@COBOLT

COBOL-IT Debugger
OpenSource Business Oriented Language 99

User’s Guide Version 3.10

Ef" Compiler
b Suite

COBOL-IT® Debugger User’s Guide
Version 3.10

[COBOL-IT Page 1

I I

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Acknowledgment

This documentation is derived from COBOL-IT Source code, parts of which are derived from
OpenCOBOL.

Copyright (C) 2002-2007 Keisuke Nishida
Copyright (C) 2007 Roger While
Copyright (C) 2008-2018 COBOL-IT

In 2008, COBOL-IT forked its own compiler branch, with the intention of developing a fully
featured product and offering professional support to the COBOL user industry.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under
the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Conventions used in the General Format diagrams:
Brackets [] identify syntax elements that are supported but not required.

Curly Braces{ } identify alternative syntax elements. Among syntax elements described
within stacked curly braces, only one of the entries may be selected.

Ellipses (...) indicate (optional) repetition. If the syntax element is a required element, then
it will be surrounded by curly braces.

Copyright 2008-2018 COBOL-IT S.A.R.L. All rights reserved. Reproduction of
this document in whole or in part, for any purpose, without COBOL-IT's
express written consent is forbidden.

COBOL-IT® Developer Studio, COBOL-IT® Sort (CitSORT®), COBOL-IT® MF Command Line Emulator
(CItEMUL®), COBOL-IT® Lib Optimizer are registered trademarks of COBOL-IT, S.A.R.L All rights reserved.

@ COROLT

CrpenSource Business Ciriented Languoge

COBOL_;I— COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

The CitSQL® family: COBOL-IT® Precompiler for MySQL, COBOL-IT® Precompiler for PostgreSQL. COBOL-IT®
Precompiler for Microsoft SQL Server, are registered trademarks of COBOL-IT. All rights reserved.

COBOL-IT® Precompiler for MySQL, COBOL-IT® Precompiler for PostgreSQL. COBOL-IT® Precompiler for
Microsoft SQL Server are licensed by COBOL-IT under exclusive license with the Raincode Company.

Third-Party software components embedded in the SOFTWARE and Services and submitted
to specific licenses:

VBISAM

* Copyright (C) 2003 Trevor van Bremen

* Copyright (C) 2008-2018 COBOL-IT

* License: LGPL

GMP (GNU Multiprecision Library)
* Copyright 1991, 1996, 1999, 2000, 2007 Free Software Foundation, Inc.
* License: LGPL

GNU LIBICONV
The libiconv libraries and their header files are under LGPL.

Microsoft and Windows are registered trademarks of the Microsoft Corporation. UNIX is a
registered trademark of the Open Group in the United States and other countries. Other brand and
product names are trademarks or registered trademarks of the holders of those trademarks.

Contact Information:

COBOL-IT

The Lawn

22-30 Old Bath Road Newbury, Berkshire,
RG14 1QN United Kingdom

Tel: +44-0-1635-565-200

@ COROLT

CrpenSource Business Ciriented Languoge

r

— COBOL-IT Debugger

BCOBROL-

OpenSource Business Oriented Language

User’s Guide Version 3.10
ACKNOWLEDGMENT ..ot e e e e e e e ea e e eaas 2
DEBUGGER USER’S GUIDE ...t e e e eeeees 7
(©foT] o] 1 [T {02 e [=1 10 1o o |1 s o [PPSR 7
—AebUGAD=<DEDUGDB-NAMESeciiciicieie ettt e et e et e be s aesbesteese e s e e e e eesbesbeaseeteeseenseeeseeneesneareeneans 7
o TSSOSO 8
STABDUGAD ...t bt b E bbb E R R R b e bt b etk b etk b et b b erennes 8
Compiler flags enabled by —g / -fdebug / -debugdb ..o 8
SFSEACK=CNECK ...ttt sttt b e e et bt bt e Rt bt e Rt e Rt et b e R e ReeRe e Rt et et nbenbenneeneenes 8
00T AR o (o OSSOSO 8
e SO0 (e oo i To ISP PSPPSR 8
Compiler flags related to—g / -fdebug / -debugaD............ooiiie e 9
0 [=T o0 oo 1 o Tl L TS OS PSSR 9
U o] T g eto <] oTUTo o [T o To B FTaTch 0] 0= g (] ST 9
Capturing information from a debugging SESSIONc.ciiuiiiiiiiieie et e et e e e sreesre e e 9
COB_DUMPESEUBNAMES ..ottt st et e et e et e et e be e be e s te e s e e sseesbeeseeebeenseaneeaseenneestaesreestennneas 9
COB_ERROR _FILE=SFIBNAMES ...ttt bbbt bbb et eb e 10
[T I = T o o TSSO PP P TP PRTPEUPOUPTPPPTPRPPPPRTOR 10
TS IMIPIE-TIACE ... bbb b b e b bR b e bbbt bbbt bbbttt 10
- Uot PSSRSO 10
E = Uot < || PSSRSO 10
Compile for runtime error-ChECKING ..ottt bbb 10
0 011 TSP 10
Compiler Flags enabled DY —0BDUQGccoo i re et e et e e ne e 10
RUNEIME EXCEPLION CRECKINGc.viiiice et e et e e e st e et e s teeste e beeteasaesneesrnenreennas 11
Compiler flags related to eXCePtion CRECKINGccvi it re e 14
L TR o Talo | [=To BT Cor=T o) o o S P 14
CBL_ERROR _PROC ..ottt ettt sttt sttt sttt sttt sttt ee s ek e e be e ke e e be e b s b e be e ket e beebe s e beebe s eresbe st e s e ebentenentns 15
Controlling the verbosity of the COMPIlEr FTOT FEPOITcoviiiiiiicee bbb 16
VTP T TP U P TPP PP PP ORI 16
= 1 N 1 =SSP 17
AV e C=T] S 0[] TSSO 17
Compiling and Debugging Pre-proCeSSed COUEcuriiiiriiiiirieeie sttt ettt 17
B0 (=Y 000 == oSSBT 17
B o0 Lo [0 B T oot oY A OOV SOUPPURTRPRPR 17
1 GTe R oo T (o 11T IO OOV USOUPPPRTRPRR 17
SYNTAX ONTY CRECKING ...ttt ettt ettt b e bt b e bt e b e et e b e eb ekt sbeeb e e beemeesbesbenbesbeebeane e 17
B o) 1o o 4T QOO OO U PR POUPPPRTRPRPR 17
YY1t L o] 1] YOS PSP PRTRPRPR 18
STVAIIAAEE-0NIY ...ttt b e et b et b et b e bt b e bt R e ettt et e ne et 18
Guidelines for using the COBOL-IT Profiler........cooiiiiiiiiece e 18
{91001 11 1T OO OO OO OSSOSO TSR UR TSP 18

@ COROLT

CrpenSource Business Ciriented Languoge

BCOBROL-

r

Opens —— — COBOL-IT Debugger

Pensource business Urienred Language User,s Guide Version 3.10
Compiler CoNfIQUIALION FlB.........coi ittt et e et et e s e et e s beebeeseene e e e seebeseeereaneens 19
(o L=T o TN R o =17 T OSSPSR 19
AEDUGAD I [YESINOT. ...ttt bbbt b bbb bbb bbb bbb e bR bR R bt b Rt b et nr 19
SOUFCE-10CALIONILYES/NO] ...ttt ettt b bbbt b bbbt b e b e s b eb e nb e bt e bt eb b e s e et e ebe e ebe e 20
deBUGGING-TINE: [YES/NO] ... cveieeieie ettt b e bt b bbb bbb bbb bt b r et b 20
EXEC-CNECK: [YBS/NOT ...ttt b bbb bbb s bbb bbbt b b e bt b e bbb e 20
KEEP-0rg-SIC-TINEILYES/NO] ... ettt bbb bbbttt bbbt b bbbttt ee 20
MEM-INTO [YES/NMOT vttt b bbb kb s bbbt bbb bbbttt bbb 20
00T (o /=557 210 RSP 20
o101 T TR =T 11) USRS 21
relaxed-SYNtaX-ChECK:[YES/NOTciuiiiieiieiee ettt sttt ettt e e s e e st e ae st e s beebeebeeseenteeenbesbesnesrenneens 21
R 0 (T s Tot = =T T) S 21
R oL Lo L=t o TU T R =V] Y=Y 4o SR 21
SEACK-CRECKIIYES/NOT ...ttt ettt bbbt b bbbt b b s bbbt b e s b e bt nb e e et e b e b e 21
SYNEAX-ONTYILYES/NOT ...ttt bbb bbbt b e b st b e s b s eb e btk b et eb e b e bt b e er e 21
EFACEILYES/NO] ...ttt b bt b e b b e R bR R bR R e R R Rt E R bt E Rt E btk h et r e ebennes 22
EFACEAILIYES/NO] ...ttt h e bt bbb b e h bR bR R Rt bR bt E et b e btk b et b rennes 22
trap-unhandled-eXCePtiON:[YES/NO]Tc.eiiiiiriiiit ettt et eb ettt bt re e 22
ValidAtE-ONTY:[YES/NO] ...ttt bbb bbb bbbttt b et 22
COBOL-IT FUNTIME PAFAIMETEISc.iiiieeie ettt sttt ste e e e e s e e e s e e s teesteeteesseaseeassesteesteesteesseasseasaeaseesseenseenseenseansenseenes 22
B 1= o o R o ST 22
B (=Y oo T o e =T o 0T (= ST 22
COBOL-IT runtime environment VariabIeS............ooviiriiiiic s 23
COB_DEBUG_ALLUSERSL ..otttk sh bbbt bbbt b et b et ben e nn s 23
COB_DEBUG_ID=SUEDUG-IU> ...ttt bbbkttt n et 23
COB_DEBUGDB=<DEDUGDB-NAMEScotitiiiiiitiiieitite ettt sttt ettt sb bbbt b e bbb bbb s et b ne et 24
COB_DEBUG_MODULES=<program-id1>:<program-id2>....c.ccccovereiimeneienenieiesiesiee e 24
COB_DEBUG_STARTUP_FILES<FIlENAMEScveocveocecveceeseeeeeeeeeiee e esssssssae s sns s nna s 24
COB_DEBUG_TIMPESAIIECIONY™ociiiteieieite ettt ettt sttt b et b e et b ettt b e bbbt b ettt b b b 25
COB_FILE_TRACES[Y/N] oot en e s s es s s 26
COB_NO_SIGNALSLY/N] etttk bbbkt b bbbt bbb bbb bt b e bbbttt b e enens 26
COBOL-IT LIDFary ROULINES.....c..coiieiiiie ettt ettt e et steeste et e aaeesssesteeste e beesbeasaessaesseesaeenteeteenseansenseenes 26
CEDEBUGcutiitiiieiet ettt bbbt bbbk 1 bbb b1 E b £ AR h A E R R R b R bR e bbb bbb R et ns 26
CBL_DEBUGBREAK ...ttt stttk b ket e bt bbb bbb bbbkt bbbkt b et bbb b ens 27
CBPID ettt bbb h Rk R bR E bR bR R R R R R R R Rt R bR e b bt b bt bRt rens 27
THE COBOL-IT DEBUGGER ENGINE (COBCDB)uuuuuutiiiiiiiiiiiiiiiiiiiiiniinninnnnnnnnnnnnnnennes 29
L@ 1Y T oY o] o LS 0T T PSP 29
QLI CCT B LC] o0 To o =T = o o o USSP 29
SOUICE LLOCALION ...ttt r e bbbt E etk R et R e bt e Rt b e R et e Rt b et b nr et r e n s nras 29
VATTADIES NAIMES ...t h et E e b bt s et R e s r et R e e e e st eR e s e s e e bt s n e eb e nr e e bt nn e eneanes 29
Usage Of the COBOL-IT DEDUGOET:ottt ettt b ettt et e b bt b e b e es e e e et e b sbenbesbeeneenes 31
COMMAN-TINE PAFAIMETEISttt bbbt b et s bt bt e bt bt e st e e e besbeebeebeeb e ese e e enbesbesbesreaneas 31
PIOGIAIM NMAIMIE ... utieuteette et eteestee ke e skt e te e et eaeeeaeesbe e ekt e s bt ea b e es b e eheeeE e e oE e e HE a4 e e 4R et SR e e eh e e eH £ e ke e b e e A b e e R ke e he e e heeehe e ebe e bt enbeanbeanbennee e 31
0] 01 (o] T OO OO OSSOSO PR 31
115 o T ST 31
LIPSO O P TP OP PP OPROPRPP 31
e IRe T bR 31
e 110510 o] TP 32
L T6! T OO PU PSP RTOPPOPRPP 32

