
Databridge FileXtract
Administrator's Guide

7.1

Copyright 2023 Open Text

Databridge FileXtract Administrator's Guide

Table of contents

4Databridge FileXtract Administrator's Guide

4Abbreviations

5Conventions

6Related Documentation

7Introducing FileXtract

8Advantages of FileXtract

9Getting Started with FileXtract

11Using the Sample Reader Libraries

11Creating a Custom Reader Library

13Sample Reader Libraries:

13SUMLOG Reader Library

13TTRAIL Reader Library

14PRINTFILE Reader Library

14BICSS Reader Library

15DISKFILE Reader Library

16LINCLOG Reader Library

17BANKFILE Reader Library

17USERDATA Reader Library

17TEXT Reader Library

18Using the COBOL-to-DASDL Utility

18Understanding the COBOL-to-DASDL Utility

18BANKFILE COBOL-to-DASDL Example

20Generating Database Layout from COBOL 01-Level FileRecord Descriptions

24Troubleshooting

25Out of Order Processing

25Before You Process

25Process Archived SUMLOGs

26Process Current SUMLOGs

27Glossary of Terms

27A-E

Table of contents

Table of contents 2

28R-T

29Legal Notice

Table of contents

Table of contents 3

1. Databridge FileXtract Administrator's
Guide

This guide contains instructions for installing, configuring, and using Databridge FileXtract

(hereafter referred to as FileXtract). This preface includes information to help you use this guide.

To install, configure, and run Databridge, you should be a system administrator familiar with the

following:

Standard Unisys® operations for MCP-hosted mainframes such as the CS7xxx series, Libra

series, ClearPath® NX/LX or A Series

DMSII databases and Data And Structure Definition Language (DASDL)

File layouts and the description of those layouts for the files you will be replicating

1.1 Abbreviations

The following abbreviations are used throughout this guide and are provided here for quick

reference.

•

•

•

Abbreviation Name

AA Absolute Address

ABSN Audit Block Serial Number

AFN Audit File Number

API Application Programming Interface

DASDL Data and Structure Definition Language

DMSII Data Management System II

IDX Index

IPC Inter-Process Communications

MCP Master Control Program

RPC Remote Procedure Call

SEG Segment

1. Databridge FileXtract Administrator's Guide

1. Databridge FileXtract Administrator's Guide 4

1.2 Conventions

The following conventions and terms may be used in this guide.

Abbreviation Name

WFL Work Flow Language

This convention or term Is used to indicate this

this type style text that you type filenames and directory names onscreen

messages

italic italic variables emphasis document titles

square brackets ([]) optional items in a command For example, [true | false].

(Do not type the brackets.)

pipe (|) a choice between items in a command or parameter. When

enclosed in braces ({ }), the choice is mandatory.

UPPERCASE DMSII data set and data item names

MCP server host

mainframe (terms)

Unisys ClearPath NX, LX or A Series mainframe

DBEngine (term) Databridge Engine

DBEnterprise (term) Databridge Enterprise Server

1.2 Conventions

1.2 Conventions 5

1.3 Related Documentation

When using Databridge, you may need to consult the following resources.

Databridge product documentation

On the Databridge installation image, the DOCS folder contains guides for installation, error codes,

and administrator's guides for each Databridge product in PDF format. This guide is also available

from the Databrige Documentation site.

Documentation for Databridge Enterprise Server and the Databridge Client Console is also available

from the Help menu. A modern browser is required for viewing this documentation.

Unisys MCP server documentation

If you are not completely familiar with DMSII configuration, refer to your Unisys documentation.

This convention or term Is used to indicate this

DBServer (term) Databridge Server

1.3 Related Documentation

1.3 Related Documentation 6

https://www.microfocus.com/documentation/databridge/

2. Introducing FileXtract

Databridge FileXtract is a product which allows you to clone and update non-DMSII data (that is,

flat files) residing on Unisys ClearPath NX, LX, or A Series mainframes. FileXtract is bundled with

the Databridge Host software and includes several Reader libraries and other associated files.

FileXtract software is automatically installed as part of the Databridge host software, and has no

additional system requirements.

You can use FileXtract in conjunction with the Databridge Client, DBSpan, or DBSnapshot. When

using FileXtract with the Databridge Client, FileXtract data sources resemble any other DMSII data

source. The following diagram shows how the Databridge Client uses FileXtract to replicate flat

files.

2. Introducing FileXtract

2. Introducing FileXtract 7

The Databridge Client calls the Databridge Server (DBServer) to replicate the specified flat files.

DBServer calls the Databridge Engine (DBEngine) to extract the data for the selected flat files.

The DBEngine accesses the specified FileXtract layout database to determine the layout of the

flat files. No updates are actually done to this database. The Engine gets all of the layout

information it needs from the DESCRIPTION file. The DMSII CONTROL file and the DMSUPPORT

library will exist, but the data sets and audit files will not.

DBEngine calls the appropriate Reader library, as specified in the layout database, to extract the

data from the flat files.

DBEngine sends the data to DBServer.

DBServer calls Databridge Support to filter, alter, or transform the data, if needed.

DBServer sends the data to the Databridge Client.

The Databridge Client populates the relational database and then either waits for additional flat

file information or terminates.

2.1 Advantages of FileXtract

FileXtract provides the following advantages:

1.

2.

3.

4.

5.

6.

7.

8.

