
Enterprise Analyzer 3.5 Update 2

Creating
Components

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

Copyright © Micro Focus 2009-2015. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Enterprise Analyzer are trademarks or registered
trademarks of Micro Focus IP Development Limited or its subsidiaries or affiliated
companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2015-01-29

ii

Contents

Introducing Component Maker ... 5
Componentization Methods .. 5

Structure-Based Componentization ... 5
Computation-Based Componentization ..5
Domain-Based Componentization ..5
Event Injection ..6
Dead Code Elimination (DCE) ..6
Entry Point Isolation ... 6
Language Support ..6

Componentization Outputs ..7
Component Maker Basics ... 7

Getting Started in the Components Pane ...8
Creating Components .. 9
Extracting Components .. 9
Converting Components ...9
Deleting Components ...9
Viewing the Text for Generated Files ..10
Restricting the Display to Program-Related Components10
Working with Interactive Analysis Lists ..10
Viewing Audit Reports .. 10
Generating Coverage Reports ... 11

Setting Component Maker Options .. 13
Setting General Options ..13
Setting Interface Options ...14
Setting Optimize Options .. 14
Setting Document Options .. 15
Setting Component Type-Specific Options ..16

Setting Structure-Based Type-Specific Options ... 16
Setting Computation-Based Type-Specific Options ..17
Setting Domain-Based Type-Specific Options ..17
Setting Event Injection Type-Specific Options ..18

Setting Component Conversion Options ...19
Extracting Structure-Based Components ..20

Understanding Ranges ... 20
Specifying Ranges for Cobol Programs ... 20
Specifying Ranges for PL/I Programs .. 20
Specifying Ranges for RPG Programs ... 21

Understanding Parameterized Slices .. 21
Cobol Naming Conventions ..21
Parameterization Example ... 21

Extracting Structure-Based Cobol Components ... 22
Extracting Structure-Based PL/I Components .. 23
Extracting Structure-Based RPG Components ... 24

Extracting Computation-Based Components ..25
Understanding Variable-Based Extraction .. 25
Understanding Blocking .. 25
Understanding Parameterized Slices .. 26

Cobol Naming Conventions ..26
Parameterization Example ... 26

Extracting Computation-Based Cobol Components ..27

Contents | 3

Extracting Computation-Based Natural Components ... 27
Extracting Domain-Based Components ...29

Understanding Program Specialization in Simplified Mode .. 29
Understanding Program Specialization in Advanced Mode .. 31
Understanding Program Specialization Lite .. 31
Extracting Domain-Based Cobol Components ..32
Extracting Domain-Based PL/I Components ...33

Injecting Events ..35
Understanding Event Injection .. 35
Extracting Event-Injected Cobol Components ...36

Eliminating Dead Code .. 38
Generating Dead Code Statistics ..38
Understanding Dead Code Elimination ... 38
Extracting Optimized Components ..39

Performing Entry Point Isolation ...40
Extracting a Cobol Component with Entry Point Isolation ...40

Technical Details .. 41
Verification Options ... 41

Use Special IMS Calling Conventions ... 41
Override CICS Program Terminations ..41
Support CICS HANDLE Statements .. 41
Perform Unisys TIP and DPS Calls Analysis ..41
Perform Unisys Common-Storage Analysis ... 42
Relaxed Parsing ... 42
PERFORM Behavior for Micro Focus Cobol .. 42

Keep Legacy Copybooks Extraction Option ...43
How Parameterized Slices Are Generated for Cobol Programs ..44
Setting a Specialization Variable to Multiple Values ..45
Arithmetic Exception Handling .. 46

4 | Contents

Introducing Component Maker
The Component Maker tool includes the Dead Code Elimination slicing algorithm that lets you remove all of
the dead code from a program. You can create a self-contained program, called a component from the
sliced code or simply generate a Interactive Analysis list of sliced constructs for further analysis. You can
mark and colorize the constructs in the Interactive Analysis Source pane.

Componentization Methods
The supported componentization methods slice logic not only from program executables but associated
include files as well. Dead Code Elimination is an optimization tool built into the main methods and offered
separately in case you want to use it on a standalone basis.

Note: Component Maker does not follow CALL statements into other programs to determine whether
passed data items are actually modified by those programs. It makes the conservative assumption
that all passed data items are modified. That guarantees that no dependencies are lost.

Structure-Based Componentization
Structure-Based Componentization lets you build a component from a range of inline code, Cobol
paragraphs, for example. Use traditional structure-based componentization to generate a new component
and its complement. A complement is a second component consisting of the original program minus the
code extracted in the slice. Component Maker automatically places a call to the new component in the
complement, passing it data items as necessary.

