
Micro Focus Enterprise Analyzer 3.5
Update 1

Using Architecture
Modeler

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2009-2014. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Enterprise Analyzer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2014-12-11

ii

Contents

Introducing Architecture Modeler ..4
Opening Architecture Modeler ...5
Understanding the Application-Level Metamodel ...6

Entity Type Properties ... 6
Source Name Property ...7
Source Type Property ...7
Entity Flags ...7

Entity Type Attributes .. 8
Relationship Type Properties .. 8

Relationship Flags ..9
Defining an Extension with Architecture Modeler ...10

Loading a Metamodel ..10
Saving the Extended Metamodel .. 10
Adding a Sample Source File ..10

Specifying Formatting Options for Text Files .. 11
Defining Entity Types ...12
Defining Relationship Types ..13
Architecture Modeler Internal Language Functions Description 14
Mapping Regular Expressions to Text File Searches ..16

Editing Subexpressions ..17
Mapping XPath Queries to XML File Searches ...18
Exporting the Extended Metamodel ..23
Reconfiguring Enterprise Analyzer ... 23
Troubleshooting the Extended Metamodel ..23

Using Galleries ... 25

Contents | 3

Introducing Architecture Modeler
Use Architecture Modeler to add support for unsupported languages and frameworks to Enterprise
Analyzer (EA). You can also use it to extend support for already supported languages and frameworks.
Architecture Modeler's:

• Graphical user interface, with error checking and metamodel lookup, makes it easy to define new entity
and relationship types in EA.

• Regular expression generator simplifies the task of specifying the search patterns the EA parser uses to
extract entities and relationships from source code.

Based on your input,Architecture Modeler creates a plug-in that defines an extension, or add-on, to the EA
metamodel. The add-on specifies the entity and relationship types of interest in the newly supported
source files.

The plug-in also references a universal parser configuration file that defines the search patterns EA uses to
extract entities and relationships from newly supported files. For text files, search patterns are mapped
from regular expressions. For XML files, search patterns are mapped from XPath queries.

Here in schematic form are the tasks you perform in Architecture Modeler:

1. Load an existing metamodel.
2. Save the metamodel with the name of your extension.
3. Add a sample source file of the type you want to support in EA.
4. Define the entity types for the add-on.
5. Define the relationship types for the add-on.
6. Map search patterns for the entity and relationship instances you want the parser to extract.
7. Export the model to EA.
8. Reconfigure EA.

Before turning to these tasks, users who are new to EA may want to familiarize themselves with the
concepts underlying the EA metamodel. Experienced users can skip straight to the tasks.

Note: Architecture Modeler currently supports the level-1, or application-level, metamodel only.
Support for the level-2, or object-level, metamodel (Interactive Analysis) will be available in a future
release.

Entity extension mode is currently not available for the following entities: EZT, CA7, JSP, JSX,
NetronSPC, NetronSpec, TLD, TS, and WebConfig.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise the some operations might fail.

4 | Introducing Architecture Modeler

Opening Architecture Modeler
1. Open the Enterprise Analyzer installation directory

2. Double-click \bin\Architecture Modeler.exe. The Architecture Modeler window opens.

Note:

• Choose Tools > Confirmations to specify whether you want to be prompted to confirm deletion of
attributes, entities, relationships, or source files.

• Choose Tools > Samples view font to specify the font in which source file samples are displayed.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise the some operations might fail.

Opening Architecture Modeler | 5

Understanding the Application-Level
Metamodel

The object model for an application defines the relationships between the objects that comprise the
application. These can be physical objects, like program source files or JCLs, or logical objects that identify
abstract program elements: entry points, data stores, screens, jobs, and so forth.

The relationships between objects describe the ways in which they interact. In the figure below, the source
file GSS.CBL defines the GSS program. The program, in turn, reads the data file GSS.FCSTSEC.

Relationships are conceived as having a left and right end. In the relationship CobolDefinesMap, for
example, the left relationship end is DefinesMap, while the right relationship end is IsDefinedInCobol.

Each object or relationship the parser generates is modeled as an entity or relationship in an Entity
Relationship Diagram (ERD). Each entity or relationship is an instance of an entity or relationship type. The
application-level metamodel defines these types.

Entity Type Properties
The properties of an entity type define its characteristics: its internal and external names, icon in Enterprise
Analyzer, flags, and so on. The table below shows the properties of an entity type.

Note: Only properties editable in Architecture Modeler are shown in the table.

Property Description

Name The internal name of the entity type: COBOL, for example.

Description The display name of the entity type: Cobol File, for example.

Source Name The name of the entity attribute that holds “reference-resolving”
information for an entity: Source, for example. See the subtopics below
for more information.

Display Name The name of the entity attribute that holds the display name for the entity.
A Java File's display name derives from the value of its ClassName
attribute, for example.

Flags Flags that define the nature of the entity type: LEGACY, for example. See
the subtopics below for more information.

