
Databridge Client
Administrator's Guide

7.0

© Copyright 2021 Micro Focus or one of its affiliates.

Table of contents

51. About This Guide

61.1 Conventions

71.2 Abbreviations

71.3 Related Documentation

82. Introducing Databridge Client

82.1 Choosing the Client Manager Service vs. the Command-Line Client

82.2 Using the Administrative Console and the Service

92.3 How Replication Works

102.4 Client vs. Host Filtering

112.5 Databridge Components

132.6 Comparing the Databridge Client Manager Service to Command-Line Operations

172.7 Switching from Command-Line to Service Operations

212.8 Command-Line Client Operations

232.9 Before You Run the Command-Line Client

263. Getting Started

263.1 Creating Client Control Tables

303.2 Defining a Data Source

353.3 Customizing with User Scripts

423.4 Decoding DMSII Dates, Times, and Date/Times

583.5 Creating Indexes for Tables

623.6 Adding a Non DMSII Column

673.7 Generating Databridge Client Scripts

744. Cloning a DMSII Database

744.1 Cloning Issues for All Relational Databases

744.2 Bulk Loader Parameters

754.3 Oracle SQL*Loader Bulk Loader

784.4 Microsoft SQL Server BCP API and bcp utility

804.5 Configuring Host Parameters

814.6 Populating the Databridge Data Tables

814.7 Data Validation and Discard Files

834.8 The Process Command

875. Process Command Options

895.1 The Clone Command

906. Clone Command options

906.1 Configuring for Optimal Performance

946.2 Tips for Efficient Cloning

Table of contents

- 2/327 - © Copyright 2021 Micro Focus or one of its affiliates.

946.3 REMAPS

967. Updating the Relational Database

967.1 Updating the Databridge Data Tables

967.2 Performing Updates Without Using Stored Procedures

977.3 Scheduling Updates

987.4 Scheduling Blackout Periods

997.5 Unscheduled Updating

1007.6 Process Command Options

1007.7 Anomalies That Can Occur In Updates

1018. DMSII Reorganization and Rollbacks

1018.1 Initializations

1018.2 Reorganizations

1058.3 DMSII Reorganization When Using Merged Tables

1058.4 Rollbacks

1068.5 Recloning

1088.6 Backing Up and Maintaining Client Control Tables

1119. Data Mapping

1119.1 DMSII and Relational Database Terms

1119.2 DMSII and Relational Database Data Types

1129.3 Supported DMSII Structures

1139.4 Unsupported DMSII Structures

1189.5 Changing the Default Data Type

1199.6 Handling DMSII GROUPs

1209.7 Handling DMSII OCCURS

1269.8 Relational Database Split Tables

1279.9 Relational Database Table and Column Names

12910. OCCURS Table Row Filtering

12910.1 Filter Source File

12910.2 The Filter File

13211. Databridge Client Control Tables

13211.1 Changes in Databridge Client 7.0 Control Tables

13211.2 DATASOURCES Client Control Table

13711.3 DATASETS Client Control Table

14911.4 DATATABLES Client Control Table

15511.5 DMS_ITEMS Client Control Table

16211.6 DATAITEMS Client Control Table

16911.7 AF_STATS Client Control Table

17212. Automating Client Operations with the Service

17212.1 Configuring the Service

Table of contents

- 3/327 - © Copyright 2021 Micro Focus or one of its affiliates.

17212.2 Automation Scripts

17412.3 Introducing the Batch Console

18213. Glossary of Terms

18814. Legal Notice

18915. Appendix

18915.1 Appendix A: Troubleshooting

21315.2 Appendix B: dbutility Commands and Options

22615.3 Appendix C: Client Configuration

30015.4 Appendix D: Customization Scripts

31115.5 Appendix E: Client Exit Codes

32115.6 Appendix F: Service Configuration

Table of contents

- 4/327 - © Copyright 2021 Micro Focus or one of its affiliates.

1. About This Guide

This guide contains instructions for configuring and using the Micro Focus Databridge Client. This preface includes information to

help you use this guide.

While this guide was originally written for command-line Client operations, it is applicable to both command-line or service-

controlled Client operations. To facilitate the transition to using service-based operations we provide instructions on how to

perform the tasks described in this document using the Administrative Console and information on where to find configuration

parameters in the Administrative Console's Configure command dialog pages.

For Administrative Console users this manual contains a lot of detailed information that they do not need to know; particularly in

the area of writing user scripts. The Administrative Console's Customize command hides a lot of these details from you and lets you

concentrate on what you are trying to do (usually the operations involve a single mouse-click plus a selection among the possible

data formats in DMSII). Using the Administrative Console to control the running of the Client gives you the ability to fully automate

Client operations and do comprehensive error recovery. For information specific to the service-controlled Client, see the following

topics in this chapter or go to the Help in the Databridge Administrative Console:

Using the Client Console and the Service

Automating Client Operations with the Service

To install, configure, and run Databridge, you should be a system administrator familiar with the following:

Standard Unisys® operations for MCP-hosted mainframes such as the CS7xxx series, Libra series, ClearPath® NX/LX or A

Series

DMSII databases and Data And Structure Definition Language (DASDL)

File layouts and the description of those layouts for the files you will be replicating

•

•

•

•

•

1. About This Guide

- 5/327 - © Copyright 2021 Micro Focus or one of its affiliates.

1.1 Conventions

The following conventions and terms may be used in this guide.

This convention Is used to indicate this

menu > sub menu 1 > sub

menu 2 ... > menu item

(item)

This font style/color shows mouse-clicks in the order required to
access a specific function, window, dialog box, etc.

The greater than symbol > indicates the next item to click in the
series.

The parentheses () indicate the setting, option, or parameter
being discussed. Note the font style reverts back to normal.

this type style text that you type, filenames and directory names, onscreen
messages

bold Folder names and program names. For example logs, DBClient.

italic variables, emphasis, document titles

square brackets ([]) optional items in a command. For example, [true | false] . (Do not
type the brackets.)

Buttons. For example, [OK] , [Start] , [Cancel]

pipe (|) a choice between items in a command or parameter. When enclosed in
braces ({ }) , the choice is mandatory.

UPPERCASE DMSII data set and data item names.

This term Is used to indicate this

MCP server host mainframe Unisys ClearPath NX, LX or A Series mainframe

DBEngine Databridge Engine on the mainframe

DBEnterprise Databridge Enterprise Server

DBServer Databridge Server on the mainframe

Service For UNIX Clients, consider this term synonymous with "daemon"

1.1 Conventions

- 6/327 - © Copyright 2021 Micro Focus or one of its affiliates.

1.2 Abbreviations

The following abbreviations are used throughout this guide and are provided here for quick reference.

1.3 Related Documentation

When using Databridge, you may need to consult the following resources.

Abbreviation Name

AA Absolute Address

ABSN Audit Block Serial Number

AFN Audit File Number

API Application Programming Interface

DASDL Data and Structure Definition Language

DMSII Data Management System II

IDX Index

IPC Inter-Process Communications

MCP Master Control Program

RPC Remote Procedure Call

RSN Record Serial Number

SEG Segment

WFL Work Flow Language

Databridge

product

documentation

On the Databridge installation image, the Docs folder contains guides for
installation, error codes, and administrator's guides for each Databridge
product. These documents require Adobe Reader for viewing, which you can
download from the Adobe website. This documentation, and additional support
resources, is also available on the Micro Focus Support and Services site.

Documentation for Databridge Enterprise Server and the Databridge
Administrative Console is also available from the Help menu in each
respective product. A modern browser is required for viewing this
documentation.

Unisys MCP

server

documentation

If you are not completely familiar with DMSII configuration, refer to your
Unisys documentation.

1.2 Abbreviations

- 7/327 - © Copyright 2021 Micro Focus or one of its affiliates.

https://get.adobe.com/reader/
https://www.microfocus.com/documentation/databridge/

2. Introducing Databridge Client

Micro Focus Databridge is a combination of host and (optional) client software that provides automated replication of DMSII

databases and flat files. All replications occur while the DMSII database is active. After the initial clone, Databridge updates the

secondary database, copying only the DMSII data changes from the audit trail.

2.1 Choosing the Client Manager Service vs. the Command-Line Client

The Databridge Client provides two modes of operation. One mode lets you configure and run the Client from the Administrative

Console, where the Client Manager service launches the Client and automates much of the replication process. The other mode uses

a command-prompt session (or terminal session in the case of UNIX) to run the command-line Client (dbutility). For a comparison

of these modes of operation, see Comparing the Databridge Client Manager Service to Command-Line Operations.

While this guide can be used with either the command-line or service-controlled Client, it is intended primarily for command-line

Client operations. For information specific to the service-controlled Client, see the following topics or refer to the Help in the

Databridge Administrative Console:

2.2 Using the Administrative Console and the Service

The Administrative Console is an easy-to-use browser-based graphical interface that lets you access Clients on different platforms.

You can view multiple data sources (defined by Databridge Server or Enterprise Server) and monitor all Client activity via onscreen

messages and status updates.

The Administrative Console communicates directly with the Client Manager service, which starts Client runs in the background and

completely automates Client operations. Configure how often Client runs are initiated by using the service scheduling settings in the

Administrative Console. You can also use command files (shell scripts in UNIX) to interact with the service and automate processes.

For more information, see the, Automating Client Operations with the Service section of this guide.

Enhanced Security

2. Introducing Databridge Client

- 8/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Because the service always starts the Client in the background, the Administrative Console is the only interface to service-initiated

Client runs. Neither the service nor the background runs interact with the desktop or require that a user be signed on to the server.

This makes service-initiated Client operations more secure than command-line operations and prevents the Client runs from being

terminated, whether accidentally or maliciously. The service starts at system startup (by default), which ensures that replication can

continue in the event of system failure without outside intervention.

In addition to launching Client runs, the service routes all log and informational messages to the Administrative Console and

facilitates operator tasks using the DBClient and DBClntCfgServer programs. The first program, DBClient, performs DMSII

processing and cloning tasks. The second program, DBClntCfgServer, handles Administrative Console requests that require access

to the relational database (such as define , generate and reorganize commands). The activity and output of these programs is

displayed in the Administrative Console's console output view.

The following diagram shows the Client architecture for the two types of clients: the command-line Client (dbutility) and the service-

controlled client (DBClient and other components).

The Administrative Console can perform data source customizations by selecting Settings > Customize from the data sources page.

The Customize command lets you easily customize data sources without any knowledge of SQL or how your Client control tables

work. Instead of hand-coding SQL user scripts, select options to configure your data sources and map DMSII data to your relational

database tables. To use the Customize command with existing Client configurations that employ user scripts, you must first upgrade

your Client control tables using the dbscriptfixup utility. (See the Databridge Installation Guide.)

2.3 How Replication Works

The Databridge Client controls the replication process of DMSII databases and flat files. It initiates connections to Databridge Server

on the host and maintains the state information necessary for resuming replication in case operations are interrupted. At the heart

of the host-based Databridge system is the Databridge Engine, which is a system library that retrieves structural information and

data from the DMSII database and passes it to Databridge Server. When you opt to use Enterprise Server with the Databridge Client

instead, Enterprise Server takes over much of the functionality of the Databridge Engine and Databridge Server.

To customize a specific data source, you must first navigate to the data sources page for the Client Manager in question by using the provided

links (Databridge Servers > Client Managers). If you are in the monitor page select the link for the Client Manager in the upper left hand corner of

the group of entries for the Client Manager in question. Place your mouse over the desired data source name and click on it to select it (the row

should turn light blue). Select Settings > Customize to start the customizations.

Note

2.3 How Replication Works

- 9/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The Databridge Support Library, also installed on the host, provides filtering, formatting, and reformatting services for the

Databridge Server. See Client vs. Host Filtering.

After the Databridge Server receives data from the Databridge Engine, it calls the Support Library to determine if the data should be

replicated, and if so, it passes the data to the Support Library for formatting.

Replication involves three discrete phases, as described below. These three phases are tracked for each data set in the ds_mode

column of the DATASETS control table as values 0, 1, and 2.

2.4 Client vs. Host Filtering

Use the following guidelines to determine when to use the host instead of the Databridge Client to perform filtering.

Filtering Columns

On the host side, you can filter columns by creating a filtering routine with the DBGenFormat utility. On the Databridge Client side,

you can filter columns the same way you can filter data sets, which is to set the active column to 0 for the corresponding entry in

the DMS_ITEMS Client control table.

Data

Extraction

This phase (identified by a mode of 0) applies only to data sets that have not
been cloned. During this phase, the Databridge Engine sequentially reads all of
the records from the data sets being cloned and passes them to the Databridge
Client. Using the appropriate bulk loader utility, the Client populates the
relational database tables and creates indexes for the tables.

Fixup During this phase (identified by a mode of 1), the Databridge Engine processes
audit files and passes all of the DMSII updates that occurred while data
extraction was taking place to the Client, which updates the relational database.
This phase is fully restartable. During this phase the relational database is not
fully consistent, as the not all the tables are in-sync.

The only difference between the Fixup Phase and the Update (or Tracking) Phase is
that the Client has to deal with conditions caused by the fact that the tables
from which records were extracted were changing as the extraction was taking
place. Until the audit file processing gets past the point in the audit trail
where the data extraction ends, the Client behaves somewhat differently in order
to handle such issues as updates to records that are not in the tables, deletions
of records that are not in the tables, and inserts of records that are already in
the tables.

Update During this phase (identified by a mode of 2), the Client processes audit files
and then passes all of the DMSII database updates to the Client, which updates the
relational database. This phase is also referred to as the change tracking phase.

Databridge uses quiet points to synchronize the replicated database with the DMSII
database and ensure accuracy of the data. Quiet points mark the start of a group
of updates, which is referred to as a transaction. When the Databridge Engine
reaches the end of the last DMSII audit file (or encounters a program that did a
rollback), it usually rolls back the transaction and instructs the Client to roll
back updates. The Client stores quiet point information with other state
information in a set of control tables, referred to as the Client control tables,
and uses it to restart the replication process.

If near real-time replication is required, set the parameter use_dbwait to true.
This causes the Engine to enter a wait-and-retry loop for a configurable amount of
time, instead of returning an audit file unavailable status, which normally occurs
when no more Audit Files are available.

2.4 Client vs. Host Filtering

- 10/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The advantage of performing the filtering on the Databridge Client side is that you save on host resources. However, there are a few

cases where you should consider filtering on the host side, as follows:

If you plan to filter many columns, consider filtering on the host side to reduce TCP/IP traffic. The best way to determine this is

to try the filtering both ways and see which gives you the best throughput.

If you plan to filter columns with confidential or sensitive information, it is best to perform the filtering on the host.

Filtering Data Sets

You can filter data sets on the host side by using a logical database or by creating a filtering routine with the DBGenFormat

program. On the Databridge Client side, you can filter data sets by setting the active column to 0 for the corresponding entry in the

DATASETS Client control table.

If you want to filter data sets that contain confidential or sensitive information, consider using a logical database or a filtering

routine in the DBGenFormat utility. In this case, the Databridge Client will have no record that these data sets exist.

Filtering Rows

Row filtering limits data to certain ranges; you can accomplish this via the WHERE clause of filtering routines created with the

DBGenFormat program on the host. For more information, see Chapter 4 in the Databridge Host Administrator's Guide.

Filtering OCCURS Tables

OCCURS tables are secondary tables generated by the Databridge Client when OCCURS clauses for items (or GROUPs) are not

flattened. Frequently, not all rows in such tables contain meaningful data, for this reason it is desirable to filter such rows to reduce

the storage requirements and improve performance. Starting with version 6.5, the Databridge Client implements row filtering for

OCCURS tables. For more information, refer to OCCURS Table Row Filtering.

2.5 Databridge Components

The following table lists all of the Databridge products and components that can have a role when replicating data with the

Databridge Client.

Databridge Host (installed on the mainframe)

Databridge Enterprise Server

A Windows-based product that provides the same functionality as the Databridge Engine (DBEngine) and Databridge Server

(DBServer) on the host. Enterprise Server offloads much of the replication workload from the Unisys mainframe to a Windows

computer, reducing mainframe resource utilization and initial load time.

•

•

Component Description

Databridge
Engine
(DBEngine)

The main component of the Databridge software, DBEngine is a host library
program that retrieves structural information, layout information, and data
from the DMSII database and passes the information to the Databridge
Server. Additionally, it retrieves updates by reading the audit files on
the host and sends the changes to the Client.

Databridge
Server
(DBServer)

An accessory that provides communications between DBEngine and the
Databridge Client, and also between DBEngine and Databridge Enterprise
Server. DBServer responds to Databridge Client requests for DMSII data or
DMSII layout information.

Support
Library
(DBSupport)

A library that provides formatting and filtering to the DBServer and other
accessories. After DBServer receives data from the DBEngine, it calls the
Support Library to determine if the data should be replicated, and if so,
passes the data to the Support Library for formatting.

DBGenFormat A host utility that creates filter and format routines. The DBGenFormat
utility interprets the DBGenFormat parameter file to generate ALGOL source
code patches, which are included in the tailored Support Library.

2.5 Databridge Components

- 11/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Databridge Clients can connect directly to Enterprise Server, which in turn connects to DBServer on the mainframe. If MCP disks are

directly accessible from the Windows server, Enterprise Server extracts the DMSII data directly. Enterprise Server reads the audit trail

on the host to retrieve updates that occurred during the extraction and sends the changed information from the audit file to the

Client. If MCP disks are not directly accessible, Enterprise Server uses DBServer to retrieve blocks of data from DMSII data sets or the

audit files. Enterprise Server provides high-speed file transfer between the host and the Windows environment and audit file

mirroring.

Databridge Client

The Client initiates a connection with the Databridge Server and then specifies the DMSII data sets to be replicated from a DMSII

database.

Databridge FileXtract

Component Description

DBEnterprise The executable file for Enterprise Server, frequently used
interchangeably with Enterprise Server.

Databridge Director
(DBDirector)

A Windows Service that listens for Client connection requests and
starts DBEnterprise whenever a connect request is received.

We use terms "Databridge Server" and "Databridge Engine" throughout the rest of this manual as generic terms that apply to either "DBServer" and

"DBEngine" on the mainframe or to the equivalent component in "Databridge Enterprise Server".

Note

Component Description

Client Manager
(DBClntControl)

The service (Windows) or daemon (UNIX) that automates most Client
operations. It handles operator requests from the Administrative Console
and routes all log and informational messages to the administrative
consoles.

DBClient A Client program that is launched by the service. DBClient handles the
processing of DMSII data and updates the same as dbutilty, except that it
runs as a background run and uses the Administrative Console to display
its output and interact with the operator.

DBClntCfgServer A program that handles all requests specific to a data source from the
Administrative Console. These requests include updating the Client
configuration file, providing access to the Client control tables, and
handling the Customize command. Like DBClient, this program is run by the
service as a background run.

dbutilty A program that runs the Databridge Client from a command-line.

Batch Console
(bconsole)

A program that allows Windows command files (UNIX shell scripts) to issue
console requests to the Databridge Client Manager. The Batch Console
executes console commands in script files that are written in a language
that vaguely resembles Visual Basic.

Administrative
Console

A browser-based application that is controlled by a server which connects
to the Databridge Client Managers. The Administrative Console, besides
providing a replacement for the Eclipse based Client Console and the
Client Configurator, also implements a monitor that allows you to monitor
the operations of the various Client Managers and the Clients they control
from a single screen. To connect to the Administrative Console server from
the browser use the following URL https://hostname:7445/ where hostname is
the name or IP address of the Administrative Console server.

2.5 Databridge Components

- 12/327 - © Copyright 2021 Micro Focus or one of its affiliates.

An application that allows you to clone and update Flat Files that reside on Unisys ClearPath NX, LX, or A Series mainframes. You

can also use FileXtract with the Databridge Client to replicate this data. From the Client perspective, FileXtract data sources look like

DMSII data sources.

FileXtract is bundled with Databridge Host software and includes several Reader libraries and other associated files.

Databridge Flat File Client

The Flat File Client (also known as PCSPAN) is a Windows implementation of the DBSPAN accessory on the MCP. As is the case

with DBSPAN, rather than update the secondary database, the Flat File Client creates data files that contain the data records for the

updates. This approach is useful when a Databridge Client does not exist for a particular database or platform or when the data

has to be transformed before being loaded into a secondary database. The Flat Client has a very similar architecture to the

relational database clients, such as the SQL Server and the Oracle Clients.

Databridge Kafka Client

The Databridge Client for Kafka, which is implemented on Linux platforms only, enables the ability to utilize the Kafka messaging

system within the Databridge architecture. The Kafka messaging system is a scalable fault-tolerate data management system that

provides efficient real-time data processing.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

The Databridge Client Manager service performs the same operations as the command-line Client, dbutility. We refer to these

operations using the term "service" whether the Client Manager service is running on Windows platforms (service) or UNIX/Linux

platforms (daemon). Each machine has its own service (Windows) or daemon (UNIX/Linux). The primary advantage to using the

service is its ease of use and the ability to automate Client processes. Additionally, Client runs initiated by the service can't be

interrupted or tampered with as they occur as background runs.

A flat file is a plain text or mixed text and binary file which usually contains one record per line. Within the record, individual fields may be

separated by delimiters, such as commas, or have a fixed length and be separated by padding. An example of a flat file is an address list that

contains fields for Name and Address.

Note

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

- 13/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table can give you a better idea of how the two modes of operations compare when performing Client-specific tasks.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

- 14/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To do this With this
dbutilty

command

With the Databridge Client Manager (via
Administrative Console)

Create Client control
tables

configure The Client control tables are automatically
created if they don't exist when you run a
define or redefine command, or, a Customize

command from Settings drop-down button for
the data source when using the
Administrative Console.

Clone the data sets
specified on the command-
line

clone To clone selected data sets, select the
Clone Data Sets command in the Advanced drop-
down button for the data source. The
resulting dialog allows you to select the
data sets to clone, and to additionally add
command-line options.

Populate the Client control
tables with information
about the DMSII data set
layouts and the
corresponding relational
database table layouts

define Click on the Define/Redefine command in the
Actions drop-down button for the data source.
DBClntCfgServer executes the appropriate
command (define or redefine).

Apply changes from the
primary database to the
relational database
structure while preserving
existing information

redefine Click on the Define/Redefine command from the
Actions drop-down button for the data source.
DBClntCfgServer executes the appropriate
command (define or redefine).

To run a redefine command with the -R

option (i.e. redefine all data sets) from
the Administrative Console, select Redefine

(with options) in the Advanced drop-down button
for the data source and enable the Redefine All

Data Sets checkbox.

To write the Client control
table entries to the log
file

display To write control tables to the log file,
select the Log Control Tables command in the
Advanced drop-down button for the data
source.

To create script files generate Select the Generate Scripts command in the
Actions drop-down button for the data source.
This is the equivalent of running the
generate command without using command-line
options.

To force all script files to be recreated
in the dbscripts subdirectory, select the
Generate All Scripts command in the Advanced drop-
down button for the data source.

NOTE: This is equivalent to using the –u

option in the command-line Client to create
and place all of the script files in the
dbscripts subdirectory.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

- 15/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To do this With this
dbutilty

command

With the Databridge Client Manager (via
Administrative Console)

To perform the initial
clone or process DMSII
database updates

process Select Process command from the Actions drop-
down button for the data source. The
service, which controls scheduling for all
process commands, starts DBClient at the
scheduled time (if specified) and
terminates DBClient when the process command
finishes. You can run this command anytime.

To add command-line options to process

commands for runs initiated from the
Administrative Console, select the Process

(with options) command in the Advanced drop-down
button for the data source, then choose the
desired options from the provided set of
checkboxes.

To recreate the stored
procedures for tables
associated with a given
data set in the specified
data source (for example,
after a DMSII
reorganization)

refresh Select the Refresh Data Set command from the
Advanced drop-down button for the data
source. You can either refresh a specific
data set or all data sets.

To alter the relational
database using the scripts
created by the redefine

command. The command
automatically refreshes the
scripts and stored
procedures associated with
the tables whose layouts
have changed.

reorg

-or-

reorganize

Select the Reorganize command from the Actions

drop-down button for the data source.

To run user scripts or
Databridge Client scripts

runscript Select the Run Script command from the Advanced

drop-down button for the data source. This
command runs the script in the user script
directory (user_script_dir), the name and
location of which is defined in the Client
configuration file. If you start the
filename with a backslash for a Windows
Client or a slash for a UNIX Client, this
command uses the -n option, which overrides
the directory specification.

To close an audit file on
the host

switchaudit Not supported.

To back up the Client
control tables

unload Select the Unload Data Source command from the
Advanced drop-down button for the data
source.

To restore the Client
control tables using the
backup file

reload Select the Reload Data Source command from the
Advanced drop-down button for the data
source.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

- 16/327 - © Copyright 2021 Micro Focus or one of its affiliates.

For more information about dbutilty commands, see dbutility Commands. For more information about the Administrative Console,

see Using the Console and Service and the Help included in the Administrative Console. To access the Administrative Console help

use the menu icon in the top left of Administrative Console header to expand the left-side menu and select Documentation.

Alternatively, select the help icon in the top right of the Administrative Console to see documentation specific to the current view in

the Administrative Console.

2.7 Switching from Command-Line to Service Operations

Use this procedure if you currently run the Databridge Client from a command-line and want the Client Manager to run it, or if you

need to add existing data sources to the Client Manager.

To operate the Client Manager on the Client machine, you'll need a specific directory structure, referred to as the service's working

directory. You can use the migrate utility to create this directory.

To do this With this
dbutilty

command

With the Databridge Client Manager (via
Administrative Console)

To export the binary
configuration file to an
editable text file

export Select the Export Client Configuration command from
the Advanced drop-down button for the data
source. You can only execute the export

command with the default command-line
options from the Administrative Console.

To import a text
configuration file (and
convert it to a binary
file) for use with the
Client

import Not available. The configuration file is
updated directly from the Administrative
Console.

To create user scripts to
back up customizations made
by the Customize command

createscripts Select the Create User Scripts command from the
Advanced drop-down button for the data
source.

If you're in the process of upgrading your Databridge software, use the instructions in the Databridge Installation Guide for upgrading the Client.

Important

2.7 Switching from Command-Line to Service Operations

- 17/327 - © Copyright 2021 Micro Focus or one of its affiliates.

2.7.1 To switch to the service based client (Windows)

Using the 6.6 console with the 7.0 Client software will not work well. The Databridge 7.0 Administrative Console will not work with the 6.6 Client

software. You should always run matching software for the Administrative Console and the Client.

Note

2.7.1 To switch to the service based client (Windows)

- 18/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Set up the service's working directory. If you use the Client on Windows, you can run the Migrate program to do this. For more

information, see The Working Directory section of the Databridge Installation Guide.

Install the Administrative Console that matches the version of Databridge Client software in use. For instructions, see the

Databridge Installation Guide.

Do one of the following:

If you use a text Client configuration file, proceed to step 4.

If you use a binary Client configuration file (that is, you have not exported your configuration file to a text file to edit it), skip

to step 6.

From the data source directory, locate the config folder, and copy the text configuration file dbridge.cfg to a file named

dbridge.ini .

The following image shows an example of a working directory for a data source named "zdatabase".

From a command prompt, go to the working directory for your data source and run the dbutilty import command. This creates a

binary configuration file required by the service.

To make sure that the Client Manager service is running, from the Start menu, navigate to Control Panel > Administrative Tools >

Services, double-click Micro Focus Databridge Client Manager 7.0, then select [Start].

Using a browser (such as Microsoft Edge or Google Chrome) enter the following URL https://hostname:7445/ where hostname is

the name or IP address of the Administrative Console server.

From the Administrative Console Server page select the +Add button and provide the hostname or IP address of the Client

Manager and the port it listens on (typically 8001). This will add the node to the list of servers, and the Administrative Console

will detect if the server is a Client Manager.

Repeat the previous step for the Databridge server you wish the data source be associated with. This will add the node to the list of

servers and detect the fact that it is a Databridge server on the MCP or Databridge Enterprise Server. The Administrative Console

will also detect if the connection to the Databridge Server on the MCP is encrypted.

Go to the page for the Client Manager that was added by selecting the Client Manager link and select the Client Manager in

question (host name or IP address). Click the +Add button and select New to open the Add new data source page.

Select the Databridge server from the Select server drop-down list provided. Note that if you skipped Step 9, you can add the

server by selecting the Add new server button and providing the server name or IP address and the port it listens on. When

finished, select the Add Server button. There will be a brief delay while the Administrative Console verifies the server.

Select the Continue button to move the next page of the command.

The Administrative console retrieves the data source names configured for the server in question and provides you with a list box

from which you can select the desired data source.

1.

2.

3.

•

•

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

2.7.1 To switch to the service based client (Windows)

- 19/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Fill in the rest of the input fields on the page with the various relational database information that is needed. This includes the

ODBC data source name for the SQL Server Client, the database name for the Oracle Client, and the relational database signon

information (user/password) if the SQL Server uses Integrated Windows Authentication. When finished, select the Add button in

the lower right corner of the Administrative Console.

2.7.2 To switch to the daemon based client (UNIX/Linux)

Log on as the userid specified in the USERID parameter of the file globalprofile.ini . This is the same userid you currently use to

run the command-line Client.

Set the current directory to the home or other directory to which you have write access and copy the script dbdaemon from the

install directory. This allows you to make changes to the script.

In an editor, open the script dbdaemon .

Make sure that the environment variables (such as INSTALLDIR, WORKING_DIR, ORACLE_HOME, LD_LIBRARY_PATH) are correct for

your system and edit them as needed.

Save and close the script.

Start the daemon by typing the following:

To verify that the daemon is running use the ps command, which should produce output similar to the following:

If the daemon doesn't start, in the script dbdaemon , make sure that the WORKING_DIR and INSTALLDIR environment variables are

correct. Also, check the Client Manager's working directory to determine if the file dbdaemon.log was created and if it contains any

clues.

Using a browser (such as Microsoft Edge or Google Chrome) enter the following URL https://hostname:7445/ where hostname is

the name or IP address of the Administrative Console server.

From the Databridge Server page click +Add and provide the hostname or IP address of the Client Manager and the port it listen

on (typically 8001). This will add the node to the list of servers and detect the fact that it is a Client Manager.

Repeat step 10 for the Databridge server you wish the data source be associated with. This will add the node to the list of servers

and detect whether the server is a Databridge server on the MCP or a Databridge Enterprise Server. The Administrative Console will

detect if the connection to the Databridge Server on the MCP is encrypted.

Go to the page for the Client Manager added by selecting the Client Manager's link and click on the Client Manager in question.

From the +Add drop-down button select New to open the Add new data source page.

Select the Databridge server from the Select server drop-down list provided. Note that if you skipped Step 11, you can add the

server by selecting the Add new server button and providing the server name or IP address and the port it listens on. When

finished, select the Add Server button. There will be a brief delay while the Administrative Console verifies the server.

Select the Continue button to move the next page of the command.

The Administrative console retrieves the data source names configured for the server in question and provides you with a list box

from which you can select the desired data source(s).

Fill in the rest of the boxes on the page with the various relational database information that is needed. This includes the

database name for the Oracle Client and the relational database signon information user/password. When finished, select the Add

button in the lower right corner of the Administrative Console.

Type su to switch to the root user and then copy the script dbdaemon from the location you specified in step 5 to the following

location:

(Linux/Solaris) /etc/init.d

(AIX) /etc/rc.d/init.d

(HP-UX only) /sbin/init.d

To make the operating system automatically start the daemon whenever the system starts, consult the documentation for your

operating system.

14.

1.

2.

3.

4.

5.

6.

dbdaemon start

7.

databridge@VMOPENSUS114-64:~> ps -ef | grep DBC
databridge 1110 1 0 12:00 ? 00:00:00
/opt/dbridge70/DBClntControl

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

•

•

•

18.

2.7.2 To switch to the daemon based client (UNIX/Linux)

- 20/327 - © Copyright 2021 Micro Focus or one of its affiliates.

2.8 Command-Line Client Operations

This section describes the tasks required to clone a DMSII database and track changes using the Databridge Client from a

command-line. This sequence assumes that the relational database is properly configured and the required Databridge software is

installed and running.

2.8 Command-Line Client Operations

- 21/327 - © Copyright 2021 Micro Focus or one of its affiliates.

1 Update the
configuration
file

Because the Client reads the Client configuration file before
writing the script files and the log file, you may need to modify
this file. To edit the configuration file, you must export it to an
editable format and then import it after you make your changes. For
more information, see Export or Import a Configuration File.

2 Run the
dbutilty
configure

command

In a first-time installation, you must run the dbutility configure

command. This creates the Databridge Client control tables that will
hold the layout information for the DMSII database and corresponding
relational database tables.

3 Run the
dbutilty define

command

This command creates an entry in the DATASOURCES Client control
table that contains the data source name, the host name, and the
port number on which Databridge Server listens. It also populates
the Client control tables with the DMSII layout and creates the
corresponding table layout for the relational database.

**dbutilty define datasourcename hostname portnumber

4 Create user
scripts

To customize the Client control tables, you must create user
scripts. Or, you can use the default mapping that the Databridge
Client produces. Creating user scripts is an iterative process that
involves writing scripts to select and map data sets and customize
data tables. Creating user scripts may require testing until the
resulting data table layout meets your specifications.

When you are satisfied with the results of your user scripts, re-run
the define command with the -u option.

5 Run the
generate

command

This command creates scripts that the Databridge Client uses to
create and populate the data tables from the data sets are selected
for cloning. You can modify the configuration of your data tables by
adding optional parameters to the end of the create table and create
index statements.

Do not directly modify scripts created by the generate command; your
changes will be lost the next time your run this command.

dbutilty generate datasourcename

6 Review the bulk
loader options

Review the sections on bulk loader utilities and their related
options to make changes to the bulk loader parameters in the
configuration file as needed. If you make changes to the Client
configuration file, you will need repeat step 5 with the -u option
added, as the scripts will otherwise not reflect these changes.

7 Clone the
database

To clone the DMSII database, run the process command. If you want to
clone only a few data sets, use the clone command. This step
populates the Databridge data tables in the relational database with
actual DMSII data.

dbutilty process datasourcename

8 Update the
database

To update the relational database with changes made to the DMSII
database, run the process command. Or, to make the Databridge Engine
wait for updates when it reaches the end of the audit trail, set the
configuration parameter use_dbwait to true or use the command-line
switch -w .

2.8 Command-Line Client Operations

- 22/327 - © Copyright 2021 Micro Focus or one of its affiliates.

2.9 Before You Run the Command-Line Client

Before you use dbutility, do the following:

Set up the relational database.

Install the Databridge software on the host and set up and start Databridge Server (see the Databridge Host Administrator's

Guide). If Databridge Server requires signon parameters, include these in the dbutilty configuration file. If necessary, you can

also provide these parameters in the environment variables or in dbutilty command-line options.

Install or upgrade the Databridge Client (see the Databridge Installation Guide) and create a separate working directory for

each DMSII database to be cloned. In most cases, you'll add the relational database logon parameters to the data source

configuration file. You can do this by supplying the signon parameters to the import command using command-line switches

(such as -U -P -O -W) when you create a new data source. Passwords are automatically encoded.

2.9.1 Controlling and Monitoring dbutility

The Databridge Client includes a command-line console to help control and monitor dbutility. Commands are entered in the same

command prompt session where dbutility is running. When dbutility is running, make sure that the focus is on the command prompt

window and then use the keyboard to enter the command. You need to type only enough of the command to make it unique.

•

•

•

When you execute dbutility commands for different data sources, make sure that you have set the current directory to be the directory created

for that data source. This ensures that the process or clone command can locate the configuration files and the scripts created by the

generate command.

Important

2.9 Before You Run the Command-Line Client

- 23/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The configuration file parameter inhibit_console allows you to disable the command-line console, and the command-line option -

C toggles this parameter. The available commands are as follows:

This Command Allows You To

co[mmit]

a[bsn]

<number>

Dynamically changes the value of the parameter commit_absn_inc . The change
only takes effect at the next commit. The allowable range of values is the
same as that of the parameter commit_absn_inc.

co[mmit]

ti[me]

<number>

Dynamically changes the value of the parameter commit_time_inc . The change
only takes effect at the next commit. The allowable range of values is the
same as that of the parameter commit_time_inc.

co[mmit]

tr[ans]

<number>

Dynamically changes the value of the parameter commit_txn_inc . The change only
takes effect at the next commit. The allowable range of values is the same
as that of the parameter commit_txn_inc.

co[mmit]

s[tats]

Displays the commit statistics.

co[mmit]

u[pdate]

<number>

Dynamically changes the value of the parameter commit_update_inc . The change
only takes effect at the next commit. The allowable range of values is the
same as that of the parameter commit_update_inc.

h[elp] Displays a list of available commands.

l[ogswitch] Closes the current log file and starts a new one.

p[stats] Displays the performance statistics. These statistics are the same as those
shown after an audit file switch when the show_perf_stats configuration file
parameter is set to True.

q[uit] [at

hh:mm | after

afn]

Terminates the program at the next quiet point. Issuing this command during
data extraction has no effect until the fixup phase starts. Optionally, you
can specify either to terminate the program at a particular time or to
terminate it after a particular audit file is processed.

q[uit] now Terminates the program immediately by first closing the TCP/IP connection to
the server. This command is particularly useful when using DBWAIT and there
are no updates available. This command will not take effect immediately if
the Client is waiting for an SQL operation to complete.

sc[hed] {on |

off}

Disables or enables update scheduling. For instructions on scheduling
updates, see Scheduling dbutility Updates.

ss[tats] Displays statistics for Databridge Server at the next quiet point.

st[atus] Displays a variety of status information, such as the current stateinfo
during audit file processing, the trace status, and the program status (for
example, waiting for TCP for 100 ms).

tr[ace]

trace_mask

Dynamically alters the trace mask; for more information, see Enabling a
Trace.

ts[witch] Closes the current trace file and starts a new one.

v[erbose] {on

| off}

Alters the setting of the verbose flag; see -v in dbutilty Command-Line
Options.

2.9.1 Controlling and Monitoring dbutility

- 24/327 - © Copyright 2021 Micro Focus or one of its affiliates.

2.9.2 Databridge Client Exit Status Values

After each command, the Databridge Client command-line program, dbutilty, returns an exit status value.

For detailed information about Client exit codes, see Appendix E: Client Exit Codes.

2.9.3 Testing for Exit Status

The following examples show how you can test for the exit status (exit_status).

Windows Example

This example tests for the exit_status in a Windows .cmd file:

where <sendmail> is a hypothetical user application that sends a notification to you.

UNIX Example

The following example, written for the UNIX Korn shell (ksh), determines whether or not the value of the exit status (that appears

after you run the dbutility program) indicates that a DMSII reorganization was detected. If a reorganization was detected, it echoes a

message and runs the sendmail program:

where sendmail is a hypothetical user application that sends a notification to you.

exit_status
Value

Description

0 Run completed successfully.

1 This value identifies generic Databridge Client errors.

2 Client process or clone command exited because of a DMSII reorganization.

NOTE: An exit_status of 2 can occur only with the process and clone

commands.

0nnn Client exited because of a Databridge Engine error. The error is listed in
Appendix A of the Databridge Host Administrator's Guide.

10nn Client exited because of a DBServer error. The error is listed in Appendix
A of the Databridge Host Administrator's Guide.

11nn Client exited because of a DBEnterprise error. The error is listed in
Appendix A in the Databridge Enterprise Server Guide.

20nn Client exited because of a recognized Databridge Client error. The error is
listed in Appendix E.

97nn Client exited because of a recognized TLS error. The error is listed in
Appendix E.

dbutility process datasource
if errorlevel 2 if not errorlevel 3 goto reorg
exit
:reorg
echo DMSII reorganization has occurred
sendmail "message"

dbutility process datasource
if [$? -eq 2]
then
echo "DMSII reorganization has occurred"
sendmail "message"
fi

2.9.2 Databridge Client Exit Status Values

- 25/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3. Getting Started

Use the topics in this section to prepare to clone a DMSII database.

Before you clone a DMSII data source, you must create Client control tables. Once they're created, you can populate them with DMSII

information sent by the Databridge Engine and create the actual data tables that will store the cloned data. The resulting data tables

are based on information from the Client control tables and any additional customizations made.

To customize how DMSII data sets get mapped to their corresponding relational database tables, you can use the Administrative

Console's Customize command in the Settings drop-down button or you can write user scripts in SQL. The Customize command is

compatible with command-line operations and can help make reorganizations easier to handle. For more information on the

Customize command, see the Help in the Administrative Console. Writing and testing user scripts is typically time-consuming and

requires a bit of trial and error. For instructions, see the Customizing with User Scripts section below.

3.1 Creating Client Control Tables

Use this procedure to create a set of control tables in a new installation when using the command-line Client. If you are using the

Administrative Console, the Client control tables are created automatically when you define a new data source, unless the tables

already exist.

When you upgrade your Databridge Client software, the dbfixup program updates your control tables to the current version. It first

alters the control tables and performs any required updates to them. Then, it unloads the Client control tables to a file, recreates them

using a configure command, and restores them from the unload file. If a problem occurs and you need to revert to the older version

of the Client, the unload file will let you reload the Client control tables using the older version of the Client.

Client control tables contain information about the data sets in a DMSII database and information about the corresponding tables

and their layout in the relational database. These tables are stored and maintained in the relational database.

3. Getting Started

- 26/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To run a configure command

Make sure that the database software and the appropriate Windows services or UNIX processes are running. For more information,

see your relational database documentation.

Make sure that the current directory is the working directory for the data source (DMSII database) that you are cloning. For details

about the working directory, see the Databridge Installation Guide.

From a Windows Command Prompt or UNIX terminal session, enter the following:

dbutility [signon_options misc_options] configure

You only need to run dbutility configure once, unless you drop your tables via the dbutility dropall command and have to start

over.

(Optional) To display the tables created by dbutility configure , use a utility appropriate for your relational database. For example,

for Microsoft SQL Server you can use the Query window of SQL Server Management Studio to enter the following:

For Oracle, you can use the SQL*Plus utility and enter the following:

3.1.1 Creating a Second Set of Tables

Occasionally, sites create a test environment that includes a second set of Client control tables. Even though the second set of tables

may coexist with the production environment, this type of test environment can negatively impact the performance of your

production database and is not recommended.

Creating a second set of Client control tables in the same relational database requires a separate database user ID. You must keep

the working directories for the two user IDs separate. Because table name duplications are allowed when using different user IDs,

this can lead to script files with the same names. If you create a set of Client control tables by running a configure command

under the user ID "usera", those tables will be owned by usera (for example, USERA.DATASOURCES). If you later use the user ID

"userb" to run a configure command.

Databridge Client creates a new set of Client control tables owned by userb (for example, USERB.DATASOURCES). Usera and userb

tables are treated independently of each other.

1.

2.

3.

Where Is

signon_options For each Databridge Client type, the following command-line options specify the relational database signon

parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options Any of the following miscellaneous command-line options:

-T forces the Client to use a new trace file for this run, if tracing is enabled.

-f filename lets you specify a configuration file other than the default "dbridge.cfg" file in the config subdirectory

of the Client's working directory.

-L forces the Client to use a new log file for this run.

-u , if you want to override conditions that dbutility would otherwise interpret as a possible user error. For

example, you may want to create a second set of control tables within one relational database (these must be

owned by a different user), or you might want to drop and re-create the control tables, removing all of the state

information associated with the user tables.

In most cases you do not need the -u option.

4.

select name from sysobjects where type = "U" order by name

select table_name from user_tables order by table_name

3.1.1 Creating a Second Set of Tables

- 27/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.1.2 Dropping and Re-Creating Client Control Tables

If you drop and create the Client control tables, you must re-clone everything. All Databridge tables that contain DMSII data will

remain in the relational database. However, all of the information required from the Client control tables to request updates from the

Databridge Engine will be lost.

Under normal circumstances, use the dropall command before running another configure command. This ensures the following:

Tables and stored procedures created by the Databridge Client are dropped from the relational database

All scripts created by the Databridge Client are deleted from the dbscripts subdirectory of the working directory

In some rare cases where the dropall command cannot drop all the tables, you may want to drop and create the Client control

tables directly by running dbutility configure as follows:

The -u option bypasses the checks that prevent you from doing this when the Client control tables exists.

If you attempt to execute a dbutility configure command after the Client control tables have been populated, without adding the -u

option, you get the following message:

This message is provided as a safeguard so that you do not inadvertently drop and create the Client control tables.

3.1.3 Updating Client Control Tables

You can update some values in the Client control tables. For best results, use the Administrative Console's Customize command to

customize the table layout for the relational database instead of using user scripts. Avoid using tools like SQL Server Management

Studio or SQL*Plus to directly update the control tables.

•

•

dbutility -u configure

ERROR: Databridge control tables are not empty, use dropall command first
- To bypass this test use the 'u' option for the configure command

3.1.2 Dropping and Re-Creating Client Control Tables

- 28/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.1.4 Primary and Secondary Data Tables

The Databridge data tables hold the cloned DMSII data. You will see two types of Databridge data tables:

Primary data tables, which are the relational database equivalent of the DMSII data sets. Primary table names are derived

from the corresponding DMSII data set name by converting it to lowercase and replacing hyphens (-) with underscores (_).

Secondary data tables, which are additional tables that need to be generated to represent a DMSII structure that does not have

a relational database equivalent (for example, items with OCCURS clauses that are not flattened). Secondary table names are

constructed using the primary table name with an appropriate suffix.

If you previously used user scripts to update control tables and want to switch to using the Customize command, you'll need to update your

Client control tables first. For instructions, see the Next Steps section in the Databridge Installation Guide.

Note

Where Is

Values in the active column of all tables Set cloning on or off for data sets or DMS
items.

Values in the dms_subtype column of the
DMS_ITEMS tables

Specify the format of a field that is to be
cloned as a date.

The set_name column in the DATASETS table and
the item_key columns in the DMS_ITEMS table

Create a composite key.

The columns ds_options in the DATASETS table,
di_options and di_options2 in DMS_ITEMS,
dt_options in DATATABLES and da_options in
DATAITEMS

Set a value. Make sure that you do not clear
any existing bits. You should use the
logical OR and AND operator (BITOR or BITAND
for the Oracle Client)

The sql_type , sql_length and sql_scale columns
in the DATAITEMS table

Force the define command to remap values.

The dms_concat_num column in the DMS_ITEMS
table

Set the value of the dms_item_number you want
concatenated to this item.

The table_name and index_name columns in the
DATATABLES table

Rename.

The item_name column in the DATAITEMS table Rename.

The item_number column in the DATAITEMS table Reorder columns.

BITOR and BITAND are functions needed to set and clear bits in user scripts used by the Oracle Client in the various xx_options columns of the

Client control tables. When you run a define or redefine command, the Client creates the BITOR function, while the BITAND function is part

of SQL language of Oracle. BITAND (a,b) returns the bitwise AND of a and b while BITOR (a,b) returns the bitwise OR of a and b. This means that

you can use the BITOR function as if it was part of the Oracle SQL functions.

The following example shows BITOR setting a bit:

update DATASETS set ds_options=BITOR(ds_options, 4096) where dataset_name='CUSTOMER

SQL Server Transact-SQL uses & and | to perform these functions. In the case of SQL Server the above example would look like:

update DATASETS set ds_options=ds_options | 4096 where dataset_name='CUSTOMER'

All scripts generated by the Oracle Client using the createscripts command use the BITOR function for settings bits and the BITAND function

for clearing bits.

Note

•

•

3.1.4 Primary and Secondary Data Tables

- 29/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.2 Defining a Data Source

A data source is the DMSII database or FileXtract file that you want the Client to replicate. The DBServer control file (on the host)

identifies each data source by name in the section that uses the key word SOURCE. A SOURCE has a FORMAT, FILTER and SUPPORT

specification.

If you use Enterprise Server, each data source will be associated with a SOURCE in the Enterprise Server configuration file. This

SOURCE is based on a base data source that matches a SOURCE in DBServer. If you use the base source without any additional

filtering applied by Enterprise Server, the DBServer and Enterprise Server sources are identical and completely interchangeable.

Each data source has an entry in the DATASOURCES Client control table. The hostname column identifies the Databridge server by

the domain name or IP address. The hostport column identifies the port on which the server listens for incoming connections. You

can switch the server from DBServer to Enterprise Server simply by changing the values of these two columns.

3.2.1 Using the Define Command

Follow these steps to define a data source and populate the Client control tables. You can also perform this action from the

Administrative Console by navigating to the data sources page for the Client Manager in question and selecting Actions > Define/

Redefine.

You may use Databridge FileXtract sources for Client operations. These sources are made to look like data sources for DMSII databases.

Note

3.2 Defining a Data Source

- 30/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To define a data source

This procedure assumes that Databridge Server is running and the signon parameters are configured appropriately.

Note

3.2.1 Using the Define Command

- 31/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Because the following dbridge.cfg parameters are difficult to change later without redefining and recloning, make sure that

they're set appropriately before you run the define command:

For information on setting these parameters, see Appendix C: Client Configuration.

Enter the following command:

1.

allow_nulls
automate_virtuals
auto_mask_columns (SQL Server only)
bracket_tabnames (SQL Server only)
clr_dup_extr_recs
convert_ctrl_char
default_user_columns
dflt_history_columns
enable_dms_links
enable_dynamic_hist
external_column
extract_embedded
flatten_all_occurs
force_aa_only
history_tables
inhibit_required_opt
maximum_columns
min_varchar
minimize_col_updates
miser_database
optimize_updates
read_null_records
reorg_batch_size
sec_tab_column_mask
split_varfmt_dataset
strip_ds_prefixes
suppress_dup_warnings
suppress_new_columns
suppress_new_datasets
use_bigint (SQL Server only)
use_binary_aa
use_clob (Oracle only)
use_clustered_index (SQL Server only)
use_column_prefixes
use_date (SQL Server only)
use_datetime2 (SQL Server only)
use_decimal_aa
use_internal_clone
use_nullable_dates (Miser databases only)
use_primary_key
use_stored_procs
use_time (SQL Server only)
use_varchar

2.

dbutility [signon_opts misc_opts] define datasource hostname portnum

3.2.1 Using the Define Command

- 32/327 - © Copyright 2021 Micro Focus or one of its affiliates.

For DMSII databases that have a large number of data sets and data items, the process of retrieving the layout information may

take several minutes.

Read the following section, Results of the Define Command, and then specify which data sets and data items you do not want to

be cloned or updated, as explained in Customizing with User Scripts.

Example

Assuming the DBServer control file contains SOURCE ORDDB and PORT=5001 on the host "OURHOST.CIN.AAA.COM", you would

enter the following:

The Databridge Client makes remote procedure calls to DBServer to get DMSII database layout information. DBServer returns the

DMSII layout information to the Client. The Client populates the control tables with the DMSII layout information and creates the

corresponding relational database table layout.

The empty control tables (that were built during the dbutility configure command) are now populated.

For example, this SQL statement

would yield a table similar to the following. Only the selected columns are shown.

If you previously used user scripts to update control tables and want to switch to the Customize command, you'll need to update your Client

control tables first. For instructions, see the Next Steps section in the Databridge Installation Guide.

Note

Where Is

signon_opts For each Databridge Client type, the following command-line options specify the relational database signon

parameters:

Oracle: [-U userid] [-P password][-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_opts Any of the following miscellaneous command-line options:

-L forces the Client to use a new log file for this run.

-T forces the Client to use a new trace file for this run, if tracing is enabled.

-f filename to specify a configuration file other than the default dbridge.cfg file in the working directory.

-u allows the command to delete Client control table entries for a data source that already exists.

datasource For DBServer: The name that matches the entry for SOURCE in the DBServer control file. You can enter the data

source name in uppercase or lowercase.

For DBEnterprise: The name of a source (base or filtered) defined in Enterprise Server.

hostname The domain name or IP address of the Databridge server.

portnum The TCP/IP port number on which the appropriate Databridge server listens for incoming calls.

3.

dbutility define ORDDB OURHOST.CIN.AAA.COM 5001

select data_source, hostname, hostport from DATASOURCES

data_source hostname hostport
------------ --------------------- ------
ORDDB OURHOST.CIN.AAA.COM 5001

3.2.1 Using the Define Command

- 33/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.2.2 Results of the Define Command

The define command automatically does the following with table names and column names:

(Typically) converts data set, data item, and set names to lowercase and changes dashes to underscores for their equivalent

relational database table, column, and index names. For more details on how this actually occurs, see Relational Database

Table and Column Names.

Constructs secondary table names by appending an underscore followed by the lowercase data item name (for which the table

is constructed) to the primary table name. For example, if a DMSII data item named SALES, which has an OCCURS clause,

appears in a data set named CUSTOMERS, the relational database table generated for the OCCURS item is named

customers_sales. For more details, see Handling DMSII OCCURS.

Appends the suffix _x to all object names that are relational database reserved words. For example, if a DMSII data set is

named ORDER, which is a relational database reserved word, the table generated for the ORDER data set is named order_x.

Likewise, for a DMSII data item named COUNT, which is also a relational database reserved word, the corresponding column

would be named count_x.

Adds two-character prefixes to table names (i_, u_, and d_) when constructing the names of the stored procedures it uses to

insert, update, and delete records from these tables. The result is that table names are limited to 28 characters, even though

some relational databases limit table and index names to 30 characters.

Checks table and index names to see if they duplicate existing table and index names that Databridge previously created.

Databridge recognizes only those relational database objects that it has created. When the Databridge Client finds a duplicate

name, it makes the name unique in one of the following ways:

Appending a numeric suffix. For a data set named ITEM that must be split into three tables, the resulting table names

would be as follows: item, item1, item2.

If the name is too long to add a suffix, overwriting as many of the last characters as necessary with numeric characters to

make the name unique.

3.2.3 Cloning from Multiple Data Sources

If you are cloning multiple data sources to the same relational database and you have duplicate data set names, Databridge

modifies the table name for those duplicates to avoid creating multiple tables with the same name.

For example, if you have two data sources (DSA and DSB), both of which include a data set named PRODUCTS, Databridge clones

the data set from DSA into a table named "products". When Databridge clones DSB, it clones DSB's data set PRODUCTS into a table

named "products1".

The Databridge Client renames duplicate table names across data sources as a precaution against accidentally removing a table

that contains good data. If you do not drop either of the data sources, rerunning the define command for either data source does

not cause any problems.

For example, if you execute another define command for DSA because DMSII database A was reorganized, the define command

looks for the table name "products" in the DATATABLES Client control table that belongs to data sources other than DSA. Because

the name "products" belongs to DSA only, the define command does not find "products" as a table name under any other data

source. Thus the table corresponding to the data set PRODUCTS will be named "products", as was the case earlier.

Similarly, if you execute a define command for DSB, the define command looks for the name "products" in the DATATABLES Client

control table that belongs to data sources other than DSB. Because the name "products" belongs to DSA, the define command will

find "products" as a table name used by another data source and it will resolve the conflict by renaming the table. Thus the table

corresponding to the data set PRODUCTS will be named "products1" as was the case before the define command was run.

•

•

•

•

•

•

•

To avoid potential errors, rename any tables that have duplicate names. For example, rename the "products" table to "products_a" for data

source DSA and to "products_b" for data source DSB. You can rename tables during the relational database customization phase of the

define command using the script.user_define. primary_tablename . For a sample script, see Renaming a Table.

Important

3.2.2 Results of the Define Command

- 34/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If you drop either of the data sources, however, the results may be different because the table name is no longer a duplicate. For

example, if you drop DSA and then execute a define command for data source DSB, the table will be named "products", not

"products1", because it is no longer a duplicate.

Similarly, if you do a dropall command and then execute a define command for data source DSB first, the tables will be named

"products" for data source DSB and "products1" for data source DSA.

Add a Prefix to Duplicate Data Set Names

If you replicate two or more databases, which have many data set names in common, you can make the program add a prefix to all

the table names for a data source. You must define the prefixes, which can be 1--8 characters long, before you create the relational

database layout. To do this, assign a value, such as X1, to the tab_name_prefix column of the corresponding entry in the

DATASOURCES Client control table using the script script.user_datasets.datasource . Using different prefixes for each data source

makes the table names unique and eliminates the need to rename tables.

If you are using multiple data sources that have data sets or indexes that have the same name, we strongly recommend that you

write user scripts to resolve this issue by forcing such a table to use a different name for one (or more if the name occurs in more

than two data sources). This will ensure that you have a consistent naming convention. Without this, you could run into problems if

you reorganize these data sets.

Example script

script.user_define.customer:

update DATATABLES set table_name='customer_demodb'

where data_source='DEMODB' and dataset_name='CUSTOMER'

/***/

update DATAITEMS set table_name='customer_demodb'

where data_source='DEMODB' and table_name='customer'

This example script forces the table 'customer' in data source DEMODB to always be renamed. If another data source also has a

data set named CUSTOMER, it will then be able to always use the name 'customer' for the corresponding table. It also makes sure

that all the items in the renamed table point to the renamed table. The line /***/ , which separates the two SQL statements in the

script, tells the Client to execute the first SQL statement before moving on to the second one.

3.3 Customizing with User Scripts

User scripts are files that contain SQL statements for modifying the Client control tables. They provide a convenient way of

automating the customization changes that are applied to the control tables. The Databridge Client looks for user scripts in the

directory specified by the configuration file parameter user_script_dir . If you do not set the user_script_dir parameter in the

configuration file, the Databridge Client uses the scripts directory. It automatically executes user scripts when certain commands are

run, provided they exist.

The main purpose of user scripts is to preserve changes to the control tables by having the program run these scripts to restore the

changes whenever necessary. To view sample data set layout and data table customization scripts, see Appendix D: Customization

Scripts.

You can customize the Client control tables easily by using the Customize command instead of writing user scripts.

Customizing a DMS item is very simple. Click on the data set name in the data sets view of the Customize command to open the DMS item

view. Then click the wrench to the left of the DMS item that you want to customize. This open up the properties page for the item where you can

then click on the appropriate radio button option (e.g. "Replicate as date"). You may also need to change additional properties of the item when

the dms_subtype needs to be set.

You can find a complete description of the additional requirements for user scripts that are compatible with the Customize command in

Appendix D: Customization Scripts. For information about using the Customize command to customize your data source, see the Databridge

Administrative Console Help.

Note

3.3 Customizing with User Scripts

- 35/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.3.1 Types of User Scripts

The Databridge Client supports the following types of user scripts:

3.3.1 Types of User Scripts

- 36/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Script/Filename Description

Session
initialization
script

script.user.session

This script allows you to change session parameters without changing the
database settings. Use this script to alter session parameters whose
default values are not suitable for Client operations. For example, when
the NLS_LANGUAGE for Oracle is a European language, ALTER the NLS_LANGUAGE
parameter to set the language to AMERICAN and the NLS_TERRITORY to
AMERICA.

The Databridge Client executes these scripts when running any command that
connects to the relational database.

NOTE: The Oracle Client will automatically execute the SQL to ALTER the
SESSION when the language is not AMERICAN or when the character set of the
database is UTF8. However, it will only do this if there is no session
script present in the user scripts directory. This allows you to override
the actions taken by the Client by providing a session script to use
instead.

Data set global
mapping
customization
script

script.user_datasets.datasource

where datasource is the name of the data source (in lowercase) as defined
in the DATASOURCES Client control table.

Use this script to disable mapping for unwanted data sets or to enable
mapping for data sets that are not mapped by default. Create only one of
these scripts for each data source. The Client processes the user script
script.user_datasets.datasource before the DMSII mapping phase of both the
define and redefine commands. This script can contain global script
commands that allow you to make changes to multiple columns in the
DATASETS and DMS_ITEMS layouts with a single SQL statement. For instance,
if a DMSII database has a time value item called TS in almost every data
set, you can use a single SQL statement to update the dms_subtype value
for every occurrence of TS. For an example script, see Sample Data Set
Global Mapping Customization Script.

Data set
mapping
customization
script

script.user_layout.primary_tablename

where datasource is the name of the data source (in lowercase) as defined
in the DATASOURCES Client control table.

This script is run after the relational database layout has been created
during a define or redefine command. It allows you to make global changes
to DATATABLES and DATAITEMS. You can use this script to insert common
scripts into a single file rather than having to duplicate the SQL in each
of the define scripts for the individual data sets. For an example, see
Sample Data Table Global Customization Script.

3.3.1 Types of User Scripts

- 37/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Script/Filename Description

Data table
customization
script

script.user_define.primary_tablename

where primary_tablename is the name of the primary table mapped from the
data set.

These scripts make changes to the DATATABLES and DATAITEMS tables for
changing table or column names, changing SQL data types, and so on. Create
one of these scripts for each data set that has one or more tables which
need to be customized. When you change the name of the table within the
script, you must use the original primary table name in the script
filename.

All changes related to tables mapped from a data set are contained in the
data table customization script for the primary table specified by
tablename. The Databridge Client runs these scripts after the relational
database layout has been created by the define and redefine commands.

Data table
creation user
script

script.user_create.tablename

where tablename is the name of the relational database table. Use this
script for the following:

To define default values for non DMSII columns

To alter the table and add a column that the Databridge Client does not need to be aware of, add a

"ALTER TABLE xxx ADD COLUMN yyy" SQL statement to these scripts instead of adding SQL

statements to the table creation scripts.

CAUTION: Do not use this script to create columns for specific types of
data generated by the Client. This script creates a type of user column
that the Client is unaware of. To create user columns that the Client is
aware of, see Adding a Non DMSII Column.

Index creation
user script

script.user_index.tablename

where tablename is the name of the relational database table.

Use this script to add SQL statements to the index creation scripts
(script.index. tablename) created by the dbutility generate command. Do not
modify the scripts created by the generate command, as your changes will
be lost the next time a generate command is run.

These scripts are executed immediately after the related Databridge Client
script named script.index .tablename during the process or clone command. If
you set the check_user_scripts parameter, the Databridge Client returns a
warning if it cannot find the script.

Data table
cleanup user
script

script.user_cleanup.tablename

where tablename is the name of the relational database table

Use these scripts to undo any actions, such as creating a secondary index,
that are done in the script.user_index.table user script. These scripts are
run during the process or clone command, prior to executing the cleanup
scripts created by the generate command. The scripts are only used in
cases where the relational database tables are not dropped when a data set
is re-cloned, such as when deleted records are to be preserved.

•

•

3.3.1 Types of User Scripts

- 38/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.3.2 User Script Syntax

Use the syntax you would typically use for SQL statements; however, separate each statement with the following separator:

/***/

In addition, be aware of the following:

You must begin the separator line with the characters /***/ and no leading spaces . Trailing blanks or carriage returns are

ignored.

Do not end the script with the /***/ separator.

Do not use a semicolon or GO as you would if you were using a relational database query tool.

You can add comments to the end of any line (including a blank line) by using " // " to start a comment. This causes the

Client to ignore the rest of the line, including these two characters. If you add a comment to a separator line, the separator

must be followed by at least one space.

3.3.3 Writing and Testing User Scripts

Following is a recommended method for creating user scripts. Typically, you would start writing your user scripts after you have run

configure and define for the first time. This procedure does not cover the data table creation user script or the index creation user

script.

Follow these guidelines as you develop your user scripts:

Store your user scripts in the directory pointed to by the user_script_dir parameter of the Client configuration file (by default,

the scripts subdirectory of the data source's working directory). Storing them in the global working directory ensures that they

are protected by file security, if enabled.

Use the runscript command to test each script. This command executes the scripts as a transaction. If an error occurs in a

script, the Databridge Client rolls back all changes. You then have the opportunity to fix the error and rerun the script.

If you make a mistake and change the Client control tables in a way you did not intend to, remove or rename the offending

script and then run dbutility define again. This creates a fresh set of Client control tables.

Script/Filename Description

Stored
procedure
creation user
script

script.user_create_sp. tablename

where tablename is the name of the relational database table.

This new type of script allows the user to split updates to stored
procedures from other actions taken when a table is created by the Client.
Unlike the user scripts script.user_create. tablename, this script is also run
when the table is refreshed during a refresh or reorg command. This allows
the user to alter the stored procedures without requiring any manual
intervention.

•

•

•

•

If you have already used the Databridge Client to clone a database, we highly recommend that you test your scripts using a test version of the

Client control tables, not your production version of the Client control tables.

Caution

•

•

•

3.3.2 User Script Syntax

- 39/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To write and test user scripts

3.3.3 Writing and Testing User Scripts

- 40/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Do one of the following:

If you are already using Client control tables in production, run configure to create a test version of the Client control tables

or unload to create a backup copy of the tables.

If you haven't created Client control tables yet, run configure .

Run define to populate the Client control tables.

Run display to create a report of your Client control tables. This report gives you a record of table names, column names, and so

on, that you can use as a reference as you write your user scripts.

Create your data set mapping customization scripts, as follows:

Create the data set selection script for selecting/deselecting data sets. See Sample Data Set Selection Script.

Create a data set mapping customization script for each data set that requires that its mapping be customized. These user

scripts can contain several SQL statements that perform different types of mapping customizations (for example, flatten

OCCURS clauses, specify that items should be cloned as dates, and disable the cloning of some DMSII items). See Tips for

More Efficient Cloning.

Test each script as follows:

dbutility [-n] runscript scriptfilename

where scriptfilename is the name of the script you're testing and -n is a command-line option that overrides your entry for

user_script_dir by allowing you to specify a complete path for the script.

Fix any errors uncovered by running the scripts, and rerun the script until it is correct.

If the script gets corrupted beyond repair, rerun the define command as described in step 2. You must add the -u command-line

option to force the program to allow you to rerun the define command.

When you are satisfied with the script, repeat the define command.

You can also set bit 8 of the status_bits column of the DATASETS Client control table to inform dbutility that the data set needs

to be redefined. To set this value, run the following within a relational database query tool:

Then execute a define command to refresh the mapping.

Repeat step 3 at this point to view the effect of your data set mapping customization.

Create a data table customization script for each data set whose tables need to be customized.

These user scripts can contain several SQL statements that perform different types of customizations for any of the tables mapped

from the data set (for example, renaming a table, renaming a column, changing the sql type column of a data item, inserting a

non DMSII item into a tables). See Sample Data Table Customization Scripts.

Test each script as described in step 6.

Fix any errors uncovered by running the scripts, and rerun the script until it is correct.

If the script gets corrupted, rerun the define command as described in step 2. You must add the -u command-line option to force

the program to allow you to rerun the define command.

1.

•

•

2.

3.

4.

•

•

•

The runscript command runs the script in transaction mode. If an error occurs during script execution, the Databridge Client rolls back all

changes. This allows you to safely rerun the script after correcting it.

Note

5.

6.

update DATASETS set status_bits = 8
where dataset_name = 'DSNAME' and data_source = 'SOURCE'

7.

8.

9.

Include all changes that affect the tables derived from a data set in that data set's script. For example, after a reorganization, the Databridge

Client runs your data table customization user scripts after the relational database layout has been created by a define command. If some

scripts are missing, or if a data table customization script does not include all the changes for its tables, the Databridge Client creates tables

that have different layouts than the original ones.

Caution

10.

3.3.3 Writing and Testing User Scripts

- 41/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Run dbutility define again, using the -u option. If you don't use the -u option, the define command will tell you the data

source already exists. Enter the following:

The Databridge Client automatically runs your user scripts and updates the Client control tables accordingly. The -t 0x801 option

produces a trace of all SQL commands that execute as part of user scripts. These are followed by row counts for update or insert

statements. If you do not enable tracing, you will only see the row counts in the log file.

The next phase of the define command executes the mapping of the DMSII data sets to relational database tables for data sets

whose active column is set to 1. Finally, the Databridge Client runs the data table customization scripts for all the data sets

whose active column is set to 1. The -t 0x801 options also produce a trace of all SQL commands in these scripts.

The Databridge Client runs the data set selection scripts and all the data set mapping customization scripts as well as the data

table customization scripts in a single transaction group. If there is an error, the Databridge Client does not commit any of the

changes; instead, it rolls back all changes and the command terminates.

If you decide to clone a data set or data item that you did not previously clone or if a DMSII reorganization occurs, you will need

to update your scripts.

3.3.4 Using Scripts to Disable Data Sets

To disable cloning by writing user scripts, do the following:

Disable data set cloning via script.user_datasets.datasource

Disable DMSII item cloning via script.user_layout.primary_tablename

Once you are familiar with the concepts in this section, see Customizing with User Scripts.

When using the Administrative Console or Customize command you can simply uncheck the checkbox for the active column of

the data sets you want to disable. The Client will remember the changes unless you drop the data source and start from scratch.

3.4 Decoding DMSII Dates, Times, and Date/Times

This section explains the following:

How to decode DMSII dates, times, and date/time formats into appropriate relational database types by modifying the

DMS_ITEMS Client control table via the script.user_layout.primary_tablename user script

How to change the SQL data type of the resulting relational database column

After you are familiar with the concepts in this section, see Appendix D: Customization Scripts.

11.

 dbutility -t0x801 -u datasource hostname portnumber

If you created table creation or index creation user scripts, the Databridge Client runs those immediately after running its own table creation or

index creation scripts.

Note

12.

•

•

•

•

•

You can make the same types of customizations to the Client control tables using the Customize command as you can by writing user scripts.

You can find a complete description of the additional requirements for user scripts that are compatible with the Client Customizer in Appendix D:

Customization Scripts. For information about the Customize command, see the Databridge Administrative Console Help.

Note

3.3.4 Using Scripts to Disable Data Sets

- 42/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.4.1 DMSII Dates

Even though DMSII did not have a date data type until the advent of DMSII 57.1, most DMSII sites use several common methods to

store dates. This section includes ways to decode these types of date representations into a relational database date data type. A

DMSII 57.1 date is stored as a REAL in DMSII and represents the number of days since 12/31/1600. The Client automatically

converts DMSII 57.1 dates to relational database dates making it unnecessary to do any customization

The Databridge Client supports the following DMSII date encoding methods:

Choosing the SQL Data Type of the Relational Database Column {#b1jbb5sf}

Regardless of the original DMSII date structure, the resulting relational database column has a default sql_type of 12

(smalldatetime) in the case of SQL Server and a sql_type of 10 (date) in the case of Oracle.

Script/
Filename

Description See

DMSII
GROUPS

Three numbers for year,
month, and day

DMSII Dates Represented as a GROUP of
Numbers- - approach #1 and DMSII Dates
Represented as a GROUP of Numbers - approach
#2

DMSII
NUMBER
values

Any of the following:

MISER database dates, usually

NUMBER(5)

LINC database dates

Month, day, and year represented by

a 6- or 8-character alpha string

containing only digits

Delimited dates such as (03/10/10)

Dates with three-character month

names (MAR102005)

Julian dates represented as a five-

digit number (06905) or seven-digit

number (0692005)

Decoding DMSII Dates Represented as ALPHA or
NUMBER

DMSII ALPHA
values

Any of the following:

LINC database dates

LINC database dates

Month, day, and year represented by

a 6- or 8-character alpha string

containing only digits

Delimited dates such as (03/10/10)

Dates with three-character month

names (MAR102005)

DMSII Times DMSII Times Represented as ALPHA, NUMBER, or
REAL

Custom
DMSII dates

Any of the following:

Month/year without day or other

unique variations

Non-Standard dates

Month/year without day or other

unique variations

Custom DMSII Date/Time Represented as ALPHA
or NUMBER

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.4.1 DMSII Dates

- 43/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To make the Client map a DMS item to a column that is a date data type, you must set the bit DIOPT_Clone_as_Date (2) in the

di_options column of the corresponding DMS_ITEMS entry using the user script script.user_layout.dataset . Setting the

configuration parameter use_date to true makes the Client use the date data type for all dates that have no time part, regardless of

whether this bit is set or not.

SQL Server supports multiple date data types. You can make the Client generate different types of dates by using the

script.user_layout.dataset user script to set the following bits in the di_options column of the corresponding DMS_ITEMS table

entry:

DIOPT_UseLongDate (128) causes the Client to a use a data type of 10 (datetime) instead of smalldatetime.

DIOPT_UseLongDate2 (65536) causes the Client to use the datetime2 data type. If both this bit and the DIOPT_UseLongDate

bit are set, datetime2 is used. Setting the configuration parameter use_datetime2 to true makes the Client use the datatime2

data type regardless of whether this bit is set or not when the DIOPT_UseLongDate bit is set.

DIOPT_Clone_as_DateOnly (32768) causes the Client to use the date data type which is 3-bytes long and contains no time.

For an example script, see Changing SQL Data Types.

DMSII DATES REPRESENTED AS A GROUP OF NUMBERS- - APPROACH #1

The DMSII GROUP must always contain a year and a month; the day can be omitted, in which case it defaults to 1.

To clone a DMSII date (represented as a group of numbers) as a relational database date

Write a user script (script.user_layout .primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) bit in the di_options column for the GROUP

Sets the dms_subtype column of the group members in DMS_ITEMS to indicate which part of the date they represent, as follows:

The following SQL statements cause the Databridge Client to clone the DMSII group INV_DATE as a relational database date type.

Filename: script.user_layout.inv

•

•

•

Relational Database Date Data Type Value for
sql_type Column

Microsoft SQL Server: datetime (8 bytes) 10

Microsoft SQL Server: smalldatetime (4 bytes) 12

Oracle: date (7 bytes) 10

Microsoft SQL Server: int
Oracle: number(10)

NOTE: The date is formatted according to the numeric_date_format
configuration parameter, whose default value is 23 (mmddyyyy).

13

Microsoft SQL Server: datetime2 (8 bytes) 19

Microsoft SQL Server: date (3 bytes) 20

1.

2.

Part of Date in GROUP Value for dms_subtype

Column

Year (assumes a 1900 base) 1

Month 2

Day 3

Year By default, yy values < 50 are 21st century years (20yy) and yy values > 50 are 20th century

years (19yy).*

4

Absolute year

This is a 4-digit year specification (for example, 2010).

5

3.4.1 DMSII Dates

- 44/327 - © Copyright 2021 Micro Focus or one of its affiliates.

update DMS_ITEMS set di_options=2

where dataset_name='INV' and dms_item_name='INV_DATE'

/***/

update DMS_ITEMS set dms_subtype=1

where dataset_name='INV' and dms_item_name='INV_DATE_YEAR'

/***/

update DMS_ITEMS set dms_subtype=2

where dataset_name='INV' and dms_item_name='INV_DATE_MONTH'

/***/

update DMS_ITEMS set dms_subtype=3

where dataset_name='INV' and dms_item_name='INV_DATE_DAY'

The Customize command does not support this method of handling GROUP dates. However, it does support the equivalent method

described in the next section. When converting old scripts to a format compatible with the Customize command, the dbscriptfixup

utility converts the changes made by this type of script to the format described below.

DMSII DATES REPRESENTED AS A GROUP OF NUMBERS - APPROACH #2

This version of Databridge Client now supports a new method of handling DMSII dates represented as a GROUP (or a nested

GROUP). The Client redefines a group of like items, that can either be unsigned numbers or alpha items, as a single item having the

common type and encompassing the entire GROUP. This operation is referred to as collapsing (or redefining) a GROUP). By

collapsing a GROUP of numbers that represent a date, we effectively make the operation of cloning it as a relational database date

equivalent to that of cloning a number that represents a date.

For example, this technique can collapse the year, month, and day in the following DMSII GROUP in the data set named EMPLOYEE

into a single item that acts as a NUMBER(8) :

The method described in the next section can then customize this column as needed. This technique also applies to date/time

quantities represented as a group of like items.