@ COROLT

CrpenSource Business Ciriented Languoge

BCOBROL-

r

: . — COBOL-IT Debugger
OpenSource Business Oriented Language User's Guide Version 3.10

T Ao Lo OO 32
VL PSSP O PP OPRPRPP 32
DEDUGUET COMIMEANGSc.eiiiiiitieit bbbt b bbbt b st b e b e e e bt e b et eb e st s e e bt e b e s e eb e eb et et e ab e ebennes 33
L0 £SO SO USRRPPTRPRR 33
BEAK [-L] TADRI. ..ottt bbb bbb bbb bbb bbbt bt e 33
Dreak [-t] MOGUIETIADE ... bbbt bbbttt sb bbbt nbns 33
Dreak [-1] MOGUIETIINE NIo bbb bbb bbb bbbttt b ettt n bt b 33
Dreak [-1] MOGUIBTO ... bbbt b e bbb bbb bbbt b e bttt b et 34
0] OO OSSOSO PR PSTR 34
(010 411D OO OSSOSO VTSP 34
(010 01 (=] U TP PR PRSP 35
(0] (= C IO OO SO U SOUR PSP 35
FrAME SETAME-NUMDEIS ..ttt sttt sb ettt e et sb e s e e besb e e et e st e s e ebesbeeebenees 35
0SSR PR 36
1L 0T oo 1 SO PR 36
TNTO PIOTHIING ...ttt b b bbb bt bbb h e bbbt bbbt b e bbbt n s 37
1L {0 TS0 1U oL SRR 37
TNTO BAIGEE ...ttt b bbb b b h b E e E R R R R R bR R bt h bbb et 37
Q1 OSSP 37
L] ST OO T TP U SO TSP PR URURORO 38
DIEXE etttk h e h R Rt R e R e R e R AR e AR e AR e e R £ oA R £ oA R £ oA EeeR R e AR £ e AR £ e AR £ e R e 4R e SRR e eR R e AR e e nR e e R e e AR e e Rt nRnenreenreenreens 38
LTSN T o] [T g Uy 1= ST 39
LT IRV T T 0] Lo T T >SS 39
0 ST 39
=T o] = To - ST 40
1] T TP P TP PP PP POV PP PPRPVPPRPRRTPN 40
SEL PrOMPL KPROMPE SEFINGS .oeiuieiieitiie ettt st et e s e e s e e sa e besee et e esees e e eesbesbesbeeseeneenteneeseesbesnenneenes 40
set var <variable-name> <VariablE-ValUEScccciviiiiiiiii sttt e 41
set varh <variable-name> <variable-ValUB-NEX>cccceiviiiiiiiiiiicici st 41
] (<] PP TR 41
] (0] o F TPV PP PSPPSR 42
L0 | 1 TSSO P 42
AVLS] £ T PO OSSOSO URO PPN 43
(=T o T oo T=T gl =T o | £ 43
BCAY L= g1 o =1 o To) [ol o OSSP 43
SEVEINE-COMTINMUE ...ttt ettt sttt et b ke h b et e b bt b e e b e e b e h e e e e m b e e E e e b £ e b £ eh e e b e e b e b e eb e eb e nb e eb b e s e et e nbesbe st e abeaneas 43
SBVEBINE-CONTIETUIN ...ttt etttk bbbt ekt e sk bt e ket e sk bt e b e e e b et e ks e e e b E e e ah b e e eh bt e ah b e e e bbb e nab e e enbeennbeeenbeennbeennes 43
EVENE-ENU-SEEPPING-TANGE ... cveiteeeteite ettt ettt ettt sttt sttt b ettt b e e e bt b s e e bt b e e bt e b e e e bt e b b eb e e b et e bt e be b e bt e be b et e nbe b en et 43
LAV B 112 T PO UP PP ORI 43
SEVENE-PIOGIAM-EXITEA.eeiteite ettt bbb bbb e bt bt e bt e b e e bbb e bt e b b e bt s b e b e bt e b b e st et bbb 43
Bk LSLLLEE 1] o OSSR P PR PP 43
O T gt TagT o] Tl o T =10 LSOO P PO URPRSR 44
40| [0 ol o] IS OSSOSO PSP P UPTPRPROON 44
K10 o] oo [el o] TSRO RO USROS 44
ChECK VS @I1 OF TNESE ...ttt bbbt bttt e b e b e bt sb e bt e beene e s e et e beebesbeaneeneas 45

@ COBOLT

CrpenSource Business Ciriented Languoge

COBOI‘_I COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Debuagger User’s Guide

Compile for debugging

The COBOL-IT Debugger is called “cobcdb”. Cobedb can be run from the command-line. Cobcdb
is also integrated into the COBOL-IT Developer Studio, in the Debugger Perspective. There are
many advantages to using the COBOL-IT Debugger inside the Developer Studio, as we will see in
exercises, such as the Debug Attach and “C” level debugging.

For both the command-line version of cobcdb, and the Developer Studio Debugger Perspective,
running a compiled object in the debugger requires that the original source code have been
compiled for debugging. Compiling for debugging causes the compiler to create debugging meta
data, and store it either in the compiled object itself or in a separate file.

These compile options include:

—debugdb=<DebugDB-name>

The —debugdb compiler flag causes the compiler to store debugging meta information in an
SQL.ite3 database.

When compiling with —g, the COBOL-IT compiler stores all debugging meta information in the
program binaries. This could make programs compiled for debug very huge. In some situations, it
could prevent the program from loading into memory.

When compiling with the —debugdb=<DebugDB-name> compiler flag, the compiler stores
debugging meta data in an SQL.ite3 database.

As an example, the command:
>cobc —debugdb=hello hello.cbl
creates a file called hello.dbd in addition to the compiled object.

Copy this file into the same folder as the object file. Or, if you wish to locate it elsewhere, set the
COB_DEBUGDB environment variable to the full path to the DebugDB file.

The same data base should be used for the entire project.

During a debug session, the runtime debugger will check for the existence of the COB_DEBUGDB
environment variable containing the full path to the DebugDB file. If the environment variable is
not set, the runtime will attempt to retrieve the location of the COB_DEBUGDB data file from the
compiled object.

Currently only 1 database may be used at a time. This means that the Customer must use the same
one for all of his programs. Several programs may write metadata to the same database.

@ COROLT

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

9

Produce debugging information in the output.

-fdebugdb

Equivalent to debugdb: yes in config file

The —fdebugdb compiler flag, when used with —g, store alls debugging information into a file
name <modulename>.dbd. Copy this file to the same location as the the object file .so or .dll.
This will permit the runtime debugger to load the debugging information dynamically when needed.

This is different from debugdb=<filename> where you have to specify a unique Debug db for the
whole project.

Compiler flags enabled by —g / -fdebug / -debugdb

-fstack-check

Enables stack checking debug function. The stack checking debug function allows the user to trace
back through the stack of calling programs to the currently running line of source in a program.
The —fstack-check compiler flag is enabled by the —g compiler flag, and by the —debug

compiler flag.

Equivalent to stack-check: yes inthe compiler configuration file.

-fmem-info

Enables Dump of Working-Storage when runtime aborts. The —-fmem-info compiler flag
functionality is enabled by the —g compiler flag, and by the —debug compiler flag.

Equivalent to mem-info: yes inthe compiler configuration file.

-fsource-location

Generates source location code, enabling information to be dumped on source location when the
runtime aborts. The —fsource-location compiler flag is enabled by the —g compiler flag, and by
the —debug compiler flag.

Equivalent to source-location: yes inthe compiler configuration file.

