
Databridge Host
Programmer's Reference

Guide

7.1

Copyright 2023 Open Text

Databridge Host Programmer's Reference Guide

Table of contents

7Host Programmer's Reference Guide

7About this Guide

7Conventions

8Abbreviations

10Related Documentation

11Databridge API

11Databridge API Description

12Using the Databridge API

12Databridge API Overview

13Entry Point Procedure Values

18Accessing the DBEngine and DBSupport Libraries

21DBEngine Entry Points

29DBATTRIBUTE

29DBAUDITMEDIUM

30DBAUDITATTRIBUTE

30DBAUDITPACK

31DBAUDITPREFIX

31DBAUDITSOURCE

32DBAUDITSOURCEX

33DBCANCELWAIT

33DBCLOSEDATASET

33DBCOMMENT

35DBCOMPILESUPPORT

35DBDATABASEINFO

36DBDATASETINFO

37DBDATASETNAME

38DBDATASETNUMS

40DBDATASETVFINFO

41DBDATETIME

42DBDESELECT

Table of contents

Table of contents 2

42DBDIRECTORYSEARCH

43DBDISPLAYFAULT

44DBDISPLAYMSG

44DBENGINEMISSINGENTRYPOINT

44DBFAMILYINFO

45DBFILEATTRIBUTE

46DBGETFIRSTQPT

47DBGETINFO

48DBGETOPTION

48DBINITFILTER

48DBINITIALIZE

49DBINTERFACEVERSION

50DBIOERRORTEXT

51DBIORESULTTEXT

51DBITEMINFO

52DBITEMNUMINFO

53DBKEYDATAREMAP

54DBKEYINFO

55DBKEYINFOREMAP

56DBKEYS

57DBKEYSREMAP

58DBLAYOUT

59DBLIMITTASKNAME

60DBLIMITTIMESTAMP

61DBLINKS

62DBMAKETIMESTAMP

63DBMAXRECORDS

63DBMAXRECORDSVF

64DBMESSAGE

65DBMODIFIES

65DBMODIFYTIMESTAMP

66DBNULL

67DBNULLRECORD

Table of contents

Table of contents 3

68DBOLDESTAUDITLOC

69DBOPENAUDIT

69DBOPENRESULTTEXT

70DBPARAMETERS

71DBPRIMARYSET

71DBPRIVILEGED

71DBPUTMESSAGE

73DBREAD

74DBREADAUDITREGION

75DBREADERPARAMETER

76DBREADTRANGROUP

78DBRESETOPTION

78DBSELECT

79DBSELECTED

80DBSETINFO

80DBSETOPTION

81DBSETS

82DBSETSINFO

83DBSPLITTIMESTAMP

84DBSPLITTIME60

85DBSTATEINFOTODISPLAY

86DBSTATISTICS

86DBSTRIDX

87DBSTRNUM

87DBSTRUCTURENAME

89DBSUBSETSINFO

89DBSWITCHAUDIT

90DBTIMESTAMPMSG

91DBUPDATELEVEL

92DBVERSION

92DBWAIT

94DBWHEREDASDL

95DBWHERETEXT

Table of contents

Table of contents 4

96DBSupport Entry Points

100DBCLIENTKEY

101DBERRORMANAGER

102DBEXTRACTKEY

104DBFILTEREDDATASETS

105DBFILTEREDITEMINFO

105DBFILTEREDITEMNAME

106DBFILTEREDLAYOUT

107DBFILTEREDLINKS

108DBFILTEREDNULLRECORD

108DBFILTEREDSETS

110DBFILTEREDSETSINFO

111DBFILTEREDSTRNUM

111DBFILTEREDSUBSETSINFO

113DBFILTEREDWRITE

114DBFORMAT

116DBINITDATAERROR

118DBINITIALIZESUPPORT

119DBPRIMARYKEY

120DBSETUP

120DBSUPPORTENGINE

120DBSUPPORTINIT

122DBSUPPORTMISSINGENTRYPOINT

122DBUNREMAPITEMINFO

124DBVIEWABLE

125Virtual Data Sets

125Overview

127Creating a Virtual Data Set

131Syntax for Declaring a Transform

132Syntax for Declaring a Virtual Data Set

136Virtual Transform Skeleton

139Sample ALGOL Virtual Transform Procedure

Table of contents

Table of contents 5

139Sample DASDL Definition

151Altered Data Sets

151Overview

152Altering a Data Set

156ALTER Restrictions

157ALTER Declaration Syntax

162Declaring Internal and External Reformatting Procedures

164Example: Internal Reformatting Procedure

167Example: External Reformatting Procedure

170Example: Altered Data Set for Flattening OCCURS

171Example: Databridge NewId

177Formatting Procedures

177Overview.

177Sample Files

177Using Custom Formatting Procedures

180Declaring Internal and External Formatting Procedures

182Writing Formatting Routines

185Sample ALGOL External Formatting Procedure

188Error Handling Routines

188Overview

189Writing an Error Handling Routine

192Sample Error Handling Routine

196Glossary

202Legal Notice

203Appendix

204A - Types, Values, Arrays and Layouts

244Troubleshooting

248Virtual and Alter Data Item Types

Table of contents

Table of contents 6

1. Host Programmer's Reference Guide

1.1 About this Guide

To use the Databridge application programming interface (API), you must have ALGOL

programming experience. In addition, you should be thoroughly familiar with:

Standard operations for Unisys® MCP-hosted servers

Data Management System II (DMSII) databases and Data And Structure Definition Language

(DASDL)

Transferring files between your host and the system that uses the replicated DMSII data

The Databridge host software

1.2 Conventions

The following conventions and terms may be used in this guide.

•

•

•

•

This guide does not define DBEngine, define DBSupport, nor explain how Databridge operates.

See the Databridge Host Administrator's Guide for details about Databridge operations.

Note

This convention or term Is used to indicate this

menu > sub menu 1 > sub

menu 2 ... > menu item

(item)

This font style/color shows mouse-clicks in the order

required to access a specific function, window, dialog box,

etc.

The greater than symbol > indicates the next item to click

in the series.

The parentheses () indicate the setting, option, or

parameter being discussed. Note the font style reverts

back to normal.

this type style text that you type filenames and directory names onscreen

messages

italic italic variables emphasis document titles

1. Host Programmer's Reference Guide

1. Host Programmer's Reference Guide 7

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

1.3 Abbreviations

The following abbreviations are used throughout this guide and are provided here for quick

reference.

This convention or term Is used to indicate this

square brackets ([]) optional items in a command For example, [true | false].

(Do not type the brackets.)

pipe (|) a choice between items in a command or parameter. When

enclosed in braces ({ }), the choice is mandatory.

UPPERCASE DMSII data set and data item names

CAUTION The Caution note indicates that there is a possibility of

losing data or corrupting files. When you see a Caution

note, follow the instructions carefully.

MCP server host

mainframe (term)

Unisys ClearPath NX, LX or A Series mainframe

DBEngine (term) Databridge Engine

DBEnterprise (term) Databridge Enterprise Server

DBServer (term) Databridge Server

Abbreviation Name

AA Absolute Address

ABSN Audit Block Serial Number

AFN Audit File Number

API Application Programming Interface

DASDL Data and Structure Definition Language

DMSII Data Management System II

IDX Index

IPC Inter-Process Communications

MCP Master Control Program

1.3 Abbreviations

1.3 Abbreviations 8

Abbreviation Name

RPC Remote Procedure Call

SEG Segment

1.3 Abbreviations

1.3 Abbreviations 9

1.4 Related Documentation

When using Databridge, you may need to consult the following resources.

Databridge product documentation

You can access the Databridge documentation from these locations:

The DOCS folder on the Databridge installation image contains PDF guides for installation,

error codes, and administrator guides for each Databridge product.

Databridge Documentation (HTML and PDF). This site contains the Databriged

documentation for current and previous version.

Databridge Support Resources page. Contains links to documentation, Knowledge Base

articles, and other information.

Documentation for Databridge Enterprise Server and the Databridge Client Console is also

available from the Help menu. A modern browser is required for viewing this

documentation.

Unisys MCP server documentation

If you are not completely familiar with DMSII configuration, refer to your Unisys documentation.

Abbreviation Name

WFL Work Flow Language

• •

• •

• •

• •

1.4 Related Documentation

1.4 Related Documentation 10

https://www.microfocus.com/documentation/databridge/
https://www.microfocus.com/en-us/support/Databridge

2. Databridge API

This chapter explains how you can use the Databridge API and provides an overview of it.

2.1 Databridge API Description

The Databridge API provides access to DBEngine and DBSupport to retrieve structural information,

layout information, and data from audit files and a DMSII database.

All Databridge Accessories use the Databridge API. You can use the Databridge API to do any of

the following:

Write an Accessory (program) that calls DBEngine to perform cloning or tracking.

Write an Accessory to retrieve the layout information for a DMSII database.

Populate a virtual data set.

See Virtual Data Sets for information about virtual data sets.

Reformat data items in an ALTERed data set.

See Altered Data Sets for information about ALTERed data sets.

Write a formatting procedure to customize the format in which Databridge outputs data set

records and use those custom formats with DBSpan, DBSnapshot, or a user-written

Databridge Accessory.

See Formatting Procedures for information about formatting procedures.

Write an error handling routine to analyze, log, and display errors and determine how

Databridge Accessories respond to those errors.

See Error Handling Routines for information about error handling routines.

• •

• •

• •

• •

• •

• •

2. Databridge API

2. Databridge API 11

3. Using the Databridge API

This chapter explains how to use the Databridge ALGOL API and provides information about the

entry points and values that the API contains.

3.1 Databridge API Overview

Using the API, you can write an Accessory that uses entry points to request information from

DBEngine or DBSupport. This information is usually structural and layout information about a

DMSII database and data from the database and the audit trail. In addition, the DBSupport entry

points can filter and format the data you request. To see a list of entry points grouped by their

functions, read Entry Point Procedure Values.

The ALGOL API file (SYMBOL/DATABRIDGE/INTERFACE) contains all of the definitions an

Accessory needs to call entry points in DBEngine or DBSupport. This file is installed with the

Databridge Host software, and it includes brief descriptions of the expected parameters and the

constants specific to DBEngine and DBSupport.

Databridge must be installed on your host before you can use the Databridge API. (If it is not, see

the Databridge Installation Guide for instructions on installing Databridge.) Locate where

Databridge has been installed and make sure it is visible to your Accessory, based on standard host

security.

Information about the library entry points is divided into two sections in this chapter—one for

DBEngine entry points and one for DBSupport entry points. Each of these sections include the

following:

Reference tables that list and briefly describe the DBEngine or DBSupport entry points as

follows:

DBEngine Entry Points

DBSupport Entry Points

Separate sections describing each entry point in detail

3.1.1 Sample Accessories

For sample Accessories that illustrate the API, see the following files installed with the Host

software. Each sample Accessory also has an associated WFL job, WFL/DATABRIDGE/SAMPLE/

programname for each sample Accessory that includes the necessary file equation.

•

•

•

•

3. Using the Databridge API

3. Using the Databridge API 12

https://www.microfocus.com/documentation/databridge/7-1/install
https://www.microfocus.com/documentation/databridge/7-1/install

SYMBOL/DATABRIDGE/SAMPLE/SQLGEN

This sample illustrates one way of generating structured query language (SQL) CREATE

TABLE statements to build a relational database similar to a DMSII database. The

DBSQLGen sample Accessory reads a DMSII database DESCRIPTION file and then

generates SQL CREATE TABLE statements to build a relational database similar to the

DMSII database.

SYMBOL/DATABRIDGE/SAMPLE/DASDLGEN

This sample generates a DASDL source for the data sets and sets in a given DESCRIPTION

file. It does not provide the physical attributes, audit file attributes, parameters, etc.

SYMBOL/DATABRIDGE/SAMPLE/AUDITCLOSE

This sample causes an audit switch by closing the current audit file and switching to the

next audit file. When you run this program, file-equate the DASDL to the title of the

DESCRIPTION file. The following example shows how to do this for the BANKDB database

description file:

RUN OBJECT/DATABRIDGE/SAMPLE/AUDITCLOSE;

 FILE DASDL = DESCRIPTION/BANKDB;

SYMBOL/DATABRIDGE/SAMPLE/COBOLGEN

This sample generates a COBOL source for the data sets in a given DESCRIPTION file.

SYMBOL/DATABRIDGE/SAMPLE/READDOC

This sample reports on the programs and database events contained in the audit trail. When

you run this program, file-equate the DASDL to the title of the DESCRIPTION file. The

following example shows how to do this for the BANKDB database description file:

RUN OBJECT/DATABRIDGE/SAMPLE/READDOC;

 FILE DASDL = DESCRIPTION/BANKDB;

3.2 Entry Point Procedure Values

All entry points are a specific type of procedure based on the kind of value returned. Procedure

types can be one of the following:

• •

• •

• •

• •

• •

Type Description

BOOLEAN BOOLEAN procedures return a value of TRUE or FALSE. See

Boolean Callback Procedures for a description of BOOLEAN

procedures and Callback Return Values for the meaning of these

values.

3.2 Entry Point Procedure Values

3.2 Entry Point Procedure Values 13

Type Description

DBMTYPE

NOTE: The

Databridge API

defines DBMTYPE to

be REAL.

DBMTYPE procedures return real numbers as their values, and

the numbers correspond to the Databridge error and status

messages. These numbers are listed in the API file.

DBMTYPE values indicate the following:

Success (for example, DBM_OK = 0)

Action (for example, DBM_COMMIT = 1)

Failure (for example, DBM_BAD_DSNAME = 5)

Most of the entry points return DBMTYPE values. For a

description of the messages associated with these values, see

the Databridge Host Administrator's Guide.

To retrieve a message that describes the DBMTYPE value, call

the DBMESSAGE entry point in DBEngine. You can then display

this message or write it to a log file.

•

•

•

3.2 Entry Point Procedure Values

3.2 Entry Point Procedure Values 14

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

3.2.1 Using the DBMTYPE Values

One way to use DBMTYPE values is to program your Accessory to respond based on the DBMTYPE

value returned. Following is an example of how you can do this.

3.2.2 Boolean Callback Procedures

Many of the Databridge API entry points return a list or series of items, such as a list of data sets or

a series of records. To accommodate these returned lists, Databridge uses callback procedures.

The purpose of the callback procedure technique is to allow your Accessory to manipulate data,

item by item, as it is returned from an entry point.

Type Description

EMATYPE EMATYPE (error manager) procedures return EMATYPE values

that indicate how a Databridge Accessory should handle errors.

EMATYPE procedures use AIDTYPE values, which are ID

numbers that identify Databridge Accessories.

See Error Manager Types for a description of EMATYPE and

AIDTYPE values.

You must include SYMBOL/DATABRIDGE/INTERFACE before you can use DBMTYPE values in

your Accessory. See Accessing the DBEngine and DBSupport Libraries for a description of how

to include this file.

Note

DBMTYPE DBRESULT;
.
.
.
DBRESULT := engine_entry_point (parameter_1, . . . parameter_n);
IF DBRESULT NEQ DBM_OK THEN
.
.
.

3.2.1 Using the DBMTYPE Values

3.2.1 Using the DBMTYPE Values 15

A callback procedure is a Boolean procedure that you name, declare, and write in your program.

The callback procedures are referenced in the Databridge API, but they exist in your Accessory. You

name the callback procedures whatever you prefer, and you define what the callback procedure

does (for example, print, display, and so on). However, the Databridge API file determines the types

of parameters the callback procedure receives; the callback procedure in your Accessory

determines what to do with the received data. Therefore, you must write your callback procedure to

accommodate the parameter values returned to it from the DBEngine entry point.

The Databridge API entry points pass values to the callback procedure based on the type of data

that the API entry point retrieved. The Databridge API references your callback procedure as a

formal parameter called CALLBACK . The program you are writing must supply the actual parameter

for CALLBACK as it is defined in your program.

How Callback Procedures Work

Before you can call a Databridge entry point that has a callback procedure as a parameter, you

must declare a Boolean procedure with the same parameter list as the callback procedure. The

types of the parameters must match what is in the API, but the parameter names can be whatever

you want. This Boolean callback procedure returns TRUE if the entry point should continue to return

more items from the list. It returns FALSE to discard the rest of the list.

For example, suppose you want to enumerate the keys of a set using the entry point DBKEYS. The

second parameter to DBKEYS is a callback procedure, which the API defines as follows:

You would define a procedure matching that declaration, such as the following:

The program can then call the entry point, passing it the callback procedure. This example would

use the following call:

This example callback procedure, GetKey, is called once for each of the key items of the set

indicated by SetStrNum.

boolean procedure Callback (ItemNum, DESCENDING);
% Input: procedure to call back for each key item

 value ItemNum, DESCENDING;
 integer ItemNum;
 % Input: item number
 % (as in ITEM_INFO [II_ITEM_NUM])

 boolean DESCENDING;
 % Input: true if item is a descending key
 formal;

boolean procedure GetKey (KeyItemNbr, IsDescending); value
KeyItemNbr, IsDescending;;
 integer KeyItemNbr; boolean IsDescending;
begin
 if IsDescending then
 display ("Key #" !! string (KeyItemNbr, *) !! " down")
 else
 display ("Key #" !! string (KeyItemNbr, *) !! " up");
GetKey := true;
end GetKey;

if DBKEYS (SetStrNum, GetKey) NEQ DBM_OK then
 ... % an error occurred

3.2.2 Boolean Callback Procedures

3.2.2 Boolean Callback Procedures 16

When you call an entry point with a callback procedure, the program follows this general sequence:

The program calls the entry point, passing it the callback procedure name as well as any other

required parameters.

The entry point that your program calls then prepares the data it retrieves for a single item and

calls the callback procedure in your program.

When your callback procedure exits (or finishes), control returns to the entry point.

The entry point retrieves and prepares the data for the next item and calls the callback

procedure in your program.

StepsStep2 on page18–Step4 on page19 are repeated until there are no more items in the list.

The entry point exits, and control returns to your program.

If the Databridge entry point retrieves 100 items, the callback procedure will be called 100 times.

3.2.3 Callback Return Values

Callback procedures return Boolean values as follows:

TRUE—Continue calling the callback procedure

FALSE—Stop calling the callback procedure. The entry point will typically return a

DBM_CB_CANCEL result in this case.

DBEngine Entry Points That Use Callbacks

The following DBEngine entry points use the procedure callbacks:

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

• •

• •

3.2.3 Callback Return Values

3.2.3 Callback Return Values 17

DBDATASETINFO

DBDATASETS

DBDIRECTORYSEARCH

DBKEYINFO

DBKEYINFOREMAP

DBKEYS

DBKEYSREMAP

DBLAYOUT

DBLINKS

DBREAD

DBREADTRANGROUP

DBSETS

DBSETSINFO

DBSUBSETSINFO

DBWAIT

DBSupport Entry Points That Use Callbacks

The following DBSupport entry points use procedure callbacks:

DBFILTEREDDATASETS

DBFILTEREDLAYOUT

DBFILTEREDLINKS

DBFILTEREDSETS

DBFILTEREDSUBSETSINFO

DBFILTEREDSETSINFO

DBFILTEREDWRITE

DBFORMAT

DBPRIMARYKEY

DBTRANSFORM

3.3 Accessing the DBEngine and DBSupport Libraries

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

3.3 Accessing the DBEngine and DBSupport Libraries

3.3 Accessing the DBEngine and DBSupport Libraries 18

Different options exist for accessing the libraries, depending on whether you are using entry points

from one library or both.

3.3.1 Requirements for Both Libraries

Each ALGOL Accessory you write to access the DBEngine or DBSupport library must do the

following:

Set the appropriate $INCLUDE_ENGINE or $INCLUDE_SUPPORT options before including the

interface. Be sure to include both if you are using entry points from both libraries.

Include SYMBOL/DATABRIDGE/INTERFACE using the ALGOL $INCLUDE statement.

Call the appropriate entry point to verify that your program was compiled against the same

API file (SYMBOL/DATABRIDGE/INTERFACE) as DBEngine, and if applicable, DBSupport. See

the table below for details.

Meet the requirements listed later in Additional DBEngine Requirements and, if applicable, in

Additional DBSupport Requirements.

The following example shows the interface file $INCLUDE statement:

or

Additional DBEngine Requirements

In addition to the requirements listed previously, you must also do the following to access

DBEngine:

• •

• •

• •

If you are using Then use this entry point

DBEngine only DBINTERFACEVERSION or

DBVERSION

DBEngine and DBSupport or DBSupport

only

DBSUPPORTINIT

• •

$SET INCLUDE_ENGINE
$INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

$SET INCLUDE_ENGINE INCLUDE_SUPPORT
$INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

3.3.1 Requirements for Both Libraries

3.3.1 Requirements for Both Libraries 19

Invoke the DBLINKENGINE define to link to DBEngine.

If you are not using DBSupport, then call DBINTERFACEVERSION to verify that your program

was compiled with the same version of the DBInterface as DBEngine was.

Call the DBEngine entry point DBINITIALIZE, passing the title of the DMSII DESCRIPTION file

to use.

Additional DBSupport Requirements

In addition to the requirements listed previously, you must also do the following to access

DBSupport:

Put the title of the DBSupport library in a string variable and call DBSupportTitle. For

example:

DBMTYPE DMR;

 string SupportTitle;

 SupportTitle := "OBJECT/DATABRIDGE/SUPPORT/BANKDB";

 DMR := DBSupportTitle (SupportTitle);

Call DBSupportInit to do the following:

Verify your program was compiled with the same version of the DBInterface as

DBEngine and DBSupport were

Specify the names of the filter, format, and transform. For example:

if DBSupportInit (DBV_VERSION, "MyAccessory:",

 "MYFILTER", "COMMAFORMAT", "DBTRANSFORM") NEQ DBM_OK then

 begin

 display ("Interface version mismatch");

 end;

These filter, format, and transform names can be ones you created or ones predeclared in

DBSupport. Refer to the Databridge Host Administrator's Guide for more information about

DBGenFormat.

Accessing DBEngine Only

The following example shows how to access DBEngine only (and not DBSupport). The declarations

for many of the variables used in this example are not shown.

• •

• •

• •

• •

• •

• •

• •

3.3.1 Requirements for Both Libraries

3.3.1 Requirements for Both Libraries 20

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

3.4 DBEngine Entry Points

Use the DBEngine entry points to request information from DBEngine.

The table below summarizes the DBEngine entry points and their functions, and each of these

points is explained in detail later in this chapter. The Entry Point column in this table contains the

name of the entry point, the Type column indicates what type of procedure the entry point is, and

the Description column describes what the entry point does. See Entry Point Procedure Values for

an explanation of the various procedure types and the values they return. DBMTYPE values are

listed in the API file (SYMBOL/DATABRIDGE/INTERFACE) and the Databridge Host Administrator's

Guide.

$ SET INCLUDE_ENGINE$
$ INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

BOOLEAN PROCEDURE INITIALIZE;
% ----------
 BEGIN
 FILE DASDL (DEPENDENTSPECS); % for file-equating only
 FILE DB;

 POINTER P;

 DBLINKENGINE;

 IF DBVERSION NEQ DBV_VERSION THEN
 BEGIN
 SetMsgParam1(DBVERSION, *);
 SetMsgParam2 (DBV_VERSION, *);
 DIE (DBM_VERSION_MISMATCH, MsgParam1c MsgParam2);
 END;

 REPLACE P:FILETITLE BY DASDL.TITLE;
 DASDLTITLE := STRING (FILETITLE, OFFSET (P) - 1);

 IF DB.FILEEQUATED THEN
 BEGIN
 REPLACE P:FILETITLE BY DB.FILENAME;
 DBNAME := STRING (FILETITLE, OFFSET (P) - 1);
 END;

 WRITE_IF_ERR (DBINITIALIZE (DASDLTITLE, DBNAME));

 INITIALIZE := NOT DONE; % no fatal errors

 END INITIALIZE;

Entry Point Type Description

DBATTRIBUTE DBMTYPE Returns a specified file attribute

value of a disk file

DBAUDITATTRIBUTE DBMTYPE Returns a specified file attribute

value of an audit file

DBAUDITMEDIUM DBMTYPE Specifies where DBEngine looks for

audit files

DBAUDITPACK DBMTYPE Specifies an alternate audit pack

location

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 21

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Entry Point Type Description

DBAUDITPREFIX DBMTYPE Specifies a non-standard file name

prefix for audit files

DBAUDITSOURCE DBMTYPE Specifies where to access remote

audit files

DBAUDITSOURCEX DBMTYPE Specifies how to access remote

audit files

DBCANCELWAIT DBMTYPE Cancels the wait (set by DBWAIT)

for audit files to become available

DBCLOSEDATASET DBMTYPE Closes a dataset previously opened

with DBOpenDataset.

DBCOMMENT DBMTYPE Copies the DASDL comment

associated with a structure or data

item into the caller's array

DBCOMPILESUPPORT DBMTYPE Compiles the DBSupport library

DBDATABASEINFO DBMTYPE Returns information about the

database, such as the update level

and timestamp

DBDATASETINFO DBMTYPE Returns layout information about the

data set or remap as described in

the DATASET_INFO array

DBDATASETNAME DBMTYPE Returns the structure name for the

specified structure index

DBDATASETNUMS DBMTYPE Returns an array containing the

structure numbers of all the data

sets and remaps in the logical

database

DBDATASETS DBMTYPE Lists the data set names, structure

numbers, and other information

about each data set

DBDATASETVFINFO DBMTYPE Loads the DATASET_INFO array with

information about the data set,

remap, or set

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 22

Entry Point Type Description

DBDATETIME DBMTYPE Converts a timestamp from TIME (6)

format to a binary format time and

date

DBDESELECT DBMTYPE Deselects a data set previously

selected with DBSELECT so that it is

not processed by subsequent

DBREADs or DBWAITs

DBDIRECTORYSEARCH DBMTYPE Returns the file names within a

specified directory and its

subdirectories

DBDISPLAYFAULT DBMTYPE Displays a message describing a

program fault, such as INVALID

INDEX

DBDISPLAYMSG DBMTYPE Displays the error message

associated with the result code

returned from the call to the

previous entry point

DBENGINEMISSINGENTRYPOINT STRING Returns the name of the first entry

point missing from the library code

file that the Accessory expected to

be present based on the interface

file

DBFAMILYINFO DBMTYPE Returns the date, time, and system

serial number when the family was

created.

DBFILEATTRIBUTE DBMTYPE Allows an Accessory to retrieve file

attribute information about any file

DBGETFIRSTQPT DBMTYPE Finds the first quiet point in the audit

trail beginning with the Audit File

Number and Audit Block Serial

Number given in STATE_INFO.

STATE_INFO is updated to reflect

the audit location of the quiet point.

DBINITFILTER DBMTYPE (not used)

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 23

Entry Point Type Description

DBINITIALIZE DBMTYPE Initializes DBEngine by specifying

the title of the database

DESCRIPTION file

DBINTERFACEVERSION DBMTYPE Validates the Accessory's

DBInterface version against

DBEngine's DBInterface version and

returns an error if they are

incompatible

DBIOERRORTEXT DBMTYPE Copies the error text describing the

READ/WRITE result value into the

caller's array

DBIORESULTTEXT DBMTYPE Copies the error text describing the

I/O result value into the caller's array

NOTE: This entry point is now called

DBOPENRESULTTEXT.

DBITEMINFO DBMTYPE Returns information for a data item

in a data set

DBITEMNUMINFO DBMTYPE Retrieves information about a single

data item

DBKEYDATAREMAP DBMTYPE Enumerates the items of the KEY

DATA for a set using the item

descriptions of the designated data

set or remap

DBKEYINFO DBMTYPE Returns information for each key

item in a set

DBKEYINFOREMAP DBMTYPE Enumerates key items in a set using

item information in a remap

DBKEYS DBMTYPE Lists the key items in the specified

set

DBKEYSREMAP DBMTYPE Enumerates key items in a set using

the item numbers of the specified

data set of a remap

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 24

Entry Point Type Description

DBLAYOUT DBMTYPE Lists the data items in the specified

data set

DBLIMITTASKNAME DBMTYPE Sets the processing limit task name

DBLIMITTIMESTAMP DBMTYPE Sets the processing limit timestamp

DBLINKS DBMTYPE Enumerates LINK items in a data set

DBMAKETIMESTAMP DBMTYPE Converts a date and time to a

timestamp in TIME (6) format

DBMAXRECORDS DBMTYPE Returns the estimated maximum

number of records currently in a

data set

DBMAXRECORDSVF DBMTYPE Returns the estimated maximum

number of records currently in a

data set

DBMESSAGE DBMTYPE Copies the error message

associated with a DBMTYPE value to

the caller's array

DBMODIFIES DBMTYPE Specifies whether data set record

updates should be returned as a

DELETE/CREATE pair or as an

update

DBMODIFYTIMESTAMP DBMTYPE Increments or decrements a

timestamp by days, hours, minutes,

and/or seconds

DBNULL DBMTYPE Returns the NULL value for the

specified data item

DBNULLRECORD DBMTYPE Returns a record with all data items

NULL

DBOLDESTAUDITLOC DBMTYPE Finds the oldest audit location on

disk

DBOPENAUDIT DBMTYPE Opens an audit file and returns audit

file information

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 25

Entry Point Type Description

DBOPENRESULTTEXT DBMTYPE Copies the error text describing the

OPEN/CLOSE/RESPOND result value

into the caller's array

DBPARAMETERS DBMTYPE Specifies various run-time

processing parameter values

DBPRIMARYSET DBMTYPE Returns the structure number of the

NO DUPLICATES set having the

fewest key items for the given data

set

DBPRIVILEGED BOOLEAN Indicates whether or not the caller is

a privileged program or running

under a privileged usercode

DBPUTMESSAGE DBMTYPE Sets the DBMESSAGE parameter

values

DBREAD DBMTYPE Receives a transaction group (up to

the next quiet point) of changes to

data set records from the audit trail

DBREADAUDITREGION DBMTYPE Reads the audit file region, starting

with the indicated audit block serial

number (ABSN) and block offset

DBREADERPARAMETER DBMTYPE Allows an Accessory to specify the

title of the FileXtract Reader library

and the parameter string that is

passed to the Reader library

DBREADTRANGROUP DBMTYPE Receives a transaction group (up to

the next quiet point) of changes to

data set records from the audit trail.

If a transaction group is not

available, it waits for a specified

number of seconds before retrying

DBRESETOPTION DBMTYPE Turns off DBEngine run-time options

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 26

Entry Point Type Description

DBSELECT DBMTYPE Selects a data set to be processed

by a subsequent DBREAD or

DBWAIT, and validates the client

format level when a data set is

selected for cloning

DBSELECTED DBMTYPE Checks to see if the specified data

set has been selected

DBSETINFO DBMTYPE Returns information describing a set

as given in the SET_INFO array

DBSETOPTION DBMTYPE Turns on DBEngine run-time options

DBSETS DBMTYPE Lists the names, structure numbers,

and other information for the sets of

the specified data set

DBSETSINFO DBMTYPE Returns information for each set of

a given data set

DBSPLITTIMESTAMP DBMTYPE Converts a timestamp from TIME (6)

format to a date and time in yyyy,

mm, dd, hh, mn, ss form

DBSPLITTIME60 DBMTYPE Splits a timestamp in TIME (60)

format into separate components

DBSTATEINFOTODISPLAY INTEGER Converts state information into

readable format

DBSTATISTICS DBMTYPE Returns statistics for the specified

category

NOTE: To accumulate statistics,

DBEngine must be compiled with

$ SET STATS , which is available as

OBJECT/DATABRIDGE/ENGINE/

STATS.

DBSTRIDX DBMTYPE Returns the structure index for a

selected data set

DBSTRNUM DBMTYPE Returns the structure number for the

specified structure name

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 27

Entry Point Type Description

DBSTRUCTURENAME DBMTYPE Returns a structure name for a

DMSII structure

DBSUBSETSINFO DBMTYPE Enumerates information for each

subset of a given data set

DBSWITCHAUDIT DBMTYPE Forces an audit file switch

DBTIMESTAMPMSG DBMTYPE Converts the timestamp from TIME

(6) format to the following form:

month, day, year @ hh:mm:ss

DBUPDATELEVEL DBMTYPE Returns the database update level

and timestamp

DBVERSION REAL Returns the version number of the

API file (SYMBOL/DATABRIDGE/

INTERFACE) that DBEngine was

compiled against.

DBWAIT DBMTYPE Receives the transaction group (up

to the next quiet point) of changes

to data set records from the audit

trail If a transaction group is not

available, it waits for a specified

number of seconds before retrying.

DBWHEREDASDL DBMTYPE Returns the DASDL source

expression associated with the

WHERE clause of an automatic

subset or the SELECT cause of a

remap

3.4 DBEngine Entry Points

3.4 DBEngine Entry Points 28

3.5 DBATTRIBUTE

This entry point returns a specified file attribute value of a disk file. Contact Micro Focus Customer

Care for additional information.

3.6 DBAUDITMEDIUM

This entry point allows an Accessory to specify where DBEngine looks for audit files and whether to

look for primary, secondary, or both.

Declaration

DBMTYPE procedure DBAuditMedium (AuditMedium,AuditType);

Entry Point Type Description

DBWHERETEXT DBMTYPE Returns the ALGOL source code

fragment associated with the

WHERE clause of an automatic

subset or the SELECT clause of a

remap

Input Type Definition

AUDITMEDIUM INTEGER The medium on which to look for the audit file.

Possible values are as follows:

DBV_AM_ORIGPACK—Tells the Accessory to look

on the original pack(s)

DBV_AM_ALTERNATE—Tells the Accessory to look

on the alternate pack as specified by

DBAUDITPACK

If this parameter is invalid, DBEngine returns a

DBM_BAD_AUDMED (110) error

•

•

3.5 DBATTRIBUTE

3.5 DBATTRIBUTE 29

3.7 DBAUDITATTRIBUTE

This entry point returns a specified file attribute value of an audit file, if the specified attribute

number is VALUE (TITLE), VALUE (FILENAME), or VALUE (FAMILYNAME).

This function looks for the audit file first on the Alternate pack and then on the original audit pack.

This allows DBEnterprise to access audit files in either location. Contact Micro Focus for additional

information.

3.8 DBAUDITPACK

This entry point specifies where audit files may be located. DBEngine looks on the pack specified

by the DMSII control file, the pack specified by DBAUDITPACK, or both, depending on

DBAUDITMEDIUM.

Declaration

Input Type Definition

AUDITTYPE INTEGER The type of audit file for which to look, such as primary

or secondary

Possible values are as follows:

DBV_AM_NEITHER—Tells the Accessory not to

look for audit files on the source

DBV_AM_PRIMARY—Tells the Accessory to look

only for the primary audit file

DBV_AM_SECONDARY—Tells the Accessory to

look only for the secondary audit file

DBV_AM_BOTH—Tells the Accessory to look for

both the primary and secondary audit files

See DBAUDITMEDIUM Parameters for more

information about these values.

If this parameter is invalid, DBEngine returns a

DBM_BAD_AUDTYPE (111) error

•

•

•

•

3.7 DBAUDITATTRIBUTE

3.7 DBAUDITATTRIBUTE 30

3.9 DBAUDITPREFIX

This entry point can specify a non-standard file name prefix for audit files. Normally, the prefix for

audit files is:

(databaseusercode)databasename

Using the DBAuditPrefix entry point, the prefix can have a different usercode, different first node,

and/or additional nodes.

This entry point specifies where audit files may be located. DBEngine looks on the pack specified

by the DMSII control file, the pack specified by DBAUDITPACK, or both, depending on

DBAUDITMEDIUM.

If the prefix is badly formed, the entry point will return DBM_BAD_PREFIX (137) (Invalid audit file

prefix: ' prefix ')

3.10 DBAUDITSOURCE

This entry point specifies where to access remote audit files.

Declaration

Input Type Definition

PACKNAME STRING The name of the pack where DBEngine should look for

normal DMSII audit files

Input Type Definition

HOST STRING The name or the IP address of the DBServer host

where the audit files are located

SOURCENAME STRING A source identifier that is the name of a SOURCE in the

DBServer parameter file

PROTOCOL INTEGER The network protocol value, such as TCPIP

See Network Protocol Values for possible values.

3.9 DBAUDITPREFIX

3.9 DBAUDITPREFIX 31

3.11 DBAUDITSOURCEX

This entry point specifies how to access remote audit files. This entry point is identical to

DBAUDITSOURCE except that the PORTNAME is a string rather than a number to allow names for

BNA and HLCN ports.

Declaration

DBMTYPE procedure DBAuditSourceX (Host, SourceName, Protocol, PortName);

Input Type Definition

PORT INTEGER The port number that matches PORT in the DBServer

parameter file

Input Type Definition

HOST STRING The name or the IP address of the DBServer host

where the audit files are located

SOURCENAME STRING A source identifier that is the name of a SOURCE in the

DBServer parameter file

PROTOCOL INTEGER The network protocol value, such as TCPIP

See the DBV_NET_xxx values in Network Protocol

Values for possible values.

3.11 DBAUDITSOURCEX

3.11 DBAUDITSOURCEX 32

3.12 DBCANCELWAIT

This entry point cancels the wait for more audit files to become available via DBWAIT or

DBREADTRANGROUP.

Declaration

DBMTYPE procedure DBCANCELWAIT;

3.13 DBCLOSEDATASET

This entry point closes a dataset previously opened with DBOpenDataset. Contact Micro Focus for

additional information.

3.14 DBCOMMENT

This entry point copies the DASDL comment associated with a structure or data item into the

caller's array. These comments must have been declared in the DASDL using the double-quote

Declaration. For example:

ACCT-YTD-INT "year-to-date interest" NUMBER (11, 2);

Declaration

DBMTYPE procedure DBComment (StrNum, ItemNum, pText, Len);

Input Type Definition

PORTNAME STRING The port name, such as 3000 or BNA350

This value must match the PORT in the DBServer

parameter file.

Input Type Definition

STRNUM REAL The structure number of the structure you are requesting.

Since no comment can be associated with the global

record, a structure number of 1 is invalid.

3.12 DBCANCELWAIT

3.12 DBCANCELWAIT 33

Input Type Definition

ITEMNUM REAL The item number of the data item you are requesting.

Use 0 to request the comment associated with a data set,

set, or remap.

3.14 DBCOMMENT

3.14 DBCOMMENT 34

3.15 DBCOMPILESUPPORT

This entry point compiles the DBSupport library. If an Accessory determines that DBSupport needs

to be compiled with the current DESCRIPTION file, it can call this entry point. Any local patches to

DBSupport are ignored if they are not specified in the DBGenFormat parameter file.

If DBEngine determines that a DBSupport library already exists for the desired update level, it

copies the new title of the DBSupport library into the caller's array and then returns immediately

without actually compiling it.

Declaration

DBMTYPE procedure DBCompileSupport (pTitle);

3.16 DBDATABASEINFO

Input Type Definition

PTEXT POINTER Destination for the comment text

Output Type Definition

LEN REAL The length, in bytes, of the text copied into PTEXT

Possible values are as follows:

If the array is too short, no text is copied, but LEN is set to

the needed length, and the procedure value is

DBM_SHORT_ARRAY (23).

If no text is associated with the structure, such as when the

structure number is a data set, set, or manual subset, the

procedure returns DBM_OK, and LEN is set to 0.

•

•

Input Type Definition

PTITLE POINTER The pointer to the title of the DBSupport library

Output Type Definition

PTITLE VALUE The new title of the DBSupport library (the update level node

to be appended to the file name)

3.15 DBCOMPILESUPPORT

3.15 DBCOMPILESUPPORT 35

This entry point returns layout information about the database, such as the update level and update

timestamp.

Declaration

DBMTYPE procedure DBDATABASEINFO (DATABASE_INFO);

3.17 DBDATASETINFO

This entry point returns layout information about a data set or remap. If the data set has any links,

DBDATASETINFO sets the DATASET_INFO [DI_LINKS] = 1.

Declaration

DBMTYPE procedure DBDATASETINFO (DSStrNum, Callback);

Output Type Definition

DATABASE_INFO ARRAY An array of information that describes the

database.

For a description of the array, see DATABASE_INFO

Layout.

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap

3.17 DBDATASETINFO

3.17 DBDATASETINFO 36

BOOLEAN PROCEDURE CALLBACK

This is the procedure that receives information about the data set. For fixed-format data sets, this

procedure is called once. For variable-format data sets, this procedure is called once for each

format type.

Declaration

boolean procedure Callback (pDatasetName, Len, DATASET_INFO);

3.18 DBDATASETNAME

This entry point returns a data set name corresponding to the specified structure index.

Declaration

DBMTYPE procedure DBDATASETNAME (StrIdx, pDSName,Len);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives the data set information

Parameter Type Definition

P_DATASETNAME POINTER The pointer to a data set name

The caller must copy the actual data set name into

its own local memory.

LEN REAL The length of the data set name

DATASET_INFO ARRAY Information about the data set

For a description of the array, see DATABASE_INFO

Layout.

Input Type Definition

STRIDX REAL The structure index from UPDATE_INFO [UI_STRIDX]

3.18 DBDATASETNAME

3.18 DBDATASETNAME 37

3.19 DBDATASETNUMS

This entry point returns an array that contains the structure numbers of all of the data sets (except

virtual data sets) and remaps in the logical database.

Declaration

DBMTYPE procedure DBDatasetNums (DSNums, LastIdx);

Input Type Definition

P_DSNAME POINTER The pointer to the array that is to receive the data set

name

Output Type Definition

LEN REAL The length of the data set name in bytes

Input Type Definition

DSNUMS ARRAY Contains the structure numbers of all data sets (except

virtual data sets) and remaps in the (logical) database.

