
Connected Backup
Software Version 9.0.7

Web Services Programming Reference

Document Release Date: December 2022
Software Release Date: December 2022

Legal notices

Copyright notice

© Copyright 2017-2022 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are
as may be set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/documentation/connected-backup/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and support
that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l Search for knowledge documents of interest
l Access product documentation
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts
l Submit and track service requests
l Contact customer support
l View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted to
sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

Web Services Programming Reference

Connected Backup (9.0.7) Page 2 of 108

https://www.microfocus.com/documentation/connected-backup/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Chapter 1: Get started 7
About the Web Services API 7

In this guide 7

System requirements and permissions 7
Use scripting permission 8

Limitations 8
Required country values for input 8
Empty array handling 8
Password restrictions 8
Truncation of strings greater than Max Size 9

Develop with the Web Services API 9
Location 9
Get a copy of the Web Services API WSDL file 9

Chapter 2: APIs 10
Account APIs 10

AccountDisableiRoam 11

AccountEnableiRoam 12

AccountGetEncryptionKey 13

AccountGetExtendedInfo 14

AccountGetInfo 15

AccountGetInfoEx 17

AccountGetBackupDates 18

AccountGetLastBackupDate 19

AccountGetMediaCount 20

AccountMoveToCommunity 21

AccountOrderMedia 22

AccountOrderMediaEx 24

AccountSendMessage 25

AccountSetUserInfo 26

AccountSetAgentSetupID 28

AccountSetPassword 30

AccountSetStatus 31

Web Services Programming Reference

Connected Backup (9.0.7) Page 3 of 108

AccountVerifyAgentInfoURLHash 33

AccountVerifyUserCredentials 34

Community APIs 35

CommunityChangeName 36

CommunityCreate 37

CommunityCreateInServerGroup 38

CommunityDisableRegistration 40

CommunityEnableRegistration 41

CommunityFind 42

CommunityFindAccounts 43

CommunityFindFedAuthAccounts 44

CommunityGetChangedAccounts 45

CommunityGetChangedAccountsEx 47

CommunityGetChangedCommunities 48

CommunityGetInstall 50

CommunityGetLicenseCount 51

CommunityGetName 52

CommunityGetParent 53

CommunityGetStatisticsInfo 54

CommunityGetSubCommunityIDs 55

CommunityGetTechnicians 56

CommunityReserveTicket 57

CommunityReserveTicketandFetch 59

CommunitySetLicenseCount 60

Session APIs 62

SessionLoginTechnician 62

SessionLogoutTechnician 64

Reports APIs 65

ReportTemplateRun 65

ReportGet 67

ReportDelete 68

Technician APIs 69

TechnicianCreate 70

TechnicianDelete 72

TechnicianGetPasswordExpiryDate 72

Web Services Programming Reference

Connected Backup (9.0.7) Page 4 of 108

TechnicianGetPasswordExpiryDateTime 74

Chapter 3: C# class library 76
Use the C# class library 76

System requirements 76

Create C# wrapper classes 77

Class listing 77

Account class 78

Account Size class 80

AdminAPIException class 81

APISession class 83

Community Class 84

CreditCard class 87

CustomInfo class 88

User class 89

Chapter 4: Data structures 91
Structure listing 91

AdminAPIAccountInfo 91

AdminAPIAccountInfoEx 92

AdminAPIAccountSize 93

AdminAPIAccountBackupDateInfo 94

AdminAPIBaseAccountInfo 95

AdminAPICommunityStatisticsInfo 95

AdminAPICreditCard 96

AdminAPICustomInfo 97

AdminAPIExtendedAccountInfo 97

AdminAPIMediaCount 97

AdminAPIProfileInfo 98

AdminAPIReportTemplateID 98

AdminAPITechnicianID 98

AdminAPIUserInfo 99

Chapter 5: Reference 100
Terminology 100

Common error messages 102

Web Services Programming Reference

Connected Backup (9.0.7) Page 5 of 108

Index 104

Send documentation feedback 108

Web Services Programming Reference

Connected Backup (9.0.7) Page 6 of 108

Chapter 1: Get started
This chapter describes the Web Services API for Micro Focus Connected Backup.

l About the Web Services API, below

l System requirements and permissions, below

l Limitations, on the next page

l Develop with the Web Services API, on page 9

About the Web Services API
TheWeb Services API is an XMLWeb service with a SOAP API that allows you to make calls from
your application to the Support Center to manage accounts, communities, and reports. You can use
this collection of APIs to:

l Create and reserve accounts

l Get and set account information including name, address, telephone number, and e-mail

l Cancel accounts or place them on hold

l Validate accounts and change passwords

l Move accounts into new communities and change accounts’ Agent setup

l Run reports

In this guide

This reference guide contains:

l APIs, on page 10

l C# class library, on page 76

l Data structures, on page 91

l Terminology, on page 100

l Common error messages, on page 102

System requirements and permissions
The following table lists the requirements for using the Web Services API:

Requirement Description

License You must obtain and install a valid license to use the Web Services API.

Connected Backup (9.0.7) Page 7 of 108

Requirement Description

agreement

Software
requirement

The Support Center server software version must be version 7.5 or higher.

Cookies To enable multiple API calls per session, the client making an API call must
support HTTP cookies and return any cookie sent to it by the server on any calls
subsequent to the SessionLoginTechnician().

SSL TheWeb Services API requires SSL certificates.

Use scripting permission

Individuals who are responsible for using these APIs must have the Use Scripting technician
permission enabled. Permissions may be granted or revoked using Support Center.

Refer to Support Center help for information about granting technician permissions.

In addition to the Use Scripting permission, some APIs require additional technician permissions.
For example, the AccountMoveToCommunity API requires that the technician making the call has
theModify Communities permission enabled in both the original and destination community.
Before making a call to any API that sets or changes data, check its description to determine if it
requires specific permissions.

Limitations
The following are important limitations you should be aware of when you use these APIs.

Required country values for input

There is currently no validation of country names to standardize user input. You must use the ISO
standard for English Country Names. Click here to view a list of ISO standard names.

Empty array handling

Certain APIs, such as CommunityFindAccounts return an empty array when the call is successful but
no matching results are found. Because C# cannot handle an empty array returned as part of a
SOAP response, make sure to check for null values (if (array == null) {} before performing any
operation on the returned array.

Password restrictions

Account password must be at least 6 characters long, cannot have leading and trailing space and
cannot contain all the same characters. Technician password must be at least 8 characters long,
including at least one numeric character. Passwords are case-sensitive. Passwords should not
contain caret symbols (< or >).

Web Services Programming Reference
Chapter 1: Get started

Connected Backup (9.0.7) Page 8 of 108

Truncation of strings greater than Max Size

For each API that has string parameters, an additional column called Max String Size shows the
maximum number of wide (Unicode) characters permitted for the string. Strings that exceed their set
Max String Size are truncated.

Develop with the Web Services API
This section contains important information you should know before you begin working on your
project.

Location

TheWeb Services API is exposed at the following URL:

https://supportcentermachine/AdminAPI

Get a copy of the Web Services API WSDL file

AWSDL file that describes the Web Services API is created on the server when the Web Services
API is installed. To obtain copy of the AdminAPI.wsdl file, open it from the Web server using a
browser.

For example:

https://www.connected.com/AdminAPI/AdminAPI.wsdl

Select Save As from the browser's Filemenu and save the file as an XML file.

NOTE: If you plan to write clients in C#, you can use the WSDL file installed with the Web
Services API to generate several C# wrapper classes.

For more information, see Create C# wrapper classes, on page 77.

Web Services Programming Reference
Chapter 1: Get started

Connected Backup (9.0.7) Page 9 of 108

Chapter 2: APIs
This chapter describes the interface categories available for the Web Services API.

l Account APIs, below

l Community APIs, on page 35

l Session APIs, on page 62

l Reports APIs, on page 65

l Technician APIs, on page 69

Account APIs
You can use the following APIs for account operations:

l AccountDisableiRoam, on the next page

l AccountEnableiRoam, on page 12

l AccountGetEncryptionKey, on page 13

l AccountGetExtendedInfo, on page 14

l AccountGetInfo, on page 15

l AccountGetInfoEx, on page 17

l AccountGetBackupDates, on page 18

l AccountGetLastBackupDate, on page 19

l AccountGetMediaCount, on page 20

l AccountMoveToCommunity, on page 21

l AccountOrderMedia, on page 22

l AccountSendMessage, on page 25

l AccountSetUserInfo, on page 26

l AccountSetAgentSetupID, on page 28

l AccountSetPassword, on page 30

l AccountSetStatus, on page 31

l AccountVerifyAgentInfoURLHash, on page 33

l AccountVerifyUserCredentials, on page 34.

Connected Backup (9.0.7) Page 10 of 108

AccountDisableiRoam
Denies MyRoam access to the specified account by changing the MyRoam state to False.

Parameters

Name Description Type

AccountNumber The account number of the account that you want to deny iRoam
or MyRoam access.

xsd:int

Return Values

If successful, none.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1025 The Data Center is not licensed to use this feature.

Remarks

If iRoam or MyRoam access is already disabled for the specified account, nothing is done and no
error messages are returned.

Example

[C# Example]

int intAccount = 101000401;

//Turn off access to iRoam or MyRoam so the user cannot
//use the Web interface, iRoam or MyRoam

AdminService.AccountDisableiRoam(intAccount);

AccountEnableiRoam, on the next page

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 11 of 108

AccountEnableiRoam
Enables MyRoam access to the specified account by changing the MyRoam state to True.

Parameters

Name Description Type

AccountNumber The account number of the account that you want to grant iRoam
or MyRoam access.

xsd:int

Return Values

If successful, none.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1025 The Data Center is not licensed to use this feature.

Remarks

If iRoam or MyRoam access is already enabled for the specified account, nothing is done and no
error messages are returned.

Example

[C# Example]

int intAccount = 101000401;

//Turn iRoam or MyRoam access on so the user can

//retrieve files using the Web interface, iRoam or MyRoam

AdminService.AccountEnableiRoam(intAccount);

AccountEnableiRoam, above

AccountGetInfo, on page 15

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 12 of 108

AccountGetEncryptionKey
Discloses the encryption key for the specified account.

Parameters

Name Description Type Max String
Size

AccountNumber The account number. xsd:int

Justification The reason why the encryption key is being
disclosed

xsd:string 255

Return Values

Name Description Type

EncryptionKey The unencrypted key for the specified account. xsd:string

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1023 Justification cannot be blank.

1054 Access denied. Logged-in Technician does not have permission ‘Disclose Encryption
Keys’.

1055 Unable to disclose encryption key. It is not escrowed.

1056 The call is not allowed for specified account since its agent version does not support this
feature.

Remarks

The logged in technician must have the Disclose Encryption Keys permission.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 13 of 108

Example

[C# Example]

int intAccount = 101000401;

//Get the account's EncryptionKey
string strEKey = AdminService.AccountGetEncryptionKey(intAccount, "Account holder
forgot encryption key");
Console.WriteLine("{0} has an Encryption key of: {1}", intAccount, strEKey);

AccountSetPassword, on page 30

AccountGetInfo, on the next page

AccountGetExtendedInfo
Get selected profile information for a specified account (AccountNumber). Information you can get
includes:

l Account cancellation date

l Account deletion date

l Message code (selected by technician canceling the account or putting it on hold)

l Billing method code

l Other profile information

Parameters

Name Description Type

AccountNumber The number of the account you want to get
extended information for

xsd:int

FieldName Type of profile field containing the requested
data. Can be one of the following:

l PROFILEFIELD_SECTION_NAME

l PROFILEFIELD_ATTRIBUTE_NAME

Connected:PROFILEFIELD

FieldValue Section or attribute for which you want to get
information

xsd:string

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 14 of 108

Return Values

Name Description Type

ExtendedAccountInfo A data structure that contains profile
information for the specified account.

Connected:
AdminAPIExtendedAccountInfo,
on page 97

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access
resources.

1016 The specified account cannot be found on the system.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPIExtendedAccountInfo EAI = m_AAPI.AccountGetExtendedInfo(101000101,
PROFILEFIELD.PROFILEFIELD_SECTION_NAME, "Network");

Console.Writeline("Cancel Date: " + EAI.dtCancelDate.ToString());
Console.Writeline("Delete Date: " + EAI.dtDeleteDate.ToString());
Console.Writeline("Billing Method: " + EAI.nBillingMethod.ToString());
Console.Writeline("Message Code: " + EAI.nMsgCode.ToString());

int idx=0;
foreach (AdminAPIProfileInfo Temp in EAI.ProfileInfo)
{

Console.Writeline("Profile Info " + idx + ":");
Console.Writeline("\tAttribute: " + Temp.strAttribute);
Console.Writeline("\tSection: " + Temp.strSection);
Console.Writeline("\tValue: " + Temp.strValue);
idx++;

}

AccountGetInfo
Gets information for the specified account number. Information is returned as both individual values
and structures containing values.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 15 of 108

Parameters

Name Description Type

AccountNumber The account for which you want to retrieve Agent, account size, or
user information.

xsd:int

Return Values

Name Description Type

AdminAPIAccountInfo This structure that contains information
about the account including its start date, its
Agent install path, Agent version, user
information, account size and custom fields.