@ COBOLT

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Compiler flags related to—g / -fdebug / -debugdb
-fdebugging-line

Enables support for debugging lines. (Source lines that contain ‘D" in indicator column)
Equivalent to debugging-line: yes

Related:

support-debugging-line:[ok/error]

Default is support-debugging-line:ok

The support-debugging-line compiler configuration entry provides a way to override the compiler’s
support for usage of the character “D” in column 7 to mark a debugging line.

When set to ok (the default) , source lines that contain a “D” character in column 7 are ignored,
unless the compiler configuration flag debugging-line:yes is set, in which case the line is compiled.

When set to error, the compiler generates an error when it encounters a “D” character in column 7.

Capturing information from a debugging session

COB_DUMP=<filename>

When a program has been compiled with —fmem-info, it stores memory information The
COB_DUMP environment variable designates the filename used to dump the memory information
that has been stored when a program aborts that has been compiled with the —fmem-info compiler
flag.

When set to N/NO, no dump is produced. If COB_DUMP is not set, then the memory
information is dumped to the file named by the COB_ERROR_FILE environment variable.

If COB_ERROR_FILE is also not set, memory information is written to stderr.

The output of this dump has been enhanced by adding the memory address of each field.
As an example:
WORKING-STORAGE
RETURN-CODE [6AEF4438] = +000000000
TALLY [6AEF4440] = +000000000
SORT-RETURN [6AEF4448] = +000000000
NUMBER-OF-CALL-PARAMETERS [6AEF4458] = +000000000

@ COROLT

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

COB_ERROR_FILE=<filename>

Designates the filename used to receive all runtime error messages that would otherwise be sent
to stderr. When writing an error message, the runtime will create the specified filename if it
does not exist, and will append to it if it does exist.

File Tracing

File tracing requires the setting of compiler flags, and the naming of a COB_ERROR_FILE to
receive all runtime messages that would otherwise be sent to stderr.

-fsimple-trace

Generates trace output at runtime for executed SECTION/PARAGRAPH:S.

-ftrace

Generates trace output at runtime, listing the SECTION/PARAGRAPH names as they are
executed.

-ftraceall

When also compiled with —g, generates trace output at runtime, listing
SECTION/PARAGRAPH/STATEMENTS names as they are executed.

Compile for runtime error-checking

-debug

Enables all run-time error checking. Runtime exception checking below for more
details.

Compiler Flags enabled by —debug

The following compiler flags are enabled by use of the —debug compiler flag:
-fmem-info

- fsource-location

—fstack-check

These correspond, respectively to the compiler configuration file settings of :

meme-info: yes

@ COBOLT et

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

source-location: yes
stack-check: yes

Runtime exception checking

Runtime exception checking is enabled when compiling with —debug, for the following compiler
configuration flags. For details about the Runtime Exception Checking flags, see the file
exception.def, which is located in $COBOLITDIR\include\libcob, in your distribution.

EC-ALL:[yes/no]
EC-ARGUMENT:[yes/no]
EC-ARGUMENT-FUNCTION:[yes/no]
EC-ARGUMENT-IMP:[yes/no]
EC-BOUND:[yes/no]
EC-BOUND-IMP:[yes/no]
EC-BOUND-ODO:[yes/no]
EC-BOUND-OVERFLOW:[yes/no]
EC-BOUND-PTR:[yes/no]
EC-BOUND-REF-MOD:[yes/no]
EC-BOUND-SET:[yes/no]
EC-BOUND-SUBSCRIPT:[yes/no]
EC-BOUND-TABLE-LIMIT:[yes/no]
EC-DATA:[yes/no]
EC-DATA-CONVERSION:[yes/no]
EC-DATA-IMP:[yes/no]
EC-DATA-INCOMPATIBLE:[yes/no]
EC-DATA-INFINITY:[yes/no]
EC-DATA-INTEGRITY:[yes/no]
EC-DATA-NEGATIVE-INFINITY:[yes/no]
EC-DATA-NOT_A_NUMBER:[yes/no]
EC-DATA-PTR-NULL:[yes/no]
EC-FLOW:[yes/no]
EC-FLOW-GLOBAL-EXIT:[yes/no]
EC-FLOW-GLOBAL-GOBACK:[yes/no]
EC-FLOW-IMP:[yes/no]
EC-FLOW-RELEASE:[yes/no]
EC-FLOW-REPORT:[yes/no]
EC-FLOW-RETURN:[yes/no]
EC-FLOW-SEARCH:[yes/no]
EC-FLOW-USE:[yes/no]
EC-FUNCTION:[yes/no]
EC-FUNCTION-NOT-FOUND:[yes/no]
EC-FUNCTION-PTR-INVALID:[yes/no]
EC-FUNCTION-PTR-NULL:[yes/no]
EC-1-O:[yes/no]
EC-1-O-AT-END:[yes/no]

@ COBOLT et

CrpenSource .Bushesi Ciniented language

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide

Version 3.10

EC-1-O-EOP:[yes/no]
EC-1-O-EOP-OVERFLOW:[yes/no]
EC-1-O-FILE-SHARING:[yes/no]
EC-1-O-IMP:[yes/no]
EC-1-O-INVALID-KEY:[yes/no]
EC-I1-O-LINAGE:[yes/no]
EC-1-O-LOGIC-ERROR:[yes/no]
EC-I-O-PERMANENT-ERROR:[yes/no]
EC-1-O-RECORD-OPERATION:[yes/no]
EC-IMP:[yes/no]
EC-IMP-ACCEPT:[yes/no]
EC-IMP-DISPLAY::[yes/no]
EC-LOCALE:[yes/no]
EC-LOCALE-IMP:[yes/no]
EC-LOCALE-INCOMPATIBLE:[yes/no]
EC-LOCALE-INVALID:[yes/no]
EC-LOCALE-INVALID-PTR:[yes/no]
EC-LOCALE-MISSING:[yes/no]
EC-LOCALE-SIZE:[yes/no]
EC-00:[yes/no]
EC-O0-CONFORMANCE:[yes/no]
EC-OO-EXCEPTION:[yes/no]
EC-O0-IMP:[yes/no]
EC-OO-METHOD:[yes/no]
EC-OO-NULL:[yes/no]
EC-O0O-RESOURCE:[yes/no]
EC-OO-UNIVERSAL:[yes/no]
EC-ORDER:[yes/no]
EC-ORDER-IMP:[yes/no]
EC-ORDER-NOT-SUPPORTED:[yes/no]
EC-OVERFLOW:[yes/no]
EC-OVERFLOW-IMP:[yes/no]
EC-OVERFLOW-STRING:[yes/no]
EC-OVERFLOW-UNSTRING:[yes/no]
EC-PROGRAM:[yes/no]
EC-PROGRAM-ARG-MISMATCH:[yes/no]
EC-PROGRAM-ARG-OMITTED:[yes/no]
EC-PROGRAM-CANCEL-ACTIVE:[yes/no]
EC-PROGRAM-IMP:[yes/no]
EC-PROGRAM-NOT-FOUND:[yes/no]
EC-PROGRAM-PTR-NULL:[yes/no]
EC-PROGRAM-RECURSIVE-CALL:[yes/no]
EC-PROGRAM-RESOURCES:[yes/no]
EC-RAISING:[yes/no]
EC-RAISING-IMP:[yes/no]
EC-RAISING-NOT-SPECIFIED:[yes/no]

@COBOLT

CrpenSource .Bushesi Ciniented language

Page 12

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide

Version 3.10

EC-RANGE:[yes/no]
EC-RANGE-IMP:[yes/no]
EC-RANGE-INDEX:[yes/no]
EC-RANGE-INSPECT-SIZE:[yes/no]
EC-RANGE-INVALID:[yes/no]
EC-RANGE-PERFORM-VARYING:[yes/no]
EC-RANGE-PTR:[yes/no]
EC-RANGE-SEARCH-INDEX:[yes/no]
EC-RANGE-SEARCH-NO-MATCH:[yes/no]
EC-REPORT:[yes/no]
EC-REPORT-ACTIVE:[yes/no]
EC-REPORT-COLUMN-OVERLAP:[yes/no]
EC-REPORT-FILE-MODE:[yes/no]
EC-REPORT-IMP:[yes/no]
EC-REPORT-INACTIVE:[yes/no]
EC-REPORT-LINE-OVERLAP:[yes/no]
EC-REPORT-NOT-TERMINATED:[yes/no]
EC-REPORT-PAGE-LIMIT:[yes/no]
EC-REPORT-PAGE-WIDTH:[yes/no]
EC-REPORT-SUM-SIZE:[yes/no]
EC-REPORT-VARYING:[yes/no]
EC-SCREEN:[yes/no]
EC-SCREEN-FIELD-OVERLAP:[yes/no]
EC-SCREEN-IMP:[yes/no]
EC-SCREEN-ITEM-TRUNCATED:[yes/no]
EC-SCREEN-LINE-NUMBER:[yes/no]
EC-SCREEN-STARTING-COLUMN:[yes/no]
EC-SIZE:[yes/no]
EC-SIZE-ADDRESS:[yes/no]
EC-SIZE-EXPONENTIATION:[yes/no]
EC-SIZE-IMP:[yes/no]
EC-SIZE-OVERFLOW:[yes/no]
EC-SIZE-TRUNCATION:[yes/no]
EC-SIZE-UNDERFLOW:[yes/no]
EC-SIZE-ZERO-DIVIDE:[yes/no]
EC-SORT-MERGE:[yes/no]
EC-SORT-MERGE-ACTIVE:[yes/no]
EC-SORT-MERGE-FILE-OPEN:[yes/no]
EC-SORT-MERGE-IMP:[yes/no]
EC-SORT-MERGE-RELEASE:[yes/no]
EC-SORT-MERGE-RETURN:[yes/no]
EC-SORT-MERGE-SEQUENCE:[yes/no]
EC-STORAGE:[yes/no]
EC-STORAGE-IMP:[yes/no]
EC-STORAGE-NOT-ALLOC:[yes/no]
EC-STORAGE-NOT-AVAIL:[yes/no]

@COBOLT

CrpenSource .Bushesi Ciniented language

Page 13

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

EC-USER:[yes/no]
EC-VALIDATE:[yes/no]
EC-VALIDATE-CONTENT:[yes/no]
EC-VALIDATE-FORMAT:[yes/no]
EC-VALIDATE-IMP:[yes/no]
EC-VALIDATE-RELATION:[yes/no]
EC-VALIDATE-VARY ING:[yes/no]
EC-XML.:[yes/no]
EC-XML-CODESET:[yes/no]
EC-XML-CODESET-CONVERSION:[yes/no]
EC-XML-COUNT:[yes/no]
EC-XML-DOCUMENT-TYPE:[yes/no]
EC-XML-IMPLICIT-CLOSE:[yes/no]
EC-XML-INVALID:[yes/no]
EC-XML-NAMESPACE:[yes/no]
EC-XML-RANGE:[yes/no]
EC-XML-STACKED-OPEN:[yes/no]

Compiling with the —debug compiler configuration flag enables all of the exception checks.