2.1 Advantages of FileXtract

2.1 Advantages of FileXtract 8

Any type of flat file (non-DMSII data) can be replicated to a Client database

Sample Reader libraries are provided for system summary log files (SUMLOG), COMS

Transaction Trail files (TTRAIL), printer backup files (PRINTFILES), BICSS log files

(BICSS), LINC Activity logs (LINCLOG), and the USERDATA system file. You can use

these sample Reader libraries without any modifications to the Reader libraries. DASDL

files are provided to generate the corresponding layout database. For more information,

see Using the Sample Reader Libraries.

The DISKFILE Reader library is provided to replicate COBOL created flat files. If you have

COBOL 01-level file record descriptions for your flat files, you can use the COBOL-to-

DASDL utility to generate the layout database. For more information, see Using the

COBOL-to-DASDL Utility.

Sample Reader libraries are also provided to allow you to customize replication of any

other type of flat file. For more information, see Using the Sample Reader Libraries.

Cloning is required only one time. After the flat files are cloned, FileXtract updates the Client

database as new records and flat files become available.

Replicate only the parts you want from flat files. You don't have to replicate the entire flat

file.

By copying flat files to a secondary database, you offload decision support, queries, and

reporting from the primary database. The secondary database provides a secure way to

make data available to selected individuals, departments, or sites while protecting the flat

files on the host.

The data is available on the Client system even if the host is down or the data

communication connection is broken. This eliminates long wait times for data availability.

Users can use any database tool available on the Client system to access the data in the

secondary database.

2.2 Getting Started with FileXtract

The following is a description of how to use FileXtract to replicate flat files.

• •

• •

• •

• •

• •

• •

• •

• •

FileXtract cannot track updates to flat file records. If record modifies or deletes occur, you

must reclone.

Note

2.2 Getting Started with FileXtract

2.2 Getting Started with FileXtract 9

The FileXtract software is automatically installed with the rest of the host software. See the

Databridge Installation Guide for more information.

Decide which flat files you want to replicate.

Select a Reader library to use from the following table, and then select or generate a layout

database for the flat files you want to replicate.

Start the replication process.

If you will be using DBServer, define the SOURCE and READER options in the DBServer

parameter file. If you will be using Databridge Span or Snapshot, define the READER option in

the appropriate parameter file.

Refer to the Databridge Host Administrator’s Guide for instructions.

Run the accessory (DBServer, DBSpan, or DBSnapshot). Refer to the Databridge Host

Administrator’s Guide for instructions on configuring and running Databridge accessories.

If you are replicating to the Databridge Client, run the Databridge Client DEFINE command

against the SOURCE option in Databridge Server.

Refer to the Databridge Client Administrator’s Guide for instructions on running the Databridge

Client.

1. 1.

2. 2.

3. 3.

For these types of files Use the following

reader libary

System summary log files SUMLOG

COMS Transaction Trail files TTRAIL

Printer backup files PRINTFILE

BICSS log files BICSS

Flat file using a COBOL FD DISKFILE

LINC Activity logs created by LINC systems LINCLOG

System USERDATA file USERDATA

Flat files that contain information in a “proprietary” format (for

example, a flat file that requires reading the nth word to find the

address of the next record)

A custom, user-

written Reader

library

The BANKFILE sample flat file supplied with FileXtract BANKFILE

4. 4.

5. 5.

5.

6. 6.

7. 7.

7.

2.2 Getting Started with FileXtract

2.2 Getting Started with FileXtract 10

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin

3. Using the Sample Reader Libraries

FileXtract includes several sample Reader libraries, which are configured to replicate flat files as

standard data sets for the given file type. You can typically use the sample Reader libraries without

modifications, except in the following circumstances:

Your flat files contain data in a proprietary format

New fields have been added to a standard layout

You want to replicate additional types of records that the Reader library does not support

(for example, a new SUMLOG record type)

The Reader libraries work in conjunction with a physical database that DBEngine uses to determine

the layout of the flat files. DBEngine gets the information it needs from the DESCRIPTION file for

the layout database. The DMSII CONTROL file and the DMSUPPORT library will exist, but the data

sets and audit files will not.

A DASDL file is provided for each sample Reader library so that you can create the corresponding

layout database. For example, if you want to replicate SUMLOGs, you would use the SYSFILESDB

DASDL to create a physical database called SYSFILESDB. Within this database is a logical

database called SUMLOG that contains typical layout information for SUMLOG files. If needed, you

can modify this information. If you customize the layout information in the logical database, you

must make the corresponding changes in the Reader library.

3.1 Creating a Custom Reader Library

You must create a custom Reader library in either of the following situations:

The flat files that you want to replicate contain information in a “proprietary” format (for

example, a flat file that requires reading the nth word to find the address of the next record).

The sample Reader library does not meet your needs. For example, you want to replicate

additional types of SUMLOG records.

The easiest way to create a custom Reader library is simply to customize one of the sample Reader

libraries to meet your needs. If this is not possible, complete the following steps to create a custom

Reader library.

To create a custom library

• •

• •

• •

• •

• •

3. Using the Sample Reader Libraries

3. Using the Sample Reader Libraries 11

Describe the file layouts in either DASDL or COBOL FD format.

Append a VERIFY clause to each data set that indicates when a flat file record is considered

part of that data set. The DASDL must group the data sets into a logical database, as follows:

Logical_dbname ["reader [; file_spec]"] DATABASE (dataset_list)

where reader is the title of the Reader library object code and file_spec is a file or directory

containing the flat files. Note that the semicolon is required before the file_spec, if present.

Write the Reader library source code in ALGOL or COBOL. If you are writing the Reader library

in ALGOL, use the TEXT, SUMLOG, or TTRAIL Reader library as an example. If you are writing

the Reader library in COBOL, use the BANKFILE Reader library as an example.