Connected:
AdminAPIAccountInfo,
on page 91

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l If the currently logged–in technician has permission to view credit card data, the credit card type
and number are also retrieved.

l If the logged–in technician does not have the Provide Billing permission, the card type is
returned as 'unknown' and the card number is blank.

l For accounts created prior to version 7.1, the Agent Setup ID is -2.

l For accounts created using Support Center (prior to version 7.5), the Agent Setup ID is not set
and its returned value is -1. This indicates the Agent Setup ID will be determined when the user
registers the account.

l If Custom1 attribute name starts with Dep (or equivalent language translation meaning
"Department"), the Custom1 field is not populated. In this case, the first element of the array has
all the empty values. The User Department field is populated with the value of this attribute. If
Custom2 is present, the second element of the array holds the values of it.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 16 of 108

Example

[C# Example]

AdminAPIAccountInfo cAcntInfo = AdminService.AccountGetInfo(intAccount);

Console.WriteLine(cAcntInfo.dtStartDate.ToString());
Console.WriteLine(cAcntInfo.strAgentInstallPath);
Console.WriteLine(cAcntInfo.strAgentVersion);
Console.WriteLine(cAcntInfo.strComputerName);

AccountSetUserInfo, on page 26

AccountGetEncryptionKey, on page 13

AccountGetInfoEx
Gets information for the specified account number. Information is returned as both individual values
and structures containing values. This call is similar to AccountGetInfo, on page 15, but this call
includes both date and time information.

Parameters

Name Description Type

AccountNumber The account for which you want to retrieve Agent, account size, or
user information.

xsd:int

Return Values

Name Description Type

AccountInfoEx This structure that contains information about the
account including its start date, its Agent install
path, Agent version, user information, account
size and custom fields.

Connected:
AdminAPIAccountInfoEx,
on page 92

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 17 of 108

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l If the currently logged–in technician has permission to view credit card data, the credit card type
and number are also retrieved.

l If the logged–in technician does not have the Provide Billing permission, the card type is
returned as 'unknown' and the card number is blank.

l For accounts created prior to version 7.1, the Agent Setup ID is -2.

l For accounts created using Support Center (prior to version 7.5), the Agent Setup ID is not set
and its returned value is -1. This indicates the Agent Setup ID will be determined when the user
registers the account.

l If Custom1 attribute name starts with Dep (or equivalent language translation meaning
"Department"), the Custom1 field is not populated. In this case, the first element of the array has
all the empty values. The User Department field is populated with the value of this attribute. If
Custom2 is present, the second element of the array holds the values of it.

Example

[C# Example]

AdminAPIAccountInfoEx cAcntInfo = AdminService.AccountGetInfoEx (intAccount);

Console.WriteLine(cAcntInfo.dtStartDate.ToString());
Console.WriteLine(cAcntInfo.strAgentInstallPath);
Console.WriteLine(cAcntInfo.strAgentVersion);
Console.WriteLine(cAcntInfo.strComputerName);

AccountSetUserInfo, on page 26

AccountGetEncryptionKey, on page 13.

AccountGetBackupDates
Gets information about the backup dates associated with a specified account. Information is returned
as an array of the AdminAPIAccountBackupDateInfo structure.

Parameters

Name Description Type

AccountNumber The account for which you want to get the last backup date xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 18 of 108

Return Values

Name Description Type

AdminAPIAccountBackupDateInfo This structure that
contains
information about
Tbackup dates,
including its status,
whether it was
compacted, and
the size of the
backup.

Connected:
AdminAPIAccountBackupDateInfo,
on page 94

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1080 No backup dates for accounts.

AccountGetLastBackupDate
Gets the last backup date for specified account number.

Parameters

Name Description Type

AccountNumber The account for which you want to get the last backup date xsd:int

Return Values

Name Description Type

LastBackupDate Date of the last backup for the specified account. xsd:dateTime

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 19 of 108

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
DateTime dtLastBackUp = AdminService.AccountGetLastBackupDate(101000101);

Console.Writeline("Last Backup was on: " + dtLastBackup.ToString());

AccountGetMediaCount
This API enables you to find out how many units of recordable storage media (DVDs or NAS drives)
are required to fulfil a media order. You can obtain this information before or after an account holder
requests a copy of their backed-up data.

Parameters

Name Description Type

AccountNumber The account number. xsd:int

Return Values

Name Description Type

AdminAPIMediaCount,
on page 97

A structure that contains the
media type and count fields.

Connected:AdminAPIMediaCountList

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 20 of 108

Code Reason

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

The currently logged in technician must have theOrder Media permission.

AccountOrderMedia, on the next page

AccountMoveToCommunity
Move the specified account to a new community.

Parameters

Name Description Type

AccountNumber The number of the account to move. xsd:int

CommunityID The ID of the target community. xsd:int

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1016 The specified account cannot be found on the system.

1024 Unable to perform required action. The destination community does not have enough
licenses available.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 21 of 108

Code Reason

1036 An account cannot be moved to a community with a different Enterprise Directory
configuration.

1037 Unable to move account to the data center level. An account can be moved only to a
community.

1079 Access denied. Logged-in Technician does not have permission ‘Move Accounts’.

Remarks

Logged in technician must have theModify Communities permission for both the original and
destination communities.

When an account is successfully moved, it consumes a license within the new community and
releases the license in its old community. The license it used in the old community then becomes
available to a new account.

Example

[C# Example]

int intAccount = 101000401;

//Move the account to a different community

AdminService.AccontMoveToCommunity(intAccount, intRootCmtyID);

CommunityGetSubCommunityIDs, on page 55

AccountGetInfo, on page 15

AccountOrderMedia
Place an order for all of the specified account's data to be written to the specified type of external
media and shipped to the account address using the specified shipping priority.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number. xsd:int N/A

MediaType Enumerated value. One of the following:

l Media_DVD (digital video disc)

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 22 of 108

Name Description Type Max
String
Size

l Media_NAS (network attached
storage device)

ShippingLabel The name and address as it should
appear on a shipping label. If this is not
specified, it will be populated with:

FirstName LastName Telephone\n

CompanyName\n

Address1\n

Address2\n

City State ZIP Country

xsd:string 255

ShippingPriority Enumeration value. One of: High, Medium,
Low.

This value is mapped to the appropriate
default shipping method.

l High. Next Day (no P.O. boxes)

l Medium. 2nd Day (no P.O. boxes)

l Low. Ground

Connected:Shipping
Priority

Return Values

When successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

Logged-in Technician must have theOrder Media permission.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 23 of 108

ShippingPriority is saved in the database as a string representation of the ShippingPriority
enumeration values.

AccountGetMediaCount, on page 20

AccountOrderMediaEx
Place an order for all of the specified account's data from a specified backup date to be written to the
specified type of external media and shipped to the account address using the specified shipping
priority. Use this API for version 8.0 Agents only.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number. xsd:int N/A

MediaType Enumerated value. One of the
following:

l Media_DVD (digital video disc)

l Media_NAS (network attached
storage device)

Connected:MediaType

ShippingLabel The name and address as it should
appear on a shipping label. If this is not
specified, it will be populated with:

FirstName LastName Telephone\n

CompanyName\n

Address1\n

Address2\n

City State ZIP Country

xsd:string 255

ShippingPriority Enumeration value. One of: High,
Medium, Low.

This value is mapped to the
appropriate default shipping method.

l High. Next Day (no P.O. boxes)

l Medium. 2nd Day (no P.O.
boxes)

l Low. Ground

Connected:Shipping
Priority

BackupDate A backup date. xsd:date

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 24 of 108

Return Values

When successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1005 Access denied. Logged-in Technician does not have permission ‘Order External Media’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1081 Invalid Backup Date.

1082 No backup dates for Pre-8.0 Account.

Remarks

l Logged-in Technician must have theOrder Media permission.

l ShippingPriority is saved in the database as a string representation of the ShippingPriority
enumeration values.

AccountGetMediaCount, on page 20

AccountSendMessage
Sends a text message (Message) to a specified account (AccountNumber).

Parameters

Name Description Type

AccountNumber The number of the account to which you want to send a text
message.

xsd:int

Message Message to send to the account. xsd:string

Return Values

If successful, nothing is returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 25 of 108

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

Message content truncated after 1000 characters.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminService.AccountSendMessage(101000101, "Please log off now.");

AccountSetUserInfo
Updates information for the specified account. To change the value for a single field, call the
AccountGetInfo API to pre-set the other values before calling AccountSetUserInfo.

Parameters

Name Description Type

AccountNumber The number of the account that you
want to change information for.

xsd:int

AdminAPIUserInfo,
on page 99

A structure that contains user account
information fields.

Connected:AdminAPIUserInfo

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 26 of 108

Code Reason

1012 Credit Card expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1018 Credit Card number is invalid.

1045 Specified LoginID could not be located in Enterprise Directory.

1051 Access denied. Logged-in Technician does not have permission ‘Change Enterprise
Directory User’.

1052 Due to connection problems with the Enterprise Directory, the LoginID cannot be
changed.

Remarks

l If you use AccountSetUserInfo to set the LoginID for an enterprise directory account, all other
field values are ignored. These values will be obtained from the enterprise directory record for
the account.

l To change enterprise directory login IDs, the technician must have the Change User ID
permission.

l Custom field values cannot be set using this API.

Valid credit card expiration date formats are:

mm/yy

mm-yy

mmyy

mm/yyyy

mm-yyyy

mmyyyy

The valid date values are:

o Month = 1 through 12

o Year is from 1 through 99 or 2001 through 2099. (Leading zeros are ignored, for example
003/009 is accepted and converted to 03/2009 date.)

l If date is submitted in any other form, the error 1012 is returned.

l When AccountGetInfo is called, the credit card expiration date is returned in the format
mm/yyyy.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 27 of 108

l To clear existing credit card information, submit empty credit card information. This clears the
number and date and the credit card type is set to CARD_TYPE::CARD_UNKNOWN.

l Either the complete credit card number or just the last four digits of the credit card number can
be stored as a valid credit card number.

l When submitting a new credit card number, different information is required depending on
whether the full credit card number or just the last four digits of the credit card number are
stored:

o If only the last four digits of the credit card number are stored, a valid expiration date and
valid credit card type must be submitted.

o If the full credit card number is stored, only a valid expiration date is required. The Type
field is ignored since the type will be derived from the card number.

l Rules for changing credit card information are as follows:

o If the submitted credit card number is the same or empty, the type is the same or unknown,
but the expiration date is different, only the expiration date is changed.

o If the submitted credit card number is the same or empty, the type is different and the date is
different, the date is changed. The type is changed only if just the last four (4) digits of the
credit card number are stored. Otherwise, type is ignored.

o If the submitted credit card number and date are the same or empty, but the type is different,
the type is changed only if just the last four (4) digits of the credit card number are stored.
Otherwise, type is ignored.

o If the submitted credit card number is different and the expiration date is valid, the existing
credit card number and date is replaced. The type must be provided only if the existing type
is invalid. If the new credit card number consists of four (4) digits and the stored credit card
number is a full number, the full number is replaced with the four digit one. A different credit
card number means the new number is not empty and if it is a full number, it doesn't match
the existing one. If the new number is 4 digits and the stored number is a full number, just
the last 4 digits of the existing number are compared and has to be different.

AccountGetInfo, on page 15

AccountSetStatus, on page 31

AccountSetPassword, on page 30

AccountSetAgentSetupID, below

AccountSetAgentSetupID
Changes the Agent Setup for the specified account. The Agent Setup is the Agent installation file.
Each Agent installation executable can contain different features and permissions. The new Agent
Setup must reside in the community or parent community of the specified account.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 28 of 108

Parameters

Name Description Type

AccountNumber The number of the user account that you want to assign a new
Agent Setup to.

xsd:int

AgentSetupID The ID number of the Agent Setup that you want to assign to the
specified account. This determines which features and
permissions are available to the account.

xsd:int

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1026 Community this account belongs to does not contain the Agent Setup specified.

1044 Access denied. Logged-in Technician does not have permission ‘Change the Agent
Setup of Accounts’.

1047 The Agent Setup of the account may not be changed because the account is deleted.
Setups can be changed only for accounts that are active or on hold.

Remarks

l You can use this API to change Agent Setup for the reserved accounts, since it can be set when
reserving the accounts in the CommunityReserveTicket API.

l Technician must have the Change the Agent Configuration of Accounts permission to
change an account's Agent Setup.

l If you have the technician Use Scripting permission, you can get the community or Agent
Setup ID number by hovering over the name of the current or parent community or agent setup
in the Support Center interface.

l Use the CommunityGetSubCommunityIDs API to obtain a list of subcommunities in a specific
community. To determine the name of a community using its ID, use the CommunityGetName
API.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 29 of 108

l Use AccountGetInfo API to obtain an account's current Agent Setup ID. AgentSetupID is
returned in AdminAPIBaseAccount.

l Optionally, you may use the Account C# helper class to get and set the AgentSetupID.

AccountGetInfo, on page 15

AccountSetPassword
Sets the password for the specified account.

Parameters

Name Description Type Max String Size

AccountNumber The account number for the
account that you want to
change.

xsd:int N/A

Password The new password. xsd:string Refer to Password
Restrictions for specific
password limitations

Justification The reason or justification for
the password change.

xsd:string 255

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1022 The password provided does not conform to requirements. Account passwords must be
at least 6 characters long, cannot have leading and trailing space and cannot contain all
the same characters.

1023 Justification cannot be blank.

1053 Access denied. Logged-in Technician does not have permission ‘Reset Account
Passwords'.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 30 of 108

Remarks

The logged-in technician must have the Reset Account Passwords permission to use this API.

