
Databridge Client
Administrator's Guide

7.1

Copyright 2023 Open Text

Databridge Client Administrator's Guide

Table of contents

5Databridge Client Administrator's Guide

5About this guide

5Conventions

7Abbreviations

8Related Documentation

10Introducing Databridge Client

10Choosing the Client Manager Service vs. the Command-Line Client

10Using the Administrative Console and the Service

12How Replication Works

14Client vs. Host Filtering

15Databridge Components

19Comparing the Databridge Client Manager Service to Command-Line Operations

23Switching from Command-Line to Service Operations

27Command-Line Client Operations

30Before You Run the Command-Line Client

35Getting Started

35Creating Client Control Tables

41Defining a Data Source

47Customizing with User Scripts

56Decoding DMSII Dates, Times, and Date/Times

75Creating Indexes for Tables

83Adding a Non DMSII Column

91Generating Databridge Client Scripts

100Cloning a DMSII Database

100Cloning Issues for All Relational Databases

101Bulk Loader Parameters

102Oracle SQL*Loader Bulk Loader

106Microsoft SQL Server BCP API and bcp utility

112PGLoader Utility

114Configuring Host Parameters

Table of contents

Table of contents 2

115Populating the Databridge Data Tables

115Data Validation and Discard Files

118The Process Command

122Process Command Options

127The Clone Command

129Clone Command options

131Configuring for Optimal Performance

135Tips for Efficient Cloning

137REMAPS

139Updating the Relational Database

139Updating the Databridge Data Tables

140Performing Updates Without Using Stored Procedures

141Scheduling Updates

143Scheduling Blackout Periods

143Unscheduled Updating

144Process Command Options

145Anomalies That Can Occur In Updates

147DMSII Reorganization and Rollbacks

147Initializations

147Reorganizations

154DMSII Reorganization When Using Merged Tables

154Rollbacks

156Recloning

159Backing Up and Maintaining Client Control Tables

163Data Mapping

163DMSII and Relational Database Terms

163DMSII and Relational Database Data Types

165Supported DMSII Structures

166Unsupported DMSII Structures

173Changing the Default Data Type

175Handling DMSII GROUPs

176Handling DMSII OCCURS

184Relational Database Split Tables

Table of contents

Table of contents 3

186Relational Database Table and Column Names

189OCCURS Table Row Filtering

189Filter Source File

190The Filter File

194Databridge Client Control Tables

194DATASOURCES Client Control Table

200DATASETS Client Control Table

230DATATABLES Client Control Table

239DMS_ITEMS Client Control Table

255DATAITEMS Client Control Table

267AF_STATS Client Control Table

271Automating Client Operations with the Service

271Configuring the Service

271Automation Scripts

275Introducing the Batch Console

286Glossary of Terms

286A - D

289E - R

292S - V

294Appendix

295Appendix A: Troubleshooting

326Appendix B: dbutility Commands and Options

346Appendix C: Client Configuration

457Appendix D: Customization Scripts

472Appendix E: Client Exit Codes

502Appendix F: Service Configuration

512Legal Notice

Table of contents

Table of contents 4

1. Databridge Client Administrator's Guide

This guide contains instructions for configuring and using the Micro Focus Databridge Client.

1.1 About this guide

While this guide was originally written for command-line Client operations, it is applicable to both

command-line or service-controlled Client operations. To facilitate the transition to using service-

based operations we provide instructions on how to perform the tasks described in this document

using the Administrative Console and information on where to find configuration parameters in the

Administrative Console's Configure command dialog pages.

For Administrative Console users this manual contains a lot of detailed information that they do

not need to know; particularly in the area of writing user scripts. The Administrative Console's

Customize command hides a lot of these details from you and lets you concentrate on what you

are trying to do (usually the operations involve a single mouse-click plus a selection among the

possible data formats in DMSII). Using the Administrative Console to control the running of the

Client gives you the ability to fully automate Client operations and do comprehensive error

recovery. For information specific to the service-controlled Client, see the following topics in this

chapter or go to the Help in the Databridge Administrative Console:

Using the Client Console and the Service

Automating Client Operations with the Service

To install, configure, and run Databridge, you should be a system administrator familiar with the

following:

Standard Unisys® operations for MCP-hosted mainframes such as the CS7xxx series, Libra

series, ClearPath® NX/LX or A Series

DMSII databases and Data And Structure Definition Language (DASDL)

File layouts and the description of those layouts for the files you will be replicating

1.2 Conventions

The following conventions and terms may be used in this guide.

• •

• •

• •

• •

• •

1. Databridge Client Administrator's Guide

1. Databridge Client Administrator's Guide 5

This convention Is used to indicate ...

menu > sub menu 1 >

sub menu 2 ... > menu

item (item)

This font style/color shows mouse-clicks in the order

required to access a specific function, window, dialog box,

etc.

The greater than symbol > indicates the next item to click in

the series.

The parentheses () indicate the setting, option, or parameter

being discussed. Note the font style reverts back to normal.

this type style text that you type, filenames and directory names, onscreen

messages

bold Folder names and program names. For example logs,

DBClient.

italic variables, emphasis, document titles

square brackets ([]) optional items in a command. For example, [true |

false] . (Do not type the brackets.)

Buttons. For example, [OK] , [Start] , [Cancel]

pipe (|) a choice between items in a command or parameter. When

enclosed in braces ({ }) , the choice is mandatory.

UPPERCASE DMSII data set and data item names.

This term Is used to indicate ...

MCP server host

mainframe

Unisys ClearPath NX, LX or A Series mainframe

DBEngine Databridge Engine on the mainframe

DBEnterprise Databridge Enterprise Server

DBServer Databridge Server on the mainframe

1.2 Conventions

1.2 Conventions 6

1.3 Abbreviations

Here is a quick reference for abbreviations that are used throughout this guide.

This term Is used to indicate ...

Service For UNIX Clients, consider this term synonymous with

"daemon"

Abbreviation Name

AA Absolute Address

ABSN Audit Block Serial Number

AFN Audit File Number

API Application Programming Interface

DASDL Data and Structure Definition Language

DMSII Data Management System II

IDX Index

IPC Inter-Process Communications

MCP Master Control Program

RPC Remote Procedure Call

RSN Record Serial Number

SEG Segment

1.3 Abbreviations

1.3 Abbreviations 7

1.4 Related Documentation

When using Databridge, you may need to consult the following resources.

Abbreviation Name

WFL Work Flow Language

Databridge

product

documentation

On the Databridge installation image, the Docs folder contains

guides for installation, error codes, and administrator's guides for

each Databridge product in PDF format. This documentation and

current Knowledge Base articles are available on the Databridge

Support Resources site.

Documentation for Databridge Enterprise Server and the

Databridge Client Console is also available from the Help menu and

from the Databridge Documentation site.

1.4 Related Documentation

1.4 Related Documentation 8

https://www.microfocus.com/en-us/support/Databridge/
https://www.microfocus.com/en-us/support/Databridge/
https://www.microfocus.com/documentation/databridge/

Unisys MCP

server

documentation

If you are not completely familiar with DMSII configuration, refer to

your Unisys documentation.

1.4 Related Documentation

1.4 Related Documentation 9

2. Introducing Databridge Client

Micro Focus Databridge is a combination of host and (optional) client software that provides

automated replication of DMSII databases and flat files. All replications occur while the DMSII

database is active. After the initial clone, Databridge updates the secondary database, copying only

the DMSII data changes from the audit trail.

2.1 Choosing the Client Manager Service vs. the
Command-Line Client

The Databridge Client provides two modes of operation. One mode lets you configure and run the

Client from the Administrative Console, where the Client Manager service launches the Client and

automates much of the replication process. The other mode uses a command prompt session (or

terminal session in the case of UNIX) to run the command-line Client (dbutility). For a comparison

of these modes of operation, see Comparing the Databridge Client Manager Service to Command-

Line Operations.

While this guide can be used with either the command-line or service-controlled Client, it is

intended primarily for command-line Client operations. For information specific to the service-

controlled Client, see the following topics or refer to the Help in the Databridge Administrative

Console:

2.2 Using the Administrative Console and the Service

The Administrative Console is an easy-to-use browser-based graphical interface that lets you

access Clients on different platforms. You can view multiple data sources (defined by Databridge

Server or Enterprise Server) and monitor all Client activity via onscreen messages and status

updates.

2. Introducing Databridge Client

2. Introducing Databridge Client 10

The Administrative Console communicates directly with the Client Manager service, which starts

Client runs in the background and completely automates Client operations. You decide when and

how often Client runs are initiated by using the service scheduling settings in the Administrative

Console. You can also use command files (shell scripts in UNIX) to interact with the service and

automate processes. For more information, see Chapter 13, Automating Client Operations with the

Service.

Enhanced Security

Because the service always starts the Client in the background, the Administrative Console is the

only interface to service-initiated Client runs. Neither the service nor the background runs interact

with the desktop or require that a user be signed on to the server. This makes service-initiated

Client operations more secure than command-line operations and prevents the Client runs from

being terminated, whether accidentally or maliciously. The service starts at system startup (by

default), which ensures that replication can continue in the event of system failure without outside

intervention.

In addition to launching Client runs, the service routes all log and informational messages to the

Administrative Console and facilitates operator tasks using the DBClient and DBClntCfgServer

programs. The first program, DBClient, performs DMSII processing and cloning tasks. The second

program, DBClntCfgServer, handles Administrative Console requests that require access to the

relational database (such as define , generate and reorganize commands). The activity and

output of these programs is displayed in the Administrative Console's console window.

The following diagram shows the Client architecture for the two types of clients: the command-line

Client (dbutility) and the service-controlled client (DBClient and other components).

2.2 Using the Administrative Console and the Service

2.2 Using the Administrative Console and the Service 11

The Administrative Console can perform data source customizations by clicking on Settings >

Customize after selecting the data source. The Customize command lets you easily customize

your data sources without any knowledge of SQL or how your Client control tables work. Instead of

hand-coding SQL user scripts, you can select options to configure your data sources and map

DMSII data to your relational database tables.

To use the Customize command with existing Client configurations that employ user scripts, you

must first upgrade your Client control tables using the dbscriptfixup utility. (See the Databridge

Installation Guide.)

2.3 How Replication Works

To customize a specific data source, you must first navigate to the data sources page for the

Client Manager in question by using the provided links (Databridge Servers > Client Managers).

If you are in the monitor page click on the link for the Client Manager on upper left hand corner

of the group of entries for the Client Manager in question. Place your mouse over the desired

data source name and click on it to select it (the line should turn light blue). Click on the

Settings > Customize to start the customizer.

Note

2.3 How Replication Works

2.3 How Replication Works 12

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

The Databridge Client controls the replication process of DMSII databases and flat files. It initiates

connections to Databridge Server on the host and maintains the state information necessary for

resuming replication in case operations are interrupted. At the heart of the host-based Databridge

system is the Databridge Engine---a system library that retrieves structural information and data

from the DMSII database and passes it to Databridge Server. When you opt to use Enterprise Server

with the Databridge Client instead, Enterprise Server takes over much of the functionality of the

Databridge Engine and Databridge Server.

The Databridge Support Library, also installed on the host, provides filtering, formatting, and

reformatting services for the Databridge Server. See Client vs. Host Filtering.

After the Databridge Server receives data from the Databridge Engine, it calls the Support Library to

determine if the data should be replicated, and if so, it passes the data to the Support Library for

formatting.

Replication involves three discrete phases, as described below. These three phases are tracked for

each data set in the ds_mode column of the DATASETS control table as values 0, 1, and 2.

Data

Extraction

This phase (identified by a mode of 0) applies only to data sets that have

not yet been cloned. During this phase, the Databridge Engine sequentially

reads all of the records from the data sets being cloned and passes them to

the Databridge Client. Using the appropriate bulk loader utility, the Client

populates the relational database tables and creates indexes for the tables.

Fixup During this phase (identified by a mode of 1), the Databridge Engine

processes audit files and passes all of the DMSII updates that occurred

while data extraction was taking place to the Client, which updates the

relational database. This phase is fully restartable. During this phase the

relational database is not fully consistent, as the not all the tables are in-

sync.

The only difference between the Fixup Phase and the Update (or Tracking)

Phase is that the Client has to deal with conditions caused by the fact that

the tables from which records were extracted were changing as the

extraction was taking place. Until the audit file processing gets past the

point in the audit trail where the data extraction ends, the Client behaves

somewhat differently in order to handle such issues as updates to records

that are not in the tables, deletions of records that are not in the tables, and

inserts of records that are already in the tables.

2.3 How Replication Works

2.3 How Replication Works 13

2.4 Client vs. Host Filtering

Use the following guidelines to determine when to use the host instead of the Databridge Client to

perform filtering.

Filtering Columns

On the host side, you can filter columns by creating a filtering routine with the DBGenFormat utility.

On the Databridge Client side, you can filter columns the same way you can filter data sets, which is

to set the active column to 0 for the corresponding entry in the DMS_ITEMS Client control table.

The advantage of performing the filtering on the Databridge Client side is that you save on host

resources. However, there are a few cases where you should consider filtering on the host side, as

follows:

If you plan to filter many columns, consider filtering on the host side to reduce TCP/IP

traffic. The best way to determine this is to try the filtering both ways and see which gives

you the best throughput.

If you plan to filter columns with confidential or sensitive information, it is best to perform

the filtering on the host.

Update During this phase (identified by a mode of 2), the Client processes audit

files and then passes all of the DMSII database updates to the Client, which

updates the relational database. This phase is also referred to as the

change tracking phase.

Databridge uses quiet points to synchronize the replicated database

with the DMSII database and ensure accuracy of the data. Quiet points

mark the start of a group of updates, which is referred to as a transaction.

When the Databridge Engine reaches the end of the last DMSII audit file (or

encounters a program that did a rollback), it usually rolls back the

transaction and instructs the Client to roll back updates. The Client stores

quiet point information with other state information in a set of control

tables, referred to as the Client control tables, and uses it to restart the

replication process.

If near real-time replication is required, set the parameter use_dbwait to

true. This causes the Engine to enter a wait-and-retry loop for a configurable

amount of time, instead of returning an audit file unavailable status, which

normally occurs when no more Audit Files are available.

• •

• •

2.4 Client vs. Host Filtering

2.4 Client vs. Host Filtering 14

Filtering Data Sets

You can filter data sets on the host side by using a logical database or by creating a filtering routine

with the DBGenFormat program. On the Databridge Client side, you can filter data sets by setting

the active column to 0 for the corresponding entry in the DATASETS Client control table.

If you want to filter data sets that contain confidential or sensitive information, consider using a

logical database or a filtering routine in the DBGenFormat utility. In this case, the Databridge Client

will have no record that these data sets exist.

Filtering Rows

Row filtering limits data to certain ranges; you can accomplish this via the WHERE clause of

filtering routines created with the DBGenFormat program on the host. For more information, see

Chapter 4 in the Databridge Host Administrator's Guide.

Filtering OCCURS Tables

OCCURS tables are secondary tables generated by the Databridge Client when OCCURS clauses for

items (or GROUPs) are not flattened. Frequently, not all rows in such tables contain meaningful

data, for this reason it is desirable to filter such rows to reduce the storage requirements and

improve performance. Starting with version 6.5, the Databridge Client implements row filtering for

OCCURS tables. For more information, refer to OCCURS Table Row Filtering.

2.5 Databridge Components

The following table lists all of the Databridge products and components that can have a role when

replicating data with the Databridge Client.

Databridge Host (installed on the mainframe)

Component Description

Databridge

Engine

(DBEngine)

The main component of the Databridge software, DBEngine is a host

library program that retrieves structural information, layout

information, and data from the DMSII database and passes the

information to the Databridge Server. Additionally, it retrieves updates

by reading the audit files on the host and sends the changes to the

Client.

Databridge

Server

(DBServer)

An accessory that provides communications between DBEngine and

the Databridge Client, and also between DBEngine and Databridge

Enterprise Server. DBServer responds to Databridge Client requests

for DMSII data or DMSII layout information.

2.5 Databridge Components

2.5 Databridge Components 15

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Databridge Enterprise Server

A Windows-based product that provides the same functionality as the Databridge Engine

(DBEngine) and Databridge Server (DBServer) on the host. Enterprise Server offloads much of the

replication workload from the Unisys mainframe to a Windows computer, reducing mainframe

resource utilization and initial load time.

Databridge Clients can connect directly to Enterprise Server, which in turn connects to DBServer on

the mainframe. If MCP disks are directly accessible from the Windows server, Enterprise Server

extracts the DMSII data directly. Enterprise Server reads the audit trail on the host to retrieve

updates that occurred during the extraction and sends the changed information from the audit file

to the Client. If MCP disks are not directly accessible, Enterprise Server uses DBServer to retrieve

blocks of data from DMSII data sets or the audit files. Enterprise Server provides high-speed file

transfer between the host and the Windows environment and audit file mirroring.

Component Description

Support Library

(DBSupport)

A library that provides formatting and filtering to the DBServer and

other accessories. After DBServer receives data from the DBEngine, it

calls the Support Library to determine if the data should be replicated,

and if so, passes the data to the Support Library for formatting.

DBGenFormat A host utility that creates filter and format routines. The

DBGenFormat utility interprets the DBGenFormat parameter file to

generate ALGOL source code patches, which are included in the

tailored Support Library.

Component Description

DBEnterprise The executable file for Enterprise Server, frequently used

interchangeably with Enterprise Server.

2.5 Databridge Components

2.5 Databridge Components 16

Databridge Client

The Client initiates a connection with the Databridge Server and then specifies the DMSII data sets

to be replicated from a DMSII database.

Component Description

Databridge Director

(DBDirector)

A Windows Service that listens for Client connection requests

and starts DBEnterprise whenever a connect request is received.

We use terms "Databridge Server" and "Databridge Engine" throughout the rest of this manual

as generic terms that apply to either "DBServer" and "DBEngine" on the mainframe or to the

equivalent component in "Databridge Enterprise Server".

Note

Component Description

Client Manager

(DBClntControl)

The service (Windows) or daemon (UNIX) that automates most

Client operations. It handles operator requests from the

Administrative Console and routes all log and informational

messages to the administrative consoles.

DBClient A Client program that is launched by the service. DBClient handles

the processing of DMSII data and updates the same as dbutility,

except that it runs as a background run and uses the Administrative

Console to display its output and interact with the operator.

DBClntCfgServer A program that handles all requests specific to a data source from

the Administrative Console. These requests include updating the

Client configuration file, providing access to the Client control

tables, and handling the Customize command. Like DBClient, this

program is run by the service as a background run.

dbutility A program that runs the Databridge Client from a command line.

Batch Console

(bconsole)

A program that allows Windows command files (UNIX shell scripts)

to issue console requests to the Databridge Client Manager. The

Batch Console executes console commands in script files that are

written in a language that vaguely resembles Visual Basic.

2.5 Databridge Components

2.5 Databridge Components 17

Databridge FileXtract

An application that allows you to clone and update Flat Files that reside on Unisys ClearPath NX,

LX, or A Series mainframes. You can also use FileXtract with the Databridge Client to replicate this

data. From the Client perspective, FileXtract data sources look like DMSII data sources.

FileXtract is bundled with Databridge Host software and includes several Reader libraries and other

associated files.

Databridge Flat File Client

The Flat File Client (also known as PCSPAN) is a Windows implementation of the DBSPAN

accessory on the MCP. As is the case with DBSPAN, rather than update the secondary database,

the Flat File Client creates data files that contain the data records for the updates. This approach is

useful when a Databridge Client does not exist for a particular database or platform or when the

data has to be transformed before being loaded into a secondary database. The Flat Client has a

very similar architecture to the relational database clients, such as the SQL Server and the Oracle

Clients.

Databridge Kafka Client

The Databridge Client for Kafka, which is implemented on Linux and Windows platforms, enables

the ability to utilize the Kafka messaging system within the Databridge architecture. The Kafka

messaging system is a scalable fault-tolerate data management system that provides efficient real-

time data processing.

Component Description

Administrative

Console

A browser-based application that is controlled by a server which

connects to the Databridge Client Managers. The Administrative

Console, besides providing a replacement for the Eclipse based

Client Console and the Client Configurator, also implements a

monitor that allows you to monitor the operations of the various

Client Managers and the Clients they control from a single screen.

To connect to the Administrative Console server from the browser

use the following URL https://hostname:7445/ where hostname is

the name or IP address of the Administrative Console server.

A flat file is a plain text or mixed text and binary file which usually contains one record per line.

Within the record, individual fields may be separated by delimiters, such as commas, or have a

fixed length and be separated by padding. An example of a flat file is an address list that

contains fields for Name and Address.

Note

2.5 Databridge Components

2.5 Databridge Components 18

2.6 Comparing the Databridge Client Manager Service to
Command-Line Operations

The Databridge Client Manager service performs the same operations as the command-line Client,

dbutility. We refer to these operations using the term "service" whether the Client Manager service

is running on Windows platforms (service) or UNIX/Linux platforms (daemon). Each machine has

its own service (Windows) or daemon (UNIX/Linux). The primary advantage to using the service is

its ease of use and the ability to automate most of your Client processes. Additionally, Client runs

initiated by the service can't be interrupted or tampered with as they occur as background runs.

The following table can give you a better idea of how the two modes of operations compare when

performing Client-specific tasks.

To do this With this

dbutility

command

With the Databridge Client Manager

(via Administrative Console)

Create Client control

tables

configure The Client control tables are

automatically created if they don't

already exist when you run a Define/

Redefine command from the Actions

menu or a Customize command from

the Settings menu for the data source.

Clone the data sets

specified on the

command line

clone To clone selected data sets, click on the

Clone Data Sets command in the

Advanced menu for the data source.

The resulting dialog allows you to select

the data sets to clone, and it also allows

you to add command line options.

Populate the Client

control tables with

information about the

DMSII data set layouts

and the corresponding

relational database

table layouts

define Click on the Define/Redefine command

in the Actions menu for the data

source. DBClntCfgServer executes the

appropriate command (define or

redefine).

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations 19

To do this With this

dbutility

command

With the Databridge Client Manager

(via Administrative Console)

Apply changes from the

primary database to

the relational database

structure while

preserving existing

information

redefine Click on the Define/Redefine command

in the Actions menu for the data

source. DBClntCfgServer executes the

appropriate command (define or

redefine).

To run a redefine command with the

-R option (i.e. redefine all data sets)

from the Administrative Console, click

ON Redefine (with options) in the

Advanced menu for the data source

and check the "Redefine All Data Sets"

checkbox.

To write the Client

control table entries to

the log file

display To write control tables to the log file,

click on the Log Control Tables

command in the Advanced menu for

the data source.

To create script files generate Click on the Generate Scripts command

in the Actions menu for the data

source. This is the equivalent of running

the generate command with no

command-line options.

To force all script files to be recreated

in the dbscripts subdirectory, click on

the Generate All Scripts command in

the Advanced menu for the data

source.

NOTE: This is equivalent to using the –u

option in the command line Client to

create and place all of the script files in

the dbscripts subdirectory.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations 20

To do this With this

dbutility

command

With the Databridge Client Manager

(via Administrative Console)

To perform the initial

clone or process DMSII

database updates

process Click on the Process command in the

Actions menu for the data source. The

service, which controls scheduling for

all process commands, starts

DBClient at the scheduled time (if

specified) and terminates DBClient

when the process command finishes.

You can run this command anytime.

To add command line options to

process commands for runs initiated

from the Console, click on the Process

(with options) command in the

Advanced menu for the data source,

then choose the options you need from

the provided set of checkboxes.

To recreate the stored

procedures for tables

associated with a given

data set in the

specified data source

(for example, after a

DMSII reorganization)

refresh Click on the Refresh Data Set command

in the Advanced menu for the data

source. You can either refresh a specific

data set or all data sets.

To alter the relational

database using the

scripts created by the

redefine command.

The command

automatically refreshes

the scripts and stored

procedures associated

with the tables whose

layouts have changed.

reorg

or

reorganize

Click on the Reorganize command in

the Actions menu for the data source..

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations 21

To do this With this

dbutility

command

With the Databridge Client Manager

(via Administrative Console)

To run user scripts or

Databridge Client

scripts

runscript Click on the Run Script command in the

Advanced menu for the data source.

This command runs the script in the

user script directory

(user_script_dir), the name and

location of which is defined in the Client

configuration file. If you start the

filename with a backslash for a

Windows Client or a slash for a UNIX

Client, this command uses the -n option,

which overrides the directory

specification.

To close an audit file on

the host

switchaudit Not supported.

To back up the Client

control tables

unload Click on the Unload Data Source

command in the Advanced menu for

the data source.

To restore the Client

control tables using the

backup file

reload Click on the Reload Data Source

command in the Advanced menu for

the data source.

To export the binary

configuration file to an

editable text file

export Click on the Export Client Configuration

command in the Advanced menu for

the data source. You can only execute

the export command with the default

command-line options from the

Administrative Console.

To import a text

configuration file (and

convert it to a binary

file) for use with the

Client

import Not available. The configuration file is

updated directly from the

Administrative Console.

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations

2.6 Comparing the Databridge Client Manager Service to Command-Line Operations 22

For more information about dbutility commands, see dbutility Commands. For more information

about the Administrative Console, see Using the Console and Service and the Help included in the

Administrative Console.

2.7 Switching from Command-Line to Service Operations

Use this procedure if you currently run the Databridge Client from a command line and want the

Client Manager to run it, or if you need to add existing data sources to the Client Manager.

To operate the Client Manager on the Client machine, you'll need a specific directory structure,

referred to as the service's working directory.

2.7.1 To switch to the service based client (Windows)

To do this With this

dbutility

command

With the Databridge Client Manager

(via Administrative Console)

To create user scripts

to back up

customizations made

by the Customize

command

createscripts Click on the Create User Scripts

command in the Advanced menu for

the data source.

If you're in the process of upgrading your Databridge software, use the instructions in the

Databridge Installation Guide for upgrading the Client.

Important

Using the 6.6 console with the 7.1 Client software will not work well. The 7.1 Admin Console will

not work with the 6.6 Client software. You should always run matching software for the

Administrative Console and the Client.

Note

2.7 Switching from Command-Line to Service Operations

2.7 Switching from Command-Line to Service Operations 23

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

Set up the service's working directory. For more information, see The Working Directory in the

Databridge Installation Guide.

Install the Administrative Console that matches the version of Databridge Client software you

use. For instructions, see the Databridge Installation Guide.

Do one of the following:

If you use a text Client configuration file, proceed to step 4.

If you use a binary Client configuration file (that is, you have not exported your

configuration file to a text file to edit it), skip to step 6.

From the data source directory, locate the config folder, and copy the text configuration file

"dbridge.cfg" to a file named "dbridge.ini". The following image shows an example of a working

directory for a data source named "zdatabase".

From a command prompt, go to the working directory for your data source and run the

dbutility import command. This creates a binary configuration file required by the service.

To make sure that the Client Manager service is running, from the Start menu, click Control

Panel > Administrative Tools > Services, double-click Micro Focus Databridge Client Manager

7.1, then click [Start].

Using a browser such as Microsoft Edge or Google chrome enter the following URL https://

hostname:7445/ where hostname is the name or IP address of the Administrative Console

server.

From the Databridge Server page click +Add and provide the hostname or IP address of the

Client Manager and the port it listen on (typically 8001). This will add the node to the list of

servers and detect the fact that it is a Client Manager.

Repeat step 8 for the Databridge server you wish the data source be associated with. This will

add the node to the list of servers and detect the fact that it is a Databridge server on the MCP

1. 1.

2. 2.

3. 3.

• •

• •

4. 4.

4.

5. 5.

6. 6.

7. 7.

8. 8.

9. 9.

2.7.1 To switch to the service based client (Windows)

2.7.1 To switch to the service based client (Windows) 24

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

or a Databridge Enterprise Server. It will detect if the connection to the Databridge Server on

the MCP is encrypted or not.

Go to the page for the Client Manager you just added by Clicking on Client Managers link and

click on the Client Manager in question. Click on the +Add menu and click on New to open the

"Add new data source" dialog.

Select the Databridge server from the dropdown list provided. Note that if you skipped Step 9,

you can add the server by pushing the Add new server radio button and providing the server

name or IP address and the port it listens on. When done push the continue button which

move you to the next page of the dialog.

The Administrative console retrieves the data source names configured for the server in

question and provides you with a list box from which you can select the desired data source.

Fill in the rest of the boxes on the page with the relational database information that is

needed. This includes the ODBC data source name for the SQL Server Client, the PostgreSQL

Client, the database name for the Oracle Client, and the relational database signon information

user/password. And in the case of the SQL Server, you can use Integrated Windows

Authentication. When done click the Add button on the lower right corner of the display.

2.7.2 To switch to the daemon based client (UNIX/Linux)

10. 10.

11. 11.

12. 12.

13. 13.

2.7.2 To switch to the daemon based client (UNIX/Linux)

2.7.2 To switch to the daemon based client (UNIX/Linux) 25

Log on as the userid specified in the USERID parameter of the file globalprofile.ini . This is

the same userid you currently use to run the command-line Client.

Set the current directory to the home or other directory to which you have write access and

copy the script dbdaemon from the install directory to it. This allows you to make changes to

the script.

In an editor, open the script dbdaemon .

Make sure that the environment variables (such as INSTALLDIR, WORKING_DIR,

ORACLE_HOME, LD_LIBRARY_PATH) are correct for your system and edit them as needed.

Save and close the script.

Start the daemon by typing the following:

To verify that the daemon is running use the ps command, which should produce output

similar to the following:

If the daemon doesn't start, in the script dbdaemon , make sure that the WORKING_DIR and

INSTALLDIR environment variables are correct. Also, check the Client Manager's working

directory to determine if a file "dbdaemon.log" was created and if it contains any clues.

Using a browser such as Microsoft Edge or Google chrome enter the following URL https://

hostname:7445/ where hostname is the name or IP address of the Administrative Console

server.

From the Databridge Server page click +Add and provide the hostname or IP address of the

Client Manager and the port it listen on (typically 8001). This will add the node to the list of

servers and detect the fact that it is a Client Manager.

Repeat step 10 for the Databridge server you wish the data source be associated with. This

will add the node to the list of servers and detect the fact that a Databridge server on the MCP

or a Databridge Enterprise Server. It will detect if the connection to the Databridge Server on

the MCP is encrypted or not.

Go to the page for the Client Manager you just added by Clicking on Client Managers link and

click on the Client Manager in question. Click on the +Add menu and click on New to open the

"Add new data source" dialog.

Select the Databridge server from the dropdown list provided. Note that if you skipped Step 11,

you can add the server by pushing the Add new server radio button and providing the server

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

dbdaemon start

7. 7.

databridge@VMOPENSUS114-64:~> ps -ef | grep DBC
databridge 1110 1 0 12:00 ? 00:00:00
/opt/dbridge71/DBClntControl

8. 8.

9. 9.

10. 10.

11. 11.

12. 12.

13. 13.

2.7.2 To switch to the daemon based client (UNIX/Linux)

2.7.2 To switch to the daemon based client (UNIX/Linux) 26

name or IP address and the port it listens on. When done push the continue button which

move you to the next page of the dialog.

The Administrative console retrieves the data source names configured for the server it

question and prides you with a list box from which you can select the desired data source.

Fill in the rest of the boxes on the page with the various relational database information that is

needed. This includes the database name for the Oracle Client and the relational database

signon information user/password. When done click the Add button on the lower right corner

of the display.

Type su to switch to the root user and then copy the script dbdaemon from the location you

specified in step 5 to the following location:

(Linux/Solaris) /etc/init.d

(AIX) /etc/rc.d/init.d

(HP-UX only) /sbin/init.d

To make the operating system automatically start the daemon whenever the system starts,

consult the documentation for your operating system.

2.8 Command-Line Client Operations

This section describes the tasks required to clone a DMSII database and track changes using the

Databridge Client from a command line. This sequence assumes that the relational database is

properly configured and the required Databridge software is installed and running.

14. 14.

15. 15.

16. 16.

• •

• •

• •

17. 17.

1 Update the

configuration

file

Because the Client reads the Client configuration file before

writing the script files and the log file, you may need to modify

this file. To edit the configuration file, you must export it to an

editable format and then import it after you make your

changes. For more information, see Export or Import a

Configuration File.

2 Run the

dbutility

configure

command

In a first-time installation, you must run the dbutility

configure command. This creates the Databridge Client

control tables that will hold the layout information for the

DMSII database and corresponding relational database tables.

2.8 Command-Line Client Operations

2.8 Command-Line Client Operations 27

3 Run the

dbutility define

command

This command creates an entry in the DATASOURCES Client

control table that contains the data source name, the host

name and the port number on which Databridge Server listens.

It also populates the Client control tables with the DMSII

layout and creates the corresponding table layout for the

relational database.

**dbutility define datasourcename hostname portnumber

4 Create user

scripts

To customize the Client control tables, you must create user

scripts. Or, you can use the default mapping that the

Databridge Client produces. Creating user scripts is an

iterative process that involves writing scripts to select and

map data sets and customizing data tables, and then testing

and updating the scripts until the resulting data table layout

meets your specifications.

When you are satisfied with the results of your user scripts, re-

run the define command with the -u option.

5 Run the

generate

command

This command creates scripts that the Databridge Client uses

to create and populate the data tables from the data sets that

you selected for cloning. You can modify the configuration of

your data tables by adding optional parameters to the end of

the create table and create index statements.

Do not directly modify scripts created by the generate

command; your changes will be lost the next time your run this

command.

dbutility generate datasourcename

6 Review the bulk

loader options

Review the sections on the bulk loader utilities and their

related options, making changes to the bulk loader

parameters in the configuration file as needed. If you make

changes to the Client configuration file, you will need repeat

step 5 with the -u option added, as the scripts will otherwise

not reflect these changes.

2.8 Command-Line Client Operations

2.8 Command-Line Client Operations 28

7 Clone the

database

To clone the DMSII database, run the process command. If

you want to clone only a few data sets, use the clone

command. This step populates the Databridge data tables in

the relational database with actual DMSII data.

dbutility process datasourcename

2.8 Command-Line Client Operations

2.8 Command-Line Client Operations 29

2.9 Before You Run the Command-Line Client

Before you use dbutility, do the following:

Set up the relational database.

Install the Databridge software on the host and set up and start Databridge Server (see the

Databridge Host Administrator's Guide).

If Databridge Server requires signon parameters, include these in the dbutility configuration

file. If necessary, you can also provide these parameters in the environment variables or in

dbutility command-line options.

Install or upgrade the Databridge Client (see the Databridge Installation Guide) and create a

separate working directory for each DMSII database to be cloned. In most cases, you'll add

the relational database logon parameters to the data source configuration file. You can do

this by supplying the signon parameters to the import command using command line

switches (such as -U -P -O -W) when you create a new data source. Passwords are

automatically encrypted.

2.9.1 Controlling and Monitoring dbutility

The Databridge Client includes a command-line console to help control and monitor dbutility.

Commands are entered in the same command prompt session where dbutility is running. When

dbutility is running, make sure that the focus is on the command prompt window and then use the

keyboard to enter the command. You need to type only enough of the command to make it unique.

8 Update the

database

To update the relational database with changes made to the

DMSII database, run the process command. Or, to make the

Databridge Engine wait for updates when it reaches the end of

the audit trail, set the configuration parameter use_dbwait to

true or use the command-line switch -w .

• •

• •

• •

When you execute dbutility commands for different data sources, make sure that you have set

the current directory to be the directory created for that data source. This ensures that the

process or clone command can locate the configuration files and the scripts created by the

generate command.

Important

2.9 Before You Run the Command-Line Client

2.9 Before You Run the Command-Line Client 30

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

The configuration file parameter inhibit_console allows you to disable the command-line

console, and the command-line option -C toggles this parameter. The available commands are as

follows:

This Command Allows You To

co[mmit]

a[bsn]

<number>

Dynamically changes the value of the parameter commit_absn_inc .

The change only takes effect at the next commit. The allowable range

of values is the same as that of the parameter commit_absn_inc.

co[mmit]

ti[me]

<number>

Dynamically changes the value of the parameter commit_time_inc .

The change only takes effect at the next commit. The allowable range

of values is the same as that of the parameter commit_time_inc.

co[mmit]

tr[ans]

<number>

Dynamically changes the value of the parameter commit_txn_inc .

The change only takes effect at the next commit. The allowable range

of values is the same as that of the parameter commit_txn_inc.

co[mmit]

s[tats]

Displays the commit statistics.

co[mmit]

u[pdate]

<number>

Dynamically changes the value of the parameter

commit_update_inc . The change only takes effect at the next

commit. The allowable range of values is the same as that of the

parameter commit_update_inc.

h[elp] Displays a list of available commands.

l[ogswitch] Closes the current log file and starts a new one.

p[stats] Displays the performance statistics. These statistics are the same as

those shown after an audit file switch when the show_perf_stats

configuration file parameter is set to True.

q[uit] [at

hh:mm | after

afn]

Terminates the program at the next quiet point. Issuing this

command during data extraction has no effect until the fixup phase

starts. Optionally, you can specify either to terminate the program at a

particular time or to terminate it after a particular audit file is

processed.

q[uit] now Terminates the program immediately by first closing the TCP/IP

connection to the server. This command is particularly useful when

using DBWAIT and there are no updates available. This command will

not take effect immediately if the Client is waiting for an SQL

operation to complete.

2.9.1 Controlling and Monitoring dbutility

2.9.1 Controlling and Monitoring dbutility 31

2.9.2 Databridge Client Exit Status Values

After each command, the Databridge Client command-line program, dbutility, returns an exit status

value.

This Command Allows You To

sc[hed] {on |

off}

Disables or enables update scheduling. For instructions on

scheduling updates, see Scheduling dbutility Updates.

ss[tats] Displays statistics for Databridge Server at the next quiet point.

st[atus] Displays a variety of status information, such as the current stateinfo

during audit file processing, the trace status, and the program status

(for example, waiting for TCP for 100 ms).

tr[ace]

trace_mask

Dynamically alters the trace mask; for more information, see Enabling

Tracing.

ts[witch] Closes the current trace file and starts a new one.

v[erbose] {on

| off}

Alters the setting of the verbose flag; see -v in dbutility Command-

Line Options.

exit_status

Value

Description

0 Run completed successfully.

1 This value identifies generic Databridge Client errors.

2 Client process or clone command exited because of a DMSII

reorganization.

NOTE: An exit_status of 2 can occur only with the process and clone

commands.

0nnn Client exited because of a Databridge Engine error. The error is listed in

Appendix A of the Databridge Host Administrator's Guide.

10nn Client exited because of a DBServer error. The error is listed in Appendix

A of the Databridge Host Administrator's Guide.

11nn Client exited because of a DBEnterprise error. The error is listed in

Appendix A in the Databridge Enterprise Server Guide.

2.9.2 Databridge Client Exit Status Values

2.9.2 Databridge Client Exit Status Values 32

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/enterprise
https://www.microfocus.com/documentation/databridge/7-1/enterprise

exit_status

Value

Description

20nn Client exited because of a recognized Databridge Client error. The error

is listed in Appendix E.

2.9.2 Databridge Client Exit Status Values

2.9.2 Databridge Client Exit Status Values 33

For detailed information about Client exit codes, see Appendix E: Client Exit Codes.

2.9.3 Testing for Exit Status

The following examples show how you can test for the exit status (exit_status).

Windows Example

This example tests for the exit_status in a Windows .cmd file:

where <sendmail> is a hypothetical user application that sends a notification to you.

UNIX Example

The following example, written for the UNIX Korn shell (ksh), determines whether or not the value

of the exit status (that appears after you run the dbutility program) indicates that a DMSII

reorganization was detected. If a reorganization was detected, it echoes a message and runs the

sendmail program:

where sendmail is a hypothetical user application that sends a notification to you.

exit_status

Value

Description

97nn Client exited because of a recognized TLS error. The error is listed in

Appendix E.

dbutility process datasource
if errorlevel 2 if not errorlevel 3 goto reorg
exit
:reorg
echo DMSII reorganization has occurred
sendmail "message"

dbutility process datasource
if [$? -eq 2]
then
echo "DMSII reorganization has occurred"
sendmail "message"
fi

2.9.3 Testing for Exit Status

2.9.3 Testing for Exit Status 34

3. Getting Started

Use the topics in this section to prepare to clone a DMSII database.

Before you clone a DMSII data source, you must create Client control tables. Once they're created,

you can populate them with DMSII information sent by the Databridge Engine and create the actual

data tables that will store your cloned data. The resulting data tables are based on information

from the Client control tables and any additional customizations you make.

To customize how DMSII data sets get mapped to their corresponding relational database tables,

you can use the Administrative Console's Customize command in the Settings menu or you can

write user scripts in SQL. The Customize command is compatible with command-line operations

and can help make reorganizations easier to handle. For more information on the Customize

command, see the Help in the Administrative Console. Writing and testing user scripts is typically

time-consuming and requires a bit of trial and error. For instructions, see Customizing with User

Scripts, in this chapter.

3.1 Creating Client Control Tables

Use this procedure to create a set of control tables in a new installation when using the command

line Client. If you are using the Administrative Console, the Client control tables are created

automatically when you define a new data source, unless the tables already exist.

When you upgrade your Databridge Client software, the dbfixup program updates your control

tables to the current version. It first alters the control tables and performs any required updates to

them. Then, it unloads the Client control tables to a file, recreates them using a configure

command, and restores them from the unload file. If a problem occurs and you need to revert to the

older version of the Client, the unload file will let you reload the Client control tables using the older

version of the Client.

Client control tables contain information about the data sets in a DMSII database and information

about the corresponding tables and their layout in the relational database. These tables are stored

and maintained in the relational database.

To run a configure command:

3. Getting Started

3. Getting Started 35

Make sure that the database software and the appropriate Windows services or UNIX

processes are running. For more information, see your relational database documentation.

Make sure that the current directory is the working directory for the data source (DMSII

database) that you are cloning. For details about the working directory, see the Databridge

Installation Guide.

From a Windows Command Prompt or UNIX terminal session, enter the following: dbutility

[signon_options misc_options] configure

1. 1.

2. 2.

3. 3.

Where Is

signon_options For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O

ODBCdatasource]

PostgreSQL: [-U userid] [-P password] [-O ODBCdatasource]

3.1 Creating Client Control Tables

3.1 Creating Client Control Tables 36

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

You only need to run dbutility configure once, unless you drop your tables via the dbutility

dropall command and have to start over.

(Optional) To display the tables created by dbutility configure , use a utility appropriate for

your relational database. For example, for Microsoft SQL Server you can use the Query window

of SQL Server Management Studio to enter the following:

select name from sysobjects where type = "U" order by name

For Oracle, you can use the SQL*Plus utility and enter the following:

select table_name from user_tables order by table_name

3.1.1 Creating a Second Set of Tables

Occasionally, sites create a test environment that includes a second set of Client control tables.

Even though the second set of tables may coexist with the production environment, this type of test

environment can negatively impact the performance of your production database and is not

recommended.

Where Is

misc_options Any of the following miscellaneous command-line options:

-T forces the Client to use a new trace file for this run, if tracing is

enabled.

-f filename lets you specify a configuration file other than the

default "dbridge.cfg" file in the config subdirectory of the Client's

working directory.

-L forces the Client to use a new log file for this run.

-u , if you want to override conditions that dbutility would otherwise

interpret as a possible user error. For example, you may want to

create a second set of control tables within one relational database

(these must be owned by a different user), or you might want to drop

and re-create the control tables, removing all of the state information

associated with the user tables.

In most cases you do not need the -u option.

3.

4. 4.

4.

4.

4.

3.1.1 Creating a Second Set of Tables

3.1.1 Creating a Second Set of Tables 37

Creating a second set of Client control tables in the same relational database requires a separate

database user ID. You must keep the working directories for the two user IDs separate. Because

table name duplications are allowed when using different user IDs, this can lead to script files with

the same names. If you create a set of Client control tables by running a configure command

under the user ID "usera", those tables will be owned by usera (for example,

USERA.DATASOURCES). If you later use the user ID "userb" to run a configure command.

Databridge Client creates a new set of Client control tables owned by userb (for example,

USERB.DATASOURCES). Usera and userb tables are treated independently of each other.

3.1.2 Dropping and Re-Creating Client Control Tables

If you drop and create the Client control tables, you must re-clone everything. All Databridge tables

that contain DMSII data will remain in the relational database. However, all of the information

required from the Client control tables to request updates from the Databridge Engine will be lost.

Under normal circumstances, use the dropall command before running another configure

command. This ensures the following:

Tables and stored procedures created by the Databridge Client are dropped from the

relational database

All scripts created by the Databridge Client are deleted from the dbscripts subdirectory of

the working directory

In some rare cases where the dropall command cannot drop all the tables, you may want to drop

and create the Client control tables directly by running dbutility configure as follows:

The -u option bypasses the checks that prevent you from doing this when the Client control tables

exists.

If you attempt to execute a dbutility configure command after the Client control tables have been

populated, without adding the -u option, you get the following message:

This message is provided as a safeguard so that you do not inadvertently drop and create the

Client control tables.

3.1.3 Updating Client Control Tables

• •

• •

`dbutility -u configure`

ERROR: Databridge control tables are not empty, use the `dropall` command first
- To bypass this test use the 'u' option for the configure command

3.1.2 Dropping and Re-Creating Client Control Tables

3.1.2 Dropping and Re-Creating Client Control Tables 38

You can update some values in the Client control tables. For best results, use the Administrative

Console's Customize command to customize the table layout for the relational database instead of

using user scripts. Avoid using tools like SQL Server Management Studio or SQL*Plus to directly

update the control tables.

If you previously used user scripts to update control tables and want to switch to using the

Customize command, you'll need to update your Client control tables first. For instructions, see

the Next Steps section in the Databridge Installation Guide.

Note

Where Is

Values in the active column of all tables Set cloning on or off for data sets or

DMS items.

Values in the dms_subtype column of the

DMS_ITEMS tables

Specify the format of a field that is to be

cloned as a date.

The set_name column in the DATASETS table

and the item_key columns in the

DMS_ITEMS table

Create a composite key.

The columns ds_options in the DATASETS

table, di_options and di_options2 in

DMS_ITEMS, dt_options in DATATABLES

and da_options in DATAITEMS

Set a value. Make sure that you do not

clear any existing bits. You should use

the logical OR and AND operator (BITOR

or BITAND for the Oracle Client)

The sql_type , sql_length and sql_scale

columns in the DATAITEMS table

Force the define command to remap

values.

The dms_concat_num column in the

DMS_ITEMS table

Set the value of the dms_item_number

you want concatenated to this item.

The table_name and index_name columns in

the DATATABLES table

Rename.

The item_name column in the DATAITEMS

table

Rename.

3.1.3 Updating Client Control Tables

3.1.3 Updating Client Control Tables 39

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

3.1.4 Primary and Secondary Data Tables

The Databridge data tables hold the cloned DMSII data. You will see two types of Databridge data

tables:

Primary data tables, which are the relational database equivalent of the DMSII data sets.

Primary table names are derived from the corresponding DMSII data set name by converting

it to lowercase and replacing hyphens (-) with underscores (_).

Secondary data tables, which are additional tables that need to be generated to represent a

DMSII structure that does not have a relational database equivalent (for example, items with

OCCURS clauses that are not flattened). Secondary table names are constructed using the

primary table name with an appropriate suffix.

Where Is

The item_number column in the DATAITEMS

table

Reorder columns.

BITOR and BITAND are functions needed to set and clear bits in user scripts used by the Oracle

Client in the various xx_options columns of the Client control tables. When you run a define or

redefine command, the Client creates the BITOR function, while the BITAND function is part of

SQL language of Oracle. BITAND (a,b) returns the bitwise AND of a and b while BITOR (a,b)

returns the bitwise OR of a and b. This means that you can use the BITOR function as if it was

part of the Oracle SQL functions.

The following example shows BITOR setting a bit:

update DATASETS set ds_options=BITOR(ds_options, 4096) where

dataset_name='CUSTOMER

SQL Server and PostgreSQL use & and | to perform these functions. In the case of SQL Server,

the above example would look like:

update DATASETS set ds_options=ds_options | 4096 where dataset_name='CUSTOMER'

All scripts generated by the Oracle Client using the createscripts command use the BITOR

function for settings bits and the BITAND function for clearing bits.

Note

• •

• •

3.1.4 Primary and Secondary Data Tables

3.1.4 Primary and Secondary Data Tables 40

3.2 Defining a Data Source

A data source is the DMSII database or FileXtract file that you want the Client to replicate. The

DBServer control file (on the host) identifies each data source by name in the section that uses the

key word SOURCE. A SOURCE has a FORMAT, FILTER and SUPPORT specification.

If you use Enterprise Server, each data source will be associated with a SOURCE in the Enterprise

Server configuration file. This SOURCE is based on a base data source that matches a SOURCE in

DBServer. If you use the base source without any additional filtering applied by Enterprise Server,

the DBServer and Enterprise Server sources are identical and completely interchangeable.

Each data source has an entry in the DATASOURCES Client control table. The hostname column

identifies the Databridge server by the domain name or IP address. The hostport column

identifies the port on which the server listens for incoming connections. You can switch the server

from DBServer to Enterprise Server simply by changing the values of these two columns.

3.2.1 Using the Define Command

Follow these steps to define a data source and populate the Client control tables. You can also

perform this action from the Administrative Console by navigating to the data sources page for the

Client Manager in question and clicking Actions > Define/Redefine.

To define a data source

You may use Databridge FileXtract sources for Client operations. These sources are made to

look like data sources for DMSII databases.

Note

This procedure assumes that Databridge Server is running and the signon parameters are

configured appropriately.

Note

3.2 Defining a Data Source

3.2 Defining a Data Source 41

Because the following dbridge.cfg parameters are difficult to change later without redefining

and re-cloning, make sure that they're set appropriately before you run the define command:

For information on setting these parameters, see Appendix C: Client Configuration.

1. 1.

allow_nulls
automate_virtuals
auto_mask_columns (SQL Server only)
bracket_tabnames (SQL Server only)
clr_dup_extr_recs
convert_ctrl_char
default_user_columns
dflt_history_columns
enable_dms_links
enable_dynamic_hist
enable_extended_types (Oracle only)
external_column
extract_embedded
flatten_all_occurs
force_aa_only
history_tables
inhibit_required_opt
maximum_columns
min_varchar
minimize_col_updates
miser_database
optimize_updates
read_null_records
reorg_batch_size
sec_tab_column_mask
split_varfmt_dataset
strip_ds_prefixes
suppress_dup_warnings
suppress_new_columns
suppress_new_datasets
use_bigint (SQL Server and PostgreSQL)
use_binary_aa (SQL Server and Oracle)
use_clob (Oracle only)
use_clustered_index (SQL Server only)
use_column_prefixes
use_date (SQL Server only)
use_datetime2 (SQL Server only)
use_decimal_aa
use_internal_clone
use_nullable_dates (Miser databases only)
use_primary_key
use_stored_procs (SQL Server and Oracle)
use_time (SQL Server and PostgreSQL)
use_varchar

1.

3.2.1 Using the Define Command

3.2.1 Using the Define Command 42

Enter the following command:

dbutility [signon_opts misc_opts] define datasource hostname portnum

2. 2.

2.

If you previously used user scripts to update control tables and want to switch to the

Customize command, you'll need to update your Client control tables first. For instructions,

see the Next Steps section in the Databridge Installation Guide.

Note

Where Is

signon_opts For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password][-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

PostgreSQL: [-U userid] [-P password] [-O ODBCdatasource]

misc_opts Any of the following miscellaneous command-line options:

-L forces the Client to use a new log file for this run.

-T forces the Client to use a new trace file for this run, if tracing is

enabled.

-f filename to specify a configuration file other than the default

dbridge.cfg file in the working directory.

-u allows the command to delete Client control table entries for a data

source that already exists.

datasource For DBServer: The name that matches the entry for SOURCE in the

DBServer control file. You can enter the data source name in uppercase

or lowercase.

For DBEnterprise: The name of a source (base or filtered) defined in

Enterprise Server.

hostname The domain name or IP address of the Databridge server.

3.2.1 Using the Define Command

3.2.1 Using the Define Command 43

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

For DMSII databases that have a large number of data sets and data items, the process of

retrieving the layout information may take several minutes.

Read the following section, Results of the Define Command, and then specify which data sets

and data items you do not want to be cloned or updated, as explained in Customizing with

User Scripts.

Example

Assuming the DBServer control file contains SOURCE ORDDB and PORT=5001 on the host

"OURHOST.CIN.AAA.COM", you would enter the following:

dbutility define ORDDB OURHOST.CIN.AAA.COM 5001

The Databridge Client makes remote procedure calls to DBServer to get DMSII database layout

information. DBServer returns the DMSII layout information to the Client. The Client populates the

control tables with the DMSII layout information and creates the corresponding relational database

table layout.

The empty control tables (that were built during the dbutility configure command) are now

populated.

For example, this SQL statement

would yield a table similar to the following. Only the selected columns are shown.

3.2.2 Results of the Define Command

The define command automatically does the following with table names and column names:

Where Is

portnum The TCP/IP port number on which the appropriate Databridge server

listens for incoming calls.

2.

3. 3.

`select data_source, hostname, hostport from DATASOURCES`

```
data_source   hostname               hostport   
------------  ---------------------  ------
ORDDB         OURHOST.CIN.AAA.COM    5001
```

3.2.2 Results of the Define Command

3.2.2 Results of the Define Command 44

(Typically) converts data set, data item, and set names to lowercase and changes dashes to

underscores for their equivalent relational database table, column, and index names. For

more details on how this actually occurs, see Relational Database Table and Column

Names.

Constructs secondary table names by appending an underscore followed by the lowercase

data item name (for which the table is constructed) to the primary table name. For example,

if a DMSII data item named SALES, which has an OCCURS clause, appears in a data set

named CUSTOMERS, the relational database table generated for the OCCURS item is named

customers_sales. For more details, see Handling DMSII OCCURS.

Appends the suffix _x to all object names that are relational database reserved words. For

example, if a DMSII data set is named ORDER, which is a relational database reserved word,

the table generated for the ORDER data set is named order_x. Likewise, for a DMSII data

item named COUNT, which is also a relational database reserved word, the corresponding

column would be named count_x.

(SQL Server and Oracle) Adds two-character prefixes to table names (i_, u_, and d_) when

constructing the names of the stored procedures it uses to insert, update, and delete

records from these tables. The result is that table names are limited to 28 characters, even

though some relational databases limit table and index names to 30 characters.

Checks table and index names to see if they duplicate existing table and index names that

Databridge previously created. Databridge recognizes only those relational database objects

that it has created. When the Databridge Client finds a duplicate name, it makes the name

unique in one of the following ways:

Appending a numeric suffix. For a data set named ITEM that must be split into three

tables, the resulting table names would be as follows: item, item1, item2.

If the name is too long to add a suffix, overwriting as many of the last characters as

necessary with numeric characters to make the name unique.

3.2.3 Cloning from Multiple Data Sources

If you are cloning multiple data sources to the same relational database and you have duplicate

data set names, Databridge modifies the table name for those duplicates to avoid creating multiple

tables with the same name.

For example, if you have two data sources (DSA and DSB), both of which include a data set named

PRODUCTS, Databridge clones the data set from DSA into a table named "products". When

Databridge clones DSB, it clones DSB's data set PRODUCTS into a table named "products1".

• •

• •

• •

• •

• •

• •

• •

3.2.3 Cloning from Multiple Data Sources

3.2.3 Cloning from Multiple Data Sources 45

The Databridge Client renames duplicate table names across data sources as a precaution against

accidentally removing a table that contains good data. If you do not drop either of the data sources,

rerunning the define command for either data source does not cause any problems.

For example, if you execute another define command for DSA because DMSII database A was

reorganized, the define command looks for the table name "products" in the DATATABLES Client

control table that belongs to data sources other than DSA. Because the name "products" belongs to

DSA only, the define command does not find "products" as a table name under any other data

source. Thus the table corresponding to the data set PRODUCTS will be named "products", as was

the case earlier.

Similarly, if you execute a define command for DSB, the define command looks for the name

"products" in the DATATABLES Client control table that belongs to data sources other than DSB.

Because the name "products" belongs to DSA, the define command will find "products" as a table

name used by another data source and it will resolve the conflict by renaming the table. Thus the

table corresponding to the data set PRODUCTS will be named "products1" as was the case before

the define command was run.

If you drop either of the data sources, however, the results may be different because the table name

is no longer a duplicate. For example, if you drop DSA and then execute a define command for

data source DSB, the table will be named "products", not "products1", because it is no longer a

duplicate.

Similarly, if you do a dropall command and then execute a define command for data source

DSB first, the tables will be named "products" for data source DSB and "products1" for data source

DSA.

Add a Prefix to Duplicate Data Set Names

If you replicate two or more databases, which have many data set names in common, you can

make the program add a prefix to all the table names for a data source. You must define the

prefixes, which can be 1--8 characters long, before you create the relational database layout. To do

this, assign a value, such as X1, to the tab_name_prefix column of the corresponding entry in the

DATASOURCES Client control table using the script script.user_datasets.datasource . Using

different prefixes for each data source makes the table names unique and eliminates the need to

rename tables.

To avoid potential errors, rename any tables that have duplicate names. For example, rename

the "products" table to "products_a" for data source DSA and to "products_b" for data source

DSB. You can rename tables during the relational database customization phase of the

define command using the script.user_define. primary_tablename . For a sample script,

see Renaming a Table.

Important

3.2.3 Cloning from Multiple Data Sources

3.2.3 Cloning from Multiple Data Sources 46

If you are using multiple data sources that have data sets or indexes that have the same name, we

strongly recommend that you write user scripts to resolve this issue by forcing such a table to use

a different name for one (or more if the name occurs in more than two data sources). This will

ensure that you have a consistent naming convention. Without this, you could run into problems if

you reorganize these data sets.

Example script

script.user_define.customer:

update DATATABLES set table_name='customer_demodb'

where data_source='DEMODB' and dataset_name='CUSTOMER'

/***/

update DATAITEMS set table_name='customer_demodb'

where data_source='DEMODB' and table_name='customer'

This example script forces the table 'customer' in data source DEMODB to always be renamed. If

another data source also has a data set named CUSTOMER, it will then be able to always use the

name 'customer' for the corresponding table. It also makes sure that all the items in the renamed

table point to the renamed table. The line /***/ , which separates the two SQL statements in the

script, tells the Client to execute the first SQL statement before moving on to the second one.

3.3 Customizing with User Scripts

User scripts are files that contain SQL statements for modifying the Client control tables. They

provide a convenient way of automating the customization changes that are applied to the control

tables. The Databridge Client looks for user scripts in the directory specified by the configuration

file parameter user_script_dir . If you do not set the user_script_dir parameter in the

configuration file, the Databridge Client uses the scripts directory. It automatically executes user

scripts when certain commands are run, provided they exist.

The main purpose of user scripts is to preserve changes to the control tables by having the

program run these scripts to restore the changes whenever necessary. To view sample data set

layout and data table customization scripts, see Appendix D: Customization Scripts.

3.3 Customizing with User Scripts

3.3 Customizing with User Scripts 47

3.3.1 Types of User Scripts

The Databridge Client supports the following types of user scripts:

You can customize the Client control tables easily by using the Customize command instead of

writing user scripts.

Customizing a DMS item is very simple. Click on the data set name in the data sets view of the

Customize command to open the DMS item view. Then click the wrench to the left of the DMS

item that you want to customize. This open up the properties page for the item where you can

then click on the appropriate radio button option (e.g. "Replicate as date"). You may also need

to change additional properties of the item when the dms_subtype needs to be set.

You can find a complete description of the additional requirements for user scripts that are

compatible with the Customize command in Appendix D: Customization Scripts. For

information about using the Customize command to customize your data source, see the

Databridge Administrative Console Help.

Note

Script/

Filename

Description

Session

initialization

script

script.user.session

This script allows you to change session parameters without changing

the database settings. Use this script to alter session parameters

whose default values are not suitable for Client operations. For

example, when the NLS_LANGUAGE for Oracle is a European language,

ALTER the NLS_LANGUAGE parameter to set the language to

AMERICAN and the NLS_TERRITORY to AMERICA.

The Databridge Client executes these scripts when running any

command that connects to the relational database.

NOTE: The Oracle Client will automatically execute the SQL to ALTER

the SESSION when the language is not AMERICAN or when the

character set of the database is UTF8. However, it will only do this if

there is no session script present in the user scripts directory. This

allows you to override the actions taken by the Client by providing a

session script to use instead.

3.3.1 Types of User Scripts

3.3.1 Types of User Scripts 48

Script/

Filename

Description

Data set global

mapping

customization

script

script.user_datasets.datasource

where datasource is the name of the data source (in lowercase) as

defined in the DATASOURCES Client control table.

Use this script to disable mapping for unwanted data sets or to enable

mapping for data sets that are not mapped by default. Create only one

of these scripts for each data source. The Client processes the user

script script.user_datasets.datasource before the DMSII mapping

phase of both the define and redefine commands. This script can

contain global script commands that allow you to make changes to

multiple columns in the DATASETS and DMS_ITEMS layouts with a

single SQL statement. For instance, if a DMSII database has a time

value item called TS in almost every data set, you can use a single SQL

statement to update the dms_subtype value for every occurrence of

TS. For an example script, see Sample Data Set Global Mapping

Customization Script.

Data set

mapping

customization

script

script.user_layout.primary_tablename

where datasource is the name of the data source (in lowercase) as

defined in the DATASOURCES Client control table.

This script is run after the relational database layout has been created

during a define or redefine command. It allows you to make global

changes to DATATABLES and DATAITEMS. You can use this script to

insert common scripts into a single file rather than having to duplicate

the SQL in each of the define scripts for the individual data sets. For an

example, see Sample Data Table Global Customization Script.

3.3.1 Types of User Scripts

3.3.1 Types of User Scripts 49

Script/

Filename

Description

Data table

customization

script

script.user_define.primary_tablename

where primary_tablename is the name of the primary table mapped

from the data set.

These scripts make changes to the DATATABLES and DATAITEMS

tables for changing table or column names, changing SQL data types,

and so on. Create one of these scripts for each data set that has one or

more tables which need to be customized. When you change the name

of the table within the script, you must use the original primary table

name in the script filename.

All changes related to tables mapped from a data set are contained in

the data table customization script for the primary table specified by

tablename. The Databridge Client runs these scripts after the relational

database layout has been created by the define and redefine

commands.

Data table

creation user

script

script.user_create.tablename

where tablename is the name of the relational database table. Use this

script for the following:

To define default values for non DMSII columns

To alter the table and add a column that the Databridge Client does

not need to be aware of, add a "ALTER TABLE xxx ADD COLUMN

yyy" SQL statement to these scripts instead of adding SQL

statements to the table creation scripts.

CAUTION: Do not use this script to create columns for specific types of

data generated by the Client. This script creates a type of user column

that the Client is unaware of. To create user columns that the Client is

aware of, see Adding a Non DMSII Column.

•

•

3.3.1 Types of User Scripts

3.3.1 Types of User Scripts 50

Script/

Filename

Description

Index creation

user script

script.user_index.tablename

where tablename is the name of the relational database table.

Use this script to add SQL statements to the index creation scripts

(script.index. tablename) created by the dbutility generate

command. Do not modify the scripts created by the generate

command, as your changes will be lost the next time a generate

command is run.

These scripts are executed immediately after the related Databridge

Client script named script.index .tablename during the process or

clone command. If you set the check_user_scripts parameter, the

Databridge Client returns a warning if it cannot find the script.

Data table

cleanup user

script

script.user_cleanup.tablename

where tablename is the name of the relational database table

Use these scripts to undo any actions, such as creating a secondary

index, that are done in the script.user_index.table user script.

These scripts are run during the process or clone command, prior to

executing the cleanup scripts created by the generate command. The

scripts are only used in cases where the relational database tables are

not dropped when a data set is re-cloned, such as when deleted

records are to be preserved.

3.3.1 Types of User Scripts

3.3.1 Types of User Scripts 51

3.3.2 User Script Syntax

Use the syntax you would typically use for SQL statements; however, separate each statement with

the following separator:

/***/

In addition, be aware of the following:

You must begin the separator line with the characters /***/ and no leading spaces .

Trailing blanks or carriage returns are ignored.

Do not end the script with the /***/ separator.

Do not use a semicolon or GO as you would if you were using a relational database query

tool.

You can add comments to the end of any line (including a blank line) by using " // " to start

a comment. This causes the Client to ignore the rest of the line, including these two

characters. If you add a comment to a separator line, the separator must be followed by at

least one space.

3.3.3 Writing and Testing User Scripts

Following is a recommended method for creating user scripts. Typically, you would start writing

your user scripts after you have run configure and define for the first time. This procedure does

not cover the data table creation user script or the index creation user script.

Script/

Filename

Description

Stored

procedure

creation user

script

script.user_create_sp. tablename

where tablename is the name of the relational database table.

This new type of script allows the user to split updates to stored

procedures from other actions taken when a table is created by the

Client. Unlike the user scripts script.user_create. tablename, this

script is also run when the table is refreshed during a refresh or

reorg command. This allows the user to alter the stored procedures

without requiring any manual intervention.

• •

• •

• •

• •

3.3.2 User Script Syntax

3.3.2 User Script Syntax 52

Follow these guidelines as you develop your user scripts:

Store your user scripts in the directory pointed to by the user_script_dir parameter of the

Client configuration file (by default, the scripts subdirectory of the data source's working

directory). Storing them in the global working directory ensures that they are protected by

file security, if enabled.

Use the runscript command to test each script. This command executes the scripts as a

transaction. If an error occurs in a script, the Databridge Client rolls back all changes. You

then have the opportunity to fix the error and rerun the script.

If you make a mistake and change the Client control tables in a way you did not intend to,

remove or rename the offending script and then run dbutility define again. This creates a

fresh set of Client control tables.

To write and test user scripts

If you have already used the Databridge Client to clone a database, we highly recommend that

you test your scripts using a test version of the Client control tables, not your production version

of the Client control tables.

Caution

• •

• •

• •

3.3.3 Writing and Testing User Scripts

3.3.3 Writing and Testing User Scripts 53

Do one of the following:

If you are already using Client control tables in production, run configure to create a test

version of the Client control tables or unload to create a backup copy of the tables.

If you haven't created Client control tables yet, run configure .

Run define to populate the Client control tables.

Run display to create a report of your Client control tables. This report gives you a record of

table names, column names, and so on, that you can use as a reference as you write your user

scripts.

Create your data set mapping customization scripts, as follows:

Create the data set selection script for selecting/deselecting data sets. See Sample Data

Set Selection Script.

Create a data set mapping customization script for each data set that requires that its

mapping be customized. These user scripts can contain several SQL statements that

perform different types of mapping customizations (for example, flatten OCCURS clauses,

specify that items should be cloned as dates, and disable the cloning of some DMSII

items). See Tips for More Efficient Cloning.

Test each script as follows:

dbutility [-n] runscript scriptfilename

where scriptfilename is the name of the script you're testing and -n is a command line option

that overrides your entry for user_script_dir by allowing you to specify a complete path for

the script.

Fix any errors uncovered by running the scripts, and rerun the script until it is correct.

If the script gets corrupted beyond repair, rerun the define command as described in step 2.

You must add the -u command line option to force the program to allow you to rerun the

define command.

1. 1.

• •

• •

2. 2.

3. 3.

4. 4.

• •

• •

• •

6.

The runscript command runs the script in transaction mode. If an error occurs during

script execution, the Databridge Client rolls back all changes. This allows you to safely rerun

the script after correcting it.

Note

5. 5.

5.

3.3.3 Writing and Testing User Scripts

3.3.3 Writing and Testing User Scripts 54

When you are satisfied with the script, repeat the define command.

You can also set bit 8 of the status_bits column of the DATASETS Client control table to

inform dbutility that the data set needs to be redefined. To set this value, run the following

within a relational database query tool:

Then execute a define command to refresh the mapping.

Repeat step 3 at this point to view the effect of your data set mapping customization.

Create a data table customization script for each data set whose tables need to be

customized.

These user scripts can contain several SQL statements that perform different types of

customizations for any of the tables mapped from the data set (for example, renaming a table,

renaming a column, changing the sql type column of a data item, inserting a non DMSII item

into a tables). See Sample Data Table Customization Scripts.

Test each script as described in step 6.

Fix any errors uncovered by running the scripts, and rerun the script until it is correct.

If the script gets corrupted, rerun the define command as described in step 2. You must add

the -u command line option to force the program to allow you to rerun the define

command.

Run dbutility define again, using the -u option. If you don't use the -u option, the define

command will tell you the data source already exists. Enter the following:

The Databridge Client automatically runs your user scripts and updates the Client control

tables accordingly. The -t 0x801 option produces a trace of all SQL commands that execute as

part of user scripts. These are followed by row counts for update or insert statements. If you

do not enable tracing, you will only see the row counts in the log file.

The next phase of the define command executes the mapping of the DMSII data sets to

relational database tables for data sets whose active column is set to 1. Finally, the

Databridge Client runs the data table customization scripts for all the data sets whose

6. 6.

6.

update DATASETS set status_bits = 8
where dataset_name = 'DSNAME' and data_source = 'SOURCE'

6.

7. 7.

8. 8.

8.

9. 9.

Include all changes that affect the tables derived from a data set in that data set's script. For

example, after a reorganization, the Databridge Client runs your data table customization

user scripts after the relational database layout has been created by a define command. If

some scripts are missing, or if a data table customization script does not include all the

changes for its tables, the Databridge Client creates tables that have different layouts than

the original ones.

Caution

10. 10.

10.

11. 11.

 dbutility -t0x801 -u datasource hostname portnumber

11.

11.

3.3.3 Writing and Testing User Scripts

3.3.3 Writing and Testing User Scripts 55

active column is set to 1. The -t 0x801 options also produce a trace of all SQL commands

in these scripts.

The Databridge Client runs the data set selection scripts and all the data set mapping

customization scripts as well as the data table customization scripts in a single transaction

group. If there is an error, the Databridge Client does not commit any of the changes; instead,

it rolls back all changes and the command terminates.

If you decide to clone a data set or data item that you did not previously clone or if a DMSII

reorganization occurs, you will need to update your scripts.

3.3.4 Using Scripts to Disable Data Sets

To disable cloning by writing user scripts, do the following:

Disable data set cloning via script.user_datasets.datasource

Disable DMSII item cloning via script.user_layout.primary_tablename

Once you are familiar with the concepts in this section, see Customizing with User Scripts.

When using the Administrative Console or Customize command you can simply uncheck the

checkbox for the active column of the data sets you want to disable. The Client will remember

the changes unless you drop the data source and start from scratch.

3.4 Decoding DMSII Dates, Times, and Date/Times

This section explains the following:

How to decode DMSII dates, times, and date/time formats into appropriate relational

database types by modifying the DMS_ITEMS Client control table via the

script.user_layout.primary_tablename user script

How to change the SQL data type of the resulting relational database column

11.

If you created table creation or index creation user scripts, the Databridge Client runs those

immediately after running its own table creation or index creation scripts.

Note

12. 12.

• •

• •

• •

• •

• •

3.3.4 Using Scripts to Disable Data Sets

3.3.4 Using Scripts to Disable Data Sets 56

After you are familiar with the concepts in this section, see Appendix D: Customization Scripts.

3.4.1 DMSII Dates

Even though DMSII did not have a date data type until the advent of DMSII 57.1, most DMSII sites

use several common methods to store dates. This section includes ways to decode these types of

date representations into a relational database date data type. A DMSII 57.1 date is stored as a

REAL in DMSII and represents the number of days since 12/31/1600. The Client automatically

converts DMSII 57.1 dates to relational database dates making it unnecessary to do any

customization

The Databridge Client supports the following DMSII date encoding methods:

You can make the same types of customizations to the Client control tables using the

Customize command as you can by writing user scripts. You can find a complete description of

the additional requirements for user scripts that are compatible with the Client Customizer in

Appendix D: Customization Scripts. For information about the Customize command, see the

Databridge Administrative Console Help.

Note

Script/

Filename

Description See

DMSII

GROUPS

Three numbers for year, month,

and day

DMSII Dates Represented as a

GROUP of Numbers- - approach #1

and DMSII Dates Represented as a

GROUP of Numbers - approach #2

3.4.1 DMSII Dates

3.4.1 DMSII Dates 57

Script/

Filename

Description See

DMSII

NUMBER

values

Any of the following:

MISER database dates,

usually NUMBER(5)

LINC database dates

Month, day, and year

represented by a 6- or 8-

character alpha string

containing only digits

Delimited dates such as

(03/10/10)

Dates with three-character

month names

(MAR102005)

Julian dates represented as

a five-digit number (06905)

or seven-digit number

(0692005)

Decoding DMSII Dates Represented

as ALPHA or NUMBER

DMSII

ALPHA

values

Any of the following:

LINC database dates

LINC database dates

Month, day, and year

represented by a 6- or 8-

character alpha string

containing only digits

Delimited dates such as

(03/10/10)

Dates with three-character

month names

(MAR102005)

DMSII

Times

DMSII Times Represented as

ALPHA, NUMBER, or REAL

•

•

•

•

•

•

•

•

•

•

•

3.4.1 DMSII Dates

3.4.1 DMSII Dates 58

Choosing the SQL Data Type of the Relational Database Column {#b1jbb5sf}

Regardless of the original DMSII date structure, the resulting relational database column has a

default sql_type of 12 (smalldatetime) in the case of SQL Server and a sql_type of 10 (date) in

the case of Oracle.

To make the Client map a DMS item to a column that is a date data type, you must set the bit

DIOPT_Clone_as_Date (2) in the di_options column of the corresponding DMS_ITEMS entry using

the user script script.user_layout.dataset . Setting the configuration parameter use_date to

true makes the Client use the date data type for all dates that have no time part, regardless of

whether this bit is set or not.

SQL Server supports multiple date data types. You can make the Client generate different types of

dates by using the script.user_layout.dataset user script to set the following bits in the

di_options column of the corresponding DMS_ITEMS table entry:

DIOPT_UseLongDate (128) causes the Client to a use a data type of 10 (datetime) instead

of smalldatetime.

DIOPT_UseLongDate2 (65536) causes the Client to use the datetime2 data type. If both this

bit and the DIOPT_UseLongDate bit are set, datetime2 is used. Setting the configuration

parameter use_datetime2 to true makes the Client use the datatime2 data type regardless

of whether this bit is set or not when the DIOPT_UseLongDate bit is set.

DIOPT_Clone_as_DateOnly (32768) causes the Client to use the date data type which is 3-

bytes long and contains no time.

Script/

Filename

Description See

Custom

DMSII

dates

Any of the following:

Month/year without day or

other unique variations

Non-Standard dates

Month/year without day or

other unique variations

Custom DMSII Date/Time

Represented as ALPHA or NUMBER
•

•

•

• •

• •

• •

Relational Database Date Data Type Value for

sql_type

Column

Microsoft SQL Server: datetime (8 bytes) 10

Microsoft SQL Server: smalldatetime (4 bytes) 12

3.4.1 DMSII Dates

3.4.1 DMSII Dates 59

Relational Database Date Data Type Value for

sql_type

Column

Oracle: date (7 bytes) 10

Oracle: timestamp (11 bytes) 19

PostgreSQL: timestamp (8 bytes) 10

Microsoft SQL Server: int

Oracle: number(10)

PostgreSQL: int

NOTE: The date is formatted according to the numeric_date_format

configuration parameter, whose default value is 23 (mmddyyyy).

13

Microsoft SQL Server: datetime2 (8 bytes) 19

Microsoft SQL Server: date (3 bytes) 20

3.4.1 DMSII Dates

3.4.1 DMSII Dates 60

For an example script, see Changing SQL Data Types.

DMSII DATES REPRESENTED AS A GROUP OF NUMBERS- - APPROACH #1

The DMSII GROUP must always contain a year and a month; the day can be omitted, in which case

it defaults to 1.

To clone a DMSII date (represented as a group of numbers) as a relational database date

Write a user script (script.user_layout .primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) bit in the di_options column for the GROUP

Sets the dms_subtype column of the group members in DMS_ITEMS to indicate which part of

the date they represent, as follows:

The following SQL statements cause the Databridge Client to clone the DMSII group INV_DATE as a

relational database date type.

Filename: script.user_layout.inv

Relational Database Date Data Type Value for

sql_type

Column

PostgreSQL: date (4 bytes) 20

1. 1.

2. 2.

Part of Date in GROUP Value for

dms_subtype Column

Year (assumes a 1900 base) 1

Month 2

Day 3

Year By default, yy values < 50 are 21st century years (20yy)

and yy values > 50 are 20th century years (19yy).*

4

Absolute year

This is a 4-digit year specification (for example, 2010).

5

3.4.1 DMSII Dates

3.4.1 DMSII Dates 61

update DMS_ITEMS set di_options=2

where dataset_name='INV' and dms_item_name='INV_DATE'

/***/

update DMS_ITEMS set dms_subtype=1

where dataset_name='INV' and dms_item_name='INV_DATE_YEAR'

/***/

update DMS_ITEMS set dms_subtype=2

where dataset_name='INV' and dms_item_name='INV_DATE_MONTH'

/***/

update DMS_ITEMS set dms_subtype=3

where dataset_name='INV' and dms_item_name='INV_DATE_DAY'

The Customize command does not support this method of handling GROUP dates. However, it

does support the equivalent method described in the next section. When converting old scripts to a

format compatible with the Customize command, the dbscriptfixup utility converts the changes

made by this type of script to the format described below.

DMSII DATES REPRESENTED AS A GROUP OF NUMBERS - APPROACH #2

This version of Databridge Client now supports a new method of handling DMSII dates represented

as a GROUP (or a nested GROUP). The Client redefines a group of like items, that can either be

unsigned numbers or alpha items, as a single item having the common type and encompassing the

entire GROUP. This operation is referred to as collapsing (or redefining) a GROUP). By collapsing a

GROUP of numbers that represent a date, we effectively make the operation of cloning it as a

relational database date equivalent to that of cloning a number that represents a date.

For example, this technique can collapse the year, month, and day in the following DMSII GROUP in

the data set named EMPLOYEE into a single item that acts as a NUMBER(8) :

The method described in the next section can then customize this column as needed. This

technique also applies to date/time quantities represented as a group of like items.

To clone a DMSII date (represented as a group of numbers) as a relational database date

Sets the DIOPT_CollapseGroup (67,108,864) and the DIOPT_Clone_as_Date (2) bits in the

di_options column.

Sets the dms_subtype column of the GROUP item in DMS_ITEMS to indicate the format in

which the resulting date is encoded. See the section below for a list of date formats (the

above date group is represented by a dms_subtype of 21).

The script to perform this action is:

EMP-HIRE-DATE-YMD GROUP
(
 EMP-HIRE-YEAR NUMBER(4);
 EMP-HIRE-MONTH NUMBER(2);
 EMP-HIRE_DAY NUMBER(2);
)

1. 1.

2. 2.

3.4.1 DMSII Dates

3.4.1 DMSII Dates 62

Filename: script.user_layout.employee

update DMS_ITEMS set di_options=67108866, dms_subtype=21

where dataset_name='EMPLOYEE' and dms_item_name='EMP-HIRE-DATE-YMD'

Decoding DMSII Dates Represented as ALPHA or NUMBER

Use the following procedure to decode DMSII dates represented as NUMBER or ALPHA items to

relational database data types.

To decode dates represented as NUMBER or ALPHA items

3.4.1 DMSII Dates

3.4.1 DMSII Dates 63

Write a script (script.user_layout. primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) bit in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the type of date encoding method

used on the host, as follows:

1. 1.

2. 2.

3. 3.

Date Encoding Scheme Value for

dms_subtype

Column

NUMBER(n) for MISER dates—days since 12/31/1899 1

NUMBER(n) for LINC dates—days since 1/1/baseyear (default 1957) 3

ALPHA(6) or NUMBER(6) with two-digit year yy (1900–1999)

yymmdd

yyddmm

mmddyy

mmyydd

ddmmyy

ddyymm

11

12

13

14

15

16

ALPHA(5) or NUMBER(5) with two-digit year yy (1900–1999) and

with days DDD where DDD is a number between 1–366 for Julian

dates

DDDyy

yyDDD

17

18

ALPHA(8) or NUMBER(8) with four-digit year yyyy

yyyymmdd

yyyyddmm

mmddyyyy

mmyyyydd

ddmmyyyy

ddyyyymm

21

22

23

24

25

26

ALPHA(7) or NUMBER(7) with four-digit year yyyy and with days

DDD where DDD is a number between 1–366 for Julian dates

DDDyyyy

yyyyDDD

27

28

3.4.1 DMSII Dates

3.4.1 DMSII Dates 64

Date Encoding Scheme Value for

dms_subtype

Column

ALPHA(6) or NUMBER(6) with two-digit year yy (1950–2049) where

yy values < 50 are 21st century years (20yy) and yy values > 50 are

20th century years (19yy)

yymmdd_2000

yyddmm_2000

mmddyy_2000

mmyydd_2000

ddmmyy_2000

ddyymm_2000

31

32

33

34

35

36

ALPHA(5) or NUMBER(5) with two-digit year yy (1950–2049) where

yy values < 50 are 21st century years (20yy) and yy values > 50 are

20th century years (19yy) and with days DDD where DDD is a

number between 1–366 for Julian dates.

DDDyy_2000 yy*

DDD_2000

37

38

ALPHA(8) with two-digit year yy (1900–1999) and with delimiter

characters where / represents forward slash (/), hyphen (-), or

period (.).

yy/mm/dd

yy/dd/mm

mm/dd/yy

mm/yy/dd

dd/mm/yy

dd/yy/mm

41

42

43

44

45

46

ALPHA(10) with four-digit year yyyy and with delimiter characters

where / represents forward slash (/), hyphen (-), or period (.).

yyyy/mm/dd

yyyy/dd/mm

mm/dd/yyyy

mm/yyyy/dd

dd/mm/yyyy

dd/yyyy/mm

51

52

53

54

55

56

3.4.1 DMSII Dates

3.4.1 DMSII Dates 65

Date Encoding Scheme Value for

dms_subtype

Column

ALPHA(8) with two-digit year yy (1950–2049) where yy values < 50

are 21st century years (20yy) and yy values > 50 are 20th century

years (19yy) and with delimiter characters where / represents

forward slash (/), hyphen (-), or period (.).*

yy/mm/dd_2000

yy/dd/mm_2000

mm/dd/yy_2000

mm/yy/dd_2000

dd/mm/yy_2000

dd/yy/mm_2000

61

62

63

64

65

66

ALPHA(7) with two-digit year yy (1900–1999) and three-character

month abbreviation (mon). Month abbreviations are JAN, FEB, MAR,

APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC unless specified

otherwise by the months parameter in the Databridge Client

configuration file.

yymondd

yyddmon

monddyy

monyydd

ddmmyy

ddyymon

71

72

73

74

75

76

ALPHA(9) with four-digit year (yyyy) and three-character month

abbreviation (mon). Month abbreviations are JAN, FEB, MAR, APR,

MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC unless specified

otherwise by the months parameter in the Databridge Client

configuration file.

yyyymondd

yyyyddmon

monddyyyy

monyyyydd

ddmonyyyy

ddyyyymon

81

82

83

84

85

86

3.4.1 DMSII Dates

3.4.1 DMSII Dates 66

The configuration parameter century_break allows you to adjust the range for the year. The

default value for century_break is 50. A value of -1 causes the Client to automatically set the

century break based on the year in the audit timestamp.