Registration The name of the class used to perform registration, unregistration, and
invalidation tasks. Specify Default, unless the entity type should not have
a folder in the project, in which case, specify NoRegistration.

Source Type The type of “reference-resolving” information for the entity: File, for
example. See the subtopics below for more information.

Icon The name of the file that contains the entity type’s icon for display:
COBOL.gif, for example.

6 | Understanding the Application-Level Metamodel

Source Name Property
The Source Name property of an entity type defines the name of the entity attribute that holds “reference-
resolving” information for an entity. This attribute name is not the same for all entity types.

Consider a copybook. If a Cobol source file references a copybook, the parser creates a copybook object
with the name referenced in the source file. And it does so whether or not the copybook actually exists in
the EA workspace.

Later, when the system resolves references to the copybook, it looks in the Source attribute of the
copybook for its location in the workspace file system. If the attribute is empty, the system flags the
copybook as missing. The system knows it should look in the Source attribute because the Source Name
property of the copybook entity type is set to “Source.”

For a program entry point, by contrast, the sourcename property is set to “HCID,” meaning that the system
looks in the HCID (HyperCode ID) attribute when it attempts to resolve a CALL statement that references
the entry point. An empty HCID attribute indicates that the called program does not exist in the workspace
or has not been parsed.

Source Type Property
The Source Type property of an entity type defines the type of reference-resolving information for the
entity: a file name in the case of a copybook, for example, a record in a table in the case of an entry point.
The Source Type also determines whether EA deletes the reference-resolving item when the
corresponding object is deleted from the workspace. The table below shows the types.

Type Description

File A source file: a copybook, for example. If the object is deleted, the source
file is deleted.

Container A file containing a list of source files: a TARGETMODEL, for example. If
the object is deleted, the list file is deleted.

Folder The folder for the Folder entity, which identifies an EA project. If the
project is deleted, the folder is deleted.

Global An item in a global file: a record in a table, for example. If the object is
deleted, the item is not deleted.

Entity Flags
The Flags property of an entity type defines the nature of the entity: whether it is a physical source object
or a logical object extracted from a source object, whether it defines a program, and so forth. An entity type
can have multiple flags. A Cobol source file, for example, has LEGACY, PROGRAMCODE, and SEED
flags. The table below shows the flags for an entity type.

Note: Only flags selectable in Architecture Modeler are shown in the table.

Flag Description

COMPOSITE n/a

EXTRACT An entity extracted from a seed entity. A program, for example, is
extracted from a Cobol file. An extract entity must be unique in the
repository.

GENERATED An entity generated in the transformation process, a TargetXML file, for
example.

Understanding the Application-Level Metamodel | 7

Flag Description

LEGACY A source file that can be loaded in the repository, a Cobol file, for
example.

KNOWLEDGE A business function or logical component.

PROGRAMCODE An entity that defines a program, a Cobol file, for example.

SEED An entity from which another entity can be extracted. A Cobol file is the
seed for a program, for example.

SYSTEM An entity referenced in the application but not loaded in the repository, a
data store, for example.

Entity Type Attributes
The attributes of an entity type define the characteristics of the entity instance: its name, the name of the
source file from which it derives, its complexity metrics, and so forth. The default attributes and attribute
values supplied by Architecture Modeler are sufficient for most entity types. You can add or delete
attributes and edit their values as necessary.

Note: You can specify additional default attributes in the file \bin\ArchitectureModeler.exe.config.

The properties of an attribute define its characteristics: its name, data type, whether the attribute value
persists after invalidation, and so on. The table below shows the properties of an attribute.

Property Description

Name The internal name of the attribute: Name, for example.

Description The display name of the attribute: Name, for example.

Type For attributes other than Name, the data type of the attribute: CHAR, for
example.

Size For CHAR type attributes, the length of the attribute.

DefaultValue Whether the attribute should be displayed with a value of "N/A" until it
receives a value at verification: 0 for true, -1 for false.

Persistent For an attribute of a LEGACY object, whether its value persists after the
object is invalidated.

Relationship Type Properties
The properties of a relationship type define its characteristics: its name, flags, cardinalities, and so on. The
table below shows the properties of a relationship type.

Property Description

Name The full relationship name: CobolDefinesMap, for example.

Flags Flags that define the nature of the relationship type: PRODUCE, for
example. See the subtopics below for more information.

Left Entity The internal name of the entity on the left relationship end, COBOL, for
example.

Left End Name The internal name of the left relationship end: DefinesMap, for example.

Left End Description The display name of the left relationship end: Defines Screen, for
example.

8 | Understanding the Application-Level Metamodel

Property Description

Left End Cardinality The cardinality of the left relationship, 1 or M. 1 means that the left entity
can have one such relationship; M means that the left entity can have
multiple such relationships. A Cobol file can define only one map, for
example.

Right Entity The internal name of the entity on the right relationship end, MAP, for
example.

