
COBOL-IT OpenESQL

Getting Started

© Copyright 2023 Micro Focus or one of its affiliates

COBOL-IT OpenESQL

Table of contents

3About COBOL-IT OpenESQL

3Documentation

4Overview

5Pre-requisite knowledge

6Getting Started Guide

6Getting Started

7Working with the Getting Started application – Basic

11Tutorials and Best Practice Recommendations

16Runtime Errors and Diagnostics

21Migration Guide

21Migrating to CitOESQL

29User Guide

30Modes of Operation

32Command line syntax

33Source Code Formats

34Directive Syntax

35Control statements in source

37Programming

52Reference Manual

53Developing SQL Applications

81SQL Statements

151CitOESQL Directives

231Legal Notice

231Third-Party Notices

Table of contents

Table of contents 2

1. About COBOL-IT OpenESQL

Welcome to COBOL-IT OpenESQL (CitOESQL).

1.1 Documentation

Below are the guides available for CitOESQL:

1. About COBOL-IT OpenESQL

1. About COBOL-IT OpenESQL 3

Getting Started
Use the Getting Started application to set up an ODBC

data source...

Migration Guide
Learn how to migrate from CitSQL to CitOESQL

User Guide
Walk through the product features.

Reference Manual
This guide describes the programming features

available for SQL applications.

1.2 Overview

COBOL-IT OpenESQL is an Embedded SQL (ESQL) preprocessor for COBOL-IT. It reads COBOL

source code and writes amended source code where EXEC SQL statements are replaced with calls

to a runtime library that accesses ODBC data sources.

1.2 Overview

1.2 Overview 4

COBOL-IT OpenESQL can be used as a stand-alone preprocessor that is executed separately and

before the COBOL-IT compiler, or in conjunction with COBOL-IT’s -preprocess= option, in which case

it is invoked by the COBOL compiler.

When used stand-alone, the preprocessor provides conditional compilation and copybook

expansion. These tasks may be performed by the COBOL compiler when used with the -preprocess

option.

The debugger will show the code generated by CitOESQL rather than the original EXEC SQL

statements. When used with the compiler’s -preprocess option, debugging of the original source

code is available.

1.3 Pre-requisite knowledge

Some basic knowledge of Embedded SQL is assumed in this document.

It is also assumed that the reader has basic knowledge of the COBOL-IT compiler and debugger

and has worked through the getting started process for them. The same applies to COBOL-IT

Developer Studio, if this is used.

1.3 Pre-requisite knowledge

1.3 Pre-requisite knowledge 5

2. Getting Started Guide

2.1 Getting Started

To work with the Getting Started application you must first set up an ODBC data source for the

database of your choice. You will need to know the ODBC Data Source Name (DSN) and a valid

UserID and Password for the DSN that is able to create and drop tables.

When working with PostgreSQL you must set the following ODBC options in your environment:

UpdatableCursors=0

UseDeclareFetch=1

On Linux you must include the ODBC shared object location in LD_LIBRARY_PATH. For example, if

the unixODBC driver manager is installed in its default location, this will be:

The Getting Started application, sample.cbl, can be found in the following locations:

Windows: %COBOLITDIR%\samples\sql

Linux: $COBOLITDIR/samples/sql

The application executes a series of SQL statements. Open sample.cbl in a text editor of your

choice to view these statements. Comments in the source code provide information about

alternative methods for opening the database connection.

To work with the application, open a command line window and execute the appropriate cobol-

itsetup script for your environment (see the Installing COBOL-IT section of the COBOL-IT Compiler

Suite, Getting Started With Compiler Suite guide for more details). Then change the directory to the

SQL sample directory.

•

•

 export LD_LIBRARY_PATH=/usr/local/lib:\$LD_LIBRARY_PATH

•

•

2. Getting Started Guide

2. Getting Started Guide 6

https://www.microfocus.com/documentation/cobol-it/4-2/pdfs/getting-started-with-compiler-suite.pdf

2.2 Working with the Getting Started application – Basic

First run the precompiler:

The -g parameter is required if you want to compile for debugging. You can omit it from

release builds.

The -conf=citoesql.conf parameter sets compiler options required by CitOESQL including

running CitOESQL’s preprocessor and linking its runtime library.

You can also run CitOESQL as a standalone preprocessor and then compile the generated

output file.

Next compile the file generated by CitOESQL, which will have the same name but a .cbp extension.

Windows: cobc -g -l%COBOLITDIR%\lib\ citoesqlr_dll.lib sample.cbp

Linux: cobc -g -L\$COBOLITDIR/lib -lcitoesqlr sample.cbp

The application can now be executed using cobcrun . Enter the DSN, User-ID and Password when

prompted. The console output should be as follows:

You can debug the application using cobcdb, as detailed in the Using the COBOL-IT Debugger

section of the COBOL-IT Compiler Suite, Getting Started With Compiler Suite guide.

To build an executable program rather than the default dll or shared object add -x to the command

line as shown in the example below:

 citoesql sample.cbl

•

•

•

•

•

The -I parameter links CitOESQL’s runtime library.

Note

cobcrun sample
Create/insert/update/drop test

Enter data source (Eg odbcdemo) MyDSN
Enter username[('.'\|'/')password] (Eg admin/) myUserId.myPassword
Drop table
Error(anticipated) : cannot drop table
-00003701
Cannot drop the table 'mfesqltest', because it does not exist
Create table
Insert row
Commit
Update row
Verify data before rollback
Rollback
Verify data after rollback
Drop table
Disconnect
Create table after commit release
Cannot create table as expected
-00019702
Connection name not found.
Test completed without error

 cobc -x -g -conf=citoesql.conf sample.cbl

2.2 Working with the Getting Started application – Basic

2.2 Working with the Getting Started application – Basic 7

https://www.microfocus.com/documentation/cobol-it/4-2/pdfs/getting-started-with-compiler-suite.pdf

2.2.1 Working with the Getting Started application in Developer

Studio

Prerequisites

Set up a new workspace by following the steps documented in the Developer Studio Getting

Started manual. In summary:

Validate the COBOL-IT license using the menu sequence Window > Preferences > COBOL then

click the Browse button to select the COBOL-IT license file.

Using the menu sequence Window > Preferences > General > Editors > Text Editor, ensure

Show line numbers has been checked.

Using the menu sequence Window > Preferences > General > Workspace:

De-select Build automatically

Select Refresh using native hooks or polling

Select Refresh on access

Select Save automatically before build

Using the menu sequence Window > Preferences > Run/Debug > Perspectives, select Always

for the Open the associated perspective when launching.

2.2.2 Project creation and import of source code

Follow the steps listed to create a new project and import source code.

1. 1.

2. 2.

3. 3.

a.

b.

c.

d.

4. 4.

2.2.1 Working with the Getting Started application in Developer Studio

2.2.1 Working with the Getting Started application in Developer Studio 8

Select File > New > COBOL Project… to open the COBOL Project Wizard.

Enter a project name, for example samples, and click Finish.

Right click on the newly created project and select New > Folder, enter the name object and

click Finish.

Right click on the project again and select Import followed by General and FileSystem then

click Next.

Click Browse and navigate to the COBOL-IT samples > sql directory, then click OK. Select

sample.cbl and click Finish.

Right click on the project again and select Properties followed by COBOL Properties then

check the Enable source settings option.

Select DevOps Tools > Debugging Tools. Check Enable source settings and Produce

debugging metadata in compiled object.

Select Dialects > Compiler Configuration Files. Enter citoesql.conf for Use <file> as

configuration file.

Select Link > Full Build and set Build type to Build executable program.

Select Standard Options and check Save object file in source folder or in <directory> and enter

object in the textbox.

Click Apply and Close.

Build and Debugging

To build the project use the menu sequence Project > Clean, ensure the project is selected for

cleaning and building and then click Clean.

You now need to set up a debug configuration as follows:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

10. 10.

11. 11.

2.2.2 Project creation and import of source code

2.2.2 Project creation and import of source code 9

Double click on sample.cbl to open the source file.

Scroll down to the EXEC SQL CONNECT statement, right click the shaded area to the left of the

line number of the EXEC SQL line and choose Toggle Breakpoint. A blue circle should appear

next to the line number. You can also use double click to set and unset breakpoints as an

alternative to right click.

Right click on sample.cbl in the project file tree in the left-hand pane, select Debug As followed

by Debug Configurations.

Click on Cobol Program followed by the left most icon in the toolbar above (New launch

configuration) and enter ‘sample’ as the configuration name at the top of the dialog box.

Check that the Project Name is set to the correct project and that Program is set to

sample.cbl.

Click Debug.

Respond to the prompts from the program with the ODBC Data Source Name, User-ID and

Password.

The application will stop on the breakpoint. You can now use other debugger features to

inspect COBOL variables, manage other breakpoints, use single step code execution, etc.

Please consult COBOL-IT Developer Studio, Getting Started: The Debugger Perspectiveguide

for more information.

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

7. 7.

8. 8.

2.2.2 Project creation and import of source code

2.2.2 Project creation and import of source code 10

https://www.microfocus.com/documentation/cobol-it-ds/2-1/pdfs/getting-started-with-developer-studio-debugger.pdf

2.3 Tutorials and Best Practice Recommendations

You can control the behavior of CitOESQL by setting precompiler directives. This can be done in a

variety of ways, on the command line, in source code and in directive files. The order in which

sources of directives are used, and hence the reverse order of precedence if a directive is set more

than once is:

The command line

Automatic directive files

Source code

Directive files can be specified explicitly with the USE directive, however some directive files, if they

exist, are used automatically by CitOESQL. These are recommended as the most convenient way of

managing directive use. The automatic directive files, and the order in which they are applied are:

%COBOLITDIR%\etc\citoesql.dir (Windows) or $COBOLITDIR/etc/citoesql.dir (Linux and

Unix).

This is useful for setting directives that will be applied to all programs.

citoesql.dir in the directory containing the COBOL source code.

This is useful for setting directives that are common to groups of programs.

A file with the same name and in the same directory as the program being pre-compiled but

with a file extension of ‘.dir’.

2.3.1 Performance Tuning

Introduction

Reducing the number of interactions required between components to perform a given task will

often improve application performance. In a SQL application, the most significant of these is the

number of calls made between the client application and the database management system, often

referred to as ‘round trips’. In some cases, the database client library or ODBC driver will perform

such optimizations transparently on behalf of the client application. In other cases, a client

application can use optimization techniques explicitly.

The tutorial applications are described below for command line use. If you prefer, they can be

used in Developer Studio with directives following the pattern described in Working with the

Getting Started application in Developer Studio.

Note

1.

2.

3.

• •

• •

• •

2.3 Tutorials and Best Practice Recommendations

2.3 Tutorials and Best Practice Recommendations 11

CitOESQL provides several ways to optimize the performance of SQL applications and some of

these are demonstrated in the tune.cbl sample application.

A prerequisite for running this application is an ODBC data source, see the Getting Started section

for more details.

On Windows open a COBOL-IT command line window, on Linux or Unix run the COBOL-IT

command line setup script.

Change directory to the CobolIt (or CobolIT64) samples\sql or samples/sql directory

Build the application with the following command line:

cobc -g –x -conf=citoesql.conf tune.cbl timer.cbl

Run the application with the following command line:

tune (Windows) or ./tune (Linux and Unix)

Respond to the prompts for Data Source, User-ID and Password.

You will see elapsed times for;

Inserting rows via a single row insert statement and an array insert statement.

Selecting and fetching rows using read only and updatable cursors or SELECT INTO

statements using single row or multi-row retrieval.

Transparent Cursor Prefetch

When using single row cursor FETCH statements, CitOESQL can prefetch rows. By default, it will

use a prefetch of 8 rows for read only cursors and 4 rows for updatable cursors. If you edit tune.dir

you will see the prefetch settings at their default values. You can experiment with them as follows:

Benchmark applications such as tune.cbl should be used with great care in predicting the

performance of other applications. There are many factors that can affect application

performance that benchmarks may fail to consider. Hardware configurations and the relative

speeds of CPU, memory, disk and network also play a significant role, as do operating system

overheads and other activity on the machine. tune.cbl is intended only to provide an illustrative

guide to the relative performance of different coding approaches and the potential usage of the

tuning parameters available in CitOESQL.

Note

•

• •

• •

• •

• •

• •

• •

2.3.1 Performance Tuning

2.3.1 Performance Tuning 12

Try setting them to 1 to see how much default prefetching improves performance.

Try commenting them out with a # at the start of the line to confirm their default values.

Try using larger values. You may find that very large values perform less well than smaller

values in some cases and that for a given application there is often a “sweet spot” that

performs best.

Host Variable Arrays

CitOESQL supports the use of host variable arrays to insert and fetch multiple rows at a time. When

using array host variables you can use a FOR :count clause if you do not want to use the whole

array. Edit tune.cbl and familiarize yourself with the syntax. You can change the 78-level constants

demoRows, insertArraySize, readOnlyarraySize and forUpdatearraySize to change the number of

rows in the table and the size of the host variable arrays. You can experiment with different values

to see how different array sizes impact performance and how the BEHAVIOR directive and its

subdirectives perform relative to host variable arrays.

It is often best to use a smaller array size for updatable cursors than for read only cursors.

Although a larger array size will generally improve performance, it can also increase contention and

lock wait delays. When considering array sizes and prefetch sizes for updatable cursors, you

should consider if your databases hold FOR UPDATE locks only when a row is available on the

client, for example in Microsoft SQL Server, or if FOR UPDATE locks are held until the current

transaction terminates, for example in Oracle and PostgreSQL.

SQL Statement Cache

CitOESQL maintains a cache of prepared statements. The default cache size is 20. You can use the

STMTCACHE directive to change this. For a large batch, application values up to the low hundreds

may be beneficial.

2.3.2 SQL Syntax Checking Options

CitOESQL syntax checking is designed to be lightweight and tolerant of server-specific SQL

extensions. This means that it may not detect all SQL errors. You can enable more rigorous

checking with the CHECK directive. This also requires the DB directive and, in most cases, the PASS

directive. You can see how this works with the tune.cbl sample:

• •

• •

• •

2.3.2 SQL Syntax Checking Options

2.3.2 SQL Syntax Checking Options 13

Navigate to %COBOLITDIR%\Samples\sql or $COBOLITDIR/Sample/sql and open tune.dir in

an editor of your choice.

Remove the # character from the start of the line that starts #db and replace the string

<your ODBC Data Source Name> with the name of your ODBC data source.

Unless you are using operating system authentication, remove the # character from the line

that starts #pass and replace the string <UserID> with your database User-ID, and the

string <Password> with your database password.

Remove the # character from the line that starts #check .

Save the file, and open tune.cbl.

Search for the first INSERT INTO statement and change the keyword into to intoo .

Compile tune.cbl and notice the syntax-based error message.

Change the intoo back to into , the table name oesqldemo to xyz and re-compile. Note

the error message is now for a reference to a non-existent table.

Sometimes you cannot avoid errors because a table does not exist in the database, for example if

the table is a temporary table that the database automatically drops at disconnect time. CitOESQL

can work around this by executing DDL statements at precompile time.

Navigate to the start of tune.cbl and search for create table .

Note that the EXEC SQL statement starts with the prefix ‘[also check]’. This tells the

precompiler that this statement should be executed at both precompile and execute time.

The prefix ‘[only check]’ instructs the precompiler that the statement should only be

executed at precompile time.

Go back to the top of the program and search for ‘drop table’. Note the prefix ‘[also check

ignore error]’. This instructs the precompiler to execute the statement at both precompile

time and execute time and to ignore any precompile time errors.

There may be other cases where a precompile time server-detected error is unavoidable, in which

case the prefix [nocheck] can be used.

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

2.3.2 SQL Syntax Checking Options

2.3.2 SQL Syntax Checking Options 14

Return to the start of tune.cbl and search for ‘set :dbms’. Note that immediately after

opening a database connection, tune.cbl uses a set :<hostVariable = current database

CitOESQL statement to determine the type of database it is connected to.

Search for if dbms = and then scroll down a few lines until you can see two create table

statements. tune.cbl includes two create table statements to enable it to use the TYPE

VARCHAR with most databases. VARCHAR2 is used with Oracle and exploits the create or

replace syntax to avoid separate create and drop statements.

The create table statements have the prefix [nocheck] [also check ignore error]. This has the

following effect:

[nocheck] means there will be no syntax check at precompile time.

[also check ignore error] means the statement will be executed at compile time

and potentially also at runtime, however in tune.cbl COBOL code ensures only one of the

two statements will be executed at runtime. Any precompile time execution error will be

ignored.

Note that this is a somewhat contrived example for demonstration purposes.

When migrating an application to a new database, you can use the IGNORESCHEMAERRORS

directive in conjunction with the CHECK directive. This limits server syntax checking to syntax

alone and does not treat missing tables and columns as errors. This may be useful in obtaining a

quick appraisal of SQL syntax differences that need to be remediated before the schema has been

migrated.

• •

• •

• •

• •

• •

• •

2.3.2 SQL Syntax Checking Options

2.3.2 SQL Syntax Checking Options 15

2.4 Runtime Errors and Diagnostics

Diagnostic information for SQL errors can be obtained in several ways in CitOESQL.

The most common method in most embedded SQL applications is via a SQLCA data

structure. The SQLCA is supplied by including exec sql include sqlca endexec , where

SQLCODE contains a numeric error code and SQLSTATE a 5-character string, both of which

identify the error condition. SQLERRMC contains a brief error message and SQLERRML

contains the length of the message.

An application may simply declare SQLCODE and/or SQLSTATE without using an SQLCA if it

only requires the type of error.

SQLERRMC is limited to 70 bytes. A longer and more complete error can be obtained by

declaring a PIC X(n) field named MFSQLMESSAGETEXT where ‘n’ can be of any size, but 256

characters is generally sufficient to obtain the complete error message.

Finally, complete diagnostic information, including the possibility of a SQL error returning

more than one error, can be obtained via a GET DIAGNOSTICS statement.

All these methods are demonstrated by the errref.cbl sample application.

Build the application in the sql samples directory via the following

Execute the sample via:

• •

• •

• •

ODBC error messages start with one or more component names in square brackets

followed by the message text. These identify where the error message was detected, for

example, by the ODBC Driver Manager or the ODBC driver, or the database server. CitOESQL

removes any text in square brackets from SQLERRMC, but not from MFSQLMESSAGETEXT.

Note

• •

• •

command: cobc -x -g -conf=citoesql.conf errref.cbl

• •

errref (Windows) or ./errref (Linux and Unix)

errref generates the following common warning and error conditions:

No data found or returned.

Too many rows returned for SELECT INTO.

Character data truncation.

Attempt to insert a row with a duplicate key.

Note

•

•

•

•

2.4 Runtime Errors and Diagnostics

2.4 Runtime Errors and Diagnostics 16

Open the erref.cbl file and inspect the code to see how the output was generated using the

methods described above.

You will need the output of the application for the next tutorial

2.4.1 Diagnostic mapping for database migration

When migrating an application from one database to another you will need to address differences

in SQL syntax between the two systems.

It may also be required to address cases where application logic or operation procedures have

dependencies on the error diagnostics returned by the database. CitOESQL can assist this process

by allowing diagnostics returned by the new database for a given error condition to be mapped to

the diagnostics returned by the old database system, thus avoiding the need to make changes to

the source code. This is achieved by use of an error mapping file. Errors can be mapped for an

application via the ERRORMAP precompiler directive, or for the current connection by executing a

SET ERRORMAP statement. These methods are demonstrated by the errmap.cbl sample.

2.4.1 Diagnostic mapping for database migration

2.4.1 Diagnostic mapping for database migration 17

Navigate to the sql samples directory.

Open login.cpy in a text editor of your choice and edit the svr and usrpass fields to match

your ODBC DSN, User ID and Password. If using Operating System authentication usrpass

should be SPACES. Save the file.

Open errmap.dir and note the directive errmap=test. This means that at runtime errmap will

load mapping information from a file named test.emap .

Open test.emap . This is set up to map diagnostics returned by PostgreSQL. You can use

the output from errref to update this file for other databases.

Replacement error messages start with [test]. This will appear in message text returned in

CITSQLMESSAGETEXT and by GET DIAGNOSTICS, but not in SQLERRMC. It is there as a

simple visual check that an error has been mapped successfully.

Open conn.emap . This is very similar to test.emap , but will be used with a SET ERRORMAP

statement rather than the ERRORMAP directive. Replacement error messages start with

[conn].

Set the environment variable CIT_ERRORMAP_PATH to the current directory. This can be ‘.’.

This will cause CitOESQL to look for the mapping files in the current directory and is useful

for testing new mapping files. If not set, the default location of %COBOLITDIR%\etc

(Windows) or \$COBOLITDIR/etc (Linux) will be used.

Compile and run errormap.

Inspect the output and verify that errors have been mapped.

Open errmap.cbl and inspect the code.

To deploy error mapping files for general use:

• •

• •

• •

• •

Error mapping can match diagnostic information to be mapped by any combination of

SQLCODE, SQLSTATE and a substring within the error message text. The mapping process

will change SQLCODE and SQLSTATE to new values; specify the original values to leave

them unchanged. The error message text can be:

Left unchanged by omitting it from the mapping

Replaced by new text

supressed (i.e set to spaces by specifying a single ~ character as the replacement

text)

Note

•

•

•

• •

• •

• •

• •

cobc -g -x -conf=citoesql.conf errmap.cbl
errmap

• •

• •

2.4.1 Diagnostic mapping for database migration

2.4.1 Diagnostic mapping for database migration 18

Edit the files and remove any unwanted leading text in square brackets at the start of

replacement error messages.

Copy the files to the default location: %COBOLITDIR%\etc (Windows) or $COBOLITDIR/etc

(Linux)

Unset environment variable CIT_ERRORMAP_PATH (if set).

2.4.2 COBOL-IT CitOESQL files and locations

• •

• •

• •

File name Windows location

relative to

%COBOLITDIR%

Linux/Unix

location relative

to

$COBOLITDIR)

Use

SQLCA.cpy copy share/cobol-it/

copy

SQLCA definition

SQLDA.cpy copy share/cobol-it/

copy

SQLDA definition

runcitoesql.bat

runcitoesql.sh

bin bin Used by cobc -

preprocess to

execute the

citoesql

precompiler

citoesql.dir etc etc Global default

citoesql directives

citoesql.conf config share/cobol-it/

config

cobc configuration

file for integrated

precompilation

citoesqlx.conf config share/cobol-it/

config

cobc configuration

file when citoesql

is used without

integrated

precompilation

2.4.2 COBOL-IT CitOESQL files and locations

2.4.2 COBOL-IT CitOESQL files and locations 19

2.4.3 Performance and Diagnostic Aids

CitOESQL provides two execution tracing capabilities that may help you in diagnosing bugs and

performance issues. Both are controlled by directives.

Setting ODBCTRACE=ALWAYS will enable ODBC tracing in the ODBC driver manager. This can also

be done via the ODBC Administrator (Windows) or by editing the ODBC configuration files odbc.ini

and odbcinst.ini (Linux), however when developing or debugging an application you may find the

precompiler directive more convenient. Trace information is appended to the trace file if it already

exists, so you must remember to delete or clear the trace file between runs. ODBCTRACE traces

ODBC entry to and exit from ODBC API calls along with diagnostic error messages. ODBCTRACE

writes all trace records to disk immediately and consequently this can have a significant impact on

performance.

TRACELEVEL traces the calls an application makes to the CitOESQL’s runtime library. The resultant

traces can be used to analyse performance issues. TRACELEVEL offers several levels of detail and

records directive settings and tuning statistics, such as the number of rows read by a cursor.

TRACELEVEL has significantly less performance impact than ODBCTRACE but if an application

terminates abnormally not all trace events may be recorded.

File name Windows location

relative to

%COBOLITDIR%

Linux/Unix

location relative

to

$COBOLITDIR)

Use

*.emap etc etc Default location for

error mapping files

2.4.3 Performance and Diagnostic Aids

2.4.3 Performance and Diagnostic Aids 20

3. Migration Guide

3.1 Migrating to CitOESQL

3.1.1 CitSQL and CitOESQL Comparison

3.1.2 Command line options

Implementation

Comparison

CitSQL CitOESQL

Command Line >citsql [options|

@optionFile](source file(s)|

@sourcesFile)

>citoesql [options]

[@]filesNames(s)

Options may include USE

CitSQL CitOESQL

:CloseOnCommit=[True/False]

For Oracle compatibility, cursors after a

commit.

-CLOSEONCOMMIT=YES|NO

-CLOSEONROLLBACK=YES|NO

:CursorSynteticName=[True/False]

Causes the Cursor Name to be generated

dynamically at runtime by the RCQ runtime.

Unique cursor names are always

generated at runtime.

:DBEncoding=<Codepage or UTF-8]

Specifies what encoding is used by the DB

storage.

ODBC drivers provide conversion

between the client codepage and the

database encoding, it is not necessary

to inform the precompiler of the

database encoding.

3. Migration Guide

3. Migration Guide 21

CitSQL CitOESQL

:DeallocateCloseCursor=[True/False]

Causes the CLOSE CURSOR statement to also

deallocate the DECLAREd cursor.

No equivalent. CitOESQL maintains a

cache of prepared statements to

optimize performance, cursors, and

other prepared statements. These are

deallocated when necessary using a

least recently used algorithm.

:DefaultCCSID=<Valid codepage or UTF-8)

Specifies the default CCSID for string fields

that have no explicit CCSID declaration.

No equivalent, however, ODBC drivers

will automatically convert data between

the client and database encodings.

:DebugMode= [TRUE/FALSE]

Default [FALSE] When set to TRUE, causes log

file created when LogMode=TRUE to contain

more detail in some situations.

The TRACELEVEL option provides

varying degrees of logging for

diagnostic and optimization purposes.

ODBC provides its own API logging

capability that can be turned on and off

without recompiling an application.

:ForceStringMode=[TRUE/FALSE]

When set to True, CitSQL noncompound PIC X

data fields are sent to the database as a C-

String (where the String is terminated by the

character X’00’). When set to FALSE, CitSQL

sends PIC X data to the database as a byte-

array.

-[NO]ALLOWNULLCHAR

:FreeFormatOutput=[TRUE/FALSE]

Default [FALSE] When set to TRUE, causes

output of the precompiler to be created in

“free” source format.

- SOURCEFORMAT=(FIXED|FREE|

VARIABLE)

3.1.2 Command line options

3.1.2 Command line options 22

CitSQL CitOESQL

:ImmediateCursor=[True/False]

(CitSQL for PostgreSQL Only) When set to

True, causes as PREPARE EXEC to be

executed before the OPEN when a CURSOR is

declared with OPEN and FETCH statements

Attention should be taken when applying the

ImmediateCursor preprocessor parameter.

Since the full results of the cursor are returned

before the OPEN statement, this parameter

should only be applied for cursors returning

small numbers of lines.

(CitSQL for PostgreSQL Only) When set to

TRUE, causes a PREPARE EXEC statement to

be executed before the OPEN statement when

a CURSOR is declared with OPEN and FETCH

statements.

NOTE: Attention should be taken when

applying the ImmediateCursor preprocessor

parameter. Since the full results of the cursor

are returned before the OPEN statement, this

parameter should only be applied for cursors

returning small numbers of lines.

Declare cursor is purely declarative

which enables it to be placed in the

DATA DIVISION, which some legacy

applications depend on.

CitOESQL optimizes cursor behavior for

SELECT INTO statements and OPEN

CURSOR statements.

:IncludeSearchPath=<Path>

Default [Current Working Directory] A comma,

or semicolon separated list of the directories

in which CitSQL will look for Include files.

COBCPY environment variable plus

current directory.

:LibName=<libname>

Defaults are: RCQMYSQL (MySQL) and

RCQPGSQL (PostgreSQL.

No equivalent. The runtime library

odbcrw32.dll (or its Linux equivalent

shared object) may not be renamed.

3.1.2 Command line options

3.1.2 Command line options 23

CitSQL CitOESQL

:LogMode=[TRUE/FALSE]

Default is: [FALSE] When set to TRUE the

runtime component creates a log file called

RCQDLL.log that traces all SQL operations.

-TRACELEVEL=<number>

:MaxMem=<number megabytes>

Default is: 100 Allocates memory for the

precompilation of very large source files.

No equivalent.

:NoRecCode=<numeric>

Default is 1403. Allows mapping of value

returned to indicate the end of a FETCH

statement.

Default is 100 as defined by ANSI. -

ERRORMAP can be used to override

default 100 value.

:Prefetch=<numeric>

Allows for the prefetch of records in a network

transaction, where there is a whole number

that represents the number of records to read

in a networked transaction. The Prefetch

option is available only with PGSQL.

-PF_RO_CURSOR

-PF_UPD_CURSOR

Prefetch sizes may be set separately for

read only and updatable cursors. High

values may benefit read only cursors

but can cause concurrency conflicts for

updatable cursors. Available with all

databases.

:QuoteTranslation=<pattern>

Default is: QDB

Allows mapping of single quotes, double

quotes, and back quotes. By default, quotes

are unchanged, which corresponds to a

default value of QuoteTranslation=QDB.

No equivalent.

All major databases allow use of single

and double quotes consistently in line

with ANSI.

Mapping of back quotes could be

helpful to applications developed for

Microsoft Access being ported to other

databases.

3.1.2 Command line options

3.1.2 Command line options 24

CitSQL CitOESQL

:SelectPrepare=[True/False]

(CitSQL for PostgreSQL Only) Default is TRUE.

Now, the preprocessor causes the PREPARE

EXEC statement to be executed prior to the

OPEN statement and the results stored. When

set to False, the former behavior is applied.

No similar requirement.

:StandardPrefix=<prefix>

Default is: [None] Characters prefixed to

generated data items.

Currently all generated data items are

prefixed by ‘PCS-‘ (for precompiler

services).

StepLimit=<numeric>

The CitSQL parser is based on a Backtracking

technology. In order to do this, it must set a

limit on the number of cases it must be able

to consider. You can control this limit with the

:StepLimit option. Normally you will not need

to use the :StepLimit option.

The CitSQL parser is based on a Backtracking

technology where it must set a limit on the

number of cases it must be able to consider.

You can control this limit with the

:StepLimit option. In general you will not

need to use the :StepLimit option.

No similar requirement

;StrictMode=[TRUE/FALSE]

Default is: [FALSE] When set to TRUE, the

CitSQL precompiler aborts in cases where it

does not recognize an SQL syntax in an EXEC

statement.

-[NO]CHECK (plus

-DB=<connectionName> and -

PASS=<userid>.<password>)

When set a database connection will be

used at compile time to validate SQL

statements.

:StrictPictureMode=[TRUE/FALSE]

Default is: [FALSE] When set to TRUE, the

CitSQL precompiler aborts in cases where it

does not recognize a PICTURE clause.

No equivalent.

The preprocessor generates an error if a

host variable is used that does not have

a data type acceptable for use as a host

variable.

3.1.2 Command line options

3.1.2 Command line options 25

CitSQL CitOESQL

: TargetPattern=<pattern>

Describes a group of tokens that can be

strung together as components to describe

the location and naming convention applied to

the precompiled target file.

No equivalent. Output files are always

generated in the same location as

source files and with an extension of

‘.cbp’ except when COBOL-IT’s

preprocess directive is used.

:TrimMode=[TRUE/FALSE]

Default is: [FALSE] When set to TRUE,

alphanumeric (PIC X) strings that are passed

to the database are first trimmed, (right space

removed), so that the data in the database

does not have trailing spaces.

-PICXBINDING={DEFAULT | PAD |

TRIM | TRIMALL | FIXED | VARIABLE}

:TruncComments=[TRUE/FALSE]

When set to TRUE, Comments are truncated

after column 72. When set to FALSE,

comments are not truncated after column 72.

No equivalent.

3.1.2 Command line options

3.1.2 Command line options 26

3.1.3 Host Variables

3.1.4 ESQL features

CitSQL CitOESQL

:UTFInput=[TRUE/FALSE]

When set to TRUE, specifies that the source

code contains literals encoded in UTF-8.

No equivalent.

CitSQL CitOESQL

CitSQL supports the non-COBOL

USAGE Clauses:

USAGE [LONG]VARCHAR

USAGE [LONG] VARRAW

USAGE VARYING

CitOESQL supports the non-COBOL USAGE

Clauses:

USAGE [LONG]VARCHAR

USAGE [LONG] VARRAW

USAGE VARYING

Supported SQL [TYPE] [IS]:

DATE, DATE-RECORD

TIME, TIME-RECORD

TIMESTAMP, TIMESTAMP-RECORD

TIMESTAMP-OFFSET, TIMESTAMPOFFSET-

RECORD

BINARY, VARBINARY, LONG-VARBINARY

CHAR, LONG-VARCHAR

CHAR-VARYING

3.1.3 Host Variables

3.1.3 Host Variables 27

3.1.5 Dependencies and Limitations

3.1.6 SQL Statement Differences and Limitations

CitSQL CitOESQL

N/A Passes all the NIST ANSI ESQL compliance tests.

Includes support for dynamic SQL.

Multiple documented extensions to ANSI ESQL:

- Array insert and fetch

- GET DIAGNOSTICS

- SAVEPOINT support

Directives and constants in source code based on MF $SET syntax.

Conditional compilation based on MF COBOL conditional compilation built

into the precompiler.

CitSQL CitOESQL

N/A Requires ODBC on Windows and Linux.

Database ODBC drivers may depend on database client libraries.

Requires 3rd party ODBC Driver Manager for Linux (UnixODBC

recommended).

32 and 64 bit support on Linux and Windows.

CitSQL CitOESQL

N/A Does not support CitSQL EXEC SQL CONNECT statement syntax directly,

however, does provide 6 flexible ODBC alternatives.

Does not support CitSQL EXEC SQL DECLARE hostvar VARIABLE CCSID

xxxxx statement.

Does not support CitSQL PIC N USAGE VARCHAR USAGE CLAUSE.

3.1.5 Dependencies and Limitations

3.1.5 Dependencies and Limitations 28

4. User Guide

4. User Guide

4. User Guide 29

4.1 Modes of Operation

CitOESQL can be used as a standalone preprocess that executes before and separately from cobc,

or in conjunction with cobc’s -preprocess directive. This latter mode is referred to as integrated

precompilation.

4.1.1 Standalone precompilation

When used standalone, you can use $DISPLAY and $SET statements in source code to manage

CitOESQL directives and set constants. CitOESQL handles copybook expansion, constant setting

and conditional compilation.

When debugging, you will see the code generated by CitOESQL.

4.1.2 Integrated precompilation

With integrated precompilation the following steps take place: - cobc reads the source code in an

initial pass that handles constants and conditional compilation and writes the updated source code

to a temporary file. This process also adds metadata comment lines to allow the debugger to

locate the original, un-preprocessed source code

cobc executes the script specified by the -preprocess option to execute CitOESQL passing it

the name of the temporary file generated in the previous step and another temporary

filename to be used for the precompiled output.

CitOESQL preprocesses EXEC SQL statements and writes the preprocessed output source

code to the temporary file requested by cobc.

cobc executes the remainder of the compilation process.

When using integrated precompilation you will see the original source code in the debugger.

When using integrated precompilation:

• •

• •

• •

4.1 Modes of Operation

4.1 Modes of Operation 30

Do not use $SET statements in source code to set CitOESQL directives, these will be ignored

and have no effect.

Do not use $DISPLAY statements in the source code, in this case cobc will output a warning.

Do not use conditional compilation that depends on constants set via CitOESQL directives

or on the CitOESQL command line.

Set all constants required for conditional compilation on the cobc command or in source

code using $SET CONSTANT statements that are compatible with cobc.

Set CitOESQL directives on the CitOESQL command line or in a directives file for CitOESQL

(via USE directive(s) on the CitOESQL command line).

To set CitOESQL directives you must edit the script file used to invoke CitOESQL. A sample script

file is provided in %COBOLITDIR%\bin\runcitoesql.bat on Windows and $COBOLITDIR/bin/

runcitoesql.sh on Linux. When opening the script for integrated precompilation, cobc will search

the current directory and %COBOLITDIR%\bin\ on Windows and $COBOLITDIR/bin/ on Linux if no

path is specified. Alternatively, you may specify an absolute or relative path for your script file. It

will often be convenient to copy and rename the default script file to you source code directory and

to make this directory current when compiling.

In the script file you should place CitOESQL directives after the directive and before the final two

command line parameters (these are the input and output files specified by cobc).

• •

• •

• •

• •

• •

4.1.2 Integrated precompilation

4.1.2 Integrated precompilation 31

4.2 Command line syntax

The command line for CitOESQL takes the following form:

citoesql [directive1 directive2 …] [@]filename1 [@] filename2 …

Each directive specified on the command line must be preceded by a hyphen.

filename1 filename2 … is normally a sequence of filenames. Filenames not preceded by an ‘@’

character are assumed to be COBOL source files. Each COBOL file will be preprocessed and if there

are no errors detected an output file with the same name but a .cbp extension will be written.

If a filename starts with an ‘@’ character, the file is assumed to be a text file containing a list of

input COBOL filenames, one per line.

If the first precompiler directive on the command line is P , then exactly two filenames must be

supplied. The first is the input filename and the second is the output filename. This directive should

only be used in the script used by the COBOL-IT COBOL compiler in association with the

preprocess=<script> option .

4.2.1 Placing Precompiler Directives in Files

You can place precompiler directives in a file as well as the command line or in source code via the

USE directive.