SThe procedure called in the Reader library must be named FileRead. Use DBFileReaderHead

to define the procedure in ALGOL. Use $FEDLEVEL =5, $ SET LIBRARYPROG, and set

PROGRAM-ID to FILEREAD for COBOL. FileRead is passed two arrays—the FileInfo structure

and FileRecord for the resulting record image.

Perform required initialization the first time FileRead is called. This might include linking to

DBEngine, getting the structure index for the data sets, identifying the location of the flat files,

etc.

Configure the Reader library to read the file, filter records, copy the data to the FileRecord array,

and set items in FileInfo such as the structure index, file record location, timestamp, etc. Set

the appropriate structure index, as defined in the Databridge Programmer’s Reference, in the

FileInfo array to determine the data set to which a record belongs. Note that by setting the

structure index to 0 in the FileInfo array, you can rely on the DASDL VERIFY clauses to

determine the data set to which a record belongs; however, this is not the preferred method

because it is slower.

1. 1.

If you use COBOL FD format, use the COBOL-to-DASDL utility to generate the DASDL. For

instructions, see Generating Database Layout from COBOL 01-Level File Record Descriptions.

Note

1.

1.

1.

2. 2.

2.

3. 3.

Linking to DBEngine, whether explicit or implicit, must not occur before the first call of

FileRead.

Note

4. 4.

In addition to filtering and formatting done by the Reader library, DBSupport can also provide

filtering and formatting. See the Databridge Host Administrator’s Guide for more information

about DBSupport.

Note

3.1 Creating a Custom Reader Library

3.1 Creating a Custom Reader Library 12

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

3.2 Sample Reader Libraries:

3.3 SUMLOG Reader Library

This Reader library reads system summary log files and returns the data records to DBEngine. This

Reader library uses the SUMLOG logical database of the SYSFILESDB layout database.

Closed SUMLOG files are typically titled:

*SUMLOG/ssss/mmddyy/nnnnnn ON familyname

where ssss is the system serial number, mmddyy is the date in month-day-year format, and nnnnnn

is a sequential number.

The Reader option in the Accessory’s parameter file should specify the directory and family name

where the closed log files are located. The following is an example of the DBServer SOURCE

declaration for this Reader library: Source SUMLOG:

If the Reader option is missing or empty, the SUMLOG Reader library will use the following:

"*SUMLOG/ssss/= ON sumlogpack"

where ssss is the serial number of the system it is running on and sumlogpack is the pack

containing *SYSTEM/SUMLOG. When all of the closed SUMLOGs have been processed, the Reader

library will automatically switch to reading the active SUMLOG.

3.4 TTRAIL Reader Library

This Reader library reads COMS Transaction Trail files and returns the data records to DBEngine.

This Reader library uses the TTRAIL logical database of the SYSFILESDB layout database. TTRAIL

files are typically titled:

*COMS/TTRAIL/dbname/nnnn ON familyname

where dbname is the database that participates in synchronized recovery and nnnn is a sequential

number. The TTRAIL for all non-synchronized recovery programs has a database name of

TPLIBRARY. The Reader option in the accessory parameter file must specify the directory and

family name where the TTRAIL files for a particular database are located. The following is an

example of the DBServer SOURCE declaration for this Reader library:

% ------
Database = SUMLOG of DESCRIPTION/SYSFILESDB ON DISK,
Support = OBJECT/DATABRIDGE/SUPPORT/SYSFILESDB ON DISK,
Filter = SUMLOGFILTER,
Reader using "SUMLOG/= ON DISK"

3.2 Sample Reader Libraries:

3.2 Sample Reader Libraries: 13

3.5 PRINTFILE Reader Library

This Reader library reads printer backup files and returns the printer file attributes and print lines to

DBEngine. This Reader library uses the PRINTFILE logical database of the SYSFILESDB layout

database.

The Reader option in the Accessory’s parameter file should specify the directory and family name

where the print files are located. The following is an example of the DBServer SOURCE declaration

for this Reader library:

If the Reader option is missing or empty, the PRINTFILE Reader library will use:

"*BD ON printerbackuppack"

where printerbackuppack is the value identified by issuing a DL BACKUP command.

3.6 BICSS Reader Library

This Reader library reads BICSS log files and returns the data records to DBEngine. This Reader

library uses the UVMSBICSS or IVRBICSS logical database of the NAPFILESDB layout database.

BICSS log files are typically titled:

(usercode)BICSSLOG/ACTIVITY/yymmdd/hhmnss ON familyname

where yymmdd is the date in year-month-day format and hhmnss is the time in hours-minutes-

seconds format.

The Reader option in the accessory parameter file must specify the directory and family name

where the log files are located. Optionally, it can also specify the particular application system

name that must appear in all records by appending a colon and the LINC application name, such as

IVRSYS (see the example below) or UVMS. If you want records from only one application and the

log contains records from more than one application, specifying the application name after the

colon speeds up the processing.