When not compiling with —debug, you can enable specific exception checks by setting the
associated compiler configuration flag to yes in the compiler configuration file.

Compiler flags related to exception checking

-ftrap-unhandled-exception

Equivalent to trap-unhandled-exception: yes inthe compiler configuration file.

The —ftrap-unhandled-exception flag is useful in cases where certain EC compiler configuration file
flags are set to yes, yet ON EXCEPTION/ON SIZE ERROR/ON OVERFLOW language is not
present in the COBOL program. In these cases, using the —ftrap-unhandled-exception compiler
flag causes the information made available to the user to be enhanced when the program aborts.

As an example, in a case where there is a compiler configuration flag setting of :
EC-SIZE:yes

and where this phrase does not contain an ON SIZE ERROR clause, the program would abort in
cases where a SIZE ERROR was triggered. In combination with —ftrap-unhandled-exception:yes,
all size error events will be captured.

As another example, where there is a compiler configuration flag setting of:
EC-SIZE-ZERO-DIVIDE:yes

In combination with trap-unhandled-exception:yes, setting EC-SIZE-ZERO-DIVIDE:yes will
capture all division by zero error events if no ON SIZE ERROR clause is present.

@ COROLT et

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Note- this applies to the following EC- compiler configuration flags:

EC-IMP-ACCEPT :yes

For Accept exception
EC-IMP-DISPLAY :yes

For Display exception
EC-SIZE : yes

#For Arithmetic exception
EC-OVERFLOW : yes

For String/Unstring exception

Note that all of the EC- compiler configuration flags can be set to yes using the —debug compiler
flag. You may wish that your error procedure be always called on any exception, and thereby
ensure that your server will handle it and not crash. In these cases, you should use the

—debug compiler flag together with the —ftrap-unhandled-exception flag.

For details on how to install and uninstall error procedures, see the documentation for the
CBL_ERROR_PROC library routine. CBL_ERROR_PROC installs or uninstalls an error
procedure, which is run when a program-ending error occurs. The Error Routine allows the user to
register procedures that will automatically be executed either when a program-ending error occurs.

CBL_ERROR_PROC

CBL_ERROR_PROC installs or uninstalls an error procedure, which is run when a program-ending
error occurs. The Error Routine allows the user to register procedures that will automatically be
executed either when a program-ending error occurs.

Usage

call "CBL ERROR PROC" using error-proc-flag,
error-proc-addr.

Parameters

e error-proc-flag
o setto O to install error proc
o setto 1 to uninstall error proc
01 ERROR-PROC-FLAG PIC X COMP-X VALUE 0.

e error-proc-addr address of error proc
01 ERROR-PROC-ADDR USAGE PROCEDURE-POINTER.

e error-proc-msg message from error
LINKAGE SECTION.

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

01 ERROR-PROC-MSG PIC X(ERROR-PROC-MSG-LEN).

Syntax
error-proc-flag set to 0 to install error proc

set to 1 to uninstall error proc
error-proc-addr address of error proc
error-proc-msg message returned through linkage
Code Sample

78 ERROR-PROC-MSG-LEN VALUE 325.

01 ERROR-PROC-FLAG PIC X COMP-X VALUE 0.

01 ERROR-PROC-ADDR USAGE PROCEDURE-POINTER.
01 STATUS-CODE PIC 9(4) COMP VALUE ZEROS.

LINKAGE SECTION.
01 ERROR-PROC-MSG PIC X(ERROR-PROC-MSG-LEN).
PROCEDURE DIVISION.
MAIN.
SET ERROR-PROC-ADDR TO ENTRY "ERROR-PROC".
CALL "CBL_ERROR_PROC" USING ERROR-PROC-FLAG,
ERROR-PROC-ADDR
RETURNING STATUS-CODE.

*

ENTRY "ERROR-PROC" USING ERROR-PROC-MSG.
DISPLAY "IN ERROR PROCEDURE".
DISPLAY FUNCTION TRIM(ERROR-PROC-MSG).
DISPLAY FUNCTION EXCEPTION-LOCATION.
EXIT PROGRAM.
STOP RUN.

Controlling the verbosity of the Compiler error report

-V

Produces verbose output. The output of the —v compiler flag displays, all of the steps, and
intermediate programs created by the compilation.

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

-err <file>

Causes errors and warnings to be written to <file> instead of stderr

-save-temps (=<dir>)

Causes all intermediate files to be preserved. Note- “intermediate files” are the “C” source and
header files that are created during the compilation process. These files will be located in a
subdirectory named “c”, when using the —save-temps compiler flag.

Compiling and Debugging Pre-processed Code

-fdebug-exec

Affects the tracing of Exec statements when debugging code that has been compiled with the
integrated pre-processor (-preprocess). When using the Integrated Preprocessor Interface, the
default behavior of the debugger is to —not- trace (display) the code generated by the external
preprocessor. Only the original source EXEC statements are shown. The —fdebug-exec
compiler flag enables the tracing (debugging) of the generated code.

Equivalent to debug-exec: yes inthe compiler configuration file.

-fexpand-exec-copy

The —fexpand-exec-copy compiler flag causes the compiler to expand COBOL COPY statements
inside EXEC ... END-EXEC blocks. This applies to both EXEC SQL and EXEC CICS blocks.

Equivalent to: expand-exec-copy:yes in config file

-fkeep-org-src-line

For use with the integrated pre-processor (-preprocess). Causes errors to be reported on the
original source line.

Equivalent to keep-org-src-1line: yes inthe compiler configuration file.

Syntax Only Checking

-fexec-check

Used with -fsyntax-only, checks the EXEC SQL/CICS/DLI syntax

@ COROLT o1

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Equivalent to exec-check: yes inthe compiler configuration file.

-fsyntax-only

Performs syntax error checking only. Output is limited to results of syntax check.

Equivalent to syntax-only: yes inthe compiler configuration file.

-fvalidate-only

Compile source, no output produced, EXEC are ignored

Equivalentto validate-only: yes inthe compiler configuration file.

Guidelines for using the COBOL-IT Profiler

COBOL-IT provides a profiling utility that allows you to analyze where your programs are
spending time by providing output, in Excel format, on the number of times a paragraph is
executed, and both CPU and elapsed time spent in each paragraph.

The COBOL-IT Profiler is enabled by using the —fprofiling compiler flag, or by setting :
profiling: yes in the compiler configuration file.

-fprofiling

Generates paragraph profiling code. The output produced by the profiler includes separate
Counts for CPU and real elapsed times.

The time is expressed in a platform-dependent unit, named “Ticks” as provided by the runtime
environment of the “C” Compiler at hand. Please check the clock function for more information

about this.

Because of the coarseness of this unit, some of the times measured as described above may be zero,
while the paragraph has been executed one or more times.

On program exit, the COBOL_IT runtime generates a file named [module] [PID]_profile.xls
where [module] is the program name and [PID] is the PID number. This file is a tab separated text
file, and can be opened directly with a spreadsheet like OpenOffice Calc or Microsoft Excel.

To enable the profiling utility, compile your program with the —fprofiling compiler flag.

Example:

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource BiJsinessOriéntea Language .
be A User’s Guide Version 3.10

>cobc —-fprofiling sample.cbl
>cobcrun sample
>sample 11344 profile.xls

Inse Pag out Formulas Data Review Wievy Tean
T

-] (| [N ChL, P Z AutoSur
Calibri H rrg o = Wrap Text General © :Ej; :ﬁ;rd) ek 'C;J &) -

||£E £E| @Marge&(entar' |'$ ~ % »| %8 ;%8| Conditional Format Cell Insert Delete Format

[
%

com 53 Copy i

aste B U | - ~[{|]

- jFormat Painter = = — Formatting = as Table = Styles = - - - (2 Clear -
Clipboard I Font [Alignment) Mumber [Styles Cells

Al - 5 | Paragraph
A B c D E G
1 |paragraph Jentry count Total CPU (1/1000 sec) External call CPU{1/1000 sec) Total Elaps (1/1000000 sec) External call Elaps(1/1000000 sec)
sample: sample 0] 0
sample: MAIN SECTION.MAIN SECTION 0 0
sample: MAIN SECTION.main 14 14000
sample: MAIN SECTION.open-files 7 7000
sample: MAIN SECTION.update-reswords-file 0 0
sample: MAIN SECTION.EXIT PERFORM 8 14 14000
sample: MAIN SECTION.set-filestat-messages 0 0
sample: MAIN SECTION.show-msg-screen 2551 2552000
10 [sample: MAIN SECTION.exit-sample 0 0
11 sample: MAIN SECTION.Default Error Handler 0 0

G~ WU e W N

o
o0 00000000

R R R L = =
o0 o 000000

Compiler Configuration File

debug-exec: [yes/no]

Default is debug-exec: no.

When set to yes,

Affects the tracing of Exec statements when debugging code that has been compiled with the
integrated pre-processor (-preprocess). When using the Integrated Preprocessor Interface, the
default behavior of the debugger is to —not- trace (display) the code generated by the external
preprocessor. Only the original source EXEC statements are shown. The —fdebug-exec
compiler flag enables the tracing (debugging) of the generated code.

debugdb:[yes/no]

Default is debugdb : no.

When set to yes, and when used with —g, stores all debugging information into a file name
<modulename>.dbd. Copy this file to the same location as the the object file .so or .dll. This will
permit the runtime debugger to load the debugging information dynamically when needed.