For Cobol programs, you can generate parameterized slices, in which the input and output variables
required by the component are organized in group-level structures. These standard object-oriented data
interfaces make it easier to deploy the transformed component in modern service-oriented architectures.

Tip: You typically repeat structure-based componentization in incremental fashion until all of the
modules you are interested in have been created. For Cobol programs, you can avoid doing this
manually by specifying multiple ranges in the same extraction. Component Maker automatically
processes each range in the appropriate order.

Computation-Based Componentization
Computation-Based Componentization lets you build a component that contains all the code necessary to
calculate the value of a variable at a point in the program where it is used to populate a report attribute or
screen. As with structure-based componentization, you can generate parameterized slices that make it
easy to deploy the transformed component in distributed architectures.

For Cobol programs, you can use a technique called blocking to produce smaller, better-defined
parameterized components. Component Maker will not include in the slice any part of the calculation that
appears before the blocked statement. Fields from blocked input statements are treated as input
parameters of the component.

Domain-Based Componentization
Domain-Based Componentization lets you "specialize" a program based on the values of one or more
variables. The specialized program is typically intended for reuse "in place," in the original application, but
under new external circumstances.

Introducing Component Maker | 5

After a change in your business practices, for example, a program that invokes processing for a "payment
type" variable could be specialized on the value PAYMENT-TYPE = "CHECK". Component Maker isolates
every process dependent on the CHECK value to create a functionally complete program that processes
check payments only.

Two modes of domain-based componentization are offered:

• In simplified mode, you set the specialization variable to its value anywhere in the program except a
data port. The value of the variable is "frozen in memory." Operations that could change the value are
ignored.

• In advanced mode, you set the specialization variable to its value at a data port. Subsequent operations
can change the value, following the data and control flow of the program.

Use the simplified mode when you are interested only in the final value of a variable. Use the advanced
mode when you need to account for data coming into a variable.

Event Injection
Event Injection lets you adapt a legacy program to asynchronous, event-based programming models like
MQ Series. You specify candidate locations for event calls (reads/writes, screen transactions, or
subprogram calls, for example), the type of operation the event call performs (put or get), and the text of the
message. For a put operation, for example, Component Maker builds a component that sends the message
and any associated variable values to a queue, where the message can be retrieved by monitoring
applications.

Dead Code Elimination (DCE)
Dead Code Elimination is an option in each of the main component extraction methods, but you can also
perform it on a standalone basis. For each program analyzed for dead code, standalone DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Entry Point Isolation
Entry Point Isolation lets you build a component based on one of multiple entry points in a legacy program
(an inner entry point in a Cobol program, for example). Component Maker extracts only the functionality
and data definitions required for invocation from the selected point.

Entry Point Isolation is built into the main methods as an optional optimization tool. It's offered separately in
case you want to use it on a standalone basis.

Language Support
The following table describes the extraction methods available for Component Maker-supported languages.

Method COBOL PL/I Natural RPG

Structure-based Yes Yes No Yes

Computation-based Yes No Yes No

Domain-based Yes Yes No No

Event-Injection Yes No No No

Dead Code
Elimination

Yes Yes Yes Yes

6 | Introducing Component Maker

Method COBOL PL/I Natural RPG

Entry Point Isolation Yes No No No

Componentization Outputs
The first step in the componentization process, called extraction, generates the following outputs:

• The source file that comprises the component.
• An abstract repository object, or logical component, that gives you access to the source file in

Enterprise Analyzer.
• A Interactive Analysis list of sliced constructs, which you can mark and colorize in the Interactive

Analysis Source pane.

Note: Sliced data declarations are not marked and colorized.

The second step, called conversion, registers the source files in your repository, creating repository objects
for the generated components and their corresponding copybooks.

Component Maker lets you execute the extraction and conversion steps independently or in combination,
depending on your needs:

• If you want to analyze the components further, transform them, or even generate components from
them, you will want to register the component source files in your repository and verify them, just as you
would register and verify a source file from the original legacy application.

• If you are interested only in deploying the components in your production environment, you can skip the
conversion step and avoid cluttering your repository.

The figure below shows how the componentization outputs are represented in the Repository Browser after
conversion and verification of a COBOL component called DaysInYearCalc. PRODUPD is the program the
component was extracted from.

Component Maker Basics
Component Maker is a Interactive Analysis-based tool that you can invoke from within Interactive Analysis
itself:

• Start the tool in Interactive Analysis by selecting the program you want to slice in the Enterprise
Analyzer Repository Browser and choosing Analyze > Interactive Analysis. In the Interactive Analysis
window, choose View > Components.