In a directives file:

blank lines or lines with a hash symbol (#) or semicolon (;) in column 1 are ignored

directives optionally be preceded by one or two hyphens(-)

directives may be grouped together on a line and separated by a space or comma(,)

directives may be grouped together and wrapped in a SQL directive thus

SQL(directive1 [,] directive2 …)

•

•

•

•

•

4.2 Command line syntax

4.2 Command line syntax 32

4.3 Source Code Formats

4.3.1 Source code formats

CitOESQL supports the following source code formats:

Fixed, which corresponds to traditional COBOL with the source code in columns 8-72 and

the indicator in column 7.

Variable, which extends the right margin from column 72 to column 256 and the indicator

column remains in column 7.

Free, or Terminal, format. In this format the indicator in column 1 is optional, source code

can start in column 1 or 2 and extend to column 248.

The source code format is specified by the SOURCEFORMAT directive, for example:

on the command line, or

at the start or a source file, or

or

in directives file.

• •

• •

• •

 citoesql -sourceformat=variable gs.cbl

 $SET SQL(sourceformat=variable)

 sourceformat=variable

 SQL(sourceformat=variable)

4.3 Source Code Formats

4.3 Source Code Formats 33

4.4 Directive Syntax

4.4.1 Directive syntax

Directives are case insensitive. The format of a directive is one of:

[[NO]directiveName[=directiveSetting]

[NO]directiveName[(directiveSetting)]

[NO]directiveName[“directiveSetting”]

[NO]directiveName[‘directiveSetting’]

On a command line a directive must be preceded by one or two hyphens with no whitespace

between the hyphen(s) and the directive.

•

•

•

•

On Windows double quotes on command lines must be escaped by a backslash character.

Note

4.4 Directive Syntax

4.4 Directive Syntax 34

4.5 Control statements in source

You can control precompilation by placing control statements in source files. The $SET statement

is used to set constants and directives. Other control statements provide support for conditional

compilation and message output.

4.5.1 Directives

You can set directives in source code using a $SET control statement thus

$SET directiveSetting

4.5.2 Constants

You can set a constant in source code using a $SET CONSTANT control statement.

The following formats are compatible with both standalone and integrated precompilation:

$SET CONSTANT constantName [=] constantValue

$SET CONSTANT constantName [=] “constantValue”

CitOESQL also supports the following formats:

$SET CONSTANT(constantName [=] constantValue)

$SET CONSTANT(constantName [=] “constantValue”)

$SET CONSTANT(constantName [=] ‘constantValue’)

To set a constant in a directives file or on the CitOESQL command line use the following formats:

[-][-]CONSTANT(constantName [=] constantValue)

[-][-]CONSTANT(constantName [=] “constantValue”)

[-][-]CONSTANT(constantName [=] ‘constantValue’)

4.5.3 Conditional compilation

4.5 Control statements in source

4.5 Control statements in source 35

CitOESQL supports conditional compilation using $IF, $ELSE and $END statements in standalone

mode. These are compatible with the conditional compilation support offered by cobc.

CitOESQL also support the following variant, which is not supported by cobc:

$IF constantName [NOT] DEFINED

4.5.4 Messages

In standalone mode you can output a message at compile time using a $DISPLAY statement. The

message displayed starts with the first non-blank character following $DISPLAY and ends with the

last non-blank character on the same line.

4.5.4 Messages

4.5.4 Messages 36

4.6 Programming

4.6.1 Syntax Checking Options

CitOESQL is an open implementation for the ANSI Embedded SQL standard, and as such can be

used with a wide variety of databases, each of which can accept different and sometimes unique

SQL syntax. To accommodate these differences, by default, CitOESQL does minimal SQL syntax

checking at compile time. You can increase the level of CitOESQL SQL syntax checking at compile

time by using the SQL(CHECK) directive with other associated directives.

SQL(CHECK) connects to the database during compilation, and asks the database to validate SQL

syntax with the existing database SQL objects such as tables, columns, etc.

In addition to SQL(CHECK), you must also specify the SQL(DB) directive, and optionally the

SQL(PASS) directive. This combination ensures a successful connection to your database at

compile time and returns applicable SQL syntax errors.

In addition to the topics below, see the CHECK compiler directive topic in the CitOESQL Reference

Manual for more information on the SQL(CHECK) compiler directive option.

4.6.2 SQL(CHECK) and Schema Objects

All databases contain Schemas that include SQL objects like tables, columns, views, and temporary

tables. If all the SQL objects in a database are available at compile time, using the SQL(CHECK)

directive ensures that all SQL syntax is fully checked by the database during compilation.

However, some schema objects might not be available in the database at compile time. In this

case, CitOESQL offers two solutions:

When using SQL(CHECK), we suggest that you connect to a local rather than a remote

database, as network access could compromise compilation speed.

Note

4.6 Programming

4.6 Programming 37

SQL(IGNORESCHEMAERRORS) directive

Use this directive with SQL(CHECK) when tables or other SQL objects do not exist in the

database. The addition of SQL(IGNORESCHEMAERRORS) enables CitOESQL to ignore invalid

object reference errors returned by the database and continue compilation.

[ALSO CHECK] and [ONLY CHECK] statement prefixes

Use these statement prefixes on individual SQL statements in your code if you want CitOESQL to

create SQL objects in the database at compile time. With the objects in the database, all invalid

object reference errors are returned during compilation, and optionally at run time as well.

For more information on [ALSO CHECK] and [ONLY CHECK], see SQL Statement Prefixes for

SQL(CHECK).

4.6.3 SQL(CHECK) Command-line Options

You can improve SQL syntax checking in some scenarios by combining SQL(CHECK) with

additional compiler directive options and/or using a local database.

SQL(CHECK) with SQL(DB) and, optionally, SQL(PASS)

When you use the SQL(CHECK) and SQL(DB) directives, together with SQL(PASS) if necessary,

CitOESQL opens a connection to a data source at compile time and uses the data source to

perform additional checking. This is the recommended way to use CitOESQL and is much more

reliable at detecting errors. In addition to detecting syntax errors that are specific to a particular

data source, it can also detect misspelled names and invalid use of reserved words.

SQL(CHECK), local database, deployment schema

CitOESQL is at its most effective when you use SQL(CHECK) with a local database that uses the

same schema that is used when the application is deployed. This combination compiles

programs faster than accessing a networked server for compile-time checking.

SQL(CHECK), local database, no deployment schema

When you do not have access to a data source with the deployment schema installed you can still

use SQL(CHECK) to perform additional syntax checking, but you must also use

SQL(IGNORSCHEMAERRORS) to avoid errors for invalid name use.

SQL(IGNORESCHEMAERRORS) is also helpful when your program uses temporary tables that

exist only at run time.

4.6.4 SQL Statement Prefixes for SQL(CHECK)

4.6.3 SQL(CHECK) Command-line Options

4.6.3 SQL(CHECK) Command-line Options 38

To enable complete SQL syntax checking at compile time when tables or temporary tables are not

in your database, CitOESQL provides SQL statement prefixes that enable you to execute specific

SQL statements at compile time and optionally at run time also.

A statement prefix is coded directly into an EXEC SQL statement and executed only when compiled

with SQL(CHECK).

Syntax:

EXEC SQL [statementPrefix] [errorFlag[...]] SQLStatement END-EXEC

Parameters:

4.6.4 SQL Statement Prefixes for SQL(CHECK)

4.6.4 SQL Statement Prefixes for SQL(CHECK) 39

statementPrefix

[ALSO CHECK]

Statement prefix that instructs SQL(CHECK) to execute the following SQLStatement both at

compile time and a run time.

[ONLY CHECK]

Statement prefix that instructs SQL(CHECK) to execute the following SQLStatement at compile

time only.

[NOCHECK]

Statement prefix that turns off the effects of the SQL(CHECK) directive for the associated

SQLStatement only.

errorFlag

[IGNORE ERROR]

Overrides the default behavior of providing a success or error return code upon SQLStatement

execution, and instead ignores all errors at compile time and proceeds with compilation.

[WITH WARNING]

Overrides the default behavior of providing a success or error return code upon SQLStatement

execution, and instead returns all errors as warnings at compile time, and proceeds with

compilation.

SQLStatement

An SQL statement that conforms to the following:

A DDL statement such as CREATE TABLE or the specific DML statements INSERT, DELETE

or UPDATE

No host variables used

Written in a syntax understood by the DBMS vendor

Example 1:

Create a SQL Server temporary table at compile time only so that subsequent SQL that references

this table is fully syntax checked by the CitOESQL SQL(CHECK) directive during compilation.

Example 2:

• •

• •

• •

EXEC SQL [ONLY CHECK]
create table #temp(col1 int,col2 char(32))
END-EXEC

4.6.4 SQL Statement Prefixes for SQL(CHECK)

4.6.4 SQL Statement Prefixes for SQL(CHECK) 40

Create a SQL Server temporary table at both compile time and execution time so that, in addition

to full compile-time syntax checking, the table is created at execution time.

Example 3:

Create test data at compile time with Oracle whether or not the table exists at compile time.

4.6.5 Tuning Performance

Cursor Types and Performance

CitOESQL handles ambiguously declared embedded SQL cursors by making them forward and

readonly, and incapable of retrieving locks. This change improves performance and efficiency,

optimizing CitOESQL as most DBMS SQL cursor access plans do.

You can further optimize CitOESQL by using the BEHAVIOR directive, which enables you to change

your embedded SQL cursor characteristics (including prefetch processing) without changing any

code in your SQL application sources.

Statement Cache

Embedded SQL statements are optimized for repeat execution. When first executed a statement is

prepared at the data source. This is analogous to program compilation and means that information

is retained about how to execute the statement so that it does not have to be recompiled on

subsequent executions.

Prepared statements consume memory on both the client and server; CitOESQL maintains a cache

to limit how much memory is consumed by prepared statements. The cache is managed on a

Least Recently Used (LRU) basis. When the cache reaches its limit the least recently used

statement that can safely be removed from the cache is replaced with the statement currently

being executed. Any resources used by the replaced prepared statement are freed.

The default cache size is 20 which is quite small, however, this limit has the ability to avoid

problems with some database products that have low limits on server resource consumption. The

size of the cache can be changed via the STMTCACHE directive.

EXEC SQL [ALSO CHECK]
create table #temp(col1 int,col2 char(32))
END-EXEC

EXEC SQL [ONLY CHECK IGNORE ERROR]
Drop table TT
END-EXEC

EXEC SQL [ONLY CHECK]
create table TT (col1 int)
END-EXEC

EXEC SQL [ONLY CHECK]
Insert into table TT values (1)
END-EXEC

4.6.5 Tuning Performance

4.6.5 Tuning Performance 41

In practice, a large batch program may benefit from a statement cache size of 300 or possibly

more. Many factors affect the optimum cache size, so it is best to experiment. Initial increments

will generally improve performance of programs that use connections with long lifespans, but

eventually additional increments benefits may reduce performance. Finding the optimum cache

size may take a little effort.

Datetime Data Type Handling

By default, CitOESQL supports ODBC/ISO 8601 formats for all input and output character host

variables associated with datetime columns in your DBMS.

For example, when using a SQL Server DBMS, the default data type formats for character host

variables are:

SQL Server Data Type ODBC/ISO 8601 Format

date yyyy-mm-dd

time hh:mm:ss

4.6.5 Tuning Performance

4.6.5 Tuning Performance 42

In addition to SQL Server, these formats generally apply to other DBMS vendors that accept ISO

8601 formats. CitOESQL also supports alternative formats for both input and output character host

variables. We provide several SQL compiler directive options that enable you to specify alternative

formats that override the default.

Input Host Variables - DETECTDATE

The DETECTDATE SQL compiler option directive instructs CitOESQL to examine the contents of PIC

X character input host variables, looking for data that matches the default ISO 8601 formats. You

can override the default formats by specifying one or more additional directives:

SQL Server Data Type ODBC/ISO 8601 Format

datetime2 yyyy-mm-dd hh:mm:ss.ffffffff

For complete information on each directive, see its corresponding topic under CitOESQL

Directives section in the CitOESQL Reference Manual.

Note

4.6.5 Tuning Performance

4.6.5 Tuning Performance 43

DATE

Specify an alternative DATE format.

DATEDELIM

Specify an alternative delimiter for date columns.

When used with DATE, the alternative delimiter is applied to the alternative date format

specified.

When used without DATE, the alternative delimiter is applied to the ISO 8601 date format.

TIME

Specify an alternative TIME format.

TIMEDELIM

Specify an alternative delimiter for time columns.

When used with TIME, the alternative delimiter is applied to the alternative time format

specified.

When used without TIME, the alternative delimiter is applied to the ISO 8601 time format.

TSTAMPSEP

• •

• •

• •

• •

4.6.5 Tuning Performance

4.6.5 Tuning Performance 44

Specify a one-character delimiter used between the date and time portions of your input host

variables.

The dash character instructs CitOESQL to look for a specific set of delimiters, including a dash, a

space, and a T. For example, if you do not specify any alternative date or time formats, and you

set TSTAMPSEP to a dash character (-), CitOESQL recognizes the following formats in your input

host variables:

yyyy-mm-dd-hh.mm.ss.ffffff

yyyy-mm-dd hh.mm.ss.ffffff

yyyy-mm-dd hh:mm:ss.ffffff

yyyy-mm-ddThh.mm.ss.ffffff

yyyy-mm-ddThh:mm:ss.ffffff

All other characters instruct CitOESQL to search for that specific character between each date

and time format, where the date portion is delimited by a dash character (-) and the time portion

is delimited by a colon (:).

If you do not specify TSTAMPSEP, CitOESQL defaults to searching for a space character as the

delimiter between the date and time formats, where the date portion is delimited by a dash

character (-) and the time portion is delimited by a colon (:).

Guidelines for using DETECTDATE

Use of the DETECTDATE directive can create significant processing overhead. To minimize this,

we recommend that you follow the guidelines presented in the following usage scenarios:

• •

• •

• •

• •

• •

Scenario DETECTATE option

My application uses date, time and datetimes values in PIC

X input host variables, but I am happy with the supported

ODBC/ISO 8601 formats and have no use for alternative

formats.

Not required. *

My application uses date, time and datetime values in PIC X

input host variables, but I only use those values in date,

time, or datetime columns in my database.

CLIENT

My application uses ODBC escape sequences for date,

time, and datetimes values in PIC X input host variables, but

I only use those values in date, time, or datetime columns in

my database.

CLIENT

4.6.5 Tuning Performance

4.6.5 Tuning Performance 45

* We recommend that you use DETECTDATE when also using TIME values with Oracle.

** Optionally, you can use alternative datetime SQL compiler directive options.

Output Host Variables

By default, CitOESQL returns date, time and datetime data types in the ISO 8601 default format.

You can override the default format by specifying additional CitOESQL directives as follows:

Scenario DETECTATE option

My application uses date, time, and datetime values in PIC

X input host variables, but I only use those values in

character columns in my database. Also, my SQL does not

use either implicit or explicit characters for date, time, or

datetime2 data types.

Not required. Do not use

DETECTDATE, DATE, or

TIME SQL compiler

directive options.

I only use SQLTYPE host variables with date, time and

datetime columns, and never use PIC X host variables with

date, time or datetime columns.

Not required. **

My application uses date, time and datetime values in PIC X

input host variables, and I use those values both in

character columns and in date, time and datetime columns

in my database, and my character columns might use data

in formats that could be confused with the formats for

date, time or datetime values.

SERVER

For complete information on all DETECTDATE options, see the DETECTDATE SQL compiler

directive option in the CitOESQL Reference Manual.

Note

DBMS Data Type ODBC/ISO 8601 Format CitOESQL Directives

date yyyy-mm-dd DATE, DATEDELIM

4.6.5 Tuning Performance

4.6.5 Tuning Performance 46

Changing the error code logic in an application containing logic originally designed for a specific

database can be cumbersome. Consider these scenarios:

My code expects Oracle SQLCODE 1403 at end of result set processing and not SQLCODE

100 as produced by other databases.

My code expects z/OS DB2 SQLCODE-811 when a SELECT INTO statement returns more

than one row.

My code does not expect data truncation warnings after a FETCH statement, but my new

database sets SQLCODE 1.

When inserting a row that results in a duplicate key error, my code expects original database

error codes.

These are just a few simple examples, however, error code mapping allows maximum flexibility in

preserving the current error handling in your application code. When you provide search criteria

based on what the new database returns in error situations, (using value 0 when SQLCODE or

SQLSTATE values are returned that do not matter), and specify the error values for the original

database, you can ensure that your application receives the error codes it expects.

When error mapping is enabled, it is processed after an embedded SQL statement completes

execution. If SQLCODE is non-zero or SQLSTATE is not 00000 , the error map is used to determine if

SQLCODE, SQLSTATE, and optionally the associated error message, should be replaced with values

from the error map. This is done by scanning error map records in order until either of the following

conditions are met:

It reaches the end of the map, in which case SQLCODE, SQLSTATE, and the error message

are left unchanged.

A match is made on some combination of SQLCODE, SQLSTATE, and a substring present in

the error message.

SQL error mapping files

You control error mapping using an error mapping file. This is a simple text file that specifies which

error conditions to map, the replacement values for SQLCODE and SQLSTATE, and optionally

replacement values for the error message, including complete suppression of the error message.

You can specify mappings based on the returned values of SQLCODE, SQLSTATE or a substring

within the error message, or any combination of these.

DBMS Data Type ODBC/ISO 8601 Format CitOESQL Directives

datetime yyyy-mm-dd

hh:mm:ss.ffffff

TSTAMPSEP

• •

• •

• •

• •

• •

• •

4.6.5 Tuning Performance

4.6.5 Tuning Performance 47

LOCATION

The default location for mapping files is %COBOLITDIR%\etc (Windows) or $COBOLITDIR/etc

(Linux)

FILENAME

You can name an SQL error mapping file using any prefix you choose; however, all error mapping

files must have an .emap extension.

CONTENTS

You can override the default location using the CIT_ERRORMAP_PATH system environment

variable.

Note

4.6.5 Tuning Performance

4.6.5 Tuning Performance 48

Each record in a mapping file contains the following values in this order, delimited by commas:

Where:

SC-ret-val|0

The returned database value for SQLCODE, or 0 (zero), to indicate that the returned database

SQLCODE value does not matter.

SS-ret-val|0

The returned database value for SQLSTATE, or 0 (zero), to indicate that the returned database

SQLSTATE value does not matter.

msg-substr

The returned database error message substring, if applicable. Specify a string of characters that

appear in the message returned by the database. The error is mapped if the substring is present

in the error message, and when the SQLCODE and SQLSTATE conditions are also satisfied. The

following syntax rules apply when providing a substring:

If the substring contains a comma, enclose the entire substring in single (') or double (“)

quotes

Message substrings are case sensitive.

Other than providing a substring, you also have these two options:

Omit a value by including a space before the next comma delimiter. The original message

is returned, effectively switching off error message replacement for substrings.

Specify a single tilde (¬) character. This populates the message-receiving field, consisting

of SQLERRMC, MFSQLMESSAGETEXT (or the host variable for

MESSAGE_TEXT with GET DIAGNOSTICS), with spaces. SQLERRML in the SQLCA is also set to

zero rather than the number of characters returned in SQLERRMC.

SC-repl-val

Original database replacement value for SQLCODE.

SS-repl-val

{SC-ret-val|0},{SS-ret-val|0},[msg-substr],SC-repl-val,SS-repl-val,[msg-substr-repl-val]

• •

• •

The full error message is used for the substring search rather than the 70 bytes subset

returned in SQLERRMC.

Note

• •

• •

4.6.5 Tuning Performance

4.6.5 Tuning Performance 49

Original database replacement value for SQLSTATE.

msg-substr-repl-val

Replacement value for the error message, if applicable. Syntax rules for msg-substr also apply to

msg-substr-repl-val. When omitted, the initial error message is not replaced. Use a single tilde (¬)

character to completely suppress the message.

SQL error mapping record examples

EXAMPLE 1:

This example is based on a migration from DB/2 for z/OS to PostgreSQL where a SELECT INTO

statement returns more than the expected one row. The following mapping file entry changes the

returned SQLCODE from 1 to -811 while leaving the PostgreSQL error intact. It does this when

PostgreSQL returns SQLCODE 1 and SQLSTATE 21000 (the matching criteria):

EXAMPLE 2:

This example is based on a migration from DB/2 for z/OS to PostgreSQL. The record maps errors

that contain the string "duplicate" when a primary key or unique constraint error occurs, and

changes the error message to "Unique constraint violation". Notice that the return values

PostgreSQL provides for both SQLCODE and SQLSTATE do not matter. The search criteria is based

solely on the returned PostgreSQL error message alone:

EXAMPLE 3: ODBC generates a warning when a host variable is smaller than the returned value. If

an application tests for SQLCODE being non-zero rather than negative, this can break application

logic. To completely suppress the warning condition, including the error message, the following

record matches warnings where SQLSTATE has the value 01004:

EXAMPLE 4: As an alternative to Example 3, when migrating a legacy application to an

environment using UTF-8 and you want to test whether your host variables are large enough, the

following record changes this warning to an error with SQLCODE -55 and SQLSTATE "22XYZ":

SQL error mapping enablement

Use the CitOESQL ERRORMAP compiler directive option to enable error mapping, as documented in

the CitOESQL Directive section of the CitOESQL Reference Manual.

1, 21000, ,-811, 21000

0, 00000,"duplicate", -803, 22002, Unique constraint violation

0, 01004, , 0, 00000, ~

0, 01004, , -55, 22XYZ, Host variable too small

4.6.5 Tuning Performance

4.6.5 Tuning Performance 50

If you intend to use multiple error mapping files in one program, use the SQL Statement SET

ERRORMAP, as documented in SQL Statements section of the CitOESQL Reference Manual.

4.6.5 Tuning Performance

4.6.5 Tuning Performance 51

5. Reference Manual

5. Reference Manual

5. Reference Manual 52

5.1 Developing SQL Applications

The following topics describe the programming features available for SQL applications in general.

Embedded SQL

Instructions on how to embed SQL statements into your programs.

Host Variables

The purpose of host variables, how to declare them, and how to use them in your SQL

applications.

Cursors

The purpose of cursors, how to declare them, and how to use them in SQL applications.

Data Structures

The purpose and use of the SQLCA and SQLDA data structures available for SQL

applications.

Dynamic SQL

An explanation of how dynamic SQL works, and a description of its purpose, advantages,

and use.

5.1.1 Embedded SQL

The CitOESQL preprocessor works by taking the SQL statements that you have embedded in your

COBOL program and converting them to the appropriate function calls to the database.

Keywords:

In your COBOL program, each embedded SQL statement must be preceded by the introductory

keywords:

EXEC SQL

and followed by the keyword:

END-EXEC

For example:

The embedded SQL statement can be broken over as many lines as necessary following the normal

COBOL rules for continuation, but between the EXEC SQL and END-EXEC keywords you can only

code an embedded SQL statement; you cannot include any ordinary COBOL code.

• •

• •

• •

• •

• •

EXEC SQL
 SELECT au_lname INTO :lastname FROM authors
 WHERE au_id = '124-59-3864'
END-EXEC

5.1 Developing SQL Applications

5.1 Developing SQL Applications 53

The case of embedded SQL keywords in your programs is ignored. You can use all upper-case, all

lower-case, or a combination of the two. For example, the following are all equivalent:

Cursor names, statement names, and connection names:

The case of cursor names, statement names and connection names must match that used when

the variable is declared. For example, if you declare a cursor as C1, you must always refer to it as

C1 (and not as c1).

The settings for the database determines whether such things as connection names, table and

column names, are case-sensitive.

SQL identifiers:

Hyphens are not permitted in SQL identifiers such as table and column names.

SQL identifiers are typically restricted regarding which characters they support. Typically, unquoted

identifiers can only contain A-Z, 0-9 and underscore. Some databases might also allow lower-case

characters, and/or @ and # symbols. If your SQL identifiers contain any other characters, such as a

grave accent, spaces, or DBCS characters, they must be delimited. Refer to your database vendor

documentation for more information, including the character to use as the delimiter.

SQL statements:

Most vendors provide SQL Reference documentation with their database software that includes full

information about embedded SQL statements. Regardless of the database software, you should,

for example, be able to perform the following typical operations using the statements shown:

EXEC SQL CONNECT
exec sql connect
Exec Sql Connect

Operation SQL Statement(s)

Add data to a table INSERT

Change data in a table UPDATE

Retrieve a row of data from a table SELECT

Create a named cursor DECLARE CURSOR

5.1.1 Embedded SQL

5.1.1 Embedded SQL 54

A full syntax description is given for each of the supported embedded SQL statements, together

with an example of its use, in the topics under Embedded SQL.

5.1.2 Host Variables

Host variables are data items defined within a COBOL program. They are used to pass values to

and receive values from a database. Host variables can be defined in the File Section, Working-

Storage Section, Local-Storage Section or Linkage Section of your COBOL program and can be

coded using any level number between 1 and 48.

A host variable can be input or output:

Input host variables - to specify data to be transferred from the COBOL program to the

database • Output host variables

to hold data to be returned to the COBOL program from the database

To use host variables, you must declare them in your program and then reference them in your SQL

statements.

A host variable can be defined as any of the following types:

Simple Host Variables

To store and retrieve a single string of data.

Host Arrays

To store and retrieve multiple rows of data.

Indicator Variables

A companion variable that stores null value and data truncation information.

Indicator Arrays

A companion array used to store null value and data truncation information for multiple

rows.

Simple Host Variables

Before you can use a host variable in an embedded SQL statement, you must declare it.

DECLARING SIMPLE HOST VARIABLES

Operation SQL Statement(s)

Retrieve multiple rows of data using a cursor OPEN, FETCH, CLOSE

•

•

• •

• •

• •

• •

5.1.2 Host Variables

5.1.2 Host Variables 55

Generally, host variable declarations are coded as data items bracketed by the embedded SQL

statements BEGIN DECLARE SECTION and END DECLARE SECTION. The following rules also apply:

You can use groups of data items as a single host variable. However, a group item cannot be

used in a WHERE clause.

CitOESQL trims trailing spaces from character host variables. If the variable consists entirely

of spaces, CitOESQL does not trim the first space character because some servers treat a

zero-length string as NULL.

With CitOESQL, you can use COBOL data items as host variables even if they have not been

declared using BEGIN DECLARE SECTION and END DECLARE SECTION.

Host variable names must conform to the COBOL rules for data items.

Host variables can be declared anywhere that it is legal to declare COBOL data items.

REFERENCING SIMPLE HOST VARIABLES

You reference host variables from embedded SQL statements. When you code a host variable

name into an embedded SQL statement, it must be preceded by a colon (:) to enable the compiler

to distinguish between the host variable and tables or columns with the same name.

EXAMPLE:

Host Arrays

An array is a collection of data items associated with a single variable name. You can define an

array of host variables (called host arrays) and operate on them with a single SQL statement.

•

•

•

•

•

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 id pic x(4).
01 name pic x(30).
01 book-title pic x(40).
01 book-id pic x(5).
EXEC SQL
 END DECLARE SECTION
END-EXEC
. . .
 display "Type your identification number: "
 accept id.
* The following statement retrieves the name of the
* employee whose ID is the same as the contents of
* the host variable "id". The name is returned in
* the host variable "name".
 EXEC SQL
 SELECT emp_name INTO :name FROM employees
 WHERE emp_id=:id
 END-EXEC
 display "Hello " name.
* In the following statement, :book-id is an input
* host variable that contains the ID of the book to
* search for, while :book-title is an output host
* variable that returns the result of the search.
 EXEC SQL
 SELECT title INTO :book-title FROM titles
 WHERE title_id=:book-id
 END-EXEC

5.1.2 Host Variables

5.1.2 Host Variables 56

You can use host arrays as input variables in INSERT, UPDATE and DELETE statements and as

output variables in the INTO clause of SELECT and FETCH statements. This means that you can

use arrays with SELECT, FETCH, DELETE, INSERT and UPDATE statements to manipulate large

volumes of data.

Some of the benefits to using host arrays include:

You can perform multiple CALL, EXECUTE, INSERT or UPDATE operations by executing only

one SQL statement, which can significantly improve performance, especially when the

application and the database are on different systems.

You can fetch data in batches, which can be useful when creating a scrolling list of

information.

As with simple host variables, you must declare host arrays in your program and then reference

them in your SQL statements.

DECLARING HOST ARRAYS

Host arrays are declared in much the same way as simple host variables using BEGIN DECLARE

SECTION and END DECLARE SECTION. With host arrays, however, you must use the OCCURS

clause to dimension the array.

REFERENCING HOST ARRAYS

The following rules apply to coding host arrays into embedded SQL statements:

•

•

5.1.2 Host Variables

5.1.2 Host Variables 57

Just as with simple host variables, you must precede a host array name with a colon (;).

If the number of rows available is more than the number of rows defined in an array, a SELECT

statement returns the number of rows defined in the array, and an SQLCODE message is

issued to indicate that the additional rows could not be returned.

Use a SELECT statement only when you know the maximum number of rows to be selected.

When the number of rows to be returned is unknown, use the FETCH statement.

If you use multiple host arrays in a single SQL statement, their dimensions must be the same.

CitOESQL does not support the mixing of host arrays and simple host variables within a single

SQL statement. They must be all simple or all arrays.

For CitOESQL, you must define all host variables within a host array with the same number of

occurrences. If one variable has 25 occurrences, all variables in that host array must have 25

occurrences.

Optionally, use the FOR clause to limit the number of array elements processed to just those

that you want. This is especially useful in UPDATE, INSERT and DELETE statements where

you may not want to use the entire array. The following rules apply:

If the value of the FOR clause variable is less than or equal to zero, no rows are processed.

The number of array elements processed is determined by comparing the dimension of

the host array with the FOR clause variable. The lesser value is used.

EXAMPLES:

The following example shows typical host array declarations and references.

The following example demonstrates the use of the FOR clause, showing 10 rows (the value of

:maxitems) modified by the UPDATE statement:

•

•

•

•

•

•

• •

•

•

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 AUTH-REC-TABLES
 05 Auth-id OCCURS 25 TIMES PIC X(12).
 05 Auth-Lname OCCURS 25 TIMES PIC X(40).
EXEC SQL
 END DECLARE SECTION
END-EXEC.
. . .

 EXEC SQL
 CONNECT USERID 'user' IDENTIFIED BY 'pwd'
 USING 'db_alias'
END-EXEC
EXEC SQL
 SELECT au-id, au-lname
 INTO :Auth-id, :Auth-Lname FROM authors
END-EXEC
display sqlerrd(3)

5.1.2 Host Variables

5.1.2 Host Variables 58

Indicator Variables

Use indicator variables to:

Assign null values

Detect null values

Detect data truncation

Unlike COBOL, SQL supports variables that can contain null values. A null value means that no

entry has been made and usually implies that the value is either unknown or undefined. A null value

enables you to distinguish between a deliberate entry of zero (for numerical columns) or a blank

(for character columns) and an unknown or inapplicable entry. For example, a null value in a price

column does not mean that the item is being given away free, it means that the price is not known

or has not been set.

Indicator variables serve an additional purpose if truncation occurs when data is retrieved from a

database into a host variable. If the host variable is not large enough to hold the data returned from

the database, the warning flag sqlwarn1 in the SQLCA data structure is set and the indicator

variable is set to the size of the data contained in the database.

DECLARING INDICATOR VARIABLES

Indicator variables are always defined as:

REFERENCING INDICATOR VARIABLES

EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC

01 AUTH-REC-TABLES
 05 Auth-id OCCURS 25 TIMES PIC X(12).
 05 Auth-Lname OCCURS 25 TIMES PIC X(40).
01 maxitems PIC S9(4) COMP-5 VALUE 10.
EXEC SQL
 END DECLARE SECTION
END-EXEC.
. . .
 EXEC SQL
 CONNECT USERID 'user' IDENTIFIED BY 'pwd'
 USING 'db_alias'
 END-EXEC
 EXEC SQL
 FOR :maxitems
 UPDATE authors
 SET au_lname = :Auth_Lname
 WHERE au_id = :Auth_id
 END-EXEC
 display sqlerrd(3)

•

•

•

When a host variable is null, its indicator variable has the value -1; when a host variable is not

null, the indicator variable has a value other than -1.

Important

pic S9(4) comp-5.

5.1.2 Host Variables

5.1.2 Host Variables 59

Together, a host variable and its companion indicator variable specify a single SQL value. The

following applies to coding a host variable with a companion indicator variable:

Both variables must be preceded by a colon (:).

Place an indicator variable immediately after its corresponding host variable.

Reference the host variable and indicator variable in a FETCH INTO or SELECT ...INTO

statement with or without an INDICATOR clause as follows:

:hostvar:indicvar

or

:hostvar INDICATOR :indicvar

You cannot use indicator variables in a search condition. To search for null values, use the is null

construct instead.

EXAMPLES:

This example demonstrates the declaration of an indiator variable that is used in a FETCH ...INTO

statement.

The following shows an embedded UPDATE statement that uses a saleprice host variable with a

companion indicator variable, saleprice-null :

In this example, if saleprice-null has a value of -1, when the UPDATE statement executes, the

statement is read as:

This example demonstrates the use of the is null construct to do a search:

•

•

• •

EXEC SQL
 BEGIN DECLARE SECTION
 END-EXEC
 01 host-var pic x(4).
 01 indicator-var pic S9(4) comp-5.
 EXEC SQL
 END DECLARE SECTION
 END-EXEC
. . .

 EXEC SQL
 FETCH myCursor INTO :host-var:indicator-var
 END-EXEC

EXEC SQL
 UPDATE closeoutsale
 SET temp_price = :saleprice:saleprice-null,
 listprice = :oldprice
END-EXEC

EXEC SQL
 UPDATE closeoutsale
 SET temp_price = null, listprice = :oldprice
END-EXEC

5.1.2 Host Variables

5.1.2 Host Variables 60

Indicator Arrays

Just as an indicator variable is used as a companion to a host variable, use an indicator array as a

companion to a host array to indicate the null status of each returned row or to store data

truncation warning flags.

EXAMPLES:

In this example, an indicator array is set to -1 so that it can be used to insert null values into a

column:

COBOL to SQL Data Type Mapping

SQL has a standard set of data types, but the exact implementation of these varies between

databases, and many databases do not implement the full set.

Within a program, COBOL host variable declarations can serve both as COBOL host variables and

as SQL database variables. To make this possible, the preprocessor converts COBOL data types to

their equivalent SQL data types. We sometimes refer to this conversion process as mapping

COBOL data types to SQL data types. The preprocessor looks for specific COBOL picture clause

formats that identify those that require mapping to SQL data types. For mapping to be successful,

you must declare your COBOL host variables using these specific COBOL picture clauses.

We provide SQL data types for the CitOESQL preprocessor. For complete information on each SQL

data type and its required COBOL host variable formats, see the SQL Data Types and ODBC SQL/

COBOL Data Type Mappings Reference topics.

SQL TYPEs

if saleprice-null equal -1
 EXEC SQL
 DELETE FROM closeoutsale
 WHERE temp_price is null
 END-EXEC
else
 EXEC SQL
 DELETE FROM closeoutsale
 WHERE temp_price = :saleprice
 END-EXEC
end-if

01 ix PIC 99 COMP-5.
. . .

 EXEC SQL
 BEGIN DECLARE SECTION
END-EXEC
01 sales-id OCCURS 25 TIMES PIC X(12).
01 sales-name OCCURS 25 TIMES PIC X(40).
01 sales-comm OCCURS 25 TIMES PIC S9(9) COMP-5.
01 ind-comm OCCURS 25 TIMES PIC S9(4) COMP-5.
EXEC SQL
 END DECLARE SECTION
END-EXEC.
. . .
 PERFORM VARYING iX FROM 1 BY 1 UNTIL ix > 25
 MOVE -1 TO ind-comm (ix)
 END-PERFORM.
. . .
 EXEC SQL
 INSERT INTO SALES (ID, NAME, COMM)
 VALUES (:sales_id, :sales_name, :sales_comm:ind-comm)
 END-EXEC

5.1.2 Host Variables

5.1.2 Host Variables 61

Manipulating SQL data that involves date, time, or binary data can be complicated using traditional

COBOL host variables, and traditional techniques for handling variable-length character data can

also be problematic. To simplify working with this data, we provide the SQL TYPE declaration to

make it easier to specify host variables that more closely reflect the natural data types of relational

data stores. This allows more applications to be built using static rather than dynamic SQL syntax

and can also help to optimize code execution.

EXAMPLE:

Defining date, time, and timestamp fields as SQL TYPEs.

This example program shows date, time and timestamp escape sequences being used, and how to

redefine them as SQL TYPEs. It applies to CitOESQL:

For a complete listing of available SQL TYPEs, see the SQL TYPEs reference topic.

Note

5.1.2 Host Variables

5.1.2 Host Variables 62

Alternatively, you can use host variables defined with SQL TYPEs for date/time variables. Define the

following host variables:

and replace the INSERT statement with the following code:

working-storage section.

EXEC SQL INCLUDE SQLCA END-EXEC
01 date-field1 pic x(29).
01 date-field2 pic x(29).
01 date-field3 pic x(29).

procedure division.
 EXEC SQL
 CONNECT TO 'Net Express 4.0 Sample 1' USER 'admin'
 END-EXEC
* If the Table is there drop it.
 EXEC SQL
 DROP TABLE DT
 END-EXEC

* Create a table with columns for DATE, TIME, and DATE/TIME
* NOTE: Access uses DATETIME column for all three.
* Some databases will have dedicated column types.
* If you are creating DATE/TIME columns on another data
* source, refer to your database documentation to see how to * define the columns.