For example scripts, see Cloning a Numeric Field as a Date and Cloning an Alpha Field as a Date.

3.4.2 DMSII Times

The Databridge Client supports several DMSII ALPHA, NUMBER, or TIME encoding methods for

time of day and elapsed time.

Choosing the SQL Data Type of the Relational Database Column

The relational database column---regardless of the original DMSII time structure---has a default

sql_type of 17, which is a Microsoft SQL Server int or Oracle number(6), except for TIME(12) and

TIME(14), which are stored as a number (10). TIME(12) and TIME(14) are formatted as

ddddhhmnss, where dddd is the number of days.

Date Encoding Scheme Value for

dms_subtype

Column

ALPHA(7) with two-digit year yy (1950–2049) where yy values < 50

are 21st century years (20yy) and yy values > 50 are 20th century

years (19yy) and with three-character month abbreviations (mon).

Month abbreviations are JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,

SEP, OCT, NOV, and DEC unless specified otherwise by the months

parameter in the Databridge Client configuration file.

yymondd_2000

yyddmon_2000

monddyy_2000

monyydd_2000

ddmonyy_2000

ddyymon_2000

91

92

93

94

95

96

If your DMSII date format includes mmyy or yymm without a position for days, see Custom

DMSII Date/Time Represented as ALPHA or NUMBER.

Note

3.4.2 DMSII Times

3.4.2 DMSII Times 67

All other TIME types are formatted as hhmnss. To make the Client map a DMS item to a column

that is a numeric time, you need to set the bit DIOPT_Clone_as_Time (256) in the di_options

column of the corresponding DMS_ITEMS entry using the user script

script.user_layout.dataset .

In the case of SQL Server and PostgreSQL, which have a time data type, the Client can store these

values using the time data type. You can do this by setting the di_options bit DIOPT_Use_Time

(131072) in the corresponding entry in the DMSII_ITEMS table using the

script.user_layout.dataset user script. If you set both the DIOPT_Clone_as_Time bit and the

DIOPT_Use_Time bit, the latter takes precedence.

DMSII Times Represented as ALPHA, NUMBER, or REAL

You can decode DMSII times represented as ALPHA, NUMBER, or REAL items to relational

database data types using the Databridge host or the Databridge Client. To do this on the host

(versus the Databridge Client), you must redefine the DMSII item using an ALTER REDEFINE. For

more information, see Chapter 5 of the Databridge Programmer's Reference.

To decode those data types using the Databridge Client

Write a script (script.user_layout .primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Time (256) bit in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the type of time encoding method

used on the host, as follows:

• •

• •

Time Encoding Scheme Value for

dms_subtype

Column

ALPHA(6) or NUMBER(6) time of day in hhmnss format 1

REAL containing a TIME(1) value, which represents the time of day in

1/60th of a second

2

REAL containing a TIME(11) value, which represents the time of day

in ticks (2.4 microseconds)

3

REAL containing a TIME(12) or TIME(14) value, which represents the

elapsed time in ticks

4

REAL containing a DMSII 57.1 TIME, which represents the number of

100’th of seconds since midnight. These are automatically converted

to TIME data types if the database supports it. Otherwise, they are

stored as integer values of the form "hhmmss".

5

3.4.2 DMSII Times

3.4.2 DMSII Times 68

For an example script, see Cloning an Alpha or Number Field as a Time.

3.4.3 Decoding DMSII Date/Times

The Databridge Client implements a set of dms_subtype values to decode DMSII items that include

the date and time in a single item. Specifically, the Databridge Client contains values for DMSII

ALPHA or NUMBER values that represent the date/time in a variety of ways, such as:

Month, day, year, and time of day combined into a twelve-digit (031005112501) or fourteen-

digit (03102005112501) number

Julian dates and time of day represented as an eleven-digit number (06905112501) or a

thirteen-digit number (0692005112501)

DMSII item of type REAL that are 48-bits long and represent TIME(6), TIME(7), or TIME(60)

type data which encode a date and a time. A new data type in DMSII 57.1, named

TIMESTAMP, represents TIME(6) values. The Databridge Client automatically converts these

items to the appropriate relational database date/time data type, thus eliminating the need

to do any special customization.

To decode these types of date/time representations into a relational database date/time data type,

see Decoding DMSII Date/Time Represented as ALPHA or NUMBER. When using these with SQL

Server, you should set the di_options bit DIOPT_Use_LongDate to force the Client to use a data

type of datetime rather than smalldatetime. When a data type of smalldatetime is used, the Client

sets the values of seconds to zero (0), as SQL Server rounds the value to increments of .000, .003,

or .007 seconds. You can also use a data type of datetime2 instead of datetime by setting the

di_options bit DIOPT_UseLongDate2 (65536). Setting the configuration parameter

use_datetime2 to true makes the Client use the datatime2 data type regardless of whether this

bit is set or not when the DIOPT_UseLongDate bit is set.

Decoding DMSII Date/Time Represented as ALPHA or NUMBER

You can decode DMSII date/time formats represented as NUMBER or ALPHA items to relational

database date/time data types using the Databridge host or the Databridge Client. To do this on the

host, you must redefine the DMSII item using an ALTER REDEFINE. For more information, see

Chapter 5, "Alter Data Sets" in the Databridge Programmer's Reference.

Time Encoding Scheme Value for

dms_subtype

Column

NUMBER(12) containing the time of day in hhmnssmmmmmm

format where mmmmmm represents fractions of seconds.

6

• •

• •

• •

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 69

To decode DMSII date/time formats represented as NUMBER or ALPHA items, write a script (

script.user_layout.primary_tablename) that does the following:

Sets the DIOPT_Use_Long_Date (128) bit in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the type of date/time encoding

method used on the host, as follows:

• •

• •

If your DMSII date/time encoding scheme is not listed in the following table, see the next

section.

Note

Date/Time Encoding Scheme Value for

dms_subtype

Column

ALPHA(14) or NUMBER(14) with four-digit year followed by a six-

digit time

yyyymmddhhmnss

yyyyddmmhhmnss

mmddyyyyhhmnss

mmyyyyddhhmnss

ddmmyyyyhhmnss

ddyyyymmhhmnss

121

122

123

124

125

126

ALPHA(13) or NUMBER(13) with four-digit year yyyy and with days

DDD where DDD is a number between 1–366 for Julian dates

followed by a six-digit time

DDDyyyyhhmnss

yyyyDDDhhmnss

127

128

ALPHA(12) or NUMBER(12) with two-digit year representing dates

in both the 20th and 21st centuries followed by a six-digit time

yymmddhhmnss

yyddmmhhmnss*

mmddyyhhmnss

mmyyddhhmnss

ddmmyyhhmnss

ddyymmhhmnss

131

132

133

134

135

136

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 70

Date/Time Encoding Scheme Value for

dms_subtype

Column

ALPHA(11) or NUMBER(11) with two-digit year representing dates

in both the 20th and 21st centuries where days DDD is a number

between 1–366 for Julian dates followed by a six-digit time

DDDyyhhmnss

yyDDDhhmnss

137

138

ALPHA(12) or NUMBER(12) with two-digit year yy (1900–1999)

preceded by a six-digit time

hhmnssyymmdd

hhmnssyyddmm

hhmnssmmddyy

hhmnssmmyydd

hhmnssddmmyy

hhmnssddyymm

211

212

213

214

215

216

ALPHA(11) or NUMBER(11) with two-digit year yy (1900–1999) and

with days DDD where DDD is a number between 1–366 for Julian

dates preceded by a six-digit time

hhmnssDDDyy

hhmnssyyDDD

217

128

ALPHA(14) or NUMBER(14) with four-digit year preceded by a six-

digit time

hhmnssyyyymmdd

hhmnssyyyyddmm

hhmnssmmddyyyy

hhmnssmmyyyydd

hhmnssddmmyyyy

hhmnssddyyyymm

221

222

223

224

225

226

ALPHA(13) or NUMBER(13) with four-digit year yyyy and with days

DDD where DDD is a number between 1–366 for Julian dates

preceded by a six-digit time

hhmnssDDDyyyy

hhmnssyyyyDDD

227

228

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 71

Date/Time Encoding Scheme Value for

dms_subtype

Column

ALPHA(12) or NUMBER(12) with two-digit year representing dates

in both the 20th and 21st centuries preceded by a six-digit time

hhmnssyymmdd

hhmnssyyddmm

hhmnssmmddyy

hhmnssmmyydd

hhmnssddmmyy

hhmnssddyymm

231

232

233

234

235

236

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 72

The configuration parameter century_break allows you to adjust the range for the year.

For example scripts, see Cloning an Alpha or Number Field as a Date/Time.

Custom DMSII Date/Time Represented as ALPHA or NUMBER

You may be able to decode DMSII date/time formats represented as NUMBER or ALPHA items, and

convert them to relational database date/time format even if you could not find the correct

encoding scheme in the previous sections. For instance, if the DMSII date item has no day (mmyy

or yymm), dms_subtype of 0x32 or 0x23 converts this to relational database date/time with a day

as "1" and the time as all zeros. For this to work, the DMSII item cannot include any ALPHA data

(such as slashes, dashes, or month names). Therefore, 01-FEB-14 would not convert, but 0214

would.

To decode these custom date or date/time layouts using the Databridge Client, write a script

(script.user_layout.primary_tablename) that does the following:

Sets the DIOPT_Clone_as_Date (2) and the DIOPT_VarFormat_Date (2048) bits in di_options .

Sets the dms_subtype column in DMS_ITEMS to indicate the hexadecimal string, in the same

order as the host item layout, as follows:

Date/Time Encoding Scheme Value for

dms_subtype

Column

ALPHA(11) or NUMBER(11) with two-digit year representing dates

in both the 20th and 21st centuries where days DDD is a number

between 1–366 for Julian dates preceded by a six-digit time

hhmnssDDDyy

hhmnssyyDDD

237

238

1. 1.

2. 2.

Date/Time

Encoding

Scheme

Description Hexadecimal

Value for

dms_subtype

Column

yyyy Four-digit year 1

yy Two-digit year within 1950-2049

To adjust this range, use the century_break

configuration parameter. See century_break.

2

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 73

Date/Time

Encoding

Scheme

Description Hexadecimal

Value for

dms_subtype

Column

mm Two-digit month 3

dd Two-digit day 4

hh Two-digit hour 5

mn Two-digit minutes 6

ss Two-digit seconds

NOTE: The Databridge SQL Server Client stores

all host values for seconds (ss) as zero unless

you add the DIOPT_Use_LongDate (128) bit to

di_options in step one of the layout script. See

"di_options" in DMS_ITEMS.

7

mmm Three-digit fractions of seconds (milliseconds) 8

mmmmmm Six-digit fractions of seconds (nanoseconds) 9

3.4.3 Decoding DMSII Date/Times

3.4.3 Decoding DMSII Date/Times 74

As stated previously, the format can be as short as yymm (dms_subtype 0x23 or 35 decimal).

Formats like mmhhyy are supported (dms_subtype of 0x253 or 850 decimal) as well as longer

ones. For example, a mainframe date/time layout of mmsshhmnddyy uses the dms_subtype value

of 0x375642 or 3626562 decimal.

Numeric Date and Time in Non-Contiguous Columns

When a DMSII date and time are in contiguous column, you can easily make the Client handle the

combined columns as a single date/time quantity by merging the two columns. You can do this by

setting the bit 16777216 in di_options of the first item to make the define command merge the

two items when it maps them to the relational database table. You can then mark the item to be

cloned as a date and set the appropriate value for its dms_subtype column. For example, if you

have an item that is a NUMBER(8) representing a date which is immediately followed by an item

that is NUMBER(6) representing a time, you can make the Client treat the first item as if it were a

NUMBER(14) ignore the second one. This can also be done by using an ALTER REDEFINE in

DBGenFormat.

When the two columns are not contiguous, use the dms_concat_num column to append the time

part of the combined item to the date part. This column must be set to the item number of the item

containing the time value. The Client will effectively treat these two items as if the second one were

concatenated to the first one. You must also set the di_options bit 524288 (0x80000) to make

the Client include the second item in DATAITEMS with its active column set to 0. This is a lot

more efficient than using DBGenFormat to perform this operation.

See a sample script and its explanation here, Concatenating Two Items and Cloning the Result as a

Date/Time

3.5 Creating Indexes for Tables

This section explains how the Databridge Client creates indexes for tables mapped from a DMSII

data set.

Ideally, the Databridge Client uses the optimum SET among the various sets defined for the data

set in the DASDL. Only SETs that have the NO DUPLICATES ALLOWED attribute (SETs with unique

keys) qualify for this selection.

Date/Time

Encoding

Scheme

Description Hexadecimal

Value for

dms_subtype

Column

mm Two-digit fractions of seconds (centiseconds) 10

3.5 Creating Indexes for Tables

3.5 Creating Indexes for Tables 75

3.5.1 Keys Derived from the DMSII Database

First, the Databridge Engine decides whether any SETs meet this requirement. If more than one SET

does, the Databridge Engine uses the SET with the least number of keys. In case of a tie, it uses the

SET with the smallest-sized keys.

In addition, the DBGenFormat utility allows you to declare a primary key without modifying the

DASDL. The Databridge Engine is responsible for passing information about DBGenFormat primary

keys to the Databridge Client. The Databridge Client sometimes uses these keys for VIRTUAL data

sets or any other types of data sets that do not have a SET that meets the requirements mentioned

above. If you have both a qualified SET and a PRIMARY KEY defined in the GenFormat file, the

Client uses the PRIMARY KEY.

When the Databridge Engine uses a DMSII SET as the index for tables derived from the data set, the

name of the DMSII SET is stored in the set_name column of the DATASETS Client control table.

Alternatively, when the Databridge Engine uses a DBGenFormat primary key as the index for tables

derived from the data set, the name "pk_set" is stored in the set_name column.

3.5.2 Using Sets with the KEYCHANGEOK Attribute

Some DMSII SETs have the KEYCHANGEOK attribute, which indicates that it is legal for the value of

items that are members of the SET (that is, keys) to change. When the SET being used as the index

has the KEYCHANGEOK attribute, this is reflected by bit 4096 (0x1000) in the ds_options columns

of the corresponding row in the DATASETS control table. This causes the Client to register the keys

it is using with the Databridge Engine, which then compares the keys in the before and after images

of an update to determine if the update should be sent to the Client as a MODIFY when the keys are

unchanged or as a MODIFY BI/AI pair when a key change occurs. This allows the Client perform the

update by deleting the old record and inserting the new one when a key change occurs.

If the Client used a MODIFY when a key change occurred, the update statement would fail and the

Client would then recover by doing an insert instead. This would result in the old record and the

new record both being present in the database resulting in an incorrect replication.

3.5.3 RSNs and AA Values as Keys

If a DMSII SET with the NO DUPLICATES ALLOWED attribute exists, we recommend that you use

it as the source of the index rather than declaring a DBGenFormat primary key.

Note

3.5.1 Keys Derived from the DMSII Database

3.5.1 Keys Derived from the DMSII Database 76

If the Databridge Engine does not find a suitable index, the Client tries to use the RSN (record

sequence number) or the AA Value (absolute address) of the records as the key. Both of these

items are A-Series words (48-bit quantities). They are passed to the Client as part of the record

header. Both use the same entry in the header, and the Databridge Engine informs the Client about

what this item represents, as explained below. If the Client decides to use one of these quantities

as the key, the set_name column is set to "aa_set" in the DATASETS Client control table. Otherwise,

this column is left blank, indicating that there is no set usable as an index.

The Databridge Client can represent AA Values (or RSNs) the following ways:

CHAR(12), where each character is the hexadecimal representation of the correspond digit

(half-byte) in the A-Series word. This is the default.

BINARY(6) SQL Server and RAW(6) Oracle; a binary quantity that uses 48-bits where each

byte in the A-Series word is represented by a byte in the relational database. See

use_binary_aa.

Using numeric fields to hold the AA Values (or RSNs). In this case the Databridge Client

uses an appropriate numeric data type to hold the AA Values (or RSN), mainly, BIGINT for

SQL Server and NUMBER(15) for Oracle. See use_decimal_aa.

RSNs are unique serial numbers that get assigned to records when they get created and remain

associated with the record for the life of the record. You must have DMSII XE to be able to use

RSNs. Furthermore, you must explicitly enable RSNs in the DASDL by adding the EXTENDED

attribute to the data set. If you explicitly add a column to a data set whose value is the RSN, the

Databridge Client will allow you to use this column as an RSN rather than a REAL. In such cases,

the Databridge Engine automatically sets the di_options bit DIOPT_Clone_as_RSN in the

corresponding DMS_ITEMS table entry to make the Client treat this item (which will be a REAL) as

an RSN. See DMS_ITEMS.

AA Values are the absolute address (that is, the file address --- offset within the file --- of the

records in the data set). They do not remain constant over time; however, in the following cases,

AA_values are required to implement foreign keys to link records in related data sets:

• •

• •

• •

If a DMSII SET with the NO DUPLICATES ALLOWED attribute exists or the data set has an

RSN, we recommend that you use one of these keys rather than declaring a DBGenFormat

primary key.

Note

3.5.3 RSNs and AA Values as Keys

3.5.3 RSNs and AA Values as Keys 77

Any data set that contains one or more embedded data sets must always use AA Values as

the key. Embedded data sets use Parent_AA Values to implement the link to their parent

structures.

When an active data set has links to another data set, the latter must use AA Values as the

key.

In both of these cases, the Databridge Engine will use AA Values for the data set in question

regardless of whether there is a SET that qualifies for being used as an index, or whether an RSN

exists.

Not all data sets have valid AA Values; for example, ORDERED and COMPACT data sets do not have

valid AA Values. When AA Values are used as the key, the set_name column of the DATASETS

Client control table is set to the name "aa_set". The name "aa_set" causes the RSN or the AA Value

to be used as part of the index using a column named my_rsn or my_aa depending on whether this

is an RSN or an AA Value.

To find out if a data set has an RSN or a valid AA Value, you need to look at the misc_flags

column of the entry for the data set in the DATASETS Client control table. The bit DSFLG_Static_AA

(bit mask 64) is used to indicate whether the Client is using an RSN or an AA Value (1 indicates

RSN and 0 indicates AA Value). The bit DSFLG_Valid_AA (bit mask 128) is used to indicate whether

or not the data set has a valid AA Value (1 indicates a valid AA Value). The Client has no control

over the selection of RSNs versus AA Values. This decision is made by the Databridge Engine.

The advantage of using the AA Value to generate a unique key is that it makes updates possible for

data sets that could not otherwise be updated; however, this value is not an absolute constant. Any

DMSII reorganization (record conversion, file format, or garbage collection) changes these values.

You must re-clone a data set that uses AA Values as keys whenever the AA Values change.

Therefore, we recommend that you consider creating a unique composite key rather than using AA

Values.

The Databridge Client recognizes the names "aa_set", "user_set", and "pk_set" as special names

(the use of the underscore is not allowed in DMSII names).

Forcing the Client to Use RSN or AA Values as Keys

You can force the Client to use the RSN or AA Value as the key for a specific data set by setting the

ds_options bit, DSOPT_Use_AA_Only (bit mask 16384) in the DATASETS table entry for the data

set in question.

• •

• •

You can also do this from the Customize command by using the checkbox Use AA Values (or

RSNs) As Keys in the Options section of properties of the data set.

Note

3.5.3 RSNs and AA Values as Keys

3.5.3 RSNs and AA Values as Keys 78

To perform this action globally, use the parameter force_aa_value_only with one of the following

values. (For more details about this parameter, see force_aa_value_only. Note that this does not

have any effect until you run a redefine command (with the -R option) to get the global setting

applied to all the data sets.

Value Description

0 Globally disables the parameter

1 Globally enables the parameter

3.5.3 RSNs and AA Values as Keys

3.5.3 RSNs and AA Values as Keys 79

3.5.4 User Defined Keys in GenFormat

You can create a user-defined SET for a data set by using the PRIMARY KEY construct in

GenFormat. When a PRIMARY KEY exists, it is used instead of a SET that would otherwise qualify

as the source for the index on the table. To properly identify the source of such an index, the

Databridge Client sets the set_name to "pk_set" when it originates from a PRIMARY KEY construct.

The Databridge Client recognizes "pk_set" as a special name, just like "aa_set" and "user_set". The

only difference between "user_set" and "pk_set" is their origin.

3.5.5 Composite Keys

Composite keys use several columns in a relational data table to form a unique index. The entries

you make (via a user script) in the item_key column of the DMS_ITEMS Client control table

determine the order in which the columns are used in the key.

To avoid this step, define the composite key in the DBGenFormat parameter file on the host.

When to Use Composite Keys

We recommend that you create a composite key for data sets that do not have a unique key.

Creating a composite key is required for the following data sets:

Value Description

2 Only applies to data sets that have an RSN; using a SET as the source for the

index is always preferable to using AA Values that are volatile.

If you specify a member of a DMSII GROUP as part of a composite key, you must also set the

corresponding item_key column for the GROUP to a value of 1 so that the define (or

redefine) command picks it up.

Note

3.5.4 User Defined Keys in GenFormat

3.5.4 User Defined Keys in GenFormat 80

Data sets that do not have valid RSNs or AA Values, such as COMPACT, ORDERED, and

VIRTUAL data sets

Data sets that use AA Values and for which garbage collection reorganizations are

frequently performed.

When you create a composite key, make sure that you enter the value "user_set" into the set_name

column. If you do not, one of two things happens, as follows:

If the set_name value is "aa_set", a column named my_aa, which contains the AA Value of

the record is automatically included in the table.

If the set_name value is blank, the program does not create an index, regardless of the

values of the item_key column of the various DMS_ITEMS Client control table entries.

Once you are familiar with the concepts in this section, and you determine which data sets require

composite keys, you must include the SQL statements in the data set mapping customization

script for the data set (script.user_layout.primary_tablename).

Composite Keys Defined by the User

If the Databridge Engine does not find a suitable SET or DBGenFormat primary key, the Databridge

Client allows you to create a composite key. You can also create a composite key when the

Databridge Client decides to use AA Values as the primary key.

• •

• •

If the composite key that you create is not unique, the following can occur:

If a duplicate record is encountered after you clone the data set, the index creation

for the resulting table fails. The SQL query we use to eliminate duplicate records will

get rid of all copies of the duplicate record.

If a duplicate record is encountered while attempting to insert a record during an

update, the original record is deleted and replaced with the new copy of the record.

Caution

• •

• •

• •

• •

If the added column is named "my_rsn," this indicates that it is an RSN, which makes an

excellent key. Do not use composite keys when this is the case.

You must not create a composite key for a data set that contains embedded data sets or

for a data set that has other active data sets linking to it when the handling of DMSII links

is enabled.

Note

• •

• •

3.5.5 Composite Keys

3.5.5 Composite Keys 81

If a data set does not have a DBGenFormat primary key or a DMSII set that qualifies for use as an

index, and the AA Values are not valid, the set_name column in the DATASETS Client control table

is left blank. In this case, you can clone the data set, but you cannot track updates.

When the DMSII data set does not have a key, we recommend that you create a composite key

using the data set mapping customization script (script.user_layout.primary_tablename). See

When to Use Composite Keys for more details about when to use a composite key.

Creating a Composite Key

Modify script.user_layout.primary_tablename to do the following:

If you don't use the Customize command, set the set_name column of the DATASETS

Client control table entry for the data set in question to "user_set". If you use the Client

Customizer, this is done automatically.

Specify which items should be part of the composite key by assigning the appropriate

values to the corresponding entries for the item_key column of the DMS_ITEMS Client

control table. Such entries are identified by the values of the dms_item_name and the

dataset_name columns.

After you create the composite key, do one of the following:

If you have not cloned any tables, run the define command again.

If you have cloned tables, set the status_bits column for the corresponding entry in

the DATASETS Client control table to 8, and run a redefine command.

If you ran a define command (or if the redefine command prompts you to run a

generate command) run the generate command from the working directory that for the

• •

• •

• •

• •

• •

• •

• •

3.5.5 Composite Keys

3.5.5 Composite Keys 82

data source. Otherwise, you'll be prompted to run the reorg command, which fixes the

index for the table.

From the data source's working directory, run a process command. This clones or re-clones

the data set, if needed, and resumes tracking.

3.6 Adding a Non DMSII Column

Non DMSII columns (also called user columns) are generally used to store the audit file timestamp

so that you can keep track of when the data was last updated. You can add non DMSII columns to

your relational tables in any of the following ways:

To add a non DMSII column to every data set, set the corresponding bit in the configuration

file parameter default_user_columns ; this parameter then assigns the appropriate value to

the external_columns column of the DATASETS Client control table. The bits in this

column determine which non DMSII columns are added to your data table.

To prevent the Client from adding some of the non DMSII columns to secondary tables (for

example, DMSII items that have an occurs clause), set the corresponding bit in the

configuration file parameter sec_tab_column_mask . This parameter is used in conjunction

with the external_columns column in the DATASETS table entry.

To add a non DMSII column to most, but not all, of your data sets, use the script

script.user_layout.primary_tablename to set the external_columns column of the

DATASETS Client control table back to 0 for the data sets that you want to keep unchanged.

To add a non DMSII column to only a few data sets, do not set the default_user_columns

parameter. Instead, use the script script.user_layout.primary_tablename to modify the

external_columns column of the DATASETS Client control table for the data sets you want

to change.

3.6.1 Types of Non DMSII Columns

The Databridge Client offers several default non DMSII columns (user columns). You can add user

columns to the relational database tables either by using user scripts, as described in this section,

or by using the Customize command. For more information about the Client Customizer, see the

Databridge Administrative Console Help.

• •

• •

• •

• •

• •

3.6 Adding a Non DMSII Column

3.6 Adding a Non DMSII Column 83

The value for the Bit column in this table is equal to the value in the dms_subtype column of the

DATAITEMS Client control table. The exception is bit 14, which results in a dms_subtype of 0.

Bits are numbered from right to left; the right-most bit is 1.

Note

Bit Value User Column

Name

Description

1 1 update_type Database update type, as follows:

0 for extract1 for create

2 for delete (bit 10 must also be enabled)

3 for modify

NOTE: This value cannot be used at the same

time as bit 11.

2 2 update_time Time the update was applied to the relational

database (PC time)

3 4 update_ts (SQL Server Clients only) SQL Server

timestamp data type. (The timestamp is a data

type that exposes automatically-generated

unique binary numbers within a database. It is

not a true timestamp that contains a date and

time value.)

4 8 audit_ts DMSII audit file timestamp. This column is set

to NULL during the initial clone.

NOTE: This bit cannot be used at the same

time as bit 13.

5 16 audit_filenum Audit file number

NOTE: If you use a decimal number, its

precision must be at least 4. Otherwise, the

value may be too large and result in a SQL

error.

3.6.1 Types of Non DMSII Columns

3.6.1 Types of Non DMSII Columns 84

Bit Value User Column

Name

Description

6 32 audit_block Audit block serial number (ABSN)

NOTE: If you use a decimal number, its

precision must be at least 10. Do not use a

data type of int, as the ABSN is a 32-bit

unsigned number. Otherwise, the value may be

too large and result in an overflow, which will

result in a SQL error.

7 64 source_name Data source name

8 128 source_id Data source identifier as defined in the

DATASOURCES Client control table

9 256 my_id SQL SERVER IDENTITY column.

Updates have no effect on this number.

NOTE: For Windows Clients only: This column

won't appear on Clients other than SQL Server,

even if requested. The Oracle database

provides the equivalent functionality with the

ROWID pseudo-column, which is always

present.

3.6.1 Types of Non DMSII Columns

3.6.1 Types of Non DMSII Columns 85

Bit Value User Column

Name

Description

10 512 deleted_record Delete indicator (key item). A nonzero value

indicates that the record is deleted. This is

actually the value of the Client machine’s clock

at the time of the deletion. Making this column

part of the index allows multiple instances of a

deleted record to coexist without being

considered duplicate records.

This bit cannot be used at the same time as bit

11. These types are compared in Preserving

Deleted Records.

The granularity of this column is in seconds. If

you have applications that perform many

delete/insert operations, you may want to add

a delete_seqno column to prevent the Client

from getting duplicate deleted records. The

Client recovers from this by waiting one second

and retrying the operation, which can

significantly slow the Client's performance.

If the data type for this column is set to bigint

(18) the column will contain the combined

value of the timestamp and the value used in

the delete_seqno column to form a 48-bit

value. This eliminates problems with duplicate

records that occur when the same record gets

deleted twice with the same Client machine

second.

3.6.1 Types of Non DMSII Columns

3.6.1 Types of Non DMSII Columns 86

Bit Value User Column

Name

Description

11 1024 update_type Expanded database update type as follows:

0 for extract

1 for create

2 for delete

3 for modify

If the key for this record is reused, the key is

removed when the new, duplicate record is

inserted.

This value cannot be used at the same time as

bit 1 or bit 10. Bits 10 and 11 are compared in

Preserving Deleted Records.

This bit and bit 1 work in the same way, except

that this bit preserves the deleted image.

12 2048 source_id Data source identifier as defined in the

DATASOURCES Client control table (key item)

13 4096 audit_ts Expanded audit file time. This column contains

the DMSII audit file timestamp during updates

and the starting time of the data extraction

during extraction.

NOTE: This bit cannot be used at the same

time as bit 4.

14 8192 user_column1 Generic user column whose entry is left as

NULL

15 16384 sequence_no A sequence number used in history tables to

determine the order of updates when they have

the same update_time values

16 32768 delete_seqno Augments the deleted_record column with a

sequence number to provide higher granularity

and avoid creating duplicate deleted records.

3.6.1 Types of Non DMSII Columns

3.6.1 Types of Non DMSII Columns 87

3.6.2 Values for Non DMSII Columns

The bit numbers, decimal values, and hexadecimal values for the user column names are shown in

the following table.

Bit Value User Column

Name

Description

17 65536 create_time Time when the record was created in the

relational database (PC time).

18 131072 user_column2 Generic user column whose entry is left as

NULL.

19 262144 user_column3 Generic user column whose entry is left as

NULL.

20 524288 user_column4 Generic user column whose entry is left as

NULL.

Default Name Bit Number Decimal Calue Hex Value

update_type 1 1 0x00000001

update_time 2 2 0x00000002

update_ts 3 4 0x00000004

audit_ts 4 8 0x00000008

audit_filenum 5 16 0x00000010

audit_block 6 32 0x00000020

source_name 7 64 0x00000040

source_id 8 128 0x00000080

my_id 9 256 0x00000100

deleted_record 10 512 0x00000200

update_type 11 1024 0x00000400

source_id_key 12 2048 0x00000800

audit_ts 13 4096 0x00001000

3.6.2 Values for Non DMSII Columns

3.6.2 Values for Non DMSII Columns 88

Default Name Bit Number Decimal Calue Hex Value

user_column1 14 8192 0x00002000

update_seqno 15 16384 0x00004000

delete_seqno 16 32768 0x00008000

create_time 17 65536 0x00010000

delete_seqno 18 131072 0x00020000

delete_seqno 19 262144 0x00040000

3.6.2 Values for Non DMSII Columns

3.6.2 Values for Non DMSII Columns 89

3.6.3 Setting Up History Tables

The primary data tables use the CREATE, MODIFY, and DELETE records from the mainframe to

build an exact duplicate of DMSII data sets.

A history table, on the other hand, treats these records as new records to insert, even though a

history table is structured similarly to a primary data table. In effect, the history table becomes a

log or record of mainframe changes. History tables are usually enabled as a device to feed data

warehouse applications. History tables will continue to grow as Databridge replicates data, so you

should purge them regularly after successful updates to the data warehouse.

To enable history tables, set DSOPT_Save_Updates (bit mask 8 of ds_options in the DATASETS

Client control table). You must enable history tables before you generate Databridge Client scripts,

as explained in the next section. If you want to set this bit for all data sets, you can set the

configuration parameter history_tables to 1.

Each history table has the same name as the corresponding primary data table with a "_h" suffix.

It is also possible to create only history tables for a data set or for all data sets. To do this for all

data sets, simple set the history_tables parameter to 2 in the configuration file. This will cause

the ds_options bit DSOPT_History_Only (8192) to be set for all data sets. If you only want to do

this for a few data sets, then you can use the user script script.user_layout.dataset to do this.

3.6.4 Modifying Non DMSII Column Names

The configuration file parameter external_column[n] allows you to tailor attributes, such as the

column name, of individual non DMSII columns. For details and a list of allowable sql_type values,

see external_column[n].

Default Name Bit Number Decimal Calue Hex Value

delete_seqno 20 524288 0x00080000

When setting bits in ds_options , beware that some bits may already be set. You should use

the "|" operator for SQL Server and the BITOR function for Oracle to set a bit rather than setting

the column to that value.

Caution

3.6.3 Setting Up History Tables

3.6.3 Setting Up History Tables 90

3.6.5 Preserving Deleted Records

Both the deleted_record column (bit 10) and the update_type column (bit 11 only) may be used

to preserve deleted records, which is useful when trying to recreate updates to the database.

Be aware of the following when using these bits:

Bit 11 preserves only the last instance of the deleted record. For example, if the key value of

the deleted record is reused, the deleted record is replaced when the duplicate (new) record

is inserted.

Bit 10 results in the deleted_record column being included in the index. The value in this

column is a time value, which makes the values in the index unique; therefore, you can keep

multiple instances of the deleted record. The granularity of this column is in seconds, if you

need coarser granularity you should add the delete_seqno column described in Values for

Non DMSII Columns.

In addition, you must clean up deleted images when they are no longer needed.

3.7 Generating Databridge Client Scripts

In this phase, the Databridge Client generates script files that are used to create the Databridge

data tables in the relational database and run the database bulk loader utility to populate those

tables during the data extraction phase.

The generate command creates scripts only for those data sets that have an active column set

to 1 in the corresponding entry in the DATASETS Client control table. The Databridge Client keeps

track of the data sets that have been generated. These scripts will only be generated again if a

define command is executed or if a redefine command determines that the layout of a table has

changed. If you need to force the Databridge Client to generate the scripts for all data sets that

have a corresponding active column value of 1 in the DATASETS Client control table, you can

specify the -u option on the command line for the generate command.

To view a list of the scripts that are generated, see Summary of Script Files.

• •

• •

If you use the first method (bit 11) to preserve deleted records, the deleted records will only

survive during a re-clone if you set the preserve_deletes parameter to True. If you use the

second method (bit 10), the deleted records will always be preserved during a re-clone.

Note

3.6.5 Preserving Deleted Records

3.6.5 Preserving Deleted Records 91

You can also perform this action from the Administrative Console by clicking Actions > Generate

Scripts. If you use the Customize command and have a new data source, you will need to perform

this step after you exit from the Customize command.

3.7 Generating Databridge Client Scripts

3.7 Generating Databridge Client Scripts 92

If you plan to use the dbridge.cfg file for signon parameters, set them before you continue.

(See the Databridge Installation Guide.)

Make sure that the following parameters, which affect the generate command, are set

correctly in the appropriate section of the Client configuration file:

[params]

global_table_suffix

create_table_suffix

create_index_suffix

[bulk_loader]

bcp_batch_size

bcp_packet_size

bcp_code_page

bcp_copied_message

sqlld_rows

sqlld_bindsize

inhibit_direct_mode

enable_parallel_mode

max_errors

Enter the following command:

dbutility [signon_options misc_options] generate datasource

1. 1.

2. 2.

2.

For your changes to take effect, you must run the generate command again and specify the

-u option to force the program to regenerate the scripts.

Note

3. 3.

3.

Where Is

signon_options For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

PostgreSQL: [-U userid] [-P password] [-O ODBCdatasource]

3.7 Generating Databridge Client Scripts

3.7 Generating Databridge Client Scripts 93

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

Status messages indicate the progress of the command.

To check on the results of the generate command, see Summary of Script Files. For

information on when to run generate next, see When to Run dbutility generate.

At this point, you are ready to run a process or clone command to create and populate the

Databridge tables in the relational database with DMSII data. See Populating the Databridge

Data Tables.

3.7.1 Example of Script Files

In this example, scripts are generated for the CUSTOMER data set and the PRODUCTS data set, as

follows:

Windows Script Files

Where Is

misc_options Any of the following miscellaneous command-line options:

-T forces the Client to use a new trace file for this run, if tracing is

enabled.

-f filename to specify a configuration file other than the default

dbridge.cfg file in the working directory.

-L forces the Client to use a new log file for this run.

-u unconditionally generates scripts for all tables mapped from data

sets that have a corresponding active column value of 1 in the

DATASETS Client control table.

See dbutility Command-Line Options.

datasource The name that matches the entry in the DATASOURCES Client control

table. You can enter the data source name in uppercase or

lowercase.

3.

4. 4.

4.

3.7.1 Example of Script Files

3.7.1 Example of Script Files 94

UNIX Script Files

The script files are stored in the dbscripts subdirectory of the working directory, which is the

directory from which you run the dbutility generate command.

3.7.2 Summary of Script Files

The generate command produces the following script files:

> dir /on dbscripts
bcp.customer.fmt (Microsoft SQL Server only)
bcp.products.fmt (Microsoft SQL Server only)
load.customer.cmd
load.products.cmd
pgpipe.customer.ctl (PostgreSQL only)
pgpipe.products.ctl (PostgreSQL only)
script.clrduprecs.customer
script.clrduprecs.products
script.create.customer
script.create.products
script.drop.customer
script.drop.products
script.index.customer
script.index.products
sqlld.customer.ctl (Oracle only)
sqlld.products.ctl (Oracle only)

> ls dbscripts
load.customer.sh
load.products.sh
pgpipe.customer.ctl (PostgreSQL only)
pgpipe.products.ctl (PostgreSQL only)
script.clrduprecs.customer
script.clrduprecs.products
script.create.customer
script.create.products
script.drop.customer
script.drop.products
script.index.customer
script.index.product
sqlld.customer.ctl (Oracle only)
sqlld.products.ctl (Oracle only)

3.7.2 Summary of Script Files

3.7.2 Summary of Script Files 95

SQL script files that create data tables and stored procedures to update them in the target

relational database (script.create.tablename)

SQL script files that remove selected records from a data table in the SQL*Loader

(script.cleanup.tablename). See the table that follows for details about the conditions under

which these scripts are generated

SQL script files that remove false duplicate records that can occur during a long clone

process of an active DMSII database, if clr_dup_extr_recs is set to True

(script.clrduprecs.tablename)

SQL script files that drop data tables from the target relational database

(script.drop.tablename)

SQL script files that create indexes for data tables in the target relational database

(script.index.tablename)

Windows command (or UNIX shell script) files to run the utility (load.tablename.cmd or

load.tablename.sh). The bulk loader is used during the data extraction phase of a cloning

operation of a data set.

SQL*Loader control files for Oracle (sqlld.tablename.ctl) and bcp format files for Microsoft

SQL Server (bcp.tablename.fmt).

The following table summarizes the scripts that are created for each Oracle table. Each DMSII data

set that is cloned is mapped to one or more tables. The Databridge Client creates one set of files

for each of these tables that have a corresponding active column value of 1 in the DATATABLES

Client control table.

• •

• •

• •

• •

• •

• •

• •

File Description

SQL Server:

bcp.table.fmt

This is a control file that contains the bcp parameters that

describe the format of the data.

Oracle: sqlld.table.ctl This is a control file that contains the SQL*Loader

parameters that describe the format of the data.

PostgreSQL:

pgpipe.table.ctl

This is a control file that contains the PGLoader

parameters that describe the format of the data.

Windows: load.table.cmd

UNIX: load.table.sh

This is a Windows command file used to run the relational

database bulk loader (bcp for Microsoft SQL Server,

SQL*Loader for Oracle) and PGLoader for PostgreSQl.

This is a UNIX shell script used to run SQL*Loader for

Oracle and PGLoader for PostgreSQL.

3.7.2 Summary of Script Files

3.7.2 Summary of Script Files 96

File Description

script.create.table This is a script that contains SQL statements to create the

relational database table named table. In the case of the

SQL Server and Oracle Clients it also contains the SQL

statements to create the associated stored procedures for

updating this table.

Before starting the data extraction phase of a process or

clone command, this script is executed to create the

table and its associated stored procedures.

The following stored procedures are used by the SQL

Server and Oracle Clients during the process and clone

commands for updating the table (specified by table):

i_table stored procedure for inserting a record

d_table stored procedure for deleting a record

u_table stored procedure for updating a record

z_table stored procedure for deleting all rows for all

occurrences of key in secondary tables using a single SQL

statement

script.drop.table This is a script that contains SQL statements to drop the

relational database table named table and to drop the

stored procedures associated with this table.

script.drop.tablescripts are used by the process,

clone , drop , and dropall commands to drop a

specified table and its associated stored procedures.

If a table to be cloned (ds_mode=0) already exists during a

process or clone command, this script is executed to

drop both the table and its stored procedures before

recreating them. During a process or clone command, if

the Databridge Client receives a message from the

Databridge Engine indicating that a DMSII data set has

been purged, this script is executed to drop the table.

Immediately after the table is dropped, the script to

recreate the table is executed.

3.7.2 Summary of Script Files

3.7.2 Summary of Script Files 97

File Description

script.cleanup[2].table This script contains SQL statements to delete selected

records from the relational database table. This script is

typically called script.cleanup.table, except when both of

the conditions below are true. In that case, an additional

cleanup script named script.cleanup2.tableis also created

to remove all records except the deleted records from the

table.

NOTE: This script is generated under rare conditions

where tables are not fully re-cloned, as in the following

cases:

The data set is set up to preserve deleted records.

The data set is a virtual data set that gets its input

from more than one DMSII data set.

script.index.table This is a script that contains SQL statements to create an

index for the given table.

NOTE: This script is created only when the table has an

index.

•

•

3.7.2 Summary of Script Files

3.7.2 Summary of Script Files 98

3.7.3 When to Run dbutility generate

Run dbutility generate when you need to create a new set of scripts for a data source. For

example, you would run dbutility again in the following circumstances:

If you accidentally delete one or more script files, repeat the dbutility generate command

with the -u option. Make sure that the current directory is the working directory for the data

source where you want dbutility generate to write the script files.

If you disable cloning (set the active column to 0 in the DATASETS Client control table) for

one or more data sets prior to running the dbutility generate command, no scripts are

created for these data sets. If you later decide that you want one or more of these data sets

to be cloned, set the active column back to 1, run the redefine command, and then run

the generate command. The missing scripts are created and you can then run the clone

command to clone the data set.

File Description

script.clrduprecs.table This script removes records with false duplicate key

values when the bit DSOPT_Clrdup_Recs (32768) is set in

the ds_options column of the DATASETS table entry for

the data set.

• •

• •

3.7.3 When to Run dbutility generate

3.7.3 When to Run dbutility generate 99

4. Cloning a DMSII Database

This chapter covers the steps to clone a DMSII database.

4.1 Cloning Issues for All Relational Databases

We recommend that you read this section before you use the process or clone commands.

Disk Space You need to consider two types of disk space for the Databridge Client,

as follows:

Database storage is required by both the relational database and the

DMSII data.

Temporary file storage is required for Windows Clients during the

cloning process. These temporary disk files hold the data used by

the bulk loader utilities. For information on how to handle temporary

file storage, see Controlling Temporary File Storage for the Windows

Clients.

Column Order The columns in the Client database are built in a different order than the

order in the DMSII database. Specifically, the key items are placed first,

followed by the non-key items in DMSII column order.

•

•

4. Cloning a DMSII Database

4. Cloning a DMSII Database 100

4.2 Bulk Loader Parameters

Both dbutility process and dbutility clone use a bulk loader utility to populate the Databridge

tables in the relational database during the data extraction phase (not during change tracking).

Using the relational database bulk loader utility greatly increases the speed with which the

Databridge data tables are populated.

This section lists the configuration parameters that affect the Databridge Client operations when

using the relational database bulk loader utility. You can use these parameters to do the following:

Control temporary file storage (max_temp_storage parameter, Windows Client only)

Control the bulk loader utility maximum error count (max_errors parameter)

You can set the bulk loader parameters from the Administrative Console. These and other

configuration parameters are available in the Configure item of the Settings the menu for the data

source in question. For information, see the Administrative Console help Help.

Parameters that are specific to the SQL*Loader and BCP API are discussed in the next sections.

4.2.1 Controlling Temporary File Storage for Windows Clients

During cloning on Windows platforms, the Oracle Client and the SQLServer Client (unless directed

to use the BCP API, which does not involve the use of temporary files) writes bulk loader data to

multiple temporary text files for each table being loaded.

These temporary text files are used as holding areas for the bulk loader data. The Windows Client

uses overlapped operations to write data to one set of text files while the bulk loader is loading

tables from another set of files. The configuration file parameter max_temp_storage determines

the maximum amount of storage to be used by all of the temporary files.

Databridge

Client Log

File

Logging and tracing are separate activities in the Databridge Client.

Logging cannot be disabled. Log files are written to the logs

subdirectory of the working directory. Trace files are only created when

the -t or -d options are used and they are placed in the working

directory.

Using -t1 is not allowed because this would create a second copy of

the log file. You must specify at least one more bit in the trace mask for

the option to be accepted.

•

•

4.2 Bulk Loader Parameters

4.2 Bulk Loader Parameters 101

The Databridge Client writes data to as many temporary files as it needs, while keeping track of the

total amount of storage used. When the amount of storage used exceeds half of the configured

value of the configuration file parameter max_temp_storage , the Databridge Client closes all the

temporary files and queue the tables on the bulk loader thread's work queue.

(The default setting for max_temp_storage is 400 MB.) While the bulk loader thread is sequentially

launching the loads for for these tables (which run as separate processes), the Databridge Client

starts filling a new set of temporary files for the next group of loads. This mode of operation

significantly enhances performance on systems that have more than one CPU.

4.2.2 Bulk Loader Operations for UNIX Clients

UNIX Clients do not use temporary text files; instead, they use pipes (such as lpipe_nnn.dat) to

communicate data between processes. This introduces a lot more overlap between the Client and

the bulk loader, resulting in a much smoother flow of data.

4.2.3 Controlling the Bulk Loader Maximum Error Count

The max_errors parameter controls the number of data errors allowed before the bulk loader's

operations are canceled. The default value for max_errors is 10, which means that the bulk loader

aborts after encountering 10 bad records. These bad records are written to the discard file for the

table in the discards directory and information about the error is written into the bulk loader log file.

When several bulk loader errors occur, increasing the maximum error count allows you to gather all

the errors in one run rather than finding 10 errors and then having to start over again. For more

details, see the max_errors parameter description in [Bulk_Loader].

4.3 Oracle SQL*Loader Bulk Loader

This section lists the configuration file parameters that affect cloning with Oracle.

The enable_parallel_mode parameter, which is only meaningful when direct mode is enabled,

causes the program to include the PARALLEL option in the SQL*Loader command line. In direct

mode, the loader runs faster at the expense of system resources; however, enabling this option has

a much more noticeable impact on Windows Clients than on UNIX Clients.

For non-US sites where the period (.) and comma (,) decimal characters are swapped, the

Databridge Client automatically reads the database's NLS parameters and makes the necessary

adjustments so that the SQL*Loader input records are formatted using the numeric characters

that SQL*Loader expects.

4.2.2 Bulk Loader Operations for UNIX Clients

4.2.2 Bulk Loader Operations for UNIX Clients 102

The inhibit_direct_mode parameter applies when you run dbutility for a remote Oracle database

using SQL*Net®.

The following parameters are meaningful only when inhibit_direct_mode is enabled.

The sqlld_rows parameter defines the value to be used for the ROWS specification for

SQL*Loader operations.

The sqlld_bindsize parameter defines the value to be used for the BINDSIZE parameter

for SQL*Loader operations. Increasing this value can speed up SQL*Loader operations

when not using DIRECT mode (for example, running remote to a database on a UNIX

system).

For more information about the bulk loader parameters mentioned here, see [Bulk_Loader].

4.3.1 Files related to SQL*Loader

Each execution of SQL*Loader uses a control file (load_ nnn .ctl , which is a copy of the file

sqlld .tablename. ctl created by the generate command) and a data file (lpipe_ nnn .dat) as

input.

As a result of the bulk loading process, SQL*Loader produces a log file (load_ nnn .log) and, if

there are any records that cannot be loaded due to data errors, a discard file (lpipe_ nnn .bad) for

each table. Discard files are placed into the subdirectory named discards.

Windows Log Files

In Windows, to prevent log files and discard files from being overwritten as a result of successive

executions of SQL*Loader during segmented bulk load operations, the Databridge Client uses the

SQL*Loader log and discard files as temporary files and does the following:

At the end of the first load segment, the Databridge Client copies the temporary log file to

the permanent log file (sqlld .tablename. log). If a discard file was produced, the

Databridge Client also copies the temporary discard file to the permanent discard file

(sqlld .tablename. bad) in the discards folder.

At the end of every subsequent load segment, the Databridge Client appends the temporary

log files to the end of the permanent log file (sqlld .tablename. log). If a temporary discard

file was produced, the Databridge Client either copies it or appends it to the permanent

discard file (sqlld .tablename .bad), depending on whether this file exists or not.

The Databridge Client deletes the temporary log and discard files as soon as they are

appended to Databridge Client permanent log and discard files.

UNIX Log Files

• •

• •

• •

• •

• •

4.3.1 Files related to SQL*Loader

4.3.1 Files related to SQL*Loader 103

In order to maintain compatibility with the Windows Clients, the UNIX Client renames the log and

discard files at the end of a SQL*Loader operation. Therefore, the log file load nnn. log is renamed

sqlld tablename. log and the discard file lpipe_ nnn .bad is moved to the discards folder as

sqlld_ tablename. bad in the SQL*Loader shell scripts.

List of files related to SQL*Loader

The table below lists files related to SQL*Loader and Databridge Client operations. In some of the

filenames below, nnn is the value in the table_number column of the DATATABLES Client control

table. It is unique within each data source.

File Description

sqlld.tablename.ctl The SQL*Loader control file created by the generate

command. It describes the format of the data in the data file

(lpipe _nnn. dat).

lpipe_nnn.dat For Windows: This is a temporary file that the Databridge Client

creates. It contains the data to be loaded into an Oracle table.

Since the Client uses two copies of this file simultaneously

when doing overlapped operations, it appends a suffix to the file

name to make it unique every time a new file is created. The

suffix of the form "_nnn", where nnn is a number that starts at 1

and gets incremented by 1 each time a new file is created for

the table in question. Thus the name "lpipe_12.dat" will be

changed to lpipe_12_1.dat for the second file and so on.

This file is automatically deleted after a successful load of a

table. If the table is not loaded successfully, the file is not

deleted. This gives you the opportunity to manually run

SQL*Loader to determine why it is failing.

For UNIX: This is a UNIX pipe that the SQL*Loader shell script

creates and uses to pass data to the SQL*Loader program.

This pipe is automatically removed after a successful load of a

table.

If the Databridge Client or SQL*Loader abends, the pipe is not

immediately deleted. If you run the Databridge Client again, you

receive a warning message as the pipe is being deleted. You

can safely ignore this warning, as this is not a fatal error.

4.3.1 Files related to SQL*Loader

4.3.1 Files related to SQL*Loader 104

File Description

sqlld.tablename.log For Windows: This file is a concatenation of all of the

load_nnn.log files created during the cloning process.

For UNIX: This is the log file generated by SQL*Loader .

CAUTION: Do not delete the sqlld.tablename.log file until you

have looked at it. It can contain valuable information such as

error messages about rows that were not loaded.

4.3.1 Files related to SQL*Loader

4.3.1 Files related to SQL*Loader 105

The following temporary files are created while the bulk loader is being launched, but they are

deleted before the run is completed:

load_nnn.ctl

load_nnn.log (renamed in UNIX to sqlld_tablename.log)

lpipe_nnn.bad (renamed in UNIX to sqlld.tablename.bad)

You see these files only if the bulk loader operation abends.

4.4 Microsoft SQL Server BCP API and bcp utility

This section lists the configuration file parameters that affect cloning with BCP API and bcp utility.

SQL Server Clients on Windows use the bcp utility by default.

You can make the SQL Server Client use the BCP API, which allows the program to perform bulk

loader operations by making BCP API calls, which operate like SQL statements. This produces

more overlap between the Client and the load operations, resulting in a much smoother flow of

data. We have had some problems with the BCP API, which lead us to change the default mode of

operations to use the bcp utility which is more reliable.

It is recommended that you use multi-threaded updates, as this allows multiple tables to be loaded

simultaneously by different threads which increases the resource utilization and offers all the

advantages of multi-threaded updates when doing data extraction.

File Description

sqlld.tablename.bad For Windows: This file is a concatenation of all of the

load_nnn.bad files created during the cloning process. It is

created in the discards subdirectory only if discard records

exist.

For UNIX: This is the discard file generated by SQL*Loader that

has been moved to the discards folder.

CAUTION: Do not delete the sqlld.tablename.bad file until you

have looked at it to determine which records were rejected by

SQL*Loader . Correct the bad data. Then use SQL*Loader to

load these records into the appropriate table.

•

•

•

4.4 Microsoft SQL Server BCP API and bcp utility

4.4 Microsoft SQL Server BCP API and bcp utility 106

The following Client configuration file parameters affect the bcp utility or BCP API calls made by

the Client. For more details, see [EbcdictoAscii].

Bulk loader operations will run efficiently if the database recovery model is set to "Simple" or

"Bulk-logged". If you are running a database with a recovery model of "Full", we recommend that

you switch to "Bulk Logged" for the duration of the bulk-load and then switch back to "Full"

recovery.

Note

Parameter Description

bcp_batch_size The Databridge Client using the BCP API or the bcp utility can load

a table in several batches instead of loading the entire table in a

single operation. You can control the batch size using this

parameter.

bcp_code_page Adds the -C code_page to the bcp command line, which specifies

the code page of the data in the file. For example, because the

Japanese code page is 932, setting this parameter to 932 adds -C

932 to the bcp command line.

This parameter is only applicable when using the bcp utility.

bcp_packet_size Defines the network packet size value for the bcp utility (applies to

remote servers only). If you have wide tables, setting this

parameter to a packet size larger than the default (4096) can speed

up loading the data into the table at the expense of system

resources.

This parameter is only applicable when using the bcp utility.

bcp_copied_msg Enables the bcp_auditor program to determine whether or not a

bcp was successful in cases where the database language is not

English.

This parameter is only applicable when using the bcp utility.

bcp_delim Defines the delimiter character bcp uses (the TAB character, by

default). If you want to preserve TAB characters in your data, set

this parameter to a value that allows multiple characters.

This parameter is only applicable when using the bcp utility.

4.4 Microsoft SQL Server BCP API and bcp utility

4.4 Microsoft SQL Server BCP API and bcp utility 107

Parameter Description

max_errors Controls the bulk loader’s tolerance to records that are discarded

due to data errors.

4.4 Microsoft SQL Server BCP API and bcp utility

4.4 Microsoft SQL Server BCP API and bcp utility 108

4.4.1 bcp_auditor Utility

The bcp command files capture bcp execution output by redirecting the output to a temporary file.

These command files then invoke the bcp_auditor utility to examine this file to determine if the

bcp operation was successful. The bcp_auditor utility sets the exit code such that the Databridge

Client can determine if the table load was successful.

4.4.2 Files related to BCP

Each execution of bcp uses a format file (bcp .tablename. fmt) and a data file

(bcppipe .tablename) as input.

As a result of the bulk loading process, bcp produces a log file (load_*nnn*.log) for each table. If

there are any records that cannot be loaded due to data errors, bcp also produces a discard file

(load _nnn. bad).

To prevent log files and discard files from being overwritten during segmented bulk load

operations, Databridge Client treats bcp log and discard files as temporary files:

Parameter Description

max_temp_storage Activates the segmented bulk load feature, which allows you to

specify the maximum amount of storage that dbutility should use

for temporary files.

This parameter is only applicable when using the bcp utility.

The SQL Server Client will only use the BCP API when specifically directed to do so. You can

globally control whether the Client is to use the bcp utility or the BCP API, by setting the

use_bcp parameter accordingly in the [bulk_loader] section of the Client configuration file. You

must run a redefine command with the -R option to make this change take effect. You can

force the Client to always use the bcp utility by using the /l command line option. Alternatively,

you can control the loading of tables at the data set level by setting the DSOPT_Use_bcp

(0x1000000) bit in the ds_options column for the corresponding entries in the DATASETS

Client control table.

Note

4.4.1 bcp_auditor Utility

4.4.1 bcp_auditor Utility 109

At the end of the first load segment, the Databridge Client copies the temporary log file to

the permanent log file (bcp .tablename. log). If a discard file was produced, the Databridge

Client also copies the temporary discard file to the permanent discard file

(bcp .tablename. bad).

At the end of every subsequent load segment, the Databridge Client appends the temporary

log files to the end of the permanent log file (bcp .tablename. log). If a temporary discard

file was produced, the Databridge Client either copies it or appends it to the permanent

discard file (bcp .tablename. bad), depending on whether this file exists or not.

The Databridge Client deletes the temporary log and discard files as soon as they are

appended to Databridge Client permanent log and discard files.

Files related to bcp and Databridge Client operations are listed in the following table. In some of the

filenames below, nnn is the value for the table_number column in the DATATABLES Client control

table. The table number is unique within each data source.

• •

• •

• •

File Description

bcp.tablename.fmt The bcp format file that is created by the generate command. It

describes the format of the data in the data file

(bcppipe .tablename).

bcppipe.tablename A temporary file created by the Databridge Client. It contains the

data to be loaded into a Microsoft SQL Server table. Since the

Client uses two copies of this file simultaneously when doing

overlapped operations, it appends a suffix to the file name to

make it unique every time a new file is created. The suffix is of the

form "_nnn" where nnn is a number that starts at 1 and gets

incremented by 1 each time a new file is created for the table in

question. Thus the name " bcppipe.customer " will be changed to

" bcppipe.customer_1 " for the second file and so on.

This file is automatically deleted after a successful load for a

table. If the table is not loaded successfully, the file is not deleted.

This gives you the opportunity to manually run bcp to determine

why it is failing.

Important: The bcppipe .tablename files can be quite large. When

these files are no longer needed, make sure you delete them to

prevent errors from occurring.

4.4.2 Files related to BCP

4.4.2 Files related to BCP 110

File Description

bcp.tablename.log A concatenation of bcp screen output created during the cloning

process. The files are created in the working directory for the data

source.

CAUTION: Do not delete the bcp .tablename. log file until you

have looked at it. It can contain valuable information such as error

messages about rows that were not loaded.

4.4.2 Files related to BCP

4.4.2 Files related to BCP 111

The following temporary files are created while the bulk loader is being launched, but they are

deleted before the run is completed:

load_nnn.log

load_nnn.bad

You see these files only if the bulk loader operation abends.

4.4.3 Files related to the BCP API

When using the BCP API all errors are logged to the Client log file. If there are discarded records,

they are written to the tablename. bad file located in the discards folder, this is similar to discards

during the tracking phase.

4.5 PGLoader Utility

The PostgreSQL Client uses the PGLoader utility that is supplied with the PostgreSQL Client to load

data into the relational database tables during data extraction.

The following Client configuration file parameters affect the PGLoader utility.

File Description

bcp.tablename.bad A concatenation of all of the load_nnn.bad files created during

the cloning process. These files are created in the discards

subdirectory.

CAUTION: Do not delete the bcp.tablename.bad file until you have

looked at it. It can contain valuable information such as which

rows were not loaded. Correct the bad data and use bcp to load

these records into the appropriate table.

•

•

Parameter Description

bcp_batch_size The Databridge Postgres Client using the PGLoader utility can load

a table in several batches instead of loading the entire table in a

single operation. You can control the batch size using this

parameter.

bcp_code_page Specifies the code page of the data in the file to be loaded. The

default value is "iso-8859-1".

4.4.3 Files related to the BCP API

4.4.3 Files related to the BCP API 112

Parameter Description

max_errors Controls the PGLoader’s tolerance to records that are discarded

due to data errors.

4.5 PGLoader Utility

4.5 PGLoader Utility 113

4.5.1 Files related to PGLoader

Each execution of PGLoader uses a control file named pgpipe .tablename. ctl and a data file

named pgpipe .tablename _ nn as input.

As a result of the bulk loading process, PGLoader produces two log files named pgloader nn. log

and pgloader nn. log2 for each table. The files are combined into a single log file named

pgloader _tablename. log . In the case of Windows this file contains all the log files for the

segmented load. The original log files are treated as temporary and deleted after they are merged

into the final log file.

If there are any records that cannot be loaded due to data errors, PGLoader also produces a

discard file named tablename. bad in the tmp subdirectory. These file are combined into a

4.6 Configuring Host Parameters

TCP/IP throughput is greatly affected by the BLOCKTIMEOUT parameter on the host. Typically, the

default is 100, which is acceptable for character-oriented communications (for example, Telnet

VT™ 100 emulation), but not good for record and block-oriented communications, as with

Databridge or FTP (file transfer protocol). For Databridge communications, you can increase

throughput by reducing the BLOCKTIMEOUT parameter to a value of 2.

If the Databridge Client system is on a different subnet from the mainframe, put it on the same

subnet so that Ethernet packets can be larger. If you cannot put the Databridge Client on the same

subnet as the mainframe, you can improve throughput by adjusting BLOCKSIZE on the host and

TCP/IP Window Size on the Windows Server PC.

4.6.1 Running tcptest

During the initial setup, use the tcptest command to determine if the TCP/IP interface is

operating properly. Before you run the tcptest command, you must define a data source. For

more information, see the table in dbutility Commands. An example of the test is shown below:

Parameter Description

max_temp_storage Activates the segmented bulk load feature, which allows you to

specify the maximum amount of storage that the Databridge Client

should use for temporary files.

This parameter is only applicable to Windows platforms.

4.5.1 Files related to PGLoader

4.5.1 Files related to PGLoader 114

4.7 Populating the Databridge Data Tables

Before you populate the Databridge data tables, determine if you need to customize the character

translation tables or not. If you do, modify the [EbcdictoAscii] section of the Client configuration file

before you run either the process or clone command. For more information on character

translation tables and modifying the configuration file, see [EbcdictoAscii] and Export or Import a

Configuration File.

You can populate the Databridge data tables in the relational database using either of the following

methods:

dbutility process

dbutility clone

The process and clone commands use the relational database bulk loader utility to populate the

Databridge tables.

The process command is typically used to populate the data tables. The clone command is a

special case of the process command that allows you to clone a small number of data sets

without changing the values of the corresponding entries in the active column of the DATASETS

Client control table.

4.8 Data Validation and Discard Files

While processing DMSII extract and update records, Databridge validates all numeric and alpha

fields. Fields that contain NULL values (data with all high-bits set) usually are recognized as DMSII

NULLS. In this section, the following types of data validation and discard files are described:

E:\>dbutility tcptest demodb 111.222.33.444 5555 100 1000
11:49:10 Databridge Client version 7.1.0.000 [OCI/Oracle]
11:49:10 (C) 2023 Open Text.
11:49:14 Connecting to 111.222.33.444, port 5555
11:49:16 TCP_Test: len=100, count=1000
11:49:17 Bytes Processed 100.00 KB of DMSII data in 1.000 secs, throughput = 100.00 KB/sec
11:49:17 Bytes Received 112.00 KB in 1.000 secs, total throughput = 112.00 KB/sec
11:49:17 TCP/IP_time = 0.841 secs, (84.10% of total time)
11:49:17 TCP Test completed successfully
11:49:17 Client exit code: 0 - Successful

•

•

We recommend that you read one of the previous sections, Oracle SQL*Loader Bulk Loader or

Microsoft SQL Server BCP API and bcp utility before you use the dbutility clone or dbutility

process command.

Note

4.7 Populating the Databridge Data Tables

4.7 Populating the Databridge Data Tables 115

Numeric data validation

Alpha data validation

Date validation

Special handling of key items in discard files

The handling of blank character data for key items in the Databridge Client for Oracle

4.8.1 Numeric Data Validation

Numeric data that contains illegal digits (for example, values other than 0 through 9, excluding the

sign field for signed numbers) are flagged as bad. If the da_options column of the corresponding

DATAITEMS control table entry has the DAOPT_Allow_Nulls bit (1) set, Databridge treats numeric

items that have bad digits as NULL.

The configuration parameter allow_nulls defines the default value for this bit, which can be

altered by user scripts. If the bit is zero, the NULL or bad numeric data is stored as either all 9s or

all 0s based on the value of the configuration parameter, null_digit_value (default value is 9).

For more information, see bracket_tabnames and null_digit_value.

4.8.2 Alpha Data Validation

With alpha data, bad characters are usually replaced with a question mark (?) instead of the whole

field being set to NULL. The Client configuration file parameter inhibit_ctrl_chars determines

whether or not control characters are to be treated as bad characters. (The program treats a few

control characters, such as NUL, CR, and LF, as bad regardless of this parameter's value.)

The Client configuration file parameter inhibit_8_bit_data determines whether or not 8-bit

characters are to be treated as bad characters. In this context, "8-bit" refers to ASCII data larger

than 0x7F and includes non-English accented letters. When the parameter inhibit_8-bit_data is

true, Databridge replaces the 8-bit character with ? .

If your data contains non-English characters, the inhibit_8-bit_data parameter should never be

set to true.

•

•

•

•

•

All data translations can be customized using the Translation table section in Appendix C: Client

Configuration.

Note

4.8.1 Numeric Data Validation

4.8.1 Numeric Data Validation 116

The Client configuration parameter convert_ctrl_char (which is incompatible with

inhibit_ctrl_chars) replaces control characters by spaces instead or question marks. For more

information, see [Bulk_Loader].

The Client configuration file parameter alpha_error_cutoff determines the percentage of bad

characters in an ALPHA field that are tolerated before the entire field is declared bad and treated as

NULL.

If ALPHA data is stored as binary data, no alpha data validation is performed because no invalid

values exist in binary data. See the DIOPT_Clone_as_Binary option in the di_options column of

DMS_ITEMS.

NULL data is treated as NULL if the da_options column of the corresponding DATAITEMS control

table entry has the DAOPT_Allow_Nulls bit (1) set. Otherwise, the NULL data is stored as blanks.

4.8.3 Date Validation

Whenever Databridge processes numeric or alpha items that are cloned as relational database

date data types, it checks the validity of the data. Invalid dates are usually treated as NULL. The

Databridge Client for Microsoft SQL Server stores bad or NULL dates as 1/1/1900, when the

DAOPT_Allow_Nulls bit (1) in the da_options column of the corresponding DATAITEMS control

table entry has not been set. The Databridge Client for Oracle uses the date 1/1/0001 instead. A

numeric date of all 0s or all 9s is treated as NULL rather than an error. Similarly, an ALPHA date that

is all blanks is treated as a NULL date.

4.8.4 Special Handling of Key Items in Discard Files

Because the stored procedures used during update processing use equality tests in the where

clauses, key items (items that are used in the index for a table) can never be NULL. In relational

databases, you cannot use equality tests for items that are NULL.

If a key item has a data error or it is NULL, Databridge places the entire record in a discard file

named tablename. bad in the discards subdirectory. The syntax for discard file data is the calling

sequence that would typically be used for the stored procedure that performs the update.

Therefore, discarded records from both the data extraction and update phases are identical.

Databridge preserves bad numeric digits and characters to help you better troubleshoot the

problem.

4.8.3 Date Validation

4.8.3 Date Validation 117

4.8.5 Handling Blank Character Data for Key Items (Databridge

Client for Oracle)

The Databridge Client strips all trailing blanks when constructing SQL statements using varchar

data. When an application reads the records back from the database, the access routines put back

the trailing blanks, greatly reducing the storage requirements for the SQL statements and bulk

loader data files.

In Oracle, char or varchar items that have a length of 0 are treated as NULL. If any of the key items

used in where clauses are NULL, the corresponding update or delete SQL statements fail as

mentioned above. To prevent the key item from becoming NULL, the Databridge Client for Oracle

keeps the last blank of the item.

4.9 The Process Command

The process command is the main command of the Databridge Client. It populates and updates

the tables for all data sets whose active column is 1 in the corresponding entries of the

DATASETS Client control table. Since the define command initializes the ds_mode column, all the

selected data sets are cloned the first time you run a process command.

You can schedule the process command to update the Databridge data tables. The schedule

becomes effective after you run the process command for the first time. For more information,

see Scheduling dbutility Updates.

During data extraction records discarded by the Client and those discarded by the bulk loader

end up in different files in the discards folder (in the case of the SQL Server Client

tablename. bad and bcp .tablename. bad respectively). Bulk loader discards are extremely rare

as the Client catches all the data errors.

Note

If you do not select specific data sets in the data set global mapping customization script, the

Databridge Client automatically clones all data sets except for remaps, the restart data set, and

the global data set. This operation may take a very long time and require a lot of disk space.

Note

4.8.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle)

4.8.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle) 118

To populate the Databridge data tables in the relational database via the dbutility process

command, you must first make sure that the current directory is set to the working directory you

created for this data source. This must be the same working directory you used when you executed

a generate command for this data source; otherwise, the Databridge Client cannot locate the

scripts to create and populate the Databridge data tables.

4.9.1 Cloning a DMSII Database

Use the following procedure to clone a DMSII database via the process command.

To run the process command

4.9.1 Cloning a DMSII Database

4.9.1 Cloning a DMSII Database 119

Make sure that Databridge Server is running. If it is not, the Databridge Client will try to

connect to the host and eventually time out.

Make sure that your signon parameters are configured appropriately.

If you plan to use the [EbcdictoAscii] section to customize character translation or any other

parameters in the dbridge.cfg file, set them before you continue. In particular, make sure you

1. 1.

2. 2.

3. 3.

4.9.1 Cloning a DMSII Database

4.9.1 Cloning a DMSII Database 120

have appropriate settings for the following parameters. (For information on setting these

parameters, see Appendix C: Client Configuration.)

The following parameters affect the way a process or clone command operates. You can

change these parameters before running these command without running a redefine

command as they do not change anything in the control tables:

4. 4.

 alpha_error_cutoff
 aux_stmts
 batch_job_period
 century_break
 commit_absn_inc
 commit_idle_database
 commit_longtrans
 commit_time_inc
 commit_txn_inc
 commit_update_inc
 controlled_execution (dbutility only)
 convert_reversals
 correct_bad_days
 dbe_dflt_origin
 defer_fixup_phase
 discard_data_errors
 display_bad_data
 eatran_dll_name
 enable_af_stats
 enable_doc_records
 enable_encryption
 enable_minimized_col
 enable_optimized_sql
 engine_workers
 error_display_limits
 inhibit_8_bit_data
 inhibit_console
 inhibit_ctrl_chars
 inhibit_drop_history
 inhibit_init_values
 keep_undigits
 linc_century_base
 masking_parameter (SQL Server only -- run a generate command when changed)
 max_clone_count (Only meaning when using the -s option)
 max_discards
 max_retry_secs
 max_srv_idle_time
 max_temp_storage (Windows only)
 max_wait_secs
 n_dmsii_buffers
 n_update_threads
 null_datetime_value (SQL Server only)
 null_datetime2_value (SQL Server only)
 null_digit_value
 numeric_date_format
 preserve_deletes
 set_blanks_to_null
 set_lincday0_to_null
 show_perf_stats
 show_statistics
 show_table_stat
 sql_exec_timeout
 sql_heart_beat
 statistics_increment
 stop_after_fixups
 stop_after_gc_reorg
 stop_after_given_afn (dbutility only)
 stop_on_dbe_mode_chg
 track_vfds_nolinks
 use_dbwait
 use_latest_si

4.9.1 Cloning a DMSII Database

4.9.1 Cloning a DMSII Database 121

Enter the following command:

If the Databridge Client connects to DBServer, it selects all the data sets whose corresponding

active columns have a value of 1 in the DATASETS table. Next, the Databridge Client requests

that DBServer clone all the selected data sets. At the end of the data extraction phase, the

Databridge Client issues another request to start sending the fixup records followed by updates.

The processing of audit files continues until there are no more audit files available.

If the Databridge Client connects to DBEnterprise, DBEnterprise supplies the data, either by reading

the DMSII data set directly (direct disk) or by issuing a request to DBServer to have Databridge

Engine read a block of data from a specific region of the disk (remote regions). DBEnterprise then

processes this block of data. Since Databridge Engine is only reading raw data in remote regions

mode and does not do any processing of this data, this mode of operations is less expensive than

having the Client connect directly to DBServer in term mainframe resource utilization. Direct disk

mode offers the biggest mainframe resource savings, as DBServer is not involved in reading data

sets.

In the case of audit file data, DBEnterprise either reads the data from its caches (if configured), or it

reads the audit file directly by issuing a request to DBServer to have Databridge Engine read a block

of data from a specific region of the disk.

After the cloning of the DMSII database completes, the tables in the relational database will

contain the same data as DMSII. At this point you can execute SQL queries to view the data and

make sure that all the tables have been populated. When you are ready to update the relational

database with changes made to the DMSII database, see Updating the Databridge Data Tables.

5. Process Command Options

5. 5.

 dbutility [signon_options misc_options] process datasource

Where Is

signon_options For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

misc_options See table in the next section titled "Process Command Options".

datasource The name of the data source specified in the DBServer control file

(DATA/SERVER/CONTROL) or via Enterprise Server.

5. Process Command Options

5. Process Command Options 122

Command-line options related to the process command are as follows:

Option Description

-c Toggles the defer_fixup_phase configuration file parameter.

-d Enables default tracing.

-f

filename

Specifies a configuration file other than the default dbridge.cfg file in the

working directory.

-l (SQL Server only) forces the Client to use the bcp utility instead of the BCP

API.

-s Tells the Client not to use the bulk loader.

-t Enables selective tracing.

-w Toggles the use_dbwait parameter in dbridge.cfg

-K Inhibits the audit file removal WFL from being run on the host.

-L Forces the Client to use a new log file for this run.

5. Process Command Options

5. Process Command Options 123

For information on the command-line options, see dbutility Command-Line Options.

5.0.1 Terminate Cloning

Use the following procedures to stop the cloning process before it is complete.

To terminate cloning

When using the service, from the Administrative Console, use the Abort command in the

Run menu for the data source.

When using dbutility, use the QUIT NOW command.

To terminate processing during the fixup and tracking phases

When using the service, from the Administrative Console, use the Stop command in the

Run menu for the data source. The Databridge Client will stop at the next quiet point.

When using dbutility, use the QUIT command (or the SIGTERM (15) signal on UNIX).

When you terminate the Client during the fixup phase or during updates, the process command

restarts from the last commit point. If you terminate the Client during the data extraction phase,

only the data sets that have successfully completed the data extraction phase (ds_mode = 1) are

recoverable. You can resume the process by running another process command.

In the unlikely event that all of these commands fail to terminate the Client, press Ctrl+C or kill the

run.

5.0.2 Tracking the State of Data Sets

Option Description

-T Forces the Client to use a new trace file for this run, if tracing is enabled.

• •

• •

• •

• •

If you issue a QUIT command or send a SIGTERM signal to the program during the data

extraction phase, the Databridge Client stops only when the fixup phase begins.

Note

5.0.1 Terminate Cloning

5.0.1 Terminate Cloning 124

The DATASETS Client control table keeps track of the state of data sets. State information consists

of the ds_mode value and the DMSII audit file location from which subsequent updates should be

processed. The audit file location includes the AFN, the ABSN, the segment and index in the audit

files, and the audit file time stamp. These values, which are collectively referred to as the stateinfo,

are stored in the audit_filenum , audit_block , audit_seg , audit_inx , and audit_time6

columns of the DATASETS Client control table. The column audit_ts contains a date/time value,

which corresponds to the audit_time6 data, which is binary and represents a DMSII TIME(6)

value. This last column is not part of the stateinfo; it is there because knowing the audit time stamp

value can sometimes be very useful.

Each subsequent time you run a process command, the Databridge Client passes the stateinfo

and the mode of each data set to the Databridge Engine. The Engine uses this information to

determine whether data sets should be cloned and the starting location in the audit trail. From that

starting location, the Databridge Engine begins processing updates to the DMSII database. Every

time a transaction group ends, the Databridge Client updates the stateinfo for the data sets in the

DATASETS Client control table. At the end of the process command, the location of the last quiet

point in the audit trail is saved in the DATASETS Client control table. This is the starting point for

the next Client run (process command).

If the in_sync column of a data set has a value of 1, its stateinfo columns may be out-of-date. You

can determine if it is current by checking the Global_Dataset entry in the DATASETS control table.

For more information, see Optimizing State Information Passing.

5.0.3 ds_mode values

The following values are defined for the ds_mode column of the DATASETS Client control table:

Value Name Description

0 CLONE Initial state of ds_mode before the data set is cloned.

1 FIXUP Data extraction completed, fixup processing not

completed.

2 NORMAL Normal update tracking mode.

10 BCP-FAILURE The bulk loading of the table failed. Further processing is

not possible until the problem is resolved.

11 PRE-FIXUP Data extraction completed, fixup processing cannot be

done due to index creation errors or lack of an index.

12 INVALID-AA AA Values invalidated by a DMSII garbage collection

reorganization.

5.0.3 ds_mode values

5.0.3 ds_mode values 125

Value Name Description

31 NEEDREORG The data set needs to be reorganized and the redefine

command has created scripts to make the relational

database table match the new layout that resulted from the

reorganization of the DMSII data set. You must run the

reorganize command in order to run the reorganization

scripts created by the redefine command.

5.0.3 ds_mode values

5.0.3 ds_mode values 126

In the case of DMSII reorganizations, the status_bits column in the DATASETS table is used

instead. The Databridge Client leaves the ds_mode column unchanged and sets the

DS_Needs_Redefining bit (8) of the status_bits column of the DATASETS Client control table.

Following the initialization (purge) of a data set, the Client is notified of the purge. The Client drops

the tables for the data set and recreates them. The ds_mode of the data set is set to 2 and the

index for the empty tables are created. This enables the normal update processing to repopulate

the tables. .

5.1 The Clone Command

From a command line, use the clone command to select the data sets you want to clone. You can

use this command for cloning or recloning. To update the resulting Databridge data tables, you

must use the process command. The process command is generally recommended instead the

clone command, unless you want to deal only with a specific data set without processing updates

at the same time.

The clone command is basically a process command, except that it forces the data sets

specified on the command line to have their ds_mode set to 0 and it treats all data sets not

specified on the command line as if their active column is 0.

To populate the Databridge data tables in the relational database via the clone command, first

make sure that the working directory is set to the directory you created for this data source. This

must be the same directory as the working directory used when you executed a generate

command for this data source; otherwise, the Databridge Client cannot locate the scripts to load

the Databridge data tables.

5.1.1 Cloning Specific Data Sets

Using the clone command follow the exact same procedure described in the section on "Cloning a

DMSII Database". type the following command line:

Value Name Description

33 REORGFAILED The data set needs to be reorganized and the scripts

created by the redefine command for this data set failed

when the reorganize command was run. In this case, you

must manually alter the table or re-clone it.

 dbutility [signon_opts misc_opts] clone source dataset1 [... datasetn]

5.1 The Clone Command

5.1 The Clone Command 127

Where Is

signon_opts For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

PostgreSQL: [-U userid] [-P password] [-O ODBCdatasource]

misc_options See table in the next section titled Clone Command Options.

source The name of the source specified in the DBServer control file or by

Enterprise Server.

5.1.1 Cloning Specific Data Sets

5.1.1 Cloning Specific Data Sets 128

If you need to re-clone the entire database you can use the process command with the -Y option.

When using dbutility you need to add the text "all_datasets" as an argument to the -Y option.

6. Clone Command options

Command-line options related to the clone command are as follows:

Where Is

dataset1

[...

datasetn]

The names of the data sets you want to clone. You must specify at

least one data set name. If you specify more than one data set name,

separate the names with spaces.

Note the following:

The data set names you enter must match the names of the data

sets as they are defined in the DASDL for the DMSII database.

Databridge Client automatically converts them to uppercase for

you. For example, if the data set you want to clone is named ORD-

DETAIL, you must type ORD-DETAIL or ord-detail . You must use

a hyphen (-), not an underscore (_).

The exact data set names are listed in the DATASETS Client control

table.

If a DMSII data set is a relational database reserved word, enter it

normally without quotes or any other delimiter.

The active column of the selected data sets must be set to 1.

Otherwise, an error appears when you specify the data set on the

command line.

•

•

•

•

If for some reason the clone command abends, do not rerun it before you determine whether

or not some of the data sets completed the data extraction phase and are recoverable.

Rerunning the clone command starts the cloning operations from scratch.

Warning

6. Clone Command options

6. Clone Command options 129

Option Description

-c Toggles the defer_fixup_phase configuration file parameter . When you use

this option, the dbutility clone does not enter the fixup phase at the end of

data extraction. Instead of issuing request to the Databridge Server to initiate

the fixup phase, the Databridge Client terminates. The ds_mode values of all

cloned data sets remain set to 1 with all of the necessary stateinfo stored in

the Client control tables (for example, audit_filenum , audit_block , and

host_info). The next process command then picks up where the clone

command left off.

-d Enables default tracing.

-f

filename

Specifies a configuration file other than the default dbridge.cfg file in the

working directory.

-l (SQL Server only) forces the Client to use the bcp utility instead of the BCP

API.

-s Tells the Client not to use the bulk loader.

-t Enables selective tracing.

-x Reverses the meaning of the data set list for the clone command, as follows:

Without the -x option, the Databridge Client clones the data sets listed on the

command line.

With the -x option, the Databridge Client clones all active data sets except

those listed on the command line.

-L Forces the Client to use a new log file for this run.

6. Clone Command options

6. Clone Command options 130

For information on the command-line options, see dbutility Command-Line Options.

6.1 Configuring for Optimal Performance

Several configuration file parameters have a very visible effect on the performance of the

Databridge Client. Databridge Clients operate efficiently with the following default configuration file

parameters:

max_temp_storage (Windows only)

aux_stmts

optimize_updates

This section discusses these parameters and other factors that can make Databridge Client run

more efficiently.

6.1.1 Overlapped Bulk Loader Operations for Windows

The Windows Clients use a separate thread to bulk load tables using SQL*Loader or bcp during the

data extraction phase of data set cloning. The Client creates a set temporary files for the tables

that hold the data for the records received from the Databridge Engine. When the total temporary

file size reaches half of the value specified by the parameter max_temp_storage , all the tables that

have temporary files get placed on the bcp thread's work queue. The bcp thread processes the list

of tables and does the loads sequentially. While this is happening the Client creates a new set of

temporary files for tables that that get additional records and continue processing DMSII data until

the total temporary file size reaches the above mentioned threshold. If the bcp thread is done

loading the table involved, processing continues. However, if the bcp is not finished loading the

data for the table Client stops processing DMSII data until it is signalled that the loading of the

table completed.

Option Description

-T Forces the Client to use a new trace file for this run, if tracing is enabled.