3.19 DBDATASETNUMS

3.19 DBDATASETNUMS 38

3.19.1 DBDATASETS

This entry point provides data set names and their structure numbers. Use DBDATASETS to

generate a pointer to a data set name, the data set name length, and an array that contains

information about the data set, such as its structure number.

Declaration

DBMTYPE procedure DBDATASETS (Callback);

BOOLEAN PROCEDURE CALLBACK

For fixed-format data sets, DBDATASETS calls this procedure once. For variable-format data sets,

DBDATASETS calls this procedure once for each format (record) type.

Declaration

boolean procedure Callback (pDatasetName, Len, DATASET_INFO);

Input Type Definition

LASTIDX REAL The subscript of the last valid entry in the DSNUMS array

(above).

If the array is too small, it is automatically resized to the

appropriate size.

Input Type Definition

CALLBACK BOOLEAN The procedure that receives data set information

Parameter Type Definition

P_DATASETNAME POINTER Points to a data set name

The caller must copy the actual data set name into

its own local memory

LEN REAL The length of the data set name

3.19.1 DBDATASETS

3.19.1 DBDATASETS 39

3.20 DBDATASETVFINFO

This entry point loads the DATASET_INFO array with information about the data set or remap,

according to the record type number.

Declaration

DBMTYPE procedure DBDatasetVFInfo (DSStrNum, RecType, DATASET_INFO);

Parameter Type Definition

DATASET_INFO ARRAY Information about the data set

For a description of the array, see DATABASE_INFO

Layout.

Input Type Definition

DSSTRNUM REAL Structure number of the data set or remap

3.20 DBDATASETVFINFO

3.20 DBDATASETVFINFO 40

3.21 DBDATETIME

This entry point converts the timestamp in TIME (6) format to a binary format date and time.

Declaration

DBMTYPE procedure DBDATETIME (Timestamp, YYYYMMDD, HHMMSS);

Input Type Definition

RECTYPE REAL Record type number (0 for fixed format)

Output Type Definition

DATASET_INFO ARRAY Information about the data set as contained in the

DATASET_INFO array

See DATABASE_INFO Layout for a description of the

array.

Input Type Definition

TIMESTAMP REAL TIME (6) timestamp

Output Type Definition

YYYYMMDD INTEGER The date in binary format

3.21 DBDATETIME

3.21 DBDATETIME 41

3.22 DBDESELECT

This entry point deselects a data set that was previously selected by DBSELECT so that it is not

processed by subsequent DBREADs or DBWAITs.

Declaration

DBMTYPE procedure DBDESELECT (StrIdx);

3.23 DBDIRECTORYSEARCH

This entry point returns the file names within a specified directory and its subdirectories. DBEngine

calls the Accessory-supplied callback procedure with the name of each file. This function will

translate the filename or directory name to UPPERCASE, avoiding error DBM0125.

Declaration

DBMTYPE procedure DBDirectorySearch (pDirName, FilenameHandler);

Output Type Definition

HHMMSS INTEGER The time in binary format

Input Type Definition

PDIRNAME POINTER Pointer to the period-terminated directory name

NOTE: Do not include /= in the name. For example, to get

a list of files in SUMLOG/1234/= ON SYSTEM, use the

following:

SUMLOG/1234

3.22 DBDESELECT

3.22 DBDESELECT 42

BOOLEAN PROCEDURE CALLBACK

This procedure receives the name of a file in the specified directory and is called once for each file.

If the procedure returns TRUE (no more file names are available), DBEngine aborts the search.

Declaration

boolean procedure FilenameHandler (pFilename, FilenameLen);

3.24 DBDISPLAYFAULT

This entry point displays a message describing a program fault, such as INVALID INDEX, along with

the line number in the application program that caused the fault.

The sample reformatting routine (SYMBOL/DATABRIDGE/SAMPLE/REFORMAT) captures and

identifies errors and uses this entry point to help sites debug their reformatting routines.

Declaration

DBMTYPE procedure DBDisplayFault (Prefix, FaultNbr, pFaultHistory);

Input Type Definition

ON

SYSTEM.

Parameter Type Definition

PFILENAME POINTER Pointer to a file name in the directory

FILENAMELEN INTEGER Length of the file name in bytes

Input Type Definition

PREFIX STRING The prefix of the message to be displayed

This prefix is usually the program name followed by

a colon.

Example: DBSpan:

FAULTNBR REAL The fault number returned by the ALGOL ON

statement

3.24 DBDISPLAYFAULT

3.24 DBDISPLAYFAULT 43

3.25 DBDISPLAYMSG

This entry point displays the error message associated with the result code returned from the call

to the previous entry point.

Declaration

DBMTYPE procedure DBDisplayMsg (DBMResult);

3.26 DBENGINEMISSINGENTRYPOINT

This entry point returns the name of the first entry point missing from the library code file that the

Accessory expected to be present based on the interface file.

Declaration

string procedure DBENGINEMissingEntryPoint;

Example

3.27 DBFAMILYINFO

This entry point returns the date, time, and system serial number when the family was created.

Contact Micro Focus Customer Support for additional information.

Input Type Definition

PFAULTHISTORY POINTER The stack history returned by the ALGOL ON

statement

Input Type Definition

DBMRESULT DBMTYPE The procedure value from a prior call to a DBEngine or

DBSupport entry point

string MissingEP;
...
MissingEP := DBENGINEMissingEntryPoint;
if MissingEP NEQ empty then
 display ("Missing DBEngine entry point " !! MissingEP);

3.25 DBDISPLAYMSG

3.25 DBDISPLAYMSG 44

3.28 DBFILEATTRIBUTE

This entry point allows an Accessory to retrieve file attribute information about any file. The caller

supplies the file title and a mask of desired file attributes. For example, to request the creation date

and time, use the following mask:

0 & 1 [CREATIONDATEB:1] & 1 [CREATIONTIMEB:1]

DBEngine returns the values in the Attributes array, indexed by the attribute bit number. For

example, to reference the creation date value after calling this entry point, use the following:

Attributes [CREATIONDATEB]

Declaration

DBMTYPE procedure DBFileAttribute (pFileTitle, AttrMask, Attributes);

Input Type Definition

PFILETITLE POINTER The pointer to the period-terminated file name. This

function will translate the filename or directory name to

UPPERCASE, avoiding error DBM0125.

3.28 DBFILEATTRIBUTE

3.28 DBFILEATTRIBUTE 45

3.29 DBGETFIRSTQPT

This entry point finds the first quiet point (QPT) in the audit trail beginning with the audit file

number (AFN) and ABSN given in the STATE_INFO array layout. STATE_INFO is updated to reflect

the audit location of the quiet point. For a description of the STATE_INFO array layout, see

STATE_INFO Layout.

Declaration

DBMTYPE procedure DBGETFIRSTQPT (STATE_INFO);

Input Type Definition

ATTRMASK REAL Mask of desired file attributes

See File Attribute Mask Bits for a list of attributes and

their corresponding bits.

Output Type Definition

ATTRIBUTES ARRAY An array containing file attribute values

Input Type Definition

STATEINFO

[SI_AFN]

REAL The starting AFN

STATEINFO

[SI_ABSN]

REAL The starting ABSN

This ABSN does not have to exist in the specified audit

file. It simply functions as a lower bound.

Output Type Definition

STATEINFO [SI_AFN] REAL The AFN of the quiet point

STATEINFO [SI_ABSN] REAL The ABSN of the quiet point

STATEINFO [SI_SEG] REAL The segment of the quiet point

STATEINFO [SI_INX] REAL The word index of the quiet point

3.29 DBGETFIRSTQPT

3.29 DBGETFIRSTQPT 46

3.30 DBGETINFO

This entry point returns individual values corresponding to the Info_Enginexxxx values listed in

DBInterface.

Declaration

DBMTYPE procedure DBGetInfo (InfoId, InfoSelection, InfoValue);

Output Type Definition

STATEINFO [SI_TIME] REAL The timestamp of the quiet point

Input Type Definition

InfoId INTEGER One of the Info_Enginexxxx or Info_Sourcexxxx values

in DBInterface

3.30 DBGETINFO

3.30 DBGETINFO 47

3.31 DBGETOPTION

This entry point returns the value of a Boolean run-time option. The options are named

DBV_OP_xxxx and listed in DBInterface.

Declaration

DBMTYPE procedure DBGetOption (Option, Setting);

3.32 DBINITFILTER

This entry point will be removed.

3.33 DBINITIALIZE

This entry point initializes DBEngine by specifying the title of the database DESCRIPTION file

(without the DESCRIPTION node). You must initialize DBEngine by calling DBINITIALIZE before you

can use any of the other DBEngine API entry points that access database information either

directly or indirectly. See Accessing the DBEngine and DBSupport Libraries to see what else you

must do before using the DBEngine entry points.

Declaration

DBMTYPE procedure DBINITIALIZE (DBDescTitle, DB);

Input Type Definition

InfoSelection INTEGER Unused

Output Type Definition

InfoValue STRING Value of the requested information

Input Type Definition

Option INTEGER One of the DBV_OP_xxxx options in DBInterface

Output Type Definition

Setting BOOLEAN Value of option: true or false

3.31 DBGETOPTION

3.31 DBGETOPTION 48

3.34 DBINTERFACEVERSION

This entry point validates the Accessory's DBInterface version against DBEngine's DBInterface

version and returns a DBM_VER_MISMATCH (115) error if they are incompatible.

For related information, see DBINITIALIZESUPPORT.

Declaration

DBMTYPE procedure DBInterfaceVersion (AccessoryVersion, AccessoryID);

Input Type Definition

DBDESCTITLE STRING The title of the database DESCRIPTION file (without the

DESCRIPTION node)

Example: "(PROD)PAYROLLDB ON SYSPACK."

DB STRING Optional. The name of the logical or physical database

associated with the DESCRIPTION file (the database to

which you want access)

If a logical database is specified, the Accessory cannot

retrieve layout or update information for any data sets or

remaps outside of the specified logical database.

Output Type Definition

DB STRING If you leave this parameter empty on input, the program

returns the name of the physical database. See the Input

parameter definition for DB above.

If you are using DBSupport, you do not need to call DBINTERFACEVERSION explicitly because

your call to DBSupportInit automatically calls DBINTERFACEVERSION to validate the

DBInterface version of the Accessory against DBEngine.

Note

Input Type Definition

ACCESSORYVERSION REAL The version of DBInterface that was used to

compile the Accessory

3.34 DBINTERFACEVERSION

3.34 DBINTERFACEVERSION 49

3.35 DBIOERRORTEXT

This entry point copies error text describing the READ/WRITE result value into the caller's array. The

READ/WRITE result value is a Boolean value returned from a READ or WRITE function that was

passed to the entry point by the calling program.

Declaration

procedure DBIOErrorText (IOResult, pText, TextLen);

Input Type Definition

(DBV_VERSION)

ACCESSORYID STRING A descriptive string inserted in an error

message that identifies the Accessory

Example: DBSpan:

Input Type Definition

IORESULT BOOLEAN Result value from the READ or WRITE

3.35 DBIOERRORTEXT

3.35 DBIOERRORTEXT 50

3.36 DBIORESULTTEXT

This entry point is now called DBOPENRESULTTEXT (see DBOPENRESULTTEXT), and it is

recommended that you use DBOPENRESULTTEXT. However, for compatibility, the name

DBIORESULTTEXT still works.

3.37 DBITEMINFO

This entry point returns the ITEM_INFO array layout for a data item in a data set or remap. The only

difference between this entry point and DBITEMNUMINFO is that DBITEMNUMINFO specifies the

data item by name rather than number.

Declaration

DBMTYPE procedure DBITEMINFO (DSStrNum, RecType, ItemName, ITEM_INFO);

Input Type Definition

PTEXT POINTER Destination for error text

Output Type Definition

TEXTLEN INTEGER Length of the error text

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap that

contains the data item

RECTYPE REAL The record type number (0 for fixed format)

3.36 DBIORESULTTEXT

3.36 DBIORESULTTEXT 51

3.38 DBITEMNUMINFO

This entry point retrieves the ITEM_INFO array layout for a single data item. The only difference

between this entry point and DBITEMINFO is that DBITEMINFO specifies the data item by number

rather than name.

Declaration

DBMTYPE procedure DBITEMNUMINFO (DSStrNum, ItemNum, ITEM_INFO);

Input Type Definition

ITEMNAME STRING The name of the data item for which you are requesting

the array

Output Type Definition

ITEM_INFO ARRAY The information about the data item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap that

contains the data item

3.38 DBITEMNUMINFO

3.38 DBITEMNUMINFO 52

3.39 DBKEYDATAREMAP

This entry point enumerates the items of the KEY DATA for a set using the item descriptions of the

designated data set or remap. If the set does not have any KEY DATA, it returns the following

DBM_NO_KEYDATA (122) message:

setname does not have key data

KEY DATA is not the same as the KEY of a set. The KEY determines the order of the set entries,

while KEY DATA contains additional data items that are not part of the KEY.

Input Type Definition

ITEMNUM INTEGER The number of the data item for which you want

information

Output Type Definition

ITEM_INFO ARRAY The information about the data item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

SETSTRNUM REAL The structure number of the set whose key items

are to be returned

REMAPSTRNUM REAL The structure number of the data set or remap that

contains the KEY DATA items

If REMAPSTRNUM = 0, the original data set is

assumed.

Item numbers can very depending on whether the

data set or remap is used.

3.39 DBKEYDATAREMAP

3.39 DBKEYDATAREMAP 53

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the KEY DATA item.

3.40 DBKEYINFO

This entry point returns the key items in a set.

Declaration

DBMTYPE procedure DBKEYINFO (SetStrNum, Callback);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each

KEY DATA item

Output Type Definition

ITEM_INFO ARRAY The information about the data item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

SETSTRNUM REAL The structure number of the set whose key items are to

be returned

3.40 DBKEYINFO

3.40 DBKEYINFO 54

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the key item.

Declaration

boolean procedure Callback (ITEM_INFO);

3.41 DBKEYINFOREMAP

This entry point lists items in a set using item information in a remap. The key items have the item

number, name, and so on, as they are known in the remap.

Declaration

DBMTYPE procedure DBKeyInfoRemap (SetStrNum, RemapStrNum, Callback);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each key

item

Parameter Type Definition

ITEM_INFO ARRAY An array of information that describes the key item

ITEM_INFO Array Layout

Input Type Definition

SETSTRNUM REAL The structure number of the desired set

REMAPSTRNUM REAL The structure number of the remap (or data set)

If this value is set to 0, the original data set is

assumed.

3.41 DBKEYINFOREMAP

3.41 DBKEYINFOREMAP 55

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the key item.

Declaration

boolean procedure Callback (ITEM_INFO);

3.42 DBKEYS

This entry point returns the key items in a set.

Declaration

DBMTYPE procedure DBKEYS (SetStrNum, Callback);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each

key item

Parameter Type Definition

ITEM_INFO ARRAY An array of information describing the key item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

SETSTRNUM REAL The structure number of the set whose keys are to be

returned

3.42 DBKEYS

3.42 DBKEYS 56

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the key item.

Declaration

boolean procedure Callback (ItemNum, DESCENDING);

3.43 DBKEYSREMAP

This entry point lists key items in a set using the item numbers of the specified data set or remap.

If a key item is not found in the specified remap, the procedure returns the error

DBM_BAD_ITEMNUM (31).

Declaration

DBMTYPE procedure DBKeysRemap (SetStrNum, RemapStrNum, Callback);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each key

item

Parameter Type Definition

ITEMNUM INTEGER The item number of the key, as in ITEM_INFO

[II_ITEM_NUM]

DESCENDING BOOLEAN Returns a value of TRUE if the item is a descending

key

Input Type Definition

SETSTRNUM REAL The structure number of the desired set

REMAPSTRNUM REAL The structure number of the data set or remap

containing the key items

The item numbers can vary depending on whether

the data set or the remap is used. If this value is set

to 0, the original data set is assumed.

3.43 DBKEYSREMAP

3.43 DBKEYSREMAP 57

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the key items.

Declaration

boolean procedure Callback (ItemNum, Descending);

3.44 DBLAYOUT

This entry point returns the ITEM_INFO array layout for a data items in a data set.

Declaration

DBMTYPE procedure DBLAYOUT (DSStrNum, RecType, Callback);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each key

item

Parameter Type Definition

ITEMNUM INTEGER The item number, as in ITEM_INFO [II_ITEM_NUM]

DESCENDING BOOLEAN TRUE if the item is a descending key

Input Type Definition

DSSTRNUM REAL The structure number of the desired data set

RECTYPE REAL The record type number (0 for fixed format)

3.44 DBLAYOUT

3.44 DBLAYOUT 58

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about each data item.

Declaration

boolean procedure Callback (ITEM_INFO);

Example

The following example calls DBLAYOUT:

3.45 DBLIMITTASKNAME

This entry point sets the processing limit task name. When DBREADTRANGROUP reaches the

specified task name in the audit trail, it stops processing at the next quiet point after the task's

database close (if the type is AFTER) or the quiet point before the task's database open (if the type

is BEFORE).

Declaration

DBMTYPE procedure DBLIMITTASKNAME (TaskName, LimitType);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each data

item

Parameter Type Definition

ITEM_INFO ARRAY Information describing each data item

For a description of the array, see ITEM_INFO Array

Layout.

ARRAY ITEMSINFO [0:99, 0:II_ENTRY_SIZE - 1];
BOOLEAN PROCEDURE GETITEMINFO (DIINFO);
 ARRAY DIINFO [0];
 BEGIN
 REAL IDX;

 IDX := DIINFO [II_ITEM_NUM];
 REPLACE POINTER (ITEMSINFO [IDX, 0], 0) BY
 POINTER (DIINFO, 0) FOR II_ENTRY_SIZE_WORDS;
 GETITEMINFO := TRUE;
 END GETITEMINFO;

REAL DSSTRNUM;
DSSTRNUM := 2;
DBLAYOUT (DSSTRNUM, 0, GETITEMINFO);

3.45 DBLIMITTASKNAME

3.45 DBLIMITTASKNAME 59

3.46 DBLIMITTIMESTAMP

This entry point sets the processing limit timestamp. When DBREADTRANGROUP reaches the

specified time in the audit trail, it stops processing at the next quiet point (if the type is AFTER) or

the previous quiet point (if the type is BEFORE).

Declaration

DBMTYPE procedure DBLIMITTIMESTAMP (Timestamp, LimitType);

Input Type Definition

TIMESTAMP REAL The limiting timestamp in TIME (6) format

3.46 DBLIMITTIMESTAMP

3.46 DBLIMITTIMESTAMP 60

3.47 DBLINKS

This entry point returns information about link items in a data set. The DBEngine option LINKS

must be true, and the data set must be STANDARD, fixed-format, and unsectioned.

Declaration

DBMTYPE procedure DBLinks (DSStrNum, Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the data set. This procedure is called once for each link

item.

Declaration

boolean procedure Callback (ITEM_INFO);

Input Type Definition

LIMITTYPE INTEGER The type of limit, either BEFORE or AFTER the specified

timestamp

Possible values are as follows:

DBV_LIMIT_UNSPECIFIED—Indicates that no limit

type is specified

DBV_LIMIT_BEFORE—Tells the Accessory to stop at

the QPT before the limit

DBV_LIMIT_AFTER—Tells the Accessory to stop at

the QPT after the limit

•

•

•

Input Type Definition

DSSTRNUM REAL The structure number of the data set

Parameter Type Definition

DSSTRNUM BOOLEAN The array of information describing the link item

For a description of the array, see ITEM_INFO Array

Layout.

3.47 DBLINKS

3.47 DBLINKS 61

3.48 DBMAKETIMESTAMP

This entry point converts a date and time to a timestamp in TIME(6) form.

Declaration

DBMTYPE procedure DBMAKETIMESTAMP (Year, MM, DD, HH, MN, SS, TS);

Input Type Definition

YEAR INTEGER The year in four digits, 1970–2035

MM INTEGER The month in two digits, 1–12

DD INTEGER The day in two digits, 1–31

HH INTEGER The hour in two digits, 0–23

MN INTEGER The minute in two digits, 0–59

3.48 DBMAKETIMESTAMP

3.48 DBMAKETIMESTAMP 62

3.49 DBMAXRECORDS

This entry point returns the estimated maximum number of records that are currently in the data

set. The estimate is computed from the size of the file and the size of a fixed-format record. The

actual number of records could be anywhere from 0 to the MAXRECORDS value.

Declaration

DBMTYPE procedure DBMAXRECORDS (DSStrNum, MaxRecords);

3.50 DBMAXRECORDSVF

This entry point estimates the maximum number of records (of a certain record type) a data set

can potentially hold. When making this estimate, the procedure assumes that all of the records in

the data set are the record type you specified.

If the data set contains only fixed-format records (record type 0), DBMAXRECORDSVF returns the

same value that DBMAXRECORDS returns.

The estimates returned for data sets containing variable-format records are smaller than those for

fixed-format data sets since variable-format records are larger.

Declaration

DBMTYPE procedure DBMaxRecordsVF (DSStrNum, RecType, MaxRecords);

Input Type Definition

SS INTEGER The second in two digits, 0–59

Output Type Definition

TS REAL The timestamp in TIME (6) form

Input Type Definition

DSSTRNUM INTEGER The DMSII structure number of the data set

Output Type Definition

MAXRECORDS INTEGER The estimated maximum number of records in the

data set

3.49 DBMAXRECORDS

3.49 DBMAXRECORDS 63

3.51 DBMESSAGE

This entry point copies the text that describes the error indicated in the DBM_RESULT code field to

the caller's array.

Declaration

DBMTYPE procedure DBMESSAGE (DBMResult, pMessText, MessLen);

Input Type Definition

DSSTRNUM INTEGER The data set structure number

RECTYPE INTEGER The record type number (0 for fixed format)

Output Type Definition

MAXRECORDS INTEGER The estimated maximum number of records of the

specified record type in the data set

Input Type Definition

DBM_RESULT DBMTYPE The procedure value from a prior call to an entry point

3.51 DBMESSAGE

3.51 DBMESSAGE 64

3.52 DBMODIFIES

This entry point specifies whether data set record modifications (updates) should be returned as a

DELETE/CREATE pair instead of as an update. This is typically necessary for data sets that allow

key changes.

The value of ALLOWED is the default value for all selected data sets. See DBSELECT and the

SI_MODIFIES field in the STATE_INFO array (listed under STATE_INFO Layout for information on

setting this option for a single data set. DBRESETOPTION can also be used to set this option.

Declaration

DBMTYPE procedure DBMODIFIES (Allowed);

3.53 DBMODIFYTIMESTAMP

This entry point increments or decrements a timestamp by days, hours, minutes, and/or seconds. If

the adjustment is negative (as indicated by a negative number, such as -3), the timestamp is

decremented.

Declaration

Input Type Definition

P_MESSTEXT POINTER The pointer to the caller's array where the message

text is copied

NOTE: The caller must ensure that the array is large

enough.

Output Type Definition

MESSLEN REAL The length of the output message in bytes

Input Type Definition

ALLOWED BOOLEAN One of the following values:

TRUE—Modifies (updates) are returned as modifies

FALSE—Modifies (updates) are converted to a

DELETE/CREATE pair

•

•

3.52 DBMODIFIES

3.52 DBMODIFIES 65

DBMTYPE procedure DBMODIFYTIMESTAMP (Days, Hours, Minutes, Seconds, TS);

3.54 DBNULL

This entry point returns a NULL value for a given data item.

Declaration

DBMTYPE procedure DBNULL (DSStrNum, ItemNum, NullVal);

Input Type Definition

DAYS INTEGER The number of days adjustment

HOURS INTEGER The number of hours adjustment

MINUTES INTEGER The number of minutes adjustment

SECONDS INTEGER The number of seconds adjustment

TS REAL The original timestamp in TIME (6) format

Output Type Definition

TS REAL The modified timestamp in TIME (6) format

Input Type Definition

DSSTRNUM REAL The DMSII structure number of the data set or remap

containing the data item

3.54 DBNULL

3.54 DBNULL 66

3.55 DBNULLRECORD

This entry point returns a record with all data items NULL.

Declaration

DBMTYPE procedure DBNULLRECORD (DSStrNum, RecType, NullRec);

Input Type Definition

ITEMNUM REAL The DMSII data item number, as returned in ITEMINFO

[II_ITEM_NUM]

For a description of the array, see ITEM_INFO Array.

Output Type Definition

NULLVAL ARRAY The binary image of the data item's NULL value

The caller must ensure that the array is large enough to hold

the NULL value. If it is too short, DBEngine resizes it so that it

is just large enough.

Input Type Definition

DSSTRNUM INTEGER The DMSII structure number of the data set or remap

3.55 DBNULLRECORD

3.55 DBNULLRECORD 67

3.56 DBOLDESTAUDITLOC

This entry point finds the oldest audit location on disk, searching among audit files that have the

same update level as the current DESCRIPTION file. An audit location is a set of values that define

a specific position in the audit trail. DBEngine starts with the current audit file and works

backwards until it cannot find an earlier audit file. Then it retrieves the first audit location in that file.

For example, suppose the current audit file is 100 and the following audit files are on disk: 89–92

and 96–100. DBOLDESTAUDITLOC returns the first audit location in audit file 96.

Declaration

DBMTYPE procedure DBOLDESTAUDITLOC (AFN, ABSN, Seg, Inx);

Input Type Definition

RECTYPE INTEGER The record type number (0 for fixed format)

Output Type Definition

NULLREC ARRAY The binary image of a data set record with all the data

items set to NULL

Output Type Definition

AFN REAL The audit file number

ABSN REAL The audit block serial number

SEG REAL The segment number

3.56 DBOLDESTAUDITLOC

3.56 DBOLDESTAUDITLOC 68

3.57 DBOPENAUDIT

This entry point opens an audit file and returns audit file information.

Declaration

DBMTYPE procedure DBOpenAudit (AFN, AUDIT_INFO);

3.58 DBOPENRESULTTEXT

This entry point returns the error or warning message associated with an I/O result code from an

OPEN, CLOSE, or RESPOND, and it copies the text describing the I/O result value into the caller's

array.

Declaration

procedure DBOpenResultText (OpenResult, pText, TextLen);

Output Type Definition

INX REAL The word index within the audit block

Input Type Definition

AFN REAL The number of the audit file to be opened

Output Type Definition

AUDIT_INFO ARRAY Information about the audit file

For a description of the array, see AUDIT_INFO Layout.

This entry point replaces the DBIORESULTTEXT entry point; however, you can still use

DBIORESULTTEXT.

Note

Input Type Definition

OPENRESULT INTEGER The I/O result value from the OPEN, CLOSE, or

RESPOND

3.57 DBOPENAUDIT

3.57 DBOPENAUDIT 69

3.59 DBPARAMETERS

This entry point allows the client to specify various run-time processing parameter values, such as

the COMMIT frequency and maximum number of WORKER tasks during a clone.

Declaration

DBMTYPE procedure DBParameters (ParamType, ParamValue);

Input Type Definition

PTEXT POINTER The destination array for the error text

Output Type Definition

TEXTLEN INTEGER The length of the error text

Input Type Definition

PARAMTYPE REAL The processing parameter type

Possible values are as follows:

DBV_CONCURR_EXTR—Specifies the number of

maximum concurrent extracts

DBV_TG_BLOCKS—Specifies the number of audit

blocks per transaction group

DBV_TG_UPDATES—Specifies the number of updates

per transaction group

DBV_TG_ELAPSED--Specifies the elapsed time per

transaction group

DBV_TG_TRANS--Specifies the number of

transactions per transaction group

DBV_THREADS--Specifies the maximum number of

DBEnterprise threads to use during cloning

For more information on these values, see

DBPARAMETERS Processing Parameter Types.

•

•

•

•

•

•

3.59 DBPARAMETERS

3.59 DBPARAMETERS 70

3.60 DBPRIMARYSET

This entry point returns the structure number of the NODUPLICATES set that does not allow key

changes and has the fewest key items for the given data set.

Declaration

DBMTYPE procedure DBPRIMARYSET (DSStrNum, SetStrNum);

3.61 DBPRIVILEGED

This entry point returns true if the caller is a privileged program or running under a privileged

usercode. Otherwise, it returns false.

Declaration

boolean procedure DBPrivileged;

3.62 DBPUTMESSAGE

This entry point sets the DBMESSAGE parameter values. Libraries that return standard DBMTYPE

values can set the message parameter values so that DBMESSAGE fills in the parameter values

correctly when an Accessory requests the message text. For related information, see DBMESSAGE.

Input Type Definition

PARAMVALUE REAL The processing parameter value

If the value is less than 0, the entry point discards the

change. Set the value to 0 to disable the processing

parameter.

Input Type Definition

DSSTRNUM INTEGER The structure number of the data set or remap

Output Type Definition

SETSTRNUM INTEGER The structure number of the set

3.60 DBPRIMARYSET

3.60 DBPRIMARYSET 71

Declaration

DBMTYPE procedure DBPUTMESSAGE (Subtype, Str1, Str2, Str3, Str4);

Input Type Definition

Subtype STRING This is the message subtype.

Str1 STRING This is additional information supplied with the error. The

information supplied varies with the type of error.

STR2 STRING This is additional information supplied with the error. The

information supplied varies with the type of error.

STR3 STRING This is additional information supplied with the error. The

information supplied varies with the type of error.

3.62 DBPUTMESSAGE

3.62 DBPUTMESSAGE 72

3.63 DBREAD

This entry point receives a transaction group (up to a quiet point or super quiet point) of changes to

data set records from the audit trail.

DBREAD defaults to committing at the first QPT after the CHECKPOINT interval specified in the

DBEngine parameter file. If you want DBREAD to commit at every QPT, call DBSETOPTION

(DBV_OP_QPT_GROUP). The DBSETOPTION entry point is explained in DBSETOPTION. If the next

transaction group is not available, DBREAD returns immediately with an error.

Declaration

DBMTYPE procedure DBREAD (Callback);

BOOLEAN PROCEDURE CALLBACK

The procedure is called back for each data set record update (CREATE, DELETE, CHANGE) found in

the current transaction group.

Declaration

boolean procedure Callback (Image, UPDATE_INFO);

Input Type Definition

STR4 STRING This is additional information supplied with the error. The

information supplied varies with the type of error.

The DBREAD entry point is compatible with older Accessories. Using DBREADTRANGROUP is

the preferred method.

You should also be aware that you must have selected at least one data set with DBSELECT in

order to use this entry point.

Note

Input Type Definition

CALLBACK BOOLEAN The callback procedure that receives information about

data set record updates found in the current transaction

group

3.63 DBREAD

3.63 DBREAD 73

3.64 DBREADAUDITREGION

The entry point reads the audit file region, starting with the indicated ABSN and block offset. The

region contains an integer that is equal to the number of audit blocks. The actual word offset of the

region can be computed from NEXTREGIONOFS minus REGIONSIZE.

Declaration

DBMTYPE procedure DBReadAuditRegion (RegionABSN, RegionOfs, RegionSize, Region,

NextRegionABSN, NextRegionOfs);

Parameter Type Definition

IMAGE ARRAY This array contains the record image, as determined by

[UI_UPDATE_TYPE] in the UPDATE_INFO layout. The

[UI_UPDATE_TYPE] will be one of the following values. For

more information, see Record Change Types.

DBV_CREATE, DBV_DELETE, and DBV_MODIFY

indicate that it is a before- or after-image.

DBV_STATE indicates that state information has

changed. See STATE_INFO Layout for a description of

the array layout.

DBV_DOC indicates that it's a DB_DOC_TYPE. See

Documentation Records for the DB_DOC_TYPE value.

UPDATE_INFO ARRAY This array contains the description of the modification.

See UPDATE_INFO Layout.

•

•

•

Input Type Definition

REGIONABSN INTEGER The ABSN of the first block in the region

REGIONOFS INTEGER The file-relative word offset of the first block in the

region

A -1 indicates that the value is unknown.

3.64 DBREADAUDITREGION

3.64 DBREADAUDITREGION 74

3.65 DBREADERPARAMETER

This entry point allows an Accessory to specify the title of the FileXtract Reader library and the

parameter string that is passed to the Reader library. The parameter string typically contains a file

name or directory name, but the individual Reader library determines the format of the string.

The string values specified in DBREADERPARAMETER override the values specified in the logical

database comment in the DASDL. However, if you leave either DBREADERPARAMETER string

parameter empty, the Accessory Reader library ignores the empty parameter, and the DASDL

comment prevails.

Declaration

DBMTYPE procedure DBReaderParameter (LibraryTitle, Param);

Input Type Definition

REGIONSIZE INTEGER Maximum size (in words) of the region to be returned

Output Type Definition

REGION ARRAY The buffer containing the audit region

NEXTREGIONABSN INTEGER ASBN of the first block in the next region (that is,

following the region returned in the REGION array)

NEXTREGIONOFS INTEGER The file-relative word offset of the next region

(that is, following the region returned in the

REGION array)

REGIONSIZE INTEGER The size (in words) of the region returned in the

REGION array

Input Type Definition

LIBRARYTITLE STRING The title of the FileXtract Reader library

If this string is empty, the default title specified in the

DASDL logical database comment is used instead.

3.65 DBREADERPARAMETER

3.65 DBREADERPARAMETER 75

3.66 DBREADTRANGROUP

This entry point receives a transaction group (up to a quiet point) of changes to data set records

from the audit trail.

By default, the CHECKPOINT interval specified in the DBEngine parameter file determines the size

of the transaction group. If you want DBREADTRANGROUP to commit at every QPT, call

DBSETOPTION (DBV_OP_QPT_GROUP). The DBSETOPTION entry point is explained in

DBRESETOPTION. If a transaction group is not available, DBREADTRANGROUP waits up to the

amount of time specified in MAXWAITSECS for the group to become available.

DBREADTRANGROUP responds if an Accessory's EXCEPTIONEVENT or ACCEPTEVENT is caused.

This ensures that the AX command works immediately.

Declaration

DBMTYPE procedure DBReadTranGroup (Callback, RetrySecs, MaxWaitSecs);

Input Type Definition

PARAM STRING The character string passed to the FILEREAD entry point

of the FileXtract Reader library in the FileInfo array.

Refer to the Databridge FileXtract Administrator's Guide

for more information about Reader libraries.

If this string is empty, the default parameter specified in

the DASDL logical database comment is used instead.

You must have selected at least one data set with DBSELECT in order to use this entry point.

Note

Input Type Definition

CALLBACK BOOLEAN The callback procedure that receives each data set

record update found in the current transaction group

RETRYSECS REAL The number of seconds between retries

3.66 DBREADTRANGROUP

3.66 DBREADTRANGROUP 76

https://www.microfocus.com/documentation/databridge/7-1/filextract
https://www.microfocus.com/documentation/databridge/7-1/filextract

BOOLEAN PROCEDURE CALLBACK

This procedure receives each data set record update (CREATE, DELETE, or CHANGE), STATE_INFO

update, or documentation record found in the current transaction group.

Declaration

boolean procedure Callback (UPDATE_INFO, BI, AI);

Input Type Definition

MAXWAITSECS REAL The maximum number of seconds to wait for a

transaction group to become available

Values are as follows:

DBV_WAIT_FOREVER—Retry for more audits

indefinitely

DBV_DONT_WAIT—Do not retry at all

Positive integer—Specifies the number of

seconds to wait

•

•

•

Parameter Type Definition

UPDATE_INFO ARRAY The UPDATE_INFO value describing the update

For a description of the array, see UPDATE_INFO Layout.

BI ARRAY The before-image of the record

This array is valid only for update types DBV_DELETE and

DBV_MODIFY. See Record Change Types for a

description of these types.

3.66 DBREADTRANGROUP

3.66 DBREADTRANGROUP 77

3.67 DBRESETOPTION

This entry point resets (turns off) the DBEngine run-time options. To set run-time options, see

DBSETOPTION.

Declaration

DBMTYPE procedure DBRESETOPTION (Option);

3.68 DBSELECT

This entry point selects which data set(s) to process with subsequent DBREADTRANGROUPs,

DBREADs, or DBWAITs.

DBSELECT validates the data set's audit location (unless it is to be cloned) and the client format

level, and it verifies that the filter allows the specified structure number and record type.

The parent of an embedded data set must be selected before selecting the embedded data set.

To deselect data sets, see DBDESELECT.

Declaration

Parameter Type Definition

AI ARRAY The after-image of the record

This array is not valid for update type DBV_DELETE. See

Record Change Types for a description of this type.

Input Type Definition

OPTION INTEGER This specifies the option to turn off.

For a description of the options, see DBSETOPTION/

DBRESETOPTION Run-Time Options.

Since DBEngine returns data set records only for data sets that are specified here, you cannot

able use DBREADTRANGROUP, DBREAD, or DBWAIT unless you specify a data set(s).

Note

3.67 DBRESETOPTION

3.67 DBRESETOPTION 78

DBMTYPE procedure DBSELECT (STATE_INFO, TableName, StrIdx);

3.69 DBSELECTED

This entry point checks to see if the specified data set has been successfully selected. For related

information, see DBSELECT.

The procedure returns the value DBM_OK, which equates to a value of 0, if the data set you specify

has been selected with DBSELECT. If it has not been selected, the procedure returns

DBM_DS_NOTFOUND (10).

Declaration

DBMTYPE procedure DBSELECTED (DSStrNum, RecType);

Input Type Definition

STATE_INFO ARRAY The state of the client table, including the audit location

The STATE_INFO array contains the DMSII structure

number of the data set and the variable-format record type

number.

For a description of the array, STATE_INFO Layout.

TABLENAME STRING The name of the client table

DBEngine uses this name in place of the data set name in

any error messages. If TABLENAME is empty, Databridge

updates it to the DMSII data set name implied by the

structure number in the STATE_INFO array

Output Type Definition

STRIDX INTEGER Unique index for this data set-record type, suitable for an

array index

NOTE: Remember this STRIDX because any entry point that

returns the UPDATE_INFO array uses it.

Input Type Definition

DSSTRNUM REAL DMSII structure number of the data set

3.69 DBSELECTED

3.69 DBSELECTED 79

3.70 DBSETINFO

This entry point retrieves information about a set.

Declaration

DBMTYPE procedure DBSETINFO (SetStrNum, SET_INFO);

3.71 DBSETOPTION

This entry point sets (enables) the DBEngine run-time options. To reset these options, see

DBRESETOPTION.

Declaration

DBMTYPE procedure DBSETOPTION (Option);

Input Type Definition

RECTYPE REAL Record type number (0 for fixed format)

Input Type Definition

SETSTRNUM REAL The structure number of the set

Output Type Definition

SET_INFO ARRAY The information about the set

For a description of the array, see SET_INFO Layout.

Input Type Definition

OPTION INTEGER This specifies the

option to turn on

3.70 DBSETINFO

3.70 DBSETINFO 80

3.72 DBSETS

This entry point returns set names and their structure numbers for a given data set or remap.

Declaration

DBMTYPE procedure DBSETS (DSStrNum, Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure is called once for each set it finds.

Declaration

boolean procedure Callback (pSetName, Len, SetStrNum, DuplicatesAllowed,

KeyChangeAllowed);

Input Type Definition

For a description of these options, see

DBSETOPTION/DBRESETOPTION Run-Time

Options.

Input Type Definition

DSSTRNUM REAL The structure number of the target data set or remap for

which the sets are to be returned

CALLBACK BOOLEAN The procedure that provides information for each set

Parameter Type Definition

P_SETNAME POINTER The pointer to a set name

The caller is expected to copy the actual set

name into local memory.

LEN REAL The length of the set name

SETSTRNUM REAL The structure number of the set

DUPLICATESALLOWED BOOLEAN Set to TRUE if duplicates are allowed

3.72 DBSETS

3.72 DBSETS 81

3.73 DBSETSINFO

This entry point returns information for each set of a given data set or remap.

Declaration

DBMTYPE procedure DBSETSINFO (DSStrNum, Callback);

Parameter Type Definition

KEYCHANGEALLOWED BOOLEAN Set to TRUE if key changes are allowed

Input Type Definition

DSSTRNUM REAL This is the structure number of the target data set or

remap for which the sets are to be returned

3.73 DBSETSINFO

3.73 DBSETSINFO 82

BOOLEAN PROCEDURE CALLBACK

This procedure is called once for each set it finds.

Declaration

boolean procedure Callback (SET_INFO);

3.74 DBSPLITTIMESTAMP

This entry point converts a timestamp from TIME (6) format to a date and time in

yyyy,mm,dd,hh,mn,ss form. Each component is in binary format.

Declaration

DBMTYPE procedure DBSPLITTIMESTAMP (TS, YYYY, MM, DD, HH, MN, SS);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each set

Parameter Type Definition

SET_INFO ARRAY This is the information describing the set

For a description of the array, see SET_INFO Layout.

Input Type Definition

TS REAL The timestamp in TIME (6) form, such as from the UI_TIME

field of UPDATE_INFO

See UPDATE_INFO Layout for a description of the UI_TIME

field.

Output Type Definition

YYYY INTEGER The year in four digits, 1970–2035

MM INTEGER The month in two digits, 1–12

DD INTEGER The day in two digits, 1–31

HH INTEGER The hour in two digits, 0–23

3.74 DBSPLITTIMESTAMP

3.74 DBSPLITTIMESTAMP 83

3.75 DBSPLITTIME60

This entry point splits a timestamp in TIME (60) format into separate components similar to

DBSPLITTIMESTAMP.