Note: Choose View > Logic Analyzer if you are using Logic Analyzer.

Introducing Component Maker | 7

The Components pane consists of a hierarchy of views that let you specify the logical components you
want to manipulate:

• The Types view lists the types of logical components you can create.
• The List view displays logical components of the selected type.
• The Details view displays the details for the selected logical component in two tabs, Properties and

Components. The Properties tab displays extraction properties for the logical component. The
Components tab lists the files generated for the logical component.

Getting Started in the Components Pane
You do most of your work in Component Maker in the Components pane. To illustrate how you extract a
logical component in the Components pane, let's look at the simplest task you can perform in Component
Maker, Dead Code Elimination (DCE).

Note: The following exercise deliberately avoids describing the properties and options you can set for
DCE. See the relevant help topics for details.

1. In the Components pane, double-click Dead Code Elimination. The DCE pane opens. This view shows
the DCE-based logical components created for the programs in the current project.

Tip: Click the button on the tool bar to restrict the display to logical components created for the
selected program.

2. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

3. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,
Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

4. Double-click a component to edit its properties. The Component of program field contains the name of
the selected program.

5. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

Note: This field is shown only for COBOL programs.

6. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

7.
Click the button on the tool bar to navigate to the list of components, then repeat the procedure for
each component you want to extract.

8. In the list of components, select each component you want to extract and click the button on the tool
bar. You are prompted to confirm that you want to extract the components. Click OK.

9. The Extraction Options dialog opens. Set extraction options as described in the relevant help topic.
When you are satisfied with your choices, click Finish.

10.Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes to view the errors or warnings in the Activity Log. Otherwise, click No.

11.Assuming the extraction executed without errors, the view shown in the figure below opens. Click the
Components tab to display a list of the component source files that were generated for the logical
component and an audit report if you requested one. Click an item in the list to view the read-only text
for the item.

8 | Introducing Component Maker

Creating Components
To create a component, select the program you want to slice in the Interactive Analysis Objects pane. In

the Types view, select the type of logical component you want to create and click the button on the tool

bar. (You can also click the button in the List or Details view.) A dialog opens where you can enter the
name of the new component in the text field. Click OK.

Extracting Components
To extract a single logical component, select the component you want to extract in the List view and click

the button on the tool bar. To extract multiple logical components, select the type of the components

you want to extract in the Types view and click the button. You are prompted to confirm that you want to
continue. Click OK.

Tip: Logical components are converted as well as extracted if the Convert Resulting Components
to Legacy Objects is set in the Component Conversion Options pane.

Converting Components
To convert a single logical component, select the component you want to convert in the List view and click

the button on the tool bar. To convert multiple logical components, select the type of the components

you want to convert in the Types view and click the button. You are prompted to confirm that you want
to continue. Click OK.

Deleting Components
To delete a logical component, select it in the List view and click the button on the tool bar.

Note: Deleting a logical component does not delete the component and copybook repository objects.
You must delete these objects manually in the Repository Browser.

Introducing Component Maker | 9

Viewing the Text for Generated Files
To view the read-only text for a generated file, click the file in the list of generated files for in the
Components tab.

Tip: You can also view the text for a generated file in the Enterprise Analyzer main window. In the
Repository Browser Logical Component folder, click the component whose generated files you want to
view.

Restricting the Display to Program-Related
Components
To restrict the display to logical components of a given program, select the program and click the
button on the tool bar. The button is a toggle. Click it again to revert to the generic display.

Working with Interactive Analysis Lists
When you extract a logical component, Component Maker generates a Interactive Analysis list of sliced
constructs. The list has the same name as the component. You can view the list in the Logic Analyzer
folder in Clipper.

To mark and colorize sliced constructs in the list, select the list in Clipper and click the button on the
tool bar. To mark and colorize sliced constructs in a single file, select the file in the List view and click the

 button. To mark and colorize a single construct, select it in the File view and click the button. Click

the button again to turn off marking and colorizing.

Viewing Audit Reports
An audit report contains a list of changed and deleted lines in the source files (including copybooks) from
which a logical component was extracted. The report has a name of the form <component>.audit.txt. Click
the report in the Components tab to view its text.

An audit report optionally includes reason codes explaining why a line was changed or deleted. A reason
code is a number keyed to the explanation for a change (for example, reason code 12 for computation-
based componentization is RemoveUnusedVALUEs).