Example

[C# Example]

int intAccount = 101000401;

//Change the account password

AdminService.AccountSetPassword(intAccount, "NewPass1", "Account holder forgot
password, asked for new password");

AccountSetStatus, below

AccountVerifyUserCredentials, on page 34

AccountSetStatus
Sets the status of the specified account.

Parameters

Name Description Type Max
String
Size

AccountNumber The account number for the account that
you want to change.

xsd:int

Status New Status.

The values defined in the Account Status
table in CommunityFindAccounts API.
Only one of three values from this table
can be specified here: Active, Cancelled,
Onhold

Connected:Account
Status

Justification The reason or justification for the
password change.

xsd:string 255

StatusCode Status message code.

For possible values refer to any Support
Center Account status change page. If
technician has Use Scripting permission

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 31 of 108

Name Description Type Max
String
Size

each status message is prefixed with the
status code. If 0 is submitted, the value is
ignored and no error is produced.

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

1023 Justification cannot be blank.

1024 Unable to perform required action. The destination community does not have enough
licenses available.

1038 Access denied. Logged-in Technician does not have permission ‘Change the Status of
Accounts’.

1039 The status of the account may not be changed at this time, as it is locked by another
process.

1040 The status of the account may not be changed, as it is 'reserved'.

1041 The status of the account may not be changed, as it is 'deleted'.

1042 Cannot use the status specified. Status has to be one of the three values: Active,
Cancelled or OnHold.

1060 Invalid status message code.

1061 The status of the account may not be change, as old status is invalid.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 32 of 108

Remarks

l The Logged-in technician must have the permission Change the Status of Accounts.

l If the status of an account that is Active/OnHold/Reserved is changed to Cancelled/Deleted, the
license used by the account would becomes available for use by another individual.

l If the status of an account is Reserved, it can only be changed to ‘Cancelled’.

Example

[C# Example]

int intAccount = 101000401;

//Put the account on hold

AdminService.AccountStatus(ACCOUNT_STATUS.HOLD);

AccountGetInfo, on page 15

AccountSetUserInfo, on page 26

AccountVerifyAgentInfoURLHash
Determines if hash included in the Agent Info URL is valid. You can use this API to validate the hash
extracted from the URL. Validation is based on the contents of the hash and the date the hash was
generated. If the contents are valid and the hash was generated the day or the day before the
request, then the API determines the request is from an authorized and authentic Agent.

Parameters

Name Description Type Max String
Size

AccountNumber The account number associated with the
Agent.

xsd:int

Hash Hash string obtained from the Agent Info
URL

xsd:string

Return Values

Name Description

HashCorrect If the hash is valid, returns True; else returns False.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 33 of 108

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1016 The specified account cannot be found on the system.

Remarks

l The intent of this API is to provide a means to verify that the request was sent from a computer
associated with an authorized, registered account within two days from the time the request
was made.

l This verification does not guarantee that the URL originated from the Agent.

l This verification does not guarantee that the URL was not intercepted and reused by a third
party.

l It is possible for a request to originate from the computer associated with the account, but not
from the account holder. For example, an unauthorized person who has gained access to a
registered user's computer. Use the AccountVerifyUserCredentials in addition to this API to
verify the request is coming from a registered account holder.

AccountVerifyUserCredentials, below

AccountVerifyUserCredentials
Verifies whether a user with the specified account number or e-mail address exists in the Data Center
and if the specified password matches the account password. If the password is verified, returns
Approved set to True.

Parameters

Name Description Type

AccountNumber The account number of the account to be verified. xsd:int

Password The user's account password. xsd:string

Return Values

Name Description Type

Approved Indicates acceptance of credentials. The return value is set to True
if the password is valid. Otherwise it is set to False.

xsd:boolean

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 34 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1028 This account has been locked due to too many unsuccessful login attempts.

1068 Unable to authenticate user. Either the account or password is incorrect.

AccountGetInfo, on page 15

AccountSetStatus, on page 31

Community APIs
The available APIs for accessing community attributes include:

l CommunityChangeName, on the next page

l CommunityCreate, on page 37

l CommunityCreateInServerGroup, on page 38

l CommunityDisableRegistration, on page 40

l CommunityEnableRegistration, on page 41

l CommunityFind, on page 42

l CommunityFindAccounts, on page 43

l CommunityFindFedAuthAccounts, on page 44

l CommunityGetChangedAccounts, on page 45

l CommunityGetChangedAccountsEx, on page 47

l CommunityGetChangedCommunities, on page 48

l CommunityGetInstall, on page 50

l CommunityGetLicenseCount, on page 51

l CommunityGetName, on page 52

l CommunityGetParent, on page 53

l CommunityGetStatisticsInfo, on page 54

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 35 of 108

l CommunityGetSubCommunityIDs, on page 55

l CommunityGetTechnicians, on page 56

l CommunityReserveTicket, on page 57

l CommunityReserveTicketandFetch, on page 59

l CommunitySetLicenseCount, on page 60

CommunityChangeName
Changes the name of the specified community.

Parameters

Name Description Type Max String
Size

CommunityID The ID of the community that you want to
change.

xsd:int

CommunityName The new community name. xsd:string 64

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 36 of 108

Remarks

l The logged-in technician must have theModify Communities permission.

l Community names are not case-sensitive. This API allows changing capitalization of name.

Example

[C# Example]

int intCmtyId = 15;

//Change the name of our community

AdminService.CommunityChangeName(intCmtyId, "Changing name to this");

CommunityCreate, below

CommunityGetName, on page 52

CommunityCreate
Creates a subcommunity (CommunityID, CommunityName) in the specified parent community
(ParentCommunityID). Logged-in technician must have theModify Communities permission.

Parameters

Name Description Type Max
String
Size

ParentCommunityID The ID of the community where you want to
create the subcommunity.

xsd:int

CommunityName The name of the new subcommunity. xsd:string 64

Return Values

Name Description Type

CommunityID The ID of the new subcommunity. xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 37 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

Example

[C# Example]

//Create a new community

int intCmtyId = AdminService.CommunityCreate(intRootCmtyId, "This is my new
community");

Remarks

Logged-in technician must have theModify Communities permission.

CommunityGetName, on page 52

CommunityChangeName, on page 36

CommunityCreateInServerGroup
Creates a subcommunity (CommunityID, CommunityName) in the specified server group
(ParentCommunityID, ServerGroup). Logged-in technician must have theModify Communities
permission.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 38 of 108

Parameters

Name Description Type Max
String
Size

ParentCommunityID The ID of the community where you
want to create the subcommunity.

xsd:int

CommunityName The name of the new subcommunity. xsd:string 64

ServerGroup The name of the server group where
you want to create the subcommunity.

xsd:int

Return Values

Name Description Type

CommunityID The ID of the new subcommunity. xsd:int

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1020 A community with the specified name already exists.

1021 Unable to authenticate user. Either the account or password is incorrect.

1029 Community names cannot include the character greater-than symbol, (>).

1076 Invalid server group; the parent community does not exist in the specified
server group.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
int nCommunityId = AdminService.CommunityCreateInServerGroup(5, "New Community
Name", 1);

Console.Writeline("New community created has an Id of " + nCommunityId);

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 39 of 108

CommunityDisableRegistration
Disables registration to the community (CommunityID) if it was enabled. Use this API to prevent any
new users from registering to the community.

Parameters

Name Description Type

CommunityID The ID of the community you want to disable. xsd:int

Return Values

Name Description

Success If registration is disabled, returns True; if registration is already
disabled or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

l Logged-in technician must have theModify Communities permission.

l If registration is already disabled, the API does nothing and no error messages are returned.

l This API cannot be used to disable the root community (-1). Submitting -1 as the CommunityID
returns error 1015 and does nothing.

Example

[C# Example]

int intCmtyId = 15;

//Turn off registration to the community

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 40 of 108

AdminService.CommunityDisableRegistration(intCmtyId);

CommunityEnableRegistration, below

AccountMoveToCommunity, on page 21

CommunityEnableRegistration
Enables registration to the community (CommunityID) if it was disabled. Logged-in technician must
have theModify Communities permission.

Parameters

Name Description Type

CommunityID The ID of the community you want to enable. xsd:int

Return Values

Name Description

Success If registration is enabled, returns True; if registration is already
enabled or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

l Logged-in technician must have theModify Communities permission.

l If registration is already enabled, the API does nothing and no error messages are returned.

l This API cannot be used to enable the root community (-1), which remains enabled by default.
Submitting -1 as the CommunityID returns error 1015 and does nothing.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 41 of 108

Example

[C# Example]

int intCmtyId = 15;

//Turn on registration to the community

AdminService.CommunityEnableRegistration(intCmtyId);

CommunityDisableRegistration, on page 40

AccountMoveToCommunity, on page 21

CommunityFind
Find all community IDs matching a specified parent community (ParentCommunityID) and
community name (CommunityName).

Parameters

Name Description Type Max
String
Size

ParentCommunityID The parent community for which you
want to find a community.

xsd:int

CommunityName The name of the community whose ID
you want to find.

xsd:string 64

Return Values

Name Description Type

CommunityList An array of community IDs. Connected:Community
Find_CommunityList_
Array

An empty list is returned if the search is successful, but no matching results are found.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 42 of 108

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPICommunityInfo[] aCI = AdminService.CommunityFind(5, "Find Me");

foreach (AdminAPICommunityInfo Temp in aCI)
{

Console.Writeline("Community ID: " + Temp.nCommunityID):
Console.Writeline("Parent Community ID: " + Temp.nParentId);
Console.Writeline("Parent Name: " + Temp.strParentCommunityName);

}

CommunityFindAccounts
Find all accounts that match specified search criteria, including accounts in subcommunities of the
specified community (CommunityID).

Parameters

Name Description Type Max
String
Size

CommunityID The community you want to find accounts
in; the starting point of the search.

xsd:int

FieldName The field to match Must be either LoginID
or Email.

Connected:Searchfield

FieldValue Text to match. Must be the LoginID
supplied in registration or e-mail address.
If this value is blank, no search is
performed.

xsd:string (LoginID)

xsd:string (Email)

64

100

Status Find accounts with the specified status;
the value of this field must be one of the
following values:

ACCOUNT_NOSTATUS

ACCOUNT_ANY

ACCOUNT_INUSE *

Connected: ACCOUNT_
STATUS

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 43 of 108

Name Description Type Max
String
Size

ACCOUNT_DELETED

ACCOUNT_RESERVED

ACCOUNT_ONHOLD

ACCOUNT_CANCEL

ACCOUNT_ACTIVE

*"INUSE" indicates the account is either
Active or On Hold

Return Values

If successful and matching results are found, this API returns an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo structures.

An empty list is returned if the search is successful, but no matching results are found.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

CommunityGetChangedAccounts, on the next page

CommunityFindFedAuthAccounts, below

AccountGetInfo, on page 15

AccountSetAgentSetupID, on page 28

AccountSetStatus, on page 31

AccountMoveToCommunity, on page 21

CommunityFindFedAuthAccounts
Find all accounts that match a particular federated authentication User ID in a specific community.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 44 of 108

Parameters

Name Description Type Max
String
Size

CommunityID The community you want to find
accounts in.

xsd:int

AccountUID The User ID whose accounts you want
to find.

xsd:string 128

Return Values

If successful and matching results are found, this API returns an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo structures.

An empty list is returned if the search is successful, but no matching results are found.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

CommunityGetChangedAccounts, below

CommunityFindAccounts, on page 43

AccountGetInfo, on page 15

AccountSetAgentSetupID, on page 28

AccountSetStatus, on page 31

AccountMoveToCommunity, on page 21

CommunityGetChangedAccounts
Returns a list of all user accounts and the account information that changed after the specified date.
An account is considered changed if there are any changes to the user information including Name,
Address, Phone, as well as status changes and community assignment changes. You can use a
bitmask to return a subset of user or account information.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 45 of 108

Parameters

Name Description Type

CommunityID The community where you want to search for
accounts that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

Date The date on or after which the account changes
occurred; use with the EndDate parameter to
search for accounts that changed within a specific
date range.

xsd:string

Return Values

Name Description Type

AccountChange
List

An array of account numbers. The array
comprises a list of accounts that
changed on or after the specified Date.

Connected:Community
GetChangedAccounts_
AccountChangeList_Array

EndDate Date of the last account change found. xsd:date

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1069 The specified date is not a valid date.

Remarks

l Accounts in subcommunities of the specified community are also returned.

l May be used to notify another application or portal of changes to user information.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

AccountGetInfo, on page 15

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 46 of 108

http://www.w3.org/TR/xmlschema-2/#date

CommunityGetChangedAccountsEx
Returns a list of all user accounts and the account information that changed after the specified date
and time. An account is considered changed if there are any changes to the user information
including Name, Address, Phone, as well as status changes and community assignment changes.
You can use a bitmask to return a subset of user or account information. This call is similar to
CommunityGetChangedAccounts, on page 45, but this call includes both date and time information.

Parameters

Name Description Type

CommunityID The community where you want to search for
accounts that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

DateTime The date and time on or after which the account
changes occurred; use with the EndDateTime
parameter to search for accounts that changed
within a specific date range.

xsd:dateTime

ChangeMask Indicates the type of bitmask:

MODIFICATIONSBITMASK_ALL

MODIFICATIONSBITMASK_OTHER

MODIFICATIONSBITMASK_USER_INFO

Connected:
MODIFICATIONSBITMASK

Return Values

Name Description Type

AccountChange
List

An array of account
numbers. The array
comprises a list of
accounts that changed on
or after the specified
DateTime.