Declaration

DBMTYPE procedure DBSPLITTIME60 (TS, YYYY, MM, DD, HH, MN, SS);

Output Type Definition

MN INTEGER The minute in two digits, 0–59

SS INTEGER The second in two digits, 0–59

Input Type Definition

TS REAL Timestamp in TIME (60) format

Output Type Definition

YYYY INTEGER The year in four digits, 1970–2035

MM INTEGER The month in two digits, 1–12

DD INTEGER The day in two digits, 1–31

HH INTEGER The hour in two digits, 0–23

MN INTEGER The minute in two digits, 0–59

3.75 DBSPLITTIME60

3.75 DBSPLITTIME60 84

3.76 DBSTATEINFOTODISPLAY

This entry point converts the STATE_INFO array, which includes the audit location, to a readable

format. The value of this entry point is the length of the resulting message.

Declaration

integer procedure DBSTATEINFOTODISPLAY (STATE_INFO, pOut);

Output Type Definition

SS INTEGER The second in two digits, 0–59

Input Type Definition

STATE_INFO ARRAY The state information as it is received from DBEngine

For a description of the array, see STATE_INFO Layout.

3.76 DBSTATEINFOTODISPLAY

3.76 DBSTATEINFOTODISPLAY 85

3.77 DBSTATISTICS

This entry point returns statistics for the specified category. DBEngine prints a report of the

statistics collected (at EOJ) if DBEngine is compiled with $ SET STATS , which is available as

OBJECT/DATABRIDGE/ENGINE/STATS.

Declaration

DBMTYPE procedure DBStatistics (StatCategory, StatDescription, STATISTICS_INFO);

3.78 DBSTRIDX

This entry point returns the structure index of the specified data set or remap.

Declaration

DBMTYPE procedure DBSTRIDX (DSStrNum, RecType, StrIdx);

Input Type Definition

POUT POINTER The destination of the readable format state

information

Input Type Definition

StatCategory INTEGER The statistics category number

For a description of these values, see Statistics

Category Values.

Input Type Definition

DSSTRNUM REAL The DMSII structure number of the data set or remap

3.77 DBSTATISTICS

3.77 DBSTATISTICS 86

3.79 DBSTRNUM

This entry point returns a structure number for the specified structure name.

Declaration

DBMTYPE procedure DBSTRNUM (pStrName, StrNum);

3.80 DBSTRUCTURENAME

This entry point returns a structure name for a DMSII structure number and always uses the

physical database, even if the caller specifies a logical database. It also returns the name of a

virtual data set when given the structure number specified in DBGenFormat.

Declaration

DBMTYPE procedure DBSTRUCTURENAME (StrNum, pName, Len);

Input Type Definition

RECTYPE REAL The record type number (0 for fixed format)

Output Type Definition

STRIDX REAL The structure index of the specified data set or remap.

This is the same value returned by DBSELECT.

Input Type Definition

PSTRNAME POINTER The pointer to a structure name

Any illegal character, such as a space, terminates the

name.

Output Type Definition

STRNUM REAL The DMSII structure number

3.79 DBSTRNUM

3.79 DBSTRNUM 87

Input Type Definition

STRNUM REAL The DMSII structure number (data set, set, remap) from

UPDATE_INFO [UI_STRNUM]

3.80 DBSTRUCTURENAME

3.80 DBSTRUCTURENAME 88

3.81 DBSUBSETSINFO

This entry point returns information about each subset of a given data set.

Declaration

DBMTYPE procedure DBSubsetsInfo (DSStrNum, Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the subset. It is called once for each subset.

Declaration

boolean procedure Callback (SET_INFO);

3.82 DBSWITCHAUDIT

Input Type Definition

PNAME POINTER The pointer to the array that is to receive the structure

name

Output Type Definition

LEN REAL The length of the structure name in bytes

Characters beyond this point in the array are

unchanged.

Input Type Definition

DSSTRNUM REAL The structure number of the data set containing the

subset

Parameter Type Definition

SET_INFO BOOLEAN The array of information describing the subset

For a description of the array, see SET_INFO Layout.

3.81 DBSUBSETSINFO

3.81 DBSUBSETSINFO 89

This entry point forces an audit file switch. If you write your own utility for periodically closing the

audit file, you can use this entry point to actually perform the audit switch without having to give

the database stack number an SM command.

This entry point does not take any parameters.

When DBSWITCHAUDIT retries a failed switch (such as after " ***VISIBLE DBS BUSY - TRY

AGAIN "), it increases the delay between retries until it is successful or until the maximum delay

retry rate (120 seconds) is exceeded. The DBM_AUDITSWITCH (109) message appears when you

exceed the maximum delay retry rate.

DBSWITCHAUDIT also performs an AUDIT CLOSE FORCE, rather than a simple AUDIT CLOSE, which

makes the closed audit file available immediately instead of having to wait until two control points

are generated normally.

Declaration

DBMTYPE procedure DBSWITCHAUDIT;

3.83 DBTIMESTAMPMSG

This entry point converts the timestamp from TIME (6) format to a date and time message in

displayable format.

Declaration

DBMTYPE procedure DBTIMESTAMPMSG (TS, TSString);

You must call the DBINITIALIZE entry point before you call DBSWITCHAUDIT.

Note

Input Type Definition

TS REAL The timestamp in TIME (6) form

Output Type Definition

TSSTRING STRING The timestamp in displayable form, as follows:

month day, year @ hh:mm:ss November 25, 2009 @

11:27:45

3.83 DBTIMESTAMPMSG

3.83 DBTIMESTAMPMSG 90

3.84 DBUPDATELEVEL

This entry point returns the database update level and update timestamp. These values correspond

to the last DASDL compile.

Declaration

DBMTYPE procedure DBUpdateLevel (Updatelevel, UpdateTimestamp);

Output Type Definition

UPDATELEVEL REAL The update level of the database

3.84 DBUPDATELEVEL

3.84 DBUPDATELEVEL 91

3.85 DBVERSION

This entry point provides the version number of the Databridge API file (SYMBOL/DATABRIDGE/

INTERFACE) for which DBEngine was compiled. This number must match DBV_VERSION in the API

file you include in your program, as in the following example:

Declaration

real procedure DBVERSION;

3.86 DBWAIT

This entry point receives a transaction group of changes to data set records from the audit trail. It

waits up to the amount of time specified in MAXWAITSECS for the group to become available.

DBWAIT responds if an Accessory's EXCEPTIONEVENT or ACCEPTEVENT is caused. This ensures

that the AX command works immediately.

Declaration

DBMTYPE procedure DBWAIT (Callback, RetrySecs, MaxWaitSecs);

Output Type Definition

UPDATETIMESTAMP REAL The timestamp of the update

IF DBVERSION NEQ DBV_VERSION THEN
 BEGIN
 DIE ("Databridge ENGINE software version
 mismatch");
 END;

The DBWAIT entry point is compatible with older Accessories. Using DBREADTRANGROUP is

the preferred method.

You must have also selected at least one data set with DBSELECT in order to use this entry

point.

Note

3.85 DBVERSION

3.85 DBVERSION 92

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the modification.

Declaration

boolean procedure Callback (Image, UPDATE_INFO);

Input Type Definition

RETRYSECS REAL The number of seconds between retries

For example, a value of five means to look for more

available audits every five seconds.

MAXWAITSECS REAL The maximum number of seconds to wait for a

transaction group to become available

For example, a value of 100 means that this procedure

waits a total of 100 seconds (which implies 20 retries

when RETRYSECS is set to 5).

Values are as follows:

DBV_WAIT_FOREVER—Indicates to retry for more

audits indefinitely

DBV_DONT_WAIT—Indicates to not retry at all

Positive integer—Indicates the numbers of

seconds to wait

CALLBACK BOOLEAN The procedure to call back for each data set record

update (CREATE, DELETE, CHANGE), STATE_INFO

update, or documentation record found in the current

transaction group

•

•

•

Parameter Type Definition

IMAGE ARRAY This array contains the record image, as follows:

Before-image if DELETE

After-image if CREATE or MODIFY

STATE_INFO image if the state (audit location)

changes

Documentation record for non-update information

•

•

•

•

3.86 DBWAIT

3.86 DBWAIT 93

3.87 DBWHEREDASDL

This entry point returns the DASDL source expression associated with the WHERE clause of an

automatic subset or the SELECT cause of a remap.

Declaration

DBMTYPE procedure DBWhereDASDL (StrNum, pDASDLText, Len);

Parameter Type Definition

UPDATE_INFO ARRAY This array contains the description of the modification

For a description of the array, see UPDATE_INFO

Layout.

Input Type Definition

STRNUM REAL The structure number of the desired subset or remap

PDASDLTEXT POINTER Destination for the DASDL expression

Output Type Definition

PDASDLTEXT POINTER Destination for the DASDL expression

3.87 DBWHEREDASDL

3.87 DBWHEREDASDL 94

3.88 DBWHERETEXT

This entry point returns the ALGOL source code fragment associated with the WHERE clause of an

automatic subset or the SELECT clause of a remap.

Declaration

DBMTYPE procedure DBWhereText (StrNum, pText, Len);

Output Type Definition

LEN REAL The length in bytes of the text copied into PDASDLTEXT

Possible values are as follows:

If the array is too short, no text is copied, but LEN is

set to the needed length and the procedure value is

DBM_SHORT_ARRAY (23).

If no DASDL expression is associated with the

structure, such as when the structure number is a

data set, set, or manual subset, the procedure

returns DBM_OK, and LEN is set to 0.

•

•

Input Type Definition

STRNUM REAL The structure number of the desired subset or remap

PTEXT POINTER The destination for the source code text

Output Type Definition

PTEXT POINTER Destination for the source code text

3.88 DBWHERETEXT

3.88 DBWHERETEXT 95

3.89 DBSupport Entry Points

Use the DBSupport library to filter and format the data you receive from DBEngine.

3.89.1 Security Filtering

DBSupport provides the following levels of security through filtering:

Data set-level security—For more information, see DBVIEWABLE.

Record-level security—For more information, see DBFILTER.

3.89.2 Additional Filtering.

The DBGenFormat utility can generate additional filtering routines using brief text descriptions in a

parameter file. Refer to the Databridge Host Administrator's Guide for information.

In a non-tailored support library, you cannot use any data set or data item names, nor can you use

any SELECT statements. Therefore, you must create a tailored support library to create effective

filters.

You have access to the source code for the DBSupport library (SYMBOL/DATABRIDGE/SUPPORT)

and can modify it in order to implement data filtering, data security, and other functions. (For

instance, using DBFILTER.) It is strongly recommended, however, that you use DBGenFormat to

provide these features if at all possible.

Output Type Definition

LEN REAL The length in bytes of the text copied into PTEXT

Possible values are as follows:

If the array is too short, no text is copied, but LEN is set to

the needed length and the procedure value is

DBM_SHORT_ARRAY (23).

If no text is associated with the structure, such as when

the structure number is a data set, set, or manual subset,

the procedure returns DBM_OK, and LEN is set to 0.

•

•

•

•

3.89 DBSupport Entry Points

3.89 DBSupport Entry Points 96

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

CAUTION: If you patch DBSupport directly rather than using declarations in DBGenFormat, make

sure you observe the comments in the source that indicate where user-written patches should go.

These lines are preserved from release to release; all other lines are subject to change and

resequencing.

DBSupport Formatting.

By default, the data records DBEngine returns to an Accessory are not formatted. In other words,

they are the binary image of the corresponding record in the DMSII database as they would appear

to a COBOL program. Often these records need to be reformatted into individual fields so that an

Accessory can store the fields in a more suitable format.

The DBGenFormat utility generates additional formatting routines using brief text descriptions in a

parameter file. Refer to the Databridge Host Administrator's Guide for description of all default

formats.

Accessories can select a format routine by setting the ACTUALNAME of the DBFORMAT entry point

to one of the defined formatting routines. For details, see DBFORMAT.

You have access to the source code for the DBSupport library (SYMBOL/DATABRIDGE/SUPPORT)

and can modify it in order to implement custom formatting. We strongly recommend, however, that

you use DBGenFormat to provide these features if at all possible.

Using the DBSupport Entry Points.

Before you can use the entry points in the DBSupport library, you must complete the items listed in

Accessing the DBEngine and DBSupport Libraries. One of these tasks is to specify a filter using

DBSUPPORTINIT. When a description of a DBSupport entry point refers to a filter, it is referring to

the specified filter.

The table below summarizes the DBSupport entry points and their functions, and each of these

entry points is explained in detail later in this chapter. The Entry Point column in this table contains

the name of the entry point, the Type column indicates the type of ALGOL procedure, and the

Description column describes what the entry point does. See Entry Point Procedure Values for an

explanation of the various procedure types and the values they return. DBMTYPE values are listed

in the API file (SYMBOL/DATABRIDGE/INTERFACE) and the Databridge Host Administrator's Guide.

If you patch DBSupport directly rather than using declarations in DBGenFormat, make sure you

observe the comments in the source that indicate where user-written patches should go. These

lines are preserved from release to release; all other lines are subject to change and

resequencing.

Caution

3.89.2 Additional Filtering.

3.89.2 Additional Filtering. 97

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Entry Point Type Description

DBCLIENTKEY EMATYPE Reports errors

You can write your own error

handling routine to analyze the

error and take appropriate action.

If no error handler is defined in the

DBGenFormat parameter file, this

entry point displays the error

message and lets the Accessory

decide what to do, such as

whether to terminate, keep going,

or do an ACCEPT.

DBEXTRACTKEY DBMTYPE Extracts the primary key of a data

set record

DBFILTER BOOLEAN Filters records

DBFILTEREDDATASETS DBMTYPE Enumerates the data set names

and other information about each

data set as restricted by a filter

DBFILTEREDITEMNAME DBMTYPE Returns information for a data

item in a data set and applies the

current filter and any ALTERs

DBFILTEREDLAYOUT DBMTYPE Enumerates data items in a data

set as restricted by a filter

DBFILTEREDLINKS DBMTYPE Returns the LINK items for a data

set as allowed by the current filter

DBFILTEREDNULLRECORD DBMTYPE Returns a record with all data

items set to NULL

DBFILTEREDSETS DBMTYPE Enumerates set names and their

structure number for a data set as

restricted by a filter

DBFILTEREDSETSINFO DBMTYPE Enumerates information for each

set of a given data set available in

the filter

DBFILTEREDSTRNUM DBMTYPE Returns the structure number for a

data set name

3.89.2 Additional Filtering.

3.89.2 Additional Filtering. 98

Entry Point Type Description

DBFILTEREDSUBSETSINFO DBMTYPE Enumerates information for each

subset of a given data set,

provided it is available in the filter

DBFILTEREDWRITE DBMTYPE Performs all of the necessary

filtering and formatting of an

update received from

DBReadTranGroup

DBFORMAT BOOLEAN Formats the data record for output

DBINITDATAERROR DBMTYPE Initializes data-error handling for

the formatting routines

DBINITIALIZESUPPORT DBMTYPE NOTE: This entry point has been

replaced by the

DBINITIALIZESUPPORT entry

point.

Verifies that the Accessory is

using the same version of

DBInterface and allows the

DBSupport library to link to

DBEngine

DBPRIMARYKEY DBMTYPE Enumerates data items that form a

unique key for a data set

DBSETUP BOOLEAN Verifies that the Accessory is

using the same versions of the

Databridge interface. This also

allows the DBSupport library to

initialize.

DBSUPPORTENGINE DBMTYPE Allows an Accessory to specify the

title of the DBEngine library that

DBSupport should link to

3.89.2 Additional Filtering.

3.89.2 Additional Filtering. 99

3.90 DBCLIENTKEY

The client calls this entry point to indicate the primary key it is using for a structure. The formatting

routines will then send both the BeforeImage and AfterImage of a modify if the key value changed.

Declaration

DBMTYPE procedure DBClientKey (StrIdx, KeyCount, KeyList);

Entry Point Type Description

DBSUPPORTINIT DBMTYPE Required. Verifies that the

Accessory is using the same

version of DBInterface and allows

the DBSupport library to link to

DBEngine

NOTE: This entry point replaces

the DBINITIALIZESUPPORT entry

point.

DBSUPPORTMISSINGENTRYPOINT STRING Returns the name of the first entry

point missing from the DBSupport

library code file that the Accessory

expected to be present based on

the interface file

DBUNREMAPITEMINFO DBMTYPE Takes a remap data item number

and returns item information for

the data item in the original data

set

DBVIEWABLE BOOLEAN Determines whether a data set is

viewable for userdefined data set

filtering

Input Type Definition

StrIdx INTEGER Structure index of a selected data set

KeyCount INTEGER Number of key items in KeyList

3.90 DBCLIENTKEY

3.90 DBCLIENTKEY 100

3.91 DBERRORMANAGER

Accessories call this entry point to report errors. You can write your own error handling routine to

analyze the error and take appropriate action. You must declare any error handler you create in the

DBGenFormat parameter file (see Error Handling Routines for more information about error

handling routines). If no error handler is defined in the DBGenFormat parameter file, this entry point

displays the error message and lets the Accessory decide what to do, such as whether to

terminate, keep going, or do an ACCEPT.

Declaration

EMATYPE procedure DBErrorManager (AccessoryID, ErrNbr, pErrMsg, ErrMsgLen);

Input Type Definition

KeyList REAL ARRAY LIst of item numbers of keys

Input Type Definition

ACCESSORYID AIDTYPE The ID number of the Accessory

AIDTYPE values are listed in Types, Values, and Array

Layouts.

ERRNBR DBMTYPE The error number

Error numbers are listed in the Databridge Host

Administrator's Guide.

PERRMSG POINTER The error message text

Error messages are listed in the Databridge Host

Administrator's Guide.

3.91 DBERRORMANAGER

3.91 DBERRORMANAGER 101

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Example

The following code shows how DBSpan calls DBErrorManager:

3.92 DBEXTRACTKEY

This entry point extracts the primary key of a data set record.

Declaration

DBMTYPE procedure DBEXTRACTKEY (DSStrNum, Record, Key);

Input Type Definition

ERRMSGLEN REAL The length of the error message in bytes

case DBErrorManager (DBV_Span, DMR, Msg, offset (pMsg)) of
 begin
 DBV_Default: % Accessory can decide
 ;

 DBV_Fatal: % Accessory should terminate
 Fatal := true;

 DBV_Ignore: % Accessory should continue
 Fatal := false;
 DMR := DBM_OK;

DBV_Retry: % Accessory should retry the operation
 Fatal := false;
 end;

if DMR ^= DBM_OK then % still an error
 begin
 WriteMsg (MSG_ERROR);

 if Fatal then
 begin
 InsertErrNbr (DBM_FATAL_ERROR);
 MESSAGESEARCHER (MessText [DBM_FATAL_ERROR], pMsg, MsgLen);
 display (Msg);
 MYSELF.STATUS := value (TERMINATED);
 end;
 end;

Input Type Definition

DSSTRNUM INTEGER The structure number of the data set whose primary key

you want to extract

3.92 DBEXTRACTKEY

3.92 DBEXTRACTKEY 102

3.92.1 DBFILTER

This entry point allows you to apply user-defined record filtering. Use it for record security and

selection.

The procedure value can be the following:

TRUE—The record meets the criteria, so the caller should continue to process the record.

FALSE—The caller should discard the record.

Boolean (DBV_WRONGLEVEL)—The record has a different format level than the filter.

Recompile the DBSupport library.

Boolean (DBV_BAD_STRNUM)—The record is for an unknown data set. Recompile the

DBSupport library.

Declaration

boolean procedure DBFILTER (UserRec, UI);

Input Type Definition

RECORD ARRAY Unformatted data set record from the audit trail from

DBREADTRANGROUP, DBREAD, or DBWAIT

Output Type Definition

KEY ARRAY The primary key value for the record

The caller must ensure that this array is large enough to hold

the key value; otherwise, a SEG ARRAY ERROR may occur.

•

•

•

•

Input Type Definition

USERREC ARRAY Unformatted data set record from the audit trail

3.92.1 DBFILTER

3.92.1 DBFILTER 103

You have access to the source code for the DBSupport library (SYMBOL/DATABRIDGE/SUPPORT)

and can modify it in order to implement data filtering, data security, and other functions. We

strongly recommend, however, that you use DBGenFormat to provide these features if at all

possible. See the Databridge Host Administrator's Guide for more information on DBGenFormat.

3.93 DBFILTEREDDATASETS

This entry point returns data set names and other information about each data set in the filter. If

the filter discards all records from a particular data set, that data set's information is not returned.

Declaration

DBMTYPE procedure DBFilteredDatasets (Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about each data set in the filter.

Declaration

boolean procedure Callback (pDSName, Len, DATASET_INFO);

Input Type Definition

UI ARRAY Description of the modification

For a description of the array, see UPDATE_INFO

Layout.

Make sure you observe the comments in the source that indicate where user-written patches

should go. These lines are preserved from release to release; all other lines are subject to

change and resequencing.

Caution

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each data

set

3.93 DBFILTEREDDATASETS

3.93 DBFILTEREDDATASETS 104

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

3.94 DBFILTEREDITEMINFO

This entry point returns information for a data item in a data set or remap and applies the current

filter and any ALTERs. See Altered Data Sets for more information on ALTERs.

This entry point supports virtual data sets. For more information on virtual data sets, see Virtual

Data Sets.

Declaration

DBMTYPE procedure DBFilteredItemInfo (DSStrNum, RecType, ItemNum, ITEM_INFO);

3.95 DBFILTEREDITEMNAME

This entry point returns information for a data item in a data set as restricted by a filter and any

ALTERs.

Declaration

DBMTYPE procedure DBFilteredItemName (DSStrNum, RecType, ItemName,ITEM_INFO);

Parameter Type Definition

PDSNAME POINTER The pointer to a data set name

The calling program must copy this name into its

local memory.

LEN REAL The length of the data set name

DATASET_INFO ARRAY Information about the data set

For a description of the array, see DATABASE_INFO

Layout.

Input Type Definition

DSSTRNUM REAL The structure number of the desired data set

RECTYPE REAL The record type of the desired data set

3.94 DBFILTEREDITEMINFO

3.94 DBFILTEREDITEMINFO 105

3.96 DBFILTEREDLAYOUT

This entry point returns data items in a data set or remap as restricted by a filter and any ALTERs.

Declaration

DBMTYPE procedure DBFilteredLayout (DSStrNum, RecType, Callback);

Input Type Definition

ITEMNAME STRING The name of the data item whose information is to be

returned

Output Type Definition

ITEM_INFO ARRAY The information for the data item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap that

contains the data items you want to return

RECTYPE REAL The record type number (0 for fixed format)

3.96 DBFILTEREDLAYOUT

3.96 DBFILTEREDLAYOUT 106

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about each data item in the data set or remap.

Declaration

boolean procedure Callback (ITEM_INFO);

3.97 DBFILTEREDLINKS

This entry point returns the link items for a data set as restricted by the filter.

Declaration

DBMTYPE procedure DBFilteredLinks (DSStrNum, Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the link items in a data set. This procedure is called

once for each link item.

Declaration

boolean procedure Callback (ITEM_INFO);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information about each data

item

Output Type Definition

ITEM_INFO ARRAY Information about the data item

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

DSSTRNUM REAL The structure number of the desired data set

3.97 DBFILTEREDLINKS

3.97 DBFILTEREDLINKS 107

3.98 DBFILTEREDNULLRECORD

This entry point returns a record with all data items set to NULL. The record layout reflects the filter

and any ALTERs.

Declaration

DBMTYPE procedure DBFilteredNullRecord (DSStrNum, RecType, NullRec);

3.99 DBFILTEREDSETS

This entry point returns set names and their structure numbers for a data set or remap as restricted

by a filter. If a set contains a key that the filter does not allow, the set is not returned to the calling

program.

Declaration

DBMTYPE procedure DBFilteredSets (DSStrNum, Callback);

Parameter Type Definition

ITEM_INFO ARRAY The array of information describing a link item in the

data set

For a description of the array, see ITEM_INFO Array

Layout.

Input Type Definition

DSSTRNUM INTEGER The structure number of the data set or remap

RECTYPE INTEGER The record type number (0 for fixed format)

Output Type Definition

NULLREC ARRAY A binary image of a data set record with all data items

set to NULL

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap for which

you want to return sets

3.98 DBFILTEREDNULLRECORD

3.98 DBFILTEREDNULLRECORD 108

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about each set of the specified data set or remap in the filter.

Declaration

boolean procedure Callback (pSetName, Len, SetStrNum, DuplicatesAllowed,

KeyChangeAllowed);

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each set

Parameter Type Definition

P_SETNAME POINTER The pointer to the set name

The calling program must copy this name to

its memory

LEN REAL The length of the set name

STRNUM REAL The structure number of the set

DUPLICATESALLOWED BOOLEAN One of the following:

TRUE—The set allows duplicates.

FALSE—The set does not allow

duplicates.

•

•

3.99 DBFILTEREDSETS

3.99 DBFILTEREDSETS 109

3.100 DBFILTEREDSETSINFO

This entry point returns information for each set of a given data set or remap, as restricted by the

filter. If a set contains a key that the filter does not allow, the set is not returned to the calling

program.

Declaration

DBMTYPE procedure DBFilteredSetsInfo (DSStrNum, Callback);

Parameter Type Definition

KEYCHANGEALLOWED BOOLEAN One of the following:

TRUE—The set allows an update to

change the value of the key.

FALSE—The set does not allow an update

to change the value of the key.

•

•

Input Type Definition

DSSTRNUM REAL The structure number of the data set or remap that is the

target of the returned sets

3.100 DBFILTEREDSETSINFO

3.100 DBFILTEREDSETSINFO 110

BOOLEAN PROCEDURE CALLBACK

This procedure receives information for each set of the data set or remap as restricted by the filter.

Declaration

boolean procedure Callback (SET_INFO);

3.101 DBFILTEREDSTRNUM

This entry point returns the structure number for a data set or remap name, including virtual data

sets. If the filter does not allow the specified data set or remap, the entry point returns an error.

Declaration

DBMTYPE procedure DBFilteredStrNum (pDSName, DSStrNum);

3.102 DBFILTEREDSUBSETSINFO

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each set

Parameter Type Definition

SET_INFO ARRAY The information describing the set

For a description of the array, see SET_INFO Layout.

Input Type Definition

PDSNAME POINTER The pointer to a data set name

Any illegal character, such as a space, terminates the

name.

Output Type Definition

DSSTRNUM REAL The structure number for the specified data set or

remap

3.101 DBFILTEREDSTRNUM

3.101 DBFILTEREDSTRNUM 111

This entry point returns information about each subset of a given data set or remap, as restricted

by the filter.

Declaration

DBMTYPE procedure DBFilteredSubsetsInfo (DSStrNum, Callback);

Input Type Definition

DSSTRNUM REAL The structure number of the data set that is the target of

the subsets

3.102 DBFILTEREDSUBSETSINFO

3.102 DBFILTEREDSUBSETSINFO 112

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the subset. This procedure is called once for each

subset.

Declaration

boolean procedure Callback (SET_INFO);

3.103 DBFILTEREDWRITE

This entry point performs all of the necessary filtering and formatting of an update received from

DBREADTRANGROUP.

DBFILTEREDWRITE determines two things from UPDATE_INFO as follows:

Whether to send only the after-image or both the before- and after-images to be modified.

Whether or not a modify causes a change in the DBFILTER result and sends the appropriate

update type. For example, if the update causes the DBFILTER result to change from FALSE to

TRUE, DBFILTEREDWRITE sends the update as a CREATE. A change from TRUE to FALSE

causes a DELETE.

Procedure values include:

DBM_OK (0)—The record was written.

DBM_FILTERED_OUT (104)—The record was not written because it did not satisfy the WHERE

condition.

DBM_FORMAT_ERROR (91)—The formatting routine encountered an error.

DBM_COMP_SUPPORT (96)—DBSupport needs to be recompiled.

Declaration

DBMTYPE procedure DBFilteredWrite (UI, BI, AI, DBFormat, Writer)

Input Type Definition

CALLBACK BOOLEAN The procedure that receives information for each subset

Parameter Type Definition

SET_INFO BOOLEAN The array of information describing the subset

For a description of the array, see SET_INFO Layout.

•

•

•

•

•

•

3.103 DBFILTEREDWRITE

3.103 DBFILTEREDWRITE 113

BOOLEAN PROCEDURE WRITER

This procedure receives information about the formatted record.

Declaration

boolean procedure writer (P, Chars);

3.104 DBFORMAT

This entry point formats a data record for output. This is the default format, which is a binary image

of the corresponding record in the database as it would appear to a COBOL program. RAWFORMAT

is an alias for this formatting routine.

The procedure value can be any DBMTYPE result code.

Declaration

DBMTYPE procedure DBFORMAT (UserRec, UI, Callback);

Input Type Definition

UI ARRAY The UPDATE_INFO describing the update

For a description of the array, see UPDATE_INFO

Layout.

BI ARRAY The before-image of the record

AI ARRAY The after-image of the record

DBFORMAT BOOLEAN The formatting routine to call

WRITER BOOLEAN The procedure to call to return the formatted record

Output Type Definition

P POINTER The pointer to the formatted record

CHARS REAL The length of the formatted record in bytes

Input Type Definition

USERREC ARRAY An unformatted data set record from the audit trail

3.104 DBFORMAT

3.104 DBFORMAT 114

DBMTYPE PROCEDURE CALLBACK

This procedure receives information about the formatted record.

Declaration

DBMTYPE procedure Callback (P, Chars);

Input Type Definition

UI ARRAY A description of the modification

For a description of the array, see UPDATE_INFO

Layout.

CALLBACK DBMTYPE The procedure to call with the formatted record

Parameter Type Definition

P POINTER The pointer to the formatted record

CHARS REAL The length of the formatted record in bytes

UPDATE_INFO ARRAY A description of the modification.

For a description of the array, see the UPDATE_INFO

Layout.

3.104 DBFORMAT

3.104 DBFORMAT 115

3.104.1 Additional Options

Databridge includes several other formats, which DBGenFormat produces from its parameter file.

The release object code (executable program) for the DBSupport library contains predefined

formatting routines corresponding to the format declarations in DATA/GENFORMAT/SAMPLE/

CONTROL.

For more information, see the Databridge Host Administrator's Guide.

An Accessory typically refers only to DBFORMAT. By changing the ACTUALNAME of DBFORMAT,

however, you can redirect any calls to DBFORMAT to another formatting routine such as

FIXEDFORMAT. This allows the Accessory to dynamically select the formatting routine while

keeping a simple call to DBFORMAT.

Example

This example shows how to redirect calls from DBFORMAT to another formatting routine.

3.104.2 Layout Information

The DBFORMAT routines in a non-tailored DBSupport library load new layout information as

necessary. For example, if a data set is reorganized, DBFORMAT loads the new layout when it

receives records with the new layout. The generic formatting routines check the DESCRIPTION file

for layout information.

3.105 DBINITDATAERROR

This entry point initializes data-error handling for the formatting routines. When the formatting

routines detect one of the specified error conditions during subsequent processing, they call the

indicated procedure, DataError_Output. (The DBINITDATAERROR entry point itself does not call

DataError_Output.)

Declaration

Parameter Type Definition

RawImage ARRAY The original unformatted record

% get the format name
 FORMATNAME := YY_STRING (NAMELOC);

 REPLACE FILETITLE BY FORMATNAME, ".";

 IF SETACTUALNAME (DBFORMAT, FILETITLE) < 0 THEN
 BEGIN
 DIE (DBM_BAD_FORMATNAME, FORMATNAME);
 END;

3.104.1 Additional Options

3.104.1 Additional Options 116

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

DBMTYPE procedure DBINITDATAERROR (DataError_Options, DataError_Output);

BOOLEAN PROCEDURE DataError_Output

This procedure receives information about the error message.

Declaration

boolean procedure DataError_Output (P, Chars);

Input Type Definition

DATAERROR_OPTIONS BOOLEAN Each bit specifies the type of data error

checking to perform

For a description of these error types, see

Data Error Types.

DATAERROR_OUTPUT BOOLEAN Procedure to call when a formatting routine

detects a data error.

Parameter Type Definition

P POINTER The pointer to the data error message

3.105 DBINITDATAERROR

3.105 DBINITDATAERROR 117

3.106 DBINITIALIZESUPPORT

This entry point verifies that the DBInterface version of the Accessory, DBSupport, and DBEngine

are all compatible. If the DBInterface versions used to compile DBEngine, DBSupport, or the

Accessory do not match, it returns DBM_VER_MISMATCH (115). If the versions match,

DBINITIALIZESUPPORT installs the designated filter and format and returns DBM_OK.

An Accessory must call this entry point (if not DBSUPPORTINIT) before calling any other

DBSupport entry points. See Accessing the DBEngine and DBSupport Libraries for more

information.

Before calling DBINITIALIZESUPPORT, the Accessory must specify the name of the filter and

format DBSupport should use in all of its routines. To specify the filter and format names, set the

LIBPARAMETER string library attribute of DBSupport to the filter name followed by a space and the

format name as in the following example:

SUPPORT.LIBPARAMETER := "ONLYBANK1 BINARYFORMAT";

If you do not set LIBPARAMETER to the name of a filter, DBSupport defaults to the predefined

DBFILTER, which allows everything.

Declaration

Parameter Type Definition

CHARS REAL The length of the data error message in bytes

You should use the DBSUPPORTINIT entry point instead of DBINITIALIZESUPPORT. This entry

point is not the preferred method for initializing the DBSupport library.

If you use this entry point, you must first specify the filter and format names in the Accessory

using the LIBPARAMETER attribute of DBSupport. (The Accessory cannot specify a transform

using this entry point.) DBINITIALIZESUPPORT provides backward compatibility for existing

Accessories. All new Accessories use DBSUPPORTINIT.

Note

define DBInitializeSupport (AccessoryVersion, AccessoryID) = DBSupportInit
 (AccessoryVersion, AccessoryID, head (Support.LIBPARAMETER, not " "),
 tail (tail (Support.LIBPARAMETER, not " "), " "), empty) #;

Input Type Definition

ACCESSORYVERSION REAL The version of the Databridge Interface used to

compile the Accessory

3.106 DBINITIALIZESUPPORT

3.106 DBINITIALIZESUPPORT 118

3.107 DBPRIMARYKEY

This entry point returns data items that form a unique key for a data set. The key is either user-

defined (in DBGenFormat) or is the key of the set with the fewest key items that does not allow

duplicates.

Declaration

DBMTYPE procedure DBPRIMARYKEY (DSStrNum, Callback);

BOOLEAN PROCEDURE CALLBACK

This procedure receives information about the data item that forms the unique key.

Declaration

boolean procedure Callback (ItemNum, Descending);

Input Type Definition

ACCESSORYID STRING A description of the Accessory to insert in the

error message

Input Type Definition

DSSTRNUM INTEGER The structure number of the data set or remap for which

you want a primary key

CALLBACK BOOLEAN The procedure that receives information for each key

item

Input Type Definition

ITEMNUM INTEGER The item number of the data item, as in ITEM_INFO

[II_ITEM_NUM]

3.107 DBPRIMARYKEY

3.107 DBPRIMARYKEY 119

3.108 DBSETUP

This entry point checks the versions of the Databridge API and initializes the DBSupport library.

Your program must call this entry point, if not DBSUPPORTINIT, before calling any other entry points

in DBSupport. The success of the procedure is reflected in the Boolean procedure value, as follows:

TRUE—The version number is correct, and the DBSupport library is initialized.

FALSE—The initialization failed.

Declaration

boolean procedure DBSETUP (Caller_Version);

3.109 DBSUPPORTENGINE

This entry point allows an Accessory to specify the title of the DBEngine library that DBSupport

should link to. Contact Micro Focus for additional information.

3.110 DBSUPPORTINIT

Input Type Definition

DESCENDING BOOLEAN TRUE if the item is descending

Use the DBSUPPORTINIT entry point instead of DBSETUP. This entry point is not the preferred

method for initializing the DBSupport library. If you use this entry point rather than

DBSUPPORTINIT, you cannot specify a filter or format name. They default to DBFILTER and

DBFORMAT respectively.

Note

•

•

Input Type Definition

CALLER_VERSION REAL The version of the API file you used to compile

your program

3.108 DBSETUP

3.108 DBSETUP 120

An Accessory must call this entry point first to verify that the DBInterface version of the Accessory,

DBSupport, and DBEngine are all compatible and to allow the DBSupport library to link to DBEngine.

If the Accessory, DBEngine, and DBSupport are not all compiled against the same version of

DBInterface, this entry point returns a DBM_VER_MISMATCH message.

Declaration

This entry point replaces the DBINITIALIZESUPPORT entry point; however,

DBINITIALIZESUPPORT is provided for backward compatibility.

Note

DBMTYPE procedure DBSupportInit (AccessoryVersion, AccessoryID,
FilterName, FormatName, TransformName);

Input Type Definition

ACCESSORYVERSION REAL The version of the API file you used to compile

your program

ACCESSORYID STRING A string describing the Accessory that prefixes

an error message

FILTERNAME STRING The name of the filter to use

If you do not specify a filter, the default is

DBFILTER.

FORMATNAME STRING The name of the format to use

If you do not specify a format, the default is

DBFORMAT.

3.110 DBSUPPORTINIT

3.110 DBSUPPORTINIT 121

3.111 DBSUPPORTMISSINGENTRYPOINT

This entry point returns the name of the first entry point missing from the DBSupport library code

file that the Accessory expected to be present based on the interface file.

Declaration

string procedure DBSUPPORTMissingEntryPoint;

Example

3.112 DBUNREMAPITEMINFO

This entry point takes a remap data item number and returns item information for the data item in

the original data set.

In the following example, if R remaps D, and you pass this procedure the structure number of R and

the item number of R2, it returns ITEMINFO for D1. The item name in ITEMINFO, for example, will be

D1.

If the item number is for RVIRT, the routine zeros out the ITEMINFO because it is a VIRTUAL and,

therefore, has no original data item information.

Declaration

Input Type Definition

TRANSFORMNAME STRING The name of the transform to use

If you do not specify a transform, the default is

DBTRANSFORM.

string MissingEP;

MissingEP := DBSUPPORTMissingEntryPoint;
if MissingEP NEQ empty then
 display ("Missing DBSupport entry point " !!
 MissingEP);

D DATASET (
 D1 ALPHA (6);
 D2 NUMBER (12);
);
R REMAPS D (
 R2 = D1;
 RVIRT VIRTUAL NUMBER (2) = 99;
);

DBMTYPE procedure DBUnRemapItemInfo (RemapStrNum, RemapRecType,
 RemapItemNum, ITEM_INFO);

3.111 DBSUPPORTMISSINGENTRYPOINT

3.111 DBSUPPORTMISSINGENTRYPOINT 122

Input Type Definition

REMAPSTRNUM INTEGER The structure number of the remap

REMAPRECTYPE INTEGER The record type containing the remap item (0 for

fixed-format)

3.112 DBUNREMAPITEMINFO

3.112 DBUNREMAPITEMINFO 123

3.113 DBVIEWABLE

This entry point determines if a structure is viewable (for user-defined data set filtering). The

Boolean procedure values are as follows:

TRUE—The caller can see the data set.

FALSE—The caller cannot see the data set.

Declaration

boolean procedure DBVIEWABLE (DSStrNum);

Input Type Definition

REMAPITEMNUM INTEGER The number of the data item for which to return

information

Ouput Type Definition

ITEM_INFO ARRAY The item information about the original data set item

For a description of the array, see ITEM_INFO Array

Layout.

•

•

Input Type Definition

DSSTRNUM REAL The DMSII structure number

3.113 DBVIEWABLE

3.113 DBVIEWABLE 124

4. Virtual Data Sets

In This Chapter

This chapter gives you programming tips and examples for creating virtual data sets.

4.1 Overview

A virtual data set is a collection of data that Databridge Accessories see as a DMSII data set, even

though the virtual data set does not actually exist in the DMSII database. Databridge Accessories

can clone and track virtual data sets in exactly the same way that they clone and track real data

sets.

Virtual data can come from several sources, including sources external to the DMSII database, but

something in the audit trail, such as an update or a documentation record, must cause Databridge

to retrieve the external data.

Use virtual data sets when you want to create a structure that doesn't physically reside in the DMSII

database but can be passed (via a Databridge Accessory) to a Databridge Client relational

database or to another secondary database.

Under certain circumstances, virtual data sets may be affected by DMSII reorganizations. For more

information about how DMSII reorganizations may affect virtual data sets, see DMSII

Reorganizations.

To create a virtual data set, you must declare the virtual data set in the DBGenFormat parameter

file. The virtual data set declaration lists the data items that you want to include in the virtual data

set and specifies other details about the virtual data set, such as the data set structure number.

You must also provide a transform procedure to populate the virtual data set and declare the

transform procedure in the DBGenFormat parameter file. A single transform procedure populates

all virtual data sets that you declare in the DBGenFormat parameter file. The transform procedure is

compiled as a patch to the DBSupport Library (see Step 9 for Creating a Virtual Data Set).

If you want to convert the format of one or more data items within an existing data set

individually, see Altered Data Sets for more information.

If you are using a Databridge Administrative Console and want to join two or more data sets

into a single data set, you should join the data sets in the client database using SQL rather than

using a virtual data set.

Note

4. Virtual Data Sets

4. Virtual Data Sets 125

Finally, you must enter the name of the tailored support library and the transform in the appropriate

Accessory parameter file.

When this process is completed, the Accessory can clone or track the virtual data set(s).