This is different from debugdb=<filename> where you have to specify a unique Debug db for the
whole project

@ COROLT oo 19

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

source-location:[yes/no]
Default is source-location:no.

When set to yes,
Generates source location code, enabling information to be dumped on source location when the
runtime aborts.

source-location:yes is enabled by the —g compiler flag and by the —debug compiler flag.

debugging-line: [yes/no]

Default is debugging-1line:no.

When set to yes,
Enables support for debugging lines. (Source lines that contain 'D" in indicator column).

exec-check: [yes/no]

Default is exec-check: no.

When set to yes,
Used with -fsyntax-only, checks the EXEC SQL/CICS/DLI syntax.

keep-org-src-line:[yes/no]
Default is keep-org-src-line:yes.

When set to yes,
For use with the integrated pre-processor (-preprocess). Causes errors to be reported on the
original source line.

mem-info: [yes/no]
Default is mem-info:no.

When set to yes,
Enables Dump of Working-Storage when runtime aborts.

mem-info:yes is enabled by the —g compiler flag and by the —debug compiler flag.

nostrip: [yes/no]
Default is nostrip:no.

When set to yes,
Causes objects and object and executable files to NOT be stripped.
Stripping an object or an executable is the action of removing system level debugging information

@ COROLT oo 20

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

profiling: [yes/no]

Defaultisprofiling: no.

When set to yes,

The compiler generates paragraph profiling code. The output produced by the profiler includes
separate counts for CPU and real elapsed times. For more details on using COBOL-IT’s built
in Profiler, see Guidelines for use of Profiler below.

relaxed-syntax-check:[yes/no]

Default is relaxed-syntax-check: yes

Affects strictness of syntax checking rules applied by the compiler.
When set to yes,

Relaxed syntax checking rules are applied by the compiler.

simple-trace:[yes/no]
Defaultis simple-trace:no.

When set to yes,
Generates trace output at runtime for executed SECTION/PARAGRAPHS.

split-debug-mark:[yes/no]
Defaultis split-debug-mark:yes.

When set to yes,
DEBUG marks respect max 72 characters (default)

stack-check:[yes/no]
Default is stack-check:no.

When set to yes,
Enables stack checking debug function. The stack checking debug function allows the user to trace
back through the stack of calling programs to the currently running line of source in a program.

stack-check:yes is enabled by the —g compiler flag and by the —debug compiler flag.

syntax-only:[yes/no]
Defaultis syntax-only:no.

@ COROLT o2t

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

When set to yes,
Performs syntax error checking only. Output is limited to results of syntax check.

trace:[yes/no]
Default is trace:no.

When set to yes,
Generates trace output at runtime, listing the SECTION/PARAGRAPH names as they are
executed.

traceall:[yes/no]
Defaultis traceall:no.

When set to yes,
Generates trace output at runtime, listing SECTION/PARAGRAPH/STATEMENTS names as they
are executed.

trap-unhandled-exception:[yes/no]
Default is trap-unhandled-exception:no.

When set to yes,

Is useful in cases where certain EC compiler configuration file flags are set to yes, yet ON
EXCEPTION/ONSIZE ERROR/ON OVERFLOW language is not present in the COBOL
program. In these cases, using the —ftrap-unhandled-exception compiler flag causes the
information made available to the user to be enhanced when the program aborts.

For more details, see the documentation of the —ftrap-unhandled-exception compiler flag.

validate-only:[yes/no]

Defaultis validate-only:no.

When set to yes, causes the compilation of source to ignore all EXEC statements, and produce no
compiled objects. Compiler errors are produced, and can be captured in an error file, (using —err,
for example.

COBOL-IT runtime parameters
--debug, -d

Suspends and waits for debugger

--debug, -d --remote -r

Same as —debug but uses a separate file for events

@ COBOLT o2

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

COBOL-IT runtime environment variables
COB_DEBUG_ALLUSER=1

The COB_DEBUG_ALLUSER environment variable, when set to 1, and when defined before
running a COBOL program, causes the pipes that are created by the debugger to communicate with
cobcdb to have an attribute mask of 777, which provides Read/Write attributes for all users.

For the case where cob_init(. . .) has already been called, the same effect can be achieved by
calling:

cob_debug_acl_alluser(rtd,1);

This will also ensure that the pipes that are created by the debugger to communicate with cobcdb
have Read/Write attributes for all users.

Note- Usage of COB_DEBUG_ALLUSER, and/or COB_DEBUG_TMP may be indicated if you
receive this error message opening a pipe created by the debugger:

Error opening /[path]/debug_xxx.cit for write (13: Permission denied)

COB_DEBUG_ID=<debug-id>

Defines a numeric ID that may be used to catch the program instead of the process id (PID). When
defined, a debugger may attach to the program using the COB_DEBUG_ID.

Before running the program in debug, define the environment variable COB_DEBUG _ID, for
example:

export COB_DEBUG_ID= <debug-id>
where <debug-id> is an integer.
Attach to the program using the debug-id:

For details on the debug attach functionality, see the documentation of the C$DEBUG library
routine.

Then at run time you must define the runtime environment variable:
COB_DEBUGDB=<DebugDB-name>

When compiling with —debugDB=<DebugDB-name>, the compiler will modify the way debugging
information is stored at compile-time. Instead of storing the metadata in the compiled object, the
metadata will be stored in an SQL.ite3 database named by <DebugDB-name>.

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

COB_DEBUGDB=<DebugDB-name>

The COB_DEBUGDB=<DebugDB-name> runtime environment variable allows the runtime to
locate this file during a debugging session, and use the debugging information. Currently only 1
database may be use at a time. As a consequence, the user must use the same database for all of the
programs in his run unit.

COB_DEBUG_MODULES=<program-id1>:<program-id2>....

COB_DEBUG_MODULES is a list of program-ids, in which the entries are separated by a colon
character “:”. Adding the program-id of a program in your application to the list of
COB_DEBUG_MODULES causes the debugger to break at the entry of that program.

This provides an alternative way to attach the debugger to a running process in cases where

programs do not contain calls to “C$DEBUG”, or where you do not have access to the remote
attach interface in the Developer Studio.

COB_DEBUG_STARTUP_FILE=<filename>

The console debugger cobcdb can locate source files that have been re-located after
compilation using the COB_DEBUG_STARTUP_FILE runtime environment variable and
invoking the replace debugger command.

The COB_DEBUG_STARTUP_FILE runtime environment variable is set to the name and
location of a file containing any humber of commands that are executed when cobcdb is
started.

export COB_DEBUG_STARTUP_FILE=<filename>

To locate a source file that has been moved, and associate it with an object compiled for
debug, use the 'replace' debugger command, which changes the path to the source file.

The syntax is as follows: replace <oldprefix> : <newprefix>

The replace debugger command allows you to replace the location where the source files
associated with the program being debugged are stored.

The replace debugger command replaces any prefix of the full pathname, so the command
replace /dirA : /dirB will allow any program that was originally compiled in
/dirA/dev/sources to have its source stored in /dirB/dev/sources.

Subsequent commands are stacked, so when typing two more commands as follows :

replace /dirC : /dirD
replace /dirE : /dirF

you will end up with a list of three possible replacements. Only the first matching

@ COROLT g2t

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language

User’s Guide Version 3.10
replacement will be executed.
Further usages include:
replace <no arguments> Resets the list, removing active replacements
replace ? Produces a list of active replacements.

Note that replace only affects the output of the list command.
The list debugger command allows you to expand the source you can see inside the console
debugger as you execute your debugger commands:

(cobcdb)

s

-event-step

(cobcdb)

-event-end-stepping-range #0 CUSTOMERO () at /opt/cobol-it-
64/samples/customer0.cbl!99

.0000099> CALL "C$PID" USING PID.

list

.0000094.

.0000095.

3K 3K 3K 3k 3K >k 3K >k 3K 5K 3Kk 5K K 5K >k 5K >k 3K 5K >k 5K >k 5k >k Kk 5K Kk 5K >k 5K >k 3K 5K K 5K >k 3k K 3Kk K K 5K >k 5k K 3K >k 3K 5K kK 3K >k 3k >k kK >k kK >k kK 3k >k %k X %k %k %k
.0000096. PROCEDURE DIVISION.

.0000097.

.0000098. Main Section.

.0000099> CALL "C$PID" USING PID.

.0000100. DISPLAY "PID = " PID.

.0000101. * CALL "C$DEBUG"

.0000102. ACCEPT W-SYS-DATE FROM DATE.
.0000103. MOVE W-SYS-YY TO CURR-YY.
.0000104. MOVE W-SYS-MM TO CURR-MM.,
(cobcdb)

Other commands such as info sources or break will still produce the original pathname as
it was stored in the binary code of the program. Other commands such as break require a
match with the original pathname in order to be executed.

COB_DEBUG_TMP=<directory>

Default is /tmp.
COB_DEBUG_TMP control where the files and pipes created by the debugger are stored.

The runtime debugger uses named pipes to communicate. These are pipes with a file name, and by
default, they are located in /tmp. You may relocate them by defining the COB_DEBUG_TMP
environment variable.

This variable can be set in the login script of the user used to connect the remote debugger, as
defined in the remote connection tab of the Developer Studio This variable can also be set in the
local runtime environment. It does not need to be set in both locations. If it is set in both locations,
the settings should be identical, or the settings will be ignored, and the default value of /tmp will be

@ COBOLT e

CrpenSource .Bushesi Ciniented language

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

used.

The COB_DEBUG_TMP environment variable may be required when debugging remotely
attaching to a running process using the Developer Studio Remote System Explorer. This could be
the case if COBOL-IT user:group that the program is running under have different permissions on
pipe files created by default in the /tmp directory than the user:group of the user running the
debugger. This problem is resolved by use of the COB_DEBUG_TMP environment variable which
can be used to relocate the named pipes used by the runtime debugger into a directory in which the
permissions of the user:group running the program and the permissions of the user:group running
the debugger are the same.