Connected:CommunityGetChangedAccounts_
AccountChangeList_Array

EndDateTime Date and time of the last
account change found.

xsd:dateTime

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 47 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1069 The specified date is not a valid date.

Remarks

l Accounts in subcommunities of the specified community are also returned.

l May be used to notify another application or portal of changes to user information.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:dateTime type.

AccountGetInfo, on page 15

CommunityGetChangedCommunities
Returns a list of all communities that changed during the specified period. Information includes any
existing communities changes as well as new communities.

Parameters

Name Description Type

ParentCommunityID The community where you want to start the search
for communities that have recently changed.
Subcommunities of the specified community are
included in the search.

xsd:int

Date The date on or after which the community changes
occurred; use with the EndDate parameter to
search for communities that changed within a
specific date range.

xsd:date

EndDate The date before which the community changes
occurred; used in conjunction with the Date
parameter when searching for communities that
changed within a specified date range.

xsd:date

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 48 of 108

http://www.w3.org/TR/xmlschema-2/#date

Return Values

Name Description Type

Community
ChangeList

The community ID for each
changed community. This
information comes from the
Registry.ChangedCommunity
table.

Connected:CommunityGetChangedCommunities_
CommunityChangeList_
Array

Count Size of
CommunityChangeList.

xsd:int

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1075 Invalid date range.

Remarks

l Communities in subcommunities of the specified parent community are also returned.

l Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
DateTime dtStartDate = DateTime.UtcNow.AddDays(-30);
DateTime dtEndDate = DateTime.UtcNow;
int[] anChangeCommunityIds AdminService.CommunityGetChangedCommunities(nRoot_
Community, dtStartDate.Date, dtEndDate.Date);
int[] anAccounts;
foreach (int nID in anChangeCommunityIds)
{
 int[] anData = AdminService.CommunityGetChangedAccounts(nID, dtStartDate.Date,
MODIFICATIONSBITMASK.MODIFICATIONSBITMASK_OTHER, out dtEndDate);
 foreach (int nAccount in anData)

{
 Console.Writeline(nAccount);
 }
}

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 49 of 108

http://www.w3.org/TR/xmlschema-2/#date

CommunityGetInstall
Returns data that can be used to create a PC Agent installation file for a selected parent community
(ParentCommunityID) and Agent configuration (ConfigurationID).

Parameters

Name Description Type

ParentCommunityID The parent community that contains the Agent
configuration you want to get.

xsd:int

ConfigurationID The ID of the Agent configuration you want to
download.

xsd:int

Return Values

If successful, the API returns a binary byte array that you can save as an Agent Setup file (for
example, AgentSetup.msi).

Remarks

This API lets you create an Agent Setup file for a PC Agent.

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1078 Community does not contain the Agent Setup specified.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
byte[] abInstall = AdminService.CommunityGetInstall(5, 9);

FileStream fsWriter = new FileStream("setup.msi", FileMode.Create);
foreach (byte bTemp in abInstall)
{

fsWriter.WriteByte(Byte);
}
fsWriter.Close();

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 50 of 108

CommunityGetLicenseCount
Returns the number of licenses allocated to a community for PC Agents.

Parameters

Name Description Type

CommunityID The community for which you want to obtain the
number of allocated licenses for PC Agents.

xsd:int

ProductCode Indicates the type of product:

PRODUCTCODE_PC_AGENT

Connected:
ProductCode

Return Values

Name Description Type

LicenseCount The number of licenses allocated to the community for a
specific product type.

If access to the community is denied (no licenses are
allocated to the community), the return value is SOAP fault
1070.

If the community inherits licenses from its parent community,
the return value is -1.

If the community has an unlimited number of licenses, the
return value is -2.

xsd:int

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1030 The Data Center is not licensed for this product.

Example

[C# Example]

//Get the license count for CommunityId 19 and print it
//Get the count for PC Agent licenses first

int nCmtyId = 19;

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 51 of 108

PRODUCTCODE ePCode = PRODUCTCODE.PRODUCTCODE_PC_AGENT;
int nCount = AdminService.CommunityGetLicenseCount(nCmtyId, ePCode);
Console.WriteLine("CommunityId {0} has PC license count of: {1}", nCmtyId, nCount);

CommunitySetLicenseCount, on page 60

CommunityGetName
Returns the full and short community names for the specified community ID (CommunityID).

Parameters

Name Description Type

CommunityID The ID of the community you want to return the
names of.

xsd:int

Return Values

If successful, returns AdminAPICommunityNames, which contains the following information:

Name Description Type Max
String
Size

FullName Canonical name of the specified
community ID.

xsd:string 64

ShortName The short community name
(community name only).

xsd:string 64

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

[C# Example]

int intCmtyId = 15;

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 52 of 108

//Get the community name

AdminAPICommunityNames cAPICmtyNames = AdminService.CommunityGetName(intCmtyId);
Console.WriteLine("Canonical Name: {0}", cAPICmtyNames.strFullName);
Console.WriteLine("Short Name: {0}", cAPICmtyNames.strShortName);

CommunityGetSubCommunityIDs, on page 55

CommunityGetParent
Returns the parent (ParentCommunityID) of the given community.

Parameters

Name Description Type

CommunityID The ID of the community you want to return the
parent of.

xsd:int

Return Values

Name Description Type

ParentCommunityID The ID of the community you want to return a list
of subcommunities for

xsd:int

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Remarks

If CommunityID is -1 (that is, the Data Center root community), the return ParentCommunityID will be
-1.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 53 of 108

Example

int nAccount = 101000001;
AdminAPIAccountInfo cAcntInfo = AdminService.AccountGetInfo(nAccount);
int nAccounts_CommunityID = cAcntInfo.BaseAccountInfo.nCommunityID;
int nAccounts_Parent_CommunityID = AdminService.CommunityGetParent(nAccounts_
CommunityID);

CommunityGetStatisticsInfo
Returns the following statistics for a given community (CommunityID):

l Number of accounts

l Number of licenses in use

l Number of licenses available

l Uncompressed tip revision size. (This information allows for identification of the relative size of
the community data.)

Parameters

Name Description Type

CommunityID The ID of the community you want to return
statistics for.

xsd:int

Return Values

Name Description Type

CommunityStatisticsInfo A data structure that contains
statistics for the specified
community, including:

l number of accounts

l number of licenses in use

l number of licenses
available

l uncompressed tip
revision size (allows for
identification of the
relative size of the
community data)

Connected:
AdminAPICommunityStatisticsInfo,
on page 95

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 54 of 108

Error Codes

Code Reason

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

int nRoot_Community = AdminService.SessionLogin(sTechName, sPassword);
AdminAPICommunityStatisticsInfo CSI = AdminService.CommunityGetStatisticsInfo(5);

Console.Writeline("Name: " + CSI.strCommunityName);
Console.Writeline("Account Count: " + CSI.nAccountCount);
Console.Writeline(" License Count Available: " + CSI.nLicenseCountAvailable);
Console.Writeline(" License Count in Use: " + CSI.nLicenseCountInUse);
Console.Writeline(" Tip Revision Uncompressed Size: " +
CSI.lTipRevisionUncompressedSize);

CommunityGetSubCommunityIDs
Returns a list of all the child or subcommunities of the specified parent community.

Parameters

Name Description Type

ParentCommunityID The ID of the community you want to return a list of
subcommunities for

xsd:int

Return Values

If successful, returns SubCommunityIDs, an array of CommunityIDs.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 55 of 108

Example

[C# Example]

int intCmtyId = 15;

//Get a list of ids of subcommunities in this community

int[] intASubCmtyIDs =AdminService. CommunityGetSubCommunityIDs(intCmtyId);
if (intASubCmtyIDs != null)
{
 foreach(int x in intASubCmtyIDs)

{
 Console.Write("{0} ", x)
 }
}

CommunityCreate, on page 37

CommunityChangeName, on page 36

CommunityGetName, on page 52

CommunityGetTechnicians, below

CommunityGetTechnicians
Returns a list of all the technicians in the specified community.

Parameters

Name Description Type

CommunityID The community for which you want to get a list of
technicians.

xsd:int

Return Values

If successful, returns TechIDs, an array of type AdminAPITechnicianID, on page 98.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 56 of 108

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

Example

[C# Example]

int intCmtyId = 15;

//Get a list of technicians in this community

AdminAPITechnicianID[] TechArray = AdminService.CommunityGetTechnicians(intCmtyId);
if (intASubCmtyIDs != null)
{
 foreach(AdminAPITechnicianID T in TechArray)

{
 Console.WriteLine("{0}:{1} ", T.strTechName, T.nCommunityID)
 }
}

CommunityCreate, on page 37

CommunityChangeName, on page 36

CommunityGetName, on page 52

CommunityGetTechnicians, on the previous page

CommunityGetSubCommunityIDs, on page 55

CommunityReserveTicket

DEPRECATED: This API is deprecated. It uses the CommunityReserveTicketandFetch, on
page 59 API to reserve accounts and return the account number.

Reserves an account for future registration. Also sets the user information for the reserved account,
including the account's community, Agent Setup and license code.

Parameters

Name Description Type

CommunityID Community in which to reserve the account. xsd:int

AgentSetupID Agent Setup ID assigned for the future
account. To use the default Agent Setup for
the specified community, set AgentSetupID

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 57 of 108

Name Description Type

to zero (0).

AdminAPIUserInfo,
on page 99

Information about the user of the reserved
account. This info is optional except LoginID
field, which identifies the reserved account.
LoginID may be obtained from another
source such as an enterprise directory
server.

Connected:Admin
APIUserInfo

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

Return Values

If successful, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1018 Credit Card number is invalid.

1024 Unable to perform required action. The destination community does not have
enough licenses available.

1026 Community this account belongs to does not contain the Agent Setup specified.

1035 Agent Setup ID is not enabled.

1063 Access denied. Logged-in Technician does not have permission ‘Reserve
Tickets’.

1066 Cannot reserve account for empty Logon ID.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 58 of 108

Remarks

l Logged-in technician must have the Reserve Accounts permission enabled.

l If supplying the credit card information, see the rules for AccountSetUserInfo, on page 26.

l More than one ticket may be reserved for the same LoginID. This is useful if the individual
account holder has more than one computer to back up.

CommunityCreate, on page 37

CommunityReserveTicketandFetch
Reserves an account for future registration and returns the account number for the reserved account.
Also sets the user information for the reserved account, including the account's community, Agent
Setup and license code.

Parameters

Name Description Type

CommunityID Community in which to reserve the account. xsd:int

AgentSetupID Agent Setup ID assigned for the future
account. To use the default Agent Setup for
the specified community, set AgentSetupID
to zero (0).

xsd:int

AdminAPIUserInfo,
on page 99

Information about the user of the reserved
account. This info is optional except LoginID
field, which identifies the reserved account.
LoginID may be obtained from another
source such as an enterprise directory
server.

Connected:Admin
APIUserInfo

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

Return Values

If successful, this API returns the reserved account number in an array called
AdminAPIBaseAccountInfoList that contains AdminAPIBaseAccountInfo, on page 95 data
structures.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 59 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1018 Credit Card number is invalid.

1024 Unable to perform required action. The destination community does not have
enough licenses available.

1026 Community this account belongs to does not contain the Agent Setup specified.

1035 Agent Setup ID is not enabled.

1063 Access denied. Logged-in Technician does not have permission ‘Reserve
Tickets’.

1066 Cannot reserve account for empty Logon ID.

Remarks

l Logged-in technician must have the Reserve Accounts permission enabled.

l If supplying the credit card information, see the rules for AccountSetUserInfo, on page 26.

l More than one ticket may be reserved for the same LoginID. This is useful if the individual
account holder has more than one computer to back up.

CommunityCreate, on page 37

CommunitySetLicenseCount
Allocates a specified number of licenses in a community for PC Agents.

Parameters

Name Description Type

CommunityID The community to which you want to
allocate licenses for a specific product type.

xsd:int

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 60 of 108

Name Description Type

ProductCode Indicates the type of product license to
reserve for the account:

PRODUCTCODE_PC_AGENT

Connected:ProductCode

LicenseCount The number of licenses that you want to
allocate to the community for a specific
product type. This value cannot exceed the
number of unused licenses available to the
community.

To configure the community to inherit
licenses from its parent community, specify
0 (zero) as the LicenseCount.

To deny access to this community, do not
specify a LicenseCount value.

xsd:int

Return Values

If successful, none.

Error Codes

Code Reason

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist.

1030 The Data Center is not licensed for this product.

1031 The allocated license count value is invalid.

Remarks

The logged-in technician must have the Allocate Licenses to Subcommunities permission
enabled.

Example

[C# Example]

int nCmtyId = 19;

//Allocate 200 PC Agent licenses to the community

ePCode = PRODUCTCODE.PRODUCTCODE_PC_AGENT;
nCount = 200;
AdminService.CommunitySetLicenseCount(nCmtyId, ePCode, nCount);

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 61 of 108

CommunityGetLicenseCount, on page 51

Session APIs
The available interfaces for session features include:

l SessionLoginTechnician, below

l SessionLogoutTechnician, on page 64

SessionLoginTechnician
Starts a SOAP session with Support Center using the specified technician's name and password.

Parameters

Name Description Type Max String
Size

TechName Technician log in name. It is case-
insensitive.

xsd:string 64

Password Technician password. It is case-
sensitive.

xsd:string See Password
Restrictions

Return Values

Name Description

CommunityID Returns the root community ID of the logged in technician.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1030 Unable to authenticate technician. Either the Technician ID or password is
incorrect, or there is more than one technician with submitted credentials.