10 | Introducing Component Maker

Generating Coverage Reports
A coverage report shows the extent to which a source program has been "componentized":

• The top-left pane lists each component of a given type extracted from the program.
• The bottom-left pane lists the paragraphs in the program. Click on a paragraph to navigate to it in the

righthand pane.
• The righthand pane displays the text of the program with extracted code shaded in pink. The numbers

to the left of the extracted code identify the component to which it was extracted.

To generate coverage reports, click on the Component Maker tool bar. The reports are listed in the
Generated Document folder in the Repository Browser. Report names are of the form <program>-
<method>-Coverage. Double-click a report to view it in a Web browser.

Note: Reports are created for each program in the current project.

Introducing Component Maker | 11

12 | Introducing Component Maker

Setting Component Maker Options
It's a good idea to become familiar with the component extraction options before beginning your work in
Component Maker. Each extraction method has a different set of options, and each set differs for the
supported object types. Extraction options are project-based, so they apply to every program in the current
Enterprise Analyzer project.

You can set Component Maker extraction options in the standard Project Options window or in the
extraction options dialog that opens when you create a component. To open the standard Project Options
window, choose Options > Project Options. In the Project Options window, click the Component Maker
tab.

Setting General Options
The table below describes the Component Maker General extraction options.

Option Language Description

Add Program Name as Prefix COBOL, Natural, PL/I, RPG Prepend the name of the sliced program to the
component name you specified when you created
the component, in the form <program>
$<component>.

Generate Slice COBOL, Natural, PL/I, RPG Generate both a Interactive Analysis list of sliced
constructs and a component.

Keep Legacy Copybooks COBOL, RPG Do not generate modified copybooks for the
component. Modified copybooks have names of
the form <copybook>-<component>-n, where n is a
number ensuring the uniqueness of the copybook
name when multiple instances of a copybook are
generated for the same component.

Note: Component Maker issues a warning
if including the original copybooks in the
component would result in an error.

Keep Legacy Includes PL/I Do not generate modified program include files for
the component. The layout and commentary of the
sliced program is preserved.

Keep Legacy Macros PL/I Do not expand macros for the component. The
layout and commentary of the sliced program is
preserved.

Preserve Legacy Includes Natural Do not generate modified program include files for
the component.

Rename Program Entries COBOL Prepend the name of the component to inner entry
points, in the form <component>-<entrypoint>. This
ensures that entry point names are unique and that
the Enterprise Analyzer parser can verify the
component successfully. Unset this option if you
need to preserve the original names of the inner
entry points.

Setting Component Maker Options | 13

Setting Interface Options
The table below describes the Component Maker Interface extraction options.

Option Language Description

Blocking COBOL If you are performing a parameterized
computation-based extraction and want to use
blocking, click the More button. A dialog opens,
where you can select the blocking option and the
types of statements you want to block.

Note: Choose Use Blocking from
Component Definitions if you want to block
statements in a Interactive Analysis list.

Create CICS Program COBOL Create COMMAREAS for parameter exchange in
generated slices.

Generate Parameterized
Components

COBOL Extract parameterized slices.

Setting Optimize Options
The table below describes the Component Maker Optimize extraction options.

Option Language Description

No changes Cobol, Natural, RPG Do not remove unused data items from the
component.

Preserve Original Paragraphs Cobol Generate paragraph labels even for paragraphs
that are not actually used in the source code (for
example, empty paragraphs for which there are no
PERFORMs).

Note: This option also affects refactoring.
When the option is set, paragraphs in the
same "basic block" are defragmented
separately. Otherwise, they are
defragmented as a unit.

Remove Redundant NEXT
SENTENCE

Cobol Remove NEXT SENTENCE clauses by changing
the bodies of corresponding IF statements, such
that:

IF A=1
 NEXT SENTENCE
ELSE
 ...
END-IF.

is generated as:

IF NOT (A=1)
 ...
END-IF.

Remove/Replace Unused Fields
with FILLERs

Cobol, Natural, RPG Remove unused any-level structures and replace
unused fields in a used structure with FILLERs. Set
this option if removing a field completely from a

14 | Setting Component Maker Options

Option Language Description

structure would adversely affect memory
distribution.

Note: If you select Keep Legacy copybooks
in the General component extraction
options, Component Maker removes or
replaces with FILLERs only unused inline
data items.

Remove Unreachable Code Cobol, RPG Remove unreachable procedural statements.

Remove Unused Any-Level
Structures

Cobol, Natural, RPG Remove unused structures at any data level, if all
their parents and children are unused. For the
example below, D, E, F, and G are removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Remove Unused Level-1
Structures

Cobol, Natural, RPG Remove only unused level-1 structures, and then
only if all their children are unused. If, in the
following example, only B is used, only G is
removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Replace Section PERFORMs by
Paragraph PERFORMs

Cobol Replace PERFORM section statements by
equivalent PERFORM paragraph statements.