Note- Usage of COB_DEBUG_ALLUSER, and/or COB_DEBUG_TMP may be indicated if you
receive this error message opening a pipe created by the debugger:

Error opening /[path]/debug_xxx.cit for write (13: Permission denied)

COB_FILE_TRACE=[Y/N]

Default is N

When set to Y, file tracing information is output to the file named by COB_ERROR_FILE, which
includes information on how the runtime resolves file names on OPEN, and also status codes
returned from unsuccessful file i-o operations. The COB_FILE_TRACE runtime environment
variable is evaluated when the OPEN statement is executed by the runtime. Changes to the
COB_FILE_TRACE runtime environment variable can be made during the runtime session.

COB_NO_SIGNAL=[Y/N]

Default is N.

When set to Y, causes the runtime to not catch the signal which lets the system build a core dump.
Setting COB_NO_SIGNAL can improve performance, while reducing the diagnostic capabilities of
the runtime.

COBOL-IT Library Routines
C$DEBUG

C$DEBUG is a library routine which can be called using either the PID of the runtime session, or
the value of the environment variable COB_DEBUG_ID. Prior to calling CSDEBUG, the program
should acquire the value of the PID / COB_DEBUG_ID.

You may acquire the value of the PID of the runtime session by calling the C$PID library routine,
using a PIC 9(n) parameter. The parameter must be numeric, and large enough to hold the value of

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

the Process ID.

For example :
77 ws-pid PIC 9(5).

CALL « C$PID » USING ws-pid.
CALL « C$DEBUG » USING ws-pid.

You may also call CSDEBUG USING the value of the runtime environment variable
COB_DEBUG_ID. Using the runtime environment variable COB_DEBUG _ID to hold the value of
this parameter has an advantage if you prefer to set the value of the parameter yourself. Acquire
the value of COB_DEBUG_ID programmatically before calling the CSDEBUG library routine.

The parameter must be numeric, and large enough to hold the value of the value of the runtime
environment variable COB_DEBUG _ID.

For example :
77 ws-did ~ PIC 9(5).

A.C.Z.CEPT ws-did FROM ENVIRONMENT « COB_DEBUG_ID ».
CALL «C$DEBUG » USING ws-did.

After a call to CSDEBUG is made, the executing program, or subprogram is paused. In this state,
the COBOL-IT Debugger may be attached to this runtime process from the COBOL-IT Developer
Studio.

CBL_DEBUGBREAK

CBL_DEBUGBREAK is a synonym for CSDEBUG. CBL_DEBUGBREAK is a library routine
which can be called using either the PID of the runtime session, or the value of the environment
variable COB_DEBUG _ID.

For example :
77 ws-pid PIC 9(5).

CALL « C$PID » USING ws-pid.
CALL « CBL_DEBUGBREAK » USING ws-pid.

For more details, see the documentation of the C$DEBUG library routine.

C$PID

CS$PID retrieves the Process ID of the current process.
Note that C$PID is not currently available on Windows platforms.

Usage

@ COBOLT e

CrpenSource .Bushesi Ciniented language

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

CALL "CSPID" USING process-—id.

Parameters

process-id PIC 9(n).

Syntax

process-id IS a numeric data item which must be large enough to hold the process-id.

Code Sample

*

77 PROCESS-ID PIC 9(7).

CALL "CS$PID" USING PROCESS-ID.

Key concepts

e In order to attach to the COBOL-IT Debugger, the program containing the call to CSDEBUG
library routine must be compiled with —g.

e The COBOL-IT Developer Studio will request the location of the source file associated with the
program/subprogram that has been paused by the CSDEBUG command, for purposes of
debugging.

e The COBOL-IT Developer Studio attaching to the paused runtime session requires a COBOL
Project, and requires that some configuration. Recommended settings are :

o Window>Preferences>Run/Debug>Perspectives>Open the associated perspective when
lauching (Always)

@ COROLT oo 28

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

The COBOL-IT Debugger Engine (cobcdb)

The COBOL-IT Debugger Engine (cobcdb) has been designed to operate as an engine, working in
the background, behind a user interface, such as the interface that is provided by the COBOL-IT
Debugging Perspective in the Developer Studio. The COBOL-IT Debugger Engine (cobcdb) runs
shared object files that have been created by the COBOL-IT Compiler (cobc) and that have been
compiled with the —g compiler flag.

Conventions Used

The Debugger Prompt

When you start the COBOL-IT Debugger Engine, the COBOL-IT Debugger Window presents a
prompt, into which a Debugger Command can be entered. After entering a Debugger Command,
the user will see the results of their command returned, with a subsequent debugger prompt.
The default debugger prompt is (cobcdb).

To illustrate:

C:\COBOL\COBOLIT\samples>cobcdb hello

CreateProcess "cobcrun -d hello ".

command:11516

(cobcdb)

event:11516

-event-end-stepping-range #0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!8
(The debugger prompt is here. As an example, enter the version command:)
version

~"COBOL-IT cobcdb 3.6.4\n"

Adone

(cobcdb)

(Enter a subsequent command here.)

Source Location

Source Location is formatted as:
<Absolute source path name>!<line number>

Example: C:/COBOL/COBOLIT/samples/hello.cbl!21

Variables names

<variable-name> is formatted as:

@ COBOLT e

CrpenSource Business Ciriented Languoge

COBOI‘_;I— COBOL-IT Debugger

OpenSource Business Oriented Language .
be A User’s Guide Version 3.10

[@<module-name>.][<section>.][<upper-level-fields >.]<field-name>

If no <module-name> is given, current module is searched

If no <section> is given, sections are searched in the following order: file section, working-storage
section, linkage-section.

If no <upper-level-field> is given, the first matching field as presented in the original source is
returned

Example:

WORKING-STORAGE.WrkA.Wrk_G1.Wrk_G1_F1 or Wrk_G1.Wrk_G1_F1
is equivalent to
@PrgA.WORKING-STORAGE.WrkA.Wrk_G1.Wrk_G1_F1

where declarations are:
working-storage section.
01 WrkA.
03 Wrk_F1 PIC 99.
03 Wrk_F2 PIC 99.
03 Wrk_G1.
05 Wrk_G1_F1 PIC 99.
05 rk_G1_F2 PIC99.

@ COROLT o0

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

Usage of the COBOL-IT Debugger:

>cobcdb [options] [program name] [command-line parameters]

command-line parameters

are parameters which would be returned to the program through an
ACCEPT from COMMAND-LINE statement.

program name

is the name of the shared object file created by the COBOL-IT Compiler (.dll, .so).

options

are parameters that are passed to the COBOL-IT Debugger. These options include:

-listdid

Causes the COBOL-IT Debugger to list all the running processes by PID, as well as debug-id.
As an example:
C:\COBOL\COBOLIT>cobcdb -listdid

did: -------- pid: 11412 module:
did: -------- pid: 11956 module:
did: 12345 pid: 11536 module: hello
did: -------- pid: 3296 module:
did: -------- pid: 3324 module:
-n
(Windows only). Causes the COBOL-IT Debugger to start the execution of program name
ina new cmd.exe window.
-p <did>

Causes the COBOL-IT Debugger to connect to the running process identified by did. did
the debug-id. did may be a debug-id, set with the runtime environment variable
COB_DEBUG_ID, or it may be the process id (pid) of the currently running process.
When using the -p did parameter, there is no need to specify program name, as the
program is identified by did.

@ COBOLT et

CrpenSource .Bushesi Ciniented language

BCOBROL-

OpenSource Business Oriented Language

r

— COBOL-IT Debugger
User’s Guide Version 3.10

-r host:port

-trace

Connects two TCP sockets to host:port. Debugger commands, and the results returned are
transmitted via these sockets. Used by the Remote System Explorer in the COBOL-IT
Developer Studio.

Sockets are identified by the first line sent.

Socket1 is used to exchange Command/Result information. As an example, the COBOL-IT
Debugger will READ Commands Socketl, and WRITE the results of the command to that
socket.

Socketl is identified by “command:pid\n” where pid is the process-ID.

Socket?2 is used to write Debugger Events. For more information about Debugger Events,
See the Chapter below titled “Debugger Events”.

Socket?2 is identified by “event:pid\n” where pid is the process-ID.

Causes the COBOL-IT Debugger to write tracing information to cobcdb.out.

-w <did>

y tty

Causes the COBOL-IT Debugger to interrupt the process identified by did and set it into a
“wait for connect” state. did is the debug-id. Did may be a debug-id, set with the runtime
environment variable COB_DEBUG_ID, or it may be the process id (pid) of the currently
running process. A program that has been set into this state can be debugged with the
—p did command. When using the -w did parameter, there is no need to specify program
name, as the program is identified by did.

(UNIX/Linux only). Causes the COBOL-IT Debugger to assign stdout/stdin/stderr to tty.
When running the COBOL-IT Debugger with —y tty, program name is required.

@ COROLT e

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

Debugger Commands

Debugger Commands include:

break

causes a breakpoint to be set in the location that is indicated. With the addition of
the -t flag, breakpoints can be created as temporary breakpoints, which are erased
after they have been reached the first time. The break command requires a
location parameter. Location parameters for the break command are:

module Sets a breakpoint in a module, as identified by program-id.
label Sets a breakpoint at a paragraph name.

line-nr Sets a breakpoint at a line number.

module, label, and line-nr can be combined, with a ! notation.

break [-t] label

sets a breakpoint at a paragraph name..

Example:

(cobcdb)

break -t para-1

Breakpoint 1 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl
(cobcdb)

break [-t] module!label

sets a breakpoint at a paragraph name (label) in a module. module is identified by
source file name. If no module name is specified, then the current module is used.
Since module may not be loaded yet, no validation of module!label is made.
Example:

(cobcdb)

break -t C:/COBOL/COBOLIT/samples/hello.cbl!para-1

Breakpoint 2 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

break [-t] module!line-nr

sets a breakpoint at a line number in a module. module is identified by source file
name. if no module name is specified, then the current module is used. Since
module

@ COROLT oo

CrpenSource Business Ciriented Languoge

BCOBROL-

OpenSource Business Oriented Language

r

— COBOL-IT Debugger
User’s Guide Version 3.10

may not be loaded yet, no validation of module!line-nr is made.
Example:

(cobcdb)

break -t C:/COBOL/COBOLIT/samples/hello.cbl!22

Breakpoint 3 at C:/COBOL/COBOLIT/samples/hello.cbl!22
(cobcdb)

break [-t] module!0

sets a breakpoint at the entry-point to module. module is identified by source file
name. if no module name is specified, then the current module is used.