1031 The current password has expired.

Remarks

l The technician account used to establish the session must have the Use Scripting permission
to make calls to the APIs. Some APIs have additional permission requirements. Refer to the

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 62 of 108

documentation for each API to determine if any additional permissions are required for the calls
you want to make.

l To avoid exposing your password, make sure that the script you use gets the password from
some secure location, such as an encrypted file on disk.

l The C# wrapper class APISession contains code to securely store the technician password in
the OS the first time it is asked for, and then uses it thereafter if the user logged in is the same
user who supplied the password.

l Use TechnicianGetPasswordExpiryDate to determine when your password expires and make
sure you change it and the script before your password expires.

l If there are three unsuccessful attempts to log on, the account will be locked.

l Support Center allows creation of technicians using the same user name and password in
different communities. This API assumes that there aren't any such duplicate technician user
names. If the same user name is used for technicians in different communities, the duplicate
technicians cannot access these APIs. The error 1030 is returned on attempt to authenticate a
duplicate technician user ID.

l To prevent this problem, run the SQL query provided below to identify duplicate technicians. If
duplicates exist, change one of the duplicate user names to a unique name.

select techid, min(permissionvalue), max(permissionvalue), min
(rootcommunityid),
max(rootcommunityid),count(*) from techpermission
where permissiontype = 'pwhash1'
group by techid
having count(*) > 1
and min(permissionvalue) = max(permissionvalue)

Example

[C# Example]

//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminAPIService AdminService = new AdminAPIService()

AdminService.CookieContainer = new System.Net.CookieContainer();
AdminService.PreAuthenticate = true;
AdminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "druidia";
string strTechPassword = "Boston1822";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 63 of 108

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtyId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

AdminService.SessionLogoutTechnician();

SessionLogoutTechnician, below

SessionLogoutTechnician
Log out of a session.

Parameters

None.

Return Values

None.

Remarks

If SessionLogoutTechnician is not called, it will be automatically abandoned by IIS after the session
time out has passed (The default session time-out value is twenty (20) minutes.) However, calling
this function to end a session is recommended, since it frees up resources on the Web server.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 64 of 108

Example

[C# Example]

//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminAPIService AdminService = new AdminAPIService()

AdminService.CookieContainer = new System.Net.CookieContainer();
AdminService.PreAuthenticate = true;
AdminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "druidia";
string strTechPassword = "Boston1822";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();
Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtyId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

AdminService.SessionLogoutTechnician();

SessionLoginTechnician, on page 62

Reports APIs
The available interfaces for reports include:

l ReportTemplateRun, below

l ReportGet, on page 67

l ReportDelete, on page 68

ReportTemplateRun
Runs a defined report in the specified community. This API returns the report name immediately,
without waiting for all of the report results. Use the ReportGet API to get the actual report results.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 65 of 108

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 98

A data structure that
contains the name of
the report template
to run and ID of the
community where
the report was
created.

Connected:AdminAPIReportTemplateID

IncludeSubCommunites Determines whether
to include
information from the
subcommunities of
the specified
community.

xsd:boolean

ReportStartDate The start of the date
range to use when
collecting report
information.

xsd:dateTime

ReportEndDate The end of the date
range to use when
collecting report
information.

xsd:dateTime

Return Values

If the template is successfully run, returns the name of the report results for the specified community
and report template.

Name Description Type Max
String
Size

ReportName Name of the report output.

If the name was not passed in with the ReportName
parameter, then the default format is used:

<CommunityID>_8_<NameOfReport>.scr

xsd:string 64

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 66 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

1057 A report with this name already exists, or is currently running in the queue.

1059 Specified date range is invalid: start date is after the end date.

1065 Report Template does not exist in requested community.

Remarks

l Logged-in technician must have the Run Reports permission.

l To include information from all subcommunities in the specified community, specify
IncludeSubCommunites as True.

l A report with the requested name and CommunityID must exist in Support Center.

l The report can be self-contained, requires no additional information to run, or requires the date
range. It also applies to the Custom reports that have Active Run Screen type.

l To use this API to run a custom report, make sure the custom report's Run Screen type is set to
Custom and that all parameters for the run screen have default values (no validation for the
parameters is performed). Refer to Support Center Help for more information about running
custom Support Center reports.

l Report dates must be in GMT (UTC) time. All report times are converted to the server time
before running the report. Support Center displays report data using server time.

l Start and end dates before 1970 are invalid. If invalid report dates are specified for reports that
require a date, the report template defaults are used to generate the report. For reports that do
not require dates, invalid dates are ignored and no dates are used to generate the report
results.

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

ReportDelete, on the next page

ReportGet, below

ReportGet
Uses the report name returned by the ReportTemplateRun API to retrieve report results.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 67 of 108

http://www.w3.org/TR/xmlschema-2/#date

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 98

A data structure that contains
the name of the report
template to run and ID of the
community where the report
was created.

Connected:AdminAPIReportID

Return Values

Name Description Type

ReportXML An XML buffer for the requested report. xsd:string

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

1019 Report does not exist in requested community.

1100 Report is currently running in the queue.

Remarks

l The logged-in technician has must have the Run Reports permission.

l Error code 1100 does not indicate an error condition, just that the report has not finished
running yet. Wait and call the API again to obtain the report results.

ReportDelete, below

ReportDelete
Deletes report output in the specified community.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 68 of 108

Parameters

Name Description Type

AdminAPIReportTemplateID,
on page 98

Structure that contains the
report name and community
ID.

Connected:AdminAPIReportID

Return Values

If report output is successfully deleted, nothing is returned.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1004 Access denied. Logged-in Technician does not have permission ‘Run Reports’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

Remarks

l The logged-in technician must have the Run Reports permission enabled.

l Reports deleted from a parent community are no longer available to any subcommunities that
inherit them.

l If specified report does not exist, there is no error returned and API does nothing.

ReportTemplateRun, on page 65

Technician APIs
The technician APIs allow you to change values for technician IDs and passwords. The available
interfaces are:

l AccountOrderMedia, on page 22

l TechnicianDelete, on page 72

l TechnicianGetPasswordExpiryDate, on page 72

l TechnicianGetPasswordExpiryDateTime, on page 74

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 69 of 108

TechnicianCreate
Creates a new technician user ID within the specified community and grants the same permissions
as specified technician.

Parameters

Name Description Type Max
String
Size

TechID Identifies the technician. See the table
below.

Connected:
AdminAPI
TechnicianID

64

TechPassword Technician temporary password. If the
community that the technician is being
added to is an enterprise directory
community, the password should be empty
or it will be ignored. Instead, the API verifies
that the new TechID exists in the enterprise
directory server.

xsd:string

SameAsTechID The ID of an existing technician that
possesses the same set of permissions that
you want to grant to the new technician. The
permissions granted to the new technician
will be equal to or less than the set
possessed by the currently logged in
technician.

Connected:
AdminAPI
TechnicianID

AdminAPI
TechnicianID

CommunityID is the ID of the community
where you want to create the technician
(also known as the technician's "root
community")

TechName is the unique login name you
want to assign to the technician.

xsd:int

xsd:string

--

64

Return Values

When successful, nothing is returned.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 70 of 108

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1015 The community does not exist

1032 The Technician ID that you are trying to add is already associated with an
existing technician.

1062 The Technician Login ID cannot be empty.

1063 The password provided does not conform to requirements. All passwords must
be at least 8 characters long, including at least one numeric character.

1064 "SameAsTechID" does not exist.

Remarks

l The currently logged-in technician cannot grant any permissions that he himself does not have.

l If the community into which the technician is being added is an enterprise directory community,
you may leave the password empty since it will be ignored. This API verifies that the new
TechID exists in the enterprise directory server.

Examples

[C# Example]

//This is the new technician information:
AdminAPITechnicianID Create = new AdminAPITechnicianID();

Create.nCommunityID = 5;
Create.strTechName = "NewTechnician";

//This is the existing technician that we want to use
//as a model for the new technician's permissions:
AdminAPITechnicianID As = New AdminAPITechnicianID();

As.nCommunity = 5;
As.strTechName = "MyTechnicianLoginName";

adminService.TechnicianCreate(Create "NewPass1", As);

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 71 of 108

TechnicianGetPasswordExpiryDate, below

TechnicianDelete, below

TechnicianDelete
Deletes the specified technician from the specified community.

Parameters

Name Description Type

TechID Identifies the technician. Connected: AdminAPI
TechnicianID

Return Values

Name Description

Success If the technician is deleted, returns True; if technician was not found
or in case of any error listed below, returns False.

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1014 Access denied. Logged-in Technician is not authorized to access resources.

1027 Unable to perform required action. A technician cannot modify him/herself.

Remarks

l The logged-in technician account that is making the call must have theModify Technician
Permissions password to delete another technician.

l If specified technician does not exist in the system, there is no error returned and API does
nothing.

AccountOrderMedia, on page 22

TechnicianGetPasswordExpiryDate
Get the date that the currently logged in technician will expire.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 72 of 108

Parameters

None.

Return Values

Name Description Type

Date The date the password will expire. xsd:date

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Remarks

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:date type.

Example

[C# Example]
//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminServiceAPI adminService = new AdminServiceAPI()

adminService.CookieContainer = new System.Net.CookieContainer();
adminService.PreAuthenticate = true;
adminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "TechAccount1";
string strTechPassword = "NewPass1";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDate();

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy"));

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 73 of 108

http://www.w3.org/TR/xmlschema-2/#date

AdminService.SessionLogoutTechnician();

TechnicianGetPasswordExpiryDateTime
Get the date and time that the currently logged in technician will expire. This call is similar to
TechnicianGetPasswordExpiryDate, on page 72, but this call includes both date and time
information.

Parameters

None.

Return Values

Name Description Type

DateTime The date and time the password will expire. xsd:dateTime

Error Codes

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

Remarks

Refer to http://www.w3.org/TR/xmlschema-2/#date for a description of the xsd:dateTime type.

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 74 of 108

http://www.w3.org/TR/xmlschema-2/#date

Example

[C# Example]
//Login and set a cookie so that multiple calls
//can be made during a single session, display the
//root community ID of the logged-in technician,
//display the password expiration date, then logout.

AdminServiceAPI adminService = new AdminServiceAPI()

adminService.CookieContainer = new System.Net.CookieContainer();
adminService.PreAuthenticate = true;
adminService.Credentials = System.Net.CredentialCache.DefaultCredentials;

string strTechName = "TechAccount1";
string strTechPassword = "NewPass1";
int intRootCmtyId = AdminService.SessionLoginTechnician (strTechName,
strTechPassword);

DateTime dtExp = AdminService.TechnicianGetPasswordExpiryDateTime ();

Console.WriteLine("Technician {0} is logged into community ID:{1}.", strTechName,
intRootCmtId);
Console.WriteLine("Password for technician {0} expires on {1}.", strTechName,
dtExp.ToString("MM/dd/yyyy HH:mm:ss"));

AdminService.SessionLogoutTechnician();

Web Services Programming Reference
Chapter 2: APIs

Connected Backup (9.0.7) Page 75 of 108

Chapter 3: C# class library
This chapter describes the information used with the class libraries in the Web Services API.

l Use the C# class library, below

l Create C# wrapper classes, on the next page

l Class listing, on the next page

Use the C# class library
Using the WSDL file installed with the Web Interface Service, you can create several C# classes.
These classes provide API wrappers that you can use to wrap the SOAP requests and helper
methods that you can use to handle the SOAP results.

The API wrapper methods:

l Accept the parameters

l Create a SOAP request

l Send the request to Support Center for processing

l Wait for the SOAP response and store it as member variables

The helper methods provide a way to get and handle the SOAP results.

The main wrapper classes are Community and Account. Each class is responsible for the
appropriate set of API calls. Each class constructor accepts existing APISession class object after
the LoginTechnician is called.

System requirements

You can use the class library in applications that run on one of the following operating systems:
Windows® XP, Windows 7, Windows 8, Windows Server® 2003, Windows Server 2008, Windows
Server 2012, Windows Server 2016, or Windows Server 2019. These operating systems use stored
user names and passwords to associate a set of credentials with a single Windows user account,
storing those credentials using the Data Protection API (DPAPI).

The C# classes included in this library use the Credential Management API function
CredUIPromptForCredentials to prompt for the technician password and securely store it in the
Credential Manager. The Credential Manger is only available on the operating systems previously
listed.

These classes provide two kinds of methods, API wrappers and helper methods. The API wrapper
methods accept parameters, create a SOAP request, and send it to Support Center. When a SOAP
response is received, the wrapper methods store it as member variables. You can get the results
through the utility methods provided.

Connected Backup (9.0.7) Page 76 of 108

Create C# wrapper classes
If you are using Microsoft Visual Studio to write clients in C#, you can use the Microsoft Web Services
Description Language Tool wsdl.exe to create a proxy class for use in your project.

To create the proxy classes

1. Open the AdminAPI.wsdl file in a browser, then save a copy of it to an XML file on your local
drive.

2. Run the following command:

wsdl /n:YourNamespace YourDrive:\YourPath\AdminAPI.wsdl

This command generates a C# file that contains the Web Service proxy class you can include in
your project. This class has a hard-coded URL in the constructor. This is the URL in the
soap:location field in the original AdminAPI.wsdl file.