Roll-Up Nested IFs Cobol Roll up embedded IF statements in the top-level IF
statement, such that:

IF A=1
 IF B=2

is generated as:

IF (A=1) AND (B=2)

Setting Document Options
The table below describes the Component Maker Document extraction options.

Option Language Description

Comment-out Sliced-off Legacy
Code

COBOL, RPG Retain but comment out unused code in the
component source. In the Comment Prefix field,
enter descriptive text (up to six characters) for the
commented-out lines.

Setting Component Maker Options | 15

Option Language Description

Emphasize Component/Include
in Coverage Report

COBOL, Natural, PL/I, RPG Generate a Interactive Analysis list of sliced
constructs and colorize the constructs in the
Coverage Report.

Generate Audit Report COBOL Generate an audit report.

Generate Support Comments COBOL, RPG Include comments in the component source that
identify the component properties you specified,
such as the starting and ending paragraphs for a
structure-based COBOL component.

Include Reason Codes COBOL Include reason codes in the audit report
explaining why a line was changed or deleted.

Note: Generating reason codes is very
memory-intensive and may cause crashes
for extractions from large programs.

List Options in Component
Header and in Separate
Document

COBOL, RPG Include a list of extraction option settings in the
component header and in a separate text file. The
text file has a name of the form
<component>.BRE.options.txt.

Mark Modified Legacy Code COBOL, RPG Mark modified code in the component source. In
the Comment Prefix field, enter descriptive text
(up to six characters) for the modified lines.

Print Calculated Values as
Comments

COBOL For domain-based component extraction only,
print the calculated values of variables as
comments. Alternatively, you can substitute the
calculated values of variables for the variables
themselves.

Use Left Column for Marks COBOL, RPG Place the descriptive text for commented-out or
modified lines in the lefthand column of the line.
Otherwise, the text appears in the righthand
column.

Setting Component Type-Specific Options
Component type-specific extraction options determine how Component Maker performs tasks specific to
each componentization method.

Setting Structure-Based Type-Specific Options
The table below describes the Component Maker structure-based type-specific extraction options.

Option Language Description

Dynamic Call Cobol Generate in the complement a dynamic call to the
component. The complement will call a string
variable that must later be set outside the
complement to the name of the component.

Ensure Consistent Access to
External Resources

Cobol Monitor the integrity of data flow in the ranges you
are extracting. If you select this option, for example,
an extraction will fail if an SQL cursor used in the
component is open in the complement.

Range Only Cobol Do not generate a complement. You must set this
option to generate parameterized slices.

16 | Setting Component Maker Options

Option Language Description

Restrict User Ranges to
PERFORMed Ones

Cobol Do not extract paragraphs that do not have a
corresponding PERFORM statement. This option
is useful if you want to limit components created
with the Paragraph Pair or Section methods to
PERFORMed paragraphs.

Suppress Errors Cobol Perform a "relaxed extraction," in which errors that
would ordinarily cause the extraction to fail are
ignored, and comments describing the errors are
added to the component source. This option is
useful when you want to review extraction errors in
component source.

Setting Computation-Based Type-Specific Options
The table below describes the Component Maker computation-based type-specific extraction options.

Option Language Description

Generate HTML Trace Cobol Generate an HTML file with an extraction trace.
The trace has a name of the form
<component>.trace. To view the trace, click the
logical component for the extraction in the
Repository Browser Logical Component folder.
Double-click the trace file to view it in a Web
browser.

Statement Cobol Perform statement-based component extraction.

Variable Cobol Perform variable-based component extraction.

Note: Even if you select variable-based
extraction, Component Maker performs
statement-based extraction if the variable
you slice on is not an input variable for its
parent statement: that is, if the statement
writes to rather than reads from the
variable.

Setting Domain-Based Type-Specific Options
The table below describes the Component Maker domain-based type-specific extraction options.

Option Language Description

Maximum Number of Variable's
Values

Cobol The maximum number of values to be calculated
for each variable. Limit is 200. The lower the
maximum, the better performance and memory
usage you can expect.

Maximum Size of Variable to Be
Calculated

Cobol Maximum size in bytes for each variable value to
be calculated. The lower the maximum, the better
performance and memory usage you can expect.