 EXEC SQL
 CREATE TABLE DT (id INT,
 myDate DATE NULL,
 myTime TIME NULL,
 myTimestamp TIMESTAMP NULL)
 END-EXEC

* INSERT into the table using the ODBC Escape sequences

 EXEC SQL
 INSERT into DT values (1 ,
 {d '1961-10-08'}, *> Set just the date part
 {t '12:21:54' }, *> Set just the time part
 {ts '1966-01-24 08:21:56' } *> Set both parts
)
 END-EXEC

* Retrieve the values we just inserted

 EXEC SQL
 SELECT myDate
 ,myTime
 ,myTimestamp
 INTO :date-field1
 ,:date-field2
 ,:date-field3
 FROM DT
 where id = 1
 END-EXEC

* Display the results.

 display 'where the date part has been set :'
 date-field1
 display 'where the time part has been set :'
 date-field2
 display 'NOTE, most data sources will set a default '
 'for the date part '
 display 'where both parts has been set :'
 date-field3

* Remove the table.

 EXEC SQL
 DROP TABLE DT
 END-EXEC

* Disconnect from the data source

 EXEC SQL
 DISCONNECT CURRENT
 END-EXEC

 stop run.

01 my-id pic s9(08) COMP-5.

01 my-date sql type is date.

01 my-time sql type is time.

01 my-timestamp sql type is timestamp.

5.1.2 Host Variables

5.1.2 Host Variables 63

5.1.3 Cursors

When you write code in which the results set returned by a SELECT statement includes more than

one row of data, you must declare and use a cursor. A cursor indicates the current position in a

results set, in the same way that the cursor on a screen indicates the current position.

A cursor enables you to:

Fetch rows of data one at a time

Perform updates and deletions at a specified position within a results set.

The example below demonstrates the following sequence of events:

The DECLARE CURSOR statement associates the SELECT statement with the cursor Cursor1.

The OPEN statement opens the cursor, thereby executing the SELECT statement.

The FETCH statement retrieves the data for the current row from the columns au_fname and

au_lname and places the data in the host variables first_name and last_name.

The program loops on the FETCH statement until no more data is available.

The CLOSE statement closes the cursor.

Declaring a Cursor

*> INSERT into the table using SQL TYPE HOST VARS
 move 1 to MY-ID
 move "1961-10-08" to MY-DATE
 move "12:21:54" to MY-TIME
 move "1966-01-24 08:21:56" to MY-TIMESTAMP

 EXEC SQL
 INSERT into DT value (
 :MY-ID
 ,:MY-DATE
 ,:MY-TIME
 ,:MY-TIMESTAMP)
 END-EXEC

•

•

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

EXEC SQL DECLARE Cursor1 CURSOR FOR
 SELECT au_fname, au_lname FROM authors
END-EXEC
. . .

 EXEC SQL
 OPEN Cursor1
 END-EXEC
 . . .

 perform until sqlcode not = zero
 EXEC SQL
 FETCH Cursor1 INTO :first_name,:last_name
 END-EXEC
 display first_name, last_name
 end-perform
. . .

 EXEC SQL
 CLOSE Cursor1
 END-EXEC

5.1.3 Cursors

5.1.3 Cursors 64

Before a cursor can be used, it must be declared. This is done using the DECLARE CURSOR

statement in which you specify a name for the cursor and either a SELECT statement or the name

of a prepared SQL statement.

Cursor names must conform to the rules for identifiers on the database that you are connecting to,

for example, some databases do not allow hyphens in cursor names.

This example specifies a SELECT statement using an input host variable (:last-name) . When the cursor
OPEN statement is executed, the values of the input host variable are read and the SELECT statement
is executed.

In this example, the DECLARE CURSOR statement references a prepared statement (stmt1). A

prepared SELECT statement can contain question marks (?) which act as parameter markers to

indicate that data is to be supplied when the cursor is opened. The cursor must be declared before

the statement is prepared.

Opening a Cursor

Once a cursor has been declared, it must be opened before it can be used. This is done using the

OPEN statement, for example:

If the DECLARE CURSOR statement references a prepared statement that contains parameter

markers, the corresponding OPEN statement must specify the host variables or the name of an

SQLDA structure that will supply the values for the parameter markers, for example:

If an SQLDA data structure is used, the data type, length, and address fields must already contain
valid data when the OPEN statement is executed.

Using a Cursor to Retrieve Data

EXEC SQL
 DECLARE Cur1 CURSOR FOR
 SELECT first_name FROM employee
 WHERE last_name = :last-name
END-EXEC

EXEC SQL
 DECLARE Cur2 CURSOR FOR stmt1
 END-EXEC
 . . .
 move "SELECT first_name FROM emp " &
 "WHERE last_name=?" to prep.
 EXEC SQL
 PREPARE stmt1 FROM :prep
 END-EXEC
 . . .
 EXEC SQL
 OPEN Cur2 USING :last-name
 END-EXEC

EXEC SQL
 OPEN Cur1
END-EXEC

EXEC SQL
 OPEN Cur2 USING :last-name
END-EXEC

5.1.3 Cursors

5.1.3 Cursors 65

Once a cursor has been opened, it can be used to retrieve data from the database. This is done

using the FETCH statement. The FETCH statement retrieves the next row from the results set

produced by the OPEN statement and writes the data returned to the specified host variables (or to

addresses specified in an SQLDA structure). For example:

When the cursor reaches the end of the results set, a value of 100 is returned in SQLCODE in the

SQLCA data structure and SQLSTATE is set to "02000".

As data is fetched from a cursor, locks can be placed on the tables from which the data is being

selected.

Closing a Cursor

When your application has finished using the cursor, it should be closed using the CLOSE

statement. For example:

Normally, when a cursor is closed, all locks on data and tables are released. If the cursor is closed

within a transaction, however, the locks may not be released.

Positioned UPDATE and DELETE Statements

Positioned UPDATE and DELETE statements are used in conjunction with cursors and include

WHERE CURRENT OF clauses instead of search condition clauses. The WHERE CURRENT OF

clause specifies the corresponding cursor.

This will update last_name in the row that was last fetched from the database using cursor Cur1 .

This example will delete the row that was last fetched from the database using cursor Cur1 .

CitOESQL:

With some ODBC drivers, cursors that will be used for positioned updates and deletes must include

a FOR UPDATE clause. Note that positioned UPDATE and DELETE are part of the Extended ODBC

Syntax and are not supported by all drivers.

 perform until sqlcode not = 0
 EXEC SQL
 FETCH Cur1 INTO :first_name
 END-EXEC
 display 'First name: ' fname
 display 'Last name : ' lname
 display spaces
 end-perform

EXEC SQL
 CLOSE Cur1
END-EXEC

EXEC SQL
 UPDATE emp SET last_name = :last-name
 WHERE CURRENT OF Cur1
END-EXEC

EXEC SQL
 DELETE emp WHERE CURRENT OF Cur1
END-EXEC

5.1.3 Cursors

5.1.3 Cursors 66

Using Cursors

Cursors are very useful for handling large amounts of data; however, there are a number of issues

that you should bear in mind when using cursors, namely: data concurrency, integrity, and

consistency.

To ensure the integrity of your data, a database server can implement different locking methods.

Some types of data access do not acquire any locks, some acquire a shared lock and some an

exclusive lock. A shared lock allows other processes to access the data but not update it. An

exclusive lock does not allow any other process to access the data.

When using cursors there are three levels of isolation and these control the data that a cursor can

read and lock:

Level zero

Level zero can only be used by read-only cursors. At level zero, the cursor will not lock any

rows but may be able to read data that has not yet been committed. Reading uncommitted

data is dangerous (as a rollback operation will reset the data to its previous state) and is

normally called a "dirty read". Not all databases will allow dirty reads.

Level one

Level one can be used by read-only cursors or updateable cursors. With level one, shared

locks are placed on the data unless the FOR UPDATE clause is used. If the FOR UPDATE

clause is used, exclusive locks are placed on the data. When the cursor is closed, the locks

are released. A standard cursor, that is a cursor without the FOR UPDATE clause, will

normally be at isolation level one and use shared locks.

Level three

Level three cursors are used with transactions. Instead of the locks being released when the

cursor is closed, the locks are released when the transaction ends. With level three it is

usual to place exclusive locks on the data.

It is worth pointing out that there can be problems with deadlocks or "deadly embraces" where two

processes are competing for the same data. The classic example is where one process locks data

A and then requests a lock on data B while a second process locks data B and then requests a lock

on data A. Both processes have data that the other process requires. The database server should

spot this case and send errors to one or both processes.

5.1.4 Data Structures

The CitOESQL preprocessor supplied with this system use two data structures:

• •

• •

• •

5.1.4 Data Structures

5.1.4 Data Structures 67

Data

Structure

Description Function

SQLCA SQL Communications

Area

Returns status and error information.

5.1.4 Data Structures

5.1.4 Data Structures 68

SQL Communications Area (SQLCA)

After each embedded SQL statement is executed, error and status information are returned in the

SQL Communications Area (SQLCA).

CitOESQL:

The SQLCA provided with COBOL-IT for use with CitOESQL contains two variables (SQLCODE and

SQLSTATE), plus a number of warning flags which are used to indicate whether an error has

occurred in the most recently executed SQL statement.

USING THE SQLCA

The SQLCA structure is supplied in the file sqlca.cpy, which by default is located in the default

location specified in the COBOL-IT CitOESQL files and locations section in the CitOESQL Getting

Started Guide. To include it in your program, use the following statement in the data division:

EXEC SQL INCLUDE SQLCA END-EXEC

If you do not include this statement, the COBOL Compiler automatically allocates an area, but it is

not addressable from within your program. However, if you declare either of the data items

SQLCODE or SQLSTATE separately, the COBOL Compiler generates code to copy the corresponding

fields in the SQLCA to the user-defined fields after each EXEC SQL statement.

If you declare the data item MFSQLMESSAGETEXT, it is updated with a description of the exception

condition whenever SQLCODE is non-zero. MFSQLMESSAGETEXT must be declared as a character

data item, PIC X(n), where n can be any legal value. This is particularly useful as ODBC error

messages often exceed the 70-byte SQLCA message field.

THE SQLCODE VARIABLE

Testing the value of SQLCODE is the most common way of determining the success or failure of an

embedded SQL statement.

For details of SQLCODE values, see the relevant database vendor documentation.

Data

Structure

Description Function

SQLDA SQL Descriptor Area Describes the variables used in dynamic

SQL statements.

You do not need to declare SQLCA, SQLCODE, SQLSTATE or MFSQLMESSAGETEXT as host

variables.

Note

5.1.4 Data Structures

5.1.4 Data Structures 69

THE SQLSTATE VARIABLE

The SQLSTATE variable was introduced in the SQL-92 standard and is the recommended

mechanism for future applications. It is divided into two components:

The first two characters are called the class code. Any class code that begins with the letters

A through H or the digits 0 through 4 indicates a SQLSTATE value that is defined by the SQL

standard or another standard.

The last three characters are called the subclass code.

A value of "00000" indicates that the previous embedded SQL statement executed successfully.

For specific details of the values returned in SQLSTATE, see the relevant database vendor

documentation.

SQLWARN FLAGS

Some statements may cause warnings to be generated. To determine the type of warning, your

application should examine the contents of the SQLWARN flags.

W - The flag has generated a warning.

blank (space) - The flag has not generated a warning.

The value of a flag is set to W if that particular warning occurred, otherwise the value is a blank

(space).

Each SQLWARN flag has a specific meaning. For more information on the meaning of the

SQLWARN flags, see the relevant database vendor documentation.

THE WHENEVER STATEMENT

Explicitly checking the value of SQLCODE or SQLSTATE after each embedded SQL statement can

involve writing a lot of code. As an alternative, check the status of the SQL statement by using a

WHENEVER statement in your application.

The WHENEVER statement is not an executable statement. It is a directive to the Compiler to

automatically generate code that handles errors after each executable embedded SQL statement.

The WHENEVER statement allows one of three default actions (CONTINUE, GOTO or PERFORM) to

be registered for each of the following conditions:

•

•

•

•

Condition Value of SQLCODE

NOT FOUND 100

SQLWARNING +1

5.1.4 Data Structures

5.1.4 Data Structures 70

A WHENEVER statement for a particular condition replaces all previous WHENEVER statements for

that condition.

The scope of a WHENEVER statement is related to its physical position in the source program, not

its logical position in the run sequence. For example, in the following code if the first SELECT

statement does not return anything, paragraph A is performed, not paragraph C:

SQLERRM

The SQLERRM data area is used to pass error messages to the application from the database

server. The SQLERRM data area is split into two parts:

SQLERRML - holds the length of the error message

SQLERRMC - holds the error text.

Within an error routine, the following code can be used to display the SQL error message:

SQLERRD

The SQLERRD data area is an array of six integer status values, set by the database vendor after an

SQL error.

SQLERRD PIC X9(9) COMP-5 OCCURS 6 VALUE 0.

Please consult the relevant database vendor documentation for more detailed information on these

values.

The SQL Descriptor Area (SQLDA)

Condition Value of SQLCODE

SQLERROR \< 0 (negative)

 EXEC SQL
 WHENEVER NOT FOUND PERFORM A
 END-EXEC.
 perform B.
 EXEC SQL
 SELECT col1 into :host-var1 FROM table1
 WHERE col2 = :host-var2
 END-EXEC.
A.
 display "First item not found".
B.
 EXEC SQL
 WHENEVER NOT FOUND PERFORM C.
 END-EXEC.
C.
 display "Second item not found".

•

•

if (SQLERRML \> ZERO) and (SQLERRML \< 80)
 display 'Error Message: ', SQLERRMC(1:SQLERRML)
 else
 display 'Error Message: ', SQLERRMC
end-if.

5.1.4 Data Structures

5.1.4 Data Structures 71

When either the number of parameters to be passed, or their data types, are unknown at

compilation time, you can use an SQL Descriptor Area (SQLDA) instead of host variables.

An SQLDA contains descriptive information about each input parameter or output column. It

contains the column name, data type, length, and a pointer to the actual data buffer for each input

or output parameter. An SQLDA is ordinarily used with parameter markers to specify input values

for prepared SQL statements, but you can also use an SQLDA with the DESCRIBE statement (or the

INTO option of a PREPARE statement) to receive data from a prepared SELECT statement.

Although you cannot use an SQLDA with static SQL statements, you can use a SQLDA with a cursor

FETCH statement.

CITOESQL

The SQLDA structure is supplied in both the sqlda.cpy (SQLDA only) and sqlda78.cpy (SQLDA

plus SQLTYPE definitions) files, which are in the default location specified COBOL-IT CitOESQL files

and locations section in the CitOESQL Getting Started Guide.

You can include the SQLDA in your COBOL program by adding one or both of the following

statements to your data division:

USING THE SQLDA

Before an SQLDA structure is used, your application must initialise the following fields:

SQLN: This must be set to the maximum number of SQLVAR entries that the structure can hold.

The PREPARE and DESCRIBE Statements

You can use the DESCRIBE statement (or the PREPARE statement with the INTO option) to enter

the column name, data type, and other data into the appropriate fields of the SQLDA structure.

Before the statement is executed, the SQLN and SQLDABC fields should be initialised as described

above.

After the statement has been executed, the SQLD field will contain the number of parameters in the

prepared statement. A SQLVAR record is set up for each of the parameters with the SQLTYPE and

SQLLEN fields completed.

If you do not know how big the value of SQLN should be, you can issue a DESCRIBE statement with

SQLN set to 1 and SQLD set to 0. No column detail information is moved into the SQLDA structure,

but the number of columns in the results set is inserted into SQLD.

The FETCH Statement

EXEC SQL
 INCLUDE SQLDA
END-EXEC

EXEC SQL
 INCLUDE SQLDA78
END-EXEC

5.1.4 Data Structures

5.1.4 Data Structures 72

Before performing a FETCH statement using an SQLDA structure, follow the procedure below:

The application must initialize SQLN and SQLDABC as described above.

The application must then insert, into the SQLDATA field, the address of each program variable

that will receive the data from the corresponding column. (The SQLDATA field is part of

SQLVAR).

If indicator variables are used, SQLIND must also be set to the corresponding address of the

indicator variable.

The data type field (SQLTYPE) and length (SQLLEN) are filled with information from a PREPARE

INTO or a DESCRIBE statement. These values can be overwritten by the application prior to a

FETCH statement.

The OPEN or EXECUTE Statements

To use an SQLDA structure to specify input data to an OPEN or EXECUTE statement, your

application must supply the data for the fields of the entire SQLDA structure, including the SQLN,

SQLD, SQLDABC, and SQLTYPE, SQLLEN, and SQLDATA fields for each variable. The following

scenarios require additional attention:

SQLTYPE field is an odd number

If the value of the SQLTYPE field is an odd number, you must also supply the address of the

indicator variable using SQLIND.

Host variable input is COMP

When using CitOESQL with a host variable input defined as COMP, add 8192 (x2000) to the

SQLTYPE field.

SQLTYPE field is an odd number and indicator variable is COMP

If the SQLTYPE field is an odd number, and the indicator variable is defined as a COMP, add

4096 (x1000) to the SQLTYPE field.

Host variable input is COMP-5

When using CitOESQL with a host variable input defined as COMP-5, no change to the

SQLTYPE field is required.

The DESCRIBE Statement

After a PREPARE statement, you can execute a DESCRIBE statement to retrieve information about

the data type, length and column name of each column returned by the specified prepared

statement. This information is returned in the SQL Descriptor Area (SQLDA):

1. 1.

2. 2.

3. 3.

• •

• •

• •

• •

EXEC SQL
 DESCRIBE stmt1 INTO :sqlda
END-EXEC

5.1.4 Data Structures

5.1.4 Data Structures 73

If you want to execute a DESCRIBE statement immediately after a PREPARE statement, you can use

the INTO option on the PREPARE statement to perform both steps at once:

The following cases could require that you make manual changes to the SQLTYPE or SQLLEN fields

in the SQLDA to accommodate differences in host variable types and lengths after executing

DESCRIBE:

SQLTYPE: Variable-length character types

For variable-length character types you can choose to define SQLTYPE as a fixed-size

COBOL host variable such as PIC X, N, or G, or a variable-length host variable such as a

record with level 49 sub-fields for both length and the actual value. The SQLLEN field could

be either 16 or 32 bits depending on the SQLTYPE value.

SQLTYPE: Numeric types

For numeric types you can choose to define SQLTYPE as COMP-3, COMP, COMP-5, or to

display numeric COBOL host variables with an included or separate, and leading or trailing

sign. The value returned by DESCRIBE depends on the data source. Generally, this is

COMP-3 for NUMERIC or DECIMAL columns, and COMP-5 for columns of the tinyint,

smallint, integer, or bigint integer types.

SQLLEN

DESCRIBE sets SQLLEN to the size of integer columns in COMP and COMP-5

representations, meaning a value of 1, 2, 4, or 18. You might need to adjust this depending

on SQLTYPE. For NUMERIC and DECIMAL columns, it encodes the precision and scale of

the result.

5.1.5 Dynamic SQL

If everything is known about an SQL statement when the application is compiled, the statement is

known as a static SQL statement.

In some cases, however, the full text of an SQL statement may not be known when an application is

written. For example, you may need to allow the end-user of the application to enter an SQL

statement. In this case, the statement needs to be constructed at run-time. This is called a dynamic

SQL statement.

Dynamic SQL Statement Types

There are four types of dynamic SQL statement:

EXEC SQL
 PREPARE stmt1 INTO :sqlda FROM :stmtbuf
END-EXEC

• •

• •

• •

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 74

Dynamic SQL Statement Type Perform

Queries?

Return Data?

Execute a statement once No No, can only return

success or failure

Execute a statement more than once No No, can only return

success or failure

Select a given list of data with a given

set of selection criteria

Yes Yes

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 75

These types of dynamic SQL statement are described more fully in the following sections.

EXECUTE A STATEMENT ONCE

With this type of dynamic SQL statement, the statement is executed immediately. Each time the

statement is executed, it is re-parsed.

EXECUTE A STATEMENT MORE THAN ONCE

This type of dynamic SQL statement is either a statement that can be executed more than once or

a statement that requires host variables. For the second type, the statement must be prepared

before it can be executed.

SELECT A GIVEN LIST OF DATA

This type of dynamic SQL statement is a SELECT statement where the number and type of host

variables is known. The normal sequence of SQL statements is:

Prepare the statement

Declare a cursor to hold the results

Open the cursor

Fetch the variables

Close the cursor.

SELECT ANY AMOUNT OF DATA

This type of dynamic SQL statement is the most difficult type to code. The type and/or number of

variables is only resolved at run time. The normal sequence of SQL statements is:

Prepare the statement

Declare a cursor for the statement

Describe the variables to be used

Open the cursor using the variables just described

Describe the variables to be fetched

Fetch the variables using their descriptions

Close the cursor.

Dynamic SQL Statement Type Perform

Queries?

Return Data?

Select any amount of data with any

selection criteria

Yes Yes

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 76

If either the input host variables, or the output host variables are known (at compile time), then the

OPEN or FETCH can name the host variables and they do not need to be described.

Preparing Dynamic SQL Statements

The PREPARE statement takes a character string containing a dynamic SQL statement and

associates a name with the statement, for example:

Dynamic SQL statements can contain parameter markers - question marks (?) that act as a place

holder for a value. In the example above, the values to be substituted for the question marks must

be supplied when the statement is executed.

Once you have prepared a statement, you can use it in one of two ways:

You can execute a prepared statement.

You can open a cursor that references a prepared statement.

Executing Dynamic SQL Statements

The EXECUTE statement runs a specified prepared SQL statement.

If the prepared statement contains parameter markers, the EXECUTE statement must include either

the "using :hvar" option to supply parameter values using host variables or the "using

descriptor :sqlda_struct" option identifying an SQLDA data structure already populated by the

application. The number of parameter markers in the prepared statement must match the number

of SQLDATA entries ("using descriptor :sqlda") or host variables ("using :hvar").

In this example, the four parameter markers are replaced by the contents of the host variables

supplied via the USING clause in the EXECUTE statement.

EXECUTE IMMEDIATE STATEMENT

move "INSERT INTO publishers " &
 "VALUES (?,?,?,?)" to stmtbuf
EXEC SQL
 PREPARE stmt1 FROM :stmtbuf
END-EXEC

•

•

Only statements that do not return results can be executed in this way.

Note

move "INSERT INTO publishers " &
 "VALUES (?,?,?,?)" to stmtbuf
EXEC SQL
 PREPARE stmt1 FROM :stmtbuf
END-EXEC
...
EXEC SQL
 EXECUTE stmt1 USING :pubid,:pubname,:city,:state
END-EXEC.

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 77

If the dynamic SQL statement does not contain any parameter markers, you can use EXECUTE

IMMEDIATE instead of PREPARE followed by EXECUTE, for example:

When using EXECUTE IMMEDIATE, the statement is re-parsed each time it is executed. If a

statement is likely to be used many times it is better to PREPARE the statement and then EXECUTE

it when required.

Dynamic SQL Statements and Cursors

If a dynamic SQL statement returns a result, you cannot use the EXECUTE statement. Instead, you

must declare and use a cursor.

First, declare the cursor using the DECLARE CURSOR statement:

In the example above, dynamic_sql is the name of a dynamic SQL statement. You must use the

PREPARE statement to prepare the dynamic SQL statement before the cursor can be opened, for

example:

Now, when the OPEN statement is used to open the cursor, the prepared statement is executed:

If the prepared statement uses parameter markers, then the OPEN statement must supply values

for those parameters by specifying either host variables or an SQLDA structure.

Once the cursor has been opened, the FETCH statement can be used to retrieve data, for example:

Finally, the cursor is closed using the CLOSE statement:

CALL STATEMENTS

A CALL statement can be prepared and executed as dynamic SQL.

move "DELETE FROM emp " &
 "WHERE last_name = 'Smith'" to stmtbuf
EXEC SQL
 EXECUTE IMMEDIATE :stmtbuf
END-EXEC

EXEC SQL
 DECLARE C1 CURSOR FOR dynamic_sql
END-EXEC

move "SELECT char_col FROM mfesqltest " &
 "WHERE int_col = ?" to sql-text
EXEC SQL
 PREPARE dynamic_sql FROM :sql-text
END-EXEC

EXEC SQL
 OPEN C1 USING :int-col
END-EXEC

EXEC SQL
 FETCH C1 INTO :char-col
END-EXEC

EXEC SQL
 CLOSE C1
END-EXEC

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 78

You can use parameter markers (?) in dynamic SQL wherever you use host variables in static

SQL

Use of the IN, INPUT, OUT, OUTPUT, INOUT and CURSOR keyword following parameter markers

is the same as their use after host variable parameters in static SQL.

The whole call statement must be enclosed in braces to conform to ODBC cannonical

stored procedure syntax (the CitOESQL precompiler does this for you in static SQL). For

example:

If you use parameter arrays, you can limit the number of elements used with a FOR clause

on the EXECUTE, for example:

EXAMPLE:

The following is an example of a program that creates a stored procedure "mfexecsptest" using

data source "SQLServer 2000" and then retrieves data from "publishers" table using a cursor "c1"

with dynamic SQL.

•

•

• •

move ‘{call myproc(?, ? out)}’ to sql-text
exec sql
 prepare mycall from :sql-text
end-exec
exec sql
 execute mycall using :parm1, :parm2
end-exec

• •

move 5 to param-count
exec sql
 for :param-count
 execute mycall using :parm1, :param2
end-exec

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 79

\$SET SQL
 WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA END-EXEC

*\> after an sql error this has the full message text
 01 MFSQLMESSAGETEXT PIC X(250).
 01 IDX PIC X(04) COMP-5.

EXEC SQL BEGIN DECLARE SECTION END-EXEC
*\> Put your host variables here if you need to port
| *\> to other COBOL compilers

 01 stateParam pic xx.
 01 pubid pic x(4).
 01 pubname pic x(40).
 01 pubcity pic x(20).

 01 sql-stat pic x(256).

EXEC SQL END DECLARE SECTION END-EXEC

PROCEDURE DIVISION.

 EXEC SQL
 WHENEVER SQLERROR perform OpenESQL-Error
 END-EXEC

 EXEC SQL
 CONNECT TO 'SQLServer 2000' USER 'SA'
 END-EXEC

*\> Put your program logic/SQL statements here

 EXEC SQL
 create procedure mfexecsptest
 (@stateParam char(2) = 'NY') as

 select pub_id, pub_name, city from publishers
 where state = @stateParam
 END-EXEC

 exec sql
 declare c1 scroll cursor for dsql2 for read only
 end-exec

 move "{call mfexecsptest(?)}" to sql-stat
 exec sql prepare dsql2 from :sql-stat end-exec

 move "CA" to stateParam
 exec sql
 open c1 using :stateParam
 end-exec

 display "Testing cursor with stored procedure"
 perform until exit
 exec sql
 fetch c1 into :pubid, :pubname, :pubcity
 end-exec

 if sqlcode = 100
 exec sql close c1 end-exec
 exit perform
 else
 display pubid " " pubname " " pubcity
 end-if
 end-perform

 EXEC SQL close c1 END-EXEC

 EXEC SQL DISCONNECT CURRENT END-EXEC
 EXIT PROGRAM.
 STOP RUN.
*> Default sql error routine / modify to stop program if
*> needed
OpenESQL-Error Section.

 display "SQL Error = " sqlstate " " sqlcode
 display MFSQLMESSAGETEXT
 *> stop run
exit.

5.1.5 Dynamic SQL

5.1.5 Dynamic SQL 80

5.2 SQL Statements

With the exception of INSERT, DELETE(SEARCHED) and UPDATE(SEARCHED), which are included

for your convenience, the embedded SQL statements described here work somewhat differently, or

are in addition to, standard SQL statements.

SQL Statement Description

BEGIN DECLARE

SECTION

Signals the beginning of the DECLARE section.

BEGIN TRAN Provides compatibility with Embedded SQL implementations

that do not conform to the ANSI SQL standard with respect to

transaction management and, in particular, the Micro Focus

Embedded SQL Toolkit for Microsoft SQL Server.

CALL Executes a stored procedure.

CLOSE Discards unprocessed rows and frees any locks held by the

cursor.

COMMIT Makes any changes made by the current transaction on the

current connection permanent in the database.

CONNECT Attaches to a specific database using the supplied username

and password.

DECLARE CURSOR Associates the cursor name with the specified SELECT

statement and enables you to retrieve rows of data using the

FETCH statement.

DECLARE DATABASE Declares the name of a database.

DELETE (Positioned) Deletes the row most recently fetched by using a cursor.

DELETE (Searched) Removes table rows that meet the search criteria.

DESCRIBE Provides information on prepared dynamic SQL statements

and describes the result set for an open cursor.

DISCONNECT Closes the connection(s) to a database. In addition, all

cursors opened for that connection are automatically closed.

END DECLARE SECTION Terminates a host variable declaration section begun by a

BEGIN DECLARE SECTION statement.

EXECSP Executes a stored procedure.

EXECUTE Processes dynamic SQL statements.

5.2 SQL Statements

5.2 SQL Statements 81

SQL Statement Description

EXECUTE IMMEDIATE Immediately executes the SQL statement.

FETCH Retrieves a row from the cursor's results set and writes the

values of the columns in that row to the corresponding host

variables (or to addresses specified in the SQLDA data

structure).

GET HDBC Enables you to use ODBC calls that require you to supply the

ODBC connection handle.

GET HENV Enables you to use ODBC calls that require you to supply the

ODBC environment handle.

GET NEXT RESULT SET Makes the next result set available to an open cursor.

INCLUDE Includes the definition of the specified SQL data structure or

source file in the COBOL program.

INSERT Adds new rows to a table.

INTO Retrieves one row of results and assigns the values of the

items returned by an OUTPUT clause in a SQL Server INSERT,

UPDATE, or DELETE statement to the host variables specified

in the INTO list.

OPEN Runs the SELECT statement specified in the corresponding

DECLARE CURSOR statement to produce the results set that

is accessed one row at a time by the FETCH statement.

PREPARE Processes dynamic SQL statements.

QUERY ODBC Delivers a results set in the same way as a SELECT statement,

and must therefore be associated with a cursor via DECLARE

and OPEN, or DECLARE, PREPARE and OPEN.

RESET CONNECTION Closes all open cursors, even if the application has not

appropriately closed them.

ROLLBACK Backs out any changes made to the database by the current

transaction on the current connection, or partially rolls back

changes to a previously set save point.

SAVEPOINT SAVE

TRANSACTION

RELEASE [TO]

SAVEPOINT

Sets a transaction save point to which a current transaction

can be rolled back, resulting in a partial roll back.

5.2 SQL Statements

5.2 SQL Statements 82

SQL Statement Description

SELECT DISTINCT

(using DECLARE

CURSOR)

Associates the cursor name with the SELECT DISTINCT

statement and enables you to retrieve rows of data using the

FETCH statement.

SELECT INTO Retrieves one row of results and assigns the values of the

items in a specified SELECT list to the host variables specified

in the INTO list.

SET AUTOCOMMIT Enables you to control ODBC AUTOCOMMIT mode at run

time.

SET CONNECTION Sets the named connection as the current connection.

SET ERRORMAP Changes the SQL error map file for the current connection.

SET host_variable Provides information about CitOESQL connections and

databases.

SET OPTION Enables you to set CitOESQL options.

SET TRACELEVEL Enables you to dynamically set or change the reporting level

of CitOESQL traces for native applications.

SET TRANSACTION

ISOLATION

Sets the transaction isolation level for the current connection

to one of the isolation level modes specified by ODBC.

SYNCPOINT Closes all open cursors that were not opened using the WITH

HOLD clause, even if the application has not appropriately

closed them.

UPDATE (Positioned) Updates the rows most recently fetched by using a cursor.

UPDATE (Searched) Updates a table or view based on specified search conditions.

5.2 SQL Statements

5.2 SQL Statements 83

5.2.1 BEGIN DECLARE SECTION

Signals the beginning of the DECLARE section.

Syntax:

\>\>---EXEC SQL---BEGIN DECLARE SECTION---END-EXEC---\>\<

Comments:

The BEGIN DECLARE SECTION statement can be included anywhere where COBOL permits variable

declaration. Use END DECLARE SECTION to identify the end of a COBOL declaration section.

Declare sections cannot be nested.

Variables must be declared in COBOL, not in SQL.

To avoid conflict, variables inside a declaration section cannot be the same as any outside the

declaration section or in any other declaration section, even in other compilation units.

If data structures are defined within a declaration section, only the bottom-level items (with PIC

clauses) can be used as host variables. Two exceptions are arrays specified in FETCH statements

and record structures specified in SELECT INTO statements.

Example:

5.2.2 BEGIN TRAN

Provides compatibility with Embedded SQL implementations that do not conform to the ANSI SQL

standard with respect to transaction management and the Micro Focus Embedded SQL Toolkit for

Microsoft SQL Server.

Syntax Format 1:

Syntax Format 2:

SQL Statement Description

WHENEVER Specifies the default action after running an Embedded SQL

statement when a specific condition is met.

•

•

•

WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC
 01 staff-id pic x(4).
 01 last-name pic x(30).
 EXEC SQL END DECLARE SECTION END-EXEC

\>\>--EXEC SQL--BEGIN TRAN-.------------------.-END-EXEC---\>\<
 \+-transaction_name-+

\>\>-EXEC SQL-BEGIN TRANSACTION.----------------.-END-EXEC-\>\<
 \+transaction_name+

5.2.1 BEGIN DECLARE SECTION

5.2.1 BEGIN DECLARE SECTION 84

Parameters:

Transaction name

An optional identifier that is ignored.

Comments:

Use the BEGIN TRAN statement in AUTOCOMMIT mode to open a transaction. After you have

opened the transaction in AUTOCOMMIT mode, you should execute a COMMIT or ROLLBACK

statement to close the transaction and cause a return to AUTOCOMMIT mode.

If you are not opening a transaction in AUTOCOMMIT mode, then this statement has no effect.

Example:

EXEC SQL BEGIN TRANSACTION END-EXEC

5.2.3 CALL

Executes a stored procedure.

Syntax:

Parameters:

Host Integer

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

result_hvar

A host variable to receive the procedure result.

stored_procedure_name

The name of the stored procedure.

parameter

A literal, a DECLARE CURSOR statement * , or a host variable parameter of the form:

[keyword=]:param_hvar [IN | INPUT |

>>--EXEC SQL--.--------------------.--.----------------.->
 +-FOR :host_integer--+ +- :result_hvar -+

>---CALL stored_procedure_name-.------------.-END-EXEC-><
 | +-- , --+ |
 | V | |
 +(parameter)-+

5.2.3 CALL

5.2.3 CALL 85

INOUT | OUT | OUTPUT]

where:

keyword The formal parameter name for a keyword parameter. Keyword parameters can be useful as

an aid to readability and where the server supports default parameter values and optional
parameters.

param_hvar A host variable.

IN An input parameter.

INPUT An input parameter default).

INOUT An input/output parameter.

OUT An output parameter.

OUTPUT An output parameter.

5.2.3 CALL

5.2.3 CALL 86

* Specify DECLARE CURSOR for stored procedures that return a result set. The use of DECLARE
CURSOR unbinds the corresponding parameter.

Comments:

Do not use the FOR clause if the CALL is part of a DECLARE CURSOR statement.

For maximum portability, observe the following as general rules:

Avoid literal parameters

Use host variable parameters

Avoid mixing positional parameters and keyword parameters

If your server supports a mixture of positional and keyword parameters, list keyword

parameters after positional parameters

Examples:

Call a stored procedure using two positional host variables as input parameters:

Call a stored procedure using a keyword host variable as an input parameter:

Call a stored procedure using a result host variable and a keyword host variable as an input

parameter:

Call a stored procedure using two positional host variables, one as an input parameter and one as

an output parameter:

Call a stored procedure using a DECLARE CURSOR statement and a positional host variable as an

input parameter (Oracle only):

5.2.4 CLOSE

Discards unprocessed rows and frees any locks held by the cursor.

•

•

•

•

EXEC SQL
 CALL myProc(param1,param2)
 END-EXEC

EXEC SQL
 CALL myProc (namedParam=:paramValue)
 END-EXEC

EXEC SQL
 :myResult = CALL myFunction(namedParam=:paramValue)
 END-EXEC

EXEC SQL
 CALL getDept(:empName IN, :deptName OUT)
 END-EXEC

EXEC SQL
 DECLARE cities CURSOR FOR CALL locateStores(:userState)
 END-EXEC

5.2.4 CLOSE

5.2.4 CLOSE 87

Syntax:

Parameters:

AT db_name

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

\>\>---EXEC SQL---.------------.---\>
 \+-AT db_name-+

\>--CLOSE---cursor_name---.------------.---END-EXEC---\>\<

5.2.4 CLOSE

5.2.4 CLOSE 88

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement. Provided for backward compatibility.

cursor_name

A previously declared and opened cursor.

Comments:

The cursor must be declared and opened before it can be closed. All open cursors are closed

automatically at the end of the program.

Example:

5.2.5 COMMIT

Makes any changes made by the current transaction on the current connection permanent in the

database.

Syntax:

*Declare the cursor...
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT staff_id, last_name
 FROM staff
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not declare cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

 EXEC SQL
 OPEN C1
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not open cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

 PERFORM UNTIL sqlcode NOT = ZERO
*SQLCODE will be zero as long as it has successfully fetched data
 EXEC SQL
 FETCH C1 INTO :staff-staff-id, :staff-last-name
 END-EXEC
 IF SQLCODE = ZERO
 DISPLAY "Staff ID: " staff-staff-id
 DISPLAY "Staff member's last name: " staff-last-name
 END-IF
END-PERFORM

EXEC SQL
 CLOSE C1
END-EXEC

IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not close cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
END-IF

5.2.5 COMMIT

5.2.5 COMMIT 89

Parameters:

AT db_name

The name of a database that has been declared using DECLARE DATABASE. This clause is optional. If
omitted, the current connection is committed. If provided, and the connection specified is

>>---EXEC SQL--.------------.--->
 +-AT db_name-+

>---COMMIT----.--------------.--->
 +-WORK---------+
 +-TRAN---------+
 +-TRANSACTION--+

>---.-----------.---END-EXEC--><
 +--RELEASE--+

5.2.5 COMMIT

5.2.5 COMMIT 90

different than the current connection, the commit is performed on the connection associated with
the DECLARE CURSOR statement.