You must change this URL to point to the Web Interface Service server that you will be working
with. To do this, set the URL property on the instance of the WebService class. The URL must
be in this form:

"https://DNS name/AdminAPI Virtual Directory/AdminAPI.dll?Handler=Default"

C# Example:

AdminAPIService WebService = new AdminAPIService();

WebService.Url =
"https://www.connected.com/AdminAPI/AdminAPI.dll?Handler=Default";

AdminAPIService is the proxy class generated using the wsdl.exe utility program.

Class listing
l Account class, on the next page

l Account Size class, on page 80

l AdminAPIException class, on page 81

l APISession class, on page 83

l Community Class, on page 84

l CreditCard class, on page 87

l CustomInfo class, on page 88

l User class, on page 89

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 77 of 108

Account class

Class Hierarchy

Account

public class account;

File

Account.cs

Description

AdminAPIUtil.Account holds complete information about an account including the user information
stored in the User class. It provides the methods to get the User object, get and change account
settings, move the account and order DVDs.

To use this class, create an Account class object passing APISession and AccountNumber, and call
Load() on the object to populate account and user information.

Namespace

AdminAPIUtil

Properties

Property Description

AccountNumber The ID number that identifies an account.

AccountSizeInfo Account size information for this account.

AccountStartDate The date the account was registered.

AgentInstallPath The installation path of the Agent.

AgentSetupID The ID of the Agent Setup assigned to this account.

AgentVersion The version of the Agent assigned to this account.

CommunityID The ID of the community where the account was created.

ComputerName The name of the computer associated with this account.

Status The current status of this account.

UserInfo The personal information of the account holder.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 78 of 108

Methods

Method Description

Account The account number.

GetCustomInfo Get the custom information values for the account.

GetEncryptionKey Get the encryption key of the account.

GetMediaCount Get the number of units of media required to fulfill a media
order for this account (for example, the total number of DVDs).

Load Load the object.

Move Move the account to another community.

OrderMedia Order a copy of the account data on the specified type of
storage media.

SavePassword Save the account password.

SaveUser Save the account user information.

SetAgentSetupID Change the Agent setup that is assigned to this account.

SetiRoamOff Disable access to iRoam.

SetiRoamOn Enable access to iRoam.

SetStatus Change the status of the account.

Remarks

If any of the Get methods (with the exception of GetAccountNumber() and GetEncryptionKey()), are
called before Load(), the program checks to see if account information was already loaded. If not, it
calls Load() before returning the data.

Examples

[C#]

// Creating a new account class

 class MyClass
{

 public static int Main()
{

 string strTech = "Admin";
 APISession Session = new APISession();
 Session.LoginTechnician(strTech);
 Account Acc = new Account(Session, 101000001);
 Acc.Load();

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 79 of 108

 }
 }

User class, on page 89

CustomInfo class, on page 88

Account Size class

Class hierarchy

AccountSize

public class AccountSize;

File

AccountSize.cs

Description

AdminAPIUtil.AccountSize class holds the backup sizes at some point in time for the account
specified in the Account Class. It wraps the AdminAPIAccountSize structure.

Namespace

AdminAPIUtil

Properties

Property Description

FirstBackup Determines if this is the first backup (True) or a
subsequent backup (False).

NumArchives Gets the number of archives for the specified account.

NumFilesPool Gets the number of non-pool file revisions.

NumFilesUnique Gets the number of non-pool file revisions.

SizePool Gets the compressed size of pool files.

SizePoolUncompressed Gets the uncompressed size of non-pool file revisions.

SizeUnique Gets the compressed size of all non-pool file revisions
(equal to size of archives).

SizeUniqueDelta Gets the uncompressed, post-delta size of all non-pool file
revisions.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 80 of 108

Property Description

SizeUniqueUncompressed Gets the uncompressed size of all non-pool file revisions.

SnapShotDate Gets the date the sizes were recorded.

TipRevisionNumFiles Gets the number of files in tip revision set.

TipRevisionUncompressed Gets the uncompressed size of tip revision size.

AdminAPIException class

Class hierarchy

SoapException

AdminAPIException

public class AdminAPIException : SoapException;

File

AdminAPIException.cs

Description

AdminAPIUtil.AdminAPIException class is an exception object used by the wrapper classes. It is
derived from .NET exception class System.SoapException. In addition to the members of the base
class it provides the API Name, the Error Code and the Error Message members. When response
from the API call comes in as a SOAP Fault, the AdminAPIException class is created and populated
with the API name, and error details from the Soap Fault message. Then it is thrown to the caller.

Namespace

AdminAPIUtil

Properties

Property Description

APIName The name of the API.

ErrorCode The numeric error code number.

ErrorMessage A string containing the error description.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 81 of 108

Examples

[C#]

// This example shows how to throw this exception.

 public void APIWrapperMethod()
{

 try
{

 m_APISession.GetWebService().APICall();
 }
 catch (SoapException e)

{
 throw new AdminAPIException("AccountDisableiRoam", e);
 }
 }

// This sample shows how to the caller can catch it.

 class MyClass
{

 public static int Main()
{

 try
{

 string strTech = "Admin";
 APISession Session = new APISession();
 Session.LoginTechnician(strTech);
 }
 catch (AdminAPIException e)

{
 string strAPIName = e.APIName;
 string strErrCode = e.ErrorCode;
 int nErrCode = e.GetErrorCode();
 string strError = e.ErrorMessage;
 Console.WriteLine(strError);
 }
 }
 }

APISession class, on the next page

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 82 of 108

APISession class

Class hierarchy

APISession

public class APISession;

File

APISession.cs

Description

AdminAPIUtil.APISession class is a starting point of using the Web Interface Service APIs. It logs in
the technician and maintains the session state to handle all subsequent 3rd party application or user
requests.

Namespace

AdminAPIUtil

Properties

Property Description

RootCommunity The community that the technician logged into.

WebService The URL of the server where the Web Interface Service is
installed.

Methods

Method Description

APISession Initiates a session.

LoginTechnician Passes the specified technician's credentials.

LogoutTechnician Terminates a session.

TechnicianGetPassword
ExpiryDate

Gets the specified technician's password expiration date
to determine if it is still valid.

VerifyUserCredentials Verifies the Agent user's login ID and password.

VerifyAgentInfoURLHash Verifies that the hash in a URL spawned by an Agent
associated with the user is valid.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 83 of 108

Remarks

l To avoid exposing credentials in clear text in a script, LoginTechnician() does not accept the
technician name or password as a parameter. It accepts the name of the resource, called
Target Name, by which the Credential Manager stores the credentials. The target name should
be a server name (can be DNS name) to identify the server the credentials that should be used
to create the session. There are no special requirements for the name. LoginTechnician() calls
the SessionLoginTechnician() API and passes in the technician Login ID and password.

l The APISession class uses CredUIPromptForCredentials Win32 API to store and retrieve the
password from the Credential Manager in the OS. Since the library Credui.lib is a C library, the
call has to be wrapped in a C++ dll for C# program to use through the DllImport attribute.

l The behavior of retrieving and storing credentials is as follows:

o The program tries to retrieve the credentials from the Credential Manager stored under
specified Target Name. If successful, the name and password are returned to the caller.

o If Target Name is not found, a prompt will ask the user for a login name and password.
When user clicksOK, the program tries to verify the credentials by logging on to Support
Center.

o If technician with the provided name and password is accepted, the credentials are saved in
the Credential Manager by the supplied Target Name.

o If the program fails to log in, the credentials are not saved but still returned to the caller.

AdminAPIException class, on page 81

Community Class

Class hierarchy

Community

public class Community;

File

Community.cs

Description

AdminAPIUtil.Community class represents a unit of administration and corresponds to the
community stored on the server. It provides functionality to manage technicians, search for accounts,
search for changed accounts and change the community settings. Each Community method wraps
its corresponding API call.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 84 of 108

Namespace

AdminAPIUtil

Methods

Method Description

ChangeName Calls the CommunityChangeName API to change the
community name.

CreateSubCommunity Calls the ComunityCreate API to create a new
subcommunity in the specified parent community.

CreateTechnician Calls the TechnicianCreate API to create a new
technician.

DeleteReport Calls the ReportDelete API to delete the specified report.

DeleteTechnician Calls the TechnicianDelete to delete the specified
technician.

DisableRegistration Calls the CommunityDisableRegistration API to disable
registration to the specified community.

EnableRegistration Calls the CommunityEnableRegistration API to enable
registration to the specified community.

FindAccounts Calls the CommunityFindAccounts API to search for
accounts in a specific community and its subcommunities
based on a set of given criteria.

GetChangedAccounts Calls the CommunityGetChangedAccounts to get a list of
accounts that have changed in the specified community
and its subcommunities.

GetName Calls the CommunityGetName API to get both the short and
full canonical name for the specified community ID.

GetReport Calls the ReportGet API to get report results.

GetSubCommunityIDs Calls the CommunityGetSubCommunityIDs API to return a
list of subcommunities within the specified parent
community.

GetTechnicians Calls the CommunityGetTechnicians API to return a list of
all technicians in the specified community.

ReserveTicket Calls the CommunityReserveTicket API to reserve an
account in the specified community.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 85 of 108

Examples

[C#]

public class Community
{

private APISession m_APISession;
private int m_nCommunityID;

// Class constructor. Initializes data members: m_APISession, m_nCommunityID.
//
public Community(APISession Session, int nCommunityID)
{

m_APISession = Session;
m_nCommunityID = nCommunityID;

// The following reserves an account for later registration and sets
// the user information.
// The parameter nAgentSetupID is the Agent Setup ID assigned for
// the future account.
// UseInfo contains information about the user of the reserved account.
// This information is optional.
// The LoginID field is required. LoginID is normally the LoginID
// into a 3rd party system and is used to identify the reserved ticket.
// eCode is the product code: PRODUCTCODE_PC_AGENT
// If there is an error during the call to CommunityReserveTicket API,
// AdminAPIException is thrown.

public void ReserveTicket(int nAgentSetupID, User UseInfo, PRODUCTCODE eCode)
{

try
{

AdminAPIUserInfo APIUserInfo = new AdminAPIUserInfo();
APIUserInfo.strAddress1 = UseInfo.Address1;
APIUserInfo.strAddress2 = UseInfo.Address2;
APIUserInfo.strCity = UseInfo.City;
APIUserInfo.strCompany = UseInfo.Company;
APIUserInfo.strCountry = UseInfo.Country;
APIUserInfo.strDepartment = UseInfo.Department;
APIUserInfo.strEmail = UseInfo.Email;
APIUserInfo.strFirstName = UseInfo.FirstName;
APIUserInfo.strLastName = UseInfo.LastName;
APIUserInfo.strLoginID = UseInfo.LoginID;
APIUserInfo.strMiddleName = UseInfo.MiddleName;
APIUserInfo.strState = UseInfo.State;
APIUserInfo.strTelephone = UseInfo.Telephone;
APIUserInfo.strZip = UseInfo.Zip;
APIUserInfo.CreditCardInfo.eCCType =

UseInfo.CreditCardInfo.CCType;

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 86 of 108

APIUserInfo.CreditCardInfo.strCCExpDate =
UseInfo.CreditCardInfo.CCExpDate;

APIUserInfo.CreditCardInfo.strCCNumber =
UseInfo.CreditCardInfo.CCNumber;

m_APISession.WebService.CommunityReserveTicket(
m_nCommunityID, nAgentSetupID, APIUserInfo, eCode);

}
catch (SoapException e)
{

throw new AdminAPIException("CommunityReserveTicket", e);
}

}

Remarks

l To use this class, create Account class object passing APISession and AccountNumber, and
call Load() on the object to populate account and user information.

l Refer to AdminAPIException Class for more information about SOAP faults and error handling.

l Refer to the UserAdminAPICustomInfo class for information on getting and setting values that
appear in an Agent's custom fields.

Account class, on page 78

CreditCard class
Class hierarchy

CreditCard

public class CreditCard;

File

CreditCard.cs

Description

AdminAPIUtil.CreditCard class holds credit card information for a specific account. This is a wrapper
for the AdminAPICreditCard structure.

Namespace

AdminAPIUtil

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 87 of 108

Properties

Property Description

CCType The credit card type (Master Card, VISA, etc.) for the
specified account number.

CCNumber String that contains the credit card number for the
specified account number.

CCExpDate String that represents the credit card expiration date for
the specified account number.

User class, on the next page

CustomInfo class

Class hierarchy

CustomInfo

public class CustomInfo;

File

CustomInfo.cs

Description

The AdminAPIUtil.CustomInfo class describes the names and value of the custom fields defined in
an Agent for the account specified in the Account class.

Namespace

AdminAPIUtil

Properties

Property Description

Attribute The name of the custom field.

CustomField Enumerated value of the custom field.

Value The value of the custom field.

User class, on the next page

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 88 of 108

User class

Class hierarchy

User

public class User;

File

User.cs

Description

AdminAPIUtil.User class holds user basic information such as the user name and address, and
description of custom fields and credit card info. It provides sets and gets methods for the members
and allows Partners to get the information stored on the server as well as to set it on the server.

Namespace

AdminAPIUtil

Properties

Property Description

Address1 Registered Agent user's street address.

Address2 Registered Agent user's street address, second line.

City Registered Agent user's city.

Company Registered Agent user's company.

Country Registered Agent user's country.

CreditCardInfo Structure containing Registered Agent user's credit card
number, type and expiration date. (See CreditCard class,
on page 87).

Department Registered Agent user's department.

