a DETAIL group.

Any cross-footing of SUM operands takes place as usual, except for cross-

footing within a DETAIL group.

Any subtotalling of (non-REPORT SECTION) SUM operands is executed as follows:

i. If SOURCE SUM correlation is in effect, all the SUM operands that

correspond to a SOURCE operand in a DETAIL group are added into

their totals, as though you had GENERATEd each DETAIL group in

turn. Any non-REPORT SECTION SUM operands that do not

correspond to a SOURCE operand are added into the totals once.

ii. If SOURCE SUM correlation is not in effect, the SUM operands are

added into the totals once.

Testing for control breaks takes place as usual. If a control break is detected,

any CONTROL FOOTING and/or CONTROL HEADING groups are output

as usual, together with any PAGE FOOTING and/or PAGE HEADING

groups that may be required as the result of a page advance.

The GENERATE report-name statement can therefore only produce output (a)

on the first GENERATE after an INITIATE, and (b) after a control break.

Between an INITIATE and TERMINATE, your program may execute both the

GENERATE report-name and the GENERATE group-name forms of the statement.

The following example illustrates the different effects of the GENERATE report-

name and GENERATE group-name clauses:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 257

 SPORTS CLUB CASHBOOK

 DATE AMOUNT

 JAN 4 $20.00

 JAN 16 $10.00

 JAN 30 $195.00

 ------- -------

 JAN TOTAL: $225.00

 FEB 12 $10.00

 FEB 19 $55.00

 ------- -------

 FEB TOTAL: $65.00

 RD CASHBOOK ...

 01 CASH-LINE DE.
 ...
 05 COL 31 PIC $(4)9 SOURCE AMOUNT.

 01 CF FOR MONTH.
 ...
 05 COL 31 PIC $(4)9 SUM OF AMOUNT.

 ...
 GENERATE CASH-LINE

 SPORTS CLUB CASHBOOK

 DATE AMOUNT

 ------- -------

 JAN TOTAL: $225.00

 ------- -------

 FEB TOTAL: $65.00

 RD CASHBOOK ...

*(Same REPORT SECTION as above.)

 GENERATE CASHBOOK

GENERATE Processing Cycle

The following is a more thorough description of each stage in the execution of a

GENERATE statement:

If the identifier form of the LAST DETAIL sub-clause is used, its value is checked and, if

valid, is stored in the Report Control Area.

If your report is associated with a DUPLICATED file, the value of REPORT-NUMBER is

examined to see whether it is the same as it was for the previous GENERATE for

this report, thus checking that the correct duplicate of the report is in the main

Report Control Area. If not, this is swapped in.

If the report has not yet been INITIATEd, run time error diagnostic 14 is logged.

If this is the first GENERATE since the INITIATE:

If there is a REPORT HEADING group, this is produced.

If there are any CONTROL HEADING groups, each of them is produced, from

highest down to lowest, and the initial value of each control is saved.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 258

If this is not the first GENERATE since the INITIATE, each control identifier is compared with

the corresponding saved previous value, beginning with the highest level. If no

control has changed, no special action takes place. If a difference in value (a

control break) is detected, comparison ceases and the following control break

action takes place:

The value of each control-id is temporarily altered to the value it had

immediately before the control break;

CONTROL FOOTING groups are produced, from the lowest up to the one at the

level of the control break, if any;

The value of each control-id is restored to its value after the control break;

CONTROL HEADING groups are produced from the one at the level of the

control break, if any, down to the lowest.

Since CONTROL HEADING and CONTROL FOOTING groups are independent

report groups in their own right, several of the same operations described below

will be applied to them as for a DETAIL group, namely: the output of any

pending REPEATED groups, page-fit test, storing of the latest value of the CODE

(not done for CONTROL FOOTINGs), all types of totalling, performing of USE

BEFORE REPORTING section, production of print lines and clearing of totals, plus

the setting on of any PRESENT AFTER (or GROUP INDICATE) flags, when

appropriate.

If there are any REPEATED groups in this report other than the current DETAIL, a check is

made whether any have been buffered. If so, they are first output and the

buffer is cleared.

If there are any cross-foot totals for this group, they are computed in the order implied

by any inter-dependencies among them.

If OSVS is in effect any additional summing is now performed for the group with the

following possible actions:

If there is any general "subtotalling" for the report (SUM clauses with non-REPORT

SECTION operands, without UPON, and with no SOURCE SUM correlation),

each SUM's operands are added into the total fields. If you are

generating a DETAIL group which is absent because of a PRESENT/

ABSENT WHEN/AFTER clause in the 01-level entry, this general subtotalling

is also skipped.

If there is any special subtotalling triggered by this DETAIL group due either to an

UPON phrase referring to this group or to SOURCE SUM correlation that

implies this group, the SUM operands are added into the total fields.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 259

If there is a SUM clause in another group referring to an entry in this group, then

rolling forward of values into its total field takes place.

If there is a USE BEFORE REPORTING section for this group in the DECLARATIVES, it is

performed. If PRINT-SWITCH is non-zero as a result (meaning that printing is to be

SUPPRESSed), then

If OSVS is in effect no further action takes place for this group;

If NOOSVS is in effect in effect then if no further totalling to be performed for this

group, no further action takes place; otherwise the only further steps to

be performed are 10 (PRESENT at 01-level), if applicable, and 8

(totalling).

If there is a PRESENT/ABSENT WHEN or PRESENT/ABSENT AFTER clause at the 01-level of this

group, a test is made of the condition and, if the group is absent then

If OSVS is in effect no further action takes place for this group;

If NOOSVS is in effect then, if there is no general subtotalling to be performed,

no further action takes place; otherwise the only further step to be

performed is 4.2.4 8a above (general subtotalling).

If there is an identifier form of a CODE clause in the RD, the contents of the identifier are

moved to the CODE-VALUE location in the Report Control Area .

If this group has a REPEATED clause, the REPEATED buffer is prepared to receive the next

instance of the group or, if this group is the last of the set, to produce the

buffered groups alongside it.

If any lines are being produced and the report has a PAGE clause, a page-fit test is

performed to test LINE-COUNTER, to establish whether or not a page advance is

required before the group may be output. If the group has a MULTIPLE PAGE

clause, this test is performed for the first and each subsequent line (or group of

lines with NO MULTIPLE PAGE).

If a page advance is required, the following action takes place:

The PAGE FOOTING group is produced, if one exists;

PAGE-COUNTER is incremented by 1;

A form feed is output or, if an Independent Report File Handler is in use, a value

of zero is placed in the current position location to cause this;

The PAGE HEADING group is produced, if one exists;

If there are any CONTROL HEADING groups specifying OR PAGE, they are

produced, from highest down to lowest.

If NOOSVS is in effect and there is any further summing to be performed for this group,

step 8 (subtotalling and rolling forward) is now executed.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 260

Each report line field is stored in its report line, invoking FUNCTION routines where

necessary and checking for column overlap, line overflow and any other

possible error conditions, and then output. If an Independent Report File

Handler is in use, it is invoked; otherwise, report writer issues a WRITE for each

report line. In either case, LINE-COUNTER is first set to the target line position just

before each line is produced.

If the group has a NEXT GROUP clause, LINE-COUNTER may be adjusted in accordance

with the rules for that clause. (See NEXT GROUP clause.) In the case of NEXT

GROUP absolute, this may be deferred by setting the Saved Next Group Integer.

All total fields defined in this group are reset to zero, unless they are not PRESENT during

this GENERATE or have a RESET phrase that defers resetting to a higher control

break.

If there are any PRESENT AFTER (or GROUP INDICATE) clauses in the group, their

indicators are set off.

Compatibility

The coding rules for the GENERATE are identical for OS/VS COBOL, DOS/VS COBOL and

new Report Writer. The GENERATE statement may perform many more steps,

but only because of the additional functions provided by new Report Writer.

Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 261

1.4.3 INITIATE statement

The INITIATE statement must be the first report writer statement to be executed for a

report.

┌── Format

──

──┐

│ ┌─────────┐ │

│ ▼ │ │

│ ►►──INITIATE—report-name──┬────────────────┬───►◄

│

│ └─UPON file-name─┘ │

└───

─────────────┘

INITIATE Statement: Coding Rules

Each report-name must be the name of a report in the current program, or that of a

GLOBAL report defined in a containing program. (The report-name appears

immediately after the RD level-indicator and also in the REPORT clause in the

FD.)

If the UPON phrase is present, each report-name must be defined in a REPORT(S) clause

in the FD of the specified file-name. The UPON phrase must be used if any of

the report-names is defined in more than one FD entry.

INITIATE must not appear in a USE BEFORE REPORTING directive Declarative.

INITIATE Statement: Operation

An INITIATE must be executed for a report before any GENERATE, INITIATE, or Page Buffer

SET verb referring to the same report (or a DETAIL in the report) is executed.

An OPEN for the corresponding report file must have been executed before the INITIATE

is executed. The INITIATE does not OPEN the file. You may however execute an

INITIATE once again for a report that was TERMINATEd without closing and re-

opening the file. This fact may be used repeatedly to obtain REPORT FOOTING

and REPORT HEADING groups in the interior of the report, or to obtain a fresh

page with PAGE-COUNTER reset to 1.

A CLOSE must not be issued for the file to which a report is directed once the report has

been INITIATEd, unless a TERMINATE is first done.

If an UPON phrase is present, the report will be written only to the file specified.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 262

INITIATE Processing Cycle

The following is a more thorough description of each stage in the execution of an

INITIATE statement:

The error flag is cleared.

If your report is associated with a DUPLICATED file and REPORT-NUMBER is zero, the

remaining actions are performed for every duplicate report.

If your report is associated with an Independent Report File Handler, the file handler is

invoked with an action code of 6.

If the identifier form of a LINE LIMIT clause was coded, the identifier is checked and, if

valid, stored in the Report Control Area.

Other internal locations and special registers, such as the current position, "body group

has appeared on page" indicator, REPEATED-COUNTER, and PAGE-COUNTER

are cleared.

LINE-COUNTER is reset to zero.

PAGE-COUNTER is set to 1.

All total fields, sum overflow indicators, size error indicator and Saved Next Group

integer, and PRESENT AFTER indicators, wherever appropriate, are cleared to

zero.

The control break indicator is set to -1 to indicate "initial control break on INITIATE".

If a run time subroutine is used for control-break detection, the lengths of each control

identifier (other than REPORT/FINAL) are determined and stored in a control

area.

Compatibility

The coding rules for the INITIATE are identical for OS/VS COBOL and DOS/VS COBOL

Report Writer, and new Report Writer. The INITIATE statement may perform

additional actions if new Report Writer functions have been used in the Report

Group Descriptions.

Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.

The UPON phrase is not supported by OS/VS or DOS/VS COBOL.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 263

1.4.4 Report Writer SET statements

These statements enable you to hold the current page, in whole or in part, and/or fill it

in an irregular fashion.

┌── Format a

──

┐

│ │

│ ►►─SET PAGE STATUS─┬──────────────────┬─TO─┬─HOLD────┬─►◄ │

│ └┬─IN─┬report-name─┘ └─RELEASE─┘ │

│ └─OF─┘ │

└───

─────────────┘

┌── Format b

──

┐

│ │

│ ►►─SET LINE┬────────────────┬┬─TO─┬-integer-

1────────┬──┬─►◄ │

│ └┬IN┬report-name─┘│ ├─identifier-1─────┤ │ │

│ └OF┘ │ └─FIRST─┬─DETAIL─┬─┘ │ │

│ │ └─DE─────┘ │ │

│ └─┬─UP───┬BY┬─integer-2───┬┘ │

│ └─DOWN─┘ └─identifier-2┘ │

└───

─────────────┘

┌── Format c

──

┐

│ │

│ ►►─SET┬COLUMN┬┬───────────────┬┬TO────────┬┬integer-

3───┬─►◄ │

│ └COL───┘└┬IN┬report-name┘└┬─LEFT─┬BY┘└identifier-3┘ │

│ └OF┘ └─RIGHT┘ │

└───

─────────────┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 264

SET Statements: Coding Rules

Format a (SET PAGE) cannot be used unless there is (a) a WITH PAGE BUFFER clause in

the SELECT ... ASSIGN clause for the associated file and (b) a PAGE LIMIT clause

in the associated RD entry. (The Page Buffer feature uses an Independent

Report File Handler to produce the report output and will assume MODE PRNT if

there is no MODE specified in your SELECT ... ASSIGN clause. File handlers are

described later (see 5.3 Independent Report File Handlers).)

The SET LINE and SET COLUMN statements cannot be used unless there is either a WITH

PAGE BUFFER clause or a WITH RANDOM PAGE clause in the SELECT ... ASSIGN

clause.

If your program contains more than one Report Description, you must qualify your SET

PAGE STATUS, SET LINE and SET COLUMN statements by IN or OF report-name .

Without qualification, the statements are assumed to refer to your one and only

Report Description.

Format b (SET LINE) is used for altering the value of LINE-COUNTER. SET LINE TO ... sets

LINE-COUNTER equal to the value given and forces the next line to appear

there. You can use the FIRST DETAIL form with the TO phrase. SET LINE DOWN BY

... adds to LINE-COUNTER, while SET LINE UP BY ... subtracts from it. In each case,

the value that results must not be less than the FIRST DETAIL value and must not

be greater than the LAST DETAIL value (or their defaults; see 2.9 PAGE LIMIT

clause). If you use SET LINE to decrease LINE-COUNTER, your report's PAGE

STATUS must be HOLD.

Format c (SET COLUMN) is used for altering the value of the horizontal margin. SET

COLUMN TO ... sets it equal to the value given. SET COLUMN RIGHT BY ... adds to

it, while SET COLUMN LEFT BY ... subtracts from it. In each case, the value that

results must not be less than one and must not be greater than the LINE LIMIT,

and any group produced must fit within the LINE LIMIT when the new left margin,

resulting from SET COLUMN, is taken into account.

You cannot use any of these SET statements until a report is in an INITIATEd state.

SET Statements: Operation

The Page Buffer facility is designed to cope with the type of layout where you may not

wish to store the groups starting at the top and working down to the bottom of

the page. Look at the following layout, for example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 265

 ORDERS 1992

┌──────────

────────┐

(A)│ NAME AND ADDRESS │

 │ JOHNSON T.L. │

 │ 216A EAST ST. │

 │ NORTHWOOD │

 │ SUSSEX │

└─────────────────

─┘

┌───────────────────────────────

──────┐

 │ 20 APR 1 x GOLF 5 IRON $180 │ (B)

 │ 1 x SIZE 9 GOLF SHOES $30 │

└───────────────────────────────

──────┘

┌───────────────────────────────

──────┐

 │ 18 MAY 2 x FEATHER SHUTTLES $12 │ (B)

└───────────────────────────────

──────┘

Because groups A and B can be of any size, it is practically impossible to define

the layout line-by-line. The design has an attractiveness born of a revolt against

slavish acceptance of the dictum that "printers cannot move backwards". The

best way to take advantage of the facility is to GENERATE report groups as their

data becomes conveniently available, addressing the page in random-access

fashion. The Page Buffer facility enables you write code such as:

 SET PAGE STATUS TO HOLD
 GENERATE (A)
 SET LINE TO FIRST DETAIL
 SET COL RIGHT BY 20
 GENERATE (B)
 GENERATE (B) ...

In fact, using this facility, you may return to any part of the page. You may also

shift a group laterally (left or right) using SET COLUMN.

SET PAGE STATUS (Format a)

The HOLD option places your report in HOLD status. It will stay in HOLD status

until you issue a SET PAGE STATUS TO RELEASE or until the report is TERMINATEd.

When your report is in HOLD status, all the lines produced are stored in a page

buffer instead of being output, giving you the opportunity to return to a previous

higher position at any time.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 266

You can issue the SET PAGE STATUS TO HOLD at any time - not just at the start of the

page. You can then return to any vertical position on or below the position

where you issue this command.

You may use the SET statements in a Declarative section. In this way you may re-

position a non-DETAIL report group such as a CONTROL FOOTING, HOLD the

page at the start of a PAGE HEADING, and so on.

When the report is in HOLD status, LINE-COUNTER advances as usual. Report writer

performs the page-fit test on body (DETAIL and CH/CH) groups in the normal

way by checking the value of LINE-COUNTER against the size of the group

about to be printed. If the group cannot be fitted on the page, report writer will

execute a page advance despite the HOLD status. NEXT GROUP NEXT PAGE

and LINE NEXT PAGE work as normal. When a page advance takes place, all

the lines in the page buffer are first printed. No data will be lost. The new page

will still have HOLD status.

HOLD status does not change any of the logical processes of report writer. It just makes

it legal for you to return to a higher line using the SET LINE statement. HOLD

status only defers the actual time when output occurs, but the end result is

always the same. For efficiency, the best time to RELEASE a page is just after the

last upward SET LINE on a page.

You cancel HOLD status by means of the SET PAGE STATUS TO RELEASE statement. The

page buffer will then gradually be emptied as you write more lines, until such a

time as a page advance takes place or the report is TERMINATEd.

SET LINE (Format b)

The DOWN and UP options increase or decrease LINE-COUNTER by the amount

stated. The TO option is used to place your next group in a fixed vertical

position. For example, if your next group begins at absolute line 6 and your

report has passed line 6, you may issue SET LINE TO 6. (If you do not do this, a

page advance will take place.) Similarly, if you GENERATE groups with relative

lines and wish to return to the FIRST DETAIL position that has a value of 6, then

again you would issue SET LINE TO 6. The SET LINE TO FIRST DETAIL option is

available as an alternative way of stating this.

The effect of SET LINE is cancelled by a page advance (except before the first

page - SET LINE can therefore be done immediately after INITIATE).

SET COLUMN (Format c)

This statement changes the value of your report's left margin. If you have not

issued a SET COLUMN statement, the margin will be 1. This is the normal value,

indicating that the horizontal position is not to be shifted. The RIGHT and LEFT

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 267

options increase or decrease the setting of the left margin, while the TO option

sets the margin to the value you specify. Your report does not need to be in

HOLD status for you to use this statement.

If the left margin has been set greater than 1, all the lines produced for the current

page will be shifted to the right by the additional factor. For example, if you

issue SET COLUMN TO 5, then "COLUMN 1" in any print line is actually positioned

on column 5.

When report writer executes a page advance it resets the left hand margin to 1. Your

SET COLUMN statements are therefore effective only within the current page.

All formats

Using the SET LINE and SET COLUMN statements, you can now re-position your

group to any position on the page. You can fill th`e page in any manner. Your

groups may overlap, provided that you do not overwrite a character in the

page buffer with a different character. Spaces are excluded from this rule.

Spaces behave as "cellophane", not as "white-out", so you can overwrite with a

space without losing what was there before. You can also overwrite a

character with the same character. In all other cases, the file handler will signal

a run time message.

The example on the following page shows how you may set up a page in "snaking

columns" and then place a border around the whole page:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 268

 MEMBERSHIP LIST

 **

 * T.J. CODER G. ANALYST C.S. PAGE-BREAK *

 * 26 TONBRIDGE ST. 33 EAST DRIVE 45 BOOKHAM DRIVE *

 * MARLBOROUGH BENBECULA ORPINGTON *

 * WILTS TEL: 0955 1234 KENT *

 * TEL: 0313 7775 BR7 5RF *

 * R. WRITER TEL: 0975 3124 *

 * T.W. CODASYL 300 HOPE TERRACE *

 * 34AB SOUTH SIDE HITCHAM DR. S. COBOL *

 * BRACKNELL TEL: 0211-686 5432 99 STAINES ST. *

 * BERKS ABINGER *

 * TEL: 0761 2376 ▼ SURREY *

 * ▼ LH5 3ED *

 * ▼ etc. TEL: 0655 90101 *

 * ▼ *

 * etc. ▼ *

 * ▼ *

 * *

 **

The following coding is suitable for this problem:

 RD MEMBERSHIP-LIST
 FIRST DETAIL 2
 PAGE LIMIT 60
 LINE LIMIT 132.
*
 01 TYPE PH LINE 1 COL 40 VALUE "MEMBERSHIP LIST".
*
 01 NAME-ADDR-BLOCK TYPE DE.
 03 LINE + 2 COL 3 PIC X(32) SOURCE NAME.
 03 LINE + 1 COL 3 PIC X(32) SOURCE ADDR-LINE (ADDR-LINE-NO)
 OCCURS 1 TO 7 DEPENDING ON ADDR-LINE-CNT VARYING ADDR-LINE-NO.
 03 LINE + 1 COL 3 PIC X(32) SOURCE TEL-NO.
*
 01 BORDER TYPE DE.
 03 LINE 2 PIC X(132) VALUE ALL "*".
 03 LINE +1 OCCURS 57.
 05 COL 1 VALUE "*".
 05 COL 132 VALUE "*".
 03 LINE +1 PIC X(132) VALUE ALL "*".

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 269

*
 PROCEDURE DIVISION.
 ...
 open all files
 INITIATE MEMBERSHIP-LIST
 SET PAGE STATUS TO HOLD
 fetch first record
 MOVE 1 TO MAJOR-COL-COUNT
 PERFORM GENERATE-GROUP UNTIL EOF = 1
 TERMINATE MEMBERSHIP-LIST
 close all files
 STOP RUN.
*
 GENERATE-GROUP.
*TEST WHETHER THE GROUP WILL FIT ON THE PAGE
 IF LINE-COUNTER + ADDR-LINE-CNT > 57
 PERFORM CHANGE-MAJOR-COLUMN.
 GENERATE NAME-ADDR-BLOCK.
 (read next record or set EOF = 1 if end of file).
 CHANGE-MAJOR-COLUMN.
*IF WE ARE ALREADY IN THE 3RD COLUMN, PRINT THE "BORDER"
*AND ALLOW PAGE TO ADVANCE, RETURNING US TO FIRST MAJOR COLUMN
*OTHERWISE MOVE RIGHT TO TOP OF NEXT MAJOR COLUMN
 SET LINE TO FIRST DETAIL
 IF MAJOR-COL-COUNT = 3 *> Finish the page
 SET COLUMN TO 1
 SET PAGE STATUS TO RELEASE *> For efficiency
 GENERATE BORDER
 SET PAGE STATUS TO HOLD
 MOVE 1 TO MAJOR-COL-COUNT
 ELSE SET COLUMN RIGHT BY 40
 ADD 1 TO MAJOR-COL-COUNT.

Compatibility

These forms of the SET statement are unique to new Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 270

1.4.5 SUPPRESS PRINTING statement

The SUPPRESS PRINTING statement enables you to prevent a particular report group

from being output on a particular occasion.

┌── Format

──

──┐

│ │

│ ►►──┬─SUPPRESS PRINTING────────────┬──►◄

│

│ └─MOVE integer TO PRINT-SWITCH─┘ │

└───

─────────────┘

SUPPRESS PRINTING Statement: Coding Rules

The SUPPRESS statement may be coded only in a USE BEFORE REPORTING directive

Declarative SECTION (see 4.7).

The form MOVE 1 TO PRINT-SWITCH is an alternative IBM extension that means the same

as SUPPRESS PRINTING. You may also write MOVE 0 TO PRINT-SWITCH to undo

the effect of a MOVE 1 TO PRINT-SWITCH or SUPPRESS PRINTING, and generally

treat PRINT-SWITCH as a numeric location, implicitly defined in your program.

SUPPRESS PRINTING Statement: Operation

The statement SUPPRESS PRINTING or MOVE 1 TO PRINT-SWITCH prevents the group

specified in the USE BEFORE REPORTING from producing any output on this

occasion. In other words, no data is set up in any of the lines of the group and

none of the lines is produced. LINE-COUNTER is also left unaltered, so

suppressing a body group will prevent a page advance. This statement

suppresses only the storing of report data and the output of the report lines. It

does not prevent other processing, such as the accumulation and clearing of

totals and the setting and testing of CONTROL fields. In this respect, it is different

from a PRESENT WHEN clause at the 01-level which does prevent all other

processing.

For example, you may use SUPPRESS PRINTING to "restart" your report after a

breakdown. Simply write a USE BEFORE REPORTING section for every group and

SUPPRESS each group until your program clears a flag. Your report will now be in

the same internal state as when output really took place.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 271

Each execution of a SUPPRESS PRINTING or MOVE 1 TO PRINT-SWITCH will prevent output

only on that single occasion. Report writer will reset PRINT-SWITCH to zero after

each excursion into your USE BEFORE REPORTING section.

In USE BEFORE REPORTING there are further examples of SUPPRESS PRINTING.

Compatibility

Apart from the ANS-85 GLOBAL phrase, OS/VS and DOS/VS COBOL, and new Report

Writer agree in their formats for this statement, but new Report Writer allows a USE

BEFORE REPORTING section to be coded for a DETAIL group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 272

1.4.6 TERMINATE statement

The TERMINATE must be the last report writer statement to be executed for each report.

┌── Format

──

──┐

│ ┌─────────┐ │

│ ▼ │ │

│ ►►──TERMINATE—report-name──►◄ │

│ │

└───

─────────────┘

TERMINATE Statement: Coding Rules

Each report-name must be the name of a report in the current program, or that of a

GLOBAL report defined in a containing program. (The report-name appears

immediately after the RD level-indicator and also in the REPORT clause in the

corresponding FD.)

TERMINATE must not appear in a USE BEFORE REPORTING directive Declarative.

TERMINATE Statement: Operation

A TERMINATE must be executed for every report that has been INITIATEd before the final

close-down of the program.

The TERMINATE statement clears any pending REPEATED groups or Page Buffer contents.

It also outputs any final CONTROL FOOTING, PAGE FOOTING and REPORT

FOOTING groups that may be required at the end of the report. It then returns

the report to an "uninitiated" state. PAGE-COUNTER and LINE-COUNTER will

contain the final values they attained at the end of the report, but total fields

will be zero (except under erroneous circumstances - see the end of 3.23.4 3 c

above).

A separate, subsequent CLOSE should be executed for the associated report file.

TERMINATE does not CLOSE the file.

If a TERMINATE is executed without any GENERATE statements being executed for the

report since the INITIATE was executed, no output at all is produced. If you wish

to ensure that at least the REPORT HEADING and REPORT FOOTING groups

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 273

appear, you should in this case GENERATE a blank DETAIL group before the

TERMINATE.

A report may be TERMINATEd and then INITIATEd again any number of times without

closing the report file. The new INITIATE causes PAGE-COUNTER to return to 1

and, if the report has a PAGE LIMIT clause, will re-commence the report on a

fresh page.

TERMINATE Processing Cycle

The following is a more thorough description of each stage in the execution of a

TERMINATE statement:

If your report is DUPLICATED and REPORT-NUMBER is zero, the actions that follow are

performed for each duplicate report.

If at least one GENERATE has been performed (indicated by the control break indicator

being non-negative), the value of each control-id is temporarily altered to the

value it had when the last GENERATE was executed, whilst each CONTROL

FOOTING group is produced, from lowest to highest.

If any REPEATED groups are present, any buffered groups are output and the REPEATED

buffer is flushed. Also, if the Page Buffer contains any data, this is output.

If a PAGE FOOTING group is present, it is produced.

If a REPORT FOOTING group is present, it is produced.

If your report is associated with an Independent Report File Handler, the file handler is

invoked with an action code of 8. (If your report is DUPLICATED, this will only

take place for reports that have been INITIATEd.)

The current vertical position location is set to -1 to indicate "report not initiated".

If any total fields are still non-zero, indicating that they have not all been output, an

error diagnostic 15 is signalled.

If normal batch printing is in effect, a check is made of the error diagnostic flag and an

appropriate run time error message is logged if necessary.

Compatibility

The coding rules for TERMINATE are identical for OS/VS COBOL and DOS/VS COBOL

Report Writer and new Report Writer. The TERMINATE statement may perform

more actions because of the additional functions provided by new Report

Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 274

Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 275

1.4.7 USE BEFORE REPORTING directive

The USE BEFORE REPORTING directive causes a SECTION in the DECLARATIVES of your

PROCEDURE DIVISION to be performed automatically just before a selected specified

report group is produced.

┌── Format

──

──┐

│ │

│ ►►─PROCEDURE DIVISION─┬─────────────────┬─────────────.

──►◄ │

│ │ ┌───────┐ │ │

│ │ ▼ │ │ │

│ └─USING data-name─┘ │

│ ┌─────────────────┐

│

│ ▼ │ │

│ ►─DECLARATIVES. ─declarative-section─END DECLARATIVES. ─►◄ │

└───

─────────────┘

where declarative-section is defined as:

┌── Format

──

──┐

│ │

│ ►►──section-name SECTION─┬────────────────┬─. ─►

│

│ └─segment-number─┘ │

│ │

│ ►──USE─┬────────┬─BEFORE REPORTING report-group-name. ──►◄ │

│ └─GLOBAL─┘ │

│ ┌───────────────────────────┐

│

│ ▼ │ │

│ ►─paragraph-name. ─┬──────────┬─►◄ │

│ │ ┌──────┐ │ │

│ │ ▼ │ │ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 276

│ └─sentence─┘ │

└───

─────────────┘

USE BEFORE REPORTING Directive: Coding Rules

The format above shows the PROCEDURE DIVISION and DECLARATIVES headers for the

sake of completeness. They are used not just by report writer, and your program

might already have Declarative sections for some other purpose. It is the

distinctive format of the USE BEFORE REPORTING directive that tells report writer

that the section is part of its responsibility. If you also have other Declarative

sections, they may be intermixed with your USE BEFORE REPORTING sections in

any order.

In order to code a USE BEFORE REPORTING section, you must ensure that the

corresponding group has an 01-level data-name, so that you can refer to it as

the report-group-name.

Your USE BEFORE REPORTING section may also PERFORM other sections. These are

normally additional sections within the DECLARATIVES portion (as required by all

ANS Standards). For this purpose, you may code additional sections within

DECLARATIVES that have no USE statement. Report writer also allows your USE

BEFORE REPORTING section to PERFORM sections in your mainline PROCEDURE

DIVISION.

The example that follows shows how you may code one section to be

performed when one of two report groups is about to be produced:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 277

 01 BRANCH-HDDR TYPE CH FOR BRANCH-CODE.
 ...
 01 DEPT-HDDR TYPE CH FOR DEPT-CODE.
 ...
 PROCEDURE DIVISION.
 DECLARATIVES.
 CHANGE-BRANCH SECTION.
 USE BEFORE REPORTING BRANCH-HDDR.
 CHB-000.
 PERFORM CHANGE-BRANCH-DEPT.
 CHANGE-DEPT SECTION.
 USE BEFORE REPORTING DEPT-HDDR.
 CHD-000.
 PERFORM CHANGE-BRANCH-DEPT.
 CHANGE-BRANCH-DEPT SECTION.
 CBD-000.
 ... (common code) ...
 END DECLARATIVES.

Your USE BEFORE REPORTING section must not contain any INITIATE, GENERATE, or

TERMINATE statements. Neither may any of the sections it may perform.

If you specify GLOBAL, the named report group must exist either in the current program

or in a contained program.

USE BEFORE REPORTING Directive: Operation

If any of your report groups has a USE BEFORE REPORTING section, report writer will

implicitly PERFORM the section during the processing of the group. Assuming

that your report has every possible feature, the section will be implicitly

performed:

After the testing of control breaks and the production of any CONTROL FOOTING

and CONTROL HEADING groups (if your group is a DETAIL);

After the computation of your group's cross-foot totals (if any), so your USE

BEFORE REPORTING section can reference them;

If OSVS is in effect, after the rolling forward into your totals and subtotalling

associated with your group;

If NOOSVS is in effect, before the rolling forward into your totals and subtotalling

associated with your group, so your USE BEFORE REPORTING section can alter

values that are due to be added into other groups' totals;

Before the moving of any CODE identifier, so your USE BEFORE REPORTING

section can change the originating identifier;

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 278

Before the page-fit test and the production of any PAGE FOOTING and PAGE

HEADING groups (if your group is a body group), so you may alter the

originating fields due to be moved into them, or suppress them along with the

body group itself.

Before any of the SOURCE, SUM, or FUNCTION fields are set up in the lines of your

group, so you may change any of the originating fields due to be displayed in

your group.

You may include the a SUPPRESS PRINTING statement or MOVE 1 TO PRINT-SWITCH in a

USE BEFORE REPORTING Declarative, in order to prevent output for the group at

that instant (see 4.5).

USE BEFORE REPORTING sections were used a great deal in the ANS-68 and ANS-74

COBOL-IT Report Writer. So you may possess migrated programs that contain

cases of their use. With report writer much of their functions are now performed

by the PRESENT WHEN and PRESENT AFTER clauses. However, they can still be of

considerable use. For example:

You could use your Declarative section to WRITE additional records to another

file, using the automatic control break processing to "drive" the rest of

your program.

You might use the USE BEFORE REPORTING section for a CONTROL HEADING

group to READ an additional record at the start of each new CONTROL

value, or fetch it from your database.

You might need to suppress the printing of certain totals without preventing

them from being reset to zero. (The PRESENT clause will prevent the

resetting of a total field if it was not output.)

You might want to force a CONTROL HEADING group to start on a new page

under certain complex circumstances. Your USE BEFORE REPORTING

section would then force page advance processing thus:

IF complex-condition

 MOVE last-detail-value TO LINE-COUNTER.

You might want to search a table for a corresponding text field at the start of

each CONTROL HEADING group, and move it to a WORKING-STORAGE

field that is the operand of a SOURCE in a PAGE HEADING or the

CONTROL HEADING itself. (If your group is a DETAIL, it will be clearer to

do this in the main-line program.)

There may be an item associated with a control which is not itself a control

(such as a STATE-NAME logically associated with a STATE-NO control)

which you will want to output during CONTROL FOOTING time. Since the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 279

item is not a control you will not automatically obtain the before-the-

break value. You could code a Declarative section for the

corresponding CONTROL HEADING group. This would save the current

value of the field in a WORKING-STORAGE location which is then used

instead of the input item in all SOURCE clauses in PAGE HEADING, PAGE

FOOTING and CONTROL FOOTING groups.

If you have no CONTROL HEADING group, you may code one as a

"dummy" (see 3.2 Coding Report Group Descriptions) with no LINE

clauses, in order to take advantage of report writer's automatic control

break checking, as suggested in the following example:

 RD ... CONTROL IS IN-STATE-NO.
 01 NEW-STATE CH FOR IN-STATE-NO.
 01 CF FOR IN-STATE-NO.
 ...
 05 COL ... SOURCE IS WS-STATE-NAME.
 01 PH.
 ...
 05 COL ... SOURCE IS WS-STATE-NAME.
 DECLARATIVES.
 SAVE-CURRENT-STATE SECTION.
 USE BEFORE REPORTING NEW-STATE.
 SAVE-000.
 MOVE IN-STATE-NAME TO WS-STATE-NAME.
 END DECLARATIVES.

You may find it desirable to suppress printing of a minor CONTROL FOOTING if

only one DETAIL is printed above it, since a "total" of a single value will

seem out of place. Here is one way to do it:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 280

 01 DETAIL-ENTRY DETAIL.
 03 LINE + 1.
 05
 ...
 01 MINOR-CF CONTROL FOOTING FOR STATE-NO.
 03 LINE + 2.
 05
 05 R-DETAIL-COUNT PIC 999 COUNT OF DETAIL-ENTRY.
 ...
 DECLARATIVES.
 ZAP-CF-SECTION SECTION.
 USE BEFORE REPORTING MINOR-CF.
 ZAP-CF-000.
 IF R-DETAIL-COUNT = 1 SUPPRESS PRINTING.
 END DECLARATIVES.

Do not instead code an ABSENT WHEN clause at the 01-level of the

CONTROL FOOTING group, as this would have the undesirable side-

effect of preventing the resetting and rolling forward of any SUM fields

that you might have defined in the CONTROL FOOTING group.

If you specify GLOBAL, your Declarative section will apply both to the current program,

if it contains a report group of that name, and also to any contained program

that has a report group of that name but no USE BEFORE REPORTING section of

its own for that name. If a contained program also has a USE GLOBAL BEFORE

REPORTING section for the same report-group-name, this overrides the effect of

original section until the end of the contained program.

Compatibility

Apart from the ANS-85 GLOBAL phrase, OS/VS and DOS/VS COBOL, and new Report

Writer agree in their formats for this statement, but new Report Writer allows a USE

BEFORE REPORTING section to be coded for a DETAIL group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 281

5

1.5 Special Topics

This part treats some more advanced or specialized topics. The production of multiple

reports, and the development of user-written extensions (functions and file handlers)

are also described.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 283

1.5.1 Multiple Reports

COBOL-IT Report Writer provides a means for producing either one physical file from

several reports, or several physical files from one report description. The following

sections describe each case:

Several Reports to One Physical File

This is indicated when you write the clause

 REPORTS ARE report-name-1 report-name-2 ...

in the FD entry for the report file. The different reports may be written either

successively, alternately, or concurrently to the file.

Successive Reports

This describes the case when each successive report is processed through from INITIATE

to the final TERMINATE and is then not accessed again:

 INITIATE report-name-1
 GENERATE report groups in report-name-1
 ...
 TERMINATE report-name-1
 INITIATE report-name-2
 GENERATE report groups in report-name-2
 ...
 TERMINATE report-name-2

This method is free of complications and has useful applications. One example is the

case where a report has a front section or a trailing section, too complex too describe

as a REPORT HEADING or REPORT FOOTING:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 284

very complex "report heading" < Instead of automatically using a

< REPORT HEADING, remember that this

< could be a report in its own right.
...

...

body of report

 ...

...

very complex "report footing"
< This might also be a

< separate "report".

...

The "Report Heading" might have several parts, and the "Report Footing" might have

many complex parts, totals, etc. You might instinctively try to describe this complex

layout using a single RD, because it has been designed as a single report.

Remembering that a "report file" may be composed of several "logical reports", you

now re-code the layout using three RDs:

 FD print-file ...
 REPORTS ARE HEADING-REPORT, MAIN-REPORT, TRAILING-REPORT.
 ...
 RD HEADING-REPORT
 ...
 RD MAIN-REPORT
 ...
 RD TRAILING-REPORT
 ...

and code the INITIATE, all the GENERATEs and the TERMINATE for each report in

tandem. Assuming that each RD has a PAGE clause, each report will begin on a new

page, as required.

This example assumes that you have no page numbering in the "Report Heading" or

"Report Footing", and that you start with a page number of one in the main report. If

you do require page numbering throughout, remember that each report has its own

separate PAGE-COUNTER. Assuming that the page numbers are to run in sequence

throughout the report, you must carry forward the PAGE-COUNTER after each

TERMINATE, as follows:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 285

PROCEDURE DIVISION.
 ...
 INITIATE HEADING-REPORT
 GENERATE heading-groups ...
 TERMINATE HEADING-REPORT
 *
 INITIATE MAIN-REPORT
 ADD 1 PAGE-COUNTER IN HEADING-REPORT GIVING PAGE-COUNTER IN MAIN-REPORT
 (process main report)
 TERMINATE MAIN-REPORT
 *
 INITIATE TRAILING-REPORT
 ADD 1 PAGE-COUNTER IN MAIN-REPORT GIVING PAGE-COUNTER IN TRAILING-REPORT
 GENERATE trailing-groups ...
 TERMINATE TRAILING-REPORT

Alternating-Page-Format Reports

You may encounter the case where a report consists of two or more alternating page

formats, such as details of area A...summary page for area A details of area

B...summary page for area B..., where each page format begins on a fresh page and

has different PAGE HEADING, PAGE FOOTING and body groups from the others:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 286

Page Heading for detailed report

AREA A

DETAILED REPORT

< Detailed report headings are

< a problem.

...

...

Page Heading for summary report

SUMMARY FOR AREA A

SUMMARY REPORT

< You cannot code this page as a

< CONTROL FOOTING because the page

< headings are completely different.

Page Heading for detailed report

AREA B

DETAILED REPORT

< Here the page headings return

< to the first layout.

...

...

Page Heading for summary report

SUMMARY FOR AREA A

SUMMARY REPORT

When approaching this problem, keep in mind the points made under Successive

Reports above. This time, we keep both reports initiated. (If not, the page numbering

will return to 1 after each INITIATE, and there will be problems if, say, we want to

produce grand totals at the end of the reports.) The following is one possible solution.

 FD print-file ...
 REPORTS ARE DETAILED-REPORT, SUMMARY-REPORT.
 ...
 RD DETAILED-REPORT
 ...
 RD SUMMARY-REPORT
 ...

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 287

*
 PROCEDURE DIVISION.
 ...
 INITIATE DETAILED-REPORT, SUMMARY-REPORT
 obtain first input record
 PERFORM UNTIL end-of-file
 GENERATE detailed-groups ...
 IF change in AREA code
 MOVE PAGE-COUNTER IN DETAILED-REPORT
 TO PAGE-COUNTER IN SUMMARY-REPORT
 GENERATE summary-groups
 MOVE PAGE-COUNTER IN SUMMARY-REPORT
 TO PAGE-COUNTER IN DETAILED-REPORT
 END-IF
 obtain next input-record
 END-PERFORM
 TERMINATE DETAILED-REPORT, SUMMARY-REPORT

(An alternative solution is to use an expression made up from both PAGE-COUNTERs, for

example:

 05 COL 100 "PAGE:".
 05 COL + 2 PAGE-COUNTER IN DETAILED-REPORT +
 PAGE-COUNTER IN SUMMARY-REPORT - 1.)

Because you are not doing a TERMINATE and INITIATE on each occasion that you

"switch reports", they will not necessarily always resume on a fresh page. Consider each

report separately and decide how you would make it resume on a fresh page if the

other report were not there. For example, you might begin after each "switch" with a

GENERATE of a DETAIL group with a low absolute LINE number; or you might use the

NEXT GROUP NEXT PAGE clause in a dummy CONTROL HEADING; or you might simply

code MOVE footing-integer TO LINE-COUNTER IN next-report-name before resuming.

Concurrent Reports

There are two quite unconnected cases to discuss here:

a. One report built up from several alternating RD's.

Here, you GENERATE output via two or more RDs associated with the same

report file without necessarily waiting for a page advance before switching from

one report to another. It can be difficult to use this method, because each

report keeps its own LINE-COUNTER and control break information. Each report

will therefore act as though it alone had control of the page format. Although

no serious breakdown is likely at run time, you will have to take special steps to

ensure that pages terminate at the correct point. To do this, you will need to

MOVE one LINE-COUNTER to another in much the same way that the PAGE-

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 288

COUNTERs are dovetailed in the section on "Successive Reports" above. If you

specify the same control-ids in each report, remember that each possible

control break will occur in each report separately, when it is GENERATEd.

b. Distinct reports spooled to the same file.