Source TTRAIL:
% ------
Database = TTRAIL of DESCRIPTION/SYSFILESDB ON
DISK,
Support = OBJECT/DATABRIDGE/SUPPORT/SYSFILESDB
ON DISK,
Filter = TTRAILFILTER,
Reader using "COMS/TTRAIL/= ON DISK";

Source LISTER:
% ------
Database = REPORTS of DESCRIPTION/PRINTFILESDB ON
DISK,
Reader using "DBBD/RUN/LISTER/= ON DISK";

3.5 PRINTFILE Reader Library

3.5 PRINTFILE Reader Library 14

The following is an example of the DBServer SOURCE declaration for this Reader library: Source

IVRBICSS:

3.7 DISKFILE Reader Library

This Reader library reads flat files and returns the data records to DBEngine. When you use the

COBOL-to-DASDL utility to create the various structures needed to replicate flat files that use

COBOL 01-level file record descriptions, as explained in Generating Database Layout from COBOL

01-Level File Record Descriptions, the DISKFILE Reader library is the default Reader library.

The DISKFILE Reader library processes disk files in creation timestamp order. It assumes that the

file it is reading can be extended as long as there is no file with a later creation timestamp. During

processing, the creation timestamp of the disk file is used as the timestamp associated with each

record. If you need to process a flat file having a creation timestamp prior to what FileXtract has

already processed, see Out-of-Order Processing.

The Reader option in the accessory parameter file must specify the directory and family name

where the disk files are located. The following is an example of the DBServer SOURCE declaration

for this Reader library:

Reader using "(PROD)DATA/TRANLOG/= ON USERPACK"

If you want to change this behavior, you may modify the DISKFILE Reader library or substitute your

own Reader library. If you use a name other than BJECT/FILEBRIDGE/READER/DISKFILE, make

sure to specify the title of the Reader library code file in the READER "codefiletitle" USING "..."

option of the accessory parameter file.

Some programs, such as CANDE and FileXpress®-XST, rewrite the entire file when records are

added, deleted, or modified. The (modified) file will have a new creation timestamp. When the

DISKFILE Reader searches the disk directory for files to process, it will find the file with a new

creation timestamp and will attempt to process it from the beginning. This is likely to cause many

“duplicates” errors because it will send each record as an “add” and all of the records from the old

file are already present in the client database. To avoid these errors, you must configure the client

to reclone every time it is run.

Similarly, if the mainframe application updates records in place, the DISKFILE Reader will not detect

the update if it has already processed that file. In this situation, you must also configure the client

to reclone every time it is run.

% --------
Database = IVRBICSS of DESCRIPTION/NAPFILESDB ON
DISK,
Support = OBJECT/DATABRIDGE/SUPPORT/NAPFILESDB ON
DISK,
Filter = BICSSFILTER,
Reader using "(BICSS)BICSSLOG/ACTIVITY/= ON DISK:
IVRSYS";

3.7 DISKFILE Reader Library

3.7 DISKFILE Reader Library 15

3.8 LINCLOG Reader Library

This Reader library reads LINC Activity logs and returns the data records to DBEngine.

LINC log files are typically titled:

(usercode)lincsystem/LINCLOG/nnn ON familyname

where nnn is the Activity log number.

The Reader option in the accessory parameter file should specify the directory and family name

where the closed log files are located.

To generate the LINCLog database so that Databridge can replicate the log records to the client

database, perform the following steps.

Edit the DATA/COBOLTODASDL/SAMPLE/LINCLOGDB/FD file, which describes the layout of the

LINC Activity Log records, to reflect your particular LINC system. (Different LINC

implementations sometimes have new fields added to the log record layout.)

Save the file as DATA/COBOLTODASDL/LINCLOGDB/FD, i.e., without the SAMPLE node.

Edit the DATA/COBOLTODASDL/SAMPLE/LINCLOGDB/CONTROL file with the proper location for

the LINC log files.

Save the file as DATA/COBOLTODASDL/LINCLOGDB/CONTROL, again without the SAMPLE node.

Use the COBOL-to-DASDL utility to generate the database: START WFL/FILEBRIDGE/

COBOLTODASDL ("LINCLOGDB")

This also generates a file called DATA/SERVER/LINCLOGDB/CONTROL that you can insert into

DATA/SERVER/CONTROL to define the LINCLog SOURCE.

If you want to filter the log records, declare a filter and generate a tailored DBSupport library

using DBGenFormat. For more information see the Databridge Clients Administrator’s Guide for

instructions. A sample file is provided - DATA/GENFORMAT/SAMPLE/LINCLOGDB/CONTROL.

Use the Databridge Client or an accessory such as DBSpan to replicate the LINC Log data just

like any other database.

The following is an example of the DBServer SOURCE declaration for this Reader library:

Source "LINCLOGFILES":

 % ------------

 Database = "LINCLOGFILES" OF

 "DESCRIPTION/LINCLOGDB",

 Reader using "(PROD)G2/LINCLOG/= ON AUDIT";

 Reader processes the disk files in the LINC log file number order (with

 wraparound from 999 to 1).

1.

2.

3.

4.

5.

6.

7. 7.

7.

7.

3.8 LINCLOG Reader Library

3.8 LINCLOG Reader Library 16

https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin

3.9 BANKFILE Reader Library

This Reader library is a sample flat file Reader library that demonstrates how to write a FileXtract

Reader in COBOL. For an example of how to use this Reader library to replicate a sample flat file

called DATA/LOAD/SAMPLE/DATABASE, see BANKFILE COBOL-to-DASDL Example.

3.10 USERDATA Reader Library

This Reader library reads the system USERDATA file layout and returns the usercode attributes to

DBEngine. It interprets the structure of the system USERDATA file, which contains attributes

associated with usercodes. Because the layout of the USERDATA file can vary from site to site, this

Reader library generates a DMSII database layout corresponding to your site-specific USERDATA

file.