To clone a DMSII date (represented as a group of numbers) as a relational database date

Sets the DIOPT_CollapseGroup (67,108,864) and the DIOPT_Clone_as_Date (2) bits in the di_options column.

Sets the dms_subtype column of the GROUP item in DMS_ITEMS to indicate the format in which the resulting date is encoded. See

the section below for a list of date formats (the above date group is represented by a dms_subtype of 21).

The script to perform this action is:

Filename: script.user_layout.employee

update DMS_ITEMS set di_options=67108866, dms_subtype=21

where dataset_name='EMPLOYEE' and dms_item_name='EMP-HIRE-DATE-YMD'

Decoding DMSII Dates Represented as ALPHA or NUMBER

Use the following procedure to decode DMSII dates represented as NUMBER or ALPHA items to relational database data types.

EMP-HIRE-DATE-YMD GROUP
(
 EMP-HIRE-YEAR NUMBER(4);
 EMP-HIRE-MONTH NUMBER(2);
 EMP-HIRE_DAY NUMBER(2);
)

1.

2.

3.4.1 DMSII Dates

- 45/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To decode dates represented as NUMBER or ALPHA items

3.4.1 DMSII Dates

- 46/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Write a script (script.user_layout. primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) bit in di_options .

1.

2.

3.4.1 DMSII Dates

- 47/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Sets the dms_subtype column in DMS_ITEMS to indicate the type of date encoding method used on the host, as follows:3.

3.4.1 DMSII Dates

- 48/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Date Encoding Scheme Value for

dms_subtype

Column

NUMBER(n) for MISER dates—days since 12/31/1899 1

NUMBER(n) for LINC dates—days since 1/1/baseyear (default 1957) 3

ALPHA(6) or NUMBER(6) with two-digit year yy (1900–1999)

yymmdd

yyddmm

mmddyy

mmyydd

ddmmyy

ddyymm

11

12

13

14

15

16

ALPHA(5) or NUMBER(5) with two-digit year yy (1900–1999) and with days DDD where DDD is a number

between 1–366 for Julian dates

DDDyy

yyDDD

17

18

ALPHA(8) or NUMBER(8) with four-digit year yyyy

yyyymmdd

yyyyddmm

mmddyyyy

mmyyyydd

ddmmyyyy

ddyyyymm

21

22

23

24

25

26

ALPHA(7) or NUMBER(7) with four-digit year yyyy and with days DDD where DDD is a number between 1–366

for Julian dates

DDDyyyy

yyyyDDD

27

28

ALPHA(6) or NUMBER(6) with two-digit year yy (1950–2049) where yy values < 50 are 21st century years (20yy)

and yy values > 50 are 20th century years (19yy)

yymmdd_2000

yyddmm_2000

mmddyy_2000

mmyydd_2000

ddmmyy_2000

ddyymm_2000

31

32

33

34

35

36

ALPHA(5) or NUMBER(5) with two-digit year yy (1950–2049) where yy values < 50 are 21st century years (20yy)

and yy values > 50 are 20th century years (19yy) and with days DDD where DDD is a number between 1–366 for

Julian dates.

DDDyy_2000 yy*

DDD_2000

37

38

3.4.1 DMSII Dates

- 49/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Date Encoding Scheme Value for

dms_subtype

Column

ALPHA(8) with two-digit year yy (1900–1999) and with delimiter characters where / represents forward slash (/),

hyphen (-), or period (.).

yy/mm/dd

yy/dd/mm

mm/dd/yy

mm/yy/dd

dd/mm/yy

dd/yy/mm

41

42

43

44

45

46

ALPHA(10) with four-digit year yyyy and with delimiter characters where / represents forward slash (/), hyphen

(-), or period (.).

yyyy/mm/dd

yyyy/dd/mm

mm/dd/yyyy

mm/yyyy/dd

dd/mm/yyyy

dd/yyyy/mm

51

52

53

54

55

56

ALPHA(8) with two-digit year yy (1950–2049) where yy values < 50 are 21st century years (20yy) and yy values

> 50 are 20th century years (19yy) and with delimiter characters where / represents forward slash (/), hyphen (-),

or period (.).*

yy/mm/dd_2000

yy/dd/mm_2000

mm/dd/yy_2000

mm/yy/dd_2000

dd/mm/yy_2000

dd/yy/mm_2000

61

62

63

64

65

66

ALPHA(7) with two-digit year yy (1900–1999) and three-character month abbreviation (mon). Month

abbreviations are JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC unless specified

otherwise by the months parameter in the Databridge Client configuration file.

yymondd

yyddmon

monddyy

monyydd

ddmmyy

ddyymon

71

72

73

74

75

76

ALPHA(9) with four-digit year (yyyy) and three-character month abbreviation (mon). Month abbreviations are

JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC unless specified otherwise by the months

parameter in the Databridge Client configuration file.

yyyymondd

yyyyddmon

monddyyyy

monyyyydd

ddmonyyyy

ddyyyymon

81

82

83

84

85

86

3.4.1 DMSII Dates

- 50/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The configuration parameter century_break allows you to adjust the range for the year. The default value for century_break is 50.

A value of -1 causes the Client to automatically set the century break based on the year in the audit timestamp.

For example scripts, see Cloning a Numeric Field as a Date and Cloning an Alpha Field as a Date.

3.4.2 DMSII Times

The Databridge Client supports several DMSII ALPHA, NUMBER, or TIME encoding methods for time of day and elapsed time.

Choosing the SQL Data Type of the Relational Database Column

The relational database column---regardless of the original DMSII time structure---has a default sql_type of 17, which is a

Microsoft SQL Server int or Oracle number(6), except for TIME(12) and TIME(14), which are stored as a number (10). TIME(12) and

TIME(14) are formatted as ddddhhmnss, where dddd is the number of days.

All other TIME types are formatted as hhmnss. To make the Client map a DMS item to a column that is a numeric time, you need to

set the bit DIOPT_Clone_as_Time (256) in the di_options column of the corresponding DMS_ITEMS entry using the user script

script.user_layout.dataset .

In the case of SQL Server, which has a time data type, the Client can store these values using the time data type. You can do this by

setting the di_options bit DIOPT_Use_Time (131072) in the corresponding entry in the DMSII_ITEMS table using the

script.user_layout.dataset user script. If you set both the DIOPT_Clone_as_Time bit and the DIOPT_Use_Time bit, the latter takes

precedence.

DMSII Times Represented as ALPHA, NUMBER, or REAL

You can decode DMSII times represented as ALPHA, NUMBER, or REAL items to relational database data types using the Databridge

host or the Databridge Client. To do this on the host (versus the Databridge Client), you must redefine the DMSII item using an

ALTER REDEFINE. For more information, see Chapter 5 of the Databridge Programmer's Reference.

To decode those data types using the Databridge Client

Date Encoding Scheme Value for

dms_subtype

Column

ALPHA(7) with two-digit year yy (1950–2049) where yy values < 50 are 21st century years (20yy) and yy values

> 50 are 20th century years (19yy) and with three-character month abbreviations (mon). Month abbreviations

are JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC unless specified otherwise by the

months parameter in the Databridge Client configuration file.

yymondd_2000

yyddmon_2000

monddyy_2000

monyydd_2000

ddmonyy_2000

ddyymon_2000

91

92

93

94

95

96

If your DMSII date format includes mmyy or yymm without a position for days, see Custom DMSII Date/Time Represented as ALPHA or

NUMBER.

Note

3.4.2 DMSII Times

- 51/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Write a script (script.user_layout .primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Time (256) bit in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the type of time encoding method used on the host, as follows:

For an example script, see Cloning an Alpha or Number Field as a Time.

3.4.3 Decoding DMSII Date/Times

The Databridge Client implements a set of dms_subtype values to decode DMSII items that include the date and time in a single

item. Specifically, the Databridge Client contains values for DMSII ALPHA or NUMBER values that represent the date/time in a variety

of ways, such as:

Month, day, year, and time of day combined into a twelve-digit (031005112501) or fourteen-digit (03102005112501) number

Julian dates and time of day represented as an eleven-digit number (06905112501) or a thirteen-digit number

(0692005112501)

DMSII item of type REAL that are 48-bits long and represent TIME(6), TIME(7), or TIME(60) type data which encode a date and

a time. A new data type in DMSII 57.1, named TIMESTAMP, represents TIME(6) values. The Databridge Client automatically

converts these items to the appropriate relational database date/time data type, thus eliminating the need to do any special

customization.

To decode these types of date/time representations into a relational database date/time data type, see Decoding DMSII Date/Time

Represented as ALPHA or NUMBER. When using these with SQL Server, you should set the di_options bit DIOPT_Use_LongDate to

force the Client to use a data type of datetime rather than smalldatetime. When a data type of smalldatetime is used, the Client

sets the values of seconds to zero (0), as SQL Server rounds the value to increments of .000, .003, or .007 seconds. You can aslo

use a data type of datetime2 instead of datetime by setting the di_options bitDIOPT_UseLongDate2 (65536). Setting the

configuration parameter use_datetime2 to true makes the Client use the datatime2 data type regardless of whether this bit is set or

not when the DIOPT_UseLongDate bit is set.

Decoding DMSII Date/Time Represented as ALPHA or NUMBER

You can decode DMSII date/time formats represented as NUMBER or ALPHA items to relational database date/time data types using

the Databridge host or the Databridge Client. To do this on the host, you must redefine the DMSII item using an ALTER REDEFINE.

For more information, see Chapter 5, "Alter Data Sets" in the Databridge Programmer's Reference.

•

•

Time Encoding Scheme Value for
dms_subtype
Column

ALPHA(6) or NUMBER(6) time of day in hhmnss format 1

REAL containing a TIME(1) value, which represents the time of day in
1/60th of a second

2

REAL containing a TIME(11) value, which represents the time of day in
ticks (2.4 microseconds)

3

REAL containing a TIME(12) or TIME(14) value, which represents the elapsed
time in ticks

4

REAL containing a DMSII 57.1 TIME, which represents the number of 100’th
of seconds since midnight. These are automatically converted to TIME data
types if the database supports it. Otherwise, they are stored as integer
values of the form "hhmmss".

5

NUMBER(12) containing the time of day in hhmnssmmmmmm format where mmmmmm
represents fractions of seconds.

6

•

•

•

3.4.3 Decoding DMSII Date/Times

- 52/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To decode DMSII date/time formats represented as NUMBER or ALPHA items, write a script (

script.user_layout.primary_tablename) that does the following:

Sets the DIOPT_Use_Long_Date (128) bit in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the type of date/time encoding method used on the host, as follows:

•

•

3.4.3 Decoding DMSII Date/Times

- 53/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If your DMSII date/time encoding scheme is not listed in the following table, see the next section.

Note

3.4.3 Decoding DMSII Date/Times

- 54/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Date/Time Encoding Scheme Value for
dms_subtype
Column

ALPHA(14) or NUMBER(14) with four-digit year followed by a six-digit
time

yyyymmddhhmnss
yyyyddmmhhmnss
mmddyyyyhhmnss
mmyyyyddhhmnss
ddmmyyyyhhmnss
ddyyyymmhhmnss

121
122
123
124
125
126

ALPHA(13) or NUMBER(13) with four-digit year yyyy and with days DDD
where DDD is a number between 1–366 for Julian dates followed by a six-
digit time

DDDyyyyhhmnss
yyyyDDDhhmnss

127
128

ALPHA(12) or NUMBER(12) with two-digit year representing dates in both
the 20th and 21st centuries followed by a six-digit time

yymmddhhmnss
yyddmmhhmnss*
mmddyyhhmnss
mmyyddhhmnss
ddmmyyhhmnss
ddyymmhhmnss

131
132
133
134
135
136

ALPHA(11) or NUMBER(11) with two-digit year representing dates in both
the 20th and 21st centuries where days DDD is a number between 1–366 for
Julian dates followed by a six-digit time

DDDyyhhmnss
yyDDDhhmnss

137
138

ALPHA(12) or NUMBER(12) with two-digit year yy (1900–1999) preceded by a
six-digit time

hhmnssyymmdd
hhmnssyyddmm
hhmnssmmddyy
hhmnssmmyydd
hhmnssddmmyy
hhmnssddyymm

211
212
213
214
215
216

ALPHA(11) or NUMBER(11) with two-digit year yy (1900–1999) and with days
DDD where DDD is a number between 1–366 for Julian dates preceded by a
six-digit time

hhmnssDDDyy
hhmnssyyDDD

217
128

3.4.3 Decoding DMSII Date/Times

- 55/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The configuration parameter century_break allows you to adjust the range for the year.

For example scripts, see Cloning an Alpha or Number Field as a Date/Time.

Custom DMSII Date/Time Represented as ALPHA or NUMBER

You may be able to decode DMSII date/time formats represented as NUMBER or ALPHA items, and convert them to relational

database date/time format even if you could not find the correct encoding scheme in the previous sections. For instance, if the

DMSII date item has no day (mmyy or yymm), dms_subtype of 0x32 or 0x23 converts this to relational database date/time with a

day as "1" and the time as all zeros. For this to work, the DMSII item cannot include any ALPHA data (such as slashes, dashes, or

month names). Therefore, 01-FEB-14 would not convert, but 0214 would.

Date/Time Encoding Scheme Value for
dms_subtype
Column

ALPHA(14) or NUMBER(14) with four-digit year preceded by a six-digit
time

hhmnssyyyymmdd
hhmnssyyyyddmm
hhmnssmmddyyyy
hhmnssmmyyyydd
hhmnssddmmyyyy
hhmnssddyyyymm

221
222
223
224
225
226

ALPHA(13) or NUMBER(13) with four-digit year yyyy and with days DDD
where DDD is a number between 1–366 for Julian dates preceded by a six-
digit time

hhmnssDDDyyyy
hhmnssyyyyDDD

227
228

ALPHA(12) or NUMBER(12) with two-digit year representing dates in both
the 20th and 21st centuries preceded by a six-digit time

hhmnssyymmdd
hhmnssyyddmm
hhmnssmmddyy
hhmnssmmyydd
hhmnssddmmyy
hhmnssddyymm

231
232
233
234
235
236

ALPHA(11) or NUMBER(11) with two-digit year representing dates in both
the 20th and 21st centuries where days DDD is a number between 1–366 for
Julian dates preceded by a six-digit time

hhmnssDDDyy
hhmnssyyDDD

237
238

3.4.3 Decoding DMSII Date/Times

- 56/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To decode these custom date or date/time layouts using the Databridge Client, write a script

(script.user_layout.primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) and the DIOPT_VarFormat_Date (2048) bits in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the hexadecimal string, in the same order as the host item layout, as

follows:

As stated previously, the format can be as short as yymm (dms_subtype 0x23 or 35 decimal). Formats like mmhhyy are supported

(dms_subtype of 0x253 or 850 decimal) as well as longer ones. For example, a mainframe date/time layout of mmsshhmnddyy

uses the dms_subtype value of 0x375642 or 3626562 decimal.

Numeric Date and Time in Non-Contiguous Columns

When a DMSII date and time are in contiguous column, you can easily make the Client handle the combined columns as a single

date/time quantity by merging the two columns. You can do this by setting the bit 16777216 in di_options of the first item to make

the define command merge the two items when it maps them to the relational database table. You can then mark the item to be

cloned as a date and set the appropriate value for its dms_subtype column. For example, if you have an item that is a NUMBER(8)

representing a date which is immediately followed by an item that is NUMBER(6) representing a time, you can make the Client treat

the first item as if it were a NUMBER(14) ignore the second one. This can also be done by using an ALTER REDEFINE in

DBGenFormat.

When the two columns are not contiguous, use the dms_concat_num column to append the time part of the combined item to the

date part. This column must be set to the item number of the item containing the time value. The Client will effectively treat these

two items as if the second one were concatenated to the first one. You must also set the di_options bit 524288 (0x80000) to make

the Client include the second item in DATAITEMS with its active column set to 0. This is a lot more efficient than using

DBGenFormat to perform this operation.

See a sample script and its explanation here, Concatenating Two Items and Cloning the Result as a Date/Time

1.

2.

Date/Time
Encoding
Scheme

Description Hexadecimal
Value for
dms_subtype
Column

yyyy Four-digit year 1

yy Two-digit year within 1950-2049

To adjust this range, use the century_break
configuration parameter. See century_break.

2

mm Two-digit month 3

dd Two-digit day 4

hh Two-digit hour 5

mn Two-digit minutes 6

ss Two-digit seconds

NOTE: The Databridge SQL Server Client stores all host
values for seconds (ss) as zero unless you add the
DIOPT_Use_LongDate (128) bit to di_options in step one
of the layout script. See "di_options" in DMS_ITEMS.

7

mmm Three-digit fractions of seconds (milliseconds) 8

mmmmmm Six-digit fractions of seconds (nanoseconds) 9

mm Two-digit fractions of seconds (centiseconds) 10

3.4.3 Decoding DMSII Date/Times

- 57/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.5 Creating Indexes for Tables

This section explains how the Databridge Client creates indexes for tables mapped from a DMSII data set.

Ideally, the Databridge Client uses the optimum SET among the various sets defined for the data set in the DASDL. Only SETs that

have the NO DUPLICATES ALLOWED attribute (SETs with unique keys) qualify for this selection.

3.5.1 Keys Derived from the DMSII Database

First, the Databridge Engine decides whether any SETs meet this requirement. If more than one SET does, the Databridge Engine uses

the SET with the least number of keys. In case of a tie, it uses the SET with the smallest-sized keys.

In addition, the DBGenFormat utility allows you to declare a primary key without modifying the DASDL. The Databridge Engine is

responsible for passing information about DBGenFormat primary keys to the Databridge Client. The Databridge Client sometimes

uses these keys for VIRTUAL data sets or any other types of data sets that do not have a SET that meets the requirements mentioned

above. If you have both a qualified SET and a PRIMARY KEY defined in the GenFormat file, the Client uses the PRIMARY KEY.

When the Databridge Engine uses a DMSII SET as the index for tables derived from the data set, the name of the DMSII SET is stored

in the set_name column of the DATASETS Client control table. Alternatively, when the Databridge Engine uses a DBGenFormat

primary key as the index for tables derived from the data set, the name "pk_set" is stored in the set_name column.

3.5.2 Using Sets with the KEYCHANGEOK Attribute

Some DMSII SETs have the KEYCHANGEOK attribute, which indicates that it is legal for the value of items that are members of the

SET (that is, keys) to change. When the SET being used as the index has the KEYCHANGEOK attribute, this is reflected by bit 4096

(0x1000) in the ds_options columns of the corresponding row in the DATASETS control table. This causes the Client to register the

keys it is using with the Databridge Engine, which then compares the keys in the before and after images of an update to determine

if the update should be sent to the Client as a MODIFY when the keys are unchanged or as a MODIFY BI/AI pair when a key change

occurs. This allows the Client perform the update by deleting the old record and inserting the new one when a key change occurs.

If the Client used a MODIFY when a key change occurred, the update statement would fail and the Client would then recover by

doing an insert instead. This would result in the old record and the new record both being present in the database resulting in an

incorrect replication.

3.5.3 RSNs and AA Values as Keys

If the Databridge Engine does not find a suitable index, the Client tries to use the RSN (record sequence number) or the AA Value

(absolute address) of the records as the key. Both of these items are A-Series words (48-bit quantities). They are passed to the Client

as part of the record header. Both use the same entry in the header, and the Databridge Engine informs the Client about what this

item represents, as explained below. If the Client decides to use one of these quantities as the key, the set_name column is set to

"aa_set" in the DATASETS Client control table. Otherwise, this column is left blank, indicating that there is no set usable as an index.

If a DMSII SET with the NO DUPLICATES ALLOWED attribute exists, we recommend that you use it as the source of the index rather than

declaring a DBGenFormat primary key.

Note

3.5 Creating Indexes for Tables

- 58/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The Databridge Client can represent AA Values (or RSNs) the following ways:

CHAR(12), where each character is the hexadecimal representation of the correspond digit (half-byte) in the A-Series word. This

is the default.

BINARY(6), a binary quantity that uses 48-bits where each byte in the A-Series word is represented by a byte in the relational

database. See use_binary_aa.

Using numeric fields to hold the AA Values (or RSNs). In this case the Databridge Client uses an appropriate numeric data type

to hold the AA Values (or RSN), mainly, BIGINT for SQL Server and NUMBER(15) for Oracle. See use_decimal_aa.

RSNs are unique serial numbers that get assigned to records when they get created and remain associated with the record for the life

of the record. You must have DMSII XE to be able to use RSNs. Furthermore, you must explicitly enable RSNs in the DASDL by

adding the EXTENDED attribute to the data set. If you explicitly add a column to a data set whose value is the RSN, the Databridge

Client will allow you to use this column as an RSN rather than a REAL. In such cases, the Databridge Engine automatically sets the

di_options bit DIOPT_Clone_as_RSN in the corresponding DMS_ITEMS table entry to make the Client treat this item (which will be

a REAL) as an RSN. See DMS_ITEMS.

AA Values are the absolute address (that is, the file address --- offset within the file --- of the records in the data set). They do not

remain constant over time; however, in the following cases, AA_values are required to implement foreign keys to link records in

related data sets:

Any data set that contains one or more embedded data sets must always use AA Values as the key. Embedded data sets use

Parent_AA Values to implement the link to their parent structures.

When an active data set has links to another data set, the latter must use AA Values as the key.

In both of these cases, the Databridge Engine will use AA Values for the data set in question regardless of whether there is a SET

that qualifies for being used as an index, or whether an RSN exists.

Not all data sets have valid AA Values; for example, ORDERED and COMPACT data sets do not have valid AA Values. When AA

Values are used as the key, the set_name column of the DATASETS Client control table is set to the name "aa_set". The name "aa_set"

causes the RSN or the AA Value to be used as part of the index using a column named my_rsn or my_aa depending on whether this

is an RSN or an AA Value.

To find out if a data set has an RSN or a valid AA Value, you need to look at the misc_flags column of the entry for the data set in

the DATASETS Client control table. The bit DSFLG_Static_AA (bit mask 64) is used to indicate whether the Client is using an RSN or

an AA Value (1 indicates RSN and 0 indicates AA Value). The bit DSFLG_Valid_AA (bit mask 128) is used to indicate whether or not

the data set has a valid AA Value (1 indicates a valid AA Value). The Client has no control over the selection of RSNs versus AA

Values. This decision is made by the Databridge Engine.

The advantage of using the AA Value to generate a unique key is that it makes updates possible for data sets that could not

otherwise be updated; however, this value is not an absolute constant. Any DMSII reorganization (record conversion, file format, or

garbage collection) changes these values. You must re-clone a data set that uses AA Values as keys whenever the AA Values

change. Therefore, we recommend that you consider creating a unique composite key rather than using AA Values.

The Databridge Client recognizes the names "aa_set", "user_set", and "pk_set" as special names (the use of the underscore is not

allowed in DMSII names).

Forcing the Client to Use RSN or AA Values as Keys

You can force the Client to use the RSN or AA Value as the key for a specific data set by setting the ds_options bit,

DSOPT_Use_AA_Only (bit mask 16384) in the DATASETS table entry for the data set in question.

•

•

•

If a DMSII SET with the NO DUPLICATES ALLOWED attribute exists or the data set has an RSN, we recommend that you use one of these

keys rather than declaring a DBGenFormat primary key.

Note

•

•

3.5.3 RSNs and AA Values as Keys

- 59/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To perform this action globally, use the parameter force_aa_value_only with one of the following values. (For more details about

this parameter, see force_aa_value_only. Note that this does not have any effect until you run a redefine command (with the -R

option) to get the global setting applied to all the data sets.

3.5.4 User Defined Keys in GenFormat

You can create a user-defined SET for a data set by using the PRIMARY KEY construct in GenFormat. When a PRIMARY KEY exists, it

is used instead of a SET that would otherwise qualify as the source for the index on the table. To properly identify the source of

such an index, the Databridge Client sets the set_name to "pk_set" when it originates from a PRIMARY KEY construct. The Databridge

Client recognizes "pk_set" as a special name, just like "aa_set" and "user_set". The only difference between "user_set" and "pk_set" is

their origin.

3.5.5 Composite Keys

Composite keys use several columns in a relational data table to form a unique index. The entries you make (via a user script) in the

item_key column of the DMS_ITEMS Client control table determine the order in which the columns are used in the key.

To avoid this step, define the composite key in the DBGenFormat parameter file on the host.

When to Use Composite Keys

We recommend that you create a composite key for data sets that do not have a unique key. Creating a composite key is required for

the following data sets:

Data sets that do not have valid RSNs or AA Values, such as COMPACT, ORDERED, and VIRTUAL data sets

Data sets that use AA Values and for which garbage collection reorganizations are frequently performed.

You can also do this from the Customize command by using the checkbox Use AA Values (or RSNs) As Keys in the Options section of

properties of the data set.

Note

Value Description

0 Globally disables the parameter

1 Globally enables the parameter

2 Only applies to data sets that have an RSN; using a SET as the source for the
index is always preferable to using AA Values that are volatile.

If you specify a member of a DMSII GROUP as part of a composite key, you must also set the corresponding item_key column for the

GROUP to a value of 1 so that the define (or redefine) command picks it up.

Note

•

•

If the composite key that you create is not unique, the following can occur:

If a duplicate record is encountered after you clone the data set, the index creation for the resulting table fails. The SQL query we use

to eliminate duplicate records will get rid of all copies of the duplicate record.

If a duplicate record is encountered while attempting to insert a record during an update, the original record is deleted and replaced with

the new copy of the record.

Caution

•

•

3.5.4 User Defined Keys in GenFormat

- 60/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When you create a composite key, make sure that you enter the value "user_set" into the set_name column. If you do not, one of two

things happens, as follows:

If the set_name value is "aa_set", a column named my_aa, which contains the AA Value of the record is automatically included

in the table.

If the set_name value is blank, the program does not create an index, regardless of the values of the item_key column of the

various DMS_ITEMS Client control table entries.

Once you are familiar with the concepts in this section, and you determine which data sets require composite keys, you must include

the SQL statements in the data set mapping customization script for the data set (script.user_layout.primary_tablename).

Composite Keys Defined by the User

If the Databridge Engine does not find a suitable SET or DBGenFormat primary key, the Databridge Client allows you to create a

composite key. You can also create a composite key when the Databridge Client decides to use AA Values as the primary key.

If a data set does not have a DBGenFormat primary key or a DMSII set that qualifies for use as an index, and the AA Values are not

valid, the set_name column in the DATASETS Client control table is left blank. In this case, you can clone the data set, but you

cannot track updates.

When the DMSII data set does not have a key, we recommend that you create a composite key using the data set mapping

customization script (script.user_layout.primary_tablename). See When to Use Composite Keys for more details about when to

use a composite key.

Creating a Composite Key

Modify script.user_layout.primary_tablename to do the following:

If you don't use the Customize command, set the set_name column of the DATASETS Client control table entry for the data

set in question to "user_set". If you use the Client Customizer, this is done automatically.

Specify which items should be part of the composite key by assigning the appropriate values to the corresponding entries

for the item_key column of the DMS_ITEMS Client control table. Such entries are identified by the values of the

dms_item_name and the dataset_name columns.

After you create the composite key, do one of the following:

If you have not cloned any tables, run the define command again.

If you have cloned tables, set the status_bits column for the corresponding entry in the DATASETS Client control table to

8, and run a redefine command.

If you ran a define command (or if the redefine command prompts you to run a generate command) run the generate

command from the working directory that for the data source. Otherwise, you'll be prompted to run the reorg command, which

fixes the index for the table.

From the data source's working directory, run a process command. This clones or re-clones the data set, if needed, and

resumes tracking.

•

•

If the added column is named "my_rsn," this indicates that it is an RSN, which makes an excellent key. Do not use composite keys when this

is the case.

You must not create a composite key for a data set that contains embedded data sets or for a data set that has other active data sets

linking to it when the handling of DMSII links is enabled.

Note

•

•

•

•

•

•

•

•

•

•

3.5.5 Composite Keys

- 61/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.6 Adding a Non DMSII Column

Non DMSII columns (also called user columns) are generally used to store the audit file timestamp so that you can keep track of

when the data was last updated. You can add non DMSII columns to your relational tables in any of the following ways:

To add a non DMSII column to every data set, set the corresponding bit in the configuration file parameter

default_user_columns ; this parameter then assigns the appropriate value to the external_columns column of the DATASETS

Client control table. The bits in this column determine which non DMSII columns are added to your data table.

To prevent the Client from adding some of the non DMSII columns to secondary tables (for example, DMSII items that have an

occurs clause), set the corresponding bit in the configuration file parameter sec_tab_column_mask . This parameter is used in

conjunction with the external_columns column in the DATASETS table entry.

To add a non DMSII column to most, but not all, of your data sets, use the script script.user_layout.primary_tablename to set

the external_columns column of the DATASETS Client control table back to 0 for the data sets that you want to keep

unchanged.

To add a non DMSII column to only a few data sets, do not set the default_user_columns parameter. Instead, use the script

script.user_layout.primary_tablename to modify the external_columns column of the DATASETS Client control table for the

data sets you want to change.

3.6.1 Types of Non DMSII Columns

The Databridge Client offers several default non DMSII columns (user columns). You can add user columns to the relational

database tables either by using user scripts, as described in this section, or by using the Customize command. For more information

about the Client Customizer, see the Databridge Administrative Console Help.

•

•

•

•

3.6 Adding a Non DMSII Column

- 62/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The value for the Bit column in this table is equal to the value in the dms_subtype column of the DATAITEMS Client control table. The exception

is bit 14, which results in a dms_subtype of 0. Bits are numbered from right to left; the right-most bit is 1.

Note

3.6.1 Types of Non DMSII Columns

- 63/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Bit Value User Column
Name

Description

1 1 update_type Database update type, as follows:

0 for extract1 for create
2 for delete (bit 10 must also be enabled)
3 for modify

NOTE: This value cannot be used at the same time as
bit 11.

2 2 update_time Time the update was applied to the relational
database (PC time)

3 4 update_ts (SQL Server Clients only) SQL Server timestamp data
type. (The timestamp is a data type that exposes
automatically-generated unique binary numbers
within a database. It is not a true timestamp that
contains a date and time value.)

4 8 audit_ts DMSII audit file timestamp. This column is set to
NULL during the initial clone.

NOTE: This bit cannot be used at the same time as
bit 13.

5 16 audit_filenum Audit file number

NOTE: If you use a decimal number, its precision
must be at least 4. Otherwise, the value may be too
large and result in a SQL error.

6 32 audit_block Audit block serial number (ABSN)

NOTE: If you use a decimal number, its precision
must be at least 10. Do not use a data type of int,
as the ABSN is a 32-bit unsigned number. Otherwise,
the value may be too large and result in an
overflow, which will result in a SQL error.

7 64 source_name Data source name

8 128 source_id Data source identifier as defined in the
DATASOURCES Client control table

9 256 my_id SQL SERVER IDENTITY column.

Updates have no effect on this number.

NOTE: For Windows Clients only: This column won't
appear on Clients other than SQL Server, even if
requested. The Oracle database provides the
equivalent functionality with the ROWID pseudo-
column, which is always present.

3.6.1 Types of Non DMSII Columns

- 64/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Bit Value User Column
Name

Description

10 512 deleted_record Delete indicator (key item). A nonzero value
indicates that the record is deleted. This is
actually the value of the Client machine’s clock at
the time of the deletion. Making this column part
of the index allows multiple instances of a deleted
record to coexist without being considered
duplicate records.

This bit cannot be used at the same time as bit 11. These types are

compared in Preserving Deleted Records.

The granularity of this column is in seconds. If you have applications

that perform many delete/insert operations, you may want to add a

delete_seqno column to prevent the Client from getting duplicate

deleted records. The Client recovers from this by waiting one second

and retrying the operation, which can significantly slow the Client's

performance.

11 1024 update_type Expanded database update type as follows:

0 for extract
1 for create
2 for delete
3 for modify

If the key for this record is reused, the key is removed when the new,

duplicate record is inserted.

This value cannot be used at the same time as bit 1 or bit 10. Bits 10

and 11 are compared in Preserving Deleted Records.

This bit and bit 1 work in the same way, except that this bit preserves

the deleted image.

12 2048 source_id Data source identifier as defined in the
DATASOURCES Client control table (key item)

13 4096 audit_ts Expanded audit file time. This column contains the
DMSII audit file timestamp during updates and the
starting time of the data extraction during
extraction.

NOTE: This bit cannot be used at the same time as
bit 4.

14 8192 user_column1 Generic user column whose entry is left as NULL

15 16384 sequence_no A sequence number used in history tables to
determine the order of updates when they have the
same update_time values

16 32768 delete_seqno Augments the deleted_record column with a sequence
number to provide higher granularity and avoid
creating duplicate deleted records.

17 65536 create_time Time when the record was created in the relational
database (PC time).

18 131072 user_column2 Generic user column whose entry is left as NULL.

19 262144 user_column3 Generic user column whose entry is left as NULL.

20 524288 user_column4 Generic user column whose entry is left as NULL.

•

•

•

•

•

3.6.1 Types of Non DMSII Columns

- 65/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.6.2 Values for Non DMSII Columns

The bit numbers, decimal values, and hexadecimal values for the user column names are shown in the following table.

3.6.3 Setting Up History Tables

The primary data tables use the CREATE, MODIFY, and DELETE records from the mainframe to build an exact duplicate of DMSII

data sets.

A history table, on the other hand, treats these records as new records to insert, even though a history table is structured similarly to

a primary data table. In effect, the history table becomes a log or record of mainframe changes. History tables are usually enabled

as a device to feed data warehouse applications. History tables will continue to grow as Databridge replicates data, so you should

purge them regularly after successful updates to the data warehouse.

To enable history tables, set DSOPT_Save_Updates (bit mask 8 of ds_options in the DATASETS Client control table). You must

enable history tables before you generate Databridge Client scripts, as explained in the next section. If you want to set this bit for all

data sets, you can set the configuration parameter history_tables to 1.

Each history table has the same name as the corresponding primary data table with a "_h" suffix.

It is also possible to create only history tables for a data set or for all data sets. To do this for all data sets, simple set the

history_tables parameter to 2 in the configuration file. This will cause the ds_options bit DSOPT_History_Only (8192) to be set for

all data sets. If you only want to do this for a few data sets, then you can use the user script script.user_layout.dataset to do this.

Default Name Bit Number Decimal Calue Hex Value

update_type 1 1 0x00000001

update_time 2 2 0x00000002

update_ts 3 4 0x00000004

audit_ts 4 8 0x00000008

audit_filenum 5 16 0x00000010

audit_block 6 32 0x00000020

source_name 7 64 0x00000040

source_id 8 128 0x00000080

my_id 9 256 0x00000100

deleted_record 10 512 0x00000200

update_type 11 1024 0x00000400

source_id_key 12 2048 0x00000800

audit_ts 13 4096 0x00001000

user_column1 14 8192 0x00002000

update_seqno 15 16384 0x00004000

delete_seqno 16 32768 0x00008000

create_time 17 65536 0x00010000

delete_seqno 18 131072 0x00020000

delete_seqno 19 262144 0x00040000

delete_seqno 20 524288 0x00080000

3.6.2 Values for Non DMSII Columns

- 66/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.6.4 Modifying Non DMSII Column Names

The configuration file parameter external_column[n] allows you to tailor attributes, such as the column name, of individual non

DMSII columns. For details and a list of allowable sql_type values, see external_column[n].

3.6.5 Preserving Deleted Records

Both the deleted_record column (bit 10) and the update_type column (bit 11 only) may be used to preserve deleted records, which

is useful when trying to recreate updates to the database.

Be aware of the following when using these bits:

Bit 11 preserves only the last instance of the deleted record. For example, if the key value of the deleted record is reused, the

deleted record is replaced when the duplicate (new) record is inserted.

Bit 10 results in the deleted_record column being included in the index. The value in this column is a time value, which

makes the values in the index unique; therefore, you can keep multiple instances of the deleted record. The granularity of this

column is in seconds, if you need coarser granularity you should add the delete_seqno column described in Values for Non

DMSII Columns.

In addition, you must clean up deleted images when they are no longer needed.

3.7 Generating Databridge Client Scripts

In this phase, the Databridge Client generates script files that are used to create the Databridge data tables in the relational database

and run the database bulk loader utility to populate those tables during the data extraction phase.

The generate command creates scripts only for those data sets that have an active column set to 1 in the corresponding entry in

the DATASETS Client control table. The Databridge Client keeps track of the data sets that have been generated. These scripts will

only be generated again if a define command is executed or if a redefine command determines that the layout of a table has

changed. If you need to force the Databridge Client to generate the scripts for all data sets that have a corresponding active

column value of 1 in the DATASETS Client control table, you can specify the -u option on the command-line for the generate

command.

To view the list of scripts that are generated, see Summary of Script Files.

When setting bits in ds_options , beware that some bits may already be set. You should use the "|" operator for SQL Server and the BITOR

function for Oracle to set a bit rather than setting the column to that value.

Caution

•

•

If you use the first method (bit 11) to preserve deleted records, the deleted records will only survive during a re-clone if you set the

preserve_deletes parameter to True. If you use the second method (bit 10), the deleted records will always be preserved during a re-clone.

Note

3.6.4 Modifying Non DMSII Column Names

- 67/327 - © Copyright 2021 Micro Focus or one of its affiliates.

You can also perform this action from the Administrative Console by selecting Actions > Generate Scripts. If you use the Customize

command and have a new data source, you will need to perform this step after you exit from the Customize command.

3.7 Generating Databridge Client Scripts

- 68/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If you plan to use the dbridge.cfg file for signon parameters, set them before you continue. (See the Databridge Installation

Guide.)

Make sure that the following parameters, which affect the generate command, are set correctly in the appropriate section of the

Client configuration file:

[params]

global_table_suffix

create_table_suffix

create_index_suffix

[bulk_loader]

bcp_batch_size

bcp_packet_size

bcp_code_page

bcp_copied_message

sqlld_rows

sqlld_bindsize

inhibit_direct_mode

enable_parallel_mode

max_errors

Enter the following command:

dbutility [signon_options misc_options] generate datasource

Status messages indicate the progress of the command.

1.

2.

For your changes to take effect, you must run the generate command again and specify the -u option to force the program to regenerate

the scripts.

Note

3.

Where Is

signon_options For each Databridge Client type, the following command-line options to specify the relational database signon

parameters:

Oracle:

[-U userid] [-P password] [-D database]

SQL Server:

[-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options Any of the following miscellaneous command-line options:

-T forces the Client to use a new trace file for this run, if tracing is enabled.

-f filename to specify a configuration file other than the default dbridge.cfg file in the working directory.

-L forces the Client to use a new log file for this run.

-u unconditionally generates scripts for all tables mapped from data sets that have a corresponding active

column value of 1 in the DATASETS Client control table.

See dbutility Command-Line Options.

datasource The name that matches the entry in the DATASOURCES Client control table. You can enter the data source

name in uppercase or lowercase.

3.7 Generating Databridge Client Scripts

- 69/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To check on the results of the generate command, see Summary of Script Files. For information on when to run generate , see

When to Run dbutility generate.

At this point, you are ready to run a process or clone command to create and populate the Databridge tables in the relational

database with DMSII data. See Populating the Databridge Data Tables.

3.7.1 Example of Script Files

In this example, scripts are generated for the CUSTOMER data set and the PRODUCTS data set, as follows:

Windows Script Files

UNIX Script Files

The script files are stored in the dbscripts subdirectory of the working directory, which is the directory from which you run the

dbutility generate command.

3.7.2 Summary of Script Files

The generate command produces the following script files:

SQL script files that create data tables and stored procedures to update them in the target relational database

(script.create.tablename)

SQL script files that remove selected records from a data table in the SQL*Loader (script.cleanup.tablename). See the table that

follows for details about the conditions under which these scripts are generated

SQL script files that remove false duplicate records that can occur during a long clone process of an active DMSII database, if

clr_dup_extr_recs is set to True (script.clrduprecs.tablename)

SQL script files that drop data tables from the target relational database (script.drop.tablename)

SQL script files that create indexes for data tables in the target relational database (script.index.tablename)

Windows command (or UNIX shell script) files to run the utility (load.tablename.cmd or load.tablename.sh). The bulk loader is

used during the data extraction phase of a cloning operation of a data set.

SQL*Loader control files for Oracle (sqlld.tablename.ctl) and bcp format files for Microsoft SQL Server (bcp.tablename.fmt).

4.

> dir /on dbscripts
bcp.customer.fmt(Microsoft SQL Server only)
bcp.products.fmt(Microsoft SQL Server only)
load.customer.cmd
load.products.cmd
script.clrduprecs.customer
script.clrduprecs.products
script.create.customer
script.create.products
script.drop.customer
script.drop.products
script.index.customer
script.index.products
sqlld.customer.ctl(Oracle only)
sqlld.products.ctl(Oracle only)

> ls dbscripts
load.customer.sh
load.products.sh
script.clrduprecs.customer
script.clrduprecs.products
script.create.customer
script.create.products
script.drop.customer
script.drop.products
script.index.customer
script.index.product
sqlld.customer.ctl
sqlld.products.ctl

•

•

•

•

•

•

•

3.7.1 Example of Script Files

- 70/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table summarizes the scripts that are created for each Oracle table. Each DMSII data set that is cloned is mapped to

one or more tables. The Databridge Client creates one set of files for each of these tables that have a corresponding active column

value of 1 in the DATATABLES Client control table.

3.7.2 Summary of Script Files

- 71/327 - © Copyright 2021 Micro Focus or one of its affiliates.

File Description

SQL Server: bcp.table.fmt This is a control file that contains the bcp parameters that
describe the format of the data.

Oracle: sqlld.table.ctl This is a control file that contains the SQL*Loader parameters
that describe the format of the data.

Windows: load.table.cmd

UNIX: load.table.sh

This is a Windows command file used to run the relational database
bulk loader (bcp for Microsoft SQL Server and SQL*Loader for
Oracle).

This is a UNIX shell script used to run SQL*Loader.

script.create.table This is a script that contains SQL statements to create the
relational database table named table. It also contains the SQL
statements to create the associated stored procedures for updating
this table.

Before starting the data extraction phase of a process or clone

command, this script is executed to create the table and its
associated stored procedures.

The following stored procedures are used during the process and
clone commands for updating the table (specified by table):

i_table stored procedure for inserting a record
d_table stored procedure for deleting a record
u_table stored procedure for updating a record
z_table stored procedure for deleting all rows for all occurrences
of key in secondary tables using a single SQL statement

script.drop.table This is a script that contains SQL statements to drop the
relational database table named table and to drop the stored
procedures associated with this table.

script.drop.tablescripts are used by the process, clone , drop , and
dropall commands to drop a specified table and its associated
stored procedures.

If a table to be cloned (ds_mode=0) already exists during a process

or clone command, this script is executed to drop both the table
and its stored procedures before recreating them. During a process

or clone command, if the Databridge Client receives a message from
the Databridge Engine indicating that a DMSII data set has been
purged, this script is executed to drop the table. Immediately
after the table is dropped, the script to recreate the table is
executed.

script.cleanup[2].table This script contains SQL statements to delete selected records
from the relational database table. This script is typically
called script.cleanup.table, except when both of the conditions
below are true. In that case, an additional cleanup script named
script.cleanup2.tableis also created to remove all records except
the deleted records from the table.

NOTE: This script is generated under rare conditions where tables
are not fully re-cloned, as in the following cases:

The data set is set up to preserve deleted records.

The data set is a virtual data set that gets its input from more than one DMSII data set.

•

•

3.7.2 Summary of Script Files

- 72/327 - © Copyright 2021 Micro Focus or one of its affiliates.

3.7.3 When to Run dbutility generate

Run dbutility generate when you need to create a new set of scripts for a data source. For example, you would run dbutility again

in the following circumstances:

If you accidentally delete one or more script files, repeat the dbutility generate command with the -u option. Make sure that

the current directory is the working directory for the data source where you want dbutility generate to write the script files.

If you disable cloning (set the active column to 0 in the DATASETS Client control table) for one or more data sets prior to

running the dbutility generate command, no scripts are created for these data sets. If you later decide that you want one or

more of these data sets to be cloned, set the active column back to 1, run the redefine command, and then run the generate

command. The missing scripts are created and you can then run the clone command to clone the data set.

File Description

script.index.table This is a script that contains SQL statements to create an index
for the given table.

NOTE: This script is created only when the table has an index.

script.clrduprecs.table This script removes records with false duplicate key values when
the bit DSOPT_Clrdup_Recs (32768) is set in the ds_options column
of the DATASETS table entry for the data set.

•

•

3.7.3 When to Run dbutility generate

- 73/327 - © Copyright 2021 Micro Focus or one of its affiliates.

4. Cloning a DMSII Database

This chapter covers the steps to clone a DMSII database.

4.1 Cloning Issues for All Relational Databases

We recommend that you read this section before using the process or clone commands.

4.2 Bulk Loader Parameters

Both dbutility process and dbutility clone use a bulk loader utility to populate the Databridge tables in the relational database

during the data extraction phase (not during change tracking). Using the relational database bulk loader utility greatly increases the

speed in which the Databridge data tables are populated.

This section lists the configuration parameters that affect the Databridge Client operations when using the relational database bulk

loader utility. You can use these parameters to do the following:

Control temporary file storage (max_temp_storage parameter, Windows Client only)

Control the bulk loader utility maximum error count (max_errors parameter)

You can set the bulk loader parameters from the Administrative Console. These and other configuration parameters are available

from the Configure page of the Settings button drop-down found on the data source page in question. For more information, see

the Administrative Console Help.

Parameters that are specific to the SQL*Loader and BCP API are discussed in the next sections.

4.2.1 Controlling Temporary File Storage for Windows Clients

During cloning on Windows platforms, the Oracle Client and the SQLServer Client (unless directed to use the BCP API, which does

not involve the use of temporary files) writes bulk loader data to multiple temporary text files for each table being loaded.

Disk Space You need to consider two types of disk space for the Databridge Client, as
follows:

Database storage is required by both the relational database and the DMSII data.

Temporary file storage is required for Windows Clients during the cloning process. These temporary disk

files hold the data used by the bulk loader utilities. For information on how to handle temporary file

storage, see Controlling Temporary File Storage for the Windows Clients.

Column Order The columns in the Client database are built in a different order than the
order in the DMSII database. Specifically, the key items are placed first,
followed by the non-key items in DMSII column order.

Databridge
Client Log
File

Logging and tracing are separate activities in the Databridge Client.
Logging cannot be disabled. Log files are written to the logs subdirectory
of the working directory. Trace files are only created when the -t or -d

options are used and outputted to the working directory.

Using -t1 is not allowed because this would create a second copy of the log
file. You must specify at least one more bit in the trace mask for the
option to be accepted.

•

•

•

•

4. Cloning a DMSII Database

- 74/327 - © Copyright 2021 Micro Focus or one of its affiliates.

These temporary text files are used as holding areas for bulk loader data. The Windows Client uses overlapped operations to write

data to one set of text files while the bulk loader is loading tables from another set of files. The configuration file parameter

max_temp_storage determines the maximum amount of storage to be used by all of the temporary files.

The Databridge Client writes data to as many temporary files as it needs, while keeping track of the total amount of storage used.

When the amount of storage used exceeds half of the configured value of the configuration file parameter max_temp_storage , the

Databridge Client closes all the temporary files and queues the tables on the bulk loader thread's work queue. (The default setting

for max_temp_storage is 400 MB.) While the bulk loader thread is sequentially launching the loads for for these tables (which run as

separate processes), the Databridge Client starts filling a new set of temporary files for the next group of loads. This mode of

operation significantly enhances performance on systems that have more than one CPU.

4.2.2 Bulk Loader Operations for UNIX Clients

UNIX Clients do not use temporary text files; instead, they use pipes (such as lpipe_nnn.dat) to communicate data between

processes. This introduces more overlap between the Client and the bulk loader, resulting in a much smoother flow of data.

4.2.3 Controlling the Bulk Loader Maximum Error Count

The max_errors parameter controls the number of data errors allowed before the bulk loader's operations are canceled. The default

value for max_errors is 10, which means that the bulk loader aborts after encountering 10 bad records. These bad records are

written to the discard file for the table in the discards directory and information about the error is written into the bulk loader log file.

When several bulk loader errors occur, increasing the maximum error count allows you to gather all the errors in one run rather than

finding 10 errors and then having to start over again. For more details, see the max_errors parameter description in the

[Bulk_Loader] section.

4.3 Oracle SQL*Loader Bulk Loader

This section lists the configuration file parameters that affect cloning with Oracle.

The enable_parallel_mode parameter, which is only meaningful when direct mode is enabled, causes the program to include the

PARALLEL option in the SQL*Loader command line. In direct mode, the loader runs faster at the expense of system resources.

Enabling this option has a more noticeable impact on Windows Clients than compared to UNIX Clients.

For non-US sites where the period (.) and comma (,) decimal characters are swapped, the Databridge Client automatically reads the

database's NLS parameters and makes the necessary adjustments to ensure the SQL*Loader input records are formatted using the

numeric characters that SQL*Loader expects.

The inhibit_direct_mode parameter applies when you run dbutility for a remote Oracle database using SQL*Net®.

The following parameters are meaningful only when inhibit_direct_mode is enabled.

The sqlld_rows parameter defines the value to be used for the ROWS specification for SQL*Loader operations.

The sqlld_bindsize parameter defines the value to be used for the BINDSIZE parameter for SQL*Loader operations. Increasing

this value can speed up SQL*Loader operations when not using DIRECT mode (for example, running remote to a database on

a UNIX system).

For more information about the bulk loader parameters mentioned here, see [Bulk_Loader].

4.3.1 Files Related to SQL*Loader

Each execution of SQL*Loader uses a control file (load_nnn.ctl , which is a copy of the file sqlld.tablename.ctl created by the

generate command) and a data file (lpipe_nnn.dat) as input.

•

•

4.2.2 Bulk Loader Operations for UNIX Clients

- 75/327 - © Copyright 2021 Micro Focus or one of its affiliates.

As a result of the bulk loading process, SQL*Loader produces a log file (load_nnn.log) if there are any records that cannot be

loaded due to data errors, a discard file (lpipe_nnn.bad) for each table. Discard files are placed into the subdirectory named

discards.

Windows Log Files

In Windows, to prevent log files and discard files from being overwritten as a result of successive executions of SQL*Loader during

segmented bulk load operations, the Databridge Client uses the SQL*Loader log and discard files as temporary files and does the

following:

At the end of the first load segment, the Databridge Client copies the temporary log file to the permanent log file

(sqlld.tablename.log). If a discard file was produced, the Databridge Client also copies the temporary discard file to the

permanent discard file (sqlld.tablename.bad) in the discards folder.

At the end of every subsequent load segment, the Databridge Client appends the temporary log files to the end of the

permanent log file (sqlld.tablename.log). If a temporary discard file was produced, the Databridge Client either copies it or

appends it to the permanent discard file (sqlld .tablename .bad), depending on whether this file exists or not.

The Databridge Client deletes the temporary log and discard files as soon as they are appended to Databridge Client

permanent log and discard files.

UNIX Log Files

In order to maintain compatibility with the Windows Clients, the UNIX Client renames the log and discard files at the end of a

SQL*Loader operation. Therefore, the log file load_nnn.log is renamed sqlld_tablename.log and the discard file lpipe_nnn.bad are

moved to the discards folder as sqlld_tablename.bad in the SQL*Loader shell scripts.

List of Files Related to SQL*Loader

•

•

•

4.3.1 Files Related to SQL*Loader

- 76/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The table below lists files related to SQL*Loader and Databridge Client operations. In some of the filenames below, nnn is the value

for the table_number column of the DATATABLES Client control table. It is unique within each data source.

The following temporary files are created while the bulk loader is being launched, but they are deleted before the run is completed:

load_nnn.ctl

load_nnn.log (renamed in UNIX to sqlld_tablename.log)

lpipe_nnn.bad (renamed in UNIX to sqlld.tablename.bad)

You see these files only if the bulk loader operation abends.

File Description

sqlld.tablename.ctl The SQL*Loader control file created by the generate command. It describes
the format of the data in the data file (lpipe_nnn.dat).

lpipe_nnn.dat For Windows: This is a temporary file that the Databridge Client creates.
It contains the data to be loaded into an Oracle table. Since the Client
uses two copies of this file simultaneously when doing overlapped
operations, it appends a suffix to the file name to make it unique every
time a new file is created. The suffix of the form "_nnn", where nnn is a
number that starts at 1 and gets incremented by 1 each time a new file is
created for the table in question. Thus the name lpipe_12.dat will be
changed to lpipe_12_1.dat for the second file and so on.

This file is automatically deleted after a successful load of a table. If
the table is not loaded successfully, the file is not deleted. This
provides the opportunity to manually run SQL*Loader to determine why it is failing.

For UNIX:This is a UNIX pipe that the SQLLoader shell script creates and uses to
pass data to the SQL*Loader program. This pipe is automatically removed
after a successful load of a table.

If the Databridge Client or SQL*Loader abends, the pipe is not
immediately deleted. If you run the Databridge Client again, you receive
a warning message as the pipe is being deleted. You can safely ignore
this warning, as this is not a fatal error.

sqlld.tablename.log For Windows: This file is a concatenation of all of the load_nnn.log files
created during the cloning process.

For UNIX: This is the log file generated by SQL*Loader.

CAUTION: Do not delete the sqlld.tablename.log file until you have looked
at it. It can contain valuable information such as error messages about
rows that were not loaded.

sqlld.tablename.bad For Windows: This file is a concatenation of all of the load_nnn.bad files
created during the cloning process. It is created in the discards
subdirectory only if discard records exist.

For UNIX: This is the discard file generated by SQL*Loader that has been
moved to the discards folder.

CAUTION: Do not delete the sqlld.tablename.bad file until you have looked at
it to determine which records were rejected by SQL*Loader. Correct the
bad data. Then use SQL*Loader to load these records into the appropriate
table.

•

•

•

4.3.1 Files Related to SQL*Loader

- 77/327 - © Copyright 2021 Micro Focus or one of its affiliates.

4.4 Microsoft SQL Server BCP API and bcp utility

This section lists the configuration file parameters that affect cloning with BCP API and the bcp utility. SQL Server Clients on

Windows use the bcp utility by default.

You can make the SQL Server Client use the BCP API, which allows the program to perform bulk loader operations by making BCP

API calls, which operate like SQL statements. This produces more overlap between the Client and the load operations, resulting in a

much smoother flow of data. It is recommended to use the bcp utility which has been a more reliable option.

It is recommended to use multi-threaded updates, as this allows multiple tables to be loaded simultaneously by different threads

which increases the resource utilization and offers all the advantages of multi-threaded updates when doing data extraction.

The following Client configuration file parameters affect the bcp utility or BCP API calls made by the Client. For more details, see

[EbcdictoAscii].

Bulk loader operations will run efficiently if the database recovery model is set to "Simple" or "Bulk-logged". If you are running a database with a

recovery model of "Full", we recommend that you switch to "Bulk Logged" for the duration of the bulk-load and then switch back to "Full"

recovery.

Note

Parameter Description

bcp_batch_size The Databridge Client using the BCP API or the bcp utility can load a
table in several batches instead of loading the entire table in a single
operation. You can control the batch size using this parameter.

bcp_code_page Adds the -C code_page to the bcp command line, which specifies the code
page of the data in the file. For example, because the Japanese code page
is 932, setting this parameter to 932 adds -C 932 to the bcp command line.

This parameter is only applicable when using the bcp utility.

bcp_packet_size Defines the network packet size value for the bcp utility (applies to
remote servers only). If you have wide tables, setting this parameter to
a packet size larger than the default (4096) can speed up loading the
data into the table at the expense of system resources.

This parameter is only applicable when using the bcp utility.

bcp_copied_msg Enables the bcp_auditor program to determine whether or not a bcp was
successful in cases where the database language is not English.

This parameter is only applicable when using the bcp utility.

bcp_delim Defines the delimiter character bcp uses (the TAB character, by default).
If you want to preserve TAB characters in your data, set this parameter
to a value that allows multiple characters.

This parameter is only applicable when using the bcp utility.

max_errors Controls the bulk loader’s tolerance to records that are discarded due to
data errors.

max_temp_storage Activates the segmented bulk load feature, which allows you to specify
the maximum amount of storage that dbutility should use for temporary
files.

This parameter is only applicable when using the bcp utility.

4.4 Microsoft SQL Server BCP API and bcp utility

- 78/327 - © Copyright 2021 Micro Focus or one of its affiliates.

4.4.1 bcp_auditor Utility

The bcp command files capture bcp execution output by redirecting the output to a temporary file. These command files then invoke

the bcp_auditor utility to examine this file to determine if the bcp operation was successful. The bcp_auditor utility sets the exit

code such that the Databridge Client can determine if the table load was successful.

4.4.2 Files Related to BCP

Each execution of bcp uses a format file (bcp.tablename.fmt) and a data file (bcppipe.tablename) as input.

As a result of the bulk loading process, bcp produces a log file (load_nnn.log) for each table. If there are any records that cannot be

loaded due to data errors, bcp also produces a discard file (load_nnn.bad).

To prevent log files and discard files from being overwritten during segmented bulk load operations, Databridge Client treats bcp log

and discard files as temporary files:

At the end of the first load segment, the Databridge Client copies the temporary log file to the permanent log file (

bcp.tablename.log). If a discard file was produced, the Databridge Client also copies the temporary discard file to the

permanent discard file (bcp.tablename.bad).

At the end of every subsequent load segment, the Databridge Client appends the temporary log files to the end of the

permanent log file (bcp.tablename.log). If a temporary discard file was produced, the Databridge Client either copies it or

appends it to the permanent discard file (bcp.tablename.bad), depending on whether this file exists or not.

The Databridge Client deletes the temporary log and discard files as soon as they are appended to Databridge Client

permanent log and discard files.

The SQL Server Client will only use the BCP API when specifically directed to do so. You can globally control whether the Client is to use the bcp

utility or the BCP API, by setting the use_bcp parameter accordingly in the [bulk_loader] section of the Client configuration file. You must run a

redefine command with the -R option to make this change take effect. You can force the Client to always use the bcp utility by using the /l

command line option. Alternatively, you can control the loading of tables at the data set level by setting the DSOPT_Use_bcp (0x1000000) bit in

the ds_options column for the corresponding entries in the DATASETS Client control table.

Note

•

•

•

4.4.1 bcp_auditor Utility

- 79/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Files related to bcp and Databridge Client operations are listed in the following table. In some of the filenames below, nnn is the

value for the table_number column in the DATATABLES Client control table. The table number is unique within each data source.

The following temporary files are created while the bulk loader is being launched, but they are deleted before the run is completed:

load_nnn.log

load_nnn.bad

These files are only available if the bulk loader operation abends.

4.4.3 Files related to the BCP API

When using the BCP API, all errors are logged to the Client log file. If there are discarded records, they are written to the

tablename.bad file located in the discards folder, this is similar to discards during the tracking phase.

4.5 Configuring Host Parameters

TCP/IP throughput is greatly affected by the BLOCKTIMEOUT parameter on the host. Typically, the default is 100, which is acceptable

for character-oriented communications (for example, Telnet VT™ 100 emulation), but the default value is not ideal for record and

block-oriented communications, as with Databridge or FTP (file transfer protocol). For Databridge communications, you can

increase throughput by reducing the BLOCKTIMEOUT parameter to a value of 2.

File Description

bcp.tablename.fmt The bcp format file that is created by the generate command. It describes
the format of the data in the data file (bcppipe .tablename).

bcppipe.tablename A temporary file created by the Databridge Client. It contains the data to
be loaded into a Microsoft SQL Server table. Since the Client uses two
copies of this file simultaneously when doing overlapped operations, it
appends a suffix to the file name to make it unique every time a new file
is created. The suffix is of the form "_nnn" where nnn is a number that
starts at 1 and gets incremented by 1 each time a new file is created for
the table in question. Thus the name " bcppipe.customer " will be changed to
" bcppipe.customer_1 " for the second file and so on.

This file is automatically deleted after a successful load for a table. If
the table is not loaded successfully, the file is not deleted. This gives
you the opportunity to manually run bcp to determine why it is failing.

Important: The bcppipe .tablename files can be quite large. When these files are
no longer needed, make sure you delete them to prevent errors from
occurring.

bcp.tablename.log A concatenation of bcp screen output created during the cloning process.
The files are created in the working directory for the data source.

CAUTION: Do not delete the bcp .tablename. log file until you have looked at
it. It can contain valuable information such as error messages about rows
that were not loaded.

bcp.tablename.bad A concatenation of all of the load_nnn.bad files created during the cloning
process. These files are created in the discards subdirectory.

CAUTION: Do not delete the bcp.tablename.bad file until you have looked at it.
The file may contain valuable information such as which rows were not
loaded. Correct the bad data and use bcp to load these records into the
appropriate table.

•

•

4.4.3 Files related to the BCP API

- 80/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If the Databridge Client system is on a different subnet from the mainframe, put it on the same subnet so that Ethernet packets can

be larger. If you cannot put the Databridge Client on the same subnet as the mainframe, you can improve throughput by adjusting

BLOCKSIZE on the host and TCP/IP Window Size on the Windows Server PC.

4.5.1 Running tcptest

During the initial setup, use the tcptest command to determine if the TCP/IP interface is operating properly. Before you run the

tcptest command, you must define a data source. For more information, see the table in dbutility Commands. An example of the

test is shown below:

4.6 Populating the Databridge Data Tables

Before you populate the Databridge data tables, determine if you need to customize the character translation tables. If customization

is needed, modify the [EbcdictoAscii] section of the Client configuration file before running either the process or clone command.

For more information on character translation tables and modifying the configuration file, see [EbcdictoAscii] and Export or Import

a Configuration File.

You can populate the Databridge data tables in the relational database using either of the following methods:

dbutility process

dbutility clone

The process and clone commands use the relational database bulk loader utility to populate the Databridge tables. We

recommend that you read one of the previous sections, Oracle SQL*Loader Bulk Loader or Microsoft SQL Server BCP API and bcp

utility before you use the dbutility clone or dbutility process command.

The process command is typically used to populate the data tables. The clone command is a special case of the process

command that allows you to clone a small number of data sets without changing the values of the corresponding entries in the

active column of the DATASETS Client control table.

4.7 Data Validation and Discard Files

While processing DMSII extract and update records, Databridge validates all numeric and alpha fields. Fields that contain NULL

values (data with all high-bits set) usually are recognized as DMSII NULLS. In this section, the following types of data validation

and discard files are described:

Numeric data validation

Alpha data validation

Date validation

Special handling of key items in discard files

The handling of blank character data for key items in the Databridge Client for Oracle

 E:\>dbutility tcptest demodb 111.222.33.444 5555 100 1000
 11:49:10 Databridge Client version 7.0.0.000 [OCI/Oracle]
 11:49:10 (C) Copyright 2021 Micro Focus or one of its affiliates.
 11:49:14 Connecting to 111.222.33.444, port 5555
 11:49:16 TCP_Test: len=100, count=1000
 11:49:17 Bytes Processed 100.00 KB of DMSII data in 1.000 secs, throughput = 100.00 KB/sec
 11:49:17 Bytes Received 112.00 KB in 1.000 secs, total throughput = 112.00 KB/sec
 11:49:17 TCP/IP_time = 0.841 secs, (84.10% of total time)
 11:49:17 TCP Test completed successfully
 11:49:17 Client exit code: 0 - Successful

•

•

•

•

•

•

•

4.5.1 Running tcptest

- 81/327 - © Copyright 2021 Micro Focus or one of its affiliates.

4.7.1 Numeric Data Validation

Numeric data that contains illegal digits (for example, values other than 0 through 9, excluding the sign field for signed numbers)

are flagged as bad. If the da_options column of the corresponding DATAITEMS control table entry has the DAOPT_Allow_Nulls bit

(1) set, Databridge treats numeric items that have bad digits as NULL.

The configuration parameter allow_nulls defines the default value for this bit, which can be altered by user scripts. If the bit is zero,

the NULL or bad numeric data is stored as either all 9s or all 0s based on the value of the configuration parameter,

null_digit_value (default value is 9). For more information, see bracket_tabnames and null_digit_value.

4.7.2 Alpha Data Validation

With alpha data, bad characters are usually replaced with a question mark (?) instead of the whole field being set to NULL. The

Client configuration file parameter inhibit_ctrl_chars determines whether or not control characters are to be treated as bad

characters (the program treats a few control characters such as NUL, CR and LF as bad regardless of the value of this parameter).

The Client configuration file parameter inhibit_8_bit_data determines whether or not 8-bit characters are to be treated as bad

characters. The Client configuration parameter convert_ctrl_char (which is incompatible with inhibit_ctrl_chars) replaces

control characters by spaces instead or question marks. For more information, see [Bulk_Loader].

The Client configuration file parameter alpha_error_cutoff determines the percentage of bad characters in an ALPHA field that are

tolerated before the entire field is declared bad and treated as NULL.

If ALPHA data is stored as binary data, no alpha data validation is performed because no invalid values exist in binary data. See

the DIOPT_Clone_as_Binary option in the di_options column of DMS_ITEMS.

NULL data is treated as NULL if the da_options column of the corresponding DATAITEMS control table entry has the

DAOPT_Allow_Nulls bit (1) set. Otherwise, the NULL data is stored as blanks.

4.7.3 Date Validation

Whenever Databridge processes numeric or alpha items that are cloned as relational database date data types, it checks the validity

of the data. Invalid dates are usually treated as NULL. The Databridge Client for Microsoft SQL Server stores bad or NULL dates as

1/1/1900, when the DAOPT_Allow_Nulls bit (1) in the da_options column of the corresponding DATAITEMS control table entry has

not been set. The Databridge Client for Oracle uses the date 1/1/0001 instead. A numeric date of all 0s or all 9s is treated as NULL

rather than an error. Similarly, an ALPHA date that is all blanks is treated as a NULL date.

4.7.4 Special Handling of Key Items in Discard Files

Because the stored procedures used during update processing use equality tests in the where clauses, key items (items that are used

in the index for a table) can never be NULL. In relational databases, you cannot use equality tests for items that are NULL.

If a key item has a data error or it is NULL, Databridge places the entire record in a discard file named tablename. bad in the discards

subdirectory. The syntax for discard file data is the calling sequence that would typically be used for the stored procedure that

performs the update. Therefore, discarded records from both the data extraction and update phases are identical. Databridge

preserves bad numeric digits and characters to help you better troubleshoot the problem.

During data extraction records discarded by the Client and those discarded by the bulk loader end up in different files in the discards folder (in the

case of the SQL Server Client tablename. bad and bcp .tablename. bad respectively). Bulk loader discards are extremely rare as the Client

catches all the data errors.

Note

4.7.1 Numeric Data Validation

- 82/327 - © Copyright 2021 Micro Focus or one of its affiliates.

4.7.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle)

The Databridge Client strips all trailing blanks when constructing SQL statements using varchar data. When an application reads

the records back from the database, the access routines put back the trailing blanks, greatly reducing the storage requirements for the

SQL statements and bulk loader data files.

In Oracle, char or varchar items that have a length of 0 are treated as NULL. If any of the key items used in where clauses are NULL,

the corresponding update or delete SQL statements fail as mentioned above. To prevent the key item from becoming NULL, the

Databridge Client for Oracle keeps the last blank of the item.

4.8 The Process Command

The process command is the main command of the Databridge Client. It populates and updates the tables for all data sets whose

active column is 1 in the corresponding entries of the DATASETS Client control table. Since the define command initializes the

ds_mode column, all the selected data sets are cloned the first time you run a process command.

You can schedule the process command to update the Databridge data tables. The schedule becomes effective after you run the

process command for the first time. For more information, see Scheduling dbutility Updates.

To populate the Databridge data tables in the relational database via the dbutility process command, you must first make sure that

the current directory is set to the working directory you created for this data source. This must be the same working directory you

used when you executed a generate command for this data source; otherwise, the Databridge Client cannot locate the scripts to

create and populate the Databridge data tables.

4.8.1 Cloning a DMSII Database

Use the following procedure to clone a DMSII database via the process command.

If you do not select specific data sets in the data set global mapping customization script, the Databridge Client automatically clones all data

sets except for remaps, the restart data set, and the global data set. This operation may take a very long time and require a lot of disk space.

Note

4.7.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle)

- 83/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To run the process command

4.8.1 Cloning a DMSII Database

- 84/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Make sure that Databridge Server is running. If it is not, the Databridge Client will try to connect to the host and eventually time

out.

Make sure that your signon parameters are configured appropriately.

If you plan to use the [EbcdictoAscii] section to customize character translation or any other parameters in the dbridge.cfg file,

set them before you continue. In particular, make sure you have appropriate settings for the following parameters. (For

information on setting these parameters, see Appendix C: Client Configuration.)

The following parameters affect the way a process or clone command operates. You can change these parameters before running

these command without running a redefine command as they do not change anything in the control tables:

1.

2.

3.

4.

 alpha_error_cutoff
 aux_stmts
 batch_job_period
 century_break
 commit_absn_inc
 commit_idle_database
 commit_longtrans
 commit_time_inc
 commit_txn_inc
 commit_update_inc
 controlled_execution (dbutility only)
 convert_reversals
 correct_bad_days
 dbe_dflt_origin
 defer_fixup_phase
 discard_data_errors
 display_bad_data
 eatran_dll_name
 enable_af_stats
 enable_doc_records
 enable_encryption
 enable_minimized_col
 enable_optimized_sql
 engine_workers
 error_display_limits
 inhibit_8_bit_data
 inhibit_console
 inhibit_ctrl_chars
 inhibit_drop_history
 inhibit_init_values
 keep_undigits
 linc_century_base
 masking_parameter (SQL Server only -- run a generate command when changed)
 max_clone_count (Only meaning when using the -s option)
 max_discards
 max_retry_secs
 max_srv_idle_time
 max_temp_storage (Windows only)
 max_wait_secs
 n_dmsii_buffers
 n_update_threads
 null_datetime_value (SQL Server only)
 null_datetime2_value (SQL Server only)
 null_digit_value
 numeric_date_format
 preserve_deletes
 set_blanks_to_null
 set_lincday0_to_null
 show_perf_stats
 show_statistics
 show_table_stat
 sql_exec_timeout
 sql_heart_beat
 statistics_increment
 stop_after_fixups
 stop_after_gc_reorg
 stop_after_given_afn (dbutility only)
 stop_on_dbe_mode_chg
 track_vfds_nolinks
 use_ctrl_tab_sp
 use_dbwait
 use_latest_si

4.8.1 Cloning a DMSII Database

- 85/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Enter the following command:

If the Databridge Client connects to DBServer, it selects all the data sets whose corresponding active columns have a value of 1 in

the DATASETS table. Next, the Databridge Client requests that DBServer clone all the selected data sets. At the end of the data

extraction phase, the Databridge Client issues another request to start sending the fixup records followed by updates. The processing

of audit files continues until there are no more audit files available.

If the Databridge Client connects to DBEnterprise, DBEnterprise supplies the data, either by reading the DMSII data set directly (direct

disk) or by issuing a request to DBServer to have Databridge Engine read a block of data from a specific region of the disk (remote

regions). DBEnterprise then processes this block of data. Since Databridge Engine is only reading raw data in remote regions mode

and does not do any processing of this data, this mode of operations is less expensive than having the Client connect directly to

DBServer in term mainframe resource utilization. Direct disk mode offers the biggest mainframe resource savings, as DBServer is not

involved in reading data sets.

In the case of audit file data, DBEnterprise either reads the data from its caches (if configured), or it reads the audit file directly by

issuing a request to DBServer to have Databridge Engine read a block of data from a specific region of the disk.

After the cloning of the DMSII database completes, the tables in the relational database will contain the same data as DMSII. At this

point you can execute SQL queries to view the data and make sure that all the tables have been populated. When you are ready to

update the relational database with changes made to the DMSII database, see Updating the Databridge Data Tables.

5.

 dbutility [signon_options misc_options] process datasource

Where Is

signon_options For each Databridge Client type, the following command-line options specify the relational database signon

parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options See table in the next section titled "Process Command Options".

datasource The name of the data source specified in the DBServer control file (DATA/SERVER/CONTROL) or via

Enterprise Server.

4.8.1 Cloning a DMSII Database

- 86/327 - © Copyright 2021 Micro Focus or one of its affiliates.

5. Process Command Options

Command-line options related to the process command are as follows:

For information on the command-line options, see dbutility Command-Line Options.

5.0.1 Terminate Cloning

Use the following procedures to stop the cloning process before it is complete.

To terminate cloning

When using the service, from the Administrative Console, use the Abort command in the Run menu for the data source.

When using dbutility, use the QUIT NOW command.

To terminate processing during the fixup and tracking phases

When using the service, from the Administrative Console, use the Stop command in the Run menu for the data source. The

Databridge Client will stop at the next quiet point.

When using dbutility, use the QUIT command (or the SIGTERM (15) signal on UNIX).

When you terminate the Client during the fixup phase or during updates, the process command restarts from the last commit point.

If you terminate the Client during the data extraction phase, only the data sets that have successfully completed the data extraction

phase (ds_mode = 1) are recoverable. You can resume the process by running another process command.

In the unlikely event that all of these commands fail to terminate the Client, press Ctrl+C or kill the run.

Option Description

-c Toggles the defer_fixup_phase configuration file parameter.

-d Enables default tracing.

-f filename Specifies a configuration file other than the default dbridge.cfg file in the
working directory.

-l (SQL Server only) forces the Client to use the bcp utility instead of the BCP
API.

-s Tells the Client not to use the bulk loader.

-t Enables selective tracing.

-w Toggles the use_dbwait parameter in dbridge.cfg

-K Inhibits the audit file removal WFL from being run on the host.

-L Forces the Client to use a new log file for this run.

-T Forces the Client to use a new trace file for this run, if tracing is enabled.

•

•

•

•

If you issue a QUIT command or send a SIGTERM signal to the program during the data extraction phase, the Databridge Client stops

only when the fixup phase begins.

Note

5. Process Command Options

- 87/327 - © Copyright 2021 Micro Focus or one of its affiliates.

5.0.2 Tracking the State of Data Sets

The DATASETS Client control table keeps track of the state of data sets. State information consists of the ds_mode value and the

DMSII audit file location from which subsequent updates should be processed. The audit file location includes the AFN, the ABSN,

the segment and index in the audit files, and the audit file time stamp. These values, which are collectively referred to as the

stateinfo, are stored in the audit_filenum , audit_block , audit_seg , audit_inx , and audit_time6 columns of the DATASETS Client

control table. The column audit_ts contains a date/time value, which corresponds to the audit_time6 data, which is binary and

represents a DMSII TIME(6) value. This last column is not part of the stateinfo; it is there because knowing the audit time stamp

value can sometimes be very useful.

Each subsequent time you run a process command, the Databridge Client passes the stateinfo and the mode of each data set to the

Databridge Engine. The Engine uses this information to determine whether data sets should be cloned and the starting location in

the audit trail. From that starting location, the Databridge Engine begins processing updates to the DMSII database. Every time a

transaction group ends, the Databridge Client updates the stateinfo for the data sets in the DATASETS Client control table. At the

end of the process command, the location of the last quiet point in the audit trail is saved in the DATASETS Client control table.

This is the starting point for the next Client run (process command).