Email Registered Agent user's e-mail address.

FirstName Registered Agent user's first name.

LastName Registered Agent user's last name.

LoginID Registered Agent user's login name.

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 89 of 108

Property Description

MiddleName Registered Agent user's middle name or initial.

State Registered Agent user's state.

Telephone Registered Agent user's telephone.

Zip Registered Agent user's zip code.

CreditCard class, on page 87

Web Services Programming Reference
Chapter 3: C# class library

Connected Backup (9.0.7) Page 90 of 108

Chapter 4: Data structures
This chapter describes the data structures that the Web Services API specifies or returns.

l Structure listing, below

IMPORTANT: AdminAPI is a paid feature. To use it, contact Account Management.

Structure listing
TheWeb Services API uses several data structures:

l AdminAPIAccountInfo, below

l AdminAPIAccountInfoEx, on the next page

l AdminAPIAccountSize, on page 93

l AdminAPIAccountBackupDateInfo, on page 94

l AdminAPIBaseAccountInfo, on page 95

l AdminAPICommunityStatisticsInfo, on page 95

l AdminAPICreditCard, on page 96

l AdminAPICustomInfo, on page 97

l AdminAPIExtendedAccountInfo, on page 97

l AdminAPIMediaCount, on page 97

l AdminAPIProfileInfo, on page 98

l AdminAPIReportTemplateID, on page 98

l AdminAPITechnicianID, on page 98

l AdminAPIUserInfo, on page 99

AdminAPIAccountInfo
This structure that contains information about the account including its start date, its Agent install
path, Agent version, user information, account size and custom fields.

Name Description Type Max
String
Size

AdminAPIBase A collection of values Connected:

Connected Backup (9.0.7) Page 91 of 108

Name Description Type Max
String
Size

AccountInfo common to all accounts. AdminAPIBaseAccountInfo,
on page 95

StartDate The date the account was
registered. This value is
empty if the account status
is "Reserved".

xsd:date

AgentInstallPath The installation path of the
Agent; where it was
installed. This value is
empty if the account status
is "Reserved".

xsd:string 255

AgentVersion The Agent version (typically
software and/or language
version) assigned to the
account. This value is
empty if the account status
is "Reserved".

xsd:string

ComputerName The name of the computer
associated with the
account. This value is
empty if the account status
is "Reserved".

xsd:string 255

AdminAPICustom
Info

A collection of values
returned for any defined
custom fields in use.

Connected:
AdminAPICustomInfo, on
page 97

AdminAPIUserInfo A collection of personal
information values for the
account holder.

Connected:
AdminAPIUserInfo, on
page 99

AdminAPIAccountSize A collection of account size
and usage statistics.

Connected:
AdminAPIAccountSize, on
the next page

AdminAPIAccountInfoEx
This structure that contains information about the account including its start date and time, its Agent
install path, Agent version, user information, account size and custom fields.

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 92 of 108

Name Description Type Max
String
Size

AdminAPIBase
AccountInfo

A collection of values
common to all accounts.

Connected:
AdminAPIBaseAccountInfo,
on page 95

StartDateTime The date the account was
registered. This value is
empty if the account status
is "Reserved".

xsd:dateTime

AgentInstallPath The installation path of the
Agent; where it was
installed. This value is
empty if the account status
is "Reserved".

xsd:string 255

AgentVersion The Agent version (typically
software and/or language
version) assigned to the
account. This value is
empty if the account status
is "Reserved".

xsd:string

ComputerName The name of the computer
associated with the
account. This value is
empty if the account status
is "Reserved".

xsd:string 255

AdminAPICustom
Info

A collection of values
returned for any defined
custom fields in use.

Connected:
AdminAPICustomInfo, on
page 97

AdminAPIUserInfo A collection of personal
information values for the
account holder.

Connected:
AdminAPIUserInfo, on
page 99

AdminAPIAccountSize A collection of account size
and usage statistics.

Connected:
AdminAPIAccountSize, below

AdminAPIAccountSize

Name Description Type

SnapShotDate Date the backed up file was recorded in
the database. Since the type of this field is

xsd:date

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 93 of 108

Name Description Type

xsd:date, it cannot be empty. However it
can contain an invalid date, which is
0001-01-01.

NumArchives Number of archives created for this
account.

xsd:int

NumFilesUnique Number of unique files backed up. xsd:int

SizeUnique Total file size of all unique files. xsd:long

SizeUniqueUncompressed Total uncompressed file size of all unique
files.

xsd:long

SizeUniqueDelta Uncompressed, post-delta size of all non-
pool file revisions. This is the size of the
data before it is compressed.

xsd:long

NumFilesPool Number of backed up files that are in the
SendOnce pool of shared files.

xsd:int

SizePool Total size of backed up files located in the
SendOnce pool.

xsd:long

SizePoolUncompressed Total uncompressed size of backed up
files located in the SendOnce pool.

xsd:long

TipRevisionNumFiles Number of changed files backed up
during the last backup session.

xsd:int

TipRevisionUncompressed Total uncompressed size of changed files
backed up during the last backup session.

xsd:long

IsFirstBackup If True, signifies that the number and size
of files backed up reflects data for the
account's first backup. If false, signifies
that the number and size of files backed
up reflects a normal backup. Typically,
the number and total size of files backed
up during a first backup can be
significantly larger than a normal backup.

xsd:Boolean

AdminAPIAccountBackupDateInfo

Name Description Type

BackupDate A date of a backup. xsd:date

Status The current status of the account: Connected:

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 94 of 108

Name Description Type

NOSTATUS

RESERVED

ACTIVE

ONHOLD

CANCELLED

ACCOUNT_
STATUS

Compacted If True, indicates the backup was compacted. If False,
indicates the backup was not compacted.

xsd:Boolean

MediaSizeInBytes The size of the backup in bytes. xsd:Long

AdminAPIBaseAccountInfo

Name Description Type

AccountNumber The number of the account xsd:int

CommunityID The ID of the community to which the Account is
registered

xsd:int

Status The current status of the account:

NOSTATUS

RESERVED

ACTIVE

ONHOLD

CANCELLED

Connected:
ACCOUNT_
STATUS

AgentSetupID The ID of the Agent Setup assigned to this account xsd:int

AdminAPICommunityStatisticsInfo

Name Description Type

CommunityName The name of the community xsd:string

PCAccountCount The number of PC accounts in this
community

xsd:int

SVAccountCount The number of Server accounts in this
community

xsd:int

PCLicenseCountInUse The number of PC licenses in use in this
community

xsd:int

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 95 of 108

Name Description Type

SVLicenseCountInUse The number of Server licenses in use in
this community

xsd:int

PCLicenseCountAvailable The number of PC licenses available in
this community (that is, the total number
of PC licenses allocated to the community
minus the number of PC licenses in use
by this community and its
subcommunities)

xsd:int

SVLicenseCountAvailable The number of Server licenses available
in this community (that is, the total
number of Server licenses allocated to
the community minus the number of
Server licenses in use by this community
and its subcommunities)

xsd:int

PCTipRevisionUncompressedSize The relative size of the data for PC
accounts in this community

xsd:long

SVTipRevisionUncompressedSize The relative size of the data for Server
accounts in this community

xsd:long

AdminAPICreditCard

Name Description Type Max
String
Size

Type The credit card type; enumerated
value:

CARD_AMEX

CARD_DISCOVER

CARD_VISA

CARD_MASTERCARD

CARD_OTHER

Connected:AdminAPICreditCard

Number The credit card number that is
billed for the specified account.

xsd:string 16

ExpiryDate The credit card expiration date xsd:string 16

Initialize AdminAPICreditCard before calling the CommunityReserveTicketmethod.

For example:

AdminAPIUserInfo oUserInfo = new AdminAPIUserInfo();
oUserInfo.CreditCardInfo = new AdminAPICreditCard();

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 96 of 108

oUserInfo.strLoginID = ‘ABC123’;

CommunityReserveTicket(3,0,oUserInfo, PRODUCTCODE_PC_AGENT);

AdminAPICustomInfo

Name Description Type Max
String
Size

Section One of the three custom fields available in the Agent,
represented as Enumerated value:

CUSTOM1

CUSTOM2

CUSTOM3

Connected:
CUSTOMFIELD

Attribute The name of the custom field. For this call this value is
already set in the agent options and will be ignored

xsd:string 32

Value The value of the custom field (of the Attribute above) xsd:string 255

AdminAPIExtendedAccountInfo

Name Description Type

CancelDate Date account was canceled. xsd:dateTime

DeleteDate Date account was deleted xsd:dateTime

MsgCode Message selected by technician was canceling
account or putting it on hold

xsd:int

BillingMethod Account’s billing method xsd:int

ProfileInfo A data structure that contains account profile
information

Connected:
AdminAPIProfileInfo,
on the next page

AdminAPIMediaCount

Name Description Type

eType Enumerated value. One of the following:

MEDIA_DVD

Connected:MediaType

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 97 of 108

Name Description Type

MEDIA_NAS

nCount The number of media units required to complete a media
order.

xsd:int

AdminAPIProfileInfo

Name Description Type

Section Section of account profile. xsd:string

Attribute Account profile attribute name. xsd:string

Value Account profile attribute value. xsd:string

AdminAPIReportTemplateID

Name Description Type Max
String
Size

CommunityID The ID of the community where a report
was created

xsd:int

Name The name of the report output xsd:string 64

AdminAPITechnicianID

Name Description Type Max
String
Size

CommunityID Community where the technician was
created (also known as the technician's
root community).

xsd:int

TechName Technician's login name xsd:string 64

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 98 of 108

AdminAPIUserInfo

Name Description Type Max
String
Size

LoginID The account holder's login ID xsd:string 64

FirstName First name of the account holder xsd:string 32

MiddleName Middle name or initial of the
account holder

xsd:string 16

LastName Last name of the account holder xsd:string 64

Telephone Given telephone number for the
account holder

xsd:string 32

Company Account holder's employer or place
of business

xsd:string 64

Address1 Account holder's given street
address

xsd:string 40

Address2 Account holder's given street
address, suite, apartment or PO
box number

xsd:string 40

City Account holder's city xsd:string 32

State Account holder's state xsd:string 20

Zip Account holder's zip xsd:string 11

Email Account holder's e-mail address xsd:string 100

Country Account holder's country xsd:string 32

Department Account holder's department or
group

xsd:string 64

AdminAPICreditCard,
on page 96

A collection of credit card fields
including Type, Number and
Expiration date.

For more details, see
AccountSetUserInfo, on page 26.

Connected:
AdminAPICreditCard

Web Services Programming Reference
Chapter 4: Data structures

Connected Backup (9.0.7) Page 99 of 108

Chapter 5: Reference
This chapter describes the terms used in this document, as well as the error messages used by the
Web Services API.

l Terminology, below

l Common error messages, on page 102

Terminology

Term Description

account An individual Agent subscriber. Accounts are identified by a unique 9-
digit account number. An account is established at the Data Center
when the Agent registers with the Data Center; an account is a
prerequisite to first backup.

Agent The client program installed on a computer that assembles the backup
and sends it to the Data Center.

Agent configuration The Agent version, rule set, Agent settings andWebsite settings that
you can enable when creating Agent Setups.

AgentInfoURL A URL created within the Agent that links to an informational Web site
or portal.

This is an optional feature for legacy PC Agents. This feature is
configured in the Agent Configuration using the Agent Configuration
Editor (ACE) through Support Center. The
AccountVerifyAgentInfoURLHash API enables verification of requests
coming into a Website by determining if the hash in the URL originated
from valid Agent and the computer on which it is registered.

Agent Setup The program that installs the Agent.

Agent Setups are created using Support Center or theAccount
Management Website. Each Agent Setup has a unique ID. The
AccountSetAgentSetupID API enables you to change the Agent Setup
assigned for a specified account ID. The CommunityGetInstall API
enables you to download an Agent Setup.

Agent version The language or software version of an Agent.

community The basic organizational unit for accounts on the Data Center.

A community is a group of accounts that can be managed collectively.
When the Data Center is installed, one “default” community is created
to receive new accounts. The CommunityCreate API enables the

Connected Backup (9.0.7) Page 100 of 108

Term Description

creation of new subcommunities within a given community.

canonical name The form of a full community name that includes the path, starting from
technician root community. The path is displayed in this format:

TechnicianRootCommunityName>SubcommunityName>Subcommunity

encryption key A key is a variable value used in the encryption and decryption of data.

Every backup account has one encryption key. The encryption key is a
series of letters and numbers, either randomly chosen or selected by
the user. The encryption key is used to automatically encrypt and
decrypt data on the user's computer. Once established, the encryption
key for an account cannot be changed for the lifetime of the account.

All data is encrypted on the user's computer by the Agent before it is
transmitted to the Data Center. Starting in version 8.0, encryption keys
are generated automatically and are not part of the user interface.

iRoam / MyRoam An optional feature that provides secure access to backed up data via
a Web interface.

iRoam is accessible using any Web browser. Access to iRoammay be
managed using the AccountDisableiRoam and AccountEnableiRoam
APIs. Starting in version 8.0, iRoam is renamed MyRoam and can be
accessed from the Account Management Website.

registration Process by which an account is established at the Data Center during
Agent installation on a computer.

Support Center A Web-based application that allows users of version 6.1 and later to
manage communities and accounts, create and deploy Agents, and
run reports to monitor backup activity.

technician Someone who has permission to access Support Center to manage,
monitor and report on accounts.