Here, several reports are written to the same file but are distinguished by means

of the CODE (see 2.5 CODE clause). This technique was commonly used in the

past when print data was spooled onto tape or disk. Several reports could be

written to the same spool file by marking the print records of each report with an

identifying character, characters, or identifier of any length. De-spooling

software then passed through the spool file, each time selecting only those print

records beginning with a certain identifying character. (It was possible to sort

the records, but this is usually much less efficient.) As example, you might have

had two reports:

 FD PRINT-FILE ...
 REPORTS ARE REPORT-A REPORT-B.
 ...
 RD REPORT-A ...
 CODE IS "A" ...
 *or: CODE IS mnemonic-name
 *and put in SPECIAL-NAMES: "A" IS mnemonic-name
 01 ...
 ...
 RD REPORT-B ...
 CODE IS "B" ...
 01 ...
 ...

The reports were both written to the same file, but you there was no problem in

separating them as the reports eventually appeared as separate outputs,

thanks to their distinguishing codes. A utility to separate and print the physical

reports is not provided as a part of the report writer software, and users who

developed a utility program to handle the output produced by OS/VS and

DOS/VS COBOL's built-in report writer with a CODE clause should use the same

program to handle the output from report writer.

Several Outputs From the Same RD

There are two cases to be reviewed for this topic:

a. Identical copies of the same physical report.

Following the ANS-74/85 standards, report writer does not allow you to assign

your report to more than one file. This is more restrictive than the ANS-68

standard used in OS/VS and DOS/VS COBOL, which allows up to two files. If you

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 289

require two or more identical copies of the same physical report, you should try

to achieve this through Operating System commands, or you should write an

Independent Report File Handler (see 5.3 Independent Report File Handlers) that

executes a WRITE for each of several files for each report line.

b. Different reports with similar formats going to different files.

In a program with several reports, you may find that two or more report layouts

are identical, or nearly so, and you naturally want to avoid duplication of code.

The DUPLICATED clause is designed for this purpose. The following diagram

shows a case with three files.

similar report format

(one Report Description)

 / | \

report number 1 report number 2 report number 3

Although the layouts are similar, the contents of the reports may be quite

different (as distinct from case a where all output is simply printed twice). The

DUPLICATED clause (see 2.2 Report Files) sets up the given number of separate

report control areas, each with its own PAGE-COUNTER, LINE-COUNTER , totals,

control break indicators, Page Buffer, etc. They are distinguished by the value of

the special register REPORT-NUMBER which is defined by report writer in every

program that has a DUPLICATED clause. You may "switch" output to your

selected report by storing a value from 1 to the maximum number of duplicates

in REPORT-NUMBER. Output goes to only one of the reports at any given time.

Although there are several separate physical files, only one SELECT clause and

one FD entry are coded, and one OPEN and CLOSE is executed. Despite your

own OPEN statement, a file is actually opened only when the report whose

number is held in REPORT-NUMBER is first INITIATEd.

If REPORT-NUMBER is zero when the INITIATE is executed, all the reports are

INITIATEd. The CLOSE operation (not the TERMINATEs) closes all the files that

were opened. The value of REPORT-NUMBER is immaterial when you OPEN and

CLOSE. You may MOVE ZERO to REPORT-NUMBER and do a single TERMINATE.

This will TERMINATE all the reports that were INITIATEd. If REPORT-NUMBER is not

zero when a TERMINATE is executed, only the corresponding report is

terminated.

The report layouts need not be identical in all respects. You may vary the

entries "present" from one report to the next by using the PRESENT WHEN clause,

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 290

and you may vary the contents by the same means or by using SOURCE

identifiers subscripted by REPORT-NUMBER. The DETAIL groups may even be

different for each of the reports, since you can of course choose at any time

which DETAIL groups to GENERATE. Therefore the DUPLICATED clause may still

save you coding time even if there are notable differences in the layouts of the

report groups.

At run time, report writer will vary the for each of your multiple print files by

appending to it the two digits 01 (for the first file) up to nn for the last file, where

nn is the integer in your DUPLICATED clause. If you specify a DDname of more

than six characters, characters 7 and 8 of your DDname are overwritten. For

example:

 SELECT FILEA ASSIGN TO LST DUPLICATED 3 TIMES

expects your DDnames to be LST01, LST02 and LST03, and

 SELECT...ASSIGN TO LISTINGF DUPLICATED 16 TIMES

expects your DDnames to be LISTIN01 through LISTIN16.

The following sample of coding shows how these techniques are used:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 291

 FILE-CONTROL.
 SELECT REPORT-FILE ASSIGN TO PRINTF
 DUPLICATED 3 TIMES.
 ...
 FD REPORT-FILE
 ...
 REPORT IS STOCK-REPORT.
 ...
 REPORT SECTION.
 RD STOCK-REPORT
 01 STOCK-LINES TYPE DE.
 03 LINE + 2.
 ...
*The following is a subheading that is different in each report:
 05 COL 120 PIC X(20) SOURCE WS-DESCRIPTION (REPORT-NUMBER).
*The following line is not generated in report #1:
 03 LINE ABSENT WHEN REPORT-NUMBER = 1.
 ...
 PROCEDURE DIVISION.
 ...
*Report file is opened only once
*even though it represents 3 potential files
 OPEN OUTPUT REPORT-FILE *> intercepted by report writer
 ...
*If report #1 is required during this run:
 MOVE 1 TO REPORT-NUMBER
 INITIATE STOCK-REPORT
 ...
*and, in general, if report #n is required:
 MOVE n TO REPORT-NUMBER
 INITIATE STOCK-REPORT
 ...
*When output is sent to report #1, for example:
 MOVE 1 TO REPORT-NUMBER
 GENERATE STOCK-LINES
 ...
*and, in general, when output is sent to report #n:
 MOVE n TO REPORT-NUMBER
 GENERATE STOCK-LINES
 ...
*to terminate all of the 3 reports that may have been initiated:
 MOVE 0 TO REPORT-NUMBER
 TERMINATE STOCK-REPORT
 ...
*or, to terminate just report #1:
 MOVE 1 TO REPORT-NUMBER

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 292

 TERMINATE STOCK-REPORT
 ...
 CLOSE REPORT-FILE.

If you refer to LINE-COUNTER, PAGE-COUNTER, a total field, or any of the other

special registers within the Report Control Area, the actual location accessed

will be the one belonging to the report for which the most recent INITIATE,

GENERATE, or TERMINATE was performed. For example, if you wish to reset PAGE-

COUNTER in each of your reports in the multiple set, you should define a dummy

DETAIL group (one having no LINEs) and code the following:

 MOVE 1 TO REPORT-NUMBER
 GENERATE DUMMY-GROUP *>needed to make Report #1 current
 MOVE 0 TO PAGE-COUNTER
 MOVE 2 TO REPORT-NUMBER
 GENERATE DUMMY-GROUP
 ... etc. ...

If you use a procedural statement, such as a MOVE, to store a value directly into

a named field in one of your REPORT SECTION lines, the new contents will take

effect for all the reports of the multiple set, because the report lines produced

by report writer are shared by each of them.

1.5.2 Developing User-Written Functions
The Need for Functions

The FUNCTION clause, which is described from the user's point of view under 3.7

FUNCTION clause, allows you to develop your own function routines as well as to use

certain built-in functions, such as DAY, MDATE, and TIME. A user-written function allows

you to display report data in a way peculiar to your installation.

User-written functions are especially effective when needed in many separate

programs, as they provide a standard way of displaying certain codes or other items of

information peculiar to the user site. Indeed a commitment to "think functionally" may

greatly improve efficiency throughout a programming department. To convince

yourself of this, consider the following scenario, before the introduction of functions:

Many report programs require the programmer to code a table of descriptions or

names directly into the Working-Storage of the program. Perhaps at first only a few

report programs of this type are written, so that, even when some extra codes are

added to the table and all those programs have to be re-compiled, no one objects too

strongly.

Suddenly a large number of new programs are written that require the same names.

Some programmers code the table from scratch; others prefer to take a copy from a

working program. Business conditions then change and many new codes are added

to the table. Dozens of programs have to be changed. Any change requires retesting

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 293

of whole suites of programs. Each program has its own particular way of encoding the

table, so an amendment becomes a major undertaking. At the end of it, no one is

absolutely sure that all the programs affected have been found and amended.

When the next major change becomes necessary, some one decides that from now

on all the codes will be held in a static "table file". New programs are guaranteed to

be independent of the codes and names, but there is a penalty to be paid in each

program, because of all the extra steps needed to OPEN, READ and CLOSE the file in

the program. Later, there might be a general change from traditional files to a

database, so all the programs have to be amended again.

Through the use of functions from the outset, programs can be made independent of

all these changes. The program will be shorter and the programmer need not worry

about how the report field is created. Control over specification and change becomes

more assured.

How To Write a Function Routine

As designer of a function routine, you have a free hand to transform the data in any

desired way, provided that the print data that results fits within the limits of the print field

described by the programmer in the associated PICTURE clause.

Most function routines are COBOL subprograms with a standard LINKAGE SECTION, but

they may also be written in any programming language that can be CALLed by

COBOL. The use of COBOL normally prevents the number of parameters passed to the

FUNCTION from being variable (a minor benefit). Since they are "normal" programs,

function routines may use any files or databases that are available to other programs,

may CALL other subprograms, and may store intermediate results in their own Working-

Storage.

The number of relevant characters returned in the output (report) field may vary, thus

enabling the same function routine to handle different sizes and formats, for example

"date" formats with different arrangements of day, month, and year. The size and

format of the user-coded parameters (if any) are usually prescribed by the function

routine and cannot vary, unless the designer decides to specify an additional

parameter to indicate which of a choice of formats the input is in. All parameters are

passed "by reference" so, although they normally pass data only into the function

routine, they may also be used to pass updated data back to the user program.

The function routine is used in the program via the FUNCTION clause, and the

programmer need not be aware of the precise mode of operation of the function

routine. The description of the built-in functions is also given in 3.7 FUNCTION clause.

User-written functions may be similarly specified and added to this publication in an

appropriate place.

The program name of the function routine should be Rnxxxxxx, where xxxxxx is the

mnemonic name of the function of no more than 6 alphanumeric characters and n is

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 294

the number of parameters to the function. For example, if the function is called

COUNTY and takes one parameter, you must write a function module with the

program-id: R1COUNTY otherwise. If the same function has a variable number of

parameters, separate function routines must be written (although they may all call a

common subordinate routine).

The parameters to the function routine are as follows:

Parameter 1: Function Control Area, consisting of:

 2 bytes binary: number of user-coded parameters present in FUNCTION

 clause, i.e. excluding internal parameters 1 and 2;

 2 bytes binary: total size of field, in bytes, or, if field is

 edited, its equivalent de-edited size;

 2 bytes binary: size in bytes of parameter #1 of FUNCTION, if any

 2 bytes binary: size in bytes of parameter #2 of FUNCTION, etc.

Parameter 2: report field; if edited, de-edited intermediate field;

Parameters 3,4... (optional) parameters as defined in FUNCTION clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 295

Sample COBOL Function Routine

 IDENTIFICATION DIVISION.
 PROGRAM-ID. R1DEPOT.
*
*COBOL-IT Report Writer user function
*Converts internal depot code 'L', 'B', or 'N'
*to full name for printing in report
*Available report field sizes:
* 4 = short form ('LNDN', 'BHAM', 'NCSL', ETC.)
* 12 = long form ('LONDON', 'BIRMINGHAM', 'NEWCASTLE' ETC.)
*
*To use, write: FUNC DEPOT (DEPOT-CODE) instead of SOURCE...
*
*This function may be converted later to hold depot names in a
*file or database table without impact on the programs.
*
 ENVIRONMENT DIVISION.
 DATA DIVISION.
*
 WORKING-STORAGE SECTION.
 01 WS-FIELDS.
*table of short names
 03 SHORT-NAME-TAB VALUE "LNDNBHAMNCSL????".
 05 SHORT-NAME PIC X(4) OCCURS 4.
*table of long names
 03 LONG-NAME-TAB VALUE
 "LONDON BIRMINGHAM NEWCASTLE UNKNOWN ".
 05 LONG-NAME PIC X(12) OCCURS 4.
 03 W-DEPOT-NUMBER PIC S9(4) COMP.
 03 W-PARAM-ERR PIC X.
*
 LINKAGE SECTION.
*Param (1): Function Control Area
 01 L-FUNC-CTL.
*No. of parameters to function:
 03 L-PARAM-CNT PIC S9(4) COMP.
*Length of output field in bytes:
 03 L-OP-LEN PIC S9(4) COMP.
*Length of parameter in bytes:
 03 L-PM1-LEN PIC S9(4) COMP.
*
*Param (2): output area
 01 L-OP-FLD.
 03 L-OP-CH PIC X OCCURS 1 TO 12
 DEPENDING ON L-OP-LEN.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 296

*Param (3): input depot code
 01 L-DEPOT-CODE PIC X.
*
 PROCEDURE DIVISION USING L-FUNC-CTL, L-OP-FLD, L-DEPOT-CODE.
 FUNCTION-ENTRY.
 PERFORM PARAMETER-CHECK
 IF W-PARAM-ERR = "N"
 PERFORM CONVERT-CODE.
 FUNCTION-EXIT.
 EXIT PROGRAM.
*Routine to check parameters:
 PARAMETER-CHECK.
 MOVE "N" TO W-PARAM-ERR
*Check correct parameter specification
 IF L-PARAM-CNT NOT = 1
 OR L-PM1-LEN NOT = 1
 DISPLAY
 "R1DEPOT ERROR CRW-651: INVALID PARAMETERS"
 MOVE "Y" TO W-PARAM-ERR.
*Check report field is correct size
 IF L-OP-LEN NOT = 4 AND NOT = 12
 DISPLAY
 "R1DEPOT ERROR CRW-652: INVALID REPORT FIELD SIZE"
 MOVE "Y" TO W-PARAM-ERR.
*Routine to convert depot code:
 CONVERT-CODE.
*Check input depot code, convert to integer 1-3, or 4 if unknown
 IF L-DEPOT-CODE = "L"
 MOVE 1 TO W-DEPOT-NUMBER
 ELSE IF L-DEPOT-CODE = "B"
 MOVE 2 TO W-DEPOT-NUMBER
 ELSE IF L-DEPOT-CODE = "N"
 MOVE 3 TO W-DEPOT-NUMBER
 ELSE MOVE 4 TO W-DEPOT-NUMBER.
 IF L-OP-LEN = 4
 MOVE SHORT-NAME (W-DEPOT-NUMBER) TO L-OP-FLD
 ELSE MOVE LONG-NAME (W-DEPOT-NUMBER) TO L-OP-FLD.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 297

1.5.3 Independent Report File Handlers

Introduction

An Independent Report File Handler (or file handler) is a separately-compiled program

routine that takes over all the functions of the normal COBOL OPEN-WRITE-CLOSE

protocol for a particular report. The source program, as written, is identical in all

respects to a regular batch print program, except that the SELECT...ASSIGN clause for

the file to which the report is directed carries the additional sub-clause MODE IS... (see

2.2 Report Files), and that there may also be a CODE clause (see 2.5) in the RD. (The

MODE sub-clause can also be "forced" by default onto any report file does not have a

MODE by an external option setting - see Installation and Operation.)

File handlers monitor the results of any i/o operations they perform and pass any error

codes back in the FILE STATUS field in the usual way, or, if no FILE STATUS is specified,

they display a suitable message and, if the error is irrecoverable, abort the run.

New Report Writer comes with some built-in file handlers and these are listed below.

Any number of others may be written by users to similar standards. File handlers can be

written in COBOL or another language.

Supplied File Handlers

The following list explains the function of each of the built-in file handlers and gives the

MODE mnemonic you require to invoke each.

MODE PRNT Purpose: basic printing.

This file handler performs the same basic print functions as when

no file handler is used at all. Unless you already specify a MODE

clause, it will be used automatically when any of the following

features is used:

• PAGE BUFFER clause in SELECT

• DUPLICATED clause in SELECT

• STYLE clause

• UPON option of INITIATE

• CODEs of unequal length for RDs of same file.

Effect of CODE: Placed at start of print line, as in ANS standards.

It is output after any carriage control characters.

MODE NOPF Purpose: basic printing without using page feeds.

This file handler fills each page entirely using line feeds.

Effect of CODE: Placed in print line after the carriage control.

MODE MODL Purpose: for use in a modular system.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 298

This file handler may be used by more than one separately

compiled program in a run unit. Each program may thus write

to the same report file. See listing below.

Effect of CODE: Placed in print line after the carriage control.

MODE CHAN Purpose: make optimal use of any printer channels.

The channel positions are fed into the file handler at run time, as

described in Installation and Operation. The file handler

automatically uses channel skips to get as near as possible to

each target line. The RD does not change.

Effect of CODE: Placed in print line after the carriage control.

MODE DUPL Purpose: emulate OS/VS and DOS/VS COBOL's ability to write

not VSE to two files simultaneously.

The file handler performs the OPEN, WRITE, CLOSE as

appropriate for each file in turn.

Effect of CODE: Placed in print line after the carriage control.

User-Written File Handlers

An Independent Report File Handler is not usually developed as part of one program,

but separately so that it can be used by all the report programs in a project. Only a

brief specification is normally required, similar to those in the table of built-in file handlers

below. Any application will then be able to use the file handler.

The file handler has a fixed LINKAGE SECTION, and the areas and their various locations

are given in COBOL format below. For use in a language other than COBOL, translate

the data-names and PICTUREs as appropriate.

The program-name of the file handler is related to the name of the MODE mnemonic.

Full details are given in Operation and Installation.

Possible Uses of a File Handler

In this section we list some possible uses to which you might put a file handler.

Using COBOL-IT Report Writer for Non-Report Output

Provided your program's "report lines" contain no COMPUTATIONAL entries, you might

adapt your file handler to produce output which is not intended for printing but instead

for passing on to another program. Then, if you decide to ignore all LINE numbers, so

that each "line" is another record irrespective of the "line advance", your file handler

would simple do a WRITE without ADVANCING.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 299

Output to Database

Your program may be required to send its printed output to a database rather than in a

sequential file.

Private STYLEs

If the printer has advanced features that require special programming, you can

designate certain STYLEs as PRIVATE. The processing of such STYLEs is then left to your file

handler. Full details are in Installation and Operation.

Output to Multiple Files

Your file handler may write to several files simultaneously, as outlined above (see 5.1.5

Several Outputs From the Same RD) and under MODE DUPL above.

Using CODE

In a "batch" report, the CODE is a "literal" prefixed to every print line. However, with a

file handler you can designate the CODE clause for the passing of any additional

information from the program to the file handler. Normally this is to control the output,

rather than for output as part of the data. For example, given the necessary hardware

and software prerequisites, you might decide to develop a file handler, and use the

CODE clause, as follows:

Your possible file handler: Likely use of CODE:

Microfiche output Key for fiche indexing.

Remote transmission Identifier for remote printer.

Spooled restart system Key, page number, etc., for restart.

The contents of the program's CODE operand appears in the file handler as the

LINKAGE SECTION item L-RCA-CODE-VAL, as described later in this section.

Actions of an Independent Report File Handler

A file handler must perform certain mandatory housekeeping functions in order to

execute correctly in combination with the report writer code. However, the method by

which the report data is physically output is left entirely to the file handler.

If the file handler may be required to service more than one report file or INITIATEd

report simultaneously, or be required to be usable by more than one program

simultaneously, it should store its intermediate results in the File Control Area or Report

Control Area, where certain locations have been reserved for discretionary use by the

file handler.

The following are the mandatory housekeeping actions that must be performed by

every file handler. The standard locations referred to are described later in this section.

If the location L-FCA-ACT-IND is anything other than "0" or "9", "OPEN" the report "file".

The file handler may interpret the OPEN function and the nature of the "file" in

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 300

any way it wishes. The value of L-FCA-ACT-IND indicates the type of OPEN

required (OUTPUT, EXTEND, or other).

If the location L-RCA-ACT-IND is "6", "INITIATE" the report. The file handler may perform

the INITIATE action in any way it wishes.

If there is data to output, indicated by the field L-PRC-BYTE-CNT being non-zero, "print"

the data. The exact nature of the "printing" activity is left entirely to the file

handler and may differ widely from a "batch" WRITE statement. The following

locations will be needed to accomplish this:

L-RCA-VERT-POSN contains the current vertical position or zero. If it is

zero the file handler should execute a "form feed". This action should be

omitted if L-RCA-PAGE-LIM is zero, indicating that the report is not

divided into pages.

L-FCA-SUPP-PFD, if set to 1, indicates that the program has a FIRST PAGE

NO ADVANCING clause in the SELECT...ASSIGN. If so, the "form feed" is

not done and instead the current position is assumed to be "line 1". It is

cleared automatically by the control routine.

L-RCA-LINE-CNTR contains the target vertical position. By subtracting L-

RCA-VERT-POSN from this, you obtain the distance to be advanced.

If the location L-RCA-ACT-IND is "8", "TERMINATE" the report. The file handler may

perform the TERMINATE action in any way it wishes.

If the location L-FCA-ACT-IND is "9", "CLOSE" the report "file". The file handler may

interpret the CLOSE function in any way it wishes.

By convention, there will never be more than one action from the possibilities OPEN,

INITIATE, "print", TERMINATE, and CLOSE on any entry.

File Handler LINKAGE Areas

All the information required by the file handler is passed to it via optional user

parameters and three standard LINKAGE areas, of which source copies are provided

with this product.

Optional Leading Parameters: User-Defined Parameters

There may be any number of parameters at the start of the LINKAGE SECTION

pre-determined by the user and specified through the USING phrase of the

MODE clause. See 2.2 Report Files for a description of this phrase.

Parameter 1: File Control Area

The File Control Area contains information relating to the current report file. A

File Control Area is set up for each report file that has a MODE clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 301

 01 L-FCA-CNTRL-AREA.
*Maximum length in bytes of CODEs for this file.
*= 0 if CODE clause is not present for any reports in file.
 03 L-FCA-CODE-LEN PIC S9(4) COMP.
*Maximum record length in bytes for File.
 03 L-FCA-REC-LEN PIC S9(4) COMP.
*Action indicator byte.
*Action performed is open to interpretation by the designer.
*"0" = no action against file
*"1" = file to be opened output
*"2" = file to be opened extend
*"5" = file to be opened in irregular manner
*"9" = file to be closed
 03 L-FCA-ACT-IND PIC X.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 302

*File status indicator.
*Initial value = low-values (hex '00')
*"0" = file not opened
*"1" = file opened output
*"2" = file opened extend
*"5" = file opened in irregular manner
*"9" = file closed
 03 L-FCA-STAT-IND PIC X.

*Count of reports initiated for this file.
*Incremented by 1 on INITIATE, decremented by 1 on TERMINATE;
*initially zero, must never become negative;
*used to warn on CLOSE if some report(s) still initiated
 03 L-FCA-REPS-INT PIC S9(4) COMP.

*MODE mnemonic name:
*up to 4 characters (padded with spaces) from the MODE clause
 03 L-FCA-MODE-MNEM PIC X(4).

*File Status:
*If L-FCA-FS-IND (below) = "1", file handler control routine will
*always pass back any file status here without abandoning the run;
*Otherwise, file handler control routine will abandon the run with
*an error message if a serious error is indicated in File Status.
 03 L-FCA-STATUS PIC XX.

*File Status indicator: set if SELECT has a FILE STATUS clause.
 03 L-FCA-FS-IND PIC X.
*Unassigned:
 03 FILLER PIC X.

*Locations reserved for communication between file handler
*and report writer:
*integer of DUPLICATED clause if present; zero if no such clause
 03 L-FCA-DUP-FACT PIC S9(4) COMP.

*Recording mode = "F", "V", "U", "S" or space if not specified
*taken from RECORDING MODE clause of the FD;
*may be taken into account or ignored by the file handler
*(report record is always variable-length; (see 2.2.3))
 03 L-FCA-REC-MODE PIC X.

*Indicator set = "1" if PAGE BUFFER clause present:
 03 L-FCA-PBUF-IND PIC X.

*First four characters of file name:
 03 L-FCA-FILE-PFIX PIC X(4).

*Locations reserved for use by file-handler:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 303

*Address of block of DUPLICATED FCA's, if applicable
 03 L-FCA-DUP-ADR PIC X(4).
*General-purpose location used as by file handler
 03 L-FCA-GEN-LOCN PIC S9(4) COMP.

*Suppress page feed indicator:
*Set = "1" if next page feed (always the first since OPEN) is
*to be ignored.
 03 L-FCA-SUPP-PFD PIC X.
*Data-written indicator:
*Set = "1" if something has been written to the file
 03 L-FCA-WRITE-IND PIC X.
*Unassigned:
 03 FILLER PIC X(4).
*Reserved for general use by File Handler:
 03 L-FCA-WORK-AREA PIC X(20).

*DDname from SELECT...ASSIGN statement:
*May be altered by user program by storing value in
*field DDNAME in File Control Area
 03 L-FCA-DDNAME PIC X(8).
*Alternative details of file name:
 03 L-FCA-FN-BLK REDEFINES L-FCA-DDNAME.
*Length in bytes of file-name
 05 L-FCA-FN-LEN PIC S9(4) COMP.
*Binary zero:
 05 L-FCA-FN-SLACK PIC X.
 05 FILLER PIC X.
*Address of file-name
 05 L-FCA-FN-ADR PIC X(4).

*End of File Control Area

Parameter 2: Report Control Area

The Report Control Area is set up by the Precompiler for each report that is

directed to a file that has a MODE clause. In the user program, the Report

Control Area is identified by the report-name.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 304

 01 L-RCA-CNTRL-AREA.

*PAGE-COUNTER, referred to in program as
*PAGE-COUNTER [IN report-name]:
 03 L-RCA-PAGE-CNTR PIC S9(9) COMP.

*LINE-COUNTER, referred to in program as
*LINE-COUNTER [IN report-name]
*Shows the desired position for this report line:
 03 L-RCA-LINE-CNTR PIC S9(9) COMP.

*Vertical position pointer.
*Shows the actual current position vertically on the page.
*diff. between this field and LINE-COUNTER gives desired advance;
*If this location is zero, a form feed is required first.
 03 L-RCA-VERT-POSN PIC S9(9) COMP.

*Line byte count override;
*Used internally only. Will = -1 in file handler.
 03 L-RCA-LINE-SIZE PIC S9(4) COMP.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 305

*Line Limit; i.e. the logical size of the report line
*from the LINE LIMIT clause in the RD, or its default:
 03 L-RCA-LINE-LMT PIC S9(4) COMP.

*Action indicator byte:
*"0" = no change to report status
*"6" = report to be initiated
*"7" reserved
*"8" = report to be terminated
 03 L-RCA-ACT-IND PIC X.

*Report status indicator:
*"0" = report never initiated
*"6" = report initiated
*"8" = report terminated
 03 L-RCA-STAT-IND PIC X.

*Report-name from RD statement:
 03 L-RCA-REP-NAME PIC X(30).

*Print record format indicator: always = "0"
 03 L-RCA-PRT-FMT PIC X.
*Line column width override: (1 byte binary held as character)
 03 L-RCA-COL-WIDTH PIC X.

*Page Limit from PAGE LIMIT clause RD; zero if no PAGE clause.
 03 L-RCA-PAGE-LIM PIC S9(4) COMP.

*Length of CODE, or zero if no CODE clause.
*The length of the CODE is determined from the length of the CODE
*"literal" or, if the "identifier" form of CODE clause is used,
*from the difference between the record length of the report file
*(as given in the RECORD or BLOCK CONTAINS clause of the FD)
*and the LINE LIMIT (or its default value),
*allowing for the normal carriage control characters.
 03 L-RCA-CODE-LEN PIC S9(4) COMP.

*Error flag: zero = no error.
*May be set by file handler to non-zero value representing a
*standard error condition for reporting via a subroutine.
*If it is given a value which does not correspond with a known
*error message, the message UNKNOWN ERROR TYPE will be output
*together with information that usually accompanies any message.
 03 L-RCA-ERR-FLG PIC S9(4) COMP.

*Error code detected by file handler:
 03 L-RCA-FH-ERR PIC S9(4) COMP.

*Report Number from REPORT-NUMBER location
*zero if DUPLICATED clause not in use.
 03 L-RCA-REP-NUM PIC S9(4) COMP.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 306

*Location reserved for future communication between file handler
*and report writer.
 03 L-RCA-COMM-AREA PIC X(8).

*Location reserved for internal use (not by file handler):
*Data items used by Page Buffer:
*Current margin offset established by SET COLUMN (1 = no margin)
 03 L-RCA-MARG PIC S9(4) COMP.

*Forced absolute line number set up by SET LINE TO integer.
 03 L-RCA-ABS-LNO PIC S9(4) COMP.

*Indicator set to "H" "HOLD" status, otherwise space.
 03 L-RCA-HOLD-IND PIC X.

*General locations used by file handlers:
 03 FILLER PIC X(11).

*Data items used by Page Buffer: (not required by file handler)
*Current physical position;
 03 L-RCA-PHYS-POSN PIC S9(4) COMP.

*Lowest line no. having line buffered.
 03 L-RCA-STL-LOW PIC S9(4) COMP.

*Highest line no. having line buffered.
 03 L-RCA-STL-HIGH PIC S9(4) COMP.

*Maximum value permitted for LINE-COUNTER.
 03 L-RCA-MAX-LCT PIC S9(4) COMP.

*Maximum physical size in bytes of "line" of data;
*this is the largest value that can ever be held in "byte count"
*(L-PRC-BYTE-CNT) of any print line.
*It differs from the line limit (L-RCA-LINE-LMT) in that
*(a) the line limit is a maximum for checking purposes only and
*may never be attained in any actual line of the report,
*(b) lines may contain formatting characters that do not occupy
*a column of print, e.g.
*start- and end-sequence of a "style" (underline, bold etc.)
*shift out and shift in characters used by Kanjii (DBCS)
 03 L-RCA-BYTE-LMT PIC S9(4) COMP.
*Number of purely formatting characters override; if non-zero, the
*value (L-PRC-BYTE-CNT - L-RCA-FMT-CNT) overrides L-PRC-END-COL;
*it must always be cleared by file handler.
 03 L-RCA-FMT-CNT PIC S9(4) COMP.
*Indicators, for general use by file handler.
 03 L-RCA-WORK-IND PIC X OCCURS 4.

*Code Value; zero length if no CODE clause in RD
*initial value set from CODE clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 307

*May be referred to in user program as CODE-VALUE [IN report-name]
 03 L-RCA-CODE-VAL.
 05 L-RCA-CODE-CHA PIC X
 OCCURS 0 TO 4095 TIMES DEPENDING ON L-RCA-CODE-LEN.
*End of report control area.

Parameter 3: Report Data

This parameter contains the data to be written. For OPEN, INITIATE, TERMINATE

and CLOSE operations, this parameter is a dummy with a value of zero in the

counter L-PRC-BYTE-CNT. The number of bytes to be written may be reduced to

the value in L-RCA-LINE-SIZE when it is non-negative.

 01 L-PRC-PRINT-REC.

*Physical byte count, not including this 4-byte header;
*will be zero when no data is to be output;
*gives no. of bytes to be written, unless overridden by
*L-RCA-LINE-SIZE set non-negative.
 03 L-PRC-BYTE-CNT PIC S9(4) COMP.

 03 L-PRC-HEAD.
*Indicator bits, layout is as follows:
*bit 0-3: unused
*bit 4: set if data contains unresolved STYLE sequence(s)
*bit 5: set if data consists only of formatting (STYLE) characters
*bit 6: reserved
*bit 7: set if print data must be flushed to spaces.
*2nd byte is reserved.
 05 L-PRC-HEAD-BYTES PIC S9(4) COMP.

*Data to be written;
 03 L-PRC-DATA.
 05 L-PRC-DATA-CHA PIC X
 OCCURS 0 TO 256 TIMES DEPENDING ON L-PRC-BYTE-CNT.

Sample Independent Report File Handler

The following is the complete code of the standard MODL file handler (used for writing

to a single report file from a modular system). This file handler is one of the simplest, and

so it may be used as a model for your own user-written file handlers, which will require

almost all the code that follows, except perhaps for the incrementing and

decrementing of the "nest depth" (W-OPEN-NEST) which is peculiar to this file handler.

At least one file handler is supplied in source form with this product, giving you a

machine-readable copy of most of this coding.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 308

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CRFHMODL.
*
*Independent Report Writer file handler for use in modular program
*
*Purpose:
* Used when several separately-compiled modules need to access
* the same report file without continually opening and closing.
* This file handler does not currently handle more than 1 file.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 309

*
*Method of use:
* 1. The control program does one OPEN at start of processing
* and one CLOSE at very end of all processing.
* (To satisfy the syntax it should have a minimal
* REPORT SECTION which is not used.)
* 2. Each subprogram including control module has an FD
* & does OPEN, some GENERATEs and CLOSE each time it is
* CALLed, as though it were the only module using the file.
*
* This file handler ignores all "nested" OPENs and CLOSEs.
* Typical sequence of operations:
*
* a. Control program does OPEN OUTPUT which is actioned.
* b. Subprogram does OPEN which is ignored.
* c. Subprogram does INITIATE, several GENERATE's & TERMINATE.
* d. Subprogram does CLOSE which is ignored.
* e. Many other subprogram CALLs occur in same way.
* f. Control program does CLOSE which is actioned.
*
* Subprograms have to do the (dummy) OPEN and CLOSE as Report
* Writer requires that every program be logically complete.

 ENVIRONMENT DIVISION.
*
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT PRINT-FILE
* is always overwritten by name specified in program
 ASSIGN TO RPFILE
 FILE STATUS IS W-FCA-STATUS.

 DATA DIVISION.
 FILE SECTION.
 FD PRINT-FILE
 LABEL RECORDS STANDARD.
*THIS FILE MAY ALSO BE DESIGNATED "RECORDING MODE V"
 01 F-PRINT-RECORD.
 05 F-PRINT-DATA.
 07 F-PRINT-CHAR PIC X OCCURS 512.

 WORKING-STORAGE SECTION.
*General locations:
 01 WS-GENERAL.
 05 W-FEED PIC S9(4) COMP.
*This location contains the "nest" level of OPEN/CLOSE statements:
 05 W-OPEN-NEST PIC S9(4) COMP VALUE ZERO.
*Pointer to record data:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 310

 05 W-PTR PIC S9(4) COMP.
*Indicator set = "Y" if a the given line of data has been printed:
 05 W-DATA-PRINTED PIC X.
*File name for print file:
 05 W-FILE-NAME PIC X(79).
*Indicator set = "1" if an error occurs on writing.
 05 W-PRINT-ERROR PIC X.
*File status:
 05 W-FCA-STATUS PIC XX.

*Standard Linkage:
 LINKAGE SECTION.

*Parameter 1: File Control Area
 COPY RWFCACOM.

*Parameter 2: Report Control Area
 COPY RWRCACOM.

*Parameter 3: Print Line
 COPY RWPLNCOM.

 PROCEDURE DIVISION USING L-FCA-CNTRL-AREA
 L-RCA-CNTRL-AREA
 L-PRC-PRINT-REC.
*
 FILE-HANDLER-CONTROL SECTION.
 FHC-ENTRY.
*Assume successful operation:
 MOVE "00" TO W-FCA-STATUS
*Open file if indicated:
 IF L-FCA-ACT-IND > "0" AND < "9"
 PERFORM OPEN-FILE.
*Initiate report if indicated:
 IF L-RCA-ACT-IND = "6"
 PERFORM INITIATE-REPORT.
*Print data if any data present:
 IF L-PRC-BYTE-CNT NOT = 0
 PERFORM PRINT-DATA.
*Terminate report if indicated:
 IF L-RCA-ACT-IND = "8"
 PERFORM TERMINATE-REPORT.
*Close file if indicated:
 IF L-FCA-ACT-IND = "9"
 PERFORM CLOSE-FILE.
 MOVE W-FCA-STATUS TO L-FCA-STATUS.
 FHC-EXIT.
 EXIT PROGRAM.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 311

*Main sections to print the data line.
*
 PRINT-DATA SECTION.
 PDA-ENTRY.
*check not too many characters for print line:
 IF L-PRC-BYTE-CNT > 512
 DISPLAY "CRFHMODL Error: Line too long - truncated".
 MOVE "N" TO W-DATA-PRINTED
*If vertical position is zero in paged report, page feed required:
 IF L-RCA-VERT-POSN = 0
 AND L-RCA-PAGE-LIM NOT = 0
 AND W-PRINT-ERROR = "0"
*If FIRST PAGE NO ADVANCING was coded in SELECT statement
*omit first page advance (this ind. is reset by control s/r)
 IF L-FCA-SUPP-PFD = "1"
 MOVE 1 TO L-RCA-VERT-POSN
 ELSE PERFORM TOP-OF-PAGE.
*Now write data after advancing required distance, unless it was
*written on line 1 when we advanced to top of page:
 IF W-DATA-PRINTED = "N"
 AND W-PRINT-ERROR = 0
 PERFORM AFTER-ADVANCING.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 312

*Routine to print at top-of-page.
 TOP-OF-PAGE SECTION.
 TOP-ENTRY.
*If LINE-COUNTER = 1 we can print data at top-of-form,
*otherwise we print blank lines first;
 IF L-RCA-LINE-CNTR > 1
 MOVE SPACES TO F-PRINT-DATA
 ELSE PERFORM FILL-RECORD
 MOVE "Y" TO W-DATA-PRINTED.
 WRITE F-PRINT-RECORD AFTER ADVANCING PAGE
*If bad File Status, set indicator to prevent further writing
*in case user program has FILE STATUS which is not exemined.
 IF L-FCA-STATUS NOT = "00"
 MOVE "1" TO W-PRINT-ERROR.
 MOVE 1 TO L-RCA-VERT-POSN.

*Routine to print with appropriate advance (if any)
 AFTER-ADVANCING SECTION.
 ADV-ENTRY.
 PERFORM FILL-RECORD
 SUBTRACT L-RCA-VERT-POSN FROM L-RCA-LINE-CNTR GIVING W-FEED
 WRITE F-PRINT-RECORD AFTER ADVANCING W-FEED.
 IF L-FCA-STATUS NOT = "00"
 MOVE "1" TO W-PRINT-ERROR.

*Move data into record, allowing fir possible CODE
 FILL-RECORD SECTION.
 FLR-ENTRY.
 IF L-RCA-CODE-LEN = 0
 AND L-RCA-MARG NOT > 1
 MOVE L-PRC-DATA TO F-PRINT-RECORD
 ELSE MOVE 1 TO W-PTR
 IF L-RCA-CODE-LEN > 0
 MOVE L-RCA-CODE-VAL TO F-PRINT-RECORD
 ADD L-RCA-CODE-LEN TO W-PTR
 ELSE MOVE SPACES TO F-PRINT-RECORD
 END-IF

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 313

 IF L-RCA-MARG > 0
 ADD L-RCA-MARG TO W-PTR
 SUBTRACT 1 FROM W-PTR
 END-IF
 STRING L-PRC-DATA DELIMITED BY SIZE INTO F-PRINT-RECORD
 WITH POINTER W-PTR.

*OPEN the report file
 OPEN-FILE SECTION.
 OPF-ENTRY.
*If OPEN not OUTPUT or EXTEND, signal error 44 and assume OUTPUT:
 IF L-FCA-ACT-IND = "5"
 MOVE 44 TO L-RCA-ERR-FLG
 MOVE "1" TO L-FCA-ACT-IND.
*Does not really OPEN the file if the OPEN is "nested".
 IF W-OPEN-NEST = 0
*Get name of print file
 IF RETURN-CODE = 0
*OPEN OUTPUT or EXTEND, depending on the Action Indicator.
 IF L-FCA-ACT-IND = "1"
 OPEN OUTPUT PRINT-FILE
 ELSE OPEN EXTEND PRINT-FILE
 END-IF
 END-IF
 IF L-FCA-STATUS NOT = "00"
 MOVE "1" TO W-PRINT-ERROR.
*Increment nest level:
 ADD 1 TO W-OPEN-NEST.

*Initiate the report
 INITIATE-REPORT SECTION.
 INT-ENTRY.
*In this section we do any action consistent with INITIATing
*the report. In this routine nothing need be done.

*Terminate the report
 TERMINATE-REPORT SECTION.
 TRM-ENTRY.
*In this section we do any action consistent with TERMINATing
*the report. In this routine nothing need be done.

*Close the report file
 CLOSE-FILE SECTION.
 CLF-ENTRY.
*Does not really CLOSE the file if the CLOSE is "nested".
 SUBTRACT 1 FROM W-OPEN-NEST
 IF W-OPEN-NEST = 0
 CLOSE PRINT-FILE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 314

 MOVE "0" TO W-PRINT-ERROR.
*End of file handler.

6

1.6 Migration from OS/VS or DOS/VS

COBOL-IT Report Writer

This part is a guide to help you to move all the Report Writer code in your program

sources successfully from OS/VS COBOL or DOS/VS COBOL-IT Report Writer to new

Report Writer.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 315

1.6.1 Re-compiling OS/VS and DOS/VS COBOL Sources

You will be able to obtain correct working versions of all your OS/VS COBOL or DOS/VS

COBOL-IT Report Writer programs using new Report Writer. The migration of most Report

Writer programs require no changes to the current Report Writer code. However, new

Report Writer produces more information, in the form of informational (severity "I")

messages to make certain processes and assumptions clear to you. You should

therefore expect a number of these severity "I" messages to be produced when you

submit a typical migrated Report Writer program to the precompiler.

The precompiler is also stricter than both OS/VS COBOL and DOS/VS COBOL in its

checking of your Report Writer for adherence to syntax rules and in the additional

consistency checks that it performs. In some cases, the precompiler will produce

warning (severity "W") - or occasionally even severity "E" or "S" messages - in a program

that the previous compiler accepted without any diagnostic messages. (You may find

that the situations that cause these messages recur in all the programs originally written

by the same individuals, because a certain style of coding is used consistently.)

However, even severity "W" messages normally do not require a change to your

program source, since your program will behave at run time exactly as it did under the

previous compiler.