WORK

WORK, TRAN, and TRANSACTION are optional and synonymous.

RELEASE

If RELEASE is specified and the transaction was successfully committed, the current connection is
closed.

Example:

5.2.5 COMMIT

5.2.5 COMMIT 91

5.2.6 CONNECT

Attaches to a specific database using the supplied user name and password.

Syntax Format 1:

* Ensure that multiple records are not inserted for a
* member of staff whose staff_id is 99
 EXEC SQL
 DELETE FROM staff WHERE staff_id = 99
 END-EXEC

* Insert dummy values into table
 EXEC SQL
 INSERT INTO staff
 (staff_id
 ,last_name
 ,first_name
 ,age
 ,employment_date)
 VALUES
 (99
 ,'Lee'
 ,'Phil'
 ,19
 ,'1992-01-02')
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not insert dummy values.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

 EXEC SQL
 COMMIT
 END-EXEC

* Check it was committed OK
 IF SQLCODE = ZERO
 DISPLAY 'Error: Could not commit values.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

 DISPLAY 'Values committed.'

* Delete previously inserted data
 EXEC SQL
 DELETE FROM staff WHERE staff_id = 99
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not delete dummy values.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* Check data deleted OK, commit and release the connection
 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not delete values.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

 EXEC SQL
 COMMIT WORK RELEASE
 END-EXEC

* Check data committed OK and release the connection.
 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not commit and release.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 END-IF

DISPLAY 'Values committed and connection released.'

5.2.6 CONNECT

5.2.6 CONNECT 92

Syntax Format 2:

Syntax Format 3:

Syntax Format 4:

Syntax Format 5:

Syntax Format 6:

Parameters:

data_source

The name of the ODBC data store. For ODBC data stores, this is the DSN created via the Microsoft
ODBC Data Source Administrator. If you omit data_source, the default ODBC data source is assumed.

The data source can be specified as a literal or as a host variable.

db_name

>>---EXEC SQL---CONNECT TO---.-------------.------------->
 +-data_source-+

>--.------------.------USER-.-------------------.-------->
 +-AS db_name-+ +-user-.-----------++
 +-.password-+

>-.--------------------.-.-----------------------------.->
+-WITH-.----.-PROMPT-+ +-RETURNING output_connection-+
 +-NO-+

>------END-EXEC--------><

>>---EXEC SQL---CONNECT user--.------------------------.->
 +-IDENTIFIED BY password-+
 +-------'/'password------+

>---.--------------.--------.--------------------.------->
 +--AT db_name--+ +--USING data_source-+

>---.----------------------.----------------------------->
 +--WITH-.----.-PROMPT--+
 +-NO-+

>---.-----------------------------.---END-EXEC---><
 +-RETURNING output_connection-+

>>----EXEC SQL---CONNECT WITH PROMPT-------------------->

>---.------------------------------.---END-EXEC----><
 +-RETURNING output_connection -+

>>----EXEC SQL---CONNECT RESET-.--------.--END-EXEC-----><
 +--name--+

>>----EXEC SQL--------CONNECT DSN input_connection------->

>---.------------------------------.-------END-EXEC-----><
 +-RETURNING output_connection -+

>>----EXEC SQL---CONNECT USING input_connection---------->

>-----.-------------.---.---------------------.---------->
 +--AS db_name-+ +--WITH-.----.-PROMPT-+
 +-NO-+

>-----.------------------------------.------END-EXEC----><
 +--RETURNING output_connection-+

5.2.6 CONNECT

5.2.6 CONNECT 93

A name for the connection. Connection names can have as many as 30 characters and can include
alphanumeric characters and any symbols legal in filenames. The first character must be a letter.
Do not use Embedded SQL keywords or CURRENT or DEFAULT or ALL for the connection name; they are

5.2.6 CONNECT

5.2.6 CONNECT 94

invalid. If db_name is omitted, DEFAULT is assumed. db_name can be specified as a literal or a

host variable. When connecting to SQL Server, db_name is the database to which you are connecting.

user

A valid user-id at the specified data source.

password

A valid password for the specified user-id.

output_connection

A PIC X(n) text string defined by ODBC as the connection string used to connect to a particular
data source. Subsequently, you can specify this string as the input_connection in a CONNECT USING

statement.

input_connection

A PIC X(n) text string containing connection information used by ODBC to connect to the data
source. The test string can be either a literal or a host variable.

RESET

Resets (disconnects) the specified connection.

name

You can specify name as CURRENT, DEFAULT or ALL.

OS Authentication:

When using Oracle, DB2 or SQL Server with ODBC, you can achieve OS authentication using either

of these two methods:

In the CONNECT statement, specify a user ID consisting of a single forward slash and either

omit the password or specify all spaces

Completely omit the user ID and password from the CONNECT statement

For complete information on OS authentication requirements for your DBMS product, consult your

DBMS documentation.

Comments:

If you use only one connection, you do not need to supply a name for the connection. When you use

more than one connection, you must specify a name for each connection. Connection names are

global within a process. Named connections are shared by separately compiled programs that are

linked into a single executable module.

•

•

5.2.6 CONNECT

5.2.6 CONNECT 95

After a successful CONNECT statement, all database transactions other than CONNECT RESET

work through this most recently declared current connection. To use a different connection, use the

SET CONNECTION statement.

To cause the ODBC run-time module to prompt at run-time for entry or confirmation of connection

details, use CONNECT WITH PROMPT.

Use CONNECT DSN and CONNECT USING to simplify administration.

With CONNECT TO, CONNECT, CONNECT WITH PROMPT, CONNECT DSN and CONNECT USING,

you can return connection information to the application.

Example Format 1:

Example Format 2:

Example Format 3:

Example Format 4:

Example Format 5:

The example above uses a File DSN.

Example Format 6:

If the INIT option of the SQL Compiler directive is used, an implicit connection to the

database will be made at run time. In this case, it is not necessary to execute an explicit

CONNECT statement.

A File DSN cannot contain a password.

Note

•

•

MOVE 'servername' TO svr
MOVE 'username.password' TO usr

EXEC SQL
 CONNECT TO :svr USER :usr
END-EXEC

EXEC SQL
 CONNECT 'username.password' USING 'servername'
END-EXEC

EXEC SQL
 CONNECT WITH PROMPT
END-EXEC

EXEC SQL
 CONNECT RESET
END-EXEC

EXEC SQL
 CONNECT USING 'FileDSN=Oracle8;PWD=tiger'
END-EXEC

5.2.6 CONNECT

5.2.6 CONNECT 96

The example above connects to an Excel spreadsheet without setting up a data source.

5.2.7 DECLARE CURSOR

Associates the cursor name with the specified SELECT statement and enables you to retrieve rows

of data using the FETCH statement. Syntax Format 1:

Syntax Format 2:

Parameters:

AT db_name

01 connectString PIC X(72) value
 'DRIVER={Microsoft Excel Driver (*.xls)};'
 &'DBQ=c:\demo\demo.xls;'
 &'DRIVERID=22'
 .
procedure division.

 EXEC SQL
 CONNECT USING :connectString
 END-EXEC

>>--EXEC SQL---.------------.------DECLARE cursor_name------>

 +-AT db_name-+
>--.-------------.-----.---------.------.--------------.--->
 +-SENSITIVE---+ +-FORWARD-+ +-LOCK---------+
 +-INSENSITIVE-+ +-KEYSET--+ +-LOCKCC-------+
 +-DYNAMIC-+ +-OPTIMISTIC---+
 +-STATIC--+ +-OPTCC--------+
 +-SCROLL--+ +-OPTCCVAL-----+
 +-READ ONLY----+
 +-READONLY-----+
 +-FASTFORWARD--+
 +-FAST FORWARD-+

>--CURSOR-------.----------------.---------FOR------------->
 +----WITH HOLD---+

>----.----select_stmt-----------------------.-------------->
 +----stored_procedure_call_statement---+
 +----prepared_stmt_name----------------+
 +----OPTIMIZE FOR n ROWS---------------+
>--.-------------------------------.----------------------->
 +-FOR READ ONLY-----------------+
 +-FOR UPDATE-.----------------.-+
 +-OF column_list-+
>------END-EXEC--------><

Format 2 is supported for SQL Server only.

Note

>>--EXEC SQL---.------------.------DECLARE cursor_name------>
 +-AT db_name-+
>--CURSOR FOR---result-set-generating-dml-statement-------->

>------END-EXEC--------><

5.2.7 DECLARE CURSOR

5.2.7 DECLARE CURSOR 97

The name of a database that has been declared using DECLARE DATABASE.

If you must use AT db_name in a DECLARE CURSOR, the connection for any following statements

that reference the cursor automatically switch to the connection associated with the cursor if

different than the current connection, but only for the duration of the statement.

cursor_name

Cursor name used to identify the cursor in subsequent statements. Cursor names can contain any
legal filename character and be up to 30 characters in length. The first character must be a
letter.

select_stmt

Any valid SQL SELECT statement, or a QUERY ODBC statement or a CALL statement for a stored
procedure that returns a result set.

prepared_stmt_name

The name of a prepared SQL SELECT statement or QUERY ODBC statement.

stored_procedure_call_stmt

A valid stored procedure call which returns a result set.

n

The number of rows per block fetched when the cursor is opened. The value of n must be less than

1000.

column_list

A list of column-names, separated by commas.

result-set-generating-dmlstatement

A SQL Server INSERT, non-positioned UPDATE, or DELETE statement with an OUTPUT clause.

Comments:

Two separately compiled programs cannot share the same cursor. All statements that reference a

particular cursor must be compiled together.

The DECLARE CURSOR statement must appear before the first reference to the cursor. The SELECT

statement runs when the cursor is opened. The following rules apply to the SELECT statement:

Note

5.2.7 DECLARE CURSOR

5.2.7 DECLARE CURSOR 98

It cannot contain an INTO clause or parameter markers.

It can contain input host variables previously identified in a declaration section.

With some ODBC drivers, the SELECT statement must include a FOR UPDATE clause if

positioned updates or deletions are to be performed.

If OPTIMIZE FOR is specified, OpenESQL uses n to override the setting of the PREFETCH directive

for the cursor. This allows prefetch optimization for individual cursors.

You can specify multiple SELECT statements in a DECLARE CURSOR statement, signifying the

return of multiple result sets from either of the following. In either case, the client application must

use the GET NEXT RESULT SET statement to retrieve additional result sets.

A COBOL stored procedure for SQL Server

A standard OpenESQL application program

The following applies to the behavior of certain DECLARE CURSOR options:

SCROLL selects a scroll option, other than FORWARD, that is supported by the driver.

LOCKCC and LOCK are equivalent.

READ ONLY and READONLY are equivalent.

OPTIMISTIC selects an optimistic concurrency mode (OPTCC or OPTCCVAL) that is supported

by the driver.

If a HOLD cursor is requested and the current connection closes cursors at the end of

transactions, the OPEN statement will return an error (SQLCODE = -19520).

If the database is Microsoft SQL Server and the NOANSI92 ENTRY directive setting has been

used (this is the default setting), then a Microsoft SQL Server specific ODBC call will be made

at connect time to request that cursors are not closed at the end of transactions. This is

compatible with the Micro Focus Embedded SQL Toolkit for Microsoft SQL Server. The setting

for USECURLIB must not be YES.

FAST FORWARD and FASTFORWARD are equivalent. This is a performance optimization

parameter that applies only to FORWARD, READ-ONLY cursors. You can obtain even greater

performance gains by also compiling the program with the AUTOFETCH directive; this is the

most efficient method of getting a results set into an application. The AUTOFETCH directive

enables two optimizations that can significantly reduce network traffic. The most dramatic

improvement is seen when processing cursors with relatively small result sets that can be

cached in the memory of an application. FASTFORWARD cursors work only with Microsoft

SQL Server 2000 or later servers.

Example:

•

•

•

•

•

•

•

•

•

•

•

•

5.2.7 DECLARE CURSOR

5.2.7 DECLARE CURSOR 99

5.2.8 DECLARE DATABASE

Declares the name of a database.

Syntax:

Parameters:

db_name

A name associated with a database. It must be an identifier and not a host variable. It cannot
contain quotation marks.

Comments:

You must DECLARE db_name before using a CONNECT ... AT db_name statement. You cannot use

DECLARE DATABASE with EXECUTE IMMEDIATE or with PREPARE and EXECUTE.

5.2.9 DELETE (Positioned)

Deletes the row most recently fetched by using a cursor.

Syntax:

Parameters:

AT db_name

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

EXEC SQL DECLARE C1 CURSOR FOR
 ELECT last_name, first_name FROM staff
END-EXEC

EXEC SQL DECLARE C2 CURSOR FOR
 QUERY ODBC COLUMNS TABLENAME 'staff'
END-EXEC

>>---EXEC SQL---DECLARE db_name---DATABASE---END-EXEC---->

>>---EXEC SQL---.------------.--->
 +-AT db_name-+

>--DELETE---FROM---table_name--->

>--WHERE CURRENT OF--cursor_name---END-EXEC---><

5.2.8 DECLARE DATABASE

5.2.8 DECLARE DATABASE 100

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement.

table_name

The same table used in the SELECT FROM option (see DECLARE CURSOR).

cursor_name

A previously declared, opened, and fetched cursor.

Comments:

ODBC supports positioned delete, which deletes the row most recently fetched by using a

cursor in the Extended Syntax (it was in the Core Syntax for ODBC 1.0 but was moved to the

Extended Syntax for ODBC 2.0). Not all drivers provide support for positioned delete, although

OpenESQL sets ODBC cursor names to be the same as COBOL cursor names to facilitate

positioned update and delete.

With some ODBC drivers, the select statement used by the cursor must contain a 'FOR

UPDATE' clause to enable positioned delete.

You cannot use host arrays with positioned delete.

The other form of DELETE used in standard SQL statements is known as a searched delete.

Most data sources require specific combinations of SCROLLOPTION and CONCURRENCY to

be specified either by SET statements or in the DECLARE CURSOR statement.

The ODBC cursor library provides a restricted implementation of positioned delete which can

be enabled by compiling with SQL(USECURLIB=YES) and using SCROLLOPTION STATIC and

CONCURRENCY OPTCCVAL (or OPTIMISTIC).

Example:

•

•

•

•

•

•

5.2.9 DELETE (Positioned)

5.2.9 DELETE (Positioned) 101

5.2.10 DELETE (Searched)

Removes table rows that meet the search criteria.

Syntax:

Parameters:

host_integer

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

AT db_name

The name of a database that has been declared using DECLARE DATABASE. This clause is optional. If
omitted, the current connection is deleted. If provided, and the connection specified is

* Declare a cursor for update
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT staff_id, last_name FROM staff FOR UPDATE
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not declare cursor for update.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* Open the cursor
 EXEC SQL
 OPEN C1
 END-EXEC
 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not open cursor for update.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* Display staff member's details and give user the opportunity
* to delete particular members.
 PERFORM UNTIL SQLCODE NOT = ZERO
 EXEC SQL FETCH C1 INTO :staff-id,:last-name END-EXEC
 IF SQLCODE = ZERO
 DISPLAY 'Staff ID: ' staff-id
 DISPLAY 'Last name: ' last-name
 DISPLAY 'Delete <y/n>? ' WITH NO ADVANCING
 ACCEPT usr-input
 IF usr-input = 'y'
 EXEC SQL
 DELETE FROM staff WHERE CURRENT OF C1
 END-EXEC
 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not delete record.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 END-IF
 END-IF
 END-IF
 END-PERFORM

>>--EXEC SQL--.-------------------.--->
 +-FOR :host_integer-+

>--.-------------.--DELETE--.------.--->
 +-AT db_name--+ +-FROM-+

>--.-table_name-.--.-------------------------.-END-EXEC-><
 +--view_name-+ +-WHERE search_conditions-+

5.2.10 DELETE (Searched)

5.2.10 DELETE (Searched) 102

different than the current connection, the delete is performed on the connection associated with
the DECLARE CURSOR statement.

FROM

An optional keyword. It is required for ANSI SQL 92 conformance.

table_name

The target table for the delete operation.

view_name

The target view for the delete operation.

WHERE

A standard SQL WHERE clause identifying the row to be deleted.

search_conditions

Any valid expression that can follow the standard SQL WHERE clause.

Comments:

DELETE is a standard SQL statement. See the documentation supplied with your ODBC driver for

the exact syntax.

You cannot mix simple host variables with host arrays in the WHERE clause. If one of the host

variables is an array, they must all be arrays.

If you do not specify a WHERE clause, all the rows in the named table are removed.

Example:

5.2.11 DESCRIBE

Provides information on prepared dynamic SQL statements and describes the result set for an

open cursor.

Syntax Format 1:

EXEC SQL
 DELETE FROM staff WHERE staff_id = 99
END-EXEC

>>---EXEC SQL-----DESCRIBE---.----------------------.----->
 +---SELECT LIST FOR----+
 +---BIND VARIABLES FOR-+

>--.--prepared_stmt_name--.---INTO---:sqlda_struct---END-EXEC--
><

5.2.11 DESCRIBE

5.2.11 DESCRIBE 103

Syntax Format 2:

Parameters:

prepared_stmt_name

The name of a prepared SQL SELECT statement or QUERY ODBC statement. cursor-name The name of an

open cursor.

: sqlda_struct

A host variable that specifies the output SQLDA data structure to be populated. The colon is
optional to provide compatibility with other embedded SQL implementations.

Comments:

This statement populates the specified SQLDA data structure with the data type, length, and

column name of each column returned by the specified prepared statement.

If neither SELECT LIST FOR or BIND VARIABLES FOR is specified, SELECT LIST FOR is used by

default. If BIND VARIABLES FOR is specified, information about input parameters is returned in the

SQLDA rather than information about results columns.

The DESCRIBE statement inserts the number of columns into the sqld field of the SQLDA structure.

If a non-select statement was prepared, sqld is set to 0. Before DESCRIBE is called, the following

fields in the SQLDA data structure must be initialised by the application:

sqln

The maximum number of sqlvar (column descriptor) entries that the structure can accommodate.

sqldabc

The Maximum size of the SQLDA:

32-bit – Calculated as sqln * 44 + 16

64-bit – Calculated as sqln * 56 + 16

If sqln is set to 0, no column descriptor entries are constructed, but sqld is set to the number of

entries required. The DESCRIBE statement works in a similar way to a PREPARE statement with an

INTO clause.

>>---EXEC SQL-----DESCRIBE---CURSOR---cursor_name----->

>---INTO---:sqlda_struct---END-EXEC--><

•

•

5.2.11 DESCRIBE

5.2.11 DESCRIBE 104

By default, the SQL types for date, time and timestamp are respectively DATE-RECORD,

TIMERECORD and TIMESTAMP-RECORD. When you use the BEHAVIOR=OPTIMIZED option for the

SQL Compiler directive, CitOESQL mimics the DB2 on the mainframe for these data types, providing

character strings (i.e., PIC X(n)) instead of the standard, default record constructs.

Example:

Few drivers fully implement the ODBC calls necessary for DESCRIBE BIND VARIABLES.

Note

$set sql(behavior=optimized)
working-storage section.
EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL INCLUDE SQLDA78 END-EXEC.
EXEC SQL BEGIN DECLARE SECTION END-EXEC
01 statement pic x(80).
01 host-var-block.
 03 host-var-1 pic 99.
 03 host-var-2 pic x(10).
 03 host-var-3 pic x(15).
EXEC SQL END DECLARE SECTION END-EXEC

PROCEDURE DIVISION.

EXEC SQL CONNECT TO ORCL USER scott.tiger END-EXEC

EXEC SQL
 DECLARE C1 CURSOR FOR stmt1
END-EXEC

move "select * from dept" to statement

move 20 to sqln
$IF P64 SET
 compute sqldabc = 16 + 56 * sqln
$ELSE
 compute sqldabc = 16 + 44 * sqln
$END

EXEC SQL
 PREPARE stmt1 FROM :statement
END-EXEC
EXEC SQL
 DESCRIBE stmt1 INTO :sqlda
END-EXEC

* The data structure "sqlda" now contains a description
* of the dynamic SQL statement.
EXEC SQL
 OPEN C1
END-EXEC

* Complete the SQLDA, by adding buffer addresses and lengths
* and changeing types, as necessary and appropriate, to
* to match host variables actually used.
*
* The following SQL directives can reduce the amount of effort
* required by specifying how OpenESQL should DESCRIBE varchar
* and date/time SQL data types:
* DESCRIBEVARCHARPICX
* DESCRIBEVARCHAR49
* DESCRIBEDTCHAR
* DESCRIBEDTREC

move ESQL-UDISP-UNSIGN to sqltype(1)
set sqldata(1) to address of host-var-1
set sqldata(2) to address of host-var-2
set sqldata(3) to address of host-var-3

perform until exit
 EXEC SQL
 FETCH C1 USING DESCRIPTOR :sqlda
 END-EXEC
 if sqlerrd(3) not = 1
 exit perform
 end-if
 display host-var-1 ' ' host-var-2 ' ' host-var-3

end-perform
goback.

5.2.11 DESCRIBE

5.2.11 DESCRIBE 105

5.2.12 DISCONNECT

Closes the connection(s) to a database. In addition, all cursors opened for that connection are

automatically closed.

Syntax:

Parameters:

name

The connection name.

ALL

Disconnects all connections (including automatic connections made when the INIT option of the SQL
Compiler directive is used).

CURRENT

Disconnects the current connection. The current connection is either the most recent connection
established by a CONNECT statement or a subsequent connection set by a SET CONNECTION statement.

DEFAULT

Disconnects the default connection. This is the connection made by a CONNECT statement which did
not specify a connection name.

Example:

5.2.13 END DECLARE SECTION

Terminates a host variable declaration section begun by a BEGIN DECLARE SECTION statement.

Syntax:

Example:

>>---EXEC SQL---DISCONNECT---.-name----.----END-EXEC----><
 +-ALL-----+
 +-CURRENT-+
 +-DEFAULT-+

EXEC SQL CONNECT TO "srv1" AS server1 USER "sa." END-EXEC EXEC SQL CONNECT TO "srv2" AS server2 USER "sa." END-EXEC
...
EXEC SQL DISCONNECT server1 END-EXEC
EXEC SQL DISCONNECT server2 END-EXEC.

>>---EXEC SQL---END DECLARE SECTION---------END-EXEC----><

5.2.12 DISCONNECT

5.2.12 DISCONNECT 106

5.2.14 EXECSP

Executes a stored procedure.

Syntax:

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

:RESULT_HVAR

A host variable to receive the procedure result.

stored_procedure_name

The name of the stored procedure.

parameter

A literal or a host variable parameter of the form:

[keyword=]:param_hvar [OUT | OUTPUT]

where:

keyword is the formal parameter name for a keyword parameter.

:param_hvar is a host variable.

OUT specifies an output parameter.

OUTPUT specifies an output parameter.

WORKING-STORAGE SECTION.

EXEC SQL BEGIN DECLARE SECTION END-EXEC

01 staff-id pic x(4).
01 last-name pic x(30).
EXEC SQL END DECLARE SECTION END-EXEC

>>--EXEC SQL-.----------------.-EXECSP-.---------------.->
 +-FOR :host_integer-+ +-:result_hvar -+

>-- stored_procedure_name -----.------------.------------->
 | +-- , --+ |
 | V | |
 +(parameter)-+
>-.----------------.------------------------END-EXEC-----<>
 +-WITH RECOMPILE-+

5.2.14 EXECSP

5.2.14 EXECSP 107

WITH RECOMPILE Is ignored and has no effect. It is allowed for syntax compatibility only.

Example:

5.2.15 EXECUTE

Processes dynamic SQL statements.

Syntax:

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

prepared_stmt_name

A previously prepared SQL statement.

:SQLDA_STRUCT

A previously declared SQLDA data structure containing a description of the input values. The
colon is optional to provide compatibility with other embedded SQL implementations.

:HVAR

One or more input host variables.

Comments:

Do not use the FOR clause if the EXECUTE is part of a DECLARE CURSOR statement.

EXEC SQL
 EXECSP myProc param1,param2
END-EXEC

EXEC SQL
 EXECSP :myResult = myFunction namedParam = :paramValue
END-EXEC

EXEC SQL
 EXECSP getDept :empName, :deptName OUT
END-EXEC

EXEC SQL
 DECLARE cities CURSOR FOR EXECSP locateStores :userState
END-EXEC

>>-EXEC SQL-----.-------------------.------EXECUTE------>
 +--FOR :host_integer---+

>-prepared_stmt_name-.--------------------------------.->
 +-USING DESCRIPTOR :sqlda_struct-+
 | +- , -+ |
 | V | |
 +-USING :hvar--------------------+

>-----END-EXEC-----<>

5.2.15 EXECUTE

5.2.15 EXECUTE 108

The EXECUTE statement runs the specified prepared SQL statement after substituting values for

any parameter markers. (Prepared statements are created using the PREPARE statement.) Only

statements that do not return results are permitted.

If the prepared statement contains parameter markers, the EXECUTE statement must include either

the USING :hvar option with the same number of host variables or the USING DESCRIPTOR

:sqlda_struct option identifying a SQLDA data structure already populated by the application.

The number of parameter markers in the prepared statement must match the number of sqldata

entries (USING DESCRIPTOR :sqlda) or host variables (USING :hvar).

Example:

5.2.16 EXECUTE IMMEDIATE

Immediately executes the SQL statement.

Syntax

* Store statement to be dynamically executed...
 MOVE "INSERT INTO staff VALUES(?,?,?,?,?)" TO stmtbuf.

* Ensure attempt is not made to insert an existing record
 EXEC SQL
 DELETE FROM staff WHERE staff_id = 99
 END-EXEC

* Prepare the statement
 EXEC SQL
 PREPARE st FROM :stmtbuf
 END-EXEC.

 MOVE 99 TO staff-id
 MOVE 'Lee' TO last-name
 MOVE 'Phil' TO first-name
 MOVE 19 TO age
 MOVE '1997-01-01' TO employment-date

* Execute the statement with current values.
 EXEC SQL
 EXECUTE st USING :staff-id, :last-name
 ,:first-name, :age, :employment-date
 END-EXEC
 IF SQLCODE = ZERO
 DISPLAY 'Statement executed.'
 ELSE
 DISPLAY 'Error: Could not execute statement.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* Finally, remove the entry
 EXEC SQL
 DELETE FROM staff where staff_id = 99
 END-EXEC
 IF SQLCODE = ZERO
 DISPLAY 'Values deleted.'
 ELSE
 DISPLAY 'Error: Could not delete inserted values.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

>>--EXEC SQL--.-------------------.--EXECUTE IMMEDIATE-->

 +--FOR :host_integer---+

 >----:stmt_hvar----END-EXEC-<>

5.2.16 EXECUTE IMMEDIATE

5.2.16 EXECUTE IMMEDIATE 109

Parameters:

:host_integer

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

5.2.16 EXECUTE IMMEDIATE

5.2.16 EXECUTE IMMEDIATE 110

:stmt_hvar

A character string host variable.

Comments:

Do not use the FOR clause if the EXECUTE IMMEDIATE is part of a DECLARE CURSOR statement.

The EXECUTE IMMEDIATE statement cannot contain input parameter markers or host variables. It

cannot return results; any results returned from this statement are discarded. Additionally, the

statement cannot contain SQL keywords that pertain exclusively to Embedded SQL.

If any rows are returned, SQLCODE is set to +1.

EXECUTE IMMEDIATE must be used for SET statements specific to the Microsoft SQL Server, that

is, those that are intended to execute at that server.

Example:

5.2.17 FETCH

Retrieves a row from the cursor's results set and writes the values of the columns in that row to the

corresponding host variables (or to addresses specified in the SQLDA data structure).

Syntax:

 EXEC SQL
 DELETE FROM staff WHERE staff_id = 99
 END-EXEC

* Put the required SQL statement in prep.
 MOVE "insert into staff (staff_id, last_name, first_name ,age,

- "employment_date) VALUES (99, 'Lee', 'Phillip', 19, '1992-
- "01-02')" TO prep
* Note EXECUTE IMMEDIATE does not require the statement to be
* prepared

 EXEC SQL
 EXECUTE IMMEDIATE :prep
 END-EXEC

* Check it worked...

 IF SQLCODE = ZERO
 DISPLAY 'Statement executed OK.'
 ELSE
 DISPLAY 'Error: Statement not executed.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* Run through the same procedure again, this time deleting the
* values just inserted
 MOVE "delete from staff where staff_id = 99" TO prep
 EXEC SQL
 EXECUTE IMMEDIATE :prep
 END-EXEC

 IF SQLCODE = ZERO
 DISPLAY 'Statement executed OK.'
 ELSE
 DISPLAY 'Error: Statement not executed.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

5.2.17 FETCH

5.2.17 FETCH 111

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with
the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement. Provided for backward compatibility.

CURSOR_NAME

A previously declared and opened cursor.

:SQLDA_STRUCT

An SQLDA data structure previously populated by the DESCRIBE statement and containing output
value addresses. This option is used only with a cursor declared by a prepared SELECT statement.

>>--EXEC SQL--.-------------------.------->
 +-FOR :host_integer-+

>-----.-------------.--FETCH---.-------------.-->

 +-AT db_name--+ +---PREVIOUS--+
 +---LAST------+
 +---PRIOR-----+
 +---FIRST-----+
 +---NEXT------+

>-----cursor_name---.-------------------------------------.------\>
 +-USING DESCRIPTOR :sqlda_struct------+

 | +--------------------------,-+|
 | V ||
 +-INTO--.-:hvar----------------------.+
 +-:hvar:ivar-----------------+
 +-:hvar-.-----------.-:ivar--+
 +-INDICATOR-+

>--END EXEC--><

5.2.17 FETCH

5.2.17 FETCH 112

(SELECT statements are prepared using the PREPARE statement.) The colon is optional to provide
compatibility with other embedded SQL implementations.

:HVAR

Specifies either of the following: One or more host variables, each separated by a comma. One or
more host variable+indicator variable combinations, each combination separated by a comma.

Comments:

By default, the FETCH statement retrieves the next row, but you can also specify the previous row

or last row or prior row or first row. If there are no more rows to fetch SQLCODE is set to 100 and

SQLSTATE is set to "02000".

An OPEN cursor_name statement must precede a FETCH statement, and the cursor must be open

while FETCH runs. If you use PREVIOUS, LAST, PRIOR, FIRST or NEXT, you must also set the

appropriate cursor options via the DECLARE CURSOR statement or the SET SCROLLOPTION and

SET CONCURRENCY statements. Also, the data type of the host variable must be compatible with

the data type of the corresponding database column.

If the number of columns is less than the number of host variables, the value of SQLWARN3 is set

to

W. If an error occurs, no further columns are processed. (Processed columns are not undone.)

Alternatively, the :hvar variable can specify a COBOL record that contains several fields, each

corresponding to a column in the select list of the cursor declaration statement. To use this form,

you must specify the DB2 option of the SQL Compiler directive. (Note that this will cause PREPARE

INTO and DESCRIBE statements to be rejected by the COBOL compiler).

If ANSI92ENTRY is set, then attempting to fetch a null value will set SQLCODE to -19425 if there is

no null indicator. If ANSI92ENTRY is not set, SQLCODE will be 0. In both cases, SQLSTATE will be

22002 and SQLWARN2 will be W.

If one of the host variables in the INTO clause is an array, they must all be arrays.

After execution, SQLERRD(3) contains the number of elements processed. For FETCH it is the

number of rows fetched.

Example:

5.2.17 FETCH

5.2.17 FETCH 113

5.2.18 GET HDBC

Enables you to use ODBC calls that require you to supply the ODBC connection handle.

Syntax:

Parameters:

HVAR

A host variable to store the ODBC connection handle. Must be declared as PIC X(4) COMP-5.

Example:

5.2.19 GET HENV

Enables you to use ODBC calls that require you to supply the ODBC environment handle.

Syntax:

Parameters:

HVAR

A host variable to store the ODBC environment handle. Must be declared as PIC X(4) COMP-5.

Example:

* Declare a cursor for a given SQL statement.

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT last_name, first_name FROM staff
 END-EXEC

 EXEC SQL OPEN C1 END-EXEC

* Fetch the current values from the cursor into the host variables
* and if everything goes ok, display the values of the host
* variables

 PERFORM UNTIL SQLCODE NOT = ZERO
 EXEC SQL
 FETCH C1 INTO :lname,:fname
 END-EXEC
 IF SQLCODE NOT = ZERO AND SQLCODE NOT = 100
 DISPLAY 'Error: Could not perform fetch'
 DISPLAY SQLERRML DISPLAY SQLERRMC
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF
 DISPLAY 'First name: 'fname DISPLAY 'Last name : 'lname
 DISPLAY SPACES
 END-PERFORM

>>---EXEC SQL---GET HDBC---INTO---:hvar---END-EXEC---->

EXEC SQL
 GET HDBC INTO :hvar
END-EXEC

>>---EXEC SQL---GET HENV---INTO---:hvar---END-EXEC----\>

5.2.18 GET HDBC

5.2.18 GET HDBC 114

5.2.20 GET NEXT RESULT SET

Makes the next result set available to an open cursor.

Syntax:

Parameters:

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

EXEC SQL
 GET HENV INTO :HENV
END-EXEC

>>---EXEC SQL---.------------.--->
 +-AT db_name-+

>--GET NEXT RESULT SET FOR---cursor_name---END-EXEC---><

5.2.20 GET NEXT RESULT SET

5.2.20 GET NEXT RESULT SET 115

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement.

CURSOR_NAME

A previously declared and opened cursor.

Comments:

GET NEXT RESULT SET makes the next result set available when retrieving multiple result sets from

a stored procedure or from a DECLARE CURSOR statement defined with multiple SELECT

statements.

If additional result sets are not available, GET NEXT RESULT SET returns an SQLCODE of 100 and

sets SQLSTATE to 02000.

Example:

5.2.21 INCLUDE

Includes the definition of the specified SQL data structure or source file in the COBOL program.

Syntax:

 exec sql declare c cursor for
 call TestProc2(:hv-country)
 end-exec

 exec sql open c end-exec

 display " "
 display "First result set from proc"
 display " "

 perform until exit
 exec sql fetch c into
 :CustomerID, :Company, :City
 end-exec
 if sqlcode = 100 or sqlcode < 0
 exit perform
 end-if
 display CustomerID City
 end-perform

 *> Always get SQLCODE 100 at the end of a result set
 *> until you close the cursor or ask for another
 result set

 exec sql fetch c into
 :CustomerID, :Company, :City
 end-exec
 if sqlcode not = 100
 display "FAIL: Fetch after SQLCODE 100 OK"
 end-if

 *> Ask for another result set, SQLCODE 100 if there
 isn't one

 exec sql get next result set for c end-exec

 display " "
 display "Second result set from proc"
 display " "

 perform until exit
 exec sql fetch c into
 :CustomerID, :Company, :City
 end-exec
 if sqlcode = 100 or sqlcode < 0
 exit perform
 end-if display CustomerID " " City
 end-perform

5.2.21 INCLUDE

5.2.21 INCLUDE 116

Parameters:

SQLCA

Indicates that a SQLCA data structure is accessed. SQLDA Indicates that a SQLDA data structure is
accessed.

FILENAME

Indicates that a file should be included in the source at this point (this is equivalent to the
COBOL COPY facility).

Comments:

This statement uses the corresponding .cpy file. Ensure that sqlca.cpy and sqlda.cpy are in the

current directory or in the environment variable COBCPY directory.

Example:

5.2.22 INSERT

Adds new rows to a table.

Syntax:

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is optional. If
omitted, the current connection executes the insert. If provided, and the connection specified is

>>---EXEC SQL---INCLUDE-----.-SQLCA----.----END-EXEC----><
 +-SQLDA----+
 +-filename-+

EXEC SQL INCLUDE SQLCA END-EXEC
EXEC SQL INCLUDE SQLDA END-EXEC
EXEC SQL INCLUDE MYFILE END-EXEC

>>--EXEC SQL--.-------------------.---------->
 +-FOR :host_integer-+

>---.------------.--INSERT--.------.---.-table_name-.--->
 +-AT db_name-+ +-INTO-+ +-view_name--+

 +-------- , ------+
 V |
>---.---------------.--VALUES (constant_expression)----->
 +-(column_list)-+

>------END-EXEC---><

5.2.22 INSERT

5.2.22 INSERT 117

different than the current connection, the insert is performed on the connection associated with
the DECLARE CURSOR statement.

TABLE_NAME

The table into which rows are to be inserted. view_name The view into which rows are to be

inserted.

INTO

An optional keyword. Required for ANSI SQL 92 conformance.

COLUMN_LIST

A list of one or more columns to which data is to be added. The columns can be in any order, but
the incoming data must be in the same order as the columns. The column list is necessary only
when some, but not all, columns in the table are to receive data. Enclose the items in the column
list parentheses. If no column list is given, all the columns in the receiving table (in CREATE
TABLE order) are assumed.

The column list determines the order in which values are entered.

VALUES

Introduces a list of constant expressions.

CONSTANT_EXPRESSION

Constant or null values for the indicated columns. The values list must be enclosed in
parentheses and must match the explicit or implicit columns list.