Right End Name The internal name of the right relationship end: IsDefinedInCobol, for
example.

Right End Description The display name of the right relationship end: Is Defined In Cobol File,
for example.

Right End Cardinality The cardinality of the right relationship, 1 or M. 1 means that the right
entity can have one such relationship; M means that the right entity can
have multiple such relationships. A map can be defined in multiple Cobol
files, for example.

Relationship Flags
The Flags property of a relationship type defines the nature of the relationship: whether the relationship is
one between a seed and an extract entity, for example, or between extract entities or legacy entities. A
relationship can have multiple flags. The FolderIncludesDbSchema relationship, for example, has the flags
GROUPING and PRODUCES.

The relationship flag also determines how the product behaves when one of the entities in the relationship
is invalidated, modified, or deleted. In a relationship between a seed and an extract entity, for example,
deleting the seed requires deleting the extract. The table below shows the flags for a relationship type.

Flag Description

GROUPING A relationship between a folder entity, which identifies an EA project, and
a legacy entity, FolderIncludesCobol, for example.

GENERATES A relationship between a legacy entity and a generated entity,
CopybookGeneratesTargetXml, for example. If the legacy entity is
modified or deleted, the generated entity is deleted.

LINKS Future use.

PRODUCES A relationship between a seed and an extract entity,
CobolDefinesProgram, for example. If the seed entity is modified or
deleted, the extract entity is deleted.

REFERS A relationship between extract entities, ProgramCallsProgramEntry, for
example. If the left entity is invalidated or deleted, the right entity is
deleted.

USES A relationship between legacy entities, CobolIncludesCopybook, for
example. If the right entity is modified or deleted, the left entity is
invalidated, and every entity with a relationship of type PRODUCES with
the left entity is deleted.

Understanding the Application-Level Metamodel | 9

Defining an Extension with Architecture
Modeler

Perform the following tasks to define a metamodel extension with Architecture Modeler:

1. Load an existing metamodel.
2. Save the metamodel with the name of your extension.
3. Add a sample source file of the type you want to support in EA.
4. Define the entity types for the add-on.
5. Define the relationship types for the add-on.
6. Map search patterns for the entity and relationship instances you want the parser to extract.
7. Export the model to EA.
8. Reconfigure EA.

Before turning to these tasks, users who are new to EA may want to familiarize themselves with the
concepts underlying the EA metamodel. Experienced users can skip straight to the tasks.

Loading a Metamodel
You can load an existing metamodel to use as a shell for your extension, or create a new metamodel.
Loading an existing metamodel is probably a better choice, because it ensures against duplicating existing
entity and relationship names.

• To load an existing metamodel, choose Model > Open. An Open dialog is displayed, where you can
browse for \Model\Repository\Common.Repstry.xml in the Enterprise Analyzer installation
directory. Click Open to load the metamodel.

• To create a new metamodel, choose Model > New > Model. Nothing is displayed in the Architecture
Modeler window until you add files, entities, or relationships.

Saving the Extended Metamodel
Whether you load an existing metamodel or create a new one, you must save the extended metamodel to
preserve your changes. To save an extended metamodel, choose Model > Save. A Save As dialog opens,
where you can save the extension with a new or an existing file name. Click Save to return to the
Architecture Modeler window.

Adding a Sample Source File
When you add a sample source file to Architecture Modeler, you define the entity type for the source file in
the extended metamodel, and make available the code you will use to generate regular expressions. To
add support for Objective C, for example, you would define an entity type that represents an Objective C
source file, then add one or more Objective C source files to Architecture Modeler.

Choose a sample that contains the kinds of entities and relationships you want the parser to extract. If you
want the parser to model calls to Objective C functions, make sure your sample contains a function call!

Note: Architecture Modeler supplies default values for the properties and attributes of the source file
type you are adding. Except for the value of the Description property, which holds the entity type

10 | Defining an Extension with Architecture Modeler

name displayed to the end user, the default values usually are sufficient. You can change the
Description (and any other property or attribute values) when you edit the source file type.

1. Click the Files button in Architecture Modeler and choose Add New in the drop-down menu. The Add
New File window opens.

2. In the Name field, enter the name of the entity type for the source file. For an Objective C source file,
you might choose the name "OBJC" for the entity type.

Note: If you are extending support for an already supported source file, the name you specify
cannot be the same as the name of the already supported source file. No entity type is created for
the specified name. The extension is simply a mechanism for naming the universal parser
configuration file that contains the search patterns with which you are extending support.

3. In the Type drop-down, select the type of the source file you are adding, XML or Text. If you select Text,
click the Format button to view formatting options.

Note: Think of Text as any kind of file other than XML.

4. Select as an extension to if you are extending support for an already supported source file, then
choose the source file type in the adjacent combo box.

Note: The Metrics and Name Pattern areas are disabled in entity extension mode.