• •

• •

• •

The SQL Server Client uses the bcp utility by default in this version, as using the BCP API did not

prove to be very reliable.

Note

6.1 Configuring for Optimal Performance

6.1 Configuring for Optimal Performance 131

Starting with the 6.6 Client multi-threaded updates were extended to also include extracts, which

improves performance as the load is distributed among the update threads. This leads to better

resource utilization, as multiple CPUs are working concurrently on processing the data for the

records that are received from the Databridge Engine.

Adjust the max_temp_storage value to determine what works best for your site. Setting this

parameter too high tends to reduce the benefits of using multiple threads to launch bulk loader

operations. Conversely, setting this parameter too low tends to increase overhead, particularly

when the record sizes are large, by firing off too many bulk loader operations. A value in the range

400M (default) and 1G seems to work best.

For details about max_temp_storage parameter, see [Bulk_Loader].

Using the BCP API eliminates the use of temporary files and allows for overlapped data extraction

operations. Combined with optimized Client code for data extraction, clone speeds are much faster

than before (especially in cases where the bottleneck is the CPU). The benefits of this mode of

operation are much more dramatic when using a system with multiple CPUs.

6.1.2 Overlapped Index Creation

The Databridge Clients use a separate thread to execute the index creation scripts for tables after

the data extraction for the table is completed. This allows lengthy index creation operations to be

overlapped with the bulk loading of tables and has a noticeable impact on speeding up the data

extraction process when many data sets are involved.

6.1.3 Optimizing State Information Passing

Configuration file parameters for increasing bulk loader speed are listed with the related bulk

loader utility in the sections Oracle SQL*Loader Bulk Loader and Microsoft SQL Server BCP API

and bcp utility. See a complete list in Appendix C's section on [Bulk_Loader]

Note

Do not set this parameter to 0, or the program will bulk load tables in one step, use a huge

amount of temporary storage, and eliminate all overlapped processing.

Caution

6.1.2 Overlapped Index Creation

6.1.2 Overlapped Index Creation 132

The Databridge Client optimizes the process of updating the stateinfo in the DATASETS Client

control table, which is identical for all data sets that are in update tracking mode (ds_mode=2).

Instead of updating every data set each time the stateinfo is updated by Databridge Engine prior to

a COMMIT, it stores the common information in a dummy data set in the DATASETS table named

Global_DataSet . When the Databridge Client is finished processing updates, the stateinfo in the

Global_DataSet entry in the DATASETS Client control table is copied to all data sets that need to

be updated with the stateinfo. The Global_DataSet row is stored in the DATASETS Client control

table along with the in_sync column that keeps track of stateinfo synchronization between

updated data sets and the Global_DataSet . This significantly reduces the number of SQL update

statements for the DATASETS Client control table when you have a large number of data sets.

To keep the DATASETS table current, particularly when READ ACTIVE AUDIT is set to TRUE in the

Databridge Engine Control File, the Databridge Client copies the stateinfo in the Global_DataSet

entry to all data sets whose in_sync column is 1 after an audit file switch.

When the Client is restarted after it abends, it detects the fact that the data sets are out of sync.

The Client corrects this situation by copying the global stateinfo to all data sets whose in_sync

column is 1 and setting all of the in_sync columns to 0.

6.1.4 Multiple Statements and Pre-parsed SQL Statements

The aux_stmts parameter applies only to the Databridge Client during update processing (not

cloning).

The aux_stmts parameter defines the maximum number of ODBC or OCI auxiliary statements that

can be assigned to SQL statements. Using auxiliary statements allows SQL statements to be

parsed once and executed multiple times, as long as the auxiliary statement is not reassigned to

hold another SQL statement.

In general, higher values for aux_stmts result in faster update processing times at the expense of

more memory usage. If you have the memory to spare, increase this parameter as needed. The

optimum setting for this parameter will depend on the nature of your data. We recommended using

a value of 100 or higher, which allows the SQL statements to be re-executed without having to

reparse them and re-bind their host variables.

For details, see aux_stmts.

6.1.5 Reducing the Number of Updates to Data Tables

6.1.4 Multiple Statements and Pre-parsed SQL Statements

6.1.4 Multiple Statements and Pre-parsed SQL Statements 133

If your most frequently updated data sets have a significant number of items with OCCURS clauses

that are not flattened, you may want to set the DSOPT_Use_bi_ai bit in the ds_options column of

the corresponding DATASETS entries. The configuration file parameter optimize_updates causes

the define command to set this bit for all data sets that have active items with unflattened

OCCURS clauses.

If the ratio of SQL rows to DMSII records is five or more during update processing, setting this

parameter to True will likely improve performance. Note that this increases the TCP/IP and CPU

overhead. If the ratio of SQL rows to DMSII records is low, you won't see any significant reduction in

SQL overhead, which can hinder performance.

For best results, set the DSOPT_Use_bi_ai bit only for data sets that have a high ratio of SQL rows

to DMSII records. For example, a data set that has only one item with an OCCURS 2 TIMES clause

is a poor candidate for the DSOPT_Use_bi_ai bit (SQL rows/DMSII records = 3). Conversely, a data

set that has 3 items with OCCURS 12 TIMES clauses is a good candidate to use the

DSOPT_Use_bi_ai bit (SQL row/DMSII records = 37).

For details, see optimize_updates.

6.1.6 Commit Frequency

The size of transactions in the relational database can have a noticeable impact on performance

during update processing. Large transaction sizes will result in the Client getting locked out during

the commit when it tries to update a table. Conversely small transactions can add overhead by

constantly committing a small number of updates. Some site use very low commit frequency

parameters to get lower lag times during on-line periods (lag time is defined as the elapsed time

between the time when an update is applied to the relational database and the time it was applied

to DMSII). This type of commit frequency might not work well during the processing of audit files

created by batch jobs. To solve this problem we implemented a second set of commit frequency

parameters that are enabled by setting the batch_job_period parameter to define the time period

during which batch jobs run, for example batch_job_period = 22:00, 01:00. This example

specifies that batch period spans from 11:00 pm to 1 am. When the Client detects that the audit

timestamp crosses these boundaries it switches to using the appropriate values for the commit

frequency parameters. On-line periods use the first set of values, while batch period use the second

set of values. You can override these settings from the Administrative Console, however these

settings will be overridden by the configured values at the next period switch.

To set this parameter from the Client Configurator by checking the checkbox "Optimize SQL

updates" in the Customizing > Advanced page of the Client Configuration dialog.

Note

6.1.6 Commit Frequency

6.1.6 Commit Frequency 134

6.1.7 Other Considerations

A few other factors that can significantly affect performance include:

The number of CPUs (at least four are recommended)

The type of CPU

The amount of memory on your Client machine

The type of disks you use. Redundant array of independent disks (RAID) or striped disks are

recommended. During data extraction, do not use the same physical disks for temporary

files and the database files. Ideally, use RAID for the database files and a separate disk for

the Databridge Client files (bulk loader temporary files, scripts files, log files, and so on).

The condition of your database

6.2 Tips for Efficient Cloning

When you first run the define command to populate the Client control tables, you will notice that

most DMSII data sets are set to be cloned. Although you can accept the default data sets and their

items for cloning, note the following:

• •

• •

• •

• •

• •

6.1.7 Other Considerations

6.1.7 Other Considerations 135

Cloning an entire DMSII database can take several hours or more. Most sites do not clone

the entire DMSII database.

The cloning of the DMSII restart data set is automatically disabled. The restart data set is

related to restarting the DMSII database only.

If you clone virtual data sets, do not disable the cloning of the data sets from which the

virtual data set is derived. (Virtual data sets have a value of 17 in the subtype column of

the DATASETS table.) Virtual data sets are created on the host and are explained in the

Databridge Programmer's Reference.

Make sure that you have enough disk space on the relational database server for the DMSII

data. If there is not enough room, the cloning process stops. In addition to the space

required for DMSII data, you must have some additional file space for the temporary files

used by the bulk loader utilities (bcp for Microsoft SQL Server; SQL*Loader for Oracle).

You do not have to clone all of the data sets at one time. One approach is to clone the most

essential data sets and then determine how much space is still available.

If you do not want to clone secondary tables (those tables generated from a data set), you

have two choices. In either case, the primary table is still generated, while the resulting

secondary tables are not.

Set the value of the active column (for that table) in the corresponding DATATABLES

Client control table entry to 0 (script.user_define .primary_tablename).

Set the value of the active column in the corresponding DMS_ITEMS Client control

table entry to 0 for an item with an OCCURS clause

(script.user_layout .primary_tablename).

Flatten the OCCURS in either the primary or the secondary table.

If the active columns for all tables related to a data set are 0, Databridge sets the active

column of the corresponding entry in the DATASETS table to 0.

The cloning of DMSII remaps is automatically disabled because the remaps are just

different views of the base data sets; the Databridge Client assumes that the base data set

will be cloned. We recommend, therefore, that you clone the base data set and then set up a

view in the relational database to achieve the same result as the REMAP.

If you do want to clone a remap of a data set instead of the base data set, you can do so by

changing the values of the active columns of the data sets in the DATASETS Client control

table. You can identify remaps by their base structure number (base_strnum). For example,

• •

• •

• •

• •

The bulk loader temporary files should not be on the same disk as the relational database.

Note

• •

• •

• •

• •

• •

• •

• •

6.2 Tips for Efficient Cloning

6.2 Tips for Efficient Cloning 136

if structure numbers (strnum) 11, 121, and 227 are remaps of structure number 10, the base

structure number for structures 11, 121, and 227 is 10.

For data sets that are not remaps, the strnum and base_strnum columns are equal. If you

do not want to clone anything related to a particular data set, set the value of the active

column (for that data set) in the corresponding DATASETS Client control table entry to 0. No

tables (primary or secondary) are generated from this data set.

For more information about REMAPS, see the next section.

6.3 REMAPS

If the base structure of a REMAP is not visible to the Client (due to GenFormat filtering or the use of

a logical DMSII database) the Client will set the active column of the first REMAP to 1, and clone

it in place of the base structure. If the base structure of an embedded data set is not visible to the

Client and it has a REMAP, the Client will set the active column of the REMAP to 1 and use it as

the parent instead.

If you are using the Administrative Console or Client Configurator and you want to change the

active column of a data set that is 0, you should be aware that the data sets view has a filter.

The picture below shows this for the Administrative Console. To access it, click on the Filters

button above the data sets. To see the data sets that have their active column set to 0, you

need to click on Inactive and then on Apply. This causes data sets with their active column

set 0 to be included in the data set view. The items in question will have "Inactive" in their Status

column to indicate that their active columns are 0. You can change the active column by

clicking on the gear icon to the left of the data set and moving the slider labeled Active to the

on position (dark blue).

Note

6.3 REMAPS

6.3 REMAPS 137

6.3 REMAPS

6.3 REMAPS 138

7. Updating the Relational Database

This chapter covers updating the Databridge Client data tables in the relational database with

changes made to the DMSII database. In addition, it explains DMSII reorganizations and how they

update the Databridge Client data tables.

7.1 Updating the Databridge Data Tables

Updating is the process of applying the DMSII database changes to the Databridge data tables in

the relational database by sending only the changes, not all of the data, to the Databridge data

tables.

You can update the Databridge data tables after they have been cloned as long as they meet the

following requirements:

Each Databridge data table you want to update has a unique index. If a table you want to

update does not have a unique index, see Creating Indexes for Tables.

The DMSII database has not been reorganized or rolled back. If the DMSII database has

been reorganized, see DMSII Reorganizations and Rollbacks.

You can update the Databridge Client data tables by running a process command each time you

want the update to occur, or you can schedule a process command to run at fixed times or a fixed

amount of time after the run finishes. How often you update the Databridge tables depends on the

following:

• •

• •

7. Updating the Relational Database

7. Updating the Relational Database 139

How current you want the data to be. For time-critical information, you may want to update

the Databridge data tables several times a day.

How often audit files are available on the host. When an audit file is not available, the

Databridge Engine temporarily stops processing until the audit file is available. The

Databridge Engine can access the active DMSII audit file when the DBEngine control file

parameter READ ACTIVE AUDIT is set to true.

How often closed audit files are available on the host. In some cases, a closed audit file is

not available because it has been copied to tape. In this instance, a host operator must

mount the tape before the closed audit file can be made available to Databridge.

7.2 Performing Updates Without Using Stored Procedures

Version 6.6 of the Databridge software introduced a new way of updating tables that does not use

stored procedures and is more efficient. This feature can be controlled globally by setting the

configuration parameter use_stored_procs to False, see use_stored_procs.

This parameter makes the process and clone commands generate the actual SQL command

instead of using a stored procedure call to perform an update. The Client still uses host variables,

as was the case with stored procedures calls. Executing the SQL directly eliminates some overhead

and makes processing the update faster. You can also control this on a data set by data set basis

as described in use_stored_procs.

• •

If you do not update the relational database often, it might be more effective for you to re-

clone the DMSII data sets rather than update them. For example, if you are interested in

weekend information only, and several audit files have been closed (and possibly moved to

tape) during that time, recloning may be faster than updating.

Note

• •

• •

Setting configuration parameter use_stored_procs to False, does not have any effect, unless

you run a redefine command with -R option (redefine all) to propagate this setting to the

ds_options columns of the data sets. The redefine command with return an exit code of

2033 (Reorg command required). You need run the reorganize command to complete task.

This command will generate new scripts for the tables and refresh all the data sets, which

results in the dropping of all the stored procedures, which will no longer be used. If you revert to

using stored procedures, the procedure is the same, in this case the reorganize command will

recreate the stored procedures.

Note

7.2 Performing Updates Without Using Stored Procedures

7.2 Performing Updates Without Using Stored Procedures 140

7.3 Scheduling Updates

The dbutility process command has a built-in scheduling mechanism that allows the run to

hibernate and resume at the next scheduled time. When the Databridge Server sends the Client an

end-of-audit-reached status, dbutility normally terminates. However, if you enable scheduling, the

Databridge Client disconnects from the server and the database and hibernates until the next

scheduled process command, when it reconnects to the server and the database. This scheduling

mechanism only works after you run dbutility for the initial clone of the DMSII database. If the

Client crashes or the power fails, scheduling will fail. Service-based scheduling has none of these

shortcomings, as the scheduling task is taken over by the Client Manager service.

If you use the Client Manager service, it takes over this functionality. When a DBClient run

terminates, the service determines when the next process command should be run and starts it

when that time arrives. The advantage of service-based scheduling is that it is immune from

system failures, as the service automatically gets restarted when the system is rebooted. For

details about service-based scheduling, see the Databridge Client Console Help.

To schedule updates

7.3 Scheduling Updates

7.3 Scheduling Updates 141

Uncomment the scheduling parameters in the Databridge Client configuration file. Scheduling

parameters are listed under the [Scheduling] header in the configuration file.

Select one of the following scheduling methods:

Daily scheduling

Fixed-delay scheduling

Enter appropriate values for the following scheduling parameters, depending on whether you

are using daily scheduling or fixed-delay scheduling. Each parameter is explained in

[Scheduling].

As long as the process command completes successfully, dbutility becomes inactive (sleep)

until the next scheduled time. If the scheduled dbutility process command is successful, the

following message appears:

Scheduling of updates will continue until any of the following occurs:

You reboot the Databridge Client machine or end the Databridge Client session

You enter a SCHED OFF console command when dbutility is processing updates

A DMSII reorganization (other than a garbage collection)

7.3.1 Scheduling Examples

Daily Schedule Example

1. 1.

2. 2.

• •

• •

3. 3.

[Scheduling]
;
;dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 3600
;sched_retry_secs = 3600
;blackout_period = 00:00, 02:00

3.

Next update for DataSource datasourcename will run at hh:mm (delay = nn secs)

3.

• •

• •

• •

If you must stop the dbutility program, we recommend that you use the QUIT command

to exit at the next quiet point. If the Client is waiting for the server to send it updates

when none are available and the use_dbwait configuration file parameter is set to True,

you can use the QUIT NOW command, which resets the connection to the server and

terminates the Client run. If needed, you can also press Ctrl+C to terminate a session

while dbutility is processing updates; however, we do not recommend this approach.

Note

7.3.1 Scheduling Examples

7.3.1 Scheduling Examples 142

The following example uses the daily scheduling method. In this example, the Databridge Client

runs only twice a day -- once midway through the business day and once at the end of the business

day. If the process command fails, the Databridge Client waits 10 minutes before retrying.

Fixed-Delay Example

The following example uses the fixed-delay scheduling method. In this example, the Databridge

Client runs the process command 4 hours (240 minutes) after the run finishes. If the process

command fails, the Databridge Client retries every 30 minutes.

7.4 Scheduling Blackout Periods

You can schedule blackout periods during which the Client suspends all processing and updates to

allow for routine maintenance. To use this feature with the service-controlled Client, you can set the

Blackout Period value from the Client Console by clicking on the Configure item in the data source

Settings menu.

7.5 Unscheduled Updating

Use this procedure when you want to run dbutility process independent of scheduling.

Make sure that the Databridge Server is running. If it is not, the Databridge Client will try to

connect to the server and eventually time out.

Make sure that your signon parameters are set appropriately.

If the [EbcdictoAscii] section of the configuration file (to customize character translation)

has changed since the initial clone, your data may not be consistent. You might need to re-

clone.

Make sure that the current directory is the one you created for this data source. This

ensures that Databridge Client can locate the scripts. (Scripts are only required during an

update if there's a purged data set.)

Enter the following:

dbutility [signon_options misc_options] process datasource

[scheduling]
daily = 12:00, 17:00 ; run the process at noon and 5PM
sched_retry_secs = 600 ; retry in 10 minutes after a failure

[scheduling]
sched_delays_secs = 14400
sched_retry_secs = 1800

• •

• •

• •

• •

• •

7.4 Scheduling Blackout Periods

7.4 Scheduling Blackout Periods 143

When you run a process command to update the Databridge tables in the relational database, the

following occurs:

All modified records are overwritten with their new values. If the target record is not found in

the table, the Databridge Client adds the record to the table instead.

All deleted records are deleted.

All added records are inserted into to the data tables. If the target record is already in the

table, the Databridge Client modifies the record in the table instead.

8. Process Command Options

Command-line options related to the process command are as follows:

Option Description

signon_options For each Databridge Client type, the following command-line options

specify the relational database signon parameters:

Oracle: [-U userid] [-P password] [-D database]

SQL Server: [-U userid] [-P password] [-W] [-O ODBCdatasource]

PostgreSQL: [-U userid] [-P password] [-O ODBCdatasource]

misc_options See table in the next section titled "Process Command Options".

datasource The name of the data source specified in the DBServer control file or

by Enterprise Server.

• •

• •

• •

Option Description

-d Enables default tracing.

-f

filename

Specifies a configuration file other than the default dbridge.cfg file in the

working directory.

-t Enables selective tracing.

-w Toggles the use_dbwait parameter in dbridge.cfg

-K Inhibits the audit file removal WFL from being run on the host.

-L Forces the Client to use a new log file for this run.

8. Process Command Options

8. Process Command Options 144

For information on the command-line options, see dbutility Command-Line Options.

8.1 Anomalies That Can Occur In Updates

When the Databridge Client updates the relational database, the following anomalies can occur:

Option Description

-T Forces the Client to use a new trace file for this run, if tracing is enabled.

Last quiet point in

an audit file

When processing an update transaction group since the last quiet

point, Databridge Engine does the following when it reaches the end

of the last available audit file:

Aborts the current transaction group so that the updates are

rolled back. These are not duplicate updates, but updates that

could not be committed. These updates will be reapplied the

next time you run a process command.

Sends the Databridge Client a status indicating that the

transaction group was rolled back. Upon receiving this status,

the Databridge Client does not display any messages.

•

•

8.1 Anomalies That Can Occur In Updates

8.1 Anomalies That Can Occur In Updates 145

Host application

rolls back

changes

(This is a partial

DMSII rollback,

not to be

confused with a

total DMSII

rollback.)

If a host application encounters an error condition while updating

the DMSII database, it rolls back all of the changes it made. In this

case, Databridge Engine aborts the updates when it finds the

aborted transaction indication in the audit file. Databridge Engine

handles the situation in one of two ways based on the setting of the

DBEngine control file parameter CONVERT REVERSALS TO

UPDATES:

If CONVERT REVERSALS TO UPDATES is FALSE (the default

setting), Databridge Engine sends an abort transaction status to

the Databridge Client and then reprocesses the transaction

group, excluding any updates by the program(s) that rolled back

its updates. In this case, none of the updates in the aborted

transaction are applied to the data tables.

If CONVERT REVERSALS TO UPDATES is TRUE, Databridge Engine

will continue to process the audit file, converting the items

marked as reversals to normal updates, in a manner similar to

the method employed by DMSII. (DMSII aborts transactions by

reversing the updates previously done. Thus a CREATE will be

reversed to a DELETE, a DELETE reversed to CREATE, MODIFY

to a MODIFY using the Before Image). All updates, including

those that were aborted and their reversals, are applied to the

data tables.

1.

2.

8.1 Anomalies That Can Occur In Updates

8.1 Anomalies That Can Occur In Updates 146

9. DMSII Reorganization and Rollbacks

This section lists changes that can occur to the DMSII database, how those changes affect the

Databridge Client control and data tables, and how to handle them on the Client database. For

instructions on handling a DMSII reorganization on the host, see Prepare for a DMSII

Reorganization in Chapter 10 of the Databridge Host Administrator's Guide.

9.1 Initializations

A DMSII initialization occurs when a DMSII data set is purged of its records. When a data set is

initialized, Databridge Engine sends the Databridge Client a stateinfo record with a mode value of 4.

The Databridge Client performs the actions described below after displaying the following

message:

The Client drops all of the tables belonging to this data set and re-creates them, effectively purging

the tables of all records. When Databridge Engine is done sending stateinfo records, it sends a

status of DBM_PURGE(21), causing the Client to display the following message:

The normal update processing will repopulate them.

9.2 Reorganizations

Although there are three types of DMSII database reorganizations (record format conversion, file

format conversions, and garbage collection reorganizations), the types of reorganizations are not

as important as whether the reorganization changes record layouts or record locations, as follows:

DataSet name[/rectype] has been purged

DataSets purged by Databridge Engine

An initialization does not change the data set format level in the DMSII database.

Note

9. DMSII Reorganization and Rollbacks

9. DMSII Reorganization and Rollbacks 147

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

DMSII record format conversions change record layouts. When a data set is affected by a

record format conversion, parallel changes must be applied to the Client database. See

Managing DMSII Changes to Record Layout.

DMSII file format conversions and garbage collection reorganizations change record

locations. Only certain data sets require recloning in this case. See DMSII Changes to

Record Locations.

9.2.1 Managing DMSII Changes to Record Layout

Use this procedure if a DMSII reorganization changes the layout of records. DMSII record layouts

are changed in the following circumstances:

Record format conversion (also called structural reorganization in this section)

Filler substitutions

When Databridge Engine notifies the Databridge Client that the layout of records have changed, the

Databridge Client returns a message for each reorganized data set and then prompts you to run a

redefine command followed by a reorganize command. It then returns an exit_status value

of 2 (DMSII reorganization). The redefine command can determine whether the layout for the

data tables have been affected by the DMSII layout change and if the affected data sets need to be

re-cloned. (For more information about the redefine command does, see About the redefine

Command.)

To run the redefine command

If the DMSII changes are extensive or complex, we recommend that you back up the relational

database before proceeding.

If you use the Administrative Console's Customize command to customize the table layouts,

skip steps 3 through 5 and run the Customize command instead. It will perform the same

• •

• •

Filler substitutions are handled the same as a record format reorganization. In a filler

substitution, there is a change to the item count column in record for the data set in the

DATASETS table.

Note

• •

• •

1. 1.

2. 2.

9.2.1 Managing DMSII Changes to Record Layout

9.2.1 Managing DMSII Changes to Record Layout 148

actions as the redefine command, but will also allow you to make customizations for the

data sets affected by the reorganization.

Modify user scripts as required by the DMSII layout changes.

Run the redefine command as follows:

If the redefine command results in errors because the user scripts were improperly updated,

run a reload command using the unload file automatically created by the redefine command.

This file is named "datasource.reorg_nnn.cct", where datasource is the data source name (in

uppercase) and nnn is the old update level of the database. This restores the control tables to

the state they were in before the redefine command was run. See The Reload Command.

Correct the user scripts and rerun the redefine command until no errors result.

Examine the reorg scripts created by the redefine command (or the Customize command)

to make sure they are reasonable before proceeding any further. These scripts are created in

the working directory and have names of the form "script.reorg_nnn.tablename", where nnn is

the old update level of the DMSII database. If you see SQL statements that are likely to take a

very long time to execute consider restoring the control tables and setting the

use_internal_clone option or the corresponding ds_options bit for the data set. This will

use a "select into" (CTAS in Oracle) to copy the old table (that is first renamed) to recreate the

table with the needed changes while preserving the original data. The major time consuming

operations are setting the initial values for added columns and ALTER commands that change

the data type of columns.

3. 3.

4. 4.

dbutility redefine datasource

If any changes caused by the reorganization are not supported, the redefine command

does not create the reorganization scripts. Instead, it sets the ds_mode column of the

corresponding data set to 0, which forces the data set to be re-cloned. If the changes caused

by the reorganization are allowed, the redefine command sets ds_mode to 31.

Important

5. 5.

6. 6.

9.2.1 Managing DMSII Changes to Record Layout

9.2.1 Managing DMSII Changes to Record Layout 149

Doing this for a table with several million records can take a long time. The internal clone

operate at bulk loader speed and is subject to the same rules as the bulk loader.

(This step automatically executes a generate command.) Run the reorganize command as

follows:

The reorganize command does the following:

It generates new Client scripts for all data tables whose layouts have changed by running

the same code that a generate command would.

For each data set affected by the reorganization, it runs the scripts created by the

redefine command to reorganize the tables associated with the data set. If these scripts

run successfully, it restores ds_mode to its value before the reorganization. Conversely if

the script fails, it sets ds_mode to 33 for the data set in question to indicate that the

attempt to reorganize the table has failed, and it stops prematurely.

If the command completes successfully, proceed to step 8. Otherwise, determine why the

command failed and decide what to about it.

Your options include:

Give up and re-clone the data set that could not be reorganized by setting its ds_mode

to 0. Rerun the reorganize when you do this, as the command stops when it

encounters an error. Restarting it after taking care of the problem data set will

complete the task for any data set that still have a ds_mode of 31. If you try to run a

process command while some data sets still have their ds_mode columns set to 31,

this will result in an error telling you that you need to run a reorganize command.

Correct the script that failed, set its mode back to 31, and rerun the reorganize

command.

If you are proficient in SQL, you can reorganize the table using external means to the

Client to perform the action that the reorg scripts were attempting to do. If you

succeed you can then set ds_mode back to its original value (which will most likely be

2). You also will need to run a refresh command for the problem data set to replace

the old stored procedures which are out-of-date.

The reorganize command is restartable after a failure. The data sets that were already

processed successfully will not be affected by rerunning the command, and the data set

that caused the command to fail will be skipped unless its ds_mode column is set to 31.

Run a process command to resume change tracking:

7. 7.

dbutility reorganize datasource

7.

• •

• •

• •

• •

• •

8. 8.

dbutility process datasource

9.2.1 Managing DMSII Changes to Record Layout

9.2.1 Managing DMSII Changes to Record Layout 150

About the redefine Command

You will be prompted to run the redefine command when a data set is reorganized or when the

Support Library is recompiled. (A Support Library recompile indicates that either the layout has

changed, such as changes to ALTER or FILTER, or the SUPPORT option in the SOURCE declaration

changed.)

In all of the aforementioned cases, Databridge Engine treats the situation like a reorganization and

requires that you run a redefine command.

When you run the redefine command, it does the following:

Creates a backup of the Client control tables for the data source by silently performing an

unload command. The unload file is created in the data source's working directory when

the Client first detects the reorganization. The unload file is named "datasourcereorgnnn.cct"

where nnn is the value of the update level prior to running the redefine command (and is

saved to the old_update_level column of the DATASOURCES entry).

Re-creates the relational database layout for all data sets that are marked as needing to be

redefined.

Runs user scripts (if you use them) to preserve changes to the Client control tables. If you

are using the Administrative Console's Customize command, all changes are restored from

the old controls tables.

Determines which data sets have tables whose layouts have changed, updates the ds_mode

column in DATASETS accordingly, and creates reorganization scripts that will alter the

relational database tables to match the changes in the reorganized DMSII data sets.

Reorganized Data Sets

When a data set has been reorganized (status_bits = 8), the redefine command compares the

layouts of tables mapped from the data set in the existing Client control tables with the new

layouts and does the following:

• •

• •

• •

• •

9.2.1 Managing DMSII Changes to Record Layout

9.2.1 Managing DMSII Changes to Record Layout 151

If no changes occur to the layouts of tables mapped from the data set, the redefine

command sets the data set ds_mode column its value before the reorganization (1 or 2),

indicating that the data set is ready to be updated.

For tables for which the layout has changed, the redefine command creates

reorganization scripts that will modify the relational database tables to match the changes

in the reorganized DMSII data sets.

If the DMSII reorganization introduces one or more new columns, one of the following

occurs based on the value of the parameter suprress_new_columns .

If the reorganization introduces one or more new data sets, one of the following occurs

base on the value of the parameter suppress_new_datasets .

For any reorganized data set whose active column is 0, the redefine command updates

the corresponding Client control table entries, leaving the active column set to 0. This

ensures that if you later decide to clone that data set, you only need to set the active

column to 1 and execute a redefine and a generate command.

• •

• •

• •

Is Result

True The active column is set to 0 for new items in the DATAITEMS Client

control table and for new tables in the DATATABLES Client control table.

The next process command does not re-clone the data set.

False The new columns are added to the tables in the Client database. These

columns will be set to the appropriate values based on their

INITIALVALUE defined in the DASDL.

The next process command will continue to populate the table including

the new column. If new tables appear, the data set will be re-cloned.

• •

Is Result

True Databridge Client sets the active column in the corresponding entry in

the DATASETS Client control table to 0, and the data set is not mapped.

False Databridge Client sets the active column in the corresponding entry in

the DATASETS Client control table to 1 (unless the data set is a REMAP),

and the layout of the corresponding relational database tables is defined in

the DATATABLES and DATAITEMS Client control tables.

You must run a reorganize or generate command to create the scripts

for these new tables. These data sets are automatically cloned the next

time you run a process command.

• •

9.2.1 Managing DMSII Changes to Record Layout

9.2.1 Managing DMSII Changes to Record Layout 152

9.2.2 Performing Reorganizations Using an Internal Clone

Version 6.6 of the Databridge software introduced a new way of reorganizing tables that does not

use alter commands. In some cases, the process of reorganizing a table by using alter

command can be very expensive. For example, if you try to change a column that is an int to a

dec(10) when using SQL Server, the alter command will cause every single change to be logged,

which can have rather disastrous effects if the table is large. If you run out space for the log, the

alter command abends, leading to a massive rollback.

The use_internal_clone parameter allows you to select the default method of doing

reorganizations. See use_internal_clone for more information. You can then override it (on a data

set by data set basis) by using the Client Configurator to change the setting of the ds_options bit

DSOPT_Internal_Clone (see DSOPT_Internal_Clone in the section DATASETS Client Control Table

for a description of this bit).

The internal clone is comparable (in terms of speed) to using the bulk loader to copy the data from

the old table to the new table. In the case of SQL Server, to make it run fast you must make sure

that database's recovery model is not set to "Full", as was the case of for the bulk loader

(temporarily change the database model to ""Simple" or "Bulk-logged" when you run an internal

clone).

9.2.3 DMSII Changes to Record Locations

DMSII record locations are changed in the following circumstances:

Garbage collections reorganizations

File format conversions

Record format conversions

Garbage collection and file format conversion reorganizations only affect data sets that use AA

Values as keys. Therefore, unless the data sets using AA Values as keys are small and garbage

collection reorganizations at your site are infrequent, we recommend that you use RSNs. (If you're

unable to use RSNs, composite keys are a viable alternative to AA Values. However, they are error

prone and can result in false duplicate records.)

When a data set is affected by a garbage collection reorganization or a file format conversion, the

Databridge Client sets the ds_mode column to 12 in the DATASETS Client control table and

displays the message:

WARNING: DMSII reorganization has occurred; AA Values for DataSet name [/rectype] are

no longer valid

• •

• •

• •

9.2.2 Performing Reorganizations Using an Internal Clone

9.2.2 Performing Reorganizations Using an Internal Clone 153

When a record format conversion affects a data set that uses AA Values, the redefine command

forces that data set to be re-cloned, even if the tables derived from the data set are not affected by

the reorganization.

9.3 DMSII Reorganization When Using Merged Tables

The merged tables feature combined with multi-source databases allows a user to store data from

multiple separate DMSII databases into a single relational database. The requirement is that all the

DMSII databases have the same DASDL and always be kept in sync, as far as reorganizations are

concerned. This section documents how to go about handling such reorganizations. Everything we

said about the single data source case still applies here. The first thing you need to do is to let the

Clients catch up with all the updates until it gets to the point in the audit trail where the

reorganization occurred. Make sure that you let all the Clients catch up before doing anything else.

Once all the data sources are caught up, you will need to run redefine commands for all of the

data sources. Once this is completed you will then need to run a reorganize command for one of

the data sources. Do not do this for more than one data source, as there is only one set of tables in

the relational database and if any of the scripts alter a table running the scripts a second time will

usually result in SQL errors, as the ALTER commands will most likely not be valid. For example if

the ALTER command adds a column, an attempt to add it again will fail. We added the -n option to

the reorganize command to make it work for the second and any subsequent data sources in a

multi-source environment. This allows you to get all the data sources ready for processing updates

by generating scripts for reorganized data sets and refreshing the stored procedures for the tables

associated with such data sets. Finally the command updates the ds_mode column in DATASETS,

restoring it to the value it had before the redefine command was run. This command appears near

the bottom of the Advanced menu for the data source in the Administrative Console's Customize

command. If the reorganization requires that a data set be re-cloned, you should add the -k option

to the first process or clone command you use so the table gets dropped. In the absence of the -k

option, the Client will run the cleanup script, which removes all the records associated with the

current data source. The alternative is to manually drop the table for the first data source. Once the

tables to be re-cloned have been dropped, the remaining data sources can operate normally.

9.4 Rollbacks

A DMSII "rollback" restores the DMSII database to an earlier point in time in order to correct a

problem. While the DMSII database is being restored, replication stops. The Client must then be

restarted for replication to resume.

9.3 DMSII Reorganization When Using Merged Tables

9.3 DMSII Reorganization When Using Merged Tables 154

If the Client has processed updates after the DMSII restore point, this replicated data will be wrong.

Upon finding bad information in the stateinfo, the Databridge Engine typically returns a message

stating that a rollback has occurred. To resolve this problem, the relational database must also be

rolled back (to the DMSII restore point or earlier).

If the Client hasn't processed updates after the DMSII restore point, no action is required. This can

often be the case as the Client tends to lag behind the DMSII database by several audit files during

the processing of audit files generated by batch jobs.

9.4.1 Recovering from DMSII Rollbacks

You'll need to recover the relational database after a DMSII rollback In situations where the Client

database is caught up with the DMSII database (that is, there is no lag time between the two).

There are two preferred ways to do this:

Programmatic

rollback

Undoes all transactions that occurred after the specified rollback

point (typically a time prior to the DMSII restore point). This is only

possible if the relational database is audited, which is rarely the case.

9.4.1 Recovering from DMSII Rollbacks

9.4.1 Recovering from DMSII Rollbacks 155

Recloning the database is usually very time-consuming and is only recommended as a last resort

or in cases where the relational database contains little data or if the required audit files are not

available. For information about recloning, see Recloning.

9.5 Recloning

Reasons for recloning include the following:

DMSII reorganization

DMSII rollback

An update is not possible (for example, because a table does not have a unique key)

One or more of the Databridge data tables in the relational database were removed

You can use either the process or clone command to re-clone data sets. The clone command

lets you specify individual data sets on the command. The process command automatically re-

clones all data sets whose active column is 1 and whose ds_mode column is 0. Both commands

perform fixups, tracking and processing updates as needed (unless the defer_fixup_phase or the

stop_after fixups parameter is set to True). See Recloning Individual Data Sets.

If you're recloning the entire database, the process is more involved. See Recloning a Database.

9.5.1 Recloning Individual Data Sets

Use one of the following procedures to re-clone data sets.

Reload the

database

Entails reloading the database from a backed-up copy. This requires

that all of the audit files—from the point when the relational database

was backed up forward—to be available. If the audit files aren't

available, recloning is the only option.

Using shortcuts to recover a relational database after a DMSII rollback, such as updating the

tables using scripts or resetting the State Info, is not only ineffective but problematic. These

methods leave obsolete updates in the Client database and may cause valid updates to be

skipped after the Databridge Client resumes tracking.

Caution

• •

• •

• •

• •

9.5 Recloning

9.5 Recloning 156

Set the current directory to the one you created for the data source (the directory from which

you ran a generate command for the data source). Make sure that the directory contains the

scripts for this data source.

Set the ds_mode column (in the DATASETS Client control table) to 0 for the data sets you want

to clone by running a SQL command. If you are recloning all data sets, using the " -Y

reclone_all " option eliminates the need to do this, as the Client will update the DATASETS

table automatically when this option is used.

Run the process command with the -y option, as follows:

The -y option forces any data sets whose ds_mode is set to 11 or 12 to be recloned, in

addition to the recloning data sets whose ds_mode is set to 0. After the data extraction

process is complete for the data sets being recloned, Databridge data tables whose active

columns are set to 1 in their corresponding Client control table (and whose ds_mode is set to

2) are updated.

To reclone with a clone command

Set the current directory to the one you created for the data source (the directory from which

you ran a generate command for the data source). Make sure that the directory contains the

scripts for this data source.

Set the parameter defer_fixup_phase to True to suspend audit file processing. If you don't do

this, audit files will be processed twice, once for the data set you clone and once for all of the

other data sets.

Synchronize the tables by running a process command. Synchronization occurs when all data

sets reach the same point in the audit trail.

For clone command syntax, see dbutility Commands.

9.5.2 Recloning a Database

Recloning the relational database can be an efficient means of recovering it if it doesn't contain a

lot of data. Otherwise, it can be time-consuming and costly, as recloning uses host resources.

These reasons alone often make recloning a last resort when no backup is available. (These issues

are one of the reason why we developed Enterprise Server. It makes processes like this one more

efficient.)

We recommend that you use the following procedure instead of setting ds_mode to 0 for all data

sets using a SQL query and running a process command, because it ensures that you have the

latest copy of the DMSII layout.

1. 1.

2. 2.

3. 3.

dbutility process -y datasource

3.

1. 1.

2. 2.

3. 3.

9.5.2 Recloning a Database

9.5.2 Recloning a Database 157

Make sure that you have the latest copy of the DMSII layout.

Run a drop command to drop the data source.

Run a define command.

Run a generate command.

Run a process command.

9.5.3 Adding a Data Set

Use this procedure to add a data set after you clone the DMSII database. You don't need to reclone

the entire database.

To add a data set

Run a relational database query tool and list the contents of the DATASETS Client control table

with the following SQL command:

Set the active column for the data set you want to add to the Databridge data tables to 1

(on), as follows:

Run a redefine command.

Run a generate command to create new scripts that populate the resulting table.

Run one of the following commands to populate the new tables that correspond to the new

data set:

After you complete this procedure, update your data set selection script

(script.user_datasets .datasource) so that you do not lose this change the next time you run a

define command.

• •

• •

• •

• •

• •

1. 1.

select dataset_name, active, data_source from DATASETS

2. 2.

update DATASETS set active=1 where dataset_name='datasetname'

3. 3.

4. 4.

5. 5.

dbutility process datasource

--or--

dbutility clone datasource datasetname

If you run the a process command, the Databridge data tables whose active columns are

set to 1 in their corresponding Client control table are also updated at this time.

Note

9.5.3 Adding a Data Set

9.5.3 Adding a Data Set 158

9.5.4 Dropping a Table

Use this procedure when the Client no longer uses a Databridge data table in the relational

database.

To drop a table from the Administrative Console, see the Databridge Client Console Help.

To drop a table

Update your data set global mapping customization and global data table customization

scripts, depending on whether you are dropping a primary or secondary table, to reflect this

change. See Customizing with User Scripts.

If you are dropping all of the tables derived from a data set, set the active column

corresponding to the data set to 0 (in the DATASETS Client control table) and then run the data

set selection script (script.user_datasets .datasource) using the dbutility redefine

command.

If you are dropping a secondary table, set the active column corresponding to the table to 0

(in the DATATABLES Client control table) and then run the data table customization script

(script.user_define .primary_tablename) for the primary table using the redefine

command.

From a command line, set the current directory to the working directory for the data source,

and then run a script, such as the following (Windows)

9.6 Backing Up and Maintaining Client Control Tables

To help you maintain your Client control tables, Databridge provides three commands that allow

you to backup, restore, and recreate copies of your Client control tables. In this section, each of

these commands is described.

9.6.1 The Unload Command

The unload command creates a text file that contains a record for each of the entries in the

various Client control tables. For best results, run an unload command before running a redefine

command.

1. 1.

2. 2.

3. 3.

4. 4.

dbutility -n runscript dbscripts\script.drop.tablename

9.5.4 Dropping a Table

9.5.4 Dropping a Table 159

Sample Run

9.6.2 The Reload Command

The reload command enables you to restore the Client control tables from a file that was created

using the unload command.

Format The format of the unload command is as follows:

dbutility [options] unload datasource filename

Options The list of options is the same as those for signon_options. Additional

options include -t , -T , and -f .

Data

Source

If a datasource of "_ALL" is specified, the Databridge Client writes all data

sources to the backup file (filename). If a specific data source is specified, the

Databridge Client writes only the entries for that data source to the backup

file.

 15:05:25 dbutility unload demodb demodb.cct
 15:05:25 Databridge Client version 7.0.0.000 [OCI/Oracle]
 15:05:25 (C) 2023 Open Text
 15:05:30 Loading control tables for DEMODB
 15:05:32 Unloading control tables for DEMODB
 15:05:32 Control tables for DataSource DEMODB written to file "demodb.cct"
 15:05:32 Client exit code: 0 – Successful

Format The format of the reload command is as follows:

dbutility [signon options]reload datasource filename [dataset1,

dataset2, ...]

NOTE: Client control table changes made since the tables were unloaded will

be lost. Depending on what has changed, data table record could also be

affected, requiring recloning.

Options The list of options include -t , -T , -f , and -k . The -k option forces

Databridge to keep the stateinfo in the control tables for data sets that are in

normal mode (ds_mode = 2) and that have client_fmt_level and

item_count columns that remain unchanged (there is no reorganization

involved).

9.6.2 The Reload Command

9.6.2 The Reload Command 160

Sample Run

9.6.3 The Refresh Command

The refresh command enables you to drop and recreate all of the stored procedures for the

tables associated with the given data set in the specified data source. It is a variation of the

runscripts command that is designed to run portions of the Databridge Client scripts

(script.drop .tablename and script.create .tablename). This command is useful when you want

to manually handle a data set that would otherwise be recloned after a DMSII reorganization.

Data

Source

If a datasource of "_ALL" is specified, the Databridge Client restores all data

sources contained in the backup file. If a specific data source is specified, the

Databridge Client restores only the entries for that data source from the file. If

this is further qualified by a data set list, the Databridge Client restores only

the entries for the data sets specified. Note that all the data sets specified in

the list must already exist.

 17:16:26 dbutility reload demodb demodb.cct
 17:16:27 Databridge Client version 7.1.0.000 [OCI/Oracle]
 17:16:27 (C) 2023 Open Text
 17:16:35 Reloading Control table entries for DataSource DEMODB from file "demodb.cct"
 17:16:45 Control tables for DataSource DEMODB reloaded from file "demodb.cct"
 17:16:45 Client exit code: 0 – Successful

In case of variable-format data sets, the tables for all the record types that have their active

column set to 1 in the DATASETS Client control table, are refreshed.

Note

Format The format of the refresh command is as follows:

dbutility [options] refresh datasource dataset

9.6.3 The Refresh Command

9.6.3 The Refresh Command 161

Sample Run

In this case, the data set CUSTOMER is mapped to a single table named customer. The refresh

command executes the following SQL statements.

This effectively replaces all of the stored procedures with a fresh copy, while leaving the tables

unchanged. This command is particularly useful when the index of the tables has changed. For

example, if the data set CUSTOMER initially uses AA Values as keys, and a DMSII garbage

collection occurs, you can avoid recloning this data set if it is mapped to a single table by creating

a composite key.

Options The list of options is the same as those for signon_options.

If "_ALL" is specified for dataset, Databridge Client refreshes the stored

procedures for all active tables that correspond to data sets whose active

columns are 1. If a specific data set is specified, the Databridge Client

refreshes only the stored procedures for the tables mapped from that data

set. All tables for the specified dataset must have been created.

 12:39:45 dbutility refresh DEMODB CUSTOMER
 12:39:45 Databridge Client, Version 7.1.0.000 (64-bit) [OCI/Oracle]
 12:39:45 (C) 2023 Open Text
 12:39:45 Loading control tables for DEMODB
 12:39:45 Stored procedures for all tables of DataSet CUSTOMER successfully refreshed
 12:39:45 Client exit code: 0 - Successful

 begin drop_proc('u_customer');end;
 begin drop_proc('i_custmer'); end;
 begin drop_proc('d_customer'); end;
 create procedure u_customer (...) update customer set ... where ... ; end;
 create procedure i_customer (...) insert into customer (...) values (...); end;
 create procedure d_customer (...) delete from customer where ... ; end;

9.6.3 The Refresh Command

9.6.3 The Refresh Command 162

10. Data Mapping

This chapter shows you how the Databridge Client maps DMSII data structures to relational

database structures.

10.1 DMSII and Relational Database Terms

The following table shows the equivalent terms for DMSII structures and relational database

structures:

10.2 DMSII and Relational Database Data Types

The Databridge Engine retrieves the requested DMSII data, and DBServer passes the data to the

Databridge Client, where it is assigned to standard relational database data types.

The following table lists equivalent data types for DMSII, Microsoft SQL Server, and Oracle.

DMSII Relational

Data set Table

DMS item (data

item)

Column

Record Row (record)

Set Index

NOTE: A relational database index is a set of column names that is

used to efficiently access a row (of a table).

Key Key

DMSII SQL

Server

Oracle

ALPHA (<= char_limit bytes) CHAR * CHAR +

ALPHA (>char_limit bytes) TEXT VARCHAR2

10. Data Mapping

10. Data Mapping 163

DMSII SQL

Server

Oracle

ALPHA (>varchar2_limit_bytes) TEXT CLOB

BOOLEAN BIT NUMBER(1)

FIELD:

FIELD(n) where n is < 16

FIELD(n) where n is < 32

FIELD(n) where n >= 32

SMALLINT

INT

BIGINT ‡

NUMBER(5)

NUMBER(10)

NUMBER(10–

15)

NUMERIC:

NUMBER(n) where n is a DMSII declared length <= 2

NUMBER(n) where n is a DMSII declared length <= 4

NUMBER(n) where n is a DMSII declared length <= 9

NUMBER(n) where n is a DMSII declared length <= 15

NUMBER(n) where n is a DMSII declared length >15

NUMBER(n,m) where n is a DMSII declared length and

m is the number of places after the decimal point.

TINYINT §

SMALLINT

INT

BIGINT ‡
DEC(n)

DEC(n,m)

NUMBER(n)

NUMBER(n)

NUMBER(n)

NUMBER(n)

NUMBER(n)

NUMBER(n,m)

10.2 DMSII and Relational Database Data Types

10.2 DMSII and Relational Database Data Types 164

* VARCHAR if the configuration parameter use_varchar is set to True.

† VARCHAR2 if the configuration parameter use_varchar is set to True.

‡ If the configuration parameter use_bigint is set to False, DEC(n) will be used instead.

§ Note that if the number is signed, SMALLINT is used instead. TINYINT is an unsigned quantity in

SQL Server.

10.2.1 Databridge Data Types

IMAGE is a Databridge type that allows you to store an ALPHA item as binary by using the

REDEFINE clause of the ALTER command in GenFormat on the host.

When the Databridge Client encounters an item of type IMAGE, it automatically sets the

ds_options DIOPT_Clone_as_Binary bit in the DMS_ITEMS Client control table.

10.3 Supported DMSII Structures

This section lists DMSII structures that are supported by the Databridge Client. If you are the

relational database administrator and have no experience with DMSII databases, this section will

be more useful to you if you are working with a DMSII database administrator.

In addition to fixed-format data sets and variable-format data sets, the Databridge Client supports

the following DMSII structures:

DMSII SQL

Server

Oracle

REAL:

REAL(n) where n is a DMSII declared length <= 2

REAL(n) where n is a DMSII declared length <= 4

REAL(n) where n is a DMSII declared length <= 9

REAL(n) where n is a DMSII declared length > 9

REAL(n,m) where n is the DMSII declared length and

m is the number of places after the decimal point.

REAL, with no precision or scale

TINYINT §

SMALLINT

INT

DEC

DEC(n,m)

FLOAT

NUMBER(n)

NUMBER(n)

NUMBER(n)

NUMBER(n)

NUMBER(n,m)

FLOAT

10.2.1 Databridge Data Types

10.2.1 Databridge Data Types 165

Embedded data sets (see exceptions in the following section)

Remaps

Logical database

GROUP

FIELD items for GROUPs of BOOLEANS

OCCURS

GROUP OCCURS

Data sets with more items than the maximum number of columns supported by the

relational database

Data sets that generate relational tables whose record sizes exceed the Microsoft SQL

Server maximum record size.

DMSII links in DIRECT, UNORDERED, and STANDARD data sets. (Links in variable-format

data sets are cloned but not tracked.)

Some of these structures may not be supported by your relational database. The DMSII structures

that are not supported by relational databases are mapped into a form that the relational database

can use. Each of these structures and the way they are mapped in the relational database are

explained in the remainder of this chapter.

10.4 Unsupported DMSII Structures

When the Databridge host replication software does not support a particular DMSII structure, the

Databridge Client may or may not issue a warning message, depending on the DMSII structure. For

example, a message is generated when the data set has no keys.

The Databridge Client does not support the following DMSII structures:

Embedded data sets within an ORDERED or COMPACT data set

Embedded data sets if the INDEPENDENTTRANS option is reset

POPULATION items

COUNT data items

FILLER data items

AGGREGATE data items

10.4.1 Embedded Data Sets

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

• •

10.4 Unsupported DMSII Structures

10.4 Unsupported DMSII Structures 166

An embedded data set is a DMSII representation of a hierarchical relationship or tree structure.

When a DMSII data set contains another data set as an item, that data set is called an embedded

data set. The data set in which it is declared is called the parent of the embedded structure. You

can think of the embedded data set as the "child" of the "parent" data set.

To represent this parent-child relationship in a relational database, the Databridge Client uses a

foreign key that points to the parent data set. This foreign key is represented by the value in the

parent_aa column in the table that corresponds to the embedded data set. The parent_aa

column holds the parent record's key.

DMSII DASDL Showing an Embedded Data Set

The following is an excerpt from a DMSII DASDL that shows how an embedded data set is defined.

Resulting Tables

The following examples are for Microsoft SQL Server.

Ignoring any set definition, the resulting relational database tables are as follows:

Genealogy (the parent data set is cloned to its own primary table)

Child (the embedded data set is cloned to its own secondary table with a pointer to its

parent table)

Parent Table: genealogy (table name). Where the my_aa column is a unique key for the record

derived from the DMSII AA Value of this record.

Child Table: child (table name)

 GENEALOGY DATA SET
 (
 PARENT-FAT-NAME ALPHA (30);
 PARENT-MOT-NAME ALPHA (30);
 PARENT-MOT-MAIDEN ALPHA (30);
 PARENT-FAT-BDATE NUMBER (06);
 PARENT-MOT-BDATE NUMBER (06);
 FILLER SIZE (06);
 %
 CHILD DATA SET;
 (
 CHILD-NAME ALPHA (30);
 CHILD-STATUS ALPHA (11);
 CHILD-BDATE NUMBER (06);
 CHILD-GENDER FIELD
 (
 CHILD-MALE BOOLEAN;
 CHILD-FEMALE BOOLEAN;
);
 CHILD-FILLER FIELD (01);
 %
);
);

• •

• •

 (
 my_aa char(12),
 parent_fat_name char(30),
 parent_mot_name char(30),
 parent_mot_maiden char(30),
 parent_fat_bdate int,
 parent_mot_bdate int
)

10.4.1 Embedded Data Sets

10.4.1 Embedded Data Sets 167

10.4.2 Selecting Embedded Data Sets for Cloning

When you run a clone command, by default, the Databridge Client selects embedded data sets

along with the parent structures. If you have altered the values for the active column in the

Databridge Client control tables, however, check the values for the embedded data set and its

parent data set.

10.4.3 Record Serial Numbers

A record serial number (RSN) is a unique number (48-bits long) that is associated with a record in a

data set. The RSN is guaranteed to be unique, and it stays with a record for the life of the record.

Updates do not affect the RSN; therefore, RSNs are ideal keys for Databridge tables. However,

RSNs are available only when using DMSII XE.

DMSII XE adds the RSN to every record of a data set that has the EXTENDED attribute set. As long

as the EXTENDED attribute is set, Databridge can access the RSN, unlike application programs that

can access the RSN only if it has been explicitly declared in the DASDL source. The Databridge

Engine is designed to use RSNs instead of AA Values whenever possible. Regardless of whether

RSNs are present, AA Values are used for data sets that contain embedded data sets or DMSII

links.

Since RSNs and AA Values are the same length, they are interchangeable, unless the data sets are

embedded data sets or contain DMSII links. If the Databridge Engine is not handling either of these

types of data sets and an RSN is present, Databridge Engine uses the RSN rather than the AA

Value. In this case, the resulting column of the DATAITEMS Client control table is named my_rsn

instead of my_aa to differentiate it from an AA Value. In both cases, the set_name column of the

DATASETS Client control table will have a value of "aa_set".

(
 my_aa char(12), - child table's key
 parent_aa char(12), - foreign key of parent table
 child_name char(30),
 child_status char(11),
 child_bdate int,
 child_male bit,
 child_female bit,
 child_filler smallint
)

If you want to clone an embedded data set, you must also clone the parent structure. Failure to

do this results in the following error message from the Databridge Engine on the host:

0043 Parent of embeddeddataset must be selected.

Caution

10.4.2 Selecting Embedded Data Sets for Cloning

10.4.2 Selecting Embedded Data Sets for Cloning 168

10.4.4 AA Values

AA is a DMSII term that stands for absolute address. An absolute address value is an A Series

WORD (48-bits in length). In the Databridge Client, AA is the hexadecimal representation (12

character strings containing the characters 0--9 and A--F) of the AA Value on the host. Databridge

Client uses the AA Values to implement unique keys for the parent structures of embedded data

set records. It also uses AA Values to reference the records of data sets that do not have DMSII

SETS with the NO DUPLICATES ALLOWED attribute.

AA Values are not constant. Any DMSII reorganization (record conversion, file format, or garbage

collection) changes these values.

10.4.5 DMSII Links

The Databridge Client implements DMSII link items, such as MEMO items in LINC databases, using

an AA Value. You can use the AA Value as a foreign key when you want data from the tables

associated with the link item. To enable support for DMSII links, you must do the following:

Enable DMSII link support in the Databridge Engine control file.

Set the Client configuration file parameter enable_dms_links to True.

10.4.6 Variable-Format Data Sets

DMSII variable-format data sets consist of a collection of dissimilar records containing a fixed part

that is common to all records, and a variable part that depends on the record type. The individual

records are identified by the record type, which is a special data item that has a value between 0

and 254.

A record type of 0 indicates that the record does not contain a variable part.

A record type of 1--254 indicates that the record contains the corresponding variable part in

addition to the fixed part that is always present.

Databridge Client supports numeric AA Values that are stored as NUMBER(15) in Oracle and

BIGINT in SQL Server. It also supports binary AA Values that are stored as RAW(6) in Oracle and

BINARY(6) in SQL Server.

Note

• •

• •

• •

• •

10.4.4 AA Values

10.4.4 AA Values 169

The concept of variable-format tables does not exist in relational databases. Therefore, the

Databridge host software handles the various types of variable-format records as different

structures. Databridge references these structures by a data set name and a record type (all other

data set types have a record type value of 0). The Databridge Client uses the notation

datasetname/rectype when referring to variable-format data sets in all messages. The Databridge

Client handles these structures as if they were logical data sets; thus, each individual record type of

a variable-format data set is mapped to a different relational database table. Variable-format data

sets are tracked and updated like fixed-format data sets. Links in variable-format data sets,

however, are not tracked, but retain their values from the initial clone. The link values for any

records created after the clone will be null. (See track_vfds_nolinks.)

Fixed Part

Only

Records

Even though type 0 records are not explicitly declared in the DMSII DASDL,

applications can create such records by simply setting the record type to 0.

The Databridge software always defines a data set with a record type of 0

(rectype column in the DATASETS Client control table) for type 0 records

of variable-format data sets. This data set is mapped to a table whose name

is derived from the data set name (that is, name converted to lowercase and

all dashes replaced by underscores).

Note that unless the DMSII applications explicitly store type 0 records in the

data set, this table may be empty. If you know this is the case, you may want

to disable the cloning of the type 0 records for the data set by setting the

active column of the corresponding entry in the DATASETS Client control

table to 0.

10.4.6 Variable-Format Data Sets

10.4.6 Variable-Format Data Sets 170

DMSII DASDL Showing Fixed- and Variable-Length Records

10.4.7 Resulting Tables

The examples in this section assume that the Microsoft SQL Server database is being used and

that the Client uses the SET MAINSET as the source for index for the various tables.

The following tables are derived from the variable-format data set MAIN:

Variable

Format

Records

All other record types are treated as if they were contained in a separate

structure. The primary tables for these structures are named by appending

the suffix "_type#* to the name mapped from the data set name, where # is

the decimal value of the record type (that is, a value between 1 and 254).

Note that the fixed part of the variable-format records and the record type

are also stored in the resulting relational database table.

 MAIN DATA SET
 (
 VAR-REC RECORD TYPE (3);
 CUST-NO NUMBER (08);
 CPU ALPHA (06);
 FILLER SIZE (05);
),

 %

 1:
 (
 SMSA ALPHA (04);
 SALES ALPHA (06);
)

 %

 2:
 (
 STATUS ALPHA (01);
 RECEIVED ALPHA (06);
 ORDER-DATE NUMBER (08);
)

 %

 3:
 (
 SITE ALPHA (07);
 SOURCE ALPHA (07);
 CLASS ALPHA (02);
);

 %

 MAINSET SET OF MAIN
 KEY (CUST-NO)
 NO DUPLICATES;

10.4.7 Resulting Tables

10.4.7 Resulting Tables 171

main (type 0 records)

main_type1 (type 1 records)

main_type2 (type 2 records)

main_type3 (type 3 records)

Record Type 0 Table

The table named main represents all type 0 records that do not have a variable part. The var_rec

column of all records in this table will have a value of 0. Note that this table may be empty if your

application does not use type 0 records. The SQL statement to create this table is shown as

follows:

Record Type 1 Table

The table named main_type1 represents all type 1 records. The var_rec column of all records in this

table will have a value of 1. The SQL statement to create this table is shown as follows:

Record Type 2 Table

The table named main_type2 represents all type 2 records. The var_rec column of all records in this

table will have a value of 2. The SQL statement to create this table is shown as follows:

Record Type 3 Table

The table named main_type3 represents all type 3 records. The var_rec column of all records in this

table will have a value of 3. The SQL statement to create this table is shown as follows:

• •

• •

• •

• •

All four tables contain the fixed part of the data set. The var_rec column is the record type;

all records in the individual tables will have the same value in this field.

Note

 create table main
 (
 cust_no int,
 var_rec smallint,
 cpu char(6)
)

create table main_type1
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 smsa char(4),
 sales char(6)
)

create table main_type2
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 status char(1),
 received char(6),
 order_date int
)

10.4.7 Resulting Tables

10.4.7 Resulting Tables 172

10.4.8 Split Variable Format Data Sets Option

When the ds_options bit DSOPT_Split_Varfmt_ds (bit value 65536) is set, variable format data

sets are treated slightly differently. The record type 0 tables contains the fixed part of all records

regardless of their record types. However, the table has exactly the same layout as above. The

tables for all the other records only contain the variable part of the records and the keys from the

fixed part.

The table named main_type1 in the above example will now contain the key cust_no and the

variable part. The SQL statement to create this table is shown as follows:

create table main_type1 (cust_no int, smsa char(4), sales char(6))

10.5 Changing the Default Data Type

In most cases, the default data types are sufficient. If you want to change the data type, however,

use a relational database query tool to edit the sql_type column in the DATAITEMS Client control

table, or put the SQL statements in user scripts as explained in Customizing with User Scripts.

Most of these relational database data types can be changed using data table customization user

scripts or the Administrative Console's Customize command is the Settings menu for the data

source.

create table main_type3
(
 cust_no int,
 var_rec smallint,
 cpu char(6),
 site char(7),
 source char(7),
 class char(2)
)

When changing the default data type, make sure that you choose a correct data type or the data

may not be correctly stored in the relational database.

Caution

Value for

sql_type

Generic Data

Type

Microsoft SQL Server

Data Type

Oracle Data

Type

0 bit bit number(1)

1 char char char

2 varchar varchar varchar2

10.4.8 Split Variable Format Data Sets Option

10.4.8 Split Variable Format Data Sets Option 173

Value for

sql_type

Generic Data

Type

Microsoft SQL Server

Data Type

Oracle Data

Type

3 byte tinyint number(3)

4 short int smallint number(5)

5 long int int number(10)

6 float float float

7 text text clob

8 binary binary raw

9 varbinary varbinary raw

10 datetime datetime date

11 packed BCD dec number

12 smalldatetime smalldatetime date

13 numeric date int number(10)

14 unsigned long binary(4) raw(4)

15 timestamp timestamp N/A

16 serial {int - bigint - dec(n) -

identity}

N/A

17 numeric_time int number(6)

ticks int number(6) or number(10) N/A

18 int64 bigint NA

19 date date NA

20 datetime2 datetime2 timestamp

21 time time N/A

10.5 Changing the Default Data Type

10.5 Changing the Default Data Type 174

10.6 Handling DMSII GROUPs

A GROUP is a DMSII construct that allows the data items that belong to the group to be referenced

at one time (for example, as one item). The concept of GROUP does not exist in a relational

database. Therefore, if the DMSII database you replicate has one or more GROUPs, the Databridge

Client ignores the GROUP name and instead treats each item within the GROUP as a regular data

item. All items in a DMSII GROUP share the same parent item number, which is the item number of

the GROUP item.

Following is an example of the DMSII GROUP item in the data set called ADDRESS. This GROUP

item consists of the data item CITY and the data item STATE.

DMSII DASDL Showing GROUP

The following is an excerpt from a DMSII DASDL that shows how a GROUP item is defined. With the

GROUP item, you can access both city and state with one reference.

The next example shows how the same DMSII GROUP item is mapped to a relational database.

Relational Database Table

The following example is for Microsoft SQL Server.

The table name is the lowercase form of the DMSII data set name. The GROUP item CITY-STATE is

ignored. The data items in that group are included in the relational database table as if they were

ordinary DMSII data items.

If there are duplicate names among members of various groups within a data set, the Databridge

Client resolves the conflict by appending a digit to the column name to make it unique.

Value for

sql_type

Generic Data

Type

Microsoft SQL Server

Data Type

Oracle Data

Type

22 uniqueidentifier uniqueidentifier N/A

 ADDRESS DATA SET
 (
 STREET ALPHA (20);
 APARTMENT ALPHA (5);
 CITY-STATE GROUP
 (
 CITY ALPHA (20);
 STATE ALPHA (2);
);
 COUNTRY ALPHA (20);
 ZIPCODE NUMBER (5);
 POSTFIX NUMBER (4);
);

address (table name)
street apartment city state country zipcode postfix

May St. 3 Paris OH USA 15010 2146
Elm Ln. River SD USA 24906 3381

10.6 Handling DMSII GROUPs

10.6 Handling DMSII GROUPs 175

10.7 Handling DMSII OCCURS

An OCCURS clause is a DMSII construct that describes the number of times an item is present or

repeats within a data set. Because relational databases do not support the OCCURS construct,

these clauses generate additional tables, which can degrade the performance of update

processing.

You can control how items with an OCCURS clause are mapped on an item by item basis by

flattening OCCURS. See Flattening OCCURS Clauses.

Default OCCURS Handling

If you don't flatten OCCURS, Databridge Client creates a new table for each data item that contains

an OCCURS clause. The keys from the data item's parent data set are used as keys in the new table.

In addition, a new key (named index1) is created to establish a unique composite key for each

recurring data item.

For example, a DMSII data set has a data item with an OCCURS clause will result in two relational

database tables:

The first table (called the primary table) is named using the lowercase form of the DMSII

data set name with all hyphens changed to underscores. It contains the key items as well as

all data items that do not have OCCURS clauses.

The second table (called the secondary table) is named by appending an underscore and

the data item name to the primary table name. This table contains all of the OCCURS items;

however, each table has a unique key created by index1 . (Names that exceed the character

limit are truncated. If the truncation results in a duplicate item names, the last characters of

the name are changed to digits).

Handling OCCURS items this way can significantly degrade the performance of update processing

if the number of occurrences is large. The storage required to hold the keys of the secondary table

items can also be substantial. For example, an OCCURS 100 TIMES clause can turn a single DMSII

update into 101 relational database updates. See DMSII DASDL with OCCURS for an example of a

DMSII data set that has a data item with an OCCURS clause.

10.7.1 DMSII DASDL with OCCURS

The following excerpt from a DMSII DASDL shows how an OCCURS clause is defined.

• •

• •

10.7 Handling DMSII OCCURS

10.7 Handling DMSII OCCURS 176

The OCCURS clause allows access by subscripting (indexing) within an application program.

Because relational databases do not allow subscripting (indexing), the Databridge Client maps the

subscript into an additional key. The OCCURS items, then, are available by row.

When this ORDERS data set is cloned into the relational database, it is mapped into the following

two tables. These tables show how the DMSII OCCURS clause appears in a relational database.

Table 1

This table is named the same as the ORDERS DMSII data set, and it contains the key item plus all

non-OCCURS items. Assuming the ORDERS DMSII data set has 50 records, this table has 50 rows.

Table 2

This table name combines the DMSII data set name and the name of the data item which has an

OCCURS clause. It contains all the occurrences of the OCCURS data item ORDER-NUM.

Continuing with the example from Table 1 with 50 records (rows), this table has 500 total rows. For

every order_id key (50 total), there are ten OCCURS items (as declared in the DASDL on the previous

page).

 ORDERS DATA SET
 (
 ORDER-ID ALPHA (4);
 ORDER-DATE ALPHA (5);
 ORDER-ITEM OCCURS 10 TIMES NUMBER (8);
);

 BY-ORDER-ID SET OF ORDERS
 KEY IS
 (
 ORDER-ID
)
 NO DUPLICATES,
 INDEX SEQUENTIAL;

orders (table name)
order_id order_date
-------- ----------
1201 jan12
 . .
 . .
 . .
1250 feb12

orders_order_item (table name)
order_id index1 order_item
-------- ------ ----------
1201 1 00007390
1201 2 00001293
1201 3 00007748
1201 4 00009856
1201 5 00003736
1201 6 00002278
1201 7 00004327
1201 8 00009463
1201 9 00008638
1201 10 00008954
1202 1 00001754
1202 . 00005309
1202 . 00004537
1202 10 00005940
1203 1 00005430
1203 . 00005309
1203 . 00004537
1203 10 00006587
 . . .
 . . .
 . . .

10.7.1 DMSII DASDL with OCCURS

10.7.1 DMSII DASDL with OCCURS 177

10.7.2 Flattening OCCURS Clauses

The flatten_all_occurs parameter makes the define and redefine commands set the value of

the bit DIOPT_Flatten_Occurs (1) in the di_options column in the DMS_ITEMS table for all items

that have OCCURS clauses. You can set this parameter from the Client Configurator or by editing

the configuration file to specify whether to globally flatten OCCURS clauses for a data source. By

using user scripts, you can control this option for individual items.

The Databridge Client provides two options for handling OCCURS clauses.

Flatten

OCCURS to the

primary table

Each occurrence of the item is mapped into a separate column in the

primary table. Use this method if the number of occurrences is not too

large and applications access the occurring items by column name

(versus numeric index).

This is the default method for flattening OCCURS clauses and only

requires that the above mentioned bit be set in the di_options

column in the DMS_ITEM entry for the item with the OCCURS clause.

10.7.2 Flattening OCCURS Clauses

10.7.2 Flattening OCCURS Clauses 178

When using the Administrative Console you can set the parameter flatten_all_occurs by using

the Configure command in the Settings menu for the data source. To customize the handling of

individual items with OCCURS clause use the Customize command in the Settings menu for the

data source. Click on the data set involved and click on the wrench (properties) of the item in

question in the DMS Items view and pick the entry you want from the drop down list for the "Flatten

Occurs" property. The choices are "Don't Flatten", "Flatten Within Table", "Flatten into Secondary

Table" and if applicable "Flatten to String".

10.7.3 Flattening OCCURS Clauses to a String

Single items of type NUMBER(n) or ALPHA(n) with an OCCURS clause can be flattened to a

character string represented by a CHAR or VARCHAR data type. You can have fixed format strings

or CSV format strings, where the delimiter character can be selected via the dms_subtype column

in DMS_ITEMS. This feature is controlled by the DIOPT_Flatten2String bit in the di_options and

the dms_subtype column. If the dms_subtype is 0, fixed format is used and if the dms_subtype is

non-zero it specifies the delimiter character used in the CSV format. NULL data is represented by

blanks in fixed format and empty fields in CSV format (i.e. two consecutive delimiters or a delimiter

at the end of the data). For example a NUMBER(1) OCCURS 20 TIMES can be flattened to a column

that is a CHAR(20) when using fixed format.

10.7.4 Flattening OCCURS Clause for Three-Bit Numeric Flags

MISER systems store certain flags as arrays of single-digit numbers, where each number is used to

hold three Boolean values. The Databridge Client can be directed to map these items as a series of

Booleans data items (bit in SQL Server). To do this, set the DIOPT_Flatten_Occurs bit (1) and the

DIOPT_Clone_as_Tribit bit (16) in the di_options column of the corresponding DMS_ITEMS

record.

An example for the item L-LOCK-FLAG in the data set LOAN follows:

Flatten

OCCURS to a

new secondary

table

In the secondary table, all of the occurring items are mapped to a

single row that contains the keys and all of the occurrences of the

item. Use this method to flatten OCCURS clauses that have a large

number of occurrences.

To make this happen you need to set the bit

DIOPT_FlatSecondary(4096) in the di_options column in the

DMS_ITEMS table for any items with an OCCURS clause that you want

flattened in this manner. If both this bit and the DIOPT_Flatten_Occurs

bit are set, this bit takes precedence.

10.7.3 Flattening OCCURS Clauses to a String

10.7.3 Flattening OCCURS Clauses to a String 179

Filename: script.user_layout.loan

In the above example, if the L-LOCK_FLAG has an OCCURS 20 TIMES clause, 60 items of type bit

named l_lock_flag_01 to l_lock_flag_60 are created.

These items can also be flattened to a secondary table by setting the bit

DIOPT_FlatSecondary(4096) in the di_options column for the corresponding entry in the

DMS_ITEMS table.

10.7.5 Flattening OCCURS Clause for Items Cloned as Dates

The following script directs the define and redefine commands to map an item with an

OCCURS clause as a series of columns, whose data type is a relational database date type, in the

corresponding table. Furthermore, it specifies that the DMSII item, which is of type NUMBER(8),

contains a date in the mm/dd/yyyy format.

Filename: script.user_layout.billing

10.7.6 DMSII GROUP OCCURS

The following is an excerpt from a DMSII DASDL that shows a GROUP item that has an OCCURS

clause.

When this SALES data set is cloned into the relational database, it is mapped into the following

tables:

Table 1 (primary table)

 update DMS_ITEMS set di_options=17
 where dataset_name = 'LOAN' and rectype=0 and dms_item_name = 'L-LOCK-FLAG'
 and data_source = 'MISDB'

 update DMS_ITEMS set di_options=3, dms_subtype=23
 where dms_item_name = 'BILLING-DATES' and dataset_name = 'BILLING'

SALES DATA SET
(
 PRODUCT-CODE ALPHA (10);
 PRODUCT-NAME ALPHA (20);
 SALES-HISTORY GROUP OCCURS 5 TIMES %FIVE YEAR HISTORY
 (
 TOTAL-UNITS-SOLD NUMBER (10); %FOR THE YEAR
 YEARLY-SALES-AMOUNT NUMBER (S12,2); %BY MONTH
);

);
SH-PRODUCT-CODE-SET SET OF SALES-HISTORY
 KEY IS
 (
 PRODUCT-CODE
)
NO DUPLICATES,
INDEX SEQUENTIAL;

10.7.5 Flattening OCCURS Clause for Items Cloned as Dates

10.7.5 Flattening OCCURS Clause for Items Cloned as Dates 180

This table is named the same as the SALES DMSII data set, and it contains the key item and the

data items that do not have OCCURS clauses. Because the GROUP item has an OCCURS clause,

none of the GROUP items are included in this table. Assuming there are five records in the DMSII

data set, there are also five rows in this relational database table.

Table 2 (secondary table)

This table is named: datasetname + GROUP_OCCURS_name

Assuming there are five records in the DMSII data set, there are 25 records in this relational

database table. The main difference here is the addition of an index to denote the occurrence

number of the item.

10.7.7 DMSII Nested OCCURS

The following is an excerpt from a DMSII DASDL showing a GROUP with an OCCURS clause that

contains an item with an OCCURS clause.

This example helps to reinforce the previous examples of how DMSII GROUP and OCCURS are

mapped to a relational database.

sales (table name)
product_code product_name
------------ ------------
BC99992121 Widget
TR55553440 Mixer
HM44447322 Gadget
PP77778299 Twirler
DG22221163 SuperMix

sales_sales_history (table name)

product_code index1 total_units_sold yearly_sales_amount
------------ ------ ---------------- -------------------
BC99992121 1 55543665 123456789.01
BC99992121 2 83746994 234567890.12
BC99992121 3 33847295 345678901.23
BC99992121 4 57483037 456789123.45
BC99992121 5 10947377 567891234.56
TR55553440 1 56722221 678912345.67
TR55553440 2 74838976 789123456.78
TR55553440 3 54793873 891234567.89
TR55553440 4 99048900 912345678.90
TR55553440 5 22308459 123456789.01
HM44447322 1 75032948 234567890.12
HM44447322 2 30750344 345678901.23
HM44447322 3 90570340 456789123.45
HM44447322 4 57948755 567891234.56
HM44447322 5 44874733 678912345.67

SALES DATA SET
 PRODUCT-CODE ALPHA (10);
 PRODUCT-NAME ALPHA (20);
 SALES-HISTORY GROUP OCCURS 5 TIMES %FIVE YEAR HISTORY
 (
 TOTAL-UNITS-SOLD NUMBER (10); %FOR THE YEAR
 MONTHLY-SALES-AMOUNT NUMBER (S12,2) OCCURS 12 TIMES;
);
SH-PRODUCT-CODE-SET SET OF SALES-HISTORY
 KEY IS
 (
 PRODUCT-CODE
)
NO DUPLICATES,
INDEX SEQUENTIAL;

10.7.7 DMSII Nested OCCURS

10.7.7 DMSII Nested OCCURS 181

When this SALES data set is cloned into the relational database, it is mapped into the following

three tables:

sales

(primary table, table name derived from datasetname)

sales_sales_history

(secondary table, table name derived from datasetname + GROUPOCCURSname)

sales_monthly_sales_amount

(secondary table, table name derived from datasetname + OCCURSitemname)

Table 1

This table is named the same as the SALES DMSII data set.

It contains the key item and all non-OCCURS data items. Because the GROUP has an OCCURS

clause, none of the GROUP items are included in this table. Assuming there are five records in the

DMSII data set, there are five rows in the resulting relational database table.

Table 2

This table is named: datasetname + GROUP_OCCURS_name

Assuming there are five records in the DMSII data set, there are 25 rows in this table. Note the

addition of the index1 column to denote the occurrence number of the group.

Table 3

This table is named: datasetname + OCCURSitemname

• •

• •

• •

sales (table name)
product_code product_name
------------ ------------
BC99992121 Widget
TR55553440 Mixer
HM44447322 Gadget
PP77778299 Twirler
DG22221163 SuperMix

sales_sales_history (table name)

product_code index1 total_units_sold
------------ ------ ----------------
BC99992121 1 55543665
BC99992121 2 98075300
BC99992121 3 77476478
BC99992121 4 76593939
BC99992121 5 33728282
TR55553440 1 87548974
TR55553440 2 56722221
TR55553440 3 11910078
TR55553440 4 47589474
TR55553440 5 57987999
HM44447322 1 75533785
HM44447322 2 33673391
HM44447322 3 74904532
HM44447322 4 98724498
HM44447322 5 39875992
 . . .
 . . .

10.7.7 DMSII Nested OCCURS

10.7.7 DMSII Nested OCCURS 182

Assuming there are five records in the DMSII data set, there are 300 rows in this table (12

occurrences of monthly_sales_amount for each of 5 occurrences of sales_history for each product

code). In the table below, index1 is the subscript of the GROUP OCCURS (1--5) and index2 is the

subscript of the monthly sales amount, with subscripts (1--12).

In this example, the OCCURS level of the items MONTHLY-SALES-AMOUNT is 2, while the OCCURS

level of the item SALES-HISTORY is 1.

10.7.8 OCCURS DEPENDING ON

DMSII uses the DEPENDING ON clause (usually with COMPACT data sets) to conserve disk space.

For COMPACT data sets, the DMSII work area always contains a fully expanded version of the

record; however, the record is compacted when it is stored on disk. The exact syntax for OCCURS

DEPENDING ON clause is as follows:

The value n defines the maximum number of occurrences of the data item item_name, while the

value of the depends item depends_item_name controls the number of occurrences of the item that

are stored. This last number cannot exceed n. Information on an OCCURS DEPENDING ON clause

is relayed to the Databridge Client, enabling the Databridge Client to suppress extraneous columns

that do not actually exist. If the DEPENDS data item has a value of 3, and the OCCURS clause is

OCCURS 10 TIMES, the last 7 columns are not included.

10.7.9 Handling Unflattened OCCURS DEPENDING ON Clauses

sales_monthly_sales_amount (table name)
product_code index1 index2 monthly_sales_amount
------------ ------ ------ --------------------
BCS9992121 1 1 1075.36
BCS9992121 1 2 49397.90
BCS9992121 1 3 49375.93
BCS9992121 1 4 22840.97
BCS9992121 1 5 38984.02
BCS9992121 1 6 40039.84
BCS9992121 1 7 33875.93
BCS9992121 1 8 35000.22
BCS9992121 1 9 65876.52
BCS9992121 1 10 20402.55
BCS9992121 1 11 17575.00
BCS9992121 1 12 41938.74
BCS9992121 2 1 .
BCS9992121 2 2 .
BCS9992121 2 3 .
BCS9992121 2 4 .
BCS9992121 2 5 .
BCS9992121 2 6 .
BCS9992121 2 7 .
BCS9992121 2 8 .
BCS9992121 2 9 .
BCS9992121 2 10 .
BCS9992121 2 11 .
BCS9992121 2 12 .
BCS9992121 3 1 .

 item_name OCCURS n TIMES DEPENDING ON depends_item_name;

10.7.8 OCCURS DEPENDING ON

10.7.8 OCCURS DEPENDING ON 183

To handle a changing depends item, the Databridge Client uses before-image/after-image (BI/AI)

pairs for data sets that have items with OCCURS DEPENDING ON clauses that are not flattened.

First, the Databridge Client checks the old and new values of the DEPENDS data item to determine

how to execute the modify. The modify is handled in one of the following ways:

If the value of the DEPENDS data item is unchanged, the Databridge Client updates the

corresponding rows in the secondary tables as usual. (Redundant updates are suppressed if

the ds_options bit DSOPT_Use_bi_ai is set.)

If the value of the DEPENDS data item increases from m to n, the first m items are updated

normally. The newly added items (m+1 through n) are inserted into the secondary table.

If the value of the DEPENDS data item decreases from m to n, the first n items are updated

normally. Items that are no longer present (n+1 through m) are deleted from the secondary

table.

10.8 Relational Database Split Tables

A split table occurs when a DMSII data set record requires more than one table in the relational

database to hold the data. Split tables occur in the following circumstances:

When a table mapped from a DMSII data set has more than the maximum number of

columns allowed by the relational database. The maximum_columns parameter in the

configuration file allows you to reduce this value.

When a relational database table's record size exceeds the Microsoft SQL Server maximum

record size (approximately 8K -- the actual value depends on the number of columns in the

table).

When the define (or redefine) command reaches the point where one of the above conditions is

satisfied, it stops adding columns to the table (named the same as the DMSII data set). It then

starts a new table that contains the same keys as in the original record of the primary table,

followed by the remaining items in the data set at the point the split occurred. Note that there is

always the possibility of having multiple splits for data sets that have a large number of columns.

The flattening of OCCURS items can easily lead to split tables.

A split can occur in the middle of flattening an OCCURS clause, which can be rather awkward. In

order to better control where a split occurs we added the di_options2 bit DIOPT_Split_Here (4)

that forces the table split to occur after the item in question is processed.

• •

• •

• •

• •

• •

10.8 Relational Database Split Tables

10.8 Relational Database Split Tables 184

10.8.1 Split Table Names

The new table is named using the original (parent) table name with a number (usually 1) appended

to it to make it unique. All subsequent tables created from the same data set have the original table

name with a numeric suffix that is incremented by 1 each time a new split table is created.

10.8.2 Keys for Split Tables

For a data set with keys, the keys of the original data set are duplicated in the split tables because

you must access each of these tables individually. The process of splitting the data set into tables

continues until there are no more data items left in the data set.

The following examples show the mapping of a data set that has 600 items (5 of which are keys) to

a relational database that limits the number of columns in a table to 250. The result is tables that

contain a total of 610 columns, where the 5 keys are duplicated across all 3 tables. If the original

table is named savings, the remaining two tables are named savings1 and savings2, unless these

names are already in use.

When a DMSII data set is split into more than one relational database table, a WARNING

message appears during a define or redefine command. In addition, each split table

duplicates the keys in the original table.

Note

tablename tablename1 tablename2

10.8.1 Split Table Names

10.8.1 Split Table Names 185

The five keys are duplicated in each table. To search these split tables, you must explicitly open

each table. The tables are not automatically linked.

10.9 Relational Database Table and Column Names

When you clone a DMSII database, the Databridge Client names the relational database tables and

columns the same as their equivalent DMSII data sets and data items. However, some differences

exist. In this section, the differences between the names are explained.