The following sections list the messages that have occurred when a large sample of

"clean" migrated Report Writer programs were precompiled, compiled and run. They

are listed in order of severity. This part outlines what action, if any, you should take for

each severity level. A more detailed explanation of the messages will be found in

Appendix E, where all diagnostic messages are listed.

Informational (I-level)

Informational messages do not indicate a fault of any kind and do not require you to

take any action. You can suppress the listing of I-level messages by specifying the

option FLAG(W). If you are running under CMS or TSO, the option MSGL(3) may be used

to prevent I-level messages being displayed on your screen.

The following severity-I messages may result from "clean" migrated Report Writer

programs.

RW-001-I No Report Writer data entries were found in this program.

Meaning This message should be expected if your program has no REPORT

SECTION. You may wish to precompile every COBOL program since you

cannot easily tell which programs contain Report Writer code and which

do not. You may decide to place a NORW directory at the start of your

source program to inhibit the scan for non-existent Report Writer code.

(See Installation and Operation.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 316

Remedy None required.

RW-008-I FD has record definition but no RECORD CONTAINS: compiler may assume variable-length.

Meaning This message may result if your report file FD is followed by a record

description and the FD entry has no RECORD CONTAINS clause. New

Report Writer creates a record description after your FD to enable it to

output generated Report Writer records. If no RECORD CONTAINS clause

is present, it sets up the record with a length equal to the longest actual

line to be written (rounded up to a multiple of 4 and incremented by 1 for

any carriage control character). Since your FD already has a record

description, its length is likely to be different from the length of Report

Writer's generated record. If RECORDING MODE F is specified, a compiler

error will result (see 6.1.3 below). If not, the result may be unexpected

variable-length records.

Remedy It is probable that the record description after the FD entry was originally

coded under the mistaken assumption that it is required. A record

description is not required after the FD for a report file, unless the program

issues WRITEs independently to the same file. Check whether the record

description is referred to and, if not, remove it.

If the record description is referred to, you should add a RECORD

CONTAINS clause to the FD entry, specifying the length in bytes of the

record description that follows the FD.

RW-030-I PAGE LIMIT will never be reached.

Meaning This message implies that your PAGE LIMIT is larger than it need be since

no report line will ever reach it. There are two cases where this may

happen. Either you have a PAGE FOOTING group, using absolute LINE

numbers, which does not reach the PAGE LIMIT. Or, you have no PAGE

FOOTING group but the value of LAST DETAIL or FOOTING is less than the

PAGE LIMIT so that body groups can never reach it. Possibly the value of

PAGE LIMIT was coded under the mistaken assumption that it should

represent the physical size of the printed page.

Remedy None required, but to eliminate the message you may reduce the value

of the PAGE LIMIT to that of the last line of the PAGE FOOTING group, or to

the value of LAST DETAIL or FOOTING.

RW-085-I New reserved word accepted as data-name.

Meaning This message appears when you use one of Report Writer's new reserved

words as a SOURCE or SUM operand, for example "SOURCE FUNC" or "SUM

COLS". Report Writer detects this from the context and allows the clause

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 317

as you intended so that the new reserved words have as little impact as

possible on migrated programs.

Remedy None required, but to eliminate the message you may edit the program

to change the data-name, for example from FUNC to WS-FUNC.

RW-110-I Elementary item has no size: will not be output.

Meaning This message appears when your elementary SOURCE item has no

PICTURE clause. This technique has been used frequently by programmers

to define "dummy" entries in a "totals-only" report, so that there will be a

SOURCE identifier to correspond with every SUM identifier. For example:

 01 DUMMY-GROUP TYPE DETAIL.
 03 LINE PLUS 1.
 05 SOURCE AMOUNT.

 01 TYPE CF control-name.
 03 LINE PLUS 1.
 05 COLUMN 1 PIC Z(6)9 SUM AMOUNT.

Remedy No action is required, but if you wish to eliminate the message, simply

attach a PICTURE to the entry:

 01 DUMMY-GROUP TYPE DETAIL.
 03 LINE PLUS 1.
 05 PIC Z(6)9 SOURCE AMOUNT.

RW-146-I No GENERATE issued for this DETAIL.

Meaning The DETAIL group referred is probably a dummy group, coded in a "totals-

only" report, as illustrated above under message RW-110. Without the

SOURCE clauses in the dummy group, OS/VS COBOL and DOS/VS COBOL

will not SUM these fields.

Remedy None required. New Report Writer does not require dummy groups in this

situation, because it does not require a SOURCE to correlate with each

SUM. So, if this is the only purpose of the dummy group, you may

eliminate this message by removing the dummy group.

RW-161-I SUM will be totalled UPON generation of xx due to SOURCE SUM correlation. or

RW-162-I SUM will be totalled also UPON generation of xx.

Meaning One of these messages should appear for each SUM identifier in your

program which is not the name of another REPORT SECTION item. See

Appendix E under these messages for additional commentary.

Remedy None required.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 318

RW-200-I MODE PRNT has been assumed for file due to CODE clause.

Meaning This message will appear if a report file has more than one RD, and they

have CODE clauses with "literals" which are not all of the same length

(counting an absent CODE clause as a "zero-length literal"). Clearly, this

situation could not be implemented easily by means of normal WRITE

statements, so the precompiler uses an independent report file handler.

The PRNT file handler, which produces a similar output to basic COBOL

WRITEs, is used if no other file handler is specified (in a MODE clause or by

a parameter to the precompiler). For more information about file

handlers, see 2.2 Report Files.

Remedy None required. However, if the FD is followed by a record description,

message RW-180-E will also appear (see below). You might consider

removing all CODE clauses from the program and assigning each

affected report to a separate print file instead, thus avoiding the need to

run the utility print program which makes multiple passes through your

print file.

RW-213-I Value xx assumed for LINE LIMIT.

Meaning This message will appear for each RD in your program. It shows the

rightmost position permitted for any character in a report line.

Remedy None required.

Warning (W-level)

Warning messages indicate that the code found contains an infringement of the

syntax, but that the program will execute as intended. In general, you need not

correct W-level violations to ensure that the program will be compatible with OS/VS

COBOL or DOS/VS COBOL. It is possible for a program source which produces no

messages under the previous compiler to produce several W-level messages when

precompiled.

The following W-level messages may result from "clean" migrated Report Writer

programs. A simple change is suggested for each case, should you prefer to alter the

source to make it clearer and easier to maintain, and to conform to the ANS-74/85

Report Writer standard.

RW-019-W Report xx in FD has no REPORT SECTION entry.

Meaning This message indicates that a REPORT clause in an FD refers to a report-

name that has no RD entry in the REPORT SECTION. OS/VS COBOL,

DOS/VS COBOL and the precompiler all ignore the report-name.

Remedy No action is required but if you want to remove this message, delete the

unused report-name from your program.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 319

RW-031-W PAGE LIMIT increased to value of LAST DETAIL or FOOTING.

Meaning This message results when the PAGE LIMIT is less than the value of LAST

DETAIL or FOOTING, for example:

 RD REPORT-ONE
 PAGE LIMIT 50 LINES
 LAST DETAIL 54
 FOOTING 56.

Remedy No action is required since both OS/VS COBOL, DOS/VS COBOL and the

precompiler all override the inadequate PAGE LIMIT. If you want to avoid

this message, increase the PAGE LIMIT integer to the value of LAST DETAIL

or, if present, FOOTING:

 RD REPORT-ONE
 PAGE LIMIT 56 LINES
 LAST DETAIL 54
 FOOTING 56.

RW-051-W duplicated CONTROL: ignored.

Meaning This message implies that your report description lists the same control field

twice, for example:

 RD REPORT-ONE
 PAGE LIMIT 60 LINES
 CONTROLS ARE ACCOUNT-CODE
 ACCOUNT-CODE
 DISTRICT-CODE.

Remedy No action is required but if you want to remove this message you should

simply remove the second occurrence of the control, since it serves no

purpose.

RW-064-W LINE entries nested: previous LINE assumed level xx.

Meaning This message is issued when two LINE clauses are at different levels. The

commonest instance is where a group with more than one LINE clause

has the first LINE clause at the 01-level:

 01 TYPE REPORT FOOTING LINE NEXT PAGE.
 03 COLUMN 1 ...
 03 LINE IS PLUS 1.
 05 COLUMN 1 ...

Remedy No action is required because OS/VS COBOL, DOS/VS COBOL and the

precompiler allow this situation. If you want to remove this message,

restructure the code as follows:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 320

 01 TYPE REPORT FOOTING.
 03 LINE NEXT PAGE.
 05 COLUMN 1 ...
 03 LINE IS PLUS 1.
 05 COLUMN 1 ...

RW-070-W COLUMN entries following LINE assumed to be subordinate to it.

Meaning This message will appear if a COLUMN entry is not at a level lower than the

preceding LINE entry, as in the following example:

 01 TYPE PAGE HEADING.
 03 LINE 1 COLUMN 1 ...
 03 COLUMN 21 ...

 The second COLUMN clause is not strictly subordinate to the LINE clause.

Remedy No action is required because OS/VS COBOL, DOS/VS COBOL and new

Report Writer allow this arrangement of clauses. If you wish to eliminate

this message, you may restructure the code as follows:

 01 TYPE PAGE HEADING.
 03 LINE 1.
 05 COLUMN 1 ...
 05 COLUMN 21 ...

RW-072-W Recurrence of same absolute LINE merged with preceding.

Meaning This message will appear if the same absolute LINE clause is repeated in

successive entries with different COLUMN clauses, for example:

 01 TYPE PAGE HEADING.
 03 LINE 1 COLUMN 10 ...
 03 LINE 1 COLUMN 30 ...

This is a loose interpretation of the ANS 68 standard allowed by the older

compilers.

Remedy No action is required because OS/VS COBOL, DOS/VS COBOL and new

Report Writer allow this arrangement of clauses. If you wish to eliminate

this message, you may restructure the code as follows:

 01 TYPE PAGE HEADING.
 03 LINE 1.
 05 COLUMN 10 ...
 05 COLUMN 30 ...

RW-096-W LINE clauses in group will cause it to extend beyond bottom limit.

Meaning This message will appear if a report group ends too far down the page.

For example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 321

 RD REPORT-ONE
 PAGE LIMIT IS 60 LINES
 FIRST DETAIL 5
 FOOTING 58.
 *
 01 TYPE REPORT HEADING.
 03 LINE 1 ...
 05 COLUMN 1 ...
 03 LINE PLUS 64 ...
 05 COLUMN 1 ...
 *
 01 TYPE PAGE HEADING.
 03 LINE 1 ...
 05 COLUMN 1 ...
 03 LINE PLUS 4 ...
 05 COLUMN 1 ...

Both report groups in this example will invoke this message. The REPORT

HEADING stretches down to beyond the PAGE LIMIT (the absolute limit on

all report line positions). The PAGE HEADING encroaches into the FIRST

DETAIL position. (Note, if the second line of the PAGE HEADING is an

absolute line such as LINE 5, instead of the equivalent LINE PLUS 4, OS/VS

COBOL and DOS/VS COBOL do give an error message.)

Remedy No action is required because OS/VS COBOL, DOS/VS COBOL and the

precompiler will all accept the REPORT HEADING and PAGE HEADING as

described and will begin the DETAIL groups immediately after the PAGE

HEADING. To clear these conditions, you should aim to adjust the PAGE

LIMIT sub-clauses so that they truly represent the regions of your page,

without affecting any other part of the report. If you alter the PAGE LIMIT,

and require complete compatibility, it is advisable to include both a LAST

DETAIL and a FOOTING clause to ensure that your DETAIL and CH/CF

groups come down to the same lowest position as before. The above

code can now be rewritten as follows:

 RD REPORT-ONE
 PAGE LIMIT IS 60 LINES
 FIRST DETAIL 6
 LAST DETAIL 58
 FOOTING 58.

RW-106-W This RH group will have own page: NEXT GROUP NEXT PAGE assumed.

Meaning This message appears if your REPORT HEADING group has no NEXT GROUP

NEXT PAGE clause (which usually means that the first PAGE HEADING

should follow it on the same page) but there is no room to print the

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 322

REPORT HEADING above the first PAGE HEADING between HEADING and

FIRST DETAIL, as in this example:

 RD REPORT-ONE
 PAGE LIMIT IS 60 LINES
 HEADING 1
 FIRST DETAIL 4.
 *
 01 TYPE IS REPORT HEADING.
 03 LINE 1.
 05 COLUMN 1 PIC X(40) SOURCE REPORT-NAME.
 03 LINE PLUS 2.
 05 COLUMN 1 PIC X(40) VALUE ALL "*".
 *
 01 TYPE IS PAGE HEADING.
 03 LINE PLUS 1.
 05 COLUMN 1 PIC X(40) SOURCE COMPANY-NAME.

Remedy No action is required because OS/VS COBOL and DOS/VS COBOL-IT

Report Writer also place the REPORT HEADING on a page by itself and

your results will be identical. If you wish the REPORT HEADING to

temporarily push down the PAGE HEADING, omit the FIRST DETAIL clause.

If you wish to avoid this message, add the NEXT GROUP NEXT PAGE clause:

 01 TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.

RW-107-W This RF group will have own page: NEXT PAGE assumed.

Meaning This message appears if your REPORT FOOTING group begins with an

absolute LINE without a NEXT PAGE phrase (which usually means that it

should follow the last PAGE FOOTING on the same page) but the LINE

number is not greater than the last LINE position of the PAGE FOOTING, as

in this example:

 RD REPORT-ONE
 PAGE LIMIT IS 60 LINES
 LAST DETAIL 54
 FOOTING 56.
 *
 01 TYPE IS PAGE FOOTING.
 03 LINE 58.
 05 COLUMN 1 PIC X(10) VALUE "REPORT ABC".
 *
 01 TYPE IS REPORT FOOTING.
 03 LINE 1.
 05 COLUMN 1 PIC X(13) VALUE "END OF REPORT".

Remedy No action is required because OS/VS COBOL and DOS/VS COBOL-IT

Report Writer also place the REPORT FOOTING on a page by itself and

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 323

your results will be identical. If you wish to avoid this message, add a NEXT

PAGE phrase to the LINE clause of the REPORT FOOTING:

 01 TYPE IS REPORT FOOTING.
 03 LINE 1 ON NEXT PAGE.
 05 COLUMN 1 PIC X(13) VALUE "END OF REPORT".

RW-142-W No INITIATE statement found for this report.

RW-143-W No TERMINATE statement found for this report.

Meaning These messages may appear if your original program has no INITIATE or

TERMINATE for a report. Your program may have operated successfully

under the previous compiler without one or both of these statements.

ANS standards require that every Report Writer program must perform an

INITIATE at the start and a TERMINATE at the end of each report. If the

INITIATE is not performed, a run time error message 14 will be issued from

your program and the INITIATE will be implicitly performed. If the

TERMINATE is not performed, the last set of CONTROL FOOTING groups, the

last PAGE FOOTING and the REPORT FOOTING, as applicable, will be lost

from your output.

Remedy If the INITIATE is missing, it is advisable to add it to the source. If in doubt,

insert it immediately after the OPEN for the report file. If the TERMINATE is

missing and you are satisfied that it was not omitted deliberately to

prevent the final groups being printed (mentioned in the preceding

paragraph), add it to your source. If in doubt, insert it immediately before

the CLOSE for the report file. For further information, see 4.1.1 Sequence

of Operations.

RW-151-W Superfluous period: ignored.

Meaning OS/VS COBOL and DOS/VS COBOL are tolerant of superfluous period

characters coming at the end of an entry, for example:

 05 COLUMN 23 PIC Z(6)9 SOURCE AMOUNT. . .

Remedy No action is required, but if you want to remove this message, simply

remove any extra periods appearing after the first period.

RW-163-W Item not in REPORT SECTION is accumulated on each GENERATE.
Meaning This message should never appear in a correct and logical OS/VS COBOL

or DOS/VS COBOL program. It suggests a serious discrepancy in your

original program. The message indicates that your program has a SUM

clause whose operand is not a SOURCE in a DETAIL group or another SUM

in your REPORT SECTION. This condition is not flagged by the older

compilers but it will not perform any adding and will produce a value of

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 324

zero in the report. The precompiler, on the other hand, processes the SUM

clause by accumulating the field on each GENERATE.

Remedy If the report is producing a zero value and you are satisfied with it, you

may substitute VALUE ZERO for the SUM clause. If you decide that the

field should be accumulated, you should decide whether to allow it to

accumulate on each GENERATE. If you decide that it should be

accumulated only on the GENERATE of certain DETAIL groups, add the

phrase

 UPON detail-group-name(s)...

to the SUM clause.

RW-250-W Item overlaps or is to left of item in same line.

Meaning This message appears when the COLUMN entries within a line are not in

ascending sequence, or, taking into account their sizes, are found to

overlap. OS/VS COBOL and DOS/VS COBOL allow COLUMN entries to

appear in any order and to overlap to any extent. It simply stores them

into a line initially set to spaces in the order they were coded. Each entry

may have any starting COLUMN and byte length. No check is performed

as to whether some data has already been stored in any of the target

positions. Here is an example:

 03 LINE PLUS 1.
 05 COLUMN 40 PIC X(22) VALUE "TOTAL COST = ".
 05 COLUMN 54 PIC Z(5)9 SOURCE WS-TOTAL-COST.
 05 COLUMN 34 PIC Z(5)9 SOURCE WS-MONTHLY-COST.
 05 COLUMN 24 PIC X(10) SOURCE MONTH-NAME.

Remedy If you are satisfied with your current version of the program, then you need

not make any change. In the case above, the first field is longer than it

need be. The second field overwrites the excess spaces so no harm

results. The third field has its COLUMN number "out of sequence" but it

does not overlap any other field. It may therefore be left as it is.

Since overlapping has serious implications, you may prefer to remove it. In

the case above, the PICTURE may be shortened or simply removed. It is

possible that an unintended overlap will become more serious with time,

especially when larger values need those higher-order digit positions that

might be overlaid by another field. If you cannot rearrange the COLUMN

numbers or reduce the PICTURE sizes, try a "staggered" layout, such as the

following:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 325

 $$$$$$$$$.99 $$$$$$$$$.99 $$$$$$$$$.99 - LINE PLUS 1

 $$$$$$$$$.99 $$$$$$$$$.99 - LINE PLUS 1

If your fields are simply out of order, rearranging them by ascending

COLUMN number will make it easier for you to detect genuine cases of

overlap. (If the last entry in the example had been mistyped as COLUMN

25, it would have overwritten the top digit of the monetary value on its

right!)

More Severe (E- and S-level) Messages

IGYPA3107-S "UNSTRING INTO" identifier <name (usage)> was invalid ...

Meaning Depending on which COBOL compiler you are using, one of these

messages will appear when your program has a CONTROL data item

which is not USAGE DISPLAY. The VS COBOL II error can occur only when

the option NOXCAL is in effect. If the PRTX option is in effect, this message

will have been placed on the affected CONTROL clause.

Remedy This condition is corrected by REDEFINing your CONTROL data item as PIC

X(...) and using the data-name of the redefinition instead. An equivalent

method is to make your CONTROL item a group-level item:

 05 ACCOUNT-NO-X.
 07 ACCOUNT-NO PIC 9(5) COMP-3.
 ...
 ... CONTROL IS ACCOUNT-NO-X...

With VS COBOL II, you may avoid the problem by specifying the (default)

option XCAL.

IGYPS2052-S A "RECORDING MODE" of F was specified for file ...

Meaning This compiler error message appears as a result of the precompiler

message RW-008-I (see 6.1.1 above).

Remedy As under RW-008-I (see 6.1.1 above).

RW-149-E Report assigned to more than one FD: file handler DUPL required.

Meaning Defining the same report-name in the REPORT clause of more than one FD

is allowed in new Report Writer, as in OS/VS COBOL and DOS/VS COBOL,

but for quite different reasons. OS/VS COBOL allows a report to be written

to up to two files at the same time, but new Report Writer follows the

Codasyl standard by requiring you to select only a single file to be written

to at INITIATE time. Thus the following is allowed by both:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 326

 FD FILE-A ...
 REPORT IS ANNUAL-SUMMARY.
 FD FILE-B ...
 REPORT IS ANNUAL-SUMMARY.
 RD ANNUAL-SUMMARY ...

but new Report Writer requires you to code UPON FILE-A or UPON FILE-B

after INITIATE ANNUAL-SUMMARY.

Remedy You can still write to two files simultaneously if you need to but this must be

achieved using a file handler that performs a separate WRITE to each file.

See 5.1 Multiple Reports. The file handler is supplied with all versions of the

run time library. You should now add a MODE DUPL clause to your SELECT

statement as follows:

 FILE-CONTROL.
 SELECT FILE-A ASSIGN TO DDname MODE DUPL.
 FD FILE-A ...
 REPORT IS ANNUAL-SUMMARY.

RW-020-S Group item has elementary clauses: ignored.

Meaning OS/VS COBOL and DOS/VS COBOL allow entries below report group level

to have any level-numbers from 02 to 49. The precompiler performs the

same strict checks on level-numbers that you would expect in any other

DATA DIVISION section. In the following case, for example:

 01 TYPE PH.
 07 LINE 2.
 03 COLUMN 1 PIC Z(5)9 SOURCE AMOUNT-1.
 06 COLUMN 11 PIC Z(5)9 SOURCE AMOUNT-2.

you will see the following diagnostic messages:

RW-069-W COLUMN should be subordinate to LINE: LINE + 0 assumed.

RW-020-S Group item has elementary clauses: ignored.

It is essential to remove the error condition by renumbering the levels so that:

• LINE clauses are subordinate to (01-level) report groups,

• COLUMN clauses are subordinate to LINEs.

The above example, when corrected, should appear as:

 01 TYPE PH.
 03 LINE 2.
 05 COLUMN 1 PIC Z(5)9 SOURCE AMOUNT-1.
 05 COLUMN 11 PIC Z(5)9 SOURCE AMOUNT-2.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 327

RW-180-E CODE not allowed in RD where a record description follows FD: discarded.

Meaning Your FD has more than one RD with "CODEs" of unequal size and the

corresponding FD is followed by an 01-level record description. (See RW-

200-I above). The precompiler implements the CODE clause in this case

through a file handler that does not permit access to a separate file

record.

Remedy A record description is not required after an FD that has a REPORT(S)

clause, unless your program does a WRITE independently to the same

report file. If your program does not do a WRITE to the same file, the entire

record description is redundant and can be removed. If your program

does do a WRITE to the same file, you should convert the WRITE to a

GENERATE, if necessary by defining a new RD for the same file containing

no PAGE clause and a simple DETAIL group for each special record

format written to the file.

It is possible for your program to cause other severe diagnostics to

appear. Some may be through the unexpected tolerance of the previous

compiler of some erroneous construct. It should be clear from the

message what you need to do to correct the error. The descriptions of

the messages in Appendix E will help you, and you may also refer to the

main sections describing the clauses.

1.6.2 Other Considerations

The following situation does not result in a diagnostic message and you should be

aware of it, so that you will recognize the circumstances if it occurs in any program.

Long Control Fields Truncated

Meaning If NOXCAL is the option in use, there is a limit to the length of the saved

control fields. This limit, which is 80 bytes as supplied, may be set to any

value up to 256 bytes using the CTRLEN option. If your program contains

control items longer than this limit, the effect will be an obvious truncation

in the contents of the control fields whenever they are printed in your

report. When the XCAL option is used, there is no such restriction.

Remedy To correct this problem, if VS COBOL II is in use, alter your choice of option

from NOXCAL to XCAL. Or, for either compiler, set the CTRLEN option to a

size that is likely to be larger than any control used in any candidate

program. If you are in doubt, a maximum value of 256 will not be harmful,

albeit a little inefficient.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 328

1.6.3 Physical Comparison of Report Writer Output

Once you have corrected any syntactic discrepancies in your original Report Writer

code, your new Report Writer code should now produce a layout that is visibly identical

to the output you obtained under the previous compiler's built-in Report Writer.

There is however one known difference that may be apparent at the physical level, for

example if you use a utility program to compare the print files produced by the two

Report Writer systems: the OS/VS COBOL and DOS/VS COBOL-IT Report Writer prints a

blank line at the top of each page, even if there is data on LINE 1, whereas new Report

Writer, like basic COBOL, implements the latter by a single WRITE at top-of-page.

If you require the print records to be identical in physical arrangement to that

produced by your original programs (for example if you use special de-spooling

software that reads your print file and expects the first line of data on each page to be

blank), you may achieve this by adding the clause MODE IS PRNT to the SELECT

statement of your report file, since the PRNT file handler is designed to emulate the

previous compilers' Report Writer output routine (see 5.3.2 Supplied File Handlers).

1.6.4 Unreachable Code

The precompiler generates statements to perform certain extra checks that may prove

to be unnecessary in some programs and may therefore show up as code that "can

never be executed" with the OPTIMIZE option of the IBM COBOL compiler and be

deleted. There are sound reasons for all these cases and they do not indicate any fault

in the code generation. For example, the precompiler will generate a "branch around"

before the block of PERFORMed generated procedures in case there should be a "fall-

through" from the preceding paragraph. Naturally, the precompiler does not examine

the structure of the rest of the program to ascertain whether such a fall-through is

actually possible, since this would mean duplicating a task for which the compiler itself

is best suited, at the cost of a prohibitive overhead. Other extra checks which may

prove unnecessary are:

• SIZE ERROR checks during the accumulation of SUM fields.

• Checks on whether a report has been INITIATEd.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 329

1.7 Appendices

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 331

 Appendix A

List of Post-1968 Extensions

This section lists the extensions to the ANSI 1968 COBOL-IT Report Writer standard

that are included in COBOL-IT Report Writer. The extensions are marked as follows:

ANS-68 features "held over" from the ANS-68 standard;

IBM IBM's extensions to its ANS-68 implementation in OS/VS and

DOS/VS COBOL;

ANS-74 changes introduced in the ANSI 1974 standard;

ANS-85 changes introduced in the ANSI 1985 standard;

Codasyl Codasyl extensions beyond the ANS-85 standard - potential

features in a future ANS COBOL standard.

Unmarked extensions are those introduced by SPC Systems. Not all the changes

found in ANS-74 are listed here because the changes that represent restrictions to

ANS-68 have not been implemented. COBOL-IT Report Writer is thus an optimal

merging or best of all worlds from the three standards.

 Items marked in this way are recent additions, new to this release.

FILE-CONTROL and FILE SECTION

• MODE clause to enable processing by an Independent Report File

Handler.

• PAGE BUFFER clause to allow each page to be held in memory in

order to set up an irregular format.

 RANDOM PAGE clause to allow the page's current line and column

to be repositioned like a "cursor".

• DUPLICATED clause to reduce coding when program has more than

one report with a similar layout.

• (ANS-68) Report file FD may be followed by a record description

and may be written to independently.

• ¶ (ANS-85) FD for report file may have a GLOBAL clause and/or an

EXTERNAL clause.

• ¶ FIRST PAGE NO ADVANCING clause, preventing initial page

advance.

 STYLE clause to facilitate special effects in output device.

 REPORTS ARE ALL option to assign all reports to a single file.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 332

 (IBM) A report may be written to up to two files simultaneously.

PAGE LIMIT Clause

• PAGE LIMIT phrases become clauses in their own right and PAGE

LIMIT may be last.

• DETAIL in FIRST / LAST DETAIL may be abbreviated as DE.

• FIRST BODY GROUP alternative spelling for FIRST DETAIL.

• LAST DE OR CH / DETAIL OR CONTROL HEADING alternative spellings

for LAST DETAIL.

• LAST CF / CONTROL FOOTING / BODY GROUP alternative spellings for

FOOTING.

• FIRST DETAIL defaults to line following PAGE HEADING.

• LAST DETAIL defaults to line preceding PAGE FOOTING.

• +/PLUS form of FOOTING.

• FOOTING defaults to line before PAGE FOOTING group, or to PAGE LIMIT.

• Identifier operand of LAST DETAIL.

• (ANS-74) Word LINE or LINES not required.

Rest of RD

• REPORT as an alternative word for FINAL.

• LINE LIMIT clause.

• OVERFLOW clause to check arithmetic expressions for size error.

• SUM OVERFLOW clause to check totals for size error.

• ALLOW (NO) SOURCE SUM CORR clause to enable/disable SOURCE

SUM correlation.

• (IBM) CONTROL operand FINAL is assumed if not declared.

• (IBM) Optional WITH before CODE.

• (ANS-68) SUMming of non-REPORT SECTION item takes place when

DETAIL generated with same item as a SOURCE (SOURCE SUM correlation).

• (ANS-68) Control data-names may be subscripted.

• (ANS-68) Control fields may be referenced in any group and, at

CONTROL FOOTING time, pre-break values are supplied.

• (ANS-74) Literal form of CODE clause.

• (Codasyl) Optional word IS with CODE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 333

• (Codasyl) CODE may be of any length.

• (Codasyl) Identifier form of CODE clause.

• (ANS-85) GLOBAL clause, enabling the report, or its groups, to be

accessed from within a contained program.

 STYLE clause to facilitate special effects in output device.

Report Groups (General)

• PLUS may be written as + whenever used.

• Report Groups may have any number of group or elementary levels.

• (ANS-68) Report group may consist of elementary 01-level entry only.

• (ANS-74) The default qualifier for PAGE-COUNTER and LINE-COUNTER

in the REPORT SECTION is the current report.

• The default qualifier for PAGE-COUNTER and LINE-COUNTER in a USE

BEFORE REPORTING section is the report containing the group

referred to.

TYPE Clause

• Word TYPE optional.

• TYPE DETAIL assumed if no TYPE clause.

• Control-name need not follow CH if only one control present, or CF.

• OR PAGE option of CONTROL HEADING for outputting group after

page advance even if no control break.

• (Codasyl ("ON")) Optional word FOR or ON after CH and CF.

 CF may be used for more than one level.

 CF FOR ALL, meaning CF for all levels of control.

LINE Clause

• LINE alone means LINE + 1.

• Absolute LINE may follow relative LINE provided first LINE is absolute.

• NEXT PAGE phrase allowed on LINEs other than first in RH and RF.

• LINE may have no subordinate COLUMNS, thus producing blank line.

• Multiple form to allow several lines to be defined in one entry.

• (ANS-68) LINE may be coded as though subordinate to another LINE

(although a Warning is issued).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 334

• (ANS-68) Relative LINE allowed at start of PAGE FOOTING.

• (ANS-74) LINE integer ON NEXT PAGE option.

• (ANS-74) LINE NEXT PAGE not allowed in types PH, or PF. (Legacy

compilers do not diagnose this but the code fails in consequence.)

 (IBM) Same absolute LINE number may be repeated with each

COLUMN.

COLUMN Clause

• COLUMN may be shortened to COL.

• COLUMN alone means COLUMN + 1.

• COLUMN + 1 assumed by default for any elementary item beneath

LINE level with no name, if NOOSVS in effect.

• RIGHT, CENTER, and LEFT phrases.

• Multiple form to allow several items to be defined in one entry.

• (ANS-68) COLUMN may be coded at same level as preceding LINE

(although a Warning is issued).

• (Codasyl) Relative form (+ or PLUS).

SOURCE Clause

• SOURCE keyword optional.

• Arithmetic expression form.

• Multiple form to allow several items to be defined in one entry.

• (ANS-68) CURRENT-DATE and TIME-OF-DAY may be used as

identifiers.

• (ANS-85) identifier may be reference modified.

VALUE Clause

• VALUE keyword optional.

• PICTURE clause optional with non-numeric literals.

• Multiple form to allow several items to be defined in one entry.

SUM Clause

• Optional word OF after SUM.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 335

• Cross-foot and roll-forward SUM of SOURCE and VALUE entries

allowed.

• Totalling of values in printed tables, along any axis.

• SUM allowed in any TYPE of group.

• SUM may be used as term in expression.

• Arithmetic expression allowed as operand.

• Multiple form to total another multiple entry.

• (ANS-68 not in OS/VS or DOS/VS COBOL) UPON may refer to DETAIL

in another report.

• (ANS-68 allowed but not implemented by OS/VS or DOS/VS COBOL)

SUM may refer to REPORT SECTION data-name in a different report .

• (ANS-74) More than one SUM clause may be coded in the same

entry.

• (ANS-74) If SOURCE SUM correlation not in effect, SUM adds all

operands on each GENERATE.

 (IBM) Data-name of SUM entry may be re-used in different reports

and is implicitly qualified by report-name.

PICTURE Clause

• "<" (left-shift) symbol for variable-length fields.

 ">" symbol as optional terminator for variable-length part.

 General insertion characters using quotes in picture-string. (This was

long since considered by Codasyl and discarded.)

 (IBM) PICTURE symbol A may be used even with non-alphabetic

literal.

NEXT GROUP Clause

• NEXT BODY GROUP / NEXT DE OR CH GROUP/ NEXT DETAIL OR

CONTROL HEADING GROUP as alternative spellings.

• (Codasyl) Optional word ON before NEXT PAGE.

New Clauses

• PRESENT / ABSENT [JUST] AFTER PAGE / control / PAGE OR control as

more general alternative to GROUP INDICATE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 336

• Multiple-choice [PRESENT] WHEN entry to select one from a set of

SOURCE / VALUE terms.

 Special condition CONTROL IS control-id for use with PRESENT WHEN

and multiple CF group.

• OCCURS for repetition with DEPENDING ON... and STEP phrases.

• VARYING clause to enable data-names to vary over a range of

values during processing of a repeating item.

• REPEATED clause for side-by-side presentation of body groups.

• GROUP LIMIT clause to give lower limit to body groups.

• ROUNDED phrase for SUM / SOURCE entries.

• FUNCTION clause for invocation of built-in or user-written routine for

special-format displays.

 New FUNCTIONs CTIME, MONTH, MOVE, YDATE, RYDATE, STATE,

STATEF, ZIP.

• COUNT clause, similar to SUM but adding 1 per occurrence.

• (partly Codasyl) PRESENT / ABSENT WHEN clause to select / deselect

any items, lines or groups.

 MULTIPLE PAGE clause for spreading a group over several pages.

 WRAP clause for automatic continuation on a new line.

 STYLE clause to facilitate special effects in output device.

PROCEDURE DIVISION

• SET PAGE TO HOLD/RELEASE statement to invoke / release Page

Buffer.

• SET LINE and SET COLUMN statements to move vertically and

horizontally within the Page Buffer or Random Page.

• (IBM) A Declarative procedure may refer to (for example PERFORM)

a non-Declarative procedure.

• Adding to LINE-COUNTER creates an additional gap of that size.

• A REPORT SECTION data-name may be the target field of a

PROCEDURE DIVISION statement.

• (IBM) MOVE 1 TO PRINT-SWITCH.

• (ANS-74) SUPPRESS PRINTING statement, equivalent to MOVE 1 TO

PRINT-SWITCH.

• (ANS-85) USE GLOBAL BEFORE REPORTING form of directive.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 337

 (Codasyl) INITIATE UPON file-name.

Other Features

• Independent Report File Handlers, built-in or user-written, for

directing report writer output to a special device or to user's own

de-spooling software.

 Report writer keywords are only locally reserved.

• SIGN, BLANK WHEN ZERO, and JUSTIFIED allowed at group level.

 New form of SIGN clause for user-defined treatment of negatives.

• (ANS-68) With summary reporting, any number of DETAIL groups

may be present.

• (ANS-85) REPORT SECTION and report writer statements may be

used in nested programs.

• (ANS-85) Lower-case valid in all report writer formats.

• (ANS-85) New features incidentally affecting report writer, such as:

reference modification, ">=" and "<=" operators, subscripting to 7

levels, relative subscripting.

• (ANS-85) REPLACE statement may affect report writer code.

 Hexadecimal Literals in REPORT SECTION.

• Symbolic Characters in REPORT SECTION.

 Double Byte Character Set (USAGE DISPLAY-1) in REPORT SECTION.

 Report writer data-names may be DBCS.

 Fips Flagging capability.

• Ability to choose only ANS standard report writer subset.

General COBOL Features

A number of additional features provided by the precompiler apply to any part of

the COBOL source, rather than just to COBOL-IT Report Writer. They are therefore

listed here in some detail:

In-line Comments

The two-character combination "*>" indicates that the rest of the source

line is to be treated as a comment, for example:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 338

 05 WS-EOF PIC 9. *> end-of-file indicator
 ...
 MOVE 1 TO WS-EOF *> set end-of-file indicator

Wild Cards in COPY

The two-character combination "??" may be coded (within pseudotext

brackets ==...==) as part of the text to be replaced in a COPY...REPLACING

or REPLACE statement. It causes a successful match with any COBOL word,

or a (non-null) part of a word if coded as such. The "??" pair may also

appear in the replacement text, in which case it copies unchanged the

fragment of text that was matched with the corresponding "??" in the text

being replaced.

This sample replaces a certain parameter in each CALL:

 REPLACE ==CALL ?? USING W-PARAM-1== BY
 ==CALL ?? USING W-PARAM-2==.

This sample changes all words in the source library member beginning with

IN- to begin instead with OUT-:

 COPY MEMBER1 REPLACING ==IN-??== BY ==OUT-??==.

Precompiler's Tolerance of Other COBOL Constructs

When using the precompiler in tandem with other precompilers or preprocessors, it

is essential to know how the precompiler will react to non-ANS COBOL features in

the COBOL source. The precompiler has been designed in general to accept

embedded CICS, IMS and DB2 commands and tolerate other alien extensions that

might reasonably be expected. In particular, it will accept:

The EXEC ... END-EXEC construct. The text from EXEC through END-EXEC is

copied intact, enabling CICS and database commands to be

embedded in a COBOL-IT Report Writer source.

Unrecognized DATA DIVISION SECTIONs. Any such SECTION is transcribed

intact.

Non-standard characters in the continuation column. Any character other

than "D", "-", "*", "/", and space in column 7 is treated as though it

were a "*" (comment) character. Such lines will be copied intact

unless they immediately precede a report writer construct such as

REPORT SECTION that would be removed by the precompiler.

Unrecognized PROCEDURE DIVISION statements. Any unrecognized word

found in the PROCEDURE DIVISION will be copied intact unless it

immediately follows one of the report writer commands such as

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 339

INITIATE, when it is expected to be the (first) operand of the

statement.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 341

 Appendix B

List of New Reserved Words

The following list shows the new reserved words used in the COBOL-IT Report Writer

syntax. Except for SUPPRESS PRINTING which is in the 1974 and 1985 ANS standards,

these words are new to all three standards. However, with the exception of DATA-

SUB-1/2/3/4, LINE-LIMIT, REPORT-NUMBER, and REPEATED-COUNTER they are locally

reserved only when the OSVS option is in effect. This means in general that the user

may use these names as data-names, file names, etc. provided that, if they are

used in the REPORT SECTION, it is only with care to avoid ambiguity. For example,

SOURCE IS COLS and SOURCE IS STEP are permitted, but the multiple form SOURCES

ARE STEP, COLS would not be correctly parsed. SOURCE IS BUFFER, DUPLICATED

would be permitted as these keywords normally appear only in the SELECT clause.