5. In the Metrics group box, select each metric you want EA to calculate for the source file.

6. In the Source samples group box, click Add new. An Open dialog is displayed, where you can browse
for the sample source file. Click Open to add the file. Repeat this procedure for each sample you want
to add. To delete a file, select it and click Delete.

7. In the Name Patterns group box, click Add new. An editable text field is displayed. Click inside the field
and enter the extension, including the dot (.), for the source file type. You can use wildcard patterns
allowed in LIKE statements by Visual Basic for Applications (VBA). Click outside the field to add the
extension. Repeat this procedure for each extension you want to add. To delete an extension, select it
and click Delete.

8. When you are satisfied with your choices, click OK.

Architecture Modeler displays the new source file type in the Name area in the central pane of the window,
and the text of the sample source file in the righthand pane. If more than one source file type is listed, click
the name of the type to display the corresponding sample.

Note: Select a source file type and click Files > Edit to modify its file characteristics. Select a source
file type and click Files > Delete to delete the type.

Specifying Formatting Options for Text Files
Comments, strings, and fixed formats may create "noise" in parser extractions. The more specific you are
in defining how you want the parser to handle these and similar text file characteristics, the cleaner your
results will be.

1. To specify formatting options for a text file, click the Format button in the Add New File or Edit File
window. The Input Source Format window opens.

2.
In the Input Source Format window, click the button to sort the list by category, click the button
to sort the list alphabetically.

3. Edit the formatting options as necessary:

• For Boolean values, choose from the drop-down list inside the value field.
• For string values, enter the text of the string in the value field.
• For the StringLiteralSymbol option, click the browse button in the value field. The Char Collection

Editor window opens. Click the Add button to add a symbol for the start of a string literal.
Architecture Modeler displays the new collection member in the lefthand pane. Select the member,

Defining an Extension with Architecture Modeler | 11

then enter its value in the righthand pane. Repeat this procedure for each symbol you want to define.

To delete a collection member, select it and click Remove. Click the button to sort the list by

category, click the button to sort the list alphabetically. Click OK to confirm your changes.

The table below shows the formatting options in alphabetical order. Option values are modified
automatically depending on your choices in other fields.

Option Description

EndingColumn The last valid column of the source.

HasEndingColumn Whether the source has an ending column.

HasLiteralContinuationSymbol Whether the source has a literal continuation symbol.

HasMultiLineComment Whether the source has multiline comments.

HasSingleLineComment Whether the source has single line comments.

HasSingleLineCommentContinuation Whether the source has single line comment continuations.

HasStartingColumn Whether the source has a starting column.

HasStringLiteralSymbol Whether the source has symbols used to start string literals.

IgnoreColumns Whether to ignore column information before the starting column and
after the ending column.

IgnoreComments Whether to ignore comments.

IgnoreStringLiterals Whether to ignore string literals.

MultiLineCommentEnd Symbol for the end of a multiline comment.

MultiLineCommentStart Symbol for the start of a multiline comment.

SingleLineCommentContinuationSymbol Symbol for the continuation of a single line comment.

SingleLineCommentStart Symbol for the start of a single line comment.

StartingColumn The first valid column of the source.

StringLiteralContinuationSymbol Symbol for the continuation of a string literal.

StringLiteralSymbol Symbols for the start of string literals.

4. When you are satisfied with your choices in the Input Source Format window, click OK.

Defining Entity Types
Each object the parser generates is an instance of an entity type. You need to define these types in the
extended metamodel. If you are adding support for Objective C, for example, you would define an entity
type that represents an Objective C function.

For each entity type, you specify two kinds of information:

• The properties of the entity type define its characteristics: its internal and external names, icon in
Enterprise Analyzer, flags, and so on.

• The attributes of the entity type define the characteristics of the entity instance: its name, the name of
the source file from which it derives, its complexity metrics, and so forth. The default attributes and
attribute values supplied by Architecture Modeler are sufficient for most entity types. You can add or
delete attributes and edit their values as necessary.

1. Click the Entities button in Architecture Modeler and choose Add New in the drop-down menu. The
properties definition page of the Add New Entity window opens.

12 | Defining an Extension with Architecture Modeler

2. On the properties definition page, fill in the properties of the entity type. Architecture Modeler flags any
errors with a symbol.

Note: Do not enter spaces in the Name property.

3.
When you are satisfied with your entries on the properties definition page, click the button. The
attributes definition page opens.

4. On the attributes definition page, add, edit, or delete attributes as necessary:

• To add an attribute, click the Add New button. The Add New Attribute dialog opens, where you can
specify the values for each property of the attribute. Architecture Modeler flags any errors with a
symbol. When you are satisfied with your entries, click OK.

• To edit an attribute, click the Edit button. The Edit Attribute dialog opens, where you can specify the
values for each property of the attribute. Architecture Modeler flags any errors with a symbol.
When you are satisfied with your entries, click OK.

• To delete an attribute, click the Delete button.

5.

When you are satisfied with your entries on the attributes definition page, click the button.
Architecture Modeler flags any errors with a symbol.