Before You Begin

To create a virtual data set, complete the following steps:

Read this entire chapter so that you get an understanding of how the code you write for your

virtual data set relates to the actual virtual data set declarations you make in the

DBGenFormat file.

For example, each virtual data set needs the following:

Data set name that follows DMSII data set naming conventions

Data item names that follow DMSII data item naming conventions

Data item types that adhere to DMSII data type conventions

Decide what data you want to use for your virtual data set.

Virtual data sets may include data from a source external to the DMSII database, but

something in the audit trail, such as an update or a documentation record, must cause

Databridge to retrieve the external data. You can include any or all of the following:

Any DMSII data sets or remaps within one or more databases

Any flat file data

Any data generated by an external program or library

Create the virtual data set as explained in Creating a Virtual Data Set.

4.1.1 Sample Files

The following sections of this guide provide instructions, tips, and samples to help you create a

virtual data set:

Writing a Virtual Data Set Transform Procedure gives specific details about how to modify the

virtual transform skeleton (an outline for a transform procedure), PATCH/DATABRIDGE/

SAMPLE/SUPPORT/VIRTUAL.

Sample ALGOL Virtual Transform Procedure contains the sample virtual transform procedure,

PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS, and several corresponding

parameter file declarations.

1. 1.

1.

•

•

•

2. 2.

2.

•

•

•

3. 3.

•

•

4.1.1 Sample Files

4.1.1 Sample Files 126

4.2 Creating a Virtual Data Set

To define a virtual data set, complete the following steps:

It is recommended that you read through the section, Sample ALGOL Virtual Transform

Procedure, before you create a virtual data set. The section that contains the sample transform

also contains other helpful samples. For instance, DBGenFormat Parameter File Declarations

contains a sample DBGenFormat declarations that correspond to steps Step3–Step5.

Note

4.2 Creating a Virtual Data Set

4.2 Creating a Virtual Data Set 127

Use CANDE or another editor to retrieve the DBGenFormat parameter file DATA/GENFORMAT/

SAMPLE/CONTROL.

For a general description of the DBGenFormat parameter file, refer to the Databridge Host

Administrator's Guide.

Rename the file, as follows:

DATA/GENFORMAT/databasename/CONTROL

where databasename is the name of the database for which you are creating the tailored

support library and from which you are creating part of your virtual data set.

Declare the virtual data set in the DBGenFormat parameter file (DATA/GENFORMAT/

databasename/CONTROL) using the syntax in Syntax for Declaring a Virtual Data Set. Repeat

this step for each virtual data set you want to declare.

Declare a primary key for each virtual data set you declared in the DBGenFormat parameter file

if you plan to clone the virtual data sets. Virtual data sets have no key, and Databridge needs a

key to consolidate any fixup records with the extracted records.

Refer to the Databridge Host Administrator's Guide for more specific information about when

and why you need to declare a primary key and for PRIMARY KEY syntax.

(Optional) If you want to use the virtual data set definitions in the Transform Layouts section

of PATCH/DATABRIDGE/SUPPORT/databasename /GENGLOBALS when you write your

transform procedure, do the following. Otherwise, skip this step and go to step 6.

Save DATA/GENFORMAT/databasename/CONTROL.

Compile the tailored support library, as follows:

START WFL/DATABRIDGE/COMP ("SUPPORT", "databasename" ["logicaldatabasename"])

1. 1.

1.

2. 2.

2.

2.

3. 3.

4. 4.

If you do not create a primary key, Databridge uses absolute address (AA) values to create a

unique key for the virtual data set. The code you write for the transform must set the unique

AA value of each virtual data set record.

Often, the transform can use the AA of the original ("trigger") record, but if your transform

procedure produces more than one virtual data set record for each real data set record, you

must create a unique AA value for each virtual data set record.

Note

4.

5. 5.

a.

b.

2.

Where Is

"SUPPORT" The literal that represents the DBSupport program

The quotation marks are required.

4.2 Creating a Virtual Data Set

4.2 Creating a Virtual Data Set 128

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Where Is

"databasename" " The name of the database for which you are creating the

tailored support library

The database name can include a usercode and pack, which

are used to locate the database DESCRIPTION file, as

follows:

"(usercode)databasename ON packname"

The quotation marks are required.

4.2 Creating a Virtual Data Set

4.2 Creating a Virtual Data Set 129

This WFL compiles layout tables for each data set in the database designated by

databasename or logicaldatabasename. This results in the new tailored support library titled as

follows:

OBJECT/DATABRIDGE/SUPPORT/databasename

— or —

OBJECT/DATABRIDGE/SUPPORT/databasename/logicaldatabasename

These data set-specific layout tables contain the offsets and sizes of individual data items,

including virtual data items.

Copy the virtual transform skeleton PATCH/DATABRIDGE/SAMPLE/SUPPORT/VIRTUAL as

PATCH/DATABRIDGE/SUPPORT/transformname, where transformname is the name of the

transform procedure.

Add your code to build virtual records in the sections of PATCH/DATABRIDGE/SUPPORT/

transformname marked % TO DO: as follows:

(Optional) Study the declarations for the virtual dataset(s) in the Transform Layouts

section of PATCH/DATABRIDGE/SUPPORT/databasename/GENGLOBALS.

If you declared any variables global to the transform procedure, initialize them in the

InitializeVirtualTransform procedure, which is called the first time DBSupport calls the

transform.

Write virtual data set transform routines as described in Writing a Virtual Data Set

Transform Procedure.

Save your changes to PATCH/DATABRIDGE/SUPPORT/ transformname.

Where Is

"logicaldatabasename" The name of a logical database for which you are creating

the tailored support library

2.

2.

2.

2.

2.

If you have two databases with the same name under different usercodes, and you are

running Databridge from a third usercode, be careful when you create a tailored support

library. In this case, the second library you compile overwrites the first, because Databridge

strips the usercode and pack name from the database name to create the tailored support

library title.

Caution

6. 6.

7. 7.

a. 1.

1.

b. 2.

8. 8.

4.2 Creating a Virtual Data Set

4.2 Creating a Virtual Data Set 130

Compile DBSupport with the transform as follows:

Declare the transform procedure in the DBGenFormat parameter file as shown in Syntax for

Declaring a Transform.

Save DATA/GENFORMAT/ databasename /CONTROL.

Compile the tailored support library as instructed in step 9

Enter the name of the tailored support library and transform procedure in the appropriate

Accessory parameter file, as follows:

What to Do Next

Repeat these steps for each virtual data set you want to create.

You can now use your virtual data set by running your Databridge Accessories as usual. If you

encounter problems when creating or compiling your virtual data set, see Troubleshooting for

troubleshooting information.

The Troubleshooting chapter provides specific troubleshooting tips for writing virtual data set

transform procedures and working with virtual data sets.

4.3 Syntax for Declaring a Transform

9. 9.

a.

b.

c.

10. 10.

For Do this

Databridge

Clients

In the DBServer parameter file, enter the tailored support library

name for the SUPPORT option and enter the name of the transform

procedure for the TRANSFORM option.

For more information, refer to the Databridge Host Administrator's

Guide.

DBSpan or

DBSnapshot

In the DBSpan or DBSnapshot parameter file, enter the tailored

support library name for the SUPPORT option and enter the

transform name for the TRANSFORM option.

For more information, refer to the Databridge Host Administrator's

Guide.

You can declare any number of virtual data sets but you must have exactly one transform that

handles all of them.

Note

4.3 Syntax for Declaring a Transform

4.3 Syntax for Declaring a Transform 131

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

To declare a transform, use the following syntax in the DBGenFormat parameter file:

TRANSFORM transformname IN "patchfiletitle"

where transformname is the transform procedure that you declared, and patchfiletitle is the title of

the ALGOL patch file containing the transform procedure that you created.

4.4 Syntax for Declaring a Virtual Data Set

Use the following syntax to declare a virtual data set. This syntax is taken from DATA/

GENFORMAT/ SAMPLE/CONTROL.

VIRTUAL virtualdatasetname #strnum POPULATION estrecords DERIVED FROM
datasetlist
(
dataitem datatype;
.
.
.
dataitem datatype;
);

Where Is

datasetlist The names of one or more data sets from which the virtual

data set obtains records.

Use commas to separate multiple data set names (see

Sample Virtual Data Set Declaration for an example that lists

multiple data set names).

virtualdatasetname The name you want to give to the virtual data set.

NOTE: Do not use the underscore character.

4.4 Syntax for Declaring a Virtual Data Set

4.4 Syntax for Declaring a Virtual Data Set 132

Where Is

#strnum A structure number that you assign to this virtual data set.

(The # symbol is required.)

The structure number of the first virtual data set must be

greater than the largest structurenumber assigned in the

DMSII database. Before you select this number, however, allow

room for adding more real structures to the database. For

example, if the last structure number used in the DMSII

database is 200, you might want to choose 400 as the

structure number for the first virtual data set. This leaves

room for you to add 199 new sets and data sets to the

database.

Once you choose a number for the first virtual data set, you

can assign structure numbers one greater than the previous

virtual data set. In this example, you would assign 400, 401,

402, and so on, to the virtual data sets.

Structure numbers cannot exceed 4095.

POPULATION

estrecords

An optional, but highly recommended, clause where

estrecords is the estimate of the number of records that

appear in the data set during a clone. This estimate helps

Databridge Accessories to allocate space appropriately.

The default value is 1000000.

DERIVED FROM

dataset,…

Required. A list of the actual DMSII data sets from which you

want to create your virtual data set. This declaration causes

DBGenFormat to generate defines and variables in the

GENGLOBALS patch that the transform can use to build virtual

records.

dataitem The list of data items you want to be included in this virtual

data set.

Name the data items the same way you would for a DMSII

data set.

4.4 Syntax for Declaring a Virtual Data Set

4.4 Syntax for Declaring a Virtual Data Set 133

4.4.1 Sample Virtual Data Set Declaration

The following sample is the DBGenFormat declaration for a virtual data set:

4.4.2 Writing a Virtual Data Set Transform Procedure

This section provides additional information about writing a virtual data set transform procedure.

If you used the DERIVED FROM statement when you declared the virtual data set, you can use the

% Transform Layouts section of PATCH/DATABRIDGE/SUPPORT/database/GENGLOBALS to

build the virtual data set records.

Where Is

datatype The DMSII data type for this data item. You may use the

following data types:

DMSII syntax and data types

For example, you would use ALPHA(n) for a text data

item.

One of the data item types listed in Chapter B,

Troubleshooting

If you are declaring a signed numeric item, insert at least

one space between the S and the number of digits (for

example, TRAN-AMT NUMBER (S 9, 2);).

•

•

VIRTUAL ADDRESS #79 POPULATION 100000
 DERIVED FROM BANK, CUSTOMER

 (
 ADDR-BANK-ID NUMBER (4);
 ADDR-CUST-ID NUMBER (8);
 ADDR-LINE-NBR NUMBER (1);
 ADDR-LINE ALPHA (30);
);

Compare the virtual transform skeleton (Virtual Transform Skeleton) with the sample transform

procedure (ALGOL Source for the Sample Virtual Transform Procedure) to see how the code

you must supply relates to the % TO DO: sections you modify in the virtual transform skeleton.

Note

4.4.1 Sample Virtual Data Set Declaration

4.4.1 Sample Virtual Data Set Declaration 134

4.4.3 Initializing the Virtual Record

Before copying data into the virtual data set record, the transform procedure must initialize the

whole virtual data set record area to high values (all bits on) because this is the value Databridge

uses to recognize NULL data items. The following example illustrates how to do so:

replace VRec8 by real (not false) for size (VRec8);

4.4.4 Constructing an UPDATE_INFO Array

Transform procedures construct a virtual record based on real DMSII records and other sources of

information. However, the transform procedures must also construct an UPDATE_INFO array to

reflect an update to the virtual data set rather than the original (real) record. This includes setting

the structure index (UI_STRIDX), structure number (UI_STRNUM), record type (UI_RECTYPE), record

size (UI_RECSZ_WORDS), format level (UI_FORMAT_LEVEL), record address (UI_AA), and parent

record address (UI_PARENT_AA).

The record type and the parent record address for virtual data sets are always 0. The transform

must construct the record address. If the transform builds only one virtual record for each DMSII

record, it can use the UI_AA of the DMSII record as the UI_AA of the virtual record.

If you use the DERIVED FROM clause in the virtual data set declaration, you can use the following

variables and defines from the GENGLOBALS patch file for the other words of UPDATE_INFO:

4.4.5 Calling a COBOL Library

You can code transform procedures in ALGOL and have them call COBOL libraries that actually

create the data for the virtual data sets.

If your transform procedure calls a COBOL formatting program that is compiled with $FEDLEVEL=5,

then in the COBOL program's entry point declaration you must specify the ACTUALNAME to match

the PROGRAM-ID name in the COBOL program where the library is invoked. For example, the

sample COBOL program EXTRACTADDRESS has the following:

The declaration of the COBOL program's entry point in the ALGOL formatting routine would look like

the following:

dataset_StrNum
dataset_RecWords
dataset_FmtLvl
dataset_StrIdx

IDENTIFICATION DIVISION.
PROGRAM-ID. EXTRACTADDRESS.

4.4.3 Initializing the Virtual Record

4.4.3 Initializing the Virtual Record 135

See the declaration of EXTRACTADDRESS in the section marked "% Here's the COBOL program

declaration" in ALGOL Source for the Sample Virtual Transform Procedure.

In addition, if you are using a COBOL 85 compiler, you must set the following compiler options:

4.5 Virtual Transform Skeleton

This is the ALGOL source code for the virtual transform skeleton, PATCH/DATABRIDGE/SAMPLE/

SUPPORT/VIRTUAL. Follow the instructions in Writing a Virtual Data Set Transform Procedure to

modify and use this file to create a virtual data set.

procedure ExtractAddress (...);
 library ExtractAddressLib (ACTUALNAME = "EXTRACTADDRESS");

$$ SET BINARY EXTENDED
$$ SET LIBRARYPROG = TRUE
$$ SET SHARING = DONTCARE
$$ SET TEMPORARY

4.5 Virtual Transform Skeleton

4.5 Virtual Transform Skeleton 136

 09000000
$ SET OMIT 09000100
--
09000200
 09000230
Module: PATCH/DATABRIDGE/SAMPLE/SUPPORT/VIRTUAL 09000240
 09000250
Project: Databridge 09000260
 09000270
Description: Databridge Sample VIRTUAL Transform skeleton 09000280
 09000290
(c) Micro Focus or one of its affiliates. 09000390
 09000530
--
09000540
 09002000
This is a sample skeleton patch to DBSupport for a virtual 09002100
transform routine. 09002200
 09002300
 It should be used in conjunction with the declarations in 09002400
 PATCH/DATABRIDGE/SUPPORT/<database>/GENGLOBALS that 09002500
 DBGenFormat generates when a VIRTUAL dataset is declared with 09002600
 the DERIVED FROM ... syntax. These declarations follow the 09002700
 comment line " % Transform Layouts" in that patch file. 09002800
 09002900
 Copy this file as PATCH/DATABRIDGE/SUPPORT/<database>/VIRTUAL
09003000
 (or a name of your choosing). Add your code to build virtual 09003100
 records in the sections marked "TO DO:" below. 09003200
 09003300
 Declare this file as a TRANSFORM in DBGenFormat, e.g., 09003400
 09003500
 TRANSFORM VirtualTransform 09003600
 in "PATCH/DATABRIDGE/SUPPORT/<database>/VIRTUAL" 09003700
 09003800
 Modification history 09003900
 -------------------- 09004000
 09004100
Version 41.471 09004200
1 Initial release. 09004300
 This is a sample skeleton patch to DBSupport for a virtual 09004400
 transform routine. 09004500
 09004600
End History 09004700
 $ POP OMIT 09004800
 70004900
 70005000
%--
70005100
 70005200
boolean VirtualTransformInitialized; 70005300
 70005400
DBMTYPE procedure InitializeVirtualTransform; 70005500
% -------------------------- 70005600
 begin_proc [InitializeVirtualTransform] 70005700
 70005800
 % The following define will retrieve the structure index values
70005900
 % for the virtual datasets. 70006000
 70006100
 VirtualTransformSetup; 70006200
 70006300
 % TO DO: 70006400
 % Initialize user-defined variables 70006500
 70006600
 70006700
 VirtualTransformInitialized := true; 70006800
 end_proc [InitializeVirtualTransform]; 70006900
 70007000
 70007100
 % DBTransform-type routine 70007200
 70007300
DBTransformHead [VirtualTransform]; 70007400
% ---------------- 70007500
 begin_proc [VirtualTransform] 70007600
 70007700
 % VirtualTransform will pass the original and generated 70007800

 % records to the formatting routine (DBFormat). 70007900
 70008000
 boolean FormatResult; 70008100
 DBMTYPE DBMResult; 70008200
 70008300
integer DSStrNum; % structure number of original dataset 70008400
 70008500
 define ReturnIfNoVirtuals = 70008600
 % ------------------ 70008700
 if ^ IsBase (DSStrNum) then 70008800
 begin % no virtuals derived from this dataset 70008900
 return (DBM_OK); 70009000
 end #; 70009100
 70009200
% array VRec [0 : ??]; % virtual record work area 70009300
 % 70009400
 % EBCDIC array 70009500
 % VRec8 [0] = VRec; 70009600
 % HEX array 70009700
 % VRec4 [0] = VRec; 70009800

4.5 Virtual Transform Skeleton

4.5 Virtual Transform Skeleton 137

 70009900
 procedure BuildVirtual (DSRec); 70010000
 % ------------ 70010100
 array DSRec [0]; % original dataset record 70010200
 70010300
 begin 70010400
 EBCDIC array 70010500
 DSRec8 [0] = DSRec; 70010600
 HEX array 70010700
 DSRec4 [0] = DSRec; 70010800
 70010900
 % TO DO: 70011000
 % Use DSStrNum to determine the original 70011100
 % dataset, e.g., 70011200
 % 70011300
 % if DSStrNum = <dataset>_StrNum then 70011400
 % ... 70011500
 % 70011600
 % and then build the virtual record(s) 70011700
 % using the DSRec of the original dataset record. 70011800
 % For each virtual record you want to send, use 70011900
 % the <virtualdataset>_Send define, e.g., 70012000
 % 70012100
 % <virtualdataset>_Send (<virtualrecord>); 70012200
 % 70012300
 % which will take care of setting up the 70012400
 % UpdateInfo for the virtual dataset and 70012500
 % actually calling the formatting routine. 70012600
 70012700
 70012800
 end BuildVirtual; 70012900
 70013000
 70013100
if ^ VirtualTransformInitialized then 70013200
 begin 70013300
 return_if_error (InitializeVirtualTransform); 70013400
 end; 70013500
 70013600
DSStrNum := UI [UI_STRNUM]; 70013700
 70013800
 % Send the original record first and then build the 70013900
 % virtual records. 70014000
 70014100
case UpdateType of 70014200
 begin 70014300
 DBV_CREATE: 70014400
 % first, AI of original 70014500
 70014600
 ReturnIfFormatError (AI); 70014700
 70014800
 % now AI of virtuals 70014900
 70015000
 ReturnIfNoVirtuals; 70015100
 BuildVirtual (AI); 70015200
 70015300
 DBV_MODIFY: 70015400
 if UI [UI_BI_AI] = 1 then 70015500
 begin 70015600
 % first, BI-AI of original 70015700
 70015800
 UpdateType := DBV_MODIFY_BEFORE_IMAGE; 70015900
 ReturnIfFormatError (BI); 70016000
 70016100
 UpdateType := DBV_MODIFY_AFTER_IMAGE; 70016200
 ReturnIfFormatError (AI); 70016300
 70016400
 % now BI-AI of virtuals 70016500
 70016600
 ReturnIfNoVirtuals; 70016700
 70016800
 UpdateType := DBV_MODIFY_BEFORE_IMAGE; 70016900
 BuildVirtual (BI); 70017000
 UpdateType := DBV_MODIFY_AFTER_IMAGE; 70017100
 BuildVirtual (AI); 70017200
 end 70017300
 else 70017400
 begin 70017500
 % first, AI of original 70017600
 70017700
 ReturnIfFormatError (AI); 70017800
 70017900
 % now AI of virtuals 70018000
 70018100
 ReturnIfNoVirtuals; 70018200
 70018300
 BuildVirtual (AI); 70018400
 end; 70018500
 70018600
 DBV_DELETE: 70018700
 % first, BI of original 70018800
 70018900
 ReturnIfFormatError (BI); 70019000
 70019100
 % now BI of virtuals 70019200
 70019300
 ReturnIfNoVirtuals; 70019400
 70019500
 BuildVirtual (BI); 70019600
 70019700

4.5 Virtual Transform Skeleton

4.5 Virtual Transform Skeleton 138

4.6 Sample ALGOL Virtual Transform Procedure

The sample in this section shows how to create a virtual data set called ADDRESS from data sets

called BANK and CUSTOMER, which are part of the BANKDB database.

To illustrate how to create the ADDRESS virtual data set, this section provides the following:

The various declarations you must make for the ADDRESS virtual data set, such as the

declarations in the DBGenFormat parameter file

A sample virtual transform procedure (modified transform skeleton), PATCH/DATABRIDGE/

SAMPLE/SUPPORT/FORMATADDRESS, containing code to populate the ADDRESS virtual data

set from the BANK and CUSTOMER data sets

4.6.1 Description

The FORMATADDRESS patch file contains a transform procedure called VirtualAddress that

determines if the current record is from either the BANK or CUSTOMER data sets. When the

transform procedure finds a BANK or CUSTOMER record, it calls a COBOL library, OBJECT/

DATABRIDGE/SAMPLE/EXTRACTADDRESS, to extract the address information. Then, the transform

procedure puts the data into the ADDRESS virtual data set. Finally, the transform procedure creates

the UPDATE_INFO array for the ADDRESS virtual data set.

The source code for the COBOL library, EXTRACTADDRESS (OBJECT/DATABRIDGE/SAMPLE/

EXTRACTADDRESS) is shown in Sample COBOL Library.

4.7 Sample DASDL Definition

The following sample shows the DASDL information for the BANK and CUSTOMER data sets:

 DBV_STATE: 70019800
 % Since the Engine will send a StateInfo 70019900
 % for the virtual dataset separately, we 70020000
 % don't need to create one here. 70020100
 70020200
 ReturnIfFormatError (AI); 70020300
 70020400
 else: 70020500
 ReturnIfFormatError (AI); 70020600
 end UpdateType; 70020700
 70020800
 70020900
 return (DBM_OK); 70021000
 end_proc [VirtualTransform]; 70021100
 70021200
% End of VirtualTransform transform patch 70021300
 70021400

•

•

4.6 Sample ALGOL Virtual Transform Procedure

4.6 Sample ALGOL Virtual Transform Procedure 139

4.7.1 DBGenFormat Parameter File Declarations

The DBGenFormat parameter file for the BANKDB database (DATA/GENFORMAT/BANKDB/

CONTROL) contains the following VIRTUAL and TRANSFORM declarations:

These declarations correspond to steps 3-5 in Creating a Virtual Data Set.

4.7.2 Accessory Parameter File Declarations

The appropriate Accessory parameter file, such as the DBServer parameter file (DATA/SERVER/

CONTROL), contains the following TRANSFORM declaration when you enter the name of the

tailored support library:

This declaration corresponds to step 10 in Creating a Virtual Data Set.

BANK DATASET
 (
 BANK-ID NUMBER (4) NULL IS 0;
 BANK-NAME ALPHA (30) NULL IS "NO NAME";
 BANK-ADDR1 ALPHA (30) NULL IS "N/A ";
 BANK-ADDR2 ALPHA (10);
 BANK-ADDR3 ALPHA (30);
 BANK-ROUTE NUMBER (9) NULL IS 999;
 TS REAL;
);
.
.
.

CUSTOMER COMPACT DATASET
 (
 CUST-ID NUMBER(8);
 BANK-ID NUMBER(4);
 CUST-SSN NUMBER(9);
 CUST-NAME ALPHA (30) SIZE VARYING;
 CUST-LINES NUMBER(1);
 CUST-ADDR ALPHA (30) OCCURS 5 TIMES
 DEPENDING ON CUST-LINES;
 CUST-DOB NUMBER(8) STORED OPTIONALLY;
 CUST-INFO ALPHA (100) SIZE VARYING;
 TS REAL;

);
.
.
.

VIRTUAL ADDRESS #79 POPULATION 100000
 DERIVED FROM BANK, CUSTOMER

 (
 ADDR-BANK-ID NUMBER (4);
 ADDR-CUST-ID NUMBER (8);
 ADDR-LINE-NBR NUMBER (1);
 ADDR-LINE ALPHA (30);
);
KEY ADDRESS (ADDR-BANK-ID, ADDR-CUST-ID, ADDR-LINE-NBR);

TRANSFORM VIRTUALADDRESS
 IN "PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS"

SOURCE BANKDB:
 DATABASE = DESCRIPTION/BANKDB ON DISK,
 TRANSFORM = VIRTUALADDRESS,
 FILTER = DBFILTER,
 PREFILTERED = FALSE,
 SUPPORT = OBJECT/DATABRIDGE/SUPPORT/BANKDB ON DISK
 default;

4.7.1 DBGenFormat Parameter File Declarations

4.7.1 DBGenFormat Parameter File Declarations 140

4.7.3 GENGLOBALS Transform Layouts Section

In addition, when you make these particular VIRTUAL and TRANSFORM declarations in the

DBGenFormat parameter file and compile a tailored support library, the % Transform Layouts

section of PATCH/DATABRIDGE/SUPPORT/BANKDB/GENGLOBALS contains the following defines:

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

 % Transform Layouts
 % BANK
real BANK_StrIdx;
define
 BANK_BANK_ID (Rec4) = Rec4 [0] #,
 BANK_BANK_ID_sz = 4 #,
 BANK_BANK_NAME (Rec8) = Rec8 [2] #,
 BANK_BANK_NAME_sz = 30 #,
 BANK_BANK_ADDR1 (Rec8) = Rec8 [32] #,
 BANK_BANK_ADDR1_sz = 30 #,
 BANK_BANK_ADDR2 (Rec8) = Rec8 [62] #,
 BANK_BANK_ADDR2_sz = 10 #,
 BANK_BANK_ADDR3 (Rec8) = Rec8 [72] #,
 BANK_BANK_ADDR3_sz = 30 #,
 BANK_BANK_ROUTE (Rec4) = Rec4 [204] #,
 BANK_BANK_ROUTE_sz = 9 #,
 BANK_TS (Rec8) = Rec8 [107] #,
 BANK_TS_sz = 6 #,
 BANK_StrNum = 10# ,
 BANK_RecWords = 28# ,
 BANK_FmtLvl = 6799# ,
 BANK_RecBytes = 168# ;
 % CUSTOMER
real CUSTOMER_StrIdx;
define
 CUSTOMER_CUST_ID (Rec4) = Rec4 [0] #,
 CUSTOMER_CUST_ID_sz = 8 #,
 CUSTOMER_BANK_ID (Rec4) = Rec4 [8] #,
 CUSTOMER_BANK_ID_sz = 4 #,
 CUSTOMER_CUST_SSN (Rec4) = Rec4 [12] #,
 CUSTOMER_CUST_SSN_sz = 9 #,
 CUSTOMER_CUST_NAME (Rec8) = Rec8 [11] #,
 CUSTOMER_CUST_NAME_sz = 30 #,
 CUSTOMER_CUST_LINES (Rec4) = Rec4 [82] #,
 CUSTOMER_CUST_LINES_sz = 1 #,
 CUSTOMER_CUST_ADDR (Rec8, I1) = Rec8 [(84 + (I1-1)*60) div 2] #,
 CUSTOMER_CUST_ADDR_sz = 30 #,
 CUSTOMER_CUST_DOB (Rec4) = Rec4 [384] #,
 CUSTOMER_CUST_DOB_sz = 8 #,
 CUSTOMER_CUST_INFO (Rec8) = Rec8 [196] #,
 CUSTOMER_CUST_INFO_sz = 100 #,
 CUSTOMER_TS (Rec8) = Rec8 [296] #,
 CUSTOMER_TS_sz = 6 #,
 CUSTOMER_StrNum = 17# ,
 CUSTOMER_RecWords = 51# ,
 CUSTOMER_FmtLvl = 0# ,
 CUSTOMER_RecBytes = 306# ;
% ADDRESS
real ADDRESS_StrIdx;
define
 ADDRESS_ADDR_BANK_ID (Rec4) = Rec4 [0] #,
 ADDRESS_ADDR_BANK_ID_sz = 4 #,
 ADDRESS_ADDR_CUST_ID (Rec4) = Rec4 [4] #,
 ADDRESS_ADDR_CUST_ID_sz = 8 #,
 ADDRESS_ADDR_LINE_NBR (Rec4) = Rec4 [12] #,
 ADDRESS_ADDR_LINE_NBR_sz = 1 #,
 ADDRESS_ADDR_LINE (Rec8) = Rec8 [7] #,
 ADDRESS_ADDR_LINE_sz = 30 #,
 ADDRESS_StrNum = 79# ,
 ADDRESS_RecWords = 7# ,
 ADDRESS_FmtLvl = 25861# ,
 ADDRESS_Send (VRec) =
 VirtualSend (ADDRESS_StrNum, ADDRESS_StrIdx,
 ADDRESS_RecWords, ADDRESS_FmtLvl, VRec) #,
 ADDRESS_RecBytes = 42# ;
define VirtualTransformSetup =
 begin
 GetStrIdx (BANK_StrNum, 0, BANK_StrIdx);
 GetStrIdx (CUSTOMER_StrNum, 0, CUSTOMER_StrIdx);
 GetStrIdx (ADDRESS_StrNum, 0, ADDRESS_StrIdx);
 end #;
define IsBase (StrNum) = (
 if StrNum = 10 then true else
 if StrNum = 17 then true else
 false) #;

4.7.3 GENGLOBALS Transform Layouts Section

4.7.3 GENGLOBALS Transform Layouts Section 141

The ALGOL source code for PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS is as

follows:

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure 142

$ SET OMIT 09000000

 09000100
 09000400
Module: PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS 09000500
 09000600
Project: Databridge 09000700
 09000800
Description: Sample transform for VIRTUAL datasets 09000900
 09001000
(c) Copyright 2021 Micro Focus or one of its affiliates. 09001100
 09001200
--
09001300
 09001400
Example transform routine for VIRTUAL datasets. This is a patch
09002000
to SYMBOL/DATABRIDGE/SUPPORT and can be included by inserting
09002100
the following declaration in DATA/GENFORMAT/<database>/CONTROL:
09002200
 09002300
 TRANSFORM VIRTUALADDRESS 09002400
 IN "PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS" 09002500
 09002600
This transform routine illustrates how to populate a VIRTUAL 09002700
dataset from real dataset records. It extracts mailing
addresses 09002800
 from BANK and CUSTOMER dataset records and puts them into a 09002900
VIRTUAL dataset called ADDRESS. 09003000
 09003100
A COBOL program does the actual extraction of the address. The 09003200
transform routine below determines if the current record is 09003300
from either the BANK or CUSTOMER datasets, and if so, calls the 09003400
COBOL program to extract the address. 09003500
 09003600
The BANKDB DASDL has these definitions for BANK and CUSTOMER: 09003700
 09003800
 BANK DATASET 09003900
 (09004000
 BANK-ID NUMBER (4) NULL IS 0; 09004100
 BANK-NAME ALPHA (30) NULL IS "NO NAME"; 09004200
 BANK-ADDR1 ALPHA (30) NULL IS "N/A "; 09004300
 BANK-ADDR2 ALPHA (10); 09004400
 BANK-ADDR3 ALPHA (30); 09004500
 BANK-ROUTE NUMBER (9) NULL IS 999; 09004600
 TS REAL; 09004700
); 09004800
 09004900
 ... 09005000
 09005100
 CUSTOMER COMPACT DATASET 09005200
 (09005300
 CUST-ID NUMBER(8); 09005400
 BANK-ID NUMBER(4); 09005500
 CUST-SSN NUMBER(9); 09005600
 CUST-NAME ALPHA (30) SIZE VARYING; 09005700
 CUST-LINES NUMBER(1); 09005800
 CUST-ADDR ALPHA (30) OCCURS 5 TIMES 09005900
 DEPENDING ON CUST-LINES; 09006000
 CUST-DOB NUMBER(8) STORED OPTIONALLY; 09006100
 CUST-INFO ALPHA (100) SIZE VARYING; 09006200
 TS REAL; 09006300
); 09006400
 09006500
 09006600
 09006700
 DATA/GENFORMAT/BANKDB/CONTROL has these declarations: 09006800
 09006900
 VIRTUAL ADDRESS #79 POPULATION 100000 09007000
 DERIVED FROM BANK, CUSTOMER 09007100
 09007200
 (ADDR-BANK-ID NUMBER (4); 09007300
 ADDR-CUST-ID NUMBER (8); 09007400
 ADDR-LINE-NBR NUMBER (1); 09007500
 ADDR-LINE ALPHA (30); 09007600
); 09007700
 09007800
 KEY ADDRESS (ADDR-BANK-ID, ADDR-CUST-ID, ADDR-LINE-NBR); 09007900
 09008000
 TRANSFORM VIRTUALADDRESS 09008100
 IN "PATCH/DATABRIDGE/SAMPLE/SUPPORT/FORMATADDRESS" 09008200
 09008300
And finally, DATA/SERVER/CONTROL has this declaration: 09008400
 09008500
 SOURCE BANKDB: 09008600
 DATABASE = DESCRIPTION/BANKDB ON DISK, 09008700
 TRANSFORM = VIRTUALADDRESS, 09008800
 FILTER = DBFILTER, 09008900
 PREFILTERED = FALSE, 09009000
 SUPPORT = OBJECT/DATABRIDGE/SUPPORT/BANKDB 09009100
 ON DISK 09009200
 default; 09009300
 09009400
Notice that the TRANSFORM name matches the name of the routine 09009500
below. 09009600
 09009700
 Modification history 09009800

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure 143

 -------------------- 09009900
 09010000
Version 30.001 09010100
 Initial release. 09010200
 09010300
This is a patch to SYMBOL/DATABRIDGE/SUPPORT that illustrates
09010400
 how to write a formatting routine to populate VIRTUAL datasets.
09010500
 It calls a COBOL program to extract addresses from other 09010600
 records. 09010700
 09010800
Version 40.463 09010900
1 Changed the ADDRESS record size calculation to match the COBOL
 09011000
record. 09011100
 09011200
Version 41.471 09011300
1 Changed the routine from a FORMAT to a TRANSFORM. 09011400
 09011500
 The program SYMBOL/DATABRIDGE/SAMPLE/VIRTUALLIB has been 09011600
 deimplemented in favor of this patch. 09011700
 09011800
Version 41.484 09011900
2 The patch now uses the declarations generated in GENGLOBALS 09012000
 when a VIRTUAL dataset is declared with the DERIVED FROM 09012100
 syntax, such as, 09012200
 ADDRESS_StrNum 09012300
 ADDRESS_StrIdx 09012400
 ADDRESS_RecWords 09012500
 ADDRESS_FmtLvl 09012600
 BANK_StrNum 09012700
 CUSTOMER_StrNum 09012800
 09012900
Version 50.491 09013000
1 The code to retrieve the ADDRESS structure index is now 09013100
 deferred until the first BANK or CUSTOMER record is
encountered. 09013200
 Previously, if the client did not select the BANK, CUSTOMER,
and 09013300
 ADDRESS datasets, the transform would get an error when it
tried 09013400
 to retrieve the structure index for ADDRESS when it received 09013500
 the first record (from some other dataset). 09013600
 09013700
Version 50.504 09013800
2 This transform will now tolerate the situation where the BANK 09013900
 and/or CUSTOMER datasets are selected but not the virtual 09014000
 ADDRESS is not. In such a case, the transform will not try to 09014100
 extract any addresses and will simply send the (real) dataset 09014200
 updates. 09014300
 09014400
End History 09014500
 $ POP OMIT 09014600
 70000000
 % Here's the COBOL program declaration. 70000100
 70000200
library ExtractAddressLib 70000300
 (title = "OBJECT/DATABRIDGE/SAMPLE/EXTRACTADDRESS."); 70000400
 70000500
procedure ExtractAddress (WhichDS, DSRecord, NumAddrRecs, AddressRecs);
70000600
% -------------- 70000700
 70000800
 % COBOL program that can extract addresses 70000900
 % from BANK and CUSTOMER 70001000
 70001100
 value WhichDS; 70001200
 integer WhichDS; % Input: Which dataset? (See below) 70001300
 ebcdic array 70001400
 DSRecord [0]; % Input: record from audit trail 70001500
 integer NumAddrRecs; % Output: number of addresses generated 70001600
 ebcdic array 70001700

 AddressRecs [0];% Output: generated address records 70001800
 70001900
 library ExtractAddressLib 70002000
 70002100
 % if the COBOL program is compiled with $ FEDLEVEL = 5 70002200
 % then change "PROCEDUREDIVISION" to the value of the 70002300
 % PROGRAM-ID in the program 70002400
 70002500
 (ACTUALNAME = "PROCEDUREDIVISION"); 70002600
 70002700
%--
70002800
 70002900
 % WhichDS values 70003000
define ItIsBank = 1#, 70003100
 ItIsCust = 2#; 70003200
 70003300
boolean VAInitialized; 70003400
 70003500
integer AddrRecBytes; % size of ADDRESS record in bytes 70003600
define MaxAddressRecs = 10#; % max number of ADDRESS records in 70003700
 % AddressRecs 70003800
 70003900
ebcdic array 70004000
 AddressRecs [0:0]; % output ADDRESS records 70004100

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure 144

 70004200
array AddressRec [0:0]; % single ADDRESS record to send 70004300
 70004400
interlock 70004500
 AddressLock; 70004600
 70004700
DBMTYPE procedure InitializeVA; 70004800
% ------------ 70004900
 begin_proc [InitializeVA] 70005000
 DBStrIdx (ADDRESS_StrNum, 0, ADDRESS_StrIdx); 70005100
 70005200
 % We need the size of the record that the COBOL 70005300
 % program actually uses. The easiest thing to do is to hard- 70005400
 % code the size... 70005500
 70005600
 AddrRecBytes := 37; 70005700
 70005800
 resize (AddressRecs, MaxAddressRecs * AddrRecBytes); 70005900
 resize (AddressRec, ADDRESS_RecWords); 70006000
 70006100
 VAInitialized := true; 70006200
 end_proc [InitializeVA]; 70006300
 70006400
 70006500
 % DBTransform-type routine 70006600
 70006700
DBTransformHead [VirtualAddress]; 70006800
% -------------- 70006900
 begin_proc [VirtualAddress] 70007000
 70007100
% VirtualAddress will pass the original and generated 70007200
% records to the formatting routine (DBFormat). 70007300
 ebcdic array 70007500
 BI01 [0] = BI; % dataset record before-image 70007600
 ebcdic array 70007700
 AI01 [0] = AI; % dataset record after-image 70007800
 pointer pAddress; % points to an address 70007900
 boolean FormatResult; 70008000
 DBMTYPE DBMResult; 70008100
 70008200
procedure GetAddresses (StrNum, Image01); 70008300
% ------------ 70008400
 value StrNum; 70008500
 integer StrNum; 70008600
 ebcdic array 70008700
 Image01 [0]; 70008800
 70008900
 begin 70009000
 integer NumAddresses; % number of addresses found 70009100
 70009200
 % look for any addresses 70009300
 if StrNum = BANK_StrNum then 70009400
 begin 70009500
 if ^ VAInitialized then 70009600
 begin 70009700
 return_if_error (InitializeVA); 70009800
 end; 70009900
 70010000
 if ADDRESS_StrIdx > 0 then 70010100
 begin 70010200
 ExtractAddress (ItIsBank, Image01, 70010300
 NumAddresses, 70010400
 AddressRecs); 70010500
 end; 70010600
 70010700
 end 70010800
 else 70010900
 if StrNum = CUSTOMER_StrNum then 70011000
 begin 70011100
 if ^ VAInitialized then 70011200
 begin 70011300
 return_if_error (InitializeVA); 70011400
 end; 70011500
 70011600
 if ADDRESS_StrIdx > 0 then 70011700
 begin 70011800
 ExtractAddress (ItIsCust, Image01, 70011900
 NumAddresses, 70012000
 AddressRecs); 70012100
 end; 70012200
 70012300
 end; 70012400
 70012500
 if NumAddresses > 0 then % found some addresses 70012600
 begin 70012700
 % set up the UI for ADDRESS records 70012800
 70012900
 UI [UI_STRNUM] := ADDRESS_StrNum; 70013000
 UI [UI_RECTYPE] := 0; 70013100
 UI [UI_STRIDX] := ADDRESS_StrIdx; 70013200
 UI [UI_RECSZ_WORDS] := ADDRESS_RecWords; 70013300
 UI [UI_FORMAT_LEVEL] := ADDRESS_FmtLvl; 70013400
 UI [UI_AA] := 0; 70013500
 UI [UI_PARENT_AA] := 0; 70013600
 70013700
 % send each virtual ADDRESS record 70013800
 70013900
 pAddress := AddressRecs; 70014000
 while NumAddresses > 0 do 70014100

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure 145

 begin 70014200
 replace pointer (AddressRec) by 70014300
 pAddress : pAddress 70014400
 for AddrRecBytes; 70014500
 70014600
 NumAddresses := * - 1; 70014700
 ReturnIfFormatError (AddressRec); 70014800
 end; 70014900
 end; 70015000
 70015100
 end GetAddresses; 70015200
 70015300
 70015400
integer OrigStrNum; 70015500
 70015600
 % Since we use global arrays we have to single-thread. 70015700
 epilog procedure ExitFormat; 70015800
 begin 70015900
 unlock (AddressLock); 70016000
 end; 70016100
 70016200
lock (AddressLock); 70016300
 70016400
OrigStrNum := UI [UI_STRNUM]; 70016500
 70016600
 % Send the original record first and then get the 70016700
 % virtual address records. 70016800
 70016900
case UpdateType of 70017000
 begin 70017100
 DBV_CREATE: 70017200
 % first, AI of original 70017300
 70017400
 ReturnIfFormatError (AI); 70017500
 70017600
 % now AI of virtuals 70017700
 70017800
 GetAddresses (OrigStrNum, AI01); 70017900
 70018000
 DBV_MODIFY: 70018100
 if UI [UI_BI_AI] = 1 then 70018200
 begin 70018300
 % first, BI-AI of original 70018400
 70018500
 UpdateType := 70018600
 DBV_MODIFY_BEFORE_IMAGE; 70018700
 ReturnIfFormatError (BI); 70018800
 70018900
 UpdateType := 70019000
 DBV_MODIFY_AFTER_IMAGE; 70019100
 ReturnIfFormatError (AI); 70019200
 70019300
 % now BI-AI of virtuals 70019400
 70019500
 UpdateType := 70019600
 DBV_MODIFY_BEFORE_IMAGE; 70019700
 GetAddresses (OrigStrNum, BI01); 70019800
 UpdateType := 70019900
 DBV_MODIFY_AFTER_IMAGE; 70020000
 GetAddresses (OrigStrNum, AI01); 70020100
 end 70020200
 else 70020300
 begin 70020400
 % first, AI of original 70020500
 70020600
 ReturnIfFormatError (AI); 70020700
 70020800
 % now AI of virtuals 70020900
 70021000
 GetAddresses (OrigStrNum, AI01); 70021100
 end; 70021200
 70021300
 DBV_DELETE: 70021400
 % first, BI of original 70021500
 70021600
 ReturnIfFormatError (BI); 70021700
 70021800
 % now BI of virtuals 70021900
 70022000
 GetAddresses (OrigStrNum, BI01); 70022100
 70022200
 DBV_STATE: 70022300
 % Since the Engine will send a StateInfo 70022400
 % for the virtual dataset separately, we 70022500
 % don't need to create one here. 70022600
 70022700
 ReturnIfFormatError (AI); 70022800
 70022900
 else: 70023000
 ReturnIfFormatError (AI); 70023100
 end UpdateType; 70023200
 70023300
 70023400
 return (DBM_OK); 70023500
 end_proc [VirtualAddress]; 70023600
 70023700
% End of VirtualAddress transform patch 70023800
 70023900

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure

4.7.4 ALGOL Source for the Sample Virtual Transform Procedure 146

4.7.5 Sample COBOL Library

This sample library, EXTRACTADDRESS, extracts the address from individual BANK and

CUSTOMER data set records and returns them to the transform procedure (VirtualAddress).