10.9.1 Uppercase and Lowercase

All DMSII data set, data item, and set names are uppercase. These names are also stored in

uppercase in the DATASETS and DMS_ITEMS Client control tables. Their equivalent relational

database table, column, and index names are stored in lowercase in the DATATABLES and

DATAITEMS Client control tables.

All DMSII data set names are stored in the DATASETS Client control table in uppercase, just

as they appear in the DMSII database. The equivalent relational database table name is

converted to lowercase and is stored in the DATATABLES Client control table. Thus, a data

set named CREDIT in the DMSII database is named credit in the relational database.

All DMSII data item names are stored in the DMS_ITEMS Client control table in uppercase,

just as they appear in the DMSII database. The equivalent relational database data item

name is converted to lowercase and is stored in the DATAITEMS Client control table. Thus, a

data item named LIMIT in the DMSII database is named limit in the relational database.

10.9.2 Hyphens and Underscores

250 columns (first 5 are keys) 5 keys and 245 columns 5 keys and 105 columns

• •

• •

You must type these names in the correct case. If you are using the relational database

table name as a character string value in a SQL statement (for example, 'tablename'),

you must use lowercase.

Note

10.9 Relational Database Table and Column Names

10.9 Relational Database Table and Column Names 186

The hyphen (-) in the DMSII name becomes an underscore (_) in the relational database name. The

only exception is a data source name that is allowed to contain hyphens.

10.9.3 Name Length

The limit for a DMSII data set name is 17 characters, and DMSII item name is limited to 128

characters. Relational databases typically limit table names to 30 characters; however, the

Databridge Client reserves two characters for the prefix of the stored procedure names for

updating the table (i_ tablename, d_ tablename, u_ tablename). Thus, the table names are actually

limited to 28 characters. Similarly, the Databridge Client adds a one or two character prefix to the

item names to create a unique name for the parameters of the stored procedures. The Databridge

Client for Microsoft SQL Server uses a prefix of @ while the Databridge Client for Oracle uses a

prefix of p_. To avoid using names that are too long for the relational database, items names are

limited to 29 characters for SQL Server or 28 characters for Oracle.

With this limit of 28 characters for a table name, typically all the DMSII names fit into the relational

database table name or column name. In cases where data set, data item, or other structure names

are concatenated and therefore become too long for a relational database, the Databridge Client

truncates the name.

10.9.4 Duplicate Names

If two data sets have the same name in two different DMSII databases (or data sources, from the

Client perspective), the Databridge Client appends the number 1 to the duplicate table name the

first time it is encountered. If a table already exists with the duplicate name with "1" appended to it,

the Databridge Client appends the number "2" instead and so on until a unique table name is

created.

For example, if DMSII database A has a data set named PRODUCTS and DMSII database B also has

a data set named PRODUCTS, the resulting Databridge table names would be products and

products1.

If you combine this duplicate data set name convention with the convention for naming split tables

(when one data set results in more than one table), you can have multiple suffixes for short names.

For example, if you have two data sources with a data set named CUSTOMER, which also

generates split tables, the tables are renamed as follows:

customers and customers1 in the first data source

customers11 and customers12 in the second data source (as the primary table was

renamed customers1)

• •

• •

10.9.3 Name Length

10.9.3 Name Length 187

Duplicate item names may result in the following cases:

When you use the same name for items in two different GROUPs. DMSII allows this, but the

Databridge Client ignores GROUPs.

When you truncate two long DMSII item names that are almost identical

The Databridge Client handles duplicate item names the same way that it handles duplicate table

names.

10.9.5 Reserved Keywords

You cannot use reserved keywords for relational database object (table, column, index, etc.)

names. For example, "order" is an SQL keyword; therefore, you cannot rename a relational database

table or column as "order".

If an existing DMSII data set is named ORDER, the Databridge Client stores ORDER in the

DATASETS Client control table and an equivalent relational database table called "order_x" in the

DATATABLES Client control table. This same convention of adding "_x" to rename a table whose

name is a reserved word applies to DMSII data items. For information on reserved words in your

relational database, see the related database documentation.

The SQL Server Client allows you to use reserved words as object names, as long you enclose them

in square brackets in SQL statement. The configuration file parameter bracket_tabnames allow

you use reserved words like "order" as table names. Setting this parameter to True makes the Client

use brackets around table names that are reserved words.

• •

• •

10.9.5 Reserved Keywords

10.9.5 Reserved Keywords 188

11. OCCURS Table Row Filtering

OCCURS tables are secondary tables generated by the Databridge Client when OCCURS clauses for

items (or GROUPs) are not flattened. This is the default behavior of the Databridge Client. It

involves creating a separate row in these tables for each occurrence of the item (or GROUP) with

the keys of the primary table record duplicated and an additional column named index1 , which

contains the occurrence number (starting at 1), added to them. In the case of nested OCCURS

clauses you end up with two tables, the first of which could be suppressed when you have nothing

but keys in it (i.e. you have a GROUP within an OCCURS clause that contains only a GROUP, which

also has an OCCURS clause). In the case of nested OCCURS clauses the second table has two

columns named index1 and index2 added. These columns hold the occurrence numbers of the

corresponding items (or GROUPS) within the OCCURS clauses.

Not all of the rows in such tables contain meaningful data, for this reason it is sometimes desirable

to discard the ones with meaningless data. There are several advantages to doing this:

It saves storage, as these secondary tables are quite expensive, particularly when the item

with the OCCURS clause is a single item.

The users of the database do not have to discard unwanted data when they fetch data from

the secondary table.

The number of updates is significantly reduced, resulting in better performance. This can

further be improved by setting the optimize_updates parameter to true. This parameter

only applies updates to rows that are actually changed. This avoids doing redundant

updates, and can thus greatly improve performance. The process of discarding rows that do

not contain meaningful data is done by defining a set of filters for such tables that describe

the conditions under which the rows should be discarded. This requires having access the

before and after images for updates, as a change in the data can affect whether the row is

to be filtered or not. Since we already have the before and after images when doing filtering,

enabling optimize_updates does not add any additional overhead, other than the

comparison of the before image and after image data to determine if anything changed,

which is a lot quicker than executing a redundant update (that is SQL that does not change

anything).

11.1 Filter Source File

• •

• •

• •

11. OCCURS Table Row Filtering

11. OCCURS Table Row Filtering 189

The implementation of row filtering for secondary tables derived from items with OCCURS clause

does not involve changing any configuration file parameters. All you need to do is to create a text

file that specifies the filtering conditions for all such tables that need to be filtered. We refer to this

text file as the filter source file. This file normally resides in the config sub-directory of the data

source's working directory.The filter source file, which is formatted in a somewhat similar manner

to the row filtering sections of GenFormat, defines the filters for the various secondary tables using

SQL-like statements. This file is then be compiled using a utility called makefilter, which is included

in the Client files. The makefilter utility checks the syntax of the filter source file and validates all

the specified table and column names. It then creates a binary file named "dbfilter.cfg" in the config

sub-directory of the Client's working directory. This file then gets loaded and bound to the

corresponding data tables and data items at the start of a Client process or clone command.

The Client looks for the file "dbfilter.cfg" and loads it when it is present. The binding process

replaces column numbers by pointers to the structures that hold the corresponding DATAITEMS

control table entries. The Client uses a general purpose filtering procedure that interprets the filter

pseudo code using the DMSII data buffer for the update and returns a result that indicates whether

or not the row should be discarded. The Client can thus determine whether or not to insert (load in

the case of data extraction) or update a row in the table. In the case of a delete we do not bother

with filtering, we simply delete all rows that have the keys of the parent table record (i.e. for all

values of index1). To make the Client run efficiently, we made it use host variables to do these

sort of operations, which we refer to as DELETE_ALL operations (when using stored procedure we

use the z_tablename stored procedure for this purpose). This means that besides INSERT, DELETE

and UPDATE statements we also have compound DELETE statements for OCCURS tables (i.e.

delete from tabname where key1=val1 and ... keyn=valn; without specifying a value for index1).

11.2 The Filter File

The filter source file, which is modeled after the row filtering in GenFormat, uses a syntax that

defines the conditions when a row is to be discarded, rather than when it is to be selected. The

statements are free format and can extend over multiple lines, but they must be terminated by a

semicolon. You can add comments using "// ...", which makes the scanner stop scanning the image

before the slashes.

By using delete statements instead of select statements we make the "where" clause define the

conditions under which a row is filtered out rather than selected. The reason for doing this, is that it

is easier to follow (no need to use De Morgan's law). An example of a filter file source follows.

Sample Filter File

delete from customer_hold_information where hold_type = 0 or hold_type = 4;

delete from customer_account_abbr where account_abbr = " ";

delete from meter_readings where amount_read = NULL;

11.2 The Filter File

11.2 The Filter File 190

The makefilter program converts these filters into a list of tokens that contain all the required

information for processing them using the general purpose filtering procedure that acts like a VM

that executes the filter pseudo-code.

Any table that is not specified in the filter file will have no filter and will be treated normally. Filtering

is limited to secondary tables derived from items with OCCURS clauses (a.k.a. OCCURS tables). We

allow the testing for NULL by using "column_name= NULL" or "column_name!= NULL" (or

"column_name <> NULL"), which is not proper SQL. If the item is ALPHA the fact that NULL is not in

quotes is enough to distinguish it from the value "NULL". Unlike relational databases, NULL in DMSII

is an actual value (typically all high values for numeric items and all low values for ALPHA items).

All constants are stored in the data area of the filter using their corresponding DMSII

representations. Character constants are automatically space padded. Numeric constants have

leading zeroes added.

The 3 types of tokens involved in these expressions are variables (i.e. column names), constants

and operators. Constants consist of a data type (that matches the first operand's type, which must

be a column name), an offset into the filter's data area (the length is the same as that of the

associated column name). We do not need the declared length, as all comparisons work at the

character or digit level (we already do this when testing for NULL). Operators also include and end-

of-statement indicator which corresponds to the semicolon in the pseudo-SQL statements in the

filter source file. All comparisons must start with a column name and the second operand must be

a constant or the word "null". Comparing two columns as a condition for filtering is not allowed. All

object names are case sensitive and must be typed in lower-case, keywords and the word NULL are

not case sensitive. String constants must be enclosed in double quotes (the use of single quotes is

not currently supported).

In the case of a DMSII structural reorganization the filters must be recompiled if any of the data

sets that have filters for secondary tables are affected by the reorganization. The Client

automatically takes care of this by initiating a recompile of the filter at the end of define and

redefine commands or an Administrative Console Configure command run, when there is filter

file present in the config directory.

String constants must be enclosed in double quotes (the use of single quotes is not currently

supported).

Important

11.2 The Filter File

11.2 The Filter File 191

The changes to the Client itself are pretty straightforward and involve using the filter routine on the

image to determine whether it gets discarded or not. The Client handles the situation where an

item, that was not stored, needs to be stored after an update (in this case the Client does an

INSERT). Similarly, it handles the situation where an item, that was being stored, needs to be

discarded after an update (in this case the Client does a DELETE). The remaining cases are

handled normally, if the item was discarded and still needs to be discarded, we do nothing. And if

the item was stored and still needs to be stored we update it, unless optimize_updates is True, in

which case we skip the update if the values of all the columns are unchanged.

The following table summarizes the supported operators and their relative precedence.

Level Operators

1 =,>,<,>=,<=,!= (or <>)

2 AND

11.2 The Filter File

11.2 The Filter File 192

The use of parentheses is allowed, but usually not usually necessary. There is no limit to the

number of items that can be specified in the where clause, other than the actual number of data

items that are not keys contained in the table.

The use of DMSII items whose data type is REAL are restricted to tests for NULL and 0 in filters.

Items that are not nullable in DMSII cannot be tested for NULL. When using items whose data type

is BOOLEAN you must use 0 or 1 in the constants (the use of TRUE and FALSE is currently not

supported).

The makefilter program has two commands, import and display . The import command

compiles the filter source file, which can be specified using the -f option, to create the binary filter

file dbfilter.cfg. If no filter file is specified the command tries to use the file dbfilter.txt in the config

subdirectory of the data source's working directory. The display command produces a report that

describes the content of the binary filter file. All makefilter log output is written to the file

"prefix_flt_yyyymmdd[_hhmmss].log" keeping it separate from the Client log files.

Level Operators

3 OR

11.2 The Filter File

11.2 The Filter File 193

12. Databridge Client Control Tables

This chapter describes the six Client control tables and the properties in each table that can be

customized. For best results, use the Administrative Console's Customize command and other

commands to customize your Client control tables.

Control tables do not contain replicated DMSII data. To store replicated data, the relational

database uses data tables, which are created using information from the control tables. The

control tables hold the layout information of the DMSII database (from the DMSII DESCRIPTION

file) and the layout of the corresponding relational database tables. Each relational database has

one set of Client control tables that includes the following tables: DATASOURCES, DATASETS,

DATATABLES, DMS_ITEMS, DATAITEMS and AF_STATS. The AF_STATS table, which was added in

version 7.0, is used to optionally store the audit file statistics that allow users to look at the audit

file processing statistics for the last 9999 audit files.

The Databridge Client uses several columns of the control tables to determine how DMSII database

objects are represented in the relational database layout. While Databridge makes many of these

decisions, some properties can be customized by using the Administrative Console's Customize

command or user scripts. For example, you can rename columns, combine like items, and flatten

OCCURS.

For instructions on backing up the Client control tables, see Backing Up and Maintaining Client

Control Tables.

12.1 DATASOURCES Client Control Table

The DATASOURCES Client control table contains the data sources defined for the Databridge

Client. Each data source represents both a connection to a Databridge Server on the MCP (or

Enterprise Server) and a DMSII database.

You can define more than one data source within the DATASOURCES Client control table as long as

each data source name is unique. All of the data sources you define within the DATASOURCES

table apply to one relational database.

The following table contains descriptions of each column, in the order in which it appears in the

DATASOURCES table.

Do not modify Client control tables directly. Instead, use the commands in the Administrative

Console's Settings menu to customize data sources.

Note

12. Databridge Client Control Tables

12. Databridge Client Control Tables 194

Column Description

data_source This value is the name you give the data source when you use the

Databridge Client define command. The name can be a maximum

of 30 characters, and it must match one of the following:

The entry for SOURCE in the DBServer control file on the host.

A base or filtered source as defined for Enterprise Server.

hostname This column specifies the host name or IP address of the

Databridge Server.

hostport This column specifies the TCP/IP port number used to connect to

the Databridge Server.

hostprot Reserved

stop_time This column specifies the start of the Databridge Client blackout

period expressed as an integer value representing 24-hour time

(hhmm format).

At a few key points during execution, the Databridge command-line

Client (dbutility) tests this column to determine whether or not it

should continue processing. The configuration file parameter

controlled_execution enables this feature while the parameter

min_check_time specifies the minimum delay time (for example, a

typical time value may be 5 minutes) between checks of

stop_time . The program checks at the start of a process or

clone command and after commits, provided enough time has

elapsed since the last check.

NOTE: Service-based operations ignore the value of this column, as

the service takes over this functionality.

end_stop_time This column specifies the end of the blackout period for the

Databridge command-line Client (dbutility). It is expressed as an

integer value representing 24-hour time (hhmm format).

For example, if stop_time is 2000 and end_stop_time is 200, the

Databridge Client refrains from running between 8:00 p.m. and 2:00

a.m.

NOTE: Service-based operations ignore the value of this column, as

the service takes over this functionality.

•

•

12.1 DATASOURCES Client Control Table

12.1 DATASOURCES Client Control Table 195

Column Description

update_level This column contains the update level of the DMSII database at the

time the last define or redefine command was run.

12.1 DATASOURCES Client Control Table

12.1 DATASOURCES Client Control Table 196

status_bits This column contains a set of bits that the Databridge Client sets.

Some of these bits contain state information that is useful.

Modifying this column can disrupt the Client operations. The

following list covers the columns in the DATASOURCES control table

that can be modified in user scripts.

Bit and Description

1 - 256: For internal use only.

512: SRC_NotBackedUp - When this bit is set, an unload file is

created to ensure that the data source backup is not

overwritten; the bit is then cleared. After the Client resumes

audit file processing and a transaction group is successfully

processed, the data source backup file is deleted, and this bit is

set.

1024: SRC_FileXtract - This bit indicates that the data source is

a FileXtract file rather than a DMSII database.

2048: SRC_ITRANS - This bit echoes the value of the DMSII

database's INDEPENDENTTRANS flag.

4096: Reserved

8192: SRC_DBEnterprise - When this bit is set, it indicates that

the data source is an Enterprise Server data source, versus a

DBServer data source.

16,384: This bit, when set, indicates that the Client is using the

DBWait RPC to get updates from the server

32,768: Reserved

65,536: Reserved

131,072: SRC_Upgraded - to indicate that we have just done an

upgrade where the Client software need to perform a one-time

task before resuming processing updates. The Client clears this

bit when the task is successfully executed.

266,144: SRC_RequiredAware - This bit is set by the 6.6 (or

newer) Clients when a define command is executed. It

indicates that the Client should honor the REQUIRED property in

the DASDL and set the corresponding items not to allow nulls

(NOT NULL). The purpose of this bit is preserve backward

compatibility by preventing data sources created by older

Clients from having all the REQUIRED items changed to not

allow nulls.

524,288 - 4,194,304: Reserved

•

•

•

•

•

•

•

•

•

•

•

•

12.1 DATASOURCES Client Control Table

12.1 DATASOURCES Client Control Table 197

Column Description

tab_name_prefix This column holds an optional one to eight-character prefix which is

added to all table names in the data source. This prefix, which you

must supply, allows you to distinguish between identically named

data sets in multiple data sources, without having the define and

redefine commands rename tables to eliminate name conflicts.

The configuration file parameter use_column_prefixes extends this

prefix to all column names.

data_source_id This column allows you to provide a numeric identifier to distinguish

records that belong to a particular data source from other records in

a multi-source environment using a user script, or a relational

database query tool. In addition, you must set the

external_columns column to 128 or 2048 for all the data sets

belonging to this data source.

last_run_status This column holds the exit code of the last Databridge Client

process or clone command that was run. When the exit status is

not available (such as when the Databridge Client is running or

abended), the entry has a value of 9999.

stop_afn This column specifies the AFN value when the configuration file

parameter stop_after_given_afn is enabled.

NOTE: Service-based operations ignore the value of this column, as

the prefered way of doing this is use a stopper program combined

with the stop_task parameter in the Client.

af_origin This column specifies the origin of the current audit file being

processed. The following values are defined for this column:

0: Audit file processed by Databridge Engine

1: Reserved

2: Audit file processed by Enterprise Server using Databridge

Engine to access regions. This is referred to as "remote regions"

(or "indirect disk").

3: Audit file processed by Enterprise Server using direct disk I/O.

This is referred to as "direct disk" and is the most economical

way to process audit files in terms of host resource utilization.

4: Cached audit file processed by Enterprise Server.

•

•

•

•

•

12.1 DATASOURCES Client Control Table

12.1 DATASOURCES Client Control Table 198

Column Description

server_version This column indicates the version of DBServer last used by the

Client.

engine_version This column indicates the version of Databridge Engine last used by

the Client.

support_version This column indicates the version of the Support Library last used

by the Client.

dbe_version This column indicates the version of Enterprise Server last used by

the Databridge Client.

client_version This column indicates the version of the last dbutility or DBClient

that was run for this data source

cfgsrvr_version This column indicates the version of DBClntCfgServer that was last

used by the service to access the data source.

service_version This column indicates the version of the DBClntControl service that

launched a Client run for the data source.

old_update_level This column holds the previous value of update level when running

when a redefine command is run. This value is used to name the

reorg scripts that contain the DMSII database’s update level.

db_timestamp This column contains the timestamp of the DMSII database, which

is the time when the database was created. It is used by the Client

to verify that the Client is using the same database as it originally

was. If this column is set to zeroes, then this test is not performed.

CAUTION: This column contains a DMSII TIME(6) value, which is

binary and 6-bytes long.

For SQL Server, set db_timestamp=0.

For Oracle, set db_timestamp ='000000000000'.

reader_info This column contains the name and version of the reader used to

read audit files (or flat files in the case of a FileXtract data source).

12.1 DATASOURCES Client Control Table

12.1 DATASOURCES Client Control Table 199

12.2 DATASETS Client Control Table

The DATASETS table contains information about each DMSII data set as permitted by the

Databridge host support library filters. The DATASETS table contains state information for each

data set visible to the Client, including the current replication phase of the data set.

When the data has been successfully extracted, this table includes the location in the audit trail

from which the last group of updates for the data set were read, including the audit file number, the

audit block sequence number, the segment number, and the index that identify the physical location

of the block in the audit file, and a timestamp.

The active column of the DATASETS table controls the selection of all tables mapped from a

DMSII data set. (The SQL statements in your user scripts use the active column in this table to

specify data sets you do not want to clone.) If you use the DATASETS table to disable cloning for a

data set, you disable cloning for all tables related to that data set.

For example, one DMSII data set with a nested OCCURS item can generate multiple tables. If you

do not want to clone any of these tables, use the active column in the DATASETS Client control

table to turn off cloning. For more information on selectively cloning data sets, Tips for More

Efficient Cloning.

Column Description

dms_dbase_name This column contains the name of the DMSII database, which is not

always the same as the data source name.

The data source CTLTAB_VERSION in the DATASOURCES table is a special entry created by the

Databridge Client. It indicates the version of the Client control tables. Do not try to process this

data source, and do not remove it from the table.

Note

The Service Pack 1 Oracle Client uses the data type TIMESTAMP, which supports fractions of

seconds, for the audit_ts column. To use this data type instead of DATE, set the sql_type to

20 and specify the number of fractional digits desired using the sql_length column for the

user column. You can use the DATETIME2 data type, which also has a sql_type of 20, for

these columns in the SQL Server Client and use the sql_length to specify the number of

fractional digits desired. TIMESTAMP supports 0 to 9 fractional digits, while DATETIME2

support 0 to 7.

Note

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 200

The following table contains descriptions of each column in the DATASETS Client control table.

Included is the abbreviated column name that the display command writes to the log file.

Column name Display Description

data_source This column contains the name of the data

source that identifies the DMSII database from

which the data was taken. The name must

match one of the following:

The entry for SOURCE in the DBServer

control file on the host.

A base or filtered source as defined for

Enterprise Server.

dataset_name ds This column contains the name of the DMSII

data set.

rectype /type This column, which is zero for all fixed-format

data sets, contains the record type of a DMSII

variable-format data set as follows:

Record Type and Description

0: For a variable-format data set, this

represents records that have no variable

part.

1–254: Represents the variable-format

record type as defined in the DASDL.

set_name set This column contains the name of the DMSII

set that Databridge Engine uses as an index

source for tables mapped from the data set.

The names "aa_set", "user_set", and "pk_set"

are special set names that the Databridge

Client uses when a DMSII set is not available.

The name "aa_set" indicates that AA Values

(or RSNs) will be used as the source for the

index. The name "user_set" indicates that the

set is user-defined. The name "pk_set"

indicates that the set is defined in GenFormat

using the PRIMARY KEY statement.

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 201

Column name Display Description

active A During a define or redefine command, this

column determines whether or not a data set

is mapped. During a process command, the

value of this column determines if the data set

is to be selected for cloning or updating. The

default, 1, indicates that the data set will be

mapped (cloned or updated). A value of 0

indicates that the data set will not be mapped

(cloned or updated). The define and

redefine commands change the value in the

active column to 0 for the global data set,

the restart data set, and remaps (unless the

base structure is filtered out) in the DMSII

database.

NOTE: When you change the DATASETS

active column value to 0 to disable cloning,

all tables related to the data set are disabled.

For example, if a DMSII data set is represented

by three relational database tables, none of

the three relational database tables will be

cloned.

strnum ST# This column contains the DMSII data set's

structure number.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 202

Column name Display Description

audit_filenum AFN This column contains the current DMSII audit

file number. DMSII audit files are created and

stored on the host; they contain a record of all

updates to the DMSII database and are named

as follows:

databasename/AUDITnnnn

where databasename is the name of the DMSII

database, AUDIT is a literal, and nnnn is the

AFN (audit file number) whose value is a

number between 1 and 9999. Before you run a

process command to clone a DMSII

database, the audit file number (and all the

other audit file location information) is zero;

subsequent process commands fill these

records with the ending audit file location.

audit_block ABSN This column contains the audit block serial

number in the audit file. Because DMSII uses

32-bit unsigned numbers for the audit block

serial number, the data type for this column is

bigint (number(15) in Oracle). Displays in the

log file usually show this value as a 10-digit

unsigned number.

audit_seg SEG This column contains the segment number

within the audit file.

audit_inx INX This column contains the index within the

audit file segment.

audit_ts Time Stamp This column contains the audit file timestamp

represented as a relational database date/

time (datetime2 for the SQL Server Client,

timestamp for the all other Clients).

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 203

ds_mode M There are a few instances where you may

need to change the mode. The ds_mode value

provides the following information about the

data set:

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 204

Value and Description

0: The data set is ready to be cloned; all

tables and stored procedures are dropped

and recreated.

1: The data set is in the fixup phase; data

extraction is complete and the table is

being updated with changes that occurred

during the extraction. The integrity of the

data in the tables mapped from the data

set is not guaranteed to be correct until

the fixup phase is complete.

2: The data set is ready to be updated.

This implies that it has already been

cloned and the fixup has been completed.

This is the most common mode.

10: An error occurred during the dat

extraction.

11: An error occurred during index

creation or the tables mapped from this

data set do not have an index defined.

12: The data set is using AA Values as

keys, and the AA Values are no longer

valid because the data set has been

reorganized.

31: The data set must be reorganized and

the redefine or the Administrative

Console's Customize command has

created scripts to make the relational

database table match the DMSII data set.

You must run the reorganize command

in order to run the reorganization scripts

created by the redefine command.

33: The reorganize command failed for

this data set. In this case, you must

manually update the table by trying to fix

the failed script. Then, set ds_mode to 31

and repeat the reorganize command. If

that fails, you must re-clone it.

•

•

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 205

Column name Display Description

host_fmtlevel This column contains the format level as seen

by the host. The value is the update level

received from Databridge Engine in the last

STATEINFO record.

client_fmtlevel FMT This column contains the format level as seen

by the Databridge Client. The value is

determined by the define and redefine

commands. Typically, the host and Client

format levels are the same until a DMSII

reorganization is detected.

recsz_bytes RSZ This column contains the size of the record in

bytes.

parent_strnum P# This column contains the parent structure

number. This column is used for embedded

data set information.

num_children #C This column contains the number of child

structures for the parent structure. This

column is used for embedded data set

information.

base_strnum B# This column contains the base structure

number. If the value in this column is not equal

to the value in the strnum column, this data

set is a remap of the data set whose structure

number is base_strnum.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 206

Column name Display Description

subtype ST This column contains the structure subtype of

the DMSII data set:

Value and Description

0: Standard data set

1: Random data set

2: Ordered data set

3: Unordered data set

4: Global data set

5: Direct data set

6: Compact data set

16: Restart data set

17: Virtual data set

in_sync The in_sync column tracks data sets whose

stateinfo is synchronized with the stateinfo

stored in the Global_DataSet row for the data

source in the DATASETS Client control table.

Global_DataSet is a dummy data set that

holds the common stateinfo for data sets

whose ds_mode is 2. When the Databridge

Client is finished updating, the stateinfo in the

Global_DataSet is copied to all data sets that

need to be updated with the stateinfo. Values

in this column indicate the following:

Value and Description

0: The data set stateinfo is current

1: The data set stateinfo must be

corrected at the end of update processing

to reflect the stateinfo as it is stored in the

Global_DataSet

item_count ICNT The value in this column represents the

number of items in the DMSII data set and is

used by Databridge Engine to detect filler

substitutions and changes in DBGenFormat.

•

•

•

•

•

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 207

Column name Display Description

audit_time6 The value in the audit_time6 column is the

DMSII timestamp, which is a 48-bit quantity. It

is stored as a bigint in all clients except for the

Oracle Client where it is stored as a

number(15). The Client uses this value when it

sends state information (stateinfo) to

Databridge Engine at the beginning of a

process command. The Client does not use

the value in the audit_ts column, as it is not

accurate enough to use in communications

with the Databridge Engine. Instead, the

original DMSII timestamp is used. It is much

more accurate and has a much smaller

granularity than relational database date/time

values.

CAUTION: When you enter values for the

stateinfo, you must set the audit_time6

column to 0 because the Databridge Engine

uses this value to detect DMSII rollbacks. If

the value of the timestamp is 0, Databridge

Engine bypasses this test. If using the

Administrative Console this is automatically

done.

host_info The information in the host_info column is

provided by the Databridge Engine during data

extraction. It enables the Databridge Client to

recover fixups if the command is aborted. This

information is stored as a bigint in all clients

except for the Oracle Client where it is stored

as a number(15).

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 208

ds_options OP The following bits (which can be set through

customization user scripts or by using the

Administrative Console's Customize

command) control how data sets are mapped:

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 209

Bit and Description

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 210

1: DSOPT_Use_bi_ai - This bit is set by the

define command for data sets that have

OCCURS clauses that were not flattened

when the configuration file parameter

optimize_updates was set to True. This

bit causes the program to request that the

Databridge Engine send all updates the

data set, involving a key change, as BI/AI

pairs. You can set this bit to 0 via user

scripts if you want to disable optimization

of updates for this data set.

2: DSOPT_No_Loader - This bit causes the

Databridge Client not to use the bulk

loader during the data extraction phase of

this data set. It is effectively a localized

form of the /s option (which applies to

all data sets).

4: DSOPT_No_StoredProcs – This bit

causes the Databridge Client not to use

stored procedures when doing updates.

Updates still use host variables, but

instead of generating a stored procedure

call, the Client generates the actual SQL

statement to do the update.

8: DSOPT_Save_Updates - This bit causes

the Databridge Client to generate history

tables for all tables that are mapped from

the data set.

To determine whether the history tables

are populated with clone data only or

clone and update data, see history_tables.

16: DSOPT_Include_AA - This bit is

deprecated and should not be used to

force the Client to use AA Values (RSNs)

as the source for the index. Use the bit

DSOPT_Use_AA_Only instead.

32: DSOPT_Ignore_Dups - When set, this

bit has exactly the same effect as the

configuration parameter

suppress_dup_warnings , except that it

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 211

only applies to the individual data sets for

which it is set.

64: DSOPT_Select_Only - This bit inhibits

the creation of tables and stored

procedures for the data set. It is used for

data sets that provide input to virtual data

sets and are not otherwise mapped to any

tables.

128: DSOPT_Keep_Null_Alpha_Keys - This

bit indicates that the program should treat

NULL alpha keys as blanks instead of

discarding such records.

256: DSOPT_Supp_New_Columns - This

bit, which is initially set to reflect the value

of the suppress_new_columns parameter

for the corresponding data set, can be

modified via user scripts or the

Administrative Console's Customize

command. The redefine command uses

this bit when determining how to handle

new columns.

512: DSOPT_MultiInput - When the

automate_virtuals and

miser_database parameters are enabled,

this bit indicates that data for the virtual

data set comes from more than one real

data set.

When this bit is set, the Client tests the

res_flag column (identified by a

dms_subtype value of 255) before

executing the stored procedure

i_tablename. If the flag is set, the insert is

done normally; otherwise, the stored

procedure r_tablename is called to update

the res_flag . If the update fails, an insert

is performed instead.

1024: DSOPT_MultiSource - This bit

indicates that the tables generated from

the data set get their input from more than

one data source and ensures that the

Databridge Client doesn't drop the tables.

The Databridge Client uses the cleanup

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 212

scripts, which it generates for such tables,

to remove the records that belong to the

data source. The most common use of

this option is to add DMSII data to a set of

tables whose data comes from some

other source.

2048: DSOPT_MergedTables - This bit

allows the Databridge Client to replicate

multiple DMSII databases, which have the

same layout, into a single relational

database. Each data source is given a

unique ID and a unique prefix (in the

data_source_id column of the

corresponding DATASOURCES table

entries) that the program uses when it

constructs the merged tables (though the

stored procedures for each data source

are separate). This prefix serves as an

alias to the actual table.

These tables cannot be dropped during a

DMSII reorganization. They must be

altered in such a way that they can

continue to be reused.

NOTE: This bit must be used with the

DSOPT_MultiSource bit.

4096: DSOPT_CheckKeyChanges - This bit

represents the value of the

KEYCHANGEOK attribute of the DMSII

SET used as an index for the tables. It is a

copy of the DSFLG_KeyChg_Allowed bit in

the misc_flags column of the DATASETS

table. This bit is used to determine

whether the Client needs to register the

keys that are being used as the index with

the Databridge Engine. This causes the

Databridge Engine to compare the values

in the before and after images to

determine if any of the keys have

changed. If they haven't changed, the

Databridge Engine sends the update to the

Client as a MODIFY record. If they have

changed, it sends the update to the Client

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 213

as a BI/AI pair, which enables the Client to

delete the old record and insert the new

one when a key change occurs.

8192: DSOPT_HistoryOnly - Causes the

define and redefine commands to

generate only history tables for the data

set in question. This makes it possible to

generate history tables for data sets that

cannot be tracked because they lack a

unique index. This bit implements the

parameter history_tables=2 for

individual data sets. See history_tables.

NOTE: If you set this bit, you must also set

bit 8 (DSOPT_Save_Updates).

16,384: DSOPT_Use_AA_Only - This bit

causes the define and redefine

commands to use AA Values or RSNs as

the index, even if the data set has a SET

that qualifies for use as an index. This bit

overrides the DSOPT_Include_AA bit,

which has been deprecated.

32,768: DSOPT_Clrdup_Recs - This bit

determines whether the Client runs the

script script.clrduprecs.dataset_name

when the creation of an index fails at the

end of the data extraction phase. You can

customize this bit.

65,536: DSOPT_Split_Vrfmt_ds - This bit

causes the define and redefine

commands to split variable format data

set records (of types other than 0) into

two parts. The fixed part is placed in the

base table, which normally holds only type

0 records. The variable part is placed in

the secondary table name

<ds_name>_type<nn> after the keys, which

must also be included.

131,072: DSOPT_ExtCols_Set – This bit

indicates that the external_columns

column has been customized by the

Administrative Console's Customize

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 214

command or by a user script. You must

set this bit whenever you change the value

of external_columns for a data set.

Otherwise, the Client Configurator won't

retain your change.

262,144: DSOPT_SetNameChange – This

bit indicates that the set_name was

changed to “user_set”. The Client sets this

bit when the user defines a composite key

using the Client Configurator. Its only

purpose is to ensure that this change will

be remembered.

524,288: DSOPT_Optimize_4_CDC – The

initial value of this bit comes from the

parameter minimize_col_updates . It

causes the Client to create update

statements that only assign values to

columns whose values are changed. In

place of stored procedures, pure SQL is

used without the use of host variables.

This significantly slows the Client’s update

speed, but the amount of replicated data

sent to the remote database (SQL Server

and Oracle only) is significantly less,

which speeds up the overall process.

1,048,576: DSOPT_Item_Pref_Set – The

item_name_prefix column was assigned a

value externally. When this column is

assigned a value using the Client

Configurator, this bit is used to indicate

that the prefix should be preserved when

redefining the data set or running the

Administrative Console's Customize

command

2,097,152: DSOPT_Clone_First – This bit

is now deprecated. The

extract_priority column provides the

ability to control the order in which data

sets are extracted.

4,194,304: DSOPT_Internal_Clone - This

bit allows the user to customize the use of

the configuration parameter

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 215

Column name Display Description

use_internal_clone on a data set by

data set basis. The initial value of the bit

is derived from the configuration

parameter use_internal_clone .

8,388,608: DSOPT_FilteredTable - This bit

is set by the makefilter utility to indicate

that the data set has secondary tables

which have filters.

16,777,216: DSOPT_UseBcp - This bit

reflects the value of the configuration

parameter use_bcp . It can be overridden

using customization or user scripts. When

this bit is set, the Client uses the SQL

Server bcp utility to load all the tables

associated with this data set during data

extraction. When this bit is not set, the

loads use the BCP API.

33,554,432 DSOPT_Active_Set - Used by

the Administrative Console support code

to indicate the data set's active column's

value was changed.

IMPORTANT: Do not change this bit, as it

will cause the Client not to operate

correctly.

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 216

changes These bits are used by the redefine and the

Administrative Console's Customize

command to indicate the changes that the

command detected.

Bit and Description

0: Description

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries

before this one were removed.

8: CHG_del_after - One or more entries

after this one were removed.

16: CHG_format_level - The data set’s

format level changed (that is, a DMSII

structural reorganization that affects this

data set has occurred).

32: CHG_item_count - The data set’s item

count has changed (that is, a filler

substitution reorganization has occurred).

64: CHG_user_change - There were user

changes to the DMS_ITEMS or the

DATAITEMS tables (that is, the layout has

changed) as a result of actions by the user

rather than a DMSII reorganization.

128: CHG_links_change - DMSII links

changed for the data set.

256: CHG_AA_values_changed - This bit

indicates that the data sets AA Values are

no longer valid. The bit is set by the

redefine or the Administrative Console's

Customize command but is otherwise not

used by the Client.

1024: CHG_deleted - The item was

deleted.

2048: CHG_SP_Change - This bit indicates

that the stored procedures for the data set

need refreshing.

•

•

•

•

•

•

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 217

status_bits SB The following bits are used by this column:

Bit and Description

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 218

1: Description

1: DS_Needs_Mapping - This bit indicates

that the data set has not been mapped. All

data sets that have their corresponding

active column set to 0 in the data set

selection script

script.user_datasets.datasource also

have this bit set. If you decide to clone

such a data set, you must set the active

column to 1 and run a redefine or the

Administrative Console's Customize

command to perform the mapping.

2: DS_Needs_Generating - This bit

indicates to the generate command that

the scripts for the data set need to be

generated. Note that the generate

command only generates scripts for data

sets that have this bit set. The define ,

redefine and the Administrative

Console's Customize command

automatically set this bit.

4: DS_Needs_Remapping - This bit forces

the redefine or the Administrative

Console's Customize command to refresh

the mapping. After you make changes to

the data table user_define customization

scripts, you may want to set this bit before

you execute a redefine command.

8: DS_Needs_Redefining - This bit is

automatically set by the process and

clone commands when Databridge

Engine detects a structural reorganization

or a filler substitution for the data set. You

can set this bit to force the redefine

command to refresh the DMSII layout.

16: reserved

32: reserved

64: This bit indicates that the AA Values

are invalid. Do not modify this value.

•

•

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 219

Column name Display Description

128: This bit indicates that the index

creation failed. Do not modify this value.

256: This bit indicates that the data set is

in fixup mode. Do not modify this value.

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 220

misc_flags MISC This column contains an integer that holds a

series of flags set by Databridge to reflect

some characteristics of the individual data

sets.

NOTE: Do not change these bits.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 221

Bit and Description

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 222

1-8: Reserved. These bits are set by the

Databridge Engine.

16: DSFLG_Links - This flag, set by the

Databridge Engine in response to a

DB_DataSets remote procedure call (RPC),

indicates that the data set has DMSII links

to other data sets.

32: DSFLG_Altered - This flag, set by the

Databridge Engine in response to a

DB_DataSets RPC, indicates that the data

set was altered by the support library.

64: DSFLG_Static_AA - This flag, set by the

Databridge Engine in response to a

DB_DataSets RPC, indicates that the

Databridge Engine is using RSNs (record

serial numbers) in place of AA Values.

RSNs are only available in a DMSII XE

system where each record in a data set is

assigned a unique serial number. Using

the RSN in place of AA Values eliminates

the need to re-clone tables after a DMSII

garbage collection reorganization.

128: DSFLG_Valid_AA - This flag, set by

the Databridge Engine in response to a

DB_DataSets RPC, indicates that the data

set has valid AA Values. Not all data sets

have valid AA Values. For details, see

Composite Keys.

NOTE: This bit does not apply to RSNs,

which are always valid; it applies to the AA

Values.

256: DSFLG_Has_Occurs - This flag

indicates that the data set contains items

with unflattened OCCURS clauses. The

program uses this bit in conjunction with

the optimize_updates parameter to

determine whether the DSOPT_Use_bi_ai

bit in the ds_options column should be

set. The DSOPT_Use_bi_ai bit can be reset

by the user to prevent the use of before/

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 223

after images for data sets where this

action offers no significant performance

improvements (for example, an OCCURS 2

TIMES clause is probably not worth

optimizing).

512: DSFLG_Uses_AA_values - This flag

indicates that the data set uses AA Values

as keys. The program uses this flag to

avoid having to look at the table's columns

to determine whether AA Values are used.

NOTE: This bit is not set when the

Databridge Client uses RSNs instead of

AA Values.

1024: DSFLG_Has_Links - This flag

indicates that the data set has active

DMSII links. This bit can be zero if all the

links have their active columns set to 0

in DMS_ITEMS.

2048: DSFLG_Is_LinkedTo - This flag

indicates that one or more data sets have

active DMSII links that use AA Values as

foreign keys to point to this data set. The

program uses this information to force the

AA Values to be used as the keys for the

tables derived from this data set.

4096: DSFLG_Occ_Depends - This flag

indicates that the data set contains items

with unflattened OCCURS DEPENDING ON

clauses. The program uses this bit to

request that the Databridge Engine send

updates to this data set as before/after

images, regardless of the value of

DSOPT_Use_bi_ai bit in ds_options for

this data set.

8192: DSFLG_Uses_Parent_AA - This flag

indicates that the data set uses Parent_AA

Values as foreign keys. The program uses

this to avoid having to look at the table

columns to determine if the Parent_AA

Values are used.

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 224

16,384: DSFLG_Data_Extracted - This flag

indicates that the data set was

successfully cloned. The program uses

this flag to determine if a table is being re-

cloned.

NOTE: This information is vital when

preserving deleted records.

32,768: DSFLG_Key_Chg_Allowed - This

flag represents the value of the

KEYCHANGEOK attribute of the DMSII

SET used as an index for the tables. This

value is copied to the

DSOPT_CheckKeyChanges bit (in the

ds_options column of this table). You

can modify the DSOPT_CheckKeyChanges

bit via user scripts or the Administrative

Console's Customize command.

65,536: DSFLG_Data_Dirty - This flag is

only meaningful for virtual data sets that

get data from more than one DMSII data

set. It indicates that phase two of the data

extraction process is under way. This flag

indicates that the appropriate cleanup

script must be invoked when the table is

re-cloned (such tables can be partially re-

cloned).

NOTE: This information is vital to being

able to partially re-clone such tables.

131,072: DSFLG_MiserDateKey - This flag

indicates the index used for the data set

contains a Miser date that allow nulls.

262,144: DSFLG_VLinks - This flag

indicates that the virtual data set has links

524,288: DSFLG_HasVisibleRSN - This

flag indicates that the data set contains a

data item of type REAL that holds the

value of the RSN.

•

•

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 225

Column name Display Description

1,048,576: DSFLG_VarFmt_DataSet - This

flag indicates that this data set is a

variable format data set.

2,097,152: DSFLG_Valid_Parent_AA - This

flag indicates that the parent structure of

an embedded data set has a valid AA

Value.

4,194,304: DSFLG_Phase1_Done - This

flag is used in the data extraction row

verification for MISER database tables

that get cloned in two phases. It indicates

that phase 1 of the data extraction has

been completed and instructs the Client to

get the initial rows count so that the row

verification works correctly in the case

where the Client get aborted before phase

of the data extraction for such tables

completes.

8,388,608: DSFLG_non_AA_Links: This bit

indicates that the data set has links that

are not AA Values.

max_records MAXRECS This column contains an integer that holds the

maximum row count of the data set as

estimated by the Databridge Engine. This is

the exact number that appears in DBLister

reports. The Databridge Engine computes this

estimate by dividing the file size by the record

size. This value is very inaccurate in the case

of variable-format data sets because it is

impossible to determine how many records of

a given type exist in the data set without doing

a full scan of the data set.

•

•

•

•

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 226

Column name Display Description

virtual_ds_num VDS This column contains an integer value that

holds the structure number of the virtual data

set to which the DMSII data set is linked. This

column is used by the parent data set to point

to the associated virtual data set. When more

than one virtual data set is derived from a real

data set, these data sets are chained together

using this column.

real_ds_num RDS/type

NOTE: This display

name is combined

with the

real_ds_rectype

value.

This column contains an integer that holds the

structure number of the primary real data set

from which the virtual data set is derived.

When more than one virtual data set is derived

from a real data set, these data sets all point

back to the real data set through their

real_ds_num column. These real data sets

are chained together, starting with the primary

data set, by using the otherwise unused

real_ds_num columns of the actual data sets.

real_ds_rectype The integer in this column represents the

record type of the variable-format data set.

This information serves to further identify a

variable-format data set when it is cloned as a

virtual. In addition, the variable-format data set

is linked to the virtual data set through the

virtual_ds_num and real_ds_num columns.

external_columns EXTC This column contains an integer value that

determines which predefined non-DMSII

columns are automatically added to this data

set. For a description of these bits, see

Numeric Date and Time in Non-Contiguous

Columns.

ds_user_bmask This column, which shadows the ds_options

column, contains a bit mask that represents

the columns in ds_options that were

customized. This column is used by the

redefine or the Administrative Console's

Customize command to restore the portion of

ds_options that has been customized while

leaving the remaining bits intact.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 227

Column name Display Description

links_sz_bytes This column contains the size of the link data,

in bytes. Link data is no longer stored in the

actual record, instead the record is extended

by the size of the link data where the link data

is placed during data extraction. These areas

are not necessarily contiguous in the DMSII

record; the DMSII offsets have been adjusted

to make them to look contiguous in the Client.

links_offset This column is used by the Client to determine

where the link area for the record starts.

vp_link_offset Variable format data sets have links in both

the fixed part and the variable part, causing

the Client to receive two LINK_AI records. This

offset value indicates where the second part

of the links area starts. By comparing the

offset received from the Engine, the Client can

tell where the link data should be stored.

item_name_prefix This column is used by the Client to

automatically strip fixed size prefixes from

data item names. One frequently finds DMSII

databases where the data set names (or a

shortened form of these names) is used as a

prefix for every item name. The Client has the

ability to get rid of these prefixes without

requiring any complex actions other than

putting the prefix to be stripped in this column,

without the trailing dash.

rows_extracted This column is used by the Client to save the

number of DMSII records that were received

during the data extraction phase.

client_discards This column, which is currently only used by

the Flat File Client, is used to record the

number of records discarded during data

extraction phase.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 228

Column name Display Description

extract_priority This column is used to affect the order in

which data sets are extracted. The data

extraction is now ordered by

extract_priority (highest value first) and

strnum (lowest value first). By setting this

column to a positive number you can change

the order in which data sets are extracted.

12.2 DATASETS Client Control Table

12.2 DATASETS Client Control Table 229

12.3 DATATABLES Client Control Table

The DATATABLES Client control table is used primarily to disable cloning for one or more of the

secondary tables mapped from one DMSII data set. For example, a DMSII data set with several

OCCURS items generates multiple relational database tables. If you do not want to clone particular

secondary tables, use the active column in the DATATABLES Client control table to turn off cloning

for those secondary tables.

The DATATABLES Client control table contains the entries for each of the relational database tables

mapped from the DMSII data sets listed in the DATASETS table. These entries include relational

database information rather than DMSII information. For example, the DMSII data set name (in the

column named dataset_name) is listed along with the corresponding relational database table

name (in the column named table_name). Since a data set can be mapped to several relational

database tables (such as when a data set contains OCCURS items), the prim_table column is

used to identify the primary table.

The following table contains descriptions of each column in the DATATABLES Client control table.

Included is the abbreviated column name that the display command or the Administrative

Console's Log Control Tables command that can be found in the data source's Advanced menu.

Column name Display Description

dflt_options This column is used to keep track of the initial

state of the ds_options bits before any

customizations are performed. It allows the

Client to clear the ds_user_bmask bits that

were set by customizations that were later

undone.

Column Display Description

data_source This column contains the name of the SOURCE

name that identifies the DMSII database from

which this data was taken. The data source name

is defined when you run a define command. It

must match the data source name in the DBServer

control file on the host.

dataset_name ds This column contains the name of the DMSII data

set from which this table was mapped.

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 230

Column Display Description

table_name table name This column contains the name of the table as it

appears in the relational database. DMSII data sets

correspond to relational tables.

index_name index This column contains the name of the relational

database index that is created for fast access to

this table. If the table has no index, this column is

blank. This index is created via the Databridge

Client script named script.index.tablename .

The value in this column is the index name used in

the CREATE INDEX SQL statement.

rectype /type This column, which is zero for all tables mapped

from fixed-format data sets, contains the record

type of a DMSII variable-format data set.

Record Type and Description

0: For a variable-format data set, this

represents records that have no variable part.

1-254: Represents the variable-format record

type as defined in the DASDL.

occurs_level occ This column contains the nesting level of OCCURS

in the DMSII database. For example, an OCCURS

table created from another OCCURS table has an

occurs_level of 2. The original OCCURS table has

an occurs_level of 1.

NOTE: The Client does not support occurs levels

that are greater than 2.

table_number T# This number is used by the SQLLoader and bcp

scripts. The Databridge Client assigns consecutive

numbers to the tables it defines for a data source

during the define command. Each table within a

data source has a unique table number, and the

numbers begin with 1. The redefine command and

the Administrative Console's Customize* command

assign numbers to new tables starting with the

highest table number plus 1. Existing tables get

their old table numbers restored.

•

•

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 231

Column Display Description

active A The value of this column determines whether or

not a table is cloned during a process or clone

command. The default is 1, which indicates that

the table will be cloned. If you change this value to

0, the table is not cloned. To disable cloning for an

entire set of tables related to a DMSII data set, see

DATASETS Client Control Table.

create_suffix suf The create_suffix column enables you to

specify a value that identifies the index of the

create_suffix string defined in the configuration

file. For more information, see create_table_suffix

in Generate Command Parameters.

index_suffix The index_suffix column enables you to specify

a value that identifies the index of the

index_suffix string defined in the configuration

file. For more information, see create_index_ suffix

in Generate Command Parameters.

original_name original_name The Databridge Client saves the original name of

the renamed tables in this column so they can be

identified during redefine and the Administrative

Console's Customize commands.

prim_table P This column indicates whether or not this is a

primary table.

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 232

dt_options OP The dt_options column uses the following bits:

Bit and Description

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 233

1: DTOPT_Table_Renamed - The table was

renamed by the user. This bit is used by the

Client configurator to preserve the name

change.

2: DTOPT_Index_Renamed - The table’s index

was renamed by the user. This bit is used by

the Client configurator to preserve the name

change.

4: DTOPT_User_Table - This table was created

by the user. Not supported in Databridge Client

7.0.

8: DTOPT_No_aux_stmts - This option inhibits

the use of auxiliary statements for a given

table during a process or clone command

when the configuration parameter aux_stmts

(default 100) is not zero.

16: DTOPT_Occ_Depends - This option,

automatically set by the Client during a

define or a redefine command or the

Administrative Console's Customize

command, indicates that an OCCURS table

(occurs_level > 0) contains an item with an

OCCURS DEPENDING ON clause. This bit is

used during update processing to properly

handle cases where the value of the

dms_depends_num item of an OCCURS

DEPENDING ON clause changes.

32: DTOPT_All_Keys - Indicates that all

columns in the table are keys. Do not change

this value.

64: DTOPT_No_Unique_Key - Indicates that the

table does not have a unique index and

therefore it cannot be tracked unless a

composite key is created. Do not change this

value.

128: DTOPT_Preserve_Deletes - Do not change

this value.

256: DTOPT_HistoryTable - This option, which

is set by the define and redefine

commands or the Administrative Console's

•

•

•

•

•

•

•

•

•

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 234

Customize command, indicates to the Client

that this table is a history table and that all

records should be treated as inserts into the

history table.

CAUTION: Clearing this bit can corrupt history

tables because it causes the Client to treat

records as creates, deletes, and modifies

instead of inserts.

512: DTOPT_UserSP - Indicates that the table

uses the stored procedure m_tablename to

perform customized functions instead of using

the procedure i_tablename for an insert. This

procedure is used to merge records rather than

insert them into the table.

This bit is used in Miser databases.

1024: DTOPT_Clustered_Index - This option,

which only applies to the SQL Server Client,

tells the Databridge Client to create a clustered

index for this table. You can globally set this

option via the use_clustered_index

parameter. See use_clustered_index.

2048: DTOPT_Primary_Key - This option tells

the Databridge Client to create a primary key

(instead of a unique index) for this table. When

creating the script to create a primary key

constraint, the Microsoft SQL Server Client

uses the value of the DTOPT_Clustered_Index

to determine whether to add the

NONCLUSTERED clause to the SQL. If this

second option bit is not set, the

NONCLUSTERED clause is added. You can set

this option globally via the use_primary_key

parameter.

4096: DTOPT_Delete_Seqno - This option is

automatically set by the define or redefine

command or the Administrative Console's

Customize command when the delete_seqno

mask is set in the default_user_columns

parameter value.

•

•

•

•

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 235

8192: DTOPT_Table_Split - This option is

automatically set by the define or redefine

command or the Administrative Console's

Customize command when the table is part of

a split table. Do not modify this value.

16,384: DTOPT_ConcatItems - This bit is

automatically set by the define or redefine

command orthe Administrative Console's

Customize command; it indicates that the

table contains concatenated items. Do not

modify this bit.

32,768: DTOPT_Clob_in_Table - This bit, which

is only used by the Oracle Client, indicates that

the table contains an item whose data type is

CLOB. Do not modify this bit.

65,536: DTOPT_OrigNameFixed - Internal use

only - do not modify. This bit is used to convey

whether the original table name was ever

changed.

131,072: DTOPT_ContainsLinks - Do not

change this value.

266,144: DTOPT_LinksOnly - Do not change

this value.

524,288: DTOPT_PreserveAllDel - Do not

change this value.

1,048,576: DTOPT_UseBrackets - This bit,

which only applies to the SQL Server Client, is

set by the define and redefine commands

to indicate that table in question has a name

that is a SQL Server reserved word. Such

names must be enclosed in square bracket in

all SQL statement to avoid getting SQL errors.

IMPORTANT: Do not change this bit, as it will

cause the Client not to operate correctly.

2,097,152: DTOPT_HasOccurs - This bit is set

by the define and redefine commands and

the Administrative Console's Customize

command to indicate that the table is an

OCCURS table. The dbfixup utility sets it for all

such tables during an upgrade, as it was not

•

•

•

•

•

•

•

•

•

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 236

Column Display Description

used in older releases. This bit is critical to

proper Client operations when you have items

with OCCURS clauses that are not flattened.

This was necessary to distinguish such tables

from tables that result from flattening an

OCCURS clause into a secondary tables (both

these tables have a non-zero value in the

occurs_level column).

IMPORTANT: Do not change this bit, as it will

cause the Client not to operate correctly.

NOTE: If any of the last 5 bits gets accidentally

changed, run a redefine command with the -R

option to correct this situation. If using the

Administrative Console's Customize command

Data Source > Advanced > Redefine (with

options) then click on the check box for the -R

option.

4,194,304: DTOPT_LoadPending - This bit is

set by the Client when doing multi-threaded

extracts upon receiving a State Info record

from the Databridge Engine indicating that the

data extraction is complete. This bit stays set

until the EOF buffer that is queued for the

corresponding update thread is processed.

8,388,608 - 33,554,432: Reserved

67,108,864: DTOPT_TableAltered - This bit

indicates that a create table user script was

run. In all likelihood this means that the table

was altered by the user script and may contain

columns that the Client does not know about.

134,217,728: DTOPT_TableHasLinks: This bit

indicates that the table has links.

•

•

•

•

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 237

Column Display Description

dt_user_bmask This column, which shadows the dt_options

column, contains a bit mask that represent

customized columns in dt_options . This column

is used by the redefine and the Administrative

Console's Customize commands to restore the

portion of dt_options that has been customized

while leaving the remaining bits intact.

dflt_options This column is used to keep track of the initial

state of the dt_options bits before any

customizations are performed. It allows the Client

to clear the dt_user_bmask bit that were set by

customizations that were later undone.

12.3 DATATABLES Client Control Table

12.3 DATATABLES Client Control Table 238

12.4 DMS_ITEMS Client Control Table

The DMS_ITEMS table contains entries for each DMSII item that is visible to the Client after column

filtering in the Support Library on the host. The DMS_ITEMS table also contains the name of the

DMSII data set of which the item is a member, as well as other DMSII layout information.

The following table contains descriptions of each column in the DMS_ITEMS Client control table.

Included is the abbreviated column name that the display command writes to the log file.

Column Display Description

row_count This column contains the number of rows in the

table. It is set after the data extraction is

completed when cloning the associated data set.

During update processing the Client keeps track of

the changes in row counts for tables. To reduce the

overhead associated with constantly updating

DATATABLES, it only updates this table after an

audit file switch and at the end of the Client run.

NOTE: Do not kill the Client or the service/daemon,

as doing so will invalidate this column. If this

happens you can ran a rowcounts command to

refresh the values in this column.

Column Display Description

data_source This column contains the name of the data

source that identifies the DMSII database from

which this data was taken.

dataset_name ds This column contains the name of the data set in

the DMSII database to which this DMSII item

belongs.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 239

Column Display Description

rectype /type This column, which is zero for all tables mapped

from fixed-format data sets, contains the record

type of a DMSII variable-format data set. For

more information on variable-format data sets,

see Variable-Format Data Sets.

Record Type and Description

0: For a variable-format data set, this

represents records that have no variable part.

1-254: Represents the variable-format record

type as defined in the DASDL.

dms_item_name item_name This column contains the name of the data item

for the listed data set. This column is limited to

128 characters.

active A This column specifies whether or not the item will

be mapped. A value of 1 (default) indicates that

the item will be mapped (if this is possible) to an

entry in the DATAITEMS Client control table. A

value of 0 indicates that the item will not be

mapped. The define and redefine commands

and the Administrative Console's Customize

command change the value in the active

column to 0 for the global database unless you

set the active column to True in the

corresponding entry in the DATASETS control

table.

item_key K This column contains a numeric value which

specifies the order of the item in the DMSII set (1,

2, 3, and so on). If the item is not a key, this value

is 0.

NOTE: You can edit this column to create a

composite key or change the order of the keys in

the index. See Creating Indexes for Tables.

dms_item_number # This column contains the item number, which

indicates the relative position of the item in the

original DMSII record.

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 240

Column Display Description

dms_parent_item P# This column contains the dms_item_number of

the parent item for an item that is a member of a

GROUP item. For example, if dms_item_number

12 is a DMSII GROUP containing items 13, 14, 15,

and 16, the dms_parent_item of the last four

items will be 12.

dms_item_type T Values 10, 14, 21, 27, 29, and 30 through 37 are

DMSII data types.

This column indicates the type of data item, as

follows:

Type and Description

10: DMSII link

14: Image (alpha data to be stored as binary)

21: variable-format record type

27: Field of Booleans

29: Group

30: Boolean

31: Field

32: Alpha

33: Number (n)

34: Number (n,m)

35: Real (n)

35: Real (n)

36: Real (n,m)

37: Real

dms_decl_length DL This column contains the user-declared length of

the item in the DMSII DASDL. This length changes

according to the data item type selected (alpha,

boolean, field, number, or real).

dms_scale S This column contains the numeric scaling factor,

which is the number of digits to the right of the

decimal point, if any.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 241

Column Display Description

dms_offset O This column contains the item’s offset value

which indicates where, within the DMSII record,

this item begins. This is the location Databridge

uses to extract data from DMSII records. For

example, in a 400-byte record with an offset of

200, the first 100 bytes are used by other items.

This number is in digit size, which is equal to one-

half of a byte (four bits).

dms_length L This number is the size, in digits, of the data. Digit

size is equal to one-half of a byte (four bits).

dms_signed s This column contains a boolean value specifying

whether the item is signed or unsigned as

follows: 0 = unsigned and 1 = signed.

dms_num_occurs #O This column indicates the number of times this

data item occurs (is present) within the data set.

If the item does not have an OCCURS clause, this

value is 0.

dms_num_dims #D This column contains the number of dimensions

for the data item, which is the number of

subscripts required to access the item.

dms_depends_num dep This column contains the dms_item_number

value of the item that specifies the number of

occurrences in use for an item with an OCCURS

DEPENDING ON clause.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 242

Column Display Description

dms_subtype ST For items mapped to relational database date

types, this column contains the format of the date

as it is stored in the DMSII database. These are

not actual DMSII data types; rather, they represent

the formats of dates that might be stored as a

DMSII GROUP, a NUMBER, or an ALPHA item. For

non-DMSII columns this column identifies the

type of the non-DMSII column. For split data

items, this column determines the offset of the

split. This column is also used to identify

columns in tables that pose unique

characteristics. For example, MISER databases

use this column to identify special columns in

history virtual data sets which indicate if this is a

resident history record.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 243

di_options OPTIONS The following bits, which can be set through data

set mapping customization user scripts or the

Administrative Console's Customize command,

enable you to control how the item is mapped.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 244

Bit and Description

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 245

1: DIOPT_Flatten_Occurs - This bit specifies

that the OCCURS clause of the item should

be flattened; it is ignored if the item does not

have an OCCURS clause.

2: DIOPT_Clone_as_Date - This bit specifies

that the item should be mapped to a

relational database short date

(smalldatetime on SQL Server and date in

Oracle). The format for the encoded date is

specified in the dms_subtype column. If you

set this bit at the same time as bit 128, bit

128 takes precedence.

4: DIOPT_Split_Item - This bit indicates that

the item should be split into smaller chunks if

it cannot be accommodated using a

relational database data type (for example,

ALPHA(4000) in Oracle). The default is to

truncate the item.

8: Reserved

16: DIOPT_Clone_as_Tribit - This bit is used

in Miser databases to map DMSII number(1)

items to a field of three Booleans.

32: DIOPT_Clone_as_Binary - For ALPHA

items, this bit indicates that items should be

mapped to a relational database binary data

type, rather than a character type. Items too

large to fit in the corresponding binary type

are truncated, unless the DIOPT_Split_Item

bit is also set, which then maps the item to

multiple binary type columns.

For REAL items that contain visible RSNs,

this bit indicates that the items should be

mapped to a relational database binary data

type -- BINARY(6) for SQL Server and RAW(6)

for Oracle.

64: DIOPT_Xlate_Binary - When this bit is set,

EBCDIC data is translated to ASCII before

being stored as binary.

NOTE: This bit only affects the program when

•

•

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 246

the DIOPT_Clone_as_Binary bit (32) is also

set.

128: DIOPT_Use_LongDate - This bit, which

applies to Microsoft SQL Server only, tells the

Client to use a datetime data type instead of

smalldatetime for the corresponding column

in the relational database.

If the you are cloning timestamps that

include seconds as explained in Decoding

DMSII Date/Times, set this bit.

256: DIOPT_Clone_as_Time - Indicates to the

Client that the DMSII items should be

interpreted as a time and stored on the

relational database as an int in the SQL Client

or number(10) in Oracle Client in the form

hhmnss except for ticks, which are stored in

the form ddddhhmnss.

512: DIOPT_Numeric_Data - This bit, which

applies to DMSII ALPHA types only, indicates

to the Client that the item contains numeric

data and should be mapped to a numeric

type on the relational database.

1024: DIOPT_AlphaNumData - This bit, which

applies to DMSII NUMBER types only,

indicates to the Client that the item should be

mapped to a character type on the relational

database.

2048: DIOPT_VarFormat_Date - This bit

specifies that the item should be mapped to

a relational database date (smalldatetime,

datetime, datatime2 or date on SQL Server

and date on Oracle), using a unique encoding

scheme. This bit requires that you also set

DIOPT_Clone_as_Date (2).

The format for the encoded date is specified

in the dms_subtype column, using the

instructions for Unique DMSII Date/Time

Formats Represented as Alpha or Number

Items.

If you use the SQL Server Client and are

cloning a value for seconds (hexadecimal

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 247

value 7) from the host, also set bit 128 to get

a data type of datatime.

4096: DIOPT_FlatSecondary - This bit

specifies whether occurring items in the

secondary table are flattened into a single

row, or placed in multiple rows for each

parent record.

8192: DIOPT_Clone_as_RSN - This bit

indicates whether the item should be treated

as an RSN. This bit only applies to items of

type REAL. When this bit is set, the Client

treats the A-Series word (represented as a

REAL) in the same way it treats AA Values

and RSNs supplied by the Engine. In this

case, REAL items are mapped to a column of

type CHAR(12) in the relational database.

Note that the configuration file parameter

use_binary_aa has no effect on such items.

Instead, the DIOPT_Clone_as_Binary bit in

di_options must be used to cause this RSN

to map to a column of type BINARY(6) in the

relational database.

16,384: DIOPT_Clone_as_Number - This bit

causes columns containing RSNs to be

handled as numeric AA Values.

32,768: DIOPT_Clone_as_DateOnly - This bit

causes the define and redefine

commands or the Administrative Console's

Customize command to use the data type of

date instead of smalldatetime for dates that

have no time values. This bit is ignored if

either the bit DIOPT_UseLongDate or the bit

DIOPT_UseLongDate2 is set in di_options .

65,536: DIOPT_Use_LongDate2 - This bit

causes the define , redefine and the

Administrative Console's Customize

commands to use the data type datetime2

instead of smalldatetime. If both this bit and

DIOPT_UseLongDate are set, this bit takes

precedence.

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 248

131,072: DIOPT_Use_Time - If

DIOPT_Clone_as_Time bit is specified, this bit

causes the define , redefine and the

Administrative Console's Customize

commands to use the data type of time

instead of a numeric time type.

262,144: DIOPT_Subtype_Modified – The

Client Configurator uses this bit to mark

items whose dms_subtype column was

modified. This is necessary as the Engine

sets the dms_subtype of some items

automatically. This bit allows the Client to

preserve these values when the data set is

redefined or the Administrative Console's

Customize command is run.

524,288: DIOPT_ResetActive - This bit is

used by the Client Configurator to mark items

whose active column in the DATAITEMS

table is reset by the Client. This is used for

items that need to be included in DATAITEMS

but do not have corresponding columns in

the relational database table. The second

part of a concatenated item is marked with

this bit, as it needs to be present to fetch the

value to be used in the concatenation but it

does not have a corresponding column in the

table.

1,048,576: DIOPT_Split_In_Two – This bit

indicates that the Client should split the item

into two parts using the value in

dms_subtype as the offset of the split. A

NUMBER(14) can thus be mapped to a

NUMBER(2) item and a NUMBER(12) item by

specifying a dms_subtype value of 2.

2,097,152: DIOPT_NumericData2 - This bit

allows the second part of a split item to be

stored as a numeric type.

4,194,304: DIOPT_AlnumData2 - This bit

allows the second part of a split item to be

stored as an alpha type (i.e. CHAR or

VARCHAR).

•

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 249

8,388,608: DIOPT_CloneasNumDate – This

bit indicates that the item should be cloned

as a numeric date.

16,777,216: DIOPT_MergeNeighbors - This

bit indicates that the item should merged

with the neighboring item that follows it.

33,554,432: DIOPT_StripPadChars – This bit

allows numeric data that uses high value

padding to be interpreted as a valid number

by stripping off the trailing pads (i.e. digits

with all bits set to high values).

67,108,864: DIOPT_CollapseGroup - This bit

is used to make the Client treat a GROUP of

items, that are all unsigned NUMBER or

ALPHA, as a single item. For example the

Client would treat a GROUP consisting of 4

NUMBER(2) items as a NUMBER(8) item,

which can then be cloned as a date. The

Administrative Console's Customize

command uses this method to handle dates

that are represented as a GROUP of NUMBER

items.

134,217,728: DIOPT_Clone_as_GUID – This

bit is used to make the SQL Server Client

store an ALPHA(36) item containing a GUID

as a UNIQUEIDENTIFIER data type.

268,435,456: DIOPT_Value_Required - This

bit is set internally to reflect the presence of

the REQUIRED option for the item in the

DASDL.

536,870,912: DIOPT_VF_Keep_Item - This bit

is used in conjunction with the parameter

split_varfmt_ds to force a non-key column

in the fixed part of the record to be preserved

in the variable part tables.

1,073,741,824: DIOPT_Flatten2String - This

bit is used to indicate that an unsigned

NUMBER or an ALPHA item with an OCCURS

clause is to be flattened to a CHAR or

VARCHAR column. The dms_subtype column

determines the format to be used. If the value

•

•

•

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 250

Column Display Description

is 0, fixed format is used. In this case the

Client does not strip leading zeroes from

numbers or trailing spaces from alpha data.

NULL values are represented by blanks. If the

value is non-zero, CSV format is used. In this

case the dms_subtype also represents the

value of the ASCII character to be used as the

delimiter (this is limited to punctuation

characters such as a comma or a

semicolon). Leading zeroes for numeric data

and trailing spaces for alpha data are

stripped and NULL values are represented by

empty fields (i.e. two consecutive delimiters

or a delimiter at the end of the string for the

last column).

dms_concat_num Using this column, the Client supports

concatenating two non-contiguous columns of

the same data type (that is, treat two columns as

one). You can concatenate two ALPHA items, or

two unsigned NUMBER items. You can also use

the Client to store a numeric item as ALPHA and

then use the item in a concatenation. You can

also store an ALPHA item that contains numeric

data as an unsigned NUMBER and concatenate it

with an unsigned number.

Concatenation is also supported for unsigned

numeric columns that represent a date and a

time. The date can be any of the supported date

formats, while the time must be a NUMBER(6)

containing the time as HHMISS. The combined

NUMBER can then be interpreted by the Client as

date/time. For an example of the layout scripts,

see Concatenating Two Items and Cloning the

Result as a Date/Time.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 251

Column Display Description

changes These bits are used by the Client Configurator

(not by the redefine command).

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries

before this one were removed.

8: CHG_del_after - One or more entries after

this one were removed

16: CHG_dms_item_key - This bit indicates

that value in the item_key column of the

entry has changed.

32: CHG_dms_item_type - This bit indicates

that the DMSII data type of the item changed.

64: CHG_dms_decl_length - This bit indicates

that the value in the dms_decl_length

column of the entry has changed.

128: CHG_dms_scale - This bit indicates that

the value in the dms_scale column of the

entry has changed.

256: CHG_dms_signed - This bit indicates

that the value in the dms_signed column of

the entry has changed.

dms_link_ds_num lnk This column holds the structure number of the

data set to which a LINK item points. Thus a

nonzero value in this column identifies a DMSII

LINK. Links that use AA Values have a

dms_item_type value of (10).

di_user_bmask This column, which shadows the di_options

column, contains a bit mask that represents the

bits in di_options that were customized. This

column is used by the redefine command to

restore the portion of di_options that has been

customized while leaving the remaining bits

intact.

•

•

•

•

•

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 252

Column Display Description

redef_item_type This column is used by the Client to redefine a

DMSII GROUP, consisting of items that have the

same data types (e.g. a GROUP of 4 unsigned

NUMBER items), as a single item of the given

type.

redef_decl_len This column is used by the Client to specify the

resulting length when redefining a DMSII GROUP

consisting of items that have the same data

types.

di_options2 The following bits, which can be set through data

set mapping customization user scripts, enable

you to control how the item is mapped.

Bit and Description

1: DIOPT_Item_Masked - This bit specifies

that the item in question is masked in DMSII.

2: DIOPT_Item_Encrypted - This bit specifies

that the item in question is encrypted in

DMSII.

4: DIOPT_Split_Table – This bit forces the

define and redefine and the Administrative

Console's Customize commands to split the

table before mapping this item. This gives

the user more control in handling split tables

when the splitting of the table in the middle

of an OCCUR clause is undesirable.

8: DIOPT_End_Split_TABLE - This bit is used

in conjunction with the DIOPT_Split_Table bit

to make the Client return to the parent table

following a forced split. It must follow an

item with the DIOPT_Split_Table bit set and

there can be only one outstanding split (i.e.

you cannot have two table splits followed by

two end table splits).

•

•

•

•

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 253

Column Display Description

da_user_bmask2 This column, which shadows the di_options2

column, contains a bit mask that represents the

bits in di_options2 that were customized. This

column is used by the redefine and the

Administrative Console's Customize commands

to restore the portion of di_options2 that have

been customized while leaving the remaining bits

intact.

dflt_options This column is used to keep track of the initial

state of the di_options bits before any

customizations are performed. It allows the

Client to clear the di_user_bmask bits that were

set by customizations that were later undone.

12.4 DMS_ITEMS Client Control Table

12.4 DMS_ITEMS Client Control Table 254

12.5 DATAITEMS Client Control Table

This table duplicates the DMSII information in the DMS_ITEMS table and contains the layout

information for the tables in the relational database. This table is not directly linked to the

DATASETS table. Instead, it is linked to the DATATABLES Client control table using the table_name

column as a foreign key.

You can use the DATAITEMS Client control table to specify the data items you do not want to clone

by setting their corresponding active column to 0. However, we recommend that you accomplish

this by setting the active column to 0 in the DMS_ITEMS table. Using the DATAITEMS table can lead

to unnecessary table splits. Unused columns cause the column count and record size

computations to be too high.

If data set mapping is already complete, this table can be temporarily used to disable a new

column after a DMSII reorganization to avoid recloning. (This is done automatically if the

configuration file parameter suppress_new_columns is set to True.)

If you want to disable cloning for every data item in a data set (every column in a table), disable

cloning for the data set instead of disabling cloning for each individual data item. For details, see

DATATABLES Client Control Table.

The following table contains descriptions of each column in the DATAITEMS Client control table.

Included is the abbreviated column name that the display command writes to the log file.

Column Display Description

dflt_options2 This column is used to keep track of the initial

state of the di_options2 bits before any

customizations are performed. It allows the

Client to clear the di_user_bmask2 bits that were

set by customizations that were later undone.

Column Display Description

data_source This column contains the name of the data

source that identifies the DMSII database from

which the data was taken.

table_name table This column contains the name of the table in

the relational database to which this item

belongs.

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 255

Column Display Description

item_number # This column contains an internal number that

gives each item within a table a unique number.

Numbers are assigned consecutively in

increments of 10, starting with 10, making it

easier to change the order of items using data

table customization user scripts.

item_name item_name This column contains the name of the item

(column) in the relational database table.

Typically, this is the same as the lowercase form

of the DMSII item name with all dashes changed

to underscores. To modify, see Appendix D:

Customization Scripts.

active A The value in this column specifies whether or not

this data item will be cloned. The default is 1,

which indicates that the data item will be cloned.

0 indicates that the data item will not be cloned.

The define , redefine and the Administrative

Console's Customize commands change the

value in the active column to 0 if the data set is

the global dataset, unless the active column is

set to true in the corresponding DMS_ITEMS

entry.

NOTE: If the active value for the data set to

which this item belongs is 0 (off), this item will

not be cloned even if its active value is 1 (on).

item_key iK This column contains a numeric value specifying

the order of the item in the DMSII set (10, 20, 30,

and so on). You can modify this column to make

it part of a composite key or change the order of

the keys in the index. For details, see Creating

Indexes for Tables. If the item is not a key, the

value is zero (0).

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 256

Column Display Description

virtual_key VK Do not change this value.

This column contains a boolean value specifying

if this item is a virtual key; however, it is created

only for mapping DMSII items with unflattened

OCCURS clauses. When an item is a virtual key,

the corresponding value for item_key is a

positive number that is one greater than the

item_key value of the last key for the data set.

The virtual key is not a DMSII key -- its value in

the data table is the occurrence number in the

occurs clause (starting at 1).

dms_item_number I# This column contains the item number, which

indicates the relative position of the item in the

original DMSII record.

dms_parent_item P# This column contains the dms_item_number of

the parent item for an item that is a member of a

GROUP item. For example, if dms_item_number

12 is a DMSII GROUP containing items 13, 14, 15,

and 16, the dms_parent_item columns of the

last four items will be 12. This column contains a

copy of the dms_subtype in the DMS_ITEMS

table.

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 257

Column Display Description

dms_item_type TYP For a description of this column, see

"dms_item_type" in DMS_ITEMS Client Control

Table.

In addition to the types defined in DMS_ITEMS,

this column contains the following values:

Type and Description

256: AA Value or RSN, which the Databridge

Client generates using the AA Value or RSN

of the record in the DMSII database as

received from Databridge Engine. You can

tell them apart by looking at the item_name

column, which is my_aa for AA Values and

my_rsn for RSNs.

257: Parent AA, which the Databridge Client

generates using the AA Value of the parent

record of an embedded data set in the DMSII

database as received from Databridge

Engine.

258: External type, which indicates that the

data comes from some place other than the

DMSII database.

dms_decl_length DL This column contains the user-declared length of

the item in the DMSII DASDL. This length

changes according to the data item type selected

(alpha, boolean, field, number, or real).

dms_scale SC This column contains the numeric scaling factor,

which is the number of digits to the right of the

decimal place, if any.

dms_offset OFF This column contains the item’s offset value

which indicates where, within the DMSII record,

this item begins. This is the location Databridge

uses to extract data from DMSII records. For

example, in a 400-byte record with an offset of

200, the first 100 bytes are used by other items.

This number is in digit size, which is equal to one-

half of a byte (four bits).

•

•

•

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 258

Column Display Description

dms_length LEN This number is the digit size of the data. Digit

size is equal to one-half of a byte (four bits).

dms_signed s This column contains a Boolean value specifying

whether the item is signed or unsigned as

follows: 0 = unsigned and 1 = signed.

dms_num_occurs OCC This column indicates the number of times this

data item occurs (is present) within the data set.

If the item does not have an OCCURS clause, this

value is 0.

sql_type TY This column contains the relational database

data type that corresponds to the DMSII data

types. See DMSII and Relational Database Data

Types.

sql_length LEN If the data type for the column has a length

specification in the relational database, this

column specifies the length to be used. For

example, in the case of char(5) the sql_length

is 5.

Conversely, if the data type for the column does

not have a length specification in the relational

database (for example, int in SQL Server or date

in Oracle) this column has a value of 0.

occurs_level OLV This column contains the nesting level of

OCCURS in the DMSII database. For example, an

OCCURS table created from an in item with an

OCCURS clause contained in in a GROUP with an

OCCURS clause has an occurs_level of 2 . The

original OCCURS table has an occurs_level of

1.

NOTE: The Client does not support nested

OCCURS that are more than 2 levels deep.

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 259

Column Display Description

dms_subtype STY For items mapped to relational database date

types, this column contains the format of the

date in the DMSII database. These are not actual

DMSII date types; rather, they represent the

formats of dates that might be stored as a DMSII

GROUP, a NUMBER, or an ALPHA item. For non-

DMSII columns this column identifies the type of

the non-DMSII column. For split items it

represents the offset of the split.

sql_scale SC This column contains a copy of the dms_scale

that you can edit. This value is used in the

relational database to specify the scale for

columns of whose data type is DECIMAL(p,s) on

SQL Server or NUMBER(p,s) on Oracle.

dms_depends_num dep This column contains the dms_item_number of

the item that specifies the number of

occurrences in use for an item with an OCCURS

DEPENDING ON clause.

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 260

da_options OP The following bits, which you can set through

data table customization user scripts or the

Administrative Console's Customize command,

allow you to specify additional properties of the

data items:

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 261

Bit and Description

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 262

1: DAOPT_Nulls_Allowed - This bit is set by

the define , redefine and the

Administrative Console's Customize

commands based on the value of the

configuration parameter allow_nulls . You

can later change this value via user scripts or

customization. A value of 1 indicates that the

item will be created with the attribute of

NULL (except in Oracle where this is the

default attribute of a column). A value of 0

indicates that the item will be created with

the attribute of NOT NULL (except in SQL

Server where this is the default attribute of a

column).

2: DAOPT_Column_Renamed - The column

was renamed by the user. This column is

used by the Administrative Console's

Customize command to restore changes.

4: DAOPT_Type_Changed - The SQL type of

the column was changed by the user. This

column is used by the Administrative

Console's Customize command to restore

changes.

8: DAOPT_Length_Changed - The SQL length

of the column was changed by user. This

column is used by the Administrative

Console's Customize command to restore

changes.

16: DAOPT_Scale_Changed - The SQL scale

changed by user. This column is used by the

Administrative Console's Customize

command to restore changes.

32: Reserved

64: Reserved

128: DAOPT_Item_Renumbered - The item

number (that is, the location of the column)

was changed by the user. This column is

used by the Administrative Console's

Customize command to restore changes.

256: Reserved

•

•

•

•

•

•

•

•

•

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 263

512: DAOPT_Store_as_Char - This bit

indicates that the item, which is numeric,

should be stored in the relational database

as a character data type.

1024: DAOPT_Xlate_Binary - This bit

determines whether or not character data

gets translated from EBCDIC to ASCII before

being stored as binary. This bit is copied

from the DIOPT_Xlate_Binary bit in the

di_options column of the DMS_ITEMS

table as the process and clone commands

do not load the DMS_ITEMS table.

2048: DAOPT_Store_as_Number - Indicates

that the Client is storing the corresponding

ALPHA data using the appropriate numeric

data type.

4096: DAOPT_VarFormat_Date - Indicates

that the dms_subtype column contains a

mask describing the date format.

8192: DAOPT_FixAlphaChar - This bit applies

to data items whose data type is ALPHA, and

it indicates that the Client will scan the data

for control characters and replace each

control character with a space.

You can set this bit via a user define script or

by using the Administrative Console's

Customize command, or you can set it

globally via the convert_ctrl_char

parameter. See convert_ctrl_char.

CAUTION: Do not set the

convert_ctrl_char parameter to True

unless you are absolutely certain that

eliminating control characters will have no

adverse effect on the data. For example,

eliminating control characters can cause

some fields to be misinterpreted.

16,384: DAOPT_ActiveReset – Internal use

only. This bit indicates that the active

column of items was set to zero by the

Client. This happens for concatenated items,

•

•

•

•

•

•

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 264

Column Display Description

which must be present to access the data

and are otherwise not processed.

32,768: DAOPT_Clone_as_RSN - This bit is

set internally to indicate that the item is

being cloned as an RSN, which requires

special processing. This bit shadows the

corresponding bit in DMS_ITEMS.

65,536: DAOPT_Clone_as_GUID - This bit is

set internally by the Client to indicate that an

ALPHA item is being cloned as a

UNIQUEIDENTIER (SQL Server data type) that

is designed to hold GUIDS as a binary

quantity. This bit shadows the corresponding

bit in DMS_ITEMS.

262,144: DAOPT_Value_Required - This bit is

set internally to indicate that item has the

REQUIRED option in the DASDL. It shadows

the corresponding bit in DMS_ITEMS.

524,288: DAOPT_Flatten2String - This bit is a

copy of the DIOPT_Flatten2String bit in the

di_options column of DMS_ITEMS. It

indicates that the column is the result of

flattening the corresponding DMS item to a

string (the DMS item must have an OCCUR

clause when this bit is set). The Client also

copies the dms_subtype value from

DMS_ITEMS to the column with the same

name in DATAITEMS during a define ,

redefine or the Administrative Console's

Customize commands, as the Client does

not use the DMS_ITEMS table during

process and clone commands.

1,048,576: Reserved

2,097,152: Reserved

4,194,304: DTOPT_ItemKey_Modified - This

bit allows the Client to know that the

item_key value of the item in the DATAITEMS

table was modified.