Note: The errors may not be immediately visible. If you are on the attributes definition page, errors
may be flagged on the properties definition page, and vice versa.

Assuming there are no errors in your entries, Architecture Modeler saves the entity type definition, and
displays the entity type in the list of entity types in the righthand pane of the window.

Note: Select an entity type and click Entities > Edit to modify its definition. Select an entity type and
click Entities > Delete to delete the definition.

Defining Relationship Types
Each relationship the parser generates is an instance of a relationship type. You need to define these types
in the extended metamodel. If you are adding support for Objective C, for example, you would define a
relationship type that represents the relationship between an Objective C source file and an Objective C
function.

1. Click the Relations button in Architecture Modeler and choose Add New in the drop-down menu. The
Add New Relation window opens.

2. In the Add New Relation window, fill in the properties of the relationship type. Architecture Modeler flags
any errors with a symbol.

Note: Do not enter spaces in the Name property.

3. When you are satisfied with your entries, click OK.

Assuming there are no errors in your entries, Architecture Modeler saves the relationship type definition,
and displays the relationship type in the list of relationship types in the righthand pane of the window.

Note: Select a relationship type and click Relations > Edit to modify its definition. Select a
relationship type and click Relations > Delete to delete the definition.

Defining an Extension with Architecture Modeler | 13

Architecture Modeler Internal Language Functions
Description

string.substr(pos1,pos2)

string.substr(pos1,pos2) – returns a substring, derived from pos1 to pos2 of string.

Examples:

expressionid.0.substr (5, 4)
expressionid.0.substr(expressionid.0.length() - 5, 4)
expressionid.0.substr(4 , expressionid.0.length() - 5)
expressionid.0.substr(expressionid.0.length() - 9 , expressionid.0.length() -
5)
expressionid.sourcefilename.substr(1,5)
expressionid.sourcefilename.substr(expressionid.0.sourcefilename.length() -
11 , 3)
expressionid.sourcefilename.substr(0, expressionid.0.sourcefilename.length()
- 4)
expressionid.sourcefilename.substr(expressionid.0.sourcefilename.length() –
15)

string1.append(string2)

string1.append(string2) - appends string2 to string1.

Examples:

expressionid.0.append(\"._abcd_\")
expressionid.0.append(expressionid.0)
expressionid.0.append(expressionid.0.sourcefilename)
expressionid.sourcefilename.append(\"_001\")
expressionid.sourcefilename.append(expressionid.0)

string.length()

string.length() - returns the length of the string.

Examples:

expressionid.sourcefilename.length()
expressionid.sourcefilename.length()-3
expressionid.sourcefilename.length()+13
expressionid.sourcefilename.length()

concat(string1, string2)

concat(string1, string2) – returns concatenation of string1 and string2

Examples:

concat(\"ab_\", \"cd__\")
concat(expressionid.0,expressionid.0)
concat(expressionid.0, \"_test_\")
concat(\"_test_\" , expressionid.0)
concat(expressionid.sourcefilename , expressionid.0)
concat(expressionid.0, expressionid.sourcefilename)
concat(expressionid.sourcefilename.substr(0,
expressionid.sourcefilename.length()-3), expressionid.0)
concat(expressionid.sourcefilename.append(\"...\"), expressionid.0)
concat(expressionid.sourcefilename, \"_abc_\")
concat(\"_abc_\" , expressionid.sourcefilename)
concat(\"_abc_\" , concat(\"_efg_\" , \"_xy_z_\"))

14 | Defining an Extension with Architecture Modeler

concat(concat(\"_efg_\" , \"_xy_z_\"), \"_abc_\")
concat(concat(\"_efg_\" , concat(\"_val1_\", \"_val2_\")) , \"_abc_\")
concat(concat(expressionid.sourcefilename.append(\"...\") , \"_val_\") ,
expressionid.0)

replace(string1,string2,string3)

replace(string1,string2,string3) – replaces all occurrences of string2 in string1 with
string3.

Examples:

replace(\"ab_\", \"_\", \"__\") // equals “ab__”
replace(\"ab_\", \"ab\", \"cd\") // equals “cd_”
replace(expressionid.sourcefilename.substr(1,5), \"a\", \"b\")
// replaces ‘a’ with ‘b’ in the first 5 letters of expressionid.sourcefilename
replace(expressionid.sourcefilename, '/' . '\') // converts backslashes to
slashes

getpath(string)

getpath(string) – returns a string, trimmed starting from the last occurrence of ‘\’ or ‘/’ . Returns
the absolute path as string before the last occurrence of \ or /.

Examples:

getpath(“c:\path1\path2\filename.ext”) // returns c:\path1\path2\
getpath(“..\path1\path2\filename.ext”) // returns ..\path1\path2\
getpath(expressionid.sourcefilename) // returns the path of the sourcefilename

getfilename(string)

getfilename(string) – .returns the filenames in paths as a string after the last occurrence of the \ or /?