The transform procedure in the previous example calls this library.

The source code (SYMBOL/DATABRIDGE/SAMPLE/EXTRACTADDRESS) for this sample is shown

as follows:

COBOL libraries called by virtual data set transform procedures can be affected by DMSII

reorganizations. For more information on how COBOL libraries may be affected, see DMSII

Reorganizations.

Note

4.7.5 Sample COBOL Library

4.7.5 Sample COBOL Library 147

000100
000200$$ SET BINARYEXTENDED
00
000300$$ SET LIBRARYPROG = TRUE
00
000400$$ SET SHARING = DONTCARE
00
000500$$ SET TEMPORARY 00
000600 00
000700 IDENTIFICATION DIVISION.
00
000800 PROGRAM-ID. EXTRACTADDRESS.
00
000900 00
001000$$ set omit
001010--
001020
001040
001050 Module: SYMBOL/DATABRIDGE/SAMPLE/EXTRACTADDRESS
001060
001070 Project: Databridge
001080
001090 Description: Databridge ExtractAddress Library Program
001100
001200 (c) Copyright 2019 Micro Focus or one of its affiliates.
001340
001350--
001360$$ pop omit
003000* This is an example library program to demonstrate how
00
003100* to extract mailing addresses from dataset records and
00
003200* use them to populate a VIRTUAL dataset using Databridge.
00
003300* 00
003400 00
003500 ENVIRONMENT DIVISION.
00
003600 00
003700 DATA DIVISION. 00
003800 DATA-BASE SECTION. 00
003900 00
004000* We won't really access the DMSII database but we
00
004100* want to use the 01s for the record layouts of the
00
004200* records we will receive.
00
004300 00
004400 DB BANKDB. 00
004500 01 BANK. 00
004600 01 CUSTOMER. 00
004700 00
004800 WORKING-STORAGE SECTION.
00
004900 00
005000 77 WS-INITIALIZE PIC 9(01) BINARY.
00
005100 88 INITIALIZED VALUE 1.
00
005200 00
005300 77 I PIC 9(10) BINARY.
00
005400 00
005500* Length of the DMSII records (in bytes).
00
005600 00
005700 77 BANK-REC-CHARS PIC 9(06) BINARY.
00
005800 77 CUST-REC-CHARS PIC 9(06) BINARY.
00
005900 00
006000 00
006100 LINKAGE SECTION. 00
006200* Parameters passed from the formatting routine.
00
006300 00
006400* DMSII structure number of the input record.
00
006500 00
006600 77 WHICH-DATASET PIC 9(4) BINARY.
00
006700 88 BANK-DATASET VALUE 1.
00
006800 88 CUST-DATASET VALUE 2.
00
006900 00
007000* Record received from DMSII database.
00
007100* Should be either from the BANK or CUSTOMER dataset.
00
007200 00
007300 01 DB-RECORD. 00
007400 03 DB-REC-WORD PIC S9(11) BINARY
00
007500 00
007600* The OCCURS value must make this record as large
00

4.7.5 Sample COBOL Library

4.7.5 Sample COBOL Library 148

007700* or larger than the actual dataset record received.
00
007800 00
007900 OCCURS 56. 00
008000 00
008100* The following is the number of VIRTUAL ADDRESS records
00
008200* returned. 00
008300 00
008400 77 VIRTUAL-REC-COUNT PIC 9(11) BINARY.
00
008500 00
008600* Here is where we build the VIRTUAL ADDRESS records.
00
008700 00
008800 01 VIRTUAL-RECS. 00
008900 02 ADDRESS-REC OCCURS 10.
00
009000 03 ADDR-BANK-ID PIC 9(4) COMP.
00
009100 03 ADDR-CUST-ID PIC 9(8) COMP.
00
009200 03 ADDR-LINE-NBR PIC 9(1) COMP.
00
009300 03 ADDR-LINE PIC X(30) DISPLAY.
00
009400 00
009500 PROCEDURE DIVISION USING WHICH-DATASET
00
009600 DB-RECORD 00
009700 VIRTUAL-REC-COUNT 00
009800 VIRTUAL-RECS. 00
009900 THE-ONLY SECTION. 00
010000 GET-STARTED. 00
010100 00
010200 IF NOT INITIALIZED 00
010300 PERFORM INITIALIZE-WS.
00
010400 00
010500 MOVE HIGH-VALUES TO VIRTUAL-RECS.
00
010600 00
010700* Determine which dataset this record is from.
00
010800 00
010900 IF BANK-DATASET 00
011000 PERFORM BANK-ADDRESS
00
011100 ELSE 00
011200 IF CUST-DATASET 00
011300 PERFORM CUST-ADDRESS
00
011400 ELSE 00
011500* Unrecognized dataset ...
00
011600 MOVE 0 TO VIRTUAL-REC-COUNT.
00
011700 00
011800 EXIT PROGRAM. 00
011900 00
012000 INITIALIZE-WS. 00
012100 00
012200* Determine the size of the dataset records.
00
012300 00
012400 COMPUTE BANK-REC-CHARS =
00
012500 FUNCTION FORMATTED-SIZE (BANK).
00
012600 COMPUTE CUST-REC-CHARS =
00
012700 FUNCTION FORMATTED-SIZE (CUSTOMER).
00
012800 MOVE 1 TO WS-INITIALIZE.
00
012900 00
013000 BANK-ADDRESS. 00
013100 00
013200* Move the database record into the BANK user work area so
00
013300* that we can reference individual data items.
00
013400 00
013500 UNSTRING DB-RECORD INTO BANK
00
013600 FOR BANK-REC-CHARS.
00
013700 00
013800* The address lines in the BANK dataset are in 3 separate
00
013900* data items: BANK-ADDR1, BANK-ADDR2, and BANK-ADDR3.
00
014000 00
014100 MOVE BANK-ID OF BANK TO ADDR-BANK-ID (1).
00
014200 MOVE 0 TO ADDR-CUST-ID (1).
00
014300 MOVE 1 TO ADDR-LINE-NBR (1).
00

4.7.5 Sample COBOL Library

4.7.5 Sample COBOL Library 149

014400 MOVE BANK-ADDR1 TO ADDR-LINE (1).
00
014500 00
014600 MOVE BANK-ID OF BANK TO ADDR-BANK-ID (2).
00
014700 MOVE 0 TO ADDR-CUST-ID (2).
00
014800 MOVE 2 TO ADDR-LINE-NBR (2).
00
014900 MOVE BANK-ADDR2 TO ADDR-LINE (2).
00
015000 00
015100 MOVE BANK-ID OF BANK TO ADDR-BANK-ID (3).
00
015200 MOVE 0 TO ADDR-CUST-ID (3).
00
015300 MOVE 3 TO ADDR-LINE-NBR (3).
00
015400 MOVE BANK-ADDR3 TO ADDR-LINE (3).
00
015500 00
015600 MOVE 3 TO VIRTUAL-REC-COUNT.
00
015700 00
015800 CUST-ADDRESS. 00
015900 00
016000* Move the database record into the CUSTOMER user work area so
00
016100* that we can reference individual data items.
00
016200 00
016300 UNSTRING DB-RECORD INTO CUSTOMER
00
016400 FOR CUST-REC-CHARS.
00
016500 00
016600 IF CUST-LINES > 5 00
016700 MOVE 5 TO CUST-LINES.
00
016800 PERFORM MOVE-CUST-ADDR
00
016900 VARYING I FROM 1 BY 1 00
017000 UNTIL I > CUST-LINES.
00
017100 MOVE CUST-LINES TO VIRTUAL-REC-COUNT.
00
017200 00
017300 MOVE-CUST-ADDR. 00
017400 MOVE BANK-ID OF CUSTOMER TO ADDR-BANK-ID (I).
00
017500 MOVE CUST-ID TO ADDR-CUST-ID (I).
00
017600 MOVE I TO ADDR-LINE-NBR (I).
00
017700 MOVE CUST-ADDR (I) TO ADDR-LINE (I).
00
017800$$ VERSION 61.532.0000
00

4.7.5 Sample COBOL Library

4.7.5 Sample COBOL Library 150

5. Altered Data Sets

In This Chapter

This chapter gives you programming tips and examples for altering data sets.

5.1 Overview

An altered data set is a DMSII data set to which you apply a data item conversion routine (custom

reformatting routine) to reformat data items in a data set to different layouts.

You can accomplish any of the following tasks by altering a data set:

Flatten OCCURS clauses—Involves changing an occurring item to a series of individual

items.

However, if you plan to clone the data set with the Databridge Clients, you may want to use

the Databridge Clients to flatten OCCURS clauses. Refer to the Databridge Client

Administrator's Guide for more information.

Subdivide compound items—Allows the secondary database to search and retrieve data for

the individual items rather than the compound item as a whole.

Convert or format dates—Involves changing the date from one format to another.

The Databridge Clients, however, provide date formats that are often less expensive to

implement. Refer to the Databridge Client Administrator's Guide for more information on how

the Databridge Clients format and convert dates.

Expand compressed data—Allows you to expand data that has been stored in a

compression format (such as a digital picture) or a delimited format.

Convert data in a proprietary format to a well-known format—Involves changing the data

from one kind of format to another.

Merge a list data items in to a single data item

To alter a data set, you must modify one of the provided sample reformatting procedures or write

your own reformatting procedure and declare it to be internal or external to your tailored support

library.

The Databridge API is not involved in altering data sets; however, ALGOL programming is

required.

Note

• •

• •

• •

• •

• •

• •

5. Altered Data Sets

5. Altered Data Sets 151

https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin

In addition, you must list (declare) the data items you want to alter in the ALTER section of the

DBGenFormat parameter file. By making the ALTER declaration, you indicate which reformatting

routines you want DBGenFormat to apply to the data items you named. Then, whenever a

DBGenFormat-generated formatting routine (such as COMMAFORMAT or BINARYFORMAT)

encounters data items from the ALTER declaration data set statement list, that DBGenFormat

formatting routine calls the particular reformatting routine indicated in the ALTER declaration. See

ALTER Declaration Syntax for more information about how to determine what kind of a reformatting

routine you want to write. For example, if you are reformatting similar items, such as timestamps,

you would typically use the same reformatting routine to reformat all of them.

Finally, you must compile a tailored support library and enter the name of the tailored support

library in the appropriate Accessory parameter file. When this process is completed, the Accessory

can use your altered data set.

The provided sample reformatting procedures are listed as follows:

PATCH/DATABRIDGE/SAMPLE/SUPPORT/REFORMAT for internal reformats—Sample External

Reformatting Procedure shows how to use an internal reformatting procedure.

SYMBOL/DATABRIDGE/SAMPLE/REFORMAT for external reformats—Sample External

Reformatting Procedure shows how to use an external reformatting procedure.

The following sections include altered data set examples:

ALTER Declaration Syntax contains an example ALTER declaration.

Example Altered Data Set for Flattening OCCURS shows how to use altered data sets to

flatten OCCURS.

5.2 Altering a Data Set

To alter data sets, complete the following steps:

•

•

• •

• •

5.2 Altering a Data Set

5.2 Altering a Data Set 152

Read this entire chapter so that you get an understanding of how the code you write for your

altered data sets relates to the actual ALTER declarations you make in the DBGenFormat file.

See ALTER Restrictions for more information about making ALTER declarations.

Look at the data items you want to convert so you can get an idea of how many reformatting

routines you need to code. Keep in mind that several ALTER declarations can call the same

reformatting routine.

Familiarize yourself with the following samples, which illustrate several ways to apply

reformatting procedures:

Sample Internal Reformatting Procedure

Sample External Reformatting Procedure

Example Altered Data Set for Flattening OCCURS

Use CANDE or another editor to retrieve the DBGenFormat parameter file DATA/GENFORMAT/

SAMPLE/CONTROL.

For a general description of the DBGenFormat parameter file, refer to the Databridge Host

Administrator's Guide.

Rename the file, as follows:

DATA/GENFORMAT/databasename/CONTROL

where databasename is the name of the database that contains the items you are altering and

for which you are creating the tailored support library.

Make the following declarations in the DBGenFormat parameter file (DATA/GENFORMAT/

databasename/CONTROL):

Declare the reformatting procedure.

See Declaring Internal and External Reformatting Procedures for instructions.

Declare all of the altered data sets.

See ALTER Declaration Syntax for instructions.

Save DATA/GENFORMAT/ databasename /CONTROL.

1. 1.

1.

2. 2.

3. 3.

•

•

•

4. 4.

4.

5. 5.

5.

5.

6. 6.

• •

• •

7. 7.

5.2 Altering a Data Set

5.2 Altering a Data Set 153

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Write the reformatting procedure as follows:

Compile the tailored support library as follows:

START WFL/DATABRIDGE/COMP ("SUPPORT", "databasename"

 ["logicaldatabasename"])

8. 8.

The reformatting routines must be in ALGOL; however, you can write routines that invoke a

COBOL library.

Note

If you Do this

Declared an internal

reformatting

procedure

Write the reformatting procedure patch file, and give it the

name you specified in the DBGenFormat parameter file.

NOTE: It is recommended that your reformatting procedure use

a case statement to identify the individual reformatting

routines.

Declared an external

reformatting

procedure

Write the reformatting procedure library source file.

Compile the library containing the external reformatting

procedure as the name you specified in the DBGenFormat

parameter file.

NOTE: It is recommended that your reformatting procedure use

a case statement to identify the individual reformatting

routines.

You do not have to complete the external library file before

going on to the next step. You must, however, finish writing and

compiling it before you run an Accessory that uses the external

reformat.

9. 9.

9.

Where Is

"SUPPORT" The literal that represents the DBSupport program

The quotation marks are required.

5.2 Altering a Data Set

5.2 Altering a Data Set 154

This WFL compiles layout tables for each data set in the database designated by

databasename or logicaldatabasename. This results in the new tailored support library titled

as follows: OBJECT/DATABRIDGE/SUPPORT/databasename

— or —

OBJECT/DATABRIDGE/SUPPORT/databasename/logicaldatabasename

These data set-specific layout tables contain the offsets and sizes of individual data items,

including those in the ALTER data set declaration.

Enter the name of the tailored support library in the appropriate Accessory parameter file, as

follows:

Where Is

"databasename" The name of the database for which you are creating the tailored

support library

The database name can include a usercode and pack, which are

used to locate the database DESCRIPTION file, as follows:

"(usercode)databasename ON packname"

The quotation marks are required.

9.

9.

9.

9.

If you have two databases with the same name under different usercodes, and you are

running Databridge from a third usercode, be careful when you create a tailored support

library. In this case, the second library you compile overwrites the first, because Databridge

strips the usercode and pack name from the database name to create the tailored support

library title.

Caution

10. 10.

For Do this

Databridge

Clients

In the DBServer parameter file, enter the tailored support library

name for the SUPPORT option.

For more information, refer to the Databridge Host Administrator's

Guide.

5.2 Altering a Data Set

5.2 Altering a Data Set 155

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

What to Do Next

Repeat these steps for each data set you want to alter.

If you encounter problems when creating or compiling your altered data set, see the chapter on

Troubleshooting. This chapter provides specific troubleshooting tips for writing reformatting

procedures and working with altered data sets.

5.3 ALTER Restrictions

You must be aware of the following restrictions when you use the ALTER declaration:

For Do this

Other

Accessories

In the Accessory parameter file, enter the tailored support library

name for the SUPPORT option.

For more information, refer to the Databridge Host Administrator's

Guide.

5.3 ALTER Restrictions

5.3 ALTER Restrictions 156

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

If you alter a GROUP item, the reformatting routine must format the entire group.

You cannot alter an item subordinate to a GROUP OCCURS. In this case you must alter the

entire GROUP.

If you alter an item with an OCCURS clause, the reformatting procedure must reformat all

occurrences at once. (The source length is the total size for all occurrences.)

If you alter an item in a data set that has more than one data item with the same name, only

the last item is altered. (This can happen if a data item is found in more than one of the

variable-format parts of a variable format data set.)

If the reformatted item is to be signed, you must have at least one space between the "S"

and the declared size, as in the following example:

ACCT-BALANCE NUMBER (S 11, 2);

If the reformatted item is an occurring GROUP (or FIELD), then the OCCURS clause must

immediately follow the word GROUP (or FIELD), as in the following example:

MONTHLY-SUMMARY GROUP OCCURS 12

 (SALES NUMBER (8);

 ...

);

Items altered to type IMAGE are treated as ALPHA items by the Databridge Clients, except

that the Databridge Clients do not translate or interpret IMAGE items.

To merge data items, the data items must be adjacent and must exist in the same parent

group.

5.4 ALTER Declaration Syntax

You must make one ALTER declaration for each data set that contains data items you want to alter.

The following is the ALTER declaration for the DBGenFormat parameter file (DATA/GENFORMAT/

databasename/CONTROL):

•

•

•

•

• •

• •

• •

•

ALTER datasetname
(
[uservalue] originaldataitemname newitemtype(n)
[uservalue] originaldataitemname newitemtype(n)
[uservalue] dataitemname1, dataitemname2, ... AS newdataitemname
newitemtype(n) <–– This syntax specifies data items to be merged into one.
...
);

Where Is

datasetname The name of the data set from which

you want to convert data items The

data set name must match the data

set name in the DASDL.

5.4 ALTER Declaration Syntax

5.4 ALTER Declaration Syntax 157

[uservalue] or [DEFINEuservalue] or

[REDEFINE]

A value that indicates the type of

alteration made by the reformatting

procedure

You must include the brackets.

The user value corresponds to a

reformatting routine and can be any

integer greater than or equal to 0. It is

usually less than 1024 so that the

reformatting procedure can use it as a

case value (as in the example

reformatting procedures). You can use

the same integer (and therefore call

the same formatting routine) for more

than one data item. If you are

reformatting similar items (for

example, timestamps) you would

typically assign the same user value to

each one so that the reformatting

procedure uses the same code

(reformatting routine) to reformat all of

them.

Note for merging data items: If

[uservalue] is an integer, the Reformat

routine is called with the source offset

of the first data item and the total

length of all of the items.

A value of DEFINE introduces a virtual

data item into the altered data set.

DEFINE does not apply to merging data

items.

A value of REDEFINE redefines the

data in place rather than using the

reformatting procedure. Use the

REDEFINE command to subdivide

elementary items and flatten OCCURS

(see Example Altered Data Set for

Flattening OCCURS). Two

5.4 ALTER Declaration Syntax

5.4 ALTER Declaration Syntax 158

Where Is

qualifications exist for using

REDEFINE, as follows:

The REDEFINE size must be equal

to the original size.

The original item must be on a

byte boundary if the target data

type is required to be byte-aligned.

originaldataitemname The name of the data item as it

appears in the DASDL

newitemtype(n) The new data type for the changed

data item or merged data items

where newitemtype is the new type,

such as ALPHA, IMAGE, or NUMBER,

and n is the size of the field (NUMBER

items can have a scaling factor and

sign, as in NUMBER (S, 6,2).

See Virtual and Alter Data Item Types

for Databridge specific data item types

you can specify.

dataitemname1, dataitemname2,

dataitemnamex

A comma-separated list of adjacent

data items in the same parent group

that will be merged into a new data

item

•

•

5.4 ALTER Declaration Syntax

5.4 ALTER Declaration Syntax 159

REDEFINE Errors

If the REDEFINE size differs from the original size, DBGenFormat displays the following error:

dataitem original size: origsize but REDEFINE size: newsize

If the original data item was not on a byte boundary but the REDEFINE data type requires it to start

on a byte boundary (as for GROUP items), DBGenFormat displays the following error:

REDEFINE of dataitem requires byte-alignment

Example 1

This example demonstrates how to merge data items using the REDEFINE command and a

reformatting routine coded in the ALGOL procedure.

Assume that the original DASDL for the ORDERINFO data set contains the following:

However, you want to merge the year, month, and day data items into one date item, and you want

to merge the city, state and zipcode into one alphanumeric item.

In the DBGenFormat parameter file, you could write the ALTER declaration for the ORDERINFO data

set as follows:

Example 2

This example demonstrates how to alter a data set using the DEFINE command, the REDEFINE

command, and reformatting routines coded in the ALGOL procedure.

Assume that the original DASDL for the BANK data set contains the following:

Where Is

newdataitemname The name of the merged data item.

This is the name that Accessories will

see in place of the listed data items.

ORDERINFO DATASET
(
ORD-YY NUMBER (4);
ORD-MM NUMBER (2);
ORD-DD NUMBER (2);
...
ORD-CITY ALPHA (16);
ORD-STATE ALPHA (2);
ORD-ZIP NUMBER (4);
...
);

ALTER ORDERINFO
(
[REDEFINE] ORD-YY,ORD-MM, ORD-DD AS
ORD-YYMMDD NUMBER (YYMMDD);

[2] ORD-CITY, ORD-STATE, ORD-ZIP AS
ORD-ADDR-CSZ ALPHA (45);
);

5.4 ALTER Declaration Syntax

5.4 ALTER Declaration Syntax 160

However, you want to use the ALTER declaration to change the BANK data items as follows:

Change BANK-ID from NUMBER (4) to NUMBER (6)

Change BANK-ADDR from ALPHA (30) to a group containing three elementary data items

Change BANK-TS (timestamp) from REAL to ALPHA (30), which contains a readable date and

time

Change BANK-ROUTE from NUMBER (9), to a group containing three data items

Add a BANK-PRES virtual data item of ALPHA (40)

In the DBGenFormat parameter file, you would write the ALTER declaration for the BANK data set as

follows:

In this example, the DBGenFormat formatting routines call the reformatting procedure to reformat

TS, BANK-ID, and BANK-ROUTE.

Each [uservalue] in the ALTER declaration corresponds to a specific reformatting routine (that you

have coded) in the reformat procedure. When the DBGenFormat formatting routines receive a

BANK record, they call the reformatting procedure (once for each data item) with the following

information:

The value that corresponds to the specific reformatting routine in the reformat procedure

(which is 1, 2, or 3 in this example)

The original location and size of BANK-ID, BANK-ROUTE, and BANK-TS

The location and size of where the reformatting procedure should place BANK-ID, BANK-

ROUTE, and TS

When the formatting routines call the reformatting procedure for the virtual item BANK-PRES, they

supply the 4 as the [uservalue], but the source offset and size is 0 because there is no source item.

The reformatting routine must retrieve the data from some external source (such as another

database, file, and so on) and copy it into the destination array.

BANK DATASET
(
BANK-ID NUMBER (4);
BANK-NAM ALPHA (11) INITIALVALUE "BRANCH NAME";
BANK-ADDR ALPHA (30);
BANK-TS REAL; % timestamp
BANK-ROUTE NUMBER (9);
);

•

•

•

•

•

ALTER BANK
(
[1] BANK-TS ALPHA (30); % was REAL
[2] BANK-ID NUMBER (6); % was NUMBER (4)
[DEFINE 4] BANK-PRES ALPHA (40); % virtual
[REDEFINE] BANK-ADDR GROUP % was ALPHA (30)
 (
 BR-CITY ALPHA (18);
 BR-STATE ALPHA (2);
 BR-ZIP ALPHA (10);
);
[3] BANK-ROUTE GROUP
 (
 BR-1 NUMBER (2);
 BR-2 NUMBER (3);
 BR-3 NUMBER (4);
);
);

•

•

•

5.4 ALTER Declaration Syntax

5.4 ALTER Declaration Syntax 161

The DBGenFormat formatting routines do not call any reformatting routines for BANK-ADDR

because a REDEFINE command redefines the data in place.

5.5 Declaring Internal and External Reformatting
Procedures

Reformatting procedures for altered data sets must be declared as internal and external reformats

in the DBGenFormat parameter file. Declare the reformatting procedures in the DBGenFormat

parameter file using the syntax below in this section, as well as the Declaring External Reformats

section.

Consider the following information before you choose whether to declare an internal or external

reformat:

BANK-ROUTE cannot be a REDEFINE because GROUP items are multiples of whole bytes, and,

therefore, are required to be byte-aligned.

Note

Internal Reformat Description External Format Description

Internal reformats are compiled as patches to

your tailored support library. This requires that

you recompile DBSupport via WFL/ DATABRIDGE/

COMP each time you update the internal

reformatting procedure.

External reformats are linked at run-

time to a user-written format library,

so they can be recompiled any time

without having to recompile

DBSupport.

Internal reformats do not have to specify how to

link to DBEngine or DBSupport.

External reformats must link to

DBSupport and DBEngine at the

proper time.

5.5 Declaring Internal and External Reformatting Procedures

5.5 Declaring Internal and External Reformatting Procedures 162

5.5.1 Declaring Internal Reformats

To declare the altered data set reformatting procedure as an internal reformat, use the following

syntax in the DBGenFormat parameter file (the comments in the file indicate where this declaration

should go):

INTERNAL REFORMAT reformattingprocedure IN "patchfiletitle"

where reformattingprocedure is the name of a reformatting procedure, and patchfiletitle is the title

of the ALGOL file that you created as a patch for DBSupport.

5.5.2 Declaring External Reformats

If you want to write your own ALGOL library for a reformat, you can reference it in the tailored

support library by using the following syntax in the DBGenFormat parameter file (the comments in

the file indicate where this declaration should go):

EXTERNAL REFORMAT reformattingprocedure IN "objectfilename"

where reformattingprocedure is the name you have given to the reformatting procedure and

objectfilename is the file title of your compiled ALGOL library code.

5.5.3 Writing an Internal Reformatting Procedure

If you declared an internal reformat in DBGenFormat, you must write an ALGOL patch file

containing the reformatting procedure that converts altered data items. The patch file may include

global declarations in addition to the reformatting procedure itself. The patch file should not

include the EXPORT declaration for the reformatting procedure. DBGenFormat automatically

generates the appropriate EXPORT declaration.

See PATCH/DATABRIDGE/SAMPLE/SUPPORT/REFORMAT in Sample Internal Reformatting

Procedure as an example of an internal reformatting procedure.

Writing an External Reformatting Procedure

Internal Reformat Description External Format Description

Internal reformats do not have to verify that their

interface version matches DBEngine.

External reformat libraries must

ensure that their interface version

matches DBEngine.

5.5.1 Declaring Internal Reformats

5.5.1 Declaring Internal Reformats 163

If you declared an external reformat in DBGenFormat, you must write your own library program that

contains the reformatting procedure and does the following:

Sets the $ INCLUDE_ENGINE option (and the $INCLUDE_SUPPORT option if you call any

DBSupport entry points) and includes SYMBOL/DATABRIDGE/INTERFACE using the

following ALGOL $INCLUDE statements:

$SET INCLUDE_ENGINE

$INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

or

$SET INCLUDE_ENGINE INCLUDE_SUPPORT

$INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

Calls DBINTERFACEVERSION to verify that your program was compiled against the same

API file (SYMBOL/DATABRIDGE/INTERFACE) as DBEngine.

See OBJECT/DATABRIDGE/REFORMAT in Sample External Reformatting Procedure as an example

of an external reformatting procedure.

5.6 Example: Internal Reformatting Procedure

The ALGOL source code for this example is as follows:

• •

Do not invoke the DBLINKENGINE define in your library. DBSupport automatically links your

library to the correct instance of DBEngine. Do not attempt to call any DBEngine entry

points before the library freezes. Otherwise, your library will link to a different instance of

DBEngine than the Accessory, and it might return incorrect information and errors.

Note

• •

Do not call DBINITIALIZE. DBINITIALIZE will undo the initialization that the Accessory has

already completed.

Note

5.6 Example: Internal Reformatting Procedure

5.6 Example: Internal Reformatting Procedure 164

$ SET OMIT 09900000
--
09900100
 09900130
Module: PATCH/DATABRIDGE/SAMPLE/SUPPORT/REFORMAT 09900140
 09900150
Project: Databridge 09900160
 09900170
Description: Databridge Sample Reformatting Patch 09900180
 09900190
(c) Copyright 2019 Micro Focus or one of its affiliates. 09900290
 09900430
--
09900440
 09902000
 Modification history 09902100
 -------------------- 09902200
 09902300
Version 30.001 09902400
 Initial release. 09902500
 09902600
 This is a sample patch to DBSupport for reformatting 09902700
 data items in conjunction with the GenFormat ALTER construct. 09902800
 To include this patch in DBSupport put the following
 declaration 09902900
 in the GenFormat parameter file: 09903000
 09903100
 INTERNAL REFORMAT IN "PATCH/DATABRIDGE/SAMPLE/SUPPORT/REFORMAT"
09903200
 09903300
Version 41.471 09903400
1 Added cases 6 and 7 to illustrate handling virtual data items 09903500
 declared with the [DEFINE n] syntax in GenFormat. 09903600
 Case 6 also illustrates the necessary code to handle formatting
09903700
 a null record when the reformatting routine normally stores a 09903800
 constant value. 09903900
 09904000
Version 41.474 09904100
2 Added defines for 8-bit offsets and 8-bit sizes and changed 09904200
 examples accordingly. 09904250
 09904260
Version 61.001 09904300
1 The Reformat routine now returns false (indicating failure) if
a09905000
 fault is detected. 09906000
End History 09999990
$ POP OMIT 09999999
 50000000
 50002000
 50005000
string TSMsg; % timestamp message 50006000
 50007000
real FaultNbr; 50007100
ebcdic array 50007200
 FaultHistory [0:79]; 50007300
 50009000
boolean procedure Reformat (UserValue, UpdateInfo, 50010000
% -------- 50011000
 SourceRec, SourceOfs, SourceSz, 50012000
 DestRec, DestOfs, DestSz); 50013000
 50014000
 % Custom reformatting of a data item. This user-written 50015000
 % procedure converts a data item used in a non-standard way into50016000
 % a "standard" data item defined in the GenFormat parameter
file50017000
 % using the ALTER declaration. 50018000
 50019000
 % For example, a "days-since" data item might be converted to 50020000
 % a YYYYMMDD date. 50021000
 50022000
 % Returns true if item successfully reformatted. 50023000
 50024000
 value UserValue, SourceOfs, SourceSz, DestOfs, DestSz; 50025000
 50026000
 integer UserValue; 50027000
 % Input: user-specified value associated with the data 50028000
 % item (from GenFormat) 50029000
 50030000
 array UpdateInfo [0]; 50031000
 % Input: information describing the update 50032000
 50033000
 array SourceRec [0]; 50034000
 % Input: dataset record containing source item 50035000
 50036000
 integer SourceOfs; 50037000
 % Input: offset of the source item in SourceRec 50038000
 % (4-bit digits) 50039000
 50040000
 integer SourceSz; 50041000
 % Input: size of the source item in SourceRec 50042000
 % (4-bit digits) 50043000
 50044000
 array DestRec [0]; 50045000
 % Output: reformatted dataset record 50046000
 50047000
 integer DestOfs; 50048000
 % Input: offset of the destination item in DestRec 50049000

5.6 Example: Internal Reformatting Procedure

5.6 Example: Internal Reformatting Procedure 165

 % (4-bit digits). 50050000
 50051000
 integer DestSz; 50052000
 % Input: size of the destination item in DestRec 50053000
 % (4-bit digits) 50054000
 50055000
 begin 50056000
 hex array 50057000
 Source4 [0] = SourceRec, 50058000
 Dest4 [0] = DestRec; 50059000
 50060000
 ebcdic array 50061000
 Source8 [0] = SourceRec, 50062000
 Dest8 [0] = DestRec; 50063000
 50063100
 define SourceSz4 = SourceSz #; 50063200

 define SourceSz8 = (SourceSz / 2) #; 50063300
 50063400
 define DestSz4 = DestSz #; 50063500
 define DestSz8 = (DestSz / 2) #; 50063600
 50064000
 define SourceOfs4 = SourceOfs #; 50064100
 define SourceOfs8 = (SourceOfs / 2) #; 50064200
 50064300
 define DestOfs4 = DestOfs #; 50064400
 define DestOfs8 = (DestOfs / 2) #; 50064500
 50066000
 own integer 50066200
 BankIDOfs; 50066250
 own integer 50066300
 BankIDSz; 50066350
 EBCDIC value array 50066400
 BankName (80"BANK"); 50066600
 50066800
 own boolean 50067000
 Initialized; 50067050
 50067100
 procedure Initialize; 50067200
% ---------- 50067400
 begin 50067600
 array ITEM_INFO [0 : II_ENTRY_SIZE - 1]; 50067800
 integer BankStrNum; 50068000
 50068200
 % Get the offset and size of BANK-ID. 50068400
 50068600
 DBStrNum (BankName, BankStrNum); 50068800
 DBItemInfo (BankStrNum, 0, "BANK-ID", ITEM_INFO); 50069000
 BankIDOfs := ITEM_INFO [II_OFFSET]; 50069200
 BankIDSz := ITEM_INFO [II_SIZE]; 50069400
 50069500
 Initialized := true; 50069600
 end Initialize; 50069800
 50070000
 50070200
 if ^ Initialized then 50070400
 begin 50070600
 Initialize; 50070800
 end; 50071000
 50071200
 on anyfault [FaultHistory: FaultNbr], 50072100
 begin 50072200
 DBDisplayFault ("Reformat: ", FaultNbr, FaultHistory); 50072300
 Reformat := false; 50072350
 end; 50072400
 50072500
 Reformat := true; 50073000
 50074000
 case UserValue of 50075000
 begin 50076000
 1: % timestamp 50077000
 50078000
 % call Engine to convert 50079000
 DBTIMESTAMPMSG 50080000
 (real (Source4 [SourceOfs4], SourceSz4), 50081000
 TSMsg); 50082000
 50083000
 % see if it will fit 50086000
 if length (TSMsg) > DestSz8 then 50087000
 begin 50088000
 TSMsg := take (TSMsg, DestSz8); 50089000
 end; 50090000
 50091000
 % copy the timestamp message into dest 50092000
 replace Dest8 [DestOfs8] by 50093000
 TSMsg, 50094000
 " " for DestSz8 - length (TSMsg); 50095000
 50096000
 2: % bigger branch id 50097000
 50098000
 replace Dest4 [DestOfs4] by 50099000
 4"00", 50100000
 Source4 [SourceOfs4] for 4; 50101000
 50102000
 3: % split out branch address 50103000
 50104000
 replace Dest8 [DestOfs8] by 50105000
 Source8 [SourceOfs8] for 30, 50106000
 "-" for 30, 50107000

5.6 Example: Internal Reformatting Procedure

5.6 Example: Internal Reformatting Procedure 166

5.7 Example: External Reformatting Procedure

The ALGOL source code for this example is as follows:

 "your town here ", 50108000
 "your region "; 50109000
 50110000
 6: % Bank president name virtual data item. 50110020
 % If this is a null record then we want this to 50110040
 % be null also so that the client isn't 50110060
 % confused about what is the null value. 50110080
 50110100
 if NullRecord (UpdateInfo) then % null record 50110120
 begin 50110140
 replace Dest4 [DestOfs4] by 4"F" 50110160
 for DestSz4; 50110180
 end 50110200
 else 50110220
 begin 50110240
 replace Dest8 [DestOfs8] by 50110260
 " " for DestSz8; 50110280
 replace Dest8 [DestOfs8] by 50110300
 "Pres. Greenspan"; 50110320
 end; 50110340
 50110360
 7: % Bank phone number virtual data item 50110380
 % pieced together from a constant and the 50110400
 % BANK-ID. 50110420
 50110440
 replace Dest8 [DestOfs8] by 50110460
 "202-555-", 50110480
 Source4 [BankIDOfs] for 4 50110500
 with HEXTOEBCDIC; 50110520
 50110540
 else: % unrecognized UserValue 50111000
 % copy data as-is 50111100
 50111200
 replace Dest4 [DestOfs4] by 50111300
 Source4 [SourceOfs4] 50111400
 for min (SourceSz4, DestSz4); 50111500
 50111600
 Reformat := false; 50112000
 end; 50113000
 50114000
end Reformat; 50115000
 50116000

5.7 Example: External Reformatting Procedure

5.7 Example: External Reformatting Procedure 167

$ SET OMIT 09000000
--
09000100
 09000110
(c) Copyright 2019 Micro Focus or one of its affiliates. 09000120
 09000130
Module: SYMBOL/DATABRIDGE/SAMPLE/REFORMAT 09000140
 09000150
Project: Databridge 09000160
 09000170
Description: Databridge Sample Reformatting Library 09000180
 09000190
 09000430
--
09000440
 09002000
This is a sample reformatting library to illustrate how to reformat
 09002100
data items in conjunction with the GenFormat ALTER construct. 09002200
 09002300
 Modification history 09002400
 -------------------- 09002500
 09002600
Version 25.001 09002700
1 Initial release. 09002800
 09002900
Version 30.001 09003000
1 Added fault-trapping code to handle SEG ARRAY ERR, INVALID 09003100
 INDEX, etc. faults caused by this library. 09003200
 09003300
2 If this routine receives an unrecognized UserValue it will 09003400
 now copy the source data to the destination without 09003500
 modification. Previously it did nothing in this situation. 09003600
 09003700
Version 41.484 09003800
1 Added cases 6 and 7 to illustrate handling virtual data items 09003900
 declared with the [DEFINE n] syntax in GenFormat. 09004000
 Case 6 also illustrates the necessary code to handle formatting
09004100
 a null record when the reformatting routine normally stores a 09004200
 constant value. 09004300
 09004400
2 Added defines for 8-bit offsets and 8-bit sizes and changed 09004500
 examples accordingly. 09004600
 09004700
Version 41.485 09004800
3 Added initialization code to check DBInterface version. 09004900
 09005000
Version 51.501 09005100
End History 09005200
 $ POP OMIT 09005300
 09005400
 09005600
 $ VERSION 06.003.0000
09999900Version
 46000000
begin 46000100
 46000200
 $ SET INCLUDE_ENGINE 46000300
 $ INCLUDE "SYMBOL/DATABRIDGE/INTERFACE" 46000400
 46000500
string TSMsg; % timestamp message 46000600
 46000700
real FaultNbr; 46000800
ebcdic array 46000900
 FaultHistory [0:79]; 46001000
 46001100
boolean procedure Reformat (UserValue, UpdateInfo, 46001200
% -------- 46001300
 SourceRec, SourceOfs, SourceSz, 46001400
 DestRec, DestOfs, DestSz); 46001500
 46001600
 % Custom reformatting of a data item. This user-written 46001700
 % procedure converts a data item used in a non-standard way into46001800
 % a "standard" data item defined in the GenFormat parameter
file46001900
 % using the ALTER declaration. 46002000
 46002100
 % For example, a "days-since" data item might be converted to 46002200
 % a YYYYMMDD date. 46002300
 46002400
 % Returns true if item successfully reformatted. 46002500
 46002600
 value UserValue, SourceOfs, SourceSz, DestOfs, DestSz; 46002700
 46002800
 integer UserValue; 46002900
 % Input: user-specified value associated with the data 46003000
 % item (from GenFormat) 46003100
 46003200
 array UpdateInfo [0]; 46003300
 % Input: information describing the update 46003400
 46003500
 array SourceRec [0]; 46003600
 % Input: dataset record containing source item 46003700
 46003800
 integer SourceOfs; 46003900
 % Input: offset of the source item in SourceRec 46004000
 % (4-bit digits) 46004100

5.7 Example: External Reformatting Procedure

5.7 Example: External Reformatting Procedure 168

 46004200
 integer SourceSz; 46004300
 % Input: size of the source item in SourceRec 46004400
 % (4-bit digits) 46004500
 46004600
 array DestRec [0]; 46004700
 % Output: reformatted dataset record 46004800
 46004900
 integer DestOfs; 46005000
 % Input: offset of the destination item in DestRec 46005100
 % (4-bit digits). 46005200
 46005300
 integer DestSz; 46005400
 % Input: size of the destination item in DestRec 46005500
 % (4-bit digits) 46005600
 46005700
 begin 46005800
 hex array 46005900
 Source4 [0] = SourceRec, 46006000
 Dest4 [0] = DestRec; 46006100
 46006200
 ebcdic array 46006300
 Source8 [0] = SourceRec, 46006400
 Dest8 [0] = DestRec; 46006500
 46006600
 define SourceSz4 = SourceSz #; 46006700
 define SourceSz8 = (SourceSz / 2) #; 46006800
 46006900
 define DestSz4 = DestSz #; 46007000
 define DestSz8 = (DestSz / 2) #; 46007100
 46007200
 define SourceOfs4 = SourceOfs #; 46007300
 define SourceOfs8 = (SourceOfs / 2) #; 46007400
 46007500
 define DestOfs4 = DestOfs #; 46007600
 define DestOfs8 = (DestOfs / 2) #; 46007700
 46007800
 own integer 46007900
 BankIDOfs; 46008000
 own integer 46008100
 BankIDSz; 46008200
 EBCDIC value array 46008300
 BankName (80"BANK"); 46008400
 46008500
 define NullRecord (UI) = (UI [UI_STRIDX] = 0) #; 46008600
 % true if null record 46008700
 46008800
 own boolean 46008900
 Initialized; 46009000
 46009100
 procedure Initialize; 46009200
% ---------- 46009300
 begin 46009400
 array ITEM_INFO [0 : II_ENTRY_SIZE - 1]; 46009500
 integer BankStrNum; 46009600
 46009700
 DBMTYPE DBRslt; 46009800
 46009900
 DBRslt := DBInterfaceVersion (DBV_VERSION, "Reformat:"); 46010000
 if DBRslt NEQ DBM_OK then 46010100
 begin 46010200
 DBDisplayMsg (DBRslt); 46010300
 MYSELF.STATUS := value (TERMINATED); 46010400
 end; 46010500
 46010600
 % Get the offset and size of BANK-ID. 46010700
 46010800
 DBStrNum (BankName, BankStrNum); 46010900
 DBItemInfo (BankStrNum, 0, "BANK-ID", ITEM_INFO); 46011000
 BankIDOfs := ITEM_INFO [II_OFFSET]; 46011100
 BankIDSz := ITEM_INFO [II_SIZE]; 46011200
 46011300
 Initialized := true; 46011400
 end Initialize; 46011500
 46011600
 46011700
if ^ Initialized then 46011800
 begin 46011900
 Initialize; 46012000
 end; 46012100
 46012200
on anyfault [FaultHistory: FaultNbr], 46012300
 begin 46012400
 DBDisplayFault ("xReformat: ", FaultNbr, FaultHistory); 46012500
 Reformat := false; 46012550
 end; 46012600
 46012700
Reformat := true; 46012800
 46012900
case UserValue of 46013000
 begin 46013100
 1: % timestamp 46013200
 46013300
 % call Engine to convert 46013400
 DBTIMESTAMPMSG 46013500
 (real (Source4 [SourceOfs4], SourceSz4), 46013600
 TSMsg); 46013700
 46013800
 % see if it will fit 46013900

5.7 Example: External Reformatting Procedure

5.7 Example: External Reformatting Procedure 169

5.8 Example: Altered Data Set for Flattening OCCURS

This section shows you the declarations you must make in order to flatten OCCURS using a

REDEFINE command. Notice that no reformatting routines are used.