The USERDATA Reader library generates the following:

The corresponding DASDL layout for a DMSII database for FileXtract

The corresponding source code for the USERDATA Reader library

To generate and compile the DASDL layout and the USERDATA Reader library, do the following:

START WFL/FILEBRIDGE/COMP ("USERDATA")

The Reader option in the accessory parameter file should specify the directory and family name

where the USERDATA file is located. The following is an example of the DBServer SOURCE

declaration for this Reader library:

If the Reader option is missing or empty, the USERDATA Reader library will use:

*SYSTEM/USERDATAFILE ON userdatapack

where userdatapack is disk location specified by the DL USERDATA command.

3.11 TEXT Reader Library

This is a skeleton of a Reader library written in ALGOL. It is intended to be used when writing a

custom ALGOL Reader library.

• •

• •

Source USERDATA:
% --------
Database = USERFILE of DESCRIPTION/USERDATADB
Support = OBJECT/DATABRIDGE/SUPPORT/USERDATADB
Filter = USERDATAFILTER
%- Reader using "SYSTEM/USERDATAFILE/othersystem ON
DISK";

3.9 BANKFILE Reader Library

3.9 BANKFILE Reader Library 17

4. Using the COBOL-to-DASDL Utility

This chapter explains how to use the COBOL-to-DASDL utility to replicate flat files that use COBOL

01-level file record descriptions.

4.1 Understanding the COBOL-to-DASDL Utility

The COBOL-to-DASDL utility allows you to generate a FileXtract layout database from COBOL 01-

level file record descriptions. It also generates the appropriate DBServer SOURCE declaration that

you insert into the DBServer parameter file so that Databridge Clients can access the replicated flat

files.

For normal disk files, the DISKFILE Reader library is used to read the flat files that are being

replicated. For a description of the DISKFILE Reader library, see DISKFILE Reader Library.

Otherwise, see Generating Database Layout from COBOL 01-Level File RecordDescriptions.

For LINC log activity files, the LINCLOG Reader library is used to read the flat files that are

being replicated. For a description of the LINCLOG Reader library, see LINCLOG Reader Library.

Otherwise, see Generating Database Layout from LINC Activity Log Files.

For an example of how to use the COBOL-to-DASDL utility to replicate a sample flat file called

DATA/ LOAD/SAMPLE/DATABASE, see the BANKFILE COBOL-to-DASDL Example that follows. We

recommend that you complete this example before using the COBOL-to-DASDL utility for your own

disk files.

4.2 BANKFILE COBOL-to-DASDL Example

This example illustrates how to use the COBOL-to-DASDL utility to replicate a sample flat file called

DATA/LOAD/SAMPLE/DATABASE. Everything you need to run this example is installed with

FileXtract.

•

You must have or create a COBOL file containing the 01-level file record descriptions for the flat

files you want to replicate. A sample COBOL file (DATA/COBOLTODASDL/SAMPLE/ LINCLOG/

FD) containing a layout of the LINC log is installed with the FileXtract software.

Note

•

4. Using the COBOL-to-DASDL Utility

4. Using the COBOL-to-DASDL Utility 18

View DATA/LOAD/SAMPLE/DATABASE and familiarize yourself with the records in this flat file.

View and familiarize yourself with DATA/COBOLTODASDL/SAMPLE/BANKFILE/FD, which is

the COBOL FD for DATA/LOAD/SAMPLE/DATABASE.

Copy the BANKFILE parameter file as follows: GET DATA/COBOLTODASDL/SAMPLE/

BANKFILE/CONTROL AS DATA/COBOLTODASDL/BANKFILE/CONTROL

Define the SOURCE.

The SOURCE name will be used as the DBServer SOURCE name as well as the name of logical

database that the COBOL-to-DASDL utility creates. Note that this step has already been

completed for you in this sample control file, as follows:

DEFINE Source COBOLBankFile USING "DATA/LOAD/SAMPLE/DATABASE" FROM FD IN "DATA/

COBOLTODASDL/SAMPLE/BANKFILE/FD";

Declare the data sets to be generated from the various flat files. Note that this step has

already been completed for you in this sample control file. The following are the data sets that