•

•

•

•

•

•

•

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 265

Column Display Description

changes

These bits are used by the redefine and the

Administrative Console's Customize commands.

1: CHG_new - New entry

2: CHG_modified - Modified entry

4: CHG_del_before - One or more entries

before this one were removed.

8: CHG_del_after - One or more entries after

this one were removed

dms_link_ds_num This column holds the structure number of the

data set to which a LINK item points. Thus a

nonzero value in this column identifies a DMSII

LINK. Links that use AA Values have a

dms_item_type value of (10).

dms_concat_num This column is a copy of the DMS_ITEMS column

of the same name and is automatically set by the

define and redefine commands since the

DMS_ITEMS table is not loaded during a

process or clone command. Do not modify

this column in your user scripts.

da_user_bmask This column, which shadows the da_options

column, contains a bit mask that represents the

columns in da_options that were customized.

This column is used by the redefine and the the

Administrative Console's Customize commands

to restore the portion of da_options bits that

has been customized while leaving the remaining

bits intact.

•

•

•

•

12.5 DATAITEMS Client Control Table

12.5 DATAITEMS Client Control Table 266

12.6 AF_STATS Client Control Table

This table is used to hold the audit file statistics for the last 9999 audit files processed by the

client.

Column Display Description

masking_info This column is used by the SQL Server Client to

do data masking. This integer value contains the

masking function type (none, default, email,

random, partial) and the index of the

corresponding parameter data for masking

function that have parameters.

The define command create entries with

default mask for columns that have a datamask

specification in DMSII DASDL. You can then

change the masking type using the

Administrative Console's Customize command.

dflt_options This column is used to keep track of the initial

state of the da_options bits before any

customizations are performed. It allows the

Client to clear the da_user_bmask bits that were

set by customizations that were later undone.

Column Description

data_source This column contains the name of the data source to which the

record belongs.

audit_filenum The audit file number (1 to 9999).

no_stat_available This column is set by Client to while processing an audit file to

indicate that the record does not contain any statistics.

audit_start_time First timestamp in the audit file (datetime2(7) for SQL Server and

date for Oracle).

audit_end_time Last time stamp in the audit file (datetime2(7) for SQL Server and

date for Oracle).

client_start_time Time when the Client first started processing the audit file

(datetime2(7) for SQL Server and date for Oracle).

12.6 AF_STATS Client Control Table

12.6 AF_STATS Client Control Table 267

Column Description

client_end_time Time when the Client finished processing the audit file

(datetime2(7) for SQL Server and date for Oracle).

n_threads Number of threads configured in the Client

elapsed Elapsed time (in milliseconds) processing the audit file. This is not

always equal to client_end_time - client_start_time as the

audit is sometimes processed in multiple Client runs.

dms_rec_count Number of DMSII records received.

sql_op_count Number of SQL updates executed.

sql_rb_op_count Number of rolled back SQL updates.

sql_suppressed Number of SQL updates that were suppressed because there

were no changes in the BI and AI images for the columns involved

in the update.

sql_filtered Number of SQL updates that were eliminated by occurs table row

filtering.

recs_discarded Count of discarded records.

recs_in_error Count of records in error.

bytes_received Number of DMSII data bytes received from the server.

total_bytes_received Number of DMSII data and protocol overhead bytes received from

the server.

bi_bytes_received Number of MODIFY_BI data bytes received from the server.

create_count Number of CREATE records received from the server.

delete_count Number of DELETE records received from the server.

modify_count Number of MODIFY records received from the server.

modify_bi_count Number of MODIFY_BI records received from the server.

modify_ai_count Number of MODIFY_AI records received from the server.

link_ai_count Number of LINK_AI records received from the server.

state_count Number of STATE info records received from the server.

doc_count Number of DOC records received from the server.

12.6 AF_STATS Client Control Table

12.6 AF_STATS Client Control Table 268

Column Description

commit_count Number of COMMITS.

12.6 AF_STATS Client Control Table

12.6 AF_STATS Client Control Table 269

Column Description

rollback_count Number of ROLLBACKS.

12.6 AF_STATS Client Control Table

12.6 AF_STATS Client Control Table 270

13. Automating Client Operations with the
Service

This chapter explains how to automate Client operations by using the service and scripts (that is,

command files on Windows; shell scripts on UNIX). It also covers the Batch Console and its role in

automation.

13.1 Configuring the Service

To configure update scheduling, error recovery, and other features of the service, use the

Administrative Console. Your changes are automatically saved to the service's configuration file

dbcontrol.cfg , located in the config directory of the working directory. See Managing Operations

in the Administrative Console Help, available from within the program. For more information about

the service's working directory, see the topic The Working Directory in the Databridge Installation

Guide.

13.2 Automation Scripts

The Databridge Client 7.1 service uses scripts (command files in Windows; shell scripts in UNIX) to

allow the user to gain control at key points of Client operations. Scripts allow the user to perform

pre-processing and post-processing for Client runs (typically process commands) and

supplement the service's built-in error recovery with additional recovery or error-reporting

mechanisms.

Additionally, users can start a script from the mainframe by using the BCNOTIFY program. The

BCNOTIFY program is designed to make the service start the script whose name it supplies. By

inserting BCNOTIFY at key points in a WFL (Work Flow Language), you can trigger a task on the

Client machine, such as restarting audit file processing. Scripts can interact with the service via the

Batch Console (bconsole), a program that interprets source files that contain programs written in a

language vaguely resembling to Visual Basic. Scripts can also perform arbitrary tasks that may not

be directly related to the service (for example, start a run that generates a Crystal Report).

Automation scripts fall into two basic categories:

13. Automating Client Operations with the Service

13. Automating Client Operations with the Service 271

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

Scripts that are associated with a process command. These scripts are associated with a

data source and run before or after a Client run. (See Process-Related Scripts.)

Scripts that are initiated by the BCNOTIFY program on the mainframe. (See BCNOTIFY

Initiated Scripts.)

All scripts start with the current directory set to the service's working directory. Additionally, the

service sets up the environment variable INSTALLDIR that points to the install directory where the

Batch Console program resides. You must use this environment variable as the path when invoking

the Batch Console (on Windows, %INSTALLDIR%\bconsole ; on UNIX, $INSTALLDIR/bconsole). You

cannot rely on the install directory being in the PATH. For more information about Batch Console,

see Introducing the Batch Console.

13.2.1 Process-Related Scripts

This first category of automation scripts includes scripts that are associated with a process

command. These scripts are referred to as start-of-run and end-of-run scripts. Start-of-run scripts

are only applicable to runs started by the service without any outside interference, specifically runs

that are started by the service's scheduler. This includes runs that are launched when the service is

started in response to the run_at_startup parameter for a data source. End-of-run scripts on the

other hand are applicable to all runs.

Client runs that are started from the Administrative Console, the Batch Console, and BCNOTIFY do

not look for start-of-run scripts.

Both types of scripts follow strict filename conventions, as follows.

• •

• •

Type of Script Naming Convention

start-of-run source_startofrun.ext

end-of-run source_endofrun.ext

13.2.1 Process-Related Scripts

13.2.1 Process-Related Scripts 272

where source is the data source name in lowercase letters and ext is the file extension (.cmd for

Windows or .sh for UNIX).

The service searches for these script files in the scripts subdirectory in the service's working

directory. (For information about the working directory, see The Working Directory in the Databridge

Installation Guide.) Before a scheduled run is started, the service looks for the existence of a start-

of-run script. When the service finds a script, it runs it and then starts the process command after

the script is complete. If the script does not exist, the process command is started without

issuing any errors or warnings. When the service determines that the process command is

complete, it checks for the existence of an end-of-run script and runs it.

When a process command terminates with an exit code that initiates auto-recovery, the service

checks for the existence of an event-notice script and runs it if found. These type of scripts are

designed to give the user the ability to generate event notices, such as e-mails when the service

enter auto-recovery. In the absence of these scripts the DBA would be totally unaware that the

service restarted the Client after a recoverable error.

If a Client run ends because of an error, the end-of-run script will run only after the service's built-in

error recovery has been executed. The service has a built-in recovery mechanism for responding to

errors and non-zero exit codes. In situations that are temporary or self-resolving, the service will

attempt the failed operation after a brief delay. For example, if a connection to the server or

database fails, the service will pause for a specified amount of time before attempting to

reconnect, and will do so repeatedly until the server or database becomes available. (The

parameter sched_retry_secs determines the initial retry interval. For connect failures, this interval

doubles on each subsequent retry until it reaches a maximum value of 5 minutes. You can set this

parameter value in the Client Configuration dialog box. When using the Administrative Console,

from the data source's Settings menu click on Processing > Error Recovery, you will find these

parameters in the "Options" group at the top of the page.

Both start-of-run and end-of-run scripts are passed the following set of parameters:

Type of Script Naming Convention

event-notice source_eventnotice.ext

Script Parameter In the script,

referred to as

Data source name %1

Exit status %2

Run type (a number that indicates the type of command) %3

13.2.1 Process-Related Scripts

13.2.1 Process-Related Scripts 273

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

For start-of-run scripts, run_type is always 1, indicating a process command. For end-of-run

scripts, run_type can be 1, 2 (clone command), 7 (redefine command), 8 (generate command)

or 4 (Administrative Console **Customize command run).

13.2.2 BCNOTIFY Initiated Scripts

This second category of automation scripts are initiated by BCNOTIFY, a utility included with

Databridge Host software.

BCNOTIFY is a host-based Databridge utility you can use to issue remote procedure calls (RPC) to

the service and tell it to launch scripts. BCNOTIFY passes the script name and parameters in the

RPC. BCNOTIFY can optionally pass a data source name as an additional parameter. If you do not

supply a data source name in the RPC, the data source name must be provided within the script

that the service launches. The advantage of including the data source name in the RPC is that the

service will only launch the script if the data source is idle (versus always launching it).

Scripts initiated by BCNOTIFY are named as follows:

start_name.ext

where name is an arbitrary name, and <ext> is .cmd on Windows and .sh on UNIX.

When BCNOTIFY launches a script that initiates a process command, the service behaves

differently when looking for an end-of-run script to execute. It first looks for a script named

end_name.ext in the scripts subdirectory (where name is the name used in the original script and

ext is the OS dependent file extension). If the service finds this script, it uses the script in place of

the standard end-of-run script described earlier. Otherwise, the standard end-of-run script is used if

it exists. This allows one to associate multiple end-of-run scripts with a data source, depending on

which script started the process command.

These script files are passed the following set of parameters. The parameters for these scripts can

change, depending on whether the data source is an empty string. For example, if no data source

name is provided, parameter one is the AFN and parameter 2 is the token.

Parameters: - Data source name (optional) - Parameters supplied by BCNOTIFY. For example, the

current database audit file number (AFN) - A token used as the password when connecting back to

the service via the Batch Console

Script Parameter In the script,

referred to as

Token used as the password when connecting back to the service

using the Batch Console

%4

13.2.2 BCNOTIFY Initiated Scripts

13.2.2 BCNOTIFY Initiated Scripts 274

13.3 Introducing the Batch Console

The Batch Console automates routine Client tasks by allowing command files/shell scripts

launched by the Databridge Client Manager to interact with the service. It interprets a source file

that contains a set of statements written in a language similar to Visual Basic. These statements

can initiate a connection, perform rudimentary tests, and issue console requests, to the service. For

example, by using the Batch Console in an end-of-run script that runs daily reports, you can restart

the Client after the reports are generated.

To use the Batch Console, you must first create a source file for the Batch Console and place it in

the scripts directory of the service's working directory (also referred to as the Client's global

working directory). We recommend that you use a file extension that allows you to easily identify

this file as a Batch Console source file (for example, .bcs). You can debug this source file by

running the Batch Console from the command line, using the source filename (including directory,

such as scripts/source_filename) as the first argument of the Batch Console command.

The Batch Console always runs as a background run. Its activity is written to a log file in the current

directory. The log filename uses the source filename with the extension .log added to it. For

example, if your source filename is sourcefile.bcs the log file is named sourcefile.bcs.log.

13.3.1 Running the Batch Console (bconsole)

The Batch Console program (bconsole) has a command line of the form:

bconsole [options] filename [argument list]

where filename is the name of a text file that contains commands for the Batch Console to

interpret.

You can include additional arguments to pass parameters to the program. This allows you to use

generic source files that work with externally-supplied values for the parameters. The command-

line parameters in [argument list] are referenced in the script file using the Windows command file

conventions (%1 is parameter 1, %2 is parameter 2, and so on). For example, if you invoke bconsole

using the statement

All scripts start with the current directory set to the service's working directory. Additionally, the

service sets up the environment variable INSTALLDIR that points to the install directory where

the Batch Console program resides. You must use this environment variable as the path when

invoking the Batch Console (on Windows, %INSTALLDIR%\bconsole ; on UNIX, $INSTALLDIR/

bconsole). You cannot rely on the install directory being in the PATH. For more information

about Batch Console, see Introducing the Batch Console.

Note

13.3 Introducing the Batch Console

13.3 Introducing the Batch Console 275

the program substitutes the text "1234" for any occurrence of "%1" in the script file " resume.bcs "

the same as Windows command files.

The following command file performs the aforementioned task for a fictional data source named

MISDB. MISDB uses the service that runs on a machine named "galactica" using port 8001.

(Included with the following command are words, such as "data source", which are ignored by the

parser but make the script read more like plain English. These words appear in black text.)

If a command fails, the program returns a non-zero exit status indicating a failure. On successful

execution of the script, the program returns an exit status of 0. Each executed script is logged; if

something fails, you can look at the log file to determine what went wrong.

The user ID of the user that launches the bconsole run is used to sign on to the service. When the

Batch Console program starts from a script that the service launches, the script is passed a handle

for use as a temporary password. This eliminates any security problems that having user IDs or

passwords in the script files might cause. If the service cannot authenticate the user ID password,

it verifies that the user is the same one that is running the service. (This is typically the built-in

SYSTEM account). If it is, the service verifies that the handle matches the one assigned to the

thread that launched the script. (The handle contains the thread number.)

13.3.2 Signing On to the Service

The userid that starts the Batch Console is also used to sign on to the service. When you run the

batch console (bconsole) from a command file that is not launched by the service, you need to

specify a password using the -P option. Because the password is not encoded, some sites may

find this objectionable.

To solve this problem, we implemented the -T option, which requires that the userid being used be

registered as the trusted user. The batch console will then read the Windows Registry and

determine if the userid is registered as the trusted user (there can be only one in the current

implementation). To facilitate the registration process, the program setbcuserid was implemented.

This program registers the userid you enter as the login userid. You must be an administrator to run

this program and the userid that you specify must be a valid Windows user.

When the service launches a script, it passes a handle for the script to use as the Batch Console

password. This password is set using the command-line option /P .

After the service identifies the userid as being the same as the service's userid, it validates the

signon after it determines that the password matches the handle passed to the script. Handles are

valid only while the script is running and cannot be reused.

bconsole /P secret resume.bcs 1234

connect to galactica port 8001
enable data source MISDB
process MISDB

13.3.2 Signing On to the Service

13.3.2 Signing On to the Service 276

13.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY

You can use the Batch Console to make the service start a process command or notify a currently

running process command to stop after a specified AFN. This mode of operation replaces

dbauditwait working in conjunction with the deprecated NOTIFY program on the mainframe and

uses the service-initiated DBClient runs instead of the command-line Client. When invoking the

Batch Console in a script launched by the service, you must pass the handle to Batch Console

using the /P option.

The following Batch Console source file sample_script2.bcs uses command-line parameters

similar to a Windows command file, except that the parameters are numbered starting with the one

that follows the source filename. The program does a textual substitution by replacing %n with the

exact text of the corresponding parameter. (This script is located in the scripts directory of the

service's working directory.)

In the above example, the text %1 is replaced by mikera018640, %2 is replaced by MISDB and %3

is replaced by "1234" .

13.3.4 Using Batch Console to Get Status Information

You can use the Batch Console in query mode to get status information. This capability is not

related to automation, but is provided to let you query the service about the status of your data

sources. Query mode connects to the service, gets the status of the specified data sources, and

then writes that information to a file.

To use query mode, you must provide the connect parameters and the command using command-

line switches. The command line for query mode is as follows:

bconsole /s service_name /p port /P password /w filename /q command

where the service_name, output filename, and command can optionally be enclosed in double

quotation marks. If the /w filename option is omitted, the program will write the output to the file

bconsole.log . The syntax for the command is:

bconsole /P %2 sample_script2.bcs mikera018684 MISDB 1234

connect to %1 port 8001
if run active %2 then
 stop run %2 after afn %3
else
 process %2 with option "/F %3"
end if

status [data_source]

13.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY

13.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY 277

If data_source is omitted (or is specified as _all) the status of all data sources is written to the

output file in CSV format. A sample output file is as follows:

Each line includes (in this order): a) the data source name; b) its state; c) the process-id of the

current run (or 0 if there's no active run); d) type (state) of the last run; e) exit code of last run or

9999 if the run is active; f) start time of the active run or the last run (if there's no active run); g)

stop time of the last run (0 if there is an active run); h) the next scheduled run (if idle); and i) the flag

for the data source. If a Client run crashes, it will have an exit code of 9999 and the data source will

be marked as disabled.

13.3.5 Batch Console Commands

The syntax for Batch Console (bconsole) scripts is loosely modeled after Visual Basic. The end-of-

line character acts as a statement terminator. This limits you to one statement per line. The

following table lists commands in alphabetical order, followed by a list of buzz words that are

allowed to improve readability.

MISDB,0,0x00000000,0,9999
DEMODB,0,0x00000000,0,9999,,,,disabled
NTSL,0,0x00000000,1,0,2011-03-31@15:26:46,2011-03-31@17:46:52

Command Reference

abort abort [run [for [[data] source]]]...

clone clone [[data] source]...

connect connect [to]...

define define [[data] source]...

disable disable [[data] source]...

disconnect

display display "text"

drop drop [[data] source]...

dropall dropall [[data] source]...

enable enable [[data] source]...

exit exit (value)

generate generate [[data] source]...

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 278

* Synonymous with define

** Synonymous with reorganize

Statements in Detail

Let's look at the individual statements and syntax of a Batch Console script. All statements are

confined to a single line, except for the if statement.

Command Reference

if expression then ...

[else

...]

end [if]

launch [[[data] source]...

process process [[data] source]

redefine* redefine [[data] source]...

reorg** reorg [[data] source]...

reorganize reorganize [[data] source]...

runscript runscript "filename"

status status [[data] source]...

stop stop [run [for [[data] source]]]...

wait wait (value)

This command Does this

connect [to]

service_name [port]

number

Connects to the given service as a console. If the service name

is an IP address or contains non alphanumeric characters, it

must be enclosed in double quotation marks.

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 279

This command Does this

enable [[data] source]

name

Enables the specified data source. If the data source doesn't

exist, an error occurs.

If the data source is not disabled, no command is executed and

a warning results. This will not cause the script to terminate

prematurely. To eliminate the warning, use an "if" statement;

this test whether the data source is disabled before trying to

enable it.

process [[data] source]

name [[with] option[s]

"option_list"] [reclone

ds_list]

Initiates a process command. The options are specified the

same as on the dbutility command line, using either slashes or

a hyphen (depending on the operating system) followed by a

letter and an argument, if applicable.

When specifying options, you must include the keyword option

to indicate that a list of options follows the command. Make

sure that you separate each option with a space and enclose

the entire set of options with double quotation marks. The

program will validate the options before passing them to the

service.

You can force all of the specified data sets to be re-cloned by

adding the keyword reclone followed by a list of data sets to the

process command. This sets the ds_mode to 0 for all the

specified data sets in a single command. If you use the name

"all", all data sets will be re-cloned; you don't need to name them

individually.

clone [[data] source]

name [[with] option[s]

"option_list"] ds_list

Initiates a clone command. The options are specified like you

would in dbutility, using slashes or dashes (depending on the

operating system) followed by a letter and an argument when

applicable.

[re]define [[data]

source] name [[with]

option[s] "option_list"]]

Initiates a redefine or define command, depending on

whether the data source exists. This statement causes the

service to launch DBClientCfgServer for the data source (unless

it is already running) and then execute a define / redefine

command.

reorg[anize] [[data]

source] name [[with]

option[s] "option_list"]]

Initiates a reorganize command. This statement causes the

service to launch DBClientCfgServer for the data source (unless

it is already running) and then execute a reorg command.

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 280

This command Does this

generate [[data]

source] name [[with]

option[s] "option_list"]]

Initiates a generate command. The statement causes the

service to launch DBClientCfgServer for the data source (unless

it is already running) and then execute a generate command.

stop [run [for [[data]

source]]] name [{after

[afn] number

at [time] hh:mm}]

abort [run [for [[data]

source]]] name

This is equivalent to the DBConsole Abort command. The Client

run is terminated immediately by closing the TCP/IP connection

to the server. This will cause the last transaction group to be

rolled back by the Client.

status [[[data] source]

name]

This command writes the status of a data source to the Batch

Console (bconsole) log file. If the data source name is omitted,

or the name “_all” is used, the status of all data sources is

written to the log file.

display "string" This command writes the given string to the log file. It is mainly

intended to help debugging.

if expression then

...

[else

...

]

end [if]

The block of commands following the "if" line, which must end

with the keyword "then", are executed if the expression

evaluates to true. This block ends with either an "else" or “end

[if]” keyword (in the absence of an else clause). The else clause

starts a new block of commands that will be executed if the

expression in the “if” statement evaluates to false. In all cases

“end [if]” ends the block that is started by a "then" or "else".

launch [[[data] source]]

name cmd_file params

This command makes the service launch an arbitrary command

file. It is only useful in debugging BCNOTIFY scripts, as this is

the easiest way to launch them.

For name, list the data source name. If the run is not associated

with a specific data source, use "_none" (quotation marks not

required). The cmd_fileis the filename of the script in the

scripts subdirectory of the service's working directory that

you want the service to launch .cmd_file and params must be

enclosed in double quotation marks if they contain non

alphanumeric characters, such as a period (.).

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 281

This command Does this

disconnect This command tells the program to disconnect from the given

service it is connected to. This command will not normally be

needed, as the program will automatically issue it when it

reaches the end of the script file.

wait (integer value) This command injects a delay, (measured in seconds) in

execution of the script file. It is mainly intended for debugging

purposes.

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 282

If Statements

Use the "if" statement to test for the following three conditions for a data source:

Whether it is disabled

Whether a run is active

Whether a run is scheduled

The keywords "disabled", active, and "scheduled" are used to indicate the condition being tested.

You must follow these keywords with a data source name and the keyword "then". Optionally, you

can precede keywords with the buzzwords "run", "data source", or "source".

To reverse the test, you can place the keyword "not" in front of expressions that follow the keyword

"if". The syntax of these expressions is summarized as follows:

Command-Line Options

This command Does this

exit (integer value) This command stops the program and returns the specified exit

code. The command is only needed to return a non-zero exit

code or to stop the flow of execution within an “if” statement.

1. 1.

2. 2.

3. 3.

[not] {[run] | [[data] source]} active name
[not] {[run] | [[data] source]} disabled name
[not] {[run] | [[data] source]} scheduled name

Options are case sensitive. -p and -P are separate options.

Note

This

Switch

Argument Does this

-d Enables debug output

-o Overwrites the log file (versus appending to it)

-p port Specifies the port on the command line.

-q Switches into single query mode (status command only)

-s name Specifies the domain name or IP address of the service

machine on the command line.

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 283

This

Switch

Argument Does this

-t Enables RPC traffic tracing.

-w filename Sets the name of the log file.

-p password Specifies the password to be used when connecting to the

service.

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 284

* When you run the batch console (bconsole) from a command file that is not launched by the

service, you need to specify a password using the -P option. Since the password is not encoded,

some sites may find this objectionable. In order to solve this problem we implemented the -T

option, which requires that the userid being used be registered as the trusted user. The batch

console will then read the Windows Registry and determine if the userid is registered as the trusted

user (there can only be one in the current implementation). To facilitate the registration process,

the program setbcuserid.exe was implemented. This program registers the userid you enter as

the login userid. You must be an administrator to run this program and the userid you specify must

be a valid Windows user.

This

Switch

Argument Does this

-T Specifies that the user is a trusted user*

13.3.5 Batch Console Commands

13.3.5 Batch Console Commands 285

14. Glossary of Terms

14.1 A - D

absolute address (AA) value

AA is a DMSII term that stands for absolute address. An absolute address value is an A Series

WORD (48-bits in length). In the Databridge Client, AA is the hexadecimal representation (12

character strings containing the characters 0--9 and A--F) of the AA Value on the host. Databridge

Client uses the AA Values to implement unique keys for the parent structures of embedded data

set records. It also uses AA Values to reference the records of data sets that do not have DMSII

SETS with the NO DUPLICATES ALLOWED attribute.

AA Values are not constant. Any DMSII reorganization (record conversion, file format, or garbage

collection) changes these values.

Databridge Client supports numeric AA Values that are stored as NUMBER(15) in Oracle and

BIGINT in SQL Server. It also supports binary AA Values that are stored as RAW(6) in Oracle and

BINARY(6) in SQL Server.

Audit Files

An audit file is created by DMSII and contains the raw format of changes made to the DMSII

database by update programs. Audit file records contain the deletes, adds, and modifies that were

made to the various structures. It can contain, for example, hours', days', or weeks' worth of

information.

Databridge uses the audit file for the raw data of each database change to exactly replicate the

primary database. Databridge records the audit location (AFN, ABSN, SEG, IDX) between runs, so it

can restart without losing any records.

If you set the Databridge Engine Read Active Audit option, Databridge can access the current audit

file. If you do not set Read Active Audit = true in the Databridge Engine parameter file, Databridge

can access audit information up to and including the current audit file minus one. The audit file

contains the update level at the time the audit file was created. The update level in the audit file and

the update level in the DESCRIPTION file used by Databridge must match before Databridge will

update a replicated database.

When an audit file is closed, DMSII creates the next one in the series. Audit files are closed for

several reasons, including the following:

14. Glossary of Terms

14. Glossary of Terms 286

• An operator closes the audit file with the mixnumber SM AUDIT CLOSE command.

• The audit file reaches the file size set in its DASDL.

• There is an I/O error on the audit file.

• There is not enough disk space for this audit file.

• The database update level changes due to database definition changes

• A Databridge accessory closed the file in preparation for the fixup phase after extracting records

from a DMSII database.

• The current audit file could not be found.

• A file reorganization was executed to modify the DMSII structure.

audit trail

The audit trail contains all of the audit files generated for a database. The Databridge Engine reads

the audit files to extract updates. It then passes the updates to the Client to be applied to the

relational database. After the updates have been successfully extracted, the Client saves the state

information, which includes the location in the audit trail from which the last group of updates for

the data set were read.

Batch Console

The Batch Console automates routine Client tasks by allowing command files/shell scripts

launched by the Databridge Client Manager to interact with the service.

caching

A process that filters files before they\'re requested by the Databridge Client. Caching allows

Databridge Enterprise Server to send Client data requests quickly and without placing an additional

resource burden on the mainframe.

client

The Client is the computer system that will receive DMSII records from the primary database. The

Client could be a Windows computer, a UNIX computer, or an MCP server. The Client can have a

relational or a DMSII database.

14.1 A - D

14.1 A - D 287

cloning

Cloning is the one-time process of generating a complete snapshot of a data set to another file.

Cloning creates a static picture of a dynamic database. Databridge uses the DMSII data sets and

the audit trail to ensure that the cloned data represents a synchronized snapshot of the data sets at

a quiet point, even though other programs may be updating the database concurrently. Databridge

clones only those data sets you specify.

Cloning is one phase of the database replication process. The other phase is tracking (or updating),

which is the integration of database changes since the cloning.

DASDL

Data and Structure Definition Language (DASDL) is the language that defines DMSII databases. The

DASDL must be compiled to create a DESCRIPTION file.

data set

A data set is a file structure in DMSII in which records are stored. It is similar to a table in a

relational database. You can select the data sets you want to store in your replicated database.

Databridge Director

Databridge Director (also referred to as DBDirector) is a Windows Service installed with Enterprise

Server that starts Enterprise Server whenever a connection request is received.

When you start your computer, DBDirector starts and reads the ListenPort registry value to

determine which TCP/IP port communicates with Databridge Clients.

Databridge Engine

Databridge Engine is a generic term that can refer to either DBEngine or the engine component of

Databridge Enterprise Server. The two are interchangeable as far as the Databridge Client is

concerned.

Databridge Server

Databridge Server is a generic term that can refer to either DBServer or Databridge Enterprise

Server. The two are interchangeable as far as the Databridge Client is concerned.

14.1 A - D

14.1 A - D 288

DBClntCfgServer

A program that handles all requests from the Client Console specific to a data source. These

requests include updating the Client configuration file, providing access to the Client control tables,

and handling the Client Configurator. Like DBClient, this program is run by the Client Manager

service as a background run.

DBClntCfgServer

A program that handles all requests from the Client Console specific to a data source. These

requests include updating the Client configuration file, providing access to the Client control tables,

and handling the Client Configurator. Like DBClient, this program is run by the Client Manager

service as a background run.

DBServer

DBServer is a Databridge Host accessory that responds to Databridge Client requests for DMSII

data or DMSII layout information and provides communications between the following

components:

Databridge Engine and Databridge Enterprise Server

Databridge Engine and the Databridge Client

direct disk

A replication method that allows Databridge Enterprise Server to clone and track DMSII data sets

without using any significant mainframe resources. Direct disk replication requires a SAN (Storage

Area Network) or Logical Disks configured to make MCP disks visible in Windows.

14.2 E - R

entry point

• •

• •

When Enterprise Server is used with the Databridge Client, Enterprise Server takes over

much of the functionality of DBServer and Databridge Engine.

Note

14.2 E - R

14.2 E - R 289

A procedure in a library object.

extraction

Extraction is the process of reading through a data set sequentially and writing those records to a

file (either a secondary database or flat file).

file format conversion

A type of DMSII reorganization affects file size values (for example, AREASIZE, BLOCKSIZE, or

TABLESIZE), but it does not change the layout of the records in a DMSII database.

flat files

A flat file is a plain text or mixed text and binary file which usually contains one record per line.

Within the record, individual fields may be separated by delimiters, such as commas, or have a fixed

length and be separated by padding. An example of a flat file is an address list that contains fields

for Name and Address.

garbage collection reorganization

A garbage collection reorganization moves records around, but it doesn't change the layout of the

DMSII database. Its primary function is to improve disk and/or I/O efficiency by eliminating the

space occupied by deleted records. Optionally, a garbage collection reorganization reorders the

remaining records in the same sequence as one of the sets.

lag time

The lag time is defined as the elapsed time between the time a record in the DMSII database is

updated and the time where this update appears in the relational database. This value accounts for

any difference between the clock on the mainframe and that on the Client machine.

mutex

A mutex is an operating system resource that is used to implement a critical section and prevent

multiple processes from updating the same variables at the same time.

null record

14.2 E - R

14.2 E - R 290

A record for a data set where every data item is null.

null value

The value defined in the DASDL to be NULL for a data item. If the DASDL does not explicitly specify

a NULL value for a data item, the NULL value is all bits turned on.

primary database

This is the original DMSII database that resides on the host. Databridge replicates from the primary

database to one or more Client databases. The Client databases can be another DMSII database or

one of several relational databases. Compare this to the replicated (or secondary) database.

quiet point

A quiet point is a point in the audit trail when the DMSII database is quiet and no program is in

transaction state. This can occur naturally, or it can be forced by a DMSII sync point.

record format conversion

A type of DMSII reorganization that occurs when a data set or set (group of keys) is reordered or

reformatted. It indicates that changes were made to a data set format, or to data items, such as

changing the length of an item, for example, BANK-ID NUMBER (10) to BANK-ID NUMBER (15).

record serial number (RSN)

Record sequence numbers (RSN) are 48-bit quantities used by the Databridge Engine, in the case

of DMSII XE, to uniquely identify a record. RSNs will always be used instead of AA Values when

available except for data sets having embedded data sets. RSNs are always static; they will not

change after a garbage collection reorganization.

reorganization

Structural or formatting changes to records in the DMSII database, which may require parallel

changes to (or re-cloning of) records in the secondary, or relational, database. See also file format

conversion and record format conversion.

replicated database

14.2 E - R

14.2 E - R 291

The replicated database is the database that usually resides on the Client machine and contains

records cloned from the DMSII database. The replicated database is updated periodically with

changes made to the primary (original) DMSII database. The periodic update (or tracking process)

is explained later in this section. Compare this to the primary database.

replication

Replication is the ongoing process of cloning and tracking changes to a DMSII database.

rollback

A systematic restoration of the primary or secondary database to a previous state in which the

problem or bad data is no longer found.

14.3 S - V

secondary database

The replicated database. The replicated database is the database that usually resides on the Client

machine and contains records cloned from the DMSII database. The replicated database is

updated periodically with changes made to the primary (original) DMSII database. The periodic

update (or tracking process) is explained later in this section. Compare this to the primary

database.

semaphores

Operating system resources that are mainly used to implement thread synchronization and

signaling.

service

The service (Windows) or daemon (UNIX) that automates most Client operations. It handles

operator requests from the Client Console and routes all log and informational messages to the

consoles.

set

14.3 S - V

14.3 S - V 292

An index into a data set. A set has an entry (key + pointer) for every record in the data set.

state information

Data that reflects information about the cloned data, such as the audit location and format level.

structure

A data set, set, subset, access, or remap. Each structure has a unique number called the structure

number.

table

A data structure in the Client database corresponding to a data set or remap in the host DMSII

database.

tracking

Tracking is an ongoing process for propagating changes made to records in the DMSII primary

database to the replicated database after the initial clone. The Databridge Engine performs

extraction as well as tracking.

visible RSN

An RSN (record serial number) that is declared in the DASDL. These appear as an item in the data

set and are therefore visible to the database user.

14.3 S - V

14.3 S - V 293

15. Appendix

15. Appendix

15. Appendix 294

15.1 Appendix A: Troubleshooting

This appendix provides instructions for troubleshooting problems you may experience with

Databridge Client.

15.1.1 General Troubleshooting Procedures

If you have problems using the Databridge Client, complete the following steps:

15.1 Appendix A: Troubleshooting

15.1 Appendix A: Troubleshooting 295

Check to see that your system meets the minimum hardware and software requirements. For

details, see the Databridge Installation Guide.

Check that you've selected the correct configuration options for connecting to the relational

database server:

The relational database name

Your user ID and password to log in to the relational database server. Does your user ID to

the relational database server have the correct privileges?

If you use configuration file parameters or environment variables to supply the signon

parameters, did you enter them correctly?

If you use command-line options, did you enter them in their correct uppercase or

lowercase? Did you enter them with each dbutility command? See dbutility Command-

Line Options.

If you use a UNIX Client, make sure that the ORACLE_HOME, and LD_LIBRARY_PATH

variables point to the correct directory, (for example, LD_LIBRARY_PATH=/opt/oracle/

product/19.0.0/dbhome_1/lib:/home/dbridge/db71/lib).

Check that you've selected the correct configuration options for connecting to the host.

Is Databridge Server running on the host?

Did you use the data source name as it is defined in the DBServer control file? For more

information, refer to the Databridge Host Administrator's Guide.

Did you enter the correct host name or IP address?

Did you enter the TCP/IP port number as it is defined in the DBServer control file?

If there is a password defined in the DBServer parameter file, did you enter the correct

password?

Make sure that the PATH environment variable contains the Databridge Client's directory and

the appropriate relational database bin directory (named bin for Oracle and binn for Microsoft

SQL Server).

Check your cable connections to make sure that they are securely attached.

Determine whether the problem is caused by the host and DMSII (versus Databridge Client) by

using Databridge Span on the host to clone a data set from the DMSII database in question.

If you cannot clone the data set, the problem is most likely on the host.

If you can clone the data, the problem is most likely occurring between the DBServer and

Databridge Client.

Resolve any errors. If you receive error messages or status messages that you don't

understand, see the Databridge Error and Message Guide.

1. 1.

2. 2.

• •

• •

• •

• •

• •

3. 3.

• •

• •

• •

• •

• •

4. 4.

5. 5.

6. 6.

• •

• •

7. 7.

15.1.1 General Troubleshooting Procedures

15.1.1 General Troubleshooting Procedures 296

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages

If you cannot identify and solve the problem without assistance, contact your product

distributor or Micro Focus Technical Support from a location where you have the ability to run

dbutility.

15.1.2 Troubleshooting Table

The following table lists some common problems and their solutions.

8. 8.

Problem Solution

You made changes to the

Client control tables, such

as changing the active

column value, but none of

your changes are taking

effect.

This problem, which only occurs when using SQL*Plus in an

Oracle database, is an indication that your SQL statements

did not get "committed." The default mode of operations of

SQL*Plus is transaction mode. SQL statements only get

committed when you explicitly issue a commit or when you

exit SQL*Plus. You can make the program automatically

issue a commit after every SQL statement by typing set

auto[commit] on .

You changed one or more

table names, but the new

tables are empty after you

do a clone or an update.

Most likely you did not update the table_name columns in

the DATAITEMS Client control table.

You have the correct host

name, port number, and

data source name, but

you still cannot connect

to the host.

Make sure the domain name server is running. If the domain

name server is down, change the host name in the

DATASOURCES table to the IP address and try the dbutility

command again.

You get a "constraint

violation" error when you

run the process

command to update the

relational database.

Most likely you have placed a constraint on one of the

columns in the Databridge data tables. When this occurs,

remove the constraint and re-clone the data set to get all of

the records.

IMPORTANT: You must not place constraints or other

restrictions on any Databridge data table. If you do,

Databridge will not work. Instead, filter rows on the host

using the DBGenFormat utility.

15.1.2 Troubleshooting Table

15.1.2 Troubleshooting Table 297

https://www.microfocus.com/en-us/support/contact-support

Problem Solution

The Databridge Client

becomes unresponsive at

the following message:

Begin populating/

updating database

from AFN=afn,

ABSN=absn, INX=inx,

SEG=seg, DMSII

Time=time_stamp

Check the host ODT for a waiting entry from Databridge

Server, similar to the following:

(usercode) DBSERVER/WORKER-n

NO FILE (usercode)databasename-AUDITnnnn

In this case, make the audit file available to the Databridge

Engine. For example, if the file is on tape, copy it to the

usercode indicated for the AUDITnnnn file. Once you make

the audit file available, the Databridge Engine automatically

begins processing again.

If for some reason you cannot make the audit file available,

stop running the Databridge Client by typing QUIT NOW on

the Client system.

You are running multiple

Databridge Clients, and all

of them seem to stop

processing.

Most likely, only one of the Databridge Clients has stopped

processing because of a problem, and the other Databridge

Clients have stopped not because of a processing problem,

but because of a resource contention problem on the host

or network.

To correct this situation, look at the ODT and at the

Windows Event Viewer for messages related to the

Databridge Client. (The previous two problem descriptions

in this table list possible messages.)

When you locate and respond to the message for the

problem Client, the other Clients start processing

automatically from where they left off.

You are unable to execute

the dbutility program.

Make sure you have included the Databridge Client program

directory in the operating system’s PATH environment

variable.

15.1.2 Troubleshooting Table

15.1.2 Troubleshooting Table 298

Problem Solution

The Databridge Client

gets an index creation

error for a table that uses

a legitimate DMSII SET as

an index.

There is no guarantee that the Databridge Engine will always

produce tables without duplicate records at the end of the

data extraction phase.

Most of the time, duplicate records occur when records are

deleted and later reinserted into the data set (this

sometimes occurs in environments where the DMSII

applications use delete/create pairs or in compact data

sets). If a record ends up in a location that is different from

the original one, the Databridge Engine sees it twice,

resulting in a duplicate record.

The Client normally runs the script

"script.clrduprecs.tablename" when an index creation fails.

This script removes all occurrences of duplicate records, as

they will be reinserted during the fixup phase. You can

inhibit the running of this script by resetting the bit

DSOPT_Clrdup_Recs (32768) in the ds_options column of

the DATASETS table entry. This must be done manually if

you have disabled this bit.

When this problem occurs, use the procedure described in

"Using SQL Query to Find Duplicate Records" to query for

duplicate records and remove them.

Alternatively, you can clone the data set when the database

is inactive or clone the data set offline (the Databridge Host

Administrator’s Guide provides information about cloning

offline).

15.1.2 Troubleshooting Table

15.1.2 Troubleshooting Table 299

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Problem Solution

The Databridge Client

stops at the start of the

fixup phase with the

following error:

Stopping: Errors

occurred during data

extraction

The Databridge Client stops at this point if records were

discarded. There are two types of discards:

Discards created by the Databridge Client because of

data errors in items used as keys.

Discards created by the bulk loader because of internal

errors. This type of error typically does not occur. If it

does occur, it indicates that the program failed to detect

a data error.

The Databridge Client stops so that you can review these

errors. You can fix the data in the discard files that the

Databridge Client creates and load the records using a

relational database query tool. Alternatively, you can fix the

bad data on the mainframe and let the normal update

processing take care of things. If you restart the process

command, the fixup phase proceeds normally.

The Databridge Client

stops at the start of the

fixup phase with the

following error:

Stopping: Errors

occurred during index

creation

The Databridge Client stops at this point if one or more

index creations fail. You need to determine why the index

creation failed and remedy the situation, if possible. For

example, if you did not have a large enough TEMP

SEGMENT in Oracle, increase its size and execute the index

creation scripts using SQL*Plus. Once the indexes are

created, you can change the ds_mode of the affected data

sets to 1 and resume the process command, which

proceeds normally.

Tables that do not have indexes do not cause the

Databridge Client to stop at the beginning of the fixup

phase. The Databridge Client deselects such data sets and

sets their ds_mode column to 11 before entering the fixup

phase. Any subsequent process commands will not select

such data sets unless you fix the problem and set their

ds_mode columns to 1. You can re-clone such data sets at

any time.

•

•

15.1.2 Troubleshooting Table

15.1.2 Troubleshooting Table 300

15.1.3 Using SQL Query to Find Duplicate Records

Use the following SQL query to list the keys and the record counts for duplicate records in a table.

Duplicate records result when the given combination of keys is used as the index. This query is also

useful when trying to determine if certain key combinations produce a unique key.

Problem Solution

The Databridge Client

stops at the start of the

fixup phase with the

following error:

Stopping: Errors

occurred during data

extraction and index

creation

This message indicates that both of the last two conditions

have occurred.

SELECT key_1, key_2,...key_n, COUNT(*) FROM tablename
GROUP BY key_1, key_2,...key_n
HAVING COUNT(*) >1

Where Is

key_1 key_2 key_n The list of columns that make up the index for the table.

15.1.3 Using SQL Query to Find Duplicate Records

15.1.3 Using SQL Query to Find Duplicate Records 301

If no records are duplicated, the output within the relational database query tool will indicate that

no rows have been affected. If the SQL query returns a GROUP of duplicates, do the following:

Manually delete the extra record or records for each combination of duplicate records.

Execute a dbutility runscript command for each table that contained duplicate records,

specifying the index creation script as follows:

Set ds_mode = 1 for each data set that contained duplicate records.

Execute a dbutility process command.

15.1.4 Log and Trace Files

The Databridge Client produces log files and trace files. This topic describes these files and the

differences between them.

Log Files

The log file contains information about errors that the Client encounters and statistics that are

useful in tracking performance problems. Additionally the log contains messages that are useful

when reporting problems to Micro Focus Technical Support (for example, versions of the various

host components). When a command is executed for a data source, one or more messages appear

onscreen and are written to the log file for that data source. Log files are created in the logs

subdirectory of the data source's working directory. Log files are named

dbyyyymmdd.log

where db is a configurable prefix that can be redefined in the configuration file and yyyymmdd is the

date the log file was created. A time (_hhmnss) is appended to the filename if the filename is

already in use. (For details about configuring the log via the file see Export or Import a

Configuration File.)

Where Is

tablename The name of the table for which the error occurs.

1. 1.

2. 2.

dbutility -n runscript dbscripts\script.index.*tablename*

3. 3.

4. 4.

If the query routine returns an unusually high number of duplicates, there may be more

serious problems with your keys or the process that creates them. For more information

about how Databridge uses keys, see Creating Indexes for Tables.

Note

15.1.4 Log and Trace Files

15.1.4 Log and Trace Files 302

If more than one log file is created for a data source on the same date, the time of day is included

after the date to make the filename unique (for example, dbyyyymmdd_hhmnss.log).

Some messages are written only to the log file. These messages generally include information that

may be useful when reporting problems to Micro Focus Technical Support, such as version

information for the various host and Client components, the OS version, the database version and

in the case of Microsoft SQL Server the ODBC driver version. We recommend you use the ODBC

driver version 17.4 or newer.

When sending log files to Micro Focus Technical Support always send the entire log file (do not

screen shots or segments of the file), as we capture a lot of information about the environment in

which the Client was run at the beginning of the log file. In version 7.1, we repeat most of this

information if a log switch occurs during the Client run. Knowing exactly what version of the

software we are dealing with is very important when trouble shooting.

Trace Files

Tracing is a powerful option that provides details on the internal processing of the Databridge

Client.

Trace files are named

traceyyyymmdd.log

where trace is a user configurable prefix and yyyymmdd is the date the trace file was created. The

file extension is .log . If more than one trace file is created on the same date, the time is added

after the date to make the filename unique. Trace files are written to the working directory for the

data source.

15.1.5 Using Log and Trace Files to Resolve Issues

When an error or problem occurs, use log and trace files to troubleshoot the cause.

Trace files are only required if you experience a problem that requires further diagnostics by

Micro Focus Technical Support. Do not enable tracing during routine operations as the trace

files tend to be huge. You can delete these files when you no longer need them.

Note

15.1.5 Using Log and Trace Files to Resolve Issues

15.1.5 Using Log and Trace Files to Resolve Issues 303

Review the log file, which contains a record of all data errors.

To prevent problems caused by excessive trace and log file size, use the max_file_size

parameters to limit file size. On UNIX, the Client will crash if the trace file exceeds the

system imposed file size limit.

If you are having problems and contact Micro Focus Technical Support, they may request a

copy of the log file. We recommend that you use a compression utility before sending the

log file.

If Micro Focus Technical Support requests a trace, make sure that the old trace files are

deleted before starting the Client with the -t nnn (or -d) option. You will need to use a

compression utility (such WinZip on Windows and gzip on UNIX) before sending the trace

file (which can be quite large). You can use the splitter utility to break up big trace files into

smaller, more manageable files. For help on running the splitter program, type splitter

with no parameters.

The splitter program can also split binary files (for example, WinZip® files) that are too large

to ship as an e-mail attachment. The original file can be reconstructed from the split files by

using the copy /B Windows command. When splitting binary files, you must specify the -B

option for the splitter program.

15.1.6 Enabling Tracing

The trace option controls the volume and type of information written to the trace file.

To enable a trace using dbutility

• •

• •

• •

• •

We recommend that you enable trace options only when directed to do so by Micro Focus

Technical Support. Specifically, avoid full tracing, SQL tracing, protocol tracing, or API tracing.

The volume of logging data is so large it can dramatically slow performance of the Client and fill

up your hard disk. Compress files using a compression utility before you send them to Micro

Focus Technical Support for analysis. Very large trace files should be broken into manageable

pieces with the splitter utility. For help on running the splitter utility, type splitter with no

parameters.

Note

15.1.6 Enabling Tracing

15.1.6 Enabling Tracing 304

Determine the type of trace you want. Then, add the value for each tracing option (see the

table below), and use the result for nnnn.

Specify the -t nnnn (or the -d) option using the following syntax:

dbutility -t nnnn command arguments

dbutility -d command arguments

where nnnn is a bit mask that specifies the tracing option. You can prefix it with 0x to provide

the value in hex.

If you are not sure which tracing masks to use, use the -d option. This is the equivalent of

-t 0xB7F , which enables the most useful trace options.

You can enter other command-line options, such as -U , -P , and -D with the trace option. The

order is not important as long as all dash (-) options precede each command line argument.

(See dbutility Command-Line Options.)

(Optional) To analyze performance, you can use an additional command line option, -m . This

option includes a five-digit millisecond timer in all output messages. The timer is appended to

the timestamp as (mmmmm).

(Optional) To change the trace option when the Databridge Client is running, use the

commands explained in Controlling and Monitoring dbutility.

To enable a trace from the Administrative Console

To create a trace file, you can use the available options in the Administrative Console by clicking on

the "Trace and Log Options" item in the data source's Advanced menu. If there is no active run for

the data source the trace option you select will be applied to the next launched run, and if there is

an active run the tracing will be dynamically enabled for the run in question. The tracing options are

not persistent once they are used the Administrative Console clears them. If you want to start a run

with tracing a simpler option is to use the Process (with options) item in the Advanced menu of the

data source and select the -d options, which will give the default tracing, which is why you should

use unless we tell you otherwise.

To enable tracing for a clone command only, the Clone item in the Advanced menu of the data

source also allows you to select the -d option. Alternatively you can clicking on the "Trace and Log

Options" item in the data source's Advanced menu and select the desired trace option.

To stop tracing, click on "Select None" in the Trace and Log Options dialog and push OK.

15.1.7 Trace Options

1. 1.

2. 2.

2.

2.

2.

2.

3. 3.

4. 4.

Decimal Hexadecimal Description

0 0 Disables tracing.

15.1.7 Trace Options

15.1.7 Trace Options 305

Decimal Hexadecimal Description

1 0x1 Writes log messages to the trace file in addition to trace

information.

2 0x2 Traces all SQL commands as the Databridge Client

passes them to the relational database. Typically, these

messages are SELECT or UPDATE SQL statements and

stored procedure calls.

4 0x4 Traces all DBServer or DBEnterprise communications

and key actions associated with Databridge on the host,

including RPC calls such as DB_SELECT and DB_READ

and their responses.

8 0x8 Traces information on the Databridge Client control

tables as they are loaded from the relational database

(that is, load tracing).

16 0x10 Enables relational database API tracing, which traces

calls from the Databridge Client to the ODBC, OCI or CLI

APIs.

32 0x20 Traces the records that are written to temporary data

files (or UNIX pipes) and used by the bulk loader utility

during the data extraction phase of cloning.

64 0x40 Traces information exchanged between the Databridge

Server and the Databridge Client. The blocks of data are

traced as they are read and written to the TCP interface.

The messages are listed in DEBUG format, which is an

offset followed by 16 bytes in hexadecimal, followed by

the same 16 bytes interpreted as EBCDIC text. The non-

printable EBCDIC characters are displayed as periods (.).

128 0x80 Traces all messages that are routed through the

Databridge Client Manager (primarily messages from the

Client Console and Client Configurator to the Client,

DBClient).

256 0x100 Traces debugging output that is temporarily added to the

Databridge Client (primarily engineering releases).

512 0x200 Displays the configuration file parameters as they are

processed.

15.1.7 Trace Options

15.1.7 Trace Options 306

Decimal Hexadecimal Description

1024 0x400 Enables exchange of traces information between

DBClient (or DBClntCfgServer) and the service. The

output looks like a DBServer protocol trace, except for

the fact that all the data is ASCII.

2048 0x800 Enables SQL tracing while running user scripts during

define and redefine commands.

4096 0x1000 Prints the Read_CB exit line in the trace file. This option

is useful only for determining when the execution of a

SQL statement ends because the start of the subsequent

wait for TCP input is not traced.

8192 0x2000 Traces DOC records. This option provides the same

information you would get by setting trace option bit 4,

which traces all messages used in server

communications. This bit allows you to trace only the

DOC records. When used in conjunction with 4 bit, this bit

is redundant.

16,384 0x4000 This bit is reserved for internal use only.

32,768 0x8000 This bit is reserved for internal use only.

65,536 0x10000 Enables verbose tracing.

131,072 0x20000 Enables thread tracing.

262,144 0x40000 Enables DMSII buffer management tracing.

524,288 0x80000 Enables row count tracing.

1,048,576 0x100000 Enables SQL buffer size calculations.

2,097,152 0x200000 Enables load balancing tracing.

15.1.7 Trace Options

15.1.7 Trace Options 307

Examples

Following are different ways you can set the logging options.

15.1.8 Trace Messages

Any of the messages in this section may appear in the trace file, depending on which options you

select when you execute dbutility. See Enabling a Trace. Successful executions of dbutility are

separated by a line of 132 equal signs (=).

Database API Trace

Database API tracing is available via the -t 16 or -t 0x10 command-line option. The API trace

messages trace calls to ODBC (Microsoft SQL Server) or OCI (Oracle). The following messages

may appear when you use database API tracing:

Decimal Hexadecimal Description

4,194,304 0x400000 Enables host variable tracing.

Log Option Example (Decimal and

Dexadecimal)

Result

dbutility -t 7

dbutility -t 0x7

Traces log data (1), SQL (2) and host

events (4)

dbutility -t 2943

dbutility -t 0xB7F

dbutility -d

Traces the most commonly desirable

options.

NOTE: Whenever Micro Focus

Technical Support asks

you for a trace, use the -d option, unless you

are told otherwise.

Message Description

Abort_Transaction: This message indicates that the Databridge

Client is making an API call to rollback the

current transaction group.

15.1.8 Trace Messages

15.1.8 Trace Messages 308

Message Description

Begin_Transaction: This message indicates that Databridge Client is

starting a transaction group.

BindColumnPtr, stmt=nnnn: This message only appears when the

configuration parameter aux_stmts has a

nonzero value. It indicates that the columns

involving a host variable in the SQL statement

that was just parsed are being bound to a

memory address. This message follows every

Parse_SQL message.

Bind_Record: col=number,

name=colname, ofs=number,

size=number, type=number

This message appears when the various data

columns referenced explicitly or implicitly in a

select statement are bound to fields in a program

structure. This messages lists the column

number (col=number), item name

(name=colname), offset of the field in the

structure expressed as a hexadecimal number

(entry ofs=number), size of the field (in bytes)

expressed as a decimal number (size=number),

and code for the sql_type of the column

(type=number).

Cancel_SQL: This message indicates that Databridge Client

canceled a SQL statement that failed to

complete in the designated time. The timer

thread performs this operation when it

determines that the threshold specified by the

configuration parameter sql_exec_timeout has

been reached.

Close_Database: This message indicates that a database session

has been closed. The Databridge Client typically

uses two database sessions at a time.

Commit_Transaction: This message indicates that the Databridge

Client is making an API call to commit the current

transaction group.

Execute_PreParsed_ SQL for stmt

number, table 'name'

This message is immediately followed by the

SQL_DATA message, which displays the actual

values of the host variables for the pre-parsed

SQL statement that is being executed.

15.1.8 Trace Messages

15.1.8 Trace Messages 309

Message Description

Execute_SQL: This message indicates that the Databridge

Client called the Execute_SQL procedure, which

executes most SQL statements not involving

host variables. This call is preceded by one or

more calls on Process SQL, which constructs the

SQL statements in a temporary buffer.

Execute_SQL_Direct: This message indicates that the Databridge

Client called the Execute_SQL_Direct procedure,

which executes SQL statements directly (versus

from the buffer that Process_SQL creates).

Fetch_Results: No more rows This message appears when the Databridge

Client loads the Client control tables and

indicates the no more rows are available in the

select statement result.

Fetch_Results: Row retrieved This message appears when the Databridge

Client loads the Client control tables and

indicates that the Databridge Client successfully

read the row when it retrieved the results of a

select statement.

OCIBindByPosition: col_no= nn,

addr=0xhhhhhhhh, len =0xhhhh,

ind=nn

This message, which is limited to the Databridge

Client for Oracle, indicates that the column in the

given position in the parsed SQL statement was

bound to a host variable at the given address and

length.

Open_Database: user =userid,

pwd=**, {db=database

data source=src}, rslt= dbhandle

Open_Stmt: Opened stmt nnnn This message indicates that the Client allocates

a new stmt structure associated with a SQL

statement that uses host variables. The Client

allocates a maximum number of auxiliary

statements (configuration file parameter

aux_stmts) before it starts reusing these

structures. The Client reuses the least recently

used (the oldest) stmt in this case.

15.1.8 Trace Messages

15.1.8 Trace Messages 310

Message Description

Oracle NLS parameter name= value This message appears when the Databridge

Oracle Client connects to the database. One of

the first things it does is to read the NLS

parameters to determine the language and

decimal character being used. The Client then

automatically adjusts the connection so the

Client operates properly in the given

environment. The bcp_delim parameter is

automatically set the value that SQL*Loader

expects.

Parse_SQL: SQL[number]=stmt This message indicates that the SQL statement

involving a host variable is being parsed using

the stmt in question.

Using host variables improves performance by

only parsing statements, binding the host

variables to specific columns, and executing the

statement multiple time after setting the host

variables to the desired values.

Procedure_Exists(name) This message indicates that the Databridge

Client called the procedure Procedure_Exists,

which reads the data dictionary to determine if

the given stored procedure exists.

Process_SQL: SQL=SQLText This message, which should not be confused

with a similar SQL tracing message, overrides the

SQL trace when both SQL and API tracing are

enabled. This avoids having duplicate entries in

the trace.

SQLBindParameter: col_no=nn ,

addr=0xhhhhhhhh, len=0xhhhh,

ind_addr=0xhhhhhhhh, ind=nn

This message, which applies to all ODBC Clients,

indicates that the given column in the prepared

SQL statement was bound to a host variable at

the given address and the given length. The ind

column is an indicator that is used to mark

columns as being null.

SQL_DATA[number]= ...|...|... This message, which should not be confused

with a similar SQL tracing message, overrides the

SQL trace when both SQL and API tracing are

enabled.

15.1.8 Trace Messages

15.1.8 Trace Messages 311

Bulk Loader Trace

Bulk loader tracing is available via the -t 32 or -t 0x20 command-line option. Bulk loader data

tracing results in records of the bulk loader data files (or UNIX pipes) being written to the trace file

during the data extraction phase of cloning. Bulk loader data trace messages are in the following

form:

Configuration File Trace

The configuration file trace is available via the -t 512 or -t 0x200 command-line option. These

messages log configuration file parameters as they are being processed.

For example:

CONFIG: nnn. Config_file_line

If a binary configuration file is used, the Client uses the same output procedure as the export

command to write the text version of configuration file into the trace file.

DBServer Message Trace

Databridge Server message tracing is available via the -t 4 or -t 0x4 command-line option. This

trace highlights pertinent information during communications with Databridge Server on the host.

These messages are listed in the trace file and may include the following:

Message Description

Table_Exists (name) This message indicates that the Databridge

Client called the procedure Table_Exists, which

reads the data dictionary to determine if the

given table exists.

Message Description

Build_Pipe_Stream:

table=name, record=data

where data is the actual ASCII data that is written to the

temporary data file (or UNIX pipe) used by the bulk

loader utility.

15.1.8 Trace Messages

15.1.8 Trace Messages 312

Message Description

Common_Process: DBDeSelect

Table=name, stridx= nnnn, rslt=

errorcode

The DBDeselect RPC call is used to deselect

data sets that need to be excluded from change

tracking. An example would be a data set

whose AA Values are invalidated by a garbage

collection reorganization. This message shows

the name of the data set and its related

structure index. If errorcode is nonzero, this

message is followed by a Host message.

Common_Process: DBSelect

Table=name, stridx=nnnn,

rslt=errorcode

The DBSelect RPC call is used to select data

sets when the Databridge Client starts a

process or a clone command. This message

shows the name of the data set and its related

structure. If errorcode is nonzero, this message

is followed by a Host message.

Datasets_CB: dataset_name [/rectype]

(strnum), subtype = dd,

ds_options=0xhhhhhhhh, misc_flags =

0xhhhhhhhh

CB stands for callback. This message shows

the receipt of a data set information record

from the Databridge Server during the execution

of a define or redefine command.

Define_Table_Items: table= name,

item=name data_type (sql_length)

This message shows the data type and SQL

length of data items as they are inserted in the

Client control tables. This occurs during

execution of the define or redefine

command.

Get_Response: Req=req Rslt=rslt

Len=len

where req is the request type (RPC name), rslt is

the returned status (typically OK), and len is the

number of bytes of data that follow the status

in the response packet.

This message indicates that the Databridge

Client received a response to a remote

procedure call other than DBREAD or DBWAIT.

Layout_CB: DataSet = name[/rectype],

item (number) = name, data_type = dd,

dlen = dd, scaling = dd

CB stands for callback. This message shows

the receipt of a data set item layout information

record from the Databridge Server during the

execution of a define or redefine command.

15.1.8 Trace Messages

15.1.8 Trace Messages 313

Message Description

Read_CB: Type=typename StrIdx=iii,

aa= hhhhhhhhhhhh

This message indicates that the Databridge

Client received a response from the Databridge

Server in response to a DBREAD or DBWAIT

remote procedure call.

typename is the response name (CREATE,

DELETE, MODIFY, STATE, DOC, MODIFY_BI, or

MODIFY_AI)

iii is the structure index assigned to the

structure when it is selected via the DBSELECT

call

hhhhhhhhhhhh is the value of the absolute

address of the DMSII record (For protocol levels

greater than 6, this value is all zeros unless the

data set uses the AA Value as a key.)

Read_CB: Type=DOC[AF_HEADER],

Afn=afn, RectoQPT=dd, UpdateLev=ul,

TS='ts', DMSRel=nnn, DMSBuild=nnn,

AudLev=nnn, AFSize=nnn,

AFOrigin=orig,firstABSN=absn1,

lastABSN=absn2

This message is always sent to the Client when

the Databridge Engine opens a new audit file. It

contains information about the audit file,

including the audit file number afn, the update

level ul, and the audit file origin orig. This last

item is particularly useful when using

DBEnterprise as it allows the Client to detect

what access method is being used to read the

audit file (i.e. direct-disk, indirect-disk or cache).

15.1.8 Trace Messages

15.1.8 Trace Messages 314

Information Trace

Information tracing occurs via the default -t 1 or -t 0x1 command-line option. The information

messages include the following messages that are not displayed on the screen, as well as all

messages that are displayed on the screen.

Message Description

Read_CB: Type=DOC [type], . . . This message is printed only when the

enable_doc_records parameter is set to Yes in

the configuration file. The Databridge Client

uses the DOC record only for debugging

purposes. DOC records are documentation

records that are optionally sent by the

Databridge Engine to document the events that

occur while Databridge Engine is reading the

audit files.

The various types include BEG_TRAN, CLOSE,

END_TRAN, OPEN, REORG. The rest of the

message varies based on the DOC record type.

In the case of BEG_TRAN and END_TRAN, the

message includes the transaction count, while

OPEN and CLOSE messages give information

about the job number, the task number and the

task name of the program that accessed the

DMSII database. REORG DOC records are sent

to Client to notify it that some sort of

reorganization has occurred for the specified

structure index, which is printed out in the

message. The remaining DOC records are only

identified by type with no additional

information.

Read_CB: Type=LINK_AI StrIdx=

number

This message indicates that the Databridge

Client received a DMSII LINK after image from

the Databridge Server in response to a DBREAD

or DBWAIT remote procedure call.

Message Description

command line

echo

Everything you type at the command line is echoed in the trace file.

15.1.8 Trace Messages

15.1.8 Trace Messages 315

Load Trace

Load tracing is available via the -t 8 or -t 0x8 command-line option. Load tracing messages

refer to the Client control tables. To check these tables, use the dbutility display command. See

dbutility Commands.

The Load External messages are displayed only during a dbutility define or redefine command.

They indicate that the Databridge Client is reading table names defined in other data sources to

make sure that any newly-defined tables and indexes do not duplicate table names or index names

defined previously in other data sources.

The following messages may appear when you use load tracing:

Message Description

Current date is:

day month year

This is the date you ran the Client. It is used to identify sections of

the trace file as there might be several runs of dbutility logged to the

same trace file.

Negotiated

Protocol level = n,

Host version n.n

This is the negotiated protocol level that the Databridge Client and

the Databridge Server are using to communicate. For example, a

protocol level 7 Databridge Client and a protocol level 6 server use a

negotiated protocol level of 6 in all communications.

Message Description

Load: DataSet = name[/

rectype], strnum =

number, AFN = afn,

ABSN = absn

This message appears for every data set loaded from the

DATASETS Client control table. The message lists the data set

name (and the record type for variable-format data sets) as

well as the structure number, the audit file number, and the

audit block serial number. For most commands, this message

appears for only those data sets whose active column is 1.

Load: dms_item =

name, item_number =

number, DataSet =

name[/rectype]

This message appears for every DMS item loaded from the

DMS_ITEMS Client control table. The message lists the data

set name (and the record type for variable-format data sets) as

well as the DMSII item name and the corresponding item

number.

This message does not appear during the process and clone

commands because all of the information the DMS_ITEMS

entries contain is in the DATAITEMS Client control table.

15.1.8 Trace Messages

15.1.8 Trace Messages 316

Message Description

Load: datatable =

name, DataSet = name[/

rectype]

This message appears for every data table loaded from the

DATATABLES Client control table. The message lists the data

set name (and the record type for variable-format data sets)

and the table name.

Load: dataitem = name,

datatable = name

This message appears for every data table loaded from the

DATAITEMS Client control table. The message also displays

the table name to which the item belongs.

Load External:

DataSource = name,

TableName = name,

IndexName = name

The Load External messages appear during a dbutility define

or redefine command only. They indicate that the Databridge

Client is reading table names defined in other data sources to

make sure that any newly-defined tables and indexes do not

duplicate table names or index names defined previously in

other data sources.

15.1.8 Trace Messages

15.1.8 Trace Messages 317

If an OCCURS table filter is being used the Load Trace also includes a display of the filter data,

which can also be generated by using the display command of the makefilter utility. This

immediately follows the log message "Loading binary filter file "config\dbfilter.cfg" .

Each OCCURS table that is being filtered has a starting index and a count that represents the

number of tokens associated with the table. Constants are associated with an item, whose

properties they share. Constants are put into a global constant pool that is shown in debug format.

Individual constants are represented in DMSII native form (i.e. binary data). The offset into the

constant pool is used to reference a constant, its length is the same as that of the associated data

item. An offset of -1 is used to denote a NULL. The filters are represented in reverse polish form.

The various operators are represented by 2 or 3 letter terms such as EQL, NEQ, AND, OR and so on.

Every filter ends with an END operator.

Protocol Trace

Protocol tracing is available via the -t 64 or -t 0x40 command-line option. Protocol traces

display the data that is read from or written to the TCP/IP interface during all communication with

the Databridge Server.

Message Description

Load: global_dataset =

Global_DataSet, AFN =

afn, ABSN = absn

This message appears when the global data set is loaded

from the DATASETS Client control table. Under normal

circumstances, the AFN and the ABSN is 0 as the Databridge

Client sets these entries to 0 after it propagates the global

stateinfo for all data sets that have a value of 1 in their in_sync

columns before the process command terminates.

Filter: NumFilters = nnn, NumFilterEntries = nnn, ConstantPoolSize=0xhhhh
Constant Pool:
0000 hh hh hh . . .
Table 'name', filter_start = nnn, num_entries = nnn
 Type = ColumnName: item_name = 'name'
 Type = Constant: associated item,_name = 'name', offset = ddd, length = lll
 Type = Operator: op
 Type = Operator: END
. . .

Message Description

read:

number_of_bytes_read

Received data. These messages are followed by a

hexadecimal dump of data in DEBUG format, with all data

interpreted as EBCDIC text. Non-printable characters are

displayed as periods (.).

15.1.8 Trace Messages

15.1.8 Trace Messages 318

SQL Trace

SQL tracing is available via the -t 2 or -t 0x2 command-line option. The following SQL

messages may appear in the log file:

Message Description

write:

number_of_bytes_read

Sent data. These messages are followed by a hexadecimal

dump of data in DEBUG format, with all data interpreted as

EBCDIC text displayed in ASCII. (Non-printable characters are

displayed as periods (.).

Message Description

SQL=sqltext Indicates general SQL tracing where sqltext is the

actual SQL command sent to the relational

database.

SQL[number]=sqltext Indicates SQL tracing that involves host variables in

the Databridge Client for Oracle when the

configuration parameter aux_stmts has a nonzero

value.

Number is the stmt number, and sqltext is the actual

SQL command sent to the relational database.

15.1.8 Trace Messages

15.1.8 Trace Messages 319

User Script Trace

User script tracing is available via the -t 2048 or -t 0x800 command line options. This causes

the SQL statements in user scripts to be traced only during a define or redefine command. This

option provides a subset of the SQL Trace. This option has no effect if SQL tracing is enabled.

Read Callback Exit Trace

Read callback exit tracing is available via the -t 4096 or -t 0x1000 command line options. This

causes the Client to display the message shown below when it exits the read call back procedure.

This indicates that the Client is done processing a data buffer and is ready to read the next one.

This is only useful when looking for reasons why the Client is running slow. In such cases we

recommend that the command line option -m be used, as this will give you a finer granularity

timestamp.

Read_CB: Exit

DOC Record Trace

DOC record tracing is available via the -t 8192 or -t 0x2000 command line options. This causes

the DOC records received from the Databridge Engine to be traced during a process or clone

command. This option is redundant when the Databridge Server message tracing is enabled, see

DBServer Message Trace.

Verbose Trace

Verbose tracing is available via the -t 65536 or -t 0x10000 command line options. These

messages are described in the Databridge Errors and Messages Guide and identified by using the

TR_VERBOSE bit, which is the above-mentioned bit in the trace mask.

Thread Trace

Message Description

SQL_DATA[number]= ...|...|... This message shows the data being passed to the

database API when executing updates involving

previously parsed SQL statements that use host

variables. Number is the stmt number.

15.1.8 Trace Messages

15.1.8 Trace Messages 320

https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages

Thread tracing is available via the -t 131072 or -t 0x20000 command line options. These

messages include the following:

Message Description

Bulk_loader thread[nn]

{started | ready |

exiting}

(Windows only) These messages indicate a change in

the state of the bulk loader thread(s).

started indicates that the thread was started. The

thread is only started when there are tables to be

bulk loaded.

ready indicates that the thread is ready to process

requests to run the bulk loader. The bulk loader

thread gets the load request from its work queue. If

there is none, it blocks until one becomes available.

exiting indicates that the thread is no longer

needed and is exiting. At this point, the Client is

ready to start processing audit files, as soon as the

index thread finishes creating indexes for all of the

tables that were cloned.

Bulk loader thread[nn]

starting {sql*loader |

bcp} for table 'name'

(Windows only) This message indicates that the bulk

loader thread in question is launching the bulk loader for

the specified table.

Console_Reader thread

{starting | ready |

exiting }

These messages indicate a state change in the Console

thread. The command line Client uses this thread to read

console commands from the keyboard. The service-

based Client (DBClient) uses this thread to handle

console commands that originate in the GUI Console

and are passed to the Client as RPCs. The various states

indicate the following:

starting indicates that the thread was

successfully started.

ready indicates that the thread is waiting for

keyboard input in the case of dbutility and waiting

for an RPC in the case of DBClient.

exiting means that the thread is about to exit.

•

•

•

•

•

•

15.1.8 Trace Messages

15.1.8 Trace Messages 321

Message Description

Index_creator thread

{started | ready |

exiting}

These messages indicate a state change in the index

creator thread.

started indicates that the thread was started

because there are tables for which indexes must be

created.

ready indicates that the thread is ready to process

requests to create indexes for tables. The index

creator thread gets the index creation request from

its work queue. If there is none, it blocks until one

becomes available.

exiting indicates that the thread is no longer

needed and is exiting. At this point, the Client is

ready to start processing audit files.

Update Worker thread

[nn] empty_work_queue,

EOT=n, SDW=n,

n_active_threads=nn

This message, which is only seen when using multi-

threaded updates,.indicates that the specified update

worker is performing an update for the given table. It

shows the address of the work descriptor storage block

that is used to queue the request. This information is

only useful if you are diagnosing a problem that deals

with the management of work descriptor storage blocks.

Update Worker thread

[nn] {started | ready |

exiting}

These messages, which are only seen when using multi-

threaded updates, indicate a state change in one of the

update worker threads.

> started indicates that the thread was started. The

update threads are started at the start of the process

command.

ready indicates that the thread is ready to process

requests to execute updates. The update worker threads

get the update requests from their work queues. If there

is no request in the queue, the thread blocks until one

becomes available.

exiting indicates that the thread is no longer needed

and that it is exiting. This only happens when the Client

is shutting down.

•

•

•

•

•

15.1.8 Trace Messages

15.1.8 Trace Messages 322

DMS Buffer Trace

Buffer size tracing is available via the -t 262144 or -t 0x40000 command line options. This

causes the Client to display the following messages when a DMS buffer is gotten from the free

buffer list or when it is returned to the list.

Message Description

Waiting for bulk_loader

thread to finish

(Windows only) This message indicates that the

bulk_loader thread is not finished loading tables. The

main thread, which is ready to enter the fixup phase,

must wait for these operations to complete before

updates can be processed. When the bulk loader thread

is finished it displays the message " Bulk_loader

thread exiting ."

Waiting for

index_creator thread to

finish

(Windows only) This message indicates that the

index_creator thread is not finished. The main thread,

which is ready to enter the fixup phase, must wait for

these operations to complete before updates can be

processed. When the index creator thread is finished, it

displays the message " Index_creator thread

exiting .”

Message Description

XDR_Get_Buffer:

buf=0xhhhhhhhh,

buf_cnt=dd, sem_cnt=dd

This line is printed every time a DMS buffer is gotten off the

free list; buf is the address of the buffer, buf_cnt is the

number of DMS buffer that have been allocated and

sem_cnt is the number of buffers that are available (note

that all of these may not yet have been allocated).

15.1.8 Trace Messages

15.1.8 Trace Messages 323

Row Count Trace

Row count tracing is available via the -t 524288 or - t 0x80000 command line options. This

causes the Client to display the following message when the Client fetches the row count following

the execution of a SQL statement. Note that in the case of user scripts, using the -v option causes

the exact same output to appear in the log file when a user script executes an update statement.

Rows updated = dd The value dd represents the number of rows updated.

Buffer Size Trace

Buffer size tracing is available via the -t 1048576 or -t 0x100000 command line options. This

causes the Client to display the following messages at startup when the control tables are being

loaded.

Message Description

XDR_Return_Buffer:

buf=0xhhhhhhhh,

sem_cnt=dd

This line is printed every time a DMS buffer is returned to

the free list; buf is the address of the buffer, and sem_cnt is

the number of buffers that are available (note that all of

these may not yet have been allocated).

Message Description

Item name: hv_len=dd,

sqlcmd(oh=dd, gr=dd), ins=(dd,dd),

upd(dd, dd); total ins=(dd,dd),

upd=(dd,dd)

This line is printed every time a data item is

processed. It shows the contributions of the item

to the various SQL buffer sizes.

Computed SQLcmd lengths for table

name: [hv_len = dd,], sqlbuf_len = dd,

sql_buf2_len = dd, sql_buf_size = dd,

[thr_sql_buf_size = dd,] sql_buf2_size

= dd

At the end of the processing of the items in a

table this summary line is displayed. In the case

of the Flat File Client the sections enclosed in

square brackets are not present.

15.1.8 Trace Messages

15.1.8 Trace Messages 324

Message Description

Buffer sizes are gSQLcmd/

SQLCMDLEN = dd/dd, gSQLcmd2 =

dd

When all the tables have been processed this line

is displayed. It shows the sizes for the two SQL

buffers used by the main thread. When using

multi-threaded updates refer to the previous

message to see what the size of the update

thread SQL buffers are.

15.1.8 Trace Messages

15.1.8 Trace Messages 325

15.2 Appendix B: dbutility Commands and Options

This appendix provides a list of all dbutility commands and command-line options. For a complete

reference of command-line options paired with their equivalent configuration file parameters, see

Reference Tables.

15.2.1 dbutility Commands

The following table lists all of the dbutility commands and their related command-line options.

Example

Assume you want to override the parameter database , which specifies the relational database

name, and enter a blank instead (which is the same as the using the default database name). To do

this, you could enter either of the following:

The hyphen is used for all command options and is valid for Windows and UNIX. Windows

users can substitute the slash (/) for the hyphen.

Note

dbutility -U usera -P secret -D "" configure
dbutility -U usera -D -P secret configure

Command Purpose and Result

dbutility clone

datasource dataset1

[dataset2... datasetn]

Related command-line options: Signon options, -c , -f , -l ,

-m , -o , -s , -t , -u , -v , -x , -z , -A , -F , -K , -L , -N , -T

Run this command to clone or reclone (not track changes)

a list of data sets. Using the dbutility clone command is a

convenient way of cloning a few data sets without having to

update the DATASETS Client control table. For re-cloning with

dbutility clone , see Recloning.

15.2 Appendix B: dbutility Commands and Options

15.2 Appendix B: dbutility Commands and Options 326

Command Purpose and Result

dbutility configure Related command-line options: Signon options, -f , -m , -t ,

-u , -L , -T

Run once for each set of Client control tables you want to

create. The result is empty Client control tables and their

indexes in the relational database. See Creating Client Control

Tables.

NOTE: The only time you would run dbutility configure again

for the same relational database is if you previously executed

a dbutility dropall command.

dbutility define

datasource host port

Related command-line options: Signon options, -f , -m , -t ,

-u , -v , -L , -T

Run once for each data source you want to define except when

customizing with user scripts. See Customizing with User

Scripts. The result is a data source entry in the DATASOURCES

Client control table and all other Client control tables

containing the DMSII database layout and corresponding

relational database table schema information. See Defining a

Data Source.

dbutility display

datasource

Related command-line options: Signon options, -a , -f , -m ,

-t , -B , -L , -T

Run this command to create a report of the Databridge Client

control tables for the specified data source. The report is

written to the log file in the logs directory. For more

information about log files, see Log and Trace Files.

Use this command to check the results of the dbutility define

command or script customization.

NOTE: When you use dbutility display, the column names for

the Client control tables are abbreviated. The actual column

names and the abbreviated column names are listed for each

Client control table in Chapter 6, Databridge Client Control

Tables.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 327

Command Purpose and Result

dbutility drop

datasource

Related command-line options: Signon options, -m , -t , -v ,

-L , -T

Run this command to "undo" the results of a dbutility define,

generate, process, and clone for a specified data source.

dbutility drop does the following:

Drops tables and their associated stored procedures

Removes the script files in the current directory

Deletes the DMSII record layout and relational database

table schema information (for the specified data source)

from the Client control tables

CAUTION: We recommend that you create a separate directory

for each data source. When you must drop a data source,

make sure that the current directory is the directory you

created for the data source. Then, use the drop (not

dropall) command to drop each individual data source.

Failure to do this results in dbutility not being able to locate the

required scripts, which causes it to terminate with an error.

•

•

•

15.2.1 dbutility Commands

15.2.1 dbutility Commands 328

Command Purpose and Result

dbutility dropall Related command-line options: Signon options, -m , -t , -u ,

-L , -T

Run this command to drop all tables that have been created by

the Databridge Client, as well as to remove the script files in

the current directory. Note that your other non-Databridge

tables are not affected.

If you are executing dbutility commands from more than one

directory, the dbutility dropall command locates scripts in

the current directory only. In this case, it drops the scripts that

it can find and then refrains from removing the Client control

table entries for those data sources that it could not properly

delete (that is, the data sources whose scripts are in other

directories). Therefore, we recommend that you do either of

the following:

Change the directory and repeat the dbutility dropall

command.

Drop each data source via the drop command, then use

dbutility dropall for the final data source.

Typically, you do not need to use this command.

dbutility options export

filename

Related command-line options: -E , -u

Exports the binary Client configuration file to an editable text

file (dbridge.ini , by default) that can then be imported, using

the import command, for use with the Databridge Client. See

Export or Import a Configuration File.

•

•

15.2.1 dbutility Commands

15.2.1 dbutility Commands 329

Command Purpose and Result

dbutility generate

datasource

Related command-line options: Signon options, -f , -m , -t ,

-u , -v , -L , -T

Generates the Databridge Client script files required to

populate the Databridge data tables in the relational database.

The result is a set of scripts in the dbscripts subdirectory of

the working directory. There are approximately five scripts for

each DMSII data set.

See Generating Databridge Client Scripts.

dbutility options import

filename

Related command-line options: -E , -f filename, -u

Reads the specified input file and writes it as a binary Client

configuration file (dbridge.cfg , by default). See Export or

Import Configuration Files.

dbutility process

datasource

Related command-line options: Signon options, -f , -l , -m ,

-o , -s , -t , -v , -w , -z , -C , -K , -N , -L , -T

Run the first time to populate the Databridge tables in the

relational database with the DMSII database data. Run

subsequent times to update the relational database with only

the changes that have been made to the DMSII database since

the last time you ran dbutility process.

NOTE: dbutility process can also re-clone instead of update if

ds_mode=0 when you run dbutility process.

See Populating the Databridge Data Tables and Updating the

Databridge Data Tables.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 330

dbutility redefine

datasource

Related command-line options: Signon options, -f , -m , -t ,

-u , -v , -r , -R , -L , -T

The redefine command compares the old and new layouts

of all the tables generated for data sets whose status_bits

columns indicate a structural reorganization.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 331

Command Purpose and Result

The redefine command also does the following:

If a new data set appears, the redefine command

defines it with its corresponding active column set to 0 in

the DATASETS Client control table (unless the

suppress_new_datasets parameter is set to False). When

the active column is set to 0, the redefine command will

not perform any mapping for it unless you set the active

column in the DATASETS entry to 1 in the corresponding

data set mapping customization user script.

If a data set no longer exists, the redefine command

deletes all the associated Client control table entries, but

does not drop the data tables and their associated stored

procedures. You must delete them by running the

corresponding scripts (these are not removed either).

The redefine command refreshes the data set mapping

in three instances. First, the mapping is refreshed when

the data set’s DS_Needs_Remapping bit is set (value 4).

Use this method when you modify the DATASETS and

DMS_ITEMS tables. Because the data set mapping

customization scripts are not run in this instance, you

must execute the runscript command prior to executing

the redefine command. Secondly, mapping is refreshed if

a data set’s active column is set to 1, and the

DS_Needs_Mapping bit is set (value 1) in the status_bits

column. Thirdly, mapping is refreshed when you set the

DS_Needs_Redefining bit (value 8). In this case, the

redefine command refreshes the DMSII layout as well.

If a data set has an active column set to 0, and the

DS_Needs_Mapping bit is set (value 1) in the status_bits

column, the layout information is refreshed, but no

mapping is performed.

The redefine command sets the active columns of the

Client control tables equal to zero for data sets that

contain global data. No other data sets are affected by the

redefine command. You must execute a generate

command after a redefine command to update the

scripts.

•

•

•

•

•

15.2.1 dbutility Commands

15.2.1 dbutility Commands 332

Command Purpose and Result

dbutility [options]

refresh datasource

dataset

Related command-line options: Signon options

The refresh command enables you to drop and recreate all

of the stored procedures for the tables associated with the

given data set in the specified data source. It is a variation of

the runscript command that is designed to run portions of

the Databridge Client scripts (script.drop.tablename and

script.create.tablename). This command is useful when

you want to add a new column to a table after a DMSII

reorganization.

If _ALL is specified for dataset, the program refreshes the

stored procedures for all active tables. If a specific data set is

specified, only the stored procedures for that data set

refreshed. All data sets specified must already exist.