If the in_sync column of a data set has a value of 1, its stateinfo columns may be out-of-date. You can determine if it is current by

checking the Global_Dataset entry in the DATASETS control table. For more information, see Optimizing State Information Passing.

5.0.3 ds_mode values

The following values are defined for the ds_mode column of the DATASETS Client control table:

In the case of DMSII reorganizations, the status_bits column in the DATASETS table is used instead. The Databridge Client leaves

the ds_mode column unchanged and sets the DS_Needs_Redefining bit (8) of the status_bits column of the DATASETS Client

control table.

Following the initialization (purge) of a data set, the Client is notified of the purge. The Client drops the tables for the data set and

recreates them. The ds_mode of the data set is set to 2 and the index for the empty tables are created. This enables the normal

update processing to repopulate the tables. .

Value Name Description

0 CLONE Initial state of ds_mode before the data set is cloned.

1 FIXUP Data extraction completed, fixup processing not completed.

2 NORMAL Normal update tracking mode.

10 BCP-FAILURE The bulk loading of the table failed. Further processing is not
possible until the problem is resolved.

11 PRE-FIXUP Data extraction completed, fixup processing cannot be done due to
index creation errors or lack of an index.

12 INVALID-AA AA Values invalidated by a DMSII garbage collection
reorganization.

31 NEEDREORG The data set needs to be reorganized and the redefine command has
created scripts to make the relational database table match the
new layout that resulted from the reorganization of the DMSII
data set. You must run the reorganize command in order to run the
reorganization scripts created by the redefine command.

33 REORGFAILED The data set needs to be reorganized and the scripts created by
the redefine command for this data set failed when the reorganize

command was run. In this case, you must manually alter the table
or re-clone it.

5.0.2 Tracking the State of Data Sets

- 88/327 - © Copyright 2021 Micro Focus or one of its affiliates.

5.1 The Clone Command

From a command line, use the clone command to select the data sets you want to clone. You can use this command for cloning or

recloning. To update the resulting Databridge data tables, you must use the process command. The process command is generally

recommended instead the clone command, unless you want to deal only with a specific data set without processing updates at the

same time.

The clone command is basically a process command, except that it forces the data sets specified on the command line to have

their ds_mode set to 0 and it treats all data sets not specified on the command line as if their active column is 0.

To populate the Databridge data tables in the relational database via the clone command, first make sure that the working directory

is set to the directory you created for this data source. This must be the same directory as the working directory used when you

executed a generate command for this data source; otherwise, the Databridge Client cannot locate the scripts to load the

Databridge data tables.

5.1.1 Cloning Specific Data Sets

Using the clone command follow the exact same procedure described in the section on "Cloning a DMSII Database". type the

following command line:

 dbutility [signon_opts misc_opts] clone source dataset1 [... datasetn]

Where Is

signon_opts For each Databridge Client type, the following command-line options specify
the relational database signon parameters:

Oracle:

[-U userid] [-P password] [-D database]

SQL Server:

[-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options See table in the next section titled "Clone Command Options".

source The name of the source specified in the DBServer control file or by
Enterprise Server.

dataset1 [...

datasetn]

The names of the data sets you want to clone. You must specify at least one
data set name. If you specify more than one data set name, separate the names
with spaces.

Note the following:

The data set names you enter must match the names of the data sets as they are defined in the DASDL for

the DMSII database. Databridge Client automatically converts them to uppercase for you. For example, if the

data set you want to clone is named ORD-DETAIL, you must type ORD-DETAIL or ord-detail . You must

use a hyphen (-), not an underscore (_).

The exact data set names are listed in the DATASETS Client control table.

If a DMSII data set is a relational database reserved word, enter it normally without quotes or any other

delimiter.

The active column of the selected data sets must be set to 1. Otherwise, an error appears when you

specify the data set on the command line.

•

•

•

•

5.1 The Clone Command

- 89/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If you need to re-clone the entire database you can use the process command with the -Y option. When using dbutility you need to

add the text "all_datasets" as an argument to the -Y option.

6. Clone Command options

Command-line options related to the clone command are as follows:

For information on the command-line options, see dbutility Command-Line Options.

6.1 Configuring for Optimal Performance

Several configuration file parameters have a very visible effect on the performance of the Databridge Client. Databridge Clients

operate efficiently with the following default configuration file parameters:

max_temp_storage (Windows only)

aux_stmts

optimize_updates

This section discusses these parameters and other factors that can make Databridge Client run more efficiently.

If for some reason the clone command abends, do not rerun it before you determine whether or not some of the data sets completed the data

extraction phase and are recoverable. Rerunning the clone command starts the cloning operations from scratch.

Warning

Option Description

-c Toggles the defer_fixup_phase configuration file parameter. When using this option,
the dbutility clone does not enter the fixup phase at the end of data extraction.
Instead of issuing a request to the Databridge Server to initiate the fixup
phase, the Databridge Client will terminate. The ds_mode values of all cloned
data sets remain set to 1 with all of the necessary stateinfo stored in the
Client control tables (for example, audit_filenum , audit_block , and host_info). The
next process command then picks up where the clone command left off.

-d Enables default tracing.

-f

filename
Specifies a configuration file other than the default dbridge.cfg file in the
working directory.

-l (SQL Server only) forces the Client to use the bcp utility instead of the BCP
API.

-s Tells the Client not to use the bulk loader.

-t Enables selective tracing.

-x Reverses the meaning of the data set list for the clone command, as follows:

Without the -x option, the Databridge Client clones the data sets listed on the
command line.

With the -x option, the Databridge Client clones all active data sets except
those listed on the command line.

-L Forces the Client to use a new log file for this run.

-T Forces the Client to use a new trace file for this run, if tracing is enabled.

•

•

•

6. Clone Command options

- 90/327 - © Copyright 2021 Micro Focus or one of its affiliates.

6.1.1 Overlapped Bulk Loader Operations for Windows

The Windows Clients use a separate thread to bulk load tables using SQL*Loader or bcp during the data extraction phase of data

set cloning. The Client creates a set of temporary files for the tables that hold the data for the records received from Databridge

Engine. When the total temporary file size reaches half of the value specified by the parameter max_temp_storage , all the tables that

have temporary files get placed on the bcp thread's work queue. The bcp thread processes the list of tables and does the loads

sequentially. While this is happening, the Client creates a new set of temporary files for tables that that get additional records and

continues processing DMSII data until the total temporary file size reaches the above mentioned threshold. If the bcp thread is done

loading the table involved, processing continues. However, if the bcp is not finished loading the data for the table the Client stops

processing DMSII data until the loading of the table has completed.

Starting with the Databridge 6.6 Client, multi-threaded updates were extended to also include extracts, which improves performance

as the load is distributed among the update threads. This leads to better resource utilization, as multiple CPUs are working

concurrently on processing the data for the records that are received from the Databridge Engine.

Adjust the max_temp_storage value to determine what works best for your site. Setting this parameter too high tends to reduce the

benefits of using multiple threads to launch bulk loader operations. Conversely, setting this parameter too low tends to increase

overhead, particularly when the record sizes are large, by firing off too many bulk loader operations. In some cases, a value of 1G

seems to work better than the default value of 400M.

For details about the max_temp_storage parameter, see [Bulk_Loader].

Using the BCP API eliminates the use of temporary files and allows for overlapped data extraction operations. Combined with

optimized Client code for data extraction, clone speeds are much faster than before (especially in cases where the bottleneck is the

CPU). The benefits of this mode of operation are much more dramatic when using a system with multiple CPUs.

6.1.2 Overlapped Index Creation

The Databridge Clients use a separate thread to execute the index creation scripts for tables after the data extraction for the table is

completed. This allows lengthy index creation operations to be overlapped with the bulk loading of tables and has a noticeable

impact on speeding up the data extraction process when many data sets are involved.

6.1.3 Optimizing State Information Passing

The Databridge Client optimizes the process of updating the stateinfo in the DATASETS Client control table, which is identical for all

data sets that are in update tracking mode (ds_mode=2). Instead of updating every data set each time stateinfo is updated by the

Databridge Engine prior to a COMMIT, it stores the common information in a dummy data set in the DATASETS table named

Global_DataSet . When the Databridge Client is finished processing updates, the stateinfo in the Global_DataSet entry in the

The SQL Server Client uses the bcp utility by default in this version.

Note

Configuration file parameters for increasing bulk loader speed are listed with the related bulk loader utility in the sections Oracle SQL*Loader Bulk

Loader and Microsoft SQL Server BCP API and bcp utility. See a complete list in the Appendix C section on the [Bulk_Loader].

Note

Do not set this parameter to 0, or the program will bulk load tables in one step, using a huge amount of temporary storage, and eliminating all

overlapped processing.

Caution

6.1.1 Overlapped Bulk Loader Operations for Windows

- 91/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DATASETS Client control table is copied to all data sets that need to be updated with the stateinfo. The Global_DataSet row is

stored in the DATASETS Client control table along with the in_sync column that keeps track of stateinfo synchronization between

updated data sets and the Global_DataSet . This significantly reduces the number of SQL update statements for the DATASETS

Client control table when you have a large number of data sets.

To keep the DATASETS table current, particularly when READ ACTIVE AUDIT is set to TRUE in the Databridge Engine Control File, the

Databridge Client copies the stateinfo in the Global_DataSet entry to all data sets whose in_sync column is 1 after an audit file

switch.

When the Client is restarted after it abends, it detects that the data sets are out of sync. The Client corrects this by copying the global

stateinfo to all data sets whose in_sync column is 1 and sets all of the in_sync columns to 0.

6.1.4 Multiple Statements and Pre-parsed SQL Statements

The aux_stmts parameter applies only to the Databridge Client during update processing (not cloning).

The aux_stmts parameter defines the maximum number of ODBC or OCI auxiliary statements that can be assigned to SQL

statements. Using auxiliary statements allows SQL statements to be parsed once and executed multiple times, as long as the

auxiliary statement is not reassigned to hold another SQL statement.

In general, higher values for aux_stmts result in faster update processing times at the expense of memory usage. If you have the

memory to spare, increase this parameter as needed. The best setting for this parameter will depend on the nature of your data. We

recommended using a value of 100 or higher, which allows the SQL statements to be re-executed without having to reparse them

and re-bind their host variables.

For more information, see aux_stmts.

6.1.5 Reducing the Number of Updates to Data Tables

If your most frequently updated data sets have a significant number of items with OCCURS clauses that are not flattened, you may

want to set the DSOPT_Use_bi_ai bit in the ds_options column of the corresponding DATASETS entries. The configuration file

parameter optimize_updates causes the define command to set this bit for all data sets that have active items with unflattened

OCCURS clauses.

If the ratio of SQL rows to DMSII records is five or more during update processing, setting this parameter to True can improve

performance. Note that this increases the TCP/IP and CPU overhead. If the ratio of SQL rows to DMSII records is low, you won't see

any significant reduction in SQL overhead, which can hinder performance.

For the best results, set the DSOPT_Use_bi_ai bit only for data sets that have a high ratio of SQL rows to DMSII records. For example,

a data set that has only one item with an OCCURS 2 TIMES clause is a poor candidate for the DSOPT_Use_bi_ai bit (SQL rows/

DMSII records = 3). Conversely, a data set that has 3 items with OCCURS 12 TIMES clauses is a good candidate to use the

DSOPT_Use_bi_ai bit (SQL row/DMSII records = 37).

For more information, see optimize_updates.

6.1.6 Commit Frequency

The size of transactions in the relational database can have a noticeable impact on performance during update processing. Large

transaction sizes will result in the Client getting locked out during the commit when it attempts to update a table. Conversely, small

transactions can add overhead by constantly committing a small number of updates.

To set this parameter from the Client Configurator by checking the checkbox "Optimize SQL updates" in the Customizing > Advanced page of

the Client Configuration dialog.

Note

6.1.4 Multiple Statements and Pre-parsed SQL Statements

- 92/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Some sites use very low commit frequency parameters to get lower lag times during on-line periods (lag time is defined as the

elapsed time between the time when an update is applied to the relational database and the time it was applied to DMSII). This type

of commit frequency may not work well during the processing of audit files created by batch jobs. To solve this problem, a second

set of commit frequency parameters are enabled by setting the batch_job_period parameter to define the time period during which

batch jobs run, for example, batch_job_period = 22:00, 01:00.

This example specifies that batch period spans from 11:00 pm to 1:00 am. When the Client detects that the audit timestamp crosses

these boundaries it switches to using the appropriate values for the commit frequency parameters. On-line periods use the first set of

values, while batch periods use the second set of values. You can override these settings from the Administrative Console, however

these settings will be overridden by the configured values at the next period switch.

6.1.7 Other Considerations

A few other factors that can significantly affect performance include:

The number of CPUs (at least four are recommended)

The type of CPU

The amount of memory on your Client machine

The type of disks you use. Redundant array of independent disks (RAID) or striped disks are recommended. During data

extraction, do not use the same physical disks for temporary files and database files. Ideally, use RAID for the database files

and a separate disk for the Databridge Client files (bulk loader temporary files, scripts files, log files, and so on).

The condition of your database

•

•

•

•

•

6.1.7 Other Considerations

- 93/327 - © Copyright 2021 Micro Focus or one of its affiliates.

6.2 Tips for Efficient Cloning

When you first run the define command to populate the Client control tables, you will notice that most DMSII data sets are set to be

cloned. Although you can accept the default data sets and their items for cloning, note the following:

Cloning an entire DMSII database can take several hours or more. Most sites do not clone the entire DMSII database.

The cloning of the DMSII restart data set is automatically disabled. The restart data set is related to restarting the DMSII

database only.

If you clone virtual data sets, do not disable the cloning of the data sets from which the virtual data set is derived. (Virtual

data sets have a value of 17 in the subtype column of the DATASETS table.) Virtual data sets are created on the host and are

explained in the Databridge Programmer's Reference.

Make sure that you have enough disk space on the relational database server for the DMSII data. If there is not enough room,

the cloning process stops. In addition to the space required for DMSII data, you must have some additional file space for the

temporary files used by the bulk loader utilities (bcp for Microsoft SQL Server; SQL*Loader for Oracle).

You do not have to clone all of the data sets at one time. One approach is to clone the most essential data sets and then

determine how much space is still available.

If you do not want to clone secondary tables (those tables generated from a data set), you have two choices. In either case, the

primary table is still generated, while the resulting secondary tables are not.

Set the value of the active column (for that table) in the corresponding DATATABLES Client control table entry to 0

(script.user_define .primary_tablename).

Set the value of the active column in the corresponding DMS_ITEMS Client control table entry to 0 for an item with an

OCCURS clause (script.user_layout .primary_tablename).

Flatten the OCCURS in either the primary or the secondary table.

If the active columns for all tables related to a data set are 0, Databridge sets the active column of the corresponding entry

in the DATASETS table to 0.

The cloning of DMSII remaps is automatically disabled because the remaps are just different views of the base data sets; the

Databridge Client assumes that the base data set will be cloned. We recommend, therefore, that you clone the base data set

and then set up a view in the relational database to achieve the same result as the REMAP.

If you do want to clone a remap of a data set instead of the base data set, you can do so by changing the values of the

active columns of the data sets in the DATASETS Client control table. You can identify remaps by their base structure number

(base_strnum). For example, if structure numbers (strnum) 11, 121, and 227 are remaps of structure number 10, the base

structure number for structures 11, 121, and 227 is 10.

For data sets that are not remaps, the strnum and base_strnum columns are equal. If you do not want to clone anything

related to a particular data set, set the value of the active column (for that data set) in the corresponding DATASETS Client

control table entry to 0. No tables (primary or secondary) are generated from this data set.

For more information about REMAPS, see the next section.

6.3 REMAPS

If the base structure of a REMAP is not visible to the Client (due to GenFormat filtering or the use of a logical DMSII database) the

Client will set the active column of the first REMAP to 1, and clone it in place of the base structure. If the base structure of an

embedded data set is not visible to the Client and it has a REMAP, the Client will set the active column of the REMAP to 1 and use

it as the parent instead.

•

•

•

•

The bulk loader temporary files should not be on the same disk as the relational database.

Note

•

•

•

•

•

•

•

6.2 Tips for Efficient Cloning

- 94/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If you are using the Administrative Console and you want to change the active column of a data set that is 0, you should be aware that the data

sets view has a filter.

The picture below shows this for the Administrative Console. To access it, click on the Filters button above the data sets. To see the data sets

that have their active column set to 0, you need to click on Inactive and then on Apply. This causes data sets with their active column set 0

to be included in the data set view. The items in question will have "Inactive" in their Status column to indicate that their active columns are 0.

You can change the active column by clicking on the Properties icon to the left of the data set and enabling Active on the Properties page.

Note

6.3 REMAPS

- 95/327 - © Copyright 2021 Micro Focus or one of its affiliates.

7. Updating the Relational Database

This chapter covers updating the Databridge Client data tables in the relational database with changes made to the DMSII

database. In addition, it explains DMSII reorganizations and how they update the Databridge Client data tables.

7.1 Updating the Databridge Data Tables

Updating is the process of applying the DMSII database changes to the Databridge data tables in the relational database by

sending only the changes to the Databridge data tables.

You can update the Databridge data tables after they have been cloned as long as they meet the following requirements:

Each Databridge data table you want to update has a unique index. If a table you want to update does not have a unique

index, see Creating Indexes for Tables.

The DMSII database has not been reorganized or rolled back. If the DMSII database has been reorganized, see DMSII

Reorganizations and Rollbacks.

You can update the Databridge Client data tables by running a process command each time you want the update to occur, or you

can schedule a process command to run at fixed times or a fixed amount of time after the run finishes. How often you update the

Databridge tables depends on the following:

How current you want the data to be. For time-critical information, you may want to update the Databridge data tables several

times a day.

How often audit files are available on the host. When an audit file is not available, the Databridge Engine temporarily stops

processing until the audit file is available. The Databridge Engine can access the active DMSII audit file when the DBEngine

control file parameter READ ACTIVE AUDIT is set to true.

How often closed audit files are available on the host. In some cases, a closed audit file is not available because it has been

copied to tape. In this instance, a host operator must mount the tape before the closed audit file can be made available to

Databridge.

7.2 Performing Updates Without Using Stored Procedures

Version 6.6 of the Databridge software introduced a new and efficient way of updating tables that does not use stored procedures.

This feature can be controlled globally by setting the configuration parameter use_stored_procs to False, see the use_stored_procs

section for more information.

This parameter makes the process and clone commands generate the actual SQL command instead of using a stored procedure

call to perform an update. The Client still uses host variables, as was the case with stored procedures calls. Executing the SQL

directly eliminates some overhead and makes processing the update faster. This can be controlled at data set level as described in

the use_stored_procs section.

•

•

•

If you do not update the relational database often, it may be more effective for you to re-clone the DMSII data sets rather than update

them. For example, if you are interested in weekend information only, and several audit files have been closed (and possibly moved to

tape) during that time, recloning may be faster than updating.

Note

•

•

7. Updating the Relational Database

- 96/327 - © Copyright 2021 Micro Focus or one of its affiliates.

7.3 Scheduling Updates

The dbutility process command has a built-in scheduling mechanism that allows the run to hibernate and resume at the next

scheduled time. When the Databridge Server sends the Client an end-of-audit-reached status, dbutility normally terminates. However,

if you enable scheduling, the Databridge Client disconnects from the server and the database. The Client hibernates until the next

scheduled process command, when it reconnects to the server and the database. This scheduling mechanism only works after you

run dbutility for the initial clone of the DMSII database. If the Client crashes or the power fails, scheduling will fail. Service-based

scheduling has none of these shortcomings, as the scheduling task is taken over by the Client Manager service.

If you use the Client Manager service, it takes over this functionality. When a DBClient run terminates, the service determines when

the next process command should be run and starts it when that time arrives. The advantage of service-based scheduling is that it

is immune from system failures, as the service automatically gets restarted when the system is rebooted. For details about service-

based scheduling, see the Databridge Administrative Console Help.

To schedule updates

Uncomment the scheduling parameters in the Databridge Client configuration file. Scheduling parameters are listed under the

[Scheduling] header in the configuration file.

Select one of the following scheduling methods:

Daily scheduling

Fixed-delay scheduling

Enter appropriate values for the following scheduling parameters, depending on whether you are using daily scheduling or fixed-

delay scheduling. Each parameter is explained in [Scheduling].

As long as the process command completes successfully, dbutility becomes inactive (sleep) until the next scheduled time. If the

scheduled dbutility process command is successful, the following message appears:

Scheduling of updates will continue until any of the following occurs:

You reboot the Databridge Client machine or end the Databridge Client session

You enter a SCHED OFF console command when dbutility is processing updates

A DMSII reorganization (other than a garbage collection)

Setting the configuration parameter use_stored_procs to False, does not have any effect, unless you run a redefine command with -R

option (redefine all) to propagate this setting to the ds_options columns of the data sets. The redefine command with return an exit

code of 2033 (Reorg command required). You need run the reorganize command to complete task. This command will generate new

scripts for the tables and refresh all the data sets, which results in the dropping of all the stored procedures, which will no longer be used. If you

revert to using stored procedures, the procedure is the same, in this case the reorganize command will recreate the stored procedures.

Note

1.

2.

•

•

3.

[Scheduling]
;
;dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 3600
;sched_retry_secs = 3600
;blackout_period = 00:00, 02:00

<code>Next update for DataSource *datasourcename* will run at *hh:mm* (delay = *nn* secs)</code>

•

•

•

If you must stop the dbutility program, we recommend that you use the QUIT command to exit at the next quiet point. If the Client is

waiting for the server to send updates when none are available and the use_dbwait configuration file parameter is set to True, you can

use the QUIT NOW command, which resets the connection to the server and terminates the Client run. If needed, you can also press

Ctrl+C to terminate a session while dbutility is processing updates; however, we do not recommend this option.

Note

7.3 Scheduling Updates

- 97/327 - © Copyright 2021 Micro Focus or one of its affiliates.

7.3.1 Scheduling Examples

Daily Schedule Example

The following example uses the daily scheduling method. In this example, the Databridge Client runs only twice a day -- once

midway through the business day and once at the end of the business day. If the process command fails, the Databridge Client

waits 10 minutes before retrying.

Fixed-Delay Example

The following example uses the fixed-delay scheduling method. In this example, the Databridge Client runs the process command

4 hours (240 minutes) after the run finishes. If the process command fails, the Databridge Client retries every 30 minutes.

7.4 Scheduling Blackout Periods

You can schedule blackout periods during which the Client suspends all processing and updates to allow for routine maintenance.

To use this feature with the service-controlled Client, you can set the Blackout Period value from the Administrative Console by

selecting Settings > Configure from the data source page.

 [scheduling]
 daily = 12:00, 17:00 ; run the process at noon and 5PM
 sched_retry_secs = 600 ; retry in 10 minutes after a failure

 [scheduling]
 sched_delays_secs = 14400
 sched_retry_secs = 1800

7.3.1 Scheduling Examples

- 98/327 - © Copyright 2021 Micro Focus or one of its affiliates.

7.5 Unscheduled Updating

Use this procedure when you want to run a dbutility process command independent of scheduling.

Make sure that the Databridge Server is running. If it is not, the Databridge Client will try to connect to the server and

eventually time out.

Make sure that your signon parameters are set appropriately.

If the [EbcdictoAscii] section of the configuration file (to customize character translation) has changed since the initial clone,

your data may not be consistent. You might need to re-clone.

Make sure that the current directory is the one you created for this data source. This ensures that Databridge Client can locate

the scripts. (Scripts are only required during an update if there's a purged data set.)

Enter the following:

dbutility [signon_options misc_options] process datasource

When you run a process command to update the Databridge tables in the relational database, the following occurs:

All modified records are overwritten with their new values. If the target record is not found in the table, the Databridge Client

adds the record to the table instead.

All deleted records are deleted.

All added records are inserted into to the data tables. If the target record is already in the table, the Databridge Client modifies

the record in the table instead.

•

•

•

•

•

Option Description

signon_options

userid

For each Databridge Client type, the following command-line options
specify the relational database signon parameters:

Oracle:

[-U] [-P password] [-D database]

SQL Server:

[-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options See the table in the next section titled Process Command Options.

datasource The name of the data source specified in the DBServer control file or by
Enterprise Server.

•

•

•

7.5 Unscheduled Updating

- 99/327 - © Copyright 2021 Micro Focus or one of its affiliates.

7.6 Process Command Options

Command-line options related to the process command are as follows:

For information on the command-line options, see dbutility Command-Line Options.

7.7 Anomalies That Can Occur In Updates

When the Databridge Client updates the relational database, the following anomalies can occur:

Option Description

-d Enables default tracing.

-f filename Specifies a configuration file other than the default dbridge.cfg file in the
working directory.

-t Enables selective tracing.

-w Toggles the use_dbwait parameter in the dbridge.cfg configuration file.

-K Inhibits the audit file removal WFL from being run on the host.

-L Forces the Client to use a new log file for this run.

-T Forces the Client to use a new trace file for this run, when tracing is
enabled.

Last quiet point
(QPT) in an audit
file

When processing an update transaction group since the last quiet
point, Databridge Engine does the following when it reaches the end
of the last available audit file:

Aborts the current transaction group so that the updates are rolled back. These are not

duplicate updates, but updates that could not be committed. These updates will be reapplied

the next time you run a process command.

Sends the Databridge Client a status indicating that the transaction group was rolled back. Upon

receiving this status, the Databridge Client does not display any messages.

Host application
rolls back changes

(This is a partial
DMSII rollback, not
to be confused with a
total DMSII
rollback.)

If a host application encounters an error condition while updating
the DMSII database, it rolls back all of the changes it made. In
this case, Databridge Engine aborts the updates when it finds the
aborted transaction indication in the audit file. Databridge Engine
handles the situation in one of two ways based on the setting of the
DBEngine control file parameter CONVERT REVERSALS TO UPDATES:

If CONVERT REVERSALS TO UPDATES is FALSE (the default setting), Databridge Engine sends an

abort transaction status to the Databridge Client and then reprocesses the transaction group,

excluding any updates by the program(s) that rolled back its updates. In this case, none of the

updates in the aborted transaction are applied to the data tables.

If CONVERT REVERSALS TO UPDATES is TRUE, Databridge Engine will continue to process the

audit file, converting the items marked as reversals to normal updates, in a manner similar to

the method employed by DMSII. (DMSII aborts transactions by reversing the updates

previously done. Thus a CREATE will be reversed to a DELETE, a DELETE reversed to

CREATE, MODIFY to a MODIFY using the Before Image). All updates, including those that were

aborted and their reversals, are applied to the data tables.

•

•

1.

2.

7.6 Process Command Options

- 100/327 - © Copyright 2021 Micro Focus or one of its affiliates.

8. DMSII Reorganization and Rollbacks

DMSII Reorganization and Rollbacks

This section lists changes that can occur to the DMSII database, how those changes affect the Databridge Client control and data

tables, and how to handle them on the Client database. For instructions on handling a DMSII reorganization on the host, see

Prepare for a DMSII Reorganization in Chapter 10 of the Databridge Host Administrator's Guide.

8.1 Initializations

A DMSII initialization occurs when a DMSII data set is purged of its records. When a data set is initialized, Databridge Engine sends

the Databridge Client a stateinfo record with a mode value of 4. The Databridge Client performs the actions described below after

displaying the following message:

The Client drops all of the tables belonging to this data set and re-creates them, effectively purging the tables of all records. When

Databridge Engine is done sending stateinfo records, it sends a status of DBM_PURGE(21), causing the Client to display the

following message:

The normal update processing will repopulate them.

8.2 Reorganizations

Although there are three types of DMSII database reorganizations (record format conversion, file format conversions, and garbage

collection reorganizations), the types of reorganizations are not as important as whether the reorganization changes record layouts

or record locations, as follows:

DMSII record format conversions change record layouts. When a data set is affected by a record format conversion, parallel

changes must be applied to the Client database. See Managing DMSII Changes to Record Layout.

DMSII file format conversions and garbage collection reorganizations change record locations. Only certain data sets require

recloning in this case. See DMSII Changes to Record Locations.

8.2.1 Managing DMSII Changes to Record Layout

Use this procedure if a DMSII reorganization changes the layout of records. DMSII record layouts are changed in the following

circumstances:

Record format conversion (also called structural reorganization in this section)

Filler substitutions

DataSet name[/rectype] has been purged

DataSets purged by Databridge Engine

An initialization does not change the data set format level in the DMSII database.

Note

•

•

Filler substitutions are handled the same as a record format reorganization. In a filler substitution, there is a change to the item count

column in record for the data set in the DATASETS table.

Note

•

•

8. DMSII Reorganization and Rollbacks

- 101/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When Databridge Engine notifies the Databridge Client that the layout of records have changed, the Databridge Client returns a

message for each reorganized data set and then prompts you to run a redefine command followed by a reorganize command. It

then returns an exit_status value of 2 (DMSII reorganization). The redefine command can determine whether the layout for the

data tables have been affected by the DMSII layout change and if the affected data sets need to be re-cloned. (For more information

about the redefine command does, see About the redefine Command.)

To run the redefine command

If the DMSII changes are extensive or complex, we recommend that you back up the relational database before proceeding.

If you use the Administrative Console's Customize command to customize the table layouts, skip steps 3 through 5 and run the

Customize command instead. It will perform the same actions as the redefine command, but will also allow you to make

customizations for the data sets affected by the reorganization.

Modify user scripts as required by the DMSII layout changes.

Run the redefine command as follows:

If the redefine command results in errors because the user scripts were improperly updated, run a reload command using the

unload file automatically created by the redefine command. This file is named "datasource.reorg_nnn.cct", where datasource is the

data source name (in uppercase) and nnn is the old update level of the database. This restores the control tables to the state they

were in before the redefine command was run. See The Reload Command. Correct the user scripts and rerun the redefine

command until no errors result.

Examine the reorg scripts created by the redefine command (or the Customize command) to make sure they are reasonable

before proceeding any further. These scripts are created in the working directory and have names of the form

"script.reorg_nnn.tablename", where nnn is the old update level of the DMSII database. If you see SQL statements that are likely to

take a very long time to execute consider restoring the control tables and setting the use_internal_clone option or the

corresponding ds_options bit for the data set. This will use a "select into" (CTAS in Oracle) to copy the old table (that is first

renamed) to recreate the table with the needed changes while preserving the original data. The major time consuming operations

are setting the initial values for added columns and ALTER commands that change the data type of columns.

Doing this for a table with several million records can take a long time. The internal clone operate at bulk loader speed and is

subject to the same rules as the bulk loader.

(This step automatically executes a generate command.) Run the reorganize command as follows:

1.

2.

3.

4.

dbutility redefine datasource

If any changes caused by the reorganization are not supported, the redefine command does not create the reorganization scripts. Instead,

it sets the ds_mode column of the corresponding data set to 0, which forces the data set to be re-cloned. If the changes caused by the

reorganization are allowed, the redefine command sets ds_mode to 31.

Important

5.

6.

7.

dbutility reorganize datasource

8.2.1 Managing DMSII Changes to Record Layout

- 102/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The reorganize command does the following:

It generates new Client scripts for all data tables whose layouts have changed by running the same code that a generate

command would.

For each data set affected by the reorganization, it runs the scripts created by the redefine command to reorganize the tables

associated with the data set. If these scripts run successfully, it restores ds_mode to its value before the reorganization.

Conversely if the script fails, it sets ds_mode to 33 for the data set in question to indicate that the attempt to reorganize the

table has failed, and it stops prematurely.

If the command completes successfully, proceed to step 8. Otherwise, determine why the command failed and decide what to

about it.

Your options include:

Give up and re-clone the data set that could not be reorganized by setting its ds_mode to 0. Rerun the reorganize when

you do this, as the command stops when it encounters an error. Restarting it after taking care of the problem data set will

complete the task for any data set that still have a ds_mode of 31. If you try to run a process command while some data

sets still have their ds_mode columns set to 31, this will result in an error telling you that you need to run a reorganize

command.

Correct the script that failed, set its mode back to 31, and rerun the reorganize command.

If you are proficient in SQL, you can reorganize the table using external means to the Client to perform the action that the

reorg scripts were attempting to do. If you succeed you can then set ds_mode back to its original value (which will most

likely be 2). You also will need to run a refresh command for the problem data set to replace the old stored procedures

which are out-of-date.

The reorganize command is restartable after a failure. The data sets that were already processed successfully will not be

affected by rerunning the command, and the data set that caused the command to fail will be skipped unless its ds_mode

column is set to 31.

Run a process command to resume change tracking:

About the redefine Command

You will be prompted to run the redefine command when a data set is reorganized or when the Support Library is recompiled. (A

Support Library recompile indicates that either the layout has changed, such as changes to ALTER or FILTER, or the SUPPORT option

in the SOURCE declaration changed.)

In all of the aforementioned cases, Databridge Engine treats the situation like a reorganization and requires that you run a redefine

command.

When you run the redefine command, it does the following:

Creates a backup of the Client control tables for the data source by silently performing an unload command. The unload file

is created in the data source's working directory when the Client first detects the reorganization. The unload file is named

"datasourcereorgnnn.cct" where nnn is the value of the update level prior to running the redefine command (and is saved to

the old_update_level column of the DATASOURCES entry).

Re-creates the relational database layout for all data sets that are marked as needing to be redefined.

Runs user scripts (if you use them) to preserve changes to the Client control tables. If you are using the Administrative

Console's Customize command, all changes are restored from the old controls tables.

Determines which data sets have tables whose layouts have changed, updates the ds_mode column in DATASETS accordingly,

and creates reorganization scripts that will alter the relational database tables to match the changes in the reorganized DMSII

data sets.

Reorganized Data Sets

•

•

•

•

•

8.

dbutility process datasource

•

•

•

•

8.2.1 Managing DMSII Changes to Record Layout

- 103/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When a data set has been reorganized (status_bits = 8), the redefine command compares the layouts of tables mapped from the

data set in the existing Client control tables with the new layouts and does the following:

If no changes occur to the layouts of tables mapped from the data set, the redefine command sets the data set ds_mode

column its value before the reorganization (1 or 2), indicating that the data set is ready to be updated.

For tables for which the layout has changed, the redefine command creates reorganization scripts that will modify the

relational database tables to match the changes in the reorganized DMSII data sets.

If the DMSII reorganization introduces one or more new columns, one of the following occurs based on the value of the

parameter suprress_new_columns .

If the reorganization introduces one or more new data sets, one of the following occurs base on the value of the parameter

suppress_new_datasets .

For any reorganized data set whose active column is 0, the redefine command updates the corresponding Client control

table entries, leaving the active column set to 0. This ensures that if you later decide to clone that data set, you only need to

set the active column to 1 and execute a redefine and a generate command.

8.2.2 Performing Reorganizations Using an Internal Clone

Version 6.6 of the Databridge software introduced a new way of reorganizing tables that does not use alter commands. In some

cases, the process of reorganizing a table by using alter command can be very expensive. For example, if you try to change a

column that is an int to a dec(10) when using SQL Server, the alter command will cause every single change to be logged, which

can have rather disastrous effects if the table is large. If you run out space for the log, the alter command abends, leading to a

massive rollback.

The use_internal_clone parameter allows you to select the default method of doing reorganizations. See use_internal_clone for

more information. You can then override it (on a data set by data set basis) by using the Client Configurator to change the setting of

the ds_options bit DSOPT_Internal_Clone (see DSOPT_Internal_Clone in the section DATASETS Client Control Table for a

description of this bit).

The internal clone is comparable (in terms of speed) to using the bulk loader to copy the data from the old table to the new table. In

the case of SQL Server, to make it run fast you must make sure that database's recovery model is not set to "Full", as was the case of

for the bulk loader (temporarily change the database model to ""Simple" or "Bulk-logged" when you run an internal clone).

•

•

•

Is Result

True The active column is set to 0 for new items in the DATAITEMS Client control table and for new tables in the

DATATABLES Client control table.

The next process command does not re-clone the data set.

False The new columns are added to the tables in the Client database. These columns will be set to the appropriate

values based on their INITIALVALUE defined in the DASDL.

The next process command will continue to populate the table including the new column. If new tables

appear, the data set will be re-cloned.

•

Is Result

True Databridge Client sets the active column in the corresponding entry in the DATASETS Client control table to 0,

and the data set is not mapped.

False Databridge Client sets the active column in the corresponding entry in the DATASETS Client control table to 1

(unless the data set is a REMAP), and the layout of the corresponding relational database tables is defined in the

DATATABLES and DATAITEMS Client control tables.

You must run a reorganize or generate command to create the scripts for these new tables. These data sets

are automatically cloned the next time you run a process command.

•

8.2.2 Performing Reorganizations Using an Internal Clone

- 104/327 - © Copyright 2021 Micro Focus or one of its affiliates.

8.2.3 DMSII Changes to Record Locations

DMSII record locations are changed in the following circumstances:

Garbage collections reorganizations

File format conversions

Record format conversions

Garbage collection and file format conversion reorganizations only affect data sets that use AA Values as keys. Therefore, unless the

data sets using AA Values as keys are small and garbage collection reorganizations at your site are infrequent, we recommend that

you use RSNs. (If you're unable to use RSNs, composite keys are a viable alternative to AA Values. However, they are error prone and

can result in false duplicate records.)

When a data set is affected by a garbage collection reorganization or a file format conversion, the Databridge Client sets the

ds_mode column to 12 in the DATASETS Client control table and displays the message:

WARNING: DMSII reorganization has occurred; AA Values for DataSet name [/rectype] are no longer valid

When a record format conversion affects a data set that uses AA Values, the redefine command forces that data set to be re-cloned,

even if the tables derived from the data set are not affected by the reorganization.

8.3 DMSII Reorganization When Using Merged Tables

The merged tables feature combined with multi-source databases allows a user to store data from multiple separate DMSII

databases into a single relational database. The requirement is that all the DMSII databases have the same DASDL and always be

kept in sync, as far as reorganizations are concerned. This section documents how to go about handling such reorganizations.

Everything we said about the single data source case still applies here. The first thing you need to do is to let the Clients catch up

with all the updates until it gets to the point in the audit trail where the reorganization occurred. Make sure that you let all the Clients

catch up before doing anything else.

Once all the data sources are caught up, you will need to run redefine commands for all of the data sources. Once this is

completed you will then need to run a reorganize command for one of the data sources. Do not do this for more than one data

source, as there is only one set of tables in the relational database and if any of the scripts alter a table running the scripts a

second time will usually result in SQL errors, as the ALTER commands will most likely not be valid. For example if the ALTER

command adds a column, an attempt to add it again will fail. We added the -n option to the reorganize command to make it

work for the second and any subsequent data sources in a multi-source environment. This allows you to get all the data sources

ready for processing updates by generating scripts for reorganized data sets and refreshing the stored procedures for the tables

associated with such data sets. Finally the command updates the ds_mode column in DATASETS, restoring it to the value it had

before the redefine command was run. This command appears near the bottom of the Advanced menu for the data source in the

Administrative Console's Customize command. If the reorganization requires that a data set be re-cloned, you should add the -k

option to the first process or clone command you use so the table gets dropped. In the absence of the -k option, the Client will run

the cleanup script, which removes all the records associated with the current data source. The alternative is to manually drop the

table for the first data source. Once the tables to be re-cloned have been dropped, the remaining data sources can operate normally.

8.4 Rollbacks

A DMSII "rollback" restores the DMSII database to an earlier point in time in order to correct a problem. While the DMSII database is

being restored, replication stops. The Client must then be restarted for replication to resume.

If the Client has processed updates after the DMSII restore point, this replicated data will be wrong. Upon finding bad information in

the stateinfo, the Databridge Engine typically returns a message stating that a rollback has occurred. To resolve this problem, the

relational database must also be rolled back (to the DMSII restore point or earlier).

If the Client hasn't processed updates after the DMSII restore point, no action is required. This can often be the case as the Client

tends to lag behind the DMSII database by several audit files during the processing of audit files generated by batch jobs.

•

•

•

8.2.3 DMSII Changes to Record Locations

- 105/327 - © Copyright 2021 Micro Focus or one of its affiliates.

8.4.1 Recovering from DMSII Rollbacks

You'll need to recover the relational database after a DMSII rollback In situations where the Client database is caught up with the

DMSII database (that is, there is no lag time between the two). There are two preferred ways to do this:

Recloning the database is usually very time-consuming and is only recommended as a last resort or in cases where the relational

database contains little data or if the required audit files are not available. For information about recloning, see Recloning.

8.5 Recloning

Reasons for recloning include the following:

DMSII reorganization

DMSII rollback

An update is not possible (for example, because a table does not have a unique key)

One or more of the Databridge data tables in the relational database were removed

You can use either the process or clone command to re-clone data sets. The clone command lets you specify individual data sets

on the command. The process command automatically re-clones all data sets whose active column is 1 and whose ds_mode

column is 0. Both commands perform fixups, tracking and processing updates as needed (unless the defer_fixup_phase or the

stop_after fixups parameter is set to True). See Recloning Individual Data Sets.

If you're recloning the entire database, the process is more involved. See Recloning a Database.

8.5.1 Recloning Individual Data Sets

Use one of the following procedures to re-clone data sets.

Set the current directory to the one you created for the data source (the directory from which you ran a generate command for the

data source). Make sure that the directory contains the scripts for this data source.

Set the ds_mode column (in the DATASETS Client control table) to 0 for the data sets you want to clone by running a SQL

command. If you are recloning all data sets, using the " -Y reclone_all " option eliminates the need to do this, as the Client will

update the DATASETS table automatically when this option is used.

Run the process command with the -y option, as follows:

The -y option forces any data sets whose ds_mode is set to 11 or 12 to be recloned, in addition to the recloning data sets whose

ds_mode is set to 0. After the data extraction process is complete for the data sets being recloned, Databridge data tables whose

active columns are set to 1 in their corresponding Client control table (and whose ds_mode is set to 2) are updated.

Programmatic
rollback

Undoes all transactions that occurred after the specified rollback point
(typically a time prior to the DMSII restore point). This is only possible
if the relational database is audited, which is rarely the case.

Reload the
database

Entails reloading the database from a backed-up copy. This requires that
all of the audit files—from the point when the relational database was
backed up forward—to be available. If the audit files aren't available,
recloning is the only option.

Using shortcuts to recover a relational database after a DMSII rollback, such as updating the tables using scripts or resetting the State Info, is not

only ineffective but problematic. These methods leave obsolete updates in the Client database and may cause valid updates to be skipped after

the Databridge Client resumes tracking.

Caution

•

•

•

•

1.

2.

3.

dbutility process -y datasource

8.4.1 Recovering from DMSII Rollbacks

- 106/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To reclone with a clone command

Set the current directory to the one you created for the data source (the directory from which you ran a generate command for the

data source). Make sure that the directory contains the scripts for this data source.

Set the parameter defer_fixup_phase to True to suspend audit file processing. If you don't do this, audit files will be processed

twice, once for the data set you clone and once for all of the other data sets.

Synchronize the tables by running a process command. Synchronization occurs when all data sets reach the same point in the

audit trail.

For clone command syntax, see dbutility Commands.

8.5.2 Recloning a Database

Recloning the relational database can be an efficient means of recovering it if it doesn't contain a lot of data. Otherwise, it can be

time-consuming and costly, as recloning uses host resources. These reasons alone often make recloning a last resort when no

backup is available. (These issues are one of the reason why we developed Enterprise Server. It makes processes like this one more

efficient.)

We recommend that you use the following procedure instead of setting ds_mode to 0 for all data sets using a SQL query and

running a process command, because it ensures that you have the latest copy of the DMSII layout.

Make sure that you have the latest copy of the DMSII layout.

Run a drop command to drop the data source.

Run a define command.

Run a generate command.

Run a process command.

8.5.3 Adding a Data Set

Use this procedure to add a data set after you clone the DMSII database. You don't need to reclone the entire database.

To add a data set

Run a relational database query tool and list the contents of the DATASETS Client control table with the following SQL command:

Set the active column for the data set you want to add to the Databridge data tables to 1 (on), as follows:

Run a redefine command.

Run a generate command to create new scripts that populate the resulting table.

Run one of the following commands to populate the new tables that correspond to the new data set:

After you complete this procedure, update your data set selection script (script.user_datasets .datasource) so that you do not lose

this change the next time you run a define command.

1.

2.

3.

•

•

•

•

•

1.

select dataset_name, active, data_source from DATASETS

2.

update DATASETS set active=1 where dataset_name='datasetname'

3.

4.

5.

dbutility process datasource

--or--

dbutility clone datasource datasetname

If you run the a process command, the Databridge data tables whose active columns are set to 1 in their corresponding Client control table

are also updated at this time.

Note

8.5.2 Recloning a Database

- 107/327 - © Copyright 2021 Micro Focus or one of its affiliates.

8.5.4 Dropping a Table

Use this procedure when the Client no longer uses a Databridge data table in the relational database.

To drop a table from the Administrative Console, see the Databridge Client Console Help.

To drop a table

Update your data set global mapping customization and global data table customization scripts, depending on whether you are

dropping a primary or secondary table, to reflect this change. See Customizing with User Scripts.

If you are dropping all of the tables derived from a data set, set the active column corresponding to the data set to 0 (in the

DATASETS Client control table) and then run the data set selection script (script.user_datasets .datasource) using the dbutility

redefine command.

If you are dropping a secondary table, set the active column corresponding to the table to 0 (in the DATATABLES Client control

table) and then run the data table customization script (script.user_define .primary_tablename) for the primary table using the

redefine command.

From a command line, set the current directory to the working directory for the data source, and then run a script, such as the

following (Windows)

8.6 Backing Up and Maintaining Client Control Tables

To help you maintain your Client control tables, Databridge provides three commands that allow you to backup, restore, and recreate

copies of your Client control tables. In this section, each of these commands is described.

8.6.1 The Unload Command

The unload command creates a text file that contains a record for each of the entries in the various Client control tables. For best

results, run an unload command before running a redefine command.

Sample Run

15:05:25 dbutility unload demodb demodb.cct

 15:05:25 Databridge Client version 7.0.0.000 [OCI/Oracle]

 15:05:25 Copyright (C) 2019 Micro Focus or one of its affiliates.

 15:05:30 Loading control tables for DEMODB

 15:05:32 Unloading control tables for DEMODB

 15:05:32 Control tables for DataSource DEMODB written to file "demodb.cct"

1.

2.

3.

4.

dbutility -n runscript dbscripts\script.drop.tablename

Format The format of the unload command is as follows:

dbutility [options] unload datasource filename

Options The list of options is the same as those for signon_options. Additional options
include -t , -T , and -f .

Data
Source

If a datasource of "_ALL" is specified, the Databridge Client writes all data
sources to the backup file (filename). If a specific data source is specified, the
Databridge Client writes only the entries for that data source to the backup
file.

8.5.4 Dropping a Table

- 108/327 - © Copyright 2021 Micro Focus or one of its affiliates.

 15:05:32 Client exit code: 0 – Successful

8.6.2 The Reload Command

The reload command enables you to restore the Client control tables from a file that was created using the unload command.

Sample Run

17:16:26 dbutility reload demodb demodb.cct

 17:16:27 Databridge Client version 7.0.0.000 [OCI/Oracle]

 17:16:27 Copyright (C) 2021 Micro Focus or one of its affiliates.

 17:16:35 Reloading Control table entries for DataSource DEMODB from file "demodb.cct"

 17:16:45 Control tables for DataSource DEMODB reloaded from file "demodb.cct"

 17:16:45 Client exit code: 0 – Successful

8.6.3 The Refresh Command

The refresh command enables you to drop and recreate all of the stored procedures for the tables associated with the given data

set in the specified data source. It is a variation of the runscripts command that is designed to run portions of the Databridge

Client scripts (script.drop .tablename and script.create .tablename). This command is useful when you want to manually handle

a data set that would otherwise be recloned after a DMSII reorganization.

Format The format of the reload command is as follows:

dbutility [signon options]reload datasource filename [dataset1, dataset2, ...]

NOTE: Client control table changes made since the tables were unloaded will be
lost. Depending on what has changed, data table record could also be affected,
requiring recloning.

Options The list of options include -t , -T , -f , and -k . The -k option forces Databridge
to keep the stateinfo in the control tables for data sets that are in normal mode
(ds_mode = 2) and that have client_fmt_level and item_count columns that remain
unchanged (there is no reorganization involved).

Data
Source

If a datasource of "_ALL" is specified, the Databridge Client restores all data
sources contained in the backup file. If a specific data source is specified, the
Databridge Client restores only the entries for that data source from the file.
If this is further qualified by a data set list, the Databridge Client restores
only the entries for the data sets specified. Note that all the data sets
specified in the list must already exist.

8.6.2 The Reload Command

- 109/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Sample Run

12:39:45 dbutility refresh DEMODB CUSTOMER

 12:39:45 Databridge Client, Version 7.0.0.000 (64-bit) [OCI/Oracle]

 12:39:45 Copyright 2021 Micro Focus or one of its affiliates.

 12:39:45 Loading control tables for DEMODB

 12:39:45 Stored procedures for all tables of DataSet CUSTOMER successfully refreshed

 12:39:45 Client exit code: 0 - Successful

In this case, the data set CUSTOMER is mapped to a single table named customer. The refresh command executes the following

SQL statements.

begin drop_proc('u_customer');end;

 begin drop_proc('i_custmer'); end;

 begin drop_proc('d_customer'); end;

 create procedure u_customer (...) update customer set ... where ... ; end;

 create procedure i_customer (...) insert into customer (...) values (...); end;

 create procedure d_customer (...) delete from customer where ... ; end;

This effectively replaces all of the stored procedures with a fresh copy, while leaving the tables unchanged. This command is

particularly useful when the index of the tables has changed. For example, if the data set CUSTOMER initially uses AA Values as

keys, and a DMSII garbage collection occurs, you can avoid recloning this data set if it is mapped to a single table by creating a

composite key.

In case of variable-format data sets, the tables for all the record types that have their active column set to 1 in the DATASETS Client control table,

are refreshed.

Note

Format The format of the refresh command is as follows:

dbutility [options] refresh datasource dataset

Options The list of options is the same as those for signon_options.

If "_ALL" is specified for dataset, Databridge Client refreshes the stored
procedures for all active tables that correspond to data sets whose active

columns are 1. If a specific data set is specified, the Databridge Client
refreshes only the stored procedures for the tables mapped from that data set.
All tables for the specified dataset must have been created.

8.6.3 The Refresh Command

- 110/327 - © Copyright 2021 Micro Focus or one of its affiliates.

9. Data Mapping

This chapter shows you how the Databridge Client maps DMSII data structures to relational database structures.

9.1 DMSII and Relational Database Terms

The following table shows the equivalent terms for DMSII structures and relational database structures:

9.2 DMSII and Relational Database Data Types

The Databridge Engine retrieves the requested DMSII data, and DBServer passes the data to the Databridge Client, where it is

assigned to standard relational database data types.

DMSII Relational

Data set Table

DMS item (data
item)

Column

Record Row (record)

Set Index

NOTE: A relational database index is a set of column names that is used to
efficiently access a row (of a table).

Key Key

9. Data Mapping

- 111/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table lists equivalent data types for DMSII, Microsoft SQL Server, and Oracle.

* VARCHAR if the configuration parameter use_varchar is set to True.

† VARCHAR2 if the configuration parameter use_varchar is set to True.

‡ If the configuration parameter use_bigint is set to False, DEC(n) will be used instead.

§ Note that if the number is signed, SMALLINT is used instead. TINYINT is an unsigned quantity in SQL Server.

9.2.1 Databridge Data Types

IMAGE is a Databridge type that allows you to store an ALPHA item as binary by using the REDEFINE clause of the ALTER

command in GenFormat on the host.

When the Databridge Client encounters an item of type IMAGE, it automatically sets the ds_options DIOPT_Clone_as_Binary bit in

the DMS_ITEMS Client control table.

9.3 Supported DMSII Structures

This section lists DMSII structures that are supported by the Databridge Client. If you are the relational database administrator and

have no experience with DMSII databases, this section will be more useful to you if you are working with a DMSII database

administrator.

DMSII SQL Server Oracle

ALPHA (<= char_limit bytes) CHAR * CHAR +

ALPHA (>char_limit bytes) TEXT VARCHAR2

ALPHA (>varchar2_limit_bytes) TEXT CLOB

BOOLEAN BIT NUMBER(1)

FIELD:

FIELD(n) where n is < 16
FIELD(n) where n is < 32
FIELD(n) where n >= 32

SMALLINT
INT
BIGINT ‡

NUMBER(5)
NUMBER(10)
NUMBER(10–
15)

NUMERIC:

NUMBER(n) where n is a DMSII declared length <= 2
NUMBER(n) where n is a DMSII declared length <= 4
NUMBER(n) where n is a DMSII declared length <= 9
NUMBER(n) where n is a DMSII declared length <= 15
NUMBER(n) where n is a DMSII declared length >15
NUMBER(n,m) where n is a DMSII declared length and m is the
number of places after the decimal point.

TINYINT §
SMALLINT
INT
BIGINT ‡
DEC(n)
DEC(n,m)

NUMBER(n)
NUMBER(n)
NUMBER(n)
NUMBER(n)
NUMBER(n)
NUMBER(n,m)

REAL:

REAL(n) where n is a DMSII declared length <= 2
REAL(n) where n is a DMSII declared length <= 4
REAL(n) where n is a DMSII declared length <= 9
REAL(n) where n is a DMSII declared length > 9
REAL(n,m) where n is the DMSII declared length and m is the
number of places after the decimal point.
REAL, with no precision or scale

TINYINT §
SMALLINT
INT
DEC
DEC(n,m)
FLOAT

NUMBER(n)
NUMBER(n)
NUMBER(n)
NUMBER(n)
NUMBER(n,m)
FLOAT

9.2.1 Databridge Data Types

- 112/327 - © Copyright 2021 Micro Focus or one of its affiliates.

In addition to fixed-format data sets and variable-format data sets, the Databridge Client supports the following DMSII structures:

Embedded data sets (see exceptions in the following section)

Remaps

Logical database

GROUP

FIELD items for GROUPs of BOOLEANS

OCCURS

GROUP OCCURS

Data sets with more items than the maximum number of columns supported by the relational database

Data sets that generate relational tables whose record sizes exceed the Microsoft SQL Server maximum record size.

DMSII links in DIRECT, UNORDERED, and STANDARD data sets. (Links in variable-format data sets are cloned but not tracked.)

Some of these structures may not be supported by your relational database. The DMSII structures that are not supported by

relational databases are mapped into a form that the relational database can use. Each of these structures and the way they are

mapped in the relational database are explained in the remainder of this chapter.

9.4 Unsupported DMSII Structures

When the Databridge host replication software does not support a particular DMSII structure, the Databridge Client may or may not

issue a warning message, depending on the DMSII structure. For example, a message is generated when the data set has no keys.

The Databridge Client does not support the following DMSII structures:

Embedded data sets within an ORDERED or COMPACT data set

Embedded data sets if the INDEPENDENTTRANS option is reset

POPULATION items

COUNT data items

FILLER data items

AGGREGATE data items

9.4.1 Embedded Data Sets

An embedded data set is a DMSII representation of a hierarchical relationship or tree structure. When a DMSII data set contains

another data set as an item, that data set is called an embedded data set. The data set in which it is declared is called the parent of

the embedded structure. You can think of the embedded data set as the "child" of the "parent" data set.

To represent this parent-child relationship in a relational database, the Databridge Client uses a foreign key that points to the parent

data set. This foreign key is represented by the value in the parent_aa column in the table that corresponds to the embedded data

set. The parent_aa column holds the parent record's key.

DMSII DASDL Showing an Embedded Data Set

The following is an excerpt from a DMSII DASDL that shows how an embedded data set is defined.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 GENEALOGY DATA SET
 (
 PARENT-FAT-NAME ALPHA (30);
 PARENT-MOT-NAME ALPHA (30);
 PARENT-MOT-MAIDEN ALPHA (30);
 PARENT-FAT-BDATE NUMBER (06);
 PARENT-MOT-BDATE NUMBER (06);
 FILLER SIZE (06);
 %
 CHILD DATA SET;
 (
 CHILD-NAME ALPHA (30);
 CHILD-STATUS ALPHA (11);

9.4 Unsupported DMSII Structures

- 113/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Resulting Tables

The following examples are for Microsoft SQL Server.

Ignoring any set definition, the resulting relational database tables are as follows:

Genealogy (the parent data set is cloned to its own primary table)

Child (the embedded data set is cloned to its own secondary table with a pointer to its parent table)

Parent Table: genealogy (table name). Where the my_aa column is a unique key for the record derived from the DMSII AA Value of

this record.

Child Table: child (table name)

9.4.2 Selecting Embedded Data Sets for Cloning

When you run a clone command, by default, the Databridge Client selects embedded data sets along with the parent structures. If

you have altered the values for the active column in the Databridge Client control tables, however, check the values for the embedded

data set and its parent data set.

9.4.3 Record Serial Numbers

A record serial number (RSN) is a unique number (48-bits long) that is associated with a record in a data set. The RSN is guaranteed

to be unique, and it stays with a record for the life of the record. Updates do not affect the RSN; therefore, RSNs are ideal keys for

Databridge tables. However, RSNs are available only when using DMSII XE.

DMSII XE adds the RSN to every record of a data set that has the EXTENDED attribute set. As long as the EXTENDED attribute is set,

Databridge can access the RSN, unlike application programs that can access the RSN only if it has been explicitly declared in the

 CHILD-BDATE NUMBER (06);
 CHILD-GENDER FIELD
 (
 CHILD-MALE BOOLEAN;
 CHILD-FEMALE BOOLEAN;
);
 CHILD-FILLER FIELD (01);
 %
);
);

•

•

 (
 my_aa char(12),
 parent_fat_name char(30),
 parent_mot_name char(30),
 parent_mot_maiden char(30),
 parent_fat_bdate int,
 parent_mot_bdate int
)

(
 my_aa char(12), - child table's key
 parent_aa char(12), - foreign key of parent table
 child_name char(30),
 child_status char(11),
 child_bdate int,
 child_male bit,
 child_female bit,
 child_filler smallint
)

If you want to clone an embedded data set, you must also clone the parent structure. Failure to do this results in the following error message

from the Databridge Engine on the host:

0043 Parent of embeddeddataset must be selected.

Caution

9.4.2 Selecting Embedded Data Sets for Cloning

- 114/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DASDL source. The Databridge Engine is designed to use RSNs instead of AA Values whenever possible. Regardless of whether

RSNs are present, AA Values are used for data sets that contain embedded data sets or DMSII links.

Since RSNs and AA Values are the same length, they are interchangeable, unless the data sets are embedded data sets or contain

DMSII links. If the Databridge Engine is not handling either of these types of data sets and an RSN is present, Databridge Engine

uses the RSN rather than the AA Value. In this case, the resulting column of the DATAITEMS Client control table is named my_rsn

instead of my_aa to differentiate it from an AA Value. In both cases, the set_name column of the DATASETS Client control table will

have a value of "aa_set".

9.4.4 AA Values

AA is a DMSII term that stands for absolute address. An absolute address value is an A Series WORD (48-bits in length). In the

Databridge Client, AA is the hexadecimal representation (12 character strings containing the characters 0--9 and A--F) of the AA

Value on the host. Databridge Client uses the AA Values to implement unique keys for the parent structures of embedded data set

records. It also uses AA Values to reference the records of data sets that do not have DMSII SETS with the NO DUPLICATES

ALLOWED attribute.

AA Values are not constant. Any DMSII reorganization (record conversion, file format, or garbage collection) changes these values.

9.4.5 DMSII Links

The Databridge Client implements DMSII link items, such as MEMO items in LINC databases, using an AA Value. You can use the

AA Value as a foreign key when you want data from the tables associated with the link item. To enable support for DMSII links, you

must do the following:

Enable DMSII link support in the Databridge Engine control file.

Set the Client configuration file parameter enable_dms_links to True.

9.4.6 Variable-Format Data Sets

DMSII variable-format data sets consist of a collection of dissimilar records containing a fixed part that is common to all records,

and a variable part that depends on the record type. The individual records are identified by the record type, which is a special data

item that has a value between 0 and 254.

A record type of 0 indicates that the record does not contain a variable part.

A record type of 1--254 indicates that the record contains the corresponding variable part in addition to the fixed part that is

always present.

The concept of variable-format tables does not exist in relational databases. Therefore, the Databridge host software handles the

various types of variable-format records as different structures. Databridge references these structures by a data set name and a

record type (all other data set types have a record type value of 0). The Databridge Client uses the notation datasetname/rectype

when referring to variable-format data sets in all messages. The Databridge Client handles these structures as if they were logical

data sets; thus, each individual record type of a variable-format data set is mapped to a different relational database table. Variable-

Databridge Client supports numeric AA Values that are stored as NUMBER(15) in Oracle and BIGINT in SQL Server. It also supports binary AA

Values that are stored as RAW(6) in Oracle and BINARY(6) in SQL Server.

Note

•

•

•

•

9.4.4 AA Values

- 115/327 - © Copyright 2021 Micro Focus or one of its affiliates.

format data sets are tracked and updated like fixed-format data sets. Links in variable-format data sets, however, are not tracked, but

retain their values from the initial clone. The link values for any records created after the clone will be null. (See track_vfds_nolinks.)

DMSII DASDL Showing Fixed- and Variable-Length Records

9.4.7 Resulting Tables

The examples in this section assume that the Microsoft SQL Server database is being used and that the Client uses the SET

MAINSET as the source for index for the various tables.

Fixed Part
Only
Records

Even though type 0 records are not explicitly declared in the DMSII DASDL,
applications can create such records by simply setting the record type to 0.
The Databridge software always defines a data set with a record type of 0
(rectype column in the DATASETS Client control table) for type 0 records of
variable-format data sets. This data set is mapped to a table whose name is
derived from the data set name (that is, name converted to lowercase and all
dashes replaced by underscores).

Note that unless the DMSII applications explicitly store type 0 records in the
data set, this table may be empty. If you know this is the case, you may want
to disable the cloning of the type 0 records for the data set by setting the
active column of the corresponding entry in the DATASETS Client control table
to 0.

Variable
Format
Records

All other record types are treated as if they were contained in a separate
structure. The primary tables for these structures are named by appending the
suffix "_type#* to the name mapped from the data set name, where # is the
decimal value of the record type (that is, a value between 1 and 254). Note
that the fixed part of the variable-format records and the record type are also
stored in the resulting relational database table.

 MAIN DATA SET
 (
 VAR-REC RECORD TYPE (3);
 CUST-NO NUMBER (08);
 CPU ALPHA (06);
 FILLER SIZE (05);
),

 %

 1:
 (
 SMSA ALPHA (04);
 SALES ALPHA (06);
)

 %

 2:
 (
 STATUS ALPHA (01);
 RECEIVED ALPHA (06);
 ORDER-DATE NUMBER (08);
)

 %

 3:
 (
 SITE ALPHA (07);
 SOURCE ALPHA (07);
 CLASS ALPHA (02);
);

 %

 MAINSET SET OF MAIN
 KEY (CUST-NO)
 NO DUPLICATES;

9.4.7 Resulting Tables

- 116/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following tables are derived from the variable-format data set MAIN:

main (type 0 records)

main_type1 (type 1 records)

main_type2 (type 2 records)

main_type3 (type 3 records)

Record Type 0 Table

The table named main represents all type 0 records that do not have a variable part. The var_rec column of all records in this table

will have a value of 0. Note that this table may be empty if your application does not use type 0 records. The SQL statement to

create this table is shown as follows:

Record Type 1 Table

The table named main_type1 represents all type 1 records. The var_rec column of all records in this table will have a value of 1. The

SQL statement to create this table is shown as follows:

Record Type 2 Table

The table named main_type2 represents all type 2 records. The var_rec column of all records in this table will have a value of 2. The

SQL statement to create this table is shown as follows:

Record Type 3 Table

The table named main_type3 represents all type 3 records. The var_rec column of all records in this table will have a value of 3. The

SQL statement to create this table is shown as follows:

•

•

•

•

All four tables contain the fixed part of the data set. The var_rec column is the record type; all records in the individual tables will have the

same value in this field.

Note

 create table main
 (
 cust_no int,
 var_rec smallint,
 cpu char(6)
)

create table main_type1
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 smsa char(4),
 sales char(6)
)

create table main_type2
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 status char(1),
 received char(6),
 order_date int
)

create table main_type3
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 site char(7),
 source char(7),
 class char(2)
)

9.4.7 Resulting Tables

- 117/327 - © Copyright 2021 Micro Focus or one of its affiliates.

9.4.8 Split Variable Format Data Sets Option

When the ds_options bit DSOPT_Split_Varfmt_ds (bit value 65536) is set, variable format data sets are treated slightly differently.

The record type 0 tables contains the fixed part of all records regardless of their record types. However, the table has exactly the

same layout as above. The tables for all the other records only contain the variable part of the records and the keys from the fixed

part.

The table named main_type1 in the above example will now contain the key cust_no and the variable part. The SQL statement to

create this table is shown as follows:

create table main_type1 (cust_no int, smsa char(4), sales char(6))

9.5 Changing the Default Data Type

In most cases, the default data types are sufficient. If you want to change the data type, however, use a relational database query

tool to edit the sql_type column in the DATAITEMS Client control table, or put the SQL statements in user scripts as explained in

Customizing with User Scripts.

When changing the default data type, make sure that you choose a correct data type or the data may not be correctly stored in the relational

database.

Caution

9.4.8 Split Variable Format Data Sets Option

- 118/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Most of these relational database data types can be changed using data table customization user scripts or the Administrative

Console's Customize command is the Settings menu for the data source.

9.6 Handling DMSII GROUPs

A GROUP is a DMSII construct that allows the data items that belong to the group to be referenced at one time (for example, as one

item). The concept of GROUP does not exist in a relational database. Therefore, if the DMSII database you replicate has one or more

GROUPs, the Databridge Client ignores the GROUP name and instead treats each item within the GROUP as a regular data item. All

items in a DMSII GROUP share the same parent item number, which is the item number of the GROUP item.

Following is an example of the DMSII GROUP item in the data set called ADDRESS. This GROUP item consists of the data item CITY

and the data item STATE.

DMSII DASDL Showing GROUP

Value for
sql_type

Generic Data
Type

Microsoft SQL Server Data
Type

Oracle Data
Type

0 bit bit number(1)

1 char char char

2 varchar varchar varchar2

3 byte tinyint number(3)

4 short int smallint number(5)

5 long int int number(10)

6 float float float

7 text text clob

8 binary binary raw

9 varbinary varbinary raw

10 datetime datetime date

11 packed BCD dec number

12 smalldatetime smalldatetime date

13 numeric date int number(10)

14 unsigned long binary(4) raw(4)

15 timestamp timestamp N/A

16 serial {int - bigint - dec(n) -
identity}

N/A

17 numeric_time int number(6)

ticks int number(6) or number(10) N/A

18 int64 bigint NA

19 date date NA

20 datetime2 datetime2 NA

21 time time N/A

22 uniqueidentifier uniqueidentifier N/A

9.6 Handling DMSII GROUPs

- 119/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following is an excerpt from a DMSII DASDL that shows how a GROUP item is defined. With the GROUP item, you can access

both city and state with one reference.

The next example shows how the same DMSII GROUP item is mapped to a relational database.

Relational Database Table

The following example is for Microsoft SQL Server.

The table name is the lowercase form of the DMSII data set name. The GROUP item CITY-STATE is ignored. The data items in that

group are included in the relational database table as if they were ordinary DMSII data items.

If there are duplicate names among members of various groups within a data set, the Databridge Client resolves the conflict by

appending a digit to the column name to make it unique.

9.7 Handling DMSII OCCURS

An OCCURS clause is a DMSII construct that describes the number of times an item is present or repeats within a data set. Because

relational databases do not support the OCCURS construct, these clauses generate additional tables, which can degrade the

performance of update processing.

You can control how items with an OCCURS clause are mapped on an item by item basis by flattening OCCURS. See Flattening

OCCURS Clauses.

Default OCCURS Handling

If you don't flatten OCCURS, Databridge Client creates a new table for each data item that contains an OCCURS clause. The keys

from the data item's parent data set are used as keys in the new table. In addition, a new key (named index1) is created to establish

a unique composite key for each recurring data item.

For example, a DMSII data set has a data item with an OCCURS clause will result in two relational database tables:

The first table (called the primary table) is named using the lowercase form of the DMSII data set name with all hyphens

changed to underscores. It contains the key items as well as all data items that do not have OCCURS clauses.

The second table (called the secondary table) is named by appending an underscore and the data item name to the primary

table name. This table contains all of the OCCURS items; however, each table has a unique key created by index1 . (Names

that exceed the character limit are truncated. If the truncation results in a duplicate item names, the last characters of the name

are changed to digits).

Handling OCCURS items this way can significantly degrade the performance of update processing if the number of occurrences is

large. The storage required to hold the keys of the secondary table items can also be substantial. For example, an OCCURS 100

TIMES clause can turn a single DMSII update into 101 relational database updates. See DMSII DASDL with OCCURS for an example

of a DMSII data set that has a data item with an OCCURS clause.

 ADDRESS DATA SET
 (
 STREET ALPHA (20);
 APARTMENT ALPHA (5);
 CITY-STATE GROUP
 (
 CITY ALPHA (20);
 STATE ALPHA (2);
);
 COUNTRY ALPHA (20);
 ZIPCODE NUMBER (5);
 POSTFIX NUMBER (4);
);

address (table name)
street apartment city state country zipcode postfix

May St. 3 Paris OH USA 15010 2146
Elm Ln. River SD USA 24906 3381

•

•

9.7 Handling DMSII OCCURS

- 120/327 - © Copyright 2021 Micro Focus or one of its affiliates.

9.7.1 DMSII DASDL with OCCURS

The following excerpt from a DMSII DASDL shows how an OCCURS clause is defined.

The OCCURS clause allows access by subscripting (indexing) within an application program. Because relational databases do not

allow subscripting (indexing), the Databridge Client maps the subscript into an additional key. The OCCURS items, then, are

available by row.

When this ORDERS data set is cloned into the relational database, it is mapped into the following two tables. These tables show

how the DMSII OCCURS clause appears in a relational database.

Table 1

This table is named the same as the ORDERS DMSII data set, and it contains the key item plus all non-OCCURS items. Assuming the

ORDERS DMSII data set has 50 records, this table has 50 rows.

Table 2

This table name combines the DMSII data set name and the name of the data item which has an OCCURS clause. It contains all the

occurrences of the OCCURS data item ORDER-NUM.

Continuing with the example from Table 1 with 50 records (rows), this table has 500 total rows. For every order_id key (50 total),

there are ten OCCURS items (as declared in the DASDL on the previous page).

9.7.2 Flattening OCCURS Clauses

The flatten_all_occurs parameter makes the define and redefine commands set the value of the bit DIOPT_Flatten_Occurs (1) in

the di_options column in the DMS_ITEMS table for all items that have OCCURS clauses. You can set this parameter from the Client

 ORDERS DATA SET
 (
 ORDER-ID ALPHA (4);
 ORDER-DATE ALPHA (5);
 ORDER-ITEM OCCURS 10 TIMES NUMBER (8);
);

 BY-ORDER-ID SET OF ORDERS
 KEY IS
 (
 ORDER-ID
)
 NO DUPLICATES,
 INDEX SEQUENTIAL;

orders (table name)
order_id order_date
-------- ----------
1201 jan12
 . .
 . .
 . .
1250 feb12

orders_order_item (table name)
order_id index1 order_item
-------- ------ ----------
1201 1 00007390
1201 2 00001293
1201 3 00007748
1201 4 00009856
1201 5 00003736
1201 6 00002278
1201 7 00004327
1201 8 00009463
1201 9 00008638
1201 10 00008954
1202 1 00001754
1202 . 00005309
1202 . 00004537
1202 10 00005940
1203 1 00005430
1203 . 00005309
1203 . 00004537
1203 10 00006587
 . . .
 . . .
 . . .

9.7.1 DMSII DASDL with OCCURS

- 121/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Configurator or by editing the configuration file to specify whether to globally flatten OCCURS clauses for a data source. By using

user scripts, you can control this option for individual items.

The Databridge Client provides two options for handling OCCURS clauses.

When using the Administrative Console you can set the parameter flatten_all_occurs by using the Configure command in the

Settings menu for the data source. To customize the handling of individual items with OCCURS clause use the Customize

command in the Settings menu for the data source. Click on the data set involved and click on the wrench (properties) of the item in

question in the DMS Items view and pick the entry you want from the drop down list for the "Flatten Occurs" property. The choices

are "Don't Flatten", "Flatten Within Table", "Flatten into Secondary Table" and if applicable "Flatten to String".

9.7.3 Flattening OCCURS Clauses to a String

Single items of type NUMBER(n) or ALPHA(n) with an OCCURS clause can be flattened to a character string represented by a CHAR

or VARCHAR data type. You can have fixed format strings or CSV format strings, where the delimiter character can be selected via the

dms_subtype column in DMS_ITEMS. This feature is controlled by the DIOPT_Flatten2String bit in the di_options and the

dms_subtype column. If the dms_subtype is 0, fixed format is used and if the dms_subtype is non-zero it specifies the delimiter

character used in the CSV format. NULL data is represented by blanks in fixed format and empty fields in CSV format (i.e. two

consecutive delimiters or a delimiter at the end of the data). For example a NUMBER(1) OCCURS 20 TIMES can be flattened to a

column that is a CHAR(20) when using fixed format.

9.7.4 Flattening OCCURS Clause for Three-Bit Numeric Flags

MISER systems store certain flags as arrays of single-digit numbers, where each number is used to hold three Boolean values. The

Databridge Client can be directed to map these items as a series of Booleans data items (bit in SQL Server). To do this, set the

DIOPT_Flatten_Occurs bit (1) and the DIOPT_Clone_as_Tribit bit (16) in the di_options column of the corresponding DMS_ITEMS

record.

An example for the item L-LOCK-FLAG in the data set LOAN follows:

Filename: script.user_layout.loan

In the above example, if the L-LOCK_FLAG has an OCCURS 20 TIMES clause, 60 items of type bit named l_lock_flag_01 to

l_lock_flag_60 are created.

These items can also be flattened to a secondary table by setting the bit DIOPT_FlatSecondary(4096) in the di_options column for

the corresponding entry in the DMS_ITEMS table.

Flatten OCCURS
to the primary
table

Each occurrence of the item is mapped into a separate column in the
primary table. Use this method if the number of occurrences is not too
large and applications access the occurring items by column name (versus
numeric index).

This is the default method for flattening OCCURS clauses and only requires
that the above mentioned bit be set in the di_options column in the
DMS_ITEM entry for the item with the OCCURS clause.

Flatten OCCURS
to a new
secondary
table

In the secondary table, all of the occurring items are mapped to a single
row that contains the keys and all of the occurrences of the item. Use
this method to flatten OCCURS clauses that have a large number of
occurrences.

To make this happen you need to set the bit DIOPT_FlatSecondary(4096) in
the di_options column in the DMS_ITEMS table for any items with an OCCURS
clause that you want flattened in this manner. If both this bit and the
DIOPT_Flatten_Occurs bit are set, this bit takes precedence.

 update DMS_ITEMS set di_options=17
 where dataset_name = 'LOAN' and rectype=0 and dms_item_name = 'L-LOCK-FLAG'
 and data_source = 'MISDB'

9.7.3 Flattening OCCURS Clauses to a String

- 122/327 - © Copyright 2021 Micro Focus or one of its affiliates.