Example:

break -t c:/COBOL/COBOLit/samples/subpgm.cbl!0

Breakpoint 1 at c:;/COBOL/COBOLit/samples/subpgm.cbl ! 0

(cobcdb)

Or

break -t subpgm.cbl!0

Breakpoint 1 at subpgm.cbl ! 0

(cobcdb)

bt
causes a CALL/PERFORM stack trace to be generated. The format for the stack trace
display is : #<frame-number><module>() at <source-location>
Example:
bt
#0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!21
#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!16
(cobcdb)
frame-number 0 is the current program position

continue

causes execution of program to be continued until the next breakpoint is
encountered, or until the end of the program . An event-continue command is
issued. As seen in the example below, this is interrupted when an event-
breakpoint-hit event takes place.

Example:

break -t para-1

Breakpoint 1 in para-1 at C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

@ COROLT et

CrpenSource Business Ciriented Languoge

COBOI‘_;I— COBOL-IT Debugger

OpenSource Business Oriented Language .
be A User’s Guide Version 3.10

continue

-event-continue

-event-breakpoint-hit (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!122
(cobcdb)

Example :

break -t C:/COBOL/COBOLIT/samples/hello.cbl!22
Breakpoint 1 at C:/COBOL/COBOLIT/samples/hello.cbl | 22
(cobcdb)

continue

-event-continue

-event-breakpoint-hit (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!122

contreturn

causes execution to continue to the next PERFORM return, or break on the first
breakpoint reached, which ever comes first. An event-contreturn command is
issued. Thisis interrupted when an —event-end-stepping-range event takes place.
Example :

contreturn

-event-contreturn

(cobcdb)-event-end-stepping-range #0 hello () at
C:/COBOL/COBOLIT/samples/hello.

cbll17

delete <x>

causes breakpoint number x to be deleted.
Example:

(cobcdb)

delete 3

Adone

(cobcdb)

frame <frame-number>

Prints the source location for the designated frame number. The frame numbers of
an application run session are the points at which the application has branched

@ COROLT oo

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

either due to a PERFORM <paragraph> statement or a CALL <subprogram>

statement.
Example:
(cobcdb)
frame 0
#0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25
(cobcdb)
frame 1
#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!17
(cobcdb)
info
causes information to be displayed about the <info parameter> that is indicated.
The info command requires an <info parameter>.
Info parameters for the info command are:
locals Displays a dump of the current variables in memory
sources Displays a list of source files corresponding to loaded
modules.
target Displays the Process ID of the runtime session.
info locals
displays a dump of the values of the fields in the modules currently loaded in
memory.
Example :
(cobcdb)
info locals

@hello. WORKING-STORAGE

@hello. WORKING-STORAGE.RETURN-CODE = [10]"+000000000"

@hello. WORKING-STORAGE.TALLY = [10]"+000000000"

@hello. WORKING-STORAGE.SORT-RETURN = [10]"+000000000"

@hello. WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS = [10]"+000000000"
@hello.WORKING-STORAGE.message-line = [11]" "

@hello. WORKING-STORAGE.ws-dummy = [1]" "

@hello. WORKING-STORAGE.ctr = [6]"000000"

@hello. WORKING-STORAGE.COB-CRT-STATUS = [4]"0000"

(cobcdb)

Info is returned in a structured tree using SECTION as a header in the form :
<variable name> = [<size>]"<string>"
<variable name> is the full qualified variable name

@ COROLT -

CrpenSource Business Ciriented Languoge

COBOI‘_;I— COBOL-IT Debugger

OpenSource Business Oriented Language .
be A User’s Guide Version 3.10

<size> is the number of characters in the string
<string> is the data in human readable form. Strings may contain null characters.

info profiling

Causes a profiling dump to be produced, dumping profiling information at the current point in the
program. Profiling information is displayed, and then dumped in the .xIs file format.

Example:

(cobcdb)
info profiling

info sources

displays source files associated with objects loaded in memory
Example:

(cobcdb)

info sources

Source files

C:/COBOL/COBOLIT/samples/hello.cbl

(cobcdb)

info target

displays the pid of the currently running process.

Example:
(cobcdb)

info target
Child PID 19012
(cobcdb)

Kill

kills the current process.
Example:
(cobcdb)
kill
-event-program-exited (cobcdb)#0 hello () at

@ COROLT -

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

C:/COBOL/COBOLIT/samples/hello.cbl!
10

list

The list debugger command requires that the source file be accessible. The list debugger
command allows you to expand the source you can see inside the console debugger as you
execute your debugger commands:

(cobcdb)

s

-event-step

(cobcdb)

-event-end-stepping-range #0 CUSTOMERO () at /opt/cobol-it-
64/samples/customer0.cbl!99

.0000099> CALL "C$PID" USING PID.

list

.0000094.

.0000095.

3K 3K 3K 3k 3K >k 3K >k 3K 5K 3Kk 5K K 5K >k 5K >k 3Kk 5K >k 5K >k 5k >k Kk 5K Kk 5K >k 5K >k 3K 5K K 5K >k 3Kk K 3Kk K K >k >k 5k >k 3K >k 3K 5K kK 3K >k 3k K kK >k kK >k kK %k >k %k X %k >k %k
.0000096. PROCEDURE DIVISION.

.0000097.

.0000098. Main Section.

.0000099> CALL "C$PID" USING PID.

.0000100. DISPLAY "PID = " PID.

.0000101. * CALL "C$DEBUG"

.0000102. ACCEPT W-SYS-DATE FROM DATE.
.0000103. MOVE W-SYS-YY TO CURR-YY.
.0000104. MOVE W-SYS-MM TO CURR-MM.,
(cobcdb)

next

causes execution to pass to the next statement- jumping over a CALL or PERFORM
statement before breaking, unless the CALL'ed paragraph or PERFORM statement
contains a breakpoint. An event-next command is issued. This is interrupted when
an —event-end-stepping-range event takes place. The next command can be
abbreviated as “n”.

Example :

(cobcdb)

next

-event-next

-event-end-stepping-range (cobcdb)#0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!17

@ COROLT o8

CrpenSource Business Ciriented Languoge

BCOBROL-

OpenSource Business Oriented Language

r

— COBOL-IT Debugger

print <variable-name>

displays the value of the variable in human readable format.
Example:

print message-line

$1 = @hello. WORKING-STORAGE.message-line [11]"XXXXXXXXXXX"
(cobcdb)

The information returned is in the format:
S1=@module-name.section-name.variable-name[size]”[string]”
Where:

module-name is the program-id of the module being executed.
section-name is the section containing the variable being displayed.
size is the size, in bytes of the variable.

string is the contents of the variable in human-readable format.

printh <variable-name>

quit

displays the value of the variable in hexadecimal format.

Example:

printh message-line

S1 = @hello. WORKING-STORAGE.message-line [22]"5858585858585858585858"
(cobcdb)

The information returned is in the format:
S1=@module-name.section-name.variable-name[size]”[string]”
Where:

module-name is the program-id of the module being executed.
section-name is the section containing the variable being displayed.
size is the size, in bytes of the variable.

string is the contents of the variable in hexadecimal format.

causes an exit from the debugger.
Example:

(cobcdb)

quit

C:\COBOL\COBOLIT\samples>

@COBOLT

CrpenSource Business Ciriented Languoge

User’s Guide Version 3.10

Page 39

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be ' e User’s Guide Version 3.10

replace

To locate a source file that has been moved, and associate it with an object compiled for
debug, use the 'replace' debugger command, which changes the path to the source file.

The syntax is as follows: replace <oldprefix> : <newprefix>

The replace debugger command allows you to replace the location where the source files
associated with the program being debugged are stored.

The replace debugger command replaces any prefix of the full pathname, so the command
replace /dirA : /dirB will allow any program that was originally compiled in
/dirA/dev/sources to have its source stored in /dirB/dev/sources.

Subsequent commands are stacked, so when typing two more commands as follows :

replace /dirC : /dirD
replace /dirE : /dirF

you will end up with a list of three possible replacements. Only the first matching
replacement will be executed.

Further usages include:

replace <no arguments> Resets the list, removing active replacements
replace ? Produces a list of active replacements.

Note that replace only affects the output of the list command.
The list debugger command allows you to expand the source you can see inside the console
debugger as you execute your debugger commands:

set

allows the user to set a <set parameter> to a different value.
The set command requires a <parameter>.
Parameters for the set command are:

prompt<prompt-string> Sets the debugger prompt to <prompt-string>

var <variable-name> <variable-value> Sets the value of <variable-name>
varh <variable-name> <variable-value> Sets the value of <variable-name> in hex notation

set prompt <prompt string>

sets the COBOL-IT Debugger prompt. The default setting for the COBOL-IT
Debugger

prompt is (cobcdb).

Example :

(cobcdb)

@ COBOLT

CrpenSource .Bushesi Ciniented language

BCOBROL-

OpenSource Business Oriented Language

r

— COBOL-IT Debugger
User’s Guide Version 3.10

event:13556

-event-end-stepping-range #0 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!9
set prompt >>>

>>>

set var <variable-name> <variable-value>

sets variable content for variable-name to variable-value. Values are converted to
the appropriate type. A number stored in a PIC 999 field will be converted before
storing.

Example :

(cobcdb)

set var message-line "hello hello"

$1 = @hello. WORKING-STORAGE.message-line [11]"hello hello"

(cobcdb)

set varh <variable-name> <variable-value-hex>

step

sets variable content for variable-name to variable-value-hex.
<variable-value-hex> must be a valid hexadecimal string. Note that in a valid
hexadecimal string, a single character space is recorded with two characters, so
the total string length of <variable-value-hex> must be exactly two times the
length of <variable-name>.