Multiple Pass Cobol, PL/I Evaluate conditional logic again after detecting
dead branches. Because the ELSE branch of the
first IF below is dead, for example, the second IF
statement can be resolved in a subsequent pass:

MOVE 0 TO X.
IF X EQUAL 0 THEN

Setting Component Maker Options | 17

Option Language Description

 MOVE 1 TO Y
ELSE/p>
 MOVE 2 TO Y.
IF Y EQUAL 2 THEN...
ELSE...

Note: Multi-pass processing is very
resource-intensive, and not recommended
for extractions from large programs.

Remove Unused Assignments Cobol, PL/I Exclude from the component assignments that
cannot affect the computation (typically, an
assignment after which the variable is not used
until the next assignment or port).

Remove Unused Procedures PL/I Exclude unused procedures from the component.

Replace Procedure Calls by
Return Values

PL/I Substitute the return values of variables for
procedure calls in components.

Replace Variables by Their
Calculated Values

Cobol Substitute the calculated values of variables for the
variables themselves. Alternatively, you can print
the values as comments.

Note: Notice how the options in Remove
Unused Assignments and Replace
Variables by Their Calculated Values can
interact. If both options are set, then the
first assignment in the following fragment
will be removed:

MOVE 1 TO X.
DISPLAY X.
MOVE 2 TO X.

Single Pass Cobol, PL/I Evaluate conditional logic in one pass.

VALUEs Initialize Data Items Cobol Set variables declared with VALUE clauses to their
initial values. Otherwise, VALUE clauses are
ignored.

Setting Event Injection Type-Specific Options
The table below describes the Component Maker event injection type-specific extraction options.

Option Language Description

Error Handling Cobol The type of statement to execute in case of an
error connecting to middleware.

MQ Cobol Use an IBM MQ Series template for event
injection.

MQPUT Cobol Use the MQPUT method.

MQPUT1 Cobol Use the MQPUT1 method.

Queue Manager Cobol The name of the queue manager.

Target Queue Name Cobol The name of the target queue.

User Specified Event Cobol The name of the event to inject at the specified
injection points.

18 | Setting Component Maker Options

Setting Component Conversion Options
The table below describes the Component Maker Component Conversion extraction options.

Option Language Description

Convert Resulting Components Cobol, Natural, PL/I, RPG Convert as well as extract the logical component.

Keep Old Legacy Objects Cobol, Natural, PL/I, RPG Preserve existing repository objects for the
converted component (copybooks, for example). If
you select this option, delete the repository object
for the component itself before performing the
extraction, or the new component object will not
be created.

Remove Components after
Successful Conversion

Cobol, Natural, PL/I, RPG Remove logical components from the current
project after new component objects are created.

Replace Old Legacy Objects Cobol, Natural, PL/I, RPG Replace existing repository objects for the
converted component.

Note: This option controls conversion
behavior even when you perform the
conversion independently from the
extraction. If you are converting a
component independently and want to
change this setting, select Convert
Resulting Components to Legacy Objects,
specify the behavior you want, and then
deselect Convert Resulting Components to
Legacy Objects.

Setting Component Maker Options | 19

Extracting Structure-Based Components
Structure-Based Componentization lets you build a component from a range of inline code, Cobol
paragraphs, for example. Use traditional structure-based componentization to generate a new component
and its complement. A complement is a second component consisting of the original program minus the
code extracted in the slice. Component Maker automatically places a call to the new component in the
complement, passing it data items as necessary.

Alternatively, you can generate parameterized slices, in which the input and output variables required by
the component are organized in group-level structures. These standard object-oriented data interfaces
make it easy to deploy the transformed component in modern service-oriented architectures.

Understanding Ranges
When you extract a structure-based component from a program, you specify the range of code you want to
include in the component. The range varies: for Cobol programs, a range of paragraphs; for PL/I programs,
a procedure; for RPG programs, a subroutine or procedure.

Tip: You typically repeat Structure-Based Componentization in incremental fashion until all the
modules you are interested in have been created. For Cobol programs, you can avoid doing this
manually by specifying multiple ranges in the same extraction. Component Maker automatically
processes each range in the appropriate order. No complements are generated.

Specifying Ranges for Cobol Programs
For Cobol programs, you specify the paragraphs in the range for structure-based component extraction in
one of three ways:

• Select a paragraph PERFORM statement to set the range to the performed paragraph or paragraphs.
Component Maker includes each paragraph in the execution path between the first and last paragraphs
in the range, except when control is transferred by a PERFORM statement or by an implicit RETURN-
from-PERFORM statement.

• Select a pair of paragraphs to set the range to the selected paragraphs. You are responsible for
ensuring a continuous flow of control from the first to the last paragraph in the range.

• Select a section to set the range to the paragraphs in the section.