Examples:

getfilename (“c:\path1\path2\filename.ext”) // returns filename.ext
getfilename (“..\path1\path2\filename.ext”) // returns filename.ext
getfilename (expressionid.sourcefilename) // returns filename of the
sourcefilename

unifypath(string)

unifypath(string) – returns transformed string by the following rules:

• Converting all backslashes to slashes.

Example:

/path1/path2 is transformed into \path1\path2
• Removing duplicate slashes.

Example:

//path1/\path2 is transformed into \path1\path2
• Removing references to current directory

Example:

\.\path1/.\path2 is transformed into \path1\path2
• Removing references to parent directory (if not in the beginning) examples

Examples:

\path1\..\path2 is transformed into \path2

Defining an Extension with Architecture Modeler | 15

..\path1\..\path2\path3 is transformed into ..\path2\path3

Mapping Regular Expressions to Text File Searches
The Enterprise Analyzer parser extracts entity and relationship instances from text files using search
patterns you define in Architecture Modeler. In schematic form, the parser uses these patterns to:

• Match relationship instances in the code.
• Form the names of entity instances.
• Form the names of relationship instances.

Architecture Modeler's regular expression generator simplifies the task of defining these patterns. Follow
the steps below to map regular expressions to text file searches.

1. Click Files in Architecture Modeler. Architecture Modeler displays the defined source file types in the
Name area in the central pane of the window, and the text of the corresponding sample in the right-hand
pane. If more than one source file type is listed, click the name of the type to display the sample.

2. Generate the pattern the parser uses to match relationship instances:

a) Select the code of interest in the sample source file.
b) Choose Pick in the right-click menu.

The Add Expression window opens.

3. Add an expression ID, e.g. "function" for the selected function call. All expression IDs appear in the
middle-bottom left-hand side of the screen in a tree form.

4. Select the expression ID and choose Edit in the right-click menu. The Edit Regular Expression Mapping
window opens. Expressions are represented in a hierarchical manner. Each expression contains its
regular expression pattern and all direct children expressions.

5. Select the expression pattern and choose Edit in the right-click menu. The Edit Regular Expression
window opens. The generated regular expression is displayed in the upper part of the left-hand pane in
tree form. The expression does not require further editing.

Note: Do not manually edit the generated regular expression unless you have modified it
inadvertently.

6. In the left-hand pane of the Edit Regular Expression window, define the regular expression the parser
uses to form the names of entity instances:

a) Expand the tree for the generated regular expression.
b) Use a subexpression of the generated regular expression to match the names of entity instances.

Follow the instructions in Editing Subexpressions to edit the subexpression.
c) Click Apply Changes after each modification.

7. In the right-hand pane of the Edit Regular Expression Mapping window, map the regular expression for
the names of entity instances. You do not need to map a regular expression for the source file name:

a) In the Entity group box, select the entity type you want to match in the Type drop-down.
b) Drag-and-drop the subexpression for the names of entity instances from the expression tree to the

cell beside the Name attribute. The subexpression is mapped to a variable with a name reflecting the
order of grouped expressions in the expression tree, counting from the regular expression for the
matched relationship. For example if (\w+) is the only other grouped expression besides the
expression for the matched relationship, the mapped variable is named %[ExpressionID].2%.

c) Assuming you are defining a relationship between a source file and an extracted object, enter the
system variable %[ExpressionID].sourcefilename in the cell beside the Source attribute. If
you are defining another type of relationship, reference-resolving information may be contained in a
different attribute.

d) You can use functions to help you resolve entities' relationship ends. These functions are:substr,
append, length, concat, replace, getpath, getfilename, unifypath. For more details on
the usage of these functions, read Application Modeler Internal Language Functions Description.

16 | Defining an Extension with Architecture Modeler

8. Click Save in the Entity group box. The entity mapping is added to the list of mappings in the Mapping
List group box. Repeat this procedure for each entity mapping you want to define.

9. In the right-hand pane of the Edit Regular Expression Mapping window, map the regular expression for
the names of relationship instances:

a) In the Relation group box, select the relationship type you want to map in the Type drop-down.
b) Drag-and-drop the subexpression for the left entity name from the expression tree to the cell beside

the Left Entity Name attribute. If you are defining a relationship between a source file and an
extracted object, enter the system variable %[expressionid].sourcefilename% in the cell
beside the Left Entity Name attribute.

c) Drag-and-drop the subexpression for the right entity name from the expression tree to the cell beside
the Right Entity Name attribute.

10.Click Save in the Relation group box. The relationship mapping is added to the list of mappings in the
Mapping List group box.

Note: To edit a mapping definition, select it in the Mapping List group box and click Edit. Follow
the procedure you used to define the mapping. To delete a mapping definition, select it in the
Mapping List group box and click Remove.

11.When you finish editing your entries in the Edit Regular Expression Mapping window, click Save.
Architecture Modeler displays the edited expression ID in the central pane of the window.