5.8.1 DASDL Declaration

This sample is the original DASDL declaration.

 if length (TSMsg) > DestSz8 then 46014000
 begin 46014100
 TSMsg := take (TSMsg, DestSz8); 46014200
 end; 46014300
 46014400
 % copy the timestamp message into dest 46014500
 replace Dest8 [DestOfs8] by 46014600
 TSMsg, 46014700
 " " for DestSz8 - length (TSMsg); 46014800
 46014900
 2: % bigger branch id 46015000
 46015100
 replace Dest4 [DestOfs4] by 46015200
 4"00", 46015300
 Source4 [SourceOfs4] for 4; 46015400
 46015500
 3: % split out branch address 46015600
 46015700
 replace Dest8 [DestOfs8] by 46015800
 Source8 [SourceOfs8] for 30, 46015900
 "-" for 30, 46016000
 "your town here ", 46016100
 "your region "; 46016200
 46016300
 6: % Bank president name virtual data item. 46016400
 % If this is a null record then we want this to 46016500
 % be null also so that the client isn't 46016600
 % confused about what is the null value. 46016700
 46016800
 if NullRecord (UpdateInfo) then % null record 46016900
 begin 46017000
 replace Dest4 [DestOfs4] by 4"F" 46017100
 for DestSz4; 46017200
 end 46017300
 else 46017400
 begin 46017500
 replace Dest8 [DestOfs8] by 46017600
 " " for DestSz8; 46017700
 replace Dest8 [DestOfs8] by 46017800
 "Pres. Greenspan"; 46017900
 end; 46018000
 46018100
 7: % Bank phone number virtual data item 46018200
 % pieced together from a constant and the 46018300
 % BANK-ID. 46018400
 46018500
 replace Dest8 [DestOfs8] by 46018600
 "202-555-", 46018700
 Source4 [BankIDOfs] for 4 46018800
 with HEXTOEBCDIC; 46018900
 46019000
 else: % unrecognized UserValue 46019100
 % copy data as-is 46019200
 46019300
 replace Dest4 [DestOfs4] by 46019400
 Source4 [SourceOfs4] 46019500
 for min (SourceSz4, DestSz4); 46019600
 46019700
 Reformat := false; 46019800
 end; 46019900
 46020000
 46020100
 end Reformat; 46020200
 46020300
 export Reformat; 46020400
 46020500
 freeze (temporary); 46020600
end. 46020700

5.8 Example: Altered Data Set for Flattening OCCURS

5.8 Example: Altered Data Set for Flattening OCCURS 170

5.8.2 ALTER Declaration in DBGenFormat

Make the following declaration in DATA/GENFORMAT/ databasename /CONTROL:

5.9 Example: Databridge NewId

The Databridge NewId (new identifier) feature is an implementation of pseudonymization. The goal

is to substitute meaningful names and numbers for any personally identifiable data in a database

while retaining the relationships that exist between records either in the same data set or different

data sets.

For example, if an identifier links a customer to accounts associated with that customer, the

substituted identifier will still maintain that linkage. This condition is called tokenization. Each

unique identifier is mapped to a single token value. For instance, all instances of "Bill" might be

mapped to “Chyna.”

The resulting database should not have any data that can be tied to a real person, as required by

GDPR and other auditing requirements for test and development.

This feature is implemented in Databridge using extensions to the GenFormat ALTER declaration

and a proprietary REFORMAT routine that maps the original data values to sensible but fictitious

values, such that the same original value for a data item is always mapped to the same fictitious

value.

To illustrate, here is the DASDL declaration for a CUSTOMER data set.

G DATA SET
 (G-1 GROUP OCCURS 2
 (G-ALPHA ALPHA (10);
 G-NUM NUMBER (5);
);

 G-KEY ALPHA (10);
);

ALTER G
 (
 [REDEFINE] G-1 GROUP
 (G-ALPHA-1 ALPHA (10);
 G-NUM-1 NUMBER (5);
 G-ALPHA-2 ALPHA (10);
 G-NUM-2 NUMBER (5);
);
);

5.8.2 ALTER Declaration in DBGenFormat

5.8.2 ALTER Declaration in DBGenFormat 171

We create three customer records. If we clone the customer data set normally, without any

tokenizing, it would look like this in the client database.

An ALTER of the CUSTOMER data set in the GenFormat file can specify that we want certain data

items to be tokenized. In the screen shot above we want to tokenize all of the data items except the

ones highlighted in yellow. The ones we do want tokenized are put in the ALTER declaration with

one of the new X_... keywords, which include:

5.9 Example: Databridge NewId

5.9 Example: Databridge NewId 172

X_F_NAME

X_L_NAME

X_M_NAME

X_FL_NAME

X_FML_NAME

X_LFM_NAME

X_STREET

X_ADDRESS

X_CITY

X_STATE

X_EMAIL

X_PHONE

X_COUNTY

X_COUNTRY

X_POSTCODE

X_ZIPCODE

X_SSN

X_NUMBER

X_DATE

X_NULL

X_ZERO

X_SPACES

X_STAR

5.9 Example: Databridge NewId

5.9 Example: Databridge NewId 173

The ALTER might look like this.

The special REFORMAT function is provided in a separately licensed library (called OBJECT /

DATABRIDGE/NEWID in the GenFormat excerpt below). The REFORMAT function contains pools of

different kinds of names drawn from public lists. The list of first names comes from the Census

Bureau’s list of most common first names. The street names are from San Francisco. Cities are

from Georgia, and so on. Phone numbers and SSNs are just pseudo random numbers.

After compiling DBSupport with these changes and making sure the SOURCE declaration in the

DBServer parameter file specifies the right DBSupport, we can do another clone and the results

would look like this.

For comparison, here is the original data.

5.9 Example: Databridge NewId

5.9 Example: Databridge NewId 174

Notice that cust_id , cust_acct_id , and cust_type have their original values but the other fields

have been changed to fictitious, but readable, values. Also note that the first and third records

originally had cust_state =”NY” and both were converted to “NV” (for Nevada).

If a caret character, ^ , follows the X_... keyword, the data will be uppercase.

Let’s change the ALTER so that the name is in “last, first middle” format and make the street

address and city uppercase.

After recompiling DBSupport we do another clone. This time it looks like this:

Now the first and last names are in a different order (along with a middle name) and the address

and city are capitalized. All of the other items stayed the same.

GenFormat and the REFORMAT routine make intelligent guesses regarding the format of numeric

items such as SSN, ZIP code, and phone based on the length of the data item; they decide whether

or not to insert delimiters and what kind of delimiters. For example, an 11-character ALPHA for an

SSN will have two hyphens inserted into the 9-digit value.

We rely on the customer to create the ALTER declarations that specify which data items to tokenize

and what type of data they contain. Generally speaking, the percentage of the database that

contains personally identifying data is very small. The data regarding quantities, part numbers,

dollar amounts, etc., typically do not need to be tokenized (although this implementation allows for

it using the X_NUMBER token type).

5.9 Example: Databridge NewId

5.9 Example: Databridge NewId 175

The customer could completely wipe out the contents of a data item by using the X_NULL , X_ZERO ,

X_SPACES , and X_STAR token types.

DBEnterprise also supports all of this functionality using a special DLL. The customer makes the

same changes to the GenFormat file as outlined above. There are no other changes other than

installing the DLL in the Config directory. The DLL produces exactly the same mappings from the

original data to the tokenized values so that the client can switch back and forth between

DBEnterprise and DBServer.

5.9 Example: Databridge NewId

5.9 Example: Databridge NewId 176

6. Formatting Procedures

In This Chapter

This chapter explains how to customize the format in which Databridge outputs data set records

and use those custom formats with DBSpan, DBSnapshot, or a user-written Databridge Accessory.

6.1 Overview.

Record formatting procedures allow you to customize the format in which Databridge outputs data

set records and use those custom formats with DBSpan, DBSnapshot, or a user-written Databridge

Accessory. If you want to reformat data items in a data set to different layouts, see Altered Data

Sets for more information.

6.2 Sample Files

Sample ALGOL External Formatting Procedure contains the sample external formatting procedure,

SYMBOL/DATABRIDGE/SAMPLE/ENCRYPT.

6.3 Using Custom Formatting Procedures

To customize how you want to output your data set records using a formatting procedure,

complete the following steps:

6. Formatting Procedures

6. Formatting Procedures 177

Read this entire chapter so that you get an understanding of how the code you write for your

formatting procedure relates to the actual FORMAT declarations you make in the

DBGenFormat file.

Look at the data records you want to convert so you can get an idea of how many formatting

routines you need to code.

Familiarize yourself with the sample in Sample ALGOL External Formatting Procedure, which

illustrate how to write a formatting procedure.

Use CANDE or another editor to retrieve the DBGenFormat parameter file DATA/GENFORMAT/

SAMPLE/CONTROL.

For a general description of the DBGenFormat parameter file, refer to the Databridge Host

Administrator's Guide.

Rename the file, as follows:

DATA/GENFORMAT/databasename/CONTROL

where databasename is the name of the database for which you are creating the tailored

support library.

Declare the formatting procedure. See Declaring Internal and External Formatting Procedures

for more information.

Save DATA/GENFORMAT/databasename/CONTROL.

Write the formatting routine as follows:

1. 1.

2. 2.

3. 3.

4. 4.

4.

5. 5.

5.

5.

6. 6.

7. 7.

8. 8.

If you Do this

Declared an

internal formatting

procedure

Write the formatting procedure patch file that contains the

formatting procedure. For details, see Writing an Internal

Formatting Routine.

6.3 Using Custom Formatting Procedures

6.3 Using Custom Formatting Procedures 178

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

If you wrote an external formatting procedure (SYMBOL/DATABRIDGE/formattingroutine),

compile it as OBJECT/DATABRIDGE/formattingroutine or whatever you called it in the

DBGenFormat parameter file.

Compile the tailored support library, as follows:

START WFL/DATABRIDGE/COMP ("SUPPORT",

 "databasename" ["logicaldatabasename"])

If you Do this

Declared an

external formatting

procedure

Write the formatting procedure library source file that contains

the formatting routine. For details, see Writing an External

Formatting Routine.

You do not have to complete the external library file before

going on to the next step. You must, however, finish writing and

compiling it before you run an Accessory that uses the external

format.

9. 9.

10. 10.

10.

Where Is

"SUPPORT" The literal that represents the DBSupport program

The quotation marks are required.

"databasename" The name of the database for which you are creating the

tailored support library.

The database name can include a usercode and pack, which

are used to locate the database DESCRIPTION file, as

follows:

"(usercode)databasename ON packname"

The quotation marks are required.

6.3 Using Custom Formatting Procedures

6.3 Using Custom Formatting Procedures 179

This WFL compiles layout tables for each data set in the database designated by

databasename or logicaldatabasename. This results in the new tailored support library titled as

follows:

OBJECT/DATABRIDGE/SUPPORT/databasename

— or —

OBJECT/DATABRIDGE/SUPPORT/databasename/logicaldatabasename

These data set-specific layout tables contain the offsets and sizes of individual data items.

In the Accessory parameter file, enter the tailored support library name for the SUPPORT

option and enter the ALGOL formatting procedure name for the FORMAT option.

For more information, refer to the Databridge Host Administrator's Guide.

What to Do Next

You can now run your Databridge Accessories as usual.

Repeat these steps for each internal or external formatting procedure you want to use.

If you encounter problems, see Troubleshooting for troubleshooting information. The

Troubleshooting chapter provides specific troubleshooting tips for writing formatting procedures.

6.4 Declaring Internal and External Formatting Procedures

Formatting procedures must be declared as an internal or external format in the DBGenFormat

parameter file. Declare the formatting procedure in the DBGenFormat parameter file using the

syntax below in Declaring Internal Formats and Declaring External Formats.

Where Is

"logicaldatabasename" The name of a logical database for which you are creating

the tailored support library.

10.

10.

10.

10.

10.

If you have two databases with the same name under different usercodes, and you are

running Databridge from a third usercode, be careful when you create a tailored support

library. In this case, the second library you compile overwrites the first, because Databridge

strips the usercode and pack name from the database name to create the tailored support

library title.

Caution

11. 11.

6.4 Declaring Internal and External Formatting Procedures

6.4 Declaring Internal and External Formatting Procedures 180

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

Consider the following information before you choose whether to declare an internal or external

formatting procedure:

Internal Format Description External Format Description

Internal formats are compiled as patches to your

tailored support library. This requires that you

recompile DBSupport via WFL/DATABRIDGE/

COMP each time you update the internal

formatting routine.

External formats are linked at run-

time to a user-written format library,

so they can be recompiled any time

without having to recompile

DBSupport.

Internal formats do not have to specify how to

link to DBEngine or DBSupport.

External formats must link to

DBSupport and DBEngine at the

proper time.

6.4 Declaring Internal and External Formatting Procedures

6.4 Declaring Internal and External Formatting Procedures 181

6.4.1 Declaring Internal Formats

To declare the formatting procedure as an internal format, use the following syntax in the

DBGenFormat parameter file:

INTERNAL FORMAT formattingprocedure IN "patchfiletitle"

where formattingprocedure is the formatting procedure that you declared, and patchfiletitle is the

title of the ALGOL patch file containing the internal formatting procedure that you created.

6.4.2 Declaring External Formats

If you want to write your own ALGOL library for a format, you can reference it in the tailored support

library by using the following syntax in the DBGenFormat parameter file:

EXTERNAL FORMAT formattingprocedure IN "objectfilename"

where formattingprocedure is the name you have given to the external formatting procedure and

objectfilename is the file title of your compiled ALGOL library program.

6.5 Writing Formatting Routines

Although you must code the formatting procedure in ALGOL, you can code it to call a COBOL library

that actually formats the data set record.

6.5.1 Initializing the Formatting Routine.

You must initialize your formatting routine the first time it is called. Initializing your formatting

routine allows you to obtain information, such as structure numbers and indexes. Your formatting

routine uses this information to identify and format records. You can use the following entry points

to obtain this information:

Internal Format Description External Format Description

Internal formats do not have to verify that their

interface version matches DBEngine.

External format libraries must ensure

that their interface version matches

DBEngine.

6.4.1 Declaring Internal Formats

6.4.1 Declaring Internal Formats 182

DBSTRIDX

DBDATASETINFO

DBFILTEREDSTRNUM

6.5.2 Writing an Internal Formatting Routine

If you declared an internal format in DBGenFormat, you must write an ALGOL patch file containing

the formatting procedure. The patch file may include global declarations in addition to the

formatting procedure itself. The patch file should not include the EXPORT declaration for the

formatting routine. DBGenFormat automatically generates the appropriate EXPORT declaration.

6.5.3 Writing an External Formatting Routine

If you declared an external format in DBGenFormat, you must write your own library that contains

the formatting procedure and does the following:

•

•

•

6.5.2 Writing an Internal Formatting Routine

6.5.2 Writing an Internal Formatting Routine 183

Sets the $ INCLUDE_ENGINE option (and the $INCLUDE_SUPPORT option if you call any

DBSupport entry points) and includes SYMBOL/DATABRIDGE/INTERFACE using the

following ALGOL $INCLUDE statements:

$SET INCLUDE_ENGINE

 $INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

or

$SET INCLUDE_ENGINE INCLUDE_SUPPORT

 $INCLUDE "SYMBOL/DATABRIDGE/INTERFACE"

Calls DBINTERFACEVERSION to verify that your program was compiled against the same

API file (SYMBOL/DATABRIDGE/INTERFACE) as DBEngine.

The following example shows how to call DBINTERFACEVERSION:

See SYMBOL/DATABRIDGE/SAMPLE/ENCRYPT in Sample ALGOL External Formatting Procedure

as an example of an external formatting routine.

6.5.4 Calling a COBOL Library

If your formatting routine calls a COBOL formatting program that is compiled with $FEDLEVEL=5,

then you must do the following where the library is invoked:

• •

Do not invoke the DBLINKENGINE define to link to DBEngine because DBSupport

automatically links your library to the correct instance of DBEngine. If you invoke the

DBLINKENGINE define before the library freezes, your library will link to a different instance

of DBEngine than the Accessory, and it might return incorrect information and errors.

Do not try to call any entry points before your library freezes because it gets linked to a

different instance of DBEngine and/or DBSupport.

Note

• •

Do not call DBINITIALIZE. DBINITIALIZE will undo the initialization that the Accessory has

already done.

Note

DBMTYPE DBRslt;

DBRslt := DBInterfaceVersion (DBV_VERSION, "MyFormat:");
if DBRslt NEQ DBM_OK then
 begin
 DBDisplayMsg (DBRslt);
 MYSELF.STATUS := value (TERMINATED);
 end;

6.5.4 Calling a COBOL Library

6.5.4 Calling a COBOL Library 184

In the COBOL program's entry point declaration, specify the ACTUALNAME to match the PROGRAM-

ID name in the COBOL program. For example, the sample COBOL program EXTRACTADDRESS has

the following:

The declaration of the COBOL program's entry point in the ALGOL formatting routine would look like

the following:

See the declaration of EXTRACTADDRESS in Sample ALGOL Virtual Transform Procedure.

6.6 Sample ALGOL External Formatting Procedure

This formatting procedure (SYMBOL/DATABRIDGE/SAMPLE/ENCRYPT) illustrates how to write an

external format that encrypts each update record using a translate table. The program that reads

these records must reverse the translation to see the original values.

The DBGenFormat declaration for this example is as follows:

The ALGOL source code (SYMBOL/DATABRIDGE/SAMPLE/ENCRYPT) for this example is as

follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. EXTRACTADDRESS.

procedure ExtractAddress (...);
 library ExtractAddressLib (ACTUALNAME = "EXTRACTADDRESS");

EXTERNAL FORMAT ENCRYPT IN "OBJECT/DATABRIDGE/SAMPLE/ENCRYPT"

6.6 Sample ALGOL External Formatting Procedure

6.6 Sample ALGOL External Formatting Procedure 185

$ SET OMIT 09000000
--
09000100
 09000110
(c) Copyright 2019 Micro Focus or one of its affiliates. 09000120
 09000130
Module: SYMBOL/DATABRIDGE/SAMPLE/ENCRYPT 09000140
 09000150
Project: Databridge 09000160
 09000170
Description: Databridge Encryption Format Library Program 09000180
 09000190
 09000430
--
09000440
 09002000
 09002100
 Modification history 09002200
 -------------------- 09002300
 09002400
Version 41.473 09002500
 Initial version. 09002600
 09002700
 This sample Databridge library program illustrates how to write
09002800
 an external format. It uses a translate table to perform a 09002900
 simple encryption on each update record. A program reading such
09003000
 records would have to reverse the translation to see the 09003100
 original values. 09003200
 09003300
Version 41.485 09003400
1 Added DBInterface compatibility check. 09003500
 09003600
End History 09003700
 $ POP OMIT 09003800
 09003900
 09004100
 $ VERSION 06.003.0000
09999900Version
 $ SET SEQ 40000000 40000000
 40001000
begin 40002000
 40003000
 $ set INCLUDE_ENGINE 40004000
 $ include "SYMBOL/DATABRIDGE/INTERFACE" 40005000
 40006000
translatetable 40007000
 Encryption 40008000
 (40009000
 48"000102030405060708090A0B0C0D0E0F" 40010000
 48"101112131415161718191A1B1C1D1E1F" 40011000
 48"202122232425262728292A2B2C2D2E2F" 40012000
 48"303132333435363738393A3B3C3D3E3F" 40013000
 48"404142434445464748494A4B4C4D4E4F" 40014000
 48"505152535455565758595A5B5C5D5E5F" 40015000
 48"606162636465666768696A6B6C6D6E6F" 40016000
 48"707172737475767778797A7B7C7D7E7F" 40017000
 48"808182838485868788898A8B8C8D8E8F" 40018000
 48"909192939495969798999A9B9C9D9E9F" 40019000
 48"A0A1A2A3A4A5A6A7A8A9AAABACADAEAF" 40020000
 48"B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF" 40021000
 48"C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF" 40022000
 48"D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF" 40023000
 48"E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF" 40024000
 48"F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF" 40025000
 40026000
 to 40027000
 40028000
 48"FFFEFDFCFBFAF9F8F7F6F5F4F3F2F1F0" 40029000
 48"EFEEEDECEBEAE9E8E7E6E5E4E3E2E1E0" 40030000
 48"DFDEDDDCDBDAD9D8D7D6D5D4D3D2D1D0" 40031000
 48"CFCECDCCCBCAC9C8C7C6C5C4C3C2C1C0" 40032000
 48"BFBEBDBCBBBAB9B8B7B6B5B4B3B2B1B0" 40033000
 48"AFAEADACABAAA9A8A7A6A5A4A3A2A1A0" 40034000
 48"9F9E9D9C9B9A99989796959493929190" 40035000
 48"8F8E8D8C8B8A89888786858483828180" 40036000
 48"7F7E7D7C7B7A79787776757473727170" 40037000
 48"6F6E6D6C6B6A69686766656463626160" 40038000
 48"5F5E5D5C5B5A59585756555453525150" 40039000
 48"4F4E4D4C4B4A49484746454443424140" 40040000
 48"3F3E3D3C3B3A39383736353433323130" 40041000
 48"2F2E2D2C2B2A29282726252423222120" 40042000
 48"1F1E1D1C1B1A19181716151413121110" 40043000
 48"0F0E0D0C0B0A09080706050403020100" 40044000
); 40045000
 40046000
 boolean FirstTime; 40047000
 40048000
 DBFormatHead [Encrypt]; 40049000
 % ------- 40050000
 begin 40051000
 real Len; 40052000
 pointer pRec; 40053000
 40054000
 if FirstTime then 40055000
 begin 40056000
 DBMTYPE DBRslt; 40057000

6.6 Sample ALGOL External Formatting Procedure

6.6 Sample ALGOL External Formatting Procedure 186

 40058000
 DBRslt := DBInterfaceVersion (DBV_VERSION, "Encrypt:"); 40059000
 if DBRslt NEQ DBM_OK then 40060000
 begin 40061000
 DBDisplayMsg (DBRslt); 40062000
 MYSELF.STATUS := value (TERMINATED); 40063000
 end; 40064000
 FirstTime := false; 40065000
 end; 40066000
 40067000
 Len := 6 * UPDATE_INFO [UI_RECSZ_WORDS]; 40068000
 pRec := pointer (UserRec); 40069000
 40070000
 case UPDATE_INFO [UI_UPDATE_TYPE] of 40071000
 begin 40072000
 DBV_CREATE: 40073000
 DBV_DELETE: 40074000
 DBV_MODIFY: 40075000
 replace pRec by pRec for Len 40076000
 with Encryption; 40077000
 else: 40078000
 end; 40079000
 40080000
 Encrypt := Callback (pRec, Len, UPDATE_INFO, UserRec); 40081000
 end Encrypt; 40082000
 40083000
export Encrypt; 40084000
 40085000
FirstTime := true; 40086000
freeze (temporary); 40087000
end. 40088000

6.6 Sample ALGOL External Formatting Procedure

6.6 Sample ALGOL External Formatting Procedure 187

7. Error Handling Routines

In This Chapter

This chapter explains how to write an ALGOL error handling routine.

7.1 Overview

DBGenFormat supports error handling routines that analyze, log, and display errors and determine

how Databridge Accessories respond to those errors.

To use an error handling routine, you must write a patch file containing the error handling code and

specify the error handling routine in the DBGenFormat parameter file.

Whenever an error occurs, the Databridge Accessory calls the DBERRORMANAGER entry point in

DBSupport. The error manager procedure calls the user-written error handler to analyze the error

and handle it. For example, the error handling routine might write the error to a log, send an e-mail

message, or reload a missing audit file. It then returns an EMATYPE value that tells the Accessory

what to do: ignore, retry, or fail.

DBERRORMANAGER returns the following EMATYPE values:

If you do not use an error handler patch, the default error handler in DBSupport returns

DBV_Default to the Accessory, indicating that the Accessory can decide whether the error is

fatal, should be retried, or should be ignored.

Note

EMATYPE Description

DBV_Default The Accessory decides what to do with the error.

DBV_Fatal The Accessory terminates.

DBV_Ignore The Accessory ignores the error and continues.

7. Error Handling Routines

7. Error Handling Routines 188

Error handling routines must use the DBErrorManagerHead heading defined in SYMBOL/

DATABRIDGE/INTERFACE. While the patch file must be written in ALGOL, the error handling routine

could call a COBOL program to perform the actual error handling.

The patch file can contain declarations global to the error manager procedure. See the sample error

manager patch called PATCH/DATABRIDGE/SAMPLE/SUPPORT/ERRORHANDLER.

7.2 Writing an Error Handling Routine

To write an error handling routine, complete the following steps:

EMATYPE Description

DBV_Retry The Accessory retries the operation.

7.2 Writing an Error Handling Routine

7.2 Writing an Error Handling Routine 189

Read this entire chapter so that you get an understanding of what you can make your error

handling routine do. For instance, the error handling routine can do the following:

Determine what errors the Accessory can handle

Determine what the Accessory can do in response to errors (analyze them, log them, display

them, continue processing, terminate, and so on)

Familiarize yourself with the error handling sample in Sample Error Handling Routine.

Use CANDE or another editor to retrieve the DBGenFormat parameter file DATA/GENFORMAT/

SAMPLE/CONTROL.

For a general description of the DBGenFormat parameter file, refer to the Databridge Host

Administrator's Guide.

Rename the file, as follows:

DATA/GENFORMAT/databasename/CONTROL

where databasename is the name of the database for which you are creating the error

handling routine.

Declare the patch file that contains the error handling routine, as follows:

ERROR MANAGER errormanagername IN "patchfiletitle"

where errormanagername is the name of the error handling routine and patchfiletitle is the

name of the patch file that contains the error handling routine. 6. Save DATA/GENFORMAT/

databasename/CONTROL . 7. Write the error handling routine.

A sample error handling routine is described in Sample Error Handling Routine. 8. Compile the

tailored support library, as follows:

START WFL/DATABRIDGE/COMP ("SUPPORT", "databasename" ["logicaldatabasename"])

1.

•

•

2. 2.

3. 3.

3.

4. 4.

4.

4.

If your error handler does not use any database-specific information and you do not need a

tailored DBSupport library for any other reason, (for example, because you use filler

substitutions) you can put the error handler routine in the non-tailored DBSupport library.

In this case, skip this step, save DATA/GENFORMAT/SAMPLE/CONTROL found in step 6

below, use START WFL/DATABRIDGE/COMP ("SUPPORT") in found in step 8, and skip step 9.

Note

5. 5.

5.

5.

5.

5.

Where Is

"SUPPORT" The literal that represents the DBSupport library

The quotation marks are required.

7.2 Writing an Error Handling Routine

7.2 Writing an Error Handling Routine 190

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

This WFL compiles layout tables for each data set in the database designated by

databasename or logicaldatabasename. This results in the new tailored support library titled as

follows:

OBJECT/DATABRIDGE/SUPPORT/databasename

— or —

OBJECT/DATABRIDGE/SUPPORT/databasename/logicaldatabasename

These data set-specific layout tables contain the offsets and sizes of individual data items.

In the Accessory parameter file, enter the tailored support library name for the SUPPORT

option as follows:

Where Is

"databasename" The name of the database for which you are creating the

tailored support library

The database name can include a usercode and pack, which

are used to locate the database DESCRIPTION file, as

follows:

"(usercode)databasename ON packname"

The quotation marks are required.

"logicaldatabasename" The name of a logical database for which you are creating

the tailored support library

5.

5.

5.

5.

5.

If you have two databases with the same name under different usercodes, and you are

running Databridge from a third usercode, be careful when you create a tailored support

library. In this case, the second library you compile overwrites the first, because Databridge

strips the usercode and pack name from the database name to create the tailored support

library title.

Caution

6. 6.

For Do this

Databridge

Clients

In the DBServer parameter file, enter the tailored support library

name for the SUPPORT option.

For more information, refer to the Databridge Host Administrator's

Guide.

7.2 Writing an Error Handling Routine

7.2 Writing an Error Handling Routine 191

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

What to Do Next

You can now use your error handling routine and run your Databridge Accessories as usual.

7.3 Sample Error Handling Routine

The sample error handling patch PATCH/DATABRIDGE/SAMPLE/SUPPORT/ERRORHANDLER, does

the following:

Uses the DBErrorManager head included in SYMBOL/DATABRIDGE/INTERFACE and documented

in the Types, Values, and Array Layouts section of this guide.

Writes the error message to the system SUMLOG if the Accessory is privileged, otherwise, it

displays the message.

Determines whether or not a missing audit file caused the error, and if that is the case, starts a

WFL to recopy the missing audit file. Then the error handler returns DBV_Retry to the

Accessory to indicate that it should retry whatever it was doing when it got the error message.

The ALGOL source code for this example is as follows.

For Do this

Other

Accessories

In the Accessory parameter file, enter the tailored support library

name for the SUPPORT option.

For more information, refer to the Databridge Host Administrator's

Guide.

1.

2.

3. 3.

3.

Read through this patch carefully before implementing it. Its main purpose is to illustrate

ways to handle errors as a basis for writing your own custom error handling routine.

This routine uses a job called WFL/RELOAD/AUDIT, to copy an audit file, but WFL/RELOAD/

AUDIT is not included on the Databridge release medium.

Note

7.3 Sample Error Handling Routine

7.3 Sample Error Handling Routine 192

https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host

 09000000
$ SET OMIT 09000100
---09000200
 09000230
Module: PATCH/DATABRIDGE/SAMPLE/SUPPORT/ERRORHANDLER 09000240
 09000250
Project: Databridge 09000260
 09000270
Description: Databridge Example Error Handler patch 09000280
 09000290
(c) Copyright 2019 Micro Focus or one of its affiliates. 09000390
 09000530
---09000540
 09002000
 Modification history 09002100
 -------------------- 09002200
 09002300
Version 41.471 09002400
1 Initial release. 09002500
 09002600
 Example error manager routine. This is a patch 09002700
 to SYMBOL/DATABRIDGE/SUPPORT and can be included by inserting
09002800
 the following declaration in DATA/GENFORMAT/<database>/CONTROL:
09002900
 09003000
 ERROR MANAGER ERRORHANDLER 09003100
 IN "PATCH/DATABRIDGE/SAMPLE/SUPPORT/ERRORHANDLER" 09003200
 09003300
 Warning: Read through this patch carefully before implementing
09003400
 it. Its main purpose is to *illustrate* some different ways to 09003500
 handle errors, including writing to the SUMLOG and starting a 09003600
 job called WFL/RELOAD/AUDIT, which is not part of the release, 09003700
 to copy an audit file from somewhere. 09003800
 09003900
 Use this patch as a basis for writing your own custom error 09004000
 handling routine. If all you want to do is display error 09004100
 messages then simply use the default error handler that is 09004200
 built into DBSupport. 09004300
 09004400
End History 09004500
 $ POP OMIT 09004600
 70004700
 70004800
boolean IAmPrivileged; 70004900
 70005000
array ErrScratch [0 : 29]; 70005100
interlock 70005200
 ErrorHandlerLock; 70005300
 70005400
DBErrorManagerHead [ErrorHandler]; 70005500
% ------------ 70005600
 70005700
 begin 70005800
 own boolean 70005900
 Initialized; 70006000
 70006100
 procedure Initialize; 70006200
 % ---------- 70006300
 begin 70006400
 IAmPrivileged := DBPrivileged; 70006500
 70006600
 Initialized := true; 70006700
 end Initialize; 70006800
 70006900
 procedure LogComment; 70007000
 % ---------- 70007100
 begin 70007200
 % Write a comment to the SUMLOG. 70007300
 % The log entry will look like: 70007400
 % SETSTATUS CALL: LC : DBTwin: DBM116: Unknown filter 70007500
 % name: EXAMPLE2. 70007600
 70007700
 define LenLoc = 2 #; 70007800
 define pLogStart = pointer (ErrScratch [LenLoc + 1]) #;70007900
 define Build = replace pLog : pLog by #; 70008000
 pointer pLog; 70008100
 boolean SSResult; 70008200
 70008300
 pLog := pLogStart; 70008400
 $ set omit 70008500
 case AccessoryID of 70008600
 begin 70008700
 DBV_Span: 70008800
 Build "DBSpan"; 70008900
 DBV_Snapshot: 70009000
 Build "DBSnapshot"; 70009100
 DBV_Server: 70009200
 Build "DBServer"; 70009300
 DBV_Tanker: 70009400
 Build "DBTanker"; 70009500
 DBV_Lister: 70009600
 Build "DBLister"; 70009700
 DBV_Twin: 70009800
 Build "DBTwin"; 70009900
 DBV_GenFormat: 70010000
 Build "DBGenFormat"; 70010100

7.3 Sample Error Handling Routine

7.3 Sample Error Handling Routine 193

 DBV_AuditTimer: 70010200
 Build "DBAuditTimer"; 70010300
 DBV_TwinInit: 70010400
 Build "DBTwinInitialize"; 70010500
 else: 70010600
 Build "Accessory"; 70010700
 end; 70010800
$ pop omit 70010900
 Build ": ", pErrMsg for ErrMsgLen; 70011000
 70011100
 ErrScratch [0] := LenLoc; % location of length word 70011200
 ErrScratch [LenLoc] := offset (pLog) 70011300
 - offset (pLogStart); 70011400
 SSResult := SETSTATUS (2, 26, 0, ErrScratch); 70011500
 end LogComment; 70011600
 70011700
 70011800
EMATYPE procedure AuditUnavailable; 70011900
% ---------------- 70012000
 70012100
 % If the problem is a missing audit file, we'll run a 70012200
 % WFL job to recopy it. 70012300
 70012400
 begin 70012500
 pointer pAFN; 70012600
 integer AFN; 70012700
 real Rem; 70012800
 real Len; 70012900
 boolean MissingFile; 70013000
 70013100
 % Scan the error message to find the AFN and determine 70013200
 % if the problem is that the file is not found. 70013300
 70013400
 pAFN := pErrMsg; 70013500
 Rem := ErrMsgLen; 70013600
 while Rem > 0 do 70013700
 begin 70013800
 scan pAFN : pAFN + Len for Rem : Rem - Len 70013900
 while = " "; 70014000
 scan pAFN for Len : Rem 70014100
 until = " "; 70014200
 Len := Rem - Len; 70014300
 if Len > 0 then 70014400
 begin 70014500
 if pAFN in Numbers for Len then 70014600
 begin 70014700
 AFN := integer (pAFN, Len); 70014800
 end 70014900
 else 70015000
 if pAFN = "not found" then 70015100
 begin 70015200
 MissingFile := true; 70015300
 end; 70015400
 end; 70015500
 end; 70015600
 70015700
 if MissingFile then 70015800
 begin 70015900
 replace pointer (ErrScratch) by 70016000
 "START WFL/RELOAD/AUDIT (", 70016100
 AFN for * digits, ")", 0; 70016200
 zip with ErrScratch; 70016300
 70016400
 % Tell Accessory to retry 70016500
 70016600
 AuditUnavailable := DBV_Retry; 70016700
 end; 70016800
 end AuditUnavailable; 70016900
 70017000
 70017100
 lock (ErrorHandlerLock); 70017200
 70017300
 if ^ Initialized then 70017400
 begin 70017500
 Initialize; 70017600
 end; 70017700
 70017800
 % If we are running under a privileged usercode, we 70017900
 % can write it directly to the SUMLOG, else we'll do 70018000
 % a simple display. 70018100
 70018200
 if IAmPrivileged then 70018300
 begin 70018400
 LogComment; 70018500
 end 70018600
 else 70018700
 begin 70018800
 display (pErrMsg); 70018900
 end; 70019000
 70019100
 unlock (ErrorHandlerLock); 70019200
 70019300
 % Check for missing audit file. 70019400
 70019500
 if ErrNbr = DBM_AUD_UNAVAIL then 70019600
 begin 70019700
 ErrorHandler := AuditUnavailable; 70019800
 end; 70019900
 end ErrorHandler; 70020000

7.3 Sample Error Handling Routine

7.3 Sample Error Handling Routine 194

 70020100
 % End of ErrorHandler patch 70020200
 70020300

7.3 Sample Error Handling Routine

7.3 Sample Error Handling Routine 195

8. Glossary

This glossary includes terms that are unique to Databridge, as well as terms that are standard for

DMSII databases. Complete, detailed definitions for Unisys MCP-hosted mainframes and DMSII

terms can be found in Unisys documentation. The purpose of this glossary is to explain how these

terms relate to Databridge.

Accessory

An Accessory is any program (including user-written programs) that links to a support library, such

as DBEngine, DBSupport, or a user-written library.

Accessroutines

The Accessroutines program is a DMSII utility that controls access to the database, reads and

writes records, and creates the audit trail.

audit file

The audit file is created by DMSII and contains the raw format of changes made to the DMSII

database by update programs. Audit file records contain the deletes, adds, and modifies that were

made to the various structures. It can contain, for example, hours, days, or weeks worth of

information.