Note: For traditional structure-based COBOL components, Component Maker inserts in the
complement the labels of the first and last paragraphs in the range. The first paragraph is replaced in
the complement with a CALL statement followed by a GO TO statement. The last paragraph is always
empty.

The GO TO statement transfers control to the last paragraph. If the GO TO statement and its target
paragraph are not required to ensure correct call flow, they are omitted.

Specifying Ranges for PL/I Programs
For PL/I programs, the range you specify for structure-based component extraction is an internal procedure
that Component Maker extracts as an external procedure. The slice contains the required parameters for
global variables.

20 | Extracting Structure-Based Components

Specifying Ranges for RPG Programs
For RPG programs, the range you specify for structure-based component extraction is a subroutine or
procedure to extract as a component.

Understanding Parameterized Slices
For Cobol programs, you can generate parameterized slices, in which the input and output variables
required by the component are organized in group-level structures. The component contains all the code
required for input/output operations.

To extract a parameterized slice, select the Generate Parameterized Components option in the extraction
options dialog. Note that you cannot generate a complement for a parameterized Cobol slice.

Note: For parameterized structure- and computation-based componentization of Cobol programs, you
must select the Perform Program Analysis and Enable Parameterization of Components options
in the project verification options.

Cobol Naming Conventions
• Component input structures have names of the form BRE-INP-<STRUCT-NAME>. Input fields have

names of the form BRE-I-<FIELD-NAME>.
• Component Output structures have names of the form BRE-OUT-STRUCT-NAME. Output fields have

names of the form BRE-O-<FIELD-NAME>.

Parameterization Example
The example below illustrates how Component Maker generates parameterized slices. Consider a Cobol
program that contains the following structures:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4

Suppose that only A1 has been determined by Component Maker to be an input parameter, and only B1
and B2 to be output parameters. Suppose further that the component is extracted with input and output
data structures that use the default names, BRE-INP-INPUT-STRUCTURE and BRE-OUT-OUTPUT-
STRUCTURE, respectively, and with the default Optimization options set. The component contains the
following code:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4
LINKAGE SECTION.
 01 BRE-INP-INPUT-STRUCTURE
 03 BRE-I-A
 06 BRE-I-A1
01 BRE-OUT-OUTPUT-STRUCTURE

Extracting Structure-Based Components | 21

 03 BRE-O-B
 06 BRE-O-B1
 06 BRE-O-B2
PROCEDURE DIVISION
 USING BRE-INP-INPUT-STRUCTURE BRE-OUT-OUTPUT-STRUCTURE.
BRE-INIT-SECTION SECTION.
 PERFORM BRE-COPY-INPUT-DATA.

 (Business Logic)....

 *Enterprise Analyzer added statement
 GO TO BRE-EXIT-PROGRAM.
BRE-EXIT-PROGRAM-SECTION SECTION.
 BRE-EXIT-PROGRAM.
 PERFORM BRE-COPY-OUTPUT-DATA.
 GOBACK.
BRE-COPY-INPUT-DATA.
 MOVE BRE-I-A TO A.
BRE-COPY-OUTPUT-DATA.
 MOVE B TO BRE-O-B.

Extracting Structure-Based Cobol Components
Follow the instructions below to extract structure-based Cobol components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. In the Paragraphs field, click the here link. Choose one of the following methods in the pop-up menu:

• Paragraph Perform to set the range to the paragraph or paragraphs performed by the selected
PERFORM statement. Select the PERFORM statement in the Source pane, then click the link for the
current selection and choose Set in the pop-up menu.

• Pair of Paragraphs to set the range to the selected paragraphs. Select the first paragraph in the pair
in the Source pane, then click the link for the current selection in the From field and choose Set in
the drop-down menu. Select the second paragraph in the pair, then click the link for the current
selection in the To field and choose Set in the pop-up menu.

Tip: You can set the From and To fields to the same paragraph.

• Section to set the range to the paragraphs in the section. Select the section in the Source pane,
then click the link for the current selection and choose Set in the pop-up menu.

Note: To delete a range, select the link for the numeral that identifies the range and choose Delete
in the pop-up menu. To unset a PERFORM, paragraph, or section, click it and choose Unset in the
pop-up menu. To navigate quickly to a PERFORM, paragraph, or section in the source, click it and
choose Locate in the pop-up menu.

3. Repeat this procedure for each range you want to extract. You can use any combination of methods.
The figure below shows how the properties tab might look for a multi-range extraction.