9.7.5 Flattening OCCURS Clause for Items Cloned as Dates

The following script directs the define and redefine commands to map an item with an OCCURS clause as a series of columns,

whose data type is a relational database date type, in the corresponding table. Furthermore, it specifies that the DMSII item, which is

of type NUMBER(8), contains a date in the mm/dd/yyyy format.

Filename: script.user_layout.billing

9.7.6 DMSII GROUP OCCURS

The following is an excerpt from a DMSII DASDL that shows a GROUP item that has an OCCURS clause.

When this SALES data set is cloned into the relational database, it is mapped into the following tables:

Table 1 (primary table)

This table is named the same as the SALES DMSII data set, and it contains the key item and the data items that do not have

OCCURS clauses. Because the GROUP item has an OCCURS clause, none of the GROUP items are included in this table. Assuming

there are five records in the DMSII data set, there are also five rows in this relational database table.

Table 2 (secondary table)

This table is named: datasetname + GROUP_OCCURS_name

Assuming there are five records in the DMSII data set, there are 25 records in this relational database table. The main difference here

is the addition of an index to denote the occurrence number of the item.

 update DMS_ITEMS set di_options=3, dms_subtype=23
 where dms_item_name = 'BILLING-DATES' and dataset_name = 'BILLING'

SALES DATA SET
(
 PRODUCT-CODE ALPHA (10);
 PRODUCT-NAME ALPHA (20);
 SALES-HISTORY GROUP OCCURS 5 TIMES %FIVE YEAR HISTORY
 (
 TOTAL-UNITS-SOLD NUMBER (10); %FOR THE YEAR
 YEARLY-SALES-AMOUNT NUMBER (S12,2); %BY MONTH
);

);
SH-PRODUCT-CODE-SET SET OF SALES-HISTORY
 KEY IS
 (
 PRODUCT-CODE
)
NO DUPLICATES,
INDEX SEQUENTIAL;

sales (table name)
product_code product_name
------------ ------------
BC99992121 Widget
TR55553440 Mixer
HM44447322 Gadget
PP77778299 Twirler
DG22221163 SuperMix

sales_sales_history (table name)

product_code index1 total_units_sold yearly_sales_amount
------------ ------ ---------------- -------------------
BC99992121 1 55543665 123456789.01
BC99992121 2 83746994 234567890.12
BC99992121 3 33847295 345678901.23
BC99992121 4 57483037 456789123.45
BC99992121 5 10947377 567891234.56
TR55553440 1 56722221 678912345.67
TR55553440 2 74838976 789123456.78
TR55553440 3 54793873 891234567.89
TR55553440 4 99048900 912345678.90
TR55553440 5 22308459 123456789.01
HM44447322 1 75032948 234567890.12
HM44447322 2 30750344 345678901.23
HM44447322 3 90570340 456789123.45
HM44447322 4 57948755 567891234.56
HM44447322 5 44874733 678912345.67

9.7.5 Flattening OCCURS Clause for Items Cloned as Dates

- 123/327 - © Copyright 2021 Micro Focus or one of its affiliates.

9.7.7 DMSII Nested OCCURS

The following is an excerpt from a DMSII DASDL showing a GROUP with an OCCURS clause that contains an item with an OCCURS

clause.

This example helps to reinforce the previous examples of how DMSII GROUP and OCCURS are mapped to a relational database.

When this SALES data set is cloned into the relational database, it is mapped into the following three tables:

sales

(primary table, table name derived from datasetname)

sales_sales_history

(secondary table, table name derived from datasetname + GROUPOCCURSname)

sales_monthly_sales_amount

(secondary table, table name derived from datasetname + OCCURSitemname)

Table 1

This table is named the same as the SALES DMSII data set.

It contains the key item and all non-OCCURS data items. Because the GROUP has an OCCURS clause, none of the GROUP items are

included in this table. Assuming there are five records in the DMSII data set, there are five rows in the resulting relational database

table.

Table 2

This table is named: datasetname + GROUP_OCCURS_name

Assuming there are five records in the DMSII data set, there are 25 rows in this table. Note the addition of the index1 column to

denote the occurrence number of the group.

SALES DATA SET
 PRODUCT-CODE ALPHA (10);
 PRODUCT-NAME ALPHA (20);
 SALES-HISTORY GROUP OCCURS 5 TIMES %FIVE YEAR HISTORY
 (
 TOTAL-UNITS-SOLD NUMBER (10); %FOR THE YEAR
 MONTHLY-SALES-AMOUNT NUMBER (S12,2) OCCURS 12 TIMES;
);
SH-PRODUCT-CODE-SET SET OF SALES-HISTORY
 KEY IS
 (
 PRODUCT-CODE
)
NO DUPLICATES,
INDEX SEQUENTIAL;

•

•

•

sales (table name)
product_code product_name
------------ ------------
BC99992121 Widget
TR55553440 Mixer
HM44447322 Gadget
PP77778299 Twirler
DG22221163 SuperMix

sales_sales_history (table name)

product_code index1 total_units_sold
------------ ------ ----------------
BC99992121 1 55543665
BC99992121 2 98075300
BC99992121 3 77476478
BC99992121 4 76593939
BC99992121 5 33728282
TR55553440 1 87548974
TR55553440 2 56722221
TR55553440 3 11910078
TR55553440 4 47589474
TR55553440 5 57987999

9.7.7 DMSII Nested OCCURS

- 124/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Table 3

This table is named: datasetname + OCCURSitemname

Assuming there are five records in the DMSII data set, there are 300 rows in this table (12 occurrences of monthly_sales_amount for

each of 5 occurrences of sales_history for each product code). In the table below, index1 is the subscript of the GROUP OCCURS

(1--5) and index2 is the subscript of the monthly sales amount, with subscripts (1--12).

In this example, the OCCURS level of the items MONTHLY-SALES-AMOUNT is 2, while the OCCURS level of the item SALES-HISTORY

is 1.

9.7.8 OCCURS DEPENDING ON

DMSII uses the DEPENDING ON clause (usually with COMPACT data sets) to conserve disk space. For COMPACT data sets, the

DMSII work area always contains a fully expanded version of the record; however, the record is compacted when it is stored on disk.

The exact syntax for OCCURS DEPENDING ON clause is as follows:

The value n defines the maximum number of occurrences of the data item item_name, while the value of the depends item

depends_item_name controls the number of occurrences of the item that are stored. This last number cannot exceed n. Information

on an OCCURS DEPENDING ON clause is relayed to the Databridge Client, enabling the Databridge Client to suppress extraneous

columns that do not actually exist. If the DEPENDS data item has a value of 3, and the OCCURS clause is OCCURS 10 TIMES, the

last 7 columns are not included.

9.7.9 Handling Unflattened OCCURS DEPENDING ON Clauses

To handle a changing depends item, the Databridge Client uses before-image/after-image (BI/AI) pairs for data sets that have items

with OCCURS DEPENDING ON clauses that are not flattened.

HM44447322 1 75533785
HM44447322 2 33673391
HM44447322 3 74904532
HM44447322 4 98724498
HM44447322 5 39875992
 . . .
 . . .

sales_monthly_sales_amount (table name)
product_code index1 index2 monthly_sales_amount
------------ ------ ------ --------------------
BCS9992121 1 1 1075.36
BCS9992121 1 2 49397.90
BCS9992121 1 3 49375.93
BCS9992121 1 4 22840.97
BCS9992121 1 5 38984.02
BCS9992121 1 6 40039.84
BCS9992121 1 7 33875.93
BCS9992121 1 8 35000.22
BCS9992121 1 9 65876.52
BCS9992121 1 10 20402.55
BCS9992121 1 11 17575.00
BCS9992121 1 12 41938.74
BCS9992121 2 1 .
BCS9992121 2 2 .
BCS9992121 2 3 .
BCS9992121 2 4 .
BCS9992121 2 5 .
BCS9992121 2 6 .
BCS9992121 2 7 .
BCS9992121 2 8 .
BCS9992121 2 9 .
BCS9992121 2 10 .
BCS9992121 2 11 .
BCS9992121 2 12 .
BCS9992121 3 1 .

 item_name OCCURS n TIMES DEPENDING ON depends_item_name;

9.7.8 OCCURS DEPENDING ON

- 125/327 - © Copyright 2021 Micro Focus or one of its affiliates.

First, the Databridge Client checks the old and new values of the DEPENDS data item to determine how to execute the modify. The

modify is handled in one of the following ways:

If the value of the DEPENDS data item is unchanged, the Databridge Client updates the corresponding rows in the secondary

tables as usual. (Redundant updates are suppressed if the ds_options bit DSOPT_Use_bi_ai is set.)

If the value of the DEPENDS data item increases from m to n, the first m items are updated normally. The newly added items

(m+1 through n) are inserted into the secondary table.

If the value of the DEPENDS data item decreases from m to n, the first n items are updated normally. Items that are no longer

present (n+1 through m) are deleted from the secondary table.

9.8 Relational Database Split Tables

A split table occurs when a DMSII data set record requires more than one table in the relational database to hold the data. Split

tables occur in the following circumstances:

When a table mapped from a DMSII data set has more than the maximum number of columns allowed by the relational

database. The maximum_columns parameter in the configuration file allows you to reduce this value.

When a relational database table's record size exceeds the Microsoft SQL Server maximum record size (approximately 8K -- the

actual value depends on the number of columns in the table).

When the define (or redefine) command reaches the point where one of the above conditions is satisfied, it stops adding

columns to the table (named the same as the DMSII data set). It then starts a new table that contains the same keys as in the

original record of the primary table, followed by the remaining items in the data set at the point the split occurred. Note that there is

always the possibility of having multiple splits for data sets that have a large number of columns. The flattening of OCCURS items

can easily lead to split tables.

A split can occur in the middle of flattening an OCCURS clause, which can be rather awkward. In order to better control where a split

occurs we added the di_options2 bit DIOPT_Split_Here (4) that forces the table split to occur after the item in question is processed.

9.8.1 Split Table Names

The new table is named using the original (parent) table name with a number (usually 1) appended to it to make it unique. All

subsequent tables created from the same data set have the original table name with a numeric suffix that is incremented by 1 each

time a new split table is created.

9.8.2 Keys for Split Tables

For a data set with keys, the keys of the original data set are duplicated in the split tables because you must access each of these

tables individually. The process of splitting the data set into tables continues until there are no more data items left in the data set.

The following examples show the mapping of a data set that has 600 items (5 of which are keys) to a relational database that

limits the number of columns in a table to 250. The result is tables that contain a total of 610 columns, where the 5 keys are

duplicated across all 3 tables. If the original table is named savings, the remaining two tables are named savings1 and savings2,

unless these names are already in use.

•

•

•

•

•

When a DMSII data set is split into more than one relational database table, a WARNING message appears during a define or redefine

command. In addition, each split table duplicates the keys in the original table.

Note

tablename tablename1 tablename2

250 columns (first 5 are keys) 5 keys and 245 columns 5 keys and 105 columns

9.8 Relational Database Split Tables

- 126/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The five keys are duplicated in each table. To search these split tables, you must explicitly open each table. The tables are not

automatically linked.

9.9 Relational Database Table and Column Names

When you clone a DMSII database, the Databridge Client names the relational database tables and columns the same as their

equivalent DMSII data sets and data items. However, some differences exist. In this section, the differences between the names are

explained.

9.9.1 Uppercase and Lowercase

All DMSII data set, data item, and set names are uppercase. These names are also stored in uppercase in the DATASETS and

DMS_ITEMS Client control tables. Their equivalent relational database table, column, and index names are stored in lowercase in the

DATATABLES and DATAITEMS Client control tables.

All DMSII data set names are stored in the DATASETS Client control table in uppercase, just as they appear in the DMSII

database. The equivalent relational database table name is converted to lowercase and is stored in the DATATABLES Client

control table. Thus, a data set named CREDIT in the DMSII database is named credit in the relational database.

All DMSII data item names are stored in the DMS_ITEMS Client control table in uppercase, just as they appear in the DMSII

database. The equivalent relational database data item name is converted to lowercase and is stored in the DATAITEMS Client

control table. Thus, a data item named LIMIT in the DMSII database is named limit in the relational database.

9.9.2 Hyphens and Underscores

The hyphen (-) in the DMSII name becomes an underscore (_) in the relational database name. The only exception is a data source

name that is allowed to contain hyphens.

9.9.3 Name Length

The limit for a DMSII data set name is 17 characters, and DMSII item name is limited to 128 characters. Relational databases

typically limit table names to 30 characters; however, the Databridge Client reserves two characters for the prefix of the stored

procedure names for updating the table (i_ tablename, d_ tablename, u_ tablename). Thus, the table names are actually limited to 28

characters. Similarly, the Databridge Client adds a one or two character prefix to the item names to create a unique name for the

parameters of the stored procedures. The Databridge Client for Microsoft SQL Server uses a prefix of @ while the Databridge Client

for Oracle uses a prefix of p_. To avoid using names that are too long for the relational database, items names are limited to 29

characters for SQL Server or 28 characters for Oracle.

With this limit of 28 characters for a table name, typically all the DMSII names fit into the relational database table name or column

name. In cases where data set, data item, or other structure names are concatenated and therefore become too long for a relational

database, the Databridge Client truncates the name.

9.9.4 Duplicate Names

If two data sets have the same name in two different DMSII databases (or data sources, from the Client perspective), the Databridge

Client appends the number 1 to the duplicate table name the first time it is encountered. If a table already exists with the duplicate

name with "1" appended to it, the Databridge Client appends the number "2" instead and so on until a unique table name is created.

•

•

You must type these names in the correct case. If you are using the relational database table name as a character string value in a SQL

statement (for example, 'tablename'), you must use lowercase.

Note

9.9 Relational Database Table and Column Names

- 127/327 - © Copyright 2021 Micro Focus or one of its affiliates.

For example, if DMSII database A has a data set named PRODUCTS and DMSII database B also has a data set named PRODUCTS,

the resulting Databridge table names would be products and products1.

If you combine this duplicate data set name convention with the convention for naming split tables (when one data set results in

more than one table), you can have multiple suffixes for short names.

For example, if you have two data sources with a data set named CUSTOMER, which also generates split tables, the tables are

renamed as follows:

customers and customers1 in the first data source

customers11 and customers12 in the second data source (as the primary table was renamed customers1)

Duplicate item names may result in the following cases:

When you use the same name for items in two different GROUPs. DMSII allows this, but the Databridge Client ignores GROUPs.

When you truncate two long DMSII item names that are almost identical

The Databridge Client handles duplicate item names the same way that it handles duplicate table names.

9.9.5 Reserved Keywords

You cannot use reserved keywords for relational database object (table, column, index, etc.) names. For example, "order" is an SQL

keyword; therefore, you cannot rename a relational database table or column as "order".

If an existing DMSII data set is named ORDER, the Databridge Client stores ORDER in the DATASETS Client control table and an

equivalent relational database table called "order_x" in the DATATABLES Client control table. This same convention of adding "_x" to

rename a table whose name is a reserved word applies to DMSII data items. For information on reserved words in your relational

database, see the related database documentation.

The SQL Server Client allows you to use reserved words as object names, as long you enclose them in square brackets in SQL

statement. The configuration file parameter bracket_tabnames allow you use reserved words like "order" as table names. Setting this

parameter to True makes the Client use brackets around table names that are reserved words.

•

•

•

•

9.9.5 Reserved Keywords

- 128/327 - © Copyright 2021 Micro Focus or one of its affiliates.

10. OCCURS Table Row Filtering

OCCURS tables are secondary tables generated by the Databridge Client when OCCURS clauses for items (or GROUPs) are not

flattened. This is the default behavior of the Databridge Client. It involves creating a separate row in these tables for each occurrence

of the item (or GROUP) with the keys of the primary table record duplicated and an additional column named index1 , which

contains the occurrence number (starting at 1), added to them. In the case of nested OCCURS clauses you end up with two tables,

the first of which could be suppressed when you have nothing but keys in it (i.e. you have a GROUP within an OCCURS clause that

contains only a GROUP, which also has an OCCURS clause). In the case of nested OCCURS clauses the second table has two

columns named index1 and index2 added. These columns hold the occurrence numbers of the corresponding items (or GROUPS)

within the OCCURS clauses.

Not all of the rows in such tables contain meaningful data, for this reason it is sometimes desirable to discard the ones with

meaningless data. There are several advantages to doing this:

It saves storage, as these secondary tables are quite expensive, particularly when the item with the OCCURS clause is a single

item.

The users of the database do not have to discard unwanted data when they fetch data from the secondary table.

The number of updates is significantly reduced, resulting in better performance. This can further be improved by setting the

optimize_updates parameter to true. This parameter only applies updates to rows that are actually changed. This avoids doing

redundant updates, and can thus greatly improve performance. The process of discarding rows that do not contain meaningful

data is done by defining a set of filters for such tables that describe the conditions under which the rows should be discarded.

This requires having access the before and after images for updates, as a change in the data can affect whether the row is to

be filtered or not. Since we already have the before and after images when doing filtering, enabling optimize_updates does not

add any additional overhead, other than the comparison of the before image and after image data to determine if anything

changed, which is a lot quicker than executing a redundant update (that is SQL that does not change anything).

10.1 Filter Source File

The implementation of row filtering for secondary tables, which are derived from items with OCCURS clauses, does not involve any

configuration file changes. All you need to do is to create a text file that specifies the filtering conditions for all such tables that need

to be filtered. We refer to this text file as the filter source file. This file normally resides in the config sub-directory of the data source's

working directory. The filter source file, which is formatted in a somewhat similar manner to the row filtering sections of GenFormat,

defines the filters for the various secondary tables using SQL-like statements.

This file is then compiled using a utility called makefilter, which is included in the Client files. The makefilter utility checks the

syntax of the filter source file and validates all the specified table and column names. It then creates a binary file named

dbfilter.cfg in the config sub-directory of the Client's working directory. This file gets loaded and bound to the corresponding data

tables and data items at the start of a Client process or clone command. The Client looks for the file dbfilter.cfg and loads

when it is present. The binding process replaces column numbers by pointers to the structures that hold the corresponding

DATAITEMS control table entries. The Client uses a general purpose filtering procedure that interprets the filter pseudo code using the

DMSII data buffer for the update and returns a result that indicates whether or not the row should be discarded. The Client can then

determine whether or not to insert (load in the case of data extraction) or update a row in the table. In the case of a delete, we

simply delete all rows that have the keys of the parent table record (i.e. for all values of index1). To make the Client run efficiently, it

uses host variables to do these sorts of operations, which we refer to as DELETE_ALL operations (when using stored procedure we

use the z_tablename stored procedure for this purpose). This indicates that besides INSERT, DELETE and UPDATE statements we also

have compound DELETE statements for OCCURS tables (i.e. delete from tabname where key1=val1 and ... keyn=valn; without

specifying a value for index1).

10.2 The Filter File

The filter source file, which is modeled after the row filtering in GenFormat, uses a syntax that defines the conditions when a row is

to be discarded, rather than when it is to be selected. The statements are free format and can extend over multiple lines, but they

•

•

•

10. OCCURS Table Row Filtering

- 129/327 - © Copyright 2021 Micro Focus or one of its affiliates.

must be terminated by a semicolon. You can add comments using the syntax "// ..." , which makes the scanner stop scanning the

image before the slashes.

By using delete statements instead of select statements we make the "where" clause define the conditions under which a row is

filtered out rather than selected. The reason for doing this, is that it is easier to follow (no need to use De Morgan's law). An example

of a filter file source follows.

Sample Filter File

delete from customer_hold_information where hold_type = 0 or hold_type = 4;

delete from customer_account_abbr where account_abbr = " ";

delete from meter_readings where amount_read = NULL;

The makefilter program converts these filters into a list of tokens that contain all the required information for processing them using

the general purpose filtering procedure that behaves like a VM executing the filter pseudo-code.

Any table that is not specified in the filter file will have no filter and will be treated normally. Filtering is limited to secondary tables

derived from items with OCCURS clauses (OCCURS tables). We allow the testing for NULL by using "column_name= NULL",

"column_name!= NULL", or "column_name <> NULL" which is not proper SQL. If the item is ALPHA the fact that NULL is not in quotes

is enough to distinguish it from the value "NULL". Unlike relational databases, NULL in DMSII is an actual value (typically all high

values for numeric items and all low values for ALPHA items). All constants are stored in the data area of the filter using their

corresponding DMSII representations. Character constants are automatically space padded. Numeric constants have leading zeroes

added.

The 3 types of tokens involved in these expressions are variables (i.e. column names), constants and operators. Constants consist

of a data type (that matches the first operand's type, which must be a column name), and an offset into the filter's data area (the

length is the same as that of the associated column name). The declared length is not needed as all comparisons work at the

character or digit level (this is already done when testing for NULL). Operators also include an end-of-statement indicator which

corresponds to the semicolon in the pseudo-SQL statements in the filter source file. All comparisons must start with a column name

and the second operand must be a constant or the word "null". Comparing two columns as a condition for filtering is not allowed.

All object names are case sensitive and must be entered in lower-case, keywords and the word NULL are not case sensitive. String

constants must be enclosed in double quotes (the use of single quotes is not currently supported).

In the case of a DMSII structural reorganization the filters must be recompiled if any of the data sets that have filters for secondary

tables are affected by the reorganization. The Client automatically takes care of this by initiating a recompile of the filter at the end

of define and redefine commands or an Administrative Console Configure command run, when there is a filter file present in the

config directory.

The changes to the Client itself are pretty straightforward and involve using the filter routine on the image to determine whether it

gets discarded or not. The Client handles the situation where an item, that was not stored, needs to be stored after an update (in this

case the Client does an INSERT). Similarly, it handles the situation where an item, that was being stored, needs to be discarded after

an update (in this case the Client does a DELETE). The remaining cases are handled normally, if the item was discarded and still

needs to be discarded, we do nothing. And if the item was stored and still needs to be stored it is updated, unless optimize_updates

is True, in which case we skip the update if the values of all columns are unchanged.

The following table summarizes the supported operators and their relative precedence.

The use of parentheses is allowed, but usually not necessary. There is no limit to the number of items that can be specified in the

where clause, other than the actual number of data items that are not keys contained in the table.

String constants must be enclosed in double quotes as the use of single quotes is not currently supported.

Important

Level Operators

1 =,>,<,>=,<=,!= (or <>)

2 AND

3 OR

10.2 The Filter File

- 130/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The use of DMSII items whose data type is REAL are restricted to tests for NULL and 0 in filters. Items that are not nullable in DMSII

cannot be tested for NULL. When using items whose data type is BOOLEAN you must use 0 or 1 in the constants (the use of TRUE

and FALSE is currently not supported).

The makefilter program has two commands, import and display . The import command compiles the filter source file, which can

be specified using the -f option, to create the binary filter file dbfilter.cfg . If no filter file is specified the command tries to use the

file dbfilter.txt in the config subdirectory of the data source's working directory. The display command produces a report that

describes the content of the binary filter file. All makefilter log output is written to the file prefixfltyyyymmdd[_hhmmss].log keeping it

separate from the Client log files.

10.2 The Filter File

- 131/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11. Databridge Client Control Tables

This chapter describes the six Client control tables and the properties in each table that can be customized. For best results, use the

Administrative Console's Customize command and other commands to customize your Client control tables.

Control tables do not contain replicated DMSII data. To store replicated data, the relational database uses data tables, which are

created using information from the control tables. The control tables hold the layout information of the DMSII database (from the

DMSII DESCRIPTION file) and the layout of the corresponding relational database tables. Each relational database has one set of

Client control tables that includes the following tables: DATASOURCES, DATASETS, DATATABLES, DMS_ITEMS, DATAITEMS and

AF_STATS. The AF_STATS table, which was added in version 7.0, is used to optionally store the audit file statistics that allow users

to look at the audit file processing statistics for the last 9999 audit files.

The Databridge Client uses several columns of the control tables to determine how DMSII database objects are represented in the

relational database layout. While Databridge makes many of these decisions, some properties can be customized by using the

Administrative Console's Customize command or user scripts. For example, you can rename columns, combine like items, and

flatten OCCURS.

For instructions on backing up the Client control tables, see Backing Up and Maintaining Client Control Tables.

11.1 Changes in Databridge Client 7.0 Control Tables

When you run the dbfixup utility it automatically updates your existing Client control tables to ensure compatibility with previous

releases. For more information, see the Databridge Installation Guide.

Besides the addition of the AF_STATS tables, the only other changes to the client control tables are the additions of the

dflt_options column to the DATASETS, DMS_ITEMS, DATATABLES and DATAITEMS tables and the addition of the column

dflt_options2 to the DMS_ITEMS table.

11.2 DATASOURCES Client Control Table

The DATASOURCES Client control table contains the data sources defined for the Databridge Client. Each data source represents

both a connection to a Databridge Server on the MCP (or Enterprise Server) and a DMSII database. You can define more than one

data source within the DATASOURCES Client control table as long as each data source name is unique. All of the data sources you

define within the DATASOURCES table apply to one relational database.

Do not modify Client control tables directly. Instead, use the commands in the Administrative Console's Settings menu to customize data

sources.

Note

11. Databridge Client Control Tables

- 132/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table contains descriptions of each column, in the order in which it appears in the DATASOURCES table.

11.2 DATASOURCES Client Control Table

- 133/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Description

data_source This value is the name you give the data source when you use the
Databridge Client define command. The name can be a maximum of 30
characters, and it must match one of the following:

The entry for SOURCE in the DBServer control file on the host.

A base or filtered source as defined for Enterprise Server.

hostname This column specifies the host name or IP address of the Databridge
Server.

hostport This column specifies the TCP/IP port number used to connect to the
Databridge Server.

hostprot Reserved

stop_time This column specifies the start of the Databridge Client blackout period
expressed as an integer value representing 24-hour time (hhmm format).

At a few key points during execution, the Databridge command-line Client
(dbutility) tests this column to determine whether or not it should continue
processing. The configuration file parameter controlled_execution enables
this feature while the parameter min_check_time specifies the minimum delay
time (for example, a typical time value may be 5 minutes) between checks
of stop_time . The program checks at the start of a process or clone

command and after commits, provided enough time has elapsed since the
last check.

NOTE: Service-based operations ignore the value of this column, as the
service takes over this functionality.

end_stop_time This column specifies the end of the blackout period for the Databridge
command-line Client (dbutility). It is expressed as an integer value
representing 24-hour time (hhmm format).

For example, if stop_time is 2000 and end_stop_time is 200, the Databridge
Client refrains from running between 8:00 p.m. and 2:00 a.m.

NOTE: Service-based operations ignore the value of this column, as the
service takes over this functionality.

update_level This column contains the update level of the DMSII database at the time
the last define or redefine command was run.

•

•

11.2 DATASOURCES Client Control Table

- 134/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Description

status_bits This column contains a set of bits that the Databridge Client sets. Some
of these bits contain state information that is useful. Modifying this
column can disrupt the Client operations. The following list covers the
columns in the DATASOURCES control table that can be modified in user
scripts.

Bit and Description

1-256: For internal use only.

512: SRC_NotBackedUp - When this bit is set, an unload file is created to ensure that the data source

backup is not overwritten; the bit is then cleared. After the Client resumes audit file processing and a

transaction group is successfully processed, this bit is set.

1024: SRC_FileXtract - This bit indicates that the data source is a FileXtract file rather than a DMSII

database.

2048: SRC_ITRANS - This bit echoes the value of the DMSII database's INDEPENDENTTRANS flag.

4096: Reserved

8192: SRC_DBEnterprise - When this bit is set, it indicates that the data source is an Enterprise Server

data source, versus a DBServer data source.

16, 384: Reserved

32, 768: Reserved

65, 536: Reserved

131, 072: SRC_Upgraded - This bit is set by the dbfixup utility, when there are OCCURS clauses that are

not flattened, to indicate that we have just done an upgrade to the 6.6 (or newer) Client software. Upon

seeing this bit set the Client automatically executes a refresh command to create the z_tablename

stored procedures that are used to do deletes in OCCURS tables. The Client clears this bit if the

refresh command is successful. This avoids getting SQL errors when the Client tries to use these

procedures, which did not previously exist.

266, 144: SRC_RequiredAware - This bit is set by the 6.6 (or newer) Clients when a define command

is executed. It indicates that the Client should honor the REQUIRED property in the DASDL and set the

corresponding items not to allow nulls (NOT NULL). The purpose of this bit is preserve backward

compatibility by preventing data sources created by older Clients from having all the REQUIRED items

changed to not allow nulls.

tab_name_prefix This column holds an optional one to eight-character prefix which is
added to all table names in the data source. This prefix, which you must
supply, allows you to distinguish between identically named data sets in
multiple data sources, without having the define and redefine commands
rename tables to eliminate name conflicts. The configuration file
parameter use_column_prefixes extends this prefix to all column names.

data_source_id This column allows you to provide a numeric identifier to distinguish
records that belong to a particular data source from other records in a
multi-source environment using a user script, or a relational database
query tool. In addition, you must set the external_columns column to 128 or
2048 for all the data sets belonging to this data source.

last_run_status This column holds the exit code of the last Databridge Client process or
clone command that was run. When the exit status is not available (such
as when the Databridge Client is running or abended), the entry has a
value of 9999.

stop_afn This column specifies the AFN value when the configuration file parameter
stop_after_given_afn is enabled.

NOTE: Service-based operations ignore the value of this column, as the
prefered way of doing this is use a stopper program combined with the
stop_task parameter in the Client.

•

•

•

•

•

•

•

•

•

•

•

11.2 DATASOURCES Client Control Table

- 135/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Description

af_origin This column specifies the origin of the current audit file being
processed. The following values are defined for this column:

0: Audit file processed by Databridge Engine

1: Reserved

2: Audit file processed by Enterprise Server using Databridge Engine to access regions. This is referred

to as "remote regions" (or "indirect disk").

3: Audit file processed by Enterprise Server using direct disk I/O. This is referred to as "direct disk" and is

the most economical way to process audit files in terms of host resource utilization.

4: Cached audit file processed by Enterprise Server.

server_version This column indicates the version of DBServer last used by the Client.

engine_version This column indicates the version of Databridge Engine last used by the
Client.

support_version This column indicates the version of the Support Library last used by the
Client.

dbe_version This column indicates the version of Enterprise Server last used by the
Databridge Client.

client_version This column indicates the version of the last dbutility or DBClient that was
run for this data source

cfgsrvr_version This column indicates the version of DBClntCfgServer that was last used by
the service to access the data source.

service_version This column indicates the version of the DBClntControl service that launched
a Client run for the data source.

old_update_level This column holds the previous value of update level when running when a
redefine command is run. This value is used to name the reorg scripts that
contain the DMSII database’s update level.

db_timestamp This column contains the timestamp of the DMSII database, which is the
time when the database was created. It is used by the Client to verify
that the Client is using the same database as it originally was. If this
column is set to zeroes, then this test is not performed.

CAUTION: This column contains a DMSII TIME(6) value, which is binary and
6-bytes long.

For SQL Server, set db_timestamp=0.
For Oracle, set db_timestamp ='000000000000'.

reader_info This column contains the name and version of the reader used to read
audit files (or flat files in the case of a FileXtract data source).

dms_dbase_name This column contains the name of the DMSII database, which is not always
the same as the data source name.

•

•

•

•

•

The data source CTLTAB_VERSION in the DATASOURCES table is a special entry created by the Databridge Client. It indicates the version of the

Client control tables. Do not try to process this data source, and do not remove it from the table.

Note

11.2 DATASOURCES Client Control Table

- 136/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.3 DATASETS Client Control Table

The DATASETS table contains information about each DMSII data set as permitted by the Databridge host support library filters. The

DATASETS table contains state information for each data set visible to the Client, including the current replication phase of the data

set. When the data has been successfully extracted, this table includes the location in the audit trail from which the last group of

updates for the data set were read, including the audit file number, the audit block sequence number, the segment number, and the

index that identify the physical location of the block in the audit file, and a timestamp.

The active column of the DATASETS table controls the selection of all tables mapped from a DMSII data set. (The SQL statements

in your user scripts use the active column in this table to specify data sets you do not want to clone.) If you use the DATASETS

table to disable cloning for a data set, you disable cloning for all tables related to that data set.

For example, one DMSII data set with a nested OCCURS item can generate multiple tables. If you do not want to clone any of these

tables, use the active column in the DATASETS Client control table to turn off cloning. For more information on selectively cloning

data sets, Tips for More Efficient Cloning.

11.3 DATASETS Client Control Table

- 137/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table contains descriptions of each column in the DATASETS Client control table. Included is the abbreviated column

name that the display command writes to the log file.

11.3 DATASETS Client Control Table

- 138/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

data_source This column contains the name of the data source
that identifies the DMSII database from which the
data was taken. The name must match one of the
following:

The entry for SOURCE in the DBServer control file on the host.

A base or filtered source as defined for Enterprise Server.

dataset_name ds This column contains the name of the DMSII data
set.

rectype /type This column, which is zero for all fixed-format
data sets, contains the record type of a DMSII
variable-format data set as follows:

Record Type and Description

0: For a variable-format data set, this represents records that have

no variable part.

1–254: Represents the variable-format record type as defined in the

DASDL.

set_name set This column contains the name of the DMSII set
that Databridge Engine uses as an index source
for tables mapped from the data set. The names
"aa_set", "user_set", and "pk_set" are special
set names that the Databridge Client uses when a
DMSII set is not available. The name "aa_set"
indicates that AA Values (or RSNs) will be used
as the source for the index. The name "user_set"
indicates that the set is user-defined. The name
"pk_set" indicates that the set is defined in
GenFormat using the PRIMARY KEY statement.

active A During a define or redefine command, this column
determines whether or not a data set is mapped.
During a process command, the value of this column
determines if the data set is to be selected for
cloning or updating. The default, 1, indicates
that the data set will be mapped (cloned or
updated). A value of 0 indicates that the data
set will not be mapped (cloned or updated). The
define and redefine commands change the value in
the active column to 0 for the global data set,
the restart data set, and remaps (unless the base
structure is filtered out) in the DMSII database.

NOTE: When you change the DATASETS active column
value to 0 to disable cloning, all tables related
to the data set are disabled. For example, if a
DMSII data set is represented by three relational
database tables, none of the three relational
database tables will be cloned.

strnum ST# This column contains the DMSII data set's
structure number.

•

•

•

•

11.3 DATASETS Client Control Table

- 139/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

audit_filenum AFN This column contains the current DMSII audit file
number. DMSII audit files are created and stored
on the host; they contain a record of all updates
to the DMSII database and are named as follows:

databasename/AUDITnnnn

where databasename is the name of the DMSII
database, AUDIT is a literal, and nnnn is the AFN
(audit file number) whose value is a number
between 1 and 9999. Before you run a process

command to clone a DMSII database, the audit file
number (and all the other audit file location
information) is zero; subsequent process commands
fill these records with the ending audit file
location.

audit_block ABSN This column contains the audit block serial
number in the audit file. Because DMSII uses 32-
bit audit block serial numbers, the data type for
this column is binary (raw in Oracle). All
displays in the log file show this value as a 10-
digit unsigned number. If you access this column
via a relational database query tool, the
hexadecimal value appears instead, as the
column's data type is binary(6) in SQL Server and
raw(6) in Oracle).

audit_seg SEG This column contains the segment number within
the audit file.

audit_inx INX This column contains the index within the audit
file segment.

audit_ts Time Stamp This column contains the audit file timestamp
represented as a relational database date/time
data type, which 6-bytes in length.

11.3 DATASETS Client Control Table

- 140/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

ds_mode M There are a few instances where you may need to
change the mode. The ds_mode value provides the
following information about the data set:

Value and Description

0: The data set is ready to be cloned; all tables and stored

procedures are dropped and recreated.

1: The data set is in the fixup phase; data extraction is complete and

the table is being updated with changes that occurred during the

extraction. The integrity of the data in the tables mapped from the

data set is not guaranteed to be correct until the fixup phase is

complete.

2: The data set is ready to be updated. This implies that it has

already been cloned and the fixup has been completed. This is the

most common mode.

10: An error occurred during the dat extraction.

11: An error occurred during index creation or the tables mapped

from this data set do not have an index defined.

12: The data set is using AA Values as keys, and the AA Values are

no longer valid because the data set has been reorganized.

31: The data set must be reorganized and the redefine or the

Administrative Console's Customize command has created scripts

to make the relational database table match the DMSII data set.

You must run the reorganize command in order to run the

reorganization scripts created by the redefine command.

33: The reorganize command failed for this data set. In this case,

you must manually update the table by trying to fix the failed script.

Then, set ds_mode to 31 and repeat the reorganize command. If

that fails, you must re-clone it.

host_fmtlevel This column contains the format level as seen by
the host. The value is the update level received
from Databridge Engine in the last STATEINFO
record.

client_fmtlevel FMT This column contains the format level as seen by
the Databridge Client. The value is determined by
the define and redefine commands. Typically, the
host and Client format levels are the same until
a DMSII reorganization is detected.

recsz_bytes RSZ This column contains the size of the record in
bytes.

parent_strnum P# This column contains the parent structure number.
This column is used for embedded data set
information.

num_children #C This column contains the number of child
structures for the parent structure. This column
is used for embedded data set information.

base_strnum B# This column contains the base structure number.
If the value in this column is not equal to the
value in the strnum column, this data set is a
remap of the data set whose structure number is
base_strnum.

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 141/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

subtype ST This column contains the structure subtype of the
DMSII data set:

Value and Description

0: Standard data set

1: Random data set

2: Ordered data set

3: Unordered data set

4: Global data set

5: Direct data set

6: Compact data set

16: Restart data set

17: Virtual data set

in_sync The in_sync column tracks data sets whose
stateinfo is synchronized with the stateinfo
stored in the Global_DataSet row for the data
source in the DATASETS Client control table.

Global_DataSet is a dummy data set that holds the
common stateinfo for data sets whose ds_mode is
2. When the Databridge Client is finished
updating, the stateinfo in the Global_DataSet is
copied to all data sets that need to be updated
with the stateinfo. Values in this column
indicate the following:

Value and Description

0: The data set stateinfo is current

1: The data set stateinfo must be corrected at the end of update

processing to reflect the stateinfo as it is stored in the

Global_DataSet

item_count ICNT The value in this column represents the number of
items in the DMSII data set and is used by
Databridge Engine to detect filler substitutions
and changes in DBGenFormat.

•

•

•

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 142/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

audit_time6 The value in the audit_time6 column is the DMSII
timestamp stored as 6 binary characters. The
Client uses this value when it sends state
information (stateinfo) to Databridge Engine at
the beginning of a process command. The Client
does not use the value in the audit_ts column, as
it is not accurate enough to use in
communications with the Databridge Engine.
Instead, the original DMSII timestamp is used. It
is much more accurate and has a much smaller
granularity than relational database date/time
values.

CAUTION: When you enter values for the stateinfo,
you must set the audit_time6 column to 0 because
the Databridge Engine uses this value to detect
DMSII rollbacks. If the value of the timestamp is
0, Databridge Engine bypasses this test.

For SQL Server, set audit_time6=0.
For Oracle, set audit_time6='000000000000'.

host_info The information in the host_info column is
provided by the Databridge Engine during data
extraction. It enables the Databridge Client to
recover fixups if the command is aborted. This
information is stored as 6 binary characters.

11.3 DATASETS Client Control Table

- 143/327 - © Copyright 2021 Micro Focus or one of its affiliates.

ds_options OP The following bits (which can be set through
customization user scripts or by using the
Administrative Console's Customize command) control
how data sets are mapped:

Bit and Description

1: DSOPT_Use_bi_ai - This bit is set by the define command for

data sets that have OCCURS clauses that were not flattened when

the configuration file parameter optimize_updates was set to

True. This bit causes the program to request that the Databridge

Engine send all updates the data set, involving a key change, as BI/

AI pairs. You can set this bit to 0 via user scripts if you want to

disable optimization of updates for this data set.

2: DSOPT_No_Loader - This bit causes the Databridge Client not to

use the bulk loader during the data extraction phase of this data set.

It is effectively a localized form of the /s option (which applies to

all data sets).

4: DSOPT_No_StoredProcs – This bit causes the Databridge Client

not to use stored procedures when doing updates. Updates still use

host variables, but instead of generating a stored procedure call, the

Client generates the actual SQL statement to do the update.

8: DSOPT_Save_Updates - This bit causes the Databridge Client to

generate history tables for all tables that are mapped from the data

set.

To determine whether the history tables are populated with clone

data only or clone and update data, see history_tables.

16: DSOPT_Include_AA - This bit is deprecated and should not be

used to force the Client to use AA Values (RSNs) as the source for

the index. Use the bit DSOPT_Use_AA_Only instead.

32: DSOPT_Ignore_Dups - When set, this bit has exactly the same

effect as the configuration parameter suppress_dup_warnings ,

except that it only applies to the individual data sets for which it is

set.

64: DSOPT_Select_Only - This bit inhibits the creation of tables and

stored procedures for the data set. It is used for data sets that

provide input to virtual data sets and are not otherwise mapped to

any tables.

128: DSOPT_Keep_Null_Alpha_Keys - This bit indicates that the

program should treat NULL alpha keys as blanks instead of

discarding such records.

256: DSOPT_Supp_New_Columns - This bit, which is initially set to

reflect the value of the suppress_new_columns parameter for the

corresponding data set, can be modified via user scripts or the

Administrative Console's Customize command. The redefine

command uses this bit when determining how to handle new

columns.

512: DSOPT_MultiInput - When the automate_virtuals and

miser_database parameters are enabled, this bit indicates that

data for the virtual data set comes from more than one real data

set.

When this bit is set, the Client tests the res_flag column (identified

by a dms_subtype value of 255) before executing the stored

procedure i_tablename. If the flag is set, the insert is done normally;

otherwise, the stored procedure r_tablename is called to update the

res_flag . If the update fails, an insert is performed instead.

1024: DSOPT_MultiSource - This bit indicates that the tables

generated from the data set get their input from more than one data

source and ensures that the Databridge Client doesn't drop the

•

•

•

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 144/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

changes These bits are used by the redefine and the
Administrative Console's Customize command to
indicate the changes that the command detected.

Bit and Description

0: Description

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries before this one were

removed.

8: CHG_del_after - One or more entries after this one were

removed.

16: CHG_format_level - The data set’s format level changed (that is,

a DMSII structural reorganization that affects this data set has

occurred).

32: CHG_item_count - The data set’s item count has changed (that

is, a filler substitution reorganization has occurred).

64: CHG_user_change - There were user changes to the

DMS_ITEMS or the DATAITEMS tables (that is, the layout has

changed) as a result of actions by the user rather than a DMSII

reorganization.

128: CHG_links_change - DMSII links changed for the data set.

256: CHG_AA_values_changed - This bit indicates that the data sets

AA Values are no longer valid. The bit is set by the redefine or the

Administrative Console's Customize command but is otherwise

not used by the Client.

1024: CHG_deleted - The item was deleted.

•

•

•

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 145/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

status_bits SB The following bits are used by this column:

Bit and Description

1: Description

1: DS_Needs_Mapping - This bit indicates that the data set has not

been mapped. All data sets that have their corresponding active

column set to 0 in the data set selection script

script.user_datasets.datasource also have this bit set. If you

decide to clone such a data set, you must set the active column

to 1 and run a redefine or the Administrative Console's

Customize command to perform the mapping.

2: DS_Needs_Generating - This bit indicates to the generate

command that the scripts for the data set need to be generated.

Note that the generate command only generates scripts for data

sets that have this bit set. The define , redefine and the

Administrative Console's Customize command automatically set

this bit.

4: DS_Needs_Remapping - This bit forces the redefine or the

Administrative Console's Customize command to refresh the

mapping. After you make changes to the data table user_define

customization scripts, you may want to set this bit before you

execute a redefine command.

8: DS_Needs_Redefining - This bit is automatically set by the

process and clone commands when Databridge Engine detects a

structural reorganization or a filler substitution for the data set. You

can set this bit to force the redefine command to refresh the

DMSII layout.

16: reserved

32: reserved

64: This bit indicates that the AA Values are invalid. Do not modify

this value.

128: This bit indicates that the index creation failed. Do not modify

this value.

256: This bit indicates that the data set is in fixup mode. Do not

modify this value.

•

•

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 146/327 - © Copyright 2021 Micro Focus or one of its affiliates.

misc_flags MISC This column contains an integer that holds a
series of flags set by Databridge to reflect some
characteristics of the individual data sets.

NOTE: Do not change these bits.

Bit and Description

1-8: Description

16: DSFLG_Links - This flag, set by the Databridge Engine in

response to a DB_DataSets remote procedure call (RPC), indicates

that the data set has DMSII links to other data sets.

32: DSFLG_Altered - This flag, set by the Databridge Engine in

response to a DB_DataSets RPC, indicates that the data set was

altered by the support library.

64: DSFLG_Static_AA - This flag, set by the Databridge Engine in

response to a DB_DataSets RPC, indicates that the Databridge

Engine is using RSNs (record serial numbers) in place of AA Values.

RSNs are only available in a DMSII XE system where each record in

a data set is assigned a unique serial number. Using the RSN in

place of AA Values eliminates the need to re-clone tables after a

DMSII garbage collection reorganization.

128: DSFLG_Valid_AA - This flag, set by the Databridge Engine in

response to a DB_DataSets RPC, indicates that the data set has

valid AA Values. Not all data sets have valid AA Values. For details,

see Composite Keys.

NOTE: This bit does not apply to RSNs, which are always valid; it

applies to the AA Values.

256: DSFLG_Has_Occurs - This flag indicates that the data set

contains items with unflattened OCCURS clauses. The program

uses this bit in conjunction with the optimize_updates parameter

to determine whether the DSOPT_Use_bi_ai bit in the ds_options

column should be set. The DSOPT_Use_bi_ai bit can be reset by the

user to prevent the use of before/after images for data sets where

this action offers no significant performance improvements (for

example, an OCCURS 2 TIMES clause is probably not worth

optimizing).

512: DSFLG_Uses_AA_values - This flag indicates that the data set

uses AA Values as keys. The program uses this flag to avoid having

to look at the table's columns to determine whether AA Values are

used.

NOTE: This bit is not set when the Databridge Client uses RSNs

instead of AA Values.

1024: DSFLG_Has_Links - This flag indicates that the data set has

active DMSII links. This bit can be zero if all the links have their

active columns set to 0 in DMS_ITEMS.

2048: DSFLG_Is_LinkedTo - This flag indicates that one or more

data sets have active DMSII links that use AA Values as foreign

keys to point to this data set. The program uses this information to

force the AA Values to be used as the keys for the tables derived

from this data set.

4096: DSFLG_Occ_Depends - This flag indicates that the data set

contains items with unflattened OCCURS DEPENDING ON clauses.

The program uses this bit to request that the Databridge Engine

send updates to this data set as before/after images, regardless of

the value of DSOPT_Use_bi_ai bit in ds_options for this data set.

8192: DSFLG_Uses_Parent_AA - This flag indicates that the data

•

•

•

•

•

•

•

•

•

•

11.3 DATASETS Client Control Table

- 147/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column name Display Description

max_records MAXRECS This column contains an integer that holds the
maximum row count of the data set as estimated by
the Databridge Engine. This is the exact number
that appears in DBLister reports. The Databridge
Engine computes this estimate by dividing the
file size by the record size. This value is very
inaccurate in the case of variable-format data
sets because it is impossible to determine how
many records of a given type exist in the data
set without doing a full scan of the data set.

virtual_ds_num VDS This column contains an integer value that holds
the structure number of the virtual data set to
which the DMSII data set is linked. This column
is used by the parent data set to point to the
associated virtual data set. When more than one
virtual data set is derived from a real data set,
these data sets are chained together using this
column.

real_ds_num RDS/type

NOTE: This display
name is combined
with the
real_ds_rectype

value.

This column contains an integer that holds the
structure number of the primary real data set
from which the virtual data set is derived. When
more than one virtual data set is derived from a
real data set, these data sets all point back to
the real data set through their real_ds_num

column. These real data sets are chained
together, starting with the primary data set, by
using the otherwise unused real_ds_num columns of
the actual data sets.

real_ds_rectype The integer in this column represents the record
type of the variable-format data set. This
information serves to further identify a
variable-format data set when it is cloned as a
virtual. In addition, the variable-format data
set is linked to the virtual data set through the
virtual_ds_num and real_ds_num columns.

external_columns EXTC This column contains an integer value that
determines which predefined non-DMSII columns are
automatically added to this data set. For a
description of these bits, see Numeric Date and
Time in Non-Contiguous Columns.

ds_user_bmask This column, which shadows the ds_options column,
contains a bit mask that represents the columns
in ds_options that were customized. This column is
used by the redefine or the Administrative
Console's Customize command to restore the portion
of ds_options that has been customized while
leaving the remaining bits intact.

links_sz_bytes This column contains the size of the link data,
in bytes. Link data is no longer stored in the
actual record, instead the record is extended by
the size of the link data where the link data is
placed during data extraction. These areas are
not necessarily contiguous in the DMSII record;
the DMSII offsets have been adjusted to make them
to look contiguous in the Client.

11.3 DATASETS Client Control Table

- 148/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.4 DATATABLES Client Control Table

The DATATABLES Client control table is used primarily to disable cloning for one or more of the secondary tables mapped from one

DMSII data set. For example, a DMSII data set with several OCCURS items generates multiple relational database tables. If you do

not want to clone particular secondary tables, use the active column in the DATATABLES Client control table to turn off cloning for

those secondary tables.

The DATATABLES Client control table contains the entries for each of the relational database tables mapped from the DMSII data

sets listed in the DATASETS table. These entries include relational database information rather than DMSII information. For example,

the DMSII data set name (in the column named dataset_name) is listed along with the corresponding relational database table

name (in the column named table_name). Since a data set can be mapped to several relational database tables (such as when a

data set contains OCCURS items), the prim_table column is used to identify the primary table.

Column name Display Description

links_offset This column is used by the Client to determine
where the link area for the record starts.

vp_link_offset Variable format data sets have links in both the
fixed part and the variable part, causing the
Client to receive two LINK_AI records. This
offset value indicates where the second part of
the links area starts. By comparing the offset
received from the Engine, the Client can tell
where the link data should be stored.

item_name_prefix This column is used by the Client to
automatically strip fixed size prefixes from data
item names. One frequently finds DMSII databases
where the data set names (or a shortened form of
these names) is used as a prefix for every item
name. The Client has the ability to get rid of
these prefixes without requiring any complex
actions other than putting the prefix to be
stripped in this column, without the trailing
dash.

rows_extracted This column is used by the Client to save the
number of DMSII records that were received during
the data extraction phase.

client_discards This column, which is currently only used by the
Flat File Client, is used to record the number of
records discarded during data extraction phase.

extract_priority This column is used to affect the order in which
data sets are extracted. The data extraction is
now ordered by extract_priority (highest value
first) and strnum (lowest value first). By
setting this column to a positive number you can
change the order in which data sets are
extracted.

dflt_options This column is used to keep track of the initial
state of the ds_options bits before any
customizations are performed. It allows the
Client to clear the ds_user_bmask bits that were
set by customizations that were later undone.

11.4 DATATABLES Client Control Table

- 149/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table contains descriptions of each column in the DATATABLES Client control table. Included is the abbreviated

column name that the display command or the Administrative Console's Log Control Tables command that can be found in the

data source's Advanced menu.

11.4 DATATABLES Client Control Table

- 150/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

data_source This column contains the name of the SOURCE name that
identifies the DMSII database from which this data was
taken. The data source name is defined when you run a
define command. It must match the data source name in
the DBServer control file on the host.

dataset_name ds This column contains the name of the DMSII data set
from which this table was mapped.

table_name table name This column contains the name of the table as it
appears in the relational database. DMSII data sets
correspond to relational tables.

index_name index This column contains the name of the relational
database index that is created for fast access to this
table. If the table has no index, this column is blank.
This index is created via the Databridge Client script
named script.index.tablename . The value in this column is
the index name used in the CREATE INDEX SQL statement.

rectype /type This column, which is zero for all tables mapped from
fixed-format data sets, contains the record type of a
DMSII variable-format data set.

Record Type and Description

0: For a variable-format data set, this represents records that have no

variable part.

1-254: Represents the variable-format record type as defined in the DASDL.

occurs_level occ This column contains the nesting level of OCCURS in the
DMSII database. For example, an OCCURS table created
from another OCCURS table has an occurs_level of 2. The
original OCCURS table has an occurs_level of 1.

NOTE: The Client does not support occurs levels that
are greater than 2.

table_number T# This number is used by the SQLLoader and bcp scripts. The
Databridge Client assigns consecutive numbers to the tables it defines for
a data source during the define command. Each table within a data
source has a unique table number, and the numbers begin with 1. The
redefine command and the Administrative Console's Customize*
command assign numbers to new tables starting with the
highest table number plus 1. Existing tables get their
old table numbers restored.

active A The value of this column determines whether or not a
table is cloned during a process or clone command. The
default is 1, which indicates that the table will be
cloned. If you change this value to 0, the table is not
cloned. To disable cloning for an entire set of tables
related to a DMSII data set, see DATASETS Client
Control Table.

create_suffix suf The create_suffix column enables you to specify a value
that identifies the index of the create_suffix string
defined in the configuration file. For more
information, see create_table_suffix in Generate
Command Parameters.

•

•

11.4 DATATABLES Client Control Table

- 151/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

index_suffix The index_suffix column enables you to specify a value
that identifies the index of the index_suffix string
defined in the configuration file. For more
information, see create_index_ suffix in Generate
Command Parameters.

original_name original_name The Databridge Client saves the original name of the
renamed tables in this column so they can be identified
during redefine and the Administrative Console's
Customize commands.

prim_table P This column indicates whether or not this is a primary
table.

11.4 DATATABLES Client Control Table

- 152/327 - © Copyright 2021 Micro Focus or one of its affiliates.

dt_options OP The dt_options column uses the following bits:

Bit and Description

1: DTOPT_Table_Renamed - The table was renamed by the user. This bit is

used by the Client configurator to preserve the name change.

2: DTOPT_Index_Renamed - The table’s index was renamed by the user.

This bit is used by the Client configurator to preserve the name change.

4: DTOPT_User_Table - This table was created by the user. Not supported in

Databridge Client 7.0.

8: DTOPT_No_aux_stmts - This option inhibits the use of auxiliary

statements for a given table during a process or clone command when

the configuration parameter aux_stmts (default 100) is not zero.

16: DTOPT_Occ_Depends - This option, automatically set by the Client

during a define or a redefine command or the Administrative Console's

Customize command, indicates that an OCCURS table (occurs_level > 0

) contains an item with an OCCURS DEPENDING ON clause. This bit is used

during update processing to properly handle cases where the value of the

dms_depends_num item of an OCCURS DEPENDING ON clause changes.

32: DTOPT_All_Keys - Indicates that all columns in the table are keys. Do

not change this value.

64: DTOPT_No_Unique_Key - Indicates that the table does not have a

unique index and therefore it cannot be tracked unless a composite key is

created. Do not change this value.

128: DTOPT_Preserve_Deletes - Do not change this value.

256: DTOPT_HistoryTable - This option, which is set by the define and

redefine commands or the Administrative Console's Customize

command, indicates to the Client that this table is a history table and that all

records should be treated as inserts into the history table.

CAUTION: Clearing this bit can corrupt history tables because it causes the

Client to treat records as creates, deletes, and modifies instead of inserts.

512: DTOPT_UserSP - Indicates that the table uses the stored procedure

m_tablename to perform customized functions instead of using the

procedure i_tablename for an insert. This procedure is used to merge

records rather than insert them into the table.

This bit is used in Miser databases.

1024: DTOPT_Clustered_Index - This option, which only applies to the SQL

Server Client, tells the Databridge Client to create a clustered index for this

table. You can globally set this option via the use_clustered_index

parameter. See use_clustered_index.

2048: DTOPT_Primary_Key - This option tells the Databridge Client to

create a primary key (instead of a unique index) for this table. When creating

the script to create a primary key constraint, the Microsoft SQL Server Client

uses the value of the DTOPT_Clustered_Index to determine whether to add

the NONCLUSTERED clause to the SQL. If this second option bit is not set,

the NONCLUSTERED clause is added. You can set this option globally via

the use_primary_key parameter.

4096: DTOPT_Delete_Seqno - This option is automatically set by the

define or redefine command or the Administrative Console's

Customize command when the delete_seqno mask is set in the

default_user_columns parameter value.

8192: DTOPT_Table_Split - This option is automatically set by the define

or redefine command or the Administrative Console's Customize

command when the table is part of a split table. Do not modify this value.

16,384: DTOPT_ConcatItems - This bit is automatically set by the define

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.4 DATATABLES Client Control Table

- 153/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

changes These bits are used by the redefine command and the
Administrative Console's Customize command.

1: CHG_new - New entry
2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries before this one were removed.

8: CHG_del_after - One or more entries after this one were removed.

32: CHG_index_changed - This bit indicates that the table’s index changed. The

reorganize command uses this bit as an indication that it must drop the index

for the table and recreate it.

64: CHG_IndexType_changed - The index type changed primary key versus

unique index or in the case of SQL Server unique index versus clustered index.

128: CHG_IndexName_changed - The index name changed, the Client needs to

drop the index using the old name and create the new index using the new name.

The old name is saved in a temporary file by the redefine command or the

Administrative Console's Customize command. The reorganize command

deletes this file once the new index is successfully created

256: CHG_new_hist_tab - History tables were added for the data set. The

redefine command ot the Administrative Console's Customize command

sets this bit when they find a new history table. The reorganize command then

can create these tables and we can continue processing without re-cloning the

data set.

update_count The update_count column represents the smoothed average
number of updates for the table over the specified
period of time.

update_interval This update_interval column represent the period of time
(in milliseconds) that the update_count spans.

The multi-threaded update code uses the update_count

column to balance the thread load. The update_interval

column will start out as 0 and increase until it
reaches the value representing one hour, after which it
never changes, as the average is smoothed to reflect
the number of updates for each table over the last
hour.

The update_count and update_interval columns were added to
hold the table update statistics.

dt_user_bmask This column, which shadows the dt_options column,
contains a bit mask that represent customized columns
in dt_options . This column is used by the redefine and
the Administrative Console's Customize commands to
restore the portion of dt_options that has been
customized while leaving the remaining bits intact.

dflt_options This column is used to keep track of the initial state
of the dt_options bits before any customizations are
performed. It allows the Client to clear the
dt_user_bmask bit that were set by customizations that
were later undone.

•

•

•

•

•

•

•

11.4 DATATABLES Client Control Table

- 154/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.5 DMS_ITEMS Client Control Table

The DMS_ITEMS table contains entries for each DMSII item that is visible to the Client after column filtering in the Support Library

on the host. The DMS_ITEMS table also contains the name of the DMSII data set of which the item is a member, as well as other

DMSII layout information.

11.5 DMS_ITEMS Client Control Table

- 155/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table contains descriptions of each column in the DMS_ITEMS Client control table. Included is the abbreviated

column name that the display command writes to the log file.

11.5 DMS_ITEMS Client Control Table

- 156/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

data_source This column contains the name of the data source that
identifies the DMSII database from which this data was
taken.

dataset_name ds This column contains the name of the data set in the DMSII
database to which this DMSII item belongs.

rectype /type This column, which is zero for all tables mapped from
fixed-format data sets, contains the record type of a DMSII
variable-format data set. For more information on variable-
format data sets, see Variable-Format Data Sets.

Record Type and Description

0: For a variable-format data set, this represents records that have no variable

part.

1-254: Represents the variable-format record type as defined in the DASDL.

dms_item_name item_name This column contains the name of the data item for the
listed data set. This column is limited to 128 characters.

active A This column specifies whether or not the item will be
mapped. A value of 1 (default) indicates that the item will
be mapped (if this is possible) to an entry in the
DATAITEMS Client control table. A value of 0 indicates that
the item will not be mapped. The define and redefine

commands and the Administrative Console's Customize command
change the value in the active column to 0 for the global
database unless you set the active column to True in the
corresponding entry in the DATASETS control table.

item_key K This column contains a numeric value which specifies the
order of the item in the DMSII set (1, 2, 3, and so on). If
the item is not a key, this value is 0.

NOTE: You can edit this column to create a composite key or
change the order of the keys in the index. See Creating
Indexes for Tables.

dms_item_number # This column contains the item number, which indicates the
relative position of the item in the original DMSII record.

dms_parent_item P# This column contains the dms_item_number of the parent item
for an item that is a member of a GROUP item. For example,
if dms_item_number 12 is a DMSII GROUP containing items 13,
14, 15, and 16, the dms_parent_item of the last four items
will be 12.

•

•

11.5 DMS_ITEMS Client Control Table

- 157/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

dms_item_type T Values 10, 14, 21, 27, 29, and 30 through 37 are DMSII data
types.

This column indicates the type of data item, as follows:

Type and Description

10: DMSII link

14: Image (alpha data to be stored as binary)

21: variable-format record type

27: Field of Booleans

29: Group

30: Boolean

31: Field

32: Alpha

33: Number (n)

34: Number (n,m)

35: Real (n)

35: Real (n)

36: Real (n,m)

37: Real

dms_decl_length DL This column contains the user-declared length of the item
in the DMSII DASDL. This length changes according to the
data item type selected (alpha, boolean, field, number, or
real).

dms_scale S This column contains the numeric scaling factor, which is
the number of digits to the right of the decimal point, if
any.

dms_offset O This column contains the item’s offset value which
indicates where, within the DMSII record, this item begins.
This is the location Databridge uses to extract data from
DMSII records. For example, in a 400-byte record with an
offset of 200, the first 100 bytes are used by other items.
This number is in digit size, which is equal to one-half of
a byte (four bits).

dms_length L This number is the size, in digits, of the data. Digit size
is equal to one-half of a byte (four bits).

dms_signed s This column contains a boolean value specifying whether the
item is signed or unsigned as follows: 0 = unsigned and 1 =
signed.

dms_num_occurs #O This column indicates the number of times this data item
occurs (is present) within the data set. If the item does
not have an OCCURS clause, this value is 0.

dms_num_dims #D This column contains the number of dimensions for the data
item, which is the number of subscripts required to access
the item.

dms_depends_num dep This column contains the dms_item_number value of the item
that specifies the number of occurrences in use for an item
with an OCCURS DEPENDING ON clause.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.5 DMS_ITEMS Client Control Table

- 158/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

dms_subtype ST For items mapped to relational database date types, this
column contains the format of the date as it is stored in
the DMSII database. These are not actual DMSII data types;
rather, they represent the formats of dates that might be
stored as a DMSII GROUP, a NUMBER, or an ALPHA item. For
non-DMSII columns this column identifies the type of the
non-DMSII column. For split data items, this column
determines the offset of the split. This column is also
used to identify columns in tables that pose unique
characteristics. For example, MISER databases use this
column to identify special columns in history virtual data
sets which indicate if this is a resident history record.

11.5 DMS_ITEMS Client Control Table

- 159/327 - © Copyright 2021 Micro Focus or one of its affiliates.

di_options OPTIONS The following bits, which can be set through data set
mapping customization user scripts or the Administrative
Console's Customize command, enable you to control how the
item is mapped.

Bit and Description

1: DIOPT_Flatten_Occurs - This bit specifies that the OCCURS clause of the item

should be flattened; it is ignored if the item does not have an OCCURS clause.

2: DIOPT_Clone_as_Date - This bit specifies that the item should be mapped to a

relational database short date (smalldatetime on SQL Server and date in Oracle).

The format for the encoded date is specified in the dms_subtype column. If you

set this bit at the same time as bit 128, bit 128 takes precedence.

4: DIOPT_Split_Item - This bit indicates that the item should be split into smaller

chunks if it cannot be accommodated using a relational database data type (for

example, ALPHA(4000) in Oracle). The default is to truncate the item.

8: Reserved

16: DIOPT_Clone_as_Tribit - This bit is used in Miser databases to map DMSII

number(1) items to a field of three Booleans.

32: DIOPT_Clone_as_Binary - For ALPHA items, this bit indicates that items

should be mapped to a relational database binary data type, rather than a character

type. Items too large to fit in the corresponding binary type are truncated, unless

the DIOPT_Split_Item bit is also set, which then maps the item to multiple binary

type columns.

For REAL items that contain visible RSNs, this bit indicates that the items should

be mapped to a relational database binary data type -- BINARY(6) for SQL Server

and RAW(6) for Oracle.

64: DIOPT_Xlate_Binary - When this bit is set, EBCDIC data is translated to ASCII

before being stored as binary.

NOTE: This bit only affects the program when the DIOPT_Clone_as_Binary bit (32)

is also set.

128: DIOPT_Use_LongDate - This bit, which applies to Microsoft SQL Server only,

tells the Client to use a datetime data type instead of smalldatetime for the

corresponding column in the relational database.

If the you are cloning timestamps that include seconds as explained in Decoding

DMSII Date/Times, set this bit.

256: DIOPT_Clone_as_Time - Indicates to the Client that the DMSII items should

be interpreted as a time and stored on the relational database as an int in the SQL

Client or number(10) in Oracle Client in the form hhmnss except for ticks, which

are stored in the form ddddhhmnss.

512: DIOPT_Numeric_Data - This bit, which applies to DMSII ALPHA types only,

indicates to the Client that the item contains numeric data and should be mapped

to a numeric type on the relational database.

1024: DIOPT_AlphaNumData - This bit, which applies to DMSII NUMBER types

only, indicates to the Client that the item should be mapped to a character type on

the relational database.

2048: DIOPT_VarFormat_Date - This bit specifies that the item should be mapped

to a relational database date (smalldatetime, datetime, datatime2 or date on SQL

Server and date on Oracle), using a unique encoding scheme. This bit requires that

you also set DIOPT_Clone_as_Date (2).

The format for the encoded date is specified in the dms_subtype column, using

the instructions for Unique DMSII Date/Time Formats Represented as Alpha or

Number Items.

If you use the SQL Server Client and are cloning a value for seconds (hexadecimal

value 7) from the host, also set bit 128 to get a data type of datatime.

4096: DIOPT_FlatSecondary - This bit specifies whether occurring items in the

•

•

•

•

•

•

•

•

•

•

•

•

•

11.5 DMS_ITEMS Client Control Table

- 160/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

dms_concat_num Using this column, the Client supports concatenating two
non-contiguous columns of the same data type (that is,
treat two columns as one). You can concatenate two ALPHA
items, or two unsigned NUMBER items. You can also use the
Client to store a numeric item as ALPHA and then use the
item in a concatenation. You can also store an ALPHA item
that contains numeric data as an unsigned NUMBER and
concatenate it with an unsigned number.
Concatenation is also supported for unsigned numeric
columns that represent a date and a time. The date can be
any of the supported date formats, while the time must be a
NUMBER(6) containing the time as HHMISS. The combined
NUMBER can then be interpreted by the Client as date/time.
For an example of the layout scripts, see Concatenating Two
Items and Cloning the Result as a Date/Time.

changes These bits are used by the Client Configurator (not by the
redefine command).

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries before this one were removed.

8: CHG_del_after - One or more entries after this one were removed

16: CHG_dms_item_key - This bit indicates that value in the item_key column of

the entry has changed.

32: CHG_dms_item_type - This bit indicates that the DMSII data type of the item

changed.

64: CHG_dms_decl_length - This bit indicates that the value in the

dms_decl_length column of the entry has changed.

128: CHG_dms_scale - This bit indicates that the value in the dms_scale column

of the entry has changed.

256: CHG_dms_signed - This bit indicates that the value in the dms_signed

column of the entry has changed.

dms_link_ds_num lnk This column holds the structure number of the data set to
which a LINK item points. Thus a nonzero value in this
column identifies a DMSII LINK. Links that use AA Values
have a dms_item_type value of (10).

di_user_bmask This column, which shadows the di_options column, contains a
bit mask that represents the bits in di_options that were
customized. This column is used by the redefine command to
restore the portion of di_options that has been customized
while leaving the remaining bits intact.

redef_item_type This column is used by the Client to redefine a DMSII
GROUP, consisting of items that have the same data types
(e.g. a GROUP of 4 unsigned NUMBER items), as a single item
of the given type.

redef_decl_len This column is used by the Client to specify the resulting
length when redefining a DMSII GROUP consisting of items
that have the same data types.

•

•

•

•

•

•

•

•

•

11.5 DMS_ITEMS Client Control Table

- 161/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.6 DATAITEMS Client Control Table

This table duplicates the DMSII information in the DMS_ITEMS table and contains the layout information for the tables in the

relational database. This table is not directly linked to the DATASETS table. Instead, it is linked to the DATATABLES Client control

table using the table_name column as a foreign key.

You can use the DATAITEMS Client control table to specify the data items you do not want to clone by setting their corresponding

active column to 0. However, we recommend that you accomplish this by setting the active column to 0 in the DMS_ITEMS table.

Using the DATAITEMS table can lead to unnecessary table splits. Unused columns cause the column count and record size

computations to be too high.

If data set mapping is already complete, this table can be temporarily used to disable a new column after a DMSII reorganization to

avoid recloning. (This is done automatically if the configuration file parameter suppress_new_columns is set to True.)

If you want to disable cloning for every data item in a data set (every column in a table), disable cloning for the data set instead of

disabling cloning for each individual data item. For details, see DATATABLES Client Control Table.

Column Display Description

di_options2 The following bits, which can be set through data set
mapping customization user scripts, enable you to control
how the item is mapped.

Bit and Description

1: DIOPT_Item_Masked - This bit specifies that the item in question is masked in

DMSII.

2: DIOPT_Item_Encrypted - This bit specifies that the item in question is

encrypted in DMSII.

4: DIOPT_Split_Table – This bit forces the define and redefine and the

Administrative Console's Customize commands to split the table before mapping

this item. This gives the user more control in handling split tables when the

splitting of the table in the middle of an OCCUR clause is undesirable.

8: DIOPT_End_Split_TABLE - This bit is used in conjunction with the

DIOPT_Split_Table bit to make the Client return to the parent table following a

forced split. It must follow an item with the DIOPT_Split_Table bit set and there

can be only one outstanding split (i.e. you cannot have two table splits followed

by two end table splits).

da_user_bmask2 This column, which shadows the di_options2 column, contains
a bit mask that represents the bits in di_options2 that were
customized. This column is used by the redefine and the
Administrative Console's Customize commands to restore the
portion of di_options2 that have been customized while
leaving the remaining bits intact.

dflt_options This column is used to keep track of the initial state of
the di_options bits before any customizations are performed.
It allows the Client to clear the di_user_bmask bits that
were set by customizations that were later undone.

dflt_options2 This column is used to keep track of the initial state of
the di_options2 bits before any customizations are
performed. It allows the Client to clear the di_user_bmask2

bits that were set by customizations that were later
undone.

•

•

•

•

11.6 DATAITEMS Client Control Table

- 162/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table contains descriptions of each column in the DATAITEMS Client control table. Included is the abbreviated

column name that the display command writes to the log file.

11.6 DATAITEMS Client Control Table

- 163/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

data_source This column contains the name of the data source that
identifies the DMSII database from which the data was
taken.

table_name table This column contains the name of the table in the
relational database to which this item belongs.

item_number # This column contains an internal number that gives each
item within a table a unique number. Numbers are assigned
consecutively in increments of 10, starting with 10, making
it easier to change the order of items using data table
customization user scripts.

item_name item_name This column contains the name of the item (column) in the
relational database table. Typically, this is the same as
the lowercase form of the DMSII item name with all dashes
changed to underscores. To modify, see Appendix D:
Customization Scripts.

active A The value in this column specifies whether or not this data
item will be cloned. The default is 1, which indicates that
the data item will be cloned. 0 indicates that the data
item will not be cloned. The define , redefine and the
Administrative Console's Customize commands change the value
in the active column to 0 if the data set is the global
dataset, unless the active column is set to true in the
corresponding DMS_ITEMS entry.

NOTE: If the active value for the data set to which this
item belongs is 0 (off), this item will not be cloned even
if its active value is 1 (on).

item_key iK This column contains a numeric value specifying the order
of the item in the DMSII set (10, 20, 30, and so on). You
can modify this column to make it part of a composite key
or change the order of the keys in the index. For details,
see Creating Indexes for Tables. If the item is not a key,
the value is zero (0).

virtual_key VK Do not change this value.

This column contains a boolean value specifying if this
item is a virtual key; however, it is created only for
mapping DMSII items with unflattened OCCURS clauses. When
an item is a virtual key, the corresponding value for
item_key is a positive number that is one greater than the
item_key value of the last key for the data set. The virtual
key is not a DMSII key -- its value in the data table is
the occurrence number in the occurs clause (starting at 1).

dms_item_number I# This column contains the item number, which indicates the
relative position of the item in the original DMSII record.

dms_parent_item P# This column contains the dms_item_number of the parent item
for an item that is a member of a GROUP item. For example,
if dms_item_number 12 is a DMSII GROUP containing items 13,
14, 15, and 16, the dms_parent_item columns of the last four
items will be 12. This column contains a copy of the
dms_subtype in the DMS_ITEMS table.

11.6 DATAITEMS Client Control Table

- 164/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

dms_item_type TYP For a description of this column, see "dms_item_type" in
DMS_ITEMS Client Control Table.

In addition to the types defined in DMS_ITEMS, this column
contains the following values:

Type and Description

256: AA Value or RSN, which the Databridge Client generates using the AA Value or

RSN of the record in the DMSII database as received from Databridge Engine. You

can tell them apart by looking at the item_name column, which is my_aa for AA

Values and my_rsn for RSNs.

257: Parent AA, which the Databridge Client generates using the AA Value of the

parent record of an embedded data set in the DMSII database as received from

Databridge Engine.

258: External type, which indicates that the data comes from some place other

than the DMSII database.

dms_decl_length DL This column contains the user-declared length of the item
in the DMSII DASDL. This length changes according to the
data item type selected (alpha, boolean, field, number, or
real).

dms_scale SC This column contains the numeric scaling factor, which is
the number of digits to the right of the decimal place, if
any.

dms_offset OFF This column contains the item’s offset value which
indicates where, within the DMSII record, this item begins.
This is the location Databridge uses to extract data from
DMSII records. For example, in a 400-byte record with an
offset of 200, the first 100 bytes are used by other items.
This number is in digit size, which is equal to one-half of
a byte (four bits).

dms_length LEN This number is the digit size of the data. Digit size is
equal to one-half of a byte (four bits).

dms_signed s This column contains a Boolean value specifying whether the
item is signed or unsigned as follows: 0 = unsigned and 1 =
signed.

dms_num_occurs OCC This column indicates the number of times this data item
occurs (is present) within the data set. If the item does
not have an OCCURS clause, this value is 0.

sql_type TY This column contains the relational database data type that
corresponds to the DMSII data types. See DMSII and
Relational Database Data Types.

sql_length LEN If the data type for the column has a length specification
in the relational database, this column specifies the
length to be used. For example, in the case of char(5) the
sql_length is 5.
Conversely, if the data type for the column does not have a
length specification in the relational database (for
example, int in SQL Server or date in Oracle) this column has
a value of 0.