Keyword References

ABSENT PRESENT/ABSENT WHEN Clause

BATCH MODE Clause

BODY FIRST/LAST DETAIL, NEXT GROUP Clause)

BUFFER PAGE BUFFER Clause

CENTER, CENTRE COLUMN Clause

CODE-VALUE CODE Clause

COL COLUMN Clause

COLS COLUMN Clause

COLUMNS COLUMN Clause

DATA-SUB-1/2/3/4 OCCURS Clause

DEFAULT PRESENT / ABSENT WHEN Clause

DEPTH OCCURS Clause

DUPLICATED DUPLICATED Clause

FUNC FUNCTION Clause

FUNCTION FUNCTION Clause

HOLD SET Statement

LINE-LIMIT LINE LIMIT Clause

NEW PRESENT AFTER Clause

NONE SOURCE Clause

NUMBERS COLUMN Clause, LINE Clause)

PRESENT PRESENT AFTER Clause, PRESENT WHEN Clause

PRINTING SUPPRESS PRINTING Statement

REPEATED REPEATED Clause

REPEATED-COUNTER REPEATED Clause

REPLACE OVERFLOW Clause

REPORT-NUMBER DUPLICATED Clause

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 342

SOURCES SOURCE Clause

STEP OCCURS Clause)

SUPPRESS SUPPRESS PRINTING Statement

UNLESS PRESENT WHEN Clause

WIDTH OCCURS Clause and REPEATED Clause

WRAP WRAP Clause

Words beginning with the prefix R - - (note the double hyphen) must also be

avoided because the precompiler uses this prefix for its own generated data and

procedure names.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 343

 Appendix C

Summary of Formats

a. SELECT...ASSIGN clauses

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 344

┌── Format

──

────┐

│ │

│►►─SELECT─┬──────────┬─file-name──►

│

│ └─OPTIONAL─┘ │

│ │

│ ┌─────────────┐

│

│ ▼ │ │

│►─ASSIGN TO assignment-

name─┬─────────────────────────┬─► │

│ └RESERVE integer─┬───────┬┘

│

│ ├─AREA──┤ │

│ └─AREAS─┘ │

│►─┬──

─────┬──► │

│ └─MODE

IS─┬─BATCH───────────────────────────────┬─┘

│

│ └─mnemonic─name────┬─────────────────┬┘

│

│ │ ┌───────┐ │

│

│ │ ▼ │ │ │

│ └-USING parameter─┘ │

│►─┬──────────────────────────┬──┬──────────────

────┬─► │

│ └-DUPLICATED integer┬─────┬┘ ├─WITH PAGE BUFFER─┤

│

│ └TIMES┘ └─WITH RANDOM PAGE─┘ │

│►─┬──────────────────────────────────────┬─────

──────────► │

│ └─TYPE┬──┬┬─DEFERRED─────────────────┬─┘

│

│ └IS┘├─NONE─────────────────────┤

│

│ └─device-name─┬──────────┬─┘

│

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 345

│ └─DEFERRED─┘ │

│►┬─────────────────────────┬┬──────────────────

────┬-. ─►◄ │

│ └FIRST PAGE┬─NO─┬ADVANCING┘└other standard clauses┘ │

│ └WITH┘ │

└───

───────────────┘

b. FILE SECTION entries

┌── Format

──

────┐

│►►──FD file-name─┬─────────────┬─┬───────────┬──►

│

│ └─IS EXTERNAL─┘ └─IS GLOBAL─┘ │

│ ┌─────────┐

│

│ ▼ │ │

│►─┬─REPORT IS───┬─┬─report-name─┬──►

│

│ └─REPORTS ARE─┘ └-ALL ────────┘

│

│ │

└─ (continued over)

───┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 346

┌── Format (continued)

──┐

│ │

│►─┬──────────────────────────┬──►

│

│ │ ┌────────┐ │

│

│ │ ▼ │ │ │

│ └──STYLE IS─┬─style-name─┬─┘

│

│ └──NORMAL────┘ │

│►─┬───────────────────────┬┬───────────────────

─────┬─► │

│ └─BLOCK CONTAINS clause─┘└─RECORD CONTAINS clause─┘ │

│ │

│►─┬───────────────────────-

┬┬────────────────────────┬──. ─► │

│ └─RECORDING MODE IS mode─┘└─other standard clauses─┘ │

│ │

│►─┬──────────────────────────┬──►◄

│

│ │ ┌──────────────────────┐ │

│

│ │ ▼ │ │ │

│ └─record-description-entry─┘ │

└───

───────────────┘

c. REPORT SECTION entries

┌── Format

──

────┐

│ ┌──────────────────────┐

│

│ ▼ │ │

│►►──REPORT SECTION. ───report-description-entry───►◄

│

└───

───────────────┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 347

where report-description is defined as:

┌── Format

──

────┐

│ │

│►►─RD report-

name─┬─────────┬┬───────────────────────────┬─► │

│ └IS GLOBAL┘└LINE LIMIT IS┬─integer────┬┘ │

│ └─identifier─┘ │

│►─┬──────────────────┬─┬───────────────────────────────┬─► │

│ └HEADING IS integer┘ └FIRST─┬─DETAIL─────┬IS integer─┘ │

│ ├─DE─────────┤ │

│ └─BODY GROUP─┘ │

│►─┬───┬─► │

│ └─LAST─┬─DETAIL─┬┬───────────────────┬IS┬integer───┬┘ │

│ └─DE─────┘└OR┬CONTROL HEADING┬┘ └identifier┘ │

│ └CH─────────────┘ │

│►─┬──┬─► │

│ ├─LAST─┬─CONTROL FOOTING─┬─┬─IS─┬─integer──────┬─┘ │

│ │ ├─CF──────────────┤ │ └┬─PLUS┬integer┘ │

│ │ └─BODY GROUP──────┘ │ └─ + ─┘ │

│ └─FOOTING──────────────────┘ │

│ │

│►─PAGE─┬────────────┬─integer─┬───────┬──►◄ │

│ ├─LIMIT IS───┤ ├─LINE──┤ │

│ └─LIMITS ARE─┘ └─LINES─┘ │

└─ (Continued over)

───┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 348

┌── Format (continued)

──┐

│►►──┬─CONTROL IS────┬──┬────────┬──┬────────────┬──►◄

│

│ └─CONTROLS ARE──┘ ├─REPORT─┤ │ ┌────────┐ │

│

│ └─FINAL──┘ │ ▼ │ │ │

│ └─control-id─┘ │

│►─┬──────────────────────────┬┬─────────────────

─────────┬─► │

│ └┬CODE IS──┬┬literal──────┬┘└─ALLOW┬──┬SOURCE SUM CORR─┘ │

│ └WITH CODE┘├mnemonic-name┤ └NO┘ │

│ └identifier───┘ │

│►──┬──────────────────────────────┬───►

│

│ │ ┌────────┐ │

│

│ │ ▼ │ │ │

│ └─STYLE IS ──┬──style-name──┬──┘ │

│ └────NORMAL────┘ │

│►──┬──

───┬──► │

│ └─ OVERFLOW PROCEDURE IS─┬─OMITTED────────────┬─┘

│

│ ├─STANDARD───────────┤

│

│ ├─REPLACE BY literal─┤ │

│ └─STOP literal───────┘ │

│►──┬──

───────┬──► │

│ └─ SUM OVERFLOW PROCEDURE IS─┬─OMITTED────────────┬─┘

│

│ ├─STANDARD───────────┤

│

│ ┌────────────────┐ ├─REPLACE BY literal─┤

│

│ ▼ │ └─STOP literal───────┘ │

│►──report-group-entry──►◄ │

└───

───────────────┘

d. Report-Group-Entry

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 349

┌── Format

──

────┐

│►►──level-number─┬───────────┬──►

│

│ └─data-name─┘ │

│►─┬──

───────────┬─► │

│ └┬───────┬┬┬REPORT

HEADING─┬───────────────────────────┬┘ │

│ └TYPE IS┘│└RH─────────────┘ │

│

│ ├┬PAGE

HEADING─┬─────────────────────────────┤ │

│ │└PH───────────┘ │

│

│ ├┬CONTROL

HEADING─┬┬────────────────────────┬┤ │

│ │└CH──────────────┘└┬ON─┬control-

id┬───────┬┘│ │

│ │ └FOR┘ └OR PAGE┘ │ │

│

├┬DETAIL─┬───────────────────────────────────┤ │

│ │└DE─────┘ │ │

│ ├┬CONTROL

FOOTING─┬─┬─────────────────────┬──┤ │

│ │└CF──────────────┘ │ ┌────────┐ │

│ │

│ │ │ ▼ │ │ │ │

│ │ └┬─ON─┬─┬─control-id─┬┘ │ │

│ │ └─FOR┘ └─ALL────────┘ │

│

│ ├┬PAGE

FOOTING─┬─────────────────────────────┤ │

│ │└PF───────────┘ │

│

│ └┬REPORT

FOOTING─┬───────────────────────────┘ │

│ └RF─────────────┘

│

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 350

└─ (Continued over)

───┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 351

┌── Format (continued)

──┐

│ │

│►─┬──

─────────► 1 │

│ └─NEXT─┬─BODY──────────────────────────────┬─GROUP IS─► 2 │

│ └─┬─DETAIL─┬─OR─┬─CONTROL HEADING─┬─┘ │

│ └─DE─────┘ └─CH──────────────┘ │

│ 1 ►────────────────────────┬──►

│

│ 2 ►──┬──┬─PLUS─┬─integer─┬─┘ │

│ │ └─ + ──┘ │ │

│ ├───integer─────────┤

│

│ └───ON NEXT PAGE────┘ │

│ │

│►─┬────────────────────────┬───►

│

│ └─GROUP LIMIT IS integer─┘ │

│►─┬──

────────┬─► │

│ └─REPEATED─┬─integer TIMES─┬───────────────────────┬┬┘

│

│ │ └┬EVERY┬integer┬COLUMNS┬┘│ │

│ │ └WIDTH┘ └COLS───┘ │ │

│ └┬─────────────┬─┬EVERY┬integer┬COLUMNS┬─┘

│

│ └integer TIMES┘ └WIDTH┘ └COLS───┘ │

│►─┬──

───────────┬► │

│ │ ┌─────────────────┐

│ │

│ │ ▼ │ │ │

│ └┬─LINE─┬NUMBER IS──┬┬┬┬─PLUS─┬─integer─┬─┬────────────┬┘ │

│ │ └NUMBERS ARE┘││└─ + ──┘ │ └ON NEXT PAGE┘ │

│ └─LINES ARE ────────┘└─integer─────────┘ │

│►─┬──

──────────┬► │

│ │ ┌────────────────┐ │

│

│ │ ▼ │ │ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 352

│ └┬┬─COLUMN┬┬NUMBER─┬┬┬──────┬┬IS─┬─┬┬─PLUS─┬─integer─┬─┘ │

│ │└─COL───┘└NUMBERS┘│├LEFT──┤└ARE┘ │└─ + ──┘ │ │

│ ├──COLUMNS─────────┤├CENTER┤ └─integer─────────┘

│

│ └──COLS────────────┘├CENTRE┤ │

│ └RIGHT─┘ │

│►─┬─────────────────────────────────┬─►

│

│ └─┬─PICTURE─┬─IS character-string─┘ │

│ └─PIC─────┘ │

│►─┬──

┬─► │

│ │ ┌────────────┐ │

│

│ │ ▼ │ │ │

│ └─┬─────────────┬─┬─identifier─┬─┬─────────┬─┘

│

│ ├─SOURCE IS───┤ └─expression─┘ └─ROUNDED─┘

│

│ └─SOURCES ARE─┘ │

│►─┬─────────────────────────┬─►

│

│ │ ┌─────┐ │ │

│ │ ▼ │ │ │

│ └──┬────────────┬─literal─┘ │

│ ├─VALUE IS───┤ │

│ └─VALUES ARE─┘ │

│ │

└─ (Continued over)

───┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 353

┌── Format (continued)

──┐

│►─┬──

─────┬─► │

│ └─┬─FUNCTION─┬─IS function-name─┬───────────────┬─┘

│

│ └─FUNC─────┘ │ ┌───────┐ │

│

│ │ ▼ │ │ │

│ └─(parameter)─┘ │

│►─┬──

───────────► 1 │

│ │

┌───

─────┐ │

│ │ │

┌───┐ │ │

│ │ ▼ ▼ │ │ │

│ └─┬─SUM OF─┬─-report-section-data-name─────────────┬─┬──►

2 │

│ │ └─┬─identifier───┬──┬─────────────────┬─┘ │

│

│ │ └─expression───┘ │ ┌────────┐ │ │

│

│ │ │ ▼ │ │ │ │

│ │ ┌───────────────┐ └─UPON group-name─┘ │

│

│ │ ▼ │ │ │

│ └─COUNT OF report-section-dn───────────────────────┘

│

│ 1

►──────────────────────────────────────┬────────

──────► │

│ 2 ►─┬─────────────────────┬─┬─────────┬──┘

│

│ └─RESET ON control-id─┘ └─ROUNDED─┘ │

│►───┬───┬──► │

│ ├─┬─PRESENT─┬─┬─WHEN───┬─┬─condition─────────────┬──┤

│

│ │ └─ABSENT──┘ └─UNLESS─┘ └-CONTROL IS control-id─┘ │

│

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 354

│ ├─┬─PRESENT─┬─AFTER NEW──┬─control-id OR PAGE─┬─────┤ │

│ │ └─ABSENT──┘ ├─PAGE OR control-id─┤ │ │

│ │ ├─PAGE───────────────┤ │

│

│ │ └─control-id─────────┘ │

│

│ ├──PRESENT JUST AFTER NEW PAGE──────────────────────┤ │

│ ├──GROUP INDICATE───────────────────────────────────┤ │

│ └──multiple-choice-form - see below─────────────────┘ │

│►──┬──┬──► │

│

└─┬─────────┬─┬─┬─LEADING──┬─┬────────────────────┬─

─┤ │

│ └─SIGN IS─┘ │ └─TRAILING─┘ └─SEPARATE CHARACTER─┘ │

│

│

└─┬────────────────┬┬─────────────────┬┘ │

│ └─LEADING literal┘└─TRAILING literal┘ │

│►─┬───────────────┬┬─────────────────────┬┬────────────────┬► │

│ └BLANK WHEN ZERO┘└┬────────┬┬DISPLAY──┬┘└┬JUSTIFIED┬RIGHT┘ │

│ └USAGE IS┘├DISP─────┤ └JUST─────┘

│

│ └DISPLAY-1┘ │

│►─┬──────────────────────────────────────► 1

│

│ └─OCCURS─┬────────────┬─integer TIMES──► 2 │

│ └─integer TO─┘ │

│ 1 ►──────────────────────────────────┬──►

│

│ 2 ►─┬──────────────────────────────┬─┘

│

│ └─DEPENDING ON─┬─identifier─┬──┘ │

│ └─expression─┘ │

│►──┬─────────────────────────────────┬──►

│

│ └─┬─STEP──┬──integer──┬─LINES───┬─┘

│

│ ├─WIDTH─┤ ├─COLUMNS─┤ │

│ └─DEPTH─┘ └─COLS────┘ │

└─ (continued over)

───┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 355

┌── Format (continued)

──┐

│►─┬──

──────────┬─► │

│ │

┌───┐ │

│

│ │ ▼ │ │ │

│ └VARYING─data-name┬─────────────────┬┬───────────────┬─┘ │

│ └FROM expression-1┘└BY expression-2┘ │

│►─┬───────────────────────┬─►

│

│ └┬────┬──MULTIPLE PAGE──┘ │

│ └─NO─┘ │

│►─┬─────────────────┬──────────────────────────

──────► 1 │

│ └─WITH ┬─NO WRAP──┘ │

│

└─WRAP─┬─────────────────────────────────┬──► 2

│

│ └─AFTER─┬─COLUMN─┬─┬─integer────┬─┘

│

│ └─COL────┘ └─identifier─┘

│

│ 1

►──

───────┬─► │

│ 2

►─┬───────────────────────────┬─┬───────────────

────┬─┘ │

│ └─TO─┬─COLUMN─┬┬integer───┬─┘ └─STEP integer LINES┘

│

│ └─COL────┘└identifier┘ │

│►─┬──

────┬─► │

│ │ ┌────────┐ │

│

│ │ ▼ │ │ │

│ └──STYLE IS─┬─style-name───┬────────────────┬─┬──┘

│

│ │ └─WHEN condition─┘ │ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 356

│ └───NORMAL────────────────────────┘

│

└───

───────────────┘

e. Multiple-Choice Form

┌── Format

──

────┐

│

┌───

───────┐ │

│ │ ┌──────────┐ │

│

│ ▼ ▼ │ │ │

│►►─┬┬─────────────┬┬─identifier─┬─┬─PRESENT WHEN─┐

┌►◄ │

│ │├─SOURCE IS───┤└─expression─┘ │ ┌ ───────────┘

│ │

│ │└─SOURCES ARE─┘ ┌─────┐ │

├─condition───────────┤ │

│ │ ▼ │ │ ├CONTROL IS control-id┤ │

│ ├────────┬────────────┬literal─┤

└─OTHER───────────────┘ │

│ │ ├─VALUE IS───┤ │ │

│ │ └─VALUES ARE─┘ └────────────┐

│

│ └┬FUNCTION┬IS function-name┬───────────────┬┘

│

│ └FUNC────┘ │ ┌───────┐ │

│

│ │ ▼ │ │ │

│ └─(parameter)─┘ │

└───

───────────────┘

f. Additional PROCEDURE DIVISION statements

┌── Format

──

────┐

│ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 357

│ ►──USE─┬────────┬─BEFORE REPORTING report-group-name. ──►◄

│

│ └─GLOBAL─┘ │

└───

───────────────┘

┌── Format

──

────┐

│ │

│ ►►──┬─SUPPRESS PRINTING────────────┬──►◄

│

│ └─MOVE integer TO PRINT-SWITCH─┘ │

│ │

└───

───────────────┘

┌── Format

──

────┐

│ │

│ ►►──GENERATE─┬─detail-group-name─┬─►◄ │

│ └─report-name───────┘

│

└───

───────────────┘

┌── Format

──

────┐

│ ┌─────────┐

│

│ ▼ │ │

│ ►►──INITIATE—report-name──┬────────────────┬───►◄

│

│ └─UPON file-name─┘ │

└───

───────────────┘

┌── Format

──

────┐

│ ┌─────────┐

│

│ ▼ │ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 358

│ ►►──TERMINATE—report-name──►◄

│

│ │

└───

───────────────┘

┌── Format a

──

──┐

│ │

│ ►►─SET PAGE STATUS─┬──────────────────┬─TO─┬─HOLD────┬─►◄

│

│ └┬─IN─┬report-name─┘ └─RELEASE─┘ │

│ └─OF─┘ │

└───

───────────────┘

┌── Format b

──

──┐

│ │

│ ►►─SET LINE┬────────────────┬┬─TO─┬-integer-

1────────┬──┬─►◄ │

│ └┬IN┬report-name─┘│ ├─identifier-1─────┤ │

│

│ └OF┘ │ └─FIRST─┬─DETAIL─┬─┘ │

│

│ │ └─DE─────┘ │ │

│ └─┬─UP───┬BY┬─integer-2───┬┘

│

│ └─DOWN─┘ └─identifier-2┘ │

└───

───────────────┘

┌── Format c

──

──┐

│ │

│ ►►─SET┬COLUMN┬┬───────────────┬┬TO────────┬┬integer-

3───┬─►◄ │

│ └COL───┘└┬IN┬report-name┘└┬─LEFT─┬BY┘└identifier-3┘

│

│ └OF┘ └─RIGHT┘ │

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 359

└───

───────────────┘

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 361

 Appendix D

Glossary

Absolute Positioning

This describes a LINE or COLUMN clause with an integer operand not preceded by

+ or PLUS. Absolute positioning places the line or field at a fixed vertical or

horizontal position relative to the edge of the page.

Axes of Summing

Four axes are possible: group of LINEs, LINE, group of COLUMNs, and COLUMN.

When a field is the SUM of another REPORT SECTION field that repeats (has an

OCCURS, or multiple LINES or COLUMNS), totalling may take place along any or all

of these axes, depending on whether or not the SUM also repeats along the axes.

Body Group

A CONTROL HEADING, DETAIL, or CONTROL FOOTING report group. They are so

named because they appear in the "body" of the page, that is, between any

PAGE HEADING and PAGE FOOTING groups that may also be present.

CODE

A value that is passed to the output routine but does not ultimately appear in the

report. It was originally meant for separating several reports written to the same

spool file, but may now also be used for any control information for a basic file that

is to be processed by special software downstream, or one controlled by an

Independent Report File Handler.

Conditional Field

A field that is qualified by a PRESENT/ABSENT WHEN/AFTER clause or an OCCURS ...

DEPENDING with minimum zero, and may not therefore always appear in the

report.

Control

A field (control field) represented by an identifier (control identifier), defined in a

SECTION other than the REPORT SECTION, whose value is tested by report writer on

each GENERATE to establish whether there has been a change in value since the

previous GENERATE for the report.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 362

Control Break

A change in the value of a control from one GENERATE to the next. Control breaks

may occur at one of several levels, depending on how many controls are listed in

the CONTROL clause, and their hierarchy, that is, the major-to-minor order in which

they are listed, which is also the order of testing.

Control Characters

Characters which do not appear in the output as printed data but instead

influence the way the data is presented. They are often referred to as escape

sequences since Escape is frequently the first character.

Cross-footing

Summing from a REPORT SECTION field into another field in the same group.

Declarative SECTION

A SECTION, preceded by a USE [GLOBAL] BEFORE REPORTING statement, that will

be executed implicitly just before a certain report group is produced.

Dummy Report Group

A report group that is used not for producing output, but for triggering particular

features, such as a NEXT GROUP clause or a Declarative SECTION. It usually has no

LINE clauses (and hence no COLUMN clauses either).

DUPLICATED file

A file that has a DUPLICATED clause. This defines a number of separate copies of

all the report's control registers and enables several different physical reports to be

produced from one Report Description.

Entry

An element of the DATA DIVISION of a source program beginning with a level-

number (or a level-indicator like RD, FD, etc.), followed by optional clauses, and

ending in a period.

File Handler

Short for Independent Report File Handler (see below).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 363

FINAL control

An object of the CONTROL and TYPE clauses and the RESET phrase that describes

the top-level control, which may be used to produce a CONTROL FOOTING that

encompasses the whole report, such as for grand totals. It may also produce a

major report-encompassing CONTROL HEADING. The alternative (preferred) name

is REPORT.

Form Feed

This is used in this publication to denote the physical action when a printer skips

forward to the top of a new page. On a line printer this used to be referred to as a

"skip to channel 1". A form feed is used in "batch" printing to execute a page

advance but an Independent Report File Handler may use a different method.

Function

A built-in or user-written subroutine that is automatically invoked when the

programmer uses a FUNCTION clause. Functions may produce any special format

defined by the user or supplied as standard.

GLOBAL Report

A report defined with a GLOBAL phrase in the RD. Such a report is available,

together with its special registers and sum-counters, to any program nested within

the one in which the RD is defined.

GROUP INDICATE

An older term, used in current ANS standards, for the simplest type of PRESENT AFTER

clause.

Independent Report File Handler

A supplied or user-written subroutine that intercepts all the output from the report

before it is written and handles it in its own way. It is invoked automatically when

the user codes a MODE sub-clause in the SELECT...ASSIGN.

Multiple CONTROL FOOTING

A group headed by the clause TYPE CF FOR control-1 control-2... or CF FOR ALL.

The group is then used as a CONTROL FOOTING for each (or ALL) of the controls,

thus avoiding the need to code a similar report group at several levels.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 364

Multiple Form of Clauses

A LINE, COLUMN, SOURCE, or VALUE clause with several operands. This enables

several different LINEs or COLUMN fields to be represented in a single entry. Such a

single entry may also be referred to in a single SUM clause with a great saving in

program code.

Multiple-choice Entry

A series of SOURCE, VALUE, or FUNCTION clauses, each followed by a [PRESENT]

WHEN / AFTER clause, all written in the same elementary entry. The first choice that

is "present" becomes the effective value. WHEN OTHER may be used for the

"catchall".

Non-REPORT SECTION SUM

A SUM clause referring to an identifier that is not defined in the REPORT SECTION.

Adding takes place according to SOURCE SUM correlation or on execution of each

GENERATE.

Page Advance

This is an automatic operation that takes place when a body group that is about to

be printed cannot fit entirely on the current page. It outputs a PAGE FOOTING

group (if defined), increments PAGE-COUNTER, advances to the top of a new

page, and outputs a PAGE HEADING group (if defined).

Page Buffer

An area defined when a file is defined with a MODE clause and a WITH PAGE

BUFFER clause. The Page Buffer enables report data to be displayed on the page

in random order, using the SET PAGE STATUS, SET LINE, and SET COLUMN statements.

Page-fit Test

A test performed automatically to ensure that the whole of a body group can be

fitted on the current page. If not, a page advance is executed and the whole of

the body group appears on the next page.

Precompiler

The translation phase of the COBOL-IT Report Writer software that converts report

writer clauses and statements into procedural ("vanilla") COBOL before they are

compiled.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 365

Relative Positioning

This applies to a LINE or COLUMN clause with a + or PLUS before the integer. (LINE

and COLUMN with no operand imply + 1 and are therefore also relative.) Relative

positioning places the line or field at a distance relative to the preceding line or

field.

Report

A report is any human-readable set of data lines produced by any program.

Report Description

The RD entry for a report, plus all the Report Group Descriptions that follow the RD.

Report Description Entry

The full name for the RD entry (not including the report groups that follow it).

Report File

A file defined by means of an FD entry that has a REPORT clause. Any of a wide

range of physical realizations of report output that may be produced using report

writer.

Report Group

A contiguous set of lines produced in one operation. Also used, informally, to

mean a Report Group Description.

Report Group Description

The set of entries, beginning with an 01-level entry, that describe a report group.

REPORT SECTION SUM

A SUM clause referring to a data-name that is defined in the REPORT SECTION. The

adding takes place by rolling forward or cross-footing.

Rolling Forward

Summing from a REPORT SECTION field into REPORT SECTION field in a different

group, such as from a lower-level CF group into a higher-level CF. (Distinguished

from Cross-Footing.)

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 366

SOURCE SUM Correlation

An option, for compatibility with ANS-68 report writer, whereby for every non-

REPORT SECTION SUM operand a check is made to see in which DETAIL groups, if

any, the same item is a SOURCE. Adding then takes place only for those operands

whose referencing DETAIL group was GENERATEd. (In the ANS-74 and ANS-85

standards, by contrast, a GENERATE causes all non-REPORT SECTION SUM operands

to be accumulated into the totals that reference them.)

Special Register

A location such as PAGE-COUNTER, LINE-COUNTER, and CODE-VALUE that is

defined automatically by report writer, rather than by the programmer, and may

be accessed, usually under special conditions, to control the production of the

report.

STYLE

A special property given to a file, report, line or elementary field that causes it to

make use of a special effect available from the output device, such as UNDERLINE,

COURIER, or LANDSCAPE. STYLEs may be implemented in a number of different

ways, all of them completely transparent to the programmer.

Subtotalling

An ANS report writer term for SUMming of a non-REPORT SECTION item.

Sum Counter

The ANS report writer term for total field, not used in this publication since "COUNT"

now has a special significance as a clause.

Summary Reporting

The action that takes place when a GENERATE report-name statement is executed.

CONTROL HEADING or CONTROL FOOTING groups are the only body groups that

can be presented.

Total Field

An internal register set up implicitly for each entry that has a SUM or COUNT clause.

The total field is incremented by the value indicated in the SUM operand until it is

output, whereupon it is stored in the report line and reset to zero. Its PICTURE is

similar to the explicit PICTURE of the same entry, but without any editing characters.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 367

TYPE

This term has two meanings in report writer. The TYPE clause at the 01-level states

how the report group is used in the report, for example TYPE PAGE HEADING. In the

SELECT...ASSIGN clause, the TYPE clause indicates the physical device to which the

output is to be sent.

Unprintable Item

An elementary item that has no COLUMN clause. It does not appear in the report

line but may be totalled like any other item.

Variable-length Field

A report item that has either a "<" PICTURE symbol or a multiple-choice VALUE with

no PICTURE and different-length "literals".

Variable-position Field

A report item whose horizontal position may be different from one appearance to

the next because it contains a relative COLUMN clause and follows either a

conditional or variable-length field, or another variable-position field.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 369

 Appendix E

Precompiler Messages

The following messages may be issued during precompilation under various

circumstances. Most are self-explanatory, but an additional explanation is given below

for each of them. The severity level of each message is also shown. The meanings of

these are as follows:

Severe (S) Implies a serious violation of the rules of syntax or usage, such that the

object program is not reliable - perhaps even incomplete - and should not be run.

Error (E) Implies a violation of the rules of syntax or usage, but such that the resultant

program will be executable, although the results will not necessarily be those expected.

Warning (W) Implies a less severe violation of the rules, or a situation where a change

to the code is preferable, although the program will execute as intended.

Informational (I) Is used for a confirmatory or informational message and does not

imply any violation on behalf of the user.

Return codes are issued by the precompiler to indicate the most severe level of error.

They are listed in Installation and Operation.

Messages

Ident.-Sev. Message and Explanation

RW-001-I No Report Writer data entries were found in this program.

The precompiler found no REPORT SECTION. This is not an error, as the

program need not contain report writer statements.

RW-002-S Clause xx not allowed in this context: ignored.

The given clause should not be coded in this type of entry.

RW-003-S Unrecognized item xx: discarded.

The given word was found when a new clause keyword was expected.

RW-004-S Report Writer statements in FILE-CONTROL/FILE SECTION but no REPORT

SECTION.

The program contains a report writer clause in a SELECT...ASSIGN or FD

entry but there is no REPORT SECTION.

RW-007-S No END DECLARATIVES found.

While processing the DECLARATIVES portion, the precompiler

encountered the end of the source before END DECLARATIVES.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 370

RW-008-I FD has record definition but no RECORD CONTAINS: compiler may

assume variable-length.

If there is an 01-level entry following the FD for a report file, the record

description generated by the precompiler may disagree with it in length,

causing the compiler to assume that the file is RECORDING MODE V. If

the 01-level entry is not used in the program, it should be removed.

RW-009-E Word xx expected here: assumed.

The named word is compulsory for this clause.

RW-010-E No period after REPORT SECTION: assumed.

REPORT SECTION should be followed by a period (".") character.

RW-011-S RD absent or not in A-margin: assumed.

This fault may be the consequence of a fault in the coding of the

REPORT SECTION header.

RW-012-S Clause xx not permitted in RD statement: ignored.

The precompiler is still scanning the RD statement but has found a clause

that cannot be used there. It is likely that a period has been omitted.

RW-013-S Clause/phrase xx not allowed in REPORT SECTION: discarded.

The named keyword is a recognized COBOL keyword but cannot be

used in the REPORT SECTION.

RW-014-S No report-name follows RD.

A period or a keyword follows immediately after RD. Report writer

constructs a name in order to continue scanning.

RW-015-S This report-name has already been defined.

Each report-name can follow only one RD.

RW-017-S REPORT SECTION absent/misspelt: assumed.

An RD entry has been found without a correct REPORT SECTION header

preceding it.

RW-019-W Report xx in FD has no REPORT SECTION entry.

A report-name has been declared in a REPORT clause of an FD but there

is no RD entry for the report-name. This situation is allowed by OS/VS and

DOS/VS COBOL. The superfluous report-name should be removed,

together with the clause, if it is its only operand.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 371

RW-020-S Group item has elementary clauses: ignored.

This message appears as a result of an illogical sequence of level-

numbers. For example, you may have coded:

 03 LINE 1 COL 20 ...
 05 COL 30 ...

The first COLUMN clause is at a group level, but COLUMN must always

be at the elementary level. This example should be re-coded:

 03 LINE 1.
 05 COL 20 ...
 05 COL 30 ...

 See also Part 6.

RW-021-E Clause xx empty: ignored.

This may be the result of using a reserved word as a data item, for

example, CONTROLS ARE PAGE.

RW-022-S Clause xx cannot be repeated in entry: previous occurrence discarded.

This normally happens as the result of a missing period.

RW-023-S Invalid CODE Clause: ignored.

The CODE clause is incorrect.

RW-024-S CODE too long for record: ignored.

The CODE value has too many characters and, taking into account the

size of the longest print line (and possible carriage control character),

would cause the record length implied by the RECORD CONTAINS

clause to be exceeded.

RW-026-S FINAL/REPORT control not highest: ignored.

The keyword FINAL or REPORT, if included in the CONTROLS clause, must

be the first (or only) operand.

RW-027-S Invalid control identifier.

This implies that an identifier used as a CONTROL is improperly formed.

RW-028-E No integer after PAGE LIMIT: assuming 60.

The integer was probably mistyped.

RW-029-S PAGE LIMIT not in range 1 to 9999: assuming 60.

The integer of PAGE LIMIT is not feasible.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 372

RW-030-I PAGE LIMIT will never be reached.

This message is issued when there is no PAGE FOOTING and the [LAST

CONTROL] FOOTING value is less than the PAGE LIMIT, or when there is a

PAGE FOOTING but it does not reach the PAGE LIMIT.

RW-031-W PAGE LIMIT increased to value of LAST DETAIL or FOOTING.

The PAGE LIMIT must not be less than the value of LAST DETAIL or [LAST

CONTROL] FOOTING. It has been adjusted up to the higher value.

RW-032-I Length xx assumed for CODE identifier.

If the identifier form of the CODE clause is used, the number of

characters to be assigned to the CODE is calculated by subtracting the

LINE LIMIT (and the size of any carriage control character) from the

record size given in the RECORD or BLOCK CONTAINS clause, rather than

from the size of the identifier. This message confirms the calculated

length.

RW-033-S Values of PAGE sub-clauses invalid or not in sequence.

The integers of the HEADING, FIRST DETAIL, LAST DETAIL, and LAST

CONTROL FOOTING sub-clauses and the PAGE LIMIT should be in non-

descending order.

RW-034-E Size of CODE differs from other reports going to same file.

This situation is tolerated but, since the CODE literal is placed at the front

of each output record, the output may be difficult to interpret.

RW-036-I Standard OS/VS code literal is normally length 1.

However with report writer, CODE values may be of any length.

RW-037-S Invalid level number: assuming xx.

This usually happens as the result of other faults in the code.

RW-038-E LINAGE not allowed with REPORT(S) clause in FD.

The LINAGE and REPORT(S) clauses are mutually exclusive. If you are

using report writer, do not code LINAGE or any of its phrases.

RW-039-E Report has no groups.

This is usually the result of the absence of a 01 level-number after the RD

entry.

RW-041-S First level no. after RD not 01.

A value of 01 is assumed.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 373

RW-042-S Group-name not unique: name discarded.

Each report group-name should be unique within the RD.

RW-043-S Invalid TYPE: assuming DETAIL.

The keyword after TYPE is not one of the standard names.

RW-044-S Already had TYPE xx: assuming DETAIL.

Two non-body groups of the same TYPE were found in one RD.

RW-045-S Clause xx allowed only at level 01: discarded.

The clauses TYPE, NEXT GROUP, GROUP LIMIT and REPEATED can be

coded only at the 01 level.

RW-047-S TYPE xx not allowed without PAGE: assuming DETAIL.

TYPE PH and PF are allowed only if there is a PAGE clause in the RD.

RW-049-S Control in TYPE clause not declared: assuming DETAIL..

TYPE CH or CF should be followed by FINAL/REPORT or the name of one

of the identifiers listed in the CONTROL(S) clause of the RD.

RW-050-S Already had CH/CF for this control: assuming DETAIL.

Each control identifier can appear in only one CH and/or one CF group

(including multiple CF's).

RW-051-W Duplicated control: ignored.

The same control name cannot be used twice in a CONTROL clause.

(There is no restriction, however, on using the same field under a

redefined name.)

RW-052-I No TYPE: assuming DETAIL.

The TYPE clause may be omitted, in which case DETAIL is assumed.

RW-054-E Absolute LINE not allowed in unpaged report: PLUS form assumed.

Without a legal PAGE clause, every LINE must be relative (LINE + or PLUS).

RW-055-S LINE value should be non-negative integer: ignored.

The integer of the LINE clause is not numeric or is negative.

RW-056-S NEXT PAGE option of LINE in unpaged report: discarded.

LINE [integer] ON NEXT PAGE is not allowed if there is no PAGE clause in

the RD.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 374

RW-058-S PLUS not allowed with NEXT PAGE: ignored.

The form LINE IS PLUS/+ integer ON NEXT PAGE is not allowed.

RW-059-E NEXT PAGE allowed only in first line of this group.

The LINE IS [integer] ON NEXT PAGE clause can only appear as the first

LINE clause of a group, except in a TYPE RH or RF, or a MULTIPLE PAGE

group.

RW-060-W Integer in NEXT PAGE below heading value.

In the LINE IS integer ON NEXT PAGE clause, the integer must not be less

than the HEADING integer (default value 1).

RW-061-E Absolute line follows relative line.

This is not allowed if the first LINE of the group is relative, except in a

MULTIPLE PAGE group.

RW-062-W Line position precedes previous line.

All absolute LINE numbers must be in strictly ascending order (taking into

account possible ABSENT lines), except in a MULTIPLE PAGE group.

RW-063-S LINE clause subordinate to another LINE: ignored.

This condition arises when the OSVS option is not in effect and the LINE

clauses in a report group are at different levels, for example:

 01 GROUP-01 TYPE DE LINE NEXT PAGE.
 05 COLUMN 20 ...
 03 LINE PLUS 1.
 05 COLUMN 20 ...

It may be rewritten as follows:

 01 ... TYPE DE.
 03 LINE NEXT PAGE.
 05 COLUMN 20 ...
 03 LINE PLUS 1.
 05 COLUMN 20 ...

This structure is accepted as written by OS/VS COBOL, DOS/VS COBOL,

and by this implementation, provided the OSVS option is in effect, in

which case a Warning RW-064 appears.

RW-064-W LINE entries nested: previous LINE assumed level xx.

See the comments under RW-063 above.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 375

RW-066-S COLUMN value should be positive integer < 999: ignored.

The integer of the COLUMN clause is not feasible.

RW-069-W COLUMN should be subordinate to LINE: LINE + 0 assumed.

This message is issued when a COLUMN clause is found but there is no

LINE clause containing it, for example:

 01 TYPE IS PH.
 03 COLUMN 30 ...

The same message appears if the OSVS option is not in effect and the

COLUMN clause is coded at the same level as the preceding LINE

clause (or higher), for example:

 03 LINE 1 COLUMN 20 ...
 03 COLUMN 30 ...

Here, the second COLUMN clause is not subordinate to any LINE clause.

A LINE PLUS ZERO clause is assumed in default. This means that an

unnecessary second record will be written so that the item will be printed

in the position defined by the preceding LINE. This structure should be re-

coded as follows:

 03 LINE 1.
 05 COLUMN 20 ...
 05 COLUMN 30 ...

If the OSVS option is in effect, Warning message RW-070 appears instead

and the additional LINE PLUS ZERO is not generated.

RW-070-W COLUMN entries following LINE assumed to be subordinate to it.

See under RW-069 above. See also Part 6.

RW-071-S NEXT GROUP value should be positive integer: discarded.

The integer following NEXT GROUP is not numeric or is negative or zero.

RW-072-W Recurrence of same absolute LINE merged with preceding.

This message may be result from the following type of construct when

the option OSVS is in effect:

 03 LINE 1 COLUMN 10 ...
 03 LINE 1 COLUMN 30 ...

The two COLUMN entries should be brought together under a single LINE

1 entry, but OS/VS and DOS/VS COBOL allow this construct, as does the

precompiler also.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 376

RW-074-S NEXT GROUP absolute or NEXT PAGE in unpaged report: PLUS assumed.

The forms NEXT GROUP IS integer and NEXT GROUP NEXT PAGE are not

allowed unless there is a PAGE clause in the RD.

RW-075-S Invalid PICTURE: PICTURE X substituted.

The PICTURE clause has an invalid symbol, or an invalid combination of

symbols or lacks a compulsory symbol.

RW-076-S PICTURE too long: truncated to 32 symbols.

There is a limit of 32 characters on a PICTURE string.

RW-081-S Invalid literal: clause or phrase ignored.

A literal is expected here but the item found is not correct.

RW-082-S Invalid integer: clause or phrase ignored.

An integer is expected here but the item found is not correct.

RW-083-W Hexadecimal value defined as printable text rather than by STYLE clause.

Although hexadecimal values are allowed in the REPORT SECTION, their

usual purpose is to put control characters in the print data. A more

system-independent method is to use the STYLE clause.

RW-084-S Invalid identifier or expression: clause or phrase ignored.

An identifier or expression is expected here but the item found is not

correct.

RW-085-I New reserved word accepted as data-name.

Clauses such as SOURCE IS STEP or SUM OF FUNC are recognized as

correct even though STEP and FUNC are report writer keywords. This

allow older code to continue to function without change.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 377

RW-086-W CF group refers to identifier that is not a CONTROL: after-break value may

be used.

You have specified an identifier in a SOURCE clause within a CONTROL

FOOTING group and the identifier is not a CONTROL or a SUM total field.

This message reminds you that only CONTROL items are restored to their

before-the-break values during the processing of CONTROL FOOTING

groups. If the data item referred to normally changes at control-break

time, you will obtain its after-the-break value (unless the item is a

redefinition of, or subordinate to, a CONTROL item) and this may not be

what you intended. To obtain the before-the-break value, you could

define a Declarative section for the CONTROL HEADING. If the data

item does not change at control-break time, this message should be

ignored.

RW-087-S Control in RESET phrase not declared: discarded.

Except for FINAL or REPORT, the identifier specified in the RESET phrase

must be declared in the CONTROL clause.

RW-088-W RESET at lower level than associated SUM clause.

If SUM and RESET are used in a TYPE CF group, the control used must be

at the same level or a higher level than that of this CF group.

RW-089-W Elementary item must have data-name or SOURCE etc.

Every elementary item should have either SOURCE, or VALUE, or

SUM/COUNT, or FUNCTION clause, or should carry a data-name.

RW-090-S LINE...NEXT PAGE not allowed in this type of group.

It is not allowed in a TYPE PH or RH group.

RW-094-W First LINE number will cause group to be positioned higher than top limit.

The first LINE number of the group is such that the group will start higher

(earlier) than its highest permissible position on the page.

RW-096-W LINE clauses in group will cause it to extend beyond bottom limit.

The last LINE number of the group is such that the group will end lower

than its lowest permissible position on the page. See also Part 6.

RW-098-W PRESENT should not precede WHEN/UNLESS if used as qualifier for

previous clause.

The WHEN phrase of the STYLE clause is not normally preceded by

PRESENT. If you have written something like:

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 378

 05 COL 1 VALUE "Payment overdue" STYLE UNDERLINE
 PRESENT WHEN W-DATE < W-TODAY.

note that the condition immediately following the STYLE clause is

assumed to qualify just the STYLE clause, so this should be re-written as:

 05 COL 1 STYLE UNDERLINE VALUE "Payment overdue"
 PRESENT WHEN W-DATE < W-TODAY.

RW-099-E ABSENT not allowed before qualifying condition.

The STYLE clause cannot be immediately followed by an ABSENT clause

and the order of the clauses should therefore be changed.

RW-100-W WHEN OTHER allowed only with multiple choice.

The clause [PRESENT] WHEN OTHER cannot be used in isolation. That is,

there must be at least one [PRESENT] WHEN condition clause in the same

entry.

RW-106-W This RH group will have own page: NEXT GROUP NEXT PAGE assumed.

If NEXT GROUP NEXT PAGE is not used in an RH group, report writer will try

to fit the group on the first page above the PH group. If that cannot be

done, this message is issued.

RW-107-W This RF group will have own page: NEXT PAGE assumed.

If LINE...NEXT PAGE is not used in an RF group, report writer will try to fit

the RF group on the last page below the PF group. If that cannot be

done, this message is issued.

RW-110-I Elementary item has no size: will not be output.

This message occurs when the PICTURE clause is omitted from an

elementary item and there is no way of telling its size, such as from a

VALUE "literal" as, for example:

 05 COLUMN 21 SOURCE IS WS-PAYMENT.

A PICTURE clause is always required at the elementary level except (a)

with a simple VALUE "literal". However, OS/VS and DOS/VS COBOL allow

the PICTURE to be omitted and treats the field as unprintable, so this

technique was often used in the past to enable an item to be used in a

SUM when it was not also being used as a SOURCE.

RW-112-W Absolute NEXT GROUP position not beyond last line position.

The integer of a NEXT GROUP integer clause in a TYPE RH or PF group

must be greater than the last line position in the group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 379

RW-113-W NEXT GROUP position out of range.

Either the current group is a REPORT HEADING and the NEXT GROUP is

beyond the FIRST DETAIL, or the current group is a PAGE FOOTING and

the NEXT GROUP is beyond the PAGE LIMIT.

RW-114-W Absolute NEXT GROUP not in range FIRST DETAIL to FOOTING.

The integer of a NEXT GROUP integer clause in a body group must be in

that range.

RW-115-S NEXT GROUP not allowed in types PH and RF: ignored.

To provide spacing following a Page Heading, the FIRST DETAIL clause

may be used.

RW-122-S SUM clause has nonnumeric PICTURE: ignored.

The PICTURE clause was probably mistyped.

RW-124-S Group-name in UPON phrase is unknown or ambiguous.

An UPON phrase is followed by a name that is either not a group-name

or requires qualification.