have been defined:

``` Dataset Comments uses INPUT-DATA-REC where COMMENT-REC; % 88-level item

Dataset BANK uses INPUT-BANK % => use the INPUT-BANK REDEFINE where BANK-TYPE and

(BANK-ID not greater than 5000 or BANK-NAME ^= SPACES); % a more complex expression

Dataset BRANCH uses INPUT-BRANCH, DATA-TYPE where BRANCH-TYPE; % need to be listed

because it is not REDEFINEd.

Dataset CUSTOMER uses INPUT-CUSTOMER where CUSTOMER-TYPE;

Dataset TELLER uses INPUT-TELLER where TELLER-TYPE;

Dataset ACCOUNT uses INPUT-ACCOUNT where ACCOUNT-TYPE;

Dataset HISTORY uses INPUT-HISTORY where HISTORY-TYPE; ```

Save the parameter file.

Run the COBOL-to-DASDL utility using the following command: START WFL/FILEBRIDGE/

COBOLTODASDL ("BANKFILE")

The COBOL-to-DASDL utility processes the COBOL file description, generates a DASDL called

SOURCE/FILEBRIDGE/COBOLTODASDL/BANKFILE, and generates a DBServer parameter file

1. 1. 

2. 2. 

3. 3. 

4. 4. 

4. 

4. 

5. 5. 

5. 

5. 

5. 

5. 

5. 

5. 

5. 

6. 6. 

7. 7. 

7. 

4.2 BANKFILE COBOL-to-DASDL Example

4.2 BANKFILE COBOL-to-DASDL Example 19



fragment called DATA/SERVER/BANKFILE/CONTROL. Then, the WFL compiles the resulting

database and runs the FileXtract Initialize utility to prepare it for Databridge.

Update the DBServer parameter file with the generated DBServer parameter file fragment, as

follows:

a. Transmit the following command:

GET DATA/SERVER/CONTROL

b. Transmit the following command:

INSERT DATA/SERVER/BANKFILE/CONTROL AT END

The DBServer parameter file is appended with the BANKFILE DBServer parameter file

fragment, which defines the SOURCE, database, and data file title to use to replicate the

BANKFILE flat file.

Run the Databridge Client with the DEFINE command to define the COBOLBankFile source.

Then run it with the GENERATE command and finally with the PROCESS command. The

Databridge Client contacts DBServer to replicate the BANKFILE flat file. Refer to the Databridge

Clients Administrator’s Guide for instructions on running the Databridge Client.

4.3 Generating Database Layout from COBOL 01-Level
FileRecord Descriptions

COBOLTODASDL/SAMPLE/BANKFILE/CONTROL) contains sample entries based on a flat file

called DATA/LOAD/SAMPLE/DATABASE. This file illustrates how to declare a DBServer SOURCE

and generate the associated layout database from COBOL 01-level file record descriptions. As you

complete the following steps, remove, modify, or comment out the sample entries.

To replicate flat files that use COBOL 01-level file record descriptions.

8. 8. 

8. 

8. 

8. 

8. 

8. 

9. 9. 

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions 20

https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin


Copy the COBOL-to-DASDL parameter file as follows:

Get DATA/COBOLTODASDL/SAMPLE/BANKFILE/CONTROL AS DATA/

COBOLTODASDL/ dbname /CONTROL

where dbname is the name you want to use for the layout database that will be generated.

(See the table below.)

Define the DBServer SOURCE declaration as follows:

DEFINE SOURCE  sourcename USING  "filename" FROM FD IN  "COBOLsourcefile";

1. 1. 

1. 

1. 

1. 

2. 2. 

2. 

Where Is

sourcename the name of the logical database that the COBOL-to-DASDL utility

creates. DBSpan and DBSnapshot access flat file data using the

logical database will be used.

dbname different than sourcename and flatfiledirectory. If you enter the

same name for SOURCE and database, an error message appears.

filename a file or a directory. Note that the DISKFILE Reader library treats a

file as both a file and a directory. Therefore, that file and all files

under that file node will be replicated.

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions 21



In addition to using this information to create the DASDL, the COBOL-to-DASDL utility uses the

SOURCE declaration to create a DBServer parameter file fragment (DATA/SERVER/dbname/

CONTROL) which you insert into the DBServer control file.

Declare the data sets to be generated from the various flat files using the following syntax.

DATASET datasetname USES identifier_list [ WHERE  boolean_expression]

For example:

DATASET BANK USES INPUT-BANK WHERE BANK-TYPE and (BANK-ID not greater than 5000 

or BANK-NAME ^= SPACES);

The USES clause tells the Reader library what data items to use when there are REDEFINES.

Note that successive 01s under an FD are implicit REDEFINES.

The WHERE clause indicates the condition that must be true of all records that belong in that

data set. The WHERE clause can be omitted if all records belong in a single data set. The

WHERE clause must evaluate to a Boolean expression (true or false).

The Boolean expression can consist of relational expressions, connected by AND or OR, using

the normal COBOL relational operators: GREATER THAN, >, GTR, LESS THAN, <, LSS, EQUAL

TO, =, EQL, GREATER THAN OR EQUAL TO, >=, GEQ, LESS THAN OR EQUAL TO, <=, LEQ, ^=, !=,

<>, NEQ. The left side of a relational expression must be a data item name and the right side

Where Is

COBOLsourcefile the file that contains the 01-level file record layout(s). It cannot

contain declarations other than the FD and the 01-level file record

layouts (and it does not have to contain the actual FD). If the FD is

in the main COBOL program source file, you must create a new

COBOL file containing just the disk file layout and use that file’s title

for COBOLsourcefile.

2. 

3. 3. 

When you run the COBOL-to-DASDL utility, it automatically encloses the SOURCE and logical

database names in “quotation marks” in the generated parameter file fragment for DBServer.

This feature allows you to use hyphens (-) in SOURCE names, and the SOURCE names can be

the same as a parameter file keyword.

Note

3. 

3. 

3. 

3. 

3. 

3. 

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions 22



must be either an integer, a double-quoted string, a hex string, SPACE, or SPACES. An 88-level

condition name can also be used as a relational expression.

Save the COBOL-to-DASDL parameter file.

Run the COBOL-to-DASDL utility using the following command:

START WFL/FILEBRIDGE/COBOLTODASDL  ("dbname")

where dbname is the name of the layout database you assigned in step 1.

The COBOL-to-DASDL utility processes the COBOL file description, generates the DASDL called