NOTE: When variable-format data sets are involved, the tables

for all the record types that have their active column set to 1 in

the DATA SETS Client control table are refreshed.

dbutility reload

datasource backupfile

[dataset, dataset2...]

Related command-line options: Signon options, -f , -k , -m ,

-t , -L , -T

Restores the Client control tables from a file that the unload

command created. If a datasource of _ALL is specified, all data

sources contained in the backup file are restored. If a specific

data source is specified, only the entries for that data source

are restored from the file. The reload operation is sensitive to

the version of the program that wrote the backup file.

As an option, you can provide a list of data sets to be loaded. If

such a list does not exist, all data sets for the given data

source are reloaded. The -k option preserves the stateinfo for

data sets whose format levels and item counts remain

unchanged.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 333

Command Purpose and Result

dbutility rem . . . A dummy command that opens the log file and echoes the

command line into it. The purpose of this command is to make

it possible for script files or operators to create a log file entry

to document the action that was taken. For example:

dbutility rem accidentally killed the Client –

JaneDoe

dbutility reorganize

datasource

Related command-line options: Signon options

Generates new scripts for stored procedures and refreshes the

relational database stored procedures. The reorganize

command resets ds_mode to 2 (indicating that the data set is

in tracking mode).

Typically, you would use the reorganize command after the

redefine command when a reorganization has occurred on

the DMSII database.

dbutility rowcounts

datasource

Related command-line options: Signon options, -f , -m , -n ,

-t , -u , -L , -T

Creates a report in the log file with all the row counts for all the

active tables associated with the data source.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 334

Command Purpose and Result

dbutility runscript

filename

Related command-line options: Signon options, -m , -n , -t ,

-L , -T

Use this command to run user scripts (for example,

script.user_define.primary_tablename) or Databridge Client

scripts (for example, script.create.tablename).

The Databridge Client expects the user scripts to be located in

the directory specified by user_script_dir in the Databridge

Client configuration file. To override this directory

specification, use the -n option, as follows:

dbutility -n runscript drive:

\directory\scriptfilename

The runscript command automatically enables SQL tracing

and logging (similar to setting the -t 3 option).

The runscript command runs in transaction mode so that if

an error occurs, all changes are rolled back. You can then fix

your scripts and run them again.

dbutility switchaudit

datasource

Related command-line options: Signon options, -f , -k , -m ,

-t , -v , -L , -T

Run this command to close an audit file on the host. This

ensures that you get the most current information possible

because the Databridge Engine does not read the currently

open audit file. DMSII audit files are explained in detail in the

Databridge Host Administrator’s Guide.

IMPORTANT: Do not use this command unless you check with

the DMSII database administrator first.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 335

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Command Purpose and Result

dbutility tcptest

datasource [host port]

length count

Related command-line options: Signon options, -f , -m , -t ,

-L , -T

Run to test the TCP/IP interface between the Databridge Client

and the server. You can use this command as a diagnostic tool

to help troubleshoot slow network connections.

If the data source is already defined, you do not have to

specify the host and the port parameters; the program reads

them from the DATASOURCES table entry instead.

Length is the size of the message to use and count is the

number of iterations that should be executed. 8000 and 1000

are standard values with these options.

15.2.1 dbutility Commands

15.2.1 dbutility Commands 336

15.2.2 dbutility Command-Line Options

This section explains the command-line options you can enter with dbutility commands, with all

lowercase options first in alphabetical order and all uppercase options following. Use the following

syntax to include the command-line options:

dbutility [options] command

where [options] begin with the forward slash (/) or hyphen (-) and are followed by a letter and a

possible argument, as listed in the following table. If you use a UNIX Client, all options must start

with a hyphen (-). Note the following guidelines for using command-line options:

All options are case-sensitive.

The options can be used in any order.

When you enter any of these command-line parameters, do not type the [brackets]. The

[brackets] indicate that the command-line parameter is optional.

Following the option letter, you can enter option arguments with or without a space. For

example, -tl and -t l are equivalent.

If an argument is blank (an empty character string), you can omit it if the next entry on the

command line is another option (for example, -D). Otherwise, you must enter the blank

argument as " " (quotation marks) with both leading and trailing spaces.

Examples

Assume you want to override the parameter database , which specifies the relational database

name and enter a blank instead (which is the same as the using the default database name). To do

this, you could enter either of the following:

Command Purpose and Result

dbutility unload

datasource backupfile

Related command-line options: Signon options, -f , -k , -m ,

-t , -L , -O , -T

Creates a file containing a backup of the Client control tables.

If a datasource of _ALL is specified, all of the data sources that

are found in the Client control tables are written to the backup

file backupfile. If any other data source is specified, only the

entries for that data source are written to the file.

• •

• •

• •

• •

• •

dbutility -U usera -P secret -D "" configure
dbutility -U usera -D -P secret configure

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 337

(Both of these examples override the parameter database database .) For a complete reference of

command-line options paired with their configuration file parameters, see Reference Tables.

This option Does this

-? Displays short help, which includes dbutility command syntax and

parameters but not options.

-a Toggles the setting of the display_active_only parameter.

-c Toggles the setting of the defer_fixup_phase parameter during a

clone command.

-d When used with any dbutility command, this option enables full

tracing. This is the same as entering -t 2943 (or -t 0xB7F).

If you are not sure whether to use the -d option or the -t option,

you may want to use the -d option. It is often better to have too

much tracing information than not enough.

-f filename Specifies an input configuration file other than the default filename

when used with an import command. If filename doesn't start with a

backslash () on Windows or a forward slash (/) on UNIX, it is

assumed to be in the config subdirectory of the working directory.

Conversely, if filename starts with the appropriate slash, it is taken to

a full file specification.

-h Displays long help, which includes dbutility command options, syntax,

and parameters.

-k Used with a reload command to preserve the stateinfo for data sets

whose format levels and item counts remain unchanged.

Used by the process , clone and drop commands in a multi-source

environment to force the Client drop tables rather than running the

cleanup script. This is designed to be used after a reorg that requires

a re-clone, one would otherwise have to physically drop the affected

table(s) to get the clone to recreate the table(s) with the new layout.

Now you can use the -k option on the first data source that gets re-

cloned; from thereon the -k option must obviously not be used.

-l (SQL Server only) forces the Client to use the bcp utility instead of the

BCP API.

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 338

This option Does this

-m Includes a 5-digit millisecond timer in all trace messages. The

millisecond timer is appended to the timestamp in the trace file. This

option does not affect log file output.

-n Used with the runscript command to override your entry for

user_script_dir so that you can run any script that is not located in

that directory.

Used by the rowcounts command to indicate that the Client should

display the values of row_count columns in DATATABLES without

refreshing them.

-o Overrides shutdown periods, including those initiated by the

stop_time and end_stop_time values in the DATASOURCES Client

control table for the data source entry when the

controlled_execution configuration file parameter is enabled.

-r Forces the parameter use_dbconfig to be treated as False when

running a redefine command. The use_dbconfig parameter is

internal and not directly editable. However, this parameter is set to

True in the following situations:

When a data source is created using the Client Configurator

When a define command creates the data source and no users

scripts are encountered

When you run the dbscriptfixup program

In all other cases, including after an upgrade using the migrate

program, the use_dbconfig parameter is set to False.

Its purpose is to ensure that the Client Configurator isn't run with

improperly setup Client control tables. This would cause all changes

that were made via user scripts to be lost.

•

•

•

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 339

This option Does this

-s Loads relational database tables that cannot be loaded via the bulk

loader utility (SQLLoader for Oracle and bcp for Microsoft SQL Server).

The -s option inhibits the use of the bulk loader utility during the data

extraction phase of cloning. The Databridge Client loads the table

using SQL statements instead.

CAUTION:* Use this option only when certain tables will not load via

the bulk loader utility. Do not use it under normal circumstances. The

-s option slows the cloning process considerably.

The -s option is also used by the createscripts command to add the

data source name in all where clause of the SQL statements that are

created.

-t mask Enables trace options designated by mask. See Enabling a Trace.

If you are unsure whether to use the -d option or the -t option, you

may want to use the -d option. It is often better to have too much

tracing information than not enough.

-u Creates override conditions that dbutility would otherwise interpret

as a possible user error. These situations include the following:

Creating a second set of Client control tables within one

relational database. In this case, the second set of tables must

be owned by a different user ID.

Starting over by dropping and creating the Client control tables,

even though this removes all of the state information associated

with the user tables.

Attempting to define a data source that already exists.

With the dbutility dropall command, use this option to drop

Databridge Client tables that still contain data.

With the dbutility rowcounts , this options indicates that all

row_count columns in DATATABLES should be refreshed, as opposed

to only the ones that are marked as being invalid.

•

•

•

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 340

This option Does this

-v Causes the Databridge Client to write some additional information to

the log file and sometimes to the screen. The most useful one is

causing user scripts executed by the Client to write the number of

rows affected by INSERT, UPDATE and DELETE SQL statements to

the log file.

-w Toggles the setting of the use_dbwait parameter.

-x Makes the clone command clone all active data sets except for

those specified at the command line.

-y Forces the Client to re-clone data sets with a mode of 11 and 12.

-z CAUTION: This option is for troubleshooting only in a test

environment. Do not use it in a production environment.

Allows dbutility to simulate a dbutility process or clone command

without actually storing data. For troubleshooting purposes.

After the Client control tables are loaded for the specified data

source, the program sets a global flag that disables all SQL execution

by the ODBC (Microsoft SQL Server) or OCI (Oracle) interface

routines.

Using this option with statistics enabled (show_statistics and

show_perf_stats both set to True) to determine the rate at which

the Databridge Engine and the Databridge Client can process data

without including any of the additional delays caused by the

relational database. If this rate is significantly slower than the rate

you get when the -z option is set, you can conclude that the

slowness is caused by the actual relational database, which might

need to be tuned.

-A Prevents the Client from deleting the tables when cloning virtual data

sets that have the DSOPT_Ignore_Dups option bit (value 32) set in the

ds_options column of the DATASETS Client control table. Instead, it

drops their indexes and appends the new records to the tables.

-B Causes the display command to report only the second half of the

DATASETS Client control table to the trace.log file, then causes the

program to quit. (In most cases, the information in the second half of

the DATASETS Client control table is the only information you actually

need from that table.)

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 341

This option Does this

-C Toggles the inhibit_console parameter. On UNIX, this doesn't apply

if you run dbutility as a background run.

-D

databasename

(Oracle only) Specifies the relational database you are using.

-F afn Makes the Client act as if a QUIT AFTER afn command had been

executed. Applies only to process and clone commands. The

range of values allowed are 1 through 9999.

-K Inhibits audit file removal WFLs from running on the host during a

process command. This option is also implied during a clone

command and when used with the -z option.

-L Forces the Client to start using a new log file.

-N Toggles the setting of the enable_optimized_sql parameter.

-O

ODBCdatasource

Specifies an ODBC data source that the Client uses to connects to

the Microsoft SQLServer database.

-P password Defines the password for accessing the relational database.

-R Treats every data set as if its DS_Needs_Redefining status bit is set

and allows the program to rebuild the control tables when you

change a configuration parameter such as optimize_updates or

read_null_records .

-T Forces the Client to start using a new trace file. See Log and Trace

Files.

-U userid Specifies the user ID defined in the relational database.

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 342

This option Does this

-V Used with the unload command, this option lets you specify the

control table version you want. To create tables that you can use with

an older Client version, use the value that corresponds to that

version.

Values for the Databridge Client are as follows:

36: Version 7.1

34: Version 7.0 SP1

33: Version 7.0

31: Version 7.0

30: Version 6.5 SP1

29: Version 6.5

26: Versions 6.2 and 6.3

25: Version 6.1 SP3

24: Version 6.1

23: Version 6.0

22: Version 5.2.0.12

21: Version 5.2.0.3

20: Version 5.2 (base release)

19: Version 5.1

-W NOTE: Uses Integrated Windows Authentication to connect to the

SQL Server database.

-X password Used to define a host password. The host password is required only

when it is configured on the host in the DBServer control file.

CAUTION: The password is currently not encrypted in

communications between the Databridge Client and Databridge

Server.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 343

This option Does this

-Y

reclone_all

Causes a process command to re-clone all data sets. The text

reclone_all is required and prevents you from accidentally recloning

everything, when you actually wanted to specify the -y option. When

using the console, specify this option by selecting a check-box

labeled “Reclone all active data sets.”

To find this option, click the data source in Administrative Console

Explorer view to activate the Data Source menu, then click Data

Source > Advanced > Process with options.

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 344

This option Does this

-Z Forces a process or clone command to drop and create the tables

of all re-cloned data sets, regardless of the use of the

deleted_record or expanded update_type columns.

15.2.2 dbutility Command-Line Options

15.2.2 dbutility Command-Line Options 345

15.3 Appendix C: Client Configuration

15.3.1 Client Configuration Files

The Databridge Client 6.1 and later versions use binary configuration files. Binary configuration files

are compatible with both service-initiated operations and command-line operations. However, if

you use the service, you must use binary configuration files. (Command-line operations can use

either binary or text configuration files. For information about creating text configuration files, see

Export or Import a Configuration File.)

The Databridge Client software uses the following configuration files:

The service configuration file (dbcontrol.cfg). This file contains settings for the service

(Windows) or daemon (UNIX) that specify scheduling, passwords, logs, and more. For more

information, see Appendix F: Service Configuration.

Data source configuration files (dbridge.cfg) used by the Databridge Client programs

(DBClient, DBClntCfgServer and dbutility). Each data source has its own configuration file,

which can be updated using the Administrative Console's Configure command in the data

source's menu. The Client configuration file overrides any equivalent parameter settings on

the host.

In a new installation, the service creates the service configuration file in the config directory of the

service's working directory (also referred to as the global working directory) the first time the

service is started. The service also creates the logs and scripts sub-directories of the service's

working directory at that time. When you add a data source in the Administrative Console, the

service creates a binary configuration file "dbridge.cfg" for the data source. Data source

configuration files are stored in the config subdirectory of the data source's working directory.

In an upgrade, as long as you are upgrading from version 6.1 SP3 or newer, you should be able to

use the same working directory. If this is not possible, rename the old working directory and use

the Migrate utility to recreate it using the old name (you must use a different working directory).

You will also want to use this utility if you are upgrading from software older than 6.1 or you are

switching from command line operations to service based operations. The Migrate utility takes

your existing configuration files and creates new data source configuration files from them. It also

creates a new service configuration file and adds your preexisting data sources to it.

15.3.2 How Do I Edit the Configuration File?

• •

• •

You should never directly modify a binary configuration file. This will corrupt the file.

Caution

15.3 Appendix C: Client Configuration

15.3 Appendix C: Client Configuration 346

Each time you change your configuration settings in the Administrative Console, you update the

binary configuration files. If you need to change a parameter that is not supported by the

Administrative Console, you can export the binary configuration file to a readable text file. After you

edit the text file, you can import the updated file to create a new binary configuration file. The

import command performs all the necessary checks to ensure that your changes are valid. If you

don't like the idea of using binary files for command-line operations, you can force the export

command to replace the binary file with an equivalent text file.

Because passwords are encrypted in the configuration file, there is no way to read them. If a

password is wrong, export the configuration file and reenter the password as plain text. Then,

import the file and export it again to remove the clear text passwords from the text configuration

file. Alternatively, you can use the Administrative Console to change passwords.

15.3.3 Export or Import a Configuration File

Use the export command to create an editable text file from your configuration file. If no

configuration file exists, the export command creates a text file with the default configuration

settings. After you make your changes, the import command will convert the text file to binary for

use with the Client. Text configuration files can only be used with the command-line Client.

The export and import commands are typically used from a command line; the Administrative

Console supports only the export command (the Export Configuration item in the data source's

Advanced menu.). When you export the configuration file, the Databridge Client creates a text file

that reflects the current values of the configuration parameters. Any passwords in the file are

automatically encrypted.

To export the configuration file for a data source

To change or encrypt a password that was manually entered in a text configuration file, use an

import command followed by an export command to overwrite the text configuration file.

See Change or Encrypt a Password.

Caution

15.3.3 Export or Import a Configuration File

15.3.3 Export or Import a Configuration File 347

Open a command session and run the following command:

dbutility [options]export [filename]

where [filename] is an optional parameter to name an exported file something other than the

default "dbridge.ini".

The exported text file is written to the config subdirectory of the data source's working

directory.

To import the configuration file for a data source

Use this procedure to create a binary configuration file from a text Client configuration file.

• •

Option Description

-u Use this option if you export a text file named "dbridge.cfg". This allows

the Client to overwrite the existing binary configuration file "dbridge.cfg"

with a text configuration file of the same name.

For example:

dbutility -u export dbridge.cfg

15.3.3 Export or Import a Configuration File

15.3.3 Export or Import a Configuration File 348

Open a command session and run the following command:

dbutility [options] import [filename]

where [filename] is an optional parameter to specify a filename other than the default,

"dbridge.ini". When no option or filename is specified, the import command processes the

text file dbridge.ini in the config directory and creates an equivalent binary configuration

file, "dbridge.cfg", in the same directory. If the file "dbridge.ini" does not exist in this location,

the import command creates a binary configuration file with the default values. If the text

file contains errors, the Client returns an error to help you identify the problem and no binary

file is created.

To export the service configuration file

Open a command session and from the Client's global working directory, run the following

command:

This command reads the binary configuration file "dbcontrol.cfg" in the config sub-directory

of the global working directory and creates an editable text configuration file "dbcontrol.ini"

in the same location.

To import the service configuration file

• •

Option Description

-f

filename

Use this option to specify a filename or path other than the default. If

this option is omitted, the Client tries to read the file "dbridge.cfg" in the

config directory of the data source's working directory.

To indicate a different location, type a backslash (Windows) or forward

slash (UNIX) followed by the full path, including filename. For example,

/home/user/xyz/foo/myconfig.cfg

-u This option is required to allow the existing configuration file to be

overwritten with a new file with the same name. Otherwise, the Client

will try to read (import) the configuration from a file named "dbridge.ini".

For example, the following command:

dbutility -u -f dbridge.cfg import

imports (reads) a file named "dbridge.cfg" and creates the binary

configuration file "dbridge.cfg" regardless of whether the imported file is

a text or binary file.

• •

dbctrlconfigure export

15.3.3 Export or Import a Configuration File

15.3.3 Export or Import a Configuration File 349

Open a command session and run the following command:

This command reads the text configuration file "dbcontrol.ini" in the config sub-directory of

the global working directory and creates a binary configuration file named "dbcontrol.cfg" in

the same location.

15.3.4 Change or Encrypt a Password

Use this procedure for any of the following situations:

To change the password for the user ID that you use to sign on to the database in your text

or binary configuration file

When the KEY (host password) on the host has changed and you need to update and

encrypt the hostpasswd value in the Client configuration file. The KEY can only be changed

by editing the DBServer control file (DATA/SERVER/CONTROL) on the host.

Passwords in the Client configuration file are automatically encrypted when you use the export

command to export the file (see Export or Import a Configuration File).

15.3.5 Command-Line Options

The following command-line options have no equivalent configuration parameter:

• •

dbctrlconfigure import

• •

• •

Option dbutility Command Description

? Short help

-d All Full Tracing

-f filename All Specifies

-h Long help

-k reload Makes the command

preserve the stateinfo of

data sets that have a

ds_mode of 2 and have

not been reorganized.

15.3.4 Change or Encrypt a Password

15.3.4 Change or Encrypt a Password 350

Option dbutility Command Description

-m All Includes a 5-digit

millisecond timer in all

output messages.

-r redefine Toggles the setting of the

parameter use_dbconfig ,

which determines whether

the command uses user

scripts.

-t mask All Log file and tracing

options

-u configure , define , redefine ,

generate and dropall

Unconditionally performs

the requested command,

overriding any warnings

that would be displayed

without this option

-w clone or process Toggles the setting of the

use_dbwait parameter.

-x clone Clones all active data sets

except those specified at

the command line

-y process Instructs the Client to re-

clone all data sets whose

ds_mode has a value of

11 or 12.

-z clone or process Instructs dbutility to not

update the relational

database during a clone

or process command.

This option is useful in

determining how much

non-database time is

required to extract data

for a data set.

15.3.5 Command-Line Options

15.3.5 Command-Line Options 351

Option dbutility Command Description

-A clone or process Prevents the Databridge

Client from dropping a

table during a clone (the

Databridge Client drops

only the index).

-B display Causes the display

command to quit after

displaying the DATASETS

Client control table

records.

-D database All Specifies the name that

identifies the Oracle

instance or the Net8

service that is being

accessed.

-F afn process Use this option make the

Client act as if a QUIT

AFTER afn command had

been executed. It applies

to process and clone

commands only. The

range of values allowed

for afn are 1-9999.

-K process Prevents the audit file

removal WFL from being

run on the mainframe

after the Engine finishes

processing an audit file.

-L All Forces the Client to start

using a new log file.

-O

ODBCdatasource

All Specifies the ODBC data

source to connect to (SQL

Server Client only).

15.3.5 Command-Line Options

15.3.5 Command-Line Options 352

Option dbutility Command Description

-P password All Sets the password

associated with the user

ID for the relational

database. The password

is limited to 30

characters.

-R redefine Forces all data sets to be

redefined.

-T All Forces the Client to create

a new trace file when

tracing is enabled.

-U userid All Specifies the user ID for

the relational database.

The user ID must have the

appropriate resource

privileges for the

designated relational

database.

-W All Specifies that the

configuration parameter

use_nt_authen should

be set to .

-Y process Causes all active data

sets to be re-cloned.

15.3.5 Command-Line Options

15.3.5 Command-Line Options 353

15.3.6 Syntax

Follow these conventions in the configuration file:

For hexadecimal values, use the 0x nnnn format.

A semicolon (;), except within double quoted strings, indicates that the remainder of the

current line is a comment.

Section headers are enclosed in square brackets.

Section headers and parameter names are not case-sensitive.

Spaces and tabs between entries are ignored; however, spaces within double quoted values

(for example, password values) are read.

If you are not using a parameter, either comment the parameter out or delete the

corresponding line in the configuration file. Do not leave an uncommented parameter

without a value after the equal sign (=). Doing so results in syntax error.

You can specify some of these parameters only in the Client configuration file. Other parameters

have equivalent command-line options and environment variables. For a complete list of

configuration file parameters, their equivalent command-line options, and their related Client

command, see Reference Tables.

15.3.7 Sample SQL Server Client Configuration File

You can view the configuration file for SQL Server by using the Export command. See Export or

Import a Configuration File.

To use a parameter that is commented out, delete the semi-colon (;) and after the equals sign (=),

enter a value that is appropriate for your site. Boolean parameters can be represented by True or

False.

Option dbutility Command Description

-Z clone or process Forces the Client to drop

and create the tables of

all re-cloned data sets,

regardless of the use of

the deleted_record or

expanded update_type

columns.

• •

• •

• •

• •

• •

• •

15.3.6 Syntax

15.3.6 Syntax 354

In the example below, some of the commented-out parameters have a value of -1. These

parameters include the Databridge Engine control file parameters that can be overridden by the

Client (commit frequency parameters and engine workers). This value indicates that the

corresponding parameter in the Databridge Engine (or Server) control file will not be overridden by

the Client. Do not uncomment these lines, unless you want to supply an actual value. Otherwise,

the Client will issue an error.

15.3.7 Sample SQL Server Client Configuration File

15.3.7 Sample SQL Server Client Configuration File 355

;
; Databridge Client version 7.1 SQL Server configuration file -- generated programmatically
;

[Signon]
;user = USERID
;password = PASSWORD
;datasource = DATASOURCE
use_nt_authen = false
;hostpasswd = HOSTPASSWD

[Log_File]
file_name_prefix = "db"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true
single_line_log_msgs = false

[Trace_File]
file_name_prefix = "trace"
;max_file_size = 0

[Bulk_Loader]
bcp_batch_size = 100000
bcp_code_page = "ACP"
;bcp_copied_msg = "rows copied"
bcp_packet_size = 0
;bulk_loader_path = "str"
max_bcp_failures = 5
max_errors = 10
max_temp_storage = 400M
use_bcp = true
verify_bulk_load = 1

[Params]
;
; (1) define/redefine command parameters
;
allow_nulls = true
auto_mask_columns = true
automate_virtuals = false
bracket_tabnames = false
clr_dup_extr_recs = true
convert_ctrl_char = false
default_user_columns = 0x00000000
dflt_history_columns = 0x00000000
enable_dms_links = false
enable_dynamic_hist = false
;external_column[n] = ["name"][,[sql_type][,[sql_length][,"default"]]]
extract_embedded = false
flatten_all_occurs = false
force_aa_value_only = 0
history_tables = 0
inhibit_required_opt = false
;maximum_columns = 0
min_varchar = 4
minimize_col_updates = false
miser_database = false
optimize_updates = false
read_null_records = true
reorg_batch_size = 50000
sec_tab_column_mask = 0x00000000
split_varfmt_dataset = false
strip_ds_prefixes = false
suppress_dup_warnings = false
suppress_new_columns = false
suppress_new_datasets = true
use_bigint = false
use_binary_aa = false
use_clustered_index = false
use_column_prefixes = false
use_date = false
use_datetime2 = false
use_dbconfig = true
use_decimal_aa = false
use_internal_clone = false
use_nullable_dates = false
use_primary_key = false
use_stored_procs = false
use_time = false
use_varchar = true
;
; (2) process/clone command parameters
;
alpha_error_cutoff = 10
aux_stmts = 100
;batch_job_period = 00:00, 00:00
century_break = 50
;commit_absn_inc = -1
;commit_idle_database = -1
;commit_longtrans = -1
;commit_time_inc = -1
;commit_txn_inc = -1
;commit_update_inc = -1
controlled_execution = false
;convert_reversals = -1
correct_bad_days = 0

15.3.7 Sample SQL Server Client Configuration File

15.3.7 Sample SQL Server Client Configuration File 356

dbe_dflt_origin = direct
defer_fixup_phase = false
discard_data_errors = false
display_bad_data = false
enable_af_stats = false
enable_doc_records = false
enable_minimized_col = false
enable_optimized_sql = true
;engine_workers = -1
error_display_limits = 10,100
inhibit_8_bit_data = false
inhibit_console = false
inhibit_ctrl_chars = false
inhibit_drop_history = false
keep_undigits = 0
linc_century_base = 1957
;masking_parameter[n] = "str"
max_clone_count = 10000
max_discards = 0,100
max_retry_secs = 20
max_srv_idle_time = 0
max_wait_secs = 3600,60
min_check_time = 600
n_dmsii_buffers = 0
n_update_threads = 8
null_datetime_value = 19010101
null_datetime2_value = 19010101
null_digit_value = 9
numeric_date_format = 23
preserve_deletes = false
set_blanks_to_null = false
set_lincday0_to_null = false
show_perf_stats = true
show_statistics = true
show_table_stats = true
sql_exec_timeout = 180,0
sql_heart_beat = 0
statistics_increment = 100000,10000
stop_after_fixups = false
stop_after_gc_reorg = false
stop_after_given_afn = false
stop_on_dbe_mode_chg = false
suppress_delete_msgs = false
suppress_dup_warnings = false
track_vfds_nolinks = true
use_dbwait = false
use_latest_si = false
;
; (3) Server options
;
;shutdown {until | for} hh:mm after stop
;stop {before | after} task "name"
;stop {before | after} time hh:mm[:ss]
;
; (4) generate command parameters
;
;global_table_suffix = "str"
;create_table_suffix[n] = "str"
;global_index_suffix = "str"
;create_index_suffix[n] = "str"
;user_column_suffix[n] = "str"
;
; (5) miscellaneous command parameters
;
display_active_only = true
;
; (6) user scripts
;
user_script_bu_dir = ""
user_script_dir = "scripts"
;
; (7) external data translation parameters
;
use_ext_translation = false
eatran_dll_name = "DBEATRAN.DLL"

[Scheduling]
;
; dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 0
;sched_retry_secs = 60
;blackout_period = 22:00, 02:00

[EbcdicToAscii]
; e1 = a1
; e2 = a2
; ...
; en = an
;

[DBConfig]
default_date_fmt = 21
global_type0_changes = true

[Encryption]

15.3.7 Sample SQL Server Client Configuration File

15.3.7 Sample SQL Server Client Configuration File 357

15.3.8 Sample Oracle Client Configuration File

ca_file = ""
ca_path = ""
certify_server_name = false
enable_encryption = false
tls_host_name = ""

15.3.8 Sample Oracle Client Configuration File

15.3.8 Sample Oracle Client Configuration File 358

;
; Databridge Client version 7.1 Oracle configuration file -- generated programmatically
;

[Signon]
;user = USERID
;password = PASSWORD
;database = DATABASE
;hostpasswd = HOSTPASSWD

[Log_File]
file_name_prefix = "db"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true
single_line_log_msgs = false

[Trace_File]
file_name_prefix = "trace"
;max_file_size = 0

[Bulk_Loader]
;bcp_code_page = <code_page>
;bcp_decimal_char = -1
;bulk_loader_path = "str"
enable_parallel_mode = false
inhibit_direct_mode = false
max_bcp_failures = 5
max_errors = 10
max_temp_storage = 400M // Windows only
sqlld_bindsize = 65536
sqlld_rows = 10000
verify_bulk_load = 1

[Params]
;
; (1) define/redefine command parameters
;
allow_nulls = true
automate_virtuals = false
clr_dup_extr_recs = true
convert_ctrl_char = false
default_user_columns = 0x00000000
dflt_history_columns = 0x00000000
enable_dms_links = false
enable_dynamic_hist = false
enable_extended_types = false
;external_column[n] = ["name"][,[sql_type][,[sql_length][,"default"]]]
extract_embedded = false
flatten_all_occurs = false
force_aa_value_only = 0
history_tables = 0
inhibit_required_opt = false
;maximum_columns = 0
min_varchar = 4
minimize_col_updates = false
miser_database = false
optimize_updates = false
read_null_records = true
reorg_batch_size = 50000
sec_tab_column_mask = 0x00000000
split_varfmt_dataset = false
strip_ds_prefixes = false
suppress_new_columns = false
suppress_new_datasets = true
use_binary_aa = false
use_dbconfig = true
use_clob = false
use_column_prefixes = false
use_decimal_aa = false
use_internal_clone = false
use_nullable_dates = false
use_primary_key = false
use_stored_procs = false
use_varchar = true
;
; (2) process/clone command parameters
;
alpha_error_cutoff = 10
aux_stmts = 100
;batch_job_period = 00:00, 00:00
century_break = 50
;commit_absn_inc = -1
;commit_idle_database = -1
;commit_longtrans = -1
;commit_time_inc = -1
;commit_txn_inc = -1
;commit_update_inc = -1
controlled_execution = false
;convert_reversals = false
correct_bad_days = 0
dbe_dflt_origin = direct
defer_fixup_phase = false
discard_data_errors = false
display_bad_data = false
enable_af_stats = false
enable_doc_records = false

15.3.8 Sample Oracle Client Configuration File

15.3.8 Sample Oracle Client Configuration File 359

enable_minimized_col = false
enable_optimized_sql = true
;engine_workers = -1
error_display_limits = 10,100
inhibit_8_bit_data = false
inhibit_console = false
inhibit_ctrl_chars = false
inhibit_drop_history = false
keep_undigits = 0
linc_century_base = 1957
max_clone_count = 10000
max_discards = 0,100
max_retry_secs = 20
max_srv_idle_time = 0
max_wait_secs = 3600,60
min_check_time = 600
n_dmsii_buffers = 0
n_update_threads = 8
null_digit_value = 9
numeric_date_format = 23
preserve_deletes = false
;rollback_segment_name = ""
set_blanks_to_null = false
set_lincday0_to_null = false
show_perf_stats = true
show_statistics = true
show_table_stats = true
sql_exec_timeout = 180,0
sql_heart_beat = 0
statistics_increment = 100000,10000
stop_after_fixups = false
stop_after_gc_reorg = false
stop_after_given_afn = false
stop_on_dbe_mode_chg = false
suppress_delete_msgs = false
suppress_dup_warnings = false
track_vfds_nolinks = true
use_dbwait = false
use_latest_si = false
;
; (3) Server options
;
;shutdown {until | for} hh:mm after stop
;stop {before | after} task "name"
;stop {before | after} time hh:mm[:ss]
;
; (4) generate command parameters
;
purge_dropped_tabs = false
;global_table_suffix = "str"
;create_table_suffix[n] = "str"
;global_index_suffix = "str"
;create_index_suffix[n] = "str"
;user_column_suffix[n] = "str"
;
; (5) miscellaneous command parameters
;
display_active_only = true
;
; (6) user scripts
;
user_script_bu_dir = ""
user_script_dir = "scripts"
;
; (7) external data translation parameters
;
use_ext_translation = false
eatran_dll_name = "DBEATRAN.DLL"

[Scheduling]
;
; dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;exit_on_error = false
;sched_delay_secs = 600
;sched_minwait_secs = 3600
;sched_retry_secs = 3600
;blackout_period = 00:00, 02:00

[EbcdicToAscii]
; e1 = a1
; e2 = a2
; ...
; en = an
;

[DBConfig]
default_date_fmt = 21

[Encryption]
ca_file = ""
ca_path = ""
certify_server_name = false
enable_encryption = false
tls_host_name = ""

15.3.8 Sample Oracle Client Configuration File

15.3.8 Sample Oracle Client Configuration File 360

15.3.9 Sample PostgreSQL Client Configuration File

15.3.9 Sample PostgreSQL Client Configuration File

15.3.9 Sample PostgreSQL Client Configuration File 361

;
; Databridge Client, Version 7.1 PostgreSQL configuration file -- generated programmatically
;

[Signon]
;user = USERID
;password = PASSWORD
;datasource = DATASOURCE
;hostpasswd = HOSTPASSWD

[Log_File]
file_name_prefix = "db"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true
single_line_log_msgs = false

[Trace_File]
file_name_prefix = "trace"
;max_file_size = 0

[Bulk_Loader]
bcp_batch_size = 100000
bcp_code_page = "iso-8859-1"
max_bcp_failures = 5
max_errors = 10
max_temp_storage = 400M
verify_bulk_load = 1

[Params]
;
; (1) define/redefine command parameters
;
allow_nulls = true
automate_virtuals = false
clr_dup_extr_recs = true
convert_ctrl_char = false
default_user_columns = 0x00000000
dflt_history_columns = 0x00000000
enable_dms_links = false
enable_dynamic_hist = false
;external_column[n] = ["name"][,[sql_type][,[sql_length][,"default"]]]
extract_embedded = false
flatten_all_occurs = false
force_aa_value_only = 0
history_tables = 0
inhibit_required_opt = false
;maximum_columns = 0
min_varchar = 4
minimize_col_updates = false
miser_database = false
optimize_updates = false
read_null_records = true
sec_tab_column_mask = 0x00000000
split_varfmt_dataset = false
strip_ds_prefixes = false
suppress_new_columns = false
suppress_new_datasets = true
use_column_prefixes = false
use_decimal_aa = false
use_internal_clone = false
use_nullable_dates = false
use_primary_key = false
use_time = false
use_varchar = false
;
; (2) process/clone command parameters
;
alpha_error_cutoff = 10
aux_stmts = 100
;batch_job_period = 00:00, 00:00
century_break = 50
;commit_absn_inc = -1
;commit_idle_database = -1
;commit_longtrans = -1
;commit_time_inc = -1
;commit_txn_inc = -1
;commit_update_inc = -1
controlled_execution = false
;convert_reversals = -1
correct_bad_days = 0
dbe_dflt_origin = direct
defer_fixup_phase = false
discard_data_errors = false
display_bad_data = false
enable_af_stats = false
enable_doc_records = false
enable_minimized_col = true
enable_optimized_sql = true
;engine_workers = -1
error_display_limits = 10,100
inhibit_8_bit_data = false
inhibit_console = false
inhibit_ctrl_chars = false
inhibit_drop_history = false
inhibit_init_values = false
keep_undigits = 0

15.3.9 Sample PostgreSQL Client Configuration File

15.3.9 Sample PostgreSQL Client Configuration File 362

15.3.10 Parameter Descriptions

Accessing configuration parameters in the Administrative Console

linc_century_base = 1957
max_clone_count = 10000
max_discards = 0,100
max_retry_secs = 20
max_srv_idle_time = 0
max_wait_secs = 3600,60
min_check_time = 600
n_dmsii_buffers = 0
n_update_threads = 8
null_digit_value = 9
numeric_date_format = 23
preserve_deletes = false
set_blanks_to_null = false
set_lincday0_to_null = false
show_perf_stats = true
show_statistics = true
show_table_stats = true
sql_exec_timeout = 180,0
sql_heart_beat = 0
statistics_increment = 100000,10000
stop_after_fixups = false
stop_after_gc_reorg = false
stop_after_given_afn = false
stop_on_dbe_mode_chg = false
suppress_delete_msgs = false
suppress_dup_warnings = false
track_vfds_nolinks = true
use_dbwait = false
use_latest_si = false
;
; (3) Server options
;
;shutdown {until | for} hh:mm after stop
;stop {before | after} task "name"
;stop {before | after} time hh:mm[:ss]
;
; (4) generate command parameters
;
;global_table_suffix = "str"
;create_table_suffix[n] = "str"
;user_column_suffix[n] = "str"
;
; (5) miscellaneous command parameters
;
display_active_only = true
;
; (6) user scripts
;
user_script_bu_dir = ""
user_script_dir = "scripts\\"
;
; (7) external data translation parameters
;
use_ext_translation = false
eatran_dll_name = "DBEATRAN.DLL"

[Scheduling]
;
; dbutility process command only
;
;daily = 08:00, 12:00, 17:00, 24:00
;sched_delay_secs = 600
exit_on_error = false
sched_minwait_secs = 0
sched_retry_secs = 60
;blackout_period = 22:00, 02:00

[EbcdicToAscii]
; e1 = a1
; e2 = a2
; ...
; en = an
;

[DBConfig]
default_date_fmt = 21
global_type0_changes = true

[Encryption]
ca_file = ""
ca_path = ""
certify_server_name = false
enable_encryption = false
tls_host_name = ""

15.3.10 Parameter Descriptions

15.3.10 Parameter Descriptions 363

The Administrative console allows you to directly update all the parameters described in this

section, except for those in the signon section.

The parameters in the signon section are specified when adding a new data source. When using

the Administrative Console to update configuration parameters, you need to take the following

actions:

Navigate to the Client Managers page, Databridge Servers > Client Managers .

Click on the desired Client Manager. This displays the data sources page.

From the Settings menu click on Configure, this opens the Client Parameters dialogs.

We provide the navigation steps to get to the parameter in question in the line that starts with

" Console: " for most parameters. The first item is the page name in the left pane. Some of

these items have an associated "+" icon, which when clicked on display the additional items.

Clicking on any of these items opens the corresponding dialog page. The directions for items

within the page are enclosed in parentheses and typically include a group name followed by

the start of the item name within the group.

For example: PROCESSING > DMSII Data Error Handling (Character data error > Change to

space). In this case you need to click on either PROCESSING or the "+" after it and then click

on DMSII Data Error Handling and go to the "Character data error" group and look for "Change

to space".

Change the parameters you need to change and Click Save when done, unless you want to

make changes in other property pages. You can navigate to other property pages and make

changes until you are ready to save your changes by pushing the Save button at which point all

your changes will be applied.

When you push the Save button, if there are errors in your changes you will get a pop-up telling

what you did wrong. You can then go back in the Client Configuration parameter dialog pages

and correct the errors and push Save again when done.

15.3.11 Processing Order

Configuration file options override environment variables. Command-line options override both

environment variables and configuration file options.

The parameter processing order is as follows:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

15.3.11 Processing Order

15.3.11 Processing Order 364

The operating system login name (user ID) is used as the lowest level default for the

database user ID.

Environment variables (DBUSERID, DBPASSWD, DBDATABASE, and DBHOSTPW).

Command-line options -d (for full tracing), -v (for verbose messages), -t (for creating a

Databridge Client trace file) and -T (for forcing the Client to start a new trace file), and -f

(for specifying a configuration file other than the default dbdridge.cfg). These options are

processed in the order in which they appear on the command line.

Parameters specified in the configuration file. You can specify the configuration file via the

-f option. If you do not specify a configuration file name via the -f option, dbutility tries to

open the default configuration file (dbridge.cfg in the config subdirectory of the data

source's working directory); if the file does not exist, the Databridge Client uses the default

values for all the configuration file parameter. The absence of a configuration file is not

treated as an error only when running the command-line Client. If you use the service or

daemon, the absence of a configuration file named "dbridge.cfg" is treated as an error.

All remaining command-line options. In the final pass, a command-line option with a

configuration file equivalent overrides the configuration file entry.

[signon]

Use the [signon] section of the "dbridge.cfg" file to enter information for signing on to the relational

database and Databridge Server on the host.

The configuration file must include the data source (or database, if using Oracle), signon

parameters to access the relational database, and a user and a password (unless you use the SQL

Server Client with Integrated Windows authentication).

When using the Administrative Console, you need to supply these parameters at the time you

create the data source. To do so, right-click on the service in the tree view and click Add Data

Source from the pop-up menu to open the dialog and enter these parameters.

• •

• •

• •

• •

• •

Parameter Description

database Default: None

Command-line option: -D

(Oracle) This parameter is the name that identifies the Oracle instance

or the Oracle Net Services node that is being accessed. If the name

contains non-alphanumeric characters, you must enclose it in double

quotation marks, as follows:

database = "orcl.cin.microfocus.com"

15.3.11 Processing Order

15.3.11 Processing Order 365

Parameter Description

datasource Default: None

Command-line option: -O

(Microsoft SQL Server and PostgreSQL) This parameter is the name

that identifies the ODBC data source used to access the SQL

database. This ODBC data source is configured using the Control

Panel during the Client installation.

hostpasswd Default: None

Range: 17 alphanumeric characters

Command-line option: -X

Use the host password parameter to specify the password associated

with Databridge Server on the host. This parameter must match

exactly the KEY parameter defined in the Host Server control file. For

example:

DBServer

KEY = "Secret"

dbridge.cfg

hostpasswd = Secret

15.3.11 Processing Order

15.3.11 Processing Order 366

Parameter Description

password Default: None

Command-line option: -P

Use the password parameter to specify the password associated with

the user ID for the relational database. The password must be valid for

the user ID or the connection to the relational database server will fail.

Passwords are limited to 30 characters. If your password contains non

alphanumeric characters other than the underscore, you must enclose

it in double quotes, as follows:

password = "a$bb%"

NOTE: Passwords starting with Oracle 11g release 2 are case-

sensitive.

The password is always encrypted in both text and binary versions of

the Client configuration file. For more information, see Export the

Client Configuration to a File or Export Client Configuration in the

Databridge Administrative Console Help Passwords that are

communicated between the Databridge Client and Databridge Server

are not encrypted when the client/server communications are not

encrypted.

user Default: None

Command-line option: -U

Use the user parameter to specify the user ID for the relational

database. The user ID must have the appropriate resource privileges

for the designated relational database, as explained in Setting Up a

User ID (Windows) in the Databridge Installation Guide.

15.3.11 Processing Order

15.3.11 Processing Order 367

https://www.microfocus.com/documentation/databridge/7-1/administrative-console/
https://www.microfocus.com/documentation/databridge/7-1/administrative-console/
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

[signon] parameters with equivalent environment variables

Parameter Description

use_nt_authen Default: False

Range: True or False

Command-line option: -W

The use_nt_authen parameter applies to Microsoft SQL Server

Clients only.

Use Windows ODBC Data Source Administrator to set the required

ODBC data source authentication method. The SQL Server database

must be installed with the proper authentication mode selected; either

SQL Server, Integrated Windows, or Mixed Mode (that is, using both

methods). When using Integrated Windows authentication, Windows

Administrators are automatically included in the SQL Server user list.

The SYSTEM account is only included in versions of SQL Server older

than 2012. For more information, see the Databridge Installation Guide.

Use this parameter as follows:

Set it to True when Microsoft SQL Server is set to use Integrated

Windows Authentication for access to the SQL Server database.

Set it to False when Microsoft SQL Server is set to use its own

SQL Server authentication. The SQL Server verifies the authenticity

of the login ID with SQL Server authentication using a Login ID and

password entered by the user.

•

•

[signon]

Parameter

Environment

Variable

Option dbutility Command

database DBDATABASE -D All (only applies to Oracle)

datasource -O All (does not apply to SQL Server)

hostpasswd DBHOSTPW -X define , redefine , process , clone ,

and switchaudit

password password -P All

15.3.11 Processing Order

15.3.11 Processing Order 368

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

[Log_File]

Use the [Log_File] section to control the various options for the log file that is created in the logs

subdirectory of the working directory for a data source.

When using the service, two sets of Client log files are generated. The DBClient program and the

command-line Client dbutility use log files, whose default names are of the form dbyyyymmdd.log .

The DBClntCfgServer program uses log files, whose names are of the form db_cfgyyyymmdd.log .

The prefix "db" can be changed by specifying a file_name_prefix in the log section of the Client

configuration file.

When using the Administrative Console, click on the LOGGING item to get the "Client Log

parameters" page of the dialog, enter prefix in the edit box titled "File name pefix".

[signon]

Parameter

Environment

Variable

Option dbutility Command

user DBUSERID -U All

Parameter Description

file_name_prefix Default: "db"

Range: 1 to 20 characters

Recommended value: data source name

Use this parameter to change the prefix of the log files for this

data source. We recommend using the name of the data

source as the prefix as this ensures that log files created on

the same date but for different data sources have unique

names. The log files have names in the form dbyyyymmdd.log

or when necessary, dbyyyymmdd_hhmiss.log (This command

allows you to replace the prefix "db" by any character string,

provided that it results in a legal file name.)

logsw_on_newday Default: False

Range: True or False

This parameter determines whether or not the Client uses a

new log file, when the date changes. You may want to set this

parameter to False, if your log files are small and use the

logsw_on_size parameter to manage the log files.

15.3.11 Processing Order

15.3.11 Processing Order 369

Parameter Description

logsw_on_size Default: False

Range: True or False

Recommended value: True (when running real/time)

Use this parameter to control whether or not the Client should

check the log file size to see if it has reached the size defined

by the max_file_size parameter. If the size of the log file

exceeds this parameter the log file is closed and a new one is

opened. If the current date is different than the creation date

of the old file, which is part of its name, the new log file will be

of the form dbyyyymmdd.log otherwise the time component

will be added to the file name to ensure that the name is

unique.

max_file_size Default: 0

Range: numeric value, optionally followed by K, M, or G

Recommended value: 1M

Use this parameter to limit the size of log files. The default

value of 0 indicates that no limit is imposed on the size of log

file. The suffixes of K, M and G allow you to specify the

maximum file size in kilobytes, megabytes, or gigabytes. A

value on the order of 1 MB is a reasonable value to use. The

file size is always checked when you start the Client,

regardless of the setting of the logsw_on_size parameter.

When the logsw_on_size parameter is set, the log file size is

also checked when the Client starts processing a new audit

file.

newfile_on_newday Default: True

Range: True or False

This parameter forces the Client to create a new log file when

it starts if the existing log file was created on an earlier date.

You may want to set this parameter to False, if your log files

are small and use the logsw_on_size parameter to manage

the log files.

15.3.11 Processing Order

15.3.11 Processing Order 370

[Trace_File]

Use the [Trace_File] section to control the various options for the trace file, created in the trace

subdirectory of the working directory for a data source.

When using the Administrative Console, click on LOGGING > Trace Log to get the Trace parameters

page of the dialog.

Parameter Description

single_line_log_msgs Default: False

Range: True or False

The single_line_log_msgs parameter tells the Client to

make all of its log file output messages single-line messages.

When this parameter is set to True, the end-of-line character of

all multi-line outputs are replaced by a space. This parameter

exists to assist some log file analysis programs that fail to

parse multi-line output messages.

Parameter Description

file_name_prefix Specifies a string (up to 20 characters in length) to change the

default prefix "trace".

15.3.11 Processing Order

15.3.11 Processing Order 371

[Bulk_Loader]

The bulk loader parameters apply to the bulk loader utility for your relational database --

SQL*Loader for Oracle and bcp SQL Server.

When using the Administrative Console, click on the BULK LOADER to get to the "Bulk loader

parameters" page of the dialog.

Parameter Description

max_file_size Specifies the size limit of trace files. You can enter a number with a

suffix of K, M and G to indicate the unit of measure (kilobytes,

megabytes, or gigabytes).

Parameter Description

bcp_batch_size Default: 100,000 rows per batch

Range: 0 or 1000–10000000 rows per batch

bcp, BCP API, and PGLoader: SQL Server and PostgreSQL

Specifies the batch size used during the bulk loader

operations. This is parameter supplied to the bcp utility, to

make it load the table in several batches of the given size.

When using the BCP API after bcp_batch_size rows are

loaded, the Client calls bcp_batch to commit these rows.

Permitted values are 0 or 1000-10000000 (rows per batch). A

value of zero causes the bcp utility to load the entire group of

records in the data file in one batch. Copying all of the rows of

a very large table in one batch may require a high number of

locks on the Microsoft SQL Server database.

When you specify a nonzero value, the Databridge Client adds

the -b batch_size option to the bcp command line. A value of

0 omits the -b option.

15.3.11 Processing Order

15.3.11 Processing Order 372

Parameter Description

bcp_code_page Default: ""

Range: “String”

Bulk Loader utility: SQL Server, Oracle, and PostgreSQL

Adds the line "CHARACTERSET <code_page> " to the

SQL*Loader control file. Consult the Oracle documentation

for the exact names of the code pages as Oracle uses their

own notation. The typical code page for 8-bit character data is

"WE8ISO8859P1". You need to specify a bcp_code_page when

dealing with a UTF8 database.

bcp_copied_msg Default: NULL (omitted)

Range: Any “quoted string”

Bulk Loader utility: SQL Server

Enables the bcp_auditor utility to determine whether or not a

bulk loader was successful in cases where the database

language is not English. For example, in German, this

parameter is "Zeilen kopiert", but in English, it is "rows copied".

If this parameter is not set correctly, the bcp_auditor reports

bulk loader failures even though the bulk loader worked

correctly.

The bcp_auditor program also accepts the

bcp_copied_message in binary format expressed as the text

"HEX_" followed by a string of hexadecimal values

representing the values of each byte. This allows you to

circumvent code page related problems, which can

sometimes corrupt the bcp_copied_message when it is

passed to the bcp_auditor program as a command-line

argument. For example, the string

"HEX_6C69676E657320636F7069E965732E" can represent

the French message "lignes copiées." (The character "é" does

not cause any problems when expressed as "E9".)

15.3.11 Processing Order

15.3.11 Processing Order 373

Parameter Description

bcp_decimal_char Default: -1 (This parameter is commented out.)

Range: a period (.) or a comma (,)

SQL * Loader: Oracle Clients only

This parameter is normally auto-detected by the Client that

gets its value by reading the of Oracle database's

NLS_NUMERIC_CHARACTERS parameter. This method will

work correctly when the Client and the database reside in the

same machine. However, if the Client is run outside the

database machine, there is no guarantee that the Oracle Client

software, that the Databridge Client uses, will have the same

NLS settings as the target database. For example it is possible

to have a US Oracle Client software in the Client machine that

connects to a Brazilian database. In this rather unusual

situation you would have to set the bcp_decimal_character

to ‘.’ as it will default to ',' which will lead to SQL*Loader errors

in for all records that have numeric data with a decimal point.

bcp_delim Default: Tab (SQL Server)

bcp utility: SQL Server

This parameter works as follows with the various Clients:

Oracle:

The string "delim" is not configurable, the Client always uses

the vertical bar as the delimiter. The Client sets the bcp

decimal_character by reading the database’s NLS

parameters.

SQL Server:

The string bcp_delim can be longer than one character. This

is useful if the data contains alpha fields with TAB characters

that need to be preserved. (A possible delimiter value in this

case would be "|" or "||"; see inhibit_ctrl_chars)

15.3.11 Processing Order

15.3.11 Processing Order 374

Parameter Description

bcp_packet_size Default: 0 (which omits the -a option)

Range: 0 or 512–65535 (decimal or hexadecimal)

bcp utility: SQL Server (remote servers only)

Defines the network packet size value for the bcp utility. Use

this parameter when you have wide tables. For wide tables,

setting this parameter to a packet size larger than the bcp

default (4096) can speed up loading the data into the table.

When you specify a nonzero value, the Databridge Client adds

the " `-a pkt_size " option to the bcp command line in the

.CMD scripts.

If you omit this parameter, or if you specify a value of 0, the

Databridge Client omits the " -a pkt_size " option and the bcp

utility uses the default network packet size of 4096.

enable_parallel_mode Default: False

Range: True or False

SQL*Loader : Oracle

Related parameters: inhibit_direct_mode

This parameter, which is only meaningful when DIRECT mode

is enabled, causes the generate command to add the

specification "parallel = true" to the SQL*Loader command

line. Parallel mode makes the SQL*Loader run faster at the

expense of additional system resources.

15.3.11 Processing Order

15.3.11 Processing Order 375

Parameter Description

inhibit_direct_mode Default: False

Range: True or False

SQL*Loader : Oracle

Related parameters: enable_parallel_mode , sqlld_rows ,

and sqlld_bindsize

Controls whether the generate command adds the

specification "direct=true" to the SQL*Loader command line.

If your Oracle database is on the same machine as the

Databridge Client, you would let this parameter assume its

default value of False, as DIRECT mode is much faster than

conventional mode. Conversely, if your Databridge Client

accesses a remote Oracle database using SQL*Net between

two dissimilar architectures (for example, Windows and UNIX),

you must use conventional mode by setting this parameter to

True.

Setting inhibit_direct_mode to True inhibits the use of the

direct=true option when invoking SQL*Loader in the

command files. It is provided for your convenience so that you

do not to have to remove the string "direct=true" from every

call on SQL*Loader .

When you enable inhibit_direct_mode , we recommend that

you increase the size of sqlld_bindsize for better

performance.

15.3.11 Processing Order

15.3.11 Processing Order 376

Parameter Description

max_errors Default: 10

Range: 0–1000

Bulk loader utility and BCP API: All

Controls the bulk loader’s tolerance to records that are

discarded due to data errors. Use this parameter when you

have many bulk loader errors. Increasing the maximum error

count allows you to gather all the errors in one run rather than

finding 10 errors and then having to start over again.

For example, if you are having problems cloning a table, you

may want to increase the count to 1000 or more to get all the

errors in one cloning or process session. Knowing the type of

errors helps you to solve the problems.

The default value for this parameter is 10, which means that

the bulk loader aborts after encountering 10 bad records.

These bad records are written to the discard file and

information about the error is written to the bulk loader log

file.

For information about these files, see Files related to

SQL*Loader and Files related to BCP.

max_bcp_errors Default: 5

Range: 0-1000

This parameters is designed to prevent the Client from blindly

extracting all the selected data sets when the number of

tables with load failures reaches the specified threshold. A

value 0 indicates that the Client should proceed regardless of

the number of failed loads.

15.3.11 Processing Order

15.3.11 Processing Order 377

Parameter Description

max_temp_storage Default: 400 MB

Range: 10 MB–3 GB (or 0)

Bulk loader utility: bcp for SQL Server or SQL*Loader for

Oracle

Applies to: Windows Clients

This parameter activates the segmented bulk load feature,

which allows you to specify the maximum amount of storage

that the Client should use for temporary files.

Because the Client cannot stop in the middle of a record, you

can expect it to use slightly more storage than the value you

specify. Therefore, select a value less than the total amount of

free space available on the disk. We recommend that you keep

this value low as there is no real advantage to attempting to

load large tables all at once. If you set the value too high, thye

Client can run out of storage while it is writing temporary files.

You can specify the max_temp_storage value as an integer

with any of the following suffixes:

K (or KB) for kilobytes (default)

M (or MB) for megabytes

G (or GB) for gigabytes

The space between the number and the suffix is optional.

NOTE: The valid range for this parameter is 10 MB to 3 GB

(0xC0000000). You must specify values greater than

0x7FFFFFFF without a suffix. The value you enter for

max_temp_storage must be a whole number.

15.3.11 Processing Order

15.3.11 Processing Order 378

Parameter Description

sqlld_bindsize Default: 64K bytes

Range: 0x10000–0x400000 (decimal or hexadecimal)

SQL * Loader: Oracle

Related parameters: inhibit_direct_mode , sqlld_rows

Defines the value to be used for the BINDSIZE parameter for

SQL*Loader operations. Increasing this value can speed up

SQL*Loader operations when using conventional mode (for

example, running remote to a database on a UNIX system. Use

sqlld_rows and sqlld_bindsize when you are running the

Client for a remote Oracle database running on UNIX or

Windows.

A larger bind size and row size can increase the speed of the

load across Oracle Network Services at the expense of using

more memory.

sqlld_rows Default: 100

Range: 10–100,000 rows

SQL*Loader: Oracle

Related parameters: inhibit_direct_mode , sqlld_bindsize

Defines the value to be used for the ROWS specification for

SQL*Loader operations. Use sqlld_rows and

sqlld_bindsize when you are running the Client for a remote

Oracle database running on UNIX or Windows.

A larger bindsize and row size can increase the speed of the

load across Oracle Network Services at the expense of using

more memory.

15.3.11 Processing Order

15.3.11 Processing Order 379

Parameter Description

use_bcp Default: true

Range: True or False

Bulk Loader utility: SQL Server

The SQL server Client can operate with the bcp utility or the

BCP API. This parameter determines the default value used by

the define and redefine commands when setting the

ds_options for the various data sets. We recommend using

the bcp utility as it is more reliable than the BCP API. If you

have a lot of record types with some variable format data sets,

you should definitely set them to use the bcp utility, as you

may end up with a lot database connections during their data

extraction, as each table being loaded requires each own

database connection when using the BCP API.

15.3.11 Processing Order

15.3.11 Processing Order 380

[params]

The [params] section of the configuration consists of the following groups of command

parameters:

Parameter Description

verify_bulk_load Default: 1

Range: 0, 1, or 2

Bulk loader utility: All

Determines how you want the Databridge Client to handle the

results of the bulk loader operations during data extraction, as

follows:

Setting and Description

0: The Databridge Client does not verify the results of bulk

loader operations.

1: The Databridge Client retrieves the number of rows in

the table and compares it to the number of rows handled

by the bulk loader. If the two counts differ, the Databridge

Client displays a warning message.

2: This setting is the same as the preceding setting 1,

except that the Databridge Client terminates so that you

can investigate the reason for the mismatch.

•

•

•

For this group See this topic

define and redefine Define and Redefine Command Parameters

process and clone Process and Clone Command Parameters

Server options Server Option Parameters

generate Generate Command Parameters

display Display Command Parameter

User scripts User Scripts Parameters

15.3.11 Processing Order

15.3.11 Processing Order 381

Define and Redefine Command Parameters

The following parameters are included in the [params] section of Databridge Client configuration

file. The parameters listed in this section affect only the define and redefine commands.

ALLOW_NULLS

Default: False

Range: True or False

Console: CUSTOMIZING (General > Allow NULLs)

The allow_nulls parameter specifies whether or not the define and redefine commands

should set the DAOPT_Nulls_Allowed bit (value 1) in the da_options column of the DATAITEMS

Client control table. This means that both DMSII null data and data items that contain bad values

(excluding keys) will be stored as relational database NULLs.

You can set this parameter in the Client Configuration dialog box of the Administrative Console or

by using data table customization scripts. To avoid storing NULL data as values that are possibly

legitimate (0 or 999), keep this parameter set to True.

AUTO_MASK_COLUMNS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Preserve DMSII MASKING option)

The parameter auto_mask_columns specifies whether the Databridge Client should automatically

mask columns whose corresponding items in DMSII have DATAMASK specifications in the DASDL.

AUTOMATE_VIRTUALS

Default: False

Range: True or False

Console: PROCESSING > Advanced (General > Automated virtual data sets)

For this group See this topic

External data translation DLL support [Bulk_Loader]

15.3.11 Processing Order

15.3.11 Processing Order 382

This parameter enables code that automatically handles virtual data sets that must be linked with

their parent data sets using the virtual_ds_num , real_ds_num , and real_ds_rectype columns in

the DATASETS Client control table. These links are currently set up via user scripts. When this

option is enabled, you simply issue a process command. When issuing a clone command, the

virtual data sets do not have to be explicitly specified on the command line.

BRACKET_TABNAMES

Default: False

Range: True or False

Applies to: SQL Server Client only

Console: CUSTOMIZING (General > Use brackets ...)

The parameter bracket_tabnames specifies whether the Databridge Client should allow data set

names that are TRANSACT_SQL reserved words to be used as table names or they should be

renamed. If this parameter is set to True all such table names are enclosed in square brackets in all

SQL statements used by the Client. If the parameter is set to False the Client renames them by

adding "_x" to the data set name.

CLR_DUP_EXTR_RECS

Default: True

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Clear duplicate ...)

This parameter defines the initial value of the DATASETS table ds_options bit

DSOPT_Clrdup_Recs. When this bit is set, the Databridge Client runs a script to remove false

duplicate records after the index creation fails. These duplicate records are caused by long cloning

of an active DMSII database where the extraction process can see the same record more than once

if it moves. In addition to indirectly affecting the process and clone commands, this parameter

indirectly affects the generate command.

The ds_options bit DSOPT_Clrdup_Recs causes the following actions:

When set to False, the Databridge Client ignores false duplicate records. If there are false

duplicate records, the index creation will fail. In this case you must manually remove the

false duplicate records and recreate the index before the fixup phase can continue.

When set to True, the generate command creates a script (named

"script.clrduprecs.tabname) that removes records with duplicate key values. This script will

run only if the create index step fails. After the duplicate records are deleted, the index

creation and fixup phases continue as normal.

CONVERT_CTRL_CHAR

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 383

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , discard_data_errors , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (Character data error > Control character)

The convert_ctrl_char parameter applies to DMSII data items of type ALPHA.

Use this parameter as follows:

Set convert_ctrl_char to True if you want the Databridge Client to replace all control

characters in ALPHA data with spaces. This is usually the result of host applications whose

record layouts are out-of-sync with the DMS database.

Set convert_ctrl_char to False if you want the Databridge Client to not change control

characters to spaces. Depending on your setting for alpha_error_cutoff , the column that

contains control characters may be set to NULL, but at least the problem field will be

identified. Then, you can decide whether to set this parameter to True and ignore the bad

data.

In summary, before you set this option to True, set alpha_error_cutoff to a low value and set

display_bad_data to True to determine whether or not it is safe to ignore the control characters.

When using the Administrative Console, these two parameters are presented as 3 radio buttons

("Change to space", "Change to ?"" and "Translate if possible"). This prevents you from setting both

mutually exclusive parameters to True.

Do not set the convert_ctrl_char parameter to True unless you are absolutely certain

that eliminating control characters will have no adverse effects on the data. For example,

eliminating control characters can cause some fields to be misinterpreted.

This parameter and the parameter inhibit_ctrl_chars are mutually exclusive. If you

attempt to set them both to True, the configuration file scanner will generate an error.

Note

• •

• •

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 384

DEFAULT_USER_COLUMNS

Default: 0

Range: 0 - 16383 (Some bit combinations are not allowed.)

Console: CUSTOMIZING > User Columns Section Two

The default_user_columns parameter adds non-DMSII columns (user columns) to all the tables

mapped from data sets in the Client database. You can add additional user column to history

tables using the dflt_history_columns parameter, see dflt_history_columns. You can also

exclude certain user columns from secondary tables using the sec_tab_column_mask parameter,

see sec_tab_column_mask.

When using the Administrative Console use the checkboxes in the Primary Tables column to set

corresponding the bits for the dflt_user_columns parameter.

DFLT_HISTORY_COLUMNS

Default: 0

Range: 0 - 16383 (Some bit combinations are not allowed.)

Console: CUSTOMIZING > User Columns Section Two

The dflt_history_columns parameter adds more non-DMSII columns (user columns) to all

history tables in the Client database. By default, history tables are created with three non-DMSII

columns. The dflt_history_columns parameter is intended to simplify user scripts at sites where

the same non-DMSII columns (user columns) are added to all (or most) history tables. When you

use this parameter to add user columns to history tables, the specified non-DMSII columns are

added to all history tables. If you do not want to add all of these columns to all history tables, you

must use a user script to set the active column to 0 for the unwanted columns in the DATAITEMS

Client control table.

For more information about history tables, see history_tables and ds_options in the DATASETS

Client control table.

When using the Administrative Console use the checkboxes in the History Tables column to

enable the corresponding bits for the dflt_history_columns parameter.

ENABLE_DMS_LINKS

Default: False

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Enable DMSII links)

15.3.11 Processing Order

15.3.11 Processing Order 385

This parameter must be set to True when running a define , redefine or the Administrative

Console's Customize commands if you want to replicate the links in the DMSII database. In

addition to setting this parameter to True, you must also enable DMSII link support in the

Databridge Engine control file.

ENABLE_EXTENDED_TYPES

Default: False

Range: True or False

Applies to: Oracle Client only

Console: CUSTOMIZING > SQL Data Types

This parameter makes the Oracle Client read the Oracle database's max_string_size parameter

and check if it is set to "extended" (as opposed to "standard"). If it finds the parameter set to

"extended", it allows varchar2 and raw columns to have a maximum length of 32K.

Using this parameter, to ensure that DMSII ALPHA columns that are longer than 4000 characters

do not get split, is much more efficient than setting the parameter use_clob to True.

ENABLE_DYNAMIC_HIST

Default: None

Range: True or False

Console: CUSTOMIZING > History Tables (Options > Enable dynamic history)

This parameter allows the user to add history tables without having to re-clone all the affected data

sets. To do this, specify the default history columns (if any) using the default_history_columns

configuration file parameter. Then, set the DSOPT_SaveUpdates (8) bit for all data sets for which

history tables are to be kept, and run a redefine command with the -R option, forcing all data

sets to be remapped. Finally, run a reorganize command, which will creates the history tables and

their indexes. The new history tables will populate when audit files are processed.

EXTERNAL_COLUMN[N]

Default: N/A

Range: N/A

Console: CUSTOMIZING > User Columns Section One

This parameter allows you to globally change the item_name , sql_type , or sql_length of the

non DMSII columns described in Numeric Date and Time in Non-Contiguous Columns. The syntax

is as follows:

external_column[n] = ["name"[,sql_type[,sql_length]]]

15.3.11 Processing Order

15.3.11 Processing Order 386

The following table shows allowable sql_type values for external_column .

Where Is

n The corresponding bit number (dms_subtype value) for the non-DMSII

column.

NOTE: The brackets and value are required syntax.

name Custom column name

sql_type An integer value that represents the internal code for the SQL type that you

want to use. The Client only accepts data types that make sense for a

particular column. For instance, you cannot set the data type for the AFN to

bit or char, but you can set it to int or dec(10). For details, see DMSII and

Relational Database Data Types.

sql_length A value that represents the length of the data type. Specify this value only if

the data type requires it. If the data type does not have a length

specification, specifying a value may cause an error.

DMS

Subtype

Mask

Value

(hex)

Default

Column Name

Allowable SQL

Types (SQL

Server)

Allowable SQL Types

(Oracle)

1 0x0001 update_type tinyint,

shortint, int,

bigint

number(n)

2 0x0002 update_time datetime,

smalldatetime,

datetime2

date

3 0x0004 update_ts timestamp N/A

4 0x0008 audit_ts datetime,

smalldatetime

date, timestamp

5 0x0010 audit_filenum shortint, int,

dec(n), bigint

number(n)

6 0x0020 audit_block int, dec(n),

bigint

number(n)

7 0x0040 source_name varchar(n),

char(n)

varchar(n), char(n)

15.3.11 Processing Order

15.3.11 Processing Order 387

DMS

Subtype

Mask

Value

(hex)

Default

Column Name

Allowable SQL

Types (SQL

Server)

Allowable SQL Types

(Oracle)

8 0x0080 source_id tinyint,

shortint, int,

bigint

number(n) (where n

>=3)

9 0x0100 my_id int, dec(n),

bigint

N/A

10 0x0200 deleted_record int, bigint number(n) (where n

>=9)

11 0x0400 source_name varchar(n),

char(n)

varchar(n), char(n)

12 0x0800 source_id tinyint,

shortint, int,

bigint

number(n)(where n

>=3)

13 0x1000 audit_ts datetime,

smalldatetime,

datatime2

date, timestamp

14 0x2000 user_column1 char(n),

varchar(n),

tinyint,

shortint, int,

float,

datetime,

dec(n),

smalldatetime,

datetime2,

date, time

char(n), varchar(n),

number(n), float, date

15 0x4000 sequence_no int, bigint number(n)(where n

>=9)

16 0x8000 delete_sqno shortint, int,

bigint

number(n)(where n

>=5)

17 0x10000 create_time datetime,

smalldatetime,

datetime2

date, timestamp

15.3.11 Processing Order

15.3.11 Processing Order 388

DMS

Subtype

Mask

Value

(hex)

Default

Column Name

Allowable SQL

Types (SQL

Server)

Allowable SQL Types

(Oracle)

18 0x20000 user_column2 char(n),

varchar(n),

tinyint,

shortint, int,

float,

datetime,

dec(n),

smalldatetime,

datetime2,

date, time

char(n),

varchar(n),number(n),

float, date

19 0x40000 user_column3 char(n),

varchar(n),

tinyint,

shortint, int,

float,

datetime,

dec(n),

smalldatetime,

datetime2,

date, time

char(n), varchar(n),

number(n), float, date

15.3.11 Processing Order

15.3.11 Processing Order 389

For example, the entry below causes the audit_filenum column to be renamed AFN (the double

quotation marks are optional since no special characters are involved); the sql_type and

sql_length remain unchanged.

 external_column[5] = "AFN"

 default_user_columns = 0x0010

In the example below, the data type of the audit_block column changed to dec(12).

EXTRACT_EMBEDDED

Default: False

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Extract embedded data sets)

Use the extract_embedded parameter when the DMSII INDEPENDENTTRANS option is reset. If

INDEPENDENTTRANS is set, the extract_embedded parameter is not needed because the

Databridge Client can clone and update embedded datasets.

When INDEPENDENTTRANS is reset, use this parameter as follows:

DMS

Subtype

Mask

Value

(hex)

Default

Column Name

Allowable SQL

Types (SQL

Server)

Allowable SQL Types

(Oracle)

20 0x80000 user_column4 char(n),

varchar(n),

tinyint,

shortint, int,

float,

datetime,

dec(n),

smalldatetime,

datetime2,

date, time

char(n), varchar(n),

number(n), float, date

For Oracle, if you choose the tinyint value for sql_type you get number(3), if you choose the

smallint value you get number(5) and so on, as the data types in question are not defined for

Oracle. Oracle has only one type of data type for integer values number(n).

Note

external_column[6] = ,11,12

15.3.11 Processing Order

15.3.11 Processing Order 390

Set extract_embedded to True if you want the Databridge Client to extract embedded data

sets during cloning when INDEPENDENTTRANS is reset. However, the Databridge Client

cannot apply fixups or updates to these extracted embedded data sets.

Set extract_embedded to False if you want the Databridge Client to ignore embedded data

sets.

FLATTEN_ALL_OCCURS

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table layout > Flatten all OCCURS)

This parameter simplifies writing user scripts when you want to flatten a lot of OCCURS clauses.

Setting this parameter to True causes the Client to initialize the DIOPT_Flatten_Occurs bit to 1 in

the di_options column of the DMS_ITEMS Client control table for all items that have an OCCURS

clause. This avoids having to do this using user scripts. If you do not want to flatten certain

OCCURS clauses, you can set the corresponding bit to 0 for those specific items by using

customization user scripts or by using the Administrative Console's Customize command (see the

Databridge Administrative Console Help).

FORCE_AA_VALUE_ONLY

Default: 0

Range: 0-2

Console: CUSTOMIZING > Advanced (Global data set options > Force AA Values...)

When set to 1, this parameter globally sets the DSOPT_Use_AA_Only bit in the ds_options column

for the DATASETS table entries that have valid AA Values or RSNs. When set to 2, this action is only

performed for data sets that have RSNs, because AA Values aren't preserved when a garbage

collection or structural reorganization occurs.

If you want to exclude certain data sets, you can set the DSOPT_Use_AA_Only bit to 0 by using user

scripts or the Administrative Console's Customize command (see the Databridge Administrative

Console Help).

HISTORY_TABLES

Default: 0

Range: 0-2

Console: CUSTOMIZING > History tables (Data set history tables)

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 391

https://www.microfocus.com/documentation/databridge/7-1/administrative-console
https://www.microfocus.com/documentation/databridge/7-1/administrative-console
https://www.microfocus.com/documentation/databridge/7-1/administrative-console
https://www.microfocus.com/documentation/databridge/7-1/administrative-console

This parameter is designed to simplify script writing. It allows you to make the define command

globally set the DSOPT_Save_Updates and DSOPT_History_Only bits. A value of 0 indicates that

neither bit should be set for data sets. A value of 1 indicates that the DSOPT_Save_Updates bit

should be set for all data sets. Finally, a value of 2 indicates that the DSOPT_Save_Updates and the

DSOPT_History_Only bits should both be set for all data sets.

INHIBIT_REQUIRED_OPT

Default: False

Range: True or False

Console: CUSTOMIZING (General > Ignore REQUIRED attribute)

The 6.6 Client honors the REQUIRED attribute of DMS items that indicates that the item cannot be

NULL because it is a member of a SET. This option tells the Client no to pay attention to the

REQUIRED attribute and handle things the way older Clients did. We already have provisions in

place that inhibit data sources created by older Clients from honoring the REQUIRED attribute.

Without these provisions, columns that have the REQUIRED attribute would be changed to NOT

NULL, which would make them incompatible with the table layouts used by older Clients. This

parameter allows such column to have the NULL attribute so that items that have bad values can

be stored as NULL, rather than an artificial value that is used in place of NULL.

This parameter has no effect on items that are keys, which always have the NOT NULL attribute.

MAXIMUM_COLUMNS

Default: Dependent on the database

Console: CUSTOMIZING > Advanced (Table layout > Maximum columns ...)

The maximum_columns parameter enables you to reduce the column count when a table split

occurs because of the maximum column limitation of the relational database. For example, if you

want to add a column containing the value of the audit timestamp file to the first table of a split

table, you can set the maximum_columns parameter to 1023 instead of 1024. By doing so, you avoid

moving an item from a full table to a secondary table to make room for the new column. The table

below shows the maximum columns and ranges for different relational databases.

Database Default Range

Oracle 1000 1-1000

15.3.11 Processing Order

15.3.11 Processing Order 392

MIN_VARCHAR

Default: 4

Range: 0 to 255

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use varchar ...)

This parameter supplements the use_varchar configuration file parameter by adding the condition

that the length must be at least equal to the value of this parameter. Setting this parameter value to

4 would force columns whose data types would have been VARCHAR(1), VARCHAR(2), or

VARCHAR(3) to instead be CHAR(1), CHAR(2), and CHAR(3) if use_varchar is set to True.

When using the Administrative Console the Use varchar slider must be enabled before you can

change the value of this parameter.

MINIMIZE_COL_UPDATES

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Update changed columns only)

The minimize_col_updates parameter specifies whether the define , redefine and the

Administrative Console's Customize commands should set the DSOPT_Optimize_4_CDC bit in the

ds_options column of the DATASETS table. This bit, when set, causes the Client to create update

statements that only assign values to columns whose values are changed. To do this, stored

procedures are abandoned in favor of pure SQL without the use of host variables. This slows down

the Client considerably, but the overall process may ultimately take less time because SQL Server

or Oracle replication sends significantly less data to the remote database. See the parameter

enable_minimized_col, which allows the user to disable this option without having to run a

redefine command.

Database Default Range

SQL Server 1024 1-1024

Setting this parameter to a non-zero value when use_varchar is set to False has no effect.

Note

Using this parameter will significantly slow down update processing by the Client. If you are

replicating your relational database, enabling this feature may provide some benefits if

replication is very slow.

Caution

15.3.11 Processing Order

15.3.11 Processing Order 393

See also the enable_minimized_col parameter, which allows the user to disable this option

without running a redefine command.

MISER_DATABASE

Default: False

Range: True or False

Related parameters: automate_virtuals , use_nullable_dates

Console: CUSTOMIZING (DMSII related parameters > MISER database)

This parameter is for MISER database sites. When set to True, it sets the default date format to be

a MISER date. It also sets the following parameters (required for MISER sites) to True, if they aren't

already set to True:

automate_virtuals

flatten_all_occurs

use_nullable_dates

OPTIMIZE_UPDATES

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Optimize SQL updates)

The optimize_updates parameter specifies whether the define , redefine and the

Administrative Console's Customize commands should set the DSOPT_Use_bi_ai bit (1) (in the

ds_options column of the DATASETS table) for data sets that have items with OCCURS clauses

that are not flattened. The Client uses this bit, which you can modify using user scripts, to

determine if it should request the Databridge Engine to send all updates for the data set as BI/AI

pairs. The Databridge Client then compares the before and after images to determine if an update

has any effect, and suppresses all redundant updates. Depending on the data, this can greatly

increase performance when you do not flatten OCCURS clauses. See the parameter

enable_optimized_sql, which allows the user to disable this option without having to run a

redefine command.

READ_NULL_RECORDS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Read NULL record values)

• •

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 394

This parameter determines whether or not the Client should request the NULL VALUES for data set

records from the Databridge Engine during the define , redefine and the Administrative

Console's Customize commands. The NULL VALUES are then stored in the binary file

"datasource_NullRec.dat" from which they are retrieved at the beginning of process or clone

commands. When this parameter is enabled, the testing for NULL is more accurate; however, this

feature generates a small amount of overhead, particularly with a large database where these

records use more memory. Note that this parameter does not imply that NULLS are allowed in the

relational database; this is still specified using the allow_nulls parameter.

REORG_BATCH_SIZE

Default: 50000

Range: 5000 - 100000

Console: CUSTOMIZING > Advanced (Table reorganization options > Reorg command ...)

This parameter determines the size of the transactions that the Client uses during a reorganize

command to set the value of newly-added columns to their initial value, as defined in the DASDL.

The redefine command creates a reorg script that uses a stored procedure to do the updates in

batches that are executed as transactions. For a large table, this process can take quite long, but it

does not run the database out of log space. Consider using the internal clone option instead (see

use_internal_clone.

SEC_TAB_COLUMN_MASK

Default: 0

Range: 0 - 16383

Console: CUSTOMIZING > User Columns Section Two

The parameter sec_tab_column_mask eliminates a set of user columns from secondary tables

without having to write extensive user scripts to set the active column in DATAITEMS to 0 for the

unwanted columns. To remove those columns, the Client removes the bits you specified in

sec_tab_column_mask from the value represented in external_columns and uses the resulting

value to determine which user columns to add to secondary tables during define , redefine and

the Administrative Console's Customize commands.

This parameter is intended to allow the adding the audit timestamp, the audit file number, or the

audit block to primary tables without adding them to secondary tables. The default value of this

parameter is 0, which indicates that no user columns should be removed from secondary tables.

When using the Administrative Console uncheck the checkboxes in the Secondary Tables column

to set the corresponding bits in the sec_tab_column_mask parameter.

SPLIT_VARFMT_DATASET

15.3.11 Processing Order

15.3.11 Processing Order 395

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global data set options > Split variable format data set)

This parameter makes the define and redefine and the Administrative Console's Customize

commands set the bit DSOPT_Split_Varfmt_ds in the ds_options column for the DATASETS table

globally. See Split Variable Format Data Sets Option.

STRIP_DS_PREFIXES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Strip Data Set prefixes)

This parameter makes the define , redefine and the Administrative Console's Customize

commands set the item_name_prefix column in the DATASETS table to the data set name. This is

useful when all DMSII data item names use the data set name followed by a dash as common

prefix. The strip_ds_prefixes parameter provides a quick way of stripping those common

prefixes without writing any user scripts or using the Administrative Console's Customize

command (as renaming every column requires a lot of work).

If the prefix is an abbreviated form of the data set name (e.g. SVHIST instead of SV-HISTORY), use

a user script or the Administrative Console's Customize command to set the item_name_prefix

column in the DATASETS table to this value (do not include the trailing dash).

SUPPRESS_DUP_WARNINGS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (General error handling > Suppress duplicate

...)**

The parameter suppress_dup_warnings controls whether or not duplicate insert and failed update

warnings are displayed during update processing. The bit DSOPT_Ignore_Dups (32) in the

ds_options column of the DATASETS table can be used instead when you want to apply this only

for certain data sets.

SUPPRESS_NEW_COLUMNS

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Global Data Set Options > Ignore new columns)

15.3.11 Processing Order

15.3.11 Processing Order 396

The suppress_new_columns parameter indicates that the redefine and the Administrative

Console's Customize commands set the active columns to 0 in the DATAITEMS and

DATATABLES entries resulting from DMSII reorganizations that add DMSII items. The

suppress_new_columns parameter is useful when you want to keep your relational database tables

intact after a DMSII reorganization, particularly if the added column will cause existing application

to fail. If this is the case, set suppress_new_columns to True.

SUPPRESS_NEW_DATASETS

Default: True

Range: True or False

Console: CUSTOMIZING (General > Ignore new data sets)

This parameter indicates whether or not the Client maps new data sets created during a DMSII

reorganization. If this parameter is set to True new data sets get their active columns set to 0 in

the DATASETS table which causes them not go get mapped to the relational database.

If you decide that you want to replicate the new data set after running the redefine , you must set

the active column to 1 for the data set in the DATASETS Client control table. You can do this by

updating the user script "script.user_datasets.datasource" in the scripts directory. You then need to

run a second redefine command to get the data set mapped. When you run back-to-back redefine

commands the Client will automatically reloads the control tables from the unload file it creates at

the start of the first redefine command.

USE_BIGINT

Default: False

Range: True or False

Recommended Value: True

Applies to: SQL Server and PostgreSQL Clients

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use bigint ...)

This parameter is only applicable to the SQL Server Client. It indicates that the Databridge Client

should map DMSII numeric data that is too large to fit in the int data type (32-bit integer), to bigint

(64-bit integer). If this parameter is set to False, such data items would be mapped to decimal(n).

Items that are too large to fit in a bigint are still mapped to decimal(n). This parameter makes it

easy to standardize the Client to use bigint instead of decimal(n), without having to write user

scripts. It also allows you to maintain backward compatibility with older databases that do not use

bigint, by setting this parameter to False.

USE_BINARY_AA

15.3.11 Processing Order

15.3.11 Processing Order 397

Default: False

Range: True or False

Applies to: SQL Server and Oracle Clients

Console: CUSTOMIZING (AA Values and RSNs > Use binary AA Values)

This parameter maps AA Values, Parent_AA Values, RSNs (including Visible RSNs) and DMSII Links

to binary(6) or raw(6) instead of char(12) to reduce their storage requirements by half.

AA Values (and RSNs), which are 48-bit values, are stored in 6 bytes when using binary data, as

opposed to 12 bytes when using character data.

The data types used for these columns depend on the value of the sql_type column in the

DATAITEMS Client control table. The purpose of this parameter is to define how these items are to

be mapped by default to avoid changing the sql_type of all such columns.