RW-125-E UPON group not type DETAIL.

It is not possible to SUM ... UPON a group that is not TYPE DETAIL. If the

field is a SOURCE in the group, you may instead give a data-name to the

entry and SUM that data-name.

RW-126-E Rolling forward of SUM from higher to lower CF group not allowed.

An attempt is being made to SUM a field in a higher CONTROL FOOTING

and print the total in a lower CONTROL FOOTING.

RW-127-E Report-name qualifier required: IN xx assumed.

The same group-name is in use in more than one report. The name in

the first report is arbitrarily chosen.

RW-128-S Qualifying report-name invalid.

The only qualifier accepted following a sum counter, group-name or

special register is the report-name itself.

RW-131-S Name following GENERATE not report or detail group.

The name following GENERATE is probably misspelt.

RW-132-S Name following INITIATE/TERMINATE not report: ignored.

The name following INITIATE or TERMINATE is probably misspelt.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 380

RW-133-E Cannot do summary reporting without CONTROLS clause.

This may be issued if GENERATE report-name is coded erroneously

instead of GENERATE detail-name.

RW-134-S SUPPRESS allowed only in DECLARATIVES: ignored.

A SUPPRESS keyword has been found outside the DECLARATIVES part of

the program.

RW-135-S Invalid operand after USE BEFORE REPORTING: section discarded.

The directive USE BEFORE REPORTING must be followed by the name of a

report group.

RW-136-S "xx".. not allowed in Report Writer DECLARATIVES.

This is issued if an INITIATE, GENERATE, or TERMINATE is found in the

DECLARATIVES part of the program.

RW-137-E Report Writer verb has no operands: ignored.

The verb INITIATE, GENERATE, or TERMINATE is followed immediately by a

period, another verb, or the end of the source.

RW-138-S Group already has DECLARATIVES section.

There can only be one DECLARATIVES section for any given report

group.

RW-139-W USE AFTER EXCEPTION/ERROR DECLARATIVE not used by file-handler.

Independent Report File Handlers cannot access the USE AFTER

EXCEPTION or USE AFTER ERROR DECLARATIVE section for the file they

control. This message warns that the section will have no effect. A FILE

STATUS should be created and tested after each operation instead.

RW-142-W No INITIATE statement found for this report.

Check that INITIALIZE was not coded by mistake instead of INITIATE. This

message and the next are issued only if there is a GENERATE statement

referring to the report.

RW-143-W No TERMINATE statement found for this report.

See notes under RW-142 above.

RW-144-W MODE more than 4 characters: excess ignored.

Report writer generates the name CRFHxxxx for the name of the

Independent Report File Handler, so 4 is the limit.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 381

RW-145-E MODE not allowed where record descriptions follow FD: discarded.

A report file that is written using an Independent Report File Handler

cannot process any records other than those implicitly defined in the

REPORT SECTION. If the (01-level) record description is not referred to

(via a WRITE statement) anywhere in the program, it should be omitted.

Otherwise, a way should be found to write the record by means of

additional code in the REPORT SECTION. The file handler itself may also

be enhanced to write special records to the print file.

RW-146-I No GENERATE issued for this DETAIL.

There is no GENERATE statement in the PROCEDURE DIVISION referring to

this DETAIL group-name.

RW-148-S Invalid UPON file-name.

The file-name specified in the INITIATE...UPON is not defined in the FILE

SECTION or it is not a report file or its REPORT(S) clause does not include

the report-name (or one of the report-names) given in the INITIATE.

RW-149-E Report assigned to more than one FD: file handler DUPL required.

OS/VS and DOS/VS COBOL allowed a report-name to be defined in the

REPORT(S) clause of up to two FD's. This property is now emulated using

the DUPL file handler. You should code MODE DUPL in the SELECT ...

ASSIGN statement for both files, or use the precompiler's FMODE option.

RW-151-W Superfluous period: ignored.

This message will appear if an excess period appears between the level-

number and the last clause in the entry, for example:

 05 COLUMN 21. PIC Z(5)9. SOURCE IS WS-INCOME.

RW-152-E Period missing: assumed.

This message will appear if no period appears at the end of an entry

before the next level-number or heading. Occasionally, this may be the

result of coding a superfluous numeric literal that is wrongly assumed to

be a new level-number.

RW-161-I SUM will be totalled UPON generation of xx due to SOURCE SUM

correlation.

In an original report writer program that has more than one DETAIL

group, this message should be expected for every SUM operand which is

not the name of another REPORT SECTION item. This message confirms

that SOURCE SUM correlation is in effect (one of the supplied defaults

which is essential when an original OS/VS or DOS/VS COBOL source is

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 382

processed). Report writer has searched the SOURCE clauses in all the

DETAIL groups for the same identifier as that specified in the SUM clause

and has found it in DETAIL xx . It will perform the adding when, and only

when, DETAIL xx. is GENERATEd. This message tells you exactly when

adding of the SUM operand takes place.

RW-162-I SUM will be totalled also UPON generation of xx.

This is used in combination with message RW-161. It indicates that the

SUM operand was found in more than one DETAIL group. Adding will

take place when either the DETAIL named in message RW-161-I or the

DETAIL named in this message is GENERATEd.

RW-163-W Item not in REPORT SECTION is accumulated on every GENERATE.

The SUM clause referenced has an identifier from a SECTION other than

REPORT SECTION, there are more than one DETAIL groups and either

there is no SOURCE SUM correlation or the same identifier does not

appear as a SOURCE in any DETAIL of the report. This message reminds

you that adding will take place on the execution of a GENERATE for any

DETAIL in the same report, in accordance with the ANS-85 standard. This

message should not appear for any program written originally for OS/VS

or DOS/VS COBOL, as the previous compiler would not have generated

any adding for the SUM entry in these circumstances and a zero value

should have resulted.

RW-165-W Sum counter may be accumulated without being cleared.

There is a RESET phrase for a total field that is also used for rolling forward

to another SUM. Some values will therefore be rolled forward several

times into the same total, which is therefore suspect.

RW-166-W UPON phrase not allowed with SUM of Report Section entry.

It is not permissible to use the UPON phrase if the item added is a REPORT

SECTION data-name. REPORT SECTION items are added in whenever

their group is produced.

RW-167-S REPORT SECTION entry referred to by SUM must be numeric.

Only a numeric entry may be the object of a SUM. However, a COUNT

clause may be used to count the occurrences of any entry.

RW-168-S RESET without SUM or COUNT clause: discarded.

The RESET phrase has no meaning except in conjunction with a SUM or

COUNT clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 383

RW-171-S Invalid SIGN clause: discarded.

The SIGN clause is malformed.

RW-172-S BLANK WHEN ZERO not applicable: discarded.

BLANK WHEN ZERO can only be associated with numeric items.

RW-173-E Entry contains both DBCS and non-DBCS fields.

If the entry has a multiple VALUE clause, either all the literals must be

DBCS or all must be non-DBCS.

RW-174-E DISPLAY-1 group must contain only DBCS fields.

If DISPLAY-1 is coded on a group level, every subordinate entry must be

DBCS, that is, it must have a DBCS PICTURE ("G" symbol) or a DBCS literal

VALUE, or both.

RW-180-E CODE not allowed in RD where a record description follows FD.

The report associated with this file has a CODE clause, but the FD is

followed by an 01-level record description. Since all the records written

to the file should have the additional "CODE" characters attached, it is

not permissible to WRITE records independently of report writer. If the 01-

level record description is not referred to, it should be deleted.

RW-181-E PAGE BUFFER/DUPLICATED not allowed in RD whose FD has a record

description.

The PAGE BUFFER and DUPLICATED clauses imply a special organization

of the report file or its records and it is not permissible to WRITE records

independently of report writer. If the 01-level record description is not

referred to, it should be deleted.

RW-184-W Some SELECT clauses will be ignored by file handler and may be invalid.

The MODE clause causes the report to be output using an Independent

Report File Handler. The phrases RESERVE integer AREA(S), PADDING

CHARACTER, RECORD DELIMITER, and PASSWORD of the SELECT...ASSIGN

clause are not processed by the file handler and are treated as

documentary only.

RW-185-W Some FD clauses will be ignored by file handler and may be invalid.

The MODE clause causes the report to be output using an Independent

Report File Handler. The FD phrases CODE-SET, RECORD IS VARYING...,

BLOCK CONTAINS integer RECORDS, LABEL RECORD(S) IS/ARE data-

name, and VALUE OF... are not processed by the file handler and are

treated as documentary only.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 384

RW-190-E "xx" does not conform to chosen language level.

The precompiler has been installed to accept only a subset of the

available language and the specified item is not in that subset.

RW-191 "xx": nonconforming nonstandard, yy extension to ANS/ISO 1985 Report

Writer module.

This message appears as a result of the FIPS option to flag nonstandard

IBM and SPC extensions to the current standard.

RW-192 "xx": nonconforming standard, ANS/ISO 1985 Report Writer module.

This message appears as a result of the FIPS option to flag standard

elements above a specified level.

RW-193 "xx": obsolete element in ANS/ISO 1985 Report Writer module.

This message appears as a result of the FIPS option to flag all obsolete

elements.

RW-200-I MODE PRNT has been assumed for file due to CODE clause.

If a file has more than one report whose RD's do not all have a CODE of

equal length, the file can only be processed by an Independent Report

File Handler. The file is therefore treated as though MODE PRNT had

been coded.

RW-201-I Scanning to next recognizable period or keyword.

This message is issued after a more serious error to document the

precompiler's error-recovery processing.

RW-202-W No associated FD: MODE PRNT assumed.

Each RD's report-name must appear in the REPORT clause of an FD as

well as in the RD. The precompiler supplies a file by default and, for

simplicity, implements it via the PRNT file handler.

RW-203-E REPORT SECTION nest level must not exceed 23.

This is the limit to the number of different levels of nesting allowed using

level-numbers in the REPORT SECTION.

RW-204-I Data-name accessible in REPORT SECTION only.

This message is issued when an entry has a data-name that the

precompiler cannot retain when generating the intermediate data

description. Possible reasons for this are: (a) the LINE is subject to an

OCCURS clause and, as lines are generated only once, the dimensions

of the data-name would be insufficient; (b) the item has a PICTURE

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 385

clause with an "<" symbol and this would be incomprehensible to basic

COBOL.

RW-206-S PLUS integer allowed only with FOOTING: ignored.

The HEADING, FIRST DETAIL and LAST DETAIL clauses have no PLUS integer

form.

RW-208-S OCCURS clause not allowed at level 01.

Perhaps a REPEATED clause was intended. This is used at level 01 to print

several body groups across the page.

RW-210-S LINE LIMIT invalid: clause ignored.

The LINE LIMIT clause is malformed.

RW-211-S LINE LIMIT too high for record/CODE.

The LINE LIMIT exceeds the maximum number of bytes available in the

print line, taking into account an existing CODE.

RW-212-E CODE identifier form not allowed without LINE LIMIT.

If the identifier form of the CODE clause is used, a LINE LIMIT clause must

be present.

RW-213-I Value xx assumed for LINE LIMIT.

This message is always issued if there is no LINE LIMIT clause in an RD. It

gives the rightmost value allowed for any COLUMN and enables report

writer to ensure that none of your print lines will be truncated because

they are wider than one printer's width. This default value is calculated

from the RECORD CONTAINS or BLOCK CONTAINS clause in the

corresponding FD (allowing for the carriage control character), or, failing

that from the installed default (see Installation and Operation). It should

be checked to ensure that the value is as expected. (See LINE LIMIT

clause.)

RW-214-I SOURCE/SUM will show same value in each repetition.

An OCCURS clause or multiple LINES or COLUMNS clause is in effect but

the same SOURCE or SUM value will be placed in each occurrence

because there are no subscripts to be varied, or there are subscripts but

no VARYING clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 386

RW-215-S More than one unconditional SOURCE etc.: previous discarded.

More than one SOURCE, VALUE clause, etc. has been found and there

are no associated [PRESENT] WHEN condition clauses to indicate a

multiple-choice entry.

RW-216-S Condition has unpaired left parenthesis or reserved word.

A major keyword, or a period, or the end of the source was found before

the expected closing parenthesis (")") while scanning a condition.

RW-218-S Item xx found out of context and ignored.

The given item was not expected in this context.

RW-220-S Illegal OCCURS integer: clause discarded.

An integer of this OCCURS clause was non-numeric.

RW-221-S OCCURS...TO maximum must exceed minimum: TO phrase discarded.

The second integer in an OCCURS...TO clause must be greater than the

first integer.

RW-222-S Minimum OCCURS integer negative: clause ignored.

The first integer in an OCCURS...TO clause must be zero or greater than

zero.

RW-223-S OCCURS integer must be positive: clause discarded.

The integer in a basic OCCURS clause or the second integer in an

OCCURS...TO clause should be greater than zero.

RW-224-S Invalid identifier/expression in DEPENDING ON: phrase discarded.

This may be due to the use of a SUM or COUNT term in the expression.

RW-225-S OCCURS...TO format allowed only with DEPENDING.

A DEPENDING ON... phrase was expected following the OCCURS...TO

clause. The first integer is discarded.

RW-226-S Depth of repetition exceeds 4: clause discarded.

Only up to four nested levels of OCCURS or multiple LINES or COLUMNS

are allowed.

RW-229-S More than 8 levels of OCCURS or PRESENT etc.

Only up to eight levels of PRESENT WHEN, PRESENT AFTER, or GROUP

INDICATE clauses, or repetition are allowed, including up to 4 levels of

nested OCCURS, multiple LINES, or multiple COLUMNS.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 387

RW-230-S Invalid FUNCTION: clause ignored.

This is issued if the function name is malformed.

RW-231-E No closing parenthesis in FUNCTION: assumed.

A major keyword, or period, or end of source was found before the

closing parenthesis following the parameters to a FUNCTION clause.

RW-232-S Summed REPORT SECTION item must have SOURCE, SUM or VALUE.

A SUM was found of a REPORT SECTION item, but the item has no

SOURCE, SUM, or VALUE clause.

RW-233-S Misuse of < symbol in PICTURE: ignored.

The "<" symbol may only be used immediately preceding a PICTURE

symbol representing "data" as opposed to an insertion character.

RW-235-E Report has > 1 CONTROL, so control-id must be specified in TYPE CH.

TYPE CH must be followed by one of the identifiers (or REPORT / FINAL)

listed in the CONTROL(S) clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 388

RW-236-S GROUP INDICATE/PRESENT AFTER not allowed in RH or RF groups.

A TYPE REPORT HEADING or REPORT FOOTING group cannot have a

GROUP INDICATE clause or a PRESENT AFTER... clause.

RW-237-S Undeclared control in GROUP INDICATE/PRESENT AFTER: discarded.

All control names must first be declared in a CONTROL clause.

RW-238-S Invalid GROUP INDICATE syntax: default format assumed.

The ON/FOR phrase is incomprehensible, so the simple (no-operand)

GROUP INDICATE format is assumed.

RW-239-S PAGE option used in unpaged report: PAGE discarded.

There is no (valid) PAGE clause in the RD and hence none of the options

using the keyword PAGE can be used.

RW-240-S REPEATED invalid in dummy or multiple-page group.

A group with a REPEATED clause must have at least one LINE and must

not have a MULTIPLE PAGE clause.

RW-241-S Invalid REPEATED syntax: clause ignored.

The REPEATED clause is malformed.

RW-242-S Too many repeats for available LINE LIMIT.

The LINE LIMIT cannot accommodate the number of repetitions given in

the TIMES phrase. If an EVERY/WIDTH phrase is given, the spacing given

is too wide, or, if not, the desired number of repetitions cannot fit, even

at the closest possible spacing.

RW-243-S REPEATED allowed only in body groups: clause ignored.

The REPEATED clause can be used only in a TYPE CH, DE, or CF group.

RW-244-S REPEATED must have EVERY or TIMES: ignored.

Either the TIMES phrase or the EVERY/WIDTH phrase or both must be

present in the REPEATED clause.

RW-245-E Repeats of this group will overlap.

Running the program will result in encroachment between successive

side-by-side groups with unpredictable results.

RW-246-S Invalid condition: clause ignored.

The condition following a PRESENT/ABSENT clause was syntactically

invalid.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 389

RW-247-E Superfluous PRESENT/GROUP INDICATE/ERROR found: discarded.

This fault is usually the result of a missing period.

RW-248-E GROUP IND./PRESENT AFTER cannot be part of multiple choice.

The only conditional clauses allowed in a multiple choice entry must be

of the form [PRESENT] WHEN condition.

RW-249-E GROUP IND./PRESENT AFTER in CONTROL group must refer to higher level.

If a PRESENT AFTER control [OR PAGE] clause is written in a CH or CF

group, the control referred to must be at a higher level than that of the

group.

RW-250-W Item overlaps or is to left of item in same line.

This message is issued if two unconditional horizontal items overlap or if

their COLUMN numbers are not in ascending sequence. It will also

appear in cases where a conditional item could overlap an

unconditional one. The item will be accepted as defined. If it does not

overlap any of the column positions of a previous field in the line, there

will be no problem at run time. Otherwise, the earlier field will be

overlaid, in whole or in part, by the new item.

RW-251-I Column overlap may occur in this line.

This message is issued if some of the items in the report line have PRESENT

WHEN clauses without which they would overlap. The precompiler

assumes that the programmer has taken action to ensure that the

conditions are mutually exclusive.

RW-253-I Final COLUMN position may exceed line limit.

This message is issued if some of the items in the report line have PRESENT

WHEN clauses without which they would exceed the size of the line.

RW-254-E Abs. line follows relative with no unconditional abs. lines.

An absolute LINE clause (no +) cannot follow a relative LINE (with +)

unless there is an unconditional absolute LINE earlier in the group.

RW-255-E REPEATED absolute group must have at least 1 unconditional LINE.

It is not possible for all the LINE entries in a group with a REPEATED clause

to have a PRESENT/ABSENT/GROUP INDICATE clause, unless they are all

relative (with PLUS or +).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 390

RW-256-S Nonnumeric SOURCE or non-REPORT SECTION SUM cannot be ROUNDED.

ROUNDED can only be used with (a) a numeric SOURCE or (b) a SUM

clause that refers to another REPORT SECTION item.

RW-257-S Final column position in line exceeds limit.

The rightmost column of this line exceeds the value of LINE LIMIT. The line

will be truncated.

RW-258-E Line overlap: LINE PLUS 1 assumed.

This message will be issued if two unconditional absolute lines overlap. It

will also appear in cases where a conditional absolute line could overlap

an unconditional one.

RW-259-I Line overlap may occur in this group.

This message is issued if some of the lines in the group have PRESENT

WHEN clauses without which they would overlap. The precompiler

assumes that the programmer has taken care to ensure that the

conditions are mutually exclusive.

RW-260-I This group may extend beyond lower limit.

This message is issued if some of the lines in the group have PRESENT

WHEN clauses, which, if all present, would exceed the maximum size of

the group as defined in the PAGE LIMIT sub-clauses or the GROUP LIMIT

clause.

RW-261-S Circular reference of sum totals: no summing.

This message is issued if circular combinations of cross-foot SUM's are

used, such as:

 A SUM A
 or A SUM B --- B SUM A
 or A SUM B --- B SUM C --- C SUM A etc.

RW-262-E Number of occurrences of addend and SUM field differ at level xx.

This message is issued in the following case: a SUM clause is subject to

repetition (OCCURS or multiple LINES / COLUMNS); an item referred to in

the SUM clause is a REPORT SECTION item that also has repetition. After

matching the axis of each repetition (LINE against LINE, COLUMN against

COLUMN, group of LINES against group of LINES and group of COLUMNS

against group of COLUMNS), it is found that the numbers of occurrences

along the matching axis are not the same.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 391

RW-263-S Repetition affecting SUM field has no equivalent for summand.

This message is issued when a SUM clause has repetition (OCCURS

clause or multiple LINES / COLUMNS) and an item referred to in the SUM

clause is a REPORT SECTION item but has no repetition along the axis of

repetition of the SUM. Briefly: a multiple SUM cannot be manufactured

from a single original value.

RW-265-W UPON phrase required in running total in type DETAIL.

This message is issued if a SUM clause is found in a DETAIL group and the

item summed is not in the REPORT SECTION. The precompiler cannot

ascertain when adding is to take place unless an UPON phrase is

included.

RW-266-E Rolling forward not allowed between these types.

It is not permitted to roll forward into a REPORT HEADING group or from a

REPORT FOOTING group.

RW-267-S No subscripts allowed on SUM of REPORT SECTION entry.

The SUM identifier must be without subscripts when it refers to an entry in

the REPORT SECTION.

RW-270-S SUM OVERFLOW clause is invalid: discarded.

The SUM OVERFLOW clause is malformed.

RW-274-S Leftmost COLUMN position less than one: COLUMN PLUS 1 assumed.

This message is associated with the RIGHT and CENTER forms of the

COLUMN clause.

RW-275-S Invalid MODE clause: discarded.

The MODE clause is malformed. (The mode name should not be in

quotes or apostrophes.)

RW-276-S Invalid or duplicated phrase after MODE: discarded.

One of the phrases or clauses USING, WITH PAGE BUFFER, or DUPLICATED

is either malformed or occurs more than once.

RW-277-S Invalid DUPLICATED integer: phrase discarded.

No valid integer follows the DUPLICATED keyword.

RW-278-I MODE xx has been assumed for file due to clauses in FILE-CONTROL

entry.

To implement certain features, such as PAGE BUFFER and DUPLICATED,

the independent report file handler protocol is required, rather than

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 392

direct "WRITEs". If there is not already a MODE clause, report writer

handles the file as though a MODE clause had been coded.

RW-281-S SET statement has invalid syntax: discarded.

The SET PAGE/LINE/COLUMN statement is malformed.

RW-282-S SET statement not allowed with report that has no page buffer.

The SET PAGE/LINE/COLUMN statement cannot be used unless the

corresponding SELECT...ASSIGN clause has a WITH PAGE BUFFER clause.

RW-283-S Integer of SET statement is out of range.

An attempt is being made to SET the LINE or COLUMN outside the

dimensions of the page.

RW-287-E RESET not allowed in multiple CF group.

RESET cannot be used with a SUM or COUNT clause in a multiple

CONTROL FOOTING because several levels of totalling are implied.

RW-288-I TYPE CF with no operands assumed to be multiple CF for all controls.

If TYPE CONTROL FOOTING is coded with no control-id operand

following, it is taken to mean CONTROL FOOTING FOR ALL.

RW-290-E Mis-use of CONTROL IS control-id condition.

The special condition CONTROL IS control-id can only be used in a

multiple TYPE CONTROL FOOTING that has that control-id as one of its

operands.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 393

RW-291-W UPON phrase refers to current group.

The operand used in the UPON phrase should refer to the name of a

different group.

RW-293-W SUM of item with GROUP INDICATE/PRESENT AFTER may be incorrect.

If the item quoted in the SUM clause is subject to one of these clauses, it

cannot be reliably totalled, since report writer will, on principle, not total

fields that ordinarily will not be Present.

RW-294-W Summed REPORT SECTION name xx is ambiguous: first occurrence used.

Either (a) the given data-name, the operand of a SUM clause, is either

defined in more than one place within the current report (in which case

the names should be made different) or (b) the given data-name is not

defined in the same report but is defined in more than one different

report (in which case report-name qualifiers should be used).

RW-295-I Maximum number of repetitions will be xx.

In the absence of a TIMES phrase, report writer has calculated from the

rest of the EVERY/WIDTH phrase of the REPEATED clause and the LINE

LIMIT that this many repetitions of the group can be arranged side-by-

side.

RW-296-I Distance between REPEATED groups assumed to be xx COLUMNS.

In the absence of an EVERY/WIDTH phrase, report writer has calculated

from the TIMES phrase and the LINE LIMIT that the distance between

corresponding repetitions will be that many columns.

RW-297-W Absolute LINEs subject to REPEATED or WRAP cannot all be conditional.

For the REPEATED or WRAP clause to work correctly, report writer must

know at precompilation time whether the group will be absolute or

relative. If all the absolute LINE clauses have a condition attached, this

cannot be done.

RW-301-W Multiple LINE or COLUMN should not be blank.

An entry containing a LINE clause with more than one operand should

be followed by at least one subordinate COLUMN entry. An entry

containing a COLUMN clause with more than one operand should also

contain a SOURCE, SUM, VALUE, or FUNCTION clause.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 394

RW-302-S Number of SOURCE items etc. does not match number of repetitions.

With a multiple SOURCE or VALUE, there must be an equal number of

repetitions either as an OCCURS or as a multiple LINES or COLUMNS

clause.

RW-303-S OCCURS not allowed in entry with multiple LINE/COLUMN.

It is not permissible to combine an OCCURS and a LINE or COLUMN with

multiple operands in the same entry.

RW-304-S STEP/WIDTH/DEPTH allowed only with OCCURS.

The STEP/WIDTH/DEPTH clause cannot be coded unless there is a valid

OCCURS clause in the same entry.

RW-305-E STEP/WIDTH/DEPTH not allowed in blank item.

The STEP/WIDTH/DEPTH clause is not allowed in an elementary entry that

has no COLUMN clause (actual or implied).

RW-306-S STEP/WIDTH/DEPTH less than size of field: xx assumed.

The distance given in the STEP/WIDTH/DEPTH clause must be at least the

size (horizontal or vertical) of the item it applies to.

RW-307-W Wrong axis implied by STEP/WIDTH/DEPTH.

The keyword LINES may only be used in the vertical direction and

COLUMNS in the horizontal direction.

RW-308-W Scope of OCCURS includes absolute entry: minimum STEP (xx) assumed.

An OCCURS clause includes within its scope an absolute entry (LINE or

COLUMN without "+"). The value given is the minimum distance that may

be assumed between adjacent entries.

RW-309-S Mult. SOURCE/VALUE not subject to fixed OCCURS or mult. LINE/

COLUMN.

A multiple SOURCE or VALUE clause must be associated with either

OCCURS without DEPENDING or a multiple LINES or a multiple COLUMNS.

RW-310-E SOURCE NONE allowed only in multiple entry.

SOURCE NONE can be used only as part of a multiple-operand SOURCE

clause.

RW-311-S Multiple LINE numbers must increase: PLUS 1 assumed as necessary.

In a multiple LINES clause, absolute line numbers must be strictly

increasing.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 395

RW-313-E REPORTS ALL already encountered: ignored.

REPORTS ARE ALL can only be coded once per program.

RW-314-W ALL should be only REPORT(S) operand: will be applied to unassigned

reports.

REPORTS ARE ALL must be coded without any report-names and must be

the only REPORT(S) clause in the program.

RW-315-S Invalid operand for VARYING.

An operand following VARYING is not one of the permitted forms.

RW-316-S VARYING allowed only with OCCURS or multiple LINE/COLUMN.

The VARYING clause can be used only if there is an OCCURS clause or a

multiple LINES or COLUMNS clause in the same entry.

RW-317-E VARYING data-name duplicated.

This message is issued if the same data-name has been used twice in the

same VARYING clause.

RW-318-S Invalid VARYING data-name.

The names DATA-SUB-1/2/3/4 cannot be used as VARYING operands.

RW-319-E VARYING data-name already in use in an enclosing entry.

It is not permissible to use the same data-name for two nested VARYING

clauses.

RW-320-S REPORT SECTION item cannot appear in expression in SUM clause.

The use of SUM expression is permitted only if all the items in the

expression lie outside the REPORT SECTION.

RW-321-S Expression summed cannot contain SUM: parentheses required.

Expressions of the type SUM A + SUM B are not allowed because the SUM

operand binds the entire arithmetical expression. For example, SUM A +

B means SUM (A + B) not (SUM A) + B. The expression SUM A + SUM B

must therefore be written (SUM A) + (SUM B).

RW-322-S Only SOURCE expression can contain SUM.

The SUM or COUNT term cannot be used in a DEPENDING ON expression,

as a parameter to FUNCTION, or as part of a conditional expression.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 396

RW-323-S SUM not allowed in multiple-choice entry.

The SUM clause or SUM term cannot be used in a multiple-choice entry.

The code should be rewritten using separate entries.

RW-324-E SUM in lone DETAIL not allowed except as cross-foot.

If the report contains only one DETAIL group, that group cannot contain

any SUM clauses except for cross-footing (totalling items within the same

group).

RW-325-S COUNT does not refer to REPORT SECTION entry.

Only an entry defined in the REPORT SECTION can be counted.

RW-326-W Data-name of VARYING referred to in FROM or BY expression.

The FROM or BY expression of a VARYING clause refers to its own data-

name. This may lead to unpredictable results.

RW-327-S COUNT cannot be followed by expression or literal.

Only simple data-names can be used in the COUNT clause.

RW-328-S RESET cannot be used with SUM/COUNT expression.

RESET is only allowed with the basic SUM or COUNT clause, not when

they are a term in an expression.

RW-329-E Multiple-choice entry not allowed at LINE level.

The LINE clause cannot be written at the same level as COLUMN when

the entry is a multiple-choice entry. They should be written at different

levels.

RW-330-E Printer TYPE xx not recognized: default TYPE assumed.

The Printer Description File for the given "printer type" in the SELECT clause

cannot be found.

RW-331-W STYLE xx is already in effect.

The given style is unnecessary since it is already in effect having been

defined at a higher level.

RW-332-E Unknown STYLE name "xx": changed to NORMAL.

The given style cannot be found in the Printer Description File.

RW-333-E No code defined for this STYLE clause: changed to NORMAL.

This particular combination of styles is not permitted (although each

style-name is valid).

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 397

RW-334-E Contradictory combination of STYLEs: changed to NORMAL.

You have coded two or more styles in combination that belong to the

same mutually-exclusive class.

RW-337-E STYLE not allowed in unprintable entry.

An group entry with a STYLE clause must define at least one line or print

column. (However, you can code STYLE in an elementary dummy entry.)

RW-339-S STYLE within multiple-choice selection cannot have condition.

A construct of the form:

 05 COL 1 VALUE "ONE" WHEN FLD-A = 1
 VALUE "TWO" WHEN FLD-A = 2
 STYLE UNDERLINE WHEN FLD-B = 1.

should be re-coded as:

 05 STYLE UNDERLINE WHEN FLD-B = 1.
 07 COL 1 VALUE "ONE" WHEN FLD-A = 1
 VALUE "TWO" WHEN FLD-A = 2.

RW-340-S xx clause has invalid syntax: ignored.

The given clause is malformed.

RW-342-S PRESENT AFTER clause has duplicated phrase: discarded.

One of the options following PRESENT AFTER is repeated.

RW-343-S PAGE and JUST not allowed in PRESENT AFTER in PH or PF group.

The clause PRESENT JUST AFTER [NEW] PAGE can appear only in a body

group.

RW-344-I LAST DETAIL assumed to be xx.

This informational message is issued if LAST DETAIL is not specified and its

assumed value is not the same as PAGE LIMIT.

RW-345-W LAST BODY GROUP present with FOOTING.

LAST BODY GROUP means the same as FOOTING, so one is superfluous.

RW-346-S PAGE option allowed only with TYPE CH.

This refers to the OR PAGE phrase allowed only with a TYPE CH group.

RW-347-I LAST BODY GROUP assumed to be xx.

This message appears when no LAST BODY GROUP (or [LAST CONTROL]

FOOTING) clause is specified and its value is inferred from the PAGE LIMIT

clause and the size of any PAGE FOOTING group.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 398

RW-348-I NEXT GROUP syntax inappropriate for this TYPE of group.

This is issued if NEXT DE OR CH GROUP is written in a TYPE DE or CH group

or if NEXT BODY GROUP is written in a TYPE CF group, both of which imply

a misunderstanding of the operation of the NEXT GROUP clause.

RW-349-S COLUMN RIGHT/CENTER must have absolute value: changed to COLUMN

PLUS 1.

COLUMN RIGHT and COLUMN CENTER have no relative form.

RW-350-S MULTIPLE PAGE not allowed in type PH, PF or CH with OR PAGE.

These three group types must, by definition, be confined to one page

and therefore cannot have a MULTIPLE PAGE clause.

RW-351-S (NO) MULTIPLE PAGE must have at least 2 subordinate lines.

A single line clearly cannot span two pages, so this clause is permitted

only for a group of LINE entries, or a multiple LINES or LINE with OCCURS.

RW-352-S Clause "xx" not allowed in unpaged report.

A PAGE clause must be present in the RD if certain clauses, such as

GROUP LIMIT are used.

RW-353-S GROUP LIMIT too low or too high for this group.

The GROUP LIMIT cannot be less than (that is, positionally higher than)

the normal highest (earliest) position for the group, nor greater than (that

is, positionally lower than) the normal latest position.

RW-354-S GROUP LIMIT allowed only in body group.

GROUP LIMIT cannot be used except with a TYPE CH, DE, or CF group.

RW-355-E NO MULTIPLE PAGE can be nested only within MULTIPLE PAGE.

No other nested combinations of these clause are permitted.

RW-358-I Some styles cannot be output directly and will be DEFERRED.

The precompiler may be unable to generate code to resolved certain

styles directly, especially when they require "overprinting" of part of a

line, or "shadow printing" of characters. In such cases, the precompiler

defers the resolution of the codes to execution time and your program

will therefore require the Printer Description File and some additional run

time routines whenever it executes.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 399

RW-360-E STYLE not allowed in individual multiple-choice entry.

A STYLE clause cannot be coded between the SOURCE or VALUE clause

and the WHEN phrase of a multiple-choice entry. It can only apply to

the complete entry.

RW-371-E Condition on STYLE not permitted in FD or RD.

Only an unconditional STYLE clause is allowed for FD or RD entries. The

required effect must be implemented in the report groups.

RW-372-E Printer file was absent at precompile time and DEFERRED was assumed.

The default Printer Description File could not be found.

RW-375-I MODE PRNT has been assumed for file because of unresolved STYLE.

A file handler interface is required because certain STYLE clauses cannot

be resolved at precompilation time but require a run time component.

RW-377-E STYLE may need to be on each LINE to take effect in page buffer.

If the PAGE BUFFER feature is in effect, it is inadvisable to code the STYLE

clause at a level between RD and LINE. Take the following construct:

 03 STYLE HIGHLIGHT.
 05 LINE 1 ...
 05 LINE 2 ...

The ending control sequence for HIGHLIGHT is not stored until the end of

line 2. If any data is placed on the right of line 1 in the page buffer, it

may unintentionally also have the HIGHLIGHT property. The sample

should therefore be re-coded:

 03 LINE 1 STYLE HIGHLIGHT...
 03 LINE 2 STYLE HIGHLIGHT...

RW-379-E TYPE DEFERRED not allowed where record description follows FD.

Since a deferred printer requires a file handler, there cannot be any (01-

level) record descriptions following the FD for the file (compare error no.

RW-145-E).

RW-381-S WRAP/NO WRAP cannot be duplicated or nested.

The only nesting allowed for this clause is a single NO WRAP nested

within a single WRAP.

RW-382-S WRAP cannot be used below LINE level.

Only NO WRAP can be used at any level below that of LINE.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 400

RW-383-E NO WRAP must be subordinate to WRAP.

Unlike NO MULTIPLE PAGE, NO WRAP cannot be coded independently.

RW-384-E NO WRAP must encompass more than one elementary item.

Since an elementary item cannot be split by the WRAP feature, NO

WRAP is redundant unless it encloses more than one elementary

printable item, or a multiple COLUMNS, or a COLUMN with OCCURS.

RW-385-S WRAP COLUMN integer should be between 1 and LINE LIMIT.

The integer following the TO or AFTER phrase clearly must stay within the

normal limits for the report.

RW-870-S Library member not found.

The name specified in a COPY statement could not be found in SYSLIB or

the indicated library.

RW-871-E REPLACING phrase has invalid syntax: discarded.

The REPLACING phrase will be ignored and the COPY processed with no

replacements.

RW-872-E Word "BY" not found: no replacements done.

The end of a token (identifier, literal, pseudo-text, etc.) was reached in a

COPY...REPLACING directive and the expected word BY was not found.

RW-873-E Too many levels of nesting of COPY.

This message indicates that a COPY statement has been found within

the text of another COPY member and the number of levels to which this

is permitted has been exceeded. (See Installation and Operation for

details.)

RW-874-E Pseudotext invalid or too long: no replacements done.

Either the pseudotext on the left of BY is empty (that is: == ==) or it is

longer than the maximum (normally 512 bytes).

RW-875-W No items were replaced during COPY.

No match was made against the REPLACING phrase of the COPY

statement during the COPY.

RW-876-E Invalid COPY syntax: passed to compiler unchanged.

The word COPY is not followed by a word that could be a member-

name.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 401

RW-877-W Pseudotext brackets assumed as required by REPLACE.

The format of the REPLACE statement requires that each operand should

be within pseudotext brackets (== ==). These were assumed for this

REPLACE statement.

RW-880-S BASIS not allowed: passed to compiler but outcome unpredictable.

The BASIS directive is not supported by the precompiler unless it is the first

COBOL statement in the source. The results are unpredictable as the

precompiler expects a complete source program.

RW-881-W CBL/PROCESS statement passed to compiler but not actioned.

CBL or PROCESS directives are accepted by the precompiler but not

actioned by it. Since they may alter the compiler options which the

precompiler is unaware of, the results may be unpredictable. See also

Part 6.

RW-882-W nn sequence errors were found in the program.

This message may appear if the SEQUENCE option is set.