•

•

•

11.6 DATAITEMS Client Control Table

- 165/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

occurs_level OLV This column contains the nesting level of OCCURS in the
DMSII database. For example, an OCCURS table created from
an in item with an OCCURS clause contained in in a GROUP
with an OCCURS clause has an occurs_level of 2 . The original
OCCURS table has an occurs_level of 1.
NOTE: The Client does not support nested OCCURS that are
more than 2 levels deep.

dms_subtype STY For items mapped to relational database date types, this
column contains the format of the date in the DMSII
database. These are not actual DMSII date types; rather,
they represent the formats of dates that might be stored as
a DMSII GROUP, a NUMBER, or an ALPHA item. For non-DMSII
columns this column identifies the type of the non-DMSII
column. For split items it represents the offset of the
split.

sql_scale SC This column contains a copy of the dms_scale that you can
edit. This value is used in the relational database to
specify the scale for columns of whose data type is
DECIMAL(p,s) on SQL Server or NUMBER(p,s) on Oracle.

dms_depends_num dep This column contains the dms_item_number of the item that
specifies the number of occurrences in use for an item with
an OCCURS DEPENDING ON clause.

11.6 DATAITEMS Client Control Table

- 166/327 - © Copyright 2021 Micro Focus or one of its affiliates.

da_options OP The following bits, which you can set through data table
customization user scripts or the Administrative Console's
Customize command, allow you to specify additional properties
of the data items:

Bit and Description

1: DAOPT_Nulls_Allowed - This bit is set by the define , redefine and the

Administrative Console's Customize commands based on the value of the

configuration parameter allow_nulls . You can later change this value via user

scripts or customization. A value of 1 indicates that the item will be created with

the attribute of NULL (except in Oracle where this is the default attribute of a

column). A value of 0 indicates that the item will be created with the attribute of

NOT NULL (except in SQL Server where this is the default attribute of a column).

2: DAOPT_Column_Renamed - The column was renamed by the user. This

column is used by the Administrative Console's Customize command to restore

changes.

4: DAOPT_Type_Changed - The SQL type of the column was changed by the user.

This column is used by the Administrative Console's Customize command to

restore changes.

8: DAOPT_Length_Changed - The SQL length of the column was changed by user.

This column is used by the Administrative Console's Customize command to

restore changes.

16: DAOPT_Scale_Changed - The SQL scale changed by user. This column is used

by the Administrative Console's Customize command to restore changes.

32: Reserved

64: Reserved

128: DAOPT_Item_Renumbered - The item number (that is, the location of the

column) was changed by the user. This column is used by the Administrative

Console's Customize command to restore changes.

256: Reserved

512: DAOPT_Store_as_Char - This bit indicates that the item, which is numeric,

should be stored in the relational database as a character data type.

1024: DAOPT_Xlate_Binary - This bit determines whether or not character data

gets translated from EBCDIC to ASCII before being stored as binary. This bit is

copied from the DIOPT_Xlate_Binary bit in the di_options column of the

DMS_ITEMS table as the process and clone commands do not load the

DMS_ITEMS table.

2048: DAOPT_Store_as_Number - Indicates that the Client is storing the

corresponding ALPHA data using the appropriate numeric data type.

4096: DAOPT_VarFormat_Date - Indicates that the dms_subtype column

contains a mask describing the date format.

8192: DAOPT_FixAlphaChar - This bit applies to data items whose data type is

ALPHA, and it indicates that the Client will scan the data for control characters and

replace each control character with a space.

You can set this bit via a user define script or by using the Administrative Console's

Customize command, or you can set it globally via the convert_ctrl_char

parameter. See convert_ctrl_char.

CAUTION: Do not set the convert_ctrl_char parameter to True unless you are

absolutely certain that eliminating control characters will have no adverse effect

on the data. For example, eliminating control characters can cause some fields to

be misinterpreted.

16,384: DAOPT_ActiveReset – Internal use only. This bit indicates that the

active column of items was set to zero by the Client. This happens for

concatenated items, which must be present to access the data and are otherwise

not processed.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.6 DATAITEMS Client Control Table

- 167/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Display Description

changes
These bits are used by the redefine and the Administrative
Console's Customize commands.

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries before this one were removed.

8: CHG_del_after - One or more entries after this one were removed

dms_link_ds_num This column holds the structure number of the data set to
which a LINK item points. Thus a nonzero value in this
column identifies a DMSII LINK. Links that use AA Values
have a dms_item_type value of (10).

dms_concat_num This column is a copy of the DMS_ITEMS column of the same
name and is automatically set by the define and redefine
commands since the DMS_ITEMS table is not loaded during a
process or clone command. Do not modify this column in your
user scripts.

da_user_bmask This column, which shadows the da_options column, contains a
bit mask that represents the columns in da_options that were
customized. This column is used by the redefine and the the
Administrative Console's Customize commands to restore the
portion of da_options bits that has been customized while
leaving the remaining bits intact.

masking_info This column is used by the SQL Server Client to do data
masking. This integer value contains the masking function
type (none, default, email, random, partial) and the index
of the corresponding parameter data for masking function
that have parameters.

The define command create entries with default mask for
columns that have a datamask specification in DMSII DASDL.
You can then change the masking type using the
Administrative Console's Customize command.

dflt_options This column is used to keep track of the initial state of
the da_options bits before any customizations are performed.
It allows the Client to clear the da_user_bmask bits that
were set by customizations that were later undone.

•

•

•

•

11.6 DATAITEMS Client Control Table

- 168/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.7 AF_STATS Client Control Table

This table is used to hold the audit file statistics for the last 9999 audit files processed by the client.

11.7 AF_STATS Client Control Table

- 169/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Column Description

data_source This column contains the name of the data source to which the record
belongs.

audit_filenum The audit file number (1 to 9999).

no_stat_available This column is set by Client to while processing an audit file to
indicate that the record does not contain any statistics.

audit_start_time First timestamp in the audit file (datetime2(7) for SQL Server and date

for Oracle).

audit_end_time Last time stamp in the audit file (datetime2(7) for SQL Server and date

for Oracle).

client_start_time Time when the Client first started processing the audit file
(datetime2(7) for SQL Server and date for Oracle).

client_end_time Time when the Client finished processing the audit file (datetime2(7)

for SQL Server and date for Oracle).

n_threads Number of threads configured in the Client

elapsed Elapsed time (in milliseconds) processing the audit file. This is not
always equal to client_end_time - client_start_time as the audit is
sometimes processed in multiple Client runs.

dms_rec_count Number of DMSII records received.

sql_op_count Number of SQL updates executed.

sql_rb_op_count Number of rolled back SQL updates.

sql_suppressed Number of SQL updates that were suppressed because there were no
changes in the BI and AI images for the columns involved in the
update.

sql_filtered Number of SQL updates that were eliminated by occurs table row
filtering.

recs_discarded Count of discarded records.

recs_in_error Count of records in error.

bytes_received Number of DMSII data bytes received from the server.

total_bytes_received Number of DMSII data and protocol overhead bytes received from the
server.

bi_bytes_received Number of MODIFY_BI data bytes received from the server.

create_count Number of CREATE records received from the server.

delete_count Number of DELETE records received from the server.

modify_count Number of MODIFY records received from the server.

modify_bi_count Number of MODIFY_BI records received from the server.

modify_ai_count Number of MODIFY_AI records received from the server.

link_ai_count Number of LINK_AI records received from the server.

state_count Number of STATE info records received from the server.

doc_count Number of DOC records received from the server.

commit_count Number of COMMITS.

rollback_count Number of ROLLBACKS.

11.7 AF_STATS Client Control Table

- 170/327 - © Copyright 2021 Micro Focus or one of its affiliates.

11.7 AF_STATS Client Control Table

- 171/327 - © Copyright 2021 Micro Focus or one of its affiliates.

12. Automating Client Operations with the Service

This chapter explains how to automate Client operations by using the service and command files on Windows (shell scripts on

UNIX). It also covers the Batch Console and its role in automation.

12.1 Configuring the Service

To configure update scheduling, error recovery, and other features of the service, use the Administrative Console. Changes are

automatically saved to the service's configuration file dbcontrol.cfg , located in the config directory of the working directory. See

Managing Operations in the Administrative Console Help, available from within the Administrative Console by selecting

Documentation in the left-side navigation menu. For more information about the service's working directory, navigate to The

Working Directory section of the Databridge Installation Guide.

12.2 Automation Scripts

The Databridge Client 7.0 service uses scripts (command files in Windows; shell scripts in UNIX) to allow the user to gain control at

key points of Client operations. Scripts allow the user to perform pre-processing and post-processing for Client runs (typically

process commands) and supplement the service's built-in error recovery with additional recovery or error-reporting options.

Additionally, users can start a script from the mainframe by using the BCNOTIFY program. The BCNOTIFY program is designed to

make the service start the script from the name supplied. By inserting BCNOTIFY at key points in a WFL (Work Flow Language), you

can trigger a task on the Client machine, such as restarting audit file processing. Scripts can interact with the service via the Batch

Console (bconsole), a program that interprets source files that contain programs written in a language similar to Visual Basic.

Scripts can also perform arbitrary tasks that may not be directly related to the service (for example, start a run that generates a

Crystal Report).

Automation scripts fall into two categories:

Scripts that are associated with a process command.

These scripts are associated with a data source and run before or after a Client run. (See Process-Related Scripts.)

Scripts that are initiated by the BCNOTIFY program on the mainframe. (See BCNOTIFY Initiated Scripts.)

All scripts start with the current directory set to the service's working directory. Additionally, the service sets up the environment

variable INSTALLDIR that points to the install directory where the Batch Console program resides. This environment variable must be

used as the path when invoking the Batch Console (on Windows, %INSTALLDIR%\bconsole ; on UNIX, $INSTALLDIR/bconsole). Do not

rely on the install directory being in the PATH. For more information about the Batch Console, see Introducing the Batch Console

section.

12.2.1 Process-Related Scripts

This first category of automation scripts includes scripts that are associated with a process command. These scripts are referred to

as start-of-run and end-of-run scripts. Start-of-run scripts are only applicable to runs started by the service without any outside

interference, specifically runs that are started by the service's scheduler. This includes runs that are launched when the service is

started in response to the run_at_startup parameter for a data source. End-of-run scripts on the other hand are applicable to all

runs.

Client runs that are started from the Administrative Console, the Batch Console, and BCNOTIFY do not look for start-of-run scripts.

•

•

12. Automating Client Operations with the Service

- 172/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Both types of scripts follow strict filename conventions, as follows.

where source is the data source name in lowercase letters and ext is the file extension (.cmd for Windows or .sh for UNIX).

The service searches for these script files in the scripts subdirectory of the service's working directory. (For information about the

working directory, see The Working Directory section in the Databridge Installation Guide.) Before a scheduled run is started, the

service looks for a start-of-run script. When the service finds a script, the script is run followed by a process command after the

script is completed. If the script does not exist, the process command is started without issuing any errors or warnings. When the

service determines that the process command is complete, it checks for the existence of an end-of-run script and runs the script.

When a process command terminates with an exit code that initiates auto-recovery, the service checks for the existence of an event-

notice script and runs it if found. These type of scripts are designed to give the user the ability to generate event notices, such as e-

mails when the service enters auto-recovery. In the absence of these scripts, the DBA has no way of knowing that the service

restarted the Client after a recoverable error.

If a Client run ends because of an error, the end-of-run script will run only after the service's built-in error recovery has been executed.

The service has a built-in recovery mechanism for responding to errors and non-zero exit codes. In situations that are temporary or

self-resolving, the service will attempt the failed operation after a brief delay.

For example, if a connection to the server or database fails, the service will pause for a specified amount of time before attempting

to reconnect, and will do so repeatedly until the server or database becomes available. (The parameter sched_retry_secs determines

the initial retry interval.) For connect failures, this interval doubles on each subsequent retry until it reaches a maximum value of 5

minutes. To change the value of sched_retry_secs when using the Administrative Console, from the data source's page select the

Settings drop-down button and select Configure. Using the left side menu navigate to PROCESSING > Error Recovery to find these

parameters located in the Options group at the top of the page.

Both start-of-run and end-of-run scripts are passed the following set of parameters:

For start-of-run scripts, run_type is always 1, indicating a process command. For end-of-run scripts, run_type can be 1, 2 (clone

command), 7 (redefine command), 8 (generate command) or 4 (Administrative Console Customize command run).

12.2.2 BCNOTIFY Initiated Scripts

This second category of automation scripts are initiated by BCNOTIFY, a utility included with Databridge Host software.

BCNOTIFY is a host-based Databridge utility that can be used to issue remote procedure calls (RPC) to the service to launch scripts.

BCNOTIFY passes the script name and parameters in the RPC. BCNOTIFY can optionally pass a data source name as an additional

parameter. If you do not supply a data source name in the RPC, the data source name must be provided within the script that the

service launches. The advantage of including the data source name in the RPC is that the service will only launch the script if the

data source is idle (versus always launching it).

Scripts initiated by BCNOTIFY are named as follows:

Type of Script Naming Convention

start-of-run source_startofrun.ext

end-of-run source_endofrun.ext

event-notice source_eventnotice.ext

Script Parameter In the script, referred
to as

Data source name %1

Exit status %2

Run type (a number that indicates the type of command) %3

Token used as the password when connecting back to the service
using the Batch Console

%4

12.2.2 BCNOTIFY Initiated Scripts

- 173/327 - © Copyright 2021 Micro Focus or one of its affiliates.

start_name.ext

where name is an arbitrary name, and .ext represents .cmd on Windows and .sh on UNIX.

When BCNOTIFY launches a script that initiates a process command, the service behaves differently when looking for an end-of-run

script to execute. It first looks for a script named end_name.ext in the scripts subdirectory (where name is the name used in the

original script and ext is the OS dependent file extension). If the service finds this script, it uses the script in place of the standard

end-of-run script described earlier. Otherwise, the standard end-of-run script is used if it exists. This allows one to associate multiple

end-of-run scripts with a data source, depending on which script started the process command.

These script files are passed the following set of parameters. The parameters for these scripts can change, depending on whether the

data source is an empty string. For example, if no data source name is provided, parameter one is the AFN and parameter 2 is the

token.

Parameters: - Data source name (optional) - Parameters supplied by BCNOTIFY. For example, the current database audit file number

(AFN) - A token used as the password when connecting back to the service via the Batch Console

12.3 Introducing the Batch Console

The Batch Console automates routine Client tasks by allowing command files/shell scripts launched by the Databridge Client

Manager to interact with the service. It interprets a source file that contains a set of statements written in a language similar to

Visual Basic. These statements can initiate a connection, perform rudimentary tests, and issue console requests, to the service. For

example, by using the Batch Console in an end-of-run script that runs daily reports, you can restart the Client after the reports are

generated.

To use the Batch Console, you must first create a source file for the Batch Console and place it in the scripts directory of the

service's working directory (also referred to as the Client's global working directory). We recommend that you use a file extension that

allows you to easily identify this file as a Batch Console source file (for example, .bcs). You can debug this source file by running

the Batch Console from the command-line, using the source filename (including directory, such as scripts/source_filename) as the

first argument of the Batch Console command.

The Batch Console always runs as a background run. Its activity is written to a log file in the current directory. The log filename uses

the source filename with the extension .log added to it. For example, if your source filename is sourcefile.bcs the log file is

named sourcefile.bcs.log.

12.3.1 Running the Batch Console (bconsole)

The Batch Console program (bconsole) has a command-line of the form:

bconsole [options] filename [argument list]

where filename is the name of a text file that contains commands for the Batch Console to interpret.

You can include additional arguments to pass parameters to the program. This allows you to use generic source files that work with

externally-supplied values for the parameters. The command-line parameters in [argument list] are referenced in the script file using

the Windows command file conventions (%1 is parameter 1, %2 is parameter 2, and so on). For example, if you invoke bconsole

using the statement

All scripts start with the current directory set to the service's working directory. Additionally, the service sets up the environment variable

INSTALLDIR that points to the install directory where the Batch Console program resides. This environment variable must be used as the path

when invoking the Batch Console (on Windows, %INSTALLDIR%\bconsole ; on UNIX, $INSTALLDIR/bconsole). You cannot rely on the install

directory being in the PATH. For more information about Batch Console, see Introducing the Batch Console.

Note

`bconsole /P secret resume.bcs 1234`

12.3 Introducing the Batch Console

- 174/327 - © Copyright 2021 Micro Focus or one of its affiliates.

the program substitutes the text "1234" for any occurrence of "%1" in the script file " resume.bcs ".

The following command file performs the aforementioned task for a fictional data source named MISDB. MISDB uses the service

that runs on a machine named "galactica" using port 8001. Included with the following command are words, such as "data source",

which are ignored by the parser to make the script readable. These words are shown in bold below.

connect to galactica port 8001

enable data source MISDB

process MISDB

If a command fails, the program returns a non-zero exit status indicating a failure. For a successful execution of the script, the

program returns an exit status of 0. Each executed script is logged; if something fails, you can look at the log file to determine what

went wrong.

The user ID of the user that launches the bconsole run is used to sign on to the service. When the Batch Console program starts

from a script that the service launches, the script is passed a handle for use as a temporary password. This eliminates any security

problems that having user IDs or passwords in the script files would cause. If the service cannot authenticate the user ID password,

it verifies that the user is the same one that is running the service. (This is typically the built-in SYSTEM account). If it is, the service

verifies that the handle matches the one assigned to the thread that launched the script. (The handle contains the thread number.)

12.3.2 Signing On to the Service

The userid that starts the Batch Console is also used to sign on to the service. This eliminates the security problems that can result

from including userids and passwords in script files. When the service launches a script, it passes a handle for the script to use as

the Batch Console password. This password is set using the command-line option /P .

After the service identifies the userid as being the same as the service's userid, it validates the signon once it determines that the

password matches the handle passed to the script. Handles are only valid while the script is running and cannot be reused.

12.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY

You can use the Batch Console to make the service start a process command or notify a currently running process command to

stop after a specified AFN. This mode of operation replaces dbauditwait working in conjunction with the deprecated NOTIFY

program on the mainframe and uses the service-initiated DBClient runs instead of the command-line Client. When invoking the

Batch Console in a script launched by the service, you must pass the handle to Batch Console using the /P option.

The following Batch Console source file sample_script2.bcs uses command-line parameters similar to a Windows command file,

except that the parameters are numbered starting with the one that follows the source filename. The program does a textual

substitution by replacing %n with the exact text of the corresponding parameter. (This script is located in the scripts directory of

the service's working directory.)

In the above example, the text %1 is replaced by mikera018640, %2 is replaced by MISDB and %3 is replaced by "1234" .

12.3.4 Using Batch Console to Get Status Information

You can use the Batch Console in query mode to get status information. This capability is not related to automation, but is provided

to let you query the service about the status of your data sources. Query mode connects to the service, gets the status of the

specified data sources, and then writes that information to a file.

`bconsole /P %2 sample_script2.bcs mikera018684 MISDB 1234`

connect to %1 port 8001
if run active %2 then
 stop run %2 after afn %3
else
 process %2 with option "/F %3"
end if

12.3.2 Signing On to the Service

- 175/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To use query mode, you must provide the connect parameters and the command using command-line switches. The command line

for query mode is as follows:

bconsole /s service_name /p port /P password /w filename /q command

where the service_name, output filename, and command can optionally be enclosed in double quotation marks. If the /w filename

option is omitted, the program will write the output to the file bconsole.log . The syntax for the command is:

If data_source is omitted (or is specified as _all) the status of all data sources will be written to the output file in CSV format. A

sample output file is as follows:

Each line includes (in this order): a) the data source name; b) its state; c) the process-id of the current run (or 0 if there's no active

run); d) type (state) of the last run; e) exit code of last run or 9999 if the run is active; f) start time of the active run or the last run (if

there's no active run); g) stop time of the last run (0 if there is an active run); h) the next scheduled run (if idle); and i) the flag for the

data source. If a Client run crashes, it will have an exit code of 9999 and the data source will be marked as disabled.

`status [data_source]`

 MISDB,0,0x00000000,0,9999
 DEMODB,0,0x00000000,0,9999,,,,disabled
 NTSL,0,0x00000000,1,0,2011-03-31@15:26:46,2011-03-31@17:46:52

12.3.4 Using Batch Console to Get Status Information

- 176/327 - © Copyright 2021 Micro Focus or one of its affiliates.

12.3.5 Batch Console Commands

The syntax for Batch Console (bconsole) scripts is loosely modeled after Visual Basic. The end-of-line character acts as a statement

terminator. This limits you to one statement per line. The following table lists commands in alphabetical order, followed by a list of

buzz words that are allowed to improve readability.

* Synonymous with define

** Synonymous with reorganize

Command Reference

abort abort [run [for [[data] source]]]...

clone clone [[data] source]...

connect connect [to]...

define define [[data] source]...

disable disable [[data] source]...

disconnect

display display "text"

drop drop [[data] source]...

dropall dropall [[data] source]...

enable enable [[data] source]...

exit exit (value)

generate generate [[data] source]...

if expression then ...
[else
...]
end [if]

launch [[[data] source]...

process process [[data] source]

redefine* redefine [[data] source]...

reorg** reorg [[data] source]...

reorganize reorganize [[data] source]...

runscript runscript "filename"

status status [[data] source]...

stop stop [run [for [[data] source]]]...

wait wait (value)

12.3.5 Batch Console Commands

- 177/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Statements in Detail

Let's look at the individual statements and syntax of a Batch Console script. All statements are confined to a single line, except for

the if statement.

12.3.5 Batch Console Commands

- 178/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This command Does this

connect [to]
service_name [port]
number

Connects to the given service as a console. If the service name is
an IP address or contains non alphanumeric characters, it must be
enclosed in double quotation marks.

enable [[data]
source] name

Enables the specified data source. If the data source doesn't exist,
an error occurs.

If the data source is not disabled, no command is executed and a
warning results. This will not cause the script to terminate
prematurely. To eliminate the warning, use an "if" statement; this
test whether the data source is disabled before trying to enable it.

process [[data]
source] name [[with]
option[s] "option_list"]
[reclone ds_list]

Initiates a process command. The options are specified in the same
manner as the Databridge Client command-line, using either slashes
or a hyphen (depending on the operating system) followed by a letter
and an argument when applicable.

When specifying options, you must include the keyword option to
indicate that a list of options follows the command. Make sure that
you separate each option with a space and enclose the entire set of
options with double quotation marks. The program will validate the
options before passing them to the service.

You can force all of the specified data sets to be re-cloned by
adding the keyword reclone followed by a list of data sets to the
process command. This sets the ds_mode to 0 for all the specified
data sets in a single command. If you use the name "all", all data
sets will be re-cloned; you don't need to name them individually.

clone [[data] source]
name [[with]
option[s]
"option_list"] ds_list

Initiates a clone command. The options are specified in the same
manner as the Databridge Client, using slashes or dashes (depending
on the operating system) followed by a letter and an argument when
applicable.

[re]define [[data]
source] name [[with]
option[s]
"option_list"]]

Initiates a redefine or define command, depending on whether the data
source exists. This statement causes the service to launch
DBClientCfgServer for the data source (unless it is already running)
and then execute a define / redefine command.

reorg[anize] [[data]
source] name [[with]
option[s]
"option_list"]]

Initiates a reorganize command. This statement causes the service to
launch DBClientCfgServer for the data source (unless it is already
running) and then execute a reorg command.

generate [[data]
source] name [[with]
option[s]
"option_list"]]

Initiates a generate command. The statement causes the service to
launch DBClientCfgServer for the data source (unless it is already
running) and then execute a generate command.

stop [run [for
[[data] source]]]
name [{after [afn]
number

at [time] hh:mm}]

abort [run [for
[[data] source]]]
name

This is equivalent to the DBConsole Abort command. The Client run is
terminated immediately by closing the TCP/IP connection to the
server. This will cause the last transaction group to be rolled back
by the Client.

12.3.5 Batch Console Commands

- 179/327 - © Copyright 2021 Micro Focus or one of its affiliates.

If Statements

Use the "if" statement to test for the following conditions for a data source:

Whether it is disabled

Whether a run is active

Whether a run is scheduled

The keywords "disabled", "active", and "scheduled" are used to indicate the condition being tested. You must follow these keywords

with a data source name and the keyword "then". Optionally, you can precede keywords with the buzzwords "run", "data source", or

"source".

To reverse the test, you can place the keyword "not" in front of expressions that follow the keyword "if". The syntax of these

expressions is summarized as follows:

This command Does this

status [[[data]
source] name]

This command writes the status of a data source to the Batch Console
(bconsole) log file. If the data source name is omitted, or the name
“_all” is used, the status of all data sources is written to the log
file.

display "string" This command writes the given string to the log file. It is mainly
intended to help debugging.

if expression then
...
[else
...
]
end [if]

The block of commands following the "if" line, which must end with
the keyword "then", are executed if the expression evaluates to
true. This block ends with either an "else" or “end [if]” keyword
(in the absence of an else clause). The else clause starts a new
block of commands that will be executed if the expression in the
“if” statement evaluates to false. In all cases “end [if]” ends the
block that is started by a "then" or "else".

launch [[[data]
source]] name cmd_file
params

This command makes the service launch an arbitrary command file. It
is only useful in debugging BCNOTIFY scripts, as this is the easiest
way to launch them.

Use the data source name for name, unless the run is not associated
with a specific data source in which case you would use "_none"
(quotation marks not required). The .cmd_file is the filename of the
script in the scripts subdirectory of the service's working
directory. From here, the service launches the .cmd_file and params,
which must be enclosed in double quotation marks if they contain non
alphanumeric characters, such as a period (.).

disconnect This command tells the program to disconnect from the given service
where it is connected. This command will not normally be needed, as
the program will automatically issue it when it reaches the end of
the script file.

wait (integer value) This command injects a delay, (measured in seconds) for the
execution of the script file. It is mainly intended for debugging
purposes.

exit (integer value) This command stops the program and returns the specified exit code.
The command is only needed to return a non-zero exit code or to stop
the flow of execution within an “if” statement.

1.

2.

3.

 [not] {[run] | [[data] source]} active name
 [not] {[run] | [[data] source]} disabled name
 [not] {[run] | [[data] source]} scheduled name

12.3.5 Batch Console Commands

- 180/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command-Line Options

* When you run the batch console (bconsole) from a command file that is not launched by the service, specify a password using

the -P option. Since the password is not encoded, some sites may find this objectionable.

In order to solve this problem it is recommended to use the -T option, which requires that the userid being used is registered as the

trusted user. The batch console will then read the Windows Registry and determine if the userid is registered as the trusted user (there

can only be one in the current implementation). To facilitate the registration process, the program setbcuserid.exe is implemented.

This program registers the userid you enter as the login userid. You must be an administrator to run this program and the userid you

specify must be a valid Windows user.

Options are case sensitive. -p and -P are separate options.

Note

This
Switch

Argument Does this

-d Enables debug output

-o Overwrites the log file (versus appending to it)

-p port Specifies the port on the command-line.

-q Switches into single query mode (status command only)

-s name Specifies the domain name or IP address of the service
machine on the command-line.

-t Enables RPC traffic tracing.

-w filename Sets the name of the log file.

-P password Specifies the password to be used when connecting to the
service.

-T Specifies that the user is a trusted user*

12.3.5 Batch Console Commands

- 181/327 - © Copyright 2021 Micro Focus or one of its affiliates.

13. Glossary of Terms

absolute address (AA) value

AA is a DMSII term that stands for absolute address. An absolute address value is an A Series WORD (48-bits in length). In the

Databridge Client, AA is the hexadecimal representation (12 character strings containing the characters 0--9 and A--F) of the AA

Value on the host. Databridge Client uses the AA Values to implement unique keys for the parent structures of embedded data set

records. It also uses AA Values to reference the records of data sets that do not have DMSII SETS with the NO DUPLICATES

ALLOWED attribute.

AA Values are not constant. Any DMSII reorganization (record conversion, file format, or garbage collection) changes these values.

Databridge Client supports numeric AA Values that are stored as NUMBER(15) in Oracle and BIGINT in SQL Server. It also supports

binary AA Values that are stored as RAW(6) in Oracle and BINARY(6) in SQL Server.

Audit Files

An audit file is created by DMSII and contains the raw format of changes made to the DMSII database by update programs. Audit

file records contain the deletes, adds, and modifies that were made to the various structures. It can contain, for example, hours',

days', or weeks' worth of information.

Databridge uses the audit file for the raw data of each database change to exactly replicate the primary database. Databridge

records the audit location (AFN, ABSN, SEG, IDX) between runs, so it can restart without losing any records.

If you set the Databridge Engine Read Active Audit option, Databridge can access the current audit file. If you do not set Read Active

Audit = true in the Databridge Engine parameter file, Databridge can access audit information up to and including the current audit

file minus one. The audit file contains the update level at the time the audit file was created. The update level in the audit file and the

update level in the DESCRIPTION file used by Databridge must match before Databridge will update a replicated database.

When an audit file is closed, DMSII creates the next one in the series. Audit files are closed for several reasons, including the

following:

• An operator closes the audit file with the mixnumber SM AUDIT CLOSE command.

• The audit file reaches the file size set in its DASDL.

• There is an I/O error on the audit file.

• There is not enough disk space for this audit file.

• The database update level changes due to database definition changes

• A Databridge accessory closed the file in preparation for the fixup phase after extracting records from a DMSII database.

• The current audit file could not be found.

• A file reorganization was executed to modify the DMSII structure.

audit trail

The audit trail contains all of the audit files generated for a database. The Databridge Engine reads the audit files to extract updates.

It then passes the updates to the Client to be applied to the relational database. After the updates have been successfully extracted,

the Client saves the state information, which includes the location in the audit trail from which the last group of updates for the

data set were read.

13. Glossary of Terms

- 182/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Batch Console

The Batch Console automates routine Client tasks by allowing command files/shell scripts launched by the Databridge Client

Manager to interact with the service.

caching

A process that filters files before they\'re requested by the Databridge Client. Caching allows Databridge Enterprise Server to send

Client data requests quickly and without placing an additional resource burden on the mainframe.

client

The Client is the computer system that will receive DMSII records from the primary database. The Client could be a Windows

computer, a UNIX computer, or an MCP server. The Client can have a relational or a DMSII database.

cloning

Cloning is the one-time process of generating a complete snapshot of a data set to another file. Cloning creates a static picture of a

dynamic database. Databridge uses the DMSII data sets and the audit trail to ensure that the cloned data represents a synchronized

snapshot of the data sets at a quiet point, even though other programs may be updating the database concurrently. Databridge

clones only those data sets you specify.

Cloning is one phase of the database replication process. The other phase is tracking (or updating), which is the integration of

database changes since the cloning.

DASDL

Data and Structure Definition Language (DASDL) is the language that defines DMSII databases. The DASDL must be compiled to

create a DESCRIPTION file.

data set

A data set is a file structure in DMSII in which records are stored. It is similar to a table in a relational database. You can select the

data sets you want to store in your replicated database.

Databridge Director

Databridge Director (also referred to as DBDirector) is a Windows Service installed with Enterprise Server that starts Enterprise Server

whenever a connection request is received.

When you start your computer, DBDirector starts and reads the ListenPort registry value to determine which TCP/IP port

communicates with Databridge Clients.

Databridge Engine

Databridge Engine is a generic term that can refer to either DBEngine or the engine component of Databridge Enterprise Server. The

two are interchangeable as far as the Databridge Client is concerned.

13. Glossary of Terms

- 183/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Databridge Server

Databridge Server is a generic term that can refer to either DBServer or Databridge Enterprise Server. The two are interchangeable as

far as the Databridge Client is concerned.

DBClntCfgServer

A program that handles all requests from the Administrative Console specific to a data source. These requests include updating the

Client configuration file, and providing access to the Client control tables. Like DBClient, this program is run by the Client Manager

service as a background run.

DBServer

DBServer is a Databridge Host accessory that responds to Databridge Client requests for DMSII data or DMSII layout information

and provides communications between the following components:

Databridge Engine and Databridge Enterprise Server

Databridge Engine and the Databridge Client

direct disk

A replication method that allows Databridge Enterprise Server to clone and track DMSII data sets without using any significant

mainframe resources. Direct disk replication requires a SAN (Storage Area Network) or Logical Disks configured to make MCP disks

visible in Windows.

entry point

A procedure in a library object.

extraction

Extraction is the process of reading through a data set sequentially and writing those records to a file (either a secondary database

or flat file).

file format conversion

A type of DMSII reorganization affects file size values (for example, AREASIZE, BLOCKSIZE, or TABLESIZE), but it does not change

the layout of the records in a DMSII database.

flat files

A flat file is a plain text or mixed text and binary file which usually contains one record per line. Within the record, individual fields

may be separated by delimiters, such as commas, or have a fixed length and be separated by padding. An example of a flat file is

an address list that contains fields for Name and Address.

•

•

When Enterprise Server is used with the Databridge Client, Enterprise Server takes over much of the functionality of DBServer and

Databridge Engine.

Note

13. Glossary of Terms

- 184/327 - © Copyright 2021 Micro Focus or one of its affiliates.

garbage collection reorganization

A garbage collection reorganization moves records around, but it doesn't change the layout of the DMSII database. Its primary

function is to improve disk and/or I/O efficiency by eliminating the space occupied by deleted records. Optionally, a garbage

collection reorganization reorders the remaining records in the same sequence as one of the sets.

lag time

The lag time is defined as the elapsed time between the time a record in the DMSII database is updated and the time where this

update appears in the relational database. This value accounts for any difference between the clock on the mainframe and that on

the Client machine.

mutex

A mutex is an operating system resource that is used to implement a critical section and prevent multiple processes from updating

the same variables at the same time.

null record

A record for a data set where every data item is null.

null value

The value defined in the DASDL to be NULL for a data item. If the DASDL does not explicitly specify a NULL value for a data item,

the NULL value is all bits turned on.

primary database

This is the original DMSII database that resides on the host. Databridge replicates from the primary database to one or more Client

databases. The Client databases can be another DMSII database or one of several relational databases. Compare this to the

replicated (or secondary) database.

quiet point (QPT)

A quiet point is a point in the audit trail when the DMSII database is quiet and no program is in transaction state. This can occur

naturally, or it can be forced by a DMSII sync point.

record format conversion

A type of DMSII reorganization that occurs when a data set or set (group of keys) is reordered or reformatted. It indicates that

changes were made to a data set format, or to data items, such as changing the length of an item, for example, BANK-ID NUMBER

(10) to BANK-ID NUMBER (15).

record serial number (RSN)

Record sequence numbers (RSN) are 48-bit quantities used by the Databridge Engine, in the case of DMSII XE, to uniquely identify a

record. RSNs will always be used instead of AA Values when available except for data sets having embedded data sets. RSNs are

always static; they will not change after a garbage collection reorganization.

13. Glossary of Terms

- 185/327 - © Copyright 2021 Micro Focus or one of its affiliates.

reorganization

Structural or formatting changes to records in the DMSII database, which may require parallel changes to (or re-cloning of) records

in the secondary, or relational, database. See also file format conversion and record format conversion.

replicated database

The replicated database is the database that usually resides on the Client machine and contains records cloned from the DMSII

database. The replicated database is updated periodically with changes made to the primary (original) DMSII database. The

periodic update (or tracking process) is explained later in this section. Compare this to the primary database.

replication

Replication is the ongoing process of cloning and tracking changes to a DMSII database.

rollback

A systematic restoration of the primary or secondary database to a previous state in which the problem or bad data is no longer

found.

secondary database

The replicated database. The replicated database is the database that usually resides on the Client machine and contains records

cloned from the DMSII database. The replicated database is updated periodically with changes made to the primary (original)

DMSII database. The periodic update (or tracking process) is explained later in this section. Compare this to the primary database.

semaphores

Operating system resources that are mainly used to implement thread synchronization and signaling.

service

The service (Windows) or daemon (UNIX) that automates most Client operations. It handles operator requests from the

Administrative Console and routes all log and informational messages to the consoles.

set

An index into a data set. A set has an entry (key + pointer) for every record in the data set.

state information

Data that reflects information about the cloned data, such as the audit location and format level.

structure

A data set, set, subset, access, or remap. Each structure has a unique number called the structure number.

13. Glossary of Terms

- 186/327 - © Copyright 2021 Micro Focus or one of its affiliates.

table

A data structure in the Client database corresponding to a data set or remap in the host DMSII database.

tracking

Tracking is an ongoing process for propagating changes made to records in the DMSII primary database to the replicated database

after the initial clone. The Databridge Engine performs extraction as well as tracking.

visible RSN

An RSN (record serial number) that is declared in the DASDL. These appear as an item in the data set and are therefore visible to the

database user.

13. Glossary of Terms

- 187/327 - © Copyright 2021 Micro Focus or one of its affiliates.

14. Legal Notice

© Copyright 2021 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set forth in the

express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an

additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

Contains Confidential Information. Except as specifically indicated otherwise, a valid license is required for possession, use or

copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and

Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government rights,

patent policy, and FIPS compliance, see https://www.microfocus.com/about/legal/.

14. Legal Notice

- 188/327 - © Copyright 2021 Micro Focus or one of its affiliates.

https://www.microfocus.com/about/legal/

15. Appendix

15.1 Appendix A: Troubleshooting

This appendix provides instructions for troubleshooting problems you may experience with Databridge Client.

15.1.1 General Troubleshooting Procedures

If you have problems using the Databridge Client, complete the following steps:

Check to see that your system meets the minimum hardware and software requirements. For details, see the Databridge Installation

Guide.

Check that you've selected the correct configuration options for connecting to the relational database server:

The relational database name

Your user ID and password to log in to the relational database server. Does your user ID to the relational database server have

the correct privileges?

If you use configuration file parameters or environment variables to supply the signon parameters, did you enter them

correctly?

If you use command-line options, did you enter them in their correct uppercase or lowercase? Did you enter them with each

dbutility command? See dbutility Command-Line Options.

If you use a UNIX Client, make sure that the ORACLE_HOME, and LD_LIBRARY_PATH variables point to the correct directory,

(for example, LD_LIBRARY_PATH=/opt/oracle/product/19.0.0/dbhome_1/lib:/home/dbridge/db70/lib).

Check that you've selected the correct configuration options for connecting to the host.

Is Databridge Server running on the host?

Did you use the data source name as it is defined in the DBServer control file? For more information, refer to the Databridge

Host Administrator's Guide.

Did you enter the correct host name or IP address?

Did you enter the TCP/IP port number as it is defined in the DBServer control file?

If there is a password defined in the DBServer parameter file, did you enter the correct password?

Make sure that the PATH environment variable contains the Databridge Client's directory and the appropriate relational database

bin directory (named bin for Oracle and binn for Microsoft SQL Server).

Check your cable connections to make sure that they are securely attached.

Determine whether the problem is caused by the host and DMSII (versus Databridge Client) by using Databridge Span on the host

to clone a data set from the DMSII database in question.

If you cannot clone the data set, the problem is most likely on the host.

If you can clone the data, the problem is most likely occurring between the DBServer and Databridge Client.

Resolve any errors. If you receive error messages or status messages that you don't understand, see the Databridge Error and

Message Guide.

If you cannot identify and solve the problem without assistance, contact your product distributor or Micro Focus Technical Support

from a location where you have the ability to run dbutility.

1.

2.

•

•

•

•

•

3.

•

•

•

•

•

4.

5.

6.

•

•

7.

8.

15. Appendix

- 189/327 - © Copyright 2021 Micro Focus or one of its affiliates.

https://www.microfocus.com/en-us/support/contact-support

15.1.2 Troubleshooting Table

The following table lists some common problems and their solutions.

15.1.2 Troubleshooting Table

- 190/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Problem Solution

You made changes to the
Client control tables,
such as changing the
active column value,
but none of your
changes are taking
effect.

This problem, which only occurs when using SQL*Plus in an Oracle
database, is an indication that your SQL statements did not get
"committed." The default mode of operations of SQL*Plus is
transaction mode. SQL statements only get committed when you
explicitly issue a commit or when you exit SQL*Plus. You can make
the program automatically issue a commit after every SQL statement
by typing set auto[commit] on .

You changed one or more
table names, but the
new tables are empty
after you do a clone or
an update.

Most likely you did not update the table_name columns in the
DATAITEMS Client control table.

You have the correct
host name, port number,
and data source name,
but you still cannot
connect to the host.

Make sure the domain name server is running. If the domain name
server is down, change the host name in the DATASOURCES table to
the IP address and try the dbutility command again.

You get a "constraint
violation" error when
you run the process

command to update the
relational database.

Most likely you have placed a constraint on one of the columns in
the Databridge data tables. When this occurs, remove the
constraint and re-clone the data set to get all of the records.

IMPORTANT: You must not place constraints or other restrictions on
any Databridge data table. If you do, Databridge will not work.
Instead, filter rows on the host using the DBGenFormat utility.

The Databridge Client
becomes unresponsive at
the following message:

Begin populating/updating

database from AFN=afn,

ABSN=absn, INX=inx,

SEG=seg, DMSII

Time=time_stamp

Check the host ODT for a waiting entry from Databridge Server,
similar to the following:

(usercode) DBSERVER/WORKER-n

NO FILE (usercode)databasename-AUDITnnnn

In this case, make the audit file available to the Databridge
Engine. For example, if the file is on tape, copy it to the
usercode indicated for the AUDITnnnn file. Once you make the audit
file available, the Databridge Engine automatically begins
processing again.

If for some reason you cannot make the audit file available, stop
running the Databridge Client by typing QUIT NOW on the Client
system.

You are running
multiple Databridge
Clients, and all of
them seem to stop
processing.

Most likely, only one of the Databridge Clients has stopped
processing because of a problem, and the other Databridge Clients
have stopped not because of a processing problem, but because of a
resource contention problem on the host or network.

To correct this situation, look at the ODT and at the Windows
Event Viewer for messages related to the Databridge Client. (The
previous two problem descriptions in this table list possible
messages.)

When you locate and respond to the message for the problem Client,
the other Clients start processing automatically from where they
left off.

You are unable to
execute the dbutility

program.

Make sure you have included the Databridge Client program
directory in the operating system’s PATH environment variable.

15.1.2 Troubleshooting Table

- 191/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Problem Solution

The Databridge Client
gets an index creation
error for a table that
uses a legitimate DMSII
SET as an index.

There is no guarantee that the Databridge Engine will always
produce tables without duplicate records at the end of the data
extraction phase.

Most of the time, duplicate records occur when records are deleted
and later reinserted into the data set (this sometimes occurs in
environments where the DMSII applications use delete/create pairs
or in compact data sets). If a record ends up in a location that
is different from the original one, the Databridge Engine sees it
twice, resulting in a duplicate record.

The Client normally runs the script "script.clrduprecs.tablename"
when an index creation fails. This script removes all occurrences
of duplicate records, as they will be reinserted during the fixup
phase. You can inhibit the running of this script by resetting the
bit DSOPT_Clrdup_Recs (32768) in the ds_options column of the
DATASETS table entry. This must be done manually if you have
disabled this bit.

When this problem occurs, use the procedure described in "Using
SQL Query to Find Duplicate Records" to query for duplicate
records and remove them.

Alternatively, you can clone the data set when the database is
inactive or clone the data set offline (the Databridge Host
Administrator’s Guide provides information about cloning offline).

The Databridge Client
stops at the start of
the fixup phase with
the following error:

Stopping: Errors occurred

during data extraction

The Databridge Client stops at this point if records were
discarded. There are two types of discards:

Discards created by the Databridge Client because of data errors in items used as keys.

Discards created by the bulk loader because of internal errors. This type of error typically

does not occur. If it does occur, it indicates that the program failed to detect a data error.

The Databridge Client stops so that you can review these errors.
You can fix the data in the discard files that the Databridge
Client creates and load the records using a relational database
query tool. Alternatively, you can fix the bad data on the
mainframe and let the normal update processing take care of
things. If you restart the process command, the fixup phase
proceeds normally.

The Databridge Client
stops at the start of
the fixup phase with
the following error:

Stopping: Errors occurred

during index creation

The Databridge Client stops at this point if one or more index
creations fail. You need to determine why the index creation
failed and remedy the situation, if possible. For example, if you
did not have a large enough TEMP SEGMENT in Oracle, increase its
size and execute the index creation scripts using SQL*Plus. Once
the indexes are created, you can change the ds_mode of the
affected data sets to 1 and resume the process command, which
proceeds normally.

Tables that do not have indexes do not cause the Databridge Client
to stop at the beginning of the fixup phase. The Databridge Client
deselects such data sets and sets their ds_mode column to 11
before entering the fixup phase. Any subsequent process commands
will not select such data sets unless you fix the problem and set
their ds_mode columns to 1. You can re-clone such data sets at any
time.

•

•

15.1.2 Troubleshooting Table

- 192/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.1.3 Using SQL Query to Find Duplicate Records

Use the following SQL query to list the keys and the record counts for duplicate records in a table. Duplicate records result when the

given combination of keys is used as the index. This query is also useful when trying to determine if certain key combinations

produce a unique key.

If no records are duplicated, the output within the relational database query tool will indicate that no rows have been affected. If the

SQL query returns a GROUP of duplicates, do the following:

Manually delete the extra record or records for each combination of duplicate records.

Execute a dbutility runscript command for each table that contained duplicate records, specifying the index creation script as

follows:

Set ds_mode = 1 for each data set that contained duplicate records.

Execute a dbutility process command.

15.1.4 Log and Trace Files

The Databridge Client produces log files and trace files. This topic describes these files and the differences between them.

Log Files

The log file contains information about errors that the Client encounters and statistics that are useful in tracking performance

problems. Additionally the log contains messages that are useful when reporting problems to Micro Focus Technical Support (for

example, versions of the various host components). When a command is executed for a data source, one or more messages appear

onscreen and are written to the log file for that data source. Log files are created in the logs subdirectory of the data source's

working directory. Log files are named

dbyyyymmdd.log

Problem Solution

The Databridge Client
stops at the start of
the fixup phase with
the following error:

Stopping: Errors occurred

during data extraction and

index creation

This message indicates that both of the last two conditions have
occurred.

SELECT key_1, key_2,...key_n, COUNT(*) FROM tablename
GROUP BY key_1, key_2,...key_n
HAVING COUNT(*) >1

Where Is

key_1 key_2 key_n The list of columns that make up the index for the table.

tablename The name of the table for which the error occurs.

1.

2.

dbutility -n runscript dbscripts\script.index.*tablename*

3.

4.

If the query routine returns an unusually high number of duplicates, there may be more serious problems with your keys or the process that

creates them. For more information about how Databridge uses keys, see Creating Indexes for Tables.

Note

15.1.3 Using SQL Query to Find Duplicate Records

- 193/327 - © Copyright 2021 Micro Focus or one of its affiliates.

where db is a configurable prefix that can be redefined in the configuration file and yyyymmdd is the date the log file was created. A

time (_hhmnss) is appended to the filename if the filename is already in use. (For details about configuring the log via the file see

Export or Import a Configuration File.)

If more than one log file is created for a data source on the same date, the time of day is included after the date to make the

filename unique (for example, dbyyyymmdd_hhmnss.log).

Some messages are written only to the log file. These messages generally include information that may be useful when reporting

problems to Micro Focus Technical Support, such as version information for the various host and Client components, the OS version,

the database version and in the case of Microsoft SQL Server the ODBC driver version. We recommend you use the ODBC driver

version 17.4 or newer.

When sending log files to Micro Focus Technical Support always send the entire log file (do not screen shots or segments of the

file), as we capture a lot of information about the environment in which the Client was run at the beginning of the log file. In version

7.0 we repeat most of this information if a log switch occurs during the Client run. Knowing exactly what version of the software we

are dealing with is very important when trouble shooting.

Trace Files

Tracing is a powerful option that provides details on the internal processing of the Databridge Client.

Trace files are named

traceyyyymmdd.log

where trace is a user configurable prefix and yyyymmdd is the date the trace file was created. The file extension is .log . If more than

one trace file is created on the same date, the time is added after the date to make the filename unique. Trace files are written to the

working directory for the data source.

15.1.5 Using Log and Trace Files to Resolve Issues

When an error or problem occurs, use log and trace files to troubleshoot the cause.

Review the log file, which contains a record of all data errors.

To prevent problems caused by excessive trace and log file size, use the max_file_size parameters to limit file size. On UNIX,

the Client will crash if the trace file exceeds the system imposed file size limit.

If you are having problems and contact Micro Focus Technical Support, they may request a copy of the log file. We recommend

that you use a compression utility before sending the log file.

If Micro Focus Technical Support requests a trace, make sure that the old trace files are deleted before starting the Client with

the -t nnn (or -d) option. You will need to use a compression utility (such WinZip on Windows and gzip on UNIX) before

sending the trace file (which can be quite large). You can use the splitter utility to break up big trace files into smaller, more

manageable files. For help on running the splitter program, type splitter with no parameters.

The splitter program can also split binary files (for example, WinZip® files) that are too large to ship as an e-mail attachment.

The original file can be reconstructed from the split files by using the copy /B Windows command. When splitting binary files,

you must specify the -B option for the splitter program.

Trace files are only required if you experience a problem that requires further diagnostics by Micro Focus Technical Support. Do not enable

tracing during routine operations as the trace files tend to be huge. You can delete these files when you no longer need them.

Note

•

•

•

•

15.1.5 Using Log and Trace Files to Resolve Issues

- 194/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.1.6 Enabling Tracing

The trace option controls the volume and type of information written to the trace file.

To enable a trace using dbutility

Determine the type of trace you want. Then, add the value for each tracing option (see the table below), and use the result for

nnnn.

Specify the -t nnnn (or the -d) option using the following syntax:

dbutility -t nnnn command arguments

dbutility -d command arguments

where nnnn is a bit mask that specifies the tracing option. You can prefix it with 0x to provide the value in hex.

If you are not sure which tracing masks to use, use the -d option. This is the equivalent of -t 0xB7F , which enables the most

useful trace options.

You can enter other command-line options, such as -U , -P , and -D with the trace option. The order is not important as long as all

dash (-) options precede each command-line argument. (See dbutility Command-Line Options.)

(Optional) To analyze performance, you can use an additional command line option, -m . This option includes a five-digit

millisecond timer in all output messages. The timer is appended to the timestamp as (mmmmm).

(Optional) To change the trace option when the Databridge Client is running, use the commands explained in Controlling and

Monitoring dbutility.

To enable a trace from the Administrative Console

To create a trace file, you can use the available options in the Administrative Console by clicking on the "Trace and Log Options"

item in the data source's Advanced menu. If there is no active run for the data source the trace option you select will be applied to

the next launched run, and if there is an active run the tracing will be dynamically enabled for the run in question. The tracing

options are not persistent once they are used the Administrative Console clears them. If you want to start a run with tracing a

simpler option is to use the Process (with options) item in the Advanced menu of the data source and select the -d options, which

will give the default tracing, which is why you should use unless we tell you otherwise.

To enable tracing for a clone command only, the Clone item in the Advanced menu of the data source also allows you to select the

-d option. Alternatively you can clicking on the "Trace and Log Options" item in the data source's Advanced menu and select the

desired trace option.

To stop tracing, click on "Select None" in the Trace and Log Options dialog and push OK.

We recommend that you enable trace options only when directed to do so by Micro Focus Technical Support. Specifically, avoid full tracing, SQL

tracing, protocol tracing, or API tracing. The volume of logging data is so large it can dramatically slow performance of the Client and fill up your

hard disk. Compress files using a compression utility before you send them to Micro Focus Technical Support for analysis. Very large trace files

should be broken into manageable pieces with the splitter utility. For help on running the splitter utility, type splitter with no parameters.

Note

1.

2.

3.

4.

15.1.6 Enabling Tracing

- 195/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.1.7 Trace Options

15.1.7 Trace Options

- 196/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Decimal Hexadecimal Description

0 0 Disables tracing.

1 0x1 Writes log messages to the trace file in addition to trace
information.

2 0x2 Traces all SQL commands as the Databridge Client passes them
to the relational database. Typically, these messages are
SELECT or UPDATE SQL statements and stored procedure calls.

4 0x4 Traces all DBServer or DBEnterprise communications and key
actions associated with Databridge on the host, including RPC
calls such as DB_SELECT and DB_READ and their responses.

8 0x8 Traces information on the Databridge Client control tables as
they are loaded from the relational database (that is, load
tracing).

16 0x10 Enables relational database API tracing, which traces calls
from the Databridge Client to the ODBC, OCI or CLI APIs.

32 0x20 Traces the records that are written to temporary data files
(or UNIX pipes) and used by the bulk loader utility during the
data extraction phase of cloning.

64 0x40 Traces information exchanged between the Databridge Server and
the Databridge Client. The blocks of data are traced as they
are read and written to the TCP interface. The messages are
listed in DEBUG format, which is an offset followed by 16
bytes in hexadecimal, followed by the same 16 bytes
interpreted as EBCDIC text. The non-printable EBCDIC
characters are displayed as periods (.).

128 0x80 Traces all messages that are routed through the Databridge
Client Manager (primarily messages from the Administrative
Console and Client Configurator to the Client, DBClient).

256 0x100 Traces debugging output that is temporarily added to the
Databridge Client (primarily engineering releases).

512 0x200 Displays the configuration file parameters as they are
processed.

1024 0x400 Enables exchange of traces information between DBClient (or
DBClntCfgServer) and the service. The output looks like a
DBServer protocol trace, except for the fact that all the data
is ASCII.

2048 0x800 Enables SQL tracing while running user scripts during define

and redefine commands.

4096 0x1000 Prints the Read_CB exit line in the trace file. This option is
useful only for determining when the execution of a SQL
statement ends because the start of the subsequent wait for
TCP input is not traced.

8192 0x2000 Traces DOC records. This option provides the same information
you would get by setting trace option bit 4, which traces all
messages used in server communications. This bit allows you to
trace only the DOC records. When used in conjunction with 4
bit, this bit is redundant.

16,384 0x4000 This bit is reserved for internal use only.

32,768 0x8000 This bit is reserved for internal use only.

15.1.7 Trace Options

- 197/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Examples

Following are different ways you can set the logging options.

15.1.8 Trace Messages

Any of the messages in this section may appear in the trace file, depending on which options you select when you execute dbutility.

See Enabling a Trace. Successful executions of dbutility are separated by a line of 132 equal signs (=).

Decimal Hexadecimal Description

65,536 0x10000 Enables verbose tracing.

131,072 0x20000 Enables thread tracing.

262,144 0x40000 Enables DMSII buffer management tracing.

524,288 0x80000 Enables row count tracing.

1,048,576 0x100000 Enables SQL buffer size calculations.

2,097,152 0x200000 Enables load balancing tracing.

4,194,304 0x400000 Enables host variable tracing.

Log Option Example (Decimal and Dexadecimal) Result

dbutility -t 7

dbutility -t 0x7

Traces log data (1), SQL (2) and host
events (4)

dbutility -t 2943

dbutility -t 0xB7F

dbutility -d

Traces the most commonly desirable
options.

NOTE: Whenever Micro Focus Technical
Support asks

you for a trace, use the -d option, unless you are
told otherwise.

15.1.8 Trace Messages

- 198/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Database API Trace

Database API tracing is available via the -t 16 or -t 0x10 command-line option. The API trace messages trace calls to ODBC

(Microsoft SQL Server) or OCI (Oracle). The following messages may appear when you use database API tracing:

15.1.8 Trace Messages

- 199/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Message Description

Abort_Transaction: This message indicates that the Databridge Client is making
an API call to rollback the current transaction group.

Begin_Transaction: This message indicates that Databridge Client is starting a
transaction group.

BindColumnPtr, stmt=nnnn: This message only appears when the configuration parameter
aux_stmts has a nonzero value. It indicates that the columns
involving a host variable in the SQL statement that was
just parsed are being bound to a memory address. This
message follows every Parse_SQL message.

Bind_Record: col=number,
name=colname, ofs=number,
size=number, type=number

This message appears when the various data columns
referenced explicitly or implicitly in a select statement
are bound to fields in a program structure. This messages
lists the column number (col=number), item name
(name=colname), offset of the field in the structure
expressed as a hexadecimal number (entry ofs=number), size
of the field (in bytes) expressed as a decimal number
(size=number), and code for the sql_type of the column
(type=number).

Cancel_SQL: This message indicates that Databridge Client canceled a
SQL statement that failed to complete in the designated
time. The timer thread performs this operation when it
determines that the threshold specified by the
configuration parameter sql_exec_timeout has been reached.

Close_Database: This message indicates that a database session has been
closed. The Databridge Client typically uses two database
sessions at a time.

Commit_Transaction: This message indicates that the Databridge Client is making
an API call to commit the current transaction group.

Execute_PreParsed_ SQL for
stmt number, table 'name'

This message is immediately followed by the SQL_DATA
message, which displays the actual values of the host
variables for the pre-parsed SQL statement that is being
executed.

Execute_SQL: This message indicates that the Databridge Client called
the Execute_SQL procedure, which executes most SQL
statements not involving host variables. This call is
preceded by one or more calls on Process SQL, which
constructs the SQL statements in a temporary buffer.

Execute_SQL_Direct: This message indicates that the Databridge Client called
the Execute_SQL_Direct procedure, which executes SQL
statements directly (versus from the buffer that
Process_SQL creates).

Fetch_Results: No more rows This message appears when the Databridge Client loads the
Client control tables and indicates the no more rows are
available in the select statement result.

Fetch_Results: Row retrieved This message appears when the Databridge Client loads the
Client control tables and indicates that the Databridge
Client successfully read the row when it retrieved the
results of a select statement.

15.1.8 Trace Messages

- 200/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Message Description

OCIBindByName: col_name=
'name', addr=0xhhhhhhhh, len
=0xhhhh, ind=nn

This message, which is limited to the Databridge Client for
Oracle, indicates that the given column in the parsed SQL
statement was bound to a host variable at the given address
and the given length.

Open_Database: user =userid,
pwd=**, {db=database

data source=src}, rslt= dbhandle

Open_Stmt: Opened stmt nnnn This message indicates that the Client allocates a new stmt
structure associated with a SQL statement that uses host
variables. The Client allocates a maximum number of
auxiliary statements (configuration file parameter
aux_stmts) before it starts reusing these structures. The
Client reuses the least recently used (the oldest) stmt in
this case.

Oracle NLS parameter name=
value

This message appears when the Databridge Oracle Client
connects to the database. One of the first things it does
is to read the NLS parameters to determine the language and
decimal character being used. The Client then automatically
adjusts the connection so the Client operates properly in
the given environment. The bcp_delim parameter is
automatically set the value that SQL*Loader expects.

Parse_SQL: SQL[number]=stmt This message indicates that the SQL statement involving a
host variable is being parsed using the stmt in question.

Using host variables improves performance by only parsing
statements, binding the host variables to specific columns,
and executing the statement multiple time after setting the
host variables to the desired values.

Procedure_Exists(name) This message indicates that the Databridge Client called
the procedure Procedure_Exists, which reads the data
dictionary to determine if the given stored procedure
exists.

Process_SQL: SQL=SQLText This message, which should not be confused with a similar
SQL tracing message, overrides the SQL trace when both SQL
and API tracing are enabled. This avoids having duplicate
entries in the trace.

SQLBindParameter: col_no=nn ,
addr=0xhhhhhhhh, len=0xhhhh,
ind_addr=0xhhhhhhhh, ind=nn

This message, which applies to all ODBC Clients, indicates
that the given column in the prepared SQL statement was
bound to a host variable at the given address and the given
length. The ind column is an indicator that is used to mark
columns as being null.

SQL_DATA[number]= ...|...|... This message, which should not be confused with a similar
SQL tracing message, overrides the SQL trace when both SQL
and API tracing are enabled.

Table_Exists (name) This message indicates that the Databridge Client called
the procedure Table_Exists, which reads the data dictionary
to determine if the given table exists.

15.1.8 Trace Messages

- 201/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Bulk Loader Trace

Bulk loader tracing is available via the -t 32 or -t 0x20 command-line option. Bulk loader data tracing results in records of the

bulk loader data files (or UNIX pipes) being written to the trace file during the data extraction phase of cloning. Bulk loader data

trace messages are in the following form:

Configuration File Trace

The configuration file trace is available via the -t 512 or -t 0x200 command-line option. These messages log configuration file

parameters as they are being processed.

For example:

CONFIG: nnn. Config_file_line

If a binary configuration file is used, the Client uses the same output procedure as the export command to write the text version of

configuration file into the trace file.

Message Description

Build_Pipe_Stream:
table=name, record=data

where data is the actual ASCII data that is written to the
temporary data file (or UNIX pipe) used by the bulk loader
utility.

15.1.8 Trace Messages

- 202/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DBServer Message Trace

Databridge Server message tracing is available via the -t 4 or -t 0x4 command-line option. This trace highlights pertinent

information during communications with Databridge Server on the host. These messages are listed in the trace file and may include

the following:

15.1.8 Trace Messages

- 203/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Message Description

Common_Process: DBDeSelect
Table=name, stridx= nnnn, rslt=
errorcode

The DBDeselect RPC call is used to deselect data sets
that need to be excluded from change tracking. An
example would be a data set whose AA Values are
invalidated by a garbage collection reorganization.
This message shows the name of the data set and its
related structure index. If errorcode is nonzero, this
message is followed by a Host message.

Common_Process: DBSelect Table=name,
stridx=nnnn, rslt=errorcode

The DBSelect RPC call is used to select data sets
when the Databridge Client starts a process or a
clone command. This message shows the name of the
data set and its related structure. If errorcode is
nonzero, this message is followed by a Host message.

Datasets_CB: dataset_name [/rectype]
(strnum), subtype = dd,
ds_options=0xhhhhhhhh, misc_flags =
0xhhhhhhhh

CB stands for callback. This message shows the
receipt of a data set information record from the
Databridge Server during the execution of a define or
redefine command.

Define_Table_Items: table= name,
item=name data_type (sql_length)

This message shows the data type and SQL length of
data items as they are inserted in the Client control
tables. This occurs during execution of the define or
redefine command.

Get_Response: Req=req Rslt=rslt Len=len where req is the request type (RPC name), rslt is the
returned status (typically OK), and len is the number
of bytes of data that follow the status in the
response packet.

This message indicates that the Databridge Client
received a response to a remote procedure call other
than DBREAD or DBWAIT.

Layout_CB: DataSet = name[/rectype],
item (number) = name, data_type =
dd, dlen = dd, scaling = dd

CB stands for callback. This message shows the
receipt of a data set item layout information record
from the Databridge Server during the execution of a
define or redefine command.

Read_CB: Type=typename StrIdx=iii, aa=
hhhhhhhhhhhh

This message indicates that the Databridge Client
received a response from the Databridge Server in
response to a DBREAD or DBWAIT remote procedure call.

typename is the response name (CREATE, DELETE,
MODIFY, STATE, DOC, MODIFY_BI, or MODIFY_AI)

iii is the structure index assigned to the structure
when it is selected via the DBSELECT call

hhhhhhhhhhhh is the value of the absolute address of
the DMSII record (For protocol levels greater than 6,
this value is all zeros unless the data set uses the
AA Value as a key.)

15.1.8 Trace Messages

- 204/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Information Trace

Information tracing occurs via the default -t 1 or -t 0x1 command-line option. The information messages include the following

messages that are not displayed on the screen, as well as all messages that are displayed on the screen.

Message Description

Read_CB: Type=DOC[AF_HEADER],
Afn=afn, RectoQPT=dd, UpdateLev=ul,
TS='ts', DMSRel=nnn, DMSBuild=nnn,
AudLev=nnn, AFSize=nnn,
AFOrigin=orig,firstABSN=absn1,
lastABSN=absn2

This message is always sent to the Client when the
Databridge Engine opens a new audit file. It contains
information about the audit file, including the audit
file number afn, the update level ul, and the audit
file origin orig. This last item is particularly
useful when using DBEnterprise as it allows the
Client to detect what access method is being used to
read the audit file (i.e. direct-disk, indirect-disk
or cache).

Read_CB: Type=DOC [type], . . . This message is printed only when the
enable_doc_records parameter is set to Yes in the
configuration file. The Databridge Client uses the
DOC record only for debugging purposes. DOC records
are documentation records that are optionally sent by
the Databridge Engine to document the events that
occur while Databridge Engine is reading the audit
files.

The various types include BEG_TRAN, CLOSE, END_TRAN,
OPEN, REORG. The rest of the message varies based on
the DOC record type. In the case of BEG_TRAN and
END_TRAN, the message includes the transaction count,
while OPEN and CLOSE messages give information about
the job number, the task number and the task name of
the program that accessed the DMSII database. REORG
DOC records are sent to Client to notify it that some
sort of reorganization has occurred for the specified
structure index, which is printed out in the message.
The remaining DOC records are only identified by type
with no additional information.

Read_CB: Type=LINK_AI StrIdx= number This message indicates that the Databridge Client
received a DMSII LINK after image from the Databridge
Server in response to a DBREAD or DBWAIT remote
procedure call.

Message Description

command line echo Everything you type at the command-line is echoed in the trace file.

Current date is:
day month year

This is the date you ran the Client. It is used to identify sections of
the trace file as there might be several runs of dbutility logged to
the same trace file.

Negotiated
Protocol level =
n, Host version n.n

This is the negotiated protocol level that the Databridge Client and
the Databridge Server are using to communicate. For example, a protocol
level 7 Databridge Client and a protocol level 6 server use a
negotiated protocol level of 6 in all communications.

15.1.8 Trace Messages

- 205/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Load Trace

Load tracing is available via the -t 8 or -t 0x8 command-line option. Load tracing messages refer to the Client control tables. To

check these tables, use the dbutility display command. See dbutility Commands.

The Load External messages are displayed only during a dbutility define or redefine command. They indicate that the Databridge

Client is reading table names defined in other data sources to make sure that any newly-defined tables and indexes do not duplicate

table names or index names defined previously in other data sources.

The following messages may appear when you use load tracing:

If an OCCURS table filter is being used the Load Trace also includes a display of the filter data, which can also be generated by

using the display command of the makefilter utility. This immediately follows the log message "Loading binary filter file

"config\dbfilter.cfg" .

Message Description

Load: DataSet = name[/
rectype], strnum =
number, AFN = afn, ABSN
= absn

This message appears for every data set loaded from the DATASETS
Client control table. The message lists the data set name (and the
record type for variable-format data sets) as well as the
structure number, the audit file number, and the audit block
serial number. For most commands, this message appears for only
those data sets whose active column is 1.

Load: dms_item = name,
item_number = number,
DataSet = name[/rectype]

This message appears for every DMS item loaded from the DMS_ITEMS
Client control table. The message lists the data set name (and the
record type for variable-format data sets) as well as the DMSII
item name and the corresponding item number.

This message does not appear during the process and clone commands
because all of the information the DMS_ITEMS entries contain is in
the DATAITEMS Client control table.

Load: datatable =
name, DataSet = name[/
rectype]

This message appears for every data table loaded from the
DATATABLES Client control table. The message lists the data set
name (and the record type for variable-format data sets) and the
table name.

Load: dataitem = name,
datatable = name

This message appears for every data table loaded from the
DATAITEMS Client control table. The message also displays the
table name to which the item belongs.

Load External:
DataSource = name,
TableName = name,
IndexName = name

The Load External messages appear during a dbutility define or
redefine command only. They indicate that the Databridge Client is
reading table names defined in other data sources to make sure
that any newly-defined tables and indexes do not duplicate table
names or index names defined previously in other data sources.

Load: global_dataset =
Global_DataSet, AFN =
afn, ABSN = absn

This message appears when the global data set is loaded from the
DATASETS Client control table. Under normal circumstances, the AFN
and the ABSN is 0 as the Databridge Client sets these entries to 0
after it propagates the global stateinfo for all data sets that
have a value of 1 in their in_sync columns before the process
command terminates.

Filter: NumFilters = nnn, NumFilterEntries = nnn, ConstantPoolSize=0xhhhh
Constant Pool:
0000 hh hh hh . . .
Table 'name', filter_start = nnn, num_entries = nnn
 Type = ColumnName: item_name = 'name'
 Type = Constant: associated item,_name = 'name', offset = ddd, length = lll
 Type = Operator: op
 Type = Operator: END
. . .

15.1.8 Trace Messages

- 206/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Each OCCURS table that is being filtered has a starting index and a count that represents the number of tokens associated with the

table. Constants are associated with an item, whose properties they share. Constants are put into a global constant pool that is

shown in debug format. Individual constants are represented in DMSII native form (i.e. binary data). The offset into the constant

pool is used to reference a constant, its length is the same as that of the associated data item. An offset of -1 is used to denote a

NULL. The filters are represented in reverse polish form. The various operators are represented by 2 or 3 letter terms such as EQL, NEQ,

AND, OR and so on. Every filter ends with an END operator.

Protocol Trace

Protocol tracing is available via the -t 64 or -t 0x40 command-line option. Protocol traces display the data that is read from or

written to the TCP/IP interface during all communication with the Databridge Server.

SQL Trace

SQL tracing is available via the -t 2 or -t 0x2 command-line option. The following SQL messages may appear in the log file:

User Script Trace

User script tracing is available via the -t 2048 or -t 0x800 command line options. This causes the SQL statements in user scripts

to be traced only during a define or redefine command. This option provides a subset of the SQL Trace. This option has no effect

if SQL tracing is enabled.

Read Callback Exit Trace

Read callback exit tracing is available via the -t 4096 or -t 0x1000 command-line options. This causes the Client to display the

message shown below when it exits the read call back procedure. This indicates that the Client is done processing a data buffer and

is ready to read the next one. This is only useful when looking for reasons why the Client is running slow. In such cases we

recommend that the command-line option -m be used, as this will give you a finer granularity timestamp.

Message Description

read:
number_of_bytes_read

Received data. These messages are followed by a hexadecimal dump of
data in DEBUG format, with all data interpreted as EBCDIC text.
Non-printable characters are displayed as periods (.).

write:
number_of_bytes_read

Sent data. These messages are followed by a hexadecimal dump of
data in DEBUG format, with all data interpreted as EBCDIC text
displayed in ASCII. (Non-printable characters are displayed as
periods (.).

Message Description

SQL=sqltext Indicates general SQL tracing where sqltext is the actual SQL
command sent to the relational database.

SQL[number]=sqltext Indicates SQL tracing that involves host variables in the
Databridge Client for Oracle when the configuration parameter
aux_stmts has a nonzero value.

Number is the stmt number, and sqltext is the actual SQL command
sent to the relational database.

SQL_DATA[number]= ...|...|... This message shows the data being passed to the database API
when executing updates involving previously parsed SQL
statements that use host variables. Number is the stmt number.

15.1.8 Trace Messages

- 207/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Read_CB: Exit

DOC Record Trace

DOC record tracing is available via the -t 8192 or -t 0x2000 command line options. This causes the DOC records received from the

Databridge Engine to be traced during a process or clone command. This option is redundant when the Databridge Server

message tracing is enabled, see DBServer Message Trace.

Verbose Trace

Verbose tracing is available via the -t 65536 or -t 0x10000 command line options. These messages are described in the

Databridge Errors and Messages Guide and identified by using the TR_VERBOSE bit, which is the above-mentioned bit in the trace

mask.

15.1.8 Trace Messages

- 208/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Thread Trace

Thread tracing is available via the -t 131072 or -t 0x20000 command line options. These messages include the following:

15.1.8 Trace Messages

- 209/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Message Description

Bulk_loader thread[nn]

{started | ready |

exiting}

(Windows only) These messages indicate a change in the state of
the bulk loader thread(s).

started indicates that the thread was started. The thread is only started when there are

tables to be bulk loaded.

ready indicates that the thread is ready to process requests to run the bulk loader. The bulk

loader thread gets the load request from its work queue. If there is none, it blocks until one

becomes available.

exiting indicates that the thread is no longer needed and is exiting. At this point, the Client is

ready to start processing audit files, as soon as the index thread finishes creating indexes for

all of the tables that were cloned.

Bulk loader thread[nn]

starting {sql*loader |

bcp} for table 'name'

(Windows only) This message indicates that the bulk loader thread
in question is launching the bulk loader for the specified table.

Console_Reader thread

{starting | ready |

exiting }

These messages indicate a state change in the Console thread. The
command-line Client uses this thread to read console commands from
the keyboard. The service-based Client (DBClient) uses this thread
to handle console commands that originate in the GUI Console and
are passed to the Client as RPCs. The various states indicate the
following:

starting indicates that the thread was successfully started.

ready indicates that the thread is waiting for keyboard input in the case of dbutility and

waiting for an RPC in the case of DBClient.

exiting means that the thread is about to exit.

Index_creator thread

{started | ready |

exiting}

These messages indicate a state change in the index creator
thread.

started indicates that the thread was started because there are tables for which indexes

must be created.

ready indicates that the thread is ready to process requests to create indexes for tables.

The index creator thread gets the index creation request from its work queue. If there is none,

it blocks until one becomes available.

exiting indicates that the thread is no longer needed and is exiting. At this point, the Client is

ready to start processing audit files.

Update Worker thread [nn]

empty_work_queue, EOT=n,

SDW=n, n_active_threads=nn

This message, which is only seen when using multi-threaded
updates,.indicates that the specified update worker is performing
an update for the given table. It shows the address of the work
descriptor storage block that is used to queue the request. This
information is only useful if you are diagnosing a problem that
deals with the management of work descriptor storage blocks.

Update Worker thread [nn]

{started | ready |

exiting}

These messages, which are only seen when using multi-threaded
updates, indicate a state change in one of the update worker
threads.
> started indicates that the thread was started. The update threads
are started at the start of the process command.
ready indicates that the thread is ready to process requests to execute updates. The update

worker threads get the update requests from their work queues. If there is no request in the

queue, the thread blocks until one becomes available.

exiting indicates that the thread is no longer needed and that it is exiting. This only happens

when the Client is shutting down.

•

•

•

•

•

•

•

•

•

•

•

15.1.8 Trace Messages

- 210/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DMS Buffer Trace

Buffer size tracing is available via the -t 262144 or -t 0x40000 command-line options. This causes the Client to display the

following messages when a DMS buffer is gotten from the free buffer list or when it is returned to the list.

Row Count Trace

Row count tracing is available via the -t 524288 or - t 0x80000 command-line options. This causes the Client to display the

following message when the Client fetches the row count following the execution of a SQL statement. Note that in the case of user

scripts, using the -v option causes the exact same output to appear in the log file when a user script executes an update statement.

Rows updated = dd The value dd represents the number of rows updated.

Message Description

Waiting for bulk_loader

thread to finish

(Windows only) This message indicates that the bulk_loader thread
is not finished loading tables. The main thread, which is ready to
enter the fixup phase, must wait for these operations to complete
before updates can be processed. When the bulk loader thread is
finished it displays the message " Bulk_loader thread exiting ."

Waiting for index_creator

thread to finish

(Windows only) This message indicates that the index_creator
thread is not finished. The main thread, which is ready to enter
the fixup phase, must wait for these operations to complete before
updates can be processed. When the index creator thread is
finished, it displays the message " Index_creator thread exiting .”

Message Description

XDR_Get_Buffer:
buf=0xhhhhhhhh,
buf_cnt=dd, sem_cnt=dd

This line is printed every time a DMS buffer is gotten off the
free list; buf is the address of the buffer, buf_cnt is the
number of DMS buffer that have been allocated and sem_cnt is the
number of buffers that are available (note that all of these may
not yet have been allocated).

XDR_Return_Buffer:
buf=0xhhhhhhhh,
sem_cnt=dd

This line is printed every time a DMS buffer is returned to the
free list; buf is the address of the buffer, and sem_cnt is the
number of buffers that are available (note that all of these may
not yet have been allocated).

15.1.8 Trace Messages

- 211/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Buffer Size Trace

Buffer size tracing is available via the -t 1048576 or -t 0x100000 command-line options. This causes the Client to display the

following messages at startup when the control tables are being loaded.