Note:

• Select the expression ID and choose Edit in the right-click menu to modify the pattern.
• Select it and choose Delete in the right-click menu to delete the pattern.

Editing Subexpressions
Editing subexpressions consists of two tasks:

• Grouping and quantifying subexpressions.
• Providing Scope for recursive regular expressions.

The subexpression for the entity you want to match must either be grouped or an exact match. Any other
input is not accepted.

1. In the Edit Regular Expression dialog, edit the expression manually, or use the buttons to modify te
expression.

a) Click Convert to Exact match to match the Item Value to the Matched Value sample only.
b) Click Convert to Group if you want to group the expression.
c) Click Revert Changes if you want to cancel any last changes or Apply Changes to save them.

Note: The subexpression for the entity you want to match must either be grouped or an exact
match. Any other input is not accepted.

2. If you need to qualify the expression further, edit the regular expression in the Item Value field
considering the following:

• Plus equates to the quantifier +, which denotes one or more occurrence.
• Star equates to the quantifier *, which denotes 0 or more occurrences.
• Optional equates to the quantifier ?, which denotes 0 or 1 occurrence.

3. Click Apply Changes after each modification.

4. Click OK when you are done editing your entries in Edit Regular Expression dialog.

Architecture Modeler displays the edited subexpression in the expression tree.

Defining an Extension with Architecture Modeler | 17

Mapping XPath Queries to XML File Searches
The EA parser extracts entity and relationship instances from XML using search patterns you define in
Architecture Modeler. In schematic form, the parser uses these patterns to:

• Match relationship instances in the code.
• Form the names of entity instances:

• Form the names of relationship instances:

Architecture Modeler's XPath query generator simplifies the task of defining these patterns. Follow the
steps below to map XPath queries to XML file searches.

1. Click the Files button in Architecture Modeler. Architecture Modeler displays the defined source file
types in the Name area in the central pane of the window, and the text of the corresponding sample in
the right-hand pane. If more than one source file type is listed, click the name of the type to display the
sample.

2. Define the XPath query the parser uses to match relationship instances:

• Select the node of interest in the sample, then use the right-click menu to form the XPath query. To
match the relationship OrgChartDefinesOrgChartEmployee in the XML code shown below, the
XPath query would be:

/def:OrgChart/def:Employees/child::def:Employee

To form the query, select the <Employees> node and choose Select All <Employees> children
elements > /child::def:Employee from the right-click menu.

• The XPath query is displayed in the XPath Query field. When you are satisfied with the query, click
Pick.

18 | Defining an Extension with Architecture Modeler

The Add Expression window opens.

3. Enter an expression ID, e.g. "employee" for the selected Employees xml element. All expression IDs are
displayed in a tree on the middle-bottom left-hand side of the screen in.

4. Select the expression ID and choose Edit from the right-click menu. The Edit XPath Mapping window
opens. The XPath Query for the matched relationship is displayed in the XPath Main Query field.

5. In the right-hand pane of the Edit XPath Mapping window, define the XPath query the parser uses to
form the names of entity instances. You do not need to define a query for the source file name:

• In the Entity group box, select the entity type you want to match in the Type drop-down,
ORGCHARTEMPLOYEE in our example.

• Use a subexpression of the XPath query you created in step 2 to match an attribute of the node. If
you want to form the entity name from the Name attribute, enter %./@name% in the cell beside the
Name attribute. That subexpression matches the employees "John Doe," "Ivan Ivanov," and "John

Defining an Extension with Architecture Modeler | 19

Smith" in our example. If you are matching a different attribute, title, for example, enter %./
@title% in the cell next to the Name attribute.

• Assuming you are defining a relationship between a source file and an extracted object, enter the
system variable %[ExpressionID].sourcefilename% in the cell beside the Source attribute. If
you are defining another type of relationship, reference-resolving information may be contained in a
different attribute.

6. Click Save in the Entity group box. The entity mapping is added to the list of mappings in the Mapping
List group box. Repeat this procedure for each entity mapping you want to define. The figure below
shows the entity mapping for our example.

7. In the right-hand pane of the Edit XPath Mapping window, define the XPath query the parser uses to
form the names of relationship instances:

• From the Type drop-down in the Relation group box, select the relationship type you want to map,
OrgChartDefinesOrgChartEmployee in our example.

• Map the subexpression for the left entity name. If you formed the entity name from the name attribute
of the node, enter %./@name% in the cell next to the Left Entity Name attribute. If you are defining a
relationship between a source file and an extracted object, enter the system variable %
[ExpressionID].sourcefilename% in the cell next to the Left Entity Name attribute.

• Map the subexpression for the right entity name. If you formed the entity name from the name
attribute of the node, enter %./@name% in the cell beside the Right Entity Name attribute.

8. Click Save in the Relation group box. The relationship mapping is added to the list of mappings in the
Mapping List group box. The figure below shows the relationship mapping for our example.