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 402

 Index

Click on Page Numbers

A

abbreviated forms 36

ABSENT WHEN/AFTER clause - see PRESENT WHEN/AFTER

absolute form of

 COLUMN 12, 109

 LINE 12, 128

 LINE and COLUMN 149

 NEXT GROUP 142

ADD statement, equivalence to 207

ADV option 56, 59

ALL form of VALUE literal 236

ALL option of TYPE CF 227

ALLOW SOURCE SUM CORR clause 21, 66,

 218, 221

alternating page formats 285

ANS-68

 features summary 331

 standard 3

ANS-74 differences 331

ANS-85

 changes to FD 54

 differences 331

 GLOBAL clause in RD 63

 USE GLOBAL statement 280

arithmetic expressions – see expressions

averages, calculating using COUNT 116

axes of summing 31, 208

B

BLANK WHEN ZERO clause 105

BLOCK CONTAINS clause 56, 68

body groups

 definition 13

 introduction 7

 see also CH, DE, CF groups

boustrophedon sequence 242

BY phrase of VARYING 241

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 403

C

carriage control character 56, 69

CENTER option of COLUMN 12, 38

CF groups 7, 16, 18, 39, 72, 144, 228

CH groups 7, 39, 74, 228

 with GROUP LIMIT 125

channels, use of in file handler 297

classes, of STYLE 197

CLOSE statement 18, 261, 272

 implicit on STOP RUN and CANCEL 57

Codasyl, extensions to language 331

CODE clause 20, 56, 68

 with concurrent reports 288

 with file handler 297

CODE-VALUE special register 69

COL - see COLUMN

COLUMN clause 11, 107

 with OCCURS 147

column totals 30, 209

COLUMN-COUNTER special register 108, 113

compatibility with OS/VS COBOL, see also last part of each section of Parts 2, 3, and 4 4

concurrent reports 58, 287

conditions 15, 33, 167

consecutive reports 58

contained programs, with GLOBAL

 report 63

control breaks 17, 21, 74, 255

CONTROL clause 10, 21, 71

CONTROL FOOTING - see CF groups

CONTROL HEADING - see CH groups

CONTROL phrase of PRESENT WHEN 168

control-id, definition 71

CONTROLS clause - see CONTROL clause

controls with PRESENT AFTER 162

controls with SOURCE 192

COPY statement 338

correlation - see SOURCE SUM correlation

COUNT clause 115

COUNT, as term 32

cross-footing form of SUM 204, 217, 256, 258

CTIME function 119

cumulative totals- see RESET phrase

CURRENCY SIGN phrase 156

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 404

CURRENT-DATE special register 119, 192

customization - see Installation and Operation

D

DATA DIVISION - see REPORT SECTION

data-name

 of report entry 11, 16

 of VARYING 240

 referenced by SUM 202

database

 commands 338

 in FUNCTION 293

 input from 18, 75, 278

 output to 299

DATE function 41, 119

DAY function 119

DAYSIN function 120

DBCS 56, 100, 156, 234, 236

DE groups 7, 228

DECLARATIVES 154, 276

 use of total fields 217

default

 for PAGE sub-clauses 87

 for TYPE 227

DEFERRED option with STYLEs 196

DEPENDING ON phrase

 of OCCURS 28, 149, 151

 of OCCURS with PRESENT WHEN 175

DEPTH - see STEP

DETAIL - see DE groups

diagnostics - see messages

DISPLAY-1 - see USAGE

DOS/VS COBOL – see OS/VS COBOL

Double-Byte Character Set - see DBCS

dummy COLUMN 172

dummy entries, with FUNCTION 117

dummy groups 145, 186

 for subtotalling 219

DUPLICATED clause 59, 288

E

elementary entries - see COLUMN clause

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 405

error messages - see messages

execution time - see run time

exit routine - see USE BEFORE REPORTING

expressions 13, 75, 81, 190, 201, 211

extensions, list of 331

EXTERNAL attribute, of report file 60

EXTERNAL report files 57

external SUM - see non-REPORT SECTION SUM

F

FD entry 16, 52, 61

fiche - see microfiche

File Control Area 300

file handler - see Independent Report File Handlers

FILE SECTION 52

FILE STATUS clause 55

FILE-CONTROL paragraph 58

FINAL control 71, 74

Fips flagging option 337

FIRST DETAIL clause 9, 85, 87

FIRST PAGE NO ADVANCING clause of FD 60

FOOTING sub-clause - see LAST CF

formats, summary of all 343

FROM phrase of VARYING 241

front sheet - see RH groups

FUNCTION clause 41, 117

 developing a Function 292

 sample routine 295

G

GENERATE statement 17, 74, 255

 effect on REPEATED 184

GLOBAL

 in USE BEFORE REPORTING 277, 280

 report files 57, 60

 report groups 255

 reports 20, 63, 261, 272

Glossary 361

GROUP INDICATE 162

GROUP LIMIT clause 39, 125

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 406

H

HEADING sub-clause 84, 86, 134

hexadecimal literals 237

hierarchy of controls 21, 74

HOLD status - see SET statement

horizontal repetition - see COLUMN, OCCURS

I

IBM extensions, list 331

identifier form of CODE 69

in-line comments 337

Independent Report File Handlers 20, 42, 56, 259, 264, 297

 how to write one 298

 sample 307

 use of CODE data 69

INITIATE statement 17, 261

 with multiple reports 283

 with total fields 210

insertion characters, in PICTURE 157

intermediate source 3

J

JCL - see Installation and Operation

JUST option of PRESENT AFTER 164

JUSTIFIED clause 126

K

Kanji - see DBCS

keyword tables

 report files and RD 49

 report groups 93

 verbs 254

L

label printing 184

laser printers 42, 197

LAST CF sub-clause 20, 87, 132

LAST CONTROL FOOTING - see LAST CF sub-clause

LAST DETAIL sub-clause 20, 85

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 407

layout of page 86

layout of report 5

left-shift symbol "<" 158

level-numbers 11, 100

LINAGE (prohibited clause) 55

LINE clause 11, 128

LINE clause with OCCURS 27, 148

LINE LIMIT Clause 9, 79

 identifier form 184

LINE-COUNTER 13, 130, 137, 142, 259, 264

 uses 137

LINKAGE areas for file handler 300

lower-case, use in REPORT SECTION 47

M

MDATE function 41, 120

MDAYS function 120

messages 369

microfiche 299

MODE clause of SELECT 20, 56, 57, 68

MODL file handler 57, 297, 307

modular programs, using Report Writer 307

MONTH function 121

MOVE function 122

multiple multiple form of

 COLUMN 26, 111, 193

 CONTROL FOOTING 115, 168, 174, 208, 227

 LINE 27, 135, 193

 SOURCE 26, 150, 181, 193

 SUM 31, 202

 VALUE 26, 136, 181, 237

MULTIPLE PAGE clause 41, 93, 130, 139

multiple reports 22, 43, 283

 identical copies 288

multiple-choice entries 33, 179

MVS - see Installation and Operation

N

negative values - see SIGN

NEXT BODY GROUP - see NEXT GROUP

NEXT DE OR CH GROUP - see NEXT GROUP

NEXT GROUP clause 39, 137, 142

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 408

NEXT PAGE phrase

 of LINE 129, 139

 of NEXT GROUP 39, 144

NO MULTIPLE PAGE clause 140

NO WRAP clause 249

non-hierarchical CONTROLs 76

non-REPORT SECTION SUM 202, 207

NONE option of multiple SOURCE 193

NOPF file handler 60, 297

NORMAL, with STYLE 196

O

OCCURS clause 27, 147, 174, 193

 with SUM 208

 with VALUE 237

 with VARYING 240

ON NEXT PAGE phrase - see NEXT PAGE

OPEN statement 18, 261

optional entries - see PRESENT

OS/390 - see Installation and Operation

OS/VS COBOL 4

 comparisons of formats:

 FILE SECTION and RD 49

 PROCEDURE DIVISION 254

 Report Groups 93

 compatibility 4

 also at end of each section

 migration from 315

OSVS precompiler option 66, 157, 217, 258

 and COLUMN clause 110

 and SOURCE SUM correlation 66

OTHER option of PRESENT WHEN 33, 179

OVERFLOW clause 20, 81

P

page advance processing - see page-fit test

Page Buffer feature 43, 59, 264, 264

PAGE clause - see PAGE LIMIT clause

PAGE FOOTING - see PF groups

PAGE FOOTING totals 214

PAGE HEADING - see PH groups

PAGE LIMIT clause 9, 84, 263

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 409

PAGE option

 of CH group 39, 230

 of PRESENT AFTER 164

page, regions of 86

PAGE-COUNTER 14, 154, 259, 272

page-fit test 125, 130, 143, 152, 174, 266

parameters to file handler 58

parameter to FUNCTION 117

PF groups 8, 18, 135, 146, 228

PH groups 8, 135, 145, 228

PICTURE clause 13, 37, 156, 181, 189

 with VALUE 236, 238

PLUS - see relative forms

pre-break values of controls 21, 74

precision of totals 212, 218

precompiler 3

Preface 6

PRESENT AFTER clause 21, 161

PRESENT WHEN clause 15, 33, 167

 effect on SUM 174, 210, 216

 OTHER option 179

 using total fields 216

 with OCCURS 150

PRINT-SWITCH 259, 270

Printer Description File 197

PRNT file handler 56, 69, 264, 297

procedural references to Report Writer data-names 103

PROCEDURE DIVISION 17, 253

purpose of Report Writer 3

Q

qualification

 of CODE-VALUE 69

 of control-id 71

 of DETAIL group name 63

 of LINE-COUNTER 138

 of PAGE-COUNTER 154

 of SET statement 264

 of SOURCE operand 190

 of total fields 202

 of UPON operand 203

 using control-id 75

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 410

R

railroad track, explanation 6

RANDOM PAGE feature 59, 264

RD entry 9, 20, 61

RDATE function 122

RECORD CONTAINS clause 56, 68

record description, after FD 56

RECORDING MODE 56, 60

 with a file handler 60

reference modification 190

relative form of

 COLUMN 12, 108

 LINE 12, 128

 NEXT GROUP 143

relative subscripting 190

RELEASE - see SET

REPEATED clause 29, 79, 183

repetition - see OCCURS, REPEATED, multiple forms

REPLACE BY option of OVERFLOW 82

REPLACE statement 338

REPLACING option of COPY 338

REPORT as CONTROL operand 10, 71

Report Control Area 303

report files 49, 52

REPORT FOOTING - see RF groups

Report Group Descriptions 63

report groups (see also TYPE clause) 5, 5

 coding rules 100

 definition 93

REPORT HEADING - see RH groups

REPORT option of PRESENT AFTER 164

REPORT SECTION 9, 61

REPORT SECTION SUM 204

report-name - choice of 9

report-name – definition 55

REPORT-NUMBER 43, 288

reports - introduction to 4

REPORTS clause of FD 16, 20, 55

reserved words 341

RESET phrase of SUM 203, 217, 223

RF groups 8, 18, 146, 228

 use for writing trailer 56

RH groups 8, 139, 145, 228

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 411

 use for writing header 56

RIGHT option of COLUMN 12, 38

RMDATE function 122

rolling forward of totals 110, 115, 205, 210, 217, 256

ROUNDED phrase 13, 191

row totals 30, 209

run time messages 79, 82, 172, 183, 207, 217, 257, 267, 273

RYDATE function 122

S

SELECT...ASSIGN clause 16, 54

SET page buffer statements 43, 263

shorter forms of syntax 36

SIGN clause 188

size errors - see OVERFLOW clause

snaking columns 267

snapshots of total field 214

sorting, via COBOL SORT 72

SOURCE clause 13, 190

 as subject of SUM 201

 OVERFLOW checks for expressions 82

 referring to total field 214

SOURCE SUM correlation 66, 110, 207, 218, 219, 221, 256

SPECIAL-NAMES paragraph 68

spooling report data 20, 68, 288, 299

squeeze symbol "<" 37, 158

STATE function 123

STATEF function 123

STEP phrase 27, 149

STIME function 123

STYLE clause 196, 237

 at FD level 58

 at RD level 64

subheadings 164

subscripts - see VARYING

subtotalling 75, 207, 214, 217, 218, 220, 256

SUM

 as a term 32, 201

 clause 16, 21, 26, 30, 201

 from a different report 210

 use of total fields 212

 with PRESENT WHEN 174, 210, 216

SUM OVERFLOW clause 20, 81, 207

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 412

sum-counter - see total fields

summary reporting 6, 21, 187, 218, 219, 227, 255

SUPPRESS PRINTING statement 270

symbolic characters, as VALUE 236

Syntax summary 343

T

tables - see OCCURS, SUM

TERMINATE statement 18, 272

 with multiple reports 283

 with total fields 217

TIME function 41, 123

TIME-OF-DAY special register 192

total fields 204

total fields, uses 212

totalling - see SUM

totals only reports 219

truncation

 of expressions 82

 of PICTURE 190

 of line 173

 of records 60

 of totals 82, 204, 212

TYPE clause 7, 11, 22, 63, 226

TYPE clause of SELECT 57

U

UNLESS phrase of PRESENT 168

unprintable fields 110, 177, 198, 211, 213, 216

UPON phrase of INITIATE 56, 261

UPON phrase of SUM 203, 207, 220, 221, 258

USAGE clause 234

USE BEFORE REPORTING directive 154, 217, 253, 255, 259, 270, 275

User-written extensions - see Independent Report File Handlers, FUNCTION clause

USING phrase of MODE 58

V

VALUE clause 13, 236

 as subject of SUM 204

variable number of repetitions 28

variable-length fields 37, 38, 105, 110, 113, 158

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 413

variable-length records 60

variable-position fields 80

VARYING clause 29, 240

verbs used in Report Writer 5, 253

vertical repetition - see LINE, OCCURS

VM - see Installation and Operation

W

WIDTH - see REPEATED clause, STEP

wild cards, in COPY statement 338

WITH CODE - see CODE

WITH PAGE BUFFER - see Page Buffer feature

WITH RANDOM PAGE - see RANDOM PAGE feature

WRAP clause 41, 80, 245

WRITE statements, explicit 56

Y

YDATE function 123

Z

zero divide - see OVERFLOW

ZIP function 124

etc

3800 - see laser printer

< and > PICTURE symbols 37, 159

COBOL-IT Report Writer Precompiler

CitRW® Reference Manual Version 1.1

Page 414

www.cobol-it.com
May, 2018

S

	COBOL-IT Report Writer Precompiler
	Acknowledgement
	COBOL-IT REPORT WRITER PRECOMPILER
	Contents
	Preface

	1.1 Introduction and Tutorial
	1.1.1 Welcome to COBOL-IT Report Writer
	Introduction to this Product
	What is Report Writer?
	Compatibility With Built-In COBOL-IT Report Writer

	1.1.2 Gentle Introduction
	What is a Report?
	What Does Report Writer Do?
	Report Writer in Easy Steps
	1 Step 1: Find the Report Groups
	2 Step 2: Decide on the TYPE of Each Report Group
	3 Step 3: Code the RD Entry
	4 Step 4: Code the Report Group Descriptions
	5 Step 4A: 01-Level Entries
	6 Step 4B: LINEs and COLUMNs
	7 Step 4C: VALUEs and SOURCEs
	8 Step 4D: Conditional Items
	9 Step 4E: Totalling
	10 Step 5: Code the SELECT...ASSIGN and FD
	11 Step 6: Code the PROCEDURE DIVISION

	1.1.3 More about COBOL-IT Report Writer
	More about Files and Reports
	More about the RD Entry
	More about CONTROLS
	More about TYPEs
	Automatic Repetition
	More about Totalling
	More about Conditional Entries

	1.1.4 Some Shorter Forms
	1.1.5 Other Features
	Variable-Length Fields
	Insertion Characters
	COLUMN CENTER and RIGHT
	NEXT GROUP Clause
	GROUP LIMIT Clause
	CONTROL HEADING at Top of Every Page
	MULTIPLE PAGE Groups
	Line WRAP
	FUNCTIONs
	Special Print Attributes (Styles)
	Independent Report File Handlers
	Multiple Reports
	Using the Page Buffer

	1.1.6 Further Study

	1.2 Report Files and RD Entries
	1.2.1 Report Files and RD: Keyword Table
	1.2.2 Report Files
	Select and FD: Coding Rules
	You may code any other clauses after SELECT and any other clauses except LINAGE in the FD entry that may be appropriate for an output sequential file. In particular, a FILE STATUS clause may be used to return the status of your report file. The orde...
	Each report-name is a name of up to 30 characters, formed according to the usual rules for COBOL names. You might choose names that describes the output produced by the report, such as REPORTS ARE MONTHLY-SALES, END-OF-YEAR-TOTALS.
	Each report-name must be the same as the report-name following an RD in your REPORT SECTION. A report-name may be DBCS. A report-name may appear only once in an FD entry. However, it may appear in more than one FD provided that any INITIATE for the...
	If every report is to be written to the same file, you may write REPORTS ARE ALL. ALL must be the only operand and REPORTS ARE ALL must be the only REPORT(S) clause in the program.
	A RECORD CONTAINS clause, or a BLOCK CONTAINS clause with the CHARACTERS option, is required if the identifier form of the CODE clause is used in any RD associated with the file. In all other cases, it is optional.
	You should not normally specify a record-description-entry after the FD entry, because report writer relieves you of the need to code any WRITE statements for the report files. Your program may WRITE records to a report file independently of report w...
	If you do code a record description after the FD entry, and you wish to obtain fixed-length records, you should code a RECORD CONTAINS clause, even if you have also specified RECORDING MODE IS F. The integer of the RECORD CONTAINS clause should agree...
	The MODE clause is used to indicate that each line of the report is to be passed to an Independent Report File Handler, instead of being written directly to a print file. The mnemonic-name consists of up to four alphanumeric characters . No check is...
	The DUPLICATED, WITH RANDOM PAGE, and WITH PAGE BUFFER features cannot be implemented at run time by direct output and require a file handler to be present (although their processing is handled entirely by the run time system and not by the file handl...
	If the MODE clause is present, or is assumed implicitly for the reasons given in the preceding paragraph, the following restrictions apply:
	No record descriptions may follow the FD entry for that file, as you cannot WRITE directly to a file that is processed by an Independent Report File Handler, see 5.3 Independent Report File Handlers.
	The EXTERNAL and GLOBAL attributes have no effect. (Note that a report may still be GLOBAL, even though its corresponding file is not. Use of the MODL file handler also allows a report file to be treated as global (see 5.3.2 Supplied File Handlers).
	The clauses RESERVE integer-1 AREA(S), PADDING CHARACTER, RECORD DELIMITER, and PASSWORD of the SELECT...ASSIGN clause and the clauses BLOCK CONTAINS integer RECORDS, LABEL RECORD(S) IS/ARE data-name, RECORD IS VARYING..., CODE-SET, and VALUE OF... of...
	No USE AFTER STANDARD ERROR/EXCEPTION PROCEDURE Declarative section should be coded for the file.
	The CANCEL and STOP RUN statements cannot be relied on to CLOSE files implicitly, as allowed under ANS 85 for regular files.

	The device-name of the TYPE clause gives the make and model of the output device, or some other symbolic name. The TYPE clause enables the precompiler, or the run time system, to select the correct sequence of control characters to produce the desire...

	FILE-CONTROL and FD: Operation
	If you specify more than one report-name in the same REPORTS ARE clause, you will be able to generate report data either consecutively or concurrently for the same file. (REPORT IS and REPORTS ARE are interchangeable, however many report-names follow...
	The USING phrase indicates that the file handler is to be passed the parameters you specify in addition to the parameters normally passed automatically to the file handler on each call. The additional parameters will be first in the list of parameter...
	The DUPLICATED clause indicates that integer-2 copies of the report writer Report Control Areas are to be created. For example, if you code DUPLICATED 4 TIMES, four copies of PAGE-COUNTER, LINE-COUNTER, control-break areas, total fields, and other in...
	The WITH PAGE BUFFER clause indicates that the Page Buffer facility is to be available to the file handler. This enables you to use the SET PAGE TO HOLD / RELEASE, SET LINE, and SET COLUMN statements (see 4.4 Report Writer SET statements Report Write...
	The WITH RANDOM PAGE clause indicates that the SET LINE and SET COLUMN statements may be used (see 4.4 Report Writer SET statements) to build up your page in random fashion. This clause is used when the output device is one which outputs data page by...
	If you require normal output to a standard file, you may write MODE IS BATCH. This prevents any use of a file handler. MODE IS BATCH cannot be used if a DUPLICATED or WITH PAGE BUFFER clause has been coded.
	If you do not code a RECORD CONTAINS clause or a BLOCK CONTAINS clause with the CHARACTERS option, report writer will calculate the logical record length for the report file from the longest actual line found in all the Report Descriptions associated ...
	If you do code a RECORD CONTAINS clause (or, in its absence, a BLOCK CONTAINS clause with the CHARACTERS option), the integer specified will be used as the logical record length for the report file. The same integer, after subtracting the length of t...
	If you write RECORDING MODE IS V for a standard batch file (one not produced by a file handler), Report Writer will write variable-length records to your report file, truncating them, where possible, immediately after the last field in the line. This...
	If you specify a RECORDING MODE clause for a file that uses an Independent Report File Handler, the recording mode you specify will be placed in report writer's File Control Area for the report file, and the file handler may choose whether to act on i...
	You may specify EXTERNAL or GLOBAL for a file that has a REPORT(S) clause. It is not necessary for a report file to be GLOBAL in order for it to have a GLOBAL report associated with it.
	If you write FIRST PAGE NO ADVANCING, the usual form feed is not issued at the start of the first page after execution of the OPEN for the file. Instead, the program assumes that the paper is already positioned on line 1 of the page. This feature is...

	Compatibility

	1.2.3 REPORT SECTION and RD
	REPORT SECTION and RD: Coding Rules
	All other DATA DIVISION sections, if present, should precede REPORT SECTION.
	Each report-name must be unique and must be the same as one of the report-names specified in the REPORT clause of one or more FD entries. (If a report-name appears in more than one FD, the UPON phrase of INITIATE is required, see 4.3 INITIATE stateme...
	The clauses of the RD may be written in any order; the order is not significant.
	Each RD entry is followed by at least one Report Group Description. These define all the report groups (sets of one or more report lines) that may be produced in the report. They are fully described in the next part (see 3.24 TYPE clause).
	If GLOBAL is specified, the report is available to any program contained in the current program, in the following senses:
	An INITIATE, GENERATE, or TERMINATE for the GLOBAL report-name may be issued from within a contained program, provided that the contained program itself does not have a locally-defined report of the same name. The contained program need not contain a...
	A GENERATE for any of the DETAIL report groups of the GLOBAL report may be issued from within a contained program, provided that the contained program itself does not have a locally-defined report and DETAIL group with the same names. If a GLOBAL rep...
	The special registers PAGE-COUNTER, LINE-COUNTER, LINE-LIMIT, and CODE-VALUE of the GLOBAL report, together with any sum-counters, may be accessed as GLOBAL items. Other report fields are not globally accessible.

	The STYLE clause causes one or more styles to take effect for the report as a whole. Usually this means that a certain control sequence will be sent to the printer just after the INITIATE is executed and another control sequence just before the TERMI...

	Compatibility
	The following features are provided by new Report Writer only:
	New Report Writer allows several FD's to be associated with a given report-name, provided that the UPON phrase is used with an INITIATE for the report-name. It does not write to more than one file simultaneously. If you wish to continue to write to t...

	1.2.4 ALLOW clause
	ALLOW Clause: Coding Rules
	The COBOL-IT Report Writer software, as supplied, assumes:

	ALLOW Clause: Operation
	ALLOW SOURCE SUM CORR causes SOURCE SUM correlation to take effect throughout the report. The correlation between SOURCE items in a DETAIL and SUM clauses in a CONTROL FOOTING group is the main distinguishing feature of the ANS-68 standard. It is th...
	If you code the word NO the effect is reversed.

	Compatibility

	1.2.5 CODE clause
	CODE Clause: Coding Rules
	The forms CODE IS and WITH CODE are synonymous.
	The CODE clause is not permitted if the associated FD entry is followed by a record description entry. This is because it would be illogical to WRITE independently to the file if there is also a CODE. See 2.2.2 Select and FD: Coding Rules and the re...
	The literal, if coded, must be a non-numeric literal.
	If an identifier operand is used, it must represent a group field or a non-edited alphanumeric elementary field. The associated FD entry for the file must then have either a BLOCK CONTAINS clause with the CHARACTERS option or a RECORD CONTAINS clause...
	If a mnemonic-name operand is coded, there must be an entry in SPECIAL-NAMES of the form:
	where literal is non-numeric. The value of literal is then used as the CODE value. If you require compatibility with ANS-68 report writer, one character is the norm. For ANS-85 compatibility, you should code a two-character literal.
	If your report file description has a RECORD or BLOCK CONTAINS integer CHARACTERS clause and there is no MODE clause after SELECT, the size of the CODE, plus the maximum line width, must not be greater than the number of CHARACTERS specified.
	Not all RD entries associated with the same report file need have a CODE clause and all the CODE clauses need not specify an operand of the same length. However, if the report file does not use a user-written file-handler that might ascribe some mean...

	CODE Clause: Operation
	The presence of a CODE clause implicitly establishes the special register CODE-VALUE in the Report Control Area. You may alter the contents of CODE-VALUE at any time. If there are several CODE clauses in different RDs within your program, you must q...
	If you do not specify a MODE clause after the SELECT for the corresponding report file, the value of the CODE is prefixed to every record written by report writer to the report file. The CODE is placed immediately before the carriage control character:
	If you do specify a MODE clause after the SELECT, CODE-VALUE will be passed to the Independent Report File Handler in the Report Control Area. Built-in file-handlers (PRNT, MODL, NOPF) treat the CODE in the authodox way just described, but a user-wri...
	If a literal or mnemonic-name is used, the size of CODE-VALUE is the length of literal, and CODE-VALUE is preset to the value of literal.
	If an identifier is used, the length of CODE-VALUE is the (maximum) record length given in the RECORD CONTAINS clause, minus the LINE LIMIT. The current value of identifier is stored in CODE-VALUE at the start of the processing for each DETAIL or CON...

	Compatibility
	OS/VS and DOS/VS COBOL allow only the format: WITH CODE mnemonic-name. The corresponding literal defined in SPECIAL-NAMES must be one character.

	1.2.6 CONTROL clause
	CONTROL Clause: Coding Rules
	As the format shows, you may code either the special keyword REPORT (or its equivalent, FINAL), or a list of identifiers (control-ids), or both. Commas are optional but helpful separators here, but you should code at least one space or new line betwe...
	REPORT, if present, must appear first in the list of control-ids. You may omit REPORT even if you refer to it in the Report Description. FINAL is an alternative name for REPORT.
	Each control-id must be REPORT/FINAL or the name of an unedited data item in the DATA DIVISION of your program. It must not be a special register in the REPORT SECTION, such as PAGE-COUNTER. You may include qualifiers and subscripts if necessary. A...
	You cannot use the same control-id more than once in the same CONTROL clause (unless a redefinition is used), but you can use the same control-id in different RDs.
	If the OSVS option is in effect, control-ids may be required to be either group items or unedited alphanumeric or numeric DISPLAY items with a maximum size. Thus edited items and items with a USAGE of COMPUTATIONAL or INDEX are prohibited. Details w...
	It is acceptable for your control fields to overlap. The following usage is therefore allowed:
	Coding the CONTROL clause enables you to include some additional elements in your report description, namely:

	CONTROL Clause: Operation
	You code a CONTROL clause when your report has a structure based on changes in the value of one or more "key" or control fields, whose names you list in the CONTROL(S) clause. Report writer does not sort your data (to do that you could use COBOL SORT...
	Your CONTROL HEADING and CONTROL FOOTING groups are coded as separate 01-level report groups.
	You can lay out CH and CF groups exactly as you like, just as you would for a DETAIL; report writer imposes no pre-defined format on any groups.
	If you need a different CONTROL HEADING at more than one level (YEAR and MONTH in our example), you must code a new group for each level. This means that all groups may have different layouts. In this example, this applies also to the CONTROL FOOTIN...
	Report writer produces your CONTROL HEADING group at the start of each new value of the control. Similarly, it produces your CONTROL FOOTING group at the end of each new value of the control.
	CONTROL FOOTING groups are produced using the control values that existed before the control break. (See next item below for a fuller description of this.)
	Both the CONTROL HEADING and the CONTROL FOOTING groups are optional for each control-id. You may code just a CONTROL HEADING group, or just a CONTROL FOOTING group, or neither.

	The reserved word REPORT (or FINAL) is a special case representing the highest possible control. It is not a data-name. Include this as the first of your set of controls if you need special action to be taken once only at the beginning and end of th...
	Report writer keeps an internal copy of the pre-break contents of each control so that it may detect changes in the controls, known as control breaks. Ignoring the special case REPORT or FINAL for the moment, whenever your program issues a GENERATE s...
	When a control break is detected, if your report has CONTROL FOOTING groups, each control field is first saved in a temporary holding area and is then overwritten with the contents it had before the break for the duration of the production of the CONT...
	a CONTROL FOOTING;
	a PAGE HEADING or PAGE FOOTING, when the page advance was caused by a CONTROL FOOTING;
	when it is used as a SOURCE or SUM operand, either as it is or as a subscript or qualifier, or as part of an expression;
	when it is used as part of a condition;
	when it appears in a parameter to a FUNCTION;
	when it is referenced implicitly, that is, via a redefinition, or via a group field or subordinate field or an intersecting field.

	Report writer will not detect a control break until your program issues a GENERATE. If a control field in your input data changes several times but no GENERATE is issued during that time, no control breaks will be detected.
	Your CONTROL identifiers need not be chosen just from ready-made locations in your input files or database. You may also "manufacture" them in WORKING-STORAGE. As a simple example, you may wish to print subtotals by quarter, although your main input...
	You cannot define more than one CONTROL HEADING or CONTROL FOOTING for a given control-id in your report. However, cases sometimes occur when you would like two CONTROL FOOTING report groups for the same level of control. You may achieve this referr...
	Report writer will consider a control break to have taken place if there is any change in the bit-pattern of the control field. For example, if the field is packed decimal (COMPUTATIONAL-3), a value of (hex) 123C and (hex) 123F will be considered dif...
	If your program has several Report Descriptions, each report is processed independently of the others. You can decide separately for each report whether it will have a CONTROL clause and which controls to specify. When you issue a GENERATE for a rep...
	Non-Hierarchical Control Structures.
	There may be other purposes for specifying an item as a control. You might include it for the following reasons:
	To trigger a PRESENT AFTER clause (or a GROUP INDICATE clause), or The RESET Phrase of the SUM clause.
	To force a control break even though a lower control has not changed. You might want to output just monthly totals over several years' data. If you then declare MONTH as a control you must include YEAR too as a higher control, because it is quite po...
	Because you may want to use the field as a SOURCE at CONTROL FOOTING time and you want to obtain the previous value of the field. (See item 4 above.) For example, you might have both CUSTOMER-NUMBER and CUSTOMER-NAME. By making CUSTOMER-NAME a cont...
	For documentary purposes. The lowest-level controls need not be used at all in the program.
	If the program's SPECIAL-NAMES paragraph contains an ALPHABET clause, you may need to use the NOXCAL option to ensure that the specified collating sequence is used. See Installation and Operation.

	Compatibility
	The use of REPORT as an alternative to FINAL is unique to new Report Writer.
	Only new Report Writer allows control fields to overlap.
	Only new Report Writer forbids the use of a COMPUTATIONAL item as a CONTROL field under certain circumstances. New Report Writer regards two instances of a COMP-3 control to be different if their sign is hex C in one case and hex F in the other, even...
	Only new Report Writer checks that all the control-ids in a given CONTROL clause are different.

	1.2.7 LINE LIMIT clause
	LINE LIMIT Clause: Coding Rules
	The value coded gives the maximum line width, in other words the greatest number of print columns required for your report. You may simply enter the column width of your printer, for example: LINE LIMIT IS 132 or, if your report is clearly designed t...
	The identifier form of the clause is used if you wish the width of your report line to assume different values at different times. This form of the clause takes effect only when you use either the REPEATED clause (see 3.19), or the WRAP clause (see 3...
	If the FD entry for the corresponding report file contains a BLOCK or RECORD CONTAINS integer CHARACTERS clause (other than BLOCK CONTAINS 0 CHARACTERS), the value of integer, after allowing for the carriage control character (if the NOADV option is i...

	LINE LIMIT Clause: Operation
	If any report field extends beyond the maximum line width given in your LINE LIMIT clause, report writer will signal a fault, either at compile time or, if that is not foreseeable, at run time.
	If you use the identifier form of the clause, report writer evaluates its contents dynamically at INITIATE time and uses that as the value for the clause. For the purpose of checking the validity of COLUMN numbers, it will use the default maximum val...
	to vary the number of REPEATED groups that may be placed side-by-side (see 3.19 REPEATED clause),
	as one means of adjusting the right margin when the WRAP clause is used to produce line wrap round (see 3.28 WRAP clause),
	to check for (illegal) line overflow in variable-position report fields when the WRAP clause is not used.

	If you omit the LINE LIMIT clause, report writer will assume a default value of the maximum line width. This is set to 256 in the report writer software as supplied but this default may be changed by customization to any lesser value (see Installatio...
	The LINE LIMIT need not be the same as logical record length of the report file. The latter is established from the computed maximum length of the lines of the report, or from the RECORD or BLOCK CONTAINS clauses if present (see 2.2.3 FILE-CONTROL an...
	An internal special register with the reserved name LINE-LIMIT is established in the Report Control Area, containing the value specified in the LINE LIMIT clause, or its default value.

	Compatibility
	The LINE LIMIT clause is unique to new Report Writer. OS/VS and DOS/VS COBOL do not perform checks on the feasibility of COLUMN numbers.

	1.2.8 OVERFLOW clauses
	OVERFLOW Clause: Coding Rules
	The OVERFLOW (format a) and SUM OVERFLOW clauses (format b) are distinct clauses and you may choose a different option for each.
	If your program contains no SUM clauses, the SUM OVERFLOW clause is not required. Similarly, if your program has no clauses of the form SOURCE arithmetic-expression , the OVERFLOW clause is not required. In either case, the clause may nevertheless b...
	Use the OMITTED option if your report uses arithmetic expressions or has a SUM clause respectively but there is no likelihood of a size error.
	Use the REPLACE BY option if your report may be sensitive to improbable values in the user's data and you would like to show on the report exactly where errors have occurred. REPLACE BY can be followed by either a numeric or a non-numeric literal-1, ...
	Use the STOP option only if SUM or arithmetic overflow is extremely unlikely but potentially damaging and you are content for your program to execute an "emergency" COBOL STOP in such a case.

	OVERFLOW Clause: Operation
	The OVERFLOW clause takes effect if your program contains clauses of the form SOURCE arithmetic-expression. On each occasion that the expression is evaluated a check may be made in case the result is too large for the report field. Also, if any expr...
	The SUM OVERFLOW clause takes effect if your program contains a SUM clause. On each addition, a check may be performed for size error. This clause does not affect any of the other functions of the SUM clause, such as the resetting (zeroing) of the t...
	If you choose the OMITTED option the effect is as follows:
	If you choose the STANDARD option, the effect is as follows:
	If you code the REPLACE BY option, the effect is as follows:
	If you code the STOP option, report writer will execute a COBOL STOP literal-2 as soon as an error is detected.

	Compatibility

	1.2.9 PAGE LIMIT clause
	PAGE LIMIT Clause: Coding Rules
	The format above gives you choices of keywords, and in each case the different keywords have the same meaning. Traditionally, the sub-clauses were referred to as the HEADING , FIRST DETAIL, LAST DETAIL, and FOOTING phrases. We also usually refer to ...
	Each of the sub-clauses is optional, but none of the first four sub-clauses may be present without the PAGE LIMIT sub-clause. You may code the sub-clauses in any order , and they may appear anywhere in the RD statement. The order shown follows a nat...
	The values of integer-1, integer-2, integer-3, and integer-4 (if you code their sub-clauses), and integer-6 represent the start and finish points of various regions of your page, working down from the top to the bottom. Ensure that the regions start ...
	If you use the identifier form of the LAST DETAIL sub-clause, the identifier used must be an unedited numeric field and its value at every generation of your report must lie between the FIRST DETAIL and LAST CONTROL FOOTING positions, inclusive.
	By using the + integer-5 form of the LAST CONTROL FOOTING sub-clause, you specify the extra lines to be made available to CONTROL FOOTING groups. Ensure that you cannot exceed the PAGE LIMIT: that is, the LAST DETAIL value (identifier-1 or integer-3)...
	The FIRST four PAGE LIMIT sub-clauses may all be omitted. Here are some guidelines on their use:
	HEADING is never required. However, if your report has a PAGE HEADING that begins with a relative LINE, you may use HEADING as an anchor point for the start of that group.
	FIRST DETAIL should be coded if you have a PAGE HEADING group, especially one that might vary in depth, and you want the body of the page to follow at a fixed position underneath it.
	LAST DETAIL should be coded if you have a PAGE FOOTING group and want the body of the page to end short of the line preceding it or if you want to use LAST DETAIL in conjunction with LAST CF as described in the next paragraph. Use the LAST DETAIL ide...
	LAST CF (or LAST CONTROL FOOTING, or FOOTING) should be coded if you have CONTROL FOOTING groups and want to leave some space before the PAGE FOOTING begins. (If the OSVS option is not in effect, this may be provided automatically - see item 7 in the...

	If you omit the PAGE LIMIT clause, your report will consist of one continuous stream of output without page breaks. Your Report Group Descriptions will then not be able to contain absolute LINE (see 3.10 LINE clause), or NEXT GROUP (see 3.13 NEXT GRO...

	PAGE LIMIT Clause: Operation
	The PAGE LIMIT clause enables report writer to assign regions to your page. The following diagram shows how the various regions are mapped onto your page:
	If you code a HEADING sub-clause, its value will be used in the case where you have a PAGE HEADING or a REPORT HEADING group whose first LINE clause is relative . Those groups will then be positioned relative to the value of HEADING minus 1. (Compar...
	The region between FIRST DETAIL and LAST CONTROL FOOTING inclusive is the body of the page. Apart from the optional REPORT HEADING and REPORT FOOTING groups, which may appear anywhere on the page, only body groups (CONTROL HEADING, DETAIL, and CONTRO...
	CONTROL HEADING and DETAIL groups are not allowed to appear below the LAST DETAIL position. If LAST DETAIL is above LAST CONTROL FOOTING, your CONTROL FOOTING groups will thereby have extra space available to them. This extra space reduces the likel...
	If you code the identifier form of the LAST DETAIL sub-clause, report writer will take the contents of the identifier at the start of each GENERATE and use that as the value for the sub-clause.
	If you use the relative form of the LAST CONTROL FOOTING sub-clause (with +), the number of lines you specify will be added to the LAST DETAIL value to give the LAST CONTROL FOOTING value. For example: LAST CONTROL FOOTING + 3 specifies that 3 extra ...
	If you omit any of the first four optional sub-clauses, and report writer needs their values, it will infer default values according to the following rules:
	The following examples show some possible forms of this clause:

	Compatibility
	The alternative spellings DE for DETAIL, FIRST BODY GROUP for FIRST DETAIL, LAST DETAIL OR CONTROL HEADING / CH, LAST CONTROL FOOTING / CF, and LAST BODY GROUP are unique to new Report Writer.
	The concept that each keyword may introduce a clause in its own right is unique to new Report Writer. OS/VS and DOS/VS COBOL require the keyword PAGE to appear first and do not allow different phrases of the PAGE LIMIT clause to be separated by anoth...
	OS/VS and DOS/VS COBOL require the keyword LINE or LINES.
	The defaults assumed by OS/VS and DOS/VS COBOL are not sufficient to allow omission of the clauses in most cases as they are with new Report Writer. Where new Report Writer's defaults are different from those of OS/VS COBOL and DOS/VS, no undetectabl...

	1.3 Report Group Descriptions
	1.3.1 Introducing Report Groups
	What is a Report Group?
	Report Groups: Keyword Table

	1.3.2 Coding Report Group Descriptions
	Report Groups: Coding Rules
	Level-numbers are used, as in any DATA DIVISION record, to establish a hierarchy of group levels above the elementary level. The level-number at the start of each report group must be 01. (It may be written without the leading 0, but we shall still ...
	You need not place data-names on your report group entries except in the following cases, where they are required:
	On the 01-level entry of a DETAIL group, or any other group that may be referred to in the USE BEFORE REPORTING header of a Declarative SECTION (see 4.7 USE BEFORE REPORTING directive). When a data-name is used at the 01-level, it gives a name to the...
	On a numeric entry referred to in a SUM clause or term. (See 3.23 SUM clause.)
	On any entry at any level that is referred to in a COUNT clause or term. (See 3.6 COUNT clause.)

	The following general-purpose DATA DIVISION clauses can be used in a report group. The first four may be used at both group and elementary levels (not the 01 -level in the case of OCCURS). PICTURE and VALUE are allowed only at the elementary level.
	The clauses PICTURE, COLUMN, SOURCE, VALUE, SUM, COUNT, and FUNCTION can appear only at the elementary level.
	For every entry with a COLUMN clause, there must be a LINE clause either at the same level as or at a higher level. If a given report line contains only one elementary field (and provided the entry is not a multiple-choice entry, see 3.18 PRESENT WHE...
	A LINE clause must not be subordinate to another LINE clause. (If this rule is violated, the nested LINE entries will be treated as though they were defined at the same level as the first.)
	If a given report group contains several lines, you must give all the LINE entries in that group a level-number other than 01. If the group contains only a single report line, you may code the LINE clause in the 01-level entry; for instance:
	You may choose only one of five clauses: SOURCE, VALUE, SUM, COUNT, and FUNCTION to supply the contents of an elementary item automatically, bearing in mind that (a) SOURCE or VALUE can be repeated several times in a multiple-choice entry (see 3.18.5 ...
	If there is no SOURCE, VALUE, SUM/COUNT, or FUNCTION clause in an elementary item, the following conditions must be met:
	The entry must have a data-name (following the level-number).
	The entry must have a COLUMN clause.
	If the COLUMN clause is relative, the item must have a fixed horizontal position (that is, it must follow an item with a fixed end-column, unless it is first in the line).
	The item must have a PICTURE with none of the features that are unique to the REPORT SECTION (that is, "<" or ">" symbols or general insertion characters). Report writer will then expect you to fill in the report field independently with some COBOL p...

	You may code the clauses of any report group entry in any order, except in the case of a multiple-choice entry, where each SOURCE, VALUE, or FUNCTION operand is immediately followed by WHEN condition. Details of this combination are given later (see ...
	However, you may code the SUM clause more than once in the same entry. You may also code a SOURCE, VALUE, or FUNCTION clause and its associated PRESENT/ABSENT WHEN/AFTER clause more than once in a multiple-choice entry. All other clauses may appear...

	Compatibility
	The COUNT, GROUP LIMIT, VARYING, PRESENT/ABSENT WHEN/AFTER, FUNCTION, REPEATED, MULTIPLE PAGE, STYLE, and WRAP clauses are provided by new Report Writer only.
	Only new Report Writer allows the SIGN clause in the REPORT SECTION.
	Only new Report Writer allows the BLANK WHEN ZERO and JUSTIFIED clauses in a group entry.
	OS/VS and DOS/VS COBOL do not use level-numbers, apart from 01-level, to establish hierarchy and rely instead on the keywords TYPE, LINE, and COLUMN.
	OS/VS and DOS/VS COBOL allow just three hierarchic levels within the Report Group descriptions.
	OS/VS and DOS/VS COBOL do not permit REPORT SECTION entries to be the subject of non-Report Writer procedural statements.

	1.3.3 BLANK WHEN ZERO clause
	BLANK WHEN ZERO Clause: Coding Rules
	BLANK WHEN ZERO Clause: Operation
	Compatibility

	1.3.4 COLUMN clause
	COLUMN Clause: Coding Rules
	COLUMN with no operands is shorthand for COLUMN + 1.
	For every entry with a COLUMN clause, there must be a LINE clause at the same or a higher level. So you may write:
	COLUMN may be the only clause in an entry. The result is a blank field whose only purpose is to shift the current horizontal position (COLUMN-COUNTER) to the right. A blank field (absolute or relative) occupies one column's width in addition to the ...
	The size of your item is calculated from the PICTURE clause or the size of the VALUE "literal", and is used in combination with your COLUMN clause to check that: (a) the line width is not exceeded (see 2.7 LINE LIMIT clause and, if you are using autom...
	Within each LINE, any absolute COLUMN numbers should be in ascending order, after the evaluation of any PRESENT WHEN clause (see 3.18) and any PRESENT AFTER clause (see 3.17). If this rule is broken, report writer will issue a Warning (message 250) b...
	The RIGHT and CENTER phrases cannot be coded with the + (relative) form of this clause.
	You may write "+" with or without a space on either side.

	COLUMN Clause: Operation
	The COLUMN clause positions your elementary field horizontally. Here is a list of the options:
	COLUMN + integer-1. This is the relative form. It indicates that the horizontal position within the line is to be moved integer column positions from the last character of the preceding field to the first character of this field. Note that the "gap...
	COLUMN integer-2. This is the absolute form. It indicates that the left-hand column of the field must appear on that fixed position within the line. Remember that the first column in the line is COLUMN 1. LINE LIMIT is the highest possible value o...
	COLUMNS integer-1 integer-2 ... This is the multiple form of the clause. It reduces your coding effort by including several operands in the same clause. The relative multiple form, COLUMNS + integer, + integer ..., is also allowed and you may combi...
	COLUMN RIGHT and COLUMN CENTER are used if you wish to specify the right-hand or center position of the field as alternative anchoring points, to save you the effort of "counting out" the length of the field to establish its left-hand column when you ...

	If an elementary item has no COLUMN clause then, if the OSVS precompiler option is in effect or a data-name is present, the item will not appear in the report. It is then termed an unprintable item. Unprintable items are used chiefly for summing in ...
	For Subtotalling and SOURCE SUM Correlation (see 3.23.5). A SOURCE clause may be written as an unprintable item because a SUM of a certain data item is required but its individual values are not:
	For rolling forward of certain values into totals. This is report writer principal way of forming totals. This time the unprintable item has a data-name and the data-name is summed:
	For forming totals that are not printed directly but used indirectly:

	If the precompiler option OSVS is not in effect, and any elementary entry beneath the LINE level has no COLUMN clause, then COLUMN + 1 is assumed for the entry, provided that the level-number is not followed by a data-name. Thus, you could omit both ...

	Multiple COLUMNS Clause
	A multiple COLUMNS clause is functionally equivalent to an ordinary COLUMN clause used in conjunction with an OCCURS clause (see 3.14); for example:
	You may use VARYING to vary a counter that is used as a subscript in a SOURCE clause.
	You may use a simple (single-operand) VALUE, SOURCE, SUM, or FUNCTION clause to place the same value repeatedly in each instance of the field.
	You may use a multiple VALUE or SOURCE clause to place a different value in each instance of the field.
	You may place a data-name at the start of the entry and SUM the data-name in another entry to produce a total of the instances or occurrences collectively or individually. (To form individual totals, there must be another multiple or occurring COLUMN...