Message Description

Item name: hv_len=dd, sqlcmd(oh=dd,
gr=dd), ins=(dd,dd), upd(dd, dd);
total ins=(dd,dd), upd=(dd,dd)

This line is printed every time a data item is
processed. It shows the contributions of the item
to the various SQL buffer sizes.

Computed SQLcmd lengths for table
name: [hv_len = dd,], sqlbuf_len = dd,
sql_buf2_len = dd, sql_buf_size = dd,
[thr_sql_buf_size = dd,] sql_buf2_size
= dd

At the end of the processing of the items in a
table this summary line is displayed. In the case
of the Flat File Client the sections enclosed in
square brackets are not present.

Buffer sizes are gSQLcmd/SQLCMDLEN =
dd/dd, gSQLcmd2 = dd

When all the tables have been processed this line
is displayed. It shows the sizes for the two SQL
buffers used by the main thread. When using multi-
threaded updates refer to the previous message to
see what the size of the update thread SQL buffers
are.

15.1.8 Trace Messages

- 212/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.2 Appendix B: dbutility Commands and Options

This appendix provides a list of all dbutility commands and command-line options. For a complete reference of command-line

options paired with their equivalent environment variables and configuration file parameters, see Reference Tables.

15.2.1 dbutility Commands

The following table lists all of the dbutility commands and their related command-line options.

Example

Assuming you want to override the environment variable for the relational database name (DBDATABASE) and enter a blank value

instead (which is the same as using the default database name). To do this, you enter either of the following:

The hyphen is used for all command options and is valid for Windows and UNIX. Windows users can substitute the slash (/) for a hyphen (-).

Note

`dbutility -U usera -P secret -D "" configure`

-or-

15.2 Appendix B: dbutility Commands and Options

- 213/327 - © Copyright 2021 Micro Focus or one of its affiliates.

`dbutility -U usera -D -P secret configure`

15.2.1 dbutility Commands

- 214/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command Purpose and Result

dbutility clone
datasource dataset1
[dataset2... datasetn]

Related command-line options: Signon options, -c , -f , -l , -m , -o ,
-s , -t , -u , -v , -x , -z , -A , -F , -K , -L , -N , -T

Run this command to clone or reclone (not track changes) a list of
data sets. Using the dbutility clone command is a convenient way of
cloning a few data sets without having to update the DATASETS Client
control table. For recloning with dbutility clone, see Recloning.

dbutility configure Related command-line options: Signon options, -f , -m , -t , -u , -L ,
-T

Run once for each set of Client control tables you want to create.
The result is empty Client control tables and their indexes in the
relational database. See Creating Client Control Tables.

NOTE: The only time you would run dbutility configure again for the
same relational database is if you previously executed a dbutility
dropall command.

dbutility define
datasource host port

Related command-line options: Signon options, -f , -m , -t , -u , -v ,
-L , -T

Run once for each data source you want to define except when
customizing with user scripts. See Customizing with User Scripts.
The result is a data source entry in the DATASOURCES Client control
table and all other Client control tables containing the DMSII
database layout and corresponding relational database table schema
information. See Defining a Data Source.

dbutility display
datasource

Related command-line options: Signon options, -a , -f , -m , -t , -B ,
-L , -T

Run this command to create a report of the Databridge Client control
tables for the specified data source. The report is written to the
log file in the logs directory. For more information about log
files, see Log and Trace Files.

Use this command to check the results of the dbutility define
command or script customization.

NOTE: When you use dbutility display, the column names for the
Client control tables are abbreviated. The actual column names and
the abbreviated column names are listed for each Client control
table in Chapter 6, Databridge Client Control Tables.

15.2.1 dbutility Commands

- 215/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command Purpose and Result

dbutility drop
datasource

Related command-line options: Signon options, -m , -t , -v , -L , -T

Run this command to undo the results of a dbutility define , generate ,
process , and clone for a specified data source. dbutility drop does
the following:

Drops tables and their associated stored procedures

Removes the script files in the current directory

Deletes the DMSII record layout and relational database table schema information (for the

specified data source) from the Client control tables

CAUTION: It is recommended that you create a separate directory for
each data source. When you must drop a data source, make sure that
the current directory is the directory you created for the data
source. Then, use the drop (not dropall) command to drop each
individual data source. Failure to do this results in dbutility not
being able to locate the required scripts, which causes it to
terminate with an error.

dbutility dropall Related command-line options: Signon options, -m , -t , -u , -L , -T

Run this command to drop all tables that have been created by the
Databridge Client, as well as removing the script files in the
current directory. Note that the other non Databridge tables are not
affected.

If you are executing dbutility commands from more than one
directory, the dbutility dropall command locates scripts in the
current directory only. In this case, it drops the scripts that it
can find and then refrains from removing the Client control table
entries for those data sources that it could not properly delete
(that is, the data sources whose scripts are in other directories).
Therefore, we recommend that you do either of the following:

Change the directory and repeat the dbutility dropall command.

Drop each data source via the drop command, then use dbutility dropall for the final data

source.

Typically, you do not need to use this command.

dbutility options
export filename

Related command-line options: -E , -u

Exports the binary Client configuration file to an editable text
file (dbridge.ini , by default) that can then be imported, using the
import command, for use with the Databridge Client. See Export or
Import a Configuration File.

dbutility generate
datasource

Related command-line options: Signon options, -f , -m , -t , -u , -v ,
-L , -T

Generates the Databridge Client script files required to populate
the Databridge data tables in the relational database.

The result is a set of scripts in the dbscripts subdirectory of the
working directory. There are approximately five scripts for each
DMSII data set.

See Generating Databridge Client Scripts.

•

•

•

•

•

15.2.1 dbutility Commands

- 216/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command Purpose and Result

dbutility options
import filename

Related command-line options: -E , -f filename, -u

Reads the specified input file and writes it as a binary Client
configuration file (dbridge.cfg , by default). See Export or Import
Configuration Files.

dbutility process
datasource

Related command-line options: Signon options, -f , -l , -m , -o , -s ,
-t , -v , -w , -z , -C , -K , -N , -L , -T

Run the first time to populate the Databridge tables in the
relational database with the DMSII database data. Run subsequent
times to update the relational database with only the changes that
have been made to the DMSII database since the last time you ran
dbutility process.

NOTE: dbutility process can also re-clone instead of update if
ds_mode=0 when you run dbutility process.

See Populating the Databridge Data Tables and Updating the
Databridge Data Tables.

dbutility redefine
datasource

Related command-line options: Signon options, -f , -m , -t , -u , -v ,
-r , -R , -L , -T

The redefine command compares the old and new layouts of all the
tables generated for data sets whose status_bits columns indicate a
structural reorganization.

The redefine command also does the following:

If a new data set appears, the redefine command defines it with its corresponding active

column set to 0 in the DATASETS Client control table (unless the suppress_new_datasets

parameter is set to False). When the active column is set to 0, the redefine command will not

perform any mapping for it unless you set the active column in the DATASETS entry to 1 in the

corresponding data set mapping customization user script.

If a data set no longer exists, the redefine command deletes all the associated Client control

table entries, but does not drop the data tables and their associated stored procedures. You

must delete them by running the corresponding scripts (these are not removed either).

The redefine command refreshes the data set mapping in three instances. First, the mapping

is refreshed when the data sets DS_Needs_Remapping bit is set (value 4). Use this method

when you modify the DATASETS and DMS_ITEMS tables. Because the data set mapping

customization scripts are not run in this instance, you must execute the runscript command

prior to executing the redefine command. Secondly, mapping is refreshed if a data set’s

active column is set to 1, and the DS_Needs_Mapping bit is set (value 1) in the status_bits

column. Lastly, mapping is refreshed when you set the DS_Needs_Redefining bit (value 8). In

this case, the redefine command refreshes the DMSII layout as well.

If a data set has an active column set to 0, and the DS_Needs_Mapping bit is set (value 1) in the

status_bits column, the layout information is refreshed, but no mapping is performed.

The redefine command sets the active columns of the Client control tables equal to zero for

data sets that contain global data. No other data sets are affected by the redefine command.

You must execute a generate command after a redefine command to update the scripts.

•

•

•

•

•

15.2.1 dbutility Commands

- 217/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command Purpose and Result

dbutility [options]
refresh datasource
dataset

Related command-line options: Signon options

The refresh command enables you to drop and recreate all of the
stored procedures for the tables associated with the given data set
in the specified data source. It is a variation of the runscript

command that is designed to run portions of the Databridge Client
scripts (script.drop.tablename and script.create.tablename). This command
is useful when you want to add a new column to a table after a DMSII
reorganization.

If _ALL is specified for dataset, the program refreshes the stored
procedures for all active tables. If a specific data set is
specified, only the stored procedures for that data set are
refreshed. All data sets specified must already exist.

NOTE: When variable-format data sets are involved, the tables for
all of the record types that have their active column set to 1 in
the DATA SETS Client control table are refreshed.

dbutility reload
datasource backupfile
[dataset, dataset2...]

Related command-line options: Signon options, -f , -k , -m , -t , -L ,
-T

Restores the Client control tables from a file that the unload

command creates. If a datasource of _ALL is specified, all data
sources contained in the backup file are restored. If a specific
data source is specified, only the entries for that data source are
restored from the file. The reload operation is sensitive to the
version of the program that wrote the backup file.

As an option, you can provide a list of data sets to be loaded. If
such a list does not exist, all data sets for the given data source
are reloaded. The -k option preserves the stateinfo for data sets
whose format levels and item counts remain unchanged.

dbutility rem . . . A dummy command that opens the log file and echoes the command-line
into it. The purpose of this command is to make it possible for
script files or operators to create a log file entry to document the
action that was taken. For example:

dbutility rem accidentally killed the Client – JaneDoe

dbutility reorg
datasource

Related command-line options: Signon options

Generates new scripts for stored procedures and refreshes the
relational database stored procedures. The reorg command resets
ds_mode to 2 (indicating that the data set is in tracking mode).

Typically, you would use the reorg command after the redefine

command when a reorganization has occurred on the DMSII database.

dbutility rowcounts
datasource

Related command-line options: Signon options, -f , -m , -t , B , -L ,
-T

Creates a report in the log file with all the row counts for all the
active tables associated with the data source.

15.2.1 dbutility Commands

- 218/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Command Purpose and Result

dbutility runscript
filename

Related command-line options: Signon options, -m , -n , -t , -L , -T

Use this command to run user scripts (for example,
script.user_define.primary_tablename) or Databridge Client scripts (for
example, script.create.tablename).

The Databridge Client expects the user scripts to be located in the
directory specified by user_script_dir in the Databridge Client
configuration file. To override this directory specification, use
the -n option, as follows:

dbutility -n runscript drive:\directory*scriptfilename*

The runscript command automatically enables SQL tracing and logging
(similar to setting the -t 3 option).

The runscript command runs in transaction mode and if an error
occurs, all changes get rolled back. You can then fix your scripts
and run the command again.

dbutility switchaudit
datasource

Related command-line options: Signon options, -f , -k , -m , -t , -v ,
-L , -T

Run this command to close an audit file on the host. This ensures
that you get the most current information possible because the
Databridge Engine does not read the currently open audit file. DMSII
audit files are explained in detail in the Databridge Host Administrator’s
Guide.

IMPORTANT: Do not use this command unless you check with the DMSII
database administrator first.

dbutility tcptest
datasource [host port]
length count

Related command-line options: Signon options, -f , -m , -t , -L , -T

Run to test the TCP/IP interface between the Databridge Client and
the server. You can use this command as a diagnostic tool to help
troubleshoot slow network connections.

If the data source is already defined, you do not have to specify
the host and the port parameters; the program reads them from the
DATASOURCES table entry instead.

Length is the size of the message to use and count is the number of
iterations that should be executed. 8000 and 1000 are standard
values with these options.

dbutility unload
datasource backupfile

Related command-line options: Signon options, -f , -k , -m , -t , -L ,
-O , -T

Creates a file containing a backup of the Client control tables. If
a datasource of _ALL is specified, all of the data sources that are
found in the Client control tables are written to the backup file
backupfile. If any other data source is specified, only the entries
for that data source are written to the file.

15.2.1 dbutility Commands

- 219/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.2.2 dbutility Command-Line Options

This section explains the command-line options you can enter with dbutility commands, with all lowercase options first in

alphabetical order and all uppercase options following. Use the following syntax to include the command-line options:

dbutility [options] command

where [options] begin with the forward slash (/) or hyphen (-) and are followed by a letter and a possible argument, as listed in the

following table. If you use a UNIX Client, all options must start with a hyphen (-). Note the following guidelines for using

command-line options:

All options are case-sensitive.

The options can be used in any order.

When you enter any of these command-line parameters, do not type the [brackets]. The [brackets] indicate that the command-

line parameter is optional.

Following the option letter, you can enter option arguments with or without a space. For example, -tl and -t l are

equivalent.

If an argument is blank (an empty character string), you can omit it if the next entry on the command line is another option

(for example, -D). Otherwise, you must enter the blank argument as " " (quotation marks) with both leading and trailing

spaces.

Examples

Assume you want to override the environment variable for the relational database name and enter a blank instead (which is the

same as the using the default database name). To do this, you could enter either of the following:

•

•

•

•

•

dbutility -U usera -P secret -D "" configure
dbutility -U usera -D -P secret configure

15.2.2 dbutility Command-Line Options

- 220/327 - © Copyright 2021 Micro Focus or one of its affiliates.

(Both of these examples override the environment variable DBDATABASE.) For a complete reference of command-line options paired

with their equivalent environment variables and configuration file parameters, see Reference Tables.

15.2.2 dbutility Command-Line Options

- 221/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This option Does this

-? Displays short help, which includes dbutility command syntax and parameters
but not options.

-a Toggles the setting of the display_active_only parameter.

-c Toggles the setting of the defer_fixup_phase parameter during a clone command.

-d When used with any dbutility command, this option enables full tracing. This
is the same as entering -t 8191 (or -t 0x1FFF).

If you are not sure whether to use the -d option or the -t option, you may
want to use the -d option. It is often better to have too much tracing
information than not enough.

-f filename Specifies an input configuration file other than the default filename when
used with an import command. If filename doesn't start with a backslash (\)
on Windows or a forward slash (/) on UNIX, it is assumed to be in the config
subdirectory of the working directory. Conversely, if the filename starts
with the appropriate slash, it is taken to a full file specification.

-h Displays long help, which includes dbutility command options, syntax, and
parameters.

-k Used with a reload command to preserve the stateinfo for data sets whose
format levels and item counts remain unchanged.

Used by the process , clone and drop commands in a multi-source environment to
force the Client to drop tables rather than running the cleanup script. This
is designed to be used after a reorg that requires a re-clone. Otherwise, you
would have to physically drop the affected table(s) to get the clone to
recreate the table(s) with the new layout. Now you can use the -k option on
the first data source that gets re-cloned; from thereon the -k option must
not be used.

-l (SQL Server only) forces the Client to use the bcp utility instead of the BCP
API.

-m Includes a 5-digit millisecond timer in all trace messages. The millisecond
timer is appended to the timestamp in the trace file. This option does not
affect log file output.

-n Used with the runscript command to override your entry for user_script_dir so
that you can run any script that is not located in that directory.

-o Overrides shutdown periods, including those initiated by the stop_time and
end_stop_time values in the DATASOURCES Client control table for the data
source entry when the controlled_execution configuration file parameter is
enabled.

15.2.2 dbutility Command-Line Options

- 222/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This option Does this

-r Forces the parameter use_dbconfig to be treated as False when running a
redefine command. The use_dbconfig parameter is internal and not directly
editable. However, this parameter is set to True in the following situations:

When a data source is created using the Administrative Console

When a define command creates the data source and no users scripts are encountered

When you run the dbscriptfixup program

In all other cases, including after an upgrade using the migrate program, the
use_dbconfig parameter is set to False.

Its purpose is to ensure that the Administrative Console isn't run with
improperly setup Client control tables. This would cause all changes that
were made via user scripts to be lost.

-s Loads relational database tables that cannot be loaded via the bulk loader
utility (SQLLoader for Oracle and bcp for Microsoft SQL Server).

The -s option inhibits the use of the bulk loader utility during the data extraction phase of cloning.
The Databridge Client loads the table using SQL statements instead.

CAUTION:* Use this option only when certain tables will not load via the bulk
loader utility. Do not use this option under normal circumstances. The -s

option slows the cloning process considerably.

The -s option is also used by the createscripts command to add the data
source name in all where clause of the SQL statements that are created.

-t mask Enables trace options designated by mask. See Enabling a Trace for more
information.

If you are unsure whether to use the -d option or the -t option, you may
want to use the -d option. It is often better to have too much tracing
information than not enough.

-u Creates override conditions that dbutility would otherwise interpret as a
possible user error. These situations include the following:

Creating a second set of Client control tables within one relational database. In this case, the second set of

tables must be owned by a different user ID.

Start over by dropping and creating the Client control tables, even though this removes all of the state

information associated with the user tables.

Attempting to define a data source that already exists.

With the dbutility dropall command, use this option to drop Databridge Client
tables that still contain data.

-v Causes the Databridge Client to write some additional information to the log
file and sometimes to the screen. The most useful one is causing user scripts
executed by the Client to write the number of rows affected by INSERT, UPDATE
and DELETE SQL statements to the log file.

-w Toggles the setting of the use_dbwait parameter.

-x Makes the clone command clone all active data sets except for those specified
at the command line.

-y Forces the Client to re-clone data sets with a mode of 11 and 12.

•

•

•

•

•

•

15.2.2 dbutility Command-Line Options

- 223/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This option Does this

-z CAUTION: This option is for troubleshooting only in a test environment. Do not

use it in a production environment.

Allows dbutility to simulate a dbutility process or clone command without
actually storing data. For troubleshooting purposes.

After the Client control tables are loaded for the specified data source, the
program sets a global flag that disables all SQL execution by the ODBC
(Microsoft SQL Server) or OCI (Oracle) interface routines.

Using this option with statistics enabled (show_statistics and show_perf_stats

both set to True) to determine the rate at which the Databridge Engine and
the Databridge Client can process data without including any of the
additional delays caused by the relational database. If this rate is
significantly slower than the rate you get when the -z option is set, you
can conclude that the slowness is caused by the actual relational database,
which might need to be tuned.

-A Prevents the Client from deleting the tables when cloning virtual data sets
that have the DSOPT_Ignore_Dups option bit (value 32) set in the ds_options

column of the DATASETS Client control table. Instead, it drops their indexes
and appends the new records to the tables.

-B Causes the display command to report only the second half of the DATASETS
Client control table to the trace.log file, then causes the program to quit.
(In most cases, the information in the second half of the DATASETS Client
control table is the only information you actually need from that table.)

-C Toggles the inhibit_console parameter. On UNIX, this doesn't apply if you run
dbutility as a background run.

-D
databasename

(Oracle only) Specifies the relational database you are using.

-F afn Makes the Client act as if a QUIT AFTER afn command had been executed. Applies
only to process and clone commands. The range of values allowed are 1 through
9999.

-K Inhibits audit file removal WFLs from running on the host during a process
command. This option is also implied during a clone command and when used
with the -z option.

-L Forces the Client to start using a new log file.

-N Toggles the setting of the enable_optimized_sql parameter.

-O

ODBCdatasource
Specifies an ODBC data source that the Client uses to connects to the
Microsoft SQLServer database.

-P password Defines the password for accessing the relational database.

-R Treats every data set as if its DS_Needs_Redefining status bit is set and
allows the program to rebuild the control tables when you change a
configuration parameter such as optimize_updates or read_null_records .

-T Forces the Client to start using a new trace file. See Log and Trace Files.

-U userid Specifies the user ID defined in the relational database.

15.2.2 dbutility Command-Line Options

- 224/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This option Does this

-V Used with the unload command, this option lets you specify the control table
version. To create tables that you can use with an older Client version, use
the value that corresponds to that version.

Values for the Databridge Client are as follows:

33: Version 7.0

31: Version 7.0

30: Version 6.5 SP1

29: Version 6.5

26: Versions 6.2 and 6.3

25: Version 6.1 SP3

24: Version 6.1

23: Version 6.0

22: Version 5.2.0.12

21: Version 5.2.0.3

20: Version 5.2 (base release)

19: Version 5.1

-W NOTE: Uses Integrated Windows Authentication to connect to the SQL Server
database.

-X password Used to define a host password. The host password is required only when it is
configured on the host in the DBServer control file.

CAUTION: The password is currently not encrypted in communications between
the Databridge Client and Databridge Server.

-Y
reclone_all

Causes a process command to re-clone all data sets. The text reclone_all is
required and prevents you from accidentally recloning everything, when you
actually wanted to specify the -y option. When using the console, specify
this option by selecting a check-box labeled “Reclone all active data sets.”

To find this option, click the data source in Administrative Console Explorer

view to activate the Data Source menu, then click Data Source > Advanced > Process

with options.

-Z Forces a process or clone command to drop and create the tables of all re-
cloned data sets, regardless of the use of the deleted_record or expanded
update_type columns.

•

•

•

•

•

•

•

•

•

•

•

•

15.2.2 dbutility Command-Line Options

- 225/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3 Appendix C: Client Configuration

15.3.1 Client Configuration Files

The Databridge Client 6.1 and later versions use binary configuration files. Binary configuration files are compatible with both

service-initiated operations and command-line operations. However, if you use the service, you must use binary configuration files.

(Command-line operations can use either binary or text configuration files. For information about creating text configuration files,

see Export or Import a Configuration File.)

The Databridge Client software uses the following configuration files:

The service configuration file (dbcontrol.cfg). This file contains settings for the service (Windows) or daemon (UNIX) that

specify scheduling, passwords, logs, and more. For more information, see Appendix F: Service Configuration.

Data source configuration files (dbridge.cfg) used by the Databridge Client programs (DBClient, DBClntCfgServer and

dbutility). Each data source has its own configuration file, which can be updated using the Administrative Console's Configure

command in the data source's menu. The Client configuration file overrides any equivalent parameter settings on the host.

In a new installation, the service creates the service configuration file in the config directory of the service's working directory (also

referred to as the global working directory) the first time the service is started. The service also creates the logs and scripts sub-

directories of the service's working directory at that time. When you add a data source in the Administrative Console, the service

creates a binary configuration file "dbridge.cfg" for the data source. Data source configuration files are stored in the config

subdirectory of the data source's working directory.

In an upgrade, as long as you are upgrading from version 6.1 SP3 or newer, you should be able to use the same working directory.

If this is not possible, rename the old working directory and use the Migrate utility to recreate it using the old name (you must use a

different working directory). You will also want to use this utility if you are upgrading from software older than 6.1 or you are

switching from command line operations to service based operations. The Migrate utility takes your existing configuration files and

creates new data source configuration files from them. It also creates a new service configuration file and adds your preexisting data

sources to it.

15.3.2 How Do I Edit the Configuration File?

Each time you change your configuration settings in the Administrative Console, you update the binary configuration files. If you

need to change a parameter that is not supported by the Administrative Console, you can export the binary configuration file to a

readable text file. After you edit the text file, you can import the updated file to create a new binary configuration file. The import

command performs all the necessary checks to ensure that your changes are valid. If you don't like the idea of using binary files for

command-line operations, you can force the export command to replace the binary file with an equivalent text file.

Because passwords are encoded in the configuration file, there is no way to read them. If a password is wrong, export the

configuration file and reenter the password as plain text. Then, import the file and export it again to remove the unencoded

passwords from the text configuration file. Alternatively, you can use the Administrative Console or the dbpwenc utility to change

passwords.

15.3.3 Export or Import a Configuration File

Use the export command to create an editable text file from your configuration file. If no configuration file exists, the export

command creates a text file with the default configuration settings. After you make your changes, the import command will convert

the text file to binary for use with the Client. Text configuration files can only be used with the command-line Client.

•

•

You should never directly modify a binary configuration file. This will corrupt the file.

Caution

15.3 Appendix C: Client Configuration

- 226/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The export and import commands are typically used from a command line; the Administrative Console supports only the export

command (the Export Configuration item in the data source's Advanced menu.). When you export the configuration file, the

Databridge Client creates a text file that reflects the current values of the configuration parameters. Any passwords in the file are

automatically encoded.

To export the configuration file for a data source

Open a command session and run the following command:

dbutility [options]export [filename]

where [filename] is an optional parameter to name an exported file something other than the default "dbridge.ini".

The exported text file is written to the config subdirectory of the data source's working directory.

To import the configuration file for a data source

Use this procedure to create a binary configuration file from a text Client configuration file.

Open a command session and run the following command:

dbutility [options] import [filename]

where [filename] is an optional parameter to specify a filename other than the default, "dbridge.ini". When no option or

filename is specified, the import command processes the text file dbridge.ini in the config directory and creates an

equivalent binary configuration file, "dbridge.cfg", in the same directory. If the file "dbridge.ini" does not exist in this location,

the import command creates a binary configuration file with the default values. If the text file contains errors, the Client

returns an error to help you identify the problem and no binary file is created.

If you overwrite an existing text configuration file with this file, any comments you had in the previously existing file will be lost. To change or

encode a password that was manually entered in a text configuration file, use the password encoding utility dbpwenc from a command line. See

Change or Encode a Password.

Caution

•

Option Description

-u Use this option if you export a text file named "dbridge.cfg". This allows the Client to overwrite the existing

binary configuration file "dbridge.cfg" with a text configuration file of the same name.

For example:

dbutility -u export dbridge.cfg

•

Option Description

-f filename Use this option to specify a filename or path other than the default. If this option is omitted, the Client tries to

read the file "dbridge.cfg" in the config directory of the data source's working directory.

To indicate a different location, type a backslash (Windows) or forward slash (UNIX) followed by the full path,

including filename. For example, /home/user/xyz/foo/myconfig.cfg

-u This option is required to allow the existing configuration file to be overwritten with a new file with the same

name. Otherwise, the Client will try to read (import) the configuration from a file named "dbridge.ini".

For example, the following command:

dbutility -u -f dbridge.cfg import

imports (reads) a file named "dbridge.cfg" and creates the binary configuration file "dbridge.cfg" regardless of

whether the imported file is a text or binary file.

15.3.3 Export or Import a Configuration File

- 227/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To export the service configuration file

Open a command session and from the Client's global working directory, run the following command:

This command reads the binary configuration file "dbcontrol.cfg" in the config sub-directory of the global working directory

and creates an editable text configuration file "dbcontrol.ini" in the same location.

To import the service configuration file

Open a command session and run the following command:

This command reads the text configuration file "dbcontrol.ini" in the config sub-directory of the global working directory and

creates a binary configuration file named "dbcontrol.cfg" in the same location.

15.3.4 Change or Encode a Password

Use this procedure for any of the following situations:

To change the password for the user ID that you use to sign on to the database in your text or binary configuration file

When the KEY (host password) on the host has changed and you need to update and encode the hostpasswd value in the

Client configuration file. The KEY can only be changed by editing the DBServer control file (DATA/SERVER/CONTROL) on the

host.

Passwords in the Client configuration file are automatically encoded when you use the export command to export the file (see

Export or Import a Configuration File).

To change a password

When using a text Client configuration file, make sure that the password and hostpassword entries are uncommented.

Open a command prompt session and set the directory to the working directory of the appropriate data source.

To change or encode the password, enter the following command:

Make sure that the host password matches the password in the Databridge Server control file (DATA/SERVER/CONTROL) on the

host.

The Databridge Client configuration file is updated with the encoded password, similar to the following example:

•

dbctrlconfigure export

•

dbctrlconfigure import

•

•

1.

[signon]
user = user1
password =
datasource = BANKDB_S
hostpasswd =

2.

3.

dbpwenc -p

dbpwenc Description

-h Displays help for the password encoding utility (dbpwenc).

-p Changes the relational database password and encodes it. You must supply both the new and the old passwords.

-q Changes the Databridge Server password and encodes it. You must supply both the new and the old passwords.

-f filename filename is the name you have given the Databridge Client configuration file. Use this option only when you have

changed the configuration file name from its default ("dbridge.cfg"). If necessary, you can also include the directory

path.

4.

[signon]
user = user1
password = 9610ac320e9571e0d35020d15190610412131816
datasourse = BANKDB_S
hostpasswd = e617dc2316120d0a371003031c00230067c99551

15.3.4 Change or Encode a Password

- 228/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.5 Command-Line Options

The following command-line options have no equivalent configuration parameter:

15.3.5 Command-Line Options

- 229/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Option dbutility Command Description

? Short help

-d All Full Tracing

-f filename All Specifies

-h Long help

-k reload Makes the command preserve the
stateinfo of data sets that have a
ds_mode of 2 and have not been
reorganized.

-m All Includes a 5-digit millisecond timer
in all output messages.

-r redefine Toggles the setting of the parameter
use_dbconfig , which determines whether
the command uses user scripts.

-t mask All Log file and tracing options

-u configure , define , redefine ,
generate and dropall

Unconditionally performs the
requested command, overriding any
warnings that would be displayed
without this option

-w clone or process Toggles the setting of the use_dbwait

parameter.

-x clone Clones all active data sets except
those specified at the command line

-y process Instructs the Client to re-clone all
data sets whose ds_mode has a value
of 11 or 12.

-z clone or process Instructs dbutility to not update the
relational database during a clone or
process command.

This option is useful in determining
how much non-database time is
required to extract data for a data
set.

-A clone or process Prevents the Databridge Client from
dropping a table during a clone (the
Databridge Client drops only the
index).

-B display Causes the display command to quit
after displaying the DATASETS Client
control table records.

-D database All Specifies the name that identifies
the Oracle instance or the Net8
service that is being accessed.

-F afn process Use this option make the Client act
as if a QUIT AFTER afn command had
been executed. It applies to process

and clone commands only. The range of
values allowed for afn are 1-9999.

15.3.5 Command-Line Options

- 230/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.6 Syntax

Follow these conventions in the configuration file:

For hexadecimal values, use the 0x nnnn format.

A semicolon (;), except within double quoted strings, indicates that the remainder of the current line is a comment.

Section headers are enclosed in square brackets.

Section headers and parameter names are not case-sensitive.

Spaces and tabs between entries are ignored; however, spaces within double quoted values (for example, password values) are

read.

If you are not using a parameter, either comment the parameter out or delete the corresponding line in the configuration file. Do

not leave an uncommented parameter without a value after the equal sign (=). Doing so results in syntax error.

You can specify some of these parameters only in the Client configuration file. Other parameters have equivalent command-line

options and environment variables. For a complete list of configuration file parameters, their equivalent command-line options, and

their related Client command, see Reference Tables.

Option dbutility Command Description

-K process Prevents the audit file removal WFL
from being run on the mainframe after
the Engine finishes processing an
audit file.

-L All Forces the Client to start using a
new log file.

-O
ODBCdatasource

All Specifies the ODBC data source to
connect to (SQL Server Client only).

-P password All Sets the password associated with the
user ID for the relational database.
The password is limited to 30
characters.

-R redefine Forces all data sets to be redefined.

-T All Forces the Client to create a new
trace file when tracing is enabled.

-U userid All Specifies the user ID for the
relational database. The user ID must
have the appropriate resource
privileges for the designated
relational database.

-W All Specifies that the configuration
parameter use_nt_authen should be set
to .

-Y process Causes all active data sets to be re-
cloned.

-Z clone or process Forces the Client to drop and create
the tables of all re-cloned data
sets, regardless of the use of the
deleted_record or expanded update_type

columns.

•

•

•

•

•

•

15.3.6 Syntax

- 231/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.7 Sample SQL Server Client Configuration File

You can view the configuration file for SQL Server by using the Export command. See Export or Import a Configuration File.

To use a parameter that is commented out, delete the semi-colon (;) and after the equals sign (=), enter a value that is appropriate

for your site. Boolean parameters can be represented by True or False.

In the example below, some of the commented-out parameters have a value of -1. These parameters include the Databridge Engine

control file parameters that can be overridden by the Client (commit frequency parameters and engine workers). This value indicates

that the corresponding parameter in the Databridge Engine (or Server) control file will not be overridden by the Client. Do not

uncomment these lines, unless you want to supply an actual value. Otherwise, the Client will issue an error.

;
; Databridge Client version 7.0 SQL Server configuration file -- generated programmatically
;

[Signon]
;user = USERID
;password = PASSWORD
;datasource = DATASOURCE
use_nt_authen = false
;hostpasswd = HOSTPASSWD

[Log_File]
file_name_prefix = "db"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true
single_line_log_msgs = false

[Trace_File]
file_name_prefix = "trace"
;max_file_size = 0

[Bulk_Loader]
bcp_batch_size = 100000
bcp_code_page = "ACP"
;bcp_copied_msg = "rows copied"
bcp_packet_size = 0
max_bcp_failures = 5
max_errors = 10
max_temp_storage = 400M
use_bcp = true
verify_bulk_load = 1

[Params]
;
; (1) define/redefine command parameters
;
allow_nulls = true
auto_mask_columns = true
automate_virtuals = false
bracket_tabnames = false
clr_dup_extr_recs = true
convert_ctrl_char = false
default_user_columns = 0x00000000
dflt_history_columns = 0x00000000
enable_dms_links = false
enable_dynamic_hist = false
;external_column[n] = ["name"][,[sql_type][,[sql_length][,"default"]]]
extract_embedded = false
flatten_all_occurs = false
force_aa_value_only = 0
history_tables = 0
inhibit_required_opt = false
;maximum_columns = 0
min_varchar = 4
minimize_col_updates = false
miser_database = false
optimize_updates = false
read_null_records = true
reorg_batch_size = 50000
sec_tab_column_mask = 0x00000000
split_varfmt_dataset = false
strip_ds_prefixes = false
suppress_dup_warnings = false
suppress_new_columns = false
suppress_new_datasets = true
use_bigint = false
use_binary_aa = false
use_clustered_index = false
use_column_prefixes = false
use_date = false
use_datetime2 = false
use_dbconfig = true
use_decimal_aa = false
use_internal_clone = false
use_nullable_dates = false
use_primary_key = false

15.3.7 Sample SQL Server Client Configuration File

- 232/327 - © Copyright 2021 Micro Focus or one of its affiliates.

use_stored_procs = false
use_time = false
use_varchar = true
;
; (2) process/clone command parameters
;
alpha_error_cutoff = 10
aux_stmts = 100
;batch_job_period = 00:00, 00:00
century_break = 50
;commit_absn_inc = -1
;commit_idle_database = -1
;commit_longtrans = -1
;commit_time_inc = -1
;commit_txn_inc = -1
;commit_update_inc = -1
controlled_execution = false
convert_ctrl_char = false
;convert_reversals = -1
correct_bad_days = 0
dbe_dflt_origin = direct
defer_fixup_phase = false
discard_data_errors = false
display_bad_data = false
enable_af_stats = false
enable_doc_records = false
enable_minimized_col = false
enable_optimized_sql = true
;engine_workers = -1
error_display_limits = 10,100
inhibit_8_bit_data = false
inhibit_console = false
inhibit_ctrl_chars = false
inhibit_drop_history = false
keep_undigits = false
linc_century_base = 1957
;masking_parameter[n] = "str"
max_clone_count = 10000
max_discards = 0,100
max_retry_secs = 20
max_srv_idle_time = 0
max_wait_secs = 3600,60
min_check_time = 600
n_dmsii_buffers = 0
n_update_threads = 8
null_datetime_value = 19010101
null_datetime2_value = 19010101
null_digit_value = 9
numeric_date_format = 23
preserve_deletes = false
set_blanks_to_null = false
set_lincday0_to_null = false
show_perf_stats = true
show_statistics = true
show_table_stats = true
sql_exec_timeout = 180,0
sql_heart_beat = 0
statistics_increment = 100000,10000
stop_after_fixups = false
stop_after_gc_reorg = false
stop_after_given_afn = false
stop_on_dbe_mode_chg = false
track_vfds_nolinks = true
use_ctrl_tab_sp = true
use_dbwait = false
use_latest_si = false
;
; (3) Server options
;
;shutdown {until | for} hh:mm after stop
;stop {before | after} task "name"
;stop {before | after} time hh:mm[:ss]
;
; (4) generate command parameters
;
;global_table_suffix = "str"
;create_table_suffix[n] = "str"
;global_index_suffix = "str"
;create_index_suffix[n] = "str"
;user_column_suffix[n] = "str"
;
; (5) miscellaneous command parameters
;
display_active_only = true
;
; (6) user scripts
;
user_script_bu_dir = ""
user_script_dir = "scripts"
;
; (7) external data translation parameters
;
use_ext_translation = false
eatran_dll_name = "DBEATRAN.DLL"

[Scheduling]
;

15.3.7 Sample SQL Server Client Configuration File

- 233/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.8 Sample Oracle Client Configuration File

; dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 3600
;sched_retry_secs = 3600
;blackout_period = 00:00, 02:00

[EbcdicToAscii]
; e1 = a1
; e2 = a2
; ...
; en = an
;

[DBConfig]
default_date_fmt = 21
global_type0_changes = true

[Encryption]
ca_file = ""
ca_path = ""
certify_server_name = false
enable_encryption = false
tls_host_name = ""

;
; Databridge Client version 7.0 Oracle configuration file -- generated programmatically
;

[Signon]
;user = USERID
;password = PASSWORD
;database = DATABASE
;hostpasswd = HOSTPASSWD

[Log_File]
file_name_prefix = "db"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true
single_line_log_msgs = false

[Trace_File]
file_name_prefix = "trace"
;max_file_size = 0

[Bulk_Loader]
;bcp_code_page = <code_page>
;bcp_decimal_char = -1
enable_parallel_mode = false
inhibit_direct_mode = false
max_bcp_failures = 5
max_errors = 10
max_temp_storage = 400M // Windows only
sqlld_bindsize = 65536
sqlld_rows = 10000
verify_bulk_load = 1

[Params]
;
; (1) define/redefine command parameters
;
allow_nulls = true
automate_virtuals = false
clr_dup_extr_recs = true
convert_ctrl_char = false
default_user_columns = 0x00000000
dflt_history_columns = 0x00000000
enable_dms_links = false
enable_dynamic_hist = false
;external_column[n] = ["name"][,[sql_type][,[sql_length][,"default"]]]
extract_embedded = false
flatten_all_occurs = false
force_aa_value_only = 0
history_tables = 0
inhibit_required_opt = false
;maximum_columns = 0
min_varchar = 4
minimize_col_updates = false
miser_database = false
optimize_updates = false
read_null_records = true
reorg_batch_size = 50000
sec_tab_column_mask = 0x00000000
split_varfmt_dataset = false
strip_ds_prefixes = false
suppress_dup_warnings = false

15.3.8 Sample Oracle Client Configuration File

- 234/327 - © Copyright 2021 Micro Focus or one of its affiliates.

suppress_new_columns = false
suppress_new_datasets = true
use_binary_aa = false
use_dbconfig = true
use_clob = false
use_column_prefixes = false
use_decimal_aa = false
use_internal_clone = false
use_nullable_dates = false
use_primary_key = false
use_stored_procs = false
use_varchar = true
;
; (2) process/clone command parameters
;
alpha_error_cutoff = 10
aux_stmts = 100
;batch_job_period = 00:00, 00:00
century_break = 50
;commit_absn_inc = -1
;commit_idle_database = -1
;commit_longtrans = -1
;commit_time_inc = -1
;commit_txn_inc = -1
;commit_update_inc = -1
controlled_execution = false
;convert_reversals = false
correct_bad_days = 0
dbe_dflt_origin = direct
defer_fixup_phase = false
discard_data_errors = false
display_bad_data = false
enable_af_stats = false
enable_doc_records = false
enable_minimized_col = false
enable_optimized_sql = true
;engine_workers = -1
error_display_limits = 10,100
inhibit_8_bit_data = false
inhibit_console = false
inhibit_ctrl_chars = false
inhibit_drop_history = false
keep_undigits = false
linc_century_base = 1957
max_clone_count = 10000
max_discards = 0,100
max_retry_secs = 20
max_srv_idle_time = 0
max_wait_secs = 3600,60
min_check_time = 600
n_dmsii_buffers = 0
n_update_threads = 8
null_digit_value = 9
numeric_date_format = 23
preserve_deletes = false
;rollback_segment_name = ""
set_blanks_to_null = false
set_lincday0_to_null = false
show_perf_stats = true
show_statistics = true
show_table_stats = true
sql_exec_timeout = 180,0
sql_heart_beat = 0
statistics_increment = 100000,10000
stop_after_fixups = false
stop_after_gc_reorg = false
stop_after_given_afn = false
stop_on_dbe_mode_chg = false
track_vfds_nolinks = true
use_ctrl_tab_sp = true
use_dbwait = false
use_latest_si = false
;
; (3) Server options
;
;shutdown {until | for} hh:mm after stop
;stop {before | after} task "name"
;stop {before | after} time hh:mm[:ss]
;
; (4) generate command parameters
;
;global_table_suffix = "str"
;create_table_suffix[n] = "str"
;global_index_suffix = "str"
;create_index_suffix[n] = "str"
;user_column_suffix[n] = "str"
;
; (5) miscellaneous command parameters
;
display_active_only = true
;
; (6) user scripts
;
user_script_bu_dir = ""
user_script_dir = "scripts"
;
; (7) external data translation parameters

15.3.8 Sample Oracle Client Configuration File

- 235/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.9 Processing Order

Configuration file options override environment variables. Command-line options override both environment variables and

configuration file options.

The parameter processing order is as follows:

The operating system login name (user ID) is used as the lowest level default for the database user ID.

Environment variables (DBUSERID, DBPASSWD, DBDATABASE, and DBHOSTPW).

Command-line options -d (for full tracing), -v (for verbose messages), -t (for creating a Databridge Client trace file) and -

T (for forcing the Client to start a new trace file), and -f (for specifying a configuration file other than the default

dbdridge.cfg). These options are processed in the order in which they appear on the command line.

Parameters specified in the configuration file. You can specify the configuration file via the -f option. If you do not specify a

configuration file name via the -f option, dbutility tries to open the default configuration file (dbridge.cfg in the config

subdirectory of the data source's working directory); if the file does not exist, the Databridge Client uses the default values for

all the configuration file parameter. The absence of a configuration file is not treated as an error only when running the

command-line Client. If you use the service or daemon, the absence of a configuration file named "dbridge.cfg" is treated as an

error.

All remaining command-line options. In the final pass, a command-line option with a configuration file equivalent overrides

the configuration file entry.

15.3.10 Parameter Descriptions

Accessing configuration parameters in the Administrative Console

The Administrative console allows you to directly update all the parameters described in this section, except for those in the signon

section.

;
use_ext_translation = false
eatran_dll_name = "DBEATRAN.DLL"

[Scheduling]
;
; dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 3600
;sched_retry_secs = 3600
;blackout_period = 00:00, 02:00

[EbcdicToAscii]
; e1 = a1
; e2 = a2
; ...
; en = an
;

[DBConfig]
default_date_fmt = 21

[Encryption]
ca_file = ""
ca_path = ""
certify_server_name = false
enable_encryption = false
tls_host_name = ""

•

•

•

•

•

15.3.9 Processing Order

- 236/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The parameters in the signon section are specified when adding a new data source. When using the Administrative Console to

update configuration parameters, you need to take the following actions:

Navigate to the Client Managers page, Datadridge Servers > Client Managers .

Click on the desired Client Manager. This displays the data sources page.

From the Settings menu click on Configure, this opens the Client Parameters dialogs.

We provide the navigation steps to get to the parameter in question in the line that starts with " Console: " for most parameters. The

first item is the page name in the left pane. Some of these items have an associated "+" icon, which when clicked on display the

additional items. Clicking on any of these items opens the corresponding dialog page. The directions for items within the page are

enclosed in parentheses and typically include a group name followed by the start of the item name within the group. For example:

PROCESSING > DMSII Data Error Handling (Character data error > Change to space). In this case you need to click on either

PROCESSING or the "+" after it and then click on DMSII Data Error Handling and go to the "Character data error" group and look

for "Change to space".

Change the parameters you need to change and Click Save when done, unless you want to make changes in other property pages.

You can navigate to other property pages and make changes until you are ready to save your changes by pushing the Save button

at which point all your changes will be applied.

When you push the Save button, if there are errors in your changes you will get a pop-up telling what you did wrong. You can then

go back in the Client Configuration parameter dialog pages and correct the errors and push Save again when done.

[signon]

Use the [signon] section of the "dbridge.cfg" file to enter information for signing on to the relational database and Databridge Server

on the host.

The configuration file must include the data source (or database, if using Oracle), signon parameters to access the relational

database, and a user and a password (unless you use the SQL Server Client with Integrated Windows authentication).

1.

2.

3.

4.

5.

6.

15.3.10 Parameter Descriptions

- 237/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When using the Administrative Console, you need to supply these parameters at the time you create the data source. To do so, right-

click on the service in the tree view and click Add Data Source from the pop-up menu to open the dialog and enter these parameters.

15.3.10 Parameter Descriptions

- 238/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

database Default: None
Command-line option: -D

(Oracle) This parameter is the name that identifies the Oracle instance or the
Oracle Net Services node that is being accessed. If the name contains non-
alphanumeric characters, you must enclose it in double quotation marks, as
follows:

database = "orcl.cin.microfocus.com"

datasource Default: None
Command-line option: -O

(Microsoft SQL Server) This parameter is the name that identifies the ODBC
data source used to access the SQL database. This ODBC data source is
configured using the Control Panel during the Client installation.

hostpasswd Default: None
Range: 17 alphanumeric characters
Command-line option: -X

Use the host password parameter to specify the password associated with
Databridge Server on the host. This parameter must match exactly the KEY
parameter defined in the Host Server control file. For example:
DBServer

KEY = "Secret"

dbridge.cfg

hostpasswd = Secret

password Default: None
Command-line option: -P

Use the password parameter to specify the password associated with the user ID
for the relational database. The password must be valid for the user ID or the
connection to the relational database server will fail.

Passwords are limited to 30 characters. If your password contains non
alphanumeric characters other than the underscore, you must enclose it in
double quotes, as follows:

password = "a$bb%"

NOTE: Passwords starting with Oracle 11g release 2 are case-sensitive.

The password is always encoded in both text and binary versions of the Client
configuration file. For more information, see Export or Import a Configuration
File or in the Databridge Administrative Console Help, see "Export the Client
Configuration to a File." Passwords that are communicated between the
Databridge Client and Databridge Server are not encoded.

user Default: None
Command-line option: -U

Use the user parameter to specify the user ID for the relational database. The
user ID must have the appropriate resource privileges for the designated
relational database, as explained in Setting Up a User ID (Windows) in the
Databridge Installation Guide.

15.3.10 Parameter Descriptions

- 239/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[signon] parameters with equivalent environment variables

[Log_File]

Use the [Log_File] section to control the various options for the log file that is created in the logs subdirectory of the working

directory for a data source.

When using the service, two sets of Client log files are generated. The DBClient program and the command-line Client dbutility use

log files, whose default names are of the form dbyyyymmdd.log . The DBClntCfgServer program uses log files, whose names are of

the form db_cfgyyyymmdd.log . The prefix "db" can be changed by specifying a file_name_prefix in the log section of the Client

configuration file.

Parameter Description

use_nt_authen Default: False
Range: True or False
Command-line option: -W

The use_nt_authen parameter applies to Microsoft SQL Server Clients only.

Use Windows ODBC Data Source Administrator to set the required ODBC data
source authentication method. The SQL Server database must be installed with
the proper authentication mode selected; either SQL Server, Integrated
Windows, or Mixed Mode (that is, using both methods). When using Integrated
Windows authentication, Windows Administrators are automatically included in
the SQL Server user list. The SYSTEM account is only included in versions of
SQL Server older than 2012. For more information, see the Databridge Installation
Guide.

Use this parameter as follows:

Set it to True when Microsoft SQL Server is set to use Integrated Windows Authentication for access to the

SQL Server database.

Set it to False when Microsoft SQL Server is set to use its own SQL Server authentication. The SQL Server

verifies the authenticity of the login ID with SQL Server authentication using a Login ID and password entered

by the user.

•

•

[signon]
Parameter

Environment
Variable

Option dbutility Command

database DBDATABASE -D All (only applies to Oracle)

datasource -O All (does not apply to SQL Server)

hostpasswd DBHOSTPW -X define , redefine , process , clone , and
switchaudit

password password -P All

user DBUSERID -U All

15.3.10 Parameter Descriptions

- 240/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When using the Administrative Console, click on the LOGGING item to get the "Client Log parameters" page of the dialog, enter prefix

in the edit box titled "File name pefix".

15.3.10 Parameter Descriptions

- 241/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

file_name_prefix Default: "db"
Range: 1 to 20 characters
Recommended value: data source name

Use this parameter to change the prefix of the log files for this data
source. We recommend using the name of the data source as the prefix as
this ensures that log files created on the same date but for different
data sources have unique names. The log files have names in the form
dbyyyymmdd.log or when necessary, dbyyyymmdd_hhmiss.log (This command
allows you to replace the prefix "db" by any character string, provided
that it results in a legal file name.)

logsw_on_newday Default: False
Range: True or False

This parameter determines whether or not the Client uses a new log file,
when the date changes. You may want to set this parameter to False, if
your log files are small and use the logsw_on_size parameter to manage
the log files.

logsw_on_size Default: False
Range: True or False
Recommended value: True (when running real/time)

Use this parameter to control whether or not the Client should check the
log file size to see if it has reached the size defined by the
max_file_size parameter. If the size of the log file exceeds this
parameter the log file is closed and a new one is opened. If the current
date is different than the creation date of the old file, which is part
of its name, the new log file will be of the form dbyyyymmdd.log
otherwise the time component will be added to the file name to ensure
that the name is unique.

max_file_size Default: 0
Range: numeric value, optionally followed by K, M, or G
Recommended value: 1M

Use this parameter to limit the size of log files. The default value of
0 indicates that no limit is imposed on the size of log file. The
suffixes of K, M and G allow you to specify the maximum file size in
kilobytes, megabytes, or gigabytes. A value on the order of 1 MB is a
reasonable value to use. The file size is always checked when you start
the Client, regardless of the setting of the logsw_on_size parameter.
When the logsw_on_size parameter is set, the log file size is also
checked when the Client starts processing a new audit file.

newfile_on_newday Default: True
Range: True or False

This parameter forces the Client to create a new log file when it starts
if the existing log file was created on an earlier date. You may want to
set this parameter to False, if your log files are small and use the
logsw_on_size parameter to manage the log files.

15.3.10 Parameter Descriptions

- 242/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[Trace_File]

Use the [Trace_File] section to control the various options for the trace file, created in the trace subdirectory of the working directory

for a data source.

When using the Administrative Console, click on LOGGING > Trace Log to get the Trace parameters page of the dialog.

[Bulk_Loader]

The bulk loader parameters apply to the bulk loader utility for your relational database -- SQL*Loader for Oracle and bcp SQL

Server.

Parameter Description

single_line_log_msgs Default: False
Range: True or False

The single_line_log_msgs parameter tells the Client to make all of its log
file output messages single-line messages. When this parameter is set to
True, the end-of-line character of all multi-line outputs are replaced
by a space. This parameter exists to assist some log file analysis
programs that fail to parse multi-line output messages.

Parameter Description

file_name_prefix Specifies a string (up to 20 characters in length) to change the default
prefix "trace".

max_file_size Specifies the size limit of trace files. You can enter a number with a
suffix of K, M and G to indicate the unit of measure (kilobytes, megabytes,
or gigabytes).

15.3.10 Parameter Descriptions

- 243/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When using the Administrative Console, click on the BULK LOADER to get to the "Bulk loader parameters" page of the dialog.

15.3.10 Parameter Descriptions

- 244/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

bcp_batch_size Default: 100,000 rows per batch
Range: 0 or 1000–10000000 rows per batch
bcp and BCP API: SQL Server

Specifies the batch size used during the bulk loader operations. This is
parameter supplied to the bcp utility, to make it load the table in
several batches of the given size. When using the BCP API after
bcp_batch_size rows are loaded, the Client calls bcp_batch to commit
these rows. Permitted values are 0 or 1000-10000000 (rows per batch). A
value of zero causes the bcp utility to load the entire group of records
in the data file in one batch. Copying all of the rows of a very large
table in one batch may require a high number of locks on the Microsoft
SQL Server database.

When you specify a nonzero value, the Databridge Client adds the -b

batch_size option to the bcp command line. A value of 0 omits the -b
option.

bcp_code_page Default: ""
Range: “String”
Bulk Loader utility: SQL Server and Oracle

Adds the line "CHARACTERSET <code_page> " to the SQL*Loader control file.
Consult the Oracle documentation for the exact names of the code pages
as Oracle uses their own notation. The typical code page for 8-bit
character data is "WE8ISO8859P1". You need to specify a bcp_code_page

when dealing with a UTF8 database.

bcp_copied_msg Default: NULL (omitted)
Range: Any “quoted string”
Bulk Loader utility: SQL Server

Enables the bcp_auditor utility to determine whether or not a bulk loader
was successful in cases where the database language is not English. For
example, in German, this parameter is "Zeilen kopiert", but in English,
it is "rows copied". If this parameter is not set correctly, the
bcp_auditor reports bulk loader failures even though the bulk loader
worked correctly.

The bcp_auditor program also accepts the bcp_copied_message in binary
format expressed as the text "HEX_" followed by a string of hexadecimal
values representing the values of each byte. This allows you to
circumvent code page related problems, which can sometimes corrupt the
bcp_copied_message when it is passed to the bcp_auditor program as a command-
line argument. For example, the string
"HEX_6C69676E657320636F7069E965732E" can represent the French message
"lignes copiées." (The character "é" does not cause any problems when
expressed as "E9".)

15.3.10 Parameter Descriptions

- 245/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

bcp_decimal_char Default: -1 (This parameter is commented out.)
Range: a period (.) or a comma (,)
SQL * Loader: Oracle Clients only

This parameter is normally auto-detected by the Client that gets its
value by reading the of Oracle database's NLS_NUMERIC_CHARACTERS
parameter. This method will work correctly when the Client and the
database reside in the same machine. However, if the Client is run
outside the database machine, there is no guarantee that the Oracle
Client software, that the Databridge Client uses, will have the same NLS
settings as the target database. For example it is possible to have a US
Oracle Client software in the Client machine that connects to a
Brazilian database. In this rather unusual situation you would have to
set the bcp_decimal_character to ‘.’ as it will default to ',' which will
lead to SQL*Loader errors in for all records that have numeric data with
a decimal point.

bcp_delim Default: Tab (SQL Server)

bcp utility: SQL Server

This parameter works as follows with the various Clients:

Oracle:

The string "delim" is not configurable, the Client always uses the
vertical bar as the delimiter. The Client sets the bcp decimal_character

by reading the database’s NLS parameters.

SQL Server:

The string bcp_delim can be longer than one character. This is useful if
the data contains alpha fields with TAB characters that need to be
preserved. (A possible delimiter value in this case would be "|" or
"||"; see inhibit_ctrl_chars)

bcp_packet_size Default: 0 (which omits the -a option)
Range: 0 or 512–65535 (decimal or hexadecimal)
bcp utility: SQL Server (remote servers only)

Defines the network packet size value for the bcp utility. Use this
parameter when you have wide tables. For wide tables, setting this
parameter to a packet size larger than the bcp default (4096) can speed
up loading the data into the table.

When you specify a nonzero value, the Databridge Client adds the " `-a

pkt_size " option to the bcp command line in the .CMD scripts.

If you omit this parameter, or if you specify a value of 0, the
Databridge Client omits the " -a pkt_size " option and the bcp utility uses
the default network packet size of 4096.

15.3.10 Parameter Descriptions

- 246/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

enable_parallel_mode Default: False
Range: True or False
SQL*Loader: Oracle
Related parameters: inhibit_direct_mode

This parameter, which is only meaningful when DIRECT mode is enabled,
causes the generate command to add the specification "parallel = true"
to the SQL*Loader command line. Parallel mode makes the SQL*Loader run
faster at the expense of additional system resources.

inhibit_direct_mode Default: False
Range: True or False
SQL*Loader: Oracle
Related parameters: enable_parallel_mode , sqlld_rows , and sqlld_bindsize

Controls whether the generate command adds the specification
"direct=true" to the SQL*Loader command line. If your Oracle database is
on the same machine as the Databridge Client, you would let this
parameter assume its default value of False, as DIRECT mode is much
faster than conventional mode. Conversely, if your Databridge Client
accesses a remote Oracle database using SQL*Net between two dissimilar
architectures (for example, Windows and UNIX), you must use conventional
mode by setting this parameter to True.

Setting inhibit_direct_mode to True inhibits the use of the direct=true
option when invoking SQL*Loader in the command files. It is provided for
your convenience so that you do not to have to remove the string
"direct=true" from every call on SQL*Loader.

When you enable inhibit_direct_mode , we recommend that you increase the
size of sqlld_bindsize for better performance.

max_errors Default: 10
Range: 0–1000
Bulk loader utility and BCP API: All

Controls the bulk loader’s tolerance to records that are discarded due
to data errors. Use this parameter when you have many bulk loader
errors. Increasing the maximum error count allows you to gather all the
errors in one run rather than finding 10 errors and then having to start
over again.

For example, if you are having problems cloning a table, you may want to
increase the count to 1000 or more to get all the errors in one cloning
or process session. Knowing the type of errors helps you to solve the
problems.

The default value for this parameter is 10, which means that the bulk
loader aborts after encountering 10 bad records. These bad records are
written to the discard file and information about the error is written
to the bulk loader log file.

For information about these files, see Files Related to SQL*Loader and
Files Related to BCP.

15.3.10 Parameter Descriptions

- 247/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

max_bcp_errors Default: 5
Range: 0-1000

This parameters is designed to prevent the Client from blindly
extracting all the selected data sets when the number of tables with
load failures reaches the specified threshold. A value 0 indicates that
the Client should proceed regardless of the number of failed loads.

max_temp_storage Default: 400 MB
Range: 10 MB–3 GB (or 0)
Bulk loader utility: bcp for SQL Server or SQL*Loader for Oracle
Applies to: Windows Clients

This parameter activates the segmented bulk load feature, which allows
you to specify the maximum amount of storage that the Client should use
for temporary files.

Because the Client cannot stop in the middle of a record, you can expect
it to use slightly more storage than the value you specify. Therefore,
select a value less than the total amount of free space available on the
disk. We recommend that you keep this value low as there is no real
advantage to attempting to load large tables all at once. If you set the
value too high, thye Client can run out of storage while it is writing
temporary files.

You can specify the max_temp_storage value as an integer with any of the
following suffixes:

K (or KB) for kilobytes (default)
M (or MB) for megabytes
G (or GB) for gigabytes

The space between the number and the suffix is optional.

NOTE: The valid range for this parameter is 10 MB to 3 GB (0xC0000000).
You must specify values greater than 0x7FFFFFFF without a suffix. The
value you enter for max_temp_storage must be a whole number.

sqlld_bindsize Default: 64K bytes
Range: 0x10000–0x400000 (decimal or hexadecimal)
SQL * Loader: Oracle
Related parameters: inhibit_direct_mode , sqlld_rows

Defines the value to be used for the BINDSIZE parameter for SQL*Loader

operations. Increasing this value can speed up SQL*Loader operations when
using conventional mode (for example, running remote to a database on a
UNIX system. Use sqlld_rows and sqlld_bindsize when you are running the
Client for a remote Oracle database running on UNIX or Windows.

A larger bind size and row size can increase the speed of the load
across Oracle Network Services at the expense of using more memory.

15.3.10 Parameter Descriptions

- 248/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

sqlld_rows Default: 100
Range: 10–100,000 rows
SQL*Loader: Oracle
Related parameters: inhibit_direct_mode , sqlld_bindsize

Defines the value to be used for the ROWS specification for SQL*Loader

operations. Use sqlld_rows and sqlld_bindsize when you are running the
Client for a remote Oracle database running on UNIX or Windows.

A larger bindsize and row size can increase the speed of the load across
Oracle Network Services at the expense of using more memory.

use_bcp Default: true
Range: True or False
Bulk Loader utility: SQL Server

The SQL server Client can operate with the bcp utility or the BCP API.
This parameter determines the default value used by the define and
redefine commands when setting the ds_options for the various data sets.
We recommend using the bcp utility as it is more reliable than the BCP
API. If you have a lot of record types with some variable format data
sets, you should definitely set them to use the bcp utility, as you may
end up with a lot database connections during their data extraction, as
each table being loaded requires each own database connection when using
the BCP API.

verify_bulk_load Default: 1
Range: 0, 1, or 2
Bulk loader utility: All

Determines how you want the Databridge Client to handle the results of
the bulk loader operations during data extraction, as follows:

Setting and Description

0: The Databridge Client does not verify the results of bulk loader operations.

1: The Databridge Client retrieves the number of rows in the table and compares it to the number of

rows handled by the bulk loader. If the two counts differ, the Databridge Client displays a warning

message.

2: This setting is the same as the preceding setting 1, except that the Databridge Client terminates so

that you can investigate the reason for the mismatch.

•

•

•

15.3.10 Parameter Descriptions

- 249/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[params]

The [params] section of the configuration consists of the following groups of command parameters:

Define and Redefine Command Parameters

The following parameters are included in the [params] section of Databridge Client configuration file. The parameters listed in this

section affect only the define and redefine commands.

ALLOW_NULLS

Default: False

Range: True or False

Console: CUSTOMIZING (General > Allow NULLs)

The allow_nulls parameter specifies whether or not the define and redefine commands should set the DAOPT_Nulls_Allowed bit

(value 1) in the da_options column of the DATAITEMS Client control table. This means that both DMSII null data and data items

that contain bad values (excluding keys) will be stored as relational database NULLs.

You can set this parameter in the Client Configuration dialog box of the Administrative Console or by using data table

customization scripts. To avoid storing NULL data as values that are possibly legitimate (0 or 999), keep this parameter set to True.

AUTO_MASK_COLUMNS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Preserve DMSII MASKING option)

The parameter auto_mask_columns specifies whether the Databridge Client should automatically mask columns whose

corresponding items in DMSII have DATAMASK specifications in the DASDL.

AUTOMATE_VIRTUALS

Default: False

Range: True or False

Console: PROCESSING > Advanced (General > Automated virtual data sets)

This parameter enables code that automatically handles virtual data sets that must be linked with their parent data sets using the

virtual_ds_num , real_ds_num , and real_ds_rectype columns in the DATASETS Client control table. These links are currently set up

via user scripts. When this option is enabled, you simply issue a process command. When issuing a clone command, the virtual

data sets do not have to be explicitly specified on the command line.

For this group See this topic

define and redefine Define and Redefine Command Parameters

process and clone Process and Clone Command Parameters

Server options Server Option Parameters

generate Generate Command Parameters

display Display Command Parameter

User scripts User Scripts Parameters

External data translation DLL support [Bulk_Loader]

15.3.10 Parameter Descriptions

- 250/327 - © Copyright 2021 Micro Focus or one of its affiliates.

BRACKET_TABNAMES

Default: False

Range: True or False

Applies to: SQL Server Client only

Console: CUSTOMIZING (General > Use brackets ...)

The parameter bracket_tabnames specifies whether the Databridge Client should allow data set names that are TRANSACT_SQL

reserved words to be used as table names or they should be renamed. If this parameter is set to True all such table names are

enclosed in square brackets in all SQL statements used by the Client. If the parameter is set to False the Client renames them by

adding "_x" to the data set name.

CLR_DUP_EXTR_RECS

Default: True

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Clear duplicate ...)

This parameter defines the initial value of the DATASETS table ds_options bit DSOPT_Clrdup_Recs. When this bit is set, the

Databridge Client runs a script to remove false duplicate records after the index creation fails. These duplicate records are caused by

long cloning of an active DMSII database where the extraction process can see the same record more than once if it moves. In

addition to indirectly affecting the process and clone commands, this parameter indirectly affects the generate command.

The ds_options bit DSOPT_Clrdup_Recs causes the following actions:

When set to False, the Databridge Client ignores false duplicate records. If there are false duplicate records, the index creation

will fail. In this case you must manually remove the false duplicate records and recreate the index before the fixup phase can

continue.

When set to True, the generate command creates a script (named "script.clrduprecs.tabname) that removes records with

duplicate key values. This script will run only if the create index step fails. After the duplicate records are deleted, the index

creation and fixup phases continue as normal.

CONVERT_CTRL_CHAR

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , discard_data_errors , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (Character data error > Control character)

The convert_ctrl_char parameter applies to DMSII data items of type ALPHA.

Use this parameter as follows:

Set convert_ctrl_char to True if you want the Databridge Client to replace all control characters in ALPHA data with spaces.

This is usually the result of host applications whose record layouts are out-of-sync with the DMS database.

Set convert_ctrl_char to False if you want the Databridge Client to not change control characters to spaces. Depending on

your setting for alpha_error_cutoff , the column that contains control characters may be set to NULL, but at least the problem

field will be identified. Then, you can decide whether to set this parameter to True and ignore the bad data.

In summary, before you set this option to True, set alpha_error_cutoff to a low value and set display_bad_data to True to

determine whether or not it is safe to ignore the control characters.

•

•

Do not set the convert_ctrl_char parameter to True unless you are absolutely certain that eliminating control characters will have no

adverse effects on the data. For example, eliminating control characters can cause some fields to be misinterpreted.

This parameter and the parameter inhibit_ctrl_chars are mutually exclusive. If you attempt to set them both to True, the configuration

file scanner will generate an error.

Note

•

•

•

•

15.3.10 Parameter Descriptions

- 251/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When using the Administrative Console, these two parameters are presented as 3 radio buttons ("Change to space", "Change to ?""

and "Translate if possible"). This prevents you from setting both mutually exclusive parameters to True.

DEFAULT_USER_COLUMNS

Default: 0

Range: 0 - 16383 (Some bit combinations are not allowed.)

Console: CUSTOMIZING > User Columns Section Two

The default_user_columns parameter adds non-DMSII columns (user columns) to all the tables mapped from data sets in the Client

database. You can add additional user column to history tables using the dflt_history_columns parameter, see

dflt_history_columns. You can also exclude certain user columns from secondary tables using the sec_tab_column_mask parameter,

see sec_tab_column_mask.

When using the Administrative Console use the checkboxes in the Primary Tables column to set corresponding the bits for the

dflt_user_columns parameter.

DFLT_HISTORY_COLUMNS

Default: 0

Range: 0 - 16383 (Some bit combinations are not allowed.)

Console: CUSTOMIZING > User Columns Section Two

The dflt_history_columns parameter adds more non-DMSII columns (user columns) to all history tables in the Client database. By

default, history tables are created with three non-DMSII columns. The dflt_history_columns parameter is intended to simplify user

scripts at sites where the same non-DMSII columns (user columns) are added to all (or most) history tables. When you use this

parameter to add user columns to history tables, the specified non-DMSII columns are added to all history tables. If you do not want

to add all of these columns to all history tables, you must use a user script to set the active column to 0 for the unwanted columns

in the DATAITEMS Client control table.

For more information about history tables, see history_tables and ds_options in the DATASETS Client control table.

When using the Administrative Console use the checkboxes in the History Tables column to enable the corresponding bits for the

dflt_history_columns parameter.

ENABLE_DMS_LINKS

Default: Flase

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Enable DMSII links)

This parameter must be set to True when running a define , redefine or the Administrative Console's Customize commands if you

want to replicate the links in the DMSII database. In addition to setting this parameter to True, you must also enable DMSII link

support in the Databridge Engine control file.

ENABLE_DYNAMIC_HIST

Default: None

Range: True or False

Console: CUSTOMIZING > History Tables (Options > Enable dynamic history)

This parameter allows the user to add history tables without having to re-clone all the affected data sets. To do this, specify the

default history columns (if any) using the default_history_columns configuration file parameter. Then, set the DSOPT_SaveUpdates

(8) bit for all data sets for which history tables are to be kept, and run a redefine command with the -R option, forcing all data

sets to be remapped. Finally, run a reorganize command, which will creates the history tables and their indexes. The new history

tables will populate when audit files are processed.

15.3.10 Parameter Descriptions

- 252/327 - © Copyright 2021 Micro Focus or one of its affiliates.

EXTERNAL_COLUMN[N]

Default: N/A

Range: N/A

Console: CUSTOMIZING > User Columns Section One

This parameter allows you to globally change the item_name , sql_type , or sql_length of the non DMSII columns described in

Numeric Date and Time in Non-Contiguous Columns. The syntax is as follows:

external_column[n] = ["name"[,sql_type[,sql_length]]]

Where Is

n The corresponding bit number (dms_subtype value) for the non-DMSII column.

NOTE: The brackets and value are required syntax.

name Custom column name

sql_type An integer value that represents the internal code for the SQL type that you want
to use. The Client only accepts data types that make sense for a particular
column. For instance, you cannot set the data type for the AFN to bit or char, but
you can set it to int or dec(10). For details, see DMSII and Relational Database
Data Types.

sql_length A value that represents the length of the data type. Specify this value only if
the data type requires it. If the data type does not have a length specification,
specifying a value may cause an error.

15.3.10 Parameter Descriptions

- 253/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The following table shows allowable sql_type values for external_column .

15.3.10 Parameter Descriptions

- 254/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DMS
Subtype

Mask
Value
(hex)

Default Column
Name

Allowable SQL Types
(SQL Server)

Allowable SQL Types
(Oracle)

1 0x0001 update_type tinyint, shortint, int,
bigint

number(n)

2 0x0002 update_time datetime,
smalldatetime,
datetime2

date

3 0x0004 update_ts timestamp N/A

4 0x0008 audit_ts datetime,
smalldatetime,
datetime2

date

5 0x0010 audit_filenum shortint, int, dec(n),
bigint

number(n)

6 0x0020 audit_block int, dec(n), bigint number(n)

7 0x0040 source_name varchar(n), char(n) varchar(n), char(n)

8 0x0080 source_id tinyint, shortint, int,
bigint

number(n) (where n
>=3)

9 0x0100 my_id int, dec(n), bigint N/A

10 0x0200 deleted_record int, bigint number(n) (where n
>=9)

11 0x0400 source_name varchar(n), char(n) varchar(n), char(n)

12 0x0800 source_id tinyint, shortint, int,
bigint

number(n)(where n
>=3)

13 0x1000 audit_ts datetime,
smalldatetime,
datatime2

date

14 0x2000 user_column1 char(n), varchar(n),
tinyint, shortint, int,
float, datetime,
dec(n), smalldatetime,
datetime2, date, time

char(n), varchar(n),
number(n), float,
date

15 0x4000 sequence_no int, bigint number(n)(where n
>=9)

16 0x8000 delete_sqno shortint, int, bigint number(n)(where n
>=5)

17 0x10000 create_time datetime,
smalldatetime,datetime2

date

18 0x20000 user_column2 char(n), varchar(n),
tinyint,shortint, int,
float, datetime,dec(n),
malldatetime,datetime2,
date, time

char(n),
varchar(n),number(n),
float, date

19 0x40000 user_column3 char(n), varchar(n),
tinyint,shortint, int,
float, datetime,dec(n),
malldatetime,datetime2,
date, time

char(n),
varchar(n),number(n),
float, date

15.3.10 Parameter Descriptions

- 255/327 - © Copyright 2021 Micro Focus or one of its affiliates.

For example, the entry below causes the audit_filenum column to be renamed AFN (the double quotation marks are optional since

no special characters are involved); the sql_type and sql_length remain unchanged.

 external_column[5] = "AFN"

 default_user_columns = 0x0010

In the example below, the data type of the audit_block column changed to dec(12).

EXTRACT_EMBEDDED

Default: False

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Extract embedded data sets)

Use the extract_embedded parameter when the DMSII INDEPENDENTTRANS option is reset. If INDEPENDENTTRANS is set, the

extract_embedded parameter is not needed because the Databridge Client can clone and update embedded datasets.

When INDEPENDENTTRANS is reset, use this parameter as follows:

Set extract_embedded to True if you want the Databridge Client to extract embedded data sets during cloning when

INDEPENDENTTRANS is reset. However, the Databridge Client cannot apply fixups or updates to these extracted embedded data

sets.

Set extract_embedded to False if you want the Databridge Client to ignore embedded data sets.

FLATTEN_ALL_OCCURS

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table layout > Flatten all OCCURS)

This parameter simplifies writing user scripts when you want to flatten a lot of OCCURS clauses. Setting this parameter to True

causes the Client to initialize the DIOPT_Flatten_Occurs bit to 1 in the di_options column of the DMS_ITEMS Client control table

for all items that have an OCCURS clause. This avoids having to do this using user scripts. If you do not want to flatten certain

OCCURS clauses, you can set the corresponding bit to 0 for those specific items by using customization user scripts or by using the

Administrative Console's Customize command (see the Databridge Administrative Console Help).

DMS
Subtype

Mask
Value
(hex)

Default Column
Name

Allowable SQL Types
(SQL Server)

Allowable SQL Types
(Oracle)

20 0x80000 user_column4 char(n), varchar(n),
tinyint,shortint, int,
float, datetime,dec(n),
malldatetime,datetime2,
date, time

char(n),
varchar(n),number(n),
float, date

For Oracle, if you choose the tinyint value for sql_type you get number(3), if you choose the smallint value you get number(5) and so on, as

the data types in question are not defined for Oracle. Oracle has only one type of data type for integer values number(n).

Note

external_column[6] = ,11,12

•

•

15.3.10 Parameter Descriptions

- 256/327 - © Copyright 2021 Micro Focus or one of its affiliates.

FORCE_AA_VALUE_ONLY

Default: 0

Range: 0-2

Console: CUSTOMIZING > Advanced (Global data set options > Force AA Values...)

When set to 1, this parameter globally sets the DSOPT_Use_AA_Only bit in the ds_options column for the DATASETS table entries

that have valid AA Values or RSNs. When set to 2, this action is only performed for data sets that have RSNs, because AA Values

aren't preserved when a garbage collection or structural reorganization occurs.

If you want to exclude certain data sets, you can set the DSOPT_Use_AA_Only bit to 0 by using user scripts or the Administrative

Console's Customize command (see the Databridge Administrative Console Help).

HISTORY_TABLES

Default: 0

Range: 0-2

Console: CUSTOMIZING > History tables (Data set history tables)

This parameter is designed to simplify script writing. It allows you to make the define command globally set the

DSOPT_Save_Updates and DSOPT_History_Only bits. A value of 0 indicates that neither bit should be set for data sets. A value of 1

indicates that the DSOPT_Save_Updates bit should be set for all data sets. Finally, a value of 2 indicates that the

DSOPT_Save_Updates and the DSOPT_History_Only bits should both be set for all data sets.

INHIBIT_REQUIRED_OPT

Default: False

Range: True or False

Console: CUSTOMIZING (General > Ignore REQUIRED attribute)

The 6.6 Client honors the REQUIRED attribute of DMS items that indicates that the item cannot be NULL because it is a member of a

SET. This option tells the Client no to pay attention to the REQUIRED attribute and handle things the way older Clients did. We

already have provisions in place that inhibit data sources created by older Clients from honoring the REQUIRED attribute. Without

these provisions, columns that have the REQUIRED attribute would be changed to NOT NULL, which would make them incompatible

with the table layouts used by older Clients. This parameter allows such column to have the NULL attribute so that items that have

bad values can be stored as NULL, rather than an artificial value that is used in place of NULL.

This parameter has no effect on items that are keys, which always have the NOT NULL attribute.

MAXIMUM_COLUMNS

Default: Dependent on the database

Console: CUSTOMIZING > Advanced (Table layout > Maximum columns ...)