SOURCE/FILEBRIDGE/COBOLTODASDL/dbname, and generates a DBServer parameter file

fragment called DATA/SERVER/dbname/CONTROL. Then, the WFL compiles the resulting

database and prepares it for use with FileXtract.

Do one of the following based on which Databridge accessory you are going to use:

4. 4. 

5. 5. 

5. 

5. 

5. 

6. 6. 

For Do this

DBServer Insert the DBServer parameter file fragment (DATA/SERVER/dbname/

CONTROL) into the DATA/SERVER/CONTROL file using the following

steps:

Get DATA/SERVER/CONTROL.

Transmit the following command:

INSERT DATA/SERVER/dbname/CONTROL AT END

Save the file.

The DBServer parameter file is appended with the DBServer parameter

file fragment, which defines the SOURCE, database, and Reader library

to use to replicate the flat files. After you have updated the DBServer

parameter file, run the Client with the DEFINE, GENERATE, and

PROCESS commands. Refer to the Databridge Clients Administrator’s

Guide for instructions.

Other

Accessories

The flat file is ready to be cloned. For DBSpan and DBSnapshot, start

the associated WFL with the layout database and logical database

(SOURCE) names to create the accessory parameter file. For example:

START WFL/DATABRIDGE/SPAN ("BANKFILE", "COBOLBANKFILE")

Define the READER options in the accessory parameter file and then

run the Accessory. Refer to the Databridge Host Administrator’s Guide

for instructions.

a. 

b. 

c. 

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions

4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions 23

https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host


5. Troubleshooting

To troubleshoot FileXtract, try these steps.

Make sure that your system meets the requirements necessary to use the product. See 

System Requirements in the Databridge Installation Guide.

Make sure that the READER option in the parameter file has the correct Reader library and flat

file location. If you are using DBServer, verify that the SOURCE declaration is pointing to the

correct logical database. If you are using DBSpan or DBSnapshot, make sure that you start the

WFL with the correct logical database name as the second parameter. For example, START

WFL/DATABRIDGE/SPAN ("SYSFILESDB", "SUMLOG"). For information about the Reader

libraries, see one of the following:

Using the Sample Reader Libraries

Generating Database Layout from COBOL 01-Level File Record Descriptions

Using the COBOL-to-DASDL Utility

Creating a Custom Reader Libary

Check your setup:

Check the mix to make sure that the Databridge accessory is running. For instructions, see

the Databridge Host Administrator’s Guide.

Make sure that the READER declaration for the Databridge accessory is correct. Refer to the 

Databridge Host Administrator’s Guide for instructions.

Make sure that the source name for the DEFINE command for the Databridge Client

matches the SOURCE name for DBServer.

Resolve any errors you receive.

If you are receiving error messages you don’t understand, see the Databridge Error and

Messages Guide for help resolving error these messages.

If you cannot identify and solve the problem without assistance, contact your product

distributor. Call from a location where you have access to the problem mainframe.

Contact Micro Focus Customer Support or troubleshoot the problem using information

available from the Support Resources site.

1. 1. 

2. 2. 

• 

• 

• 

• 

3. 3. 

• 

• 

• 

4. 4. 

4. 

5. 5. 

6. 6. 

5. Troubleshooting

5. Troubleshooting 24

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/en-us/support/Databridge


6. Out of Order Processing

Occasionally you need to load a large amount of flat file data that has been archived, and the

archived data is not available in the proper sequence. For example, you might have a set of backup

tapes with SUMLOGs for several days and one set of tapes in the middle of the sequence is

currently “on loan.”

The SUMLOG Reader library (and other Reader libraries) rely on the timestamp from StateInfo to

locate the current file and the ABSN concatenated with INX to determine the record number.

In general you want to keep two audit locations—one for the “real” (relatively current) location, and

another for the archive-catch-up location. The following is one approach to handling out-of-order

processing. This procedure is for processing archived log files sequentially. Processing archived

log files discontinuously requires additional techniques, which are not explained in this guide.

6.1 Before You Process

On the host, define a duplicate SOURCE in DBServer (call it SUMLOGARCHIVE) and add a STOP

BEFORE timestamp condition to it, where timestamp is the timestamp of the oldest record that has

already been loaded using the regular SUMLOG source. (This will prevent picking up the same files

twice, including the active SUMLOG.) The SUMLOGs for this SOURCE could be in a different

directory to avoid confusion.

On the client, you need the two audit locations and a way to switch them back and forth. Create a

new table (AudLocSwitch) to hold the variable parts of the audit location. The variable parts are:

AFN, ABSN, INX, and timestamp. Also define a text column in AudLocSwitch called “source_name.”

Create a row for each data set in AudLocSwitch with all zeros for the audit location and

source_name = " SUMLOG ". Create a similar row for each data set having source_name =

" SUMLOGARCHIVE ".

6.2 Process Archived SUMLOGs

To process archived SUMLOGs

6. Out of Order Processing

6. Out of Order Processing 25



Copy the audit locations from the DATASETS table into the AudLocSwitch rows for 

source_name = " SUMLOG ".

Copy the AudLocSwitch rows for source_name = " SUMLOGARCHIVE " into the data sets table.

Change data_source  in the DATASOURCES table and the DATATABLES table to

" SUMLOGARCHIVE ".

Run the following command: dbutility process SUMLOGARCHIVE

6.3 Process Current SUMLOGs

To process current SUMLOGs

Copy the audit locations from the DATASETS table into the AudLocSwitch rows for 

source_name = " SUMLOGARCHIVE ".

Copy the AudLocSwitch rows for source_name = " SUMLOG " into the DATASETS table.

Change data_source  in the DATASOURCES table and the DATATABLES table to " SUMLOG ".

Run the following command:

dbutility process SUMLOG