5.2.22 INSERT

5.2.22 INSERT 118

Enclose non-numeric constants in single or quotation marks.

Comments:

The INSERT statement is passed directly to the ODBC driver. See the documentation supplied with

your ODBC driver for the exact syntax.

If the host variables in the WHERE clause are arrays, the INSERT statement is executed once for

each set of array elements.

Use UPDATE to modify column values in an existing row.

You can omit items in the column list and VALUES list providing that the omitted columns are

defined to allow null values.

You can select rows from a table and insert them into the same table in a single statement.

After execution, SQLERRD(3) contains the number of elements processed. For INSERT it is the total

number of rows inserted.

Example:

5.2.23 INTO

Retrieves one row of results and assigns the values of the items returned by an OUTPUT clause in a

SQL Server INSERT, UPDATE, or DELETE statement to the host variables specified in the INTO list.

Syntax:

 DISPLAY "Enter new staff member's id:"
 ACCEPT staff-id

 DISPLAY "Enter new staff member's last name:"
 ACCEPT last-name

 DISPLAY "Enter new staff member's first name:"
 ACCEPT first-name

 DISPLAY "Enter new staff member's age:"
 ACCEPT age

 DISPLAY "Enter new staff member's employment date(yyyy/mm/dd):"
 ACCEPT employment-date

 EXEC SQL
 INSERT INTO staff
 (staff_id
 ,last_name
 ,first_name
 ,age
 ,employment_date)
 VALUES
 (:staff-id
 ,:last-name
 ,:first-name
 ,:age
 ,:employment-date)
 END-EXEC

5.2.23 INTO

5.2.23 INTO 119

Parameters:

HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

DB_NAME

The name of a database that has been declared using DECLARE DATABASE. |

HVAR

A host variable to store the ODBC connection handle. Must be declared as PIC X(4) COMP-5. |

RESULT-SET-GENERATING-DMLSTATEMENT

A SQL Server INSERT, non-positioned UPDATE, or DELETE statement with an OUTPUT clause. |

Comments:

INTO is supported for SQL Server only.

5.2.24 OPEN

Runs the SELECT statement specified in the corresponding DECLARE CURSOR statement to

produce the results set that is accessed one row at a time by the FETCH statement.

Syntax:

Parameters:

CURSOR_NAME

A previously declared cursor.

:SQLDA_STRUCT

An SQLDA data structure previously constructed by the application. The SQLDA data structure
contains the address, data type, and length of each input parameter. This option is used only

>>---EXEC SQL--.-------------------.---.------------.---->
 +-FOR :host_integer-+ +-AT db_name-+
 +- ,-+
 V |
>---INTO--:hvar--result-set-generating-dml-statement---->

>---END-EXEC---><

>>--EXEC SQL---OPEN---cursor_name------------------------>

 >----.--------------------------------.----END-EXEC-----><
 +-USING DESCRIPTOR :sqlda_struct-+
 | +- , -+ |
 | V |
 +-USING :hvar--------------------+

5.2.24 OPEN

5.2.24 OPEN 120

with a cursor that references a prepared SQL statement in the DECLARE statement. The colon is
optional to provide compatibility with other embedded SQL implementations.

:HVAR

One or more input host variables corresponding to parameter markers in the SELECT statement. This
option is used only with a cursor that references a prepared SQL statement in the DECLARE
statement. |

Comments:

If the cursor is declared with a static SELECT statement (that is, one that was not prepared), the

SELECT statement can contain host variables but not parameter markers . The current values of

the host variables are substituted when the OPEN statement runs. For a statically declared cursor,

the OPEN statement cannot contain the USING :hvar or USING DESCRIPTOR :sqlda_struct option.

If the cursor is declared with a dynamic SELECT statement (that is, one that was prepared), the

SELECT statement can contain parameter markers but not host variables. Parameter markers can

appear wherever column values are allowed in the SELECT statement. If the SELECT statement has

parameter markers, the OPEN statement must include either the USING :hvar option with the same

number of host variables or the USING DESCRIPTOR :sqlda_struct option identifying an SQLDA

data structure already populated by the application.

With the USING DESCRIPTOR :sqlda_struct option, values of the program variables are substituted

for parameter markers in the SELECT statement. These program variables are addressed by

corresponding SQLDATA entries in the SQLDA data structure.

The number of parameter markers in the SELECT statement must match the number of sqldata

entries (USING DESCRIPTOR :sqlda_struct) or host variables (USING :hvar) in the OPEN statement.

Example:

5.2.24 OPEN

5.2.24 OPEN 121

5.2.25 PREPARE

Processes dynamic SQL statements.

Syntax:

Parameters:

STMT_NAME

The prepared statement name. This can be used by a subsequent EXECUTE or OPEN statement, and/or a
previous DECLARE CURSOR statement.

:SQLDA

The output SQL descriptor area (SQLDA) data structure to be populated. The colon is optional to
provide compatibility with other embedded SQL implementations.

:HVAR

The host variable that contains the SQL statement.

*Declare the cursor...
 EXEC SQL
 DECLARE C1 CURSOR FOR
 SELECT staff_id, last_name
 FROM staff
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not declare cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

 EXEC SQL
 OPEN C1
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not open cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

 PERFORM UNTIL sqlcode NOT = ZERO
*SQLCODE will be zero as long as it has successfully fetched data
 EXEC SQL
 FETCH C1 INTO :staff-staff-id, :staff-last-name
 END-EXEC
 IF SQLCODE = ZERO
 DISPLAY "Staff ID: " staff-staff-id
 DISPLAY "Staff member's last name: " staff-last-name
 END-IF
 END-PERFORM

 EXEC SQL
 CLOSE C1
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not close cursor.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 END-IF

>>--EXEC SQL---PREPARE---stmt_name---.-------------.----->
 +-INTO :sqlda-+

>---FROM---:hvar---END-EXEC-----\>\<

5.2.25 PREPARE

5.2.25 PREPARE 122

Comments:

You can use a prepared statement in one of two ways:

You can open a cursor that references a prepared statement.

You can execute a prepared statement.

If the prepared statement is used by an EXECUTE statement, :hvar cannot contain a SQL statement

that returns results.

Because singleton SELECT statements (SELECT INTO) are not allowed in dynamic SQL statements,

they cannot be prepared.

When using PREPARE, the SQL statement in :hvar cannot contain host variables or comments, but

it can contain parameter markers. Also, the SQL statement cannot contain SQL keywords that

pertain exclusively to Embedded SQL.

The INTO :sqlda option merges the functionality of DESCRIBE and PREPARE so that this example

code:

Is identical to:

Example:

•

•

EXEC SQL
 PREPARE stmt1 INTO :sqlda FROM :stmt-buf
 END-EXEC

EXEC SQL
 PREPARE stmt1 FROM :stmt-buf
 END-EXEC
EXEC SQL
 DESCRIBE stmt1 INTO :sqlda
 END-EXEC

5.2.25 PREPARE

5.2.25 PREPARE 123

5.2.26 QUERY ODBC

PROGRAM-ID. progname.

WORKING-STORAGE SECTION.
EXEC SQL INCLUDE SQLCA END-EXEC
EXEC SQL BEGIN DECLARE SECTION END-EXEC
01 prep PIC X(80).
01 nme PIC X(20).
01 car PIC X(20).
01 n60 PIC x(5).
EXEC SQL END DECLARE SECTION END-EXEC.

PROCEDURE DIVISION.
 EXEC SQL CONNECT TO 'srv1' USER 'sa' END-EXEC
 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not connect to database.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRMC
 STOP RUN
 END-IF

* Ensure attempt is not made to recreate an existing table...
 EXEC SQL DROP TABLE mf_table END-EXEC

* Create a table...
 EXEC SQL CREATE TABLE mf_table
 (owner char(20)
 ,car_col char(20)
 ,nought_to_60 char(5))
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not create table'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

* Insert an SQL statement into host variable prep...
 MOVE "insert into mf_table values(?,?,?)" TO prep

* Prepare the statement...
 EXEC SQL
 PREPARE prep_stat FROM :prep
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not prepare statement'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

 MOVE "Owner" TO nme
 MOVE "Lamborghini" TO car
 MOVE "4.9" TO n60

* Execute the prepared statement using the above host variables...
 EXEC SQL
 EXECUTE prep_stat USING :nme, :car, :n60
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not execute prepared statement.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

* Finally, drop the now unwanted table...
 EXEC SQL
 DROP TABLE mf_table
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not drop table.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN
 END-IF

 DISPLAY 'All statements executed.'
 EXEC SQL DISCONNECT CURRENT END-EXEC
 STOP RUN.

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 124

Delivers a results set in the same way as a SELECT statement, and must therefore be associated

with a cursor via DECLARE and OPEN, or DECLARE, PREPARE and OPEN.

Syntax Format 1:

Syntax Format 2:

Syntax Format 3:

Parameters:

QUALIFIER_NAME

A host variable, identifier or literal which specifies a qualifier to be used to select tables.
Not all ODBC drivers support qualifiers, and those that do may use them in different ways. For
example, if a data source supports multiple databases, a qualifier can be used to specify which

>>--EXEC SQL---QUERY ODBC---.-COLUMN--.------------------>
 +-COLUMNS-+

>---.--------------------------.--.------------------.--->
 +-QUALIFIER qualifier_name-+ +-OWNER owner_name-+

>--.----------------------.--.------------------------.-->
 +-TABLENAME table_name-+ +-COLUMNNAME column_name-+

>---END-EXEC---<>

>>--EXEC SQL---QUERY ODBC---.-DATATYPE--.---------------->
 +-DATATYPES-+
>---.-------------------------.---END-EXEC---><
 +-TYPE--.-datatype_name--.+
 +-BIGINT---------+
 +-BINARY---------+
 +-BIT------------+
 +-CHAR-----------+
 +-DATE-----------+
 +-DECIMAL--------+
 +-DOUBLE---------+
 +-FLOAT----------+
 +-INTEGER--------+
 +-LONG VARBINARY-+
 +-LONG VARCHAR---+
 +-NUMERIC--------+
 +-REAL-----------+
 +-SMALLINT-------+
 +-TIME-----------+
 +-TIMESTAMP------+
 +-TINYINT--------+
 +-VARBINARY------+
 +-VARCHAR--------+

>>--EXEC SQL---QUERY ODBC---.-TABLE--.------------------>
 +-TABLES-+

>---.--------------------------.--.------------------.--->
 +-QUALIFIER qualifier_name-+ +-OWNER owner_name-+

>--.----------------------.--.------------------------.-->
 +-TABLENAME table_name-+ +-TYPE tabletype_name----+

>--END-EXEC--<>

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 125

database to use. Alternatively, for drivers providing access to file based data sources, a
qualifier can be used to specify a particular directory to be searched. |

OWNER_NAME

A host variable, identifier or literal which specifies a table owner to be used to select tables.
Not all ODBC drivers support table ownership.

TABLE_NAME

A host variable, identifier or literal which specifies tables to be included in the query.

DATATYPE_NAME

A host variable, identifier or literal which specifies a data type to be queried.

TABLETYPE_NAME

A host variable, identifier or literal which specifies a list of table types to be included in
the query.

Comments:

Search patterns consist of the legal characters for SQL identifiers plus underscore (_) which

matches any single character, percent (%) which matches any sequence of zero or more

characters, or a driver defined escape character which can be used to allow underscore or percent

in a pattern to represent themselves rather than a wildcard.

If a search pattern parameter is not supplied, a pattern of % is used, which will match all relevant

dictionary entries.

For table queries the following special rules apply:

If qualifier-name is % and owner-name and table-name are empty strings, the results set

consists of a list of valid qualifiers at the data source. All columns apart from

TABLE_QUALIFIER in the results set (see below) will be null.

If owner-name is % and qualifier-name and table-name are empty strings, the results set

consists of a list of valid owners at the data source. All columns apart from TABLE_OWNER

in the results set (see below) will be null.

If tabletype-name is % and qualifier-name, owner-name and table-name are empty strings the

results set consists of a list of valid table types at the data source. All columns apart from

TABLE_TYPE in the results set (see below) will be null.

If tabletype-name is not specified, tables of all types will be returned in the results set. If it is

specified it must consist of a comma separated list of table types, for

example'TABLE,VIEW'.

Example:

• •

• •

• •

• •

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 126

QUERY ODBC - Column Query

The results set for a column query is:

 EXEC SQL
 DECLARE tcurs CURSOR FOR QUERY ODBC TABLES
 END-EXEC

 EXEC SQL DECLARE C1 CURSOR FOR
 QUERY ODBC TABLES OWNER :tab-owner TABLETYPE 'TABLE,VIEW'
 END-EXEC

 MOVE 'staff' to tab-name
 EXEC SQL DECLARE C2 CURSOR FOR
 QUERY ODBC COLUMNS TABLENAME :tab-name
 END-EXEC

 EXEC SQL DECLARE C3 CURSOR FOR
 QUERY ODBC DATATYPES
 END-EXEC

TABLE_QUALIFIER VARCHAR(128)

TABLE_OWNER VARCHAR(128)

TABLE_NAME VARCHAR(128)

NOT NULL

COLUMN_NAME VARCHAR(128)

NOT NULL

DATA_TYPE SMALLINT NOT

NULL

See odbcext.cpy and odbc.cpy for

constants representing the ODBC data

type codes.

TYPE_NAME VARCHAR(128)

NOT NULL

Driver dependent name for the column's

data type.

PRECISION INTEGER

LENGTH INTEGER Amount of memory required for a column

value in its native representation.

SCALE SMALLINT

RADIX SMALLINT For numeric columns either 10 or 2

depending on the data type; otherwise

null

NULLABLE SMALLINT NOT

NULL

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 127

QUERY ODBC - Data Type Query

The results set for a data type query is:

TABLE_QUALIFIER VARCHAR(128)

REMARKS VARCHAR(254)

TYPE_NAME VARCHAR(128)

NOT NULL

Driver dependent name for the

column's data type.

DATA_TYPE SMALLINT NOT

NULL

See odbcext.cpy and odbc.cpy for

constants representing the ODBC data

type codes.

PRECISION INTEGER Maximum precision for columns of

this type.

LITERAL_PREFIX VARCHAR(128) Character or characters required to

prefix literal values for this type.

LITERAL_SUFFIX VARCHAR(128) Character or characters required to

suffix literal values for this type.

CREATE_PARAMS VARCHAR(128) Parameters required when creating a

column of this type, for example,

'precision,scale' for decimal types.

NULLABLE SMALLINT NOT

NULL

CASE_SENSITIVE SMALLINT NOT

NULL

Specifies case sensitivity in

comparisons for character data types.

SEARCHABLE SMALLINT NOT

NULL

SQL_UNSEARCHABLE,

SQL_LIKE_ONLY or

SQL_ALL_EXCEPT_LIKE (these are

defined in odbc_cpy).

UNSIGNED_ATTRIBUTE SMALLINT Specifies if a numeric type is signed or

unsigned.

MONEY SMALLINT NOT

NULL

Specifies if a numeric type is a money

data type.

AUTO_INCREMENT SMALLINT Specifies if the data type is auto

incrementing.

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 128

QUERY ODBC - Table Query

The results set for a table query is:

TYPE_NAME VARCHAR(128)

NOT NULL

Driver dependent name for the

column's data type.

LOCAL_TYPE_NAME VARCHAR(128) Localized version of the data type

name.

MINIMUM_SCALE SMALLINT

MAXIMUM_SCALE SMALLINT

TABLE_QUALIFIER VARCHAR(128)

TABLE_OWNER VARCHAR(128)

TABLE_NAME VARCHAR(128)

TABLE_TYPE VARCHAR(128) One of TABLE, VIEW, SYSTEM TABLE,

GLOBAL TEMPORARY, LOCAL TEMPORARY,

ALIAS, SYNONYM or a data source specific

type identifier

5.2.26 QUERY ODBC

5.2.26 QUERY ODBC 129

5.2.27 RESET CONNECTION

Closes all open cursors, even if the application has not appropriately closed them.

Syntax:

5.2.28 ROLLBACK

Backs out any changes made to the database by the current transaction on the current connection,

or partially rolls back changes to a previously set save point.

Syntax:

Parameter:

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is optional. If
omitted, the current connection is rolled back. If provided, and the connection specified is

TABLE_QUALIFIER VARCHAR(128)

REMARKS VARCHAR(254)

>>---EXEC SQL---RESET CONNECTION---END-EXEC---><

>>---EXEC SQL---.------------.--->
 +-AT db_name-+

>--ROLLBACK----.--------------.--------->
 +-WORK---------+
 +-TRAN---------+
 +-TRANSACTION--+

>---.-----------.---END-EXEC---><
 +--RELEASE--+
 +--TO-.-----------.-*name*--+
 +-SAVEPOINT-+

5.2.27 RESET CONNECTION

5.2.27 RESET CONNECTION 130

different than the current connection, the rollback is performed on the connection associated
with the DECLARE CURSOR statement.

Comments:

When RELEASE is specified and the transaction is successfully rolled back, the current connection

is closed.

TO [SAVEPOINT] rolls the transaction back just to the save point specified by name, which must be

set by a preceding SAVEPOINT statement.

Example:

5.2.29 SAVEPOINT, SAVE TRANSACTION, RELEASE [TO]

SAVEPOINT

Sets a transaction save point to which a current transaction can be rolled back, resulting in a partial

roll back.

Syntax:

Parameter:

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

EXEC SQL
 ROLLBACK
END-EXEC

EXEC SQL
 ROLLBACK WORK RELEASE
END-EXEC

END-EXEC

EXEC SQL
 ROLLBACK TO SP1
END-EXEC

>>---EXEC SQL--.------------.--SAVEPOINT-*name*--.------.-->
 +-AT db_name-+ +UNIQUE+

>--.--
.---END-EXEC---><
 +--ON ROLLBACK RETAIN CURSORS--.----------------------------+
 +--ON ROLLBACK RETAIN LOCKS--+

>---EXEC SQL--.------------.--SAVE-.-TRANSACTION--.--name-- ENDEXEC---><

 +-AT db_name-+ +-TRAN---------+

>>---EXEC SQL--.------------.--RELEASE-.----.-SAVEPOINT-name--- END-EXEC---><
 +-AT db_name-+ +-TO-+

5.2.29 SAVEPOINT, SAVE TRANSACTION, RELEASE [TO] SAVEPOINT

5.2.29 SAVEPOINT, SAVE TRANSACTION, RELEASE [TO] SAVEPOINT 131

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement.

Comments:

You can define multiple save points for a single transaction.

When you set a save point using a unique name, and subsequently set another save point using the

same unique name, the named save point is reset to the current transaction state.

The behavior of cursors and locks after a rollback to a save point is database-specific. For details,

see the documentation provided by your database vendor.

Example:

5.2.30 SELECT DISTINCT (using DECLARE CURSOR)

Associates the cursor name with the SELECT DISTINCT statement and enables you to retrieve rows

of data using the FETCH statement.

Syntax:

Parameters:

DB_NAME

The name of a database that has been declared using DECLARE DATABASE.

CURSOR_NAME

Cursor name used to identify the cursor in subsequent statements. Cursor names can contain any
legal filename character and be up to 30 characters in length. The first character must be a
letter.

SELECT_LIST

The name of the columns to retrieve.

TABLE_LIST

EXEC SQL
 SAVEPOINT SP1
END-EXEC

EXEC SQL
 SAVEPOINT PHASE2 ON ROLLBACK RETAIN CURSORS
END-EXEC

>>---EXEC SQL--.------------.------DECLARE cursor_name---->
 +-AT db_name-+

 >---CURSOR FOR------SELECT DISTINCT------select_list------>

 >---FROM----table_list--.-----------------2--END-EXEC----><
 +-select_options--+

5.2.30 SELECT DISTINCT (using DECLARE CURSOR)

5.2.30 SELECT DISTINCT (using DECLARE CURSOR) 132

The name of the tables that contain the columns to be retrieved, as specified in select_list.

SELECT_OPTIONS

The options specified to limit the number of rows retrieved and/or order the rows retrieved.

Comments:

Two separately compiled programs cannot share the same cursor. All statements that reference a

particular cursor must be compiled together.

The SELECT DISTINCT statement runs when the cursor is opened. The following rules apply to the

SELECT DISTINCT statement:

The statement cannot contain an INTO clause or parameter markers.

The statement can contain input host variables previously identified in a declaration section.

With some ODBC drivers, the SELECT DISTINCT statement must include a FOR UPDATE

clause if positioned updates or deletions are to be performed.

Example:

5.2.31 SELECT INTO

Retrieves one row of results and assigns the values of the items in a specified SELECT list to the

host variables specified in the INTO list.

Syntax:

• •

• •

• •

Use SELECT DISTINCT instead of SELECT INTO to remove duplicate rows in the row set.

Note

01 age-array pic s9(09) comp-5 occurs 10 times.
 01 lname-array pic x(32) occurs 10 times.

 MOVE 5 TO staff-id
 EXEC SQL
 SELECT DISTINCT last_name
 INTO :lname-array
 FROM staff
 WHERE staff_id > :staff-id
 END-EXEC

 EXEC SQL
 SELECT DISTINCT age
 INTO :age-array
 FROM staff
 WHERE first_name > 'George'
 END-EXEC

5.2.31 SELECT INTO

5.2.31 SELECT INTO 133

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

DB_NAME

The name of a database that has been declared using DECLARE DATABASE.

SELECT_LIST

The portion of the table to retrieve data from.

:HVAR

One or more host variables to receive the select_list items.

SELECT_OPTIONS

One or more statements or other options that can be used with the SQL SELECT statement (for
example, a FROM or WHERE clause).

Comments:

A singleton SELECT must contain a FROM clause.

If more columns are selected than the number of receiving host variables, the value of sqlwarn3 is

set to 'W'. The data type and length of the host variable must be compatible with the value

assigned to it. If data is truncated, the value of sqlwarn1 is set to 'W'.

If a SELECT INTO statement returns more than one row from the database, all rows except the first

one will be discarded and sqlwarn4 will be set to "W". If you want to return more than the first row,

you should use a cursor. Alternatively, you can specify array items in the INTO clause. The array will

be populated up to either the maximum size of the array, the value of host_integer or the number of

rows returned, whichever is the smallest.

If SELECT INTO returns more rows from the database than the statement in the application is able

to accept, CitOESQL returns the following for each of the specified directives:

>>---EXEC SQL--.-------------------.---.------------.---->
 +-FOR :host_integer-+ +-AT db_name-+

 +- ,-+
 V |
 >----SELECT----.-------------.---INTO--:hvar------------->
 +-select_list-+

 >----select_options----END-EXEC---><

CHECKSINGLETON SQLCODE = -811 SQLSTATE = 21000 SQLWARN4 = W
NOCHECKSINGLETON SQLCODE = 0 SQLSTATE = 00000 SQLWARN4 = space

ANSI92ENTRY SQLCODE = -1 SQLSTATE = 21000 SQLWARN4 = W

5.2.31 SELECT INTO

5.2.31 SELECT INTO 134

If SELECT INTO returns more rows from the database than the statement in the application is able

to accept, and none of these directives are set, then CitOESQL returns:

Example:

5.2.32 SET AUTOCOMMIT

Enables you to control ODBC AUTOCOMMIT mode at run time.

Syntax:

Parameters:

ON

Changes to AUTOCOMMIT mode, whereby each SQL statement is treated as a separate transaction and
is committed immediately upon execution.

OFF

Switches off AUTOCOMMIT mode. If the ODBC driver you are using supports transactions, statements
must be explicitly committed (or rolled back) as part of a transaction.

Comments:

The SET AUTOCOMMIT statement is useful for data sources which can only execute DDL

statements, such as CREATE and DROP, in AUTOCOMMIT mode.

When set to ON, AUTOCOMMIT releases locks when an outermost stored procedure executes a

COMMIT or a ROLLBACK statement.

This statement overrides the AUTOCOMMIT SQL compiler directive option.

SQLCODE = +1 SQLSTATE = 21000 SQLWARN4 = W

If any one of the host variables in the INTO clause is an array, then they all must be arrays.

Note

...
 MOVE 99 TO staff-id
 EXEC SQL
 SELECT last_name
 INTO :lname
 FROM staff
 WHERE staff_id=:staff-id
 END-EXEC
 EXEC SQL
 SELECT staff_id
 INTO :staff-id
 FROM staff
 WHERE first_name = 'Phil'
 END-EXEC

>>--EXEC SQL--SET AUTOCOMMIT---.-ON--.---END-EXEC--><
 +-OFF-+

5.2.32 SET AUTOCOMMIT

5.2.32 SET AUTOCOMMIT 135

Example:

5.2.33 SET CONNECTION

Sets the named connection as the current connection.

Syntax:

Parameters:

NAME

Specifies the name of a database connection. Must match the connection name specified in a
previous CONNECT statement. The name can be either the connection's literal name or the name of a
host variable containing character values.

DEFAULT

If you have established a connection using the CONNECT statement but omitting the connection
name, you can refer to the connection established as DEFAULT.

Comments:

If you are using connections across compilation modules you must use named connections.

Example:

EXEC SQL SET AUTOCOMMIT ON END-EXEC

>>--EXEC SQL--SET CONNECTION---.-name-----.---END-EXEC--><
 +-DEFAULT--+

5.2.33 SET CONNECTION

5.2.33 SET CONNECTION 136

5.2.34 SET ERRORMAP

Changes the SQL error map file for the current connection.

Syntax:

Parameters:

MAP-FILE-PREFIX

The prefix of the SQL error map file name (no file extension).

Comments:

SQL Error Mapping must be enabled using the ERRORMAP SQL compiler directive option.

The SET ERRORMAP statement is most useful in applications that use multiple database

connections.

 EXEC SQL CONNECT TO "srv1" AS server1 USER "sa." END-EXEC
 EXEC SQL CONNECT TO "srv2" AS server2 USER "sa." END-EXEC

* server2 is the current connection
 EXEC SQL CREATE TABLE phil1
 (charbit CHAR(5))
 END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not create table.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

 EXEC SQL INSERT INTO phil1 VALUES('hello') END-EXEC

 IF SQLCODE NOT = ZERO
 DISPLAY 'Error: Could not insert data.'
 DISPLAY SQLERRMC
 DISPLAY SQLERRML
 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN
 END-IF

* set the current connection to server1
 EXEC SQL SET CONNECTION server1 END-EXEC
 EXEC SQL
 SELECT first_name
 INTO :fname
 FROM staff
 WHERE staff_id = 10
 END-EXEC

 DISPLAY fname ' says ' WITH NO ADVANCING

* set the current connection back to server2
 EXEC SQL SET CONNECTION server2 END-EXEC
 EXEC SQL
 SELECT charbit
 INTO :fname
 WHERE charbit = 'hello'
 FROM phil1
 END-EXEC

 DISPLAY fname
 EXEC SQL DISCONNECT server1 END-EXEC
 EXEC SQL DISCONNECT server2 END-EXEC
 STOP RUN

>>--EXEC SQL--SET ERRORMAP--map-file-prefix--END-EXEC--><

5.2.34 SET ERRORMAP

5.2.34 SET ERRORMAP 137

5.2.35 SET host_variable

Provides information about CitOESQL connections and databases.

Syntax:

Parameters:

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

>>--EXEC SQL--.------------.--->
 +-AT db_name-+

>--SET :host_variable = >
>------.-CURRENT CONNECTION-.------------.----------.-->
 +-CURRENT DATABASE---.------------.----------+
 +-OPTION-------------+-DATE-------+-USA------+
 +-EUR------+
 +-JIS------+
 +-ODBC-----+
 +-EXTERNAL-+
 +-ISO------+
 +-DEFAULT--+
 +-TIME-------+-USA------+
 +-EUR------+
 +-JIS------+
 +-ODBC-----+
 +-EXTERNAL-+
 +-ISO------+
 +-DEFAULT--+
 +-DATEDELIM--+-char-----+
 +-TIMEDELIM--+-char-----+
 +-TSTAMPSEP--+-char-----+
 +-DETECTDATE-+-CLIENT---+
 +-SERVER---+ +-OFF------+
>---END EXEC---><

5.2.35 SET host_variable

5.2.35 SET host_variable 138

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement.

HOST_VARIABLE

A PIC X(n) host variable

CHAR

Any single printable character or space

Comments:

This statement returns the name of the current connection or the type of database for the current

connection as specified in the EXEC SQL CONNECT statement in the specified host variable.

If there is no current open connection, host_variable is set to NONE for both CURRENT

CONNECTION and CURRENT DATABASE.

With CURRENT CONNECTION, you can use host_variable in a subsequent EXEC SQL SET

CONNECTION statement.

With CURRENT DATABASE, if there is a current open connection, host_variable is set to one of the

following values, depending on the connection:

DB2

SQLSERVER

ORACLE

POSTGRESQL

OTHER

In addition to the OPTION syntax specified above, you can optionally place an equals (=) sign

between the option and its parameter. For example, the following are equivalent:

and

5.2.36 SET OPTION

For a full description of each option and its corresponding parameters, see the equivalent SQL

Compiler Directive Options topic as listed in the Related reference section below.

Note

• •

• •

• •

• •

• •

exec sql set :myhostvar option date EUR end-exec

exec sql set :myhostvar option date=EUR end-exec

5.2.36 SET OPTION

5.2.36 SET OPTION 139

Enables you to set CitOESQL options.

Syntax:

Parameters:

VALUE

A literal or the name of a host variable. The host variable must contain character values for
APPLICATION or HOST and numeric values for LOGINTIME or QUERYTIME.

QUERYTIME

Sets the number of seconds that the program waits for a response to an CitOESQL statement. The
default is 0, meaning forever. This option does not override existing network timeout settings.

LOGINTIME

Sets the number of seconds that the program waits for a response to a CONNECT TO statement. The
default is 10 seconds. A value of 0 indicates an infinite timeout period.

APPLICATION

Sets the application name which is passed by CitOESQL to the data source when a CONNECT TO
statement is executed.

HOST

Sets the host workstation name which is passed by CitOESQL when a CONNECT TO statement is
executed.

Comments:

The SET OPTION statement is not supported by all ODBC drivers.

As an option, you can place an equals (=) sign between an option and its parameter. For example,

the following are equivalent:

>>---EXEC SQL---SET OPTION----.-QUERYTIME---.----------.-->
 +-LOGINTIME---+
 +-APPLICATION-+
 +-HOST--------+
 +-DATE--------+-USA------+
 +-EUR------+
 +-JIS------+
 +-ODBC-----+
 +-EXTERNAL-+
 +-ISO------+
 +-DEFAULT--+
 +-TIME--------+-USA------+
 +-EUR------+
 +-JIS------+
 +-ODBC-----+
 +-EXTERNAL-+
 +-ISO------+
 +-DEFAULT--+
 +-DATEDELIM--+-char-----+
 +-TIMEDELIM--+-char-----+
 +-TSTAMPSEP--+-char-----+
 +-DETECTDATE-+-CLIENT---+
 +-SERVER---+
 +-OFF------+

>---value---END-EXEC---><

5.2.36 SET OPTION

5.2.36 SET OPTION 140

and

Example:

5.2.37 SET TRACELEVEL

Enables you to dynamically set or change the reporting level of CitOESQL traces for native

applications.

Syntax:

Parameters:

0

Turns off CitOESQL trace.

1

The following information is written to the trace file:

exec sql set option date EUR end-exec

exec sql set option date=EUR end-exec

EXEC SQL SET OPTION logintime 5 END-EXEC

 EXEC SQL CONNECT TO "srv2" USER "sa." END-EXEC

* If the CONNECT statement cannot log in to the server "srv2"
* within five seconds, it will time out and return to the
program.

 EXEC SQL SET OPTION querytime 2 END-EXEC

 EXEC SQL SELECT name FROM sysobjects INTO :name END-EXEC

* If the SELECT statement does not respond within 2 seconds,
* the query will time out and return to the program.

>>--EXEC SQL--SET TRACELEVEL--.-0-------.---END-EXEC--><
 +-1-------+
 +-2-------+
 +-3-------+
 +-4-------+
 +-5-------+
 +-6-------+
 +-OFF-----+
 +-DEFAULT-+

BEGIN Traces main SQL directives.

END Indicates end of run.

DIRECTIVES Traces per compilation unit directives the first time a compilation unit is

encountered at run time

PREPARE Identifies the original source code when a statement is prepared

5.2.37 SET TRACELEVEL

5.2.37 SET TRACELEVEL 141

2

The following information is written to the trace file in addition to the information written
when you set the trace level to 1:

3

The following information is written to the trace file in addition to the information written
when you set the trace level to 2:

DISPOSE Provides summary information for overall statement usage when a

statement is removed from the prepared statement cache at disconnect

time

FLUSH Provides summary information for overall statement usage when a

statement is flushed from the cache usually due to a cache overflow

OPEN

EXECUTE Provides the number of rows selected, inserted or updated

EXEC_IMMED

EXECUTE

Provides the number of rows selected, inserted or updated

ODBCCLOSE Provides summary information for the current cursor use

STMT CHANGED Reports new concurrency and scroll option settings when the ODBC

driver uses different settings than those requested by CitOESQL.

ODBCFETCH Provides the number of rows fetched

5.2.37 SET TRACELEVEL

5.2.37 SET TRACELEVEL 142

4

The following information is written to the trace file in addition to the information written when

you set the trace level to 3:

EXEC_SQL_BEGIN

EXEC_SQL_END

5

The following information is written to the trace file in addition to the information written when

you set the trace level to 4:

ODBC_CALL_START

ODBC_CALL_END

6

Only the following information is written to the trace file:

ODBC_CALL_START

ODBC_CALL_END

OFF

Turns off the CitOESQL trace

DEFAULT

Resets the trace setting to the value set by the SQL TRACELEVEL directive. If the TRACELEVEL
directive was not used to compile a program, this is equivalent to setting this option to OFF. |

Example:

5.2.38 SET TRANSACTION ISOLATION

Sets the transaction isolation level for the current connection to one of the isolation level modes

specified by ODBC.

Syntax:

COBOLFETCH Provides the number of rows returned to the COBOL application

•

•

•

•

•

•

EXEC SQL SET TRACELEVEL DEFAULT END-EXEC

5.2.38 SET TRANSACTION ISOLATION

5.2.38 SET TRANSACTION ISOLATION 143

Comments:

Transactions can affect each other in the following ways, depending on the setting of the

transaction isolation level:

Dirty read - Transaction 1 updates a row. Transaction 2 reads the row before transaction 1

commits. Transaction 1 issues a rollback. Transaction 2's results are based on invalid data.

Nonrepeatable read - Transaction 1 reads a row. Transaction 2 updates or deletes the row

and commits the change. If transaction 1 re-reads the row, it will retrieve different values, or

may not be able to re-read the row.

Phantom - Transaction 1 reads a set of rows using a select with a where clause. Transaction

2 inserts a row that satisfies the where clause. If transaction 1 repeats the select, it will read

a different set of rows.

These situations can be controlled by locking, which means that a transaction might have to wait

until another transaction completes, which limits concurrency (sometimes called pessimistic

concurrency), or by forcing a transaction to rollback if the situation occurs, which has less of an

impact on concurrency but may force work to be repeated (this is sometimes called optimistic

concurrency).

In READ UNCOMMITED mode, dirty reads, nonrepeatable reads and phantoms are all possible.

In READ COMMITED mode, dirty reads are not possible but nonrepeatable reads and phantoms are.

In REPEATABLE READ mode, dirty reads and nonrepeatable reads are not possible, but phantoms

are.

In SERIALIZABLE mode dirty reads, nonrepeatable reads and phantoms are all impossible.

Example:

5.2.39 SYNCPOINT

>>--EXEC SQL--SET TRANSACTION ISOLATION------------------->

 >-------.-READ UNCOMMITTED-.---------END-EXEC------------><
 +-READ COMMITTED---+
 +-REPEATABLE READ--+
 +-SERIALIZABLE-----+

• •

• •

• •

A driver might not support all the isolation levels defined by ODBC. If you set a mode that the

driver does not support, SQLCODE and SQLSTATE are set accordingly.

Note

EXEC SQL SET TRANSACTION ISOLATION READ UNCOMMITTED END-EXEC

5.2.39 SYNCPOINT

5.2.39 SYNCPOINT 144

Closes all open cursors that were not opened using the WITH HOLD clause, even if the application

has not appropriately closed them.

Syntax:

5.2.40 UPDATE (Positioned)

Updates the row most recently fetched by using a cursor.

Syntax:

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is not
required, and if omitted, the connection automatically switches to the connection associated with

>>---EXEC SQL---SYNCPOINT---END-EXEC---><

>>---EXEC SQL---.-----------------.--.------------.----->
 +--FOR :host_integer-+ +-AT db_name-+
 +------ ,-------+
 V |

>---UPDATE---table_name-----SET--column_expression----->

>--WHERE CURRENT OF--cursor_name---END-EXEC---><

5.2.40 UPDATE (Positioned)

5.2.40 UPDATE (Positioned) 145

the DECLARE CURSOR statement if different than the current connection, but only for the duration
of the statement. |

TABLE_NAME

The table to be updated.

COLUMN_EXPRESSION

A value for a particular column name. This value can be an expression or a null value.

CURSOR_NAME

A previously declared, opened, and fetched cursor.

Comments:

Do not use the FOR clause if the UPDATE is part of a DECLARE CURSOR statement.

After execution, SQLERRD(3) contains the number of elements processed. For UPDATE it is the

total number of rows updated.

ODBC supports positioned update, which updates the row most recently fetched by using a cursor,

in the Extended Syntax (it was in the core Syntax for ODBC 1.0 but was moved to the Extended

Syntax for ODBC 2.0). Not all drivers provide support for positioned update, although CitOESQL

sets ODBC cursor names to be the same as COBOL cursor names to facilitate positioned update

and delete.