The maximum_columns parameter enables you to reduce the column count when a table split occurs because of the maximum

column limitation of the relational database. For example, if you want to add a column containing the value of the audit timestamp

file to the first table of a split table, you can set the maximum_columns parameter to 1023 instead of 1024. By doing so, you avoid

moving an item from a full table to a secondary table to make room for the new column. The table below shows the maximum

columns and ranges for different relational databases.

MIN_VARCHAR

Default: 4

Range: 0 to 255

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use varchar ...)

Database Default Range

Oracle 1000 1-1000

SQL Server 1024 1-1024

15.3.10 Parameter Descriptions

- 257/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This parameter supplements the use_varchar configuration file parameter by adding the condition that the length must be at least

equal to the value of this parameter. Setting this parameter value to 4 would force columns whose data types would have been

VARCHAR(1), VARCHAR(2), or VARCHAR(3) to instead be CHAR(1), CHAR(2), and CHAR(3) if use_varchar is set to True.

When using the Administrative Console the Use varchar slider must be enabled before you can change the value of this parameter.

MINIMIZE_COL_UPDATES

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Update changed columns only)

The minimize_col_updates parameter specifies whether the define , redefine and the Administrative Console's Customize

commands should set the DSOPT_Optimize_4_CDC bit in the ds_options column of the DATASETS table. This bit, when set, causes

the Client to create update statements that only assign values to columns whose values are changed. To do this, stored procedures

are abandoned in favor of pure SQL without the use of host variables. This slows down the Client considerably, but the overall

process may ultimately take less time because SQL Server or Oracle replication sends significantly less data to the remote database.

See the parameter enable_minimized_col, which allows the user to disable this option without having to run a redefine command.

See also the enable_minimized_col parameter, which allows the user to disable this option without running a redefine command.

MISER_DATABASE

Default: False

Range: True or False

Related parameters: automate_virtuals , use_nullable_dates

Console: CUSTOMIZING (DMSII related parameters > MISER database)

This parameter is for MISER database sites. When set to True, it sets the default date format to be a MISER date. It also sets the

following parameters (required for MISER sites) to True, if they aren't already set to True:

automate_virtuals

flatten_all_occurs

use_nullable_dates

OPTIMIZE_UPDATES

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Optimize SQL updates)

Setting this parameter to a non-zero value when use_varchar is set to False has no effect.

Note

Using this parameter will significantly slow down update processing by the Client. If you are replicating your relational database, enabling this

feature may provide some benefits if replication is very slow.

Caution

•

•

•

15.3.10 Parameter Descriptions

- 258/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The optimize_updates parameter specifies whether the define , redefine and the Administrative Console's Customize commands

should set the DSOPT_Use_bi_ai bit (1) (in the ds_options column of the DATASETS table) for data sets that have items with

OCCURS clauses that are not flattened. The Client uses this bit, which you can modify using user scripts, to determine if it should

request the Databridge Engine to send all updates for the data set as BI/AI pairs. The Databridge Client then compares the before

and after images to determine if an update has any effect, and suppresses all redundant updates. Depending on the data, this can

greatly increase performance when you do not flatten OCCURS clauses. See the parameter enable_optimized_sql, which allows the

user to disable this option without having to run a redefine command.

READ_NULL_RECORDS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Read NULL record values)

This parameter determines whether or not the Client should request the NULL VALUES for data set records from the Databridge

Engine during the define , redefine and the Administrative Console's Customize commands. The NULL VALUES are then stored in

the binary file "datasource_NullRec.dat" from which they are retrieved at the beginning of process or clone commands. When this

parameter is enabled, the testing for NULL is more accurate; however, this feature generates a small amount of overhead, particularly

with a large database where these records use more memory. Note that this parameter does not imply that NULLS are allowed in the

relational database; this is still specified using the allow_nulls parameter.

REORG_BATCH_SIZE

Default: 50000

Range: 5000 - 100000

Console: CUSTOMIZING > Advanced (Table reorganization options > Reorg command ...)

This parameter determines the size of the transactions that the Client uses during a reorganize command to set the value of newly-

added columns to their initial value, as defined in the DASDL. The redefine command creates a reorg script that uses a stored

procedure to do the updates in batches that are executed as transactions. For a large table, this process can take quite long, but it

does not run the database out of log space. Consider using the internal clone option instead (see use_internal_clone.

SEC_TAB_COLUMN_MASK

Default: 0

Range: 0 - 16383

Console: CUSTOMIZING > User Columns Section Two

The parameter sec_tab_column_mask eliminates a set of user columns from secondary tables without having to write extensive user

scripts to set the active column in DATAITEMS to 0 for the unwanted columns. To remove those columns, the Client removes the

bits you specified in sec_tab_column_mask from the value represented in external_columns and uses the resulting value to determine

which user columns to add to secondary tables during define , redefine and the Administrative Console's Customize commands.

This parameter is intended to allow the adding the audit timestamp, the audit file number, or the audit block to primary tables

without adding them to secondary tables. The default value of this parameter is 0, which indicates that no user columns should be

removed from secondary tables.

When using the Administrative Console uncheck the checkboxes in the Secondary Tables column to set the corresponding bits in

the sec_tab_column_mask parameter.

SPLIT_VARFMT_DATASET

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Split variable format data set)

This parameter makes the define and redefine and the Administrative Console's Customize commands set the bit

DSOPT_Split_Varfmt_ds in the ds_options column for the DATASETS table globally. See Split Variable Format Data Sets Option

15.3.10 Parameter Descriptions

- 259/327 - © Copyright 2021 Micro Focus or one of its affiliates.

STRIP_DS_PREFIXES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Strip Data Set prefixes)

This parameter makes the define , redefine and the Administrative Console's Customize commands set the item_name_prefix

column in the DATASETS table to the data set name. This is useful when all DMSII data item names use the data set name followed

by a dash as common prefix. The strip_ds_prefixes parameter provides a quick way of stripping those common prefixes without

writing any user scripts or using the Administrative Console's Customize command (as renaming every column requires a lot of

work).

If the prefix is an abbreviated form of the data set name (e.g. SVHIST instead of SV-HISTORY), use a user script or the Administrative

Console's Customize command to set the item_name_prefix column in the DATASETS table to this value (do not include the trailing

dash).

SUPPRESS_DUP_WARNINGS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (General error handling > Suppress duplicate ...)**

The parameter suppress_dup_warnings controls whether or not duplicate insert and failed update warnings are displayed during

update processing. The bit DSOPT_Ignore_Dups (32) in the ds_options column of the DATASETS table can be used instead when

you want to apply this only for certain data sets.

SUPPRESS_NEW_COLUMNS

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global Data Set Options > Ignore new columns)

The suppress_new_columns parameter indicates that the redefine and the Administrative Console's Customize commands set the

active columns to 0 in the DATAITEMS and DATATABLES entries resulting from DMSII reorganizations that add DMSII items. The

suppress_new_columns parameter is useful when you want to keep your relational database tables intact after a DMSII

reorganization, particularly if the added column will cause existing application to fail. If this is the case, set suppress_new_columns

to True.

SUPPRESS_NEW_DATASETS

Default: True

Range: True or False

Console: CUSTOMIZING (General > Ignore new data sets)

This parameter indicates whether or not the Client maps new data sets created during a DMSII reorganization. If this parameter is set

to True new data sets get their active columns set to 0 in the DATASETS table which causes them not go get mapped to the

relational database.

If you decide that you want to replicate the new data set after running the redefine , you must set the active column to 1 for the

data set in the DATASETS Client control table. You can do this by updating the user script "script.user_datasets.datasource" in the

scripts directory. You then need to run a second redefine command to get the data set mapped. When you run back-to-back

redefine commands the Client will automatically reloads the control tables from the unload file it creates at the start of the first

redefine command.

15.3.10 Parameter Descriptions

- 260/327 - © Copyright 2021 Micro Focus or one of its affiliates.

USE_BIGINT

Default: False

Range: True or False

Recommended Value: True

Applies to: SQL Server Client only

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use bigint ...)

This parameter is only applicable to the SQL Server Client. It indicates that the Databridge Client should map DMSII numeric data

that is too large to fit in the int data type (32-bit integer), to bigint (64-bit integer). If this parameter is set to False, such data items

would be mapped to decimal(n). Items that are too large to fit in a bigint are still mapped to decimal(n). This parameter makes it

easy to standardize the Client to use bigint instead of decimal(n), without having to write user scripts. It also allows you to

maintain backward compatibility with older databases that do not use bigint, by setting this parameter to False.

USE_BINARY_AA

Default: False

Range: True or False

Console: CUSTOMIZING (AA Values and RSNs > Use binary AA Values)

This parameter maps AA Values, Parent_AA Values, RSNs (including Visible RSNs) and DMSII Links to binary(6) or raw(6) instead

of char(12) to reduce their storage requirements by half.

AA Values (and RSNs), which are 48-bit values, are stored in 6 bytes when using binary data, as opposed to 12 bytes when using

character data.

The data types used for these columns depend on the value of the sql_type column in the DATAITEMS Client control table. The

purpose of this parameter is to define how these items are to be mapped by default to avoid changing the sql_type of all such

columns.

USE_CLOB

Default: False

Range: True or False

Applies to: Oracle Client only

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use clob ...)

It indicates that DMSII ALPHA data that is too large to fit in a varchar2 column, which is limited to 4000 characters, should be

mapped to a data type of clob instead of being truncated or split into two columns.

USE_CLUSTERED_INDEX

Default: False for index. True for primary key.

Range: True or False

Applies to: SQL Server Client only

Console: CUSTOMIZING > Advanced (Indexes > Use clustered indexes)

The use_clustered_index parameter applies to all data tables. You can override its setting on a table-by-table basis via the

DTOPT_Clustered_Index bit in the DATATABLES control table's dt_options column.

15.3.10 Parameter Descriptions

- 261/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Use this parameter as follows:

Set use_clustered_index to True if you want a clustered index for all or most tables.

For all tables, just set this parameter to True.

For most tables, set this parameter to True and then reset DTOPT_Clustered_Index bit in dt_options for those tables for which

you do not want a clustered index.

Set use_clustered_index to False if you want no clustered indexes on all tables, or if you want clustered indexes on only a few

tables.

For no clustered index on all tables, just set this parameter to False.

For clustered indexes on only a few tables, set this parameter to False and then set the DTOPT_Clustered_Index bit in

dt_options for those tables for which you do want a clustered index.

To reset or set DTOPT_Clustered_Index, see dt_options in DATATABLES. Typically you would do this via user scripts.

USE_COLUMN_PREFIXES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Use column prefixes)

This parameter extends the tab_name_prefix specified in the DATASOURCES Client control table to the columns of the user tables. If

the tab_name_prefix column of the data source is blank, this parameter has no effect. For more details, see DATASOURCES Client

Control Table.

USE_DATE

Default: False

Range: True or False

Related parameters: use_datetime2

Applies to: SQL Server Client

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use date ...)

Use this parameter to make the define , redefine and the Administrative Console's Customize commands interpret the

DIOPT_Clone_as_Date bit in the di_options column of the DMS_ITEMS table as a request to use a data type of date instead of

smalldatetime. This eliminates the need to set the di_options bit DIOPT_Use_Date for every item that is to be mapped to a data

type of date.

USE_DATETIME2

Default: False

Range: True or False

Related parameters: use_date

Applies to: SQL Server Client

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use datetime2 ...)

Use this parameter to make the define , redefine and the Administrative Console's Customize commands interpret the

DIOPT_Use_LongDate bit in the di_options column of the DMS_ITEMS table as a request to use a data type of datetime2 instead of

datetime. This eliminates the need to set the di_options bit DIOPT_Use_LongDate2 bit for every item that is to be mapped to a data

type of datetime2.

USE_DBCONFIG

Default: False (hidden when False)

Range: True or False

Applies to: Clients launched by the service

Console: Automatically set for a new data source when you use the Customize command

•

•

•

•

•

•

15.3.10 Parameter Descriptions

- 262/327 - © Copyright 2021 Micro Focus or one of its affiliates.

A successful run of the upgrade command of the dbscripfixup program automatically sets this parameter to True. You can later set

it to False if you want to revert to using user scripts by running a dbutility import command. You should first run a Create Users

Scripts command from the data source's Advanced menu, or run a dbutility creatscripts command to save all your customizations

in user scripts. We recommend saving the customizations in user scripts in case you have to drop and recreate it. The define

command will always run user scripts regardless of the setting of the parameter use_dbconfig , while the redefine command will

only do this when the use_dbconfig parameter is set to False, or if you use the -r option to toggle this parameter so it is treated as

False when set.

USE_DECIMAL_AA

Default: False

Range: True or False

Console: CUSTOMIZING (AA Values and RSNs > Use decimal AA Values)

This parameter maps AA Values, Parent_AA Values, RSNs (including Visible RSNs) and DMSII LINKS to a numeric data type instead

of char(12). The data type varies from database to database. In the case of SQL Server, bigint is used and in the case of Oracle,

number(15) is used.

USE_INTERNAL_CLONE

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table reorganization options > Use internal clone ...)

This parameter affects the redefine and reorganize commands. Instead of using ALTER commands to add, delete or modify new

columns to tables, the Client uses a combination of scripts and table renaming commands to create new copies of the tables with

the new layouts. The Client copies the data using SELECT INTO in the case of SQL Server and CTAS (Create Table As Select) in the

case of Oracle. This operation works like the bulk loader and is faster than using ALTER and UPDATE commands, but more

importantly the command is not logged. The only drawback of this method is that it requires sufficient free disk storage to hold a

second copy of the table for the duration of the operation.

USE_NULLABLE_DATES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Allow NULL dates)

This parameter forces all MISER dates, including keys, to have the DAOPT_Nulls_Allowed bit (value 1) in the da_options column of

the DATAITEMS Client control table. This parameter should only be set to True if you are using a MISER database. Only one MISER

date is allowed as a key. The Client generates custom stored procedures that handle the cases where the MISER date that is part of

the index is NULL.

Do not change the use_dbconfig parameter to True when the data source was not created using the Customize command. If you created the

data source using the Define/Redefine command, you will be able to use Customize command, unless there were user scripts involved in the

underlying define command. If you are not sure run, the dbscriptfixup program's upgrade command to check for use scripts and fixup the

control table and automatically set this parameter to True when the command is successful.

Caution

This parameter is mutually exclusive with the use_binary_aa parameter.

Note

15.3.10 Parameter Descriptions

- 263/327 - © Copyright 2021 Micro Focus or one of its affiliates.

USE_PRIMARY_KEY

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Indexes > Use Primary Keys)

This parameter tells the Databridge Client to create a primary key instead of a unique index for all tables. You can override its

setting on a table-by-table basis via the DTOPT_Primary_Key bit in the DATATABLES Client control table's dt_options column.

Set use_primary_key to True if you want a primary key for all or most tables.

For all tables, just set this parameter to True.

For most tables, set this parameter to True and then reset DTOPT_Primary_Key for those tables for which you do not want a

primary key.

Set use_primary_key to False if you want no primary keys on all tables, or if you want primary keys on only a few tables.

For no primary key on all tables, just set this parameter to False.

For primary keys on only a few tables, set this parameter to False and then set DTOPT_Primary_Key for those tables for which

you do want a primary key.

To reset or set DTOPT_Primary_Key, see dt_options in DATATABLES. Typically you would do this via user scripts.

USE_STORED_PROCS

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global Data Set Options > Use stored procedures in updates)

This parameter makes the process and clone commands generate actual SQL commands instead of stored procedure calls to

perform updates. The Client still uses host variables, as was the case with stored procedures calls. Executing the SQL directly

eliminates some overhead and makes processing the update faster. If you change this parameter, you must propagate the change to

the ds_options columns of the DATASETS Client control table. The easiest and safest way to do this is to run a redefine command

using the -R option (when using the Administrative Console, click on Advanced > Redefine with Options for the data source and

then enable "All Data Sets" slider). The redefine command will ask you to run a reorganize command, which creates a new set of

scripts for creating the tables. It also will refresh the stored procedures for all data sets by dropping them if they exist and then

creating them if they are needed.

USE_TIME

Default: False

Range: True or False

Applies to: SQL Server Client

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use time ...)

Use this parameter to make the define , redefine and the Administrative Console's Customize commands interpret the

DIOPT_Clone_as_Time bit in the di_options column of the DMS_ITEMS table as a request to use a data type of time instead of a

numeric time. This eliminates the need to set the di_options bit DIOPT_Use_Time in the DMS_ITEMS Client control table for every

item that is to be mapped to a data type of time.

USE_VARCHAR

Default: True

Range: True or False

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use varchar ...)

Set use_varchar to True to cause the define , redefine and the Administrative Console's Customize commands to map DMSII

ALPHA data to varchar (Microsoft SQL Server) or varchar2 (Oracle) instead of char.

•

•

•

•

•

•

15.3.10 Parameter Descriptions

- 264/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Process and Clone Command Parameters

The following parameters are included in the [params] section of the Databridge Client configuration file. The parameters listed in

this section affect only the process and clone commands.

ALPHA_ERROR_CUTOFF

Default: 10

Range: 0 - 100

Related parameters: discard_data_errors , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (Character data error > Set item to NULL ...)

This parameter specifies the percentage of data errors in any given ALPHA item that are tolerated before the field is declared bad

and treated as NULL (or simulated NULL if the column does not allow NULLS). The default value for this parameter is 10 (10%); the

allowable values are in the range 0 (fail on first error) to 100 (ignore all errors).

AUX_STMTS

Default: 100

Range: 0 - 200

Console: PROCESSING (General > Number of auxiliary (ODBC/OCI) statements ...)

Use the aux_stmts parameter to set the number of database API (that is, ODBC or OCI) STMT structures that can be assigned to

individual SQL statements. Using multiple database API STMT (statement) structures allows SQL statements to be parsed once and

executed multiple times, provided the STMT structure is not reassigned to hold another SQL statement. Increasing the number of

database API statements significantly improves processing time, if your system has enough memory.

BATCH_JOB_PERIOD

Default: ;00:00, 00:00

Range: 00:00 to 24:00 (The two time values cannot be equal.)

Console: PROCESSING > Engine and Enterprise Server (Batch commit parameters > Batch job ...)

The batch_job_period parameter specifies the block of time during which batch jobs typically run. For example "batch_job_period =

22:00, 01:00" indicates that batch jobs run between 10:00 pm and 1:00 am. The syntax for the four commit checkpoint parameters,

that can be overridden by the Client, was modified to allow an optional second value to be specified. The second value represents

the alternate value to be used during the batch period. The Client was then modified implement the automatic switching of commit

parameters between the two periods. The switching is based on the value of the audit time stamp rather than the time when the

Client is run. Commit parameters that use low values do not work well for batch jobs, but the might work well for on-line periods to

keep the lag time low. This enhancement, which was added to Databridge 7.0, allows you optimize performnace for both periods by

picking appropriate commit parameters for each period.

The Databridge Client suppresses trailing blanks from all character data constructed from DMSII ALPHA data.

Note

When using the Oracle Client, make sure that the open_cursors parameter defined in the database initialization file for the Oracle instance ("init

SID.ora", where SID is the name of the instance) is set to a high enough value.

Note

15.3.10 Parameter Descriptions

- 265/327 - © Copyright 2021 Micro Focus or one of its affiliates.

CENTURY_BREAK

Default: 50

Range: 0 - 99 or -1

Console: PROCESSING > Date and Time (Date parameters > Century break)

Values for the dms_subtype column in the DMS_ITEMS Client control table that are in the 30s, 60s, and 90s have 2-digit years (yy)

which represent dates in the 20th and 21st centuries. The century break parameter is used to determine the century for a 2-digit

year. For example, if this parameter is set to 50, values < 50 are 21st century years (20yy); values >= 50 are 20th century years

(19yy).

When the century_break value is set to -1, the century break value is dynamically calculated based on the current year giving the

two digit years a range of "current_year - 49" to "current_year + 50". In the case of the year 2021, this range is 1972 to 2071.

You can find DMSII date formats that are affected by the century_break parameter at Decoding DMSII Dates, Times, and Date/

Times.

COMMIT_ABSN_INC

Default: --1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_update_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_absn_inc parameter allows the Databridge Client to override the Databridge Engine CHECKPOINT CLIENT EVERY nnn

AUDIT BLOCKS parameter setting. This parameter causes the Databridge Engine to generate a commit at the next quiet point after

nnn audit blocks have been processed since the last commit. This parameter determines one of many conditions under which

Databridge Engine generates a commit.

When the commit_absn_inc parameter is not included in the configuration file, or it is commented out, the Databridge Client uses the

default value of --1. This value indicates that the Client won't attempt to override the settings for the corresponding Databridge

Engine parameter (whose default value is 100). The value -1 is not a valid setting, per se, and will result in a "value out of range"

error. Comment the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the value specified in Databridge Engine

control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value, preceded by a comma, to specify the alternate

value to be used when the Client is processing audit blocks that were created during the batch period.

When using the Administrative Console the second value is provided in the Batch commit parameters group, after enabling the

Batch job slider and entering the time interval for the batch job period.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified, Databridge Engine commits at the

next quiet point after one or more of the conditions are satisfied.

COMMIT_IDLE_DATABASE

Default: --1 (This parameter is commented out.)

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters > commit during idle ...)

This parameter allows the Client to override the COMMIT DURING IDLE DATABASE in the Databridge Engine's Control File. It makes

the Databridge Engine commit at the next quiet point when it encounters an update while the data base is idle.

COMMIT_LONGTRANS

Default: --1 (This parameter is commented out.)

Range: True or False

Related parameters: commit_absn_inc , commit_update_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

15.3.10 Parameter Descriptions

- 266/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This parameter determines one of many conditions under which Databridge Engine should generate a commit. When this value is

not specified, as in the case of the default setting, Databridge Client uses an internal value of --1. This value indicates that it won't

attempt to override the settings for the corresponding Databridge Engine parameter (whose default value is False). The value -1 is

not a valid setting, per se, and will result in a "value out of range" error. Comment the line out instead by adding a ";" at the start of

the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the value specified in the Databridge

Engine control file is ignored.

COMMIT_TIME_INC

Default: --1 (This parameter is commented out.)

Range: 0 - 300 seconds

Related parameters: commit_absn_inc , commit_update_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_time_inc parameter allows the Databridge Client to override the Databridge Engine CHECKPOINT CLIENT EVERY n

SECONDS parameter setting by causing Databridge Engine to generate a commit at the next quiet point after n seconds have

elapsed in the current transaction. This parameter determines one of many conditions under which Databridge Engine should

generate a commit.

When the commit_time_inc parameter is not included in the configuration file, or it is commented out, the Databridge Client uses the

default value of --1. This value indicates that it won't attempt to override the settings for the corresponding Databridge Engine

parameter (whose default value is 0). The value -1 is not a valid setting, per se, and will result in a "value out of range" error.

Comment the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the value specified in the Databridge

Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value preceded by a comma, to specify the alternate

value to be used when the Client is processing audit blocks that were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit parameters" group, after enabling the

"Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified, Databridge Engine commits at the

next quiet point after one or more of these conditions are satisfied.

COMMIT_TXN_INC

Default: --1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_absn_inc, commit_update_inc, commit_time_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_txn_inc parameter allows the Databridge Client to override the Databridge Engine CHECKPOINT CLIENT EVERY n

TRANSACTIONS parameter setting by causing Databridge Engine to generate a commit at the next quiet point after n transaction

groups have been processed. This parameter determines one of many conditions under which Databridge Engine should generate a

commit.

When the commit_txb_inc parameter is not included in the configuration file, or it is commented out, the Databridge Client uses the

default value of --1. This value indicates that it won't attempt to override the settings for the corresponding Databridge Engine

parameter (whose default value is 0). The value -1 is not a valid setting, per se, and will result in a "value out of range" error.

Comment the line out instead by adding a ";" at the start of the line.

Setting this parameter to True (that is, overriding the Databridge Engine CHECKPOINT LONG TRANSACTIONS parameter) can result in problems

and is therefore not recommended. By default, this parameter is commented out.

Warning

15.3.10 Parameter Descriptions

- 267/327 - © Copyright 2021 Micro Focus or one of its affiliates.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the value specified in the Databridge

Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value preceded by a comma, to specify the alternate

value to be used when the Client is processing audit blocks that were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit parameters" group, after enabling the

"Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified, Databridge Engine commits at the

next quiet point after one or more of these conditions are satisfied.

COMMIT_UPDATE_INC

Default: -1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_absn_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_update_inc parameter allows the Databridge Client to override the Databridge Engine CHECKPOINT CLIENT EVERY nnn

UPDATE RECORDS parameter setting. It does this by causing Databridge Engine to generate a commit at the next quiet point after

nnn updates have been sent to the Databridge Client. This parameter determines one of many conditions under which Databridge

Engine should generate a commit.

When the commit_update_inc parameter is not included in the configuration file, or it is commented out, the Databridge Client uses

the default value of --1. This value indicates that it won't attempt to override the settings for the corresponding Databridge Engine

parameter (whose default value is 1000). The value -1 is not a valid setting, per se, and will result in a "value out of range" error.

Comment the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the value specified in the Databridge

Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value, preceded by a comma, to specify the alternate

value to be used when the Client is processing audit blocks that were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit parameters" group, after enabling the

"Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified, Databridge Engine commits at the

next quiet point after one or more of these conditions are satisfied.

CONTROLLED_EXECUTION

Default: False

Range: True or False

Related command-line option: -o

Related parameters: min_check_time

Applies to: Command-line Client (dbutility) only

Console: N/A

This parameter is only used by the command-line Client dbutility. The blackout_period parameter in the scheduling section of the configuration

file renders this method obsolete.

Note

15.3.10 Parameter Descriptions

- 268/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The controlled_execution parameter forces the Client to check the values of the stop_time and end_stop_time columns of the

DATASOURCES table. These columns enable an application external to Databridge to specify a block of time during which

Databridge Client operations are disallowed. If the Databridge Client determines that this period of time exists, update processing is

stopped. Any attempts you make to restart the Databridge Client also fail until the blackout period is over or the stop_time and

end_stop_time columns are set to 0.

CONVERT_REVERSALS

Default: -1 (This parameter is commented out.)

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General > Convert reversals ...)

The convert_reversals parameter allows the Client to override the Databridge Engine control file parameter CONVERT REVERSALS.

Refer the Databridge Host Administrator Guide for more details on this parameter. When this value is not specified, as in the case of

the default setting, Databridge Client uses an internal value of -1. This value indicates that it won't attempt to override the settings

for the corresponding Databridge Engine parameter (whose default value is false). The value -1 is not a valid setting, per se, and will

result in a "value out of range" error. Comment the line out instead by adding a ";" at the start of the line.

CORRECT_BAD_DAYS

Default: 0

Range: -1 to 2

Console: PROCESSING > Date and Time (Date parameters > Correct invalid date values)

The parameter correct_bad_days specifies whether the Databridge Client should treat a DMSII date with a bad day (or month) value

as an error or attempt to correct it by setting the value to last day for the given month and year.

This parameter does not apply in the following circumstances:

Dates whose day values are greater than 31 (unless the parameter is set to 2)

DMSII Julian dates (dms_subtype values 17, 18, 27, 28, 37, 38)

MISER dates, Linc dates, DMSII dates and DMSII timestamps

Set this parameter as follows:

Set correct_bad_days to 1 if you want the Databridge Client to set bad DMSII dates to the last day for the given month. In this

case, a bad date would be February 29, 2002 because 2002 is not a leap year. The Databridge Client would correct this date to

February 28, 2002. Likewise, a date of September 31 would be corrected to September 30, regardless of the year because

September always has 30 days. A day value greater than 31 is not corrected in this case. However, a day value of 0 is always

silently changed to 1, regardless of the setting of the setting of this parameter.

Set correct_bad_days to 2 if you want the Databridge Client to perform the following corrections in addition to the ones for

the case where correct_bad_days is set to 1. Day values greater than 31 are set to the last legal day of the month, month

values greater than 12 are set to 12 and a month value of 0 is set to 1.

Set correct_bad_days to 0 if you want the Databridge Client to store bad dates as NULL. If the DAOPT_Nulls_Allowed bit in

the da_options column of the corresponding DATAITEMS entry is not set, the bad date is stored as 1/1/1900 in the SQL Server

Client and 1/1/0001 in the Oracle Client.

Set correct_bad_days to -1 if you want the Databridge Client to store bad dates (including dates with a day value of 0, which

normally gets changed to 1) as NULL. If the DAOPT_Nulls_Allowed bit in the da_options column of the corresponding

DATAITEMS entry is not set, the bad date is stored as 1/1/1900 in the SQL Server Client and 1/1/0001 in the Oracle Client.

DBE_DFLT_ORIGIN

Default: direct

Range: direct, indirect, cache

Console: PROCESSING > Engine and DBEnterprise Server (General)

•

•

•

•

•

•

•

15.3.10 Parameter Descriptions

- 269/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The dbe_dflt_origin parameter specifies the expected origin for Enterprise Server audit files during normal operations. The Client

issues a WARNING if Enterprise Server sends it a different value whenever it starts processing a new audit file.

DEFER_FIXUP_PHASE

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions

The defer_fixup_phase parameter prevents the Databridge Client from entering the fixup phase, which is deferred to the next

process command.

DISCARD_DATA_ERRORS

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (General error handling > Discard records ...)

The parameter discard_data_errors instructs the Client to write all records with data errors to the discard file tablename.bad,

located in the discards subdirectory of the working directory. If you set this parameter to False, the Client loads the record into the

database with the affected column set to NULL or with the affected characters changed to question marks (?). Setting this parameter

to True forces the alpha_error_cutoff parameter to 0 so that no errors are tolerated before the Client declares the field bad. For more

information, see alpha_error_cutoff.

DISPLAY_BAD_DATA

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , discard_data_errors

Console: PROCESSING > DMSII Data Error Handling (General error handling > Display data errors ...)

The display_bad_data parameter is a debugging aid for users that encounter many data errors. Enabling this parameter makes the

Databridge Client display the raw DMSII data in a field that is found to have a data error. This output, which immediately follows

the data error messages, is suppressed whenever the number of errors exceeds the maximum number of errors to be logged (as

defined by the error_display_limits configuration file parameter).

ENABLE_AF_STATS

Default: False

Range: True or False

Console: PROCESSING > Statistics (Audit file statistics)

This parameters enables the writing of the audit file statistics to the AF_STATS Client control table. These statistics are the

incremental statistics that are written to the log file every time the Client start processing a new audit file. The only difference being

that when the processing of an audit file spans multiple Client runs, the statistics are combined into a single record that spans the

audit file. See the section on AF_STATS Chapter 8 titled "Databridge Control Tables" for a complete description of the columns of the

AF_STATS Client control table.

Version 6.1 and later Databridge Clients do not support parallel clones, which was one of the reason for the existence of this command.

Note

15.3.10 Parameter Descriptions

- 270/327 - © Copyright 2021 Micro Focus or one of its affiliates.

ENABLE_DOC_RECORDS

Default: False

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General)

The enable_doc_records parameter requests DOC records from the Databridge Engine. Enable this parameter only when you are

troubleshooting Databridge Engine problems. These records help diagnose the various block types that the Engine encounters while

processing audit files.

ENABLE_FF_PADDING

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character Data > Enable High Value Padding)

This parameter enables an option that lets you mark items as padded with high values to achieve left justification. This parameter

applies to ALPHA items and unsigned numeric items that are stored as ALPHA data. When set to False, this parameter does not

appear in the exported configuration file.

ENABLE_MINIMIZED_COL

Default: True

Range: True or False

Console: PROCESSING > Advanced (General > Override changed columns only option)

When the minimize_col_updates parameter is applied during a define or redefine and the Administrative Console's Customize

commands, the DSOPT_Optimize_4_CDC bit is set in all data sets. Set this parameter to False to override the

DSOPT_Optimize_4_CDC bit during the change tracking phase and avoid having to run a redefine command to clear the

DSOPT_Optimize_4_CDC bit.

Minimized SQL is not generally very useful, as it slows down update processing by not using host variables. It might be useful

when the relational database is replicated to a secondary database that is remote. This option reduces the size of the changes by

only updating column that are changed rather than using canned SQL that update all columns regardless of whether they were

changed or not.

ENABLE_OPTIMIZED_SQL

Default: True

Range: True or False

Console: PROCESSING > Advanced (General > Override optimized SQL updates option)

When the optimize_updates parameter is applied during a define , redefine and the Administrative Console's Customize

commands, the DSOPT_Use_bi_ai bit is set in all data sets containing secondary OCCURS tables. Set this parameter to False to

override the DSOPT_Use_bi_ai bit during the change tracking phase and avoid having to run a redefine command to clear the

DSOPT_Use_bi_ai bit. The DSOPT_Use_bi_ai bit is documented under ds_options in the DATASETS Client control table.

ENGINE_WORKERS

Default: -1 (This parameter is commented out.)

Range: 1-10

Console: PROCESSING > Engine and Enterprise Server (General)

These records are recorded in the trace file only when full debugging is enabled (-d) or if you enable the DOC Record Tracing option as described

in the section DOC Record Trace .

Note

15.3.10 Parameter Descriptions

- 271/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The engine_workers parameter allows the Databridge Client to override the Databridge Engine WORKERS = n parameter setting to

control the number of extract workers Databridge Engine can use during the data extraction phase.

This value can only be lower than Host parameter (DATA/ENGINE/CONTROL), never higher.

The default value of -1 indicates that the Client does not attempt to override the settings for the corresponding Databridge Engine

parameter whose default value is 1.

ERROR_DISPLAY_LIMITS

Default: 10 errors for the display; 100 errors for the log file

Range: 0-1000, 0-10000

Console: PROCESSING > DMSII Data Error Handling (General error handling > Error display limits)

The error_display_limits parameter allows you to control the number of screen output messages and log file entries for data

errors. All data error counts are maintained for individual tables. This parameter prevents Databridge from filling the disk with

meaningless errors when a large number of the records in a data set are in error.

INHIBIT_8_BIT_DATA

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character data > Change 8-bit characters to ? ...)

Use the inhibit_8_bit_data parameter for data validation. Do not set this parameter if your data contains international characters.

For example, if your valid alpha data consists of 7-bit characters, set inhibit_8_bit_data to True. The Databridge Client then changes

all 8-bit characters to a question mark (?) and issues a warning message on the first occurrence of the bad data. The message

contains the keys of the record with the invalid data, as in the following:

INHIBIT_CONSOLE

Default: False

Range: True or False

Related command-line parameter: -C (toggle)

Applies to: Command-line Client (dbutility) only

Console: N/A

When set to True, this parameter disables the console commands for the command-line Clients (dbutility). The console commands

are explained in Controlling and Monitoring dbutility.

INHIBIT_CTRL_CHARS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character data > Control character)

WARNING: Item 'cm_addr_line_2' in table 'customers' has 8-bit characters in alpha data - Keys: cm_number=00101301

If an item containing 8-bit characters or control characters happens to be a key, the record is discarded as it attempts to change the bad

characters to ? (question marks), potentially resulting in duplicate records. All discarded records are written to the file "tablename.bad" in the

discards subdirectory of the working directory for the data source.

Note

15.3.10 Parameter Descriptions

- 272/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When this parameter is set to true, the Databridge Client treats all control characters as errors and converts them to a question mark

(?) when set to True. When it is set to False, it supports all control characters except NUL, CR, LF, and TAB (in some cases). The

Client for Oracle accepts TAB, and the Microsoft SQL Server Client accepts TAB characters if the bcp delimiter is not the TAB

character.

INHIBIT_DROP_HISTORY

Default: False

Range: True or False

Console: CUSTOMIZING > History Tables (Options > Inhibit Drop)

Use this option to prevent the Databridge Client from inadvertently dropping history tables during a clone , process , or drop

command or to prevent the clean-up scripts from running.

This is a safeguard to prevent the user from making an unrecoverable error. If you want the tables dropped and are sure of that, you

can change this setting and rerun the Client. However, make sure to set it back to True for the next time.

If the data source is dropped it cannot be reprocessed because the Databridge Client attempts to drop the history table, and the

option prevents this from happening.

Cleanup scripts deal with tables that are partially re-cloned. In the case of multiple source tables, they are re-cloned one data

source at a time. In the case of tables that preserve deleted records, the deleted records are preserved during a clone. In the case

of MISER data sets that hold history and resident records, the table is re-cloned without dropping the history records (which is

different than Databridge Client history tables).

INHIBIT_INIT_VALUES

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table reorganization options > Do not set initial values ...)

This parameter allows you to disable new columns added after a DMSII reorganization from getting set to their initial values. If

there are large tables and your applications can deal with the new columns being NULL, setting this parameter to True will save

time.

KEEP_UNDIGITS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character data ...)

This parameter allows you to keep the undigits in numeric fields that are stored as character data. These characters will have a value

of 'A' through 'F' based on the value of the corresponding undigit.

This parameter and the parameter convert_ctrl_char are mutually exclusive. If you attempt to set them both to True, the configuration file

scanner will generate an error.

Note

•

•

If you ever re-clone such tables these columns will no longer be NULL.

Note

15.3.10 Parameter Descriptions

- 273/327 - © Copyright 2021 Micro Focus or one of its affiliates.

LINC_CENTURY_BASE

Default: 1957

Range: 1800 and up

Console: PROCESSING > Date and Time Parameters (Date parameters)

This parameter allows you to configure the base year for Linc dates, which is site-specific parameter in Linc databases.

MASKING_PARAMETER[N]

Default: N/A

Range: "string"

Applies to: SQL Server Client using SQL Server 2016 or newer

Console: CUSTOMIZING > SQL Suffixes (Data Masks)

This array of parameters is used to hold the parameters for the random and partial masking functions. Data masking is defined

using the masking_info column of DATAITEMS, which defines the masking function and the index of the corresponding parameter

string (which does not include the parentheses). The format of the masking_info column (which is an int) is 0x00nn000m, where m

is the masking function code and nn is the index into the table of masking parameters.

The following masking codes are defined: 0 -- no masking, 1 -- default() masking function, 2 -- email() masking function, 3-

random() masking function, 4 -- partial masking function. The last two masking functions have 2 and 3 parameters respectively.

These parameters are represented in the left half of the masking_info by the index into the table of masking parameters (or example

0x00010003 would be a random() masking function with its parameters represented by the masking_parameter[1] entry in the

configuration file. This parameter could be "0,100" which would result in the masking function "random(1,100)" being used in

defining the data mask for the column.

You can reuse masking_parameter entries as many times as needed. The index must be between 1 and 100. Refer to the SQL Server

documentation for details on how data masking works.

The figure below shows how to set up masking parameters using the Administrative Console's Customize command. This example

results in the accountno column having the following attributes:

accountno varchar(16) masked with (function='partial(0,"************",4)') NULL,

15.3.10 Parameter Descriptions

- 274/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.3.10 Parameter Descriptions

- 275/327 - © Copyright 2021 Micro Focus or one of its affiliates.

MAX_CLONE_COUNT

Default: 10000

Range: 1000-100000 SQL insert statements before a commit

Related command-line option: -s

Console: N/A

In most cases you do not need to use this parameter. This parameter is used only when you enter the -s option at the command

line or set the bit DSOPT_No_Loader (2) in the ds_options column of corresponding row in the DATASETS table.

The max_clone_count parameter applies to the dbutility process and clone commands for cloning only, not updates, when the

command-line option -s is set. It defines the maximum number of rows that the Client can insert into a table before a commit is

required.

The value of this parameter has no effect on the commit frequency during the processing of updates, which is controlled by

Databridge Engine.

MAX_DISCARDS

Default: 0,100

Range: 0-10000, 0-1000

Console: PROCESSING > DMSII Data Error Handling (General error handling > Discard record ...)

This is a two-part parameter that controls how the Client handles discarded records. The first number represents the total number of

discards the Client will tolerate before abending. The second number represents the maximum number of discards records for a table

that are written to the discard file. Discards that exceed this number are ignored.

If either of these values are set to zero, no limits are imposed for the corresponding actions, and the Client will behave the way it did

before this parameter was implemented.

The first value must be greater than the second value, unless the second value is zero, indicating that it's unlimited. Otherwise, the

Client will always abend before the second value goes into effect.

MAX_RETRY_SECS

Default: 20

Range: 1 - 36000 seconds

Related parameters: use_dbwait , max_wait_secs

Console: PROCESSING (Audit unavailable action > Retry interval ...)

The max_retry_secs parameter works only when you enable max_wait_secs so be sure to set both.

The max_retry_secs parameter applies when you use the process command to track changes. It defines the value for the retry time

(in seconds) for the DBWAIT API call for Databridge Engine, which is called when the use_dbwait parameter is set to True. This

value defines the amount of time to wait before reading an audit file again.

For example, if you set max_wait_secs to 3600 seconds (same as 1 hour) and max_retry_secs to 60 seconds, Databridge Engine

checks for new updates in the audit file once a minute for an hour before giving up and returning an audit file unavailable status.

Note that when you supply a second value for the parameter max_wait_secs , the value of max_retry_secs must be less than that

value, as the Client expects to get control back within the time specified by the second value of max_wait_secs . Ideally, the second

value of max_wait_secs should be an exact multiple of max_retry_secs to ensure that Client gets control back after the correct

amount of time. For example, if using the default value of 60 for the second value of max_wait_secs , we recommend you set this

parameter to 20 or 30 seconds, which ensures that the Client gets control back in 60 seconds.

MAX_SRV_IDLE_TIME

Default: 0

Range: 15 -- 600 minutes

Console: PROCESSING > Advanced (Server inactivity timeout)

15.3.10 Parameter Descriptions

- 276/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This parameter allows the timer thread to time out a server connection after several inactivity warnings. When this parameter is set to

a non-zero value, which represents the timeout value in minutes, the Client stops if the length of an inactivity period exceeds this

value.

The Client stops with an exit code of 2059. If using the service, this will cause it to restart the Client after a brief delay. This

parameter provides an alternative to the TCP keep-alive mechanism to detect situations where we have a dead connection. This

situation is most likely to occur if the MCP is HALT LOADED.

When using the Administrative Console enabling the slider labeled "Server inactivity timeout ..." activates the edit box for supplying

the value for this parameter.

MAX_WAIT_SECS

Default: 3600,60

Range: 0--36000 seconds for the first value, 0 or 60-300 seconds for the second value

Related parameters: use_dbwait , max_retry_secs

Console: PROCESSING (Audit unavailable action > Maximum wait time ...)

The max_wait_secs parameter works only when you enable use_dbwait. When you set max_wait_secs , also set max_retry_secs.

The max_wait_secs parameter applies when you use the dbutility process command to track changes. It defines the maximum wait

time (in seconds) for the DBWAIT API call for Databridge Engine, which is called when the use_dbwait parameter is set to True. This

is the maximum amount of time that Databridge Engine waits before returning an audit file unavailable status.

The max_wait_secs value and the max_retry_secs value are the DBWAIT API input parameters. The maximum wait time

(max_wait_secs) specifies the cutoff point for the retries (max_retry_secs). DBWAIT gives up when the total amount of time elapsed

since the last successful attempt to read the audit file is greater than or equal to the max_wait_secs .

The optional second value for this parameter is used to break up large wait times into smaller increments by making the Client

repeatedly issue DBWAIT calls using this second value, which must be smaller than the first value (unless the first value is 0).

For example setting max_wait_secs to 3600,60 will result in the Client issuing a DBWAIT remote procedure call with a

max_wait_secs value of 60 seconds. Upon getting a "no more audit available" return status, the Client will issue another DBWAIT

call until it has received no data for the amount of time indicated by the first parameter. This way of doing things ensures that an

idle line has some traffic on it, which makes it possible to detect situations where the network goes down and neither side knows

about it.

Upon receiving data the Client resets the timer that keeps track of idle during which no updates are received. A value of 0 for the

second parameter makes the Databridge Engine handle the wait-and-retry loop without any involvement by Client.

Note that when you supply a second value for the parameter max_wait_secs , the value of max_retry_secs must be less than that

value, as the Client expects to get control back within the time specified by the second value of max_wait_secs . Ideally the second

value of max_wait_secs should be an exact multiple of max_retry_secs to ensure that Client gets control back after the correct

amount of time. For example, if using the default value of 60 for the second value of max_wait_secs , we recommend you set this

parameter to 20 or 30 seconds, which ensures that the Client gets control back in 60 seconds.

MIN_CHECK_TIME

Default: 600 (expressed in units of seconds)

Range: 10--1200

Related parameters: controlled_execution

Applies to: Command-line Client (dbutility) only

Console: N/A

A value of 0 indicates that Databridge Engine continually waits.

Note

15.3.10 Parameter Descriptions

- 277/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The min_check_time parameter is used in with the controlled_execution parameter to reduce the number of times the program

reads the corresponding entry in the DATASOURCES table. After a quiet point, which ends a transaction group of updates, the Client

only reads the DATASOURCES table if min_check_time has elapsed since the last read. If you set this parameter to 60 seconds, the

Client reads the DATASOURCES table no more than once a minute, even if quiet points are only a few seconds apart.

MONTHS

Default: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC

Range: A list of exactly 12 three-character entries

Console: N/A

Use the months parameter when you want to use month name abbreviations that are not in English. This parameter applies only

when you are using DMSII date encoding methods that use three-character abbreviations for months.

For more information on DMSII date encoding methods, see Decoding DMSII Dates, Times, and Date/Times.

To make an entry for the months parameter, enter your three-character month names in order and separated by commas.

N_DMSII_BUFFERS

Default: 0

Range: 0, 2 -- 64

Related parameters: n_update_threads

Console: PROCESSING > Advanced (Multi-threaded updates > Number of DMSII buffers ...)

Use this parameter to configure the number of RPC buffers to be used by the Client. If you let this parameter default or set it to 0, the

Client uses 4 times n_update_threads RPC buffers or 2 buffers when n_update_threads is 0. When you have DMSII links enabled,

this parameter is set to the number of extract workers unless the default value is larger. Raising this value might improve

performance by ensuring that there are enough buffers queued to keep the update workers busy at all times.

N_UPDATE_THREADS

Default: 8

Range: 0 -- 16

Applies to: SQL Server (see note) and Oracle Clients

Console: PROCESSING > Advanced (Multi-threaded updates > Number of update threads ...)

Use this parameter to specify the number of update threads to be used. The update threads are responsible for executing SQL to

update the user tables and writing bulk loader temporary files. When using the BCP API in the SQL Server Client these threads are

also responsible for making the BCP API calls to load the data. If you have multiple processors and disk arrays, setting this

parameter to a high value will increase the update processing speed at the expense of additional memory. Avoid setting this

parameter to 1, as this will effectively pass off all updates to the single worker thread, when executing them directly would be

preferable.

It is recommended to always use multi-threaded updates, as it improves performance considerably.

NULL_DATETIME_VALUE

Default: 19010101

Range: 17530101 to 99991231

Applies to: SQL Server Client

Console: PROCESSING > Date and Time (Null date values ... > Datetime)

This parameter requires the use of SQL Native Client in ODBC. The SQL Server driver doesn't support MARS, which is required for multithreaded

updates. If MARS cannot be enabled, the Client automatically reverts to using single-threaded updates.

Note

15.3.10 Parameter Descriptions

- 278/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Use this parameter to change the value used to represent a NULL date in a datetime column that does not allow nulls. For example,

you could change the value to 18991231 if the default value of 190001001 is meaningful.

NULL_DATETIME2_VALUE

Default: 19010101

Range: 00010101 to 99991231

Applies to: SQL Server Client

Console: PROCESSING > Date and Time (Null date values ... > Datetime2)

Use this parameter to change the value used to represent a NULL date in a datetime2 column that does not allow nulls. For

example, you could change the value to 00010101 if the default value of 190001001 is meaningful.

NULL_DIGIT_VALUE

Default: 9

Range: 0 or 9

Related parameters: allow_nulls

Console: PROCESSING (Store NULL DMSII numbers as)

Use this parameter when your DMSII data contains NULL values that you do not wish to store as NULL. This parameter applies only

to items that have the DAOPT_Nulls_Allowed bit reset in the da_options column of the corresponding DATAITEMS table entry.

If you set null_digit_value to 0, all NULL values encountered in DMSII NUMBER data types get stored as zeros.

If you set null_digit_value to 9, all NULL values encountered in DMSII NUMBER data types get stored as high values (999 or

999.999).

NUMERIC_DATE_FORMAT

Default: 23 (format mmddyyy)

Range: Any legal numeric date format value (dms_subtype values 11--16, 21--26, 31--36)

Console: PROCESSING > Date and Time (Default formats > Numeric date)

The numeric_date_format parameter enables you to store DMSII dates as relational database numbers written out in the specified,

allowable, DMSII numeric date format. To configure the numeric_date_format , you need to set the DMS_ITEMS Client control table

DIOPT_Clone_as_Date bit and set the sql_type to 13, which represents a numeric date. The date is stored as an int data type in

Microsoft SQL Server and a number(10) in Oracle.

This feature is useful in converting a DMSII MISER date or Linc date as a readable, numeric date. Note that the use of relational

database date data type is a much better alternative.

PRESERVE_DELETES

Default: False

Range: True or False

Console: PROCESSING > Advanced (General > Preserve deleted records ...)

Setting this parameter to True causes records that contain an extended update_type column (type or bit 11) whose value is 2

(DELETE) to survive a re-clone of the data set. Instead of dropping the table, all non-deleted records are removed from the table

during the re-clone.

This parameter has no effect on the handling of tables that have a non-DMSII column of type 10 (named deleted_record by

default). Deleted records are unconditionally preserved when such tables are re-cloned.

•

•

15.3.10 Parameter Descriptions

- 279/327 - © Copyright 2021 Micro Focus or one of its affiliates.

ROLLBACK_SEGMENT

Default: NULL string

Range: rollback_segment_name

Applies to: Oracle Clients only

Console: PROCESSING (General)

This parameter makes the Client use the specified rollback segment by executing the SQL "SET TRANSACTION USE ROLLBACK

SEGMENT Rollback_segment_name " at the start of every transaction.

SET_BLANKS_TO_NULL

Default: False

Range: True or False

Console: CUSTOMIZING (General > Set blank columns to NULL)

This parameter causes the Client to store zero-length character data (that is, "") as NULL instead of a single space. This parameter

only applies to columns that are not part of the index.

SET_LINCDAY0_TO_NULL

Default: False

Range: True or False

Console: PROCESSING > Date and Time (Date parameters > Linc date base year ...)

This parameter causes the Client to treat a Linc date of 0 as NULL rather than 1/1 of the Linc base year.

SHOW_PERF_STATS

Default: True

Range: True or False

Console: PROCESSING > Statistics (Logging options > Show performance statistics)**

The show_perf_stats parameter enables the displaying and looging of performance statistics at the end of the data extraction

phase when the AFN value changes (for example, when the processing of audit files is completed) and when the process or clone

command terminates.

SHOW_STATISTICS

Default: True

Range: True or False

Related command-line option: -v

Related parameter: statistics_increment

Console: PROCESSING > Statistics (Logging options > Show statistics)

The show_statistics parameter, when set to True, causes the Databridge Client to display record count statistics at the intervals

specified by the statistics_increment parameter. The statistics lines are useful in monitoring the progress of lengthy operations.

The show_statistics parameter applies to both the process and clone commands.

SHOW_TABLE_STATS

Default: True

Range: True or False

Console: PROCESSING > Statistics (Logging options > Show table statistics)

This parameter, when set to True, causes the Client to log the record counts for each cloned table at the end of the data extraction

phase. During update processing it causes the Client log the update counts and average update times when the Client starts

15.3.10 Parameter Descriptions

- 280/327 - © Copyright 2021 Micro Focus or one of its affiliates.

processing a new audit file. These statistics are reset after being logged, as they are incremental statistics that span the last audit file

processed. Tables that have no updates are omitted from these report.

SQL_EXEC_TIMEOUT

Default: 180,0

Range: 15-1200 for the first value, 0 or 30-3600 for the second value

Console: PROCESSING > Advanced (SQL execution timeout values)

The sql_exec_timeout parameter applies to update processing only. The first value allows the user to override the default setting of

180 seconds (3 minutes), which is used to determine when the timer thread should issue a WARNING about the query taking too

long to complete. The optional second parameter, which defaults to 0 when omitted, allows the user to set the secondary timeout

value for a long query after which time the query is aborted. A value of 0 disables this timeout. The value of the second parameter

must be greater than that of the first parameter, except if it is 0.

SQL_HEART_BEAT

Default: False

Range: True or False

Console: PROCESSING > Advanced (Generate SQL heartbeats ...)s

This parameter was implemented as a work-around for the situation where long clones resulted in the Client's connections to the

database getting closed because of long periods of inactivity. When this parameter is set to a non-zero value, the Client periodically

executes a dummy SQL update on the Client connection to keep the connection alive during the data extraction where the only

activity is on the bulk loader connection.

When using the Administrative Console, enabling the slider labeled "Generate SQL heartbeats ..." activates the edit box for the value

for this parameter.

STATISTICS_INCREMENT

Default: 100000,10000

Range: 1--10000000 (10 million) for the first value, 1--1000000 (1 million) for the second value

Related command-line option: -v

Related parameter: show_statistics

Console: PROCESSING > Statistics (Record count display intervals)

The statistics_increment parameter applies when show_statistics is set to True or when the -v option is in effect. The

statistics_increment parameter lets you set the display interval for record counts that occur during cloning and updating. For

example, a setting of 1 indicates that the Databridge Client will display when every record is processed. A setting of 1000000

indicates that the Databridge Client will display a line after one million records have been processed.

Setting the statistics_increment parameter to a low number slows processing time, especially during cloning.

Enter a value using the following syntax:

statistics_increment = ccc[,uuu]

STOP_AFTER_FIXUPS

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop after fixup phase)

Where Is

ccc The record count before displaying the record statistics. This record count is
used during cloning.

uuu The record count before displaying the record statistics. This record count is
used during updating.

15.3.10 Parameter Descriptions

- 281/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Setting this parameter to True causes the Client to stop as soon as all the tables are synchronized. This is a useful stopping point in

a data warehousing environment, as the warehouse can be loaded at this point. It is also helpful if you want to validate data before

declaring things to be in working order.

STOP_AFTER_GC_REORG

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop after garbage collection reorganization)

Setting this parameter to True causes the Client to stop at the first quiet point after a garbage collection reorganization occurs. The

program acts as if the operator issued a console QUIT command (or a SIGTERM signal in the case of UNIX) at the point when the

garbage collection reorganization was detected. The Client exit status is 2034 if garbage collection or a file format reorganization is

encountered in the audit trail.

STOP_AFTER_GIVEN_AFN

Default: False

Range: True or False

Applies to: Command-line Client (dbutility) only

Console: N/A

The stop_after_given_afn parameter enables you to stop processing after an externally specified audit file has been processed.

Note that you must store the value of the audit file number in the stop_afn column of the DATASOURCES entry using data source

tools external to dbutility. The stop_after_given_afn parameter forces the Client to check the values of the stop_afn column of the

DATASOURCES table. If a non-zero value is found in this column, the Client sets the stop AFN value and stops reading the

DATASOURCES table.

To automate this functionality using a script launched by the service, see Automate Client Operations with the Service.

STOP_ON_DBE_MODE_CHG

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop on Enterprise Server audit file origin change)

Setting this parameter to True causes the Client to stop as soon as it detects that the Databridge Enterprise Server access mode

changes from the value specified in the parameter dbe_dflt_origin . If this parameter is set to "direct" and Enterprise Server switches

to "indirect", this will result in the Client stopping at the next quiet point.

TRACK_VFDS_NOLINKS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Track Variable Format datasets ...)

When set to True, this parameter causes the Client to track variable-format data sets that contain links; however, the links themselves

are not tracked. When a record is created in a variable-format data set, links are set to null. If the application assigns the links to

point to other records, the Client database will not contain these new link values until the variable-format data set is re-cloned. This

parameter is selected, by default.

This parameter is specific to replication and applies only to the command-line Client. The command-line -F option, which allows you to specify

the AFN after which to stop, overrides this parameter.

Note

15.3.10 Parameter Descriptions

- 282/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When this parameter is set to False, variable-format data sets are set to have a ds_mode value of 11 after initial cloning, which

makes them ineligible for change tracking.

USE_DBWAIT

Default: False

Range: True or False

Related parameters: max_wait_secs, max_retry_secs

Console: PROCESSING (Audit unavailable action > Wait and retry)

Use this parameter to select the Databridge RPC to use during update processing, as follows:

Set to False to use the DBREAD RPC. The DBREAD RPC returns an audit file unavailable status when all available audit files

have been processed.

Set to True to use the DBWAIT RPC. The DBWAIT RPC waits for an audit file to become available. This is the required setting if

the reading of the active audit file is enabled (READ ACTIVE AUDIT parameter in the Engine control file).

The difference between the DBWAIT RPC and the DBREAD RPC is that DBWAIT waits for updates to become available rather than

returning an audit file unavailable status.

This parameter applies only to the process command for updates. The Databridge Client ignores it for a clone command, which

always uses the DBREAD RPC.

USE_LATEST_SI

Default: False

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General > Include latest StateInfo ...)

If the use_latest_si parameter is set to True, the Client will request that the server include the latest StateInfo in all the data records

sent during audit file processing. The overhead of doing this is 24 bytes per record. This parameter is mainly intended as a

debugging tool when chasing audit file processing problems. In addition to making the Client print up-to-date audit locations

instead of the audit location of the last quiet point that was used as a COMMIT, this option may be useful when you use the audit

timestamp as an external column for data tables. Enabling this parameter will make the values used in such columns much more

accurate. Not all DMSII audit file records have an associated timestamp, so the timestamp will still not be 100% accurate.

Server Option Parameters

The following parameters are included in the [params] section of the Databridge Client configuration file. The parameters listed in

this section affect how the Databridge Client processed updates.

SHUTDOWN

Console: N/A

This parameter applies only to the command-line Client (dbutility). It inhibits update processing for a given period of time after a

LIMIT_NAME or LIMIT_TIME condition (normally initiated by a STOP parameter) is encountered. The format of the shutdown

parameter is as follows:

•

•

You can temporarily toggle this parameter by using the -w command-line option.

Note

shutdown {until | for} hh:mm after stop

15.3.10 Parameter Descriptions

- 283/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The first form specifies the time of day at which the shutdown period ends, while the second form specifies the length of the

shutdown period. The command-line option –o can override this parameter.

STOP

Console: PROCESSING > Stop Conditions (Dynamic stop conditions)

This parameter allows you to specify a condition for the Databridge Engine to stop processing updates as follows:

For example, you would enter the following:

Generally, you should include only one stop specification in the configuration, but using two stop specifications is legal. When more

than one task or one time is specified in the configuration file, the program honors only the last one. However, when a task

specification is coupled with a time specification, the Client honors the task specification only if it occurs on the date specified in

the time specification.

Generate Command Parameters

The generate command parameters include decimal_aa_length (Oracle Clients only) and a number of SQL statement suffixes

(Oracle and SQL Server Clients).

SQL STATEMENT SUFFIXES

Console: CUSTOMIZING > SQL Suffixes ({Table | Index} SQL suffixes ...)

The following parameters determine which extra clauses are added to the create table and create index SQL statements in the scripts

generated by the Databridge Client.

stop {before | after} {task "name" | time hh:mm[:ss]}

stop before task "name"
- or-
stop after time 12:30:15

Parameter Description

decimal_aa_length Default: 15
Range: 15 – 38
Applies to: Oracle Client

Use this parameter to control the size of the data type that represents a
decimal AA Value—by default, this is NUMBER(15). If you set this parameter
to 16, the Client will use NUMBER(16) for all decimal AA Values.

15.3.10 Parameter Descriptions

- 284/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Suffixes must be entered on a single line and be enclosed in double quotation marks. Suffixes can be up to 256 characters in length.

15.3.10 Parameter Descriptions

- 285/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

create_index_suffix Default: None
Range: “suffix”
Applies to: Oracle and SQL Server Clients

The create_index_suffix parameter enables you to define extra attributes (a
suffix) for create index SQL statements that the Client generates for any
given table. Each attribute list is defined with a number or index n so
you can reference it. Up to 100 different suffixes can be defined.
Individual indexes can select one of the suffixes by specifying this
value in the index_suffix column of the corresponding DATATABLES Client
control table entry. The index suffix is then concatenated to all create
index SQL statements for this table.

Here's an example suffix for a SQL Server database which specifies file
groups for create index statements:

create_index_suffix [1]="ON filegroup"

Here's an example suffix for an Oracle database:

create_index_suffix [1]="TABLESPACE name STORAGE MINEXTENTS 1 NEXT 10 MAXEXTENTS

UNLIMITED"

create_table_suffix Default: None
Range: “suffix”

The create_table_suffix parameter enables you to define a suffix for create
table SQL statements that the Client generates for any given table and to
assign a number to this suffix so you can reference it. The index n
allows for up to 100 different suffixes to be defined. Individual tables
can select one of the suffixes by specifying this value in the
create_suffix column of the corresponding DATATABLES Client control table
entry. The table suffix is then concatenated to all create table SQL
statements that specify the given suffix number.

Here's an example suffix for an SQL Server database which specifies
filegroups for create table statements:

create_table_suffix [1]="ON filegroup"

Here's an example suffix for an Oracle database:

create_table_suffix [1]="TABLESPACE tablename"

global_index_suffix Default: None
Range: “suffix”
Applies to: Oracle and SQL Server Clients

The global_index_suffix parameter enables you to add a filegroup (SQL
Server) or a tablespace (Oracle) or any other SQL command specification
to all create index SQL statements that the Client generates except those
that have a suffix associated with the create_index_suffix parameter.

15.3.10 Parameter Descriptions

- 286/327 - © Copyright 2021 Micro Focus or one of its affiliates.

In the case of index suffixes (both global and specific) for the Oracle Client, you can use the string $(INDEX_NAME) as an

environment variable that the Client replaces by the actual index name for the table when using the suffix. You can also insert new

line characters into the suffix by using "\n"; this is sometimes necessary when the suffix contains a SQL statement that must be

executed separately after the index creation completes. An example for this is enabling parallel mode for index creations, which

speeds up the index creation significantly. You can use the following index suffix to do this:

"parallel (degree 8)\n/***/\nalter index $(INDEX_NAME) parallel 1"

Once the index is created, the alter index statement sets the parallel degree back to 1, it needs the index name to be able to do this,

using the $(INDEX_NAME) environment variable makes this possible without having to write separate scripts for each table. The /

***/ is inserted into the SQL suffix to force the Client to execute the create index statement before executing the alter index statement.

Using a semicolon causes an OCI error. Inserting "\n/***/\n" makes the Client break up the line into two separately executed SQL

statements.

DATA MASKING STRINGS

Applies to: SQL Server Client (using SQL Server 2016 or newer version)

Console: CUSTOMIZING > SQL Suffixes (Data Masks)

These strings provide the data for the arguments of the random() and partial() data masking functions. They do not include the

parentheses. See the masking_parameter in the [params] section for details on how to setup data masking for columns with

sensitive data.

Display Command Parameters

The following parameter is included in the [params] section of the Databridge Client configuration file. It affects the display

command only.

Parameter Description

global_table_suffix Default: None
Range: “suffix”

The global_table_suffix parameter allows you to add a filegroup (SQL Server)
or a tablespace (Oracle) or any other SQL command specification to all
the create table SQL statements that the Client generates, except for
statements whose suffix is associated with the create_table_suffix
parameter.

user_column_suffix Default: None
Range: “suffix”

The user_column_suffix parameter allows you to add a suffix to the column
definition created by the generate command for external columns of type
user_column1 through user_column4. This is particularly useful for adding
default clauses.

15.3.10 Parameter Descriptions

- 287/327 - © Copyright 2021 Micro Focus or one of its affiliates.

When using the Administrative Console this parameter can be found in the PROCESSING page of the Client Configuration property

pages.

User Scripts Parameters

The following parameters are included in the [params] section of the Databridge Client configuration file. The parameters listed in

this section affect what the Databridge Client does with user scripts.

When using the Adminstrative Console these parameters can be found in the CUSTOMIZING page of the Client Configuration

property pages.

[Scheduling]

The Scheduling parameters section only applies to the dbutility process command. You must run the process command once

before the scheduling takes effect. For more information, see Scheduling dbutility Updates.

display_active_only Default: True
Range: True or False
Related command-line option: -a

Console: PROCESSING (General)

Use the display_active_only parameter to affect the display command, as
follows:

Set display_active_only to True to show only the Client control table entries for data sets whose

active column is 1. This is particularly useful if your site clones a small number of data sets.

Set display_active_only to False to show all Client control table entries, regardless of the data set

active column setting.

You can temporarily override this parameter by using the –a command-line
option.

•

•

We highly recommend that you set these parameters. As long as you have made sure that each user script includes all of the changes for the

specified data set, the user scripts ensure that the Databridge Client can handle DMSII reorganization changes.

Note

check_user_scripts Default: False
Range: True or False

Set this parameter to True to let the Databridge Client inform you if a
user script for a table is missing. In this case, the Databridge Client
returns the following message:

ERROR: Unable to open script file filename

This parameter is especially useful if you have created data table
creation user scripts and index creation user scripts for every table in
your relational database. The Databridge Client runs these scripts
immediately after it completes its own scripts for creating tables and
table indexes.

NOTE: This parameter does not apply to data set selection user scripts and
data table customization scripts.

15.3.10 Parameter Descriptions

- 288/327 - © Copyright 2021 Micro Focus or one of its affiliates.

To schedule Client runs that are initiated from the Administrative Console, click PROCESSING > Scheduling to open the Client

Configuration property pages and set these parameters. For more information, see the Databridge Administrative Console Help.

15.3.10 Parameter Descriptions

- 289/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Parameter Description

blackout_period Default: 00:00, 00:00
Range: 00:00 to 24:00 (The two time values cannot be equal.)

Use this parameter to specify a fixed block of time during which the
Client cannot run. This parameter is useful for operations, such as
database backups, that can only take place when the Client is inactive.
For example, if you want to back up the database daily between 1:00 a.m,
and 2:30 a.m. daily, define a blackout period from 0:55 to 2:30. The
extra 5 minutes ensures that the Client finishes any long transactions
before the database backup begins.

If the Client is running when the blackout period starts, the Client
automatically stops. If the Client is waiting for an idle host to send it
updates when the blackout period starts, the Client resets the TCP/IP
connection and aborts the run if it hasn't received any updates after 15
seconds. If you try to run the Client during a blackout period, nothing
happens.

During a blackout period the service will not start the Client. If the
scheduler tries to schedule a DBClient run at a time that falls within a
blackout period, the start of the run will be delayed until the blackout
period ends.

When this parameter is updated using the Administrative Console, it is
set to the same value in both the service and Client configuration files.

daily Default: daily = 08:00, 12:00, 17:00, 24:00
Range: 12 entries in ascending order from 00:00 to 24:00

NOTE: The daily parameter is mutually exclusive with the sched_delay_secs

parameter. If you specify both daily and sched_delay_secs in the
[scheduling] section of the configuration file, sched_delay_secs overrides
daily regardless of the order in which they are specified.

Enter the times you want the dbutility* process command to wake up and gather
updates from the DMSII database. You must specify 24-hour time (for
example, 5:00 for 5:00 a.m. and 17:00 for 5:00 p.m.). The range for
minutes is 00–59.

You can specify up to 12 times for the daily parameter. However, you must
specify the times in ascending order. Note the following:

The values 00:00 and 24:00 are equivalent for midnight.

24:00 is allowed only so that you can put it at the end of the list of times in ascending order.

24:01 is not allowed; instead, specify, 00:01.

exit_on_error Default: True
Range: True or False

The exit_on_error parameter indicates that the scheduling should be
terminated if an error occurs. If this parameter is set to false, the
process command is retried at the next scheduled time.

•

•

•

15.3.10 Parameter Descriptions

- 290/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[EbcdictoAscii]

Use the [EbcdictoAscii] section of the configuration file to customize character translation tables.

When using the Administrative Console, you can customize the translation table by clicking CUSTOMIZING > Translations to open

this section of the Client Configuration property pages.

TRANSLATION TABLE

The Databridge Client uses the ISO standard translation tables to translate EBCDIC data received from the host to ASCII data. You

can adjust the translation tables to work with national character sets, which typically redefine characters such as { } [] | to represent

national characters.

REDEFINING A CHARACTER

To redefine a character, alter the EBCDIC to ASCII translation table by entering the pair of numeric values representing the EBCDIC

character code and the corresponding ASCII character code in the [EbcdictoAscii] section of the configuration file. You can use

decimal or hexadecimal (for example, 124 for decimal or 0x7C for hexadecimal) to represent the EBCDIC and ASCII character codes.

Parameter Description

sched_delay_secs Default: 0
Range: 0–86,400 seconds (24 hours)

NOTE: The sched_delay_secs parameter is mutually exclusive with the daily
parameter. If you specify both daily and fixed_delay in the [scheduling]
section of the configuration file, fixed_delay overrides daily regardless of the
order in which they are specified.

Use the sched_delay_secs parameter to specify a time delay between
successive executions of the process command. The sched_delay_secs

parameter does use the retry_time parameter. To disable the sched_delay_secs

parameter, comment it out or set its value to 0.

sched_minwait_secs Default: 0
Range: 0–86,400 seconds (24 hours)
This parameter ensures that next scheduled process command is delayed by
the specified interval and doesn't occur too soon after the current
scheduled time.

sched_retry_secs Default: 3600 seconds (1 hour)
Range: 0–86,400 seconds (24 hours)

The sched_retry_time parameter only applies after a failed process command.
A value of 0 means that dbutility schedules the next run at the next
regularly scheduled time without any retries. For example, if the
mainframe is down when dbutility attempts to run a process command using the
scheduling option, dbutility will retry the operation after the specified
amount of time has elapsed. If the retry time value is larger than the
next scheduled time, dbutility retries at the next scheduled time.

If you plan to customize character translation tables, you must modify the configuration file before you run dbutility process or dbutility clone

to populate the Databridge data tables in the relational database. In addition, if you customize the character translation tables when you populate

the data tables the first time, you must use them on all subsequent updates. If you don't, the data will be invalid.

Note

15.3.10 Parameter Descriptions

- 291/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The Databridge Client does not allow you to change the values of characters that are constant across national characters, including

the space, hyphen (-), single quote (\'), digits 0--9, and the letters of the alphabet (A--Z and a--z). Changing any of these characters

causes an error unless you set the restrict_translation parameter appropriately.

Example

The following example shows EBCDIC to ASCII translation using hexadecimal characters. Note that this file is for example only; it

does not represent any national character set.

EXTERNAL DATA TRANSLATION DLL SUPPORT

The following parameters are included in the [params] section of the Databridge Client configuration file.

When using the Administrative Console, you can change the translation DLL name by clicking CUSTOMIZING > Translations to

open this section of the Client Configuration property pages.

[DBConfig]

This section contains parameters that are related to the Administrative Console's Customize command.

default_date_fmt

Default: 21

Range: 1-296

Console: PROCESSING > Date and Time Parameters (Default date formats)

This parameter specifies the default format for numeric columns that are clones as dates. For a MISER database this should be set

to 1.

global_type0_chnages

Default: True

Range: True or False

Console: CUSTOMIZING (Customizing General)

;hexadecimal format
[EbcdictoAscii]
0x7C = 0x7E ; remapping of @ to ~
0xE0 = 0x7C ; remapping of \ to |
0xC0 = 0x5B ; remapping of { to [
0xD0 = 0x5D ; remapping of } to]

Parameter Description

eatran_dll_name Default: “DBEATRAN.DLL”
Range: “dllname”

NOTE: You must include quotation marks around the filename.

The parameter eatran_dll_name allows you to rename the external
translation file DBEATRAN.DLL.

use_ext_translation Default: False
Range: True or False

The use_ext_translation parameter enables you to translate 16-bit character
sets from EBCDIC to ASCII. When this parameter is enabled, the Databridge
Client accesses an alternate data translation routine that uses an
external DLL, named DBEATRAN.DLL (dbeatran.so for UNIX), instead of the
standard translation procedure (for example [EbcdictoAscii] Section). The
DBEATRAN.DLL contains the EBCDIC_to_ASCII entry point. This DLL is
dynamically loaded when you enable the use_ext_translation option.

15.3.10 Parameter Descriptions

- 292/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The version 7.0 DBClntCfgServer program together with the Administrative Console applies all customizations done to the fix part

of a variable format data set to all the records types, as they all contain the exact same fixed part. This option is provided as a

safeguard for the unlikely situation where users do not want to do this. Some sites have variable format data sets that have a large

number of record types, if you are customizing a date in the fixed part using the Administrative Console's Customize command you

only have to do this once and it gets applied to all the records types. The only reason we did not implement this parameter in the

Administrative Console is that it is highly unlikely that anyone will want to change it.

[Encryption]

This section contains parameters that are related to the data encryption in Client/Server communications using SSL/TLS.

enable_encryption

Default: False

Range: True or False

Console: Encryption (Enable ENCRYPTION ...)

Enabling this parameter is the first step towards using SSL/TLS encryption between the Client and DBServer. See the section on

setting up encryption in the Install Guide to find out more about how to do this. If using the Administrative Console simply more the

slider the on position, This will make the next two parameters visible.

ca_file

Default: ""

Range: String

Console: ENCRYPTION (CA file)

This parameter is a full file specification for the file that contains the certificate to be used.

ca_path

Default: ""

Range: String

Console: ENCRYPTION (CA path)

This parameter is the path of a directory that contains the bundle of certificate to be used.

certify_server_name

Default: False

Range: True or False

Console: ENCRYPTION (Check server name in certificate)

This parameter indicates whether or not the server certificate will be checked to determine if the server is the node we think we are

connecting to.

tls_host_name

Default: ""

Range: String

Console: N/A

This parameter is intended to specify the server name to check for when the certify_server_name parameter is set to True. The code

does not currently use this parameter.

15.3.11 Reference Tables

The following reference tables show all of the configuration file parameters, and as applicable, their associated environment

variables, command-line options, and dbutility commands. Additionally, the tables show relationships between configuration file

parameters that work together.

15.3.11 Reference Tables

- 293/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Because these tables do not explain each configuration file parameter, environment variable, and command-line option in detail, we

recommend that you use it for reference only.

Bulk Loader Parameters

The following parameters from the [Bulk_Loader] section of the Databridge Client configuration file apply only to the dbutility clone

and process commands and have no associated command-line options.

Scheduling Parameters

The following [Scheduling] parameters from the Databridge Client configuration file have no associated command-line parameter,

and they apply to the process command only when using the command-line Client (dbutility):

daily

exit_on_error

sched_delay_secs

sched_retry_secs

EBCDIC to ASCII Parameters

EBCDIC to ASCII translation applies only to the clone and process commands and has no associated command-line options.