By maintaining separate audit locations and using the STOP BEFORE condition, you can continue to

copy in old SUMLOGs, process them, and alternately switch back to processing the current

SUMLOGs using the other SOURCE. If the old files are loaded out of order, before you can do the

process command, you must manually remove the processed files and reset the audit location in

the AudLocSwitch rows for " SUMLOGARCHIVE " to 0.

1. 1. 

2. 2. 

3. 3. 

4. 4. 

1. 1. 

2. 2. 

3. 3. 

4. 4. 

4. 

6.3 Process Current SUMLOGs

6.3 Process Current SUMLOGs 26



7. Glossary of Terms

7.1 A-E

accessories

Databridge accessories access the services in DBEngine and DBSupport. Some of the accessories

provided with Databridge are as follows: - DBServer, which provides communication and DMSII

database replication services to Databridge Clients. - DBSpan, which produces a replication of one

or more data sets into flat sequential disk files. DBSpan updates the cloned flat files by appending

the changes to the end of the flat files (unlike DBSnapshot, which replaces the changed records). -

DBSnapshot, which produces a one-time replication of one or more data sets into flat sequential

disk files or tape. - DBInfo, which produces a report of your DMSII database timestamps, update

levels, DMSII release levels, etc. - DBLister, which produces a report of the layout of the structures

in your DMSII database, including structure numbers and key sets. - DBAuditTimer, which closes

the current audit file when it is older than a specified length of time.

cloning

Cloning is the one-time process of generating a complete snapshot of a data set to another file.

Cloning creates a static picture of a dynamic database. Databridge uses the DMSII data sets and

the audit trail to ensure that the cloned data represents a synchronized snapshot of the data sets at

a quiet point, even though other programs may be updating the database concurrently. Databridge

clones only those data sets you specify.

Cloning is one phase of the database replication process. The other phase is tracking (or updating),

which is the integration of database changes since the cloning.

CONTROL file

The DMSII CONTROL file is the runtime analog of the DESCRIPTION file. The DESCRIPTION file is

updated only when you compile a modified DASDL. The CONTROL file controls database interlock.

It stores audit control information and verifies that all database data files are compatible by

checking the database timestamp, version timestamp, and update level. The CONTROL file is

updated each time anyone opens the database for updates. The CONTROL file contains

timestamps for each data set (when the data set was defined, when the data set was updated). It

contains parameters such as how much memory the Accessroutines can use and titles of software

such as the DMSUPPORT library (DMSUPPORT/databasename).

Databridge uses the CONTROL file for the following information:

7. Glossary of Terms

7. Glossary of Terms 27



Timestamps

INDEPENDENTRANS option

AFN for the current audit file and ABSN for the current audit block

Data set pack names

Audit file pack name

Database user code

DASDL

Data and Structure Definition Language (DASDL) is the language that defines DMSII databases. The

DASDL must be compiled to create a DESCRIPTION file.

data set

A data set is a file structure in DMSII in which records are stored. It is similar to a table in a

relational database. You can select the data sets you want to store in your replicated database.

Databridge Engine

The Databridge Engine (also referred to as DBEngine) is a host library program that uses the DMSII

Support Library to retrieve data records from the DMSII database for cloning.

extraction

Extraction is the process of reading through a data set sequentially and writing those records to a

file (either a secondary database or flat file).

7.2 R-T

replication

Replication is the ongoing process of cloning and tracking changes to a DMSII database.

set

An index into a data set. A set has an entry (key + pointer) for every record in the data set.

structure

• 

• 

• 

• 

• 

• 

7.2 R-T

7.2 R-T 28



A data set, set, subset, access, or remap. Each structure has a unique number called the structure

number.

Support Library

A library that provides translation, formatting, and filtering to the DBServer and other accessories.

After DBServer receives data from the Databridge Engine, it calls the Support Library to determine if

the data should be replicated, and if so, passes the data to the Support Library for formatting.

tracking

Tracking is an ongoing process for propagating changes made to records in the DMSII primary

database to the replicated database after the initial clone. The Databridge Engine performs

extraction as well as tracking.

8. Legal Notice

© Copyright 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open

Text”) are as may be set forth in the express warranty statements accompanying such products

and services. Nothing herein should be construed as constituting an additional warranty. Open Text

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

8. Legal Notice

8. Legal Notice 29


	Databridge FileXtract Administrator's Guide
	7.1
	Copyright 2023 Open Text


	1. Databridge FileXtract Administrator's Guide
	1.1 Abbreviations
	1.2 Conventions
	1.3 Related Documentation

	2. Introducing FileXtract
	2.1 Advantages of FileXtract
	2.2 Getting Started with FileXtract

	3. Using the Sample Reader Libraries
	3.1 Creating a Custom Reader Library
	3.2 Sample Reader Libraries:
	3.3 SUMLOG Reader Library
	3.4 TTRAIL Reader Library
	3.5 PRINTFILE Reader Library
	3.6 BICSS Reader Library
	3.7 DISKFILE Reader Library
	3.8 LINCLOG Reader Library
	3.9 BANKFILE Reader Library
	3.10 USERDATA Reader Library
	3.11 TEXT Reader Library

	4. Using the COBOL-to-DASDL Utility
	4.1 Understanding the COBOL-to-DASDL Utility
	4.2 BANKFILE COBOL-to-DASDL Example
	4.3 Generating Database Layout from COBOL 01-Level FileRecord Descriptions

	5. Troubleshooting
	6. Out of Order Processing
	6.1 Before You Process
	6.2 Process Archived SUMLOGs
	6.3 Process Current SUMLOGs

	7. Glossary of Terms
	7.1 A-E
	accessories
	cloning
	CONTROL file
	DASDL
	data set
	Databridge Engine
	extraction

	7.2 R-T
	replication
	set
	structure
	Support Library
	tracking


	8. Legal Notice