USE_CLOB

Default: False

Range: True or False

Applies to: Oracle Client only

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use clob ...)

It indicates that DMSII ALPHA data that is too large to fit in a varchar2 column, which is limited to

4000 characters, should be mapped to a data type of clob instead of being truncated or split into

two columns.

USE_CLUSTERED_INDEX

Default: False for index. True for primary key.

Range: True or False

Applies to: SQL Server Client only

Console: CUSTOMIZING > Advanced (Indexes > Use clustered indexes)

The use_clustered_index parameter applies to all data tables. You can override its setting on a

table-by-table basis via the DTOPT_Clustered_Index bit in the DATATABLES control table's

dt_options column.

Use this parameter as follows:

15.3.11 Processing Order

15.3.11 Processing Order 398

Set use_clustered_index to True if you want a clustered index for all or most tables.

For all tables, just set this parameter to True.

For most tables, set this parameter to True and then reset DTOPT_Clustered_Index bit in

dt_options for those tables for which you do not want a clustered index.

Set use_clustered_index to False if you want no clustered indexes on all tables, or if you

want clustered indexes on only a few tables.

For no clustered index on all tables, just set this parameter to False.

For clustered indexes on only a few tables, set this parameter to False and then set the

DTOPT_Clustered_Index bit in dt_options for those tables for which you do want a

clustered index.

To reset or set DTOPT_Clustered_Index, see dt_options in DATATABLES. Typically you would do

this via user scripts.

USE_COLUMN_PREFIXES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Use column prefixes)

This parameter extends the tab_name_prefix specified in the DATASOURCES Client control table

to the columns of the user tables. If the tab_name_prefix column of the data source is blank, this

parameter has no effect. For more details, see DATASOURCES Client Control Table.

USE_DATE

Default: False

Range: True or False

Related parameters: use_datetime2

Applies to: SQL Server and PostgreSQL Clients

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use date ...)

Use this parameter to make the define , redefine and the Administrative Console's Customize

commands interpret the DIOPT_Clone_as_Date bit in the di_options column of the DMS_ITEMS

table as a request to use a data type of date instead of smalldatetime. This eliminates the need to

set the di_options bit DIOPT_Use_Date for every item that is to be mapped to a data type of date.

USE_DATETIME2

• •

• •

• •

• •

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 399

Default: False

Range: True or False

Related parameters: use_date

Applies to: SQL Server and PostgreSQL Clients

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use datetime2 ...)

Use this parameter to make the define , redefine and the Administrative Console's Customize

commands interpret the DIOPT_Use_LongDate bit in the di_options column of the DMS_ITEMS

table as a request to use a data type of datetime2 instead of datetime. This eliminates the need to

set the di_options bit DIOPT_Use_LongDate2 bit for every item that is to be mapped to a data

type of datetime2.

USE_DBCONFIG

Default: False (hidden when False)

Range: True or False

Applies to: Clients launched by the service

Console: Automatically set for a new data source when you use the Customize command

A successful run of the upgrade command of the dbscripfixup program automatically sets this

parameter to True. You can later set it to False if you want to revert to using user scripts by running

a dbutility import command. You should first run a Create Users Scripts command from the data

source's Advanced menu, or run a dbutility creatscripts command to save all your

customizations in user scripts. We recommend saving the customizations in user scripts in case

you have to drop and recreate it. The define command will always run user scripts regardless of

the setting of the parameter use_dbconfig , while the redefine command will only do this when

the use_dbconfig parameter is set to False, or if you use the -r option to toggle this parameter

so it is treated as False when set.

USE_DECIMAL_AA

Default: False

Range: True or False

Console: CUSTOMIZING (AA Values and RSNs > Use decimal AA Values)

Do not change the use_dbconfig parameter to True when the data source was not created

using the Customize command. If you created the data source using the Define/Redefine

command, you will be able to use Customize command, unless there were user scripts involved

in the underlying define command. If you are not sure run, the dbscriptfixup program's

upgrade command to check for use scripts and fixup the control table and automatically set

this parameter to True when the command is successful.

Caution

15.3.11 Processing Order

15.3.11 Processing Order 400

This parameter maps AA Values, Parent_AA Values, RSNs (including Visible RSNs) and DMSII

LINKS to a numeric data type instead of char(12). The data type varies from database to database.

In the case of SQL Server, bigint is used and in the case of Oracle, number(15) is used.

USE_INTERNAL_CLONE

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table reorganization options > Use internal clone ...)

This parameter affects the redefine and reorganize commands. Instead of using ALTER

commands to add, delete or modify new columns to tables, the Client uses a combination of

scripts and table renaming commands to create new copies of the tables with the new layouts. The

Client copies the data using SELECT INTO in the case of SQL Server and CTAS (Create Table As

Select) in the case of Oracle. This operation works like the bulk loader and is faster than using

ALTER and UPDATE commands, but more importantly the command is not logged. The only

drawback of this method is that it requires sufficient free disk storage to hold a second copy of the

table for the duration of the operation.

USE_NULLABLE_DATES

Default: False

Range: True or False

Console: CUSTOMIZING (General > Allow NULL dates)

This parameter forces all MISER dates, including keys, to have the DAOPT_Nulls_Allowed bit (value

1) in the da_options column of the DATAITEMS Client control table. This parameter should only be

set to True if you are using a MISER database. Only one MISER date is allowed as a key. The Client

generates custom stored procedures that handle the cases where the MISER date that is part of

the index is NULL.

USE_PRIMARY_KEY

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Indexes > Use Primary Keys)

This parameter tells the Databridge Client to create a primary key instead of a unique index for all

tables. You can override its setting on a table-by-table basis via the DTOPT_Primary_Key bit in the

DATATABLES Client control table's dt_options column.

This parameter is mutually exclusive with the use_binary_aa parameter.

Note

15.3.11 Processing Order

15.3.11 Processing Order 401

Set use_primary_key to True if you want a primary key for all or most tables.

For all tables, just set this parameter to True.

For most tables, set this parameter to True and then reset DTOPT_Primary_Key for those

tables for which you do not want a primary key.

Set use_primary_key to False if you want no primary keys on all tables, or if you want

primary keys on only a few tables.

For no primary key on all tables, just set this parameter to False.

For primary keys on only a few tables, set this parameter to False and then set

DTOPT_Primary_Key for those tables for which you do want a primary key.

To reset or set DTOPT_Primary_Key, see dt_options in DATATABLES. Typically you would do this

via user scripts.

USE_STORED_PROCS

Default: False

Range: True or False

Applies to: SQL Server and Oracle Clients

Console: CUSTOMIZING > Advanced (Global Data Set Options > Use stored procedures in updates)

This parameter makes the process and clone commands generate actual SQL commands

instead of stored procedure calls to perform updates. The Client still uses host variables, as was

the case with stored procedures calls. Executing the SQL directly eliminates some overhead and

makes processing the update faster. If you change this parameter, you must propagate the change

to the ds_options columns of the DATASETS Client control table. The easiest and safest way to

do this is to run a redefine command using the -R option (when using the Administrative

Console, click on Advanced > Redefine with Options for the data source and then enable "All Data

Sets" slider). The redefine command will ask you to run a reorganize command, which creates

a new set of scripts for creating the tables. It also will refresh the stored procedures for all data

sets by dropping them if they exist and then creating them if they are needed.

USE_TIME

Default: False

Range: True or False

Applies to: SQL Server and PostgreSQL Clients

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use time ...)

• •

• •

• •

• •

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 402

Use this parameter to make the define , redefine and the Administrative Console's Customize

commands interpret the DIOPT_Clone_as_Time bit in the di_options column of the DMS_ITEMS

table as a request to use a data type of time instead of a numeric time. This eliminates the need to

set the di_options bit DIOPT_Use_Time in the DMS_ITEMS Client control table for every item that

is to be mapped to a data type of time.

USE_VARCHAR

Default: True

Range: True or False

Console: CUSTOMIZING > SQL Data Types (Default SQL data types > Use varchar ...)

Set use_varchar to True to cause the define , redefine and the Administrative Console's

Customize commands to map DMSII ALPHA data to varchar (Microsoft SQL Server) or varchar2

(Oracle) instead of char.

Process and Clone Command Parameters

The following parameters are included in the [params] section of the Databridge Client

configuration file. The parameters listed in this section affect only the process and clone

commands.

ALPHA_ERROR_CUTOFF

Default: 10

Range: 0 - 100

Related parameters: discard_data_errors , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (Character data error > Set item to NULL ...)

This parameter specifies the percentage of data errors in any given ALPHA item that are tolerated

before the field is declared bad and treated as NULL (or simulated NULL if the column does not

allow NULLS). The default value for this parameter is 10 (10%); the allowable values are in the

range 0 (fail on first error) to 100 (ignore all errors).

AUX_STMTS

The Databridge Client suppresses trailing blanks from all character data constructed from

DMSII ALPHA data.

Note

15.3.11 Processing Order

15.3.11 Processing Order 403

Default: 100

Range: 0 - 200

Console: PROCESSING (General > Number of auxiliary (ODBC/OCI) statements ...)

Use the aux_stmts parameter to set the number of database API (that is, ODBC or OCI) STMT

structures that can be assigned to individual SQL statements. Using multiple database API STMT

(statement) structures allows SQL statements to be parsed once and executed multiple times,

provided the STMT structure is not reassigned to hold another SQL statement. Increasing the

number of database API statements significantly improves processing time, if your system has

enough memory.

BATCH_JOB_PERIOD

Default: ;00:00, 00:00

Range: 00:00 to 24:00 (The two time values cannot be equal.)

Console: PROCESSING > Engine and Enterprise Server (Batch commit parameters > Batch job ...)

The batch_job_period parameter specifies the block of time during which batch jobs typically

run. For example "batch_job_period = 22:00, 01:00" indicates that batch jobs run between 10:00 pm

and 1:00 am. The syntax for the four commit checkpoint parameters, that can be overridden by the

Client, was modified to allow an optional second value to be specified. The second value

represents the alternate value to be used during the batch period. The Client was then modified

implement the automatic switching of commit parameters between the two periods. The switching

is based on the value of the audit time stamp rather than the time when the Client is run. Commit

parameters that use low values do not work well for batch jobs, but the might work well for on-line

periods to keep the lag time low. This enhancement, which was added to Databridge 7.1, allows

you optimize performnace for both periods by picking appropriate commit parameters for each

period.

CENTURY_BREAK

Default: 50

Range: 0 - 99 or -1

Console: PROCESSING > Date and Time (Date parameters > Century break)

When using the Oracle Client, make sure that the open_cursors parameter defined in the

database initialization file for the Oracle instance ("init SID.ora", where SID is the name of the

instance) is set to a high enough value.

Note

15.3.11 Processing Order

15.3.11 Processing Order 404

Values for the dms_subtype column in the DMS_ITEMS Client control table that are in the 30s, 60s,

and 90s have 2-digit years (yy) which represent dates in the 20th and 21st centuries. The century

break parameter is used to determine the century for a 2-digit year. For example, if this parameter

is set to 50, values < 50 are 21st century years (20yy); values >= 50 are 20th century years (19yy).

When the century_break value is set to -1, the century break value is dynamically calculated

based on the current year giving the two digit years a range of "current_year - 49" to "current_year +

50". In the case of the year 2021, this range is 1972 to 2071.

You can find DMSII date formats that are affected by the century_break parameter at Decoding

DMSII Dates, Times, and Date/Times.

COMMIT_ABSN_INC

Default: --1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_update_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_absn_inc parameter allows the Databridge Client to override the Databridge Engine

CHECKPOINT CLIENT EVERY nnn AUDIT BLOCKS parameter setting. This parameter causes the

Databridge Engine to generate a commit at the next quiet point after nnn audit blocks have been

processed since the last commit. This parameter determines one of many conditions under which

Databridge Engine generates a commit.

When the commit_absn_inc parameter is not included in the configuration file, or it is commented

out, the Databridge Client uses the default value of --1. This value indicates that the Client won't

attempt to override the settings for the corresponding Databridge Engine parameter (whose default

value is 100). The value -1 is not a valid setting, per se, and will result in a "value out of range" error.

Comment the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the

value specified in Databridge Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value, preceded by a

comma, to specify the alternate value to be used when the Client is processing audit blocks that

were created during the batch period.

When using the Administrative Console the second value is provided in the Batch commit

parameters group, after enabling the Batch job slider and entering the time interval for the batch

job period.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified,

Databridge Engine commits at the next quiet point after one or more of the conditions are satisfied.

15.3.11 Processing Order

15.3.11 Processing Order 405

COMMIT_IDLE_DATABASE

Default: --1 (This parameter is commented out.)

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters > commit during idle

...)

This parameter allows the Client to override the COMMIT DURING IDLE DATABASE in the

Databridge Engine's Control File. It makes the Databridge Engine commit at the next quiet point

when it encounters an update while the data base is idle.

COMMIT_LONGTRANS

Default: --1 (This parameter is commented out.)

Range: True or False

Related parameters: commit_absn_inc , commit_update_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

This parameter determines one of many conditions under which Databridge Engine should

generate a commit. When this value is not specified, as in the case of the default setting,

Databridge Client uses an internal value of --1. This value indicates that it won't attempt to override

the settings for the corresponding Databridge Engine parameter (whose default value is False). The

value -1 is not a valid setting, per se, and will result in a "value out of range" error. Comment the line

out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the

value specified in the Databridge Engine control file is ignored.

COMMIT_TIME_INC

Default: --1 (This parameter is commented out.)

Range: 0 - 300 seconds

Related parameters: commit_absn_inc , commit_update_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

Setting this parameter to True (that is, overriding the Databridge Engine CHECKPOINT LONG

TRANSACTIONS parameter) can result in problems and is therefore not recommended. By

default, this parameter is commented out.

Warning

15.3.11 Processing Order

15.3.11 Processing Order 406

The commit_time_inc parameter allows the Databridge Client to override the Databridge Engine

CHECKPOINT CLIENT EVERY n SECONDS parameter setting by causing Databridge Engine to

generate a commit at the next quiet point after n seconds have elapsed in the current transaction.

This parameter determines one of many conditions under which Databridge Engine should

generate a commit.

When the commit_time_inc parameter is not included in the configuration file, or it is commented

out, the Databridge Client uses the default value of --1. This value indicates that it won't attempt to

override the settings for the corresponding Databridge Engine parameter (whose default value is

0). The value -1 is not a valid setting, per se, and will result in a "value out of range" error. Comment

the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the

value specified in the Databridge Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value preceded by a

comma, to specify the alternate value to be used when the Client is processing audit blocks that

were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit

parameters" group, after enabling the "Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified,

Databridge Engine commits at the next quiet point after one or more of these conditions are

satisfied.

COMMIT_TXN_INC

Default: --1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_absn_inc, commit_update_inc, commit_time_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_txn_inc parameter allows the Databridge Client to override the Databridge Engine

CHECKPOINT CLIENT EVERY n TRANSACTIONS parameter setting by causing Databridge Engine to

generate a commit at the next quiet point after n transaction groups have been processed. This

parameter determines one of many conditions under which Databridge Engine should generate a

commit.

When the commit_txb_inc parameter is not included in the configuration file, or it is commented

out, the Databridge Client uses the default value of --1. This value indicates that it won't attempt to

override the settings for the corresponding Databridge Engine parameter (whose default value is

0). The value -1 is not a valid setting, per se, and will result in a "value out of range" error. Comment

the line out instead by adding a ";" at the start of the line.

15.3.11 Processing Order

15.3.11 Processing Order 407

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the

value specified in the Databridge Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value preceded by a

comma, to specify the alternate value to be used when the Client is processing audit blocks that

were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit

parameters" group, after enabling the "Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified,

Databridge Engine commits at the next quiet point after one or more of these conditions are

satisfied.

COMMIT_UPDATE_INC

Default: -1 (This parameter is commented out.)

Range: 0 -- 200,000

Related parameters: commit_absn_inc , commit_time_inc , commit_txn_inc

Console: PROCESSING > Engine and Enterprise Server (COMMIT parameters)

The commit_update_inc parameter allows the Databridge Client to override the Databridge Engine

CHECKPOINT CLIENT EVERY nnn UPDATE RECORDS parameter setting. It does this by causing

Databridge Engine to generate a commit at the next quiet point after nnn updates have been sent to

the Databridge Client. This parameter determines one of many conditions under which Databridge

Engine should generate a commit.

When the commit_update_inc parameter is not included in the configuration file, or it is

commented out, the Databridge Client uses the default value of --1. This value indicates that it

won't attempt to override the settings for the corresponding Databridge Engine parameter (whose

default value is 1000). The value -1 is not a valid setting, per se, and will result in a "value out of

range" error. Comment the line out instead by adding a ";" at the start of the line.

A value of 0 disables the use of this parameter by Databridge Engine. A value that exceeds the

value specified in the Databridge Engine control file is ignored.

When the batch_job_period parameter is enabled, you need to add a second value, preceded by a

comma, to specify the alternate value to be used when the Client is processing audit blocks that

were created during the batch period.

When using the Administrative console the second value is provided in the "Batch commit

parameters" group, after enabling the "Batch job" slider.

If commit_absn_inc , commit_update_inc , commit_time_inc , and commit_txn_inc are specified,

Databridge Engine commits at the next quiet point after one or more of these conditions are

satisfied.

15.3.11 Processing Order

15.3.11 Processing Order 408

CONTROLLED_EXECUTION

Default: False

Range: True or False

Related command-line option: -o

Related parameters: min_check_time

Applies to: Command-line Client (dbutility) only

Console: N/A

The controlled_execution parameter forces the Client to check the values of the stop_time and

end_stop_time columns of the DATASOURCES table. These columns enable an application

external to Databridge to specify a block of time during which Databridge Client operations are

disallowed. If the Databridge Client determines that this period of time exists, update processing is

stopped. Any attempts you make to restart the Databridge Client also fail until the blackout period

is over or the stop_time and end_stop_time columns are set to 0.

CONVERT_REVERSALS

Default: -1 (This parameter is commented out.)

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General > Convert reversals ...)

The convert_reversals parameter allows the Client to override the Databridge Engine control file

parameter CONVERT REVERSALS. Refer the Databridge Host Administrator Guide for more details

on this parameter. When this value is not specified, as in the case of the default setting, Databridge

Client uses an internal value of -1. This value indicates that it won't attempt to override the settings

for the corresponding Databridge Engine parameter (whose default value is false). The value -1 is

not a valid setting, per se, and will result in a "value out of range" error. Comment the line out

instead by adding a ";" at the start of the line.

CORRECT_BAD_DAYS

Default: 0

Range: -1 to 2

Console: PROCESSING > Date and Time (Date parameters > Correct invalid date values)

This parameter is only used by the command-line Client dbutility. The blackout_period

parameter in the scheduling section of the configuration file renders this method obsolete.

Note

15.3.11 Processing Order

15.3.11 Processing Order 409

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

The parameter correct_bad_days specifies whether the Databridge Client should treat a DMSII

date with a bad day (or month) value as an error or attempt to correct it by setting the value to last

day for the given month and year.

This parameter does not apply in the following circumstances:

Dates whose day values are greater than 31 (unless the parameter is set to 2)

DMSII Julian dates (dms_subtype values 17, 18, 27, 28, 37, 38)

MISER dates, Linc dates, DMSII dates and DMSII timestamps

Set this parameter as follows:

Set correct_bad_days to 1 if you want the Databridge Client to set bad DMSII dates to the

last day for the given month. In this case, a bad date would be February 29, 2002 because

2002 is not a leap year. The Databridge Client would correct this date to February 28, 2002.

Likewise, a date of September 31 would be corrected to September 30, regardless of the

year because September always has 30 days. A day value greater than 31 is not corrected in

this case. However, a day value of 0 is always silently changed to 1, regardless of the setting

of the setting of this parameter.

Set correct_bad_days to 2 if you want the Databridge Client to perform the following

corrections in addition to the ones for the case where correct_bad_days is set to 1. Day

values greater than 31 are set to the last legal day of the month, month values greater than

12 are set to 12 and a month value of 0 is set to 1.

Set correct_bad_days to 0 if you want the Databridge Client to store bad dates as NULL. If

the DAOPT_Nulls_Allowed bit in the da_options column of the corresponding DATAITEMS

entry is not set, the bad date is stored as 1/1/1900 in the SQL Server Client and 1/1/0001 in

the Oracle Client.

Set correct_bad_days to -1 if you want the Databridge Client to store bad dates (including

dates with a day value of 0, which normally gets changed to 1) as NULL. If the

DAOPT_Nulls_Allowed bit in the da_options column of the corresponding DATAITEMS

entry is not set, the bad date is stored as 1/1/1900 in the SQL Server Client and 1/1/0001 in

the Oracle Client.

DBE_DFLT_ORIGIN

Default: direct

Range: direct, indirect, cache

Console: PROCESSING > Engine and DBEnterprise Server (General)

The dbe_dflt_origin parameter specifies the expected origin for Enterprise Server audit files

during normal operations. The Client issues a WARNING if Enterprise Server sends it a different

value whenever it starts processing a new audit file.

• •

• •

• •

• •

• •

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 410

DEFER_FIXUP_PHASE

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions

The defer_fixup_phase parameter prevents the Databridge Client from entering the fixup phase,

which is deferred to the next process command.

DISCARD_DATA_ERRORS

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , display_bad_data

Console: PROCESSING > DMSII Data Error Handling (General error handling > Discard records ...)

The parameter discard_data_errors instructs the Client to write all records with data errors to

the discard file tablename.bad, located in the discards subdirectory of the working directory. If you

set this parameter to False, the Client loads the record into the database with the affected column

set to NULL or with the affected characters changed to question marks (?). Setting this parameter

to True forces the alpha_error_cutoff parameter to 0 so that no errors are tolerated before the

Client declares the field bad. For more information, see alpha_error_cutoff.

DISPLAY_BAD_DATA

Default: False

Range: True or False

Related parameters: alpha_error_cutoff , discard_data_errors

Console: PROCESSING > DMSII Data Error Handling (General error handling > Display data errors

...)

The display_bad_data parameter is a debugging aid for users that encounter many data errors.

Enabling this parameter makes the Databridge Client display the raw DMSII data in a field that is

found to have a data error. This output, which immediately follows the data error messages, is

suppressed whenever the number of errors exceeds the maximum number of errors to be logged

(as defined by the error_display_limits configuration file parameter).

Version 6.1 and later Databridge Clients do not support parallel clones, which was one of the

reason for the existence of this command.

Note

15.3.11 Processing Order

15.3.11 Processing Order 411

ENABLE_AF_STATS

Default: False

Range: True or False

Console: PROCESSING > Statistics (Audit file statistics)

This parameters enables the writing of the audit file statistics to the AF_STATS Client control table.

These statistics are the incremental statistics that are written to the log file every time the Client

start processing a new audit file. The only difference being that when the processing of an audit file

spans multiple Client runs, the statistics are combined into a single record that spans the audit file.

See the section on AF_STATS Chapter 8 titled "Databridge Control Tables" for a complete

description of the columns of the AF_STATS Client control table.

ENABLE_DOC_RECORDS

Default: False

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General)

The enable_doc_records parameter requests DOC records from the Databridge Engine. Enable

this parameter only when you are troubleshooting Databridge Engine problems. These records help

diagnose the various block types that the Engine encounters while processing audit files.

ENABLE_FF_PADDING

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character Data > Enable High Value Padding)

This parameter enables an option that lets you mark items as padded with high values to achieve

left justification. This parameter applies to ALPHA items and unsigned numeric items that are

stored as ALPHA data. When set to False, this parameter does not appear in the exported

configuration file.

ENABLE_MINIMIZED_COL

These records are recorded in the trace file only when full debugging is enabled (-d) or if you

enable the DOC Record Tracing option as described in the section DOC Record Trace .

Note

15.3.11 Processing Order

15.3.11 Processing Order 412

Default: True

Range: True or False

Console: PROCESSING > Advanced (General > Override changed columns only option)

When the minimize_col_updates parameter is applied during a define or redefine and the

Administrative Console's Customize commands, the DSOPT_Optimize_4_CDC bit is set in all data

sets. Set this parameter to False to override the DSOPT_Optimize_4_CDC bit during the change

tracking phase and avoid having to run a redefine command to clear the DSOPT_Optimize_4_CDC

bit.

Minimized SQL is not generally very useful, as it slows down update processing by not using host

variables. It might be useful when the relational database is replicated to a secondary database

that is remote. This option reduces the size of the changes by only updating column that are

changed rather than using canned SQL that update all columns regardless of whether they were

changed or not.

ENABLE_OPTIMIZED_SQL

Default: True

Range: True or False

Console: PROCESSING > Advanced (General > Override optimized SQL updates option)

When the optimize_updates parameter is applied during a define , redefine and the

Administrative Console's Customize commands, the DSOPT_Use_bi_ai bit is set in all data sets

containing secondary OCCURS tables. Set this parameter to False to override the DSOPT_Use_bi_ai

bit during the change tracking phase and avoid having to run a redefine command to clear the

DSOPT_Use_bi_ai bit. The DSOPT_Use_bi_ai bit is documented under ds_options in the

DATASETS Client control table.

ENGINE_WORKERS

Default: -1 (This parameter is commented out.)

Range: 1-10

Console: PROCESSING > Engine and Enterprise Server (General)

The engine_workers parameter allows the Databridge Client to override the Databridge Engine

WORKERS = n parameter setting to control the number of extract workers Databridge Engine can

use during the data extraction phase.

This value can only be lower than Host parameter (DATA/ENGINE/CONTROL), never higher.

The default value of -1 indicates that the Client does not attempt to override the settings for the

corresponding Databridge Engine parameter whose default value is 1.

15.3.11 Processing Order

15.3.11 Processing Order 413

ERROR_DISPLAY_LIMITS

Default: 10 errors for the display; 100 errors for the log file

Range: 0-1000, 0-10000

Console: PROCESSING > DMSII Data Error Handling (General error handling > Error display limits)

The error_display_limits parameter allows you to control the number of screen output

messages and log file entries for data errors. All data error counts are maintained for individual

tables. This parameter prevents Databridge from filling the disk with meaningless errors when a

large number of the records in a data set are in error.

INHIBIT_8_BIT_DATA

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character data > Change 8-bit characters to

? ...)

Use the inhibit_8_bit_data parameter for data validation. Do not set this parameter if your data

contains international characters.

For example, if your valid alpha data consists of 7-bit characters, set inhibit_8_bit_data to True. The

Databridge Client then changes all 8-bit characters to a question mark (?) and issues a warning

message on the first occurrence of the bad data. The message contains the keys of the record with

the invalid data, as in the following:

INHIBIT_CONSOLE

Default: False

Range: True or False

Related command-line parameter: -C (toggle)

Applies to: Command-line Client (dbutility) only

Console: N/A

WARNING: Item 'cm_addr_line_2' in table 'customers' has 8-bit characters in alpha data - Keys: cm_number=00101301

If an item containing 8-bit characters or control characters happens to be a key, the record is

discarded as it attempts to change the bad characters to ? (question marks), potentially

resulting in duplicate records. All discarded records are written to the file "tablename.bad" in the

discards subdirectory of the working directory for the data source.

Note

15.3.11 Processing Order

15.3.11 Processing Order 414

When set to True, this parameter disables the console commands for the command-line Clients

(dbutility). The console commands are explained in Controlling and Monitoring dbutility.

INHIBIT_CTRL_CHARS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Character data > Control character)

When this parameter is set to true, the Databridge Client treats all control characters as errors and

converts them to a question mark (?) when set to True. When it is set to False, it supports all

control characters except NUL, CR, LF, and TAB (in some cases). The Client for Oracle accepts TAB,

and the Microsoft SQL Server Client accepts TAB characters if the bcp delimiter is not the TAB

character.

INHIBIT_DROP_HISTORY

Default: False

Range: True or False

Console: CUSTOMIZING > History Tables (Options > Inhibit Drop)

Use this option to prevent the Databridge Client from inadvertently dropping history tables during a

clone , process , or drop command or to prevent the clean-up scripts from running.

This is a safeguard to prevent the user from making an unrecoverable error. If you want the tables

dropped and are sure of that, you can change this setting and rerun the Client. However, make sure

to set it back to True for the next time.

If the data source is dropped it cannot be reprocessed because the Databridge Client

attempts to drop the history table, and the option prevents this from happening.

Cleanup scripts deal with tables that are partially re-cloned. In the case of multiple source

tables, they are re-cloned one data source at a time. In the case of tables that preserve

deleted records, the deleted records are preserved during a clone. In the case of MISER data

sets that hold history and resident records, the table is re-cloned without dropping the

history records (which is different than Databridge Client history tables).

INHIBIT_INIT_VALUES

This parameter and the parameter convert_ctrl_char are mutually exclusive. If you attempt

to set them both to True, the configuration file scanner will generate an error.

Note

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 415

Default: False

Range: True or False

Console: CUSTOMIZING > Advanced (Table reorganization options > Do not set initial values ...)

This parameter allows you to disable new columns added after a DMSII reorganization from getting

set to their initial values. If there are large tables and your applications can deal with the new

columns being NULL, setting this parameter to True will save time.

KEEP_UNDIGITS

Default: 0

Range: 0 - 2

Console: PROCESSING > DMSII Data Error Handling (Character data ...)

This parameter, when set to 1, allows you to keep the undigits in numeric fields that are stored as

character data. These characters will have a value of 'A' through 'F' based on the value of the

corresponding undigit.

Setting this parameter to 2 also causes undigits in numeric fields to be treated as 9s.

LINC_CENTURY_BASE

Default: 1957

Range: 1800 and up

Console: PROCESSING > Date and Time Parameters (Date parameters)

This parameter allows you to configure the base year for Linc dates, which is site-specific

parameter in Linc databases.

MASKING_PARAMETER[N]

Default: N/A

Range: "string"

Applies to: SQL Server Client using SQL Server 2016 or newer

Console: CUSTOMIZING > SQL Suffixes (Data Masks)

If you ever re-clone such tables these columns will no longer be NULL.

Note

15.3.11 Processing Order

15.3.11 Processing Order 416

This array of parameters is used to hold the parameters for the random and partial masking

functions. Data masking is defined using the masking_info column of DATAITEMS, which defines

the masking function and the index of the corresponding parameter string (which does not include

the parentheses). The format of the masking_info column (which is an int) is 0x00nn000m, where

m is the masking function code and nn is the index into the table of masking parameters.

The following masking codes are defined: 0 -- no masking, 1 -- default() masking function, 2 --

email() masking function, 3- random() masking function, 4 -- partial masking function. The last two

masking functions have 2 and 3 parameters respectively. These parameters are represented in the

left half of the masking_info by the index into the table of masking parameters (or example

0x00010003 would be a random() masking function with its parameters represented by the

masking_parameter[1] entry in the configuration file. This parameter could be "0,100" which

would result in the masking function "random(1,100)" being used in defining the data mask for the

column.

You can reuse masking_parameter entries as many times as needed. The index must be between

1 and 100. Refer to the SQL Server documentation for details on how data masking works.

The figure below shows how to set up masking parameters using the Administrative Console's

Customize command. This example results in the accountno column having the following

attributes:

accountno varchar(16) masked with (function='partial(0,"************",4)') NULL,

15.3.11 Processing Order

15.3.11 Processing Order 417

MAX_CLONE_COUNT

15.3.11 Processing Order

15.3.11 Processing Order 418

Default: 10000

Range: 1000-100000 SQL insert statements before a commit

Related command-line option: -s

Console: N/A

In most cases you do not need to use this parameter. This parameter is used only when you enter

the -s option at the command line or set the bit DSOPT_No_Loader (2) in the ds_options column

of corresponding row in the DATASETS table.

The max_clone_count parameter applies to the dbutility process and clone commands for

cloning only, not updates, when the command-line option -s is set. It defines the maximum

number of rows that the Client can insert into a table before a commit is required.

The value of this parameter has no effect on the commit frequency during the processing of

updates, which is controlled by Databridge Engine.

MAX_DISCARDS

Default: 0,100

Range: 0-10000, 0-1000

Console: PROCESSING > DMSII Data Error Handling (General error handling > Discard record ...)

This is a two-part parameter that controls how the Client handles discarded records. The first

number represents the total number of discards the Client will tolerate before abending. The

second number represents the maximum number of discards records for a table that are written to

the discard file. Discards that exceed this number are ignored.

If either of these values are set to zero, no limits are imposed for the corresponding actions, and

the Client will behave the way it did before this parameter was implemented.

The first value must be greater than the second value, unless the second value is zero, indicating

that it's unlimited. Otherwise, the Client will always abend before the second value goes into effect.

MAX_RETRY_SECS

Default: 20

Range: 1 - 36000 seconds

Related parameters: use_dbwait , max_wait_secs

Console: PROCESSING (Audit unavailable action > Retry interval ...)

The max_retry_secs parameter works only when you enable max_wait_secs so be sure to set

both.

15.3.11 Processing Order

15.3.11 Processing Order 419

The max_retry_secs parameter applies when you use the process command to track changes. It

defines the value for the retry time (in seconds) for the DBWAIT API call for Databridge Engine,

which is called when the use_dbwait parameter is set to True. This value defines the amount of

time to wait before reading an audit file again.

For example, if you set max_wait_secs to 3600 seconds (same as 1 hour) and max_retry_secs to

60 seconds, Databridge Engine checks for new updates in the audit file once a minute for an hour

before giving up and returning an audit file unavailable status.

Note that when you supply a second value for the parameter max_wait_secs , the value of

max_retry_secs must be less than that value, as the Client expects to get control back within the

time specified by the second value of max_wait_secs . Ideally, the second value of max_wait_secs

should be an exact multiple of max_retry_secs to ensure that Client gets control back after the

correct amount of time. For example, if using the default value of 60 for the second value of

max_wait_secs , we recommend you set this parameter to 20 or 30 seconds, which ensures that

the Client gets control back in 60 seconds.

MAX_SRV_IDLE_TIME

Default: 0

Range: 15 -- 600 minutes

Console: PROCESSING > Advanced (Server inactivity timeout)

This parameter allows the timer thread to time out a server connection after several inactivity

warnings. When this parameter is set to a non-zero value, which represents the timeout value in

minutes, the Client stops if the length of an inactivity period exceeds this value.

The Client stops with an exit code of 2059. If using the service, this will cause it to restart the Client

after a brief delay. This parameter provides an alternative to the TCP keep-alive mechanism to

detect situations where we have a dead connection. This situation is most likely to occur if the

MCP is HALT LOADED.

When using the Administrative Console enabling the slider labeled "Server inactivity timeout ..."

activates the edit box for supplying the value for this parameter.

MAX_WAIT_SECS

Default: 3600,60

Range: 0--36000 seconds for the first value, 0 or 60-300 seconds for the second value

Related parameters: use_dbwait , max_retry_secs

Console: PROCESSING (Audit unavailable action > Maximum wait time ...)

The max_wait_secs parameter works only when you enable use_dbwait. When you set

max_wait_secs , also set max_retry_secs.

15.3.11 Processing Order

15.3.11 Processing Order 420

The max_wait_secs parameter applies when you use the dbutility process command to track

changes. It defines the maximum wait time (in seconds) for the DBWAIT API call for Databridge

Engine, which is called when the use_dbwait parameter is set to True. This is the maximum

amount of time that Databridge Engine waits before returning an audit file unavailable status.

The max_wait_secs value and the max_retry_secs value are the DBWAIT API input parameters.

The maximum wait time (max_wait_secs) specifies the cutoff point for the retries

(max_retry_secs). DBWAIT gives up when the total amount of time elapsed since the last

successful attempt to read the audit file is greater than or equal to the max_wait_secs .

The optional second value for this parameter is used to break up large wait times into smaller

increments by making the Client repeatedly issue DBWAIT calls using this second value, which

must be smaller than the first value (unless the first value is 0).

For example setting max_wait_secs to 3600,60 will result in the Client issuing a DBWAIT remote

procedure call with a max_wait_secs value of 60 seconds. Upon getting a "no more audit available"

return status, the Client will issue another DBWAIT call until it has received no data for the amount

of time indicated by the first parameter. This way of doing things ensures that an idle line has some

traffic on it, which makes it possible to detect situations where the network goes down and neither

side knows about it.

Upon receiving data the Client resets the timer that keeps track of idle during which no updates are

received. A value of 0 for the second parameter makes the Databridge Engine handle the wait-and-

retry loop without any involvement by Client.

Note that when you supply a second value for the parameter max_wait_secs , the value of

max_retry_secs must be less than that value, as the Client expects to get control back within the

time specified by the second value of max_wait_secs . Ideally the second value of max_wait_secs

should be an exact multiple of max_retry_secs to ensure that Client gets control back after the

correct amount of time. For example, if using the default value of 60 for the second value of

max_wait_secs , we recommend you set this parameter to 20 or 30 seconds, which ensures that

the Client gets control back in 60 seconds.

MIN_CHECK_TIME

Default: 600 (expressed in units of seconds)

Range: 10--1200

Related parameters: controlled_execution

Applies to: Command-line Client (dbutility) only

Console: N/A

A value of 0 indicates that Databridge Engine continually waits.

Note

15.3.11 Processing Order

15.3.11 Processing Order 421

The min_check_time parameter is used in with the controlled_execution parameter to reduce

the number of times the program reads the corresponding entry in the DATASOURCES table. After a

quiet point, which ends a transaction group of updates, the Client only reads the DATASOURCES

table if min_check_time has elapsed since the last read. If you set this parameter to 60 seconds,

the Client reads the DATASOURCES table no more than once a minute, even if quiet points are only

a few seconds apart.

MONTHS

Default: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC

Range: A list of exactly 12 three-character entries

Console: N/A

Use the months parameter when you want to use month name abbreviations that are not in

English. This parameter applies only when you are using DMSII date encoding methods that use

three-character abbreviations for months.

For more information on DMSII date encoding methods, see Decoding DMSII Dates, Times, and

Date/Times.

To make an entry for the months parameter, enter your three-character month names in order and

separated by commas.

N_DMSII_BUFFERS

Default: 0

Range: 0, 2 -- 64

Related parameters: n_update_threads

Console: PROCESSING > Advanced (Multi-threaded updates > Number of DMSII buffers ...)

Use this parameter to configure the number of RPC buffers to be used by the Client. If you let this

parameter default or set it to 0, the Client uses 4 times n_update_threads RPC buffers or 2 buffers

when n_update_threads is 0. When you have DMSII links enabled, this parameter is set to the

number of extract workers unless the default value is larger. Raising this value might improve

performance by ensuring that there are enough buffers queued to keep the update workers busy at

all times.

N_UPDATE_THREADS

Default: 8

Range: 0 -- 16

Applies to: SQL Server (see note) and Oracle Clients

Console: PROCESSING > Advanced (Multi-threaded updates > Number of update threads ...)

15.3.11 Processing Order

15.3.11 Processing Order 422

Use this parameter to specify the number of update threads to be used. The update threads are

responsible for executing SQL to update the user tables and writing bulk loader temporary files.

When using the BCP API in the SQL Server Client these threads are also responsible for making the

BCP API calls to load the data. If you have multiple processors and disk arrays, setting this

parameter to a high value will increase the update processing speed at the expense of additional

memory. Avoid setting this parameter to 1, as this will effectively pass off all updates to the single

worker thread, when executing them directly would be preferable.

It is recommended to always use multi-threaded updates, as it improves performance considerably.

NULL_DATETIME_VALUE

Default: 19010101

Range: 17530101 to 99991231

Applies to: SQL Server Client

Console: PROCESSING > Date and Time (Null date values ... > Datetime)

Use this parameter to change the value used to represent a NULL date in a datetime column that

does not allow nulls. For example, you could change the value to 18991231 if the default value of

190001001 is meaningful.

NULL_DATETIME2_VALUE

Default: 19010101

Range: 00010101 to 99991231

Applies to: SQL Server Client

Console: PROCESSING > Date and Time (Null date values ... > Datetime2)

Use this parameter to change the value used to represent a NULL date in a datetime2 column that

does not allow nulls. For example, you could change the value to 00010101 if the default value of

190001001 is meaningful.

NULL_DIGIT_VALUE

This parameter requires the use of SQL Native Client in ODBC. The SQL Server driver doesn't

support MARS, which is required for multithreaded updates. If MARS cannot be enabled, the

Client automatically reverts to using single-threaded updates.

Note

15.3.11 Processing Order

15.3.11 Processing Order 423

Default: 9

Range: 0 or 9

Related parameters: allow_nulls

Console: PROCESSING (Store NULL DMSII numbers as)

Use this parameter when your DMSII data contains NULL values that you do not wish to store as

NULL. This parameter applies only to items that have the DAOPT_Nulls_Allowed bit reset in the

da_options column of the corresponding DATAITEMS table entry.

If you set null_digit_value to 0, all NULL values encountered in DMSII NUMBER data

types get stored as zeros.

If you set null_digit_value to 9, all NULL values encountered in DMSII NUMBER data

types get stored as high values (999 or 999.999).

NUMERIC_DATE_FORMAT

Default: 23 (format mmddyyy)

Range: Any legal numeric date format value (dms_subtype values 11--16, 21--26, 31--36)

Console: PROCESSING > Date and Time (Default formats > Numeric date)

The numeric_date_format parameter enables you to store DMSII dates as relational database

numbers written out in the specified, allowable, DMSII numeric date format. To configure the

numeric_date_format , you need to set the DMS_ITEMS Client control table DIOPT_Clone_as_Date

bit and set the sql_type to 13, which represents a numeric date. The date is stored as an int data

type in Microsoft SQL Server and a number(10) in Oracle.

This feature is useful in converting a DMSII MISER date or Linc date as a readable, numeric date.

Note that the use of relational database date data type is a much better alternative.

PRESERVE_DELETES

Default: False

Range: True or False

Console: PROCESSING > Advanced (General > Preserve deleted records ...)

Setting this parameter to True causes records that contain an extended update_type column (type

or bit 11) whose value is 2 (DELETE) to survive a re-clone of the data set. Instead of dropping the

table, all non-deleted records are removed from the table during the re-clone.

This parameter has no effect on the handling of tables that have a non-DMSII column of type 10

(named deleted_record by default). Deleted records are unconditionally preserved when such

tables are re-cloned.

ROLLBACK_SEGMENT

• •

• •

15.3.11 Processing Order

15.3.11 Processing Order 424

Default: NULL string

Range: rollback_segment_name

Applies to: Oracle Clients only

Console: PROCESSING (General)

This parameter makes the Client use the specified rollback segment by executing the SQL "SET

TRANSACTION USE ROLLBACK SEGMENT Rollback_segment_name " at the start of every

transaction.

SET_BLANKS_TO_NULL

Default: False

Range: True or False

Console: CUSTOMIZING (General > Set blank columns to NULL)

This parameter causes the Client to store zero-length character data (that is, "") as NULL instead of

a single space. This parameter only applies to columns that are not part of the index.

SET_LINCDAY0_TO_NULL

Default: False

Range: True or False

Console: PROCESSING > Date and Time (Date parameters > Linc date base year ...)

This parameter causes the Client to treat a Linc date of 0 as NULL rather than 1/1 of the Linc base

year.

SHOW_PERF_STATS

Default: True

Range: True or False

Console: PROCESSING > Statistics (Logging options > Show performance statistics)**

The show_perf_stats parameter enables the displaying and looging of performance statistics at

the end of the data extraction phase when the AFN value changes (for example, when the

processing of audit files is completed) and when the process or clone command terminates.

SHOW_STATISTICS

15.3.11 Processing Order

15.3.11 Processing Order 425

Default: True

Range: True or False

Related command-line option: -v

Related parameter: statistics_increment

Console: PROCESSING > Statistics (Logging options > Show statistics)

The show_statistics parameter, when set to True, causes the Databridge Client to display record

count statistics at the intervals specified by the statistics_increment parameter. The statistics

lines are useful in monitoring the progress of lengthy operations.

The show_statistics parameter applies to both the process and clone commands.

SHOW_TABLE_STATS

Default: True

Range: True or False

Console: PROCESSING > Statistics (Logging options > Show table statistics)

This parameter, when set to True, causes the Client to log the record counts for each cloned table

at the end of the data extraction phase. During update processing it causes the Client log the

update counts and average update times when the Client starts processing a new audit file. These

statistics are reset after being logged, as they are incremental statistics that span the last audit file

processed. Tables that have no updates are omitted from these report.

SQL_EXEC_TIMEOUT

Default: 180,0

Range: 15-1200 for the first value, 0 or 30-3600 for the second value

Console: PROCESSING > Advanced (SQL execution timeout values)

The sql_exec_timeout parameter applies to update processing only. The first value allows the

user to override the default setting of 180 seconds (3 minutes), which is used to determine when

the timer thread should issue a WARNING about the query taking too long to complete. The

optional second parameter, which defaults to 0 when omitted, allows the user to set the secondary

timeout value for a long query after which time the query is aborted. A value of 0 disables this

timeout. The value of the second parameter must be greater than that of the first parameter, except

if it is 0.

SQL_HEART_BEAT

Default: False

Range: True or False

Console: PROCESSING > Advanced (Generate SQL heartbeats ...)s

15.3.11 Processing Order

15.3.11 Processing Order 426

This parameter was implemented as a work-around for the situation where long clones resulted in

the Client's connections to the database getting closed because of long periods of inactivity. When

this parameter is set to a non-zero value, the Client periodically executes a dummy SQL update on

the Client connection to keep the connection alive during the data extraction where the only activity

is on the bulk loader connection.

When using the Administrative Console, enabling the slider labeled "Generate SQL heartbeats ..."

activates the edit box for the value for this parameter.

STATISTICS_INCREMENT

Default: 100000,10000

Range: 1--10000000 (10 million) for the first value, 1--1000000 (1 million) for the second value

Related command-line option: -v

Related parameter: show_statistics

Console: PROCESSING > Statistics (Record count display intervals)

The statistics_increment parameter applies when show_statistics is set to True or when the

-v option is in effect. The statistics_increment parameter lets you set the display interval for

record counts that occur during cloning and updating. For example, a setting of 1 indicates that the

Databridge Client will display when every record is processed. A setting of 1000000 indicates that

the Databridge Client will display a line after one million records have been processed.

Setting the statistics_increment parameter to a low number slows processing time, especially

during cloning.

Enter a value using the following syntax:

statistics_increment = ccc[,uuu]

Where Is

ccc The record count before displaying the record statistics. This record count

is used during cloning.

15.3.11 Processing Order

15.3.11 Processing Order 427

STOP_AFTER_FIXUPS

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop after fixup phase)

Setting this parameter to True causes the Client to stop as soon as all the tables are synchronized.

This is a useful stopping point in a data warehousing environment, as the warehouse can be loaded

at this point. It is also helpful if you want to validate data before declaring things to be in working

order.

STOP_AFTER_GC_REORG

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop after garbage collection reorganization)

Setting this parameter to True causes the Client to stop at the first quiet point after a garbage

collection reorganization occurs. The program acts as if the operator issued a console QUIT

command (or a SIGTERM signal in the case of UNIX) at the point when the garbage collection

reorganization was detected. The Client exit status is 2034 if garbage collection or a file format

reorganization is encountered in the audit trail.

STOP_AFTER_GIVEN_AFN

Default: False

Range: True or False

Applies to: Command-line Client (dbutility) only

Console: N/A

Where Is

uuu The record count before displaying the record statistics. This record count

is used during updating.

This parameter is specific to replication and applies only to the command-line Client. The

command-line -F option, which allows you to specify the AFN after which to stop, overrides

this parameter.

Note

15.3.11 Processing Order

15.3.11 Processing Order 428

The stop_after_given_afn parameter enables you to stop processing after an externally

specified audit file has been processed. Note that you must store the value of the audit file number

in the stop_afn column of the DATASOURCES entry using data source tools external to dbutility.

The stop_after_given_afn parameter forces the Client to check the values of the stop_afn

column of the DATASOURCES table. If a non-zero value is found in this column, the Client sets the

stop AFN value and stops reading the DATASOURCES table.

To automate this functionality using a script launched by the service, see Automate Client

Operations with the Service.

STOP_ON_DBE_MODE_CHG

Default: False

Range: True or False

Console: PROCESSING > Stop Conditions (Stop on Enterprise Server audit file origin change)

Setting this parameter to True causes the Client to stop as soon as it detects that the Databridge

Enterprise Server access mode changes from the value specified in the parameter

dbe_dflt_origin . If this parameter is set to "direct" and Enterprise Server switches to "indirect",

this will result in the Client stopping at the next quiet point.

SUPPRESS_DELETE_MSGS

Default: False

Range: True or False

Console: PROCESSING > DMSII Data Error Handling (Suppress messages for delete operations

with bad keys)

Setting this parameter to True causes the Client to stop reporting data errors for DELETE

operations that result in discards. The Client totally ignores such discards, as the target records

cannot be in the relational database because they have keys with data errors, they are not included

in the discard count and they are not written to the table's discard file.

TRACK_VFDS_NOLINKS

Default: True

Range: True or False

Console: CUSTOMIZING (DMSII related parameters > Track Variable Format datasets ...)

When set to True, this parameter causes the Client to track variable-format data sets that contain

links; however, the links themselves are not tracked. When a record is created in a variable-format

data set, links are set to null. If the application assigns the links to point to other records, the Client

database will not contain these new link values until the variable-format data set is re-cloned. This

parameter is selected, by default.

15.3.11 Processing Order

15.3.11 Processing Order 429

When this parameter is set to False, variable-format data sets are set to have a ds_mode value of

11 after initial cloning, which makes them ineligible for change tracking.

USE_DBWAIT

Default: False

Range: True or False

Related parameters: max_wait_secs, max_retry_secs

Console: PROCESSING (Audit unavailable action > Wait and retry)

Use this parameter to select the Databridge RPC to use during update processing, as follows:

Set to False to use the DBREAD RPC. The DBREAD RPC returns an audit file unavailable

status when all available audit files have been processed.

Set to True to use the DBWAIT RPC. The DBWAIT RPC waits for an audit file to become

available. This is the required setting if the reading of the active audit file is enabled (READ

ACTIVE AUDIT parameter in the Engine control file).

The difference between the DBWAIT RPC and the DBREAD RPC is that DBWAIT waits for updates to

become available rather than returning an audit file unavailable status.

This parameter applies only to the process command for updates. The Databridge Client ignores it

for a clone command, which always uses the DBREAD RPC.

USE_LATEST_SI

Default: False

Range: True or False

Console: PROCESSING > Engine and Enterprise Server (General > Include latest StateInfo ...)

• •

• •

You can temporarily toggle this parameter by using the -w command-line option.

Note

15.3.11 Processing Order

15.3.11 Processing Order 430

If the use_latest_si parameter is set to True, the Client will request that the server include the

latest StateInfo in all the data records sent during audit file processing. The overhead of doing this

is 24 bytes per record. This parameter is mainly intended as a debugging tool when chasing audit

file processing problems. In addition to making the Client print up-to-date audit locations instead of

the audit location of the last quiet point that was used as a COMMIT, this option may be useful

when you use the audit timestamp as an external column for data tables. Enabling this parameter

will make the values used in such columns much more accurate. Not all DMSII audit file records

have an associated timestamp, so the timestamp will still not be 100% accurate.

Server Option Parameters

The following parameters are included in the [params] section of the Databridge Client

configuration file. The parameters listed in this section affect how the Databridge Client processed

updates.

SHUTDOWN

Console: N/A

This parameter applies only to the command-line Client (dbutility). It inhibits update processing for

a given period of time after a LIMIT_NAME or LIMIT_TIME condition (normally initiated by a STOP

parameter) is encountered. The format of the shutdown parameter is as follows:

The first form specifies the time of day at which the shutdown period ends, while the second form

specifies the length of the shutdown period. The command-line option –o can override this

parameter.

STOP

Console: PROCESSING > Stop Conditions (Dynamic stop conditions)

This parameter allows you to specify a condition for the Databridge Engine to stop processing

updates as follows:

For example, you would enter the following:

shutdown {until | for} hh:mm after stop

stop {before | after} {task "name" | time hh:mm[:ss]}

stop before task "name"
- or-
stop after time 12:30:15

15.3.11 Processing Order

15.3.11 Processing Order 431

Generally, you should include only one stop specification in the configuration, but using two stop

specifications is legal. When more than one task or one time is specified in the configuration file,

the program honors only the last one. However, when a task specification is coupled with a time

specification, the Client honors the task specification only if it occurs on the date specified in the

time specification.

Generate Command Parameters

The generate command parameters include decimal_aa_length and purge_dropped_tabs

(Oracle Clients only) and a number of SQL statement suffixes (Oracle and SQL Server Clients).

Parameter Description

decimal_aa_length Default: 15

Range: 15 – 38

Applies to: Oracle Client

Use this parameter to control the size of the data type that

represents a decimal AA Value—by default, this is NUMBER(15).

If you set this parameter to 16, the Client will use NUMBER(16)

for all decimal AA Values.

15.3.11 Processing Order

15.3.11 Processing Order 432

SQL STATEMENT SUFFIXES

Console: CUSTOMIZING > SQL Suffixes ({Table | Index} SQL suffixes ...)

The following parameters determine which extra clauses are added to the create table and create

index SQL statements in the scripts generated by the Databridge Client.

Suffixes must be entered on a single line and be enclosed in double quotation marks. Suffixes can

be up to 256 characters in length.

Parameter Description

purge_dropped_tabs Default: False

Range: True or False

Applies to: Oracle Client

Console: CUSTOMIZING > SQL Suffixes** (Enable purge option

for dropped tables)

This parameter makes the generate command add the PURGE

option to the "drop table ..." SQL statement in the drop_table

stored procedure that is refreshes every the Oracle Client runs

this command. This option forces the drop tables not to be

placed in the Oracle recycle bin. Since all the drop table scripts in

the dbscripts folder call this stored procedure changing this

parameter takes effect as soon as you run a generate command,

even if it finds nothing to do.

15.3.11 Processing Order

15.3.11 Processing Order 433

Parameter Description

create_index_suffix Default: None

Range: “suffix”

Applies to: Oracle and SQL Server Clients

The create_index_suffix parameter enables you to define

extra attributes (a suffix) for create index SQL statements that

the Client generates for any given table. Each attribute list is

defined with a number or index n so you can reference it. Up to

100 different suffixes can be defined. Individual indexes can

select one of the suffixes by specifying this value in the

index_suffix column of the corresponding DATATABLES

Client control table entry. The index suffix is then concatenated

to all create index SQL statements for this table.

Here's an example suffix for a SQL Server database which

specifies file groups for create index statements:

create_index_suffix [1]="ON filegroup"

Here's an example suffix for an Oracle database:

create_index_suffix [1]="TABLESPACE name STORAGE

MINEXTENTS 1 NEXT 10 MAXEXTENTS UNLIMITED"

15.3.11 Processing Order

15.3.11 Processing Order 434

Parameter Description

create_table_suffix Default: None

Range: “suffix”

The create_table_suffix parameter enables you to define a

suffix for create table SQL statements that the Client generates

for any given table and to assign a number to this suffix so you

can reference it. The index n allows for up to 100 different

suffixes to be defined. Individual tables can select one of the

suffixes by specifying this value in the create_suffix column

of the corresponding DATATABLES Client control table entry.

The table suffix is then concatenated to all create table SQL

statements that specify the given suffix number.

Here's an example suffix for an SQL Server database which

specifies filegroups for create table statements:

create_table_suffix [1]="ON filegroup"

Here's an example suffix for an Oracle database:

create_table_suffix [1]="TABLESPACE tablename"

global_index_suffix Default: None

Range: “suffix”

Applies to: Oracle and SQL Server Clients

The global_index_suffix parameter enables you to add a

filegroup (SQL Server) or a tablespace (Oracle) or any other SQL

command specification to all create index SQL statements that

the Client generates except those that have a suffix associated

with the create_index_suffix parameter.

global_table_suffix Default: None

Range: “suffix”

The global_table_suffix parameter allows you to add a filegroup

(SQL Server) or a tablespace (Oracle) or any other SQL

command specification to all the create table SQL statements

that the Client generates, except for statements whose suffix is

associated with the create_table_suffix parameter.

15.3.11 Processing Order

15.3.11 Processing Order 435

In the case of index suffixes (both global and specific) for the Oracle Client, you can use the string $

(INDEX_NAME) as an environment variable that the Client replaces by the actual index name for the

table when using the suffix. You can also insert new line characters into the suffix by using "\n"; this

is sometimes necessary when the suffix contains a SQL statement that must be executed

separately after the index creation completes. An example for this is enabling parallel mode for

index creations, which speeds up the index creation significantly. You can use the following index

suffix to do this:

"parallel (degree 8)\n/***/\nalter index $(INDEX_NAME) parallel 1"

Once the index is created, the alter index statement sets the parallel degree back to 1, it needs the

index name to be able to do this, using the $(INDEX_NAME) environment variable makes this

possible without having to write separate scripts for each table. The /***/ is inserted into the SQL

suffix to force the Client to execute the create index statement before executing the alter index

statement. Using a semicolon causes an OCI error. Inserting "\n/***/\n" makes the Client break up

the line into two separately executed SQL statements.

DATA MASKING STRINGS

Applies to: SQL Server Client (using SQL Server 2016 or newer version)

Console: CUSTOMIZING > SQL Suffixes (Data Masks)

These strings provide the data for the arguments of the random() and partial() data masking

functions. They do not include the parentheses. See the masking_parameter in the [params]

section for details on how to setup data masking for columns with sensitive data.

Display Command Parameters

The following parameter is included in the [params] section of the Databridge Client configuration

file. It affects the display command only.

When using the Administrative Console this parameter can be found in the PROCESSING page of

the Client Configuration property pages.

Parameter Description

user_column_suffix Default: None

Range: “suffix”

The user_column_suffix parameter allows you to add a suffix

to the column definition created by the generate command for

external columns of type user_column1 through user_column4.

This is particularly useful for adding default clauses.

15.3.11 Processing Order

15.3.11 Processing Order 436

User Scripts Parameters

The following parameters are included in the [params] section of the Databridge Client

configuration file. The parameters listed in this section affect what the Databridge Client does with

user scripts.

When using the Adminstrative Console these parameters can be found in the CUSTOMIZING page

of the Client Configuration property pages.

display_active_only Default: True

Range: True or False

Related command-line option: -a

Console: PROCESSING (General)

Use the display_active_only parameter to affect the display

command, as follows:

Set display_active_only to True to show only the Client

control table entries for data sets whose active column is

1. This is particularly useful if your site clones a small

number of data sets.

Set display_active_only to False to show all Client

control table entries, regardless of the data set active

column setting.

You can temporarily override this parameter by using the –a

command-line option.

•

•

We highly recommend that you set these parameters. As long as you have made sure that each

user script includes all of the changes for the specified data set, the user scripts ensure that the

Databridge Client can handle DMSII reorganization changes.

Note

15.3.11 Processing Order

15.3.11 Processing Order 437

[Scheduling]

The Scheduling parameters section only applies to the dbutility process command. You must run

the process command once before the scheduling takes effect. For more information, see

Scheduling dbutility Updates.

To schedule Client runs that are initiated from the Administrative Console, click PROCESSING >

Scheduling to open the Client Configuration property pages and set these parameters. For more

information, see the Databridge Administrative Console Help.

check_user_scripts Default: False

Range: True or False

Set this parameter to True to let the Databridge Client inform you

if a user script for a table is missing. In this case, the Databridge

Client returns the following message:

ERROR: Unable to open script file filename

This parameter is especially useful if you have created data table

creation user scripts and index creation user scripts for every

table in your relational database. The Databridge Client runs

these scripts immediately after it completes its own scripts for

creating tables and table indexes.

NOTE: This parameter does not apply to data set selection user

scripts and data table customization scripts.

15.3.11 Processing Order

15.3.11 Processing Order 438

Parameter Description

blackout_period Default: 00:00, 00:00

Range: 00:00 to 24:00 (The two time values cannot be equal.)

Use this parameter to specify a fixed block of time during which

the Client cannot run. This parameter is useful for operations,

such as database backups, that can only take place when the

Client is inactive. For example, if you want to back up the

database daily between 1:00 a.m, and 2:30 a.m. daily, define a

blackout period from 0:55 to 2:30. The extra 5 minutes ensures

that the Client finishes any long transactions before the

database backup begins.

If the Client is running when the blackout period starts, the Client

automatically stops. If the Client is waiting for an idle host to

send it updates when the blackout period starts, the Client

resets the TCP/IP connection and aborts the run if it hasn't

received any updates after 15 seconds. If you try to run the

Client during a blackout period, nothing happens.

During a blackout period the service will not start the Client. If

the scheduler tries to schedule a DBClient run at a time that falls

within a blackout period, the start of the run will be delayed until

the blackout period ends.

When this parameter is updated using the Administrative

Console, it is set to the same value in both the service and Client

configuration files.

15.3.11 Processing Order

15.3.11 Processing Order 439

Parameter Description

daily Default: daily = 08:00, 12:00, 17:00, 24:00

Range: 12 entries in ascending order from 00:00 to 24:00

NOTE: The daily parameter is mutually exclusive with the

sched_delay_secs parameter. If you specify both daily and

sched_delay_secs in the [scheduling] section of the

configuration file, sched_delay_secs overrides daily

regardless of the order in which they are specified.

Enter the times you want the dbutility* process command to

wake up and gather updates from the DMSII database. You must

specify 24-hour time (for example, 5:00 for 5:00 a.m. and 17:00

for 5:00 p.m.). The range for minutes is 00–59.

You can specify up to 12 times for the daily parameter. However,

you must specify the times in ascending order. Note the

following:

The values 00:00 and 24:00 are equivalent for midnight.

24:00 is allowed only so that you can put it at the end of the

list of times in ascending order.

24:01 is not allowed; instead, specify, 00:01.

exit_on_error Default: True

Range: True or False

The exit_on_error parameter indicates that the scheduling

should be terminated if an error occurs. If this parameter is set

to false, the process command is retried at the next scheduled

time.

•

•

•

15.3.11 Processing Order

15.3.11 Processing Order 440

Parameter Description

sched_delay_secs Default: 0

Range: 0–86,400 seconds (24 hours)

NOTE: The sched_delay_secs parameter is mutually exclusive

with the daily parameter. If you specify both daily and fixed_delay

in the [scheduling] section of the configuration file, fixed_delay

overrides daily regardless of the order in which they are specified.

Use the sched_delay_secs parameter to specify a time delay

between successive executions of the process command. The

sched_delay_secs parameter does use the retry_time

parameter. To disable the sched_delay_secs parameter,

comment it out or set its value to 0.

sched_minwait_secs Default: 0

Range: 0–86,400 seconds (24 hours)

This parameter ensures that next scheduled process command

is delayed by the specified interval and doesn't occur too soon

after the current scheduled time.

15.3.11 Processing Order

15.3.11 Processing Order 441

[EbcdictoAscii]

Use the [EbcdictoAscii] section of the configuration file to customize character translation tables.

When using the Administrative Console, you can customize the translation table by clicking

CUSTOMIZING > Translations to open this section of the Client Configuration property pages.

TRANSLATION TABLE

The Databridge Client uses the ISO standard translation tables to translate EBCDIC data received

from the host to ASCII data. You can adjust the translation tables to work with national character

sets, which typically redefine characters such as { } [] | to represent national characters.

REDEFINING A CHARACTER

To redefine a character, alter the EBCDIC to ASCII translation table by entering the pair of numeric

values representing the EBCDIC character code and the corresponding ASCII character code in the

[EbcdictoAscii] section of the configuration file. You can use decimal or hexadecimal (for example,

124 for decimal or 0x7C for hexadecimal) to represent the EBCDIC and ASCII character codes.

Parameter Description

sched_retry_secs Default: 3600 seconds (1 hour)

Range: 0–86,400 seconds (24 hours)

The sched_retry_time parameter only applies after a failed

process command. A value of 0 means that dbutility schedules

the next run at the next regularly scheduled time without any

retries. For example, if the mainframe is down when dbutility

attempts to run a process command using the scheduling

option, dbutility will retry the operation after the specified

amount of time has elapsed. If the retry time value is larger than

the next scheduled time, dbutility retries at the next scheduled

time.

If you plan to customize character translation tables, you must modify the configuration file

before you run dbutility process or dbutility clone to populate the Databridge data tables in

the relational database. In addition, if you customize the character translation tables when you

populate the data tables the first time, you must use them on all subsequent updates. If you

don't, the data will be invalid.

Note

15.3.11 Processing Order

15.3.11 Processing Order 442

The Databridge Client does not allow you to change the values of characters that are constant

across national characters, including the space, hyphen (-), single quote (\'), digits 0--9, and the

letters of the alphabet (A--Z and a--z). Changing any of these characters causes an error unless you

set the restrict_translation parameter appropriately.

Example

The following example shows EBCDIC to ASCII translation using hexadecimal characters. Note that

this file is for example only; it does not represent any national character set.

EXTERNAL DATA TRANSLATION DLL SUPPORT

The following parameters are included in the [params] section of the Databridge Client

configuration file.

When using the Administrative Console, you can change the translation DLL name by clicking

CUSTOMIZING > Translations to open this section of the Client Configuration property pages.

;hexadecimal format
[EbcdictoAscii]
0x7C = 0x7E ; remapping of @ to ~
0xE0 = 0x7C ; remapping of \ to |
0xC0 = 0x5B ; remapping of { to [
0xD0 = 0x5D ; remapping of } to]

Parameter Description

eatran_dll_name Default: “DBEATRAN.DLL”

Range: “dllname”

NOTE: You must include quotation marks around the filename.

The parameter eatran_dll_name allows you to rename the

external translation file DBEATRAN.DLL.

15.3.11 Processing Order

15.3.11 Processing Order 443

DOUBLE-BYTE TRANSLATION DLLS

We provide translation DLLs for mixed multi-byte character sets that are used on Japanese and

Traditional Chinese MCP systems to the corresponding Microsoft code pages 932 and 950,

respectively. To install these DLLs, enable Double-byte Translation Support in the Features tab of

the installer for SQL Server. These DLLs are named dbeatran_cp932.dll and dbeatran_cp950.dll,

which you need to specify in the client configuration file using the eatran_dll_name parameter.

These DLLs use configuration files that must be added to the config directory for each data source

that uses them.

Setting up dbeatran_cp932.dll

This DLL is configured by copying the sample configuration files installed in the SQLServer folder in

Program Files to the config folder in the Client's working directory using the appropriate names.

Depending on whether you are using JapanEBCDICJBIS8 or JapanV24JBIS8 on the MCP, copy

the file dbtrans_jbis8.smp or dbtrans_v24jbis8.smp to the config folder as dbtrans.cfg.

Copy the file dbgaiji.smp to the config folder as dbgaiji.cfg.

The file dbtrans.cfg, which is an ini file, has five sections labeled [options] , [ebcdic_to_ascii] ,

[euc_to_jis_table1] , [euc_to_jis_table2] , and [euc_to_jis_table3] .

Options section

This section supports the following parameters:

log_messages = {yes | no}

default: no

Parameter Description

use_ext_translation Default: False

Range: True or False

The use_ext_translation parameter enables you to translate

16-bit character sets from EBCDIC to ASCII. When this

parameter is enabled, the Databridge Client accesses an

alternate data translation routine that uses an external DLL,

named DBEATRAN.DLL (dbeatran.so for UNIX), instead of the

standard translation procedure (for example [EbcdictoAscii]

Section). The DBEATRAN.DLL contains the EBCDIC_to_ASCII

entry point. This DLL is dynamically loaded when you enable

the use_ext_translation option.

1. 1.

2. 2.

15.3.11 Processing Order

15.3.11 Processing Order 444

When this parameter is set to yes , the DLL logs all translated data to the file translate.log in the

client’s working directory. This file is overwritten on every client run.

IMPORTANT: Only set this parameter to yes when testing, because the huge log file adds

significant overhead to the Client run.

show_tables = {yes | no}

default: no

When this parameter is set to yes , the DLL writes the single and double bytes translation tables

that is it uses to the file translate.log in the Client’s working directory.

sok_eok = {yes | no}

default: no

When this parameter is set to yes , SOK (start of Kanji) and EOK (end of Kanji) characters are

translated to blanks. Otherwise, they are not included in the translated data.

Translation table sections

The section ebcdic_to_ascii defines the values for the single-byte translation table for EBCDIC data

that is mapped to a single-byte in Code Page 932. The values in the section euc_to_jis_table1 are

used to translate the first byte of a double-byte character sequence, while the values in the sections

euc_to_jis_table2 and euc_to_jis_table3 are used to translate the second byte of a double-byte

sequence, depending on whether the first byte of the MCP data is odd or even.

This can be done because the mapping of the data follows a strictly consistent pattern. You can

modify these tables; however, this will affect all translations. All three tables have a base value of

0xA1, which means that they indexed by the MCP character's value minus 0xA1. The file dbgaiji.cfg

defines the custom characters used on the MCP. These characters are in the range (0x41–0x9E,

0xA1–0xFE) on the MCP.

Setting up dbeatran_cp950.dll

This DLL is configured by copying the sample configuration file installed in the SQLServer folder in

Program Files to the config folder using the appropriate name.

Copy the file dbtrans_cp950.smp to config folder as dbtrans.cfg. The file dbtrans.cfg, which is an

ini file, has three sections labeled [options] , [ebcdic_to_ascii] and [euc_to_cp950_table] .

Options section

This section supports the following parameters:

log_messages = {yes | no}

default: no

15.3.11 Processing Order

15.3.11 Processing Order 445

When this parameter is set to yes , the DLL logs all translated data to the file translate.log in the

client’s working directory. This file is overwritten on every client run.

IMPORTANT: Only set this parameter to yes when testing, because the huge log file adds

significant overhead to the Client run.

show_tables = {yes | no}

default: no

When this parameter is set to yes , the DLL writes the single and double bytes translation tables

that is used to the file translate.log in the Client’s working directory.

sdo_edo = {yes | no}

default: no

When this parameter is set to yes , SDO (start of double-byte) and EDO (end of double-byte)

characters are translated to blanks. Otherwise, they are not included in the translated data.

illegal_ebcdic_char = 0xnn

default: 0x3F

This value defines the value used for all entries in the ebcdic_to_ascii table entries that are 0x00.

The default is 0x3F, which is a question mark.

illegal_dbcs_char = 0xnnnn

default: 0xA1B8

This value defines the value used for all entries in the double-byte translation table entries that are

0x0000. The default value is 0xA1B8, which is the white star character.

Translation table alterations

The sections ebcdic_to_ascii and euc_to_cp950_table are used to alter entries in the tables in the

DLL that used for single-byte and double-byte character translations. The format of these entries is:

value1 = value2

Where value1 is the MCP character and value2 is the character to which it is translated. At DLL

startup, these sections are processed and the tables are altered before they are written to the log

file when the parameter show_tables is set to yes . This allows you to see the actual translation

tables that are being used. Values can be in hex or decimal; hex values must be prefixed by 0x.

Values for single byte

[DBConfig]

This section contains parameters that are related to the Administrative Console's Customize

command.

default_date_fmt

15.3.11 Processing Order

15.3.11 Processing Order 446

Default: 21

Range: 1-296

Console: PROCESSING > Date and Time Parameters (Default date formats)

This parameter specifies the default format for numeric columns that are clones as dates. For a

MISER database this should be set to 1.

global_type0_chnages

Default: True

Range: True or False

Console: CUSTOMIZING (Customizing General)

The version 7.0 DBClntCfgServer program together with the Administrative Console applies all

customizations done to the fix part of a variable format data set to all the records types, as they all

contain the exact same fixed part. This option is provided as a safeguard for the unlikely situation

where users do not want to do this. Some sites have variable format data sets that have a large

number of record types, if you are customizing a date in the fixed part using the Administrative

Console's Customize command you only have to do this once and it gets applied to all the records

types. The only reason we did not implement this parameter in the Administrative Console is that it

is highly unlikely that anyone will want to change it.

[Encryption]

This section contains parameters that are related to the data encryption in Client/Server

communications using SSL/TLS.

enable_encryption

Default: False

Range: True or False

Console: Encryption (Enable ENCRYPTION ...)

Enabling this parameter is the first step towards using SSL/TLS encryption between the Client and

DBServer. See the section on setting up encryption in the Databridge Installation Guide to find out

more about how to do this. If using the Administrative Console simply more the slider the on

position, This will make the next two parameters visible.

ca_file

Default: ""

Range: String

Console: ENCRYPTION (CA file)

This parameter is a full file specification for the file that contains the certificate to be used.

ca_path

15.3.11 Processing Order

15.3.11 Processing Order 447

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

Default: ""

Range: String

Console: ENCRYPTION (CA path)

This parameter is the path of a directory that contains the bundle of certificate to be used.

certify_server_name

Default: False

Range: True or False

Console: ENCRYPTION (Check server name in certificate)

This parameter indicates whether or not the server certificate will be checked to determine if the

server is the node we think we are connecting to.

tls_host_name

Default: ""

Range: String

Console: N/A

This parameter is intended to specify the server name to check for when the

certify_server_name parameter is set to True. The code does not currently use this parameter.

15.3.12 Reference Tables

The following reference tables show all of the configuration file parameters, and as applicable, their

associated environment variables, command-line options, and dbutility commands. Additionally,

the tables show relationships between configuration file parameters that work together.

Because these tables do not explain each configuration file parameter, environment variable, and

command-line option in detail, we recommend that you use it for reference only.

Bulk Loader Parameters

The following parameters from the [Bulk_Loader] section of the Databridge Client configuration file

apply only to the dbutility clone and process commands and have no associated command-line

options.

[Bulk_Loader] Parameter Bulk Loader Utility

bcp_batch_size SQL Server

bcp_code_page Oracle and SQL Server (bcp only)

15.3.12 Reference Tables

15.3.12 Reference Tables 448

[Bulk_Loader] Parameter Bulk Loader Utility

bcp_copied_msg SQL Server (bcp only)

bcp_delim SQL Server (bcp only)

bcp_packet_size SQL Server (bcp only)

enable_parallel_mode Oracle

inhibit_direct_mode Oracle

max_bcp_failures SQL Server and Oracle

max_temp_storage SQL Server (bcp only) and Oracle (Windows only)

sqlld_bindsize Oracle

sqlld_rows Oracle

15.3.12 Reference Tables

15.3.12 Reference Tables 449

Scheduling Parameters

The following [Scheduling] parameters from the Databridge Client configuration file have no

associated command-line parameter, and they apply to the process command only when using

the command-line Client (dbutility):

daily

exit_on_error

sched_delay_secs

sched_retry_secs

EBCDIC to ASCII Parameters

EBCDIC to ASCII translation applies only to the clone and process commands and has no

associated command-line options.

Params Parameters

The following parameters are from the [params] section of the Databridge Client configuration file:

[Bulk_Loader] Parameter Bulk Loader Utility

verify_bulk_load All

• •

• •

• •

• •

[params] Parameter Option dbutility Command Notes

allow_nulls define and redefine

alpha_error_cutoff clone and process

auto__mask_columns define , generate , process ,

redefine and clone

SQL Server 2016 and newer

automate_virtuals clone and process

aux_stmts clone and process This parameter applies to

Oracle and SQL Server

ODBC Clients only.

batch_job_period clone and process

bracket_tabnames clone and process SQL Server only

15.3.12 Reference Tables

15.3.12 Reference Tables 450

[params] Parameter Option dbutility Command Notes

century_break clone and process

check_user_scripts clone and process

clr_dup_extr_recs generate

commit_absn_inc clone and process

commit_idle_database clone and process

commit_longtrans clone and process

commit_time_inc clone and process

commit_txn_inc clone and process

commit_update_inc clone and process

controlled_execution -o clone and process

convert_ctrl_char clone and process

correct_bad_days clone and process

create_index_suffix

[n]

generate

create_table_suffix

[n]

generate

dbe_dflt_origin clone and process

decimal_aa_length define and redefine Oracle only

default_user_columns define and redefine

defer_fixup_phase -c clone Toggle

dflt_history_columns define and redefine

discard_data_errors clone and process

display_active_only -a display Override

display_bad_data clone and process

eatran_dll_name clone and process

enable_af_stats clone and process

15.3.12 Reference Tables

15.3.12 Reference Tables 451

[params] Parameter Option dbutility Command Notes

enable_dms_links define , redefine ,

process and clone

enable_doc_records clone and process

enable_dynamic_hist redefine

enable_ff_padding clone and process

enable_minimized_col clone and process

enable_optimized_sql -N clone and process Toggle

engine_workers clone and process

error_display_limits clone and process

external_column [n] define and redefine

extract_embedded define , redefine ,

process and clone

flatten_all_occurs define and redefine

force_aa_only define and redefine

global_index_suffix generate

global_table_suffix generate

history_tables

inhibit_8_bit_data clone and process

inhibit_console -C clone and process Toggle

inhibit_ctrl_chars clone and process

inhibit_drop_history clone and process

inhibit_init_values redefine

inhibit_required_opt define and redefine

linc_century_base clone and process

masking_parameter[n] generate

max_clone_count -s clone and process

15.3.12 Reference Tables

15.3.12 Reference Tables 452

[params] Parameter Option dbutility Command Notes

max_discards clone and process

max_retry_secs process Requires use_dbwait and

works with max_wait_secs

max_srv_idle_time clone and process

max_wait_secs process Requires use_dbwait and

works with

max_retry_secs

maximum_columns define and redefine

min_check_time clone and process

min_varchar define and redefine

minimize_col_updates define and redefine

miser_database define , redefine ,

process and clone

months clone and process

null_datetime_value clone and process

null_datetime2_value clone and process

null_digit_value clone and process

numeric_date_format clone and process

n_dmsii_buffers clone and process

n_update_threads clone and process

optimize_updates define and redefine

preserve_deletes clone and process

read_null_records define and redefine

reorg_batch_size redefine and reorganize

rollback_segment All Oracle only

sec_tab_column_mask define and redefine Requires default_user_

columns

set_blanks_to_null clone and process

15.3.12 Reference Tables

15.3.12 Reference Tables 453

[params] Parameter Option dbutility Command Notes

set_lincday0_to_null clone and process

show_perf_stats clone and process

show_statistics -v clone and process Works with

statistics_increment

show_table_stats clone and process

shutdown -o Override

split_varfmt_dataset define and redefine

sql_exec_timeout clone and process

sql_heart_beat clone and process

statistics_increment -v clone and process Works with

show_statistics

stop

stop_after_fixups clone and process

stop_after_gc_reorg clone and process

stop_after_given_afn clone and process

strip_ds_prefixes define and redefine

suppress_dup_warnings clone and process

suppress_new_columns redefine

suppress_new_datasets redefine

use_binary_aa define and redefine

use_bigint define and redefine SQL Server only

use_clob define and redefine Oracle only

use_clustered_index define and redefine This parameter applies to

SQL Server. See

use_decimal_aa.

15.3.12 Reference Tables

15.3.12 Reference Tables 454

[params] Parameter Option dbutility Command Notes

use_column_prefixes define and redefine The tab_name_prefix

column of the

DATASOURCES Client

control table must contain

an entry.

use_date define and redefine SQL Server only

use_datetime2 define and redefine SQL Server only

use_dbwait -w process Toggle

Works with max_wait_secs

and max_retry_secs

use_decimal_aa define

use_ext_translation clone and process This parameter applies to

Windows.

use_internal_clone redefine and reorg

use_latest_si clone and process

use_nullable_dates define and redefine This parameter applies only

to MISER databases.

use_primary_key define

use_stored_procs define , redefine ,

process and clone

use_time define and redefine SQL Server only

use_varchar define and redefine

user_script_dir -n define , redefine ,

process and clone

Override

15.3.12 Reference Tables

15.3.12 Reference Tables 455

[params] Parameter Option dbutility Command Notes

user_column_suffix[n] generate

15.3.12 Reference Tables

15.3.12 Reference Tables 456

15.4 Appendix D: Customization Scripts

This appendix is intended as a quick reference for writing user scripts. For more information about

user scripts, see Customizing with User Scripts.

The user scripts described in this Appendix differ significantly from program-generated user scripts

(that is, user scripts created by the Create Scripts command in the Administrative Console or the

dbutility createscripts command). Program-generated user scripts set additional bits in the

control tables. These bits allow the redefine command and the Administrative Console's

Customize command to restore changes to the Client control tables. The code in DBClntCfgServer

that support the Customize command is fully compatible with the redefine command.

If you use the Administrative Console's Customize command and want the ability to restore the

Client control tables, you'll need to set some additional fields whenever you make a change.

15.4.1 Customization Rules for Client Configurator

All of the Client control tables except DATASOURCES have a column named xx_user_bmask (where

xx is "ds", "di", "dt" or "da", depending on the table where it resides). This column, which parallels

xx_options, is used to indicate whether the bits were changed by the user script or by the Client

Configurator. Additionally, some of the bits in the xx_options columns are set by the Client or are

set by changing an item to a special Client data type, such as a date.

The redefine command, when run in the Administrative Console's Customize command mode

(use_dbconfig = True), will restore the bits in xx_options that are referenced by xx_user_bmask,

while leaving the remaining bits unchanged. Several bits in xx_options that were previously unused

are now used to indicate that a specific field in the record was modified by a user script or the

Administrative Console's Customize command.

Parameters that affect ds_options

The global parameters that affect ds_options settings are as follows:

15.4 Appendix D: Customization Scripts

15.4 Appendix D: Customization Scripts 457

history_tables = { 0

| 1 | 2}

0 - No history tables will be created.

1 - Creates history tables for all data sets. The bit

DSOPT_Save_Updates (8) is automatically set for all data

set table entries. (If you used a data set user script to do

this, remove it and set history_tables to 1 in the Client

configuration file using either the Administrative Console's

Configure command or the editor. If you use binary

configuration files, you must export the file before editing

the file. See Export or Import a Configuration File.

2 - The same as a value of 1, except that it also sets the bit

DSOPT_History_Only (0x2000 or decimal 8192).

clr_dup_extr_recs =

{true | false}

Defines the initial value of the new ds_options bit

DSOPT_Clrdup_Recs (0x8000 or decimal 32768). This

parameter is no longer checked by the process and clone

commands, which only look at the ds_option bit.

split_varfmt_dataset

= {true | false}

Defines the initial value of the new ds_options bit

DSOPT_Split_Vfmt_ds (0x10000 or decimal 65536). It

makes the Client treat variable format data sets in a slightly

different manner by putting all the fixed parts of records in

the table normally used for type 0 records. The fixed parts of

records in all other tables are not included, except for the

items that are keys.

15.4.1 Customization Rules for Client Configurator

15.4.1 Customization Rules for Client Configurator 458

Sample script for setting a ds_options bit in DATASETS

This script sets the ds_options bit DSOPT_Ignore_Dups (32) for the data set SVHIST without

changing any of the other bits in the column. We provide both a SQL Server version and Oracle

version of this script.

Filename: script.user_layout.svhist :

SQL Server version:

Oracle version:

force_aa_value_only =

{0 | 1 | 2}

Defines the initial value of the ds_options bit

DSOPT_Use_AA_Only, which forces the data set to use AA

Values or RSNs as keys if the data set has a valid AA Value

or RSN. RSNs always take precedence over AA Values

unless an embedded data set or a DMSII link is involved. A

value of zero sets the bit to 0 for all data sets. A value of 1

sets the bit to 1 for all data sets that have a valid AA Value

or an RSN. A value of 2 sets the bit 1 for data sets that have

an RSN.