(cobcdb)

set varh ws-dummy 41

S1 = @hello. WORKING-STORAGE.ws-dummy [1]"A"

(cobcdb)

causes execution of the program to execute a single step, and then break. An
event-step command is issued. This is interrupted when an —event-end-stepping-
range event takes place. The step command can be abbreviated as “s”.
Example:

(cobcdb)
step
-event-step
(cobcdb)-event-end-stepping-range #0 hello () at
C:/COBOL/COBOLIT/samples/hello.cbl!14

@ COROLT

CrpenSource Business Ciriented Languoge

BCOBROL-

OpenSource Business Oriented Language

r

— COBOL-IT Debugger
User’s Guide

Version 3.10

stop

up -[n]

causes execution to stop (break) at the next statement

changes the current frame. When you have several levels of CALLs, the info
functions relate to the current module. In a CALL’ed subprogram, up —=[n] can be
used to change the frame back to a previous CALL'ing module. Info locals can then

be viewed for that calling module.

In the example below, the bt command shows 3 frames, with frame 0 being the
current frame in a called sub-program, and the info locals command showing the
state of the variables in the subprogram. up -1 sets the frame to the calling

program, so that info locals can be viewed for the calling program.

bt

#0 subpgm () at C:/COBOL/COBOLIT/samples/subpgm.cbl!7

#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25

#2 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!17

(cobcdb)

info locals

@subpgm.WORKING-STORAGE
@subpgm.WORKING-STORAGE.RETURN-CODE = [10]"+000000000"
@subpgm.WORKING-STORAGE.TALLY = [10]"+000000000"
@subpgm.WORKING-STORAGE.SORT-RETURN = [10]"+000000000"
@subpgm.WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS =

[10]"+000000000"
@subpgm.WORKING-STORAGE.COB-CRT-STATUS = [4]" "

(cobcdb)

up -1

#1 hello () at C:/COBOL/COBOLIT/samples/hello.cbl!25

(cobcdb)

info locals

@hello. WORKING-STORAGE
@hello.WORKING-STORAGE.RETURN-CODE = [10]"+000000000"
@hello. WORKING-STORAGE.TALLY = [10]"+000000000"
@hello. WORKING-STORAGE.SORT-RETURN = [10]"+000000000"
@hello. WORKING-STORAGE.NUMBER-OF-CALL-PARAMETERS =

[10]"+000000000"
@hello.WORKING-STORAGE.message-line = [11]"XXXXXXXXXXX"
@hello.WORKING-STORAGE.ws-dummy = [1]" "
@hello. WORKING-STORAGE.ctr = [6]"000000"
@hello.WORKING-STORAGE.COB-CRT-STATUS = [4]"0000"

@COBOLT

CrpenSource .Bushesi Ciniented language

Page 42

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

(cobcdb)

version

returns the version of the cobcdb/COBOL-IT runtime.
Example:

(cobcdb)

version

~"COBOL-IT cobcdb 3.6.4\n"

Adone

(cobcdb)

Debugger Events

-event-breakpoint-hit

Returned when a breakpoint is hit.

-event-continue

Returned by the continue command. Terminated by —event-breakpoint-hit.

-event-contreturn

Returned by the contreturn command. Terminated by —event-end-stepping-range.

-event-end-stepping-range

Returned when one of the debugger step commands (step, next, contreturn) reaches the end
of its stepping range.

-event-next

Returned by the next command. Terminated by —event-end-stepping-range.

-event-program-exited

Returned by the kill command.

-event-step

Returned by the step command. Terminated by —event-end-stepping-range.

@ COROLT

CrpenSource Business Ciriented Languoge

COBOI‘_;I— COBOL-IT Debugger

OpenSource Business Oriented Language .
be A User’s Guide Version 3.10

Our Sample Programs

For the purposes of this documentation, we are using a very short hello.cbl program as a
reference.

(The program contains an ACCEPT FROM COMMAND-LINE statement, to illustrate this
functionality in cobcdb.)

To compile: >cobc —g hello.cbl
>cobc —g subpgm.cbl

To run: >cobcdb hello (or)

To run with parameters: >cobcdb hello hello-world

hello.cbl

000001 identification division.

000002 program-id. hello.

000003 environment division.

000004 data division.

000005 working-storage section.

000006 77 message-line pic x(11) wvalue spaces.
000007 77 ws—-dummy pic x value spaces.
000008 77 ctr pic 9(6) wvalue O.

000009 procedure division.

000010 main.

000011 accept message-line from command-line.
000012 if message-line not = spaces

000013 display message-line line 10 col 10
000014 else

000015 display "hello world"™ line 10 col 10
000016 end-1if.

000017 perform para-1.

000018 display "returned from para-1" line 14 col 10.
000019 display "next line" 1line 16 col 10.
000020 accept ws-dummy line 16 col 30.

000021 stop run.

000022 para-1.

000023 move all "X" to message-line.

000024 display "in para-1" line 12 col 10.
000025 call "subpgm".

subpgm.cbl

000001 identification division.

@COBOLN page 4

CrpenSource Business Ciriented Languoge

COBOL_l COBOL-IT Debugger

OpenSource Business Oriented Language .
be e User’s Guide Version 3.10

000002 program-id. subpgm.

000003 environment division.

000004 data division.

000005 working-storage section.

000006 procedure division.

000007 main.

000008 display "In Subpgm" line 20 col 10.
000009 goback.

Check vs all of these

Debug-oriented compiler flags have performance penalties. When your code is well-tested, these
compiler flags may no longer be needed, and can be removed to achieve better performance.

-debug Turns on exception checking

-debugdb=<debugDB> Stores metadata for debugging in SQL.ite3 database.

-fdebug-exec Used for debugging of EXEC SQL statements.

Exception-checking Enabled with —debug

(EC-xxx) compiler

configuration flags. As

an example:

EC-SIZE:yes

-fmem-info Stores memory information, for analysis in the eventual
cause of a crash.

-fprofiling Adds counters to total statistics for reports on where your
application is spending the most time.

-fsource-location Generates source location code, enabling information to be
dumped on source location when runtime aborts. Enabled by
g

-fstack-check Enables stack checking debug function.

-ftrace The tracing compiler flags. Cause output to be written to an

-fsimpletrace output file during the runtime execution.

-ftraceall

-ftrap-unhandled- Provides additional information when runtime aborts.

exception

-0 Causes debugger metadata to be stored in the compiled
object file or, if —-DebugDB compiler flag is used, in an
SQL.ite3 database.

-G Produces debugging information, for purposes of debugging
programs_written in “C”.

COB_ERROR _FILE Used when debugging are set to capture information for
debugging purposes.

COB_FILE_TRACE Causes data to be written to the COB_ERROR_FILE
whenever there is a file 1/0O operation executed.

COB DUMP No longer required after your functionality tests have been

@ COROLT

CrpenSource Business Ciriented Languoge

[COROLT

OpenSource Business Oriented Language

COBOL-IT Debugger

User’s Guide Version 3.10

completed. Creates an output file for the memory dump
created when a runtime aborts.

@COBOLT

CrpenSource Business Ciriented Languoge

Page 46

[COROLT

COBOL-IT Debugger
OpenSource Business Oriented Language 99

User’s Guide Version 3.10

WwWw.cobol-it.com

May, 2018

@ COROLT

CrpenSource Business Ciriented Languoge

	Acknowledgment
	Debugger User’s Guide
	Compile for debugging
	–debugdb=<DebugDB-name>
	-g
	-fdebugdb

	Compiler flags enabled by –g / -fdebug / -debugdb
	-fstack-check
	-fmem-info
	-fsource-location

	Compiler flags related to–g / -fdebug / -debugdb
	-fdebugging-line
	support-debugging-line:[ok/error]

	Capturing information from a debugging session
	COB_DUMP=<filename>
	COB_ERROR_FILE=<filename>

	File Tracing
	-fsimple-trace
	-ftrace
	-ftraceall

	Compile for runtime error-checking
	-debug

	Compiler Flags enabled by –debug
	Runtime exception checking

	Compiler flags related to exception checking
	-ftrap-unhandled-exception
	CBL_ERROR_PROC

	Controlling the verbosity of the Compiler error report
	-v
	-err <file>
	-save-temps (=<dir>)

	Compiling and Debugging Pre-processed Code
	-fdebug-exec
	-fexpand-exec-copy
	-fkeep-org-src-line

	Syntax Only Checking
	-fexec-check
	-fsyntax-only
	-fvalidate-only

	Guidelines for using the COBOL-IT Profiler
	-fprofiling

	Compiler Configuration File
	debug-exec: [yes/no]
	debugdb:[yes/no]
	exec-check: [yes/no]
	relaxed-syntax-check:[yes/no]
	validate-only:[yes/no]

	COBOL-IT runtime parameters
	--debug, -d
	--debug, -d --remote -r

	COBOL-IT runtime environment variables
	COB_DEBUG_ALLUSER=1
	COB_DEBUG_ID=<debug-id>
	COB_DEBUGDB=<DebugDB-name>
	COB_DEBUG_MODULES=<program-id1>:<program-id2>….
	COB_DEBUG_STARTUP_FILE=<filename>
	COB_DEBUG_TMP=<directory>
	COB_FILE_TRACE=[Y/N]
	COB_NO_SIGNAL=[Y/N]

	COBOL-IT Library Routines
	C$DEBUG
	CBL_DEBUGBREAK
	C$PID

	The COBOL-IT Debugger Engine (cobcdb)
	Conventions Used
	The Debugger Prompt
	Source Location
	Variables names

	Usage of the COBOL-IT Debugger:
	command-line parameters
	program name
	options
	-listdid
	-n
	-p <did>
	-r host:port
	-trace
	-w <did>
	-y tty

	Debugger Commands
	break
	break [-t] label
	break [-t] module!label
	break [-t] module!line-nr
	break [-t] module!0
	bt
	continue
	contreturn
	delete <x>
	frame <frame-number>
	info
	info locals
	info profiling
	info sources
	info target
	kill
	list
	next
	print <variable-name>
	printh <variable-name>
	quit
	replace
	set
	set prompt <prompt string>
	set var <variable-name> <variable-value>
	set varh <variable-name> <variable-value-hex>
	step
	stop
	up -[n]
	version

	Debugger Events
	-event-breakpoint-hit
	-event-continue
	-event-contreturn
	-event-end-stepping-range
	-event-next
	-event-program-exited
	-event-step

	Our Sample Programs
	hello.cbl
	subpgm.cbl
	Check vs all of these