With some ODBC drivers, the select statement used by the cursor must contain a FOR UPDATE

clause to enable positioned update.

The other form of UPDATE used in standard SQL statements is known as a searched update.

You cannot use host arrays with positioned update.

Example:

5.2.40 UPDATE (Positioned)

5.2.40 UPDATE (Positioned) 146

5.2.41 UPDATE (Searched)

Updates a table or view based on specified search conditions.

Syntax:

Parameters:

:HOST_INTEGER

A host variable that specifies the maximum number of host array elements processed. Must be
declared as PIC S9(4) COMP-5 or PIC S9(9) COMP-5.

AT DB_NAME

The name of a database that has been declared using DECLARE DATABASE. This clause is optional. If
omitted, the current connection executes the update. If provided, and the connection specified is

 EXEC SQL CONNECT TO 'srv1' USER 'sa' END-EXEC

 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT last_name, first_name
 FROM staff
 FOR UPDATE
 END-EXEC

 EXEC SQL
 OPEN C1
 END-EXEC

 PERFORM UNTIL SQLCODE NOT = ZERO

 EXEC SQL
 FETCH C1 INTO :fname,:lname
 END-EXEC

 IF SQLCODE = ZERO
 DISPLAY fname " " lname
 DISPLAY "Update?"
 ACCEPT reply
 IF reply = "y"
 DISPLAY "New last name?"
 ACCEPT lname
 EXEC SQL
 UPDATE staff
 SET last_name=:lname WHERE CURRENT OF c1
 END-EXEC
 DISPLAY "update sqlcode=" SQLCODE
 END-IF
 END-IF
 END-PERFORM

 EXEC SQL DISCONNECT ALL END-EXEC
 STOP RUN.

>>--EXEC SQL--.-------------------.---------------------->
 +-FOR :host_integer-+

 >-----.-------------.------UPDATE------.-table_name-.---->
 +-AT db_name--+ +-view_name--+

 +------ ,-------+
 V |
 >---SET--column_expression--.-------------------------.-->
 +-WHERE search_conditions-+

 >----END-EXEC---><

5.2.41 UPDATE (Searched)

5.2.41 UPDATE (Searched) 147

different than the current connection, the update is performed on the connection associated with
the DECLARE CURSOR statement.

TABLE_NAME

The table to be updated.

VIEW_NAME

The view to be updated.

COLUMN_EXPRESSION

A value for a particular column name. This value can be an expression or a null value.

SEARCH_CONDITIONS

Any valid expression that can follow the standard SQL WHERE clause.

Comments:

UPDATE is a standard SQL statement which is passed directly to the ODBC driver. See the

documentation supplied with your ODBC driver for the exact syntax.

If you do not specify a WHERE clause, all the rows in the named table are updated.

If one of the host variables used in the WHERE clause or SET clause is an array, they must all be

arrays.

After execution, SQLERRD(3) contains the number of elements processed. For UPDATE it is the

total number of rows updated.

Example:

5.2.42 WHENEVER

Specifies the default action after running an Embedded SQL statement when a specific condition is

met.

Syntax:

 EXEC SQL
 UPDATE staff
 SET first_name = 'Jonathan'
 WHERE staff_id = 1
 END-EXEC

 MOVE 'Phil' TO NewName
 MOVE 1 TO targetID

 EXEC SQL
 UPDATE staff
 SET first_name = :NewName
 WHERE staff_id = :targetID
 END-EXEC

5.2.42 WHENEVER

5.2.42 WHENEVER 148

Parameters:

CONTINUE

Causes the next sequential statement in the source program to run.

PERFORM LABEL

Identifies a paragraph or section of code to be performed when a certain error level is detected.

GOTO STMT_LABEL

Identifies the place in the program that takes control when a certain error level is detected. |

Comments:

The WHENEVER statement specifies the default action after running an Embedded SQL statement

on each of the following conditions: NOT FOUND, SQLERROR, SQLWARNING.

>>--EXEC SQL---WHENEVER---.-NOT FOUND--.----------------->
 +-SQLERROR---+
 +-SQLWARNING-+

 >--.-CONTINUE--------.----END-EXEC---><
 +-PERFORM label---+
 +-GOTO stmt_label-+

Condition Sqlcode

No error 0

NOT FOUND 100

SQLWARNING +1

5.2.42 WHENEVER

5.2.42 WHENEVER 149

The scope of a WHENEVER statement is related to the position of statements in the source

program, not in the run sequence. The default is CONTINUE for all three conditions.

Example:

The following example shows the WHENEVER statement in use:

``` EXEC SQL WHENEVER sqlerror PERFORM errormessage1 END-EXEC

errormessage1 SECTION. 

display "SQL DELETE error: " sqlcode 

EXIT. 

errormessage2 SECTION. 

display "SQL INSERT error: " sqlcode 

EXIT.

Condition Sqlcode

SQLERROR \<0 (negative)

 EXEC SQL
     DELETE FROM staff
     WHERE staff_id = 'hello'
 END-EXEC

 EXEC SQL
     DELETE FROM students
     WHERE student_id = 'hello'
 END-EXEC

 EXEC SQL WHENEVER sqlerror CONTINUE END-EXEC

 EXEC SQL
     INSERT INTO staff VALUES ('hello')
 END-EXEC

 DISPLAY 'Sql Code is: ' SQLCODE
 EXEC SQL WHENEVER sqlerror PERFORM errormessage2 END-EXEC

 EXEC SQL
     INSERT INTO staff VALUES ('hello again')
 END-EXEC

 STOP RUN.

5.2.42 WHENEVER

5.2.42 WHENEVER 150



5.3 CitOESQL Directives

Each SQL compiler directive option is used either at compile time, run time, or both. The behavior at

run time is described as one of the following:

Source file

When a source file specifies the directive, the value set in the source file is used. If a source file

does not specify the directive, then the process behavior is used.

Process

These directives affect connections. When the first-encountered EXEC SQL statement is executed,

usually an EXEC SQL CONNECT statement, the run-time system uses the directive settings for the

source file containing the statement. These settings apply for the remainder of the process

lifetime. The run-time behavior varies depending on the type of connection as follows:

ODBC with THREAD=ISOLATE - Each thread in the process uses its own set of global

directive settings

ODBC with THREAD=SHARE - One set of global directive settings applies for the entire

process

For additional information on the scope of each SQL compiler directive option, see its

corresponding CitOESQL directive below.

Process-based CitOESQL Directives:

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 151



ALLOWNULLCHAR

ANSI92ENTRY

AUTOCOMMIT

CHECKDUPCURSOR

CHECKSINGLETON

CLOSE_ON_COMMIT

CLOSE_ON_ROLLBACK

CONNECTIONPOOL

CURSORCASE

DECDEL

ISOLATION

NIST

ODBCTRACE

ODBCV3

PARAMARRAY • PREFETCH

RESULTARRAY

STMTCACHE

TARGETDB

THREAD

TRACELEVEL

USECURLIB

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Directive Description

ALLOWNULLCHAR Allows programs to use PIC X(n) host variables, and to

select/insert/update the null character (x00) into CHAR

columns without changing source to use SQL TYPE BINARY

host variables

ALLOWSERVERSELECT Passes unrecognized EXEC SQL SELECT statements through

to the server, thus enabling server-specific behavior.

ANSI92ENTRY If this is set, CitOESQL conforms to the SQL ANSI'92 entry

level standard.

AUTOCOMMIT Regulates an SQL connection's autcommit attribute.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 152



Directive Description

AUTOFETCH Sets the AUTOFETCH attribute on SELECT statements that

are run on Microsoft SQL Server data sources. Compiling

with this directive can help the performance of your

application. This directive works only if the program is also

compiled with directive SQL(TARGETDB=MSSQLSERVER). It

also serves as a primitive directive for the BEHAVIOR

directive option.

BEHAVIOR Instructs CitOESQL to properly match your COBOL cursors

with the database you are using, thus maximizing database

cursor performance. BEHAVIOR makes use of multiple

primitive directives and associates a default value for each

primitive directive depending on the target DBMS. You can

also override the default setting of any primitive directive.

CHECK Sends each SQL statement to the database at compilation

time.

CHECKDUPCURSOR Instructs CitOESQL to determine if the cursor has been

opened twice, and if so takes action accordingly.

CHECKSINGLETON Instructs CitOESQL to check if singleton SELECTs return

more than one row when executed.

CLOSE_ON_COMMIT Specifies whether to close cursors not defined WITH HOLD

or leave them open for further fetches after a COMMIT.

CLOSE_ON_ROLLBACK Specifies whether to close cursors or leave them open for

further fetches after a ROLLBACK.

CONNECTIONPOOL Enables use of ODBC 3.0 connection pooling. When a

connection is closed, the Driver Manager actually keeps it

alive for a timeout period, and saves the overhead of re-

establishing a connection from scratch if the application re-

opens an identical connection. ODBC allows you to choose

between having a pooling for an ODBC environment or for

each driver. See your ODBC documentation for details.

CURSORCASE If ESQLVERSION is 2.0, CURSORCASE is implied.

NOCURSORCASE means that cursor names are not case

sensitive. CURSORCASE means that they are case sensitive.

DATE Specifies the explicit date format to use when date values

are returned from database date columns into character

output host variables.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 153



Directive Description

DATEDELIM Specifies a single character as the delimiter between the

year, month, and day components to override the default

delimiter determined by the DATE directive specification, or

implicitly based on default ISO 8601 format ( yyyy-mm-dd ).

DB Identifies a data source that defines database connection

information.

DBMAN Specifies the preprocessor to use. This directive is not

required when compiling programs with CitOESQL.

DECDEL Specifies the decimal delimiter to use for decimal variables.

DESCRIBEDTCHAR When using dynamic SQL, described or prepared SQL

statements with DATE, TIME, and DATETIME columns are

suitable for PIC X(n) character host variables or DATE, TIME,

and TIMESTAMP SQL TYPEs.

DESCRIBEDTREC When using dynamic SQL, described or prepared SQL

statements with DATE, TIME, and DATETIME, columns are

suitable for the DATE, TIME, and TIMESTAMP-RECORD SQL

TYPEs in ODBC format record structures.

DESCRIBEVARCHAR49 When using dynamic SQL, described or prepared SQL

statements with VARCHAR, columns are suitable for

VARCHAR host variables with level 49 sub-fields for length

and data.

DESCRIBEVARCHARPICX When using dynamic SQL, described or prepared SQL

statements with VARCHAR, columns are suitable for PIC X

host variables.

DETECTDATE Allows datetime values for PIC X character input host

variables in an CitOESQL application to be in different

formats than the standard ISO 8601 formats.

ERRORMAP Specifies the name of the error map file to use, and enables

SQL error mapping.

IGNORESCHEMAERRORS Suppresses compile-time errors resulting from missing

schema objects.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 154



Directive Description

INIT When set without parameters, the preprocessor

automatically generates code to make the connection to the

database. When set with the PROT parameter, protects the

database when an application terminates abnormally.

ISOLATION This directive specifies the isolation level that CitOESQL uses

as a connection attribute. It also serves as a primitive

directive for the BEHAVIOR directive option.

NIST Sets CitOESQL to conform to the NIST interpretation of the

SQL ANSI 92 entry level standard.

ODBCTRACE ODBCTRACE=USER enables you to control ODBC tracing via

odbc.ini from which you can specify the file that the trace

goes into.

ODBCV3 This directive causes an application to register itself as an

ODBC Version 3 application.

ODBCVER This directive causes an application to register itself as an

ODBC Version 2, 3.x or 3.8 application.

OPTIMIZECURSORS Optimizes memory consumption when using Oracle,

PostgreSQL, DB2, or SQL Server JDBC providers. Also

applies the same data integrity rules on all databases for

embedded SQL cursors that use WITH HOLD and FOR

UPDATE clauses for both DBMAN=ODBC and DBMAN=JDBC.

PARAMARRAY If PARAMARRAY is set, ODBC array binding is used, if it is

supported by the ODBC driver, for all input parameters.

PASS The login to use to connect to the data source. This option

works in conjunction with the INIT and/or CHECK options.

PICXBINARY Enables programs to use PIC X(n) host variables to receive

data from BINARY, VARBINARY, LONGVARBINARY columns

in binary format without changing source to use SQL TYPE

BINARY host variables.

PICXBINDING Specifies the handling of fixed-length PIC X(n) host variables.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 155



Directive Description

PREFETCH An application can use this directive to request that

CitOESQL use block fetches for cursors. This can provide

performance benefits, similar to array fetching, without

having to change program logic. The performance benefit

depends on the value of n and on whether the ODBC driver in

use is already configured to use prefetching.

QUALFIX Causes the CitOESQL preprocessor to append three

characters to the name of the host variables when declaring

them to SQL. This ensures problems caused by qualification

(where two or more host variables have identical names

when not qualified) are avoided but has the sideeffect that

SQL error messages sometimes display the names of host

variables with the three additional characters appended to

them.

RESULTARRAY If RESULTARRAY is set, ODBC array binding is used, if it is

supported by the ODBC driver, for all output parameters.

SAVE-RETURN-CODE Specifies whether or not to save and then restore RETURN-

CODE.

STMTCACHE The number of prepared SQL statements CitOESQL can

cache such that the statements never again require

preparation during a program run, thus improving

performance.

TARGETDB Set this directive if you want to optimize performance for a

specific data source.

THREAD Specifies the handling of threads with regard to connections.

TIME Specifies an explicit time format to use when time values are

returned from database time columns into character output

host variables.

TIMEDELIM Specifies a single character as the delimiter between the

hour, minute, and second components to override the default

delimiter determined by the TIME directive specification, or

implicitly based on default ISO 8601 format ( hh:mm:ss ).

TRACELEVEL Produces a statistical analysis of application behavior by

tracing certain operations in native applications. The report

produced by this directive provides better readability and is

inherently more useful than a traditional ODBC trace.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 156



Directive Description

TRANSACTION This directive provides CitOESQL with specifications for

managing runtime transactions and, in some cases, enabling

compile-time checking.

TSTAMPSEP Specifies a single character to use as the separator between

the date and time parts when datetime values are returned

from database datetime columns into character output host

variables.

5.3 CitOESQL Directives

5.3 CitOESQL Directives 157



ALLOWNULLCHAR

Allows programs to use PIC X(n) host variables, and to select/insert/update the null character

(x00) into CHAR columns without changing source to use SQL TYPE BINARY host variables.

Syntax:

[NO]ALLOWNULLCHAR

Properties:

Default: NOALLOWNULLCHAR

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

With ALLOWNULLCHAR, CitOESQL does not truncate the contents of the input host variable

when the first embedded NULL character is encountered.

With NOALLOWNULLCHAR, however, the database is presented a truncated value, including

all characters up to the first embedded NULL.

PostgreSQL does not support the embedding of the NULL character into CHAR columns;

therefore, ALLOWNULLCHAR is not supported in PostgreSQL CitOESQL applications.

ALLOWSERVERSELECT

Directive Description

WHERECURRENT Allows PostgreSQL and MySQL to accept updateable

SELECT and CURSOR statements when no positioned

UPDATEs or DELETEs are required.

Use ALLOWNULLCHAR with legacy code only, for example, code that uses FOR BIT DATA

columns where the cost of converting to BINARY columns in the database and SQL TYPE IS

BINARY host variables is prohibitive. Storing binary data in character columns is not a best

practice and should be avoided wherever possible.

Important

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 158



Passes unrecognized EXEC SQL SELECT statements through to the server, thus enabling

serverspecific behavior.

Syntax:

[NO]ALLOWSERVERSELECT

Properties:

Default: NOALLOWSERVERSELECT

Scope:

Used at compile time: No

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

NOALLOWSERVERSELECT gives an error when CitOESQL does not recognize an EXEC SQL

SELECT statement.

When ALLOWSERVERSELECT is set, CitOESQL simply passes unrecognized EXEC SQL

SELECT statements through to the server, thus enabling server-specific behavior.

ANSI92ENTRY

If this is set, CitOESQL conforms to the SQL ANSI'92 entry level standard.

Syntax:

[NO]ANSI92ENTRY

Properties:

Default: NOANS192ENTRY

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 159



When ANSI92ENTRY is not specified or NOANSI92ENTRY is specified, CitOESQL does not

set any error or warning conditions.

When ANSI92ENTRY is specified and neither CHECKSINGLETON nor NOCHECKSINGLETON

is specified (default), CitOESQL returns:

SQLCODE = -1 SQLSTATE = 21000 SQLWARN4 = W

In conformance with the ANSI-92 standard, CitOESQL does the following when ANSI92ENTRY is

specified:

Sets the isolation level to serializable.

Closes non-HOLD cursors at the end of a transaction.

When an EXEC SQL FETCH statement is executed on an unopened cursor, returns SQLSTATE

24000. If ODBCV3 is also set, returns SQLSTATE 07005.

When an EXEC SQL FETCH statement returns a null value but no indicator host variable has

been supplied, returns SQLCODE -19425.

When an EXEC SQL OPEN statement is executed on an opened cursor, returns SQLCODE

19516 and SQLSTATE 07005.

AUTOCOMMIT

Regulates an SQL connection's autcommit attribute.

Syntax:

[NO]AUTOCOMMIT

Properties:

Default: NOAUTOCOMMIT

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

• • 

• • 

• • 

• 

• 

• 

• 

• 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 160



Because NOAUTOCOMMIT is used by default, CitOESQL default behavior explicitly turns off

the SQL connection's autocommit attribute regardless of how the connection was created.

For CitOESQL connections, NOAUTOCOMMIT allows your application to control local

transactions with normal COMMIT and ROLLBACK statements.

When AUTOCOMMIT is specified explicitly, the SQL connection's autocommit attribute is not

altered, whether the connection was created by CitOESQL or by some other means. The

result for CitOESQL connections is that AUTOCOMMIT commits every SQL statement in

your application, operating in "autocommit mode." With external connections, the

autocommit attribute is not modified, so your application continues to participate in the

transaction managed externally.

The SET AUTOCOMMIT embedded SQL statement overrides the AUTOCOMMIT compiler

directive option.

An application can programmatically control the autocommit setting for a connection by

executing the EXEC SQL SET AUTOCOMMIT statement.

An application in autocommit mode can start a local database transaction with the EXEC

SQL BEGIN TRANSACTION statement. The transaction ends when the next COMMIT or

ROLLBACK statement is executed.

When a transaction ends, if the connection's autocommit attribute is on, the connection

reverts to autocommit mode; otherwise a new local database transaction is started

automatically.

AUTOFETCH

Sets the AUTOFETCH attribute on SELECT statements. Compiling with this directive can help the

performance of your application. It also serves as a primitive directive for the BEHAVIOR directive

option.

Syntax:

[NO]AUTOFETCH

Properties:

Default: NOAUTOFETCH

• • 

• • 

• • 

• • 

• • 

• • 

• • 

Errors on a cursor OPEN are deferred until the subsequent FETCH when AUTOFETCH is

enabled.

BEHAVIOR=OPTIMIZED enables AUTOFETCH

Errors on a cursor OPEN are deferred until the subsequent FETCH when AUTOFETCH is

enabled.

Note

• 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 161



Scope:

Used at compile time: No

Behavior at run time: Source file

See CitOESQL Directives for more information.

BEHAVIOR

Instructs CitOESQL to properly match your COBOL cursors with the database you are using, thus

maximizing database cursor performance. BEHAVIOR makes use of multiple primitive directives

and associates a default value for each primitive directive depending on the target DBMS. You can

also override the default setting of any primitive directive.

Syntax:

BEHAVIOR={OPTIMIZED \ UNOPTIMIZED \ ANSI \ MAINFRAME } [*primitivedirective* 

[*value*]]...

Parameters:

OPTIMIZED - Enables CitOESQL to optimize ambiguous cursor declarations; enhances the

access speed 

UNOPTIMIZED - Provides backward compatibility with earlier Micro Focus products, where

ambiguous cursors are both updateable and scrollable 

ANSI - Enables CitOESQL to work like the ANSI standard; enhances the access speed 

MAINFRAME - Synonym for OPTIMIZED 

primitivedirective - Optional directives that enable the fine-tuning of BEHAVIOR

Properties:

Default: BEHAVIOR=OPTIMIZED

Scope:

• • 

• • 

If you don't specify any BEHAVIOR primitive directives, and you also accept the default

primitive directive values listed in the relevant table in the Default Primitive Directives

section later in this topic, the TARGETDB directive is not required; however, you must

specify TARGETDB if you want to use different default values for any primitive directive.

Setting the BEHAVIOR directive can also affect the SQL types returned when using Dynamic

SQL. See the DESCRIBE topic for more information.

Note

• 

• 

• 

• 

• 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 162



Used at compile time: Yes

Behavior at run time: N/A

See CitOESQL Directives for more information.

Default Primitive Directives:

Table 1. Default Behavior Primitive Table for SQL Server

Table 2. Default Behavior Primitive Table for SQL Server

• • 

• • 

BEHAVIOR = Primitive Default

Values

OPTIMIZED,

MAINFRAME

ANSI

AUTOFETCH ON OFF

DEF_CURSOR RO UPD

RO_CURSOR FORWARD or IC_FH FORWARD or

IC_FH

PF_RO_CURSOR 1 1

IC_FH_ISOLATION UR UR

UPD_CURSOR DYNAMIC DYNAMIC

PF_UPD_CURSOR 8 8

UPD_CONCURRENCY LOCK LOCK

ISOLATION CR CR

BEHAVIOR = Primitive Default Values OPTIMIZED, MAINFRAME ANSI

AUTOFETCH ON OFF

DEF_CURSOR RO UPD

RO_CURSOR FORWARD FORWARD

PF_RO_CURSOR 8 8

UPD_CURSOR KEYSET KEYSET

PF_UPD_CURSOR 8 8

UPD_CONCURRENCY LOCK LOCK

ISOLATION CR CR

5.3 CitOESQL Directives

5.3 CitOESQL Directives 163



You can fine tune the BEHAVIOR directive and override these default settings by providing alternate

values for primitive directives. If you do this, you must set the TARGETDB directive.

Comments:

Setting this directive can also affect the SQL types returned when using Dynamic SQL. See the 

DESCRIBE Statement topic for more information.

OpenESQL sets default values for primitive directives depending on the value of BEHAVIOR

and your target database. See the topic Primitive Directives for more information.

Primitive Directives

These directives work only with when you have your target database set and you have specified the

BEHAVIOR directive as well. Specify them only when you want to override the default settings for

BEHAVIOR. For example:

SQL(TARGETDB=INFORMIX BEHAVIOR=OPTIMIZED DEF_CURSOR=UPD)

BEHAVIOR = Primitive Default Values OPTIMIZED, MAINFRAME ANSI

AUTOFETCH ON OFF

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 164



DEF_CURSOR

This cursor directive specifies the default cursor type for ambiguous COBOL cursors, either

read only or updateable. Use this directive when the DECLARE CURSOR statement has

neither the FOR READONLY nor the FOR UPDATE OF clause.

IC_FH_ISOLATION

This directive sets the transaction isolation for independent firehose cursor connections,

enabling simultaneous access to firehose cursors.

PF_RO_CURSOR

This is a prefetch directive that enables you to retrieve more than one read only record at a

time from the DBMS with one client request.

PF_UPD_CURSOR

This is a prefetch directive that enables you to retrieve more than one updateable record at a

time from the DBMS with one client request.

RO_CURSOR

This directive determines what type of database cursor your COBOL read-only cursors use.

UPD_CONCURRENCY

This directive enables you to choose the level of concurrency for updateable COBOL

cursors.

UPD_CURSOR

This directive determines what type of database cursor updateable COBOL cursors use.

DEF_CURSOR

This cursor directive specifies the default cursor type for ambiguous COBOL cursors, either read

only or updateable. Use this directive when the DECLARE CURSOR statement has neither the FOR

READONLY nor the FOR UPDATE OF clause.

Syntax:

DEF_CURSOR={RO \ UPD}

Parameters:

RO Read Only

UPD Updateable

Scope:

Used at compile time: No

Behavior at run time: Source File

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 165



See CitOESQL Directives for more information.

Comments:

While the default when BEHAVIOR=ANSI is DEF_CURSOR=UPD, if the original developer assumed

RO, then use of UPD could adversely affect performance.

IC_FH_ISOLATION

This directive sets the transaction isolation for independent firehose cursor connections, enabling

simultaneous access to firehose cursors.

Syntax:

IC_FH_ISOLATION={UR \ CR \ RR \ SZ}

Parameters:

UR Uncommitted Read 

CR Committed Read 

RR Repeatable Read 

SZ Serializable isolation in ODBC 

Scope

Used at compile time: No

Behavior at run time: Source File

See CitOESQL Directives for more information.

PF_RO_CURSOR

This is a prefetch directive that enables you to retrieve more than one read only record at a time

from the DBMS with one client request.

Syntax:

PF_RO_CURSOR={*numberofrows* \ *buffersize*K \ *buffersize*B}

Properties:

Default for SQL Server connections: 8

Parameters:

• 

• 

• 

• 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 166



numberofrows - The number of rows to retrieve

buffersizeK - The size of the buffer you want to fill in kilobytes

buffersizeB - The size of the buffer you want to fill in bytes

Scope:

Used at compile time: No

Behavior at run time: Source File 

See CitOESQL Directives for more information.

Comments:

PF_RO_CURSOR must be set after TARGETDB and BEHAVIOR

Does not work with FORWARD or IC_FH selection in RO_CURSOR

SQL Server read-only server cursors now use PF_RO_CURSOR consistently across all runtimes

PF_UPD_CURSOR

This is a prefetch directive that enables you to retrieve more than one updateable record at a time

from the DBMS with one client request.

Syntax:

PF_UPD_CURSOR={*numberofrows* \ *buffersize*K \ *buffersize*B}

Parameters:

numberofrows - The number of rows to retrieve

buffersizeK - The size of the buffer you want to fill in kilobytes buffersizeB The size of the buffer you

want to fill in bytes

Scope:

Used at compile time: No

Behavior at run time: Source File 

See CitOESQL Directives for more information.

Comments:

PF_UPD_CURSOR must be set after TARGETDB and BEHAVIOR

Does not work with FORWARD selection in RO_CURSOR

RO_CURSOR

• • 

• • 

• • 

• • 

• • 

• 

• 

• 

• • 

• • 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 167



This directive determines what type of database cursor your COBOL read-only cursors use.

Syntax:

RO_CURSOR={SCROLL \ FORWARD \ DYNAMIC \ KEYSET \ STATIC \ FF \ IC_FH}

Parameters:

FF - Fast Forward

IC_FH - Independent Connection Fire Hose

Scope:

Used at compile time: No

Behavior at run time: Source File 

See CitOESQL Directives for more information.

Comments:

SCROLL, FORWARD, DYNAMIC, and KEYSET are standard ODBC types.

FF and IC_FH are cursors specific to MS SQL Server.

Under MS SQL Server, prefetching does not work with FORWARD and IC_FH.

As its name indicates, an IC_FH cursor has its own independent connection to MS SQL Server.

Because of this, these cursors are sensitive to the isolation level and locking protocol of

previous data access in the application program.

When using a SQL Server connection that supports MARS, MARS is automatically enabled and

IC_FH is converted to FORWARD.

UPD_CONCURRENCY

This directive enables you to choose the level of concurrency for updateable COBOL cursors.

Syntax:

UPD_CONCURRENCY={LOCK \ OPTIMISTIC \ OPTCC \ OPTCCVAL}

Scope:

Used at compile time: No

Behavior at run time: Source File 

See CitOESQL Directives for more information.

Comments:

• 

• 

• • 

• • 

• 

• 

• 

• 

• 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 168



LOCK, OPTIMISTIC, OPTCC, and OPTCCVAL are standard ODBC types.

UPD_CURSOR

This directive determines what type of database cursor updateable COBOL cursors use.

Syntax:

UPD_CURSOR={SCROLL \ FORWARD \ DYNAMIC \ KEYSET \ STATIC}

Scope:

Used at compile time: No

Behavior at run time: Source File 

See CitOESQL Directives for more information.

Comments:

SCROLL, FORWARD, DYNAMIC, KEYSET, and STATIC are standard ODBC types.

Prefetching does not work with FORWARD.

CHECK

Sends each SQL statement to the database at compilation time.

Syntax:

[NO]CHECK

Properties:

Default NOCHECK

Dependencies:

CHECK requires that you also:

Set the DB compiler directive option or identify the database using the DB2DBDFT

environment variable.

If the connection to the database specified requires authentication, then the PASS compiler

directive option is also required.

When using SQL(CHECK) with an ODBC connection to Oracle, you must have at least the same

user privileges as are required to execute the SQL statements in the program.

Scope:

• • 

• • 

• 

• 

• 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 169



Used at compile time: Yes

Behavior at run time: N/A

See CitOESQL Directives for more information.

Comments:

Depending on your driver and/or DBMS and in certain circumstances, CHECK does not flag

invalid SQL statements.

You can specify the [NOCHECK], [ALSO CHECK], or [WITH CHECK] statement prefix to affect

specific SQL statements. See SQL Statement Prefixes for CHECK Directive for complete

information.

CHECKDUPCURSOR

Instructs CitOESQL to determine if the cursor has been opened twice, and if so takes action

accordingly.

Syntax:

[NO]CHECKDUPCURSOR

Properties:

Default NOCHECKDUPCURSOR

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

If the cursor has been opened twice and the NOANSI92ENTRY directive has also been

specified, CHECKDUPCURSOR returns SQLCODE -516 and sets SQLSTATE=24000.

If the cursor has been opened twice and ANSI92ENTRY has not been specified,

NOCHECKDUPCURSOR automatically closes the cursor and then re-opens it.

CHECKSINGLETON

Instructs CitOESQL to check if singleton SELECTs return more than one row when executed.

Syntax:

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 170



[NO]CHECKSINGLETON

Properties:

Default None

Returns:

*When ANSI92ENTRY is specified without CHECKSINGLETON or NOCHECKSINGLETON (default),

SQLCODE returns -1 and SQLSTATE returns 21000. See ANSI92ENTRY for additional details.

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

CHECKSINGLETON is provided for DB2 compatibility.

NOCHECKSINGLETON is provided for applications that require SQLCODE 0.

For applications that require SQLCODE -1, specify ANSI92ENTRY without CHECKSINGLETON

or NOCHECKSINGLETON.

CitOESQL returns the following SQLDA diagnostics when a singleton SELECT returns more than

one row:

DirectiveSQL CODE returnsSQLSTATE returns

None (default)* +1 21000

CHECKSINGLETON -811 21000

NOCHECKSINGLETON 0 21000

• • 

• • 

• 

• 

• 

SQLCODES QLSTATESQLWARN4 Flag

-811 21000 W

0 21000 space

+1 21000 W

5.3 CitOESQL Directives

5.3 CitOESQL Directives 171



CLOSE_ON_COMMIT

Specifies whether to close cursors not defined WITH HOLD or leave them open for further fetches

after a COMMIT.

Syntax:

CLOSE_ON_COMMIT={YES \ NO}

Parameters:

YES - Close cursors on COMMIT

NO - Leave cursors open on COMMIT

Properties:

Default YES

Scope:

Used at compile time: Yes

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

By default, meaning CLOSE_ON_COMMIT is not specified or CLOSE_ON_COMMIT=YES is specified,

all cursors not declared WITH HOLD are closed after a COMMIT. CLOSE_ON_COMMIT works with

the BEHAVIOR directive as follows:

BEHAVIOR=UNOPTIMIZED*

CLOSE_ON_COMMIT is ignored. Cursor selection is least optimal. Cursor remains open after

COMMIT.

BEHAVIOR=OPTIMIZED or ANSI, CLOSE_ON_COMMIT=YES (default) Cursor selection is

optimal. 

Cursor is closed after COMMIT.

BEHAVIOR=OPTIMIZED or ANSI, CLOSE_ON_COMMIT=NO

Cursor selection is optimal. Cursor remains open after COMMIT.

CLOSE_ON_ROLLBACK

SQLCODES QLSTATESQLWARN4 Flag

-1 21000 W

• 

• 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 172



Specifies whether to close cursors or leave them open for further fetches after a ROLLBACK.

Syntax:

CLOSE_ON_ROLLBACK={YES \ NO}

Parameters:

YES - Close cursors on ROLLBACK

NO - Leave cursors open on ROLLBACK

Properties:

Default YES

Scope:

Used at compile time: Yes

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

By default, meaning CLOSE_ON_ROLLBACK is not specified or CLOSE_ON_ROLLBACK=YES is

specified, all cursors are closed after a ROLLBACK.

CLOSE_ON_ROLLBACK works with the BEHAVIOR directive as follows:

BEHAVIOR=UNOPTIMIZED

CLOSE_ON_ROLLBACK is ignored. Cursor selection is least optimal. Cursor remains open

after ROLLBACK.

BEHAVIOR=OPTIMIZED or ANSI, CLOSE_ON_ROLLBACK=YES (default)

Cursor selection is optimal. Cursor is closed after ROLLBACK.

BEHAVIOR=OPTIMIZED or ANSI, CLOSE_ON_COMMIT=NO

Cursor selection is optimal. Cursor remains open after ROLLBACK.

CONNECTIONPOOL

Enables use of ODBC 3.0 connection pooling. When a connection is closed, the Driver Manager

keeps it alive for a timeout period and saves the overhead of re-establishing a connection from

scratch if the application re-opens an identical connection. ODBC allows you to choose between

having a pooling for an ODBC environment or for each driver. See your ODBC documentation for

details.

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 173



This option is only useful for applications that frequently open and close connections. Note that

some environments, such as Microsoft Transaction Server (MTS), control connection pooling

themselves. This option will probably improve the performance of ISAPI applications that are not

running under MTS.

Syntax:

CONNECTIONPOOL={DRIVER \ ENVIRONMENT \ NONE}

Properties:

Default CONNECTIONPOOL=NONE.

Scope:

Used at compile time: No

Behavior at run time: Process

CURSORCASE

NOCURSORCASE means that cursor names are not case sensitive. CURSORCASE means that they

are case sensitive.

Syntax:

[NO]CURSORCASE

Properties:

Default NOCURSORCASE

Scope:

Used at compile time: No

Behavior at run time: Process

DATE

Specifies the explicit date format to use when date values are returned from database date

columns into character output host variables.

When used in addition to DETECTDATE, also specifies the explicit data format to recognize in

character input host variables.

Syntax:

DATE={ODBC \ ISO \ USA \ EUR \ JIS}

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 174



Parameters:

ODBC - yyyy-mm-dd (ISO 8601 default format)

ISO - yyyy-mm-dd (mainframe default format)

USA - mm/dd/yyyy

EUR - dd.mm.yyyy

JIS - yyyy-mm-dd

Properties:

Default ODBC (ISO 8601 default format)

Dependencies:

For input host parameters, requires that the DETECTDATE SQL compiler directive option is also set.

Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

DATE can be used with the DATEDELIM directive to specify an alternative delimiter that separates

day, month, and year components.

DATE, with or without DATEDELIM, changes the display format of output host variables as

specified.

When you specify both DATE and DETECTDATE, CitOESQL uses DATE (with or without DATEDELIM)

to also recognize date values in your input host variables. See DETECTDATE for more information.

DATEDELIM

• • 

• • 

• • 

• • 

• • 

• • 

• • 

If you do not specify an alternative format using DATE, CitOESQL returns your date columns

using the ISO 8601 default format in your output character host variables, as specified in the 

Properties section of this topic. The same is also true of input character host variables when

DETECTDATE is specified in addition to DATE.

Important

5.3 CitOESQL Directives

5.3 CitOESQL Directives 175



Specifies a single character as the delimiter between the year, month, and day components to

override the default delimiter determined by the DATE directive specification, or implicitly based on

default ISO 8601 format (yyyy-mm-dd).

The specified delimiter is used in character output host variables and, if DETECTDATE is also

specified, in character input host variables.

Syntax:

DATEDELIM=*character*

Properties:

Default None

Dependencies:

None; however, DATEDELIM can be used with DATE to specify an alternative delimiter. See DATE for

details.

Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

DATEDELIM set without DATE overrides the default ISO 8601 delimiter, a dash (-) character,

for date values.

DATEDELIM set with DATE overrides the default delimiter for the specified DATE parameter.

For example, the default delimiter for DATE=USA is a forward slash character (/).

See the DATE and DETECTDATE sections along with the CitOESQL Datetime Data Types Handling

section in the CitOESQL User Guide for more information.

DB

Identifies a data source that defines database connection information.

Syntax:

DB=connection

NODB

Parameter:

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 176



connection

The value for this parameter varies depending on the run time system:

ODBC Run-time - An ODBC DSN

JVM Managed Run-time - The name of a JNDI DataSource object 

Properties:

Default NODB 

Dependencies:

At compile time, DB is required when you set SQL(CHECK). At run time, DB is required when you set

SQL(INIT).

Scope:

Used at compile time: Yes

Behavior at run time: Source file See CitOESQL Directives for more information.

Comments:

The .int file generated is the same except for the TARGETDB number embedded in the file.

DBMAN

Specifies the preprocessor to use. This directive is not required when compiling programs with

CitOESQL.

Syntax:

DBMAN={ODBC}

Parameters:

ODBC For native code

Properties:

Default DBMAN=ODBC for native applications

Scope:

Used at compile time: Yes

Behavior at run time: Process

DECDEL

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 177



Specifies the decimal delimiter to use for decimal variables.

Syntax:

DATE={ODBC \ ISO \ USA \ EUR \ JIS}

Parameters:

PERIOD - Always use a period (.) as a decimal delimiter.

COMMA - Always use a comma (,) as a decimal delimiter.

LOCAL - Call GetLocaleInfo one time to get the decimal delimiter.

NODECDEL - Call GetLocaleInfo every time a decimal variable is referenced. Use this when

your application dynamically changes its effective locale at run time.

Properties: Default - LOCAL 

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

DESCRIBEDTCHAR

When using dynamic SQL, described or prepared SQL statements with DATE, TIME, and DATETIME

columns are suitable for PIC X(n) character host variables or DATE, TIME, and TIMESTAMP SQL

TYPEs.

Syntax:

DESCRIBEDTCHAR

Properties:

Default None

Dependencies:

BEHAVIOR=OPTIMIZED automatically sets DESCRIBEDTCHAR.

Scope:

Used at compile time: Yes

Behavior at run time: Source file 

See CitOESQL Directives for more information.

• 

• 

• 

• 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 178



Comments:

For dynamic SQL, by default, CitOESQL expects DATE, TIME and TIMESTAMP columns to be placed

into host variables of DATE, TIME, and TIMESTAMP-RECORD SQL TYPEs in ODBC format record

structures.

When BEHAVIOR=OPTIMIZED or DESCRIBEDTCHAR is set, CitOESQL expects DATE, TIME, and

DATETIME columns to be placed into PIC X(n) character host variables or DATE, TIME, and

TIMESTAMP SQL TYPEs.

DESCRIBEDTREC

When using dynamic SQL, described or prepared SQL statements with DATE, TIME, and DATETIME,

columns are suitable for the DATE, TIME, and TIMESTAMP-RECORD SQL TYPEs in ODBC format

record structures.

Syntax:

DESCRIBEDTREC

Properties:

Default DESCRIBEDTREC

Scope:

Used at compile time: Yes

Behavior at run time: Source file 

See CitOESQL Directives for more information.

Comments:

For dynamic SQL, by default, CitOESQL expects DATE, TIME and TIMESTAMP columns to be placed

into host variables of DATE, TIME, and TIMESTAMP-RECORD SQL TYPEs in ODBC format record

structures.

Use DESCRIBEDTREC to override BEHAVIOR=OPTIMIZED set by DESCRIBEDTCHAR.

DESCRIBEVARCHAR49

When using dynamic SQL, described or prepared SQL statements with VARCHAR, columns are

suitable for VARCHAR host variables with level 49 sub-fields for length and data.

Syntax:

DESCRIBEVARCHAR49

Properties:

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 179



Default None

Scope:

Used at compile time: Yes

Behavior at run time: Source file 

See CitOESQL Directives for more information.

Comments:

For dynamic SQL, by default, CitOESQL expects VARCHAR columns to be placed into PIC X host

variables.

Use DESCRIBEVARCHAR49 to enable the use of VARCHAR host variables with level 49 sub-fields

for length and data.

DESCRIBEVARCHARPICX

When using dynamic SQL, described or prepared SQL statements with VARCHAR, columns are

suitable for PIC X host variables.

Syntax:

DESCRIBEVARCHARPICX

Properties:

Default DESCRIBEVARCHARPICX

Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

For dynamic SQL, by default, CitOESQL expects VARCHAR columns to be placed into PIC X host

variables.

DETECTDATE

Allows datetime values for PIC X character input host variables in an CitOESQL application to be in

different formats than the standard ISO 8601 formats.

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 180



DETECTDATE enables you to specify alternative formats for input host variables. CitOESQL

manages the translation between the format specified by DETECTDATE and the format recognized

by your DBMS. This is done for each SQL call on both input and output.

For example, instead of the standard ISO formats, you might prefer to use EUR formats for date

and time data.

Syntax:

[NO]DETECTDATE

DETECTDATE={CLIENT \ SQLTYPE \ SERVER \ PICX}

Parameters:

Use DETECTDATE with extreme caution and only when absolutely necessary. Before using

DETECTDATE, carefully review all options specified here, all of the information presented in the 

CitOESQL Datetime Data Types Handling section in the CitOESQL User Guide, and the informain

the DATE, DATEDELIM, TIME, and TIMEDELIM topics to help you determine the best fit for your

application.

Important

5.3 CitOESQL Directives

5.3 CitOESQL Directives 181



CLIENT

Applies to DBMAN=ODBC only.

Input Host Variables

For PIC X character input host variables, CitOESQL recognizes specified datetime formats

and translates the data into the ISO 8601 format acceptable to your DBMS. Specified

datetime formats for input host variables are:

Date

ISO 8601 default, can be overridden by specifying the DATE directive and/or the DATEDELIM

directive.

Time

ISO 8601 default, can be overridden by specifying the TIME directive and/or the TIMEDELIM

directive.

Datetime

ISO 8601 default, can be overridden by specifying the TSTAMPSEP directive.

The dash character instructs CitOESQL to look for a specific set of delimiters, including a

dash, a space, and a T. For example if you do not specify any alternative date or time

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 182



formats, and you set TSTAMPSEP to a dash character (-), CitOESQL recognizes the

following formats in your input host variables:

yyyy-mm-dd-hh.mm.ss.ffffff

yyyy-mm-dd hh.mm.ss.ffffff

yyyy-mm-dd hh:mm:ss.ffffff

yyyy-mm-ddThh.mm.ss.ffffff

yyyy-mm-ddThh:mm:ss.ffffff

All other characters instruct CitOESQL to search for that specific character between each

date and time format, where the date portion is delimited by a dash character (-) and the

time portion is delimited by a colon (:).

Output Host Variables*

For PIC X output character host variables, CitOESQL returns the data for output host

variables in the following datetime formats:

Date

ISO 8601 default, can be overridden by specifying the DATE directive and/or the

DATEDELIM directive.

Time

ISO 8601 default, can be overridden by specifying the TIME directive and/or the

TIMEDELIM directive.

Timestamp

ISO 8601 default, can be overridden by specifying the TSTAMPSEP directive. When

TSTAMPSEP is set to a dash (-) character (TSTAMPSEP="-"), CitOESQL returns datetime

columns in the following format: yyyy-mm-dd-hh.mm.ss.ffffff

SERVER

Applies to DBMAN=ODBC only.

Issues SQLDescribeParam calls to the DBMS to identify which input and output host

variables are associated with specific character or datetime columns in the database. Host

variables associated with datetime columns are translated with the datetime formats listed

in CLIENT. Character columns are not translated.

PICX

Identical to the CLIENT option. Provided for backward compatibility.

Properties:

Defaults: When DETECTDATE is not specified, the default is: NODETECTDATE When DETECTDATE

with no argument is specified, the default is: DETECTDATE=CLIENT

• 

• 

• 

• 

• 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 183



Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

Use DETECTDATE=CLIENT only when your CitOESQL application does not use character

columns in the database to store data that is a match to any of the alternative formats for

the date, time or datetime fields in your DBMS.

Use DETECTDATE=SERVER when your CitOESQL application uses datetime values in both

datetime and character columns of tables in your database.

Datetime formats are defined implicitly unless you set them explicitly by specifying the

DATE, DATEDELIM, TIME, and/or TIMEDELIM directives. See the DATE, TIME, DATEDELIM

and TIMEDELIM sections for more information.

ERRORMAP

This directive specifies the name of the error map file to use, and enables SQL error mapping.

Syntax:

ERRORMAP=*map-name*

Parameter:

map-name - The prefix of the error map filename (no file extension)

Properties:

Default None

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

• • 

• • 

• • 

• • 

DETECTDATE=SERVER does cause CitOESQL to perform extra overhead processing on

each applicable SQL statement.

Note

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 184



IGNORESCHEMAERRORS

Suppresses compile-time errors resulting from missing schema objects.

Syntax:

[NO]IGNORESCHEMAERRORS

Properties:

Default NOIGNORESCHEMAERRORS

Dependencies:

To use IGNORESCHEMAERRORS, you must also set CHECK.

Scope:

Used at compile time: Yes

Behavior at run time: Source file 

See CitOESQL Directives for more information.

Comments:

By setting both IGNORESCHEMAERRORS and CHECK, CitOESQL checks for SQL syntax errors

without reference to the database schema. This can be helpful when planning an application

migration, as you can use the COBOL compiler and CitOESQL to identify the statements that require

remediation without having to first migrate the database schema. It also provides enhanced

CitOESQL syntax checking during the development phase.

INIT

When set without parameters, the preprocessor automatically generates code to make the

connection to the database. When set with the PROT parameter, protects the database when an

application terminates abnormally.

Syntax:

INIT[={[PROT\P]}]

NOINIT

Parameters:

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 185



INIT - Generates a CONNECT statement in shared mode and an exit handling code 

INIT=PROT - Generates exit handling code only.

INIT=P 

NOINIT - No code generation whatsoever.

Properties:

Default NOINIT

Dependencies:

If your INIT call generates a connection, you can use it with the DB and PASS SQL compiler

directive options.

Comments:

For the following reasons, we strongly recommend that you consider placing an EXEC SQL

CONNECT statement into your code instead of using INIT, INIT=S or INIT=X :

INIT stores user credentials in your code, so its use can raise security concerns.

If the DBMS vendor were to change the underlying APIs used to implement a database

connection, this could cause compatibility problems when using INIT.

Set the INIT directive, with or without PROT, only once for each application. Do not set INIT

for SQL programs called by other SQL programs. Instead, specify the INIT option for the first

SQL program executed in a run unit. Compiling more than one module in an application with

the INIT option could cause your program to terminate abnormally.

INIT is ignored when used within an OO program.

ISOLATION

This directive specifies the isolation level that CitOESQL uses as a connection attribute. It also

serves as a primitive directive for the BEHAVIOR directive option.

Syntax:

ISOLATION={UR \ CR \ RR \ SZ}

Parameters:

UR - Uncommitted Read

CR - Committed Read 

RR - Repeatable Read 

SZ - Serializable isolation in ODBC 

Properties:

• • 

• • 

• • 

• • 

• • 

• 

• 

• • 

• • 

• 

• 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 186



Default: CR

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

NIST

Sets CitOESQL to conform to the NIST interpretation of the SQL ANSI 92 entry level standard.

Syntax:

[NO]NIST

Properties:

Default: NONIST

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

ODBCTRACE

ODBCTRACE=USER enables you to control ODBC tracing via odbc.ini from which you can specify

the file that the trace goes into.

ALWAYS lets you control ODBC tracing via a directive, which is more convenient from within the

IDE. ALWAYS generates the trace into MFSQLTRACE.LOG in the current directory, regardless of the

settings in odbc.ini.

NEVER means that the application will never be traced and overrides odbc.ini . As ODBC trace files

can contain sensitive information, use NEVER in production applications in secure environments.

For more information see the database driver documentation.

Syntax:

ODBCTRACE={ALWAYS \ NEVER \ USER}

Properties:

Default: ODBCTRACE=USER.

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 187



Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

ODBCV3

This directive causes an application to register itself as an ODBC Version 3 application.

Syntax:

[NO]ODBCV3

Properties:

Default: NOODBCV3

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

If ODBCV3 is not specified, the application registers itself as an ODBC Version 2 application. There

can be a small performance benefit in registering as an ODBC 3 application. However, registering

as an ODBC Version 3 application can result in error and warning conditions returning different

values for SQLCODE and SQLSTATE.

We recommend that you use this directive with care.

ODBCV3 is an alias for ODBCVER=38.

ODBCVER

This directive causes an application to register itself as an ODBC Version 2, 3.x or 3.8 application.

Syntax:

ODBCVER={20 \ 30 \ 38}

Properties:

Default: ODBCVER=20

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 188



Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

If ODBCVER is not specified, the application registers itself as an ODBC version 2 application.

There can be a small performance benefit in registering as an ODBC version 3 or 3.8 application.

However, registering as an ODBC version 3 or 3.8 application can result in error and warning

conditions returning different values for SQLCODE and SQLSTATE.

We recommend that you use this directive with care.

ODBCV3 is an alias for ODBCVER=38.

OPTIMIZECURSORS

Optimizes memory consumption. Also applies the same data integrity rules on all databases for

embedded SQL cursors that use WITH HOLD and FOR UPDATE clauses.

Syntax:

OPTIMIZECURSORS={YES\NO}

Parameters:

YES - Optimize cursors. This can result in considerable memory savings and performance

gains for large results sets and ensures that SQL cursors that use WITH HOLD and FOR

UPDATE clauses have appropriate database locks when positioned updates/deletes occur.

NO - Provided for backward compatibility.

Properties:

Default: YES

Dependencies:

To use OPTIMIZECURSORS, you must set DBMAN to ODBC explicitly, or by setting an SQL compiler

directive option that sets DBMAN to ODBC implicitly.

Scope:

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 189



Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

PARAMARRAY

If PARAMARRAY is set, ODBC array binding is used, if it is supported by the ODBC driver, for all

input parameters.

Syntax:

[NO]PARAMARRAY

Properties:

Default: PARAMARRAY.

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

PASS

The login to use to connect to the data source. This option works in conjunction with the INIT and/

or CHECK options.

Syntax:

PASS={*password* \ *userid.password*}

NOPASS

Properties:

Default: NOPASS

Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

PICXBINARY

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 190



Enables programs to use PIC X(n) host variables to receive data from BINARY, VARBINARY,

LONGVARBINARY columns in binary format without changing source to use SQL TYPE BINARY

host variables.

Syntax:

[NO]PICXBINARY

Properties:

Default: NOPICXBINARY

Scope:

Used at compile time: No

Behavior at run time: Source file

See CitOESQL Directives for more information.

PICXBINDING

Specifies the handling of fixed-length PIC X(n) host variables.

Syntax:

PICXBINDING={DEFAULT \ PAD \ TRIM \ TRIMALL \ FIXED \ VARIABLE}

Applications should use SQL TYPE BINARY host variables instead when dealing with BINARY

columns data.

Note

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 191



Parameters:

DEFAULT

SQL Server - SBCS locales

Always passes PIC X(n) host variables to SQL Server as fixed-length data, and trims trailing

spaces. The ODBC driver pads the data with spaces before presenting it to SQL Server.

All other DBMSs in all locales

Always passes PIC X(n) host variables to the DBMS as fixed-length data, and trims trailing

spaces. If the PIC X(n) host variable is all spaces, present one space to the DBMS.

PAD or FIXED

Always preserves trailing spaces for all DBMSs in all locales and passes the data to the DBMS as

fixed-length data.

TRIM or VARIABLE

Always trims trailing spaces for all DBMSs in all locales. If the PIC X(n) host variable is all spaces,

presents one space to the DBMS and passes the data to the DBMS as variable-length data.

TRIMALL

Always trims trailing spaces for all DBMSs in all locales. If the PIC X(n) host variable is all spaces,

presents an empty string to the DBMS and passes the data to the DBMS as variablelength data.

Properties:

Default: DEFAULT

Dependencies:

ALLOWNULLCHAR is compatible with PICXBINDING only when PICXBINDING is omitted (meaning

it is set to DEFAULT by default) or explicitly set to DEFAULT. Because PICXBINDING is designed to

be used with PIC X(n) host variables that contain character data, not embedded binary data such

as the NULL character ('\0'), an attempt to use ALLOWNULLCHAR when PICXBINDING is set to

VARIABLE or FIXED could return unpredictable results.

Scope:

Used at compile time: No

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 192



For PIC X(n) host variables that contain all spaces, consider the following effects of PICXBINDING

parameters when inserting into VARCHAR columns:

DEFAULT with SQL Server inserts a space-padded column

DEFAULT with all non-SQL Server DBMSs inserts one space into the column

PAD with all DBMSs inserts a space-padded column

TRIM with all DBMSs inserts one space into the column

TRIMALL with Oracle inserts a NULL value into the column

TRIMALL with all non-Oracle DBMSs inserts an empty string into the column

PREFETCH

An application can use this directive to request that CitOESQL use block fetches for cursors. This

can provide performance benefits similar to array fetching, without having to change program logic.

The performance benefit depends on the value of n and on whether the ODBC driver in use is

already configured to use prefetching.

If n is less than 1000, it controls the number of rows to be fetched per batch and the same number

of rows is fetched for all cursors. If n is greater than or equal to 1000, it sets the size of the

prefetch buffer for each cursor. All cursors will have the same buffer size but the number of rows

prefetched will depend on the overall size of the row returned by the query for each cursor.

When PREFETCH=n is used with Microsoft SQL Server, AUTOFETCH is also used for read only