Any time you explicitly change the value of a bit in ds_options , you must set the corresponding

bit in ds_user_bmask . If you set a bit that had a default value of 1 to 0, you must set the

corresponding bit in ds_user_bmask to 1 to indicate that the value of this bit should be

preserved by the redefine command.

Be aware that some bits in ds_options may already be set. For SQL Server, use the \"|\"

operator. For Oracle, use the BITOR function with the BITAND function to perform logical OR and

logical And functions. For best results, avoid directly setting ds_options or using the +

operator. The following example uses the BITOR function when updating the ds_options

column of DATASETS to set the bit DSOPT_Select_Only (64) while leaving the rest of the bits

intact:

When using the Client Configurator, if you change the value of external_columns for a single

data set, you must also set the new bit DSOPT_ExtCols_Set (0x2000 or decimal 131072) in both

ds_option s and ds_user_bmask . This ensures that the Administrative Console's Customize

command retains the change.

Note

 ds_options=BITOR(ds_options,64)

update DATASETS set ds_options = ds_options | 32
where dataset_name = 'SVHIST'

15.4.1 Customization Rules for Client Configurator

15.4.1 Customization Rules for Client Configurator 459

15.4.2 Changes By Table

DATAITEMS Control Table Changes

Besides the addition of the column da_user_bmask , several da_options bits are used to indicate

that a specific field in the record was changed by the Client Configurator or a user script. These

new da_options bits are described in the following table.

update DATASETS set ds_options = BITOR(ds_options, 32)
where dataset_name = 'SVHIST'

Any time you explicitly change the value of a bit in da_options , you must set the corresponding

bit in da_user_bmask . If you set a bit that had a default value of 1 to 0, you must set the

corresponding bit in da_user_bmask to 1 to indicate that the value of this bit should be

preserved by the redefine command.

Note

DAOPT_Column_Renamed

(2)

This bit indicates that the column was renamed by

changing the item_name column of the item. The

redefine command uses this bit to determine if the

item_name value should be preserved.

DAOPT_Type_Changed(4) This bit indicates that the column’s data type was changed

by changing the value in the sql_type column. The

redefine command uses this bit to determine if the

sql_type value should be preserved.

DAOPT_Length_Changed

(8)

This bit indicates that the column’s data type length

specification was changed by changing the value in the

sql_length column. The redefine command uses this

bit to determine if the sql_length value should be

preserved.

DAOPT_Scale_Changed

(16)

This bit indicates that the column’s data type scale was

changed by changing the value in the sql_scale column.

The redefine command uses this bit to determine if the

sql_scale value should be preserved.

DAOPT_User_Column (32) This bit indicates that the column was added by the user.

The redefine command uses this bit to determine if the

column should be preserved.

15.4.2 Changes By Table

15.4.2 Changes By Table 460

DATASETS Control Table Changes

Besides the addition of the column ds_user_bmask , some ds_options bits are used to indicate

that a specific field in the record was changed by the Client Configurator or a user script. These

new ds_options bits are described in the following table.

DATATABLES Control Table Changes

Besides the addition of the column dt_user_bmask , several dt_options bits are used to indicate

that a specific field in the record was changed by Client Configurator or a user script. These new

dt_options bits are described in the following table.

DAOPT_Item_Renumbered

(128)

This bit indicates that the column was renumbered by the

user. The redefine command uses this bit to determine if

the item_number should be preserved.

CAUTION: This will not always work because item

numbers may change as a result of a DMSII

reorganization. If you do this, you'll need to use

Administrative Console's Customize command to get the

column into the proper place.

If you explicitly change the value of a bit in ds_options , you must set the corresponding bit in

ds_user_bmask . If you set a bit that has a default value of 1 to 0, you must set the

corresponding bit in ds_user_bmask to 1 to indicate that the value of this bit should be

preserved by the redefine command.

Note

DSOPT_SetNameChange

(262144)

This bit must be set for any data set whose set_name

column is modified by the Client Configurator or a user

script. The redefine command uses this bit to determine

if the value of the set_name should be preserved.

15.4.2 Changes By Table

15.4.2 Changes By Table 461

DMS_ITEMS Control Table Changes

Besides the addition of the column di_user_bmask , several di_options bits are used to indicate

that a specific field in the record was changed by Client Configurator or a user script. These new

di_options bits are described in the following table.

If you explicitly change the value of a bit in dt_options , you must set the corresponding bit in

dt_user_bmask . If you set a bit that had a default value of 1 to 0, you must set the

corresponding bit in dt_user_bmask to 1 to indicate that the value of this bit should be

preserved by the redefine command.

Note

DSOPT_SetNameChange

(262144)

This bit must be set for any data set whose set_name

column is modified by the Client Configurator or a user

script. The redefine command uses this bit to determine if

the value of the set_name should be preserved.

If you explicitly change the value of a bit in di_options , you must also set the corresponding

bit in di_user_bmask . If you set a bit that has a default value of 1 to 0, you must set the

corresponding bit in di_user_bmask to 1 to indicate that the value of this bit should be

preserved by the redefine command.

Note

DTOPT_Table_Renamed

(1)

This bit indicates that the table was renamed by changing the

table_name column of the item_name columns and all the

DATAITEMS that belong to the table. The redefine

command uses this bit to determine if the table_name value

should be preserved.

DTOPT_Index_Renamed

(2)

This bit indicates that the index was renamed by changing the

index_name column of the table. The redefine command

uses this bit to determine if the index_name value should be

preserved.

15.4.2 Changes By Table

15.4.2 Changes By Table 462

15.4.3 Sample Scripts for Customizing Data Set Mapping

This section is intended as a quick reference for writing data set mapping customization user

scripts. Therefore, it lists sample scripts without background explanation. If you are unfamiliar with

the Databridge Client, refer to the indicated sections for more information.

Sample Data Set Global Mapping Customization Script

The following example updates the dms_subtype value for every occurrence of the time value TS in

the DMSII database whose data source name is CMDB. Create only one of these scripts for each

data source.

File name: script.user_datasets.cmdb

For more information about the dms_subtype column of the DMS_ITEMS Client control table, see

DMS_ITEMS Client Control Table

Sample Data Set Selection Script

This script selects the data sets that we want to clone. Following is a sample user script for a

DMSII customer database whose data source name is CMDB. This script turns cloning off (by

setting the active column value to 0) for two data sets. We used the data set global

customization script rather than the scripts for individual data sets in this example.

File name: script.user_datasets.cmdb

DTOPT_User_Table (4) This bit indicates that the table was created by the user. The

redefine command uses this bit to determine if the

index_name value should be preserved. (This bit is not fully

implemented)

update DMS_ITEMS set dms_subtype = 6
where dms_item_name = 'TS'

update DATASETS set active = 0
where data_source = 'CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'EMPLOYEE' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'CUSTOMER' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'INVENTORY' and data_source='CMDB'
/***/
update DATASETS set active = 0
where dataset_name = 'BILLING' and data_source='CMDB'

15.4.3 Sample Scripts for Customizing Data Set Mapping

15.4.3 Sample Scripts for Customizing Data Set Mapping 463

For a complete explanation of specifying data sets for cloning, see Tips for Efficient Cloning.

Selecting DMSII Items

The following script disables the cloning of two DMSII items in the data set named ORDER by

setting the value of the active column to 0 in the corresponding DMS_ITEMS table entries.

File name: script.user_layout.order

Multiple data sets can contain items with the same name. Adding the data set name to the WHERE

clause ensures that you update only the items in question.

For more information, see Tips for Efficient Cloning.

Cloning a Numeric Field as a Date

The following script causes the define command to map a DMSII item of type NUMBER(8) to a

relational database date data type where the number contains a date in the mmddyyyy format.

File name: script.user_layout.payments

Cloning an Alpha Field as a Date

The following script causes the define command to map three DMSII items of type ALPHA(10) to

a relational database date data type, where those items contain a date in the mm/dd/yyyy format.

File name: script.user_layout.order

Cloning an Alpha or Number Field as a Time

The following script causes the define command to map a DMSII ALPHA or NUMBER time item

as a relational database time item.

File name: script.user_layout.payment

update DMS_ITEMS set active=0
where dms_item_name = 'SPECIAL-ORDER-DATE' or
 dms_item_name = 'SPECIAL-ORDER-AMOUNT'
 and dataset_name = 'ORDER'

update DMS_ITEMS set dms_subtype=23,di_options=2
where dms_item_name = 'PAYMENT-DATE' and dataset_name='PAYMENTS'

update DMS_ITEMS set dms_subtype=53,di_options=2
where dms_item_name = 'ORDER-DATE' or
 dms_item_name = 'DUE-DATE' or
 dms_item_name = 'DATE-SENT'
 and dataset_name = 'ORDER'

15.4.3 Sample Scripts for Customizing Data Set Mapping

15.4.3 Sample Scripts for Customizing Data Set Mapping 464

Cloning an Alpha or Number Field as a Date/Time

The following script causes the define command to map a DMSII ALPHA or NUMBER date/time

item as a relational database date/time item.

File name: script.user_layout.payment

Flattening OCCURS Clause

The following script causes the define command to map an item with an OCCURS clause as a

series of columns in the corresponding relational database table instead of mapping each

occurrence of the items to a separate column in an OCCURS (secondary) table.

File name: script.user_layout.billing

For details see Flattening OCCURS Clauses.

Flattening OCCURS Clause for Item Cloned as Dates

The following script directs the define command to map an item with an OCCURS clause as a

series of columns, whose data type is a relational database date type, in the corresponding primary

table. Furthermore, it specifies that the DMSII item, which is of type NUMBER(8), contains a date in

the mmddyyyy format.

File name: script.user_layout.billing

Flattening OCCURS Clause for Three Bit Numeric Flags

MISER systems store certain flags as arrays of single-digit numbers, where each number is used to

hold three Boolean values. The Databridge Client can be directed to map these items as a series of

Booleans data items (bit in SQL Server). This requires the setting of the DIOPT_Flatten_Occurs bit

(1) and the DIOPT_Clone_as_Tribit bit (16) in the di_options column of the corresponding

DMS_ITEMS record.

Following is an example for the item L-LOCK-FLAG in the data set LOAN.

update DMS_ITEMS set di_options=256, dms_subtype=3
where dms_item_name='TIME11' and dataset_name = 'BILLING'

update DMS_ITEMS set di_options=128, dms_subtype=121
where dms_item_name='PAY_REC_TIME' and dataset_name = 'PAYMENTS'

update DMS_ITEMS set di_options=1
where dms_item_name = 'MONTHLY-BILLS' and dataset_name='BILLING'

update DMS_ITEMS set di_options=3, dms_subtype=23
where dms_item_name = 'BILLING-DATES' and dataset_name = 'BILLING'

15.4.3 Sample Scripts for Customizing Data Set Mapping

15.4.3 Sample Scripts for Customizing Data Set Mapping 465

File name: script.user_layout.loan

In this example, if the L-LOCK_FLAG has an OCCURS 20 TIMES clause, 60 items of type bit named

l_lock_flag_01 to l_lock_flag_60 are created.

Splitting an Unsigned Number Item into Two Items

If you have NUMBER(12) items whose first two digits represent an account type and the remaining

ten digits represent the account number, you might want to split this item into two columns. You

can then rename the two columns as described in Renaming Columns.

In the following scripts, the NUMBER(12) item is named L_APPL_ACCT and is part of the data set

LOAN. This item is mapped into two columns, the first of which contains 2 digits while the second

one contains 10 digits. When the Client splits an item it appends "x1" and "x2" to the column names

it creates to avoid having to deal with duplicate names.

File name: script.user_layout.loan

For SQL Server, this results in columns l_appl_acct_x1 (data type tinyint) and

l_appl_acct_x2 (data type bigint).

You can also make the Client convert the first column to CHAR by setting bit 1024 in di_options

to force the data to be stored using a data type of CHAR(2) in the relational database.

File name: script.user_layout.loan

Merging Two Neighboring Items

The following example merges the items SHIPPING-DATE and the item SHIPPING-TIME (which

immediately follows it) in the data set SHIPMENTS.

File name: script.user_layout.shipments

The Client automatically skips the second item after it performs the merge, so you do not need to

set its active column to 0.

update DMS_ITEMS set active=1, di_options=17, dms_subtype=0
where dataset_name = 'LOAN' and rectype=0 and dms_item_name = 'L-LOCK-FLAG'

update DMS_ITEMS set di_options = 1048576, dms_subtype = 2
where dms_item_name = 'L-APPL-ACCT' and dataset_name = 'LOAN'

update DMS_ITEMS set di_options = 1049600, dms_subtype = 2
where dms_item_name = 'L-APPL-ACCT' and dataset_name = 'LOAN'

update DMS_ITEMS set di_options = 0x1000000
where dms_item_name = 'SHIPPING-DATE' and dataset_name = 'SHIPMENTS'

15.4.3 Sample Scripts for Customizing Data Set Mapping

15.4.3 Sample Scripts for Customizing Data Set Mapping 466

Merging a Date and Time to Form a Date/Time

We extend the previous example to map the result to a relational database date/time data type.

Assuming that these items have data types of NUMBER(8) and NUMBER(6) respectively in DMSII,

we then treat the resulting value as a date/time of the form "yyyymmddhhmiss" (a date format

value of 121).

File name: script.user_layout.shipments

The Client automatically skips the second item after it performs the merge, so you do not need to

set its active column to 0.

Concatenating Two Items and Cloning the Result as a Date/Time

This script allows you to combine numeric date and time data in non-contiguous columns. When

the two columns are not contiguous, use the dms_concat_num column to append the time part of

the combined item to the date part. This column must be set to the item number of the item

containing the time value. The Client will effectively treat these two items as if the second one were

concatenated to the first one. You must also set the di_options bit 524288 (0x80000) to make

the Client include the second item in DATAITEMS with its active column set to 0. This is a lot more

efficient than using DBGenFormat to perform this operation.

Filename: script.user_layout.dttest :

This example is only valid for SQL Server. If you are using Oracle, you have to use decimal

values.

Note

update DMS_ITEMS set di_options = 0x1000080, dms_subtype = 121
where dms_item_name = 'SHIPPING-DATE' and dataset_name = 'SHIPMENTS'

This example is only valid for SQL Server. If you are using Oracle you have to use decimal

values.

Note

update DMS_ITEMS
 set dms_concat_num =(select dms_item_number from DMS_ITEMS
 where dms_item_name='SALE-TIME' and dataset_name='DTTEST'),
 di_options = 0x82,
 dms_subtype = 111
where dms_item_name='SALE-DATE' and dataset_name ='DTTEST'
/***/
update DMS_ITEMS set di_options = 0x80000
where dms_item_name='SALE-TIME' and dataset_name='DTTEST'

15.4.3 Sample Scripts for Customizing Data Set Mapping

15.4.3 Sample Scripts for Customizing Data Set Mapping 467

This script combines the columns SALE-DATE and SALE-TIME into a column that effectively

replaces SALE-TIME and is to be cloned as a long date with a date format of 111. The column

sales_time needs to be present in the DATAITEMS control table, as the Client needs to access the

DMSII data for the corresponding DMS item when performing the concatenation.

The second SQL statement in the script sets an option bit that tells the Client to map this item to

DATAITEMS with its active column set to 0.

Adding a Composite Key to Tables Mapped from a Data Set

The following example inserts a composite key named user_set_shipping_detail into the data set

SHIPPING-DETAIL, which does not have a SET defined in DMSII.

File name: script.user_layout.shipping_detail

Specifying How to Handle Alpha Items That Are Too Long

The following script splits the item NOTES in the data set EMPLOYEE into multiple columns rather

than truncating it at 4000 characters. The item is declared as ALPHA(4095) in DMSII. This script

applies to Oracle.

File name: script.user_layout.employee

15.4.4 Sample Data Table Customization Scripts

This section is intended as a quick reference for writing data table customization user scripts.

Therefore, it lists sample scripts without any background explanation. If you are unfamiliar with the

Databridge Client, make sure that you refer to the indicated sections for more information.

update DATASETS set set_name='user_set'
where dataset_name = 'SHIPPING-DETAIL'
/***/
update DMS_ITEMS set item_key=1
where dms_item_name = 'SD-PO-NUMBER' and dataset_name = 'SHIPPING-DETAIL'
/***/
update DMS_ITEMS set item_key=2
where dms_item_name = 'SD-LINE-ITEM' and dataset_name = 'SHIPPING-DETAIL'

If the set_name is either "aa_set" or "user_set", the Databridge Client appends the table_name

to the set_name . The above script takes advantage of this feature.

Note

update DMS_ITEMS set di_options=4
where dms_item_name = 'NOTES' and dataset_name = 'EMPLOYEE'

15.4.4 Sample Data Table Customization Scripts

15.4.4 Sample Data Table Customization Scripts 468

Sample Data Table Global Customization Script

The following example shows how to use one statement to rename all occurrences of the column

name ts to time_stamp in the item_name column of the DATAITEMS Client control table for the

DMSII database whose data source name is CMDB. Create only one of these scripts for each data

source.

File name: script.user_datatables.cmdb

Disabling the Cloning of Secondary Tables

The following script disables the cloning of the secondary table, order_amounts for the data set

named ORDER, by setting the active column value to 0 in the corresponding DATATABLES entry. In

the case of an OCCURS table, the same result can be achieved by disabling the DMSII item instead.

This is much more efficient because it does not create numerous unnecessary entries in

DATATABLES and DATAITEMS.

File name: script.user_define.order

For more information, see Tips for Efficient Cloning.

Renaming a Table

Use the DATATABLES Client control table to rename tables in the relational database. The

dataset_name column shows the DMSII data set name and the table_name column shows the

name of the table as it appears in the relational database. For an explanation of how the DMSII

data set and data items are mapped to the relational database, see Relational Database Table and

Column Names.

You can change one or more relational database table names before you clone DMSII data sets. If

you use the clone command, keep in mind that you must specify the DMSII data set name with

the clone command, not the relational database table name. This means that if a DMSII data set

is named ORD-YEAR-TOTAL and you rename the equivalent relational database table to total, you

must still reference the DMSII data set by its name ORD-YEAR-TOTAL.

When you rename a table, make sure to do the following:

update DATAITEMS set item_name = 'time_stamp' where item_name = 'ts'

update DATATABLES set active=0 where table_name='order_amounts'

15.4.4 Sample Data Table Customization Scripts

15.4.4 Sample Data Table Customization Scripts 469

The new table name must not be used by any other table. After the relational database has

been created by the define or redefine command, the Databridge Client does not verify

that renamed tables have unique names.

The table name is no longer than 28 characters. Using table names longer than 28

characters causes SQL syntax errors when the Databridge Client executes the

corresponding stored procedures.

Example

The following script changes the name of the table derived from the data set named EMPLOYEE to

be full_time_employees. Both the DATATABLES and DATAITEMS Client control tables must be

updated as all data items have a column that points back to the table to which they belong.

File name: script.user_define.employee

Renaming Columns

Use the DATAITEMS Client control table to rename the columns that appear in the relational

database. The data_item column shows the DMSII data item (column) name and the item_name

column shows the name of the column as it will appear in the relational database. For an

explanation of how the DMSII data set and data items are mapped to the relational database, see

Relational Database Table and Column Names.

You can change one or more column names before or after cloning, as follows:

If you change the relational database column name immediately after you run a

define command, continue with the remaining commands. Keep in mind, however, that the

DMSII data item retains its original name in the DMSII database. We recommend that you

make this change via user scripts during the define and redefine command to ensure

that your changes are not lost.

If you change the column name after you have already cloned a DMSII database, you must

mark the table to be re-cloned and then rerun the generate command to create new scripts

that contain the new column name.

• •

• •

update DATATABLES set table_name='full_time_employees'
where table_name='employee'
/***/
update DATAITEMS set table_name='full_time_employees'
where table_name='employee'

• •

• •

Column names in Oracle are limited to 28 characters. Using a column name longer than 28

characters results in a SQL syntax error when the Databridge Client executes the

corresponding stored procedures.

Note

15.4.4 Sample Data Table Customization Scripts

15.4.4 Sample Data Table Customization Scripts 470

Example

The following script changes the names of two columns in the table derived from the data set

named ORDERS.

File name: script.user_define.orders

Changing SQL Data Types

The following user script changes the sql_type for a packed decimal (sql_type of 11) data item

named order_amount to be a floating point number (sql_type of 6).

File name: script.user_define.transaction

Cloning a Number as a Character Type

This operation requires that you set the DAOPT_Store_as_Char bit (512) in the da_options column

of the corresponding DATAITEMS record. Additionally, you must change the value of the sql_type

column to the appropriate character type (such as 1 for char, 2 for varchar, and so on). Finally, in the

case of SQL Server, you must also change the value of the sql_length column, as this column has

a value of zero for the int and smallint data types. An example for the item l_appl_code in the table

loan follows.

File name: script.user_define.loan

Adding a Non DMSII Column

The following script demonstrates how to add a non DMSII column to a relational database table.

This script adds three non DMSII columns (update_type , audit_ts , and deleteD_record) to the

ORDERS data set and preserves all deletes, including multiple deletes with the same key value,

since bit column 10 becomes a new key item with a unique value.

File name: script.user_layout.orders

update DATAITEMS set item_name='order_amount'
where item_name='order_amt' and table_name='orders'
/***/
update DATAITEMS set item_name='order_date'
where item_name='order_dt' and table_name='orders'

update DATAITEMS set sql_type=6
where item_name='order_amount' and table_name='orders'

update DATAITEMS set sql_type=1, sql_length=2, sql_scale=0, da_options=512
where item_name='l_appl_code' and table_name='loan'

update DATASETS set external_columns = 521 where dataset_name ='orders'

15.4.4 Sample Data Table Customization Scripts

15.4.4 Sample Data Table Customization Scripts 471

15.5 Appendix E: Client Exit Codes

When the Databridge Client terminates with an error, an exit code appears in the last_run_status

column of the DATASOURCES Client control table. The value 9999 indicates that the last run status

is no longer available (typically when dbutility is running). These status messages apply to only the

process and clone commands.

The Client exit codes are listed with the associated error recovery retries.

Service Retries: In response to the noted exit codes, the service's error recovery retries a

process command max_retries times, as specified in the data source section of

dbconrol.cfg . The default is 3 times with a 5-second delay between retries.

•

On UNIX, exit statuses are restricted to 8 bits (a range of 0 to 255). The Client uses the exit

status specified in the 8-bit Exit code column instead of the actual code, which is longer than 8

bits. This only affects shell scripts that test the exit status.

Note

Exit

Code

8-bit

Exit

Code

Description

2001 150 Indicates an error in the command line when invoking the Client

2002 151 The control table check failed

This means one of two things—either the Client control tables do not

exist, or they are not the right version. In the latter case, the Client

issues a control table version mismatch error and suggests that you

run the dbfixup program.

2003 152 The data source is locked, indicating that a Client is currently

running

If you try to run a process or clone command while there is a

DBClient process command running, the run will return this exit

code.

The -u option will not work in this situation; you must wait for the

run to finish. If the run hangs, you can release the data source lock

by terminating the run.

2004 153 An error occurred while loading the control tables

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 472

Exit

Code

8-bit

Exit

Code

Description

2005 154 The data source specified on the command line does not exist in

the DATASOURCES table

2006 155 The process or clone command failed because the

DS_Needs_Redefining(8) bit in the status_bits column was set for an

active data set

This status indicates that normal operations can only be resumed

after a redefine command is executed.

2007 156 The Client could not connect to the Databridge Server or to

Databridge Enterprise Server either during initialization or data

transmission

2008 157 The clone command failed because one of the data set names

specified on the command line is invalid

2009 158 A data set has an invalid value in the ds_mode column of DATASETS

Any other value causes the Client to abend with this exit code.

2010 159 An error occurred while creating or cleaning up a data table at the

start of the data extraction phase of a process or clone command

2011 160 An error occurred while dropping the index of a data table at the

start of the data extraction phase of a process or clone command

2012 161 A bad structure index was received

2013 162 A system error occurred while attempting to allocate memory

2014 163 No active structures were found at the start of a process or clone

command

2015 164 No active structures remain after a structure was deselected during

a process or clone command

2016 165 The Client is stopping at the start of the fixup phase because errors

occurred during data extraction

2017 166 The Client is stopping at the start of the fixup phase because errors

occurred during data extraction and index creation

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 473

Exit

Code

8-bit

Exit

Code

Description

2018 167 The Client is stopping at the start of the fixup phase because errors

occurred during index creation

2019 168 The Client is stopping at the start of the fixup phase because of the

defer_fixup_phase parameter setting (or -c option)

2020 169 Client operations are being inhibited by the stop_time settings

You can override this situation by specifying the -o option on the

command line. The applies only to the command line Client

(dbutility).

2021 170 The console operator issued a QUIT command, which stops the

Client at the next quiet point

If you stop the Client using a DBServer AX QUIT command for the

worker or an Enterprise Server Quit command, a different exit code

results (1015 for DBServer) and (1135 for Enterprise Server).

2022 171 The Client encountered a SQL error while updating the control

tables

NOTE: Some SQL errors generate an exit code of 2099.

2023 172 An error occurred while executing a COMMIT TRANSACTION for the

relational database

2024 173 An error occurred while executing a ROLLBACK TRANSACTION for

the relational database

2025 174 The Client is stopping because it finished processing the audit file

specified in the stop_afn column of the DATASOURCES tables

You can do one of the following:

Specify the stop AFN using the " -F <afn> " command line

option.

Use the Stop After AFN command from the command line or the

Administrative Console.

2026 175 An error occurred in the EBCDIC to ASCII translation

•

•

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 474

Exit

Code

8-bit

Exit

Code

Description

2027 176 The command terminated because the Client encountered

improperly linked virtual data sets while loading the control tables

This status applies only when the configuration file parameter

automate_virtuals is set to True.

2028 177 The clone command terminated because the operator tried to

reclone a data set that is the primary source for the virtual data set

without recloning the data set that is the secondary source for the

virtual data set

This status only applies when the configuration file parameter

automate_virtuals is set to True.

For example, if the data sets SV-HISTORY (primary source) and

SAVINGS (secondary source) provide input to the virtual data set SV-

HISTORY-REMAP, you must reclone SAVINGS when you reclone SV-

HISTORY.

2029 178 The Client discarded records during audit processing

Any other fatal error or reorganization indication overrides this exit

code.

2030 179 The Client was unable to sign on to the relational database

To find the cause, locate the corresponding OCI Error in the log file or

the log output.

2031 180 The process or clone command failed because some records were

not loaded during the data extraction phase

When the verify_bulk_load parameter is set to 2, the Client compares

the number of records loaded to the actual count of records in the

table. If these do not match, the program fails with this exit code. If

the verify_bulk_load parameter is set to 1, the program doesn't

fail and errors are reflected in the final exit code, unless a more

serious error occurs and overrides this exit code.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 475

Exit

Code

8-bit

Exit

Code

Description

2032 181 The process or clone command failed because the

DS_Needs_Generating(4) bit in the status_bits column was set for an

active data set

This status indicates that normal operations can only be resumed

after a generate command is executed. You can also get this exit

code from a redefine command when a generate command is

required to create scripts for tables in the relational database that

were affected by a DMSII reorganization.

2033 182 You need to run a reorg command before resuming normal

processingYou will get this exit code from a redefine command

when a reorg command is needed to alter tables in the relational

database affected by a DMSII reorganization. Note that a reorg

command implicitly does a generate command.

2034 183 The Client stopped because a DMSII garbage collection

reorganization that affects one or more datasets was encountered

during audit file processing and the configuration parameter

stop_after_gc_reorg was set to True.

2035 184 A clone was aborted by Enterprise Server and the operation was

never restarted.

This is a special case of a failed clone.

2036 185 Client stopped

This exit status indicates that the operator issued a dbutility QUIT

NOW command or an abort command from the Administrative

Console, which stopped the Client by closing the TCP connection to

the server.

2037 186 A relational database deadlock was detected

This error causes the Client to exit. When using dbutility, the program

tries to restart the process command 3 times before exiting. When

using DBClient, the service automatically retries the process

command, as specified by the Error Recovery parameters set for the

data source in the service configuration file.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 476

Exit

Code

8-bit

Exit

Code

Description

2038 187 The Client is stopping at the end of the fixup phase because of the

stop_after_fixup parameter setting

You can resume processing by issuing another process command

when you are ready.

2039 188 The Client is unable to continue because the global working

directory specified in the Windows registry or in the UNIX file /etc/

Micro Focus/DATABridge/globalprofile.ini cannot be found

Even if you do not use the service, before you can run the Client, the

working directory (which includes the locks subdirectory) must be

created.

2040 189 Client encountered an error when trying to open the lock file for the

data source

Look at the log file or the log output to determine the nature of the

error, which might be security related. You must always run the Client

using the same user. Failure to do so can result in this error.

2041 190 Databridge Client for Microsoft SQL Server is unable to continue

because the install directory specified in the Windows registry

cannot be found

Reinstall the Client using the installer so that the Client can access

this directory (and the bcp_auditor program) without having to use

the full path. Copying the files from the DVD will result in this exit

code.

2042 191 The Client command failed because the DS_Needs_Mapping(1) or

the DS_Needs_Remapping(4) bit in the status_bits column was set

for an active data set

This exit code indicates that normal operations can only be resumed

after a redefine command is executed. You would typically get this

status if you try to run a process or generate command after an error

occurs when using the Client Configurator. You need to rerun the

Client Configurator to fix the problem.

2043 192 File IO error caused the Client to terminate

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 477

Exit

Code

8-bit

Exit

Code

Description

2044 193 DMSII link improperly set up in the control tables

2045 194 Reorg command script in error

2046 195 Attempt to refresh stored procedure failed

2047 196 The Client abended because of one or more bulk loader errors.

2048 197 Client did not find a binary configuration file

The DBClient and DBClntCfgServer programs get this exit status

when the configuration file is not binary.

2049 198 An I/O error occurred while reading the configuration file

For details, see error messages in the log.

2050 199 Computed checksum does not match the value in the binary

configuration fileThis error occurs if you try to patch the file using a

hex editor. Use the export command, edit the exported configuration

file, and then import it.

2051 200 Errors found while processing a text configuration file

See the log file for details.

2052 201 User_scripts directory not contained within the Client’s working

directory when security is enabled

Databridge security prevents users scripts from residing outside the

Working Directory, as we have no control over such a directory and

could therefore be vulnerable to unauthorized users modifying user

scripts, which could have rather dire consequences.

2053 202 Client encountered an I/O error while trying to write to a discard file

This exit status indicates that either the discard file is too large or

the machine is running out of disk space. You should periodically

clean up the working directory for the Client along with the discards

and logs folders.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 478

Exit

Code

8-bit

Exit

Code

Description

2054 203 Total discards threshold has been reached

See the max_discards parameter in Appendix C for details.

2055 204 Client encountered an error while trying to update a user table

This exit status indicates that the audit file original for Databridge

Enterprise has changed. Setting the configuration parameter

stop_on_dbe_mode_chg to true causes the Client to stop when the

audit file origin changes.

2056 205 DBEnterprise audit file origin changed

This exit status indicates that the audit file original for Databridge

Enterprise has changed. Setting the configuration parameter

stop_on_dbe_mode_chg to true will cause the Client to stop when

the audit file origin changes.

2057 206 Client control table version mismatch

This exit status indicates that the Client control tables need to be

upgraded before you can resume Client operations. When using the

service this happens automatically. However, if you are using the

command line Client dbutility, you have to manually run dbfixup for a

data source in each relational database.

2058 207 SQL update took longer than the maximum allowable time specified

by the sql_exec_timeout parameter

See Appendix C for details.

2059 208 Server connection timed out

Server connection timed out on max_srv_idle_time setting

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 479

Exit

Code

8-bit

Exit

Code

Description

2060 209 Effective CHECKPOINT FREQUENCY parameters for the Databridge

Engine are all 0

The most likely cause for this is COMMIT parameters set to 0 in the

Client configuration file. Rather than attempting to process audit with

this rather ridiculous setting, the Client stops and gives you a chance

to rectify the situation.

2061 210 Error in loading a DLL or finding its entry points

2062 211 Error in updating control table

2063 212 Error creating control table

2064 213 Error dropping control table

2065 214 Malformed unload file

This exit status indicates that the reload command encountered a

malformed unload file and could not complete the operation.

2066 215 Error dropping user table

2067 216 Control tables are incompatible with DBConfig

You need to run dbscriptfixup to fix this situation.

2068 217 Unable to create directory

2069 218 Unable to allocate a STMT

Try reducing the value of aux_stmts

2070 219 Client got an error while attempting to create a file

2071 220 User script in error

2072 221 Bad DMSII database timestamp

This exit status indicates that the DMSII database timestamp does

not match the one the Client is using. This is taken to mean that the

Client is not using the same DMSII database as it was earlier.

2073 222 History table error

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 480

Exit

Code

8-bit

Exit

Code

Description

2074 223 Data source already defined

This exit status indicates that the Client is attempting to define a

data source that is already defined.

2075 224 Index for user table has too many columns

2076 225 Mismatched AFNs in control tables

The redefine command requires that all active data sets point to the

same audit file.

2077 226 Protocol Error

2078 227 File does not exist

2079 228 IO error reading filter file

2080 229 Malformed binary filter file

2081 230 Bad checksum in binary filter file

2082 231 Syntax error in filter source file

2083 232 Filter generation failed

2084 233 Unsupported table encountered in filter source file

2085 234 Data source already exists in relational database

2086 235 Running a redefine command after customizing a data source is not

recommended

2087 236 Password decrypting/decoding error

This exit code indicates that a password that is not enclosed in

double quotes in a configuration file could not be decoded. In text

configuration files, passwords enclosed in double quotes are treated

as clear text; passwords that start with x followed by a set of hex

characters are treated as encrypted; and passwords that contain

only hex characters are treated as obfuscated by earlier clients. If

you temporarily enter a clear text password into a text configuration

file, be sure to enclose it in doubles quotes; otherwise, the client

would get an error trying to decode it.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 481

Exit

Code

8-bit

Exit

Code

Description

2088 237 Topic configuration file is in error

The Client detected errors in the Kafka topic configuration file. If you

updated this file, check your changes.

2089 238 Client lost connection to database

This usually means that the database was taken down without

stopping the Client first. The service/daemon recognizes this error

and enters its error recovery, which keeps trying to connect every so

often, until the database comes back up again.

2090 239 Reserved

2091 240 Client lost connection to Client Manager service

This usually means that the service crashed.

2092 241 Connection to the Databridge Server closed by the host or

Enterprise Server system

The Client is forced to exit. This indicates that the server closed the

connection because of an operator command. This exit code

indicates that the connection was closed in an orderly manner.

2093 242 Connection to the Databridge Server reset by the host or Enterprise

Server system

The Client is forced to exit. This exit code indicates that the server

was forcibly terminated or that it crashed.

2094 243 Transport error for connection to server

2095 244 RPC timeout

2096 245 Initialization error

2097 246 Error processing RPC data

2098 247 Communications or protocol error

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 482

Exit

Code

8-bit

Exit

Code

Description

2099 248 Internal error

This code is used for all errors that cause the dbread and dbwait

callback routines to terminate prematurely.

9701 245 Encryption DLL not found

9702 245 SSL/TLS handshake failed

9703 245 Invalid user certificate

9704 245 SSL/TLS client failed to find user credentials

9705 245 Connection lost due to corrupted message

9706 245 Missing a DLL for SSPI

9707 245 Missing a DLL for CryptoAPI

9708 245 Security.dll not found

9709 245 Did not finish encryption handshake with host

9710 245 Local SSPI does not support crypto key length

9711 245 IP or hostname from server cert does not match connection

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 483

dbutility Retries: A limited number of exit codes cause the command line client (dbutility) to

retry a process command rather than exit. The default is 3 times. A forever recovery retries

indefinitely.

Exit

Code

8-bit

Exit

Code

Description

9712 245 Wrong client OS; no Security Support

•

8-bit exit code: On UNIX, exit statuses are restricted to 8 bits (a range of 0 to 255). The

Client uses the exit status specified in the 8-bit Exit Code column instead of the actual

code, which is longer than 8 bits. This affects only shell scripts that test the exit status.

Note

•

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

0000 Successful

0001 General error

0002 Database reorganized

0009 DBEngine encountered an

unexpected end-of-file error while

reading the audit file given by afn.

max_retries 3

0011 An accessory tried to select a data

set but gave an invalid audit location.

For details, see the Databridge Error

and Messages Guide.

max_retries 3

0033 The DMSII database may have rolled

back. If so, roll back the client

database as well. For details, see the

Databridge Error and Messages

Guide.

max_retries 3

0092 The audit trail was discontinued or

corrupted. For details, see the

Databridge Error and Messages

Guide.

max_retries 3

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 484

https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/
https://www.microfocus.com/documentation/databridge/7-1/error-messages#dbengine/

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

0093 DBServer STOP TASK encountered.

0094 DBServer STOP TIME limit.

1015 Operator terminated the worker.

1135 Operator terminated DBEnterpris.e

1167 Indicates a problem sending

messages on the network. For

details, see the Databridge Error and

Messages Guide.

max_retries

1179 The value in the audit block size field

exceeds the maximum size declared

in the DASDL. For details, see the

Databridge Error and Messages

Guide.

max_retries 3

1180 DBEnterprise found the ABSN

internal check did not match. For

details, see the Databridge Error and

Messages Guide.

max_retries 3

2001 150 Indicates an error in the command

line when invoking the Client.

2002 151 The control table check failed

Either the Client control tables do not

exist or they are not the right version.

If the latter, the Client issues a

control table version mismatch error;

run the dbfixup program.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 485

https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/
https://www.microfocus.com/documentation/databridge/7-1/error-messages/host-enterprise-server/dbenterprise/

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2003 152 The data source is locked, indicating

that a Client is currently running

If you try to run a process or clone

command while a DBClient process

command is running, the run returns

this exit code.

The -u option does not work in this

case; you must wait for the run to

finish. If the run hangs, terminate the

run to release the data source lock.

max_retries

2004 153 An error occurred while loading the

control tables

2005 154 The data source specified on the

command line does not exist in the

DATASOURCES table

2006 155 The process or clone command

failed because the

DS_Needs_Redefining(8) bit in the

status_bits column was set for an

active data set

This status indicates that normal

operations can be resumed only after

a redefine command is executed.

2007 156 The Client could not connect to the

Databridge Server or to Databridge

Enterprise Server either during

initialization or data transmission

forever

2008 157 The clone command failed because

one of the data set names specified

on the command line is invalid

2009 158 A data set has an invalid value in the

ds_mode column of DATASETS

Any other value causes the Client to

abend with this exit code.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 486

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2010 159 An error occurred while creating or

cleaning up a data table at the start

of the data extraction phase of a

process or clone command

2011 160 An error occurred while dropping the

index of a data table at the start of

the data extraction phase of a

process or clone command

2012 161 A bad structure index was received

2013 162 A system error occurred while

attempting to allocate memory

2014 163 No active structures were found at

the start of a process or clone

command

2015 164 No active structures remain after a

structure was deselected during a

process or clone command

2016 165 The Client is stopping at the start of

the fixup phase because errors

occurred during data extraction

2017 166 The Client is stopping at the start of

the fixup phase because errors

occurred during data extraction and

index creation

2018 167 The Client is stopping at the start of

the fixup phase because errors

occurred during index creation

2019 168 The Client is stopping at the start of

the fixup phase because of the

defer_fixup_phase parameter setting

(or -c option)

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 487

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2020 169 Client operations are being inhibited

by the stop_time settings

To override this situation, specify the

-o option on the command line. The

applies to only the command line

Client (dbutility).

2021 170 The console operator issued a QUIT

command, which stops the Client at

the next quiet point

If you stop the Client using a

DBServer AX QUIT command for the

worker or an Enterprise Server Quit

command, a different exit code

results (1015 for DBServer) and

(1135 for Enterprise Server).

2022 171 The Client encountered a SQL error

while updating the control tables

NOTE: Some SQL errors generate an

exit code of 2099.

2023 172 An error occurred while executing a

COMMIT TRANSACTION for the

relational database

2024 173 An error occurred while executing a

ROLLBACK TRANSACTION for the

relational database

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 488

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2025 174 The Client is stopping because it

finished processing the audit file

specified in the stop_afn column of

the DATASOURCES tables

Do one of the following:

Specify the stop AFN using the

" -F <afn> " command line

option.

Use the Stop After AFN

command from the command

line or the Administrative

Console.

2026 175 An error occurred in the EBCDIC to

ASCII translation

2027 176 The command terminated because

the Client encountered improperly

linked virtual data sets while loading

the control tables

This status applies only when the

configuration file parameter

automate_virtuals is set to True.

•

•

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 489

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2028 177 The clone command terminated

because the operator tried to reclone

a data set that is the primary source

for the virtual data set without

recloning the data set that is the

secondary source for the virtual data

set

This status only applies when the

configuration file parameter

automate_virtuals is set to True.

For example, if the data sets SV-

HISTORY (primary source) and

SAVINGS (secondary source) provide

input to the virtual data set SV-

HISTORY-REMAP, you must reclone

SAVINGS when you reclone SV-

HISTORY.

2029 178 The Client discarded records during

audit processing

Any other fatal error or

reorganization indication overrides

this exit code.

2030 179 The Client was unable to sign on to

the relational database

To find the cause, locate the

corresponding OCI Error in the log file

or the log output.

forever

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 490

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2031 180 The process or clone command

failed because some records were

not loaded during the data extraction

phase

When the verify_bulk_load parameter

is set to 2, the Client compares the

number of records loaded to the

actual count of records in the table. If

these do not match, the program fails

with this exit code. If the

verify_bulk_load parameter is set

to 1, the program doesn't fail and

errors are reflected in the final exit

code, unless a more serious error

occurs and overrides this exit code.

2032 181 The process or clone command

failed because the

DS_Needs_Generating(4) bit in the

status_bits column was set for an

active data set

Indicates that normal operations can

only be resumed after a generate

command is executed. This exit code

can occur from a redefine command

when a generate command is

required to create scripts for tables in

the relational database that were

affected by a DMSII reorganization.

2033 182 You need to run a reorg command

before resuming normal processing

You will get this exit code from a

redefine command when a reorg

command is needed to alter tables in

the relational database affected by a

DMSII reorganization. Note that a

reorg command implicitly does a

generate command.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 491

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2034 183 The Client stopped because a DMSII

garbage collection reorganization

that affects one or more datasets

was encountered during audit file

processing and the configuration

parameter stop_after_gc_reorg was set

to True.

2035 184 A clone was aborted by Enterprise

Server and the operation was never

restarted.

This is a special case of a failed

clone.

2036 185 Client stopped

Indicates that the operator issued a

dbutility QUIT NOW command or an

abort command from the

Administrative Console, which

stopped the Client by closing the TCP

connection to the server.

2037 186 A relational database deadlock was

detected

This error causes the Client to exit.

When using dbutility, the program

tries to restart the process command

3 times before exiting. When using

DBClient, the service automatically

retries the process command, as

specified by the Error Recovery

parameters set for the data source in

the service configuration file.

max_retries 3

2038 187 The Client is stopping at the end of

the fixup phase because of the

stop_after_fixup parameter setting

To resume processing, issue another

process command when you are

ready.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 492

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2039 188 The Client is unable to continue

because the global working directory

specified in the Windows registry or

in the UNIX file /etc/Micro Focus/

DATABridge/globalprofile.ini cannot

be found

Even if you do not use the service,

before you can run the Client, the

working directory (which includes the

locks subdirectory) must be created.

2040 189 Client encountered an error when

trying to open the lock file for the

data source

Look at the log file or the log output

to determine the nature of the error,

which might be security related. You

must always run the Client using the

same user. Failure to do so can result

in this error.

2041 190 Databridge Client for Microsoft SQL

Server is unable to continue because

the install directory specified in the

Windows registry cannot be found

Reinstall the Client using the installer

so that the Client can access this

directory (and the bcp_auditor

program) without having to use the

full path. Copying the files from the

DVD will result in this exit code.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 493

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2042 191 The Client command failed because

the DS_Needs_Mapping(1) or the

DS_Needs_Remapping(4) bit in the

status_bits column was set for an

active data set

Indicates that normal operations can

only be resumed after a redefine

command is executed. This status

typically occurs when you try to run a

process or generate command after

an error occurs when using the Client

Configurator. To fix the problem,

rerun the Client Configurator.

2043 192 File IO error caused the Client to

terminate

2044 193 DMSII link improperly set up in the

control tables

2045 194 Reorg command script in error

2046 195 Attempt to refresh stored procedure

failed

2047 196 The Client abended because of one

or more bulk loader errors.

2048 197 Client did not find a binary

configuration file

The DBClient and DBClntCfgServer

programs get this exit status when

the configuration file is not binary.

2049 198 An I/O error occurred while reading

the configuration file

For details, see error messages in the

log.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 494

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2050 199 Computed checksum does not

match the value in the binary

configuration fileThis error occurs if

you try to patch the file using a hex

editor. Use the export command, edit

the exported configuration file, and

then import it.

2051 200 Errors found while processing a text

configuration file

See the log file for details.

2052 201 User_scripts directory not contained

within the Client’s working directory

when security is enabled

Databridge security prevents users

scripts from residing outside the

Working Directory, as we have no

control over such a directory and

could therefore be vulnerable to

unauthorized users modifying user

scripts, which could have rather dire

consequences.

2053 202 Client encountered an I/O error while

trying to write to a discard file

This exit status indicates that either

the discard file is too large or the

machine is running out of disk space.

You should periodically clean up the

working directory for the Client along

with the discards and logs folders.

2054 203 Total discards threshold has been

reached

See the max_discards parameter in

Appendix C for details.

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 495

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2055 204 Client encountered an error while

trying to update a user table

The audit file original for Databridge

Enterprise changed. Setting the

configuration parameter

stop_on_dbe_mode_chg to true

causes the Client to stop when the

audit file origin changes.

2056 205 DBEnterprise audit file origin

changed

The audit file original for Databridge

Enterprise changed. Setting the

configuration parameter

stop_on_dbe_mode_chg to true

causes the Client to stop when the

audit file origin changes.

2057 206 Client control table version

mismatch

The Client control tables need to be

upgraded before you can resume

Client operations. This happens

automatically when using the

service. However, if you are using the

command line Client dbutility, you

must manually run dbfixup for a data

source in each relational database.

2058 207 SQL update took longer than the

maximum allowable time specified

by the sql_exec_timeout parameter

See Appendix C for details.

max_retries

2059 208 Server connection timed out

Server connection timed out on

max_srv_idle_time setting.

max_retries

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 496

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2060 209 Effective CHECKPOINT FREQUENCY

parameters for the Databridge

Engine are all 0

The COMMIT parameters are likely

set to 0 in the Client configuration

file. Rather than attempting to

process audit with this setting, the

Client stops and gives you a chance

to rectify the situation.

2061 210 Error in loading a DLL or finding its

entry points

2062 211 Error in updating control table

2063 212 Error creating control table

2064 213 Error dropping control table

2065 214 Malformed unload file

The reload command encountered a

malformed unload file and could not

complete the operation.

2066 215 Error dropping user table

2067 216 Control tables are incompatible with

DBConfig

Run dbscriptfixup to fix this situation.

2068 217 Unable to create directory

2069 218 Unable to allocate a STMT

Try reducing the value of aux_stmts

2070 219 Client got an error while attempting

to create a file

2071 220 User script in error

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 497

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2072 221 Bad DMSII database timestamp

This exit status indicates that the

DMSII database timestamp does not

match the one the Client is using.

This is taken to mean that the Client

is not using the same DMSII

database as it was earlier.

2073 222 History table error

2074 223 Data source already defined

This exit status indicates that the

Client is attempting to define a data

source that is already defined.

2075 224 Index for user table has too many

columns

2076 225 Mismatched AFNs in control tables

The redefine command requires that

all active data sets point to the same

audit file.

2077 226 Protocol Error

2078 227 File does not exist

2079 228 IO error reading filter file

2080 229 Malformed binary filter file

2081 230 Bad checksum in binary filter file

2082 231 Syntax error in filter source file

2083 232 Filter generation failed

2084 233 Unsupported table encountered in

filter source file

2085 234 Data source already exists in

relational database

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 498

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2086 235 Running a redefine command after

customizing a data source is not

recommended

2087 236 Password decrypting/decoding error

2088 237 Topic configuration file is in error

2089 238 Client lost connection to database

This usually means that the database

was taken down without stopping the

Client first. The service/daemon

recognizes this error and enters its

error recovery, which keeps trying to

connect every so often, until the

database comes back up again.

forever

2090 239 Reserved

2091 240 Client lost connection to Client

Manager service

This usually means that the service

crashed.

2092 241 Connection to the Databridge Server

closed by the host or Enterprise

Server system

The Client is forced to exit. This

indicates that the server closed the

connection because of an operator

command. This exit code indicates

that the connection was closed in an

orderly manner.

2093 242 Connection to the Databridge Server

reset by the host or Enterprise

Server system

The Client is forced to exit. This exit

code indicates that the server was

forcibly terminated or that it crashed.

max_retries

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 499

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

2094 243 Transport error for connection to

server

max_retries

2095 244 RPC timeout

2096 245 Initialization error

2097 246 Error processing RPC data

2098 247 Communications or protocol error

2099 248 Internal error

This code is used for all errors that

cause the dbread and dbwait

callback routine to terminate

prematurely.

2100 Abnormal termination - see log for

details.

9701 245 Encryption DLL not found

9702 245 SSL/TLS handshake failed

9703 245 Invalid user certificate

9704 245 SSL/TLS client failed to find user

credentials

9705 245 Connection lost due to corrupted

message

9706 245 Missing a DLL for SSPI

9707 245 Missing a DLL for CryptoAPI

9708 245 Security.dll not found

9709 245 Did not finish encryption handshake

with host

9710 245 Local SSPI does not support crypto

key length

9711 245 IP or hostname from server cert

does not match connection

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 500

Exit

Code

8-bit

Exit

Code

Description Service

Retries

dbutility

Retries

9712 245 Wrong client OS; no Security

Support

For more detailed information on how exit codes are used in custom programs to automate

control of Databridge operations, see Databridge Client Exit Status Values.

Note

15.5 Appendix E: Client Exit Codes

15.5 Appendix E: Client Exit Codes 501

15.6 Appendix F: Service Configuration

This appendix lists the parameters for the Client Manager service that automate most Client

operations. In most cases, you'll use the Client Console to configure scheduling and other features

of the service. See Configuring the Service.

15.6.1 Sample Client Manager Service Configuration File

sample of service configuration file

For information about Databridge Client configuration files, see Client Configuration Files.

15.6.2 [Control_Program]

This section, which must always be present in the configuration file, is used to define various

service parameters. It also contains a list of all the data sources that are configured for the service.

cfgserver_trace

;
; Databridge control program version 7.1 configuration file -- generated programmatically
;
[control_program]
ipc_port = 8001
userid = "dbridge", "", administrator
startup_delay = 1
sess_start_timeout = 2
n_scr_threads = 1
enable_status_file = false
data_sources = BANKDB, DEMODB

[Log_File]
file_name_prefix = "cp"
;max_file_size = 0
logsw_on_size = false
logsw_on_newday = false
newfile_on_newday = true

[BANKDB]
working_dir = "d:\\dbridge_work\\bankdb"
client_dir = "c:\\Program Files\\Micro Focus\\DATABridge\\7.1\\SQLServer"
;sched_delay_secs = 0
;daily = 10:00, 14:00, 18:00
sched_retry_secs = 60
max_retries = 3
blackout_period = 00:00, 00:00
;disable_on_exitcode = 93, 94
run_at_startup = false
auto_redefine = false
auto_generate = false
disabled = false

[DEMODB]
working_dir = "d:\\dbridge_work\\demodb"
client_dir = "c:\\Program Files\\Micro Focus\\DATABridge\\7.1\\SQLServer"
;sched_delay_secs = 0
;daily = 10:00, 14:00, 18:00
sched_retry_secs = 60
max_retries = 3
sched_minwait_secs = 18000
run_at_startup = false
auto_redefine = false
auto_generate = false
disabled = false

15.6 Appendix F: Service Configuration

15.6 Appendix F: Service Configuration 502

Default: 0 (not displayed in the export file when 0)

Range: 0 - 0x7FFFFF

Console: Client Managers > Actions >DBClntCfgServer Trace Options

This is a debugging tool that makes the service launch DBClntCfgServer runs with the given trace

options using the command line -t option. You must set this option back to turn off this trace.

data_sources

Default: <empty list>

Range: Comma separated list of no more than 32 data sources (maximum of 256 characters)

Console: N/A (Handled Automatically)

Use the migrate utility to create the configuration during an upgrade or use the Add Data Source

and Remove Data Source commands in the Administrative Console to manage this list rather than

manually adding data sources to the configuration file.

If the line of data sources is long and must wrap, the export command inserts a backslash (\) after

a comma to indicate that the list continues on a next line.

dbclient_trace

Default: 0 (not displayed in the export file when 0)

Range: 0 - 0x7FFFFF

Console: Client Managers > Actions >DBClient Trace Options

This is a debugging tool that makes the service launch DBClient runs with the given trace options

using the command line -t option. You must set this option back to turn off this trace.

enable_status_file

Default: True

Range: True or False

Console: Property sheet for the service

Applies to: Clustered Windows systems

When set to True, this parameter causes the service to maintain a status file containing information

about the state of the various data sources it controls. This file is named "dbstatus.cfg" and resides

in the config sub-directory. It is used to restart runs that were active before the service was

restarted. The difference between using this method and setting the configuration parameter

run_at_startup to True for a data source is that latter causes the run to always be started, even if

the data source was not active when the service was taken down.

15.6.2 [Control_Program]

15.6.2 [Control_Program] 503

ipc_port

Default: 8001

Range: 16-bit unsigned integer

Console: Not yet implemented

This parameter specifies the TCP/IP port number on which the service listens for connection

requests from the Client Console or Client runs. If the default port is used by some other

application on the Client machine, you can change the port.

When the service creates a new configuration file, it sets the value for this parameter using the port

number specified at the time of installation, which is then saved to the Windows Registry (or the

globalprofile.ini file in UNIX). After the ipc_port value is set, the service refers only to the

ipc_port parameter in the service configuration file for this value (not the Windows Registry (or

the globalprofile.ini file in UNIX).

n_scr_threads

Default: 1

Range: 1 - 4

Console: Not yet implemented

This parameter specifies the size of the pool of threads the service uses to start externally

launched scripts and end-of-run scripts. If all of the threads are busy, the execution of a script

might be delayed until a thread become available. To update this parameter from the Client

Console, go to the Explorer view, right-click the service node, click Properties, and then modify the

value.

sess_start_timeout

Default: 2 (seconds) Range: 2-10 Console: Not yet implemented

If you are not on a Clustered Windows system or you have not installed the Cluster option

package, this parameter has no effect as the service ignores it. The Cluster option is separately

licensed from the Client software.

Note

15.6.2 [Control_Program]

15.6.2 [Control_Program] 504

This parameter specifies the length of time that the service waits for input from a new connection

before forcing a disconnect. The reason for doing this is to protect against a flood of rogue

connection requests that would otherwise cripple the service. In some cases, the default value of 2

seconds might be too low. This parameter allows you to adjust the value to best suit your

environment.

startup_delay

Default: 1

Range: 0-15 (seconds)

Console: Not yet implemented

This parameter ensures that process commands for all data sources do not launch simultaneously,

which can result in the mainframe failing to start all workers and lead to failed runs. In most cases,

the default value of 1 second is adequate.

userid = , ,

Default: dbridge, "", administrator Range: character string Console: Client Managers > Actions >

Manage Users

When an Administrative Console session connects to the service, it provides a userid that has been

authenticated without a password. The batch console and BCNOTIFY programs continue to work

they way they did in previous versions and need to provide a password in addition to the userid. The

password is encoded in the same way as it was in previous versions. You can have up to 30

userids, and each can be assigned one of the following roles:

Role Alternate

Spelling

Access Privileges

administrator admin Full privileges to use the Client Console.

operator oper Can perform only tasks related to daily operations,

such as starting or stopping a run.

15.6.2 [Control_Program]

15.6.2 [Control_Program] 505

When an Administrative Console session connects to the service, it provides the userid of the

browser user that has been authenticated. This does not guarantee that the user will be tables to

connect to the service, as we require that the userid of the user that allowed to access the service

have their userid included in the service' configuration file. If the LDAP credential of the user were

good, that does not mean that he is allowed to use the console. For batch console users we still

use a password, like we did in 6.6. The service can determine whether the connection originated in

Administrative Console server. It will not accept a blank password from bconsole users. Password

in the service's configuration file are encoded, like they were in 6.6

To manage the configured userids in the service select the desired Client Manager from the Client

managers page and click on Manage Users in the Actions menu. This will allow to add, modify or

remove userid in the service. The Set bconsole Password item in the Actions menu allows to set

the password for a bconsole userid. If you use the same userid for both the bconsole and

Administrative Console, this is not a problem as the password is not checked from Administrative

Console users as they have already been authenticated.

15.6.3 [Log_File]

Use the [Log_File] section to control the various options for the log file, which is created in the logs

subdirectory of the working directory.

file_name_prefix

Default: "cp"

Range: 1 to 20 characters Console: Settings > Configure > LOGGING > Service Log (File name

prefix ...)

Use this parameter to change the prefix of the log files. The log files have names in the form

cp*yyyymmdd*.log , or, when necessary, cp*yyyymmdd_hhmiss*.log . This command allows you to

replace the prefix "cp" with any character string (up to 20 characters in length), provided that it

results in a legal filename.

logsw_on_newday

Default: False

Range: True or False Console: Settings > Configure > LOGGING > Service Log (Switch log daily)

Role Alternate

Spelling

Access Privileges

user Can monitor runs and perform status command.

15.6.3 [Log_File]

15.6.3 [Log_File] 506

This parameter determines whether the program uses a new log file when the date changes. You

may want to set this parameter to False if your log files are small and use the logsw_on_size

parameter to manage the log files.

logsw_on_size

Default: False

Range: True or False

Recommended value: True Console: Settings > Configure > LOGGING > Service Log (Switch log on

size)

Use this parameter to control whether the program should check the log file size to see if it has

reached the size defined by the max_file_size parameter. If the size of the log file exceeds this

parameter, the log file is closed and a new one is opened. If the current date is different from the

creation date of the old file (which is part of its name), the new log file will be of the form

dbyyyymmdd.log ; otherwise the time component will be added to the filename to ensure that the

name is unique.

max_file_size

Default: 0

Range: numeric value optionally followed by K, M

Recommended value: 1M Console: Settings > Configure > LOGGING > Service Log (Maximum file

size)

Use this parameter to limit the size of log files. The default value of 0 indicates that no limit is

imposed on the size of log file. The suffixes of K, M and G allow you specify the maximum file size

in kilobytes, megabytes, or gigabytes. A value on the order of 1 MB is a reasonable value to use.

The file size is always checked when you start the program regardless of the setting of the

logsw_on_size parameter.

newfile_on_newday

Default: True

Range: True or False Console: Settings > Configure > LOGGING > Service Log (Switch log on new

day)

This parameter forces the program to use a new log file, when it starts up and the log file was

created on an earlier date. You may want to set this parameter to False, if your log files are small

and use the logsw_on_size parameter to manage the log files.

15.6.3 [Log_File]

15.6.3 [Log_File] 507

15.6.4 [data_source_name]

To modify the parameters for each data source, open the Databridge Client Manager service and

right-click the data source you wish to modify. This will activate the Client Configuration menu.

Each parameter's listing below lists the clicks from here to reach its section of the dialog box. If

you don't select a data source first, the menu item will be grayed out.

Each data source that is defined in the data_sources parameter of the [Control_Program] section

has its own section in the configuration file by that name. The data source section name must

follow the first two sections. Do not move these sections before the [Control_Program]; this will

result in an error and cause the service program to exit immediately. When an error occurs, you can

examine the log file to determine the cause of the problem.

auto_generate

Default: False

Range: True or False

Console: Processing > Scheduling

This parameter causes the service to automatically launch a generate command if a (service-

initiated) process or redefine command gets a return status indicating that a generate

command is required. This parameter is designed to be combined with the auto_redefine

parameter to allow operations to continue when a DMSII reorganization is detected.

auto_redefine

Default: False

Range: True or False

Console: Processing > Scheduling

This parameter causes the service to automatically launch a redefine command after a DMSII

reorganization is detected (that is, when a service-launched process gets a return status).

When combined with the auto_generate parameter, this parameter allows operations to continue

after a DMSII reorganization. If the redefine command finds nothing to do, the service launches a

process command and operations resume. If the return status indicates that a generate

command is required, the service will launch a generate command and upon successful

completion of this command, will launch a process command. If the exit status of the redefine

command indicates that a reorganize command is required, no action is taken. Manual

intervention is required to examine the new scripts before they're executed to make sure that they

don't corrupt the relational database.

15.6.4 [data_source_name]

15.6.4 [data_source_name] 508

If, after an automatic redefine command, tables in the relational database need to be altered, you

can customize the data source and resume processing. The redefine command is fully

compatible with customization features in the Client Console.

blackout_period

Default: 00:00, 00:00 Range: 00:00 to 24:00 (The two time values cannot be equal.) Console:

Processing > Scheduling

Use this parameter to specify a fixed block of time during which the Client cannot run. This

parameter is useful for operations, such as database backups, that can only take place when the

Client is inactive. For example, if you want to back up the database daily between 1:00 a.m, and

2:30 a.m. daily, define a blackout period from 0:55 to 2:30. The extra 5 minutes ensures that the

Client finishes any long transactions before the database backup begins.

If the Client is running when the blackout period starts, the Client automatically stops. If the Client

is waiting for an idle host to send it updates when the blackout period starts, the Client resets the

TCP/IP connection and aborts the run if it hasn't received any updates after 15 seconds. If you try

to run the Client during a blackout period, nothing happens.

During a blackout period the service will not start the Client. If the scheduler tries to schedule a

DBClient run at a time that falls within a blackout period, the start of the run will be delayed until

the blackout period ends.

When this parameter is updated using the Client Console or Client Configurator, it is set to the

same value in both the service and Client configuration files.

client_dir

Default: none (this line must be present)

Range: Double-Quoted string

Console: N/A (Handled automatically)

This parameter contains the full filename of the Client directory. In the case of Windows, all double

slashes must be represented using two double slashes. In the case of UNIX, which uses forward

slashes, this is not the case as the forward slash character has no special meaning for the

configuration file scanner.

The Client directory is the database-specific subdirectory of the install directory.

In the case of Windows, the registry key INSTALLDIR is the Databridge entry point to this directory.

The database specific sub-directories are SQLServer, Oracle, Kafka, or FlatFile.

daily

15.6.4 [data_source_name]

15.6.4 [data_source_name] 509

Default: daily = 08:00, 12:00, 17:00, 24:00 Range: 12 entries in ascending order from 00:00 to 24:00

Console: Processing > Scheduling

Enter the times you want the service to launch a process command for the data source. You must

specify 24-hour time (for example, 5:00 for 5:00 A.M. and 17:00 for 5:00 P.M.). The range for

minutes is 00-59. You can specify up to 12 times for the daily parameter. However, you must

specify the times in ascending order.

The values 00:00 and 24:00 are equivalent for midnight.

24:00 is allowed only so that you can put it at the end of the list of times in ascending order.

24:01 is not allowed; instead, specify, 00:01.

disable_on_exitcode

Default: empty list

Range: a list of up to 3 exit codes

Console: Processing > Error Recovery (Disable ...)

Specify exit codes that cause the service to disable the data source. Allowable values include: 93

(stop before or after task); 94 (stop before or after time); and 2025 (stop after audit file number).

max_retries

Default: 3

Range: 0-20

Console: Processing > Error Recovery (Options)

The max_retries parameter is intended to specify the maximum number of times the service

launches a Client process command after a failed process command. Not all exit conditions are

recoverable. After it unsuccessfully tries to relaunch the Client the specified maximum number of

times, the service disables the data source. You must enable the data source using the Client

Console before you can launch another process command.

The daily parameter is mutually exclusive with the fixed_delay parameter. If you specify both

daily and fixed_delay in a data source section of the configuration file, fixed_delay

overrides daily regardless of the order in which they are specified. The service notifies you of

this situation by writing a message to the log file.

Note

• •

• •

• •

15.6.4 [data_source_name]

15.6.4 [data_source_name] 510

The max_retries parameter is ignored for a few exit codes, where the condition that causes the

problem is expected to self-correct or change over time. (Retrying forever eliminates the need for

manual intervention, which would be required if the data source were to be disabled.) Such

situations include connect problems to the server or the database, which are often symptomatic of

the host, the server, or the database being down.

run_at_startup

Default: False

Range: True or False

Console: Processing > Scheduling

This command is only meaningful during startup. It indicates whether the service should launch a

Client process command for the data source when the service starts. If the process returns with a

" database not up " error, the service retries the launch until the database is up.

sched_delay_secs

Default: 0 (indicating that this parameter is disabled)

Range: 1-86,400 seconds (24 hours)

Console: Processing > Scheduling

Use the sched_delay_secs parameter to specify a fixed delay between the time a launched Client,

running a process command for the data source, terminates and the launching of the next

process command for the data source. To disable the sched_delay_secs parameter, comment it

out or set its value to 0.

sched_minwait_secs

Default: 0

Range: 0-86,400 (24 hours)

Console: Processing > Error Recovery (Options)

This parameter ensures that a next scheduled process command is delayed by the given interval,

when a process commands finishes right around the next scheduled time and would otherwise

start too soon. This parameter delays the start of the next run for the specified amount of time.

The sched_delay_secs parameter is mutually exclusive with the daily parameter. If you

specify both daily and sched_delay_secs in a data source section of the configuration file,

sched_delay_secs overrides daily regardless of the order in which they are specified.

Note

15.6.4 [data_source_name]

15.6.4 [data_source_name] 511

working_dir

Default: none (this line must be present)

Range: A string of any length enclosed with quotation marks

Console: N/A (Handled automatically)

This parameter contains the full file name of the working directory. In the case of Windows, all

double slashes must be represented using two double slashes. In the case of UNIX, which uses

forward slashes, this is not the case as the forward slash character has no special meaning for the

configuration file scanner.

16. Legal Notice

Copyright 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open

Text”) are as may be set forth in the express warranty statements accompanying such products

and services. Nothing herein should be construed as constituting an additional warranty. Open Text

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

16. Legal Notice

16. Legal Notice 512

	Databridge Client Administrator's Guide
	7.1
	Copyright 2023 Open Text

	1. Databridge Client Administrator's Guide
	1.1 About this guide
	1.2 Conventions
	1.3 Abbreviations
	1.4 Related Documentation

	2. Introducing Databridge Client
	2.1 Choosing the Client Manager Service vs. the Command-Line Client
	2.2 Using the Administrative Console and the Service
	2.3 How Replication Works
	2.4 Client vs. Host Filtering
	2.5 Databridge Components
	2.6 Comparing the Databridge Client Manager Service to Command-Line Operations
	2.7 Switching from Command-Line to Service Operations
	2.7.1 To switch to the service based client (Windows)
	2.7.2 To switch to the daemon based client (UNIX/Linux)

	2.8 Command-Line Client Operations
	2.9 Before You Run the Command-Line Client
	2.9.1 Controlling and Monitoring dbutility
	2.9.2 Databridge Client Exit Status Values
	2.9.3 Testing for Exit Status

	3. Getting Started
	3.1 Creating Client Control Tables
	3.1.1 Creating a Second Set of Tables
	3.1.2 Dropping and Re-Creating Client Control Tables
	3.1.3 Updating Client Control Tables
	3.1.4 Primary and Secondary Data Tables

	3.2 Defining a Data Source
	3.2.1 Using the Define Command
	To define a data source

	3.2.2 Results of the Define Command
	3.2.3 Cloning from Multiple Data Sources
	Add a Prefix to Duplicate Data Set Names

	3.3 Customizing with User Scripts
	3.3.1 Types of User Scripts
	3.3.2 User Script Syntax
	3.3.3 Writing and Testing User Scripts
	3.3.4 Using Scripts to Disable Data Sets

	3.4 Decoding DMSII Dates, Times, and Date/Times
	3.4.1 DMSII Dates
	Choosing the SQL Data Type of the Relational Database Column {#b1jbb5sf}
	DMSII Dates Represented as a GROUP of Numbers- - approach #1
	DMSII Dates Represented as a GROUP of Numbers - approach #2

	Decoding DMSII Dates Represented as ALPHA or NUMBER

	3.4.2 DMSII Times
	Choosing the SQL Data Type of the Relational Database Column
	DMSII Times Represented as ALPHA, NUMBER, or REAL

	3.4.3 Decoding DMSII Date/Times
	Decoding DMSII Date/Time Represented as ALPHA or NUMBER
	Custom DMSII Date/Time Represented as ALPHA or NUMBER
	Numeric Date and Time in Non-Contiguous Columns

	3.5 Creating Indexes for Tables
	3.5.1 Keys Derived from the DMSII Database
	3.5.2 Using Sets with the KEYCHANGEOK Attribute
	3.5.3 RSNs and AA Values as Keys
	Forcing the Client to Use RSN or AA Values as Keys

	3.5.4 User Defined Keys in GenFormat
	3.5.5 Composite Keys
	When to Use Composite Keys
	Composite Keys Defined by the User
	Creating a Composite Key

	3.6 Adding a Non DMSII Column
	3.6.1 Types of Non DMSII Columns
	3.6.2 Values for Non DMSII Columns
	3.6.3 Setting Up History Tables
	3.6.4 Modifying Non DMSII Column Names
	3.6.5 Preserving Deleted Records

	3.7 Generating Databridge Client Scripts
	3.7.1 Example of Script Files
	3.7.2 Summary of Script Files
	3.7.3 When to Run dbutility generate

	4. Cloning a DMSII Database
	4.1 Cloning Issues for All Relational Databases
	4.2 Bulk Loader Parameters
	4.2.1 Controlling Temporary File Storage for Windows Clients
	4.2.2 Bulk Loader Operations for UNIX Clients
	4.2.3 Controlling the Bulk Loader Maximum Error Count

	4.3 Oracle SQL*Loader Bulk Loader
	4.3.1 Files related to SQL*Loader

	4.4 Microsoft SQL Server BCP API and bcp utility
	4.4.1 bcp_auditor Utility
	4.4.2 Files related to BCP
	4.4.3 Files related to the BCP API

	4.5 PGLoader Utility
	4.5.1 Files related to PGLoader

	4.6 Configuring Host Parameters
	4.6.1 Running tcptest

	4.7 Populating the Databridge Data Tables
	4.8 Data Validation and Discard Files
	4.8.1 Numeric Data Validation
	4.8.2 Alpha Data Validation
	4.8.3 Date Validation
	4.8.4 Special Handling of Key Items in Discard Files
	4.8.5 Handling Blank Character Data for Key Items (Databridge Client for Oracle)

	4.9 The Process Command
	4.9.1 Cloning a DMSII Database

	5. Process Command Options
	5.0.1 Terminate Cloning
	5.0.2 Tracking the State of Data Sets
	5.0.3 ds_mode values
	5.1 The Clone Command
	5.1.1 Cloning Specific Data Sets

	6. Clone Command options
	6.1 Configuring for Optimal Performance
	6.1.1 Overlapped Bulk Loader Operations for Windows
	6.1.2 Overlapped Index Creation
	6.1.3 Optimizing State Information Passing
	6.1.4 Multiple Statements and Pre-parsed SQL Statements
	6.1.5 Reducing the Number of Updates to Data Tables
	6.1.6 Commit Frequency
	6.1.7 Other Considerations

	6.2 Tips for Efficient Cloning
	6.3 REMAPS

	7. Updating the Relational Database
	7.1 Updating the Databridge Data Tables
	7.2 Performing Updates Without Using Stored Procedures
	7.3 Scheduling Updates
	7.3.1 Scheduling Examples

	7.4 Scheduling Blackout Periods
	7.5 Unscheduled Updating

	8. Process Command Options
	8.1 Anomalies That Can Occur In Updates

	9. DMSII Reorganization and Rollbacks
	9.1 Initializations
	9.2 Reorganizations
	9.2.1 Managing DMSII Changes to Record Layout
	To run the redefine command
	About the redefine Command

	9.2.2 Performing Reorganizations Using an Internal Clone
	9.2.3 DMSII Changes to Record Locations

	9.3 DMSII Reorganization When Using Merged Tables
	9.4 Rollbacks
	9.4.1 Recovering from DMSII Rollbacks

	9.5 Recloning
	9.5.1 Recloning Individual Data Sets
	9.5.2 Recloning a Database
	9.5.3 Adding a Data Set
	9.5.4 Dropping a Table

	9.6 Backing Up and Maintaining Client Control Tables
	9.6.1 The Unload Command
	9.6.2 The Reload Command
	9.6.3 The Refresh Command

	10. Data Mapping
	10.1 DMSII and Relational Database Terms
	10.2 DMSII and Relational Database Data Types
	10.2.1 Databridge Data Types

	10.3 Supported DMSII Structures
	10.4 Unsupported DMSII Structures
	10.4.1 Embedded Data Sets
	Resulting Tables

	10.4.2 Selecting Embedded Data Sets for Cloning
	10.4.3 Record Serial Numbers
	10.4.4 AA Values
	10.4.5 DMSII Links
	10.4.6 Variable-Format Data Sets
	10.4.7 Resulting Tables
	10.4.8 Split Variable Format Data Sets Option

	10.5 Changing the Default Data Type
	10.6 Handling DMSII GROUPs
	10.7 Handling DMSII OCCURS
	10.7.1 DMSII DASDL with OCCURS
	10.7.2 Flattening OCCURS Clauses
	10.7.3 Flattening OCCURS Clauses to a String
	10.7.4 Flattening OCCURS Clause for Three-Bit Numeric Flags
	10.7.5 Flattening OCCURS Clause for Items Cloned as Dates
	10.7.6 DMSII GROUP OCCURS
	10.7.7 DMSII Nested OCCURS
	10.7.8 OCCURS DEPENDING ON
	10.7.9 Handling Unflattened OCCURS DEPENDING ON Clauses

	10.8 Relational Database Split Tables
	10.8.1 Split Table Names
	10.8.2 Keys for Split Tables

	10.9 Relational Database Table and Column Names
	10.9.1 Uppercase and Lowercase
	10.9.2 Hyphens and Underscores
	10.9.3 Name Length
	10.9.4 Duplicate Names
	10.9.5 Reserved Keywords

	11. OCCURS Table Row Filtering
	11.1 Filter Source File
	11.2 The Filter File

	12. Databridge Client Control Tables
	12.1 DATASOURCES Client Control Table
	12.2 DATASETS Client Control Table
	12.3 DATATABLES Client Control Table
	12.4 DMS_ITEMS Client Control Table
	12.5 DATAITEMS Client Control Table
	12.6 AF_STATS Client Control Table

	13. Automating Client Operations with the Service
	13.1 Configuring the Service
	13.2 Automation Scripts
	13.2.1 Process-Related Scripts
	13.2.2 BCNOTIFY Initiated Scripts

	13.3 Introducing the Batch Console
	13.3.1 Running the Batch Console (bconsole)
	13.3.2 Signing On to the Service
	13.3.3 Using Batch Console in Scripts Initiated by BCNOTIFY
	13.3.4 Using Batch Console to Get Status Information
	13.3.5 Batch Console Commands
	Statements in Detail
	If Statements
	Command-Line Options

	14. Glossary of Terms
	14.1 A - D
	absolute address (AA) value
	Audit Files
	audit trail
	Batch Console
	caching
	client
	cloning
	DASDL
	data set
	Databridge Director
	Databridge Engine
	Databridge Server
	DBClntCfgServer
	DBClntCfgServer
	DBServer
	direct disk

	14.2 E - R
	entry point
	extraction
	file format conversion
	flat files
	garbage collection reorganization
	lag time
	mutex
	null record
	null value
	primary database
	quiet point
	record format conversion
	record serial number (RSN)
	reorganization
	replicated database
	replication
	rollback

	14.3 S - V
	secondary database
	semaphores
	service
	set
	state information
	structure
	table
	tracking
	visible RSN

	15. Appendix
	15.1 Appendix A: Troubleshooting
	15.1.1 General Troubleshooting Procedures
	15.1.2 Troubleshooting Table
	15.1.3 Using SQL Query to Find Duplicate Records
	15.1.4 Log and Trace Files
	Log Files
	Trace Files

	15.1.5 Using Log and Trace Files to Resolve Issues
	15.1.6 Enabling Tracing
	15.1.7 Trace Options
	15.1.8 Trace Messages
	Database API Trace
	Bulk Loader Trace
	Configuration File Trace
	DBServer Message Trace
	Information Trace
	Load Trace
	Protocol Trace
	SQL Trace
	User Script Trace
	Read Callback Exit Trace
	DOC Record Trace
	Verbose Trace
	Thread Trace
	DMS Buffer Trace
	Row Count Trace
	Buffer Size Trace

	15.2 Appendix B: dbutility Commands and Options
	15.2.1 dbutility Commands
	15.2.2 dbutility Command-Line Options

	15.3 Appendix C: Client Configuration
	15.3.1 Client Configuration Files
	15.3.2 How Do I Edit the Configuration File?
	15.3.3 Export or Import a Configuration File
	15.3.4 Change or Encrypt a Password
	15.3.5 Command-Line Options
	15.3.6 Syntax
	15.3.7 Sample SQL Server Client Configuration File
	15.3.8 Sample Oracle Client Configuration File
	15.3.9 Sample PostgreSQL Client Configuration File
	15.3.10 Parameter Descriptions
	15.3.11 Processing Order
	[signon]
	[Log_File]
	[Trace_File]
	[Bulk_Loader]
	[params]
	Define and Redefine Command Parameters
	allow_nulls
	auto_mask_columns
	automate_virtuals
	bracket_tabnames
	clr_dup_extr_recs
	convert_ctrl_char
	default_user_columns
	dflt_history_columns
	enable_dms_links
	enable_extended_types
	enable_dynamic_hist
	external_column[n]
	extract_embedded
	flatten_all_occurs
	force_aa_value_only
	history_tables
	inhibit_required_opt
	maximum_columns
	min_varchar
	minimize_col_updates
	miser_database
	optimize_updates
	read_null_records
	reorg_batch_size
	sec_tab_column_mask
	split_varfmt_dataset
	strip_ds_prefixes
	suppress_dup_warnings
	suppress_new_columns
	suppress_new_datasets
	use_bigint
	use_binary_aa
	use_clob
	use_clustered_index
	use_column_prefixes
	use_date
	use_datetime2
	use_dbconfig
	use_decimal_aa
	use_internal_clone
	use_nullable_dates
	use_primary_key
	use_stored_procs
	use_time
	use_varchar

	Process and Clone Command Parameters
	alpha_error_cutoff
	aux_stmts
	batch_job_period
	century_break
	commit_absn_inc
	commit_idle_database
	commit_longtrans
	commit_time_inc
	commit_txn_inc
	commit_update_inc
	controlled_execution
	convert_reversals
	correct_bad_days
	dbe_dflt_origin
	defer_fixup_phase
	discard_data_errors
	display_bad_data
	enable_af_stats
	enable_doc_records
	enable_ff_padding
	enable_minimized_col
	enable_optimized_sql
	engine_workers
	error_display_limits
	inhibit_8_bit_data
	inhibit_console
	inhibit_ctrl_chars
	inhibit_drop_history
	inhibit_init_values
	keep_undigits
	linc_century_base
	masking_parameter[N]
	max_clone_count
	max_discards
	max_retry_secs
	max_srv_idle_time
	max_wait_secs
	min_check_time
	months
	n_dmsii_buffers
	n_update_threads
	null_datetime_value
	null_datetime2_value
	null_digit_value
	numeric_date_format
	preserve_deletes
	rollback_segment
	set_blanks_to_null
	set_lincday0_to_null
	show_perf_stats
	show_statistics
	show_table_stats
	sql_exec_timeout
	sql_heart_beat
	statistics_increment
	stop_after_fixups
	stop_after_gc_reorg
	stop_after_given_afn
	stop_on_dbe_mode_chg
	suppress_delete_msgs
	track_vfds_nolinks
	use_dbwait
	use_latest_si

	Server Option Parameters
	shutdown
	stop

	Generate Command Parameters
	SQL Statement Suffixes
	Data Masking Strings

	Display Command Parameters
	User Scripts Parameters
	[Scheduling]
	[EbcdictoAscii]
	Translation Table
	Redefining a Character
	External Data Translation DLL Support
	Double-byte Translation DLLs
	Setting up dbeatran_cp932.dll
	Setting up dbeatran_cp950.dll

	[DBConfig]
	[Encryption]

	15.3.12 Reference Tables
	Bulk Loader Parameters
	Scheduling Parameters
	EBCDIC to ASCII Parameters
	Params Parameters

	15.4 Appendix D: Customization Scripts
	15.4.1 Customization Rules for Client Configurator
	15.4.2 Changes By Table
	DATAITEMS Control Table Changes
	DATASETS Control Table Changes
	DATATABLES Control Table Changes
	DMS_ITEMS Control Table Changes

	15.4.3 Sample Scripts for Customizing Data Set Mapping
	Sample Data Set Global Mapping Customization Script
	Sample Data Set Selection Script
	Selecting DMSII Items
	Cloning a Numeric Field as a Date
	Cloning an Alpha Field as a Date
	Cloning an Alpha or Number Field as a Time
	Cloning an Alpha or Number Field as a Date/Time
	Flattening OCCURS Clause
	Flattening OCCURS Clause for Item Cloned as Dates
	Flattening OCCURS Clause for Three Bit Numeric Flags
	Splitting an Unsigned Number Item into Two Items
	Merging Two Neighboring Items
	Merging a Date and Time to Form a Date/Time
	Concatenating Two Items and Cloning the Result as a Date/Time
	Adding a Composite Key to Tables Mapped from a Data Set
	Specifying How to Handle Alpha Items That Are Too Long

	15.4.4 Sample Data Table Customization Scripts
	Sample Data Table Global Customization Script
	Disabling the Cloning of Secondary Tables
	Renaming a Table
	Renaming Columns
	Changing SQL Data Types
	Cloning a Number as a Character Type
	Adding a Non DMSII Column

	15.5 Appendix E: Client Exit Codes
	15.6 Appendix F: Service Configuration
	15.6.1 Sample Client Manager Service Configuration File
	15.6.2 [Control_Program]
	cfgserver_trace
	data_sources
	dbclient_trace
	enable_status_file
	ipc_port
	n_scr_threads
	sess_start_timeout
	startup_delay
	userid = , ,

	15.6.3 [Log_File]
	file_name_prefix
	logsw_on_newday
	logsw_on_size
	max_file_size
	newfile_on_newday

	15.6.4 [data_source_name]
	auto_generate
	auto_redefine
	blackout_period
	client_dir
	daily
	disable_on_exitcode
	max_retries
	run_at_startup
	sched_delay_secs
	sched_minwait_secs
	working_dir

	16. Legal Notice