20 | Defining an Extension with Architecture Modeler

Note: To edit a mapping definition, select it in the Mapping List group box and click Edit. Follow
the procedure you used to define the mapping. To delete a mapping definition, select it in the
Mapping List group box and click Remove.

Defining an Extension with Architecture Modeler | 21

22 | Defining an Extension with Architecture Modeler

9. When you are satisfied with your entries in the Edit XPath Mapping window, click Save.

Architecture Modeler displays the search pattern for the matched relationship in the Match pattern area in
the central pane of the window.

Note: Select the search pattern for the matched relationship and choose Edit in the right-click menu
to modify the pattern. Select it and choose Delete from the right-click menu to delete the pattern.

Exporting the Extended Metamodel
Based on your input, Architecture Modeler creates a plug-in that defines an extension, or add-on, to the EA
metamodel. The add-on specifies the entity and relationship types of interest in the newly supported
source files.

To export the plug-in to EA:

1. Select the source file type for the extension in the Name area in the central pane of the Architecture
Modeler window.

2. Choose Export to EA in the right-click menu.

A Browse dialog opens.
3. Browse for the Plugins folder in the Enterprise Analyzer installation directory.
4. Click OK to export the extended metamodel. The plug-in has a name of the form

<SourceFileType>Plugin.xml.

Important: If you are using Windows 7 or Windows 8, make sure you are running the Architecture
Modeler with administrator rights. Otherwise the some operations might fail.

Reconfiguring Enterprise Analyzer
EA After exporting an extended metamodel to Enterprise Analyzer, you need to reconfigure EA for the new
source file type. To reconfigure EA after plug-in export,

1. Double-click \bin\rescan.exe in the Enterprise Analyzer installation directory.

The Configuration Manager window opens, with a check box in the Programming Languages folder for
the new extension.

2. Select the check box and click OK.

Make sure to upgrade the configuration of any workspaces you want to use the new extension in.

Troubleshooting the Extended Metamodel
The plug-in for an extended metamodel references a universal parser configuration file that defines the
search patterns EA uses to extract entities and relationships from newly supported files. EA issues the
following errors for problems it encounters processing the universal parser configuration file at verification:

• Error - 404 3 Error while processing XML file '%1' . Logged when the Universal Parser configuration file
is corrupt or missing.

• Error - 407 3 Error while processing regular expression '%1'. Logged when a regular expression defined
in the Universal Parser configuration file is invalid.

• Error - 409 3 Input source file '%1' not found. Logged when the file to be parsed is not found.
• Error - 411 3 Error creating expression with Id '%1'. Logged when an expression with a given Id failed to

be created.
• Error - 412 3 Expression Id '%1' already exists. Logged when an expression Id is not unique.

Defining an Extension with Architecture Modeler | 23

• Error - 413 3 Error in attribute value '%1': Unexisting expression Id. Logged when a non existing
expression Id is found in an attribute value.

• Error - 414 3 Error in attribute value '%1': Match not found. Logged when a not existing match index is
found in an attribute value.

• Error - 415 3 Error in attribute value '%1': Match group not found. Logged when a not existing match
group was detected in an attribute value.

• Error - 416 3 Error in attribute value '%1': Syntax error. Logged when an attribute value is not
syntactically correct.

• Error - 417 3 Error in attribute value '%1': Type mismatch. Logged when an attribute value contains type
mismatching.

24 | Defining an Extension with Architecture Modeler

Using Galleries
In Architecture Modeller you can export or import model extensions to a common location known as
Gallery.

1. To export to Gallery:

a) Select the extension you want to export and click Gallery>Export. The Export to Gallery window
opens.

b) Write a short description for the Gallery item and click OK. The Select gallery for export window
opens.

c) Browse to the current Gallery file location and click OK .

The selected model extension has been successfully exported to the selected gallery.

2. To Import from Gallery:

a) Click on Gallery > Import menu item. The Import from Gallery window appears.
b) Select the short description for the model extension you want to import from the gallery and click

OK.

Using Galleries | 25

	Contents
	Introducing Architecture Modeler
	Opening Architecture Modeler
	Understanding the Application-Level Metamodel
	Entity Type Properties
	Source Name Property
	Source Type Property
	Entity Flags

	Entity Type Attributes
	Relationship Type Properties
	Relationship Flags

	Defining an Extension with Architecture Modeler
	Loading a Metamodel
	Saving the Extended Metamodel
	Adding a Sample Source File
	Specifying Formatting Options for Text Files

	Defining Entity Types
	Defining Relationship Types
	Architecture Modeler Internal Language Functions Description
	Mapping Regular Expressions to Text File Searches
	Editing Subexpressions

	Mapping XPath Queries to XML File Searches
	Exporting the Extended Metamodel
	Reconfiguring Enterprise Analyzer
	Troubleshooting the Extended Metamodel

	Using Galleries