[Bulk_Loader] Parameter Bulk Loader Utility

bcp_batch_size SQL Server

bcp_code_page Oracle and SQL Server (bcp only)

bcp_copied_msg SQL Server (bcp only)

bcp_delim SQL Server (bcp only)

bcp_packet_size SQL Server (bcp only)

enable_parallel_mode Oracle

inhibit_direct_mode Oracle

max_bcp_failures SQL Server and Oracle

max_temp_storage SQL Server (bcp only) and Oracle (Windows only)

sqlld_bindsize Oracle

sqlld_rows Oracle

verify_bulk_load All

•

•

•

•

15.3.11 Reference Tables

- 294/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Params Parameters

The following parameters are from the [params] section of the Databridge Client configuration file:

15.3.11 Reference Tables

- 295/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[params] Parameter Option dbutility Command Notes

allow_nulls define and redefine

alpha_error_cutoff clone and process

auto__mask_columns define , generate , process ,
redefine and clone

SQL Server 2016 and
newer

automate_virtuals clone and process

aux_stmts clone and process This parameter
applies to Oracle and
SQL Server ODBC
Clients only.

batch_job_period clone and process

bracket_tabnames clone and process SQL Server only

century_break clone and process

check_user_scripts clone and process

clr_dup_extr_recs generate

commit_absn_inc clone and process

commit_idle_database clone and process

commit_longtrans clone and process

commit_time_inc clone and process

commit_txn_inc clone and process

commit_update_inc clone and process

controlled_execution -o clone and process

convert_ctrl_char clone and process

correct_bad_days clone and process

create_index_suffix

[n]

generate

create_table_suffix

[n]

generate

dbe_dflt_origin clone and process

decimal_aa_length define and redefine Oracle only

default_user_columns define and redefine

defer_fixup_phase -c clone Toggle

dflt_history_columns define and redefine

discard_data_errors clone and process

display_active_only -a display Override

display_bad_data clone and process

eatran_dll_name clone and process

enable_af_stats clone and process

enable_dms_links define , redefine ,
process and clone

15.3.11 Reference Tables

- 296/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[params] Parameter Option dbutility Command Notes

enable_doc_records clone and process

enable_dynamic_hist redefine

enable_ff_padding clone and process

enable_minimized_col clone and process

enable_optimized_sql -N clone and process Toggle

engine_workers clone and process

error_display_limits clone and process

external_column [n] define and redefine

extract_embedded define , redefine ,
process and clone

flatten_all_occurs define and redefine

force_aa_only define and redefine

global_index_suffix generate

global_table_suffix generate

history_tables

inhibit_8_bit_data clone and process

inhibit_console -C clone and process Toggle

inhibit_ctrl_chars clone and process

inhibit_drop_history clone and process

inhibit_init_values redefine

inhibit_required_opt define and redefine

linc_century_base clone and process

masking_parameter[n] generate

max_clone_count -s clone and process

max_discards clone and process

max_retry_secs process Requires use_dbwait

and works with
max_wait_secs

max_srv_idle_time clone and process

max_wait_secs process Requires use_dbwait

and works with
max_retry_secs

maximum_columns define and redefine

min_check_time clone and process

min_varchar define and redefine

minimize_col_updates define and redefine

miser_database define , redefine ,
process and clone

months clone and process

15.3.11 Reference Tables

- 297/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[params] Parameter Option dbutility Command Notes

null_datetime_value clone and process

null_datetime2_value clone and process

null_digit_value clone and process

numeric_date_format clone and process

n_dmsii_buffers clone and process

n_update_threads clone and process

optimize_updates define and redefine

preserve_deletes clone and process

read_null_records define and redefine

reorg_batch_size redefine and reorganize

rollback_segment All Oracle only

sec_tab_column_mask define and redefine Requires default_user_

columns

set_blanks_to_null clone and process

set_lincday0_to_null clone and process

show_perf_stats clone and process

show_statistics -v clone and process Works with
statistics_increment

show_table_stats clone and process

shutdown -o Override

split_varfmt_dataset define and redefine

sql_exec_timeout clone and process

sql_heart_beat clone and process

statistics_increment -v clone and process Works with
show_statistics

stop

stop_after_fixups clone and process

stop_after_gc_reorg clone and process

stop_after_given_afn clone and process

strip_ds_prefixes define and redefine

suppress_dup_warnings clone and process

suppress_new_columns redefine

suppress_new_datasets redefine

use_binary_aa define and redefine

use_bigint define and redefine SQL Server only

use_clob define and redefine Oracle only

15.3.11 Reference Tables

- 298/327 - © Copyright 2021 Micro Focus or one of its affiliates.

[params] Parameter Option dbutility Command Notes

use_clustered_index define and redefine This parameter
applies to SQL
Server. See
use_decimal_aa.

use_column_prefixes define and redefine The tab_name_prefix

column of the
DATASOURCES Client
control table must
contain an entry.

use_date define and redefine SQL Server only

use_datetime2 define and redefine SQL Server only

use_dbwait -w process Toggle

Works with
max_wait_secs and
max_retry_secs

use_decimal_aa define

use_ext_translation clone and process This parameter
applies to Windows.

use_internal_clone redefine and reorg

use_latest_si clone and process

use_nullable_dates define and redefine This parameter
applies only to MISER
databases.

use_primary_key define

use_stored_procs define , redefine ,
process and clone

use_time define and redefine SQL Server only

use_varchar define and redefine

user_script_dir -n define , redefine ,
process and clone

Override

user_column_suffix[n] generate

15.3.11 Reference Tables

- 299/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.4 Appendix D: Customization Scripts

This appendix is intended as a quick reference for writing user scripts. For more information about user scripts, see the Customizing

with User Scripts section of this guide.

The user scripts described in this Appendix differ significantly from program-generated user scripts (that is, user scripts created by

the Create Scripts command in the Administrative Console or the dbutility createscripts command). Program-generated user

scripts set additional bits in the control tables. These bits allow the redefine command and the Administrative Console's Customize

command to restore changes to the Client control tables. The code in DBClntCfgServer that supports the Customize command is

fully compatible with the redefine command.

If you use the Administrative Console's Customize command and want the ability to restore the Client control tables, you'll need to

set some additional fields whenever you make a change.

15.4.1 Customization Rules

All of the Client control tables except DATASOURCES have a column named xx_user_bmask (where xx is "ds", "di", "dt" or "da",

depending on the table where it resides). This column, which parallels xx_options, is used to indicate whether the bits were changed

by the user script or by the Client Configurator. Additionally, some of the bits in the xx_options columns are set by the Client or are

set by changing an item to a special Client data type, such as a date.

The redefine command, when run in the Administrative Console's Customize command mode (use_dbconfig = True), will restore

the bits in xx_options that are referenced by xx_user_bmask, while leaving the remaining bits unchanged. Several bits in xx_options

that were previously unused are now used to indicate that a specific field in the record was modified by a user script or the

Administrative Console's Customize command.

Parameters that affect ds_options

15.4 Appendix D: Customization Scripts

- 300/327 - © Copyright 2021 Micro Focus or one of its affiliates.

The global parameters that affect ds_options settings are as follows:

Sample script for setting a ds_options bit in DATASETS

This script sets the ds_options bit DSOPT_Ignore_Dups (32) for the data set SVHIST without changing any of the other bits in the

column. We provide both a SQL Server version and Oracle version of this script.

Filename: script.user_layout.svhist :

history_tables = { 0 |

1 | 2}

0 - No history tables will be created.

1 - Creates history tables for all data sets. The bit
DSOPT_Save_Updates (8) is automatically set for all data set table
entries. (If you used a data set user script to do this, remove it and
set history_tables to 1 in the Client configuration file using either
the Administrative Console's Configure command or the editor. If you use
binary configuration files, you must export the file before editing
the file. See Export or Import a Configuration File.

2 - The same as a value of 1, except that it also sets the bit
DSOPT_History_Only (0x2000 or decimal 8192).

clr_dup_extr_recs =

{true | false}

Defines the initial value of the new ds_options bit DSOPT_Clrdup_Recs
(0x8000 or decimal 32768). This parameter is no longer checked by the
process and clone commands, which only look at the ds_option bit.

split_varfmt_dataset =

{true | false}

Defines the initial value of the new ds_options bit DSOPT_Split_Vfmt_ds
(0x10000 or decimal 65536). This instructs the Client to treat
variable format data sets in a slightly different manner by putting
all the fixed parts of records in the table normally used for type 0
records. The fixed parts of records in all other tables are not
included, except for the items that are keys.

force_aa_value_only =

{0 | 1 | 2}

Defines the initial value of the ds_options bit DSOPT_Use_AA_Only,
which forces the data set to use AA Values or RSNs as keys if the data
set has a valid AA Value or RSN. RSNs always take precedence over AA
Values unless an embedded data set or a DMSII link is involved. A
value of zero sets the bit to 0 for all data sets. A value of 1 sets
the bit to 1 for all data sets that have a valid AA Value or an RSN. A
value of 2 sets the bit to 1 for data sets that have an RSN.

Any time you explicitly change the value of a bit in ds_options , you must set the corresponding bit in ds_user_bmask . If you set a bit that had

a default value of 1 to 0, you must set the corresponding bit in ds_user_bmask to 1 to indicate that the value of this bit should be preserved by

the redefine command.

Be aware that some bits in ds_options may already be set. For SQL Server, use the \"|\" operator. For Oracle, use the BITOR function with the

BITAND function to perform logical OR and logical And functions. For the best results, avoid directly setting ds_options or using the +

operator. The following example uses the BITOR function when updating the ds_options column of DATASETS to set the bit

DSOPT_Select_Only (64) while leaving the rest of the bits intact:

When using the Administrative Console, if you change the value of external_columns for a single data set, you must also set the new bit

DSOPT_ExtCols_Set (0x2000 or decimal 131072) in both ds_option s and ds_user_bmask . This ensures that the Administrative Console's

Customize command retains the change.

Note

 `ds_options=BITOR(ds_options,64)`

15.4.1 Customization Rules

- 301/327 - © Copyright 2021 Micro Focus or one of its affiliates.

SQL Server version:

Oracle version:

15.4.2 Changes By Table

DATAITEMS Control Table Changes

Besides the addition of the column da_user_bmask , several da_options bits are used to indicate that a specific field in the record

was changed by the Client Configurator or a user script. These new da_options bits are described in the following table.

DATASETS Control Table Changes

Besides the addition of the column ds_user_bmask , some ds_options bits are used to indicate that a specific field in the record was

changed by the Client Configurator or a user script. These new ds_options bits are described in the following table.

update DATASETS set ds_options = ds_options | 32
where dataset_name = 'SVHIST'

update DATASETS set ds_options = BITOR(ds_options, 32)
where dataset_name = 'SVHIST'

Any time you explicitly change the value of a bit in da_options , you must set the corresponding bit in da_user_bmask . If you set a bit that had

a default value of 1 to 0, you must set the corresponding bit in da_user_bmask to 1 to indicate that the value of this bit should be preserved by

the redefine command.

Note

DAOPT_Column_Renamed
(2)

This bit indicates that the column was renamed by changing the
item_name column of the item. The redefine command uses this bit to
determine if the item_name value should be preserved.

DAOPT_Type_Changed(4) This bit indicates that the column’s data type was changed by
changing the value in the sql_type column. The redefine command uses
this bit to determine if the sql_type value should be preserved.

DAOPT_Length_Changed
(8)

This bit indicates that the column’s data type length specification
was changed by changing the value in the sql_length column. The
redefine command uses this bit to determine if the sql_length value
should be preserved.

DAOPT_Scale_Changed
(16)

This bit indicates that the column’s data type scale was changed by
changing the value in the sql_scale column. The redefine command
uses this bit to determine if the sql_scale value should be
preserved.

DAOPT_User_Column (32) This bit indicates that the column was added by the user. The
redefine command uses this bit to determine if the column should be
preserved.

DAOPT_Item_Renumbered
(128)

This bit indicates that the column was renumbered by the user. The
redefine command uses this bit to determine if the item_number should
be preserved.

CAUTION: This will not always work because item numbers may change
as a result of a DMSII reorganization. If you do this, you'll need
to use Administrative Console's Customize command to get the column
into the proper place.

15.4.2 Changes By Table

- 302/327 - © Copyright 2021 Micro Focus or one of its affiliates.

DATATABLES Control Table Changes

Besides the addition of the column dt_user_bmask , several dt_options bits are used to indicate that a specific field in the record

was changed by Client Configurator or a user script. These new dt_options bits are described in the following table.

DMS_ITEMS Control Table Changes

Besides the addition of the column di_user_bmask , several di_options bits are used to indicate that a specific field in the record

was changed by Client Configurator or a user script. These new di_options bits are described in the following table.

If you explicitly change the value of a bit in ds_options , you must set the corresponding bit in ds_user_bmask . If you set a bit that has a default

value of 1 to 0, you must set the corresponding bit in ds_user_bmask to 1 to indicate that the value of this bit should be preserved by the

redefine command.

Note

DSOPT_SetNameChange
(262144)

This bit must be set for any data set whose set_name column is
modified by the Client Configurator or a user script. The redefine

command uses this bit to determine if the value of the set_name

should be preserved.

If you explicitly change the value of a bit in dt_options , you must set the corresponding bit in dt_user_bmask . If you set a bit that had a default

value of 1 to 0, you must set the corresponding bit in dt_user_bmask to 1 to indicate that the value of this bit should be preserved by the

redefine command.

Note

DSOPT_SetNameChange
(262144)

This bit must be set for any data set whose set_name column is
modified by the Client Configurator or a user script. The redefine
command uses this bit to determine if the value of the set_name

should be preserved.

If you explicitly change the value of a bit in di_options , you must also set the corresponding bit in di_user_bmask . If you set a bit that has a

default value of 1 to 0, you must set the corresponding bit in di_user_bmask to 1 to indicate that the value of this bit should be preserved by the

redefine command.

Note

DTOPT_Table_Renamed
(1)

This bit indicates that the table was renamed by changing the
table_name column of the item_name columns and all the DATAITEMS that
belong to the table. The redefine command uses this bit to determine
if the table_name value should be preserved.

DTOPT_Index_Renamed
(2)

This bit indicates that the index was renamed by changing the
index_name column of the table. The redefine command uses this bit to
determine if the index_name value should be preserved.

DTOPT_User_Table (4) This bit indicates that the table was created by the user. The
redefine command uses this bit to determine if the index_name value
should be preserved. (This bit is not fully implemented)

15.4.2 Changes By Table

- 303/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.4.3 Sample Scripts for Customizing Data Set Mapping

This section is intended as a quick reference for writing data set mapping customization user scripts. Therefore, it lists sample

scripts without background explanation. If you are unfamiliar with the Databridge Client, refer to the indicated sections for more

information.

Sample Data Set Global Mapping Customization Script

The following example updates the dms_subtype value for every occurrence of the time value TS in the DMSII database whose data

source name is CMDB. Create only one of these scripts for each data source.

File name: script.user_datasets.cmdb

For more information about the dms_subtype column of the DMS_ITEMS Client control table, see DMS_ITEMS Client Control Table

Sample Data Set Selection Script

This script selects the data sets that we want to clone. Following is a sample user script for a DMSII customer database whose data

source name is CMDB. This script turns cloning off (by setting the active column value to 0) for two data sets. We used the data

set global customization script rather than the scripts for individual data sets in this example.

File name: script.user_datasets.cmdb

For a complete explanation of specifying data sets for cloning, see Tips for Efficient Cloning.

Selecting DMSII Items

The following script disables the cloning of two DMSII items in the data set named ORDER by setting the value of the active column

to 0 in the corresponding DMS_ITEMS table entries.

File name: script.user_layout.order

Multiple data sets can contain items with the same name. Adding the data set name to the WHERE clause ensures that you update

only the items in question.

For more information, see Tips for Efficient Cloning.

update DMS_ITEMS set dms_subtype = 6
where dms_item_name = 'TS'

update DATASETS set active = 0
where data_source = 'CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'EMPLOYEE' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'CUSTOMER' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'INVENTORY' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'BILLING' and data_source='CMDB'

update DMS_ITEMS set active=0
where dms_item_name = 'SPECIAL-ORDER-DATE' or
 dms_item_name = 'SPECIAL-ORDER-AMOUNT'
 and dataset_name = 'ORDER'

15.4.3 Sample Scripts for Customizing Data Set Mapping

- 304/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Cloning a Numeric Field as a Date

The following script causes the define command to map a DMSII item of type NUMBER(8) to a relational database date data type

where the number contains a date in the mmddyyyy format.

File name: script.user_layout.payments

Cloning an Alpha Field as a Date

The following script causes the define command to map three DMSII items of type ALPHA(10) to a relational database date data

type, where those items contain a date in the mm/dd/yyyy format.

File name: script.user_layout.order

Cloning an Alpha or Number Field as a Time

The following script causes the define command to map a DMSII ALPHA or NUMBER time item as a relational database time item.

File name: script.user_layout.payment

Cloning an Alpha or Number Field as a Date/Time

The following script causes the define command to map a DMSII ALPHA or NUMBER date/time item as a relational database

date/time item.

File name: script.user_layout.payment

Flattening OCCURS Clause

The following script causes the define command to map an item with an OCCURS clause as a series of columns in the

corresponding relational database table instead of mapping each occurrence of the items to a separate column in an OCCURS

(secondary) table.

File name: script.user_layout.billing

For details see Flattening OCCURS Clauses.

Flattening OCCURS Clause for Item Cloned as Dates

The following script directs the define command to map an item with an OCCURS clause as a series of columns, whose data type

is a relational database date type, in the corresponding primary table. Furthermore, it specifies that the DMSII item, which is of type

NUMBER(8), contains a date in the mmddyyyy format.

update DMS_ITEMS set dms_subtype=23,di_options=2
where dms_item_name = 'PAYMENT-DATE' and dataset_name='PAYMENTS'

update DMS_ITEMS set dms_subtype=53,di_options=2
where dms_item_name = 'ORDER-DATE' or
 dms_item_name = 'DUE-DATE' or
 dms_item_name = 'DATE-SENT'
 and dataset_name = 'ORDER'

update DMS_ITEMS set di_options=256, dms_subtype=3
where dms_item_name='TIME11' and dataset_name = 'BILLING'

update DMS_ITEMS set di_options=128, dms_subtype=121
where dms_item_name='PAY_REC_TIME' and dataset_name = 'PAYMENTS'

update DMS_ITEMS set di_options=1
where dms_item_name = 'MONTHLY-BILLS' and dataset_name='BILLING'

15.4.3 Sample Scripts for Customizing Data Set Mapping

- 305/327 - © Copyright 2021 Micro Focus or one of its affiliates.

File name: script.user_layout.billing

Flattening OCCURS Clause for Three Bit Numeric Flags

MISER systems store certain flags as arrays of single-digit numbers, where each number is used to hold three Boolean values. The

Databridge Client can be directed to map these items as a series of Booleans data items (bit in SQL Server). This requires the setting

of the DIOPT_Flatten_Occurs bit (1) and the DIOPT_Clone_as_Tribit bit (16) in the di_options column of the corresponding

DMS_ITEMS record.

Following is an example for the item L-LOCK-FLAG in the data set LOAN.

File name: script.user_layout.loan

In this example, if the L-LOCK_FLAG has an OCCURS 20 TIMES clause, 60 items of type bit named l_lock_flag_01 to l_lock_flag_60

are created.

Splitting an Unsigned Number Item into Two Items

If you have NUMBER(12) items whose first two digits represent an account type and the remaining ten digits represent the account

number, you might want to split this item into two columns. You can then rename the two columns as described in Renaming

Columns.

In the following scripts, the NUMBER(12) item is named L_APPL_ACCT and is part of the data set LOAN. This item is mapped into

two columns, the first of which contains 2 digits while the second one contains 10 digits. When the Client splits an item it appends

"x1" and "x2" to the column names it creates to avoid having to deal with duplicate names.

File name: script.user_layout.loan

For SQL Server, this results in columns l_appl_acct_x1 (data type tinyint) and l_appl_acct_x2 (data type bigint).

You can also make the Client convert the first column to CHAR by setting bit 1024 in di_options to force the data to be stored

using a data type of CHAR(2) in the relational database.

File name: script.user_layout.loan

Merging Two Neighboring Items

The following example merges the items SHIPPING-DATE and the item SHIPPING-TIME (which immediately follows it) in the data

set SHIPMENTS.

File name: script.user_layout.shipments

The Client automatically skips the second item after it performs the merge, so you do not need to set its active column to 0.

update DMS_ITEMS set di_options=3, dms_subtype=23
where dms_item_name = 'BILLING-DATES' and dataset_name = 'BILLING'

update DMS_ITEMS set active=1, di_options=17, dms_subtype=0
where dataset_name = 'LOAN' and rectype=0 and dms_item_name = 'L-LOCK-FLAG'

update DMS_ITEMS set di_options = 1048576, dms_subtype = 2
where dms_item_name = 'L-APPL-ACCT' and dataset_name = 'LOAN'

update DMS_ITEMS set di_options = 1049600, dms_subtype = 2
where dms_item_name = 'L-APPL-ACCT' and dataset_name = 'LOAN'

update DMS_ITEMS set di_options = 0x1000000
where dms_item_name = 'SHIPPING-DATE' and dataset_name = 'SHIPMENTS'

15.4.3 Sample Scripts for Customizing Data Set Mapping

- 306/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Merging a Date and Time to Form a Date/Time

We extend the previous example to map the result to a relational database date/time data type. Assuming that these items have data

types of NUMBER(8) and NUMBER(6) respectively in DMSII, we then treat the resulting value as a date/time of the form

"yyyymmddhhmiss" (a date format value of 121).

File name: script.user_layout.shipments

The Client automatically skips the second item after it performs the merge, so you do not need to set its active column to 0.

Concatenating Two Items and Cloning the Result as a Date/Time

This script allows you to combine numeric date and time data in non-contiguous columns. When the two columns are not

contiguous, use the dms_concat_num column to append the time part of the combined item to the date part. This column must be set

to the item number of the item containing the time value. The Client will effectively treat these two items as if the second one were

concatenated to the first one. You must also set the di_options bit 524288 (0x80000) to make the Client include the second item in

DATAITEMS with its active column set to 0. This is a lot more efficient than using DBGenFormat to perform this operation.

Filename: script.user_layout.dttest :

This script combines the columns SALE-DATE and SALE-TIME into a column that effectively replaces SALE-TIME and is to be cloned

as a long date with a date format of 111. The column sales_time needs to be present in the DATAITEMS control table, as the Client

needs to access the DMSII data for the corresponding DMS item when performing the concatenation.

The second SQL statement in the script sets an option bit that tells the Client to map this item to DATAITEMS with its active column

set to 0.

Adding a Composite Key to Tables Mapped from a Data Set

The following example inserts a composite key named user_set_shipping_detail into the data set SHIPPING-DETAIL, which does not

have a SET defined in DMSII.

File name: script.user_layout.shipping_detail

This example is only valid for SQL Server. If you are using Oracle, you have to use decimal values.

Note

update DMS_ITEMS set di_options = 0x1000080, dms_subtype = 121
where dms_item_name = 'SHIPPING-DATE' and dataset_name = 'SHIPMENTS'

This example is only valid for SQL Server. If you are using Oracle you have to use decimal values.

Note

update DMS_ITEMS
 set dms_concat_num =(select dms_item_number from DMS_ITEMS
 where dms_item_name='SALE-TIME' and dataset_name='DTTEST'),
 di_options = 0x82,
 dms_subtype = 111
where dms_item_name='SALE-DATE' and dataset_name ='DTTEST'
/***/
update DMS_ITEMS set di_options = 0x80000
where dms_item_name='SALE-TIME' and dataset_name='DTTEST'

update DATASETS set set_name='user_set'
where dataset_name = 'SHIPPING-DETAIL'
/***/
update DMS_ITEMS set item_key=1
where dms_item_name = 'SD-PO-NUMBER' and dataset_name = 'SHIPPING-DETAIL'
/***/

15.4.3 Sample Scripts for Customizing Data Set Mapping

- 307/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Specifying How to Handle Alpha Items That Are Too Long

The following script splits the item NOTES in the data set EMPLOYEE into multiple columns rather than truncating it at 4000

characters. The item is declared as ALPHA(4095) in DMSII. This script applies to Oracle.

File name: script.user_layout.employee

15.4.4 Sample Data Table Customization Scripts

This section is intended as a quick reference for writing data table customization user scripts. Therefore, it lists sample scripts

without any background explanation. If you are unfamiliar with the Databridge Client, make sure that you refer to the indicated

sections for more information.

Sample Data Table Global Customization Script

The following example shows how to use one statement to rename all occurrences of the column name ts to time_stamp in the

item_name column of the DATAITEMS Client control table for the DMSII database whose data source name is CMDB. Create only

one of these scripts for each data source.

File name: script.user_datatables.cmdb

Disabling the Cloning of Secondary Tables

The following script disables the cloning of the secondary table, order_amounts for the data set named ORDER, by setting the active

column value to 0 in the corresponding DATATABLES entry. In the case of an OCCURS table, the same result can be achieved by

disabling the DMSII item instead. This is much more efficient because it does not create numerous unnecessary entries in

DATATABLES and DATAITEMS.

File name: script.user_define.order

For more information, see Tips for Efficient Cloning.

Renaming a Table

Use the DATATABLES Client control table to rename tables in the relational database. The dataset_name column shows the DMSII

data set name and the table_name column shows the name of the table as it appears in the relational database. For an explanation

of how the DMSII data set and data items are mapped to the relational database, see Relational Database Table and Column

Names.

update DMS_ITEMS set item_key=2
where dms_item_name = 'SD-LINE-ITEM' and dataset_name = 'SHIPPING-DETAIL'

If the set_name is either "aa_set" or "user_set", the Databridge Client appends the table_name to the set_name . The above script takes

advantage of this feature.

Note

update DMS_ITEMS set di_options=4
where dms_item_name = 'NOTES' and dataset_name = 'EMPLOYEE'

update DATAITEMS set item_name = 'time_stamp' where item_name = 'ts'

update DATATABLES set active=0 where table_name='order_amounts'

15.4.4 Sample Data Table Customization Scripts

- 308/327 - © Copyright 2021 Micro Focus or one of its affiliates.

You can change one or more relational database table names before you clone DMSII data sets. If you use the clone command,

keep in mind that you must specify the DMSII data set name with the clone command, not the relational database table name. This

means that if a DMSII data set is named ORD-YEAR-TOTAL and you rename the equivalent relational database table to total, you

must still reference the DMSII data set by its name ORD-YEAR-TOTAL.

When you rename a table, make sure to do the following:

The new table name must not be used by any other table. After the relational database has been created by the define or

redefine command, the Databridge Client does not verify that renamed tables have unique names.

The table name is no longer than 28 characters. Using table names longer than 28 characters causes SQL syntax errors when

the Databridge Client executes the corresponding stored procedures.

Example

The following script changes the name of the table derived from the data set named EMPLOYEE to be full_time_employees. Both the

DATATABLES and DATAITEMS Client control tables must be updated as all data items have a column that points back to the table

to which they belong.

File name: script.user_define.employee

Renaming Columns

Use the DATAITEMS Client control table to rename the columns that appear in the relational database. The data_item column shows

the DMSII data item (column) name and the item_name column shows the name of the column as it will appear in the relational

database. For an explanation of how the DMSII data set and data items are mapped to the relational database, see Relational

Database Table and Column Names.

You can change one or more column names before or after cloning, as follows:

If you change the relational database column name immediately after you run a define command, continue with the

remaining commands. Keep in mind, however, that the DMSII data item retains its original name in the DMSII database. We

recommend that you make this change via user scripts during the define and redefine command to ensure that your

changes are not lost.

If you change the column name after you have already cloned a DMSII database, you must mark the table to be re-cloned and

then rerun the generate command to create new scripts that contain the new column name.

Example

The following script changes the names of two columns in the table derived from the data set named ORDERS.

File name: script.user_define.orders

•

•

update DATATABLES set table_name='full_time_employees'
where table_name='employee'
/***/
update DATAITEMS set table_name='full_time_employees'
where table_name='employee'

•

•

Column names in Oracle are limited to 28 characters. Using a column name longer than 28 characters results in a SQL syntax error when

the Databridge Client executes the corresponding stored procedures.

Note

update DATAITEMS set item_name='order_amount'
where item_name='order_amt' and table_name='orders'
/***/
update DATAITEMS set item_name='order_date'
where item_name='order_dt' and table_name='orders'

15.4.4 Sample Data Table Customization Scripts

- 309/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Changing SQL Data Types

The following user script changes the sql_type for a packed decimal (sql_type of 11) data item named order_amount to be a

floating point number (sql_type of 6).

File name: script.user_define.transaction

Cloning a Number as a Character Type

This operation requires that you set the DAOPT_Store_as_Char bit (512) in the da_options column of the corresponding

DATAITEMS record. Additionally, you must change the value of the sql_type column to the appropriate character type (such as 1

for char, 2 for varchar, and so on). Finally, in the case of SQL Server, you must also change the value of the sql_length column, as

this column has a value of zero for the int and smallint data types. An example for the item l_appl_code in the table loan follows.

File name: script.user_define.loan

Adding a Non DMSII Column

The following script demonstrates how to add a non DMSII column to a relational database table.

This script adds three non DMSII columns (update_type , audit_ts , and deleteD_record) to the ORDERS data set and preserves all

deletes, including multiple deletes with the same key value, since bit column 10 becomes a new key item with a unique value.

File name: script.user_layout.orders

update DATAITEMS set sql_type=6
where item_name='order_amount' and table_name='orders'

update DATAITEMS set sql_type=1, sql_length=2, sql_scale=0, da_options=512
where item_name='l_appl_code' and table_name='loan'

update DATASETS set external_columns = 521 where dataset_name ='orders'

15.4.4 Sample Data Table Customization Scripts

- 310/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.5 Appendix E: Client Exit Codes

If the Databridge Client terminates with an error, an exit code appears in the last_run_status column of the DATASOURCES Client

control table. The value 9999 indicates that the last run status is no longer available (typically when dbutility is running). These

status messages apply only to the process and clone commands.

The Client exit codes are as follows:

15.5 Appendix E: Client Exit Codes

- 311/327 - © Copyright 2021 Micro Focus or one of its affiliates.

On UNIX, exit statuses are restricted to 8 bits (a range of 0 to 255). The Client uses the exit status specified in the 8-bit Exit code column instead

of the actual code, which is longer than 8 bits. This only affects shell scripts that test the exit status.

Note

15.5 Appendix E: Client Exit Codes

- 312/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2001 150 Indicates an error in the command line when invoking the Client

2002 151 The control table check failed

This indicates that either the Client control tables do not exist,
or they are not the right version. In the latter case, the Client
issues a control table version mismatch error and suggests that you
run the dbfixup program.

2003 152 The data source is locked, indicating that a Client is currently running

If you attempt to run a process or clone command while there is a
DBClient process command running, the run will return this exit code.

The -u option will not work in this situation as you must wait for
the run to finish. If the run hangs, you can release the data source
lock by terminating the run.

2004 153 An error occurred while loading the control tables

2005 154 The data source specified on the command line does not exist in the DATASOURCES table

2006 155 The process or clone command failed because the DS_Needs_Redefining(8) bit in the status_bits

column was set for an active data set

This status indicates that normal operations can only be resumed
after a redefine command is executed.

2007 156 The Client could not connect to the Databridge Server or to Databridge Enterprise Server either

during initialization or data transmission

2008 157 The clone command failed because one of the data set names specified on the command line is

invalid

2009 158 A data set has an invalid value in the ds_mode column of DATASETS

Any other value causes the Client to abend with this exit code.

2010 159 An error occurred while creating or cleaning up a data table at the start of the data extraction

phase of a process or clone command

2011 160 An error occurred while dropping the index of a data table at the start of the data extraction phase

of a process or clone command

2012 161 A bad structure index was received

2013 162 A system error occurred while attempting to allocate memory

2014 163 No active structures were found at the start of a process or clone command

2015 164 No active structures remain after a structure was deselected during a process or clone command

2016 165 The Client is stopping at the start of the fixup phase because errors occurred during data

extraction

2017 166 The Client is stopping at the start of the fixup phase because errors occurred during data

extraction and index creation

2018 167 The Client is stopping at the start of the fixup phase because errors occurred during index

creation

2019 168 The Client is stopping at the start of the fixup phase because of the defer_fixup_phase parameter

setting (or -c option)

15.5 Appendix E: Client Exit Codes

- 313/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2020 169 Client operations are being inhibited by the stop_time settings

You can override this situation by specifying the -o option on the
command line. This only applies to the command line Client
(dbutility).

2021 170 The console operator issued a QUIT command, which stops the Client at the next quiet point

If you stop the Client using a DBServer AX QUIT command for the
worker or an Enterprise Server Quit command, a different exit code
is used (1015 for DBServer) and (1135 for Enterprise Server).

2022 171 The Client encountered a SQL error while updating the control tables

NOTE: Some SQL errors generate an exit code of 2099.

2023 172 An error occurred while executing a COMMIT TRANSACTION for the relational database

2024 173 An error occurred while executing a ROLLBACK TRANSACTION for the relational database

2025 174 The Client is stopping because it finished processing the audit file specified in the stop_afn

column of the DATASOURCES tables

You can do one of the following:

Specify the stop AFN using the " -F <afn> " command line option.

Use the Stop After AFN command from the command line or the Administrative Console.

2026 175 An error occurred in the EBCDIC to ASCII translation

2027 176 The command terminated because the Client encountered improperly linked virtual data sets

while loading the control tables

This status only applies when the configuration file parameter
automate_virtuals is set to True.

2028 177 The clone command terminated because the operator tried to reclone a data set that is the

primary source for the virtual data set without recloning the data set that is the secondary source

for the virtual data set

This status only applies when the configuration file parameter
automate_virtuals is set to True.

For example, if the data sets SV-HISTORY (primary source) and
SAVINGS (secondary source) provide input to the virtual data set SV-
HISTORY-REMAP, you must reclone SAVINGS when you reclone SV-HISTORY.

2029 178 The Client discarded records during audit processing

Any other fatal error or reorganization indication overrides this
exit code.

2030 179 The Client was unable to sign on to the relational database

To find the cause, locate the corresponding OCI Error in the log
file or the log output.

•

•

15.5 Appendix E: Client Exit Codes

- 314/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2031 180 The process or clone command failed because some records were not loaded during the data

extraction phase

When the verify_bulk_load parameter is set to 2, the Client compares
the number of records loaded to the actual count of records in the
table. If these do not match, the program fails with this exit code.
If the verify_bulk_load parameter is set to 1, the program doesn't
fail and errors are reflected in the final exit code, unless a more
serious error occurs and overrides this exit code.

2032 181 The process or clone command failed because the DS_Needs_Generating(4) bit in the status_bits

column was set for an active data set

This status indicates that normal operations can only be resumed
after a generate command is executed. You can also get this exit code
from a redefine command when a generate command is required to create
scripts for tables in the relational database that were affected by
a DMSII reorganization.

2033 182 You need to run a reorg command before resuming normal processingYou will get this
exit code from a redefine command when a reorg command is needed to
alter tables in the relational database affected by a DMSII
reorganization. Note that a reorg command implicitly does a generate

command.

2034 183 The Client stopped because a DMSII garbage collection reorganization that affects one or more

datasets was encountered during audit file processing and the configuration parameter

stop_after_gc_reorg was set to True.

2035 184 A clone was aborted by Enterprise Server and the operation was never restarted.

This is a special case of a failed clone.

2036 185 Client stopped

This exit status indicates that the operator issued a dbutility
QUIT NOW command or an abort command from the Administrative Console,
which stops the Client by closing the TCP connection to the server.

2037 186 A relational database deadlock was detected

This error causes the Client to exit. When using dbutility, the
program tries to restart the process command 3 times before exiting.
When using DBClient, the service automatically retries the process

command, as specified by the Error Recovery parameters set for the
data source in the service configuration file.

2038 187 The Client is stopping at the end of the fixup phase because of the stop_after_fixup parameter

setting

You can resume processing by issuing another process command when you
are ready.

2039 188 The Client is unable to continue because the global working directory specified in the Windows

registry or in the UNIX file /etc/Micro Focus/DATABridge/globalprofile.ini cannot be found

Even if you do not use the service, before you can run the Client,
the working directory (which includes the locks subdirectory) must
be created.

15.5 Appendix E: Client Exit Codes

- 315/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2040 189 Client encountered an error when trying to open the lock file for the data source

Look at the log file or the log output to determine the nature of
the error, which might be security related. You must always run the
Client using the same user. Failure to do so can result in this
error.

2041 190 Databridge Client for Microsoft SQL Server is unable to continue because the install directory

specified in the Windows registry cannot be found

Reinstall the Client using the installer so that the Client can
access this directory (and the bcp_auditor program) without having
to use the full path. Copying the files from the DVD will result in
this exit code.

2042 191 The Client command failed because the DS_Needs_Mapping(1) or the DS_Needs_Remapping(4)

bit in the status_bits column was set for an active data set

This exit code indicates that normal operations can only be resumed
after a redefine command is executed. You would typically get this
status if you try to run a process or generate command after an error
occurs when using the Administrative Console.

2043 192 File IO error caused the Client to terminate

2044 193 DMSII link improperly set up in the control tables

2045 194 Reorg command script in error

2046 195 Attempt to refresh stored procedure failed

2047 196 The Client abended because of one or more bulk loader errors.

2048 197 Client did not find a binary configuration file

The DBClient and DBClntCfgServer programs get this exit status when
the configuration file is not binary.

2049 198 An I/O error occurred while reading the configuration file

For details, see error messages in the log.

2050 199 Computed checksum does not match the value in the binary configuration fileThis error
occurs if you try to patch the file using a hex editor. Use the
export command, edit the exported configuration file, and then
import it.

2051 200 Errors found while processing a text configuration file

See the log file for details.

2052 201 User_scripts directory not contained within the Client’s working directory when security is

enabled

Databridge security prevents users scripts from residing outside the
Working Directory, as we have no control over such a directory and
could therefore be vulnerable to unauthorized users modifying user
scripts.

15.5 Appendix E: Client Exit Codes

- 316/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2053 202 Client encountered an I/O error while trying to write to a discard file

This exit status indicates that either the discard file is too large
or the machine is running out of disk space. You should periodically
clean up the working directory for the Client along with the
discards and logs folders.

2054 203 Total discards threshold has been reached

See the max_discards parameter in Appendix C for more information.

2055 204 Client encountered an error while trying to update a user table

This exit status indicates that the audit file original for
Databridge Enterprise has changed. Setting the configuration
parameter stop_on_dbe_mode_chg to True causes the Client to stop when
the audit file origin changes.

2056 205 DBEnterprise audit file origin changed

This exit status indicates that the audit file original for
Databridge Enterprise has changed. Setting the configuration
parameter stop_on_dbe_mode_chg to True will cause the Client to stop
when the audit file origin changes.

2057 206 Client control table version mismatch

This exit status indicates that the Client control tables need to be
upgraded before you can resume Client operations. When using the
service this happens automatically. However, if you are using the
command line Client dbutility, you have to manually run dbfixup for a
data source in each relational database.

2058 207 SQL update took longer than the maximum allowable time specified by the sql_exec_timeout

parameter

See Appendix C for more information.

2059 208 Errors found while processing a text configuration file

See the log file for details. This error is common when the table is
locked by another application. The Databridge Client cannot operate
when tables are locked.

2060 209 Effective CHECKPOINT FREQUENCY parameters for the Databridge Engine are all 0

This error can occur when COMMIT parameters are set to 0 in the
Client configuration file. Rather than attempting to process with
the paremeters set to 0, the Client stops allowing the user to make
adjustments to the Client configuration file.

2061 210 Error in loading a DLL or finding its entry points

2062 211 Error in updating control table

2063 212 Error creating control table

2064 213 Error dropping control table

15.5 Appendix E: Client Exit Codes

- 317/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2065 214 Malformed unload file

This exit status indicates that the reload command encountered a
malformed unload file and could not complete the operation.

2066 215 Error dropping user table

2067 216 Control tables are incompatible with DBConfig

You need to run dbscriptfixup to fix this situation.

2068 217 Unable to create directory

2069 218 Unable to allocate a STMT

Try reducing the value of aux_stmts

2070 219 Client got an error while attempting to create a file

2071 220 User script in error

2072 221 Bad DMSII database timestamp

This exit status indicates that the DMSII database timestamp does
not match the one the Client is using. This indicates that the
Client is not using the same DMSII database as it was earlier.

2073 222 History table error

2074 223 Data source already defined

This exit status indicates that the Client is attempting to define a
data source that is already defined.

2075 224 Index for user table has too many columns

2076 225 Mismatched AFNs in control tables

The redefine command requires that all active data sets point to the
same audit file.

2077 226 Protocol Error

2078 227 File does not exist

2079 228 IO error reading filter file

2080 229 Malformed binary filter file

2081 230 Bad checksum in binary filter file

2082 231 Syntax error in filter source file

2083 232 Filter generation failed

2084 233 Unsupported table encountered in filter source file

2085 234 Data source already exists in relational database

2086 235 Running a redefine command after customizing a data source is not recommended

2087-2088 Not currently used

15.5 Appendix E: Client Exit Codes

- 318/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Exit Code 8-bit
Exit
Code

Description

2089 238 Client lost connection to database

This usually indicates the database was taken down without stopping
the Client first. The service/daemon recognizes this error and
enters error recovery, which keeps trying to connect periodically,
until the database is connected.

2090 239 Reserved

2091 240 Client lost connection to Client Manager service

This usually means that the service crashed.

2092 241 Connection to the Databridge Server closed by the host or Enterprise Server system

The Client is forced to exit. This indicates that the server closed
the connection because of an operator command. This exit code
indicates that the connection was closed in an orderly manner.

2093 242 Connection to the Databridge Server reset by the host or Enterprise Server system

The Client is forced to exit. This exit code indicates that the
server was forcibly terminated or that it crashed.

2094 243 Transport error for connection to server

2095 244 RPC timeout

2096 245 Initialization error

2097 246 Error processing RPC data

2098 247 Communications or protocol error

2099 248 Internal error

This code is used for all errors that cause the dbread and dbwait
callback routine to terminate prematurely.

9701 245 Encryption DLL not found

9702 245 SSL/TLS handshake failed

9703 245 Invalid user certificate

9704 245 SSL/TLS client failed to find user credentials

9705 245 Connection lost due to corrupted message

9706 245 Missing a DLL for SSPI

9707 245 Missing a DLL for CryptoAPI

9708 245 Security.dll not found

9709 245 Did not finish encryption handshake with host

9710 245 Local SSPI does not support crypto key length

9711 245 IP or hostname from server cert does not match connection

9712 245 Wrong client OS; no Security Support

15.5 Appendix E: Client Exit Codes

- 319/327 - © Copyright 2021 Micro Focus or one of its affiliates.

For more detailed information on how exit codes are used in custom programs to automate control of Databridge operations, see dbutility Exit

Status Values.

Note

15.5 Appendix E: Client Exit Codes

- 320/327 - © Copyright 2021 Micro Focus or one of its affiliates.

15.6 Appendix F: Service Configuration

This appendix lists the parameters for the Client Manager service that automate most Client operations. In most cases, you'll use the

Administrative Console to configure scheduling and other features of the service. See Configuring the Service.

15.6.1 Sample Client Manager Service Configuration File

For information about Databridge Client configuration files, see Client Configuration Files.

15.6.2 [Control_Program]

This section, which must always be present in the configuration file, is used to define various service parameters. It also contains a

list of all the data sources that are configured for the service.

data_sources

Default: <empty list>

Range: Comma separated list of no more than 32 data sources (maximum of 256 characters)

Console: N/A (Handled Automatically)

Use the migrate utility to create the configuration during an upgrade or use the Add Data Source and Remove Data Source

commands in the Administrative Console to manage this list rather than manually adding data sources to the configuration file.

If the line of data sources is long and must wrap, the export command inserts a backslash (\) after a comma to indicate that the

list continues on the next line.

 ;
 ; Databridge control program version 7.0 configuration file -- generated programmatically
 ;
 [control_program]
 ipc_port = 8001
 userid = "dbridge", "", administrator
 startup_delay = 1
 sess_start_timeout = 2
 n_scr_threads = 1
 enable_status_file = false
 data_sources = BANKDB, DEMODB

 [Log_File]
 file_name_prefix = "cp"
 ;max_file_size = 0
 logsw_on_size = false
 logsw_on_newday = false
 newfile_on_newday = true

 [BANKDB]
 working_dir = "d:\\dbridge_work\\bankdb"
 client_dir = "c:\\Program Files\\Micro Focus\\DATABridge\\7.0\\SQLServer"
 ;sched_delay_secs = 0
 ;daily = 10:00, 14:00, 18:00
 sched_retry_secs = 60
 max_retries = 3
 blackout_period = 00:00, 00:00
 ;disable_on_exitcode = 93, 94
 run_at_startup = false
 auto_redefine = false
 auto_generate = false
 disabled = false

 [DEMODB]
 working_dir = "d:\\dbridge_work\\demodb"
 client_dir = "c:\\Program Files\\Micro Focus\\DATABridge\\7.0\\SQLServer"
 ;sched_delay_secs = 0
 ;daily = 10:00, 14:00, 18:00
 sched_retry_secs = 60
 max_retries = 3
 sched_minwait_secs = 18000
 run_at_startup = false
 auto_redefine = false
 auto_generate = false
 disabled = false

15.6 Appendix F: Service Configuration

- 321/327 - © Copyright 2021 Micro Focus or one of its affiliates.

enable_status_file

Default: True

Range: True or False

Console: Property sheet for the service

Applies to: Clustered Windows systems

When set to True/enabled, this parameter causes the service to maintain a status file containing information about the state of the

various data sources it controls. This file is named dbstatus.cfg and resides in the config sub-directory. It is used to restart runs

that were active before the service was restarted. The difference between using this method and setting the configuration parameter

run_at_startup to True for a data source is that the latter causes the run to always be started, even if the data source was not active

when the service was taken down.

ipc_port

Default: 8001

Range: 16-bit unsigned integer

Console: Not yet implemented

This parameter specifies the TCP/IP port number on which the service listens for connection requests from the Administrative

Console or Client runs. If the default port is used by some other application on the Client machine the port can be changed.

When the service creates a new configuration file, it sets the value for this parameter using the port number specified at the time of

installation, which is then saved to the Windows Registry (or the globalprofile.ini file in UNIX). After the ipc_port value is set,

the service refers only to the ipc_port parameter in the service configuration file for this value (not the Windows Registry (or the

globalprofile.ini file in UNIX).

n_scr_threads

Default: 1

Range: 1 - 4

Console: Not yet implemented

This parameter specifies the size of the pool of threads the service uses to start externally launched scripts and end-of-run scripts. If

all of the threads are busy, the execution of a script may be delayed until a thread becomes available.

sess_start_timeout

Default: 2 (seconds) Range: 2-10 Console: Not yet implemented

This parameter specifies the length of time that the service waits for input from a new connection before forcing a disconnect. The

reason for doing this is to protect against a flood of rogue connection requests that would otherwise cripple the service. In some

cases, the default value of 2 seconds might be too low. This parameter allows you to adjust the value to best suit your environment.

startup_delay

Default: 1

Range: 0-15 (seconds)

Console: Not yet implemented

If you are not on a Clustered Windows system or you have not installed the Cluster option package, this parameter has no effect as the service

ignores it. The Cluster option is separately licensed from the Client software.

Note

15.6.2 [Control_Program]

- 322/327 - © Copyright 2021 Micro Focus or one of its affiliates.

This parameter ensures that process commands for all data sources do not launch simultaneously, which can result in the

mainframe failing to start all workers leading to failed runs. In most cases, the default value of 1 second is adequate.

userid = , ,

Default: dbridge, "" , administrator Range: character string Console: Client Managers

When an Administrative Console session connects to the service, it provides a userid that has been authenticated without a

password. The batch console and BCNOTIFY will need to provide a password in addition to the userid as it did in version 6.6. The

userid is not encoded, but the password is.

When an Administrative Console session connects to the service, it provides the userid of the browser user that has been

authenticated. This does not guarantee that the user will be able to connect to the service, as we require that the userid of the user

allowed to access the service has their userid included in the service' configuration file. If a user has LDAP credentials, access to the

Client Manager will still not be given unless the user is given access to the service. For batch console users we still use a password

(similar to the previous version 6.6). The service can determine whether the connection originated in the Administrative Console

server. It will not accept a blank password from bconsole users. Passwords in the service's configuration file are encoded.

To manage the configured userids in the Administrative Console, select the desired Client Manager from the Client Managers page

and select Manage Users from the Actions button drop-down. This page allows administrators to add, modify or remove userids in

the service. The Set bconsole Password item in the Actions drop-down button allows administrators to set the password for a

bconsole userid. If you use the same userid for both the bconsole and the Administrative Console, this is not a problem as the

password is not checked from Administrative Console users as they are already authenticated.

15.6.3 [Log_File]

Use the [Log_File] section to control the various options for the log file, which is created in the logs subdirectory of the working

directory.

file_name_prefix

Default: "cp"

Range: 1 to 20 characters Console: Settings > Configure > LOGGING > Service Log (File name prefix ...)

Use this parameter to change the prefix of the log files. The log files have names in the form cp*yyyymmdd*.log , or, when necessary,

cp*yyyymmdd_hhmiss*.log . This command allows you to replace the prefix "cp" with any character string (up to 20 characters in

length), provided that it results in a legal filename.

logsw_on_newday

Default: False

Range: True or False Console: Settings > Configure > LOGGING > Service Log (Switch log daily)

This parameter determines whether the program uses a new log file when the date changes. You may want to set this parameter to

False if your log files are small and use the logsw_on_size parameter to manage log files.

Role Alternate
Spelling

Access Privileges

administrator admin Full privileges to use the Administrative Console.

operator oper Can perform only tasks related to daily operations, such
as starting or stopping a run.

user Can monitor runs and perform status commands.

15.6.3 [Log_File]

- 323/327 - © Copyright 2021 Micro Focus or one of its affiliates.

logsw_on_size

Default: False

Range: True or False

Recommended value: True Console: Settings > Configure > LOGGING > Service Log (Switch log on size)

Use this parameter to control whether the program should check the log file size to see if it has reached the size defined by the

max_file_size parameter. If the size of the log file exceeds this parameter, the log file is closed and a new one is opened. If the

current date is different from the creation date of the old file (which is part of its name), the new log file will be of the form

dbyyyymmdd.log , otherwise, the time component will be added to the filename to ensure that the name is unique.

max_file_size

Default: 0

Range: numeric value optionally followed by K, M

Recommended value: 1M Console: Settings > Configure > LOGGING > Service Log (Maximum file size)

Use this parameter to limit the size of log files. The default value of 0 indicates that no limit is imposed on the size of the log file.

The suffixes of K, M and G allow you specify the maximum file size in kilobytes, megabytes, or gigabytes. A value of 1 MB is a

reasonable value to use. The file size is always checked when you start the program regardless of the setting of the logsw_on_size

parameter.

newfile_on_newday

Default: True

Range: True or False Console: Settings > Configure > LOGGING > Service Log (Switch log on new day)

This parameter forces the program to use a new log file when it starts up and the log file was created on an earlier date. You may

want to set this parameter to False, if your log files are small and use the logsw_on_size parameter to manage the log files.

15.6.4 [data_source_name]

To modify global parameters for each data source, open the Databridge Administrative Console and navigate to the Client Manager

service. Select the desired data source, and select Configure from the Settings drop-down options on the data source page. Use the

left side menu to navigate to the desired section of the configure parameter options. Options in the list below may not be viewable

or editable until a corresponding parent option is enabled.

Each data source that is defined in the data_sources parameter of the [Control_Program] section has its own section on the

Configure page. To edit the global parameters for a different data source navigate back to the Client Manager page and repeat the

process above for the desired data source.

auto_generate

Default: False

Range: True or False

Console: Processing > Scheduling

This parameter causes the service to automatically launch a generate command if a (service-initiated) process or redefine

command gets a return status indicating that a generate command is required. This parameter is designed to be combined with the

auto_redefine parameter to allow operations to continue when a DMSII reorganization is detected.

15.6.4 [data_source_name]

- 324/327 - © Copyright 2021 Micro Focus or one of its affiliates.

auto_redefine

Default: False

Range: True or False

Console: Processing > Scheduling

This parameter causes the service to automatically launch a redefine command after a DMSII reorganization is detected (that is,

when a service-launched process gets a return status).

When combined with the auto_generate parameter, this parameter allows operations to continue after a DMSII reorganization. If the

redefine command finds nothing to do, the service launches a process command and operations resume. If the return status

indicates that a generate command is required, the service will launch a generate command and upon successful completion of

this command, will launch a process command. If the exit status of the redefine command indicates that a reorganize

command is required, no action is taken. Manual intervention is required to examine the new scripts before they're executed to make

sure that they don't corrupt the relational database.

If, after an automatic redefine command, tables in the relational database need to be altered, you can customize the data source

and resume processing. The redefine command is fully compatible with customization features in the Administrative Console.

blackout_period

Default: 00:00, 00:00 Range: 00:00 to 24:00 (The two time values cannot be equal.) Console: Processing > Scheduling

Use this parameter to specify a fixed block of time during which the Client cannot run. This parameter is useful for operations, such

as database backups, that can only take place when the Client is inactive. For example, if you want to back up the database daily

between 1:00 a.m, and 2:30 a.m. daily, define a blackout period from 0:55 to 2:30. The extra 5 minutes ensures that the Client

finishes any long transactions before the database backup begins.

If the Client is running when the blackout period starts, the Client automatically stops. If the Client is waiting for an idle host to

send it updates when the blackout period starts, the Client resets the TCP/IP connection and aborts the run if it hasn't received any

updates after 15 seconds. If you try to run the Client during a blackout period, nothing happens.

During a blackout period the service will not start the Client. If the scheduler tries to schedule a DBClient run at a time that falls

within a blackout period, the start of the run will be delayed until the blackout period ends.

When this parameter is updated using the Administrative Console or Client Configurator, it is set to the same value in both the

service and Client configuration files.

client_dir

Default: none (this line must be present)

Range: Double-Quoted string

Console: N/A (Handled automatically)

This parameter contains the full filename of the Client directory. In the case of Windows, all double slashes must be represented

using two double slashes. In the case of UNIX, which uses forward slashes, this is not the case as the forward slash character has

no special meaning for the configuration file scanner.

The Client directory is the database-specific subdirectory of the install directory.

In the case of Windows, the registry key INSTALLDIR is the Databridge entry point to this directory. The database specific sub-

directories are SQLServer, Oracle or FlatFile.

daily

Default: daily = 08:00, 12:00, 17:00, 24:00 Range: 12 entries in ascending order from 00:00 to 24:00 Console: Processing >

Scheduling

15.6.4 [data_source_name]

- 325/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Enter the times in which the service will launch a process command for the data source. You must specify a 24-hour time (for

example, 5:00 for 5:00 A.M. and 17:00 for 5:00 P.M.). The range for minutes is 00-59. You can specify up to 12 times for the daily

parameter. However, you must specify the times in ascending order.

The values 00:00 and 24:00 are equivalent for midnight.

24:00 is allowed only so that you can put it at the end of the list of times in ascending order.

24:01 is not allowed; instead, specify, 00:01.

disable_on_exitcode

Default: empty list

Range: a list of up to 3 exit codes

Console: Processing > Error Recovery (Disable ...)

Specify exit codes that cause the service to disable the data source. Allowable values include: 93 (stop before or after task), 94

(stop before or after time), and 2025 (stop after audit file number).

max_retries

Default: 3

Range: 0-20

Console: Processing > Error Recovery (Options)

The max_retries parameter is intended to specify the maximum number of times the service launches a Client process command

after a failed process command. Not all exit conditions are recoverable. After it unsuccessfully tries to relaunch the Client the

specified maximum number of times, the service disables the data source. You must enable the data source using the Administrative

Console before you can launch another process command.

The max_retries parameter is ignored for a few exit codes, where the condition that causes the problem is expected to self-correct or

change over time. (Retrying forever eliminates the need for manual intervention, which would be required if the data source were to

be disabled.) Such situations include connection problems to the server or database, which are often symptomatic of the host, the

server, or the database being down.

run_at_startup

Default: False

Range: True or False

Console: Processing > Scheduling

This command is only meaningful during startup. It indicates whether the service should launch a Client process command for the

data source when the service starts. If the process returns with a " database not up " error, the service retries the launch until the

database is up.

sched_delay_secs

Default: 0 (indicating that this parameter is disabled)

Range: 1-86,400 seconds (24 hours)

Console: Processing > Scheduling

The daily parameter is mutually exclusive with the fixed_delay parameter. If you specify both daily and fixed_delay in a data source

section of the configuration file, fixed_delay overrides daily regardless of the order in which they are specified. The service notifies you of

this situation by writing a message to the log file.

Note

•

•

•

15.6.4 [data_source_name]

- 326/327 - © Copyright 2021 Micro Focus or one of its affiliates.

Use the sched_delay_secs parameter to specify a fixed delay between the time a launched Client, running a process command for

the data source, terminates and the launching of the next process command for the data source. To disable the sched_delay_secs

parameter, comment it out or set its value to 0.

sched_minwait_secs

Default: 0

Range: 0-86,400 (24 hours)

Console: Processing > Error Recovery (Options)

This parameter ensures that a next scheduled process command is delayed by the given interval, when a process commands

finishes right around the next scheduled time and would otherwise start too soon. This parameter delays the start of the next run for

the specified amount of time.

working_dir

Default: none (this line must be present)

Range: A string of any length enclosed with quotation marks

Console: N/A (Handled automatically)

This parameter contains the full file name of the working directory. In the case of Windows, all double slashes must be represented

using two double slashes. In the case of UNIX, which uses forward slashes, this is not the case as the forward slash character has

no special meaning for the configuration file scanner.

The sched_delay_secs parameter is mutually exclusive with the daily parameter. If you specify both daily and sched_delay_secs in a

data source section of the configuration file, sched_delay_secs overrides daily regardless of the order in which they are specified.

Note

15.6.4 [data_source_name]

- 327/327 - © Copyright 2021 Micro Focus or one of its affiliates.

	Databridge Client Administrator's Guide
	7.0
	© Copyright 2021 Micro Focus or one of its affiliates.

	1. About This Guide
	1.1 Conventions
	1.2 Abbreviations
	1.3 Related Documentation

	2. Introducing Databridge Client
	2.1 Choosing the Client Manager Service vs. the Command-Line Client
	2.2 Using the Administrative Console and the Service
	2.3 How Replication Works
	2.4 Client vs. Host Filtering
	2.5 Databridge Components
	2.6 Comparing the Databridge Client Manager Service to Command-Line Operations
	2.7 Switching from Command-Line to Service Operations
	2.7.1 To switch to the service based client (Windows)
	2.7.2 To switch to the daemon based client (UNIX/Linux)

	2.8 Command-Line Client Operations
	2.9 Before You Run the Command-Line Client
	2.9.1 Controlling and Monitoring dbutility
	2.9.2 Databridge Client Exit Status Values
	2.9.3 Testing for Exit Status

	3. Getting Started
	3.1 Creating Client Control Tables
	3.1.1 Creating a Second Set of Tables
	3.1.2 Dropping and Re-Creating Client Control Tables
	3.1.3 Updating Client Control Tables
	3.1.4 Primary and Secondary Data Tables

	3.2 Defining a Data Source
	3.2.1 Using the Define Command
	To define a data source

	3.2.2 Results of the Define Command
	3.2.3 Cloning from Multiple Data Sources
	Add a Prefix to Duplicate Data Set Names

	3.3 Customizing with User Scripts
	3.3.1 Types of User Scripts
	3.3.2 User Script Syntax
	3.3.3 Writing and Testing User Scripts
	3.3.4 Using Scripts to Disable Data Sets

	3.4 Decoding DMSII Dates, Times, and Date/Times
	3.4.1 DMSII Dates
	Choosing the SQL Data Type of the Relational Database Column {#b1jbb5sf}
	DMSII DATES REPRESENTED AS A GROUP OF NUMBERS- - APPROACH #1
	DMSII DATES REPRESENTED AS A GROUP OF NUMBERS - APPROACH #2

	Decoding DMSII Dates Represented as ALPHA or NUMBER

	3.4.2 DMSII Times
	Choosing the SQL Data Type of the Relational Database Column
	DMSII Times Represented as ALPHA, NUMBER, or REAL

	3.4.3 Decoding DMSII Date/Times
	Decoding DMSII Date/Time Represented as ALPHA or NUMBER
	Custom DMSII Date/Time Represented as ALPHA or NUMBER
	Numeric Date and Time in Non-Contiguous Columns

	3.5 Creating Indexes for Tables
	3.5.1 Keys Derived from the DMSII Database
	3.5.2 Using Sets with the KEYCHANGEOK Attribute
	3.5.3 RSNs and AA Values as Keys
	Forcing the Client to Use RSN or AA Values as Keys

	3.5.4 User Defined Keys in GenFormat
	3.5.5 Composite Keys
	When to Use Composite Keys
	Composite Keys Defined by the User
	Creating a Composite Key

	3.6 Adding a Non DMSII Column
	3.6.1 Types of Non DMSII Columns
	3.6.2 Values for Non DMSII Columns
	3.6.3 Setting Up History Tables
	3.6.4 Modifying Non DMSII Column Names
	3.6.5 Preserving Deleted Records

	3.7 Generating Databridge Client Scripts
	3.7.1 Example of Script Files
	3.7.2 Summary of Script Files
	3.7.3 When to Run dbutility generate

	4. Cloning a DMSII Database
	4.1 Cloning Issues for All Relational Databases
	4.2 Bulk Loader Parameters
	4.2.1 Controlling Temporary File Storage for Windows Clients
	4.2.2 Bulk Loader Operations for UNIX Clients
	4.2.3 Controlling the Bulk Loader Maximum Error Count

	4.3 Oracle SQL*Loader Bulk Loader
	4.3.1 Files Related to SQL*Loader

	4.4 Microsoft SQL Server BCP API and bcp utility
	4.4.1 bcp_auditor Utility
	4.4.2 Files Related to BCP
	4.4.3 Files related to the BCP API

	4.5 Configuring Host Parameters
	4.5.1 Running tcptest

	4.6 Populating the Databridge Data Tables
	4.7 Data Validation and Discard Files
	4.7.1 Numeric Data Validation
	4.7.2 Alpha Data Validation
	4.7.3 Date Validation
	4.7.4 Special Handling of Key Items in Discard Files
	4.7.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle)

	4.8 The Process Command
	4.8.1 Cloning a DMSII Database

	5. Process Command Options
	5.0.1 Terminate Cloning
	5.0.2 Tracking the State of Data Sets
	5.0.3 ds_mode values
	5.1 The Clone Command
	5.1.1 Cloning Specific Data Sets

	6. Clone Command options
	6.1 Configuring for Optimal Performance
	6.1.1 Overlapped Bulk Loader Operations for Windows
	6.1.2 Overlapped Index Creation
	6.1.3 Optimizing State Information Passing
	6.1.4 Multiple Statements and Pre-parsed SQL Statements
	6.1.5 Reducing the Number of Updates to Data Tables
	6.1.6 Commit Frequency
	6.1.7 Other Considerations

	6.2 Tips for Efficient Cloning
	6.3 REMAPS

	7. Updating the Relational Database
	7.1 Updating the Databridge Data Tables
	7.2 Performing Updates Without Using Stored Procedures
	7.3 Scheduling Updates
	7.3.1 Scheduling Examples

	7.4 Scheduling Blackout Periods
	7.5 Unscheduled Updating
	7.6 Process Command Options
	7.7 Anomalies That Can Occur In Updates

	8. DMSII Reorganization and Rollbacks
	8.1 Initializations
	8.2 Reorganizations
	8.2.1 Managing DMSII Changes to Record Layout
	To run the redefine command
	About the redefine Command

	8.2.2 Performing Reorganizations Using an Internal Clone
	8.2.3 DMSII Changes to Record Locations

	8.3 DMSII Reorganization When Using Merged Tables
	8.4 Rollbacks
	8.4.1 Recovering from DMSII Rollbacks

	8.5 Recloning
	8.5.1 Recloning Individual Data Sets
	8.5.2 Recloning a Database
	8.5.3 Adding a Data Set
	8.5.4 Dropping a Table

	8.6 Backing Up and Maintaining Client Control Tables
	8.6.1 The Unload Command
	8.6.2 The Reload Command
	8.6.3 The Refresh Command

	9. Data Mapping
	9.1 DMSII and Relational Database Terms
	9.2 DMSII and Relational Database Data Types
	9.2.1 Databridge Data Types

	9.3 Supported DMSII Structures
	9.4 Unsupported DMSII Structures
	9.4.1 Embedded Data Sets
	Resulting Tables

	9.4.2 Selecting Embedded Data Sets for Cloning
	9.4.3 Record Serial Numbers
	9.4.4 AA Values
	9.4.5 DMSII Links
	9.4.6 Variable-Format Data Sets
	9.4.7 Resulting Tables
	9.4.8 Split Variable Format Data Sets Option

	9.5 Changing the Default Data Type
	9.6 Handling DMSII GROUPs
	9.7 Handling DMSII OCCURS
	9.7.1 DMSII DASDL with OCCURS
	9.7.2 Flattening OCCURS Clauses
	9.7.3 Flattening OCCURS Clauses to a String
	9.7.4 Flattening OCCURS Clause for Three-Bit Numeric Flags
	9.7.5 Flattening OCCURS Clause for Items Cloned as Dates
	9.7.6 DMSII GROUP OCCURS
	9.7.7 DMSII Nested OCCURS
	9.7.8 OCCURS DEPENDING ON
	9.7.9 Handling Unflattened OCCURS DEPENDING ON Clauses

	9.8 Relational Database Split Tables
	9.8.1 Split Table Names
	9.8.2 Keys for Split Tables

	9.9 Relational Database Table and Column Names
	9.9.1 Uppercase and Lowercase
	9.9.2 Hyphens and Underscores
	9.9.3 Name Length
	9.9.4 Duplicate Names
	9.9.5 Reserved Keywords

	10. OCCURS Table Row Filtering
	10.1 Filter Source File
	10.2 The Filter File

	11. Databridge Client Control Tables
	11.1 Changes in Databridge Client 7.0 Control Tables
	11.2 DATASOURCES Client Control Table
	11.3 DATASETS Client Control Table
	11.4 DATATABLES Client Control Table
	11.5 DMS_ITEMS Client Control Table
	11.6 DATAITEMS Client Control Table
	11.7 AF_STATS Client Control Table

	12. Automating Client Operations with the Service
	12.1 Configuring the Service
	12.2 Automation Scripts
	12.2.1 Process-Related Scripts
	12.2.2 BCNOTIFY Initiated Scripts

	12.3 Introducing the Batch Console
	12.3.1 Running the Batch Console (bconsole)
	12.3.2 Signing On to the Service
	12.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY
	12.3.4 Using Batch Console to Get Status Information
	12.3.5 Batch Console Commands
	Statements in Detail
	If Statements
	Command-Line Options

	13. Glossary of Terms
	absolute address (AA) value
	Audit Files
	audit trail
	Batch Console
	caching
	client
	cloning
	DASDL
	data set
	Databridge Director
	Databridge Engine
	Databridge Server
	DBClntCfgServer
	DBServer
	direct disk
	entry point
	extraction
	file format conversion
	flat files
	garbage collection reorganization
	lag time
	mutex
	null record
	null value
	primary database
	quiet point (QPT)
	record format conversion
	record serial number (RSN)
	reorganization
	replicated database
	replication
	rollback
	secondary database
	semaphores
	service
	set
	state information
	structure
	table
	tracking
	visible RSN

	14. Legal Notice
	15. Appendix
	15.1 Appendix A: Troubleshooting
	15.1.1 General Troubleshooting Procedures
	15.1.2 Troubleshooting Table
	15.1.3 Using SQL Query to Find Duplicate Records
	15.1.4 Log and Trace Files
	Log Files
	Trace Files

	15.1.5 Using Log and Trace Files to Resolve Issues
	15.1.6 Enabling Tracing
	15.1.7 Trace Options
	15.1.8 Trace Messages
	Database API Trace
	Bulk Loader Trace
	Configuration File Trace
	DBServer Message Trace
	Information Trace
	Load Trace
	Protocol Trace
	SQL Trace
	User Script Trace
	Read Callback Exit Trace
	DOC Record Trace
	Verbose Trace
	Thread Trace
	DMS Buffer Trace
	Row Count Trace
	Buffer Size Trace

	15.2 Appendix B: dbutility Commands and Options
	15.2.1 dbutility Commands
	15.2.2 dbutility Command-Line Options

	15.3 Appendix C: Client Configuration
	15.3.1 Client Configuration Files
	15.3.2 How Do I Edit the Configuration File?
	15.3.3 Export or Import a Configuration File
	15.3.4 Change or Encode a Password
	15.3.5 Command-Line Options
	15.3.6 Syntax
	15.3.7 Sample SQL Server Client Configuration File
	15.3.8 Sample Oracle Client Configuration File
	15.3.9 Processing Order
	15.3.10 Parameter Descriptions
	[signon]
	[Log_File]
	[Trace_File]
	[Bulk_Loader]
	[params]
	Define and Redefine Command Parameters
	ALLOW_NULLS
	AUTO_MASK_COLUMNS
	AUTOMATE_VIRTUALS
	BRACKET_TABNAMES
	CLR_DUP_EXTR_RECS
	CONVERT_CTRL_CHAR
	DEFAULT_USER_COLUMNS
	DFLT_HISTORY_COLUMNS
	ENABLE_DMS_LINKS
	ENABLE_DYNAMIC_HIST
	EXTERNAL_COLUMN[N]
	EXTRACT_EMBEDDED
	FLATTEN_ALL_OCCURS
	FORCE_AA_VALUE_ONLY
	HISTORY_TABLES
	INHIBIT_REQUIRED_OPT
	MAXIMUM_COLUMNS
	MIN_VARCHAR
	MINIMIZE_COL_UPDATES
	MISER_DATABASE
	OPTIMIZE_UPDATES
	READ_NULL_RECORDS
	REORG_BATCH_SIZE
	SEC_TAB_COLUMN_MASK
	SPLIT_VARFMT_DATASET
	STRIP_DS_PREFIXES
	SUPPRESS_DUP_WARNINGS
	SUPPRESS_NEW_COLUMNS
	SUPPRESS_NEW_DATASETS
	USE_BIGINT
	USE_BINARY_AA
	USE_CLOB
	USE_CLUSTERED_INDEX
	USE_COLUMN_PREFIXES
	USE_DATE
	USE_DATETIME2
	USE_DBCONFIG
	USE_DECIMAL_AA
	USE_INTERNAL_CLONE
	USE_NULLABLE_DATES
	USE_PRIMARY_KEY
	USE_STORED_PROCS
	USE_TIME
	USE_VARCHAR

	Process and Clone Command Parameters
	ALPHA_ERROR_CUTOFF
	AUX_STMTS
	BATCH_JOB_PERIOD
	CENTURY_BREAK
	COMMIT_ABSN_INC
	COMMIT_IDLE_DATABASE
	COMMIT_LONGTRANS
	COMMIT_TIME_INC
	COMMIT_TXN_INC
	COMMIT_UPDATE_INC
	CONTROLLED_EXECUTION
	CONVERT_REVERSALS
	CORRECT_BAD_DAYS
	DBE_DFLT_ORIGIN
	DEFER_FIXUP_PHASE
	DISCARD_DATA_ERRORS
	DISPLAY_BAD_DATA
	ENABLE_AF_STATS
	ENABLE_DOC_RECORDS
	ENABLE_FF_PADDING
	ENABLE_MINIMIZED_COL
	ENABLE_OPTIMIZED_SQL
	ENGINE_WORKERS
	ERROR_DISPLAY_LIMITS
	INHIBIT_8_BIT_DATA
	INHIBIT_CONSOLE
	INHIBIT_CTRL_CHARS
	INHIBIT_DROP_HISTORY
	INHIBIT_INIT_VALUES
	KEEP_UNDIGITS
	LINC_CENTURY_BASE
	MASKING_PARAMETER[N]
	MAX_CLONE_COUNT
	MAX_DISCARDS
	MAX_RETRY_SECS
	MAX_SRV_IDLE_TIME
	MAX_WAIT_SECS
	MIN_CHECK_TIME
	MONTHS
	N_DMSII_BUFFERS
	N_UPDATE_THREADS
	NULL_DATETIME_VALUE
	NULL_DATETIME2_VALUE
	NULL_DIGIT_VALUE
	NUMERIC_DATE_FORMAT
	PRESERVE_DELETES
	ROLLBACK_SEGMENT
	SET_BLANKS_TO_NULL
	SET_LINCDAY0_TO_NULL
	SHOW_PERF_STATS
	SHOW_STATISTICS
	SHOW_TABLE_STATS
	SQL_EXEC_TIMEOUT
	SQL_HEART_BEAT
	STATISTICS_INCREMENT
	STOP_AFTER_FIXUPS
	STOP_AFTER_GC_REORG
	STOP_AFTER_GIVEN_AFN
	STOP_ON_DBE_MODE_CHG
	TRACK_VFDS_NOLINKS
	USE_DBWAIT
	USE_LATEST_SI

	Server Option Parameters
	SHUTDOWN
	STOP

	Generate Command Parameters
	SQL STATEMENT SUFFIXES
	DATA MASKING STRINGS

	Display Command Parameters
	User Scripts Parameters
	[Scheduling]
	[EbcdictoAscii]
	TRANSLATION TABLE
	REDEFINING A CHARACTER
	EXTERNAL DATA TRANSLATION DLL SUPPORT

	[DBConfig]
	[Encryption]

	15.3.11 Reference Tables
	Bulk Loader Parameters
	Scheduling Parameters
	EBCDIC to ASCII Parameters
	Params Parameters

	15.4 Appendix D: Customization Scripts
	15.4.1 Customization Rules
	15.4.2 Changes By Table
	DATAITEMS Control Table Changes
	DATASETS Control Table Changes
	DATATABLES Control Table Changes
	DMS_ITEMS Control Table Changes

	15.4.3 Sample Scripts for Customizing Data Set Mapping
	Sample Data Set Global Mapping Customization Script
	Sample Data Set Selection Script
	Selecting DMSII Items
	Cloning a Numeric Field as a Date
	Cloning an Alpha Field as a Date
	Cloning an Alpha or Number Field as a Time
	Cloning an Alpha or Number Field as a Date/Time
	Flattening OCCURS Clause
	Flattening OCCURS Clause for Item Cloned as Dates
	Flattening OCCURS Clause for Three Bit Numeric Flags
	Splitting an Unsigned Number Item into Two Items
	Merging Two Neighboring Items
	Merging a Date and Time to Form a Date/Time
	Concatenating Two Items and Cloning the Result as a Date/Time
	Adding a Composite Key to Tables Mapped from a Data Set
	Specifying How to Handle Alpha Items That Are Too Long

	15.4.4 Sample Data Table Customization Scripts
	Sample Data Table Global Customization Script
	Disabling the Cloning of Secondary Tables
	Renaming a Table
	Renaming Columns
	Changing SQL Data Types
	Cloning a Number as a Character Type
	Adding a Non DMSII Column

	15.5 Appendix E: Client Exit Codes
	15.6 Appendix F: Service Configuration
	15.6.1 Sample Client Manager Service Configuration File
	15.6.2 [Control_Program]
	data_sources
	enable_status_file
	ipc_port
	n_scr_threads
	sess_start_timeout
	startup_delay
	userid = , ,

	15.6.3 [Log_File]
	file_name_prefix
	logsw_on_newday
	logsw_on_size
	max_file_size
	newfile_on_newday

	15.6.4 [data_source_name]
	auto_generate
	auto_redefine
	blackout_period
	client_dir
	daily
	disable_on_exitcode
	max_retries
	run_at_startup
	sched_delay_secs
	sched_minwait_secs
	working_dir