	Unlike the method of repetition using the OCCURS clause, the intervals between the entries defined by a multiple COLUMNS clause need not be regular.
	Your multiple COLUMNS clause will be syntactically correct if it would be correct when written as a series of separate COLUMN entries.
	Here are some examples of the multiple COLUMNS clause:
	The following diagram and corresponding code illustrates the usefulness of the multiple COLUMNS clause:

	Compatibility

	1.3.5 COLUMN-COUNTER
	Use of COLUMN-COUNTER
	COLUMN-COUNTER indicates the current horizontal position within a line. At each stage during the processing of a line, it contains the most recent rightmost column number on which data was placed in the line. It may also be incremented by an "empty"...
	Report writer uses COLUMN-COUNTER as a place-keeper and internal subscript while assembling variable-length or variable-position fields in a report line. For the sake of efficiency, it does not initialize or update COLUMN-COUNTER in a report line con...
	You may use COLUMN-COUNTER in the condition of a PRESENT WHEN clause (see 3.18), or as the operand of a SOURCE clause (see 3.21), or as a parameter to a FUNCTION (3.7 FUNCTION clause). It cannot be used in your PROCEDURE DIVISION, because the generat...
	COLUMN-COUNTER may be used to simplify the conditions that would otherwise be required to string together a series of conditional fields:
	If your current group is a REPEATED group (see 3.19 REPEATED clause), or if you use the SET COLUMN statement of the Page Buffer feature (see 4.4 Report Writer SET statements), you should bear in mind that COLUMN-COUNTER is relative to the left-hand bo...
	COLUMN-COUNTER should not be used in a condition where the field is to be totalled using the SUM clause, because COLUMN-COUNTER is not updated when totalling is performed at the start of processing for the group.

	Compatibility

	1.3.6 COUNT clause
	COUNT Clause: Coding Rules
	Each data-name must be the name of any REPORT SECTION entry other than an RD. It may even be the data-name of a group entry that contains the COUNT clause.
	You may place the COUNT clause in a different report group from the item counted (rolling forward) or in the same group (cross-footing). As with the SUM clause, if the COUNT clause appears in a multiple CONTROL FOOTING, all but the lowest level total...
	Unlike the situation with the SUM clause, the item counted need not be a numeric field.
	Like the SUM clause, you may use the COUNT clause in two ways:
	As a clause in its own right. You write the clause in place of a SOURCE, VALUE, or FUNCTION clause. For example:
	As a term in an expression used as a SOURCE operand; for example:

	You may combine SUM and COUNT terms in the same expression. For example, the following will give you the average value of all the instances of a numeric field:

	COUNT Clause: Operation
	This clause gives a count of the number of times the item referenced has appeared. In other words, whenever the item appears in the Report, 1 is added to the count. You cannot count items that are outside the REPORT SECTION, such as WORKING-STORAGE ...
	The item referenced may be at any level; for example:
	A 01-level entry: you will obtain the number of appearances of a particular group.
	A LINE entry: you will count the number of appearances of that particular LINE.
	A COLUMN entry: you will obtain a count of appearances of that particular elementary item.

	Assuming that you do not use the RESET phrase, when your COUNT field has been output the count returns to zero. Hence, you will always obtain the count of the number of appearances of the item since the last time the count was output.
	You may use the RESET ON phrase to delay the resetting of the count to zero until a higher-level control break occurs, in exactly the same way as you can with the SUM clause.
	If the item counted is one that repeats several times because of an OCCURS or REPEATED clause, the count will include each repetition. An OCCURS ... DEPENDING will count just the number of items actually output. A PRESENT clause (or the equivalent) ...
	You may count more than one item by writing more than one data-name as an operand in the clause. The counts are then simply consolidated internally.

	Compatibility

	1.3.7 FUNCTION clause
	FUNCTION Clause: Coding Rules
	Function-name must be alphanumeric and must be either a standard supplied function name or a user-written one. It may begin with a numeric character. A full list of standard function names is given below, and you or any other person may add new ones...
	The FUNCTION clause may be used only at the elementary level, in place of SOURCE, SUM, or VALUE. It is permissible for the entry to have no COLUMN or PICTURE clause, i.e. the entry may be a dummy. You may use it in a multiple-choice entry, if so des...
	The number of parameters you need, if any, and their formats are stated below (see 3.7.4 Built-In Functions) for each built-in function. User-written functions should also have a description that tells you this information. Some functions take no pa...
	Each parameter may be any identifier. It may also be an integer, literal, or arithmetic expression, for example:
	The FUNCTION keyword may also be used in the format FUNCTION IS function-name (...) in a SOURCE clause or in a condition in a PRESENT WHEN clause. In such cases function-name is a COBOL intrinsic function and is not part of the FUNCTION clause descri...

	FUNCTION Clause: Operation
	The function routine behaves like a subroutine whose parameters consist of the parameters specified in the FUNCTION clause, if any, together with information about the size of the report field, if any, and the report field's contents, both of which ar...
	If you code an edited PICTURE (numeric or alphanumeric) with the FUNCTION clause, report writer invokes the function routine using an internal intermediate field that has the unedited equivalent of your PICTURE. This is obtained by removing all inser...
	One of the parameters report writer passes to the function routine is the size in bytes of the report field, if any, to be output. If the PICTURE is edited, this size is the size of the intermediate field. Using the case given in the previous paragra...
	The clause SOURCE IS CURRENT-DATE behaves operatinally like an implicit “Function”, since it invokes a run time routine.

	Built-In Functions
	a. CTIME (Clock Time) is similar to TIME (see below) except that it uses the 12-hour clock and prints either AM or PM (or blanks at midnight (0.00) and noon (12.00)). The (unedited) PICTURE should therefore allow for two additional non-numeric charac...
	b. DATE (European Date) returns a date in any one of a number of display formats in the order day/month/year. The date does not change after the first invocation of the function.
	c. DAY (Day-of-Week) returns the alphabetic day-of-the-week represented by the given date.
	d. DAYSIN (Days Elapsed Since Base Date) converts a binary number of days since January 1st, 1601 to a date in the same format as for DATE. This function is identical to MDAYS, except that the date is returned in the order: day/month/year.
	e. MDATE (US Date) returns a date in any one of a number of display formats in the order month/day/year. It is similar to the DATE function, except that the day and month fields are reversed.
	f. MDAYS (Days Elapsed - US Format) converts a binary number of days since the Codasyl/ANSI standard base date of January 1st, 1601 to a date in the same format as MDATE, that is, month/day/year. See MDATE above for more information on report field l...
	a. MONTH (Month Name) returns an alphabetic month name.
	g.
	h. not VSE
	i. MOVE (Save Register) copies any report writer special register to a specified working location. This is a dummy function which requires no report field and may be coded without a COLUMN or PICTURE clause. (If the entry is not a dummy, the field w...
	j. RDATE (Real DATE) is similar to DATE without the optional parameter, except that the current date is always fetched. Compare RMDATE.
	k. RMDATE (Real MDATE) is similar to MDATE without the optional parameter, except that, if the date changes during the run, because the time passes through midnight (00:00:00), the date is changed.
	l. RYDATE (Real YDATE) is similar to YDATE (see below) without the optional parameter, except that the current date is always fetched. Compare RMDATE.
	m. STATE (US State) returns the name of one of the US states, plus "DC".
	n. STATEF (US State or Territory) is similar to STATE (see above) except that the five overseas territories are included, merged into the set of 51 domestic states, in alphabetical order of their full names.
	o. STIME (Static Time) is similar to TIME (see below) except that the time is only fetched initially from the operating system and therefore does not change in value throughout the program.
	p. TIME (Run Time) returns the current time in format hhmmsstt, where tt is hundredths of a second, if available, otherwise zeros. The value of the time may change on each invocation of the function.
	q. YDATE (Date Reversed) returns a date in any one of a number of display formats in the order year/month/day. Apart from this order, it is similar to DATE and MDATE.
	r. ZIP (Zip Code) prints a standard US or Canadian ZIP code.

	Compatibility

	1.3.8 GROUP LIMIT clause
	GROUP LIMIT Clause: Coding Rules
	Your integer must not be greater than the lower limit (LAST DETAIL, LAST CONTROL FOOTING, or PAGE LIMIT) that would normally apply without the clause (see 2.9 PAGE LIMIT clause).
	Code this clause only at the 01-level in a body group (DETAIL or CH/CF).
	Your group's first LINE clause must be relative.

	GROUP LIMIT Clause: Operation
	When doing the page-fit test, report writer will use your integer as the bottom line number, beneath which no part of the group may appear, instead of the usual end-of-region values (see PAGE LIMIT clause).
	This clause is especially useful in a CONTROL HEADING, which might appear misplaced if it appeared near the bottom of the page like the DETAIL and CONTROL FOOTING groups.

	Compatibility

	1.3.9 JUSTIFIED clause
	JUSTIFIED Clause: Coding Rules
	If you code JUSTIFIED RIGHT in an elementary entry, the entry must have an alphanumeric PICTURE.
	This clause acts on elementary-level fields, but you may also code it in a group-level entry, including 01, where it applies to all the alphanumeric elementary entries in the group.

	JUSTIFIED Clause: Operation
	The JUSTIFIED clause is retained for compatibility with ANS COBOL and acts on an elementary field in the same way as in basic COBOL. It cannot be used for right-flushing variable-length fields, for which COLUMN RIGHT should be used. (See 3.4 COLUMN ...
	The JUSTIFIED clause takes effect when your alphanumeric SOURCE field is of a different size from the PICTURE. The padding out with spaces or the truncation (if the PICTURE is smaller than the field) then takes place on the left instead of the right....

	Compatibility

	1.3.10 LINE clause
	LINE Clause: Coding Rules
	Here is a list of the alternative forms:
	LINE + integer-1. This is the relative form. PLUS may be written in place of +. It indicates that the line should advance integer lines from the previous position. LINE + 0 or LINE + ZERO is allowed, indicating that no advance is to take place. T...
	LINE integer-2. This is the absolute form. It indicates that the line will appear on that fixed position on the page. The first line on the logical page is LINE 1, corresponding to position reached on issuing a form feed. The highest line number a...
	LINE integer-2 ON NEXT PAGE. This is similar to format b but the ON NEXT PAGE phrase forces a page advance to occur before the line is output, irrespective of whether the group containing it would fit on the current page.
	LINE ON NEXT PAGE forces the line to be output in the FIRST DETAIL position on the next page (for a body group) or the HEADING position (for a REPORT HEADING or REPORT FOOTING group).
	LINES ARE integer-1 integer-2 ... is the multiple form of the clause. It enables you to save coding effort by describing several lines in the same clause. You may also write LINES + integer, + integer etc (the relative form) and may combine both for...

	LINE alone is shorthand for LINE + 1.
	The first LINE clause in each group determines whether the group as a whole is to be relative or absolute. If the first LINE clause is relative, the group is a relative group and all the other LINE clauses must be relative. So the entire group can b...
	If a group has absolute LINE clauses, except where NEXT PAGE is used, the integers must be in increasing order. Except in the case of LINE + 0, no lines may overlap. (If you place PRESENT WHEN condition clauses on the LINE entries, then mutually exc...
	A LINE need not contain any COLUMN entries (whether actual or implied by default). The result is a blank line containing no data. For example:
	One LINE clause must not be subordinate to another LINE clause. If this rule is broken, a warning message will be issued and the previous line will be terminated; for example:
	The ON NEXT PAGE phrase may be coded only in the first LINE clause of a report group, except when the report group entry has a MULTIPLE PAGE clause (or when this is assumed, as in the case of REPORT HEADING and REPORT FOOTING) where there is no restri...

	LINE Clause: Operation
	If a group is absolute, its first LINE clause indicates the starting position of the group (see rule 3 above). The next two paragraphs cover the relative case.
	Positioning of relative body groups (CH, DE, and CF)
	If the group is the first body group on the page, the first line of the group is positioned at the FIRST DETAIL position, irrespective of the integer of the LINE clause. If you did not code a FIRST DETAIL sub-clause in your RD, the first line will ap...
	If the group is not the first body group on the page, then the first line of the group is positioned relative to LINE-COUNTER, which normally contains the last line position of the preceding body group. (But note that a NEXT GROUP clause or an altera...

	Page-Fit Test for Body Groups
	Absolute Page-Fit Test for Body Groups
	Relative Page-Fit Test for Body Groups

	Positioning of relative non-body groups (RH, PH, PF, and RF)
	TYPE RH and PH: relative to HEADING minus 1. (However, in the case of the first PH group when there is a RH group also on the first page, it is relative to the last line of the RH group.)
	TYPE PF: relative to LAST CONTROL FOOTING.
	TYPE RF: relative to HEADING minus 1. (However, in the case where the RF group does not begin on a new page, it is relative to the last line of the PF group, if there is one, or to LAST CONTROL FOOTING, if there is no PF group.)

	Page advance processing

	Multiple LINES Clause
	A multiple LINES clause is functionally equivalent to a LINE with an OCCURS clause; for example:
	You may use a VARYING clause to vary an internal counter that may be used as a subscript in a SOURCE clause within the scope of the LINE clause.
	A simple (single-operand) VALUE, SOURCE, SUM, or FUNCTION is repeated in every occurrence of the line.
	You may use a multiple VALUE or SOURCE clause to place a different value in a report field in each occurrence of the multiple LINE.
	You may place a data-name at the start of the entry and SUM it into another entry to produce a total of all the (multiple) entries.

	However, in contrast to the OCCURS clause, the intervals between the lines defined by a multiple LINES clause need not be regular.
	Your multiple LINES clause will be syntactically correct if it would be correct when written as a series of LINE clauses in separate entries.
	Here are some examples of the multiple LINES clause:
	The multiple LINES clause is useful in lines, such as headings, that have stacked text. Consider the following example in conjunction with the description under Multiple SOURCES and Multiple VALUES:

	Compatibility

	1.3.11 LINE-COUNTER
	Uses of LINE-COUNTER
	To create an additional gap between the previous group and the next group:
	To cause a page advance, that is, to force report writer to place no more body groups on this page, code:
	If your REPORT SECTION has several Report Descriptions, each will have its own distinct LINE-COUNTER. In the main-line PROCEDURE DIVISION, you will therefore need to qualify LINE-COUNTER by the name of the report. (See 3.15 PAGE-COUNTER, and 5.1 Mul...

	Compatibility
	OS/VS and DOS/VS COBOL also allow LINE-COUNTER to be altered explicitly, but this does not create a gap.
	OS/VS and DOS/VS COBOL Report Writer require LINE-COUNTER to be qualified wherever it is used if your program contains more than one RD.

	1.3.12 MULTIPLE PAGE clause
	MULTIPLE PAGE Clause: Coding Rules
	This clause can be coded in any type of group other than PAGE HEADING and PAGE FOOTING. The RD must have a PAGE LIMIT clause.
	Either MULTIPLE PAGE or NO MULTIPLE PAGE may be coded at the 01 level. Alternatively, NO MULTIPLE PAGE may be coded on a group of one or more LINE entries, provided that there is a MULTIPLE PAGE at the 01 level. No other nesting is allowed.
	By default, NO MULTIPLE PAGE is assumed for all body groups and MULTIPLE PAGE for REPORT HEADING and REPORT FOOTING groups.
	The MULTIPLE PAGE clause is not allowed in a group that has a REPEATED clause.

	MULTIPLE PAGE Clause: Operation
	The MULTIPLE PAGE clause enables a single report group to occupy any number of consecutive pages. It allows you to code NEXT PAGE on as many LINE clauses as you wish throughout the group (rather than just on the first). It also allows you to define ...
	When the group is a body group with MULTIPLE PAGE, no page-fit test is performed for the group as a whole. Instead, each report line is subjected to an individual page-fit test. A LINE clause with NEXT PAGE also causes a page advance to take place. ...
	When a page advance is required, a PAGE FOOTING and PAGE HEADING group are printed as usual if defined. This is the only case where groups may interrupt another group. If the line that caused the page advance is relative, it is placed in the FIRST D...
	NO MULTIPLE PAGE can be used to prevent the lines in its scope from being split over a page boundary. If an OCCURS clause is also present, this rule applies separately to each occurrence. In the following example we want each set of address lines to...
	At the 01 level, NO MULTIPLE PAGE merely documents the usual situation that a group cannot span pages.

	Compatibility

	1.3.13 NEXT GROUP clause
	NEXT GROUP Clause: Coding Rules
	This clause must be written only at the 01-level.
	You can use the clause in any body group (DETAIL or CH/CF) and also in a REPORT HEADING (provided that a PAGE HEADING is present) as well as in a PAGE FOOTING (provided that a REPORT FOOTING is present).
	If your report has no PAGE LIMIT clause, you can use only the + integer-1 form.
	The optional words BODY and DE OR CH document the effect of the NEXT GROUP clause in the context of the type of group in which it is coded, but they do not have any actual effect on the clause. You can write NEXT BODY GROUP only in a DETAIL or CONTRO...
	DE OR CH may also be written: DETAIL OR CONTROL HEADING, CH OR DE, or CONTROL HEADING OR DETAIL.

	Effect of NEXT GROUP on Body Groups
	Subject to certain constraints, the NEXT GROUP clause causes report writer to increase the value of LINE-COUNTER after all the lines in the body group have been produced, so that the next body group appears on a new page or after an additional vertica...
	If you write NEXT GROUP + integer-1, report writer will add integer-1 to LINE-COUNTER, but using the LAST CONTROL FOOTING value as a maximum limit. This creates an extra "gap" of that many lines between this group and the next, provided that there is...
	The NEXT GROUP integer-2 (absolute) form may force the next body group to be produced relative to the given line number. Report writer first examines the LINE-COUNTER. If this is less than integer-2 (in other words, if that position has not yet been...
	If you write NEXT GROUP NEXT PAGE, report writer will set LINE-COUNTER to the LAST CONTROL FOOTING value. This forces report writer to leave the rest of the page blank and begin the next body group, if any, on the next page. (LAST CONTROL FOOTING is...
	If you write a NEXT GROUP clause in a CONTROL FOOTING group, report writer checks the level of the control break being processed before putting the clause into effect. If the level of the break is higher than the level of this group, the NEXT GROUP c...
	You can code a dummy report group containing only a NEXT GROUP clause, as in the example below. When the group is processed, no output takes place, but LINE-COUNTER will be set equal to LAST CONTROL FOOTING solely because of the NEXT GROUP NEXT PAGE ...

	Effect of NEXT GROUP on Non-Body Groups
	You can write a NEXT GROUP clause in a REPORT HEADING group, in which case the group affected will be your first PAGE HEADING group, which immediately follows the REPORT HEADING. NEXT GROUP NEXT PAGE indicates that the REPORT HEADING is to be by itse...
	You can also write NEXT GROUP in a PAGE FOOTING group, in which case it affects the REPORT FOOTING. This form is never necessary, as the first LINE clause used in the REPORT FOOTING is a better way to handle this case.

	Compatibility

	1.3.14 OCCURS clause
	OCCURS Clause: Coding Rules
	The OCCURS clause must not be used at the 01-level.
	You may use the OCCURS clause at any of these levels:
	Below the LINE level in an elementary entry. Your field will be repeated horizontally the number of times indicated by the operand:
	Below the LINE level in a group entry. The whole group of fields will be repeated horizontally the number of times indicated by the operand.
	At the LINE level. The line will be repeated vertically the number of times indicated by the operand.
	Below the 01-level but above the LINE level. The whole group of lines will be repeated vertically the number of times indicated by the operand.

	You may use STEP, WIDTH, or DEPTH to specify the distance between the start of successive repetitions. Its operand indicates the number of columns or lines between the start of one item and the start of its successor:
	A STEP phrase is expected if your repeating entry is absolute. (It is absolute if you write COLUMN integer or LINE integer or, in the case of a group field, if the first COLUMN or LINE in the group is absolute.) However, if you omit STEP, a minimum...
	If your field is relative, the STEP phrase is optional. If you omit it the distance between repetitions is the physical size of the field, which may vary at run time if there are "<" PICTURE symbols or if the field is a group field containing entries...
	As the examples above illustrate (item 2 a through d), the VALUE clause is allowed within an entry subject to an OCCURS clause.
	You must code the DEPENDING ON phrase if the number of occurrences is variable. The expression can be any COBOL numeric identifier or arithmetic expression that has an integer value. The data items used in your expression can come from anywhere in y...
	Integer-1 in the format above and the TO keyword are used only in conjunction with DEPENDING ON. Integer-1 must be less than integer-2 and may be zero. If you omit integer-1 TO and write OCCURS integer-2 TIMES DEPENDING ON, this is taken to mean OCC...

	OCCURS Clause: Operation
	You should use the OCCURS clause for source-code reduction when you need to obtain automatic repetition either horizontally or vertically within a report group. The effect is as though you had coded every entry individually.
	You may use a single-operand VALUE to place the same contents in each repetition.
	If you use a SOURCE clause within an entry subject to OCCURS, the same SOURCE operand will be used to set up each occurrence. However, you may allow the effective SOURCE operand to vary by use of the VARYING clause and making use of the VARYING data-...
	You may also use a multiple SOURCES (see 3.21 SOURCE clause) or multiple VALUES (see 3.26.4 Multiple VALUES) to place different contents in each repetition. The following sample layout shows both methods of combining both SOURCE and VALUE clauses wit...
	If a PRESENT WHEN clause is coded in the same entry as an OCCURS clause, the PRESENT WHEN applies separately to each occurrence (see 3.18.3). If the STEP phrase is not used, an entry that is ABSENT will not take up any space, as in the case below whe...

	Use of OCCURS...DEPENDING ON
	If your report group has an OCCURS clause with a DEPENDING ON phrase, report writer will evaluate the associated identifier or expression at run time on each separate occasion when the report group is about to be generated. If its value is outside th...
	Now that the actual number of repeats is known, report writer creates only that number of occurrences, treating your clause as though you had written a fixed OCCURS clause with that number as the integer. This is an important notion. Here are some o...
	If your OCCURS ... DEPENDING is in the horizontal direction and is followed by an absolute COLUMN clause, the space not filled by excess occurrences will be blank:
	If your OCCURS ... DEPENDING is in the horizontal direction and is followed by a relative COLUMN, it is positioned relative to the last actual occurrence:
	If your OCCURS ... DEPENDING is in the vertical direction and is followed by an absolute LINE, excess occurrences will be blank:
	If your OCCURS ... DEPENDING is in the vertical direction and is followed by a relative LINE, no line positions will be occupied by the unused occurrences, and the line that follows will be relative to the last actual occurrence.

	You may code several entries with OCCURS ... DEPENDING in the same report line and nest horizontal and vertical repetitions to produce many varied and useful effects. The DEPENDING expression is re-evaluated each time the item is about to be output, ...

	Compatibility

	1.3.15 PAGE-COUNTER
	Uses of PAGE-COUNTER
	PAGE-COUNTER contains the number of the current page. It is set to 1 by the INITIATE statement and, if your report has a PAGE LIMIT clause, is incremented by 1 on each page advance after the initial one. So its value is 1 on the first page, 2 on the...
	You may treat PAGE-COUNTER as a numeric location (implicit PICTURE S9(9) COMP SYNC) in any SOURCE expression or condition. For example, to print the page number anywhere in the page, write:
	Like all of the special registers except COLUMN-COUNTER, a PAGE-COUNTER is maintained separately for each report, because all your reports are completely independent of each other. This also means that you must occasionally qualify PAGE-COUNTER if yo...
	If your report contains a REPORT HEADING that is on a page by itself, the value of PAGE-COUNTER for the first page of details will be 2, since page 1 is occupied by the REPORT HEADING. If you want PAGE-COUNTER to be 1 on the first page of details, yo...

	Compatibility

	1.3.16 PICTURE clause
	PICTURE Clause: Coding Rules
	All the available PICTURE symbols may be used, including a currency symbol defined by a CURRENCY SIGN phrase, provided they are consistent with a DISPLAY field, and the rules for combining them are exactly as for basic COBOL. Here are some examples:
	If the item is DBCS (Double-Byte Character Set), the PICTURE may contain only the symbols G and B (representing a DBCS space). However, a PICTURE clause is not required with a DBCS literal.
	Report writer allows the additional left-shift PICTURE symbols "<" and ">" to indicate that all or part of your field is variable-length . These symbols may be used only in the REPORT SECTION. You may place the "<" symbol anywhere within the PICTURE...
	Report writer also allows general insertion characters, in the REPORT SECTION only. These are indicated by writing the characters to be inserted in "quotes" (or 'apostrophes') anywhere in the PICTURE, for example: PIC 99"."99"."99. These insertion c...
	You may omit the PICTURE clause in an entry that has a VALUE clause, whether nonnumeric (when a PICTURE X(n) is assumed) or (unsigned) numeric (when a PICTURE S9(n) DISPLAY is assumed.) (A SYMBOLIC CHARACTER is treated as a one byte nonnumeric.) A...
	If you use a SOURCE, SUM/COUNT, or FUNCTION clause, the PICTURE is necessary, even if you want to display the field in exactly the same format in which it is stored.
	If the OSVS precompiler option is in effect, PICTURE symbol "A" may be used even with a literal that is not entirely alphabetic.
	In common with the rest of the DATA DIVISION, PICTURE is allowed only in an elementary entry.

	PICTURE Clause: Operation
	In the REPORT SECTION, the PICTURE clause plays the same role as it does in other SECTIONs. The rest of this section and the next describe the extensions which are unique to the REPORT SECTION.
	General insertion characters may used to reduce the number of entries to be coded. For example:

	Variable-Length Fields ("<" and ">" Symbols)
	If you code the "<" symbol somewhere in your PICTURE in the REPORT SECTION, report writer takes it as referring to the following symbol and repetitions of that symbol, until the end of the PICTURE or a change of symbol is found. (The use of parenthes...
	When your field is output, report writer first stores the value to be output in a working area whose PICTURE is the same as the PICTURE you coded but without the "<" symbol(s) . It then examines each part of your field that corresponds to a variable ...
	When characters are deleted, any characters that follow them are pulled to the left over them. This gives a free format effect to variable fields that have several parts. When the field has been output, the horizontal pointer (COLUMN-COUNTER), will ...
	You may use the "<" and ">" symbols to split any part of your field into two fragments, one variable and one fixed, resulting in a minimum size and a maximum size. For example: PIC XX<XXX> means from 2 to 5 non-numeric characters; while PIC <999>9 me...
	Here are some examples of the "<" symbol:
	Special action is taken with the "," (comma) and "." (decimal point) symbols. If you write a "<" and a series of "9" symbols before "," and the numeric value that corresponds to them is zero, then the "," will also be deleted. Also, if you write "<"...
	Any "," or "." encountered in a numeric field after a "<" symbol turns off the effect of the "<". If you want its effect to persist across such an insertion character, you must turn it on again by coding another "<" symbol; for example: PIC 9,<999>,<...

	Compatibility
	Only new Report Writer allows the '<' and '>' symbols and general insertion characters in quotes or apostrophes. In all other aspects of the PICTURE clause, both implementations are compatible.
	The general insertion character feature may be incompatible with Codasyl (and hence some future standard) if quotes or apostrophes in a PICTURE are ascribed some different significance.

	1.3.17 PRESENT AFTER clause
	PRESENT/ABSENT AFTER Clause: Coding Rules
	If you specify the PAGE keyword, the RD for your report must have a PAGE LIMIT clause. If you specify a control-id, then it must be one of the controls listed in your CONTROL clause in the RD, except that REPORT or FINAL is always assumed to be prese...
	You may code this clause at the group or elementary level and may nest clauses.
	You may use format a in any body group (DETAIL or CH/CF), but, if you use the control-id option in a CONTROL HEADING or CONTROL FOOTING group, the control level you refer to must be higher than the control level of the report group in which the PRESEN...
	You may also use format a in a PAGE HEADING or PAGE FOOTING group, but only with the control-id option.
	Format b (with the JUST phrase) can be used only in a body group.
	Format c, the GROUP INDICATE clause, is provided for compatibility with current standards. Except for one minor but useful difference in its action with OCCURS (see below), it is equivalent to the clause:
	It is not advisable to refer to an item subject to PRESENT/ABSENT AFTER or GROUP INDICATE in a SUM clause. This is because, according to the ANS standard that applies if the option is in effect, summing takes place before the page-fit, so it not alwa...

	PRESENT/ABSENT AFTER Clause: Operation
	The PRESENT AFTER clause operates in a way similar to a PRESENT WHEN clause except that our condition is set from within the report itself. PRESENT AFTER NEW control-id behaves like a clause of the form:
	If you code PRESENT AFTER NEW control-id, report writer will output the field (elementary or group field), provided that this is the first occasion this report group has been output since the start of the report or since the last control break at the ...
	As is usual with controls, a higher control break implies a control break at all the lower levels. Thus if you code PRESENT AFTER MONTH when YEAR and MONTH are the controls, the field will be PRESENT also after a change of YEAR, for JAN 1992 is certa...
	If you code PRESENT AFTER NEW PAGE, report writer will produce the entry if this is the first occasion this group has been produced since the start of the report or since the last page advance. Otherwise, again, the field is not output.
	If you write PAGE OR control-id (this order can be reversed), the field will be produced if either or both conditions arise. For instance, you might want the YEAR-NO and SEASON fields in the examples above (see above) to be printed again at the start...
	There may be a field, line, etc. that you would like produced the first time only. To accomplish this, use PRESENT AFTER NEW REPORT. (REPORT or FINAL is the highest control level and is always assumed even if not coded in the CONTROL clause.) In t...
	If you write ABSENT instead of PRESENT, the clause will have exactly the opposite effect. In other words, the field will be produced whenever it would have been ignored and vice versa. In the next example, we use it to produce a "(CONTINUED)" messag...
	If there is an OCCURS clause, or a multiple LINES or COLUMNS clause, in the same entry, the PRESENT AFTER applies to the entire set of repetitions, so the occurrences are either all present or all absent. (Compare GROUP INDICATE immediately below.)
	GROUP INDICATE behaves differently from the equivalent PRESENT AFTER clause if it is subject to OCCURS. As soon as the first occurrence of the GROUP INDICATE item has been output, the GROUP INDICATE is switched off. Hence the GROUP INDICATE clause o...
	If you use the PRESENT AFTER clause at the 01-level of a DETAIL group:

	Compatibility
	Only new Report Writer provides the PRESENT/ABSENT AFTER clause.
	New Report Writer allows GROUP INDICATE to appear at any level - not only at elementary level.

	1.3.18 PRESENT WHEN clause
	PRESENT/ABSENT WHEN Clause: Coding Rules
	The condition may be any valid COBOL conditional expression. You are not restricted to simple conditions. For example, the following compound condition is quite acceptable:
	The CONTROL IS control-id form if allowed only if the current group is a multiple CONTROL FOOTING, that is, one with a TYPE CONTROL FOOTING clause with more than one control-id operand, or TYPE CONTROL FOOTING FOR ALL.
	The keyword PRESENT is implied if omitted. Experience has shown that your code will be clearer if you include the PRESENT keyword in the single form of the clause but omit it in the multiple-choice form described below and in the following example:
	The keyword ABSENT gives the clause the exact opposite meaning from the same clause with PRESENT; ABSENT WHEN condition is equivalent to PRESENT WHEN NOT (condition). So you may find it more expressive to write:
	PRESENT UNLESS is an older syntax, synonymous with ABSENT WHEN.
	You may write these clauses in any report group entry other than the RD itself. An entry that has a PRESENT WHEN clause is often referred to as a conditional entry. The same field may be subject to any number of PRESENT WHEN clauses at any number of...
	If you nest more than one PRESENT WHEN clause by writing one clause in a higher entry and another in a lower entry beneath it, as in the preceding example, the outer condition takes precedence over the inner condition. It is up to you to ensure that ...

	PRESENT/ABSENT WHEN Clause: Operation
	Report writer tests the condition operand of your PRESENT WHEN clause each time it begins the processing of the report group. If the condition is true, the field is output normally. If the condition is false, the entry is ignored. (For ABSENT WHEN ...
	To "blank out" a field with an absolute COLUMN, place your PRESENT WHEN on the absolute COLUMN entry and follow it with another absolute COLUMN entry:
	To insert a conditional field into the report line so that it displaces the fields that follow, simply make the entries that follow relative:
	To place one of a series of alternative entries into the same column positions, code several entries, each with a PRESENT WHEN clause.
	To string out (concatenate) a number of conditional fields along the report line, where any combination could be present, use a series of relative conditional entries:
	To print one or more of a series of conditional lines in a report group, use relative LINE clauses and code your PRESENT WHEN clauses at the LINE level or above:
	If PRESENT WHEN is used in the same entry as an OCCURS clause or a multiple SOURCES or VALUES, the PRESENT WHEN applies to each occurrence individually.

	Effect of PRESENT WHEN on SUM
	Only those SUM operands that were PRESENT when they were processed will be added to a total field. An item will not be added if it is subject to a PRESENT WHEN and the condition is false. This means that you may total a series of "optional" fields a...
	If you write a SUM clause and a PRESENT WHEN together in the same entry, the total will not appear in the report if the entry is not present . But neither will it be cleared to zero, because no total is cleared until it has been output. Values will ...
	To accumulate a series of totals split up by some category, that is into separate "pigeonholes" or "buckets", you may use a series of unprintable SUM fields partitioned by a series of mutually exclusive (and exhaustive) PRESENT WHEN condition clauses....

	The Multiple-Choice Form
	If you need to specify a series of alternative contents for a particular elementary field, you can do it with a single entry, instead of several separate entries containing PRESENT WHEN clauses. You code the entry with several SOURCE, VALUE, or FUNCT...
	Report writer scans your WHEN conditions, starting with the first in the order of coding, until it finds a condition that is true. It then uses the SOURCE, VALUE, or FUNCTION clause preceding that PRESENT WHEN clause and ignores all the remaining PRE...
	If your conditions do not cover all the possibilities, you have three choices:
	Put WHEN OTHER instead of WHEN condition against the entry you would like to act as the catch-all, default, or wastebasket:
	Code an extra "choice" using WHEN OTHER to indicate an error:
	Leave it as it is. If there is a case not covered by your multiple-choice entry, the whole field will then simply be ABSENT. For example:

	If you specify only VALUE literal clauses without a PICTURE clause, they may be of different sizes, as in the preceding example. The actual size of the field produced will be that of the chosen value. Since SURNAME above has a relative COLUMN, you w...
	You cannot repeat the PICTURE clause in an entry (nor any of the other clauses other than SOURCE, VALUE, and FUNCTION), so if your choices need different PICTUREs you must usually code a series of separate entries. However, you may still be able to c...
	You can form a SUM of a multiple-choice entry. Report writer will select the correct choice (if any) before adding it to the total:
	You can use the CONTROL IS control-id form of condition anywhere in a multiple-choice entry. For example:
	You can use multiple SOURCE and VALUE clauses within your multiple-choice entry. For example:
	You cannot place a multiple-choice entry at the same level as a LINE clause. The construct:

	Compatibility

	1.3.19 REPEATED clause
	REPEATED Clause: Coding Rules
	Write this clause at the 01-level of body groups (DETAIL or CH/CF) only.
	You must code either the TIMES phrase or the EVERY/WIDTH phrase, or (preferably) both. EVERY and WIDTH have the same meaning.
	Code only the left-hand report group. Report writer will automatically offset successive groups to the right of the left-hand group.
	If you use the EVERY/WIDTH phrase, draw an imaginary "smallest box" around your group:
	There are no other restrictions on the size of your group or the clauses that you can use within it. For example, you may specify any number of LINES.
	If you omit the TIMES phrase, report writer will examine your EVERY/WIDTH phrase and calculate how many repetitions of the group it can fit within the LINE LIMIT. If you use the identifier form of the LINE LIMIT clause, report writer will do this dyn...
	If you omit the EVERY/WIDTH phrase, report writer will examine your TIMES phrase and will calculate how widely it can space the repeats of your group at regular intervals. You cannot use the identifier form of the LINE LIMIT clause in this case.
	The rightmost column of the rightmost REPEATED group must not go beyond the LINE LIMIT. This possibility can arise only if you use both the TIMES phrase and the EVERY/WIDTH phrase. In all other cases, report writer does the fit for you and makes sur...
	The REPEATED clause is not allowed in a report group that has no LINE clauses.

	REPEATED Clause: Operation
	If you code a REPEATED clause in a DETAIL group, report writer will place consecutive groups side-by-side:
	Report writer sets up a buffer to hold your repetitions. If your group is REPEATED three times, as in the diagram above, this is what happens:
	If a different body group is produced, no more groups are placed side-by-side and any groups already in the buffer are output. Any unused repetitions will result in blanks on the right-hand side. The effect of writing:
	If you need to have different groups placed side-by-side, you will have to define a single group and use the PRESENT WHEN clause above several LINE entries to create the impression of different groups at run time.
	If a control break occurs that results in a CONTROL HEADING or CONTROL FOOTING group, it has the same effect as when you GENERATE a different DETAIL group. That is to say, any groups in the buffer are first output. This is true even if your CONTROL ...
	If a clause in your group references LINE-COUNTER (in a condition or as a SOURCE), you will always obtain its correct effective value. report writer updates LINE-COUNTER just as though the group were actually being output, although the group is being...
	The page-fit test is applied to each repetition in turn. So, if your REPEATED group has a depth that may vary (because of a PRESENT WHEN clause or an OCCURS...DEPENDING at LINE level), room must exist for the largest group that has been GENERATEd in ...
	You may place a REPEATED clause in a CONTROL HEADING or CONTROL FOOTING group, but this is of no use except when you use summary reporting (GENERATE report-name), because there is no other way that the same CONTROL HEADING or CONTROL FOOTING group can...

	Compatibility

	1.3.20 SIGN clause
	SIGN Clause: Coding Rules
	If you write a SIGN clause in an elementary entry, the entry must have a numeric PICTURE with an "S" symbol.
	This clause acts on elementary fields, but you may also code it in a group level entry, where it applies to all numeric elementary entries within the group whose PICTUREs begin with the "S" symbol.
	Format b is unique to the REPORT SECTION. Each literal must be a single character non-numeric literal. At least one of the phrases must be present.

	SIGN Clause: Operation
	The use of the format a SIGN clause has been superseded by the "+" and "-" symbols of the PICTURE clause. It is included for consistency with basic COBOL standards. Refer to your COBOL language reference for further information.
	The format b SIGN clause enables you to place symbols of your choice on the left or the right of any signed printed item to represent a negative amount. The LEADING literal (if specified) is placed immediately before the first character of the report...

	Compatibility

	1.3.21 SOURCE clause
	SOURCE Clause: Coding Rules
	Any valid COBOL identifiers or arithmetic expressions may be used as operands, including any COBOL term that may be the source item of a MOVE or COMPUTE; for example, report writer special registers such as PAGE-COUNTER, GLOBAL or EXTERNAL items, and ...
	Each operand may be subscripted and/or qualified if necessary. For example:
	You must also code a PICTURE clause in the same entry (unlike VALUE, which need not have a PICTURE). The PICTURE used must be compatible with the PICTURE of the operand(s). If you are in any doubt, look at the description of the identifier where it ...
	The SOURCE IS and SOURCES ARE keywords may be omitted, except when immediately following a VARYING clause. We shall still refer to the clause as a SOURCE clause, however.
	An expression may be any arithmetic expression containing any of the following symbols and keywords:
	The ROUNDED phrase may be used in the same entry if you use a numeric PICTURE that has fewer digits to the right of the decimal point than the SOURCE identifier. It will ensure that the value produced is the numerically closer of the two possible val...
	You can indicate a multiple-choice entry by appending WHEN or UNLESS condition to the SOURCE clause, and then coding further consecutive pairs of SOURCE and WHEN/UNLESS clauses in the same entry (see 3.18.5 The Multiple-Choice Form).

	SOURCE Clause: Operation
	Rules for Generating Report Field
	Reference to controls
	In every CONTROL FOOTING;
	In the PAGE FOOTING and PAGE HEADING, if the page advance was caused by a CONTROL FOOTING group.

	Multiple SOURCES
	You may include the keyword NONE to indicate that a particular field is to have no contents stored in it. It is then treated as ABSENT. An example of the use of NONE will be found under the LINE clause (see 3.10.4 Multiple LINES Clause).
	Your entry must be subject to at least one of the following:
	A fixed OCCURS clause (not OCCURS...DEPENDING), or
	A multiple LINES clause, or
	A multiple COLUMNS clause.

	The number of terms in your multiple SOURCES must equal the total number of repetitions the entry is subject to in all dimensions, or the number of repetitions of one or more of the inner dimension(s). For example, with the following layout:
	If the terms cover more than one dimension, they are distributed along the innermost dimension, periodically stepping to the next entry in the outer dimension(s). For example:
	If there are two or more dimensions and the number of terms matches only the inner dimension(s), the terms are recycled from the first SOURCE operand for each repetition of some outer dimension. For example, in the following case:
	If a ROUNDED phrase is present in the entry, every SOURCE item will be rounded.
	The multiple SOURCES may be used as one or more of the alternatives within a multiple-choice entry. You need not use a multiple SOURCES in every alternative:
	You may omit the SOURCE keyword, except when immediately following a VARYING clause.
	Other examples of the multiple SOURCES clause will be found under 3.4.4 Multiple COLUMNS Clause and 3.10.4 Multiple LINES Clause.

	Compatibility

	1.3.22 STYLE clause
	STYLE Clause: Coding Rules
	STYLE may be coded at any level, including in the FD (see 2.2 Report Files) or RD (see 2.3 REPORT SECTION and RD). The WHEN condition phrase cannot be used in the FD or RD entry. STYLE cannot be used if the device-name of the corresponding file is N...
	NORMAL may be coded instead of a style-name, meaning that no special effect is to be produced. It must be the only style-name in the clause and there must not be a WHEN condition phrase.
	Apart from NORMAL, each style-name names a style or special effect that must be obtainable from the output device. The type of output device in use is given in the TYPE phrase of the SELECT statement. The style-names available are either predefined ...
	shadow printing,
	switching to a different font,
	printing in larger letters,
	on a screen, by displaying intense,
	"double-hammering" on an impact line-printer.