When an audit file is closed, DMSII creates the next one in the series. Audit files are closed for

several reasons, including the following:

An operator closes the audit file with the mixnumber SM AUDIT CLOSE command

The audit file reaches the file size set in its DASDL

There is an I/O error on the audit file

There is not enough disk space for this audit file

The database update level changes due to database definition changes

The current audit file could not be found

A file reorganization was executed to modify a DMSII structure

Databridge uses the audit file for the raw data of each database change to exactly replicate the

primary database. Databridge records the audit location (AFN, ABSN, SEG, IDX) between runs, so it

can restart without losing any records.

•

•

•

•

•

•

•

8. Glossary

8. Glossary 196

If you set READ ACTIVE AUDIT to true in the Engine control file Databridge can access up to and

including the current audit file. If you set READ ACTIVE AUDIT to false in the Engine control file,

Databridge can access audit information only up to and including the current audit file minus one.

Additionally, the audit file contains the update level at the time the audit file was created. The

update level in the audit file and the update level in the DESCRIPTION file used by Databridge must

match before Databridge will update a replicated database.

audit trail

The audit trail consists of all of the audit files generated for a database. It can contain recovery

records, which indicate that there was a failure such as a HALT/LOAD that caused the

Accessroutines to rollback the DMSII database to a quiet point. If DBEngine encounters one of

these recovery records, it notifies the caller to rollback the replicated data accordingly.

The audit trail consists of the audit files named as follows:

databasename/AUDITnnnn

where databasename is the name of the DMSII database, AUDIT is a literal, and nnnn is the AFN

(Audit File Number), a number between 1 and 9999. For example, if you have a database named

BANKDB, an audit file would be named similar to the following:

BANKDB/AUDIT7714

client

The client is the computer system that will receive DMSII records from the primary database. The

client could be a PC, a UNIX computer, or a mainframe. The client can have a relational or a DMSII

database.

cloning

Cloning is the process of generating a complete snapshot of a data set to another file. Cloning

creates a static picture of a dynamic database. Databridge uses the DMSII data sets and the audit

trail to ensure that the cloned data represents a snapshot of the data sets at a quiet point, even

though other programs may be updating the database concurrently. Databridge clones only those

data sets you specify.

Cloning is one phase of the database replication process. The other phase is tracking (or updating),

which is the integration of database changes since the cloning. For more details, see the definition

for tracking.

Databridge Accessories are available for cloning, as follows:

8. Glossary

8. Glossary 197

DBSnapshot Accessory uses a batch method that provides a one-time snapshot only.

DBSpan Accessory uses a dynamic method that provides a one-time extraction and fixup

followed by ongoing tracking.

Databridge Clients perform an initial clone of a DMSII database and then subsequent tracking

of the changes made to the DMSII database. Databridge Administrative Console connect to

Databridge Server or Databridge Enterprise to get the DMSII data.

compound item

An elementary item that could be altered into a GROUP item containing multiple elementary items.

For instance, assume that CUST-NAME ALPHA (30) has a 20-character last name, followed by a 9-

character first name, and a 1-character middle initial. CUST-NAME could be altered to be a GROUP

containing CUST-LAST-NAME ALPHA (20), CUST-FIRST-NAME ALPHA (9), and CUST-MID-INITIAL

ALPHA (1).

consolidated file

A file created by DBSpan that contains records for all selected data sets.

CONTROL file

The DMSII CONTROL file is the run-time analog of the DESCRIPTION file. The DESCRIPTION file is

updated only when you compile a modified DASDL. The CONTROL file controls database interlock.

It stores audit control information and verifies that all database data files are compatible by

checking the database timestamp, version timestamp, and update level. The CONTROL file is

updated each time anyone opens the database for updates. The CONTROL file contains

timestamps for each data set (when the data set was defined, when the data set was updated). It

contains parameters such as how much memory the Accessroutines can use and titles of software

such as the DMSUPPORT library (DMSUPPORT/databasename).

Databridge uses the CONTROL file for the following information:

Timestamps

INDEPENDENTRANS option

AFN for the current audit file and ABSN for the current audit block

Data set packnames

Audit file packname

Database usercode

•

•

•

•

•

•

•

•

•

8. Glossary

8. Glossary 198

DASDL

Data And Structure Definition Language—This is the language that defines DMSII databases. The

DASDL must be compiled to create a DESCRIPTION file.

data set

A file (structure) in DMSII in which records are stored. It is similar to a table in a relational

database. You can select the data sets you want to store in your replicated database.

DESCRIPTION file

The DESCRIPTION file contains the structural characteristics of a database (physically and

logically). It is created from the DASDL source by the DASDL compiler and contains the layout

(physical description), timestamp, audit file size, update level, logical database definition, and any

static information about the database. It contains information about the database, not the data

itself.

There is only one current DESCRIPTION file for each DMSII database. Databridge must have access

to the DESCRIPTION file before it can replicate a database. Additionally, Databridge uses the

DESCRIPTION file information for consistency checks between the primary database and the

secondary or replicated database.

The DESCRIPTION file corresponds to the schema in a relational database.

extraction

The process of reading through a data set sequentially and writing those records to a file (either a

secondary database or flat file).

file format conversion

A DMSII file format conversion affects file size values (for example, AREASIZE, BLOCKSIZE, or

TABLESIZE), but it does not change the layout of the DMSII database.

flattening OCCURS

Changing an occurring item into a series of individual items.

formatting procedure

8. Glossary

8. Glossary 199

A procedure residing either directly or indirectly in DBSupport that contains routines for formatting

the data items of a data set record. DBGenFormat generates formatting procedures such as

COMMAFORMAT and BINARYFORMAT based on the setting of certain options in the DBGenFormat

parameter file. You can write custom formatting procedures in ALGOL or COBOL to satisfy specific

formatting requirements.

formatting routine

A section of code in a formatting procedure that formats a specific type of data item, such as an

ALPHA.

garbage collection reorganization

A garbage collection reorganization moves records around, but it doesn't change the layout of the

DMSII database. Its primary function is to improve disk and/or I/O efficiency by eliminating the

space occupied by deleted records. Optionally, a garbage collection reorganization reorders the

remaining records in the same sequence as one of the sets.

null text

The value defined in the DASDL to be NULL for that ALPHA data item. If the DASDL does not

explicitly specify a NULL value for a data item, the NULL value is all bits turned on.

primary database

This is the original DMSII database that resides on the ClearPathNX/LX or A Series host.

Databridge replicates from the primary database to one or more client databases. The client

databases can be another DMSII database or one of several relational databases. Compare this to

the replicated (or secondary) database.

quiet point (QPT)

A point in time when no program is in transaction state. This can occur naturally, or it can be forced

by a DMSII syncpoint. The quiet point is a point in time in the audit trail that Databridge uses as a

reference point to help synchronize cloning or tracking of the DMSII database. Databridge uses the

quiet points to ensure an accurate snapshot of the data. Audit addresses of these quiet points are

stored in the replicated database for database synchronization purposes.

reformatting procedure

8. Glossary

8. Glossary 200

An ALGOL procedure that allows you to alter or convert data items to different layouts using

custom written reformatting routines. The ALTER declaration in the DBGenFormat parameter file

indicates which data items will be converted by the reformatting procedure. The procedure itself

must call individual reformatting routines to convert the data items.

reformatting routine

An ALGOL conversion routine that alters the layout of a data item.

replicated database

This is the database that resides on the client (also called the client or secondary database) and

that contains all of the records cloned from the DMSII database you specified for cloning. The

replicated database is updated periodically with changes made to the primary (original) DMSII

database. The periodic update (or tracking process) is explained later in this section. Compare this

to the primary database.

replication process

The ongoing process of cloning and tracking a DMSII database. With the DBSnapshot Accessory,

you can clone a database as a one time snapshot to flat files. With the DBSpan Accessory,

however, you can extract the database to flat files and then subsequently update it by tracking. The

DBSpan Accessory performs extraction as well as tracking.

secondary database

See replicated database.

set

An index into a data set.

structure

A data set, set, subset, access, or remap. Each structure has a unique number called the structure

number.

table

8. Glossary

8. Glossary 201

A data structure in the client database corresponding to a data set or remap in the host DMSII

database.

tracking

Retrieving only the changes from the audit trail to apply to the replicated database. Tracking is an

ongoing process for propagating changes made to records in the DMSII primary database to the

replicated database. The DBSpan and DBServer Accessories perform extraction as well as tracking.

Tracking is one phase of the database replication process. The other phase is cloning.

undigits

A NUMBER data item containing values from 10 to 15. The NUMBER data item should contain

values from 0 to 9; however, it is possible for NUMBER data item to contain values 0 to 15. Because

values 10 to 15 are not valid digit values, NUMBER data items containing values from 10 to 15 are

called undigits.

9. Legal Notice

Copyright 2023 Open Text

The only warranties for products and services of Open Text and its affiliates and licensors (“Open

Text”) are as may be set forth in the express warranty statements accompanying such products

and services. Nothing herein should be construed as constituting an additional warranty. Open Text

shall not be liable for technical or editorial errors or omissions contained herein. The information

contained herein is subject to change without notice.

9. Legal Notice

9. Legal Notice 202

10. Appendix

10. Appendix

10. Appendix 203

10.1 A - Types, Values, Arrays and Layouts

10.1.1 A Types, Values, and Array Layouts

In This Appendix

This appendix documents the section of SYMBOL/DATABRIDGE/INTERFACE called "Types, values,

and array layouts".

10.1.2 Overview

DBEngine and DBSupport entry points return the "Types, Values, and Array Layouts" of SYMBOL/

DATABRIDGE/INTERFACE. The tables in this appendix explain those various values and arrays.

Each array (such as the UPDATE_INFO array) or set of information (such as the Data Error Types)

has its own section in this appendix, and that section appears here in the same order in which it

appears in the file. Most of these sections provide a table further explaining the information in

SYMBOL/DATABRIDGE/INTERFACE, and most of them are cross-referenced from the Using the

Databridge API section.

Each section is listed here for your reference:

10.1 A - Types, Values, Arrays and Layouts

10.1 A - Types, Values, Arrays and Layouts 204

DBEngine Entry Point Result Values

Record Change Types

Error Manager Types

Documentation Records

DBSETOPTION/DBRESETOPTION Run-Time Options

DBPARAMETERS Processing Parameter Types

DBAUDITMEDIUM Parameters

Network Protocol Values

MAXWAITSECS Values

ITEM_INFO Array Layout

STATE_INFO Layout

DATABASE_INFO Layout

DATASET_INFO Layout

SET_INFO Layout

UPDATE_INFO Layout

AUDIT_INFO Layout

Link Update Info Layout

Audit File Error Subtypes

Data Error Types

Processing Limit Types

Statistics Category Values

STATISTICS_INFO Array Layout

FileXtract FileInfo Array Layout

DBOUTPUTHEAD Procedure Heading

DBFORMATHEAD Procedure Heading

DBTRANSFORMHEAD Procedure Heading

DBFILTERHEAD Procedure Heading

DBERRORMANAGERHEAD Procedure Heading

DBFILEREADERHEAD Procedure Heading

File Attribute Mask Bits

10.1.3 DBEngine Entry Point Result Values

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10.1.3 DBEngine Entry Point Result Values

10.1.3 DBEngine Entry Point Result Values 205

These values are error and status messages, which give you information about how DBEngine or

any Accessory linked to DBEngine is running. The Databridge Errors and Messages Guide provides a

list of these values (by number) and briefly explains each value.

10.1.4 Record Change Types

The following table provides additional information about record change types as they are

documented in SYMBOL/DATABRIDGE/INTERFACE.

These values are found in the UPDATE_INFO [UI_UPDATE_TYPE] and specify the type of update.

Value Description

DBV_HEADER This is for internal use only

DBV_CREATE This indicates that the record was created.

DBV_MODIFY_AFTER_IMAGE This is the after-image of a modify.

Use IS rather than = as in the following:

IF UI [UI_UPDATE_TYPE] IS

DBV_MODIFY_AFTER_IMAGE THEN...

DBV_DELETE This indicates that the record was deleted.

DBV_MODIFY_BEFORE_IMAGE This is the before-image of a modify.

Use IS rather than = as in the following:

IF UI [UI_UPDATE_TYPE] IS

DBV_MODIFY_BEFORE_IMAGE THEN...

DBV_MODIFY This indicates that the record was modified.

DBV_STATE This is the state information. For a description of the

array layout, see STATE_INFO Layout.

DBV_DOC This is a documentation record. For a description of

possible values, see Documentation Records.

DBV_MODIFY_BI This is the alternate value for

DBV_MODIFY_BEFORE_IMAGE.

DBV_MODIFY_AI This is the alternate value for

DBV_MODIFY_AFTER_IMAGE.

10.1.4 Record Change Types

10.1.4 Record Change Types 206

https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages

10.1.5 Error Manager Types

An Error Manager procedure (see DBERRORMANAGERHEAD) returns the following EMATYPE

values:

10.1.6 Accessory ID Numbers

Databridge Accessories are identified by the following Accessory ID numbers:

Value Description

DBV_LINK_BI This is the before-image of a link.

DBV_LINK_AI This is the after-image of a link.

EMATYPE Integer Description

DBV_Default 0 The Accessory decides what to do with the error.

DBV_Fatal 1 The Accessory terminates.

DBV_Ignore 2 The Accessory ignores the error and continues.

DBV_Retry 3 The Accessory retries the operation.

AIDTYPE Integer

DBV_Span 1

DBV_Snapshot 2

DBV_Server 3

(not used) 4

DBV_Lister 5

DBV_Twin 6

DBV_GenFormat 7

10.1.5 Error Manager Types

10.1.5 Error Manager Types 207

10.1.7 Documentation Records

The following table provides additional information about documentation records from SYMBOL/

DATABRIDGE/INTERFACE. This information is returned when an entry point, such as the

DBREADTRANGROUP entry point, requests information about records in the current transaction

group.

AIDTYPE Integer

DBV_AuditTimer 8

Field Description

DB_DOC_TYPE_F If UI_UPDATE_TYPE in the UPDATE_INFO array is set to DBV_DOC,

then the value in this field is one of the values in the following table.

10.1.7 Documentation Records

10.1.7 Documentation Records 208

Value Description

DB_DOC_TYPE The type of documentation record

Possible values are as follows:

DBV_DOC_BEG_TRAN—Indicates begin

transaction (BTR) For values, see Begin

Transaction.

DBV_DOC_END_TRAN—Indicates end

transaction (ETR)

DBV_DOC_BEG_DB—Indicates database

stack initiate (DBSI)

DBV_DOC_END_DB—Indicates database

stack terminate (DBST)

DBV_DOC_BEG_REC—Indicates begin

recovery (RECOV-1)

DBV_DOC_END_REC—Indicates end recovery

(RECOV-2)

DBV_DOC_BEG_CP—Indicates begin

controlpoint (BCP)

DBV_DOC_END_CP—Indicates end

controlpoint (ECP)

DBV_DOC_SYNC—Indicates syncpoint (SPT)

DBV_DOC_OPEN—Indicates restart data set

open (RDSO) For values, see Restart Data Set

Open and Close.

DBV_DOC_CLOSE—Indicates restart data set

close (RDSC) For values, see Restart Data Set

Open and Close.

DBV_DOC_INIT—Indicates structure

discontinuity (STRDC) (because of

initialization)

DBV_DOC_REORG—Indicates STRDC

(because of reorganization)

DBV_DOC_AF_HEADER—Provides

audit file header information For the

layout of this header, see Audit File

Header.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10.1.7 Documentation Records

10.1.7 Documentation Records 209

Begin Transaction

The following table provides information about the layout of the begin transaction:

End Transaction

The following table provides information about the layout of the end transaction:

Restart Data Set Open and Close

The following table provides information about the restart data set open (beginning of task, BOT)

and restart data set close (end of task, EOT):

Value Description

DB_DOC_MAX_SZ The maximum size of the documentation record

DB_DOC_LONGTRAN Indicates a Long Transaction is in progress. Valid

for the following types: DBV_DOC_BEG_TRAN,

DBV_DOC_END_TRAN, DBV_DOC_BEG_CP,

DBV_DOC_END_CP, and DBV_DOC_SYNC.

Field Description

DB_DOC_BEG_TRAN_TC This field contains the active transaction count if the

DB_DOC_TYPE is set to DBV_DOC_BEG_TRAN.

Field Description

DB_DOC_END_TRAN_TC This field contains the active transaction count if the

DB_DOC_TYPE is set to DBV_DOC_END_TRAN.

Field Description

DB_DOC_TASK_JOBNBR The job number of the job that started the task

DB_DOC_TASK_MIXNBR The mix number of the task

DB_DOC_TASK_NAMELEN The length of the task name in bytes

10.1.7 Documentation Records

10.1.7 Documentation Records 210

Audit File Header

The following table provides the layout of information in the audit file header. This header precedes

the first update from an audit file and any messages associated with the new file.

Field Description

DB_DOC_TASK_NAME The task name for n words

Field Description

DB_DOC_AF_REC_QPT DMSII recovery policy

Possible values are as follows:

1—Recover to QPT

0—Recover to a syncpoint or other super quiet point

DB_DOC_AF_UPDATE_LVL The audit file update level

DB_DOC_AF_DBTS The audit file database timestamp

DB_DOC_AF_RELEASE The DMSII release level of the audit file

DB_DOC_AF_MARK The DMSII system software release (SSR) level

DB_DOC_AF_CYCLE The DMSII SSR cycle

DB_DOC_AF_AUD_LVL The audit level number

•

•

Value Description

DB_DOC_AF_HEADER_SZ The size of the audit file header information in words

10.1.7 Documentation Records

10.1.7 Documentation Records 211

DBSETOPTION/DBRESETOPTION Run-Time Options.

The following table provides additional information about the DBSETOPTION/DBRESETOPTION

run- time options as they are documented in SYMBOL/DATABRIDGE/INTERFACE. These options are

turned on and off by the DBSETOPTION and DBRESETOPTION entry points.

Value Description

DB_DOC_MAX_SZ The maximum size of the documentation record

Value Description

DBV_OP_BI_AI Requests that updated database records be sent as a pair of

before- and after-images

DBV_OP_DOC Requests that documentation records be sent to the

Accessory in addition to normal CREATES, UPDATES, and

DELETES

DBV_OP_UNGROUPED Specifies no COMMITs or ABORTs

DBV_OP_MODELESS Specifies no reorganization or purge errors

DBV_OP_NO_WAIT Specifies whether to wait on NO FILE conditions when an

audit file is unavailable. When reset or defaulting to FALSE,

the Accessory will enter the Waiting Entries state when a NO

FILE is encountered. If set to TRUE, the Accessory receives a

DBM_AUD_UNVAIL(7) result code when a NO FILE condition

occurs.

DBV_OP_FILTERED (No longer used)

DBV_OP_QPT_GROUP Requests COMMITS at every QPT rather than the first quiet

point following the CHECKPOINT frequency specified in the

DBEngine parameter file

DBV_OP_UNFILT_OK (No longer used)

DBV_OP_MAXRECS Indicates that the Accessory wants record count upper

bounds included in all DATASET_INFO arrays

DBV_OP_GLOBAL_SI Indicates that the Accessory wants the global STATE_INFO

record rather than individual STATE_INFO records for each

data set when they are all at the same audit location

10.1.7 Documentation Records

10.1.7 Documentation Records 212

Value Description

DBV_OP_EMB_EXTR Allows an Accessory to request an extract of embedded data

sets even if INDEPENDENTTRANS is reset. If this option is set

but INDEPENDENTTRANS is reset, and the Accessory does a

DBSELECT of an embedded data set with a mode=0,

DBEngine extracts the embedded records but does not

perform any fixup or normal tracking. Any attempt to

DBSelect an embedded data set with a mode of 1 (fixup) or 2

(normal) results in a DBM_CANT_TRACK (113) error

message.

DBV_OP_OFFLINE Prohibits updates to the database during a clone

DBV_OP_ERROR_SI Causes DBEngine to send a STATE_INFO update prior to

returning an error in DBREADTRANGROUP

DBV_OP_LONGTRAN Causes DBEngine to enable commits during long

transactions at pseudo quiet points.

DBV_OP_LINKS DMSII link items are included in record layouts and

replication?

DBV_OP_READAHEAD When retrieving audit regions from another system this

option causes DBEngine to initiate the next read before the

Accessory requests it.

DBV_OP_STATS Causes DBEngine to print a statistics report when it finishes

replication.

DBV_OP_ACTIVE Allows DBEngine to read the active audit file.

DBV_OP_NO_REV Converts reversals to normal updates so that both the

original update and the reversal update are sent to the

Accessory.

DBV_OP_ITEMCOUNT Enables item count integrity checking for detecting layout

changes.

DBV_OP_IDLEDB Causes DBEngine to commit updates when the database is

idle

DBV_OP_SI_ULEVEL Enables the use of the update level field in SI_HOST_INFO

DBV_OP_MANUALCOMP Prevents the automatic compile of tailored software

10.1.7 Documentation Records

10.1.7 Documentation Records 213

10.1.8 DBPARAMETERS Processing Parameter Types

The following table provides additional information about the DBPARAMETERS processing

parameter types as they are documented in SYMBOL/DATABRIDGE/INTERFACE. The

DBPARAMETERS entry point allows the Databridge Clients and Accessories to specify these

values.

In all cases, the specified value of each of these parameters must be within the range dictated by

the corresponding option in the DBEngine parameter file. Otherwise, DBEngine will adjust the value

accordingly.

For example, if the parameter file has CHECKPOINT CLIENT EVERY 50 (ALLOW 20 - 99999) AUDIT

BLOCKS, you must specify a value between 20 and 99999 for DBV_TG_BLOCKS.

If the specified value for a parameter is 0 (and 0 is in the ALLOW range), DBEngine will disable the

parameter and not use it.

If the specified value is less than 0, DBEngine will retain the current value for that parameter.

Value Description

DBV_OP_CHECKSUMDS Causes DBEnterprise to verify the data set block checksums

Value Description

DBV_CONCURR_EXTR The maximum number of concurrent extracts

If this parameter value is less than 0 or not

specified, the WORKERS option in the DBEngine

parameter file determines the actual number of

extract tasks. The minimum number of extract tasks

is 1.

DBV_TG_BLOCKS The number of audit blocks per transaction group

If this value is less than 0 or is not specified, the

CHECKPOINT...AUDIT BLOCKS option in the

DBEngine parameter file determines the number of

audit blocks per transaction group.

If this value and the CHECKPOINT value are both

less than or equal to 0, then the actual number of

audit blocks per transaction group is 100.

10.1.8 DBPARAMETERS Processing Parameter Types

10.1.8 DBPARAMETERS Processing Parameter Types 214

Value Description

DBV_TG_UPDATES The number of updates per transaction group

If this value is less than 0 or is not specified, the

CHECKPOINT...RECORDS option in the DBEngine

parameter file determines the number of updates

per transaction group.

If this value and the CHECKPOINT value are both

less than or equal to 0, then the actual number of

updates per transaction group is 1000.

DBV_ELAPSED The number of seconds of elapsed time per

transaction group.

If this value is less than 0 or is not specified, the

CHECKPOINT...SECONDS option in the DBEngine

parameter file determines the number of seconds of

elapsed

time per transaction group.

If this value and the CHECKPOINT

value are both less than or equal

to 0, then the elapsed time per

transaction group is unlimited.

DBV_TG_TRANS The number of transactions per transaction group.

If this value is less than 0 or is not specified, the

CHECKPOINT...TRANSACTIONS option in the

DBEngine parameter file determines the number of

transactions per transaction group.

If this value and the CHECKPOINT value are both

less than or equal to 0, then the actual number of

transactions per transaction group is unlimited.

10.1.8 DBPARAMETERS Processing Parameter Types

10.1.8 DBPARAMETERS Processing Parameter Types 215

10.1.9 DBAUDITMEDIUM Parameters

The following table provides additional information about the DBAUDITMEDIUM parameters as

they are documented in SYMBOL/DATABRIDGE/INTERFACE. These values are used by the

DBAUDITMEDIUM to specify where DBEngine looks for audit files.

Value Description

DBV_THREADS The number of threads DBEnterprise can use during

the extract phase of cloning.

If this parameter value is less than 0 or not

specified, the ENTERPRISE WORKERS option in the

DBEngine parameter file determines the actual

number of extract threads. The minimum number of

extract threads is 1.

AUDITMEDIUM Value Description

DBV_AM_ORIGPACK Tells DBEngine to look on the original DASDL-specified pack(s)

DBV_AM_ALTERNATE Tells DBEngine to look on an alternate pack

AUDITTYPE Value Description

DBV_AM_NEITHER Tells DBEngine not to look on this source

DBV_AM_PRIMARY Tells DBEngine to look for only the primary audit file

DBV_AM_SECONDARY Tells DBEngine to look for only the secondary audit file

10.1.9 DBAUDITMEDIUM Parameters

10.1.9 DBAUDITMEDIUM Parameters 216

10.1.10 Network Protocol Values

The following table provides additional information about the network protocol values as they are

documented in SYMBOL/DATABRIDGE/INTERFACE. The DBAUDITSOURCE and DBAUDITSOURCEX

use these values to determine which protocol the Accessory uses.

10.1.11 MAXWAITSECS Values

The following table provides additional information about the MAXWAITSECS values as they are

documented in SYMBOL/DATABRIDGE/INTERFACE and specified by several entry points.

AUDITTYPE Value Description

DBV_AM_BOTH Tells DBEngine to look for both the primary and secondary audit

file

Value Description

DBV_NET_NONE Indicates that no network protocol is specified

DBV_NET_TCPIP Indicates that the Accessory is using a TCP/IP protocol

DBV_NET_HLCN Indicates that the Accessory is using an HLCN (NetBIOS) protocol

DBV_NET_BNA Indicates that the Accessory is using a BNA protoco

Value Description

DBV_WAIT_FOREVER Indicates that DBEngine should retry for more audits indefinitely

10.1.10 Network Protocol Values

10.1.10 Network Protocol Values 217

10.1.12 ITEM_INFO Array Layout

The following table provides additional information about the ITEM_INFO array layout documented

in SYMBOL/DATABRIDGE/INTERFACE and returned by several entry points.

Value Description

DBV_DONT_WAIT Indicates that DBEngine should not retry at all

Value Description

II_ENTRY_SIZE The size in words of the ITEM_INFO array

Field Description

II_ITEM_NUM The item number of the item

II_PARENT_NUM The item number of the group that the item is in

II_DATA_TYPE The data item type, such as ALPHA, REAL, and so on

Possible types are as follows:

Type and Description

DBV_LINK: For link (IS IN...)

DBV_IMAG: For binary byte values

DBV_TYPE: For RECORD TYPE

DBV_BFLD: For FIELD of BOOLEANs

DBV_GRP: For GROUP

DBV_BOOL: For BOOLEAN

DBV_FLD: For FIELD

DBV_ALPH: For ALPHA

DBV_DECI: For NUMBER (I)

DBV_DECF: For NUMBER (I,J)

DBV_BINI For REAL (I)

DBV_BINF For REAL (I,J)

DBV_BFLT: For REAL

DBV_WIDE For KANJI (16-bit characters)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10.1.12 ITEM_INFO Array Layout

10.1.12 ITEM_INFO Array Layout 218

Field Description

II_REQUIRED Indicates whether the data item is required or not

If the item is required, it may not be NULL.

II_NAME_SIZE The length of the name

II_DECL_LEN The length of the item specified in the declaration

II_SCALING The numeric scaling factor, which specifies how many digits are to

the right of the assumed decimal point

II_RAWOFFSET 0 indicates II_OFFSET is relative to the user record.

1 indicates II_OFFSET is relative to the original, raw (nonuser)

record. This is used primarily for link items, which are not in the user

record.

II_OFFSET The digit offset to data

II_SIZE The digit size of the data

II_OCCURS The declared occurrences

II_DIMS The number of subscripts the data item requires

II_SIGNED Indicates that the numeric item is signed

II_DESCENDING Indicates that the item is a descending key

This field is valid only if the Accessory is calling an entry point that

returns information about key items.

II_DEPEND_NUM The occurs-depending-on ITEM_NUM

For example, if the DASDL has ADDR-LINES OCCURS 4 DEPENDING

ON NUMLINES, then this field would contain the ITEM_NUM of NUM-

LINES.

II_DS_ITEM_NUM The corresponding ITEM_NUM in the data set (if this is a remap)

II_LINK_DS_NUM The target data set number of a link

II_LINK_SET_NUM The target set number of a link

If the item is a link, 0 indicates that the link is an AA. All other values

indicate that the link is a foreign key of this set.

10.1.12 ITEM_INFO Array Layout

10.1.12 ITEM_INFO Array Layout 219

II_FORMAT IIF_DEFAULT—Default value, unspecified

IIF_DAYS_SINCE_1900—Number of days since 1/1/1900 as a

NUMBER (n)

IIF_LINC_DATE—Number of days since 1/1/1957 as an ALPHA (n)

IIF_TIME_6—Timestamp

IIF_TIME_7—Day of the week, date, and time

IIF_TIME_60—Time zone, Julian date, time of day in hundredths of a

second

Various date formats as follows:

NOTE: DDD is a number between 1–366 for Julian dates.

MMM is a three-letter abbreviation for the month (JAN, FEB, MAR,

APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC).

Formats

IIF_YYDDD

IIF_YYMMMDD

IIF_DDMMYY

IIF_DDMMYY

IIF_YYYYDDD

IIF_YYYYMMDD

IIF_MMDDYY

IIF_YYMMDD

IIF_DDMMYYYY

IIF_DDMMYYYY

IIF_HHMMSS—Time of day

IIF_TIME_1—Time of day in sixtieths of a second

•

•

•

•

•

•

•

•

•

•

10.1.12 ITEM_INFO Array Layout

10.1.12 ITEM_INFO Array Layout 220

Field Description

IIF_TIME_11—Time of day in 2.4 microseconds

Various combined date and time formats as follows:

NOTE: DDD is a number between 1–366 for Julian dates.

MMM is a three-letter abbreviation for the month (JAN, FEB, MAR,

APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, and DEC).

IIF_YYDDDHHMMSS

IIF_DDMMYYHHMMSS

IIF_MMDDYYYYHHMMSS

IIF_HHMMSSYYDDD

IIF_HHMMSSMMDDYY

IIF_YYMMDDHHMMSS

IIF_HHMMSSDDMMYYYY

IIF_MMDDYYHHMMSS

IIF_HHMMSSYYMMDD

IIF_DDMMYYYYHHMMSS

IIF_HHMMSSYYYYMMDD

IIF_HHMMSSDDMMYY

IIF_HHMMSSYYYYDDD

IIF_YYYYMMDDHHMMSS

IIF_YYYYDDDHHMMSS

IIF_HHMMSSMMDDYYYY

IIF_NUMERIC—ALPHA containing only the characters 0–9

IIF_ALPHANUMERIC—NUMBER that should be represented as a

character string on the client system

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

10.1.12 ITEM_INFO Array Layout

10.1.12 ITEM_INFO Array Layout 221

10.1.13 STATE_INFO Layout

The following table provides additional information about the STATE_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by several entry points.

Field Description

II_NAME The item name (for 3 words), else 0

Field Description

SI_STRNUM The DMSII structure number of the data set

SI_RECTYPE The variable format record type

SI_AFN The audit file number of the data set's current audit location

SI_ABSN The audit block serial number of the data set's current audit

location

SI_SEG The audit file segment number of the data set's current audit

location

SI_INX The word index in the audit block of the data set's current audit

location

SI_TIME The timestamp (in TIME (6) format) of the data set's current audit

location

SI_MODE Possible values are as follows:

DBV_MODE_CLONE—Indicates that the table needs to be

cloned

DBV_MODE_FIXUP—Indicates the fixup phase of cloning

DBV_MODE_NORMAL—Indicates normal audit processing

DBV_MODE_REORG—Indicates that the table needs to be

reorganized

DBV_MODE_PURGE—Indicates that the table needs to be

purged

SI_FORMAT_LEVEL The data set format update level

SI_TABLE_LEVEL The client table format update level

SI_ITEM_COUNT The number of data items

•

•

•

•

•

10.1.13 STATE_INFO Layout

10.1.13 STATE_INFO Layout 222

Field Description

SI_OPTIONS The SI_REC_OPTIONS record processing options

SI_NO_LINKS The field that tells DBEngine not to return any updates to link

values

SI_REORG_NOTIFY The field that requests a documentation record from DBEngine

after the Accessory encounters a reorganization discontinuity for

the data set.

Possible values are as follows:

DBV_REORG_DEFAULT—Sends a reorg document record if the

DBV_OP_DOC global option is set

DBV_REORG_IGNORE—Requests that no reorg document

records be sent

DBV_REORG_SEND—Requests that all reorg document records

be sent

SI_MODIFIES The field that indicates which images of modifies should be sent

Possible values are as follows:

DBV_MOD_DEFAULT—Indicates that the Accessory should use

the "global" modifies setting

DBV_MOD_AI_ONLY—Indicates that the Accessory should send

only the after-image of the modification

DBV_MOD_BI_AI—Indicates that the Accessory should send

both the before- and after-images of the modification

SI_UI_MASK The values returned in UPDATE_INFO [UI_MASK] on every update

See UPDATE_INFO Layout for these values.

SI_HOST_INFO Engine-defined information to be returned to DBSELECT

•

•

•

•

•

•

10.1.13 STATE_INFO Layout

10.1.13 STATE_INFO Layout 223

10.1.14 DATABASE_INFO Layout

The following table provides additional information about the DATABASE_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by the DBDATABASEINFO entry

point.

Field Description

SI_ENTRY_SIZE The size in words of the STATE_INFO array

Field Description

DBI_UPDATE_LEVEL The database update level

DBI_UPDATE_TS The database update timestamp

DBI_MAX_STRNUM The last structure number used

DBI_TIMESTAMP The database timestamp

DBI_NAME The database name (for 3 words)

DBI_USERCODE The database usercode (for 3 words)

DBI_OPTIONS Various run-time options and values.

DBI_FLAT indicates a FileXtract (flat file) database.

DBI_RDB indicates an RDB (Remote Database) database.

DBI_ACTIVE indicates database is being updated.

DBI_ITRANS indicates setting of INDEPENDENTTRANS DASDL

option.

DBI_ADDRCHECK indicates setting of the ADDRESSCHECK

DASDL option.

DBI_MAXWORKERS indicates the maximum number of Extract

Workers allowed.

DBI_CURR_AFN The current (active) audit file number

DBI_CURR_ABSN The current audit block serial number

10.1.14 DATABASE_INFO Layout

10.1.14 DATABASE_INFO Layout 224

10.1.15 DATASET_INFO Layout

The following table provides additional information about the DATASET_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by several entry points.

Field Description

DBI_MAX_RECSIZE Maximum dataset record size in words

DBI_MAX_COMPACT Maximum COMPACT data record size

DBI_MAXWORKERS Maximum number of EXTRACT workers

Value Description

DBI_INFO_SIZE The size in words of the DATABASE_INFO array

Field Description

DI_STRNUM The DMSII structure number

DI_RECTYPE The DMSII record type number

DI_FORMAT_LEVEL The data set format update level

DI_RECSZ_WORDS The size of the data set record in words

DI_RECSZ_BYTES The size of the data set record in bytes

DI_PARENT_STRNUM The structure number of the parent data set if this data set is

embedded, else 0

DI_NUM_CHILDREN The number of supported (visible to the Databridge

Administrative Console) child (embedded) data sets that this

data set has

DI_DS_STRNUM The base data set structure number

This is the same as DI_STRNUM unless this is a REMAP.

10.1.15 DATASET_INFO Layout

10.1.15 DATASET_INFO Layout 225

Field Description

DI_SUBTYPE The data set structure type

Possible values are as follows:

DI_STANDARD_V

DI_RANDOM_V

DI_ORDERED_V

DI_UNORDERED_V

DI_GLOBAL_V

DI_DIRECT_V

DI_COMPACT_V

DI_RESTART_V

DI_VIRTUAL_V

DI_ITEM_COUNT The number of items in the record layout (relative to the active

filter if the DBV_OP_ITEMCOUNT option is enabled)

DI_MISC_INFO Contains DI_MISC_FLAGS, DI_TARGET_LINKS, and

DI_MAX_RECORDS.

See the remaining items in the table for more information about

this field.

DI_VALID_AA If TRUE, indicates that the absolute address (AA) values (record

address) do not change due to normal updates. If this field is

TRUE or the DI_STATIC_AA field is true then the value in

UPDATE_INFO [UI_AA] is valid

DI_STATIC_AA If TRUE, indicates that the UPDATE_INFO [UI_AA] value for the

record is static

In this case, the value does not change even if the data set is

reorganized.

DI_ALTERED If TRUE, indicates that the data set/remap was ALTERed using

DBGenFormat

DI_LINKS If TRUE, indicates that the data set has at least one link item; If

FALSE, indicates that the data set has no link items

DI_TARGET_LINKS The number of data sets with links to this data set

•

•

•

•

•

•

•

•

•

10.1.15 DATASET_INFO Layout

10.1.15 DATASET_INFO Layout 226

10.1.16 SET_INFO Layout

The following table provides additional information about the SET_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by several entry points.

Field Description

DI_ROW_FILTER The filter has a WHERE clause

DI_COL_FILTER The filter omits some columns

DI_INVALID_PAA Parent records do not have valid absolute address (AA) values

DI_MAX_RECORDS The upper bound on the population of the data set

This field is 0 if the run-time option DBV_OP_MAXRECS is reset,

which is the default.

DI_NAME The data set name (for 17 bytes)

DI_NAME_SIZE The length of the data set name given in DI_NAME

DI_MISC_INFO2 Miscellaneous information containing the remaining fields in this

table

DI_RECTYPE_NUM For variable format datasets item number of the record type item

DI_USERDATA_OFS Offset to the start of the user-updateable data, in half-bytes

DI_IMAGE_WORDS Size of an audit record image, in words

Value Description

DI_INFO_SIZE The size of the DATASET_INFO array

Field Description

XI_STRNUM The DMSII structure number of the set

XI_DS_STRNUM The DMSII structure number of the target data set

XI_FORMAT_LEVEL The format update level

XI_KEYS_COUNT The number of data items in the set's key

XI_KEYSZ_WORD The size of the key in words

10.1.16 SET_INFO Layout

10.1.16 SET_INFO Layout 227

10.1.17 UPDATE_INFO Layout

The following table provides additional information about the UPDATE_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by several entry points.

Field Description

XI_KEYSZ_DIGITS The size of the key in 4-bit digits

XI_SUBTYPE The set structure type

Possible values are as follows:

XI_INDEXSEQ_V—Indicates that the index is sequential

XI_RANDOM_V—Indicates that the index is random

XI_ORDERED_V—Indicates an ordered list

XI_UNORDERED_V—Indicates an unordered list

XI_NAME_SIZE The length of the set name in bytes

XI_DUPLICATES If TRUE, duplicates are allowed

XI_KEYCHANGEOK This item is TRUE (key changes allowed) if any of the following

options exist in the set:

NO DUPLICATES KEYCHANGEOK

DUPLICATES

DUPLICATES FIRST

DUPLICATES LAST

XI_NAME The name of the set (for 3 words)

•

•

•

•

•

•

•

•

Value Description

XI_INFO_SIZE The size of the SET_INFO array

Field UI_MASK

bit #

Description

UI_STRNUM 0 The DMSII structure number

UI_RECTYPE 1 The DMSII variable format record type

10.1.17 UPDATE_INFO Layout

10.1.17 UPDATE_INFO Layout 228

Field UI_MASK

bit #

Description

UI_RECSZ_WORDS 2 The size of the record image in words

UI_UPDATE_TYPE 3 The DBV_xxx indicating the type of change, where

xxx is MODIFY, DELETE, and so on.

UI_MODIFY_F N/A A value of 1 indicates that the create or delete

was originally a modify and the Accessory

requested before- and afterimages for modifies

UI_STRIDX 4 The unique index for the data set-recordtype

UI_MODE 6 The data set mode

Possible values are as follows (from STATE_INFO

[SI_MODE]):

DBV_MODE_CLONE—Indicates that the table

needs to be cloned

DBV_MODE_FIXUP—Indicates the fixup phase

of cloning

DBV_MODE_NORMAL—Indicates normal audit

processing

DBV_MODE_REORG—Indicates that the table

needs to be reorganized

DBV_MODE_PURGE—Indicates that the table

needs to be purged

UI_STACKNBR 5 The stack number of the program making the

change

UI_FORMAT_LEVEL 7 The data set format update level

•

•

•

•

•

10.1.17 UPDATE_INFO Layout

10.1.17 UPDATE_INFO Layout 229

Field UI_MASK

bit #

Description

UI_AA 8 The record address

If updates can cause the record address to

change, such as in an ORDERED data set, this

value is 0.

The DATASET_INFO [DI_VALID_AA] for this data

set is 1 if this field is valid.

If the DATASET_INFO [DI_STATIC_AA] for this data

set is 1, this field contains a static record number

(RSN) rather than a record address.

UI_PARENT_AA 9 The record address of the parent record

If the DATASET_INFO [DI_STATIC_AA] for the

parent data set is 1, this field contains a static

record number rather than a record address.

UI_AFN 10 The audit file number

UI_ABSN 11 The audit block serial number

UI_SEG 12 The audit file disk segment

UI_INX 13 The word offset within the audit block

UI_TIME 14 The approximate audit time in TIME(6) format

For extracted (cloned) records, the time the record

was read from the database

UI_OPTIONS 15 Specifies processing/formatting options

See the remainder of this table for more

information about this field.