Technicians have one or more permissions that allow them to perform
various administrative tasks using Support Center, the Web Interface
Service, the Account Management Website, and the Agent user
interface (Retrieve).

ticket A uniquely-generated ID number that, when employed with an Agent
configured to use reserved accounts, ensures that the Agent Setup
will only establish one account, for the owner of the ticket. The API
enables you to reserve accounts for a specific community.

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.7) Page 101 of 108

Common error messages
The following is a list of error messages in common use by one or more APIs.

Code Reason

1000 Failed execution due to database time-out issue.

1001 Access denied. Logged-in Technician does not have permission ‘Scripting’.

1002 Access denied. Logged-in Technician does not have permission ‘Modify
Technician Permissions’.

1003 Access denied. Logged-in Technician does not have permission ‘Modify
Communities’.

1004 Access denied. Logged-in Technician does not have permission ‘Run
Reports’.

1012 Credit Card Expiration Date is not a valid date.

1013 Credit Card type is invalid. Valid credit card types are Visa, MasterCard and
AMEX.

1014 Access denied. Logged-in Technician is not authorized to access
resources.

1015 The community does not exist.

1016 The specified account cannot be found on the system.

1018 Credit Card number is invalid.

1019 Report does not exist in requested community.

1020 The community name cannot be blank.

1021 A community with the specified name already exists.

1022 The password provided does not conform to requirements. Account
passwords must be at least 6 characters long, cannot have leading and
trailing space and cannot contain all the same characters.

1023 Justification cannot be blank.

1024 Unable to perform required action. The destination community does not
have enough licenses available.

1025 The Data Center is not licensed to use this feature.

1026 Community this account belongs to does not contain the Agent Setup
specified.

1027 Unable to perform required action. A technician cannot modify him/herself.

1028 This account has been locked due to too many unsuccessful login

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.7) Page 102 of 108

Code Reason

attempts.

1030 The Data Center is not licensed for this product.

1056 The call is not allowed for specified account since its agent version does
not support this feature.

1059 Specified date range is invalid: start date is after the end date.

1069 The specified date is not a valid date.

1075 Invalid date range.

1076 Invalid server group; the parent community does not exist in the specified
server group.

1077 Credit Cards are not supported for this account.

1078 Community does not contain the Agent Setup specified.

1079 Access denied. Logged-in Technician does not have permission ‘Move
Accounts’.

Web Services Programming Reference
Chapter 5: Reference

Connected Backup (9.0.7) Page 103 of 108

Index

A

about the Web Services API 7
account

APIs 10
change Agent Setup for 28
get backup dates 18
get extended information 14
get info 15
get info including time 17
get last backup date 19
move to community 21
set password 30
set status 31
set user information 26

Account Size 80
Account, C# Class 78
AccountDisableiRoam 11
AccountEnableiRoam 12
AccountGetBackupDates 18
AccountGetEncryptionKey 13
AccountGetExtendedInfo 14
AccountGetInfo 15
AccountGetInfoEx 17
AccountGetLastBackupDate 19
AccountGetMediaCount 20
AccountMoveToCommunity 21
AccountNumber 78
AccountOrderMedia 22
AccountOrderMediaEX 24
accounts

find for community 43-44
reserve for community 57, 59
reserving 57

AccountSendMessage 25
AccountSetAgentSetupID 28
AccountSetPassword 30
AccountSetStatus 31
AccountSetUserInfo 26
AccountSize.cs 80
AccountSizeInfo 78
AccountStartDate 78
AccountVerifyAgentInfoURLHash 33
AccountVerifyUserCredentials 34
AdminAPIAccountBackupDateInfo 94
AdminAPIAccountInfo 91
AdminAPIAccountInfoEx 92
AdminAPIAccountSize 93

AdminAPIBaseAccountInfo 95
AdminAPICommunityStatisticsInfo 95
AdminAPICreditCard 96
AdminAPICustomInfo 97
AdminAPIException 81
AdminAPIExtendedAccountInfo 97
AdminAPIMediaCount 97
AdminAPIProfileInfo 98
AdminAPIReportTemplateID 98
AdminAPITechnicianID 98
AdminAPIUserInfo 99
AdminAPIUtil.Account 78
Agent Info URL 33
AgentInstallPath 78
AgentSetupID 78
AgentVersion 78
APIName 81
APIs

account 10
community 35
report 65
session 62
technician 69

APISession 83
arrays that are empty 8
Attribute, custom info 88

B

backup date
get last backup date for account 19

backup dates
get for account 18

C

C# Classes 88-89
Account 78
AccountSize 80
AdminAPIException 81
APISession 83
Community 84
creating 77
CreditCard 87
CustomInfo 88
User 89

caret symbol in passwords 8
CCExpDate 87
CCNumber 87
CCType 87
class library requirements 76
Classes 78, 80, 87-89

Account 78
AccountSize 80

Connected Backup (9.0.7) Page 104 of 108

Web Services Programming Reference
Index: common error messages – licenses

wrappers 87-89
common error messages 102
communities

find for parent 42
community 40-41

APIs 35
change for account 21
change name 36
create new community 37
create new community in specific server

group 38
get changed accounts 45
get changed accounts including time 47
get changed communities 48
get parent 53
get statistics info 54
getting subcommunity IDs 55
license count 51
reserve accounts for 57, 59
technician list for 56

Community class 84
CommunityChangeName 36
CommunityCreate 37
CommunityCreateInServerGroup 38
CommunityDisableRegistration 40
CommunityEnableRegistration 41
CommunityFind 42
CommunityFindAccounts 43
CommunityFindFedAuthAccounts 44
CommunityGetChangeAccounts 45
CommunityGetChangeAccountsEx 47
CommunityGetChangedCommunities 48
CommunityGetInstall 50
CommunityGetLicenseCount 51
CommunityGetName 52
CommunityGetParent 53
CommunityGetStatisticsInfo 54
CommunityGetSubCommunityIDs 55
CommunityGetTechnicians 56
CommunityID 78
CommunityReserveTicket 57, 84
CommunityReserveTicket API 57
CommunityReserveTicketandFetch 59
CommunitySetLicenseCount 60
ComputerName 78
country names 8
CreateSubCommunity 84
CreateTechnician 84
credential verification 34
CreditCard class 87
CustomField 88
CustomInfo 88

D

DeleteReport 84
DeleteTechnician 84
DisableRegistration 84

E

empty arrays 8
EnableRegistration 84
encryption key

get 13
error codes 102
Error Handling 81
error messages 102
ErrorCode 81
ErrorMessage 81
expiration date and time for technician 74
expiration date for technician 72

F

FindAccounts 84
FirstBackup 80

G

GetAccountNumber 78
GetChangedAccounts 84
GetCustomInfo 78
GetEncryptionKey 78
GetErrorCode 81
GetMediaCount 78
GetName 84
GetReport 84
GetSubCommunityIDs 84
GetTechnicians 84
getting started with Web Interface Service

API 7

H

hash verification for Agent Info URL 33

I

installer for Agent
get installer program file 50

iRoam
disable 11
enable 12

L

licenses
get count for community 51

Connected Backup (9.0.7) Page 105 of 108

Web Services Programming Reference
Index: limitations – status

set count for community 60
limitations 8
LoginTechnician 83
LogoutTechnician 83

M

M_APISession 84
M_

APISession.WebService.Community
ReserveTicket 84

M_bIsFirstBackup 80
M_dtSnapShotDate 80
M_lNumArchives 80
M_lNumFilesPool 80
M_lNumFilesUnique 80
M_lSizePool 80
M_lSizePoolUncompressed 80
M_lSizeUnique 80
M_lSizeUniqueDelta 80
M_lSizeUniqueUncompressed 80
M_lTipRevisionNumFiles 80
M_lTipRevisionUncompressed 80
M_nCommunityID 84
maximum string size and truncation 9
media

get count 20
order 22, 24

message
send to account 25

move account 21
MyRoam

disable 11
enable 12

N

name
change for community 36
get for community 52

NumArchives 80
NumFilesPool 80
NumFilesUnique 80

O

OrderMedia 78

P

parent
get for community 53

passwords
formats 8
set for account 30

PRODUCTCODE_PC_AGENT 84
PRODUCTCODE_SERVER_AGENT 84

R

Referred 80, 84
registration

disabling for community 40
enabling for community 41

ReportDelete 68
ReportGet 67
reports

APIs 65
deleting output 68
getting results 67
running 65

ReportTemplateRun 65
requirements for country names 8
requirements for the class libary 76
requirements for using the Web Services

API 7
ReserveTicket method, Community class 84
reserving accounts 57
RootCommunity 83

S

SavePassword 78
SaveUser 78
scripting permission requirement 8
session

APIs 62
login attempts and lockouts 62

SessionLoginTechnician 62
SessionLoginTechnician API 62
SessionLogoutTechnician 64
SetAgentSetupID 78
SetiRoamOff 78
SetiRoamOn 78
SetStatus 78
Setup

set ID for account 28
SizePool 80
SizePoolUncompressed 80
SizeUnique 80
SizeUniqueDelta 80
SnapShotDate 80
SOAP Fault 81
SoapException 84
statistics

get for community 54
status

changing for account 31

Connected Backup (9.0.7) Page 106 of 108

Web Services Programming Reference
Index: strings – wrappers, C#

strings
max size 9
truncation 9

subcommunity IDs, getting for community 55

T

TargetName 83
TechnicianCreate 70
TechnicianDelete 72
TechnicianGetPasswordExpiryDate 72, 83
TechnicianGetPasswordExpiryDateTime 74
technicians

APIs 69
create new 70
delete from community 72
get expiration date 72
get expiration date and time 74
get list of for community 56
log into session 62
log out of session 64
logging into a session 62
passwords, protecting 62

terminology 100
tickets

reserving 57
TipRevisionNumFiles 80
TipRevisionUncompressed 80
truncate strings 9

U

URL for Agent Info 33
use scripting permission requirement 8
user credential verification 34
UserInfo 78

V

Value, custom field 88
VerifyAgentInfoURLHash 83
VerifyUserCredentials 83

W

WebService 83
wrappers, C# 78, 80-81, 83-84, 87-89

Connected Backup (9.0.7) Page 107 of 108

Send documentation feedback
If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Micro Focus Connected Backup 9.0.7 Web Services Programming Reference

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a web mail client, and
send your feedback to swpdl.ConnectedBackup.DocFeedback@microfocus.com.

We appreciate your feedback!

Connected Backup (9.0.7) Page 108 of 108

mailto:swpdl.ConnectedBackup.DocFeedback@microfocus.com?subject=Feedback on Web Services Programming Reference (Micro Focus Connected Backup 9.0.7)

	Chapter 1: Get started
	About the Web Services API
	In this guide

	System requirements and permissions
	Use scripting permission

	Limitations
	Required country values for input
	Empty array handling
	Password restrictions
	Truncation of strings greater than Max Size

	Develop with the Web Services API
	Location
	Get a copy of the Web Services API WSDL file

	Chapter 2: APIs
	Account APIs
	AccountDisableiRoam
	AccountEnableiRoam
	AccountGetEncryptionKey
	AccountGetExtendedInfo
	AccountGetInfo
	AccountGetInfoEx
	AccountGetBackupDates
	AccountGetLastBackupDate
	AccountGetMediaCount
	AccountMoveToCommunity
	AccountOrderMedia
	AccountOrderMediaEx
	AccountSendMessage
	AccountSetUserInfo
	AccountSetAgentSetupID
	AccountSetPassword
	AccountSetStatus
	AccountVerifyAgentInfoURLHash
	AccountVerifyUserCredentials
	Community APIs
	CommunityChangeName
	CommunityCreate
	CommunityCreateInServerGroup
	CommunityDisableRegistration
	CommunityEnableRegistration
	CommunityFind
	CommunityFindAccounts
	CommunityFindFedAuthAccounts
	CommunityGetChangedAccounts
	CommunityGetChangedAccountsEx
	CommunityGetChangedCommunities
	CommunityGetInstall
	CommunityGetLicenseCount
	CommunityGetName
	CommunityGetParent
	CommunityGetStatisticsInfo
	CommunityGetSubCommunityIDs
	CommunityGetTechnicians
	CommunityReserveTicket
	CommunityReserveTicketandFetch
	CommunitySetLicenseCount
	Session APIs
	SessionLoginTechnician
	SessionLogoutTechnician
	Reports APIs
	ReportTemplateRun
	ReportGet
	ReportDelete
	Technician APIs
	TechnicianCreate
	TechnicianDelete
	TechnicianGetPasswordExpiryDate
	TechnicianGetPasswordExpiryDateTime

	Chapter 3: C# class library
	Use the C# class library
	System requirements

	Create C# wrapper classes
	Class listing
	Account class
	Account Size class
	AdminAPIException class
	APISession class
	Community Class
	CreditCard class
	CustomInfo class
	User class

	Chapter 4: Data structures
	Structure listing
	AdminAPIAccountInfo
	AdminAPIAccountInfoEx
	AdminAPIAccountSize
	AdminAPIAccountBackupDateInfo
	AdminAPIBaseAccountInfo
	AdminAPICommunityStatisticsInfo
	AdminAPICreditCard
	AdminAPICustomInfo
	AdminAPIExtendedAccountInfo
	AdminAPIMediaCount
	AdminAPIProfileInfo
	AdminAPIReportTemplateID
	AdminAPITechnicianID
	AdminAPIUserInfo

	Chapter 5: Reference
	Terminology
	Common error messages

	Index
	Send documentation feedback