	The following are standard device-independent style-names. The first two are available with every TYPE of printer (other than TYPE NONE). The last two are available with all printers except the most basic.
	Style-names are grouped into mutually-exclusive classes. Styles HIGHLIGHT, ALT-FONT and GRAPHIC are mutually-exclusive but UNDERLINE belongs to a separate (one-member) class. The classes are defined in the Printer Description File. It is not valid ...
	The STYLE clause cannot be repeated in an entry. Hence, if a multiple-choice entry is required, with a different STYLE on each choice, separate entries must be coded.
	If STYLE is used in a report that uses the PAGE BUFFER feature it should not be coded in a Report Group Description at a level higher than the LINE level.
	No style-name may be the same as one which is already in effect. For example, the following is illegal:
	The STYLE clause cannot be used on an unprintable elementary entry.

	STYLE Clause: Operation
	Report writer implements the STYLE feature in one of three ways:
	By inserting non-printable control characters, or escape sequences, into the report data, before or after the data affected, or both.
	By re-printing a line or part of a line without advancing the carriage. This method is commonly used to highlight text and occasionally to produce an underline effect.
	By some special technique chosen and implemented by the user (see Independent Report File Handlers).

	The STYLE clause is transparent to the layout of the report. That is, it does not affect any of the other clauses or entries in the report description. For example, COLUMN numbers are unchanged, even though report writer may be inserting extra contr...
	Several STYLE names can be combined in one clause, for example:
	The scope of the STYLE clause is decided by the level of the entry in which it is coded, thus:
	In an elementary entry, the STYLE clause applies only to the elementary field, for example:
	In a LINE entry, the STYLE clause applies to the whole line, as in:
	In a report group entry, the STYLE clause applies to the whole group, for example:

	In an RD entry, the STYLE clause applies to the entire report:
	In an FD entry, the STYLE clause applies to the entire report file:

	The WHEN clause causes the STYLE to take effect only when the condition is true, for example:
	Since you can only code STYLE once per entry, you cannot vary the STYLEs in a multiple-choice entry, and instead must code separate entries, as here:
	If STYLE is defined on an elementary field that has suppressed zeros or trailing spaces, the STYLE will apply only to the characters printed. For example, the coding:

	Compatibility

	1.3.23 SUM clause
	SUM Clause: Coding Rules
	There are two ways to code the SUM clause:
	As a clause in its own right. You write the clause in place of a SOURCE, VALUE, or FUNCTION clause. For example:
	As a term in an expression; for example

	The item summed can be either of two things:
	The name of any numeric data item in your REPORT SECTION (other than a FUNCTION entry). To use this, you must place a data-name on the item in the REPORT SECTION you want to total. Suppose you need to form a total from the following report field:
	A numeric identifier or expression from outside the REPORT SECTION. In this form, it is similar in appearance to the operand of a SOURCE clause. This is called a non-REPORT SECTION SUM clause.

	Your report may contain as many entries with SUM clauses as you wish, in any TYPE of group (even RH). Only elementary entries can have a SUM clause.
	If you code the UPON phrase, each group-name must be the name of a DETAIL group and should not be the same as the group you are currently defining. The group-name may be qualified. If not, the current report is assumed.
	If your SUM clause is in a DETAIL group and the operand of your SUM clause is not in the REPORT SECTION (a rare situation), your report should contain more than one DETAIL group and you should logically code the UPON phrase, in order to specify on whi...
	If you code the RESET phrase, the control-id operand must be one of those defined in the CONTROL clause of your report (including REPORT, whose presence is assumed there). If you are currently defining a CONTROL FOOTING group, the level of the contro...
	The RESET phrase cannot be defined anywhere in a multiple CONTROL FOOTING group.
	You may code the SUM clause more than once in an entry. The effect of this is to add together the totals formed from each of the clauses. Hence:
	ANS-85 note. Since a reference-modified identifier is regarded as non-numeric, you cannot SUM it, either directly as the operand of your SUM clause, or indirectly by naming a REPORT SECTION item where it is used as a SOURCE.

	SUM Clause: Operation
	Totalling
	REPORT SECTION SUM
	i. Cross-Footing
	ii. Rolling Forward

	Non-REPORT SECTION SUM

	Presenting the total
	Resetting the total
	When adding a value into the total, the report writer code obeys the rules of the ADD statement. Unless you coded SUM OVERFLOW PROCEDURE IS OMITTED in the RD, a SIZE ERROR test is always done and if there is size error, a run time error is signalled ...
	If the SUM clause appears in a multiple CONTROL FOOTING group, the SUM clause has its usual effect in the lowest level group and in the higher levels acts by rolling forward each previous level. For example, in the following structure:
	Summing a Repeated Item
	You may require just a single total of all the entries (the "corner" total in the above illustration), without any row or column totals. Just write the ALL-TOTAL entry alone:
	Other Axes
	If your program contains more than one report, you are not restricted only to rolling forward within one report. A SUM clause in one report may refer to a named numeric data item in a different report. As with totalling in a single report, the value...
	A PRESENT WHEN clause may test the value of any total fields referenced in its condition-operand. However, it should then not contain within its scope either an entry with a SUM clause or an entry that is summed by a SUM clause. See 3.18.4 Effect of...
	Totalling Unprintable Items
	It is not possible to accumulate in an instant a single total all the entries in a table outside your REPORT SECTION without using an intermediate unprintable table as in the example above. However, you may use a non-REPORT SECTION SUM clause to accu...
	If the SUM operand is not in the REPORT SECTION, you may also total arithmetic expressions, such as:

	Use of Total Fields
	If you give a data-name to an entry that contains a SUM clause (not a SUM term that is part of an expression), report writer will relate the data-name to its own (internal) total field, not to the (edited) external field in the report line, as would b...
	With SOURCE etc.:
	With SUM:

	The internal total field is a pure numeric, signed COMPUTATIONAL field with as many integral and fractional digits as the SUM entry. Hence, no precision will be lost when the total field is stored in the report field. If the SUM clause refers to a R...
	Accessing the Total Fields
	In a SOURCE Clause
	In a PRESENT WHEN clause
	In the Main-Line PROCEDURE DIVISION
	In a Declarative SECTION

	Precision of SUM terms

	Subtotalling and SOURCE SUM Correlation
	Report writer adds the SUM operands ("addends") directly into the total field, following the normal rules of the ADD statement. If there is a size error, the same action takes place as for REPORT SECTION SUM totals, as described above.
	SOURCE SUM Correlation.
	When your report has more than one DETAIL group; and
	When your program SUMs an operand that is also a non-REPORT SECTION SOURCE operand in one or more of the DETAIL groups.
	The precompiler was installed with the OSVS option set on, or
	You code an ALLOW SOURCE SUM CORR clause in your RD.
	Your system was installed with the OSVS option set off (ANS74 or ANS85), or,
	You code an ALLOW NO SOURCE SUM CORR clause in your RD.

	If SOURCE SUM correlation is in effect, report writer takes each non-REPORT SECTION operand specified in your SUM clause and scans the DETAIL groups of your report to establish whether the same item is coded in more than one of them as a SOURCE operan...
	Using a dummy DETAIL group for Summary Reporting.
	If SOURCE SUM correlation is not in effect, report writer will add every operand of the SUM clause into the total field on every GENERATE for the report.

	Three Methods of Subtotalling
	The recommended method of report writer is to place a data-name on the entry to be totalled (omitting the COLUMN clause if it is not be printed), and SUM the item using that data-name.
	If SOURCE SUM correlation is in effect and both the SOURCE operand and the SUM operand names are identical, the item will be added, as expected, only when the SALARY group is GENERATEd.
	Using the UPON phrase. You may use this whether or not SOURCE SUM correlation is in effect, because UPON overrides its effect. By writing UPON SALARY-GRP (where SALARY-GRP is the 01-level name of your DETAIL group), you ensure that the item will be ...
	Method Using REPORT SECTION SUM (recommended)
	Using SOURCE SUM Correlation:
	Using the UPON Phrase:

	The RESET Phrase
	Compatibility
	The following features are unique to new Report Writer:
	OS/VS and DOS/VS COBOL Report Writer, in common with ANS-68 and ANS-74 requires that any REPORT SECTION item whose data-name is the operand of a SUM must itself be a SUM entry, that is, only SUM entries may be rolled forward or used for cross footing....
	The automatic check for overflow is unique to new Report Writer. A migrated program which produced truncated totals will now produce blank fields instead, plus run time error message 11. In the unlikely event that this truncation is intentional, the...

	1.3.24 TYPE clause
	TYPE Clause: Coding Rules
	Write the TYPE clause at the 01-level entry only. You may omit the keywords TYPE IS. If you do not code a TYPE clause for a group, it will be assumed to be TYPE DETAIL.
	All TYPEs of report group are optional, whatever the circumstances, but every report must have at least one body group (CONTROL HEADING, DETAIL, or CONTROL FOOTING).
	PAGE HEADING, PAGE FOOTING and the OR PAGE phrase of CONTROL HEADING groups are allowed only if you have a PAGE LIMIT clause in the RD.
	In the CONTROL HEADING and CONTROL FOOTING forms each control-id operand must be chosen from the list of controls in your CONTROL clause, including REPORT (or FINAL) which is always assumed present.
	If CONTROL HEADING is coded with no control-id operand, there must not be more than one control-id in the CONTROL(S) clause. The clause is then taken to mean CONTROL HEADING FOR control-id, if there is just one control-id in the CONTROL(S) clause, or...
	If more than one (different) control-id is coded in the CONTROL FOOTING form, the result is a set of multiple CONTROL FOOTING report groups. The control-ids need not be coded in any particular order and need not form a consecutive hierarchic sequence...
	If CONTROL FOOTING is coded with no control-id operand, it is taken to mean CONTROL FOOTING FOR ALL or, CONTROL FOOTING FOR control-id , if there is just one control-id in the CONTROL(S) clause, or CONTROL FOOTING FOR REPORT if there is no CONTROL(S) ...
	In any report you may have any number of DETAIL report groups, but only one PAGE HEADING, PAGE FOOTING, REPORT HEADING, REPORT FOOTING, and each control-id may appear in only one CONTROL HEADING and only one CONTROL FOOTING group. If CONTROL FOOTING ...
	The physical order of report group descriptions is irrelevant. For example, the PAGE HEADING group need not necessarily appear before the DETAIL and PAGE FOOTING. Report writer produces them in the correct sequence according to the rules for page-fi...
	In a report with a PAGE LIMIT clause, if your group contains any absolute LINE clauses, report writer will check that each line of the group will lie within the region of the page appropriate to the TYPE of the group. Refer to the diagram of the regi...
	All the CONTROL HEADING groups with an OR PAGE phrase must be able to fit on the page above any other DETAIL or CONTROL HEADING group. Stated precisely: (a) each DETAIL or other CONTROL HEADING must either have only relative LINE clauses or must begi...

	TYPE Clause: Operation
	You use the TYPE clause to indicate, implicitly, where and how your group is to be produced in the report. Here is a summary of how each TYPE is handled:
	RH and PH together
	PF and RF together

	The OR PAGE Phrase of the CONTROL HEADING
	If your report contains any such TYPE CH groups with the OR PAGE phrase, the CONTROL HEADING group will be presented after a control break at the relevant level, exactly as when the PAGE option is not present, but in addition, the actions on page adva...
	If a DETAIL group causes a page advance then, after the usual page advance has taken place, the CONTROL HEADING group is printed. If more than one TYPE CH group has the OR PAGE option, these CONTROL HEADING groups are printed in hierarchic order, fro...
	If a CONTROL HEADING group causes a page advance, the same action occurs as in (a) above, except that the CONTROL HEADING group that caused the page advance is output only once on the new page, whether it has the OR PAGE phrase or not.
	If a CONTROL FOOTING group causes a page advance, the same action occurs as for a DETAIL except that no CONTROL HEADINGS below the level of the CONTROL FOOTING are printed.

	If a group has CH FOR PAGE without a control-id, it will be treated as equivalent to CH FOR PAGE OR REPORT.
	The following shows the layout you might require:

	Compatibility

	1.3.25 USAGE clause
	USAGE Clause: Coding Rules
	The USAGE clause may be coded at any level, but no item may be subject to both USAGE DISPLAY and USAGE DISPLAY-1.
	DISP is synonymous with DISPLAY.
	Only non-DBCS items may be subject to USAGE DISPLAY and only DBCS items may be subject to USAGE DISPLAY-1.
	No other forms of the USAGE clause are permitted in the REPORT SECTION.

	USAGE Clause: Operation
	DISPLAY is retained for consistency with basic COBOL but it is never required.
	USAGE DISPLAY-1 indicates that the item (or items if on a group level) is DBCS (Double-Byte Character Set), such as Japanese Kanji. However, it is not required in the REPORT SECTION, since it is implied by the presence of a DBCS PICTURE string (conta...

	Compatibility

	1.3.26 VALUE clause
	VALUE Clause: Coding Rules
	You may specify a numeric or non-numeric literal, including a figurative constant, or a DBCS literal. An ANS-85 SYMBOLIC CHARACTER is also permitted.
	Unless you specify ALL or a figurative constant, you do not need a PICTURE clause. For example:
	You may use the ALL "literal" form or a numeric literal or figurative constant, but in all these cases you must specify a PICTURE. Here is an easy method of coding a repeated value:
	If the item is defined as DBCS by virtue of its PICTURE clause or USAGE DISPLAY-1 clause, the literal must also be DBCS. However a PICTURE clause is not required, a PICTURE of G(n) where n is the number of double bytes being assumed in default.
	Any literal may also be hexadecimal. However, it is inadvisable to use this facility to insert printer control characters into your print data, since these will (a) make your program non-portable and unreadable (b) put your COLUMN positions out of al...

	VALUE Clause: Operation
	The VALUE clause results in the specified fixed literal appearing in your report field. Assuming that your program does not alter the value by overwriting the report field procedurally (which it can do if the field is named), the value will be unchan...
	Report writer will either "pre-set" (fill in) your report field with the specified literal at compile time; or it may move the literal into the report field at run time, in cases where the report field is in a variable position, or where the report li...
	If the item is DBCS, it is stored in the report line with each double-byte character occupying one column position. (See 3.25 USAGE clause.)

	Multiple VALUES
	If you wish to place no value in a particular occurrence, you may simply code a space character: " ".
	Your entry must be subject to at least one of the following:
	A fixed OCCURS clause (not OCCURS...DEPENDING), or
	A multiple LINES clause, or
	A multiple COLUMNS clause.

	All the literals must be either DBCS or non-DBCS.
	The rule for the number of literals allowed in your multiple VALUE is similar to that of the multiple SOURCES clause (see 3.21.4 Multiple SOURCES); that is, it must exactly equal either the total number of repetitions in all the dimensions of the entr...
	If the literals cover more than one dimension, they are distributed along the innermost dimension, periodically stepping to the next entry in one or more outer dimensions. For example:
	If there are two or more dimensions and the number of terms matches only the inner dimension(s), the series of literals is re-cycled from the first operand for each of the outer repetitions. For example, the following case:
	The multiple VALUE operand may be used as one or more of the alternatives in a multiple-choice entry. You need not use a multiple VALUE in every alternative:
	If, as is usual, you omit a PICTURE clause, the size of each field is the size of its corresponding literal, as seen in the following example:
	In all cases, you may omit the VALUE keyword.
	Other examples of the multiple VALUE clause will be found under 3.4.4 Multiple COLUMNS Clause and 3.10.4 Multiple LINES Clause).

	Compatibility

	1.3.27 VARYING clause
	VARYING Clause: Coding Rules
	You may write any number of different data-name operands in this clause, each with an optional associated FROM and BY phrase.
	Your entry must also have either an OCCURS clause (see 3.14) or a Multiple COLUMNS Clause (see 3.4.4) or a Multiple LINES Clause (see 3.10.4).
	Your data-names must not be defined already anywhere else in the program and you should not attempt to define them separately. Report writer creates a description for them itself, internally. (This is similar to the way COBOL handles index-names.)
	You can re-use the same data-names in different VARYING clauses, provided that you do not do this when the clauses are nested (enclosed one within the other). For example, you could write VARYING R-LINE on each repeating LINE, and VARYING R-COL on ea...
	If you intend FROM 1, you may omit the FROM phrase and report writer will infer it. Likewise, if you intend BY 1, you may omit the BY phrase and report writer will infer it. (FROM 1 and BY 1 are the most usual requirements, so these assumptions are ...
	Each expression may be any integer, or an identifier, or an arithmetic expression, provided that the result has an integer value. The expression may contain data-names of an enclosing VARYING clause. It can also use a data-name of the same VARYING c...

	VARYING Clause: Operation
	When report writer is about to produce the first occurrence, it places the FROM value in an internal named data item set up implicitly by the VARYING clause. This is repeated, in the order given in the clause, for any additional data-names that may h...
	When report writer is about to produce each of the remaining occurrences, it adds the BY value to the data item. This is also repeated, in the order given in the clause, for any additional data-names that may have been specified in the VARYING clause.
	The VARYING clause enables you to produce different source-items or values in successive appearances of a repeated field. Here are some examples:
	To generate the numbers 1 through 10 in a line:
	To output a two-dimensional array in Working-Storage into a two-dimensional array in your report (for example daily costs for four seven-day weeks):
	You could display each week's entries from right to left by writing:
	Now let's display the same entries, except that they are all held in a one-dimensional array of twenty-eight entries. (This example is important.)
	To "fold round" a large array in boustrophedon ("as the ox turns") sequence (if NO-ACROSS is the horizontal repeat factor):
	To produce a pyramid-shaped design:
	Note that VARYING can also be used with a multiple COLUMN or LINE, as the following example shows:

	To set up a "running index" which continues each time from its latest value, do not code something like VARYING R-WEEK FROM R-WEEK + 1 , but calculate the starting value explicitly.
	To give your counter a series of values, say W-CNT (1), W-CNT (2), which are not formed by simple incrementing, write:
	By experimenting with the VARYING clause, you will discover many novel and surprising uses.

	Compatibility

	1.3.28 WRAP clause
	WRAP Clause: Coding Rules
	The AFTER phrase gives the rightmost column number that any field may occupy before wrap round becomes necessary. If integer-1 is specified, it must lie in the range 1 to maximum line width. Its value acts as a maximum line width for any lines in its...
	The TO phrase gives the column number at which printing continues after wrap round. If integer-2 is specified, it must lie in the range 1 to maximum line width. If identifier-2 is specified, a similar check is made at run time. If the phrase is omit...
	The STEP phrase gives the relative vertical offset for any continuation lines. If the phrase is omitted, a value of 1 is assumed for integer-3 . Thus, by default, a line is continued onto the immediately following line. If a PAGE LIMIT clause is pre...
	WRAP may be coded either (a) in an entry containing a LINE clause or (b) at a higher level having one or more LINE entries beneath it. This second possibility allows you to avoid repeating the same clause in several LINE entries.
	Only relative COLUMN entries are allowed to cause wrap round. If a LINE entry has a WRAP clause, the COLUMN entries forming the description of the line must end in one or more relative COLUMN entries. Entries with absolute COLUMN numbers still cannot...
	A superfluous WRAP clause is not permitted. So the COLUMN entries (in particular the trailing relative COLUMN entries) must be such that the LINE LIMIT could be exceeded. (If this is not foreseeable at precompilation time, it will be assumed that th...
	If the WRAP clause is coded at a higher level with more than one LINE entry beneath it, it is sufficient if at least one of the LINE clauses obeys these rules. For example, it is permissible to code the WRAP clause at the 01-level, even if only one o...
	The format b NO WRAP clause is allowed only at a level subordinate to a format a WRAP clause. The entry containing NO WRAP must represent more than one physical elementary printable field. No other nesting of the clause is permitted.

	WRAP Clause: Operation
	The WRAP clause causes data to wrap round automatically to a new continuation line when the next field or group of fields will not fit on the line. It may be used in any TYPE of report group. The point where wrap round begins is always after a compl...
	As well the conditional case just described, where the continuation line appears in exceptional circumstances, it is possible (though less useful) for the wrap round to occur every time, as in this example:
	Horizontal Fit Test
	If the containing group is a body group beginning with a relative LINE clause, the continuation lines are taken into account during the group's page-fit test. For example, if only two lines are available for the printing of the last group in the prec...
	When an OCCURS clause or a Multiple LINES Clause is coded at the same level as WRAP, the WRAP clause applies separately to each occurrence.
	NO WRAP indicates that the entries subject to NO WRAP must appear together in the same line. The horizontal "fit test" is therefore performed before the entire set of fields is output to ensure that they are not to split over a line boundary. (Compa...

	Compatibility

	1.4 Procedural Statements
	1.4.1 Report Writer Verbs: Overview
	Sequence of Operations
	Keyword Table

	1.4.2 GENERATE statement
	GENERATE Statement: Coding Rules
	If GENERATE detail-group-name is coded, it must be the name of a DETAIL group coded in the current program, or in a GLOBAL report defined in a containing program. (The group-name appears immediately after the 01 level-number.) You may qualify the de...
	The form GENERATE report-name has a special significance and is known as summary reporting. It causes any DETAIL group to be suppressed, so do not use this form unless you require only CONTROL HEADING or CONTROL FOOTING groups in the body of the repo...
	GENERATE must not appear in a USE BEFORE REPORTING directive Declarative.

	GENERATE Statement: Operation
	The GENERATE statement causes report writer to perform three main actions in an average report:
	It tests for control breaks, producing CONTROL FOOTING and HEADING groups where necessary,
	It performs a page-fit test, outputting PAGE FOOTING and PAGE HEADING groups where necessary; (these may also be produced as a result of a CONTROL HEADING or CONTROL FOOTING),
	It generates each line in the DETAIL group, unless you are doing summary reporting (GENERATE report-name).

	Once a report has been INITIATEd, your program may execute any number of GENERATE statements for each DETAIL group in the report. If your Report Description contains several DETAIL groups, you may code a sequence of different GENERATE statements in a...
	Summary reporting, where you code the report-name instead of a DETAIL group-name after the GENERATE, has the following effects:
	No DETAIL group is output.
	Any rolling forward of SUM operands takes place as usual, except for any rolling forward from a DETAIL group.
	Any cross-footing of SUM operands takes place as usual, except for cross-footing within a DETAIL group.
	Any subtotalling of (non-REPORT SECTION) SUM operands is executed as follows:
	Testing for control breaks takes place as usual. If a control break is detected, any CONTROL FOOTING and/or CONTROL HEADING groups are output as usual, together with any PAGE FOOTING and/or PAGE HEADING groups that may be required as the result of a ...

	GENERATE Processing Cycle
	If the identifier form of the LAST DETAIL sub-clause is used, its value is checked and, if valid, is stored in the Report Control Area.
	If your report is associated with a DUPLICATED file, the value of REPORT-NUMBER is examined to see whether it is the same as it was for the previous GENERATE for this report, thus checking that the correct duplicate of the report is in the main Report...
	If the report has not yet been INITIATEd, run time error diagnostic 14 is logged.
	If this is the first GENERATE since the INITIATE:
	If there is a REPORT HEADING group, this is produced.
	If there are any CONTROL HEADING groups, each of them is produced, from highest down to lowest, and the initial value of each control is saved.

	If this is not the first GENERATE since the INITIATE, each control identifier is compared with the corresponding saved previous value, beginning with the highest level. If no control has changed, no special action takes place. If a difference in val...
	The value of each control-id is temporarily altered to the value it had immediately before the control break;
	CONTROL FOOTING groups are produced, from the lowest up to the one at the level of the control break, if any;
	The value of each control-id is restored to its value after the control break;
	CONTROL HEADING groups are produced from the one at the level of the control break, if any, down to the lowest.

	If there are any REPEATED groups in this report other than the current DETAIL, a check is made whether any have been buffered. If so, they are first output and the buffer is cleared.
	If there are any cross-foot totals for this group, they are computed in the order implied by any inter-dependencies among them.
	If OSVS is in effect any additional summing is now performed for the group with the following possible actions:
	If there is any general "subtotalling" for the report (SUM clauses with non-REPORT SECTION operands, without UPON, and with no SOURCE SUM correlation), each SUM's operands are added into the total fields. If you are generating a DETAIL group which is...
	If there is any special subtotalling triggered by this DETAIL group due either to an UPON phrase referring to this group or to SOURCE SUM correlation that implies this group, the SUM operands are added into the total fields.
	If there is a SUM clause in another group referring to an entry in this group, then rolling forward of values into its total field takes place.

	If there is a USE BEFORE REPORTING section for this group in the DECLARATIVES, it is performed. If PRINT-SWITCH is non-zero as a result (meaning that printing is to be SUPPRESSed), then
	If OSVS is in effect no further action takes place for this group;
	If NOOSVS is in effect in effect then if no further totalling to be performed for this group, no further action takes place; otherwise the only further steps to be performed are 10 (PRESENT at 01-level), if applicable, and 8 (totalling).

	If there is a PRESENT/ABSENT WHEN or PRESENT/ABSENT AFTER clause at the 01-level of this group, a test is made of the condition and, if the group is absent then
	If OSVS is in effect no further action takes place for this group;
	If NOOSVS is in effect then, if there is no general subtotalling to be performed, no further action takes place; otherwise the only further step to be performed is 4.2.4 8a above (general subtotalling).

	If there is an identifier form of a CODE clause in the RD, the contents of the identifier are moved to the CODE-VALUE location in the Report Control Area .
	If this group has a REPEATED clause, the REPEATED buffer is prepared to receive the next instance of the group or, if this group is the last of the set, to produce the buffered groups alongside it.
	If any lines are being produced and the report has a PAGE clause, a page-fit test is performed to test LINE-COUNTER, to establish whether or not a page advance is required before the group may be output. If the group has a MULTIPLE PAGE clause, this ...
	If a page advance is required, the following action takes place:
	The PAGE FOOTING group is produced, if one exists;
	PAGE-COUNTER is incremented by 1;
	A form feed is output or, if an Independent Report File Handler is in use, a value of zero is placed in the current position location to cause this;
	The PAGE HEADING group is produced, if one exists;
	If there are any CONTROL HEADING groups specifying OR PAGE, they are produced, from highest down to lowest.

	If NOOSVS is in effect and there is any further summing to be performed for this group, step 8 (subtotalling and rolling forward) is now executed.
	Each report line field is stored in its report line, invoking FUNCTION routines where necessary and checking for column overlap, line overflow and any other possible error conditions, and then output. If an Independent Report File Handler is in use, ...
	If the group has a NEXT GROUP clause, LINE-COUNTER may be adjusted in accordance with the rules for that clause. (See NEXT GROUP clause.) In the case of NEXT GROUP absolute, this may be deferred by setting the Saved Next Group Integer.
	All total fields defined in this group are reset to zero, unless they are not PRESENT during this GENERATE or have a RESET phrase that defers resetting to a higher control break.
	If there are any PRESENT AFTER (or GROUP INDICATE) clauses in the group, their indicators are set off.

	Compatibility
	The coding rules for the GENERATE are identical for OS/VS COBOL, DOS/VS COBOL and new Report Writer. The GENERATE statement may perform many more steps, but only because of the additional functions provided by new Report Writer.
	Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.

	1.4.3 INITIATE statement
	INITIATE Statement: Coding Rules
	Each report-name must be the name of a report in the current program, or that of a GLOBAL report defined in a containing program. (The report-name appears immediately after the RD level-indicator and also in the REPORT clause in the FD.)
	If the UPON phrase is present, each report-name must be defined in a REPORT(S) clause in the FD of the specified file-name. The UPON phrase must be used if any of the report-names is defined in more than one FD entry.
	INITIATE must not appear in a USE BEFORE REPORTING directive Declarative.

	INITIATE Statement: Operation
	An INITIATE must be executed for a report before any GENERATE, INITIATE, or Page Buffer SET verb referring to the same report (or a DETAIL in the report) is executed.
	An OPEN for the corresponding report file must have been executed before the INITIATE is executed. The INITIATE does not OPEN the file. You may however execute an INITIATE once again for a report that was TERMINATEd without closing and re-opening th...
	A CLOSE must not be issued for the file to which a report is directed once the report has been INITIATEd, unless a TERMINATE is first done.
	If an UPON phrase is present, the report will be written only to the file specified.

	INITIATE Processing Cycle
	The error flag is cleared.
	If your report is associated with a DUPLICATED file and REPORT-NUMBER is zero, the remaining actions are performed for every duplicate report.
	If your report is associated with an Independent Report File Handler, the file handler is invoked with an action code of 6.
	If the identifier form of a LINE LIMIT clause was coded, the identifier is checked and, if valid, stored in the Report Control Area.
	Other internal locations and special registers, such as the current position, "body group has appeared on page" indicator, REPEATED-COUNTER, and PAGE-COUNTER are cleared.
	LINE-COUNTER is reset to zero.
	PAGE-COUNTER is set to 1.
	All total fields, sum overflow indicators, size error indicator and Saved Next Group integer, and PRESENT AFTER indicators, wherever appropriate, are cleared to zero.
	The control break indicator is set to -1 to indicate "initial control break on INITIATE".
	If a run time subroutine is used for control-break detection, the lengths of each control identifier (other than REPORT/FINAL) are determined and stored in a control area.

	Compatibility
	The coding rules for the INITIATE are identical for OS/VS COBOL and DOS/VS COBOL Report Writer, and new Report Writer. The INITIATE statement may perform additional actions if new Report Writer functions have been used in the Report Group Descriptions.
	Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.
	The UPON phrase is not supported by OS/VS or DOS/VS COBOL.

	1.4.4 Report Writer SET statements
	SET Statements: Coding Rules
	Format a (SET PAGE) cannot be used unless there is (a) a WITH PAGE BUFFER clause in the SELECT ... ASSIGN clause for the associated file and (b) a PAGE LIMIT clause in the associated RD entry. (The Page Buffer feature uses an Independent Report File...
	The SET LINE and SET COLUMN statements cannot be used unless there is either a WITH PAGE BUFFER clause or a WITH RANDOM PAGE clause in the SELECT ... ASSIGN clause.
	If your program contains more than one Report Description, you must qualify your SET PAGE STATUS, SET LINE and SET COLUMN statements by IN or OF report-name . Without qualification, the statements are assumed to refer to your one and only Report Desc...
	Format b (SET LINE) is used for altering the value of LINE-COUNTER. SET LINE TO ... sets LINE-COUNTER equal to the value given and forces the next line to appear there. You can use the FIRST DETAIL form with the TO phrase. SET LINE DOWN BY ... adds...
	Format c (SET COLUMN) is used for altering the value of the horizontal margin. SET COLUMN TO ... sets it equal to the value given. SET COLUMN RIGHT BY ... adds to it, while SET COLUMN LEFT BY ... subtracts from it. In each case, the value that resu...
	You cannot use any of these SET statements until a report is in an INITIATEd state.

	SET Statements: Operation
	The Page Buffer facility is designed to cope with the type of layout where you may not wish to store the groups starting at the top and working down to the bottom of the page. Look at the following layout, for example:
	SET PAGE STATUS (Format a)
	You can issue the SET PAGE STATUS TO HOLD at any time - not just at the start of the page. You can then return to any vertical position on or below the position where you issue this command.
	You may use the SET statements in a Declarative section. In this way you may re-position a non-DETAIL report group such as a CONTROL FOOTING, HOLD the page at the start of a PAGE HEADING, and so on.
	When the report is in HOLD status, LINE-COUNTER advances as usual. Report writer performs the page-fit test on body (DETAIL and CH/CH) groups in the normal way by checking the value of LINE-COUNTER against the size of the group about to be printed. ...
	HOLD status does not change any of the logical processes of report writer. It just makes it legal for you to return to a higher line using the SET LINE statement. HOLD status only defers the actual time when output occurs, but the end result is alwa...
	You cancel HOLD status by means of the SET PAGE STATUS TO RELEASE statement. The page buffer will then gradually be emptied as you write more lines, until such a time as a page advance takes place or the report is TERMINATEd.
	SET LINE (Format b)
	SET COLUMN (Format c)
	If the left margin has been set greater than 1, all the lines produced for the current page will be shifted to the right by the additional factor. For example, if you issue SET COLUMN TO 5, then "COLUMN 1" in any print line is actually positioned on ...
	When report writer executes a page advance it resets the left hand margin to 1. Your SET COLUMN statements are therefore effective only within the current page.
	All formats
	The example on the following page shows how you may set up a page in "snaking columns" and then place a border around the whole page:

	Compatibility

	1.4.5 SUPPRESS PRINTING statement
	SUPPRESS PRINTING Statement: Coding Rules
	The SUPPRESS statement may be coded only in a USE BEFORE REPORTING directive Declarative SECTION (see 4.7).
	The form MOVE 1 TO PRINT-SWITCH is an alternative IBM extension that means the same as SUPPRESS PRINTING. You may also write MOVE 0 TO PRINT-SWITCH to undo the effect of a MOVE 1 TO PRINT-SWITCH or SUPPRESS PRINTING, and generally treat PRINT-SWITCH ...

	SUPPRESS PRINTING Statement: Operation
	The statement SUPPRESS PRINTING or MOVE 1 TO PRINT-SWITCH prevents the group specified in the USE BEFORE REPORTING from producing any output on this occasion. In other words, no data is set up in any of the lines of the group and none of the lines is...
	For example, you may use SUPPRESS PRINTING to "restart" your report after a breakdown. Simply write a USE BEFORE REPORTING section for every group and SUPPRESS each group until your program clears a flag. Your report will now be in the same internal...
	Each execution of a SUPPRESS PRINTING or MOVE 1 TO PRINT-SWITCH will prevent output only on that single occasion. Report writer will reset PRINT-SWITCH to zero after each excursion into your USE BEFORE REPORTING section.
	In USE BEFORE REPORTING there are further examples of SUPPRESS PRINTING.

	Compatibility

	1.4.6 TERMINATE statement
	TERMINATE Statement: Coding Rules
	Each report-name must be the name of a report in the current program, or that of a GLOBAL report defined in a containing program. (The report-name appears immediately after the RD level-indicator and also in the REPORT clause in the corresponding FD.)
	TERMINATE must not appear in a USE BEFORE REPORTING directive Declarative.

	TERMINATE Statement: Operation
	A TERMINATE must be executed for every report that has been INITIATEd before the final close-down of the program.
	The TERMINATE statement clears any pending REPEATED groups or Page Buffer contents. It also outputs any final CONTROL FOOTING, PAGE FOOTING and REPORT FOOTING groups that may be required at the end of the report. It then returns the report to an "un...
	A separate, subsequent CLOSE should be executed for the associated report file. TERMINATE does not CLOSE the file.
	If a TERMINATE is executed without any GENERATE statements being executed for the report since the INITIATE was executed, no output at all is produced. If you wish to ensure that at least the REPORT HEADING and REPORT FOOTING groups appear, you shoul...
	A report may be TERMINATEd and then INITIATEd again any number of times without closing the report file. The new INITIATE causes PAGE-COUNTER to return to 1 and, if the report has a PAGE LIMIT clause, will re-commence the report on a fresh page.

	TERMINATE Processing Cycle
	The following is a more thorough description of each stage in the execution of a TERMINATE statement:
	If your report is DUPLICATED and REPORT-NUMBER is zero, the actions that follow are performed for each duplicate report.
	If at least one GENERATE has been performed (indicated by the control break indicator being non-negative), the value of each control-id is temporarily altered to the value it had when the last GENERATE was executed, whilst each CONTROL FOOTING group i...
	If any REPEATED groups are present, any buffered groups are output and the REPEATED buffer is flushed. Also, if the Page Buffer contains any data, this is output.
	If a PAGE FOOTING group is present, it is produced.
	If a REPORT FOOTING group is present, it is produced.
	If your report is associated with an Independent Report File Handler, the file handler is invoked with an action code of 8. (If your report is DUPLICATED, this will only take place for reports that have been INITIATEd.)
	The current vertical position location is set to -1 to indicate "report not initiated".
	If any total fields are still non-zero, indicating that they have not all been output, an error diagnostic 15 is signalled.
	If normal batch printing is in effect, a check is made of the error diagnostic flag and an appropriate run time error message is logged if necessary.

	Compatibility
	The coding rules for TERMINATE are identical for OS/VS COBOL and DOS/VS COBOL Report Writer and new Report Writer. The TERMINATE statement may perform more actions because of the additional functions provided by new Report Writer.
	Access to a GLOBAL report is not available with OS/VS or DOS/VS COBOL.

	1.4.7 USE BEFORE REPORTING directive
	USE BEFORE REPORTING Directive: Coding Rules
	The format above shows the PROCEDURE DIVISION and DECLARATIVES headers for the sake of completeness. They are used not just by report writer, and your program might already have Declarative sections for some other purpose. It is the distinctive form...
	In order to code a USE BEFORE REPORTING section, you must ensure that the corresponding group has an 01-level data-name, so that you can refer to it as the report-group-name.
	Your USE BEFORE REPORTING section may also PERFORM other sections. These are normally additional sections within the DECLARATIVES portion (as required by all ANS Standards). For this purpose, you may code additional sections within DECLARATIVES that...
	Your USE BEFORE REPORTING section must not contain any INITIATE, GENERATE, or TERMINATE statements. Neither may any of the sections it may perform.
	If you specify GLOBAL, the named report group must exist either in the current program or in a contained program.

	USE BEFORE REPORTING Directive: Operation
	If any of your report groups has a USE BEFORE REPORTING section, report writer will implicitly PERFORM the section during the processing of the group. Assuming that your report has every possible feature, the section will be implicitly performed:
	You may include the a SUPPRESS PRINTING statement or MOVE 1 TO PRINT-SWITCH in a USE BEFORE REPORTING Declarative, in order to prevent output for the group at that instant (see 4.5).
	USE BEFORE REPORTING sections were used a great deal in the ANS-68 and ANS-74 COBOL-IT Report Writer. So you may possess migrated programs that contain cases of their use. With report writer much of their functions are now performed by the PRESENT W...
	You could use your Declarative section to WRITE additional records to another file, using the automatic control break processing to "drive" the rest of your program.
	You might use the USE BEFORE REPORTING section for a CONTROL HEADING group to READ an additional record at the start of each new CONTROL value, or fetch it from your database.
	You might need to suppress the printing of certain totals without preventing them from being reset to zero. (The PRESENT clause will prevent the resetting of a total field if it was not output.)
	You might want to force a CONTROL HEADING group to start on a new page under certain complex circumstances. Your USE BEFORE REPORTING section would then force page advance processing thus:
	You might want to search a table for a corresponding text field at the start of each CONTROL HEADING group, and move it to a WORKING-STORAGE field that is the operand of a SOURCE in a PAGE HEADING or the CONTROL HEADING itself. (If your group is a DE...
	There may be an item associated with a control which is not itself a control (such as a STATE-NAME logically associated with a STATE-NO control) which you will want to output during CONTROL FOOTING time. Since the item is not a control you will not a...
	You may find it desirable to suppress printing of a minor CONTROL FOOTING if only one DETAIL is printed above it, since a "total" of a single value will seem out of place. Here is one way to do it:

	If you specify GLOBAL, your Declarative section will apply both to the current program, if it contains a report group of that name, and also to any contained program that has a report group of that name but no USE BEFORE REPORTING section of its own f...

	Compatibility

	1.5 Special Topics
	1.5.1 Multiple Reports
	Several Reports to One Physical File
	Successive Reports
	Alternating-Page-Format Reports
	Concurrent Reports
	Several Outputs From the Same RD

	1.5.2 Developing User-Written Functions
	The Need for Functions
	How To Write a Function Routine
	Sample COBOL Function Routine

	1.5.3 Independent Report File Handlers
	Introduction
	Supplied File Handlers
	User-Written File Handlers
	Possible Uses of a File Handler
	Using COBOL-IT Report Writer for Non-Report Output
	Output to Database
	Private STYLEs
	Output to Multiple Files

	Using CODE
	Actions of an Independent Report File Handler
	If the location L-FCA-ACT-IND is anything other than "0" or "9", "OPEN" the report "file". The file handler may interpret the OPEN function and the nature of the "file" in any way it wishes. The value of L-FCA-ACT-IND indicates the type of OPEN requ...
	If the location L-RCA-ACT-IND is "6", "INITIATE" the report. The file handler may perform the INITIATE action in any way it wishes.
	If there is data to output, indicated by the field L-PRC-BYTE-CNT being non-zero, "print" the data. The exact nature of the "printing" activity is left entirely to the file handler and may differ widely from a "batch" WRITE statement. The following ...
	If the location L-RCA-ACT-IND is "8", "TERMINATE" the report. The file handler may perform the TERMINATE action in any way it wishes.
	If the location L-FCA-ACT-IND is "9", "CLOSE" the report "file". The file handler may interpret the CLOSE function in any way it wishes.

	File Handler LINKAGE Areas
	Optional Leading Parameters: User-Defined Parameters
	Parameter 1: File Control Area
	Parameter 2: Report Control Area
	Parameter 3: Report Data

	Sample Independent Report File Handler

	1.6 Migration from OS/VS or DOS/VS COBOL-IT Report Writer
	1.6.1 Re-compiling OS/VS and DOS/VS COBOL Sources
	Informational (I-level)
	Warning (W-level)
	More Severe (E- and S-level) Messages

	1.6.2 Other Considerations
	Long Control Fields Truncated

	1.6.3 Physical Comparison of Report Writer Output
	1.6.4 Unreachable Code

	1.7 Appendices
	1.1 Appendix A
	FILE-CONTROL and FILE SECTION
	PAGE LIMIT Clause
	Rest of RD
	Report Groups (General)
	TYPE Clause
	LINE Clause
	COLUMN Clause
	SOURCE Clause
	VALUE Clause
	SUM Clause
	PICTURE Clause
	NEXT GROUP Clause
	New Clauses
	PROCEDURE DIVISION
	Other Features
	General COBOL Features
	In-line Comments
	Wild Cards in COPY

	Precompiler's Tolerance of Other COBOL Constructs
	The EXEC ... END-EXEC construct. The text from EXEC through END-EXEC is copied intact, enabling CICS and database commands to be embedded in a COBOL-IT Report Writer source.
	Unrecognized DATA DIVISION SECTIONs. Any such SECTION is transcribed intact.
	Non-standard characters in the continuation column. Any character other than "D", "-", "*", "/", and space in column 7 is treated as though it were a "*" (comment) character. Such lines will be copied intact unless they immediately precede a report ...
	Unrecognized PROCEDURE DIVISION statements. Any unrecognized word found in the PROCEDURE DIVISION will be copied intact unless it immediately follows one of the report writer commands such as INITIATE, when it is expected to be the (first) operand of...

	1.2 Appendix B
	1.3 Appendix C
	1.4 Appendix D
	1.5 Appendix E
	1.6 Index