UI_WORKER N/A Indicates the Extract Worker number that

produced the record

UI_STATIC_AA N/A If 1, then the addresses in UI_AA and

UI_PARENT_AA are static

10.1.17 UPDATE_INFO Layout

10.1.17 UPDATE_INFO Layout 230

10.1.18 AUDIT_INFO Layout

The following table provides additional information about the AUDIT_INFO layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by the DBOPENAUDIT entry point.

Field UI_MASK

bit #

Description

UI_PREFILT N/A If 1, then the update was read from a filtered audit

file

UI_BI_AI N/A If 1, then the Accessory requests both before- and

afterimages for this update and indicates a single

abort reversal

UI_MASK N/A Tells DBServer which UPDATE_INFO fields to

return to the client

Each bit corresponds to a field.

Value Description

UI_INFO_SIZE The size in words of the UPDATE_INFO array

Field Description

AI_BLOCKSIZE The maximum audit blocksize in words

AI_LASTSEG The last segment number

AI_DBTIMESTAMP The database timestamp

AI_OPENTIMESTAMP The block 0 timestamp

AI_AUDITLEVEL The audit level, for example, 7

AI_MAJORVERSION The major part of SSR, for example, 45

AI_MINORVERSION The minor part of SSR, for example, 1

AI_UPDATELEVEL The database update level

10.1.18 AUDIT_INFO Layout

10.1.18 AUDIT_INFO Layout 231

10.1.19 Link Update Info Layout

The following two fields comprise the first word of the data portion of a link update:

10.1.20 Audit File Error Subtypes

The following table provides additional information about the audit file error subtypes as they are

documented in SYMBOL/DATABRIDGE/INTERFACE.

Field Description

AI_FLAGS Miscellaneous audit flags, as follows:

AI_PRIORCLOSEERROR—Indicates a possible error writing

the last block of the prior file

AI_RECOVERQPT—Indicates DMSII recovers to any QPT

rather than to a super quiet point such as a syncpoint

AI_CHECKSUMMED—Indicates that the audit blocks have a

checksum

AI_FIRST_ABSN The ABSN of the first data block in the audit file

AI_MAX_RECSIZE The size of the largest dataset record, in words

AI_COMPACTSIZE The size of the largest COMPACT dataset record

AI_INFO_SIZE The size of the AUDIT_INFO layout

•

•

•

Field Description

LNK_OFS_F The original word offset

LNK_SZ_F The size of the link update in words

Subtype Description

UNAVAIL_NO_UPDATE The database has never been updated

UNAVAIL_ACTIVE The audit file is the active (current) audit file

UNAVAIL_NO_MORE The active audit file has no more audit available

UNAVAIL_BAD_AFN Invalid audit file number

10.1.19 Link Update Info Layout

10.1.19 Link Update Info Layout 232

10.1.21 Data Error Types

The table below provides additional information about the data error types as they are documented

in SYMBOL/DATABRIDGE/INTERFACE.

These errors occur when invalid data is entered.

10.1.22 Processing Limit Types

The following table provides additional information about the processing limit types as they are

documented in SYMBOL/DATABRIDGE/INTERFACE. These values are used by entry points that set

processing limits.

Subtype Description

UNAVAIL_EXCLUSIVE Another program has opened the file with EXCLUSIVE=TRUE

UNAVAIL_NOT_FOUND The audit file is not present

UNAVAIL_OFFLINE The audit file was moved from disk to tape storage

UNAVAIL_NO_FAMILY The audit file pack family is not present

UNAVAIL_UNKNOWN The audit file is unavailable for an unknown reason

Value Description

DBV_DE_BAD_NUMBER Indicates that the numeric item had undigits (4"ABCDEF").

DBV_DE_BAD_SIGN Indicates that a signed numeric item had an invalid sign digit.

The sign digit should be either 4"C" or 4"D".

DBV_DE_BAD_ALPHA Indicates that an alpha item had control characters

DBV_DE_NULL_NUMBER Indicates that a numeric item was NULL

DBV_DE_NULL_ALPHA Indicates that an alpha item was NULL

DBV_DE_OVERFLOW Indicates that the numeric item caused an integer overflow

Value Description

DBV_LIMIT_UNSPECIFIED Indicates that no processing limits are specified

DBV_LIMIT_BEFORE Indicates that processing stops at the QPT before the limit

10.1.21 Data Error Types

10.1.21 Data Error Types 233

10.1.23 Statistics Category Values

The following table provides additional information about the statistics category values as they are

documented in SYMBOL/DATABRIDGE/INTERFACE.

Each of these values corresponds to a set of values in a STATISTICS_INFO array. All times are in

units of 2.4 microseconds.

Value Description

DBV_LIMIT_AFTER Indicates that processing stops at the QPT after the limit

Value Description

DBV_STAT_FIRST_TIME The lowest time value

DBV_STAT_AF_OPEN The time spent opening audit files

DBV_STAT_AF_CLOSE The time spent closing audit files

DBV_STAT_AF_READ The time spent reading audit files

DBV_STAT_CF_OPEN The time spent opening DMSII CONTROL files

DBV_STAT_CF_CLOSE The time spent closing DMSII CONTROL files

DBV_STAT_CF_READ The time spent reading DMSII CONTROL files

DBV_STAT_DF_OPEN The time spent opening DESCRIPTION files

DBV_STAT_DF_CLOSE The time spent closing DESCRIPTION files

DBV_STAT_DF_READ The time spent reading DESCRIPTION files

DBV_STAT_DB_OPEN The time spent opening databases

DBV_STAT_DB_CLOSE The time spent closing databases

DBV_STAT_DB_READ The time spent reading databases

DBV_STAT_DB_WRITE The time spent performing database stores/deletes

DBV_STAT_PF_OPEN The time spent opening port files

DBV_STAT_PF_CLOSE The time spent closing port files

DBV_STAT_PF_READ The time spent waiting for port file reads

DBV_STAT_PF_WRITE The time spent waiting for port file writes

10.1.23 Statistics Category Values

10.1.23 Statistics Category Values 234

Value Description

DBV_STAT_BT_WAIT The time spent waiting for begin transactions

DBV_STAT_ET_WAIT The time spent waiting for end transactions

DBV_STAT_SP_WAIT The time spent waiting for end transaction with

syncpoint waits

DBV_STAT_CB_WAIT The time spent waiting for callbacks

DBV_STAT_EX_WAIT The time spent waiting for DMSII to return records

during an extracts

DBV_STAT_SLEEP_WAIT The time the program "slept" while waiting for a timer

to expire

DBV_STAT_TG_WAIT The time spend waiting while trying to read updates

DBV_STAT_LAST_TIME The highest time value

DBV_STAT_FIRST_SIZE The lowest size value

DBV_STAT_AA_SIZE The size of the audit areas (regions) read in words

DBV_STAT_AB_SIZE The size of the audit blocks read in words

DBV_STAT_AR_SIZE The size of the audit records read in words

DBV_STAT_PR_SIZE The size of the port messages read in bytes

DBV_STAT_PW_SIZE The size of the port messages written in bytes

DBV_STAT_PA_SIZE The size of port messages available for reading in

bytes

DBV_STAT_COMMIT_BLOCKS The number of commits caused by a "CHECKPOINT n

BLOCKS" setting

DBV_STAT_COMMIT_RECORDS The number of commits caused by a "CHECKPOINT n

RECORDS" setting

DBV_STAT_COMMIT_TIME The number of commits caused by a "CHECKPOINT n

MINUTES" setting

DBV_STAT_COMMIT_TRANS The number of commits caused by a "CHECKPOINT n

TRANSACTIONS" setting

DBV_STAT_COMMIT_QPT The number of commits caused by the need to commit

at the next quiet point

10.1.23 Statistics Category Values

10.1.23 Statistics Category Values 235

10.1.24 STATISTICS_INFO Array Layout

The following table provides additional information about the STATISTICS_INFO array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by the DBSTATISTICS entry point.

Value Description

DBV_STAT_COMMIT_EOF The number of commits caused by reaching the end of

an audit file

DBV_STAT_CREATES The number of creates per commit

DBV_STAT_DELETES The number of deletes per commit

DBV_STAT_MODIFIES The number of modifies per commit

DBV_STAT_STATE The number of StateInfo updates per commit

DBV_STAT_DOCS The number of doc records per commit

DBV_STAT_UPDATES The number of updates per commit

DBV_STAT_TRANS The number of transactions per commit

DBV_STAT_LONGTRANS The number of active Long Transacations per commit

DBV_STAT_LAST_SIZE The highest size value

Field Description

STAT_COUNT The number of data points

STAT_MIN The minimum time/size

STAT_MAX The maximum time/size

10.1.24 STATISTICS_INFO Array Layout

10.1.24 STATISTICS_INFO Array Layout 236

10.1.25 FileXtract FileInfo Array Layout

The following table provides additional information about the FileInfo array layout as it is

documented in SYMBOL/DATABRIDGE/INTERFACE and returned by the DBFILEREADER entry point.

Field Description

STAT_TOTAL The sum of all times/sizes

Value Description

STAT_INFO_SIZE The size of STATISTICS_INFO

Field Description

FI_FILENBR The file number

The maximum value for this field is 65535

FI_RECLOC The location of the record within the file

The meaning and layout of this word varies from one FileXtract Reader

to another.

FI_RECTS The timestamp of the returned record

FI_STRIDX The structure index specified by the FileXtract Reader

FI_PARAMLEN The length of the FileXtract Reader parameter in bytes

FI_PARAM The first word of the FileXtract Reader parameter string

Value Description

FIV_PARAMLENMAX The maximum length of the FileXtract Reader parameter in bytes

10.1.25 FileXtract FileInfo Array Layout

10.1.25 FileXtract FileInfo Array Layout 237

10.1.26 DBOUTPUTHEAD Procedure Heading

This define can be used as a heading for any output routines you write. Include the name of your

output routine in brackets after DBOUTPUTHEAD. For example:

Formatting procedures call output routines with the formatted record.

If the output procedure encounters an error, it should return the appropriate DBMTYPE error code.

Otherwise it should return DBM_OK.

Value Description

FIV_INFOSZ The size of the FileInfo array in words

DBOUTPUTHEAD [MyWriter]
 begin
 …
 end MyWriter;

Input Type Definition

P POINTER The pointer to the formatted record

CHARS INTEGER The length of the formatted record in bytes

UPDATE_INFO ARRAY A description of the modification

For a description of the array, see the UPDATE_INFO

Layout.

10.1.26 DBOUTPUTHEAD Procedure Heading

10.1.26 DBOUTPUTHEAD Procedure Heading 238

10.1.27 DBFORMATHEAD Procedure Heading

You can use this define as the heading for any formats that you write. Include the name of your

formatting routine in brackets after DBFORMATHEAD. For example,

DBTRANSFORMHEAD [MyTransform] begin … end MyTransform;

DBFORMATHEAD [MyFormat] begin … end MyFormat;

Input Type Definition

RawImage ARRAY The original unformatted record

DBFORMATHEAD [MyFormat]
 begin
 …
 end MyFormat;
 ```

If the formatting procedure encounters an error, it should return the appropriate DBMTYPE error
code. Otherwise it should return DBM_OK.

| Input | Type | Definition |
|:------- |:-------- |:-------------- |
| USERREC | ARRAY | The unformatted data set record from the database or audit trail |
| UPDATE_INFO | ARRAY | A description of the modification<br><br>For a description of the array, see the [UPDATE_INFO Layout](#update_info-
layout). | 
| CALLBACK | DBMTYPE | The procedure that receives the formatted record<br><br>The formatted record is usually written to a file or sent to a 
Databridge client. |

<hr>

## DBTRANSFORMHEAD Procedure Heading

You can use this define as the heading for any update transform procedures you write.

Include the name of your transform routine in brackets after DBTRANSFORMHEAD. For example,

If the transform procedure encounters an error, it should return the appropriate DBMTYPE error
code. Otherwise it should return DBM_OK.

| Parameter | Type | Definition |
|:-------- |:-------- |:--------- |
| UI | ARRAY | A description of the modification<br><br>For a description of the array, see [UPDATE_INFO Layout](#update_layout-info). |
| BI | ARRAY | The before-image of the record<br><br>This array is valid only for update types DBV_DELETE and DBV_MODIFY. See [Record Change 
Types](#record-change-types) for a description of these types. |
| AI | ARRAY | The after-image of the record<br><br>This array is not valid for update type DBV_DELETE. See [Record Change Types](#record-
change-types) for a description of this type. |
| DBFORMAT | PROCEDURE | The formatting procedure the transform procedure calls after the update is transformed<br><br>See [DBFORMATHEAD 
Procedure Heading](#dbformathead-procedure-heading). |
| WRITER | PROCEDURE | The procedure that writes the formatted record<br><br>See [DBOUTPUTHEAD Procedure Heading](#dboutputhead-procedure-
heading). |

<hr>

## DBFORMATHEAD Procedure Heading

You can use this define as the heading for any formats that you write. Include the name of your
formatting routine in brackets after DBFORMATHEAD. For example,

10.1.27 DBFORMATHEAD Procedure Heading

10.1.27 DBFORMATHEAD Procedure Heading 239



DBTRANSFORMHEAD [MyTransform] begin … end MyTransform;

DBFILTERHEAD [MyFilter] begin … end MyFilter;

DBERRORMANAGERHEAD [MyHandler] begin … end MyHandler; ```

The procedure should return an EMATYPE result code.

If the formatting procedure encounters an error, it should return the appropriate DBMTYPE error
code. Otherwise it should return DBM_OK.

| Input | Type | Definition |
|:--------- |:---------- |:---------------- |
| USERREC | ARRAY | The unformatted data set record from the database or audit trail |
| UPDATE_INFO | ARRAY | A description of the modification<br><br>For a description of the array, see the [UPDATE_INFO Layout](update_info-
layout). |
| CALLBACK | DBMTYPE | The procedure that receives the formatted record<br><br>The formatted record is usually written to a file or sent to a 
Databridge client. |

<hr>

## DBTRANSFORMHEAD Procedure Heading

You can use this define as the heading for any update transform procedures you write.

Include the name of your transform routine in brackets after DBTRANSFORMHEAD. For example,

If the transform procedure encounters an error, it should return the appropriate DBMTYPE error
code. Otherwise it should return DBM_OK.

| Parameter | Type | Definition |
|:--------- |:---- |:------------- |
| UI | ARRAY | A description of the modification<br><br>For a description of the array, see [UPDATE_INFO Layout](#update_info-layout). |
| BI | ARRAY | The before-image of the record<br><br>This array is valid only for update types DBV_DELETE and DBV_MODIFY. See [Record Change 
Types](#record-change-types) for a description of these types. |
| AI | ARRAY | The after-image of the record<br><br>This array is not valid for update type DBV_DELETE. See [Record Change Types](#record-
change-types) for a description of this type. |
| DBFORMAT | PROCEDURE | The formatting procedure the transform procedure calls after the update is transformed<br><br>See [DBFORMATHEAD 
Procedure Heading](#dbformathead-procedure-heading). |
| WRITER | PROCEDURE | The procedure that writes the formatted record<hr><hr>See [DBOUTPUTHEAD Procedure Heading](#dboutputhead-procedure-
heading).

<hr>

## DBFILTERHEAD Procedure Heading

You can use this define as the header for any filters that you write. Include the name of your filtering
routine in brackets after DBFILTERHEAD. For example,

A false return value indicates that the caller should discard the update because it did not satisfy the
filter condition. Filter procedures return a Boolean result, but additional information can be placed
in the DBMResultF field of that result. That field must contain a DBMTYPE value describing any error
encountered.

| Parameter | Type | Definition |
|:---------- |:----- |:------------ |
| USERREC | ARRAY | The unformatted data set record from the audit trail |
| UPDATE_INFO | ARRAY | A description of the modification<br><br>For a description of the array, see [UPDATE_INFO Layout](#update_info-layout). 
|

<hr>

## DBERRORMANAGERHEAD Procedure Heading

You can use this define to declare an error handler procedure heading.

Include the name of your output routine in brackets after DBERRORMANAGERHEAD. For example,

Parameter Type Definition

ACCESSORYID AIDTYPE The ID number of the Accessory

ERRNBR DBMTYPE The error message number

10.1.27 DBFORMATHEAD Procedure Heading

10.1.27 DBFORMATHEAD Procedure Heading 240



DBFILEREADERHEAD Procedure Heading.

Use this define to declare a heading for a FileXtract Reader procedure. A Reader procedure reads a

record from a non-DMSII file and returns it to DBEngine, which returns it to an Accessory for

processing.

Include the name of your file reader routine in brackets after DBFILEREADERHEAD. For example,

If the file reader procedure encounters an error, it should return the appropriate DBMTYPE error

code. Otherwise it should return DBM_OK.

10.1.28 File Attribute Mask Bits

Use the file attribute mask bits in this section when you call the DBFILEATTRIBUTE entry point.

These bits correspond to GETSTATUS request type 3 calls.

For example, to request the creation date and time, use the following mask:

0 & 1 [CREATIONDATEB:1] & 1 [CREATIONTIMEB:1]

For a description of each attribute, refer to a Unisys GETSTATUS/SETSTATUS programmer's

reference.

Parameter Type Definition

PERRMSG POINTER The error message text

ERRMSGLEN REAL The length of the error message

DBFILEREADERHEAD [MyReader]
 begin
 …
 end MyReader;

Parameter Type Definition

FileInfo ARRAY See FileXtract FileInfo Array Layout for more

information

FileRecord ARRAY Record contents to pass to DBEngine

Attribute Mask bit

CREATIONDATEB 01

SIZESB 02

10.1.28 File Attribute Mask Bits

10.1.28 File Attribute Mask Bits 241



Attribute Mask bit

SAVEFACTORB 03

AREASECTORSB 05

ROWSINUSEB 07

FileOrDirB 09

AREASB 10

EOFSEGMENTSB 11

EOFLASTSEGBITSB 12

ACCESSDATEB 15

VERSIONB 19

CYCLEB 20

TIMESTAMPB 21

ACCESSTIMEB 25

USERINFOB 26

ALTERDATEB 27

ALTERTIMEB 28

CREATIONTIMEB 29

BASEUNITNBRB 30

ROWSLINKB 33

ORGANIZATION 34

STRUCTUREB 40

10.1.28 File Attribute Mask Bits

10.1.28 File Attribute Mask Bits 242



Attribute Mask bit

FILELENGTHB 41

10.1.28 File Attribute Mask Bits

10.1.28 File Attribute Mask Bits 243



10.2 Troubleshooting

In This Appendix

This appendix explains general troubleshooting procedures and tells you how to contact Micro

Focus Technical Support.

10.2.1 General Troubleshooting Procedures

If you have problems running Databridge, complete the following steps:

Check to see that your system meets the minimum hardware and software requirements

necessary to use the product. Refer to the Databridge Host Administrator's Guide for

information.

Check your configuration options. Most problems are caused by an incorrect configuration.

Check the usercodes for your DMSII databases and the usercode for the Databridge files.

Make sure the Databridge software can access the DMSII DESCRIPTION, CONTROL,

DMSUPPORT, and audit files.

Check parameter file options for the Databridge Accessory you are using. Make sure all

tailored support library transforms, filters, and formats are also entered into the DBGenFormat

parameter file and are spelled correctly.

Check your system. You may be using peripheral equipment or other software that may not be

compatible with this product.

Resolve errors. Refer to the Databridge Errors and Messages Guide for information on resolving

error messages.

If you cannot identify and solve the problem without assistance, contact your product

distributor. Call from a location where you have access to the problem.

Troubleshoot the problem using information available from Customer Support.

This service directly links you to our internal help desk system, 24hours a day, 7 days a week.

Contact Micro Focus Technical Support.

10.2.2 Troubleshooting for All Accessories

Following are two common things to check for in all Accessories:

1. 1. 

2. 2. 

3. 3. 

4. 4. 

5. 5. 

6. 6. 

7. 7. 

8. 8. 

8. 

9. 9. 

10.2 Troubleshooting

10.2 Troubleshooting 244

https://support.microfocus.com/login/databridge.html
https://support.microfocus.com/login/databridge.html
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/host
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://www.microfocus.com/documentation/databridge/7-1/error-messages
https://support.microfocus.com/login/databridge.html
https://support.microfocus.com/login/databridge.html


If an Accessory cannot find DBEngine, most likely the Accessory is running under a different

usercode than where DBEngine is located. If this is unavoidable, use the ODTSL command

to define the DBENGINE function name, as follows (assuming DBEngine is located under the

DBA usercode on a pack called DBAPACK):

SL DBENGINE = (DBA)OBJECT/DATABRIDGE/ENGINE ON DBAPACK

If an Accessory displays a message indicating a version mismatch and then terminates,

most likely the Databridge software you are running was compiled using different versions

of the Databridge API (SYMBOL/DATABRIDGE/INTERFACE). Make sure that all of the

Databridge software is from the same release.

Outdated Filters and Formats

When a filter or format is out-of-date, Databridge Accessories attempt to recompile the DBSupport

library. If that is unsuccessful, the Accessory displays an error message informing you that the

support library must be recompiled. Use WFL/DATABRIDGE/COMP to recompile a tailored support

library.

10.2.3 Troubleshooting External Filters and Formatting

Procedures

If an external filtering or formatting procedure is unable to retrieve the correct structure indexes or

data set information, and so on, be sure that it is not linking to a different copy of DBEngine than

the Accessory. The external library must link to the same copy of DBEngine as the Accessory. The

most common cause of linking to the wrong copy of DBEngine is invoking DBLINKENGINE or

calling an entry point before the external library performs a FREEZE.

DBEngine is shared-by-run-unit, which means that the Accessory and any libraries it calls share a

copy of DBEngine. Until the external library performs a FREEZE, it is considered a separate running

program rather than a library, and it gets its own copy of DBEngine if it links to it either implicitly or

explicitly.

The most common solution is to declare a flag that indicates whether the external library needs to

perform its initialization. The first statement of the filtering or formatting procedure tests the flag

and performs the initialization routine if it has not been executed yet.

10.2.4 Troubleshooting Virtual Data Set Transform Procedures

• • 

• • 

10.2.3 Troubleshooting External Filters and Formatting Procedures

10.2.3 Troubleshooting External Filters and Formatting Procedures 245



A common problem when creating virtual data sets is that data set record updates or STATE_INFO

updates are missing because the virtual data set transform procedure ignores records that do not

pertain to the virtual data set. The virtual data set transform procedure must call the formatting

procedure passed to it as a parameter (usually BINARYFORMAT) for all records it receives, not just

those related to the virtual data set.

Another potential problem is that data set record updates are corrupted. This could happen for

either of the following reasons:

The virtual data set transform procedure neglected to update the UPDATE_INFO with new

values for the structure number, record type, record size, and structure index when it builds a

record for the virtual data set. The UPDATE_INFO must contain the attributes of the virtual

data set record.

After sending a virtual data set record, the virtual data set transform procedure tried to send

the original (real) data set record without first restoring the original UPDATE_INFO.

DMSII Reorganizations

The following table indicates changes you might need to make if any of the source data sets for

your virtual data set were affected by a DMSII reorganization:

• • 

• • 

If Then

Your virtual data set transform

routine calls a COBOL library

to create the data for your

virtual data set

Recompile the COBOL library.

Any of your source data sets

for the virtual data set

increased in size

If you are calling a COBOL library, make sure that your

COBOL program's Working-Storage variable is still large

enough to accept the record images passed to it by the

TRANSFORM routine.

If the COBOL library uses DMSII user work areas (data

set 01s), recompile the COBOL library to get the new

layouts.

For ALGOL routines, increase the size of the array

holding the record images or dynamically resize the

array based on the UI_RECSZ_WORDS value in the

UPDATE_INFO.

10.2.4 Troubleshooting Virtual Data Set Transform Procedures

10.2.4 Troubleshooting Virtual Data Set Transform Procedures 246



10.2.5 Troubleshooting Reformatting Procedures

One kind of error associated with reformatting procedures is SEG ARRAY ERROR, which can be

caused by using the offset values (SourceOfs and DestOfs) as byte offsets. These values are

always digit (half-byte) offsets. Likewise, the size values (SourceSz and DestSz) are always in units

of digits, not bytes.

For clarity, use the following defines from the sample in your reformatting procedure to distinguish

4-bit values from 8-bit:

Use the items ending in 4 with the arrays Source4 and Dest4. Use those ending in 8 with the arrays

Source8 and Dest8.

Do not assume the destination area is initialized to any particular value. The reformatting

procedure is responsible for the entire contents of the destination, starting at DestOfs for a length

of DestSz digits.

When reformatting an OCCURing item, the reformatting procedure receives a SourceSz reflecting

the total length of all occurrences. It must reformat all of the occurrences at once.

If Then

The Accessory faults (F-DS)

with a SEG ARRAY ERROR

Take the actions previously described for source data

sets that increase in size.

SourceSz4
SourceSz8
DestSz4
DestSz8
SourceOfs4
SourceOfs8
DestOfs4
DestOfs8

10.2.5 Troubleshooting Reformatting Procedures

10.2.5 Troubleshooting Reformatting Procedures 247



10.3 Virtual and Alter Data Item Types

In This Appendix

This appendix lists Databridge-specific data item types for VIRTUAL and ALTER declarations.

10.3.1 Additional Databridge Data Item Types.

Databridge supplies several data item types in addition to the regular DMSII types that you can use

when you specify a VIRTUAL or ALTER in the DBGenFormat parameter file.

The additional TIME, NUMERIC, and ALPHA data item types are grouped throughout this section by

the following formats:

TIME_ n formats

Combined date and time formats

Specially-defined formats

The Databridge Client also provides a way to change the data item type. For more information, refer

to the Databridge Client Administrator's Guide for more information about how you can use the

various date, time, and combined date/time formats available with the Databridge Client.

TIME_n Formats

The following TIME_ n data types are all one-word (6 byte) data items corresponding to the TIME (

n ) function, as follows:

• 

• 

• 

Type Description

TIME_1 Time of day in sixtieths of a second

TIME_6 Timestamp

TIME_7 Day of week, date, time

TIME_11 Time of day in 2.4 microseconds

10.3 Virtual and Alter Data Item Types

10.3 Virtual and Alter Data Item Types 248

https://www.microfocus.com/documentation/databridge/7-1/client-admin
https://www.microfocus.com/documentation/databridge/7-1/client-admin


Combined Date and Time Formats

The following NUMBER and ALPHA declarations allow you to specify a date and time format rather

than a size, as follows:

NUMBER (datetimeformat)

or

ALPHA (datetimeformat)

where datetimeformat is one of the following:

Type Description

TIME_60 Time zone, Julian date, time of day in hundredths of a second

Format Description

YYDDD ALPHA (5) or NUMBER (5) with a two-digit year YY

and with days DDD where DDD is a number between

1–366 for Julian dates

HHMMSS ALPHA (6) or NUMBER (6) time of day

YYMMDD MMDDYY DDMMYY ALPHA (6) or NUMBER (6) with two-digit YY (1900–

1999)

YYYYDDD ALPHA (7) or NUMBER (7) with four-digit year YYYY

and with days DDD where DDD is a number between

1–366 for Julian dates

YYMMMDD ALPHA (7) with a two-digit year YY (1900–1999) and

a three-character month abbreviation

Months are abbreviated JAN, FEB, MAR, APR, MAY,

JUN, JUL, AUG, SEP, OCT, NOV, and DEC.

YYYYMMDD MMDDYYYY

DDMMYYYY

ALPHA (8) or NUMBER (8) with four-digit year YYYY

YYYYMMMDD ALPHA (9) with a four-digit year YYYY and a three-

character month abbreviation

Months are abbreviated JAN, FEB, MAR, APR, MAY,

JUN, JUL, AUG, SEP, OCT, NOV, and DEC.

10.3.1 Additional Databridge Data Item Types.

10.3.1 Additional Databridge Data Item Types. 249



Specially-defined Formats

The following formats allow you to represent NUMBER, ALPHA, and integer types in predetermined

ways, as follows:

Format Description

HHMMSSYYDDD YYDDDHHMMSS ALPHA (11) or NUMBER (11) with two-digit year YY

(1900–1999), days DDD where DDD is a number

between 1–366 for Julian dates, and a six-digit time

YYMMDDHHMMSS

MMDDYYHHMMSS

DDMMYYHHMMSS

ALPHA (12) or NUMBER (12) with two-digit year YY

representing dates in both the 20th and 21st

centuries, followed by a six-digit time

HHMMSSYYMMDD

HHMMSSMMDDYY

HHMMSSDDMMYY

ALPHA (12) or NUMBER (12) with two-digit year YY

(1900–1999) preceded by a sixdigit time

YYYYDDDHHMMSS ALPHA (13) or NUMBER (13) with four-digit year

YYYY and with days DDD where DDD is a number

between 1–366 for Julian dates followed by a six-

digit time

HHMMSSYYYYDDD ALPHA (13) or NUMBER (13) with four-digit year

YYYY and with days DDD where DDD is a number

between 1–366 for Julian dates preceded by a six-

digit time

YYYYMMDDHHMMSS

MMDDYYYYHHMMSS

DDMMYYYYHHMMSS

ALPHA (14) or NUMBER (14) with four-digit year

followed by a six-digit time

HHMMSSYYYYMMDD

HHMMSSMMDDYYYY

HHMMSSDDMMYYYY

ALPHA (14) or NUMBER (14) with four-digit year

preceded by a six-digit time

Type Description

DAYSCOUNT

(n)

Number of days since 1/1/1900 as a NUMBER (n)

The DAYSCOUNT ALTER triggers the Databridge Client to generate a

Miser date, which is a dms_subtype of 1. The Miser date is fixed at

01.01.1900 and cannot be changed. To modify and use a custom base

year, the dms_subtype must be 3, which is a LINC date.

10.3.1 Additional Databridge Data Item Types.

10.3.1 Additional Databridge Data Item Types. 250



Type Description

LINCDATE (n) Number of days since 1/1/1957 as an ALPHA (n)

NUMERIC

ALPHA (n)

An ALPHA data item of n bytes containing a numeric value in

alphanumeric EBCDIC form

For example, a NUMERIC ALPHA (4) having the value 123 would

contain "0123", that is, 4"F0F1F2F3".

BITS (n) A field of n bits containing a binary integer value

This type is similar to a DASDL FIELD (n).

IMAGE (n) An IMAGE data item of n bytes containing binary data (such as a

scanned image or bitmap) rather than EBCDIC characters

REAL A one-word floating point value

REAL (n, m) A one-word binary integer with optional scaling

NUMBER (Sn, 

m)

A NUMBER data item with an optional sign digit followed by n 4-bit

digits with optional scaling

FIELD

(booleanlist)

A field of named bits (Booleans)

NOTE: The format applies to ALTER declarations only.

GROUP

(dataitems)

A group of related data items that could be called collectively by the

group name rather than by the individual item names

NOTE: The format applies to ALTER declarations only.

10.3.1 Additional Databridge Data Item Types.

10.3.1 Additional Databridge Data Item Types. 251


	Databridge Host Programmer's Reference Guide
	7.1
	Copyright 2023 Open Text


	1. Host Programmer's Reference Guide
	1.1 About this Guide
	1.2 Conventions
	1.3 Abbreviations
	1.4 Related Documentation

	2. Databridge API
	2.1 Databridge API Description

	3. Using the Databridge API
	3.1 Databridge API Overview
	3.1.1 Sample Accessories

	3.2 Entry Point Procedure Values
	3.2.1 Using the DBMTYPE Values
	3.2.2 Boolean Callback Procedures
	How Callback Procedures Work

	3.2.3 Callback Return Values
	DBEngine Entry Points That Use Callbacks
	DBSupport Entry Points That Use Callbacks


	3.3 Accessing the DBEngine and DBSupport Libraries
	3.3.1 Requirements for Both Libraries
	Additional DBEngine Requirements
	Additional DBSupport Requirements
	Accessing DBEngine Only


	3.4 DBEngine Entry Points
	3.5 DBATTRIBUTE
	3.6 DBAUDITMEDIUM
	3.7 DBAUDITATTRIBUTE
	3.8 DBAUDITPACK
	3.9 DBAUDITPREFIX
	3.10 DBAUDITSOURCE
	3.11 DBAUDITSOURCEX
	3.12 DBCANCELWAIT
	3.13 DBCLOSEDATASET
	3.14 DBCOMMENT
	3.15 DBCOMPILESUPPORT
	3.16 DBDATABASEINFO
	3.17 DBDATASETINFO
	3.18 DBDATASETNAME
	3.19 DBDATASETNUMS
	3.19.1 DBDATASETS

	3.20 DBDATASETVFINFO
	3.21 DBDATETIME
	3.22 DBDESELECT
	3.23 DBDIRECTORYSEARCH
	3.24 DBDISPLAYFAULT
	3.25 DBDISPLAYMSG
	3.26 DBENGINEMISSINGENTRYPOINT
	3.27 DBFAMILYINFO
	3.28 DBFILEATTRIBUTE
	3.29 DBGETFIRSTQPT
	3.30 DBGETINFO
	3.31 DBGETOPTION
	3.32 DBINITFILTER
	3.33 DBINITIALIZE
	3.34 DBINTERFACEVERSION
	3.35 DBIOERRORTEXT
	3.36 DBIORESULTTEXT
	3.37 DBITEMINFO
	3.38 DBITEMNUMINFO
	3.39 DBKEYDATAREMAP
	3.40 DBKEYINFO
	3.41 DBKEYINFOREMAP
	3.42 DBKEYS
	3.43 DBKEYSREMAP
	3.44 DBLAYOUT
	3.45 DBLIMITTASKNAME
	3.46 DBLIMITTIMESTAMP
	3.47 DBLINKS
	3.48 DBMAKETIMESTAMP
	3.49 DBMAXRECORDS
	3.50 DBMAXRECORDSVF
	3.51 DBMESSAGE
	3.52 DBMODIFIES
	3.53 DBMODIFYTIMESTAMP
	3.54 DBNULL
	3.55 DBNULLRECORD
	3.56 DBOLDESTAUDITLOC
	3.57 DBOPENAUDIT
	3.58 DBOPENRESULTTEXT
	3.59 DBPARAMETERS
	3.60 DBPRIMARYSET
	3.61 DBPRIVILEGED
	3.62 DBPUTMESSAGE
	3.63 DBREAD
	3.64 DBREADAUDITREGION
	3.65 DBREADERPARAMETER
	3.66 DBREADTRANGROUP
	3.67 DBRESETOPTION
	3.68 DBSELECT
	3.69 DBSELECTED
	3.70 DBSETINFO
	3.71 DBSETOPTION
	3.72 DBSETS
	3.73 DBSETSINFO
	3.74 DBSPLITTIMESTAMP
	3.75 DBSPLITTIME60
	3.76 DBSTATEINFOTODISPLAY
	3.77 DBSTATISTICS
	3.78 DBSTRIDX
	3.79 DBSTRNUM
	3.80 DBSTRUCTURENAME
	3.81 DBSUBSETSINFO
	3.82 DBSWITCHAUDIT
	3.83 DBTIMESTAMPMSG
	3.84 DBUPDATELEVEL
	3.85 DBVERSION
	3.86 DBWAIT
	3.87 DBWHEREDASDL
	3.88 DBWHERETEXT
	3.89 DBSupport Entry Points
	3.89.1 Security Filtering
	3.89.2 Additional Filtering.
	DBSupport Formatting.
	Using the DBSupport Entry Points.


	3.90 DBCLIENTKEY
	3.91 DBERRORMANAGER
	3.92 DBEXTRACTKEY
	3.92.1 DBFILTER

	3.93 DBFILTEREDDATASETS
	3.94 DBFILTEREDITEMINFO
	3.95 DBFILTEREDITEMNAME
	3.96 DBFILTEREDLAYOUT
	3.97 DBFILTEREDLINKS
	3.98 DBFILTEREDNULLRECORD
	3.99 DBFILTEREDSETS
	3.100 DBFILTEREDSETSINFO
	3.101 DBFILTEREDSTRNUM
	3.102 DBFILTEREDSUBSETSINFO
	3.103 DBFILTEREDWRITE
	3.104 DBFORMAT
	3.104.1 Additional Options
	3.104.2 Layout Information

	3.105 DBINITDATAERROR
	3.106 DBINITIALIZESUPPORT
	3.107 DBPRIMARYKEY
	3.108 DBSETUP
	3.109 DBSUPPORTENGINE
	3.110 DBSUPPORTINIT
	3.111 DBSUPPORTMISSINGENTRYPOINT
	3.112 DBUNREMAPITEMINFO
	3.113 DBVIEWABLE

	4. Virtual Data Sets
	4.1 Overview
	4.1.1 Sample Files

	4.2 Creating a Virtual Data Set
	4.3 Syntax for Declaring a Transform
	4.4 Syntax for Declaring a Virtual Data Set
	4.4.1 Sample Virtual Data Set Declaration
	4.4.2 Writing a Virtual Data Set Transform Procedure
	4.4.3 Initializing the Virtual Record
	4.4.4 Constructing an UPDATE_INFO Array
	4.4.5 Calling a COBOL Library

	4.5 Virtual Transform Skeleton
	4.6 Sample ALGOL Virtual Transform Procedure
	4.6.1 Description

	4.7 Sample DASDL Definition
	4.7.1 DBGenFormat Parameter File Declarations
	4.7.2 Accessory Parameter File Declarations
	4.7.3 GENGLOBALS Transform Layouts Section
	4.7.4 ALGOL Source for the Sample Virtual Transform Procedure
	4.7.5 Sample COBOL Library


	5. Altered Data Sets
	5.1 Overview
	5.2 Altering a Data Set
	5.3 ALTER Restrictions
	5.4 ALTER Declaration Syntax
	5.5 Declaring Internal and External Reformatting Procedures
	5.5.1 Declaring Internal Reformats
	5.5.2 Declaring External Reformats
	5.5.3 Writing an Internal Reformatting Procedure
	Writing an External Reformatting Procedure


	5.6 Example: Internal Reformatting Procedure
	5.7 Example: External Reformatting Procedure
	5.8 Example: Altered Data Set for Flattening OCCURS
	5.8.1 DASDL Declaration
	5.8.2 ALTER Declaration in DBGenFormat

	5.9 Example: Databridge NewId

	6. Formatting Procedures
	6.1 Overview.
	6.2 Sample Files
	6.3 Using Custom Formatting Procedures
	6.4 Declaring Internal and External Formatting Procedures
	6.4.1 Declaring Internal Formats
	6.4.2 Declaring External Formats

	6.5 Writing Formatting Routines
	6.5.1 Initializing the Formatting Routine.
	6.5.2 Writing an Internal Formatting Routine
	6.5.3 Writing an External Formatting Routine
	6.5.4 Calling a COBOL Library

	6.6 Sample ALGOL External Formatting Procedure

	7. Error Handling Routines
	7.1 Overview
	7.2 Writing an Error Handling Routine
	7.3 Sample Error Handling Routine

	8. Glossary
	Accessory
	Accessroutines
	audit file
	audit trail
	client
	cloning
	compound item
	consolidated file
	CONTROL file
	DASDL
	data set
	DESCRIPTION file
	extraction
	file format conversion
	flattening OCCURS
	formatting procedure
	formatting routine
	garbage collection reorganization
	null text
	primary database
	quiet point (QPT)
	reformatting procedure
	reformatting routine
	replicated database
	replication process
	secondary database
	set
	structure
	table
	tracking
	undigits

	9. Legal Notice
	10. Appendix
	10.1 A - Types, Values, Arrays and Layouts
	10.1.1 A Types, Values, and Array Layouts
	10.1.2 Overview
	10.1.3 DBEngine Entry Point Result Values
	10.1.4 Record Change Types
	10.1.5 Error Manager Types
	10.1.6 Accessory ID Numbers
	10.1.7 Documentation Records
	Begin Transaction
	End Transaction
	Restart Data Set Open and Close
	Audit File Header
	DBSETOPTION/DBRESETOPTION Run-Time Options.

	10.1.8 DBPARAMETERS Processing Parameter Types
	10.1.9 DBAUDITMEDIUM Parameters
	10.1.10 Network Protocol Values
	10.1.11 MAXWAITSECS Values
	10.1.12 ITEM_INFO Array Layout
	10.1.13 STATE_INFO Layout
	10.1.14 DATABASE_INFO Layout
	10.1.15 DATASET_INFO Layout
	10.1.16 SET_INFO Layout
	10.1.17 UPDATE_INFO Layout
	10.1.18 AUDIT_INFO Layout
	10.1.19 Link Update Info Layout
	10.1.20 Audit File Error Subtypes
	10.1.21 Data Error Types
	10.1.22 Processing Limit Types
	10.1.23 Statistics Category Values
	10.1.24 STATISTICS_INFO Array Layout
	10.1.25 FileXtract FileInfo Array Layout
	10.1.26 DBOUTPUTHEAD Procedure Heading
	10.1.27 DBFORMATHEAD Procedure Heading
	DBFILEREADERHEAD Procedure Heading.

	10.1.28 File Attribute Mask Bits

	10.2 Troubleshooting
	10.2.1 General Troubleshooting Procedures
	10.2.2 Troubleshooting for All Accessories
	Outdated Filters and Formats

	10.2.3 Troubleshooting External Filters and Formatting Procedures
	10.2.4 Troubleshooting Virtual Data Set Transform Procedures
	DMSII Reorganizations

	10.2.5 Troubleshooting Reformatting Procedures

	10.3 Virtual and Alter Data Item Types
	10.3.1 Additional Databridge Data Item Types.
	TIME_n Formats
	Combined Date and Time Formats
	Specially-defined Formats