cursors. Cursors which are not read only are forced to be keyset cursors and can be used for

positioned updates. PREFETCH=n is only supported with DB2, Oracle and Microsoft SQL Server.

Syntax:

PREFETCH=*n*

Properties:

Default: PREFETCH=8

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 193



Much of the functionality provided by PREFETCH is now incorporated into the functionality of the

BEHAVIOR SQL compiler directive option. As a result, PREFETCH is likely to be deprecated in a

future release.

QUALFIX

Causes the CitOESQL preprocessor to append three characters to the name of the host variables

when declaring them to SQL. This ensures problems caused by qualification (where two or more

host variables have identical names when not qualified) are avoided but has the side-effect that

SQL error messages sometimes display the names of host variables with the three additional

characters appended to them.

Syntax:

[NO]QUALFIX

Properties:

Default: NOQUALFIX

Scope:

Used at compile time: Yes

Behavior at run time: N/A

See CitOESQL Directives for more information.

RESULTARRAY

If RESULTARRAY is set, ODBC array binding is used, if it is supported by the ODBC driver, for all

output parameters.

Syntax:

[NO]RESULTARRAY

Properties:

Default: RESULTARRAY.

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

SAVE-RETURN-CODE

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 194



Specifies whether or not to save and then restore RETURN-CODE.

Syntax:

[NO]SAVE-RETURN-CODE

Properties:

Default: SAVE-RETURN-CODE

Scope:

Used at compile time: Yes 

Behavior at run time: NA

See CitOESQL Directives for more information.

Comments:

Use NOSAVE-RETURN-CODE if your COBOL dialect does not recognize the COBOL special register

RETURN-CODE.

STMTCACHE

The number of prepared SQL statements CitOESQL can cache such that the statements never

again require preparation during a program run, thus improving performance.

Syntax:

STMTCACHE=*n*

Parameter:

n Any number; however we recommend that you set this to a number between 20 and 300

Properties:

Default: STMTCACHE=20 

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 195



Exercise caution with this directive as STMTCACHE is a trade off between performance and

memory use.

TARGETDB

Set this directive if you want to optimize performance for a specific data source.

Syntax:

Properties:

Default: NOTARGETDB

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

With the vast majority of databases, the FOR READ ONLY clause has no effect on the access plan

that the database server generates for a query. This, in combination with the fact that FOR READ

ONLY syntax is not supported by most servers, CitOESQL removes the generated FOR READ ONLY

clause at compile time unless TARGETDB is set to DB2. Removing this clause can facilitate code

migration between different database servers and can also facilitate the incorporation of code that

works with multiple types of database servers.

THREAD

Specifies the handling of threads with regard to connections.

Syntax:

THREAD={SHARE \ ISOLATE}

TARGETDB={MSSQLSERVER \ ORACLE \ INFORMIX \

    SYBASE \ DB2 \ ORACLE7 \ POSTGRESQL}

NOTARGETDB

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 196



Parameters:

SHARE

All SQL connections, cursors, etc. in an application are shared by all threads. For example, if you

have a hard-coded CONNECT statement and thread 1 executes it and then thread 2 executes it,

thread 2 gets an error because the connection is already open.

ISOLATE

ODBC only. All connections, cursors, etc. are local to the thread that creates them. This is required

for multi-threaded application server environments

Properties:

Default: SHARE

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

TIME

Specifies an explicit time format to use when time values are returned from database time columns

into character output host variables.

When used in addition to DETECTDATE, specifies the explicit time format to recognize in character

input host variables.

Syntax:

TIME={ODBC \ ISO \ USA \ EUR \ JIS}

Parameters:

ODBC hh:mm:ss (ISO 8601 default format)

ISO hh.mm.ss  (mainframe default format)

USA hh:mm  (AM \ PM)

EUR hh.mm.ss

JIS hh:mm:ss

Properties:

Default: ODBC (ISO 8601 default format)

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 197



Dependencies:

For input host parameters, requires that the DETECTDATE SQL compiler directive is also set.

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

Comments:

TIME can be used with the TIMEDELIM directive to specify an alternative delimiter that

separates hour, minute, and second components.

TIME, with or without TIMEDELIM, changes the display format of output host variables as

specified.

When you specify both TIME and DETECTDATE, CitOESQL uses TIME (with or without

TIMEDELIM) to also recognize time values in your input host variables. See DETECTDATE for

more information The following apply to USA format:

Minutes can be omitted. For example, 1 PM is equivalent to 1:00 PM.

AM and PM are not case sensitive.

There must be a single blank before AM or PM.

The hour must not be greater than 12 and cannot be 0 except for the special case of 00:00

AM.

TIMEDELIM

Specifies a single character as the delimiter between the hour, minute, and second components to

override the default delimiter determined by the TIME directive specification, or implicitly based on

default ISO 8601 format ( hh:mm:ss ).

Syntax:

TIMEDELIM=*character*

Properties:

Default: None

Dependencies:

For input host parameters, requires that the DETECTDATE SQL compiler directive is also set.

Scope:

• • 

• • 

• • 

• • 

• • 

• 

• 

• 

• 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 198



Used at compile time: Yes

Behavior at run time: Source file See CitOESQL Directives for more information.

Comments:

TIMEDELIM set without TIME overrides the default ISO 8601 delimiter, a colon (:), for time

values.

TIMEDELIM set with TIME overrides the default delimiter for the specified TIME parameter.

For example, the default delimiter for TIME=EUR is a dot character (.).

See the TIME and DETECTDATE sections along with the CitOESQL Datetime Data Types

Handling section in the CitOESQL User Guide for more information.

TRACELEVEL

Produces a statistical analysis of application behavior by tracing certain operations in native

applications. The report produced by this directive provides better readability and is inherently

more useful than a traditional ODBC trace.

The statistical analysis information is written to a logfile named OpenESQLTrace.processID.log,

which is created the first time you use TRACELEVEL. With each subsequent use of TRACELEVEL,

tracing information is appended to the end of the file. A separator record is written at the end of

each trace to help identify different traces.

CitOESQL creates the log files under the directory where the application is located. If file/directory

permissions prevent file creation in that location, CitOESQL creates the log files under the directory

referenced in the %TEMP% environment variable.

All trace records contain the elapsed run time, accurate to one microsecond.

Syntax:

TRACELEVEL={T \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ D}

Scope:

Used at compile time: No

Behavior at run time: Process

See CitOESQL Directives for more information.

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 199



Comments:

TRACELEVEL=T

When TRACELEVEL=T, the following information is written to the trace file:

BEGIN - traces main SQL directives

END - indicates end of run

DIRECTIVES - traces per compilation unit directives the first time a compilation unit is

encountered at run time.

TRACELEVEL=1

When TRACELEVEL=1, the following information is written to the trace file in addition to the

information written when you specify TRACELEVEL=T:

PREPARE - identifies the original source code when a statement is prepared.

DISPOSE - provides summary information for overall statement usage when a statement is

removed from the prepared statement cache at disconnect time

FLUSH - provides summary information for overall statement usage when a statement is

flushed from the cache usually due to a cache overflow

TRACELEVEL=2

When TRACELEVEL=2, the following information is written to the trace file in addition to the

information written when you specify TRACELEVEL=1:

TRACELEVEL=3

When TRACELEVEL=3, the following information is written to the trace file in addition to the

information written when you specify TRACELEVEL=2:

TRACELEVEL=4

When TRACELEVEL=4, the following information is written to the trace file in addition to the

information written when you specify TRACELEVEL=3:

• 

• 

• 

• 

• 

• 

- OPEN
- EXECUTE - provides the number of rows selected, inserted, or updated
- EXEC_IMMED EXECUTE - provides the number of rows selected, inserted, or updated
- ODBCCLOSE - provides summary information for the current cursor use
- STMT_CHANGED - reports new concurrency and scroll option settings when the ODBC driver uses different settings than those requested by 
CitOESQL.

- ODBCFETCH - provides the number of rows fetched
- COBOLFETCH - provides the number of rows returned to the COBOL application

- EXEC_SQL_BEGIN
- EXEC_SQL_END

5.3 CitOESQL Directives

5.3 CitOESQL Directives 200



TRACELEVEL=5

When TRACELEVEL=5, the following ODBC API call information is written to the trace file in

addition to the information written when you specify TRACELEVEL=4:

TRACELEVEL=6

When TRACELEVEL= 6, only the following information is written to the trace file:

TRACELEVEL=D

When TRACELEVEL=D, a reduced version of TRACELEVEL=4 is produced for debugging purposes.

It contains only the following information:

TRANSACTION

This directive provides CitOESQL with specifications for managing run-time transactions and, in

some cases, enabling compile-time checking.

Syntax:

TRANSACTION={GLOBAL \ LOCAL \ MIXED \ AUTO}

Parameters:

- ODBC_CALL_START
- ODBC_CALL_END

- ODBC_CALL_START
- ODBC_CALL_END

- BEGIN
- END
- EXEC_SQL_BEGIN
- EXEC_SQL_END
- DIRECTIVES

5.3 CitOESQL Directives

5.3 CitOESQL Directives 201



GLOBAL - Manages transactions via a distributed transaction manager, such as a Java

application server, and its external SQL connection. Checks for the following statements

that are not compatible with Java application server applications: BEGIN TRANSACTION

COMMIT CONNECT DISCONNECT ROLLBACK SET AUTOCOMMIT SET CONNECT SET

TRANSACTION [ISOLATION] Reports an error for each incompatible statement found.

LOCAL - Manages transactions via a data source and its CitOESQL connection.

MIXED - Manages transactions via a distributed transaction manager (similar to GLOBAL),

but does not perform compile-time checking. This allows EXEC SQL CONNECT statements

to create local transactions with an CitOESQL connection in addition to the connection

provided by the distributed transaction manager.

AUTO - Use this option when you want to AUTOCOMMIT each statement executed on an

CitOESQL connection: 

An application can programmatically control the autocommit setting for a connection by

executing the EXEC SQL SET AUTOCOMMIT statement 

An application in autocommit mode can start a local database transaction with the EXEC

SQL BEGIN TRANSACTION statement. The transaction ends when the next COMMIT or

ROLLBACK statement is executed 

When a transaction ends, if the connection's autocommit attribute is on, the connection

reverts to autocommit mode; otherwise a new local database transaction is started

automatically. 

Properties:

Default: TRANSACTION=LOCAL

Scope:

Used at compile time: Yes

Behavior at run time: N/A

See CitOESQL Directives for more information.

TSTAMPSEP

Specifies a single character to use as the separator between the date and time parts when

datetime values are returned from database datetime columns into character output host variables.

When used in addition to DETECTDATE, specifies the explicit datetime format to recognize in

character input host variables.

Syntax:

TSTAMPSEP='*character*

• • 

• • 

• • 

• • 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 202



Parameters:

Character

Any single character, including:

(dash character)

When TSTAMPSEP='-' and DETECTDATE is not specified

Character output host variables are returned in the following format: yyyy-mm-dd-

hh.mm.ss.ffffff

When TSTAMPSEP='-' and DETECTDATE is specified**

The dash character instructs CitOESQL to look for a specific set of delimiters, including a

dash, a space, and a T. For example, if you do not specify any alternative date or time

formats, and you set TSTAMPSEP to a dash character (-), CitOESQL recognizes the

following formats in your input host variables:

yyyy-mm-dd-hh.mm.ss.ffffff

yyyy-mm-dd hh.mm.ss.ffffff

yyyy-mm-dd hh:mm:ss.ffffff

yyyy-mm-ddThh.mm.ss.ffffff

yyyy-mm-ddThh:mm:ss.ffffff

Any other character

When DETECTDATE is not also specified:

Character output host variables are returned in the following format: yyyy-mm-

ddChh:mm:ss.ffffff

Where C is any character except a dash (-) character, and the number of fractional seconds

is platform dependent.

When DETECTDATE is also specified

Character input host variables are returned and scanned using the following format:

yyyy-mm-ddChh:mm:ss.ffffff

Where C is any character except a dash (-) character, and the number of fractional seconds

is platform dependent.

Properties:

Default: Space character (ISO 8601 default)

Scope:

• • 

• • 

• 

• 

• 

• 

• • 

• • 

5.3 CitOESQL Directives

5.3 CitOESQL Directives 203



Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

TSTAMPSEP changes the display format of output host variables as specified.

You can use TSTAMPSEP directive to override the delimiter used in the output format to separate

date and time components.

WHERECURRENT

Allows PostgreSQL and MySQL to accept updateable SELECT and CURSOR statements when no

positioned UPDATEs or DELETEs are required.

Syntax:

[NO]WHERECURRENT

Properties:

Default: WHERECURRENT

Scope:

Used at compile time: Yes

Behavior at run time: Source file

See CitOESQL Directives for more information.

Comments:

For PostgreSQL, depending on the table definition, the required pseudo column (oid) on a

positioned UPDATE or DELETE might be missing.

For MySQL, depending on the table definition, the required pseudo column (_rowid) on a

positioned UPDATE or DELETE might be missing.

If positioned UPDATEs and DELETEs are required, you might need to change your

PostgreSQL or MySQL table definition to expose the appropriate pseudo column and make

it available.

When positioned UPDATEs and DELETEs are not required, use NOWHERECURRENT.

5.3.1 SQL Data Types

• • 

• • 

• • 

• • 

• • 

• • 

• • 

• • 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 204



ODBC SQL/COBOL Data Type Mappings

The following table shows the mappings used by CitOESQL when converting between ODBC SQL

and COBOL data types.

ODBC SQL Type COBOL Picture Notes

SQL_CHAR(n)1 PIC Xn)

SQL_NCHAR(n)1 PIC X(n) or PIC N(n)

SQL_VARCHAR(n)1 PIC X(n)

SQL_NVARCHAR(n)1 PIC X(n) or PIC N(n)

SQL_LONGVARCHAR1 PIC X(max) or SQL

TYPE LONG-

VARCHAR(max)

SQL_NTEXT1 PIC X(max) or PIC

N(max)

SQL_DECIMAL(p,s) or

SQL_NUMERIC(p,s)

PIC S9(p-s)V9(S)

COMP-3

p = precision (total number

of digits). s = scale (number

of digits after the decimal

point). CitOESQL doesn’t

support using unsigned

packed decimal host

variables.

SQL_SMALLINT PIC S9(4) COMP-5

SQL_INTEGER PIC S9(9) COMP-5

SQL_REAL COMP-1

SQL FLOAT COMP-2

SQL DOUBLE COMP-2

SQL_BIT PIC S9(4) COMP-5

SQL_TINYINT PIC S9(4) COMP-5

SQL_BIGINT PIC S9(18) COMP-3

SQL_BINARY(n) PIC X(n) or SQL

TYPE BINARY(n)\

5.3.1 SQL Data Types

5.3.1 SQL Data Types 205



SQL Data Types

Integer Data Types

Character Data Types

Numeric Data Types

Binary Data Types

Date and Time Data Types

ODBC SQL Type COBOL Picture Notes

SQL_VARBINARY(n) PIC X(n) ) or SQL

TYPE VARBINARY(n)

SQL_LONVARBINARY PIC X(max) or SQL

TYPE LONG-

VARBINARY(max)

SQL_DATE or SQL_TYPE_DATE PIC X(10) ) or SQL

TYPE DATE

yyyy-mm-dd

SQL_TIME or SQL_TYPE_TIME

or SQL_SS_TIME2

PIC X(8) or SQL

TYPE TIME or SQL

TYPE TIME-RECORD

hh:mm:ss

SQL_TIMESTAMP or

SQL_TYPE_TIMESTAMP

PIC X(29) or SQL

TYPE TIMESTAMP

or SQL TYPE

TIMESTAMP-

RECORD

yyyy-mm-

ddhh:mm:ss.ffffff

SQL_SS_TIMESTAMPOFFSET PIC X(34) yyyy-mm-

ddhh:mm:ss.fffff +/hh:mm

• 

• 

• 

• 

• 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 206



Miscellaneous Data Types

INTEGER DATA TYPES

Small Integer: A small integer (SMALLINT) is a 2-byte integer SQL data type.

Host Variable Formats:

CITOESQL

INTEGER

An integer (INT) is a 4-byte integer SQL data type.

Host Variable Formats:

CITOESQL

For the most efficient access, we recommend that you declare integers as COMP-5.

BIG INTEGER

A big integer (BIGINT) is an 8-byte integer SQL data type.

Host Variable Formats: CITOESQL

In non-COBOL applications, a BIGINT data type can hold a value larger than PIC S9(18). If you

define your host variable for a COBOL data time with a value larger than S9(18), your data might be

truncated.

• 

01 shortint1 PIC S9(4) COMP.

01 shortint2 PIC S9(4) COMP-4.

01 shortint3 PIC X(2) COMP-5.

01 shortint4 PIC S9(4) COMP-5.

01 shortint5 PIC X(2) COMP-X.

01 shortint6 PIC 9(4) COMP-X.

01 shortint7 PIC S9(4) BINARY.

All of the following definitions are valid for host variables to map directly onto the INT data type.

01 longint1 PIC S9(9) COMP.

01 longint2 PIC X(4) COMP-5.

01 longint3 PIC S9(9) COMP-5.

01 longint4 PIC X(4) COMP-X.

01 longint5 PIC 9(9) COMP-X. 01 longint6 PIC S9(9) BINARY.

01 bigint1 PIC S9(18) COMP-3.

01 bigint2 PIC S9(18) COMP-5.

01 bigint3 PIC X(8) COMP-5.

01 bigint4 PIC X(8) COMP-X.

5.3.1 SQL Data Types

5.3.1 SQL Data Types 207



Character Data Types

FIXED-LENGTH CHARACTER STRINGS

Fixed-length character strings (CHAR) are SQL data types with a driver-defined maximum length.

They are declared in COBOL as:

PIC X(*n*)  where n is an integer between 1 and the maximum length.

Host Variable Formats:

CITOESQL

CitOESQL trims trailing spaces from input parameters before sending them to the database server.
Trimming the trailing spaces can improve performance when comparing CHAR and VARCHAR values.

01 char-field3 SQL TYPE IS CHAR(200).

The char-field3  format uses the CHAR SQL TYPE.

VARIABLE-LENGTH CHARACTER STRINGS

Variable-length character strings (VARCHAR and LONGVARCHAR) are SQL data types with a

variable maximum length.

Host Variable Formats:

CITOESQL

01 char-field1 PIC X(5).

01 char-field2 PIC X(254).

For CitOESQL, the database server pads the value with spaces as necessary. When space

padding is required for a host variable used in an expression, use an explicit SQL CAST function

to ensure that the server converts the host variable to the required data type.

Important

01 varchar1.

49 varchar1-len PIC 9(4) COMP.

49 varchar1-data PIC X(200).

01 longvarchar1.

49 longvarchar1-len PIC 9(4) COMP.

49 longvarchar1-data PIC X(30000).

01 clob1 SQL TYPE IS CLOB(32K).

5.3.1 SQL Data Types

5.3.1 SQL Data Types 208



The level number for group items containing only two elementary items must be 49. The first

item is a 2-byte field declared with usage COMP or COMP-5 that represents the effective

length of the character string. The length field can be signed or unsigned. The second item is a

PIC X(n) data type, where n is an integer representing the length of the field that holds the

data.

SQL statements must reference the group name.

If the data being copied to a SQL CHAR, VARCHAR or LONG VARCHAR data type is longer than

the defined length, then the data is truncated and the SQLWARN1 flag in the SQLCA data

structure is set. If the data is smaller than the defined length, a receiving CHAR data type

might be padded with blanks.

The clob1 format uses the CLOB SQL TYPE.

In addition to the above definitions, the following definitions are also valid for CitOESQL:

The varchar3  format uses the CHAR-VARYING SQL TYPE.

The longvarchar1  format uses the LONG-VARCHAR SQL TYPE.

LARGE CHARACTER STRINGS (CLOB)

Large character strings (CLOB) enable you to store large amounts of data in columns.

Host Variable Formats:

The level number for group items containing only two elementary items must be 49. The first

item is a 4-byte field declared with usage COMP or COMP-5 that represents the effective

length of the character string. The length field can be signed or unsigned. The second item is a

PIC X(n) data type, where n is an integer representing the length of the field that holds the

data.

SQL statements must reference the group name.

UNICODE CHARACTER STRINGS

Unicode character strings (UNI) are SQL data types similar to fixed-length character strings, but are

encoded using UTF-16 characters instead of single- or mixed-byte characters.

Host Variable Formats:

CITOESQL

03 uni-field1 PIC N(X) USAGE NATIONAL.

UNICODE VARIABLE-LENGTH CHARACTER STRINGS

• 

• 

• 

• 

01 varchar2 PIC X(20) VARYING.

01 varchar3 SQL TYPE IS CHAR-VARYING(200).

01 longvarchar1 SQL TYPE IS LONG-VARCHAR(50000).

• 

• 

• 

• 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 209



Unicode variable-length character strings (unichar) are SQL data types similar to variable-length

character strings, but are encoded using UTF-16 characters instead of single- or mixed-byte

characters.

Host Variable Formats:

CITOESQL

The level number for group items containing only two elementary items must be 49. The first

item is a four-byte field declared with usage COMP or COMP-5 that represents the effective

length of the character string. The length field can be signed or unsigned. The second item is a

PICn NATIONAL data type, where n is an integer representing the length of the field that holds

the data.

SQL statements must reference the group name.

UNICODE LARGE CHARACTER STRINGS (DBCLOB)

Unicode large character strings (DBCLOB) enable you to store large amounts of Unicode data in

columns.

Host Variable Formats:

CITOESQL

01 dbclob1 SQL TYPE IS DBCLOB(2M).

The dbclob1  format uses the DBCLOB SQL TYPE. The following definition is also valid:

The level number for group items containing only two elementary items must be 49. The first

item is a four-byte field declared with usage COMP or COMP-5 that represents the effective

length of the character string. The length field can be signed or unsigned. The second item is a

PICn NATIONAL data type, where n is an integer representing the length of the field that holds

the data.

SQL statements must reference the group name.

Numeric Data Types

01 unichar1.

49 unichar1-len PIC S9(4) COMP-5.

49 unichar1-data PIC N(200) USAGE NATIONAL.

01 unichar2.

49 unichar1-len PIC S9(4) COMP.

49 unichar1-data PIC N(200) USAGE NATIONAL.

• 

• 

01 dbclob2.

49 dbclob2-len PIC S9(9) COMP-5.

49 dbclob2-data PIC N(32000) USAGE NATIONAL.

• 

• 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 210



APPROXIMATE NUMERIC DATA TYPES

Approximate numeric data types (FLOAT, DOUBLE, and REAL) are SQL data types that enable

floating points.

Host Variable Formats:

CITOESQL

The real1 format is for the 32-bit (single-precision) SQL floating-point data type, REAL.

The float1 format is for 64-bit (double-precision) SQL floating-point data types, FLOAT and

DOUBLE.

EXACT NUMERIC DATA TYPES

Exact numeric data types (DECIMAL and NUMERIC) can hold values up to a driver-specified

precision and scale.

Host Variable Formats:

CITOESQL

CitOESQL supports:

Unsigned and signed DISPLAY numerics

Leading and trailing signs

UNICODE NUMERIC DATA TYPES

Unicode numeric data types (signed and unsigned) can hold values up to a driver-specified

precision and scale.

Host Variable Formats:

CITOESQL

CitOESQL supports:

01 real1 USAGE COMP-1.

01 float1 USAGE COMP-2.

• 

• 

01 packed1 PIC S9(8)V9(10) USAGE COMP-3.

01 packed2 PIC S9(8)V9(10) USAGE PACKED-DECIMAL.

01 packed3 PIC S9(8)v9(10) USAGE DISPLAY.

• 

• 

01 uninum-us PIC 9(5)v9(5) USAGE NATIONAL.

01 uninum-sls PIC S9(5) SIGN LEADING SEPARATE USAGE NATIONAL.

01 uninum-sts PIC S9(5)v9(5) SIGN TRAILING SEPARATE USAGE NATIONAL.

5.3.1 SQL Data Types

5.3.1 SQL Data Types 211



Unsigned and signed Unicode numerics

Leading and trailing signs

Binary Data Types

FIXED-LENGTH BINARY STRINGS

Fixed-length binary data types (RAW, BINARY, and CHAR(x) FOR BIT DATA) are SQL data types with

a driver-defined maximum length.

Host Variable Formats:

CITOESQL

SQL BINARY, VARBINARY and IMAGE data are represented in COBOL as PIC X (n) fields.

CitOESQL does not perform data conversion.

When data is fetched from the database, if the host-variable field is smaller than the amount

of data fetched, the data is truncated and the SQLWARN1 field in the SQLCA data structure

is set to W. If the host-variable field is larger than the amount of data, the field is padded

with null (x"00") bytes.

Any of the following enable you to insert data into BINARY, VARBINARY or LONG-

VARBINARY columns:

Use dynamic SQL statements

Compile your application with the ALLOWNULLCHAR directive

Use SQL TYPE host variables

If you use PIC X host variables, compile your application with the ALLOWNULLCHAR

directive to prevent the truncation of transferred data to or from the host variable if a null

(x"00") is encountered.

The bin-field2 format uses the BINARY SQL TYPE.

VARIABLE-LENGTH BINARY STRINGS

Variable-length binary data types (VARBINARY, LONG-VARBINARY, and LONG VARCHAR FOR BIT

DATA) are SQL data types with a driver-defined maximum variable length.

Host Variable Formats:

CITOESQL

• 

• 

03 bin-field1 PIC X(5).

03 bin-field2 SQL TYPE IS BINARY(200).

• • 

• • 

• • 

• • 

• 

• 

• 

• • 

• • 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 212



SQL BINARY, VARBINARY and IMAGE data are represented in COBOL as PIC X (n) fields.

CitOESQL does not perform data conversion.

When data is fetched from the database, if the host-variable field is smaller than the amount

of data fetched, the data is truncated and the SQLWARN1 field in the SQLCA data structure

is set to W. If the host-variable field is larger than the amount of data, the field is padded

with null (x"00") bytes.

Any of the following enable you to insert data into BINARY, VARBINARY or LONGVARBINARY

columns:

Use dynamic SQL statements

Compile your application with the ALLOWNULLCHAR directive

Use SQL TYPE host variables

The varbin-field1 format uses the VARBINARY SQL TYPE.

The varbin-field2 format uses the LONG-VARBINARY SQL TYPE.

LARGE BINARY STRINGS (BLOB)

Large binary string data types (BLOB) are SQL data types that enable you to store large amounts of

data, from sources such as JPG files, in binary columns.

Host Variable Formats:

CITOESQL

01 blob1 SQL TYPE IS BLOB(2M).

01 varbin-field1 SQL TYPE IS VARBINARY(2000).

01 varbin-field2 SQL TYPE IS LONG-VARBINARY(20000). 01 varbin-field3.

49 varbin-field3-len PIC S9(4) COMP-5.

49 varbin-field3-data PIC X(2000).

• • 

• • 

• • 

• • 

• 

• 

• 

• • 

• • 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 213



SQL BINARY, VARBINARY and IMAGE data are represented in COBOL as PIC X (n) fields.

CitOESQL does not perform data conversion.

When data is fetched from the database, if the host-variable field is smaller than the amount

of data fetched, the data is truncated and the SQLWARN1 field in the SQLCA data structure

is set to W. If the host-variable field is larger than the amount of data, the field is padded

with null (x"00") bytes.

Any of the following enable you to insert data into BINARY, VARBINARY or LONGVARBINARY

columns:

Use dynamic SQL statements

Compile your application with the ALLOWNULLCHAR directive

Use SQL TYPE host variables

Date and Time Data Types

COBOL does not support date and time data types directly. Therefore, date and time data columns

are converted to COBOL character representations.

DATE

Data Format:

Default and alternative date value formats vary. For CitOESQL, review the DATE and DATEDELIM

SQL compiler directive option topics for more information.

For example, one supported date format is:

yyyy-mm-dd

An example value for this format is: 1994-05-24

Host Variable Formats:

CITOESQL

DATE1 FORMAT

Move date data into the host variable using the form:

MOVE yyyy-mm-dd  TO host-var .

Review the DETECTDATE SQL compiler directive option topic to determine whether or not it

applies to your application.

• • 

• • 

• • 

• • 

• 

• 

• 

   01 date1    PIC X(10).
   01 date2    SQL TYPE IS DATE.
   01 date4    PIC X(n).

• • 

• • 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 214



DATE2 FORMAT

Move date data into the host variable using the form:

MOVE yyyy-mm-dd  TO host-var .

Preferred format; use whenever possible.

Uses the DATE SQL TYPE.

Similar to the date1 format, date2 never requires DETECTDATE for input host variable

processing.

DATE4 FORMAT

Move date data into host variables using these forms:

Uses the DATE-RECORD SQL TYPE.

TIME

Data Format:

Default and alternative time value formats vary. For CitOESQL, review the TIME and TIMEDELIM

SQL compiler directive option topics for more information.

For example, one supported time format is:

hh:mm:ss

An example value for this format is: 12:34:00

Host Variable Formats:

Move time data into a host variable using any of these forms:

- Review the DETECTDATE SQL compiler directive option topic to determine whether or not it

applies to your application.

TIME2 FORMAT

• • 

• • 

• • 

• • 

• • 

MOVE *yyyy* TO *host-var-year*

MOVE *mm* TO *host-var-month*

MOVE *dd* to *host-var-day*

• • 

• • 

MOVE hh:mm:ss TO host-var.

MOVE hh.mm.ss TO host-var.

MOVE hh:mm PM TO host-var.

5.3.1 SQL Data Types

5.3.1 SQL Data Types 215



Move time data into a host variable using these forms:

- Preferred format - use whenever possible. - Uses the TIME SQL TYPE. - Similar to the time1

format, never requires DETECTDATE for input host variable processing.

TIME4 FORMAT

Move time data into host variables using this form:

- Uses the TIME-RECORD SQL TYPE.

TIMESTAMP

Default and alternative timestamp value formats vary. For CitOESQL, review the TSTAMPSEP SQL

compiler directive option topic for more information. For example, one supported time format is:

yyyy-mm-dd hh:mm:ss[.f[f[...]]]  where the number of fractional digits is driver-defined. An

example value for this format is: 1994-05-24 12:34:00.000

Host Variable Formats:

CITOESQL

The timestamp2 format uses the TIMESTAMP SQL TYPE.

01 timestamp4 SQL TYPE IS TIMESTAMP-RECORD.

TIMESTAMP1 FORMAT

Move timestamp data into a host variable using the form:

MOVE yyyy-mm-dd hh:mm:ss TO timestamp1

Review the DETECTDATE SQL compiler directive option topic to determine whether or not it

applies to your application.

TIMESTAMP2 FORMAT

• • 

MOVE `hh:mm:ss` TO `host-var`.

MOVE `hh.mm.ss` TO `host-var`.

MOVE `hh:mm` PM" TO `host-var`.

• • 

MOVE *hh* TO *host-var-hour*

MOVE *mm* TO *host-var-min*

MOVE *ss* TO *host-var-sec*

01 timestamp1 PIC X(29).

01 timestamp2 SQL TYPE IS TIMESTAMP.

• • 

• • 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 216



Move timestamp data into a host variable using the form:

MOVE yyyy-mm-dd hh:mm:ss TO timestamp2

Preferred format - use whenever possible.

Uses the TIMESTAMP SQL TYPE.

Similar to the timestamp1 format, but when using Visual COBOL version 2.3 or later, never

requires DETECTDATE for input host variable processing.

TIMESTAMP4 FORMAT

Move timestamp data into host variables using these forms:

Uses the TIMESTAMP-RECORD SQL TYPE.

TIMESTAMPOFFSET

If a COBOL output host variable is defined for an SQL timestamp value with an offset, the date and

time are specified in the following format:

yyyy-mm-dd hh:mm:ss[.f[f[...]]] {+ \ -}hh:mm

where the number of fractional digits is driver-defined. For example: 1994-05-24 12:34:00.000

+02:00

Host Variable Formats:

CITOESQL

The timestampoffset2 format uses the TIMESTAMP-OFFSET SQL TYPE.

The timestampoffset3 format uses the TIMESTAMP-OFFSET-RECORD SQL TYPE.

• 

• 

• 

• 

• • 

MOVE yyyy TO host-var-year

MOVE mm TO *host-var-month

MOVE dd TO host-var-day

MOVE hh TO host-var-hour

MOVE mm TO host-var-minute

MOVE ss TO host-var-sec

MOVE ff TO host-varc-fra

• • 

01 timestampoffset1 PIC X(36).

01 timestampoffset2 SQL TYPE IS TIMESTAMP-OFFSET.

01 timestampoffset3 SQL TYPE IS TIMESTAMP-OFFSET-RECORD.

• 

• 

5.3.1 SQL Data Types

5.3.1 SQL Data Types 217



5.3.2 Miscellaneous Data Types

PIC X VARYING Data Type

Syntax:

PIC X(*n*) VARYING

Where n is an integer representing the length of the field that holds the data.

Example:

01 ename PIC X(15) VARYING .

generates

SQL TYPEs

BINARY SQL Type

BLOB SQL Type

CHAR SQL Type

CHAR-VARYING SQL Type

CLOB SQL Type

DATE SQL Type

DATE-RECORD SQL Type

DBCLOB SQL Type

LONG-VARBINARY SQL Type

LONG-VARCHAR SQL Type

TIME SQL Type

TIME-RECORD SQL Type

TIMESTAMP SQL Type

TIMESTAMP-RECORD SQL Type

TIMESTAMP-OFFSET SQL Type

TIMESTAMP-OFFSET-RECORD SQL Type

01 ename.

05 ename-len PIC S9(4) COMP.

05 ename-ARR PIC X(15).

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 218



VARBINARY SQL Type

BINARY SQL TYPE

Syntax:

SQL [TYPE] [IS] BINARY(*n*)

Example:

01 hv-name SQL TYPE IS BINARY(200) .

generates

01 hv-name PIC X(200) .

BLOB SQL TYPE

Syntax:

SQL [TYPE] [IS] BLOB(*lob-length*)

Where lob-length  is a value between 1 and 1073741823 expressed either as a number or a

number followed by K (kilobytes), M (megabytes), or G (gigabytes).

Example:

01 hv-name SQL TYPE IS BLOB(2M).

generates

CHAR SQL TYPE

Syntax:

SQL [TYPE] [IS] CHAR(*n*)

Example:

01 hv-name SQL TYPE IS CHAR(200) .

• 

Although this SQL TYPE has a theoretical size limitation of 2G, for all practical purposes, the

actual limitation is approximately 450M, which is the data size actually allocated to the

application program.

Note

01 hv-name.

03 hv-name-length PIC S9(9) COMP-5.

03 hv-name-data PIC X(2097152).

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 219



generates

01 hv-name PIC X(200) .

CHAR-VARYING SQL TYPE

Syntax:

SQL [TYPE] [IS] CHAR-VARYING(*n*)

CHAR-VARYING data is passed to CitOESQL as SQL_VARCHAR.

Data sent to the data source eliminates trailing spaces except for the first space if the value is

all spaces.

Values fetched from the data source are padded with spaces.

Example:

01 hv-name SQL TYPE IS CHAR-VARYING(200) .

generates

01 hv-name PIC X(200) .

CLOB SQL TYPE

Syntax:

SQL [TYPE] [IS] CLOB(lob-length)

Where lob-length  is a value between 1 and 1073741823 expressed either as a number or a

number followed by K (kilobytes), M (megabytes), or G (gigabytes).

Example:

01 hv-name SQL TYPE IS CLOB(2M) .

generates

• 

• 

• 

Although this SQL TYPE has a theoretical size limitation of 2G, for all practical purposes, the

actual limitation is approximately 450M, which is the data size actually allocated to the

application program.

Note

01 hv-name.

03 hv-name-length PIC S9(9) COMP-5.

03 hv-name-data PIC X(2097152).

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 220



DATE SQL TYPE

Syntax:

SQL [TYPE] [IS] DATE

Use DATE to generate a single working-storage record to contain all date information.

Example:

01 hv-name SQL TYPE IS DATE .

generates

01 hv-name PIC X(10) .

DATE-RECORD SQL TYPE

Syntax:

SQL [TYPE] [IS] DATE-RECORD

Use DATE-RECORD to generate a group-level record for the date containing individual records for

each element of the date as follows:

Year

Month

Day

Example:

01 hv-name SQL TYPE IS DATE .

generates

01 hv-name PIC X(10) .

DBCLOB SQL TYPE

Syntax:

SQL [TYPE] [IS] DBCLOB(lob-length)

Where lob-length  is a value between 1 and 1073741823 expressed either as a number or a

number followed by K (kilobytes), M (megabytes), or G (gigabytes).

• 

• 

• 

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 221



Example:

01 hv-name SQL TYPE IS DBCLOB(2M) .

generates

LONG-VARBINARY SQL TYPE

Syntax:

SQL [TYPE] [IS] LONG-VARBINARY(*n*)

Example:

01 hv-name SQL TYPE IS LONG-VARBINARY(2000) .

generates

LONG-VARCHAR SQL TYPE

Syntax:

SQL [TYPE] [IS] LONG-VARCHAR(*n*)

Example:

01 hv-name SQL TYPE IS LONG-VARCHAR(65000) .

generates

TIME SQL TYPE

Although this SQL TYPE has a theoretical size limitation of 2G, for all practical purposes, the

actual limitation is approximately 450M, which is the data size actually allocated to the

application program.

Note

01 hv-name.

03 hv-name-length PIC S9(9) COMP-5.

03 hv-name-data PIC N(2097152).

01 hv-name.

03 hv-name-len PIC S9(9) COMP-5.

03 hv-name-val PIC X(2000).

01 hv-name.

03 hv-name-len PIC S9(9) COMP-5.

03 hv-name-val PIC X(65000).

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 222



Syntax:

SQL [TYPE] [IS] TIME

Use TIME to generate a single working-storage record to contain all time information.

Example:

01 hv-name SQL TYPE IS TIME .

generates

01 hv-name PIC X(8) .

TIME-RECORD SQL TYPE

Syntax:

SQL [TYPE] [IS] TIME-RECORD

Use TIME-RECORD to generate a group-level record for the time containing individual records for

each element as follows:

Hour

Minutes -Seconds

To insert data, you must pass valid data in the generated field names.

Example:

01 hv-name SQL TYPE IS TIME-RECORD .

generates

01 hv-name .

03 hv-name-hour PIC 9(4) COMP-5. 03 hv-name-min PIC 9(4) COMP-5. 03 hv-name-sec PIC 

9(4) COMP-5 .

TIMESTAMP SQL TYPE

Syntax:

SQL [TYPE] [IS] TIMESTAMP

Use TIMESTAMP to generate a single working-storage record to contain all timestamp information.

• 

• 

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 223



Data must be organized in fixed date/time formats.

Fractional seconds are supported up to nine digits. However, this value can vary depending on

your target DBMS and your ODBC driver. See your DBMS or ODBC driver documentation for

more information.

Fractional data is passed left justified and must contain the number of digits defined in your

record. For example, to pass a fractional value of 678 to a record that defines fractional data

as nine digits, move the value 678000000.

Fractional data is right justified when returned from a SELECT or FETCH statement.

Because of the way SQL Server stores date/time values, it might round the last fractional digit

of a fractional value up or down depending on the digit. For example:

• 

• 

• 

• 

• 

If you pass... SQL Server returns...

01/01/98 23:59.59.999 1998-01-02 00:00:00.000

01/01/98 23:59.59.995 1998-01-01 23:59:59.997

01/01/98 23:59.59.996 1998-01-01 23:59:59.997

01/01/98 23:59.59.997 1998-01-01 23:59:59.997

01/01/98 23:59.59.998 1998-01-01 23:59:59.997

01/01/98 23:59.59.992 1998-01-01 23:59:59.993

01/01/98 23:59.59.993 1998-01-01 23:59:59.993

01/01/98 23:59.59.994 1998-01-01 23:59:59.993

01/01/98 23:59.59.990 1998-01-01 23:59:59.990

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 224



Example:

01 hv-name SQL TYPE IS TIMESTAMP .

generates

01 hv-name PIC X(29) .

TIMESTAMP-RECORD SQL TYPE

Syntax:

SQL [TYPE] [IS] TIMESTAMP-RECORD

Use TIMESTAMP-RECORD to generate a group-level record for the timestamp containing individual

records for each element of the timestamp as follows:

Year

Month

Day

Hour

Minute

Second

Fractional second

To insert data, you must pass valid data in the generated field names.

Data must be organized in fixed date/time formats.

Fractional seconds are supported up to nine digits. However, this value can vary depending on

your target DBMS and your ODBC driver. See your DBMS or ODBC driver documentation for

more information.

Fractional data is passed left justified and must contain the number of digits defined in your

record. For example, to pass a fractional value of 678 to a record that defines fractional data

as nine digits, move the value 678000000.

Fractional data is right justified when returned from a SELECT or FETCH statement.

Because of the way SQL Server stores date/time values, it might round the last fractional digit

of a fractional value up or down depending on the digit. For example:

If you pass... SQL Server returns...

01/01/98 23:59.59.991 1998-01-01 23:59:59.990

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 225



If you pass... SQL Server returns...

01/01/98 23:59.59.999 1998-01-02 00:00:00.000

01/01/98 23:59.59.995 1998-01-01 23:59:59.997

01/01/98 23:59.59.996 1998-01-01 23:59:59.997

01/01/98 23:59.59.997 1998-01-01 23:59:59.997

01/01/98 23:59.59.998 1998-01-01 23:59:59.997

01/01/98 23:59.59.992 1998-01-01 23:59:59.993

01/01/98 23:59.59.993 1998-01-01 23:59:59.993

01/01/98 23:59.59.994 1998-01-01 23:59:59.993

01/01/98 23:59.59.990 1998-01-01 23:59:59.990

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 226



Example:

01 hv-name SQL TYPE IS TIMESTAMP-RECORD .

generates

TIMESTAMP-OFFSET SQL TYPE

Syntax:

SQL [TYPE] [IS] TIMESTAMP-OFFSET

Use TIMESTAMP-OFFSET to generate a single working-storage record to contain all timestamp

information.

Example:

01 hv-name SQL TYPE IS TIMESTAMP-OFFSET .

generates

01 hv-name PIC X(36) .

TIMESTAMP-OFFSET-RECORD SQL TYPE

Syntax:

SQL [TYPE] [IS] TIMESTAMP-OFFSET-RECORD

Use TIMESTAMP-OFFSET-RECORD to generate a group-level record for the timestamp containing

individual records for each element of the timestamp as follows:

If you pass... SQL Server returns...

01/01/98 23:59.59.991 1998-01-01 23:59:59.990

01 hv-name.

03 hv-name-year PIC S9(4) COMP-5.

03 hv-name-month PIC 9(4) COMP-5.

03 hv-name-day PIC 9(4) COMP-5. 03 hv-name-hour PIC 9(4) COMP-5. 03 hv-name-min PIC 9(4) COMP-5.

03 hv-name-sec PIC 9(4) COMP-5. 03 hv-name-frac PIC 9(9) COMP-5.

5.3.2 Miscellaneous Data Types

5.3.2 Miscellaneous Data Types 227



Year

Month

Day

Hour

Minute

Second

Fractional second

Offset hours

Offset minutes

To insert data, you must pass valid data in the generated field names.

Example:

01 hv-name SQL TYPE IS TIMESTAMP-OFFSET-RECORD .

generates

VARBINARY SQL TYPE

Syntax:

SQL [TYPE] [IS] VARBINARY(n)

Example:

01 hv-name SQL TYPE IS VARBINARY(2000) .

generates

5.3.3 USAGE Data Types

• 

• 

• 

• 

• 

• 

• 

• 

• 

01 hv-name.

03 hv-name-year PIC S9(4) COMP-5.

03 hv-name-month PIC 9(4) COMP-5.

03 hv-name-day PIC 9(4) COMP-5. 03 hv-name-hour PIC 9(4) COMP-5. 03 hv-name-min PIC 9(4) COMP-5.

03 hv-name-sec PIC 9(4) COMP-5. 03 hv-name-frac PIC 9(9) COMP-5.

03 hv-name-tz-hour PIC S9(4) COMP-5.

03 hv-name-tz-min PIC S9(4) COMP-5.

01 hv-name.

49 hv-name-len PIC S9(4) COMP-5.

49 hv-name-val PIC X(2000).

49 hv-name-text REDEFINES hv-name-val PIC X(2000).

5.3.3 USAGE Data Types

5.3.3 USAGE Data Types 228



CitOESQL supports the following non-COBOL USAGE Clauses:

USAGE VARCHAR

USAGE LONG VARCHAR -USAGE VARRAW

USAGE LONG VARRAW

USAGE VARYING

USAGE VARCHAR Data Type

Syntax:

USAGE VARCHAR

Example:

01 HV-NAME PIC X(30) USAGE VARCHAR .

generates

USAGE LONG VARCHAR DATA TYPE

Syntax:

USAGE VARCHAR

Example:

01 HV-NAME PIC X(300) USAGE LONG VARCHAR .

generates

USAGE VARRAW DATA TYPE

Syntax:

USAGE VARRAW

Example:

01 HV-NAME PIC X(30) USAGE VARRAW .

generates

• 

• 

• 

• 

01 HV-NAME.

03 HV-NAME-LEN PIC S9(4) COMP-5 VALUE 0.

03 HV-NAME-ARR PIC X(30).

01 HV-NAME.

03 HV-NAME-LEN PIC S9(4) COMP-5 VALUE 0.

03 HV-NAME-ARR PIC X(300).

5.3.3 USAGE Data Types

5.3.3 USAGE Data Types 229



USAGE LONG VARRAW DATA TYPE

Syntax:

USAGE LONG VARRAW

Example:

01 HV-NAME PIC X(300) USAGE LONG VARRAW .

generates

USAGE VARYING DATA TYPE

Syntax:

USAGE VARYING

Example:

01 HV-NAME PIC X(30) USAGE VARYING .

generates

01 HV-NAME.

03 HV-NAME-LEN PIC S9(9) COMP-5 VALUE 0.

03 HV-NAME-ARR PIC X(30).

01 HV-NAME.

03 HV-NAME-LEN PIC S9(9) COMP-5 VALUE 0.

03 HV-NAME-ARR PIC X(300).

01 HV-NAME.

03 HV-NAME-LEN PIC S9(4) COMP-5 VALUE 0.

03 HV-NAME-ARR PIC X(30).

5.3.3 USAGE Data Types

5.3.3 USAGE Data Types 230



6. Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use

restrictions, U.S. Government rights, patent policy, and FIPS compliance, see https://

www.microfocus.com/about/legal/.

© Copyright 2023 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors

("Micro Focus") are set forth in the express warranty statements accompanying such products and

services. Nothing herein should be construed as constituting an additional warranty. Micro Focus

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

This documentation is derived from COBOL-IT Source code, parts of which are derived from

OpenCOBOL.

Copyright (C) 2002-2007 Keisuke Nishida

Copyright (C) 2007 Roger While

6.1 Third-Party Notices

Additional third-party notices, including copyrights and software license texts, can be found in a

'Third-Party-License-File' file in the root directory of the software.

6. Legal Notice

6. Legal Notice 231

https://www.microfocus.com/about/legal/
https://www.microfocus.com/about/legal/

	COBOL-IT OpenESQL
	© Copyright 2023 Micro Focus or one of its affiliates

	1. About COBOL-IT OpenESQL
	1.1 Documentation
	1.2 Overview
	1.3 Pre-requisite knowledge

	2. Getting Started Guide
	2.1 Getting Started
	2.2 Working with the Getting Started application – Basic
	2.2.1 Working with the Getting Started application in Developer Studio
	Prerequisites

	2.2.2 Project creation and import of source code
	Build and Debugging


	2.3 Tutorials and Best Practice Recommendations
	2.3.1 Performance Tuning
	Introduction
	Transparent Cursor Prefetch
	Host Variable Arrays
	SQL Statement Cache

	2.3.2 SQL Syntax Checking Options

	2.4 Runtime Errors and Diagnostics
	2.4.1 Diagnostic mapping for database migration
	2.4.2 COBOL-IT CitOESQL files and locations
	2.4.3 Performance and Diagnostic Aids


	3. Migration Guide
	3.1 Migrating to CitOESQL
	3.1.1 CitSQL and CitOESQL Comparison
	3.1.2 Command line options
	3.1.3 Host Variables
	3.1.4 ESQL features
	3.1.5 Dependencies and Limitations
	3.1.6 SQL Statement Differences and Limitations


	4. User Guide
	4.1 Modes of Operation
	4.1.1 Standalone precompilation
	4.1.2 Integrated precompilation

	4.2 Command line syntax
	4.2.1 Placing Precompiler Directives in Files

	4.3 Source Code Formats
	4.3.1 Source code formats

	4.4 Directive Syntax
	4.4.1 Directive syntax

	4.5 Control statements in source
	4.5.1 Directives
	4.5.2 Constants
	4.5.3 Conditional compilation
	4.5.4 Messages

	4.6 Programming
	4.6.1 Syntax Checking Options
	4.6.2 SQL(CHECK) and Schema Objects
	4.6.3 SQL(CHECK) Command-line Options
	4.6.4 SQL Statement Prefixes for SQL(CHECK)
	4.6.5 Tuning Performance
	Cursor Types and Performance
	Statement Cache
	Datetime Data Type Handling
	Input Host Variables - DETECTDATE
	Output Host Variables
	SQL error mapping files
	SQL error mapping record examples
	SQL error mapping enablement



	5. Reference Manual
	5.1 Developing SQL Applications
	5.1.1 Embedded SQL
	5.1.2 Host Variables
	Simple Host Variables
	Declaring simple host variables
	Referencing simple host variables

	Host Arrays
	Declaring host arrays
	Referencing host arrays

	Indicator Variables
	Declaring indicator variables
	Referencing indicator variables

	Indicator Arrays
	COBOL to SQL Data Type Mapping
	SQL TYPEs

	5.1.3 Cursors
	Declaring a Cursor
	Opening a Cursor
	Using a Cursor to Retrieve Data
	Closing a Cursor
	Positioned UPDATE and DELETE Statements
	Using Cursors

	5.1.4 Data Structures
	SQL Communications Area (SQLCA)
	Using the SQLCA
	The SQLCODE Variable
	The SQLSTATE Variable
	SQLWARN Flags
	The WHENEVER Statement
	SQLERRM
	SQLERRD

	The SQL Descriptor Area (SQLDA)
	CitOESQL
	Using the SQLDA


	5.1.5 Dynamic SQL
	Dynamic SQL Statement Types
	Execute a Statement Once
	Execute a Statement More Than Once
	Select a Given List of Data
	Select any Amount of Data

	Preparing Dynamic SQL Statements
	Executing Dynamic SQL Statements
	EXECUTE IMMEDIATE Statement

	Dynamic SQL Statements and Cursors
	CALL Statements



	5.2 SQL Statements
	5.2.1 BEGIN DECLARE SECTION
	5.2.2 BEGIN TRAN
	Transaction name

	5.2.3 CALL
	Host Integer
	result_hvar
	stored_procedure_name
	parameter

	5.2.4 CLOSE
	AT db_name
	cursor_name

	5.2.5 COMMIT
	AT db_name
	WORK
	RELEASE

	5.2.6 CONNECT
	data_source
	db_name
	user
	password
	output_connection
	input_connection
	RESET
	name

	5.2.7 DECLARE CURSOR
	AT db_name
	cursor_name
	select_stmt
	prepared_stmt_name
	stored_procedure_call_stmt
	n
	column_list
	result-set-generating-dmlstatement

	5.2.8 DECLARE DATABASE
	db_name

	5.2.9 DELETE (Positioned)
	AT db_name
	table_name
	cursor_name

	5.2.10 DELETE (Searched)
	host_integer
	AT db_name
	FROM
	table_name
	view_name
	WHERE
	search_conditions

	5.2.11 DESCRIBE
	prepared_stmt_name
	: sqlda_struct
	sqln
	sqldabc

	5.2.12 DISCONNECT
	name
	ALL
	CURRENT
	DEFAULT

	5.2.13 END DECLARE SECTION
	5.2.14 EXECSP
	:HOST_INTEGER
	:RESULT_HVAR
	stored_procedure_name
	parameter

	5.2.15 EXECUTE
	:HOST_INTEGER
	prepared_stmt_name
	:SQLDA_STRUCT
	:HVAR


	5.2.16 EXECUTE IMMEDIATE
	:host_integer
	:stmt_hvar

	5.2.17 FETCH
	:HOST_INTEGER
	AT DB_NAME
	CURSOR_NAME
	:SQLDA_STRUCT
	:HVAR

	5.2.18 GET HDBC
	HVAR

	5.2.19 GET HENV
	HVAR

	5.2.20 GET NEXT RESULT SET
	AT DB_NAME
	CURSOR_NAME

	5.2.21 INCLUDE
	SQLCA
	FILENAME

	5.2.22 INSERT
	:HOST_INTEGER
	AT DB_NAME
	TABLE_NAME
	INTO
	COLUMN_LIST
	VALUES
	CONSTANT_EXPRESSION

	5.2.23 INTO
	HOST_INTEGER
	DB_NAME
	HVAR
	RESULT-SET-GENERATING-DMLSTATEMENT

	5.2.24 OPEN
	CURSOR_NAME
	:SQLDA_STRUCT
	:HVAR

	5.2.25 PREPARE
	STMT_NAME
	:SQLDA
	:HVAR

	5.2.26 QUERY ODBC
	QUALIFIER_NAME
	OWNER_NAME
	TABLE_NAME
	DATATYPE_NAME
	TABLETYPE_NAME
	QUERY ODBC - Column Query
	QUERY ODBC - Data Type Query
	QUERY ODBC - Table Query

	5.2.27 RESET CONNECTION
	5.2.28 ROLLBACK
	AT DB_NAME

	5.2.29 SAVEPOINT, SAVE TRANSACTION, RELEASE [TO] SAVEPOINT
	AT DB_NAME

	5.2.30 SELECT DISTINCT (using DECLARE CURSOR)
	DB_NAME
	CURSOR_NAME
	SELECT_LIST
	TABLE_LIST
	SELECT_OPTIONS

	5.2.31 SELECT INTO
	:HOST_INTEGER
	DB_NAME
	SELECT_LIST
	:HVAR
	SELECT_OPTIONS

	5.2.32 SET AUTOCOMMIT
	ON
	OFF

	5.2.33 SET CONNECTION
	NAME
	DEFAULT

	5.2.34 SET ERRORMAP
	MAP-FILE-PREFIX

	5.2.35 SET host_variable
	AT DB_NAME
	host_variable
	char

	5.2.36 SET OPTION
	VALUE
	QUERYTIME
	LOGINTIME
	APPLICATION
	HOST

	5.2.37 SET TRACELEVEL
	0
	1
	2
	3
	4
	5
	6
	OFF
	DEFAULT

	5.2.38 SET TRANSACTION ISOLATION
	5.2.39 SYNCPOINT
	5.2.40 UPDATE (Positioned)
	:HOST_INTEGER
	AT DB_NAME
	TABLE_NAME
	COLUMN_EXPRESSION
	CURSOR_NAME

	5.2.41 UPDATE (Searched)
	:HOST_INTEGER
	AT DB_NAME
	TABLE_NAME
	VIEW_NAME
	COLUMN_EXPRESSION
	SEARCH_CONDITIONS

	5.2.42 WHENEVER
	CONTINUE
	PERFORM LABEL
	GOTO STMT_LABEL


	5.3 CitOESQL Directives
	ALLOWNULLCHAR
	[NO]ALLOWNULLCHAR
	ALLOWSERVERSELECT
	ANSI92ENTRY
	AUTOCOMMIT
	AUTOFETCH
	BEHAVIOR
	Primitive Directives
	DEF_CURSOR
	IC_FH_ISOLATION
	PF_RO_CURSOR
	PF_UPD_CURSOR
	RO_CURSOR
	UPD_CONCURRENCY
	UPD_CURSOR
	CHECK
	CHECKDUPCURSOR
	CHECKSINGLETON
	[NO]CHECKSINGLETON
	CLOSE_ON_COMMIT
	CLOSE_ON_ROLLBACK
	CONNECTIONPOOL
	CURSORCASE
	DATE
	DATEDELIM
	DB
	DBMAN
	DECDEL
	DESCRIBEDTCHAR
	DESCRIBEDTREC
	DESCRIBEVARCHAR49
	DESCRIBEVARCHARPICX
	DETECTDATE
	ERRORMAP
	IGNORESCHEMAERRORS
	INIT
	ISOLATION
	NIST
	ODBCTRACE
	ODBCV3
	ODBCVER
	OPTIMIZECURSORS
	PARAMARRAY
	PASS
	PICXBINARY
	PICXBINDING
	PREFETCH
	QUALFIX
	RESULTARRAY
	SAVE-RETURN-CODE
	STMTCACHE
	TARGETDB
	THREAD
	TIME
	TIMEDELIM
	TRACELEVEL
	TRANSACTION
	TSTAMPSEP
	WHERECURRENT

	5.3.1 SQL Data Types
	ODBC SQL/COBOL Data Type Mappings
	SQL Data Types
	Integer Data Types
	Integer
	Big Integer

	Character Data Types
	Fixed-length Character Strings
	Variable-length Character Strings
	Large Character Strings (CLOB)
	Unicode Character Strings
	Unicode Variable-length Character Strings
	Unicode Large Character Strings (DBCLOB)

	Numeric Data Types
	Approximate Numeric Data Types
	Exact Numeric Data Types
	Unicode Numeric Data Types

	Binary Data Types
	Fixed-length Binary Strings
	Variable-length Binary Strings
	Large Binary Strings (BLOB)

	Date and Time Data Types
	DATE
	date1 format
	date2 format
	date4 format
	TIME
	time2 format
	time4 format
	TIMESTAMP
	timestamp1 format
	timestamp2 format
	timestamp4 format
	TIMESTAMPOFFSET


	5.3.2 Miscellaneous Data Types
	PIC X VARYING Data Type
	SQL TYPEs
	BINARY SQL Type
	BLOB SQL Type
	CHAR SQL Type
	CHAR-VARYING SQL Type
	CLOB SQL Type
	DATE SQL Type
	DATE-RECORD SQL Type
	DBCLOB SQL Type
	LONG-VARBINARY SQL Type
	LONG-VARCHAR SQL Type
	TIME SQL Type
	TIME-RECORD SQL Type
	TIMESTAMP SQL Type
	TIMESTAMP-RECORD SQL Type
	TIMESTAMP-OFFSET SQL Type
	TIMESTAMP-OFFSET-RECORD SQL Type
	VARBINARY SQL Type


	5.3.3 USAGE Data Types
	USAGE VARCHAR Data Type
	USAGE LONG VARCHAR Data Type
	USAGE VARRAW Data Type
	USAGE LONG VARRAW Data Type
	USAGE VARYING Data Type




	6. Legal Notice
	6.1 Third-Party Notices