22 | Extracting Structure-Based Components

4. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

5. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

6. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

7. The Extraction Options dialog opens. Set options for the extraction and click Finish.

8. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Extracting Structure-Based PL/I Components
Follow the instructions below to extract structure-based PL/I components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. Select the program entry point in the Source pane. In the Point field, click the link for the current
selection and choose Set in the pop-up menu.

Note: To unset an entry point, click it and choose Unset in the pop-up menu. To navigate quickly
to an entry point in the source, click it and choose Locate in the pop-up menu.

Extracting Structure-Based Components | 23

3. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and click Finish.

6. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Extracting Structure-Based RPG Components
Follow the instructions below to extract structure-based RPG components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. Select the subroutine or procedure you want to slice in the Source pane. In the Point field, click the link
for the current selection and choose Set in the pop-up menu.

Note: To unset an entry point, click it and choose Unset in the pop-up menu. To navigate quickly
to an entry point in the source, click it and choose Locate in the pop-up menu.

3. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and click Finish.

6. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

24 | Extracting Structure-Based Components

Extracting Computation-Based
Components

Computation-Based Componentization lets you build a component that contains all the code necessary to
calculate the value of a variable at a point in the program where it is used to populate a report attribute or
screen. You can generate parameterized computation-based slices that make it easy to deploy the
transformed component in distributed architectures.

Understanding Variable-Based Extraction
When you perform a computation-based extraction, you can slice by statement or by variable. What's the
difference? Suppose you are interested in calculations involving the variable X in the example below:

MOVE 1 TO X
MOVE 1 TO Y
DISPLAY X Y.

If you perform statement-based extraction (if you slice on the statement DISPLAY X Y), all three statements
will be included in the component. If you perform variable-based extraction (if you slice on the variable X),
only the first and third statements will be included. In variable-based extraction, that is, Component Maker
tracks the dependency between X and Y, and having determined that the variables are independent,
excludes the MOVE 1 to Y statement.

Note: If you slice on a variable for a Cobol component, you must select Variable in the Component
Type Specific options for computation-based extraction.

Understanding Blocking
For Cobol programs, you can use a technique called blocking to produce smaller, better-defined
parameterized components. Component Maker will not include in the slice any part of the calculation that
appears before the blocked statement. Fields from blocked input statements are treated as input
parameters of the component.

Consider the following fragment:

INP1.
 DISPLAY "INPUT YEAR (1600-2099)".
 ACCEPT YEAR.
 CALL 'PROG' USING YEAR.
 IF YEAR > 2099 OR YEAR < 1600 THEN
 DISPLAY "WRONG YEAR".

If the CALL statement is selected as a block, then both the CALL and ACCEPT statements from the
fragment are not included in the component, and YEAR is passed as a parameter to the component.

Tip: Specify blocking in the blocking dialog accessed from the Interface options pane.

Extracting Computation-Based Components | 25

Understanding Parameterized Slices
For Cobol programs, you can generate parameterized slices, in which the input and output variables
required by the component are organized in group-level structures. The component contains all the code
required for input/output operations.

To extract a parameterized slice, select the Generate Parameterized Components option in the extraction
options dialog. Note that you cannot generate a complement for a parameterized Cobol slice.

Note: For parameterized structure- and computation-based componentization of Cobol programs, you
must select the Perform Program Analysis and Enable Parameterization of Components options
in the project verification options.

Cobol Naming Conventions
• Component input structures have names of the form BRE-INP-<STRUCT-NAME>. Input fields have

names of the form BRE-I-<FIELD-NAME>.
• Component Output structures have names of the form BRE-OUT-STRUCT-NAME. Output fields have

names of the form BRE-O-<FIELD-NAME>.

Parameterization Example
The example below illustrates how Component Maker generates parameterized slices. Consider a Cobol
program that contains the following structures:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4

Suppose that only A1 has been determined by Component Maker to be an input parameter, and only B1
and B2 to be output parameters. Suppose further that the component is extracted with input and output
data structures that use the default names, BRE-INP-INPUT-STRUCTURE and BRE-OUT-OUTPUT-
STRUCTURE, respectively, and with the default Optimization options set. The component contains the
following code:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4
LINKAGE SECTION.
 01 BRE-INP-INPUT-STRUCTURE
 03 BRE-I-A
 06 BRE-I-A1
01 BRE-OUT-OUTPUT-STRUCTURE
 03 BRE-O-B
 06 BRE-O-B1
 06 BRE-O-B2
PROCEDURE DIVISION
 USING BRE-INP-INPUT-STRUCTURE BRE-OUT-OUTPUT-STRUCTURE.
BRE-INIT-SECTION SECTION.

26 | Extracting Computation-Based Components

 PERFORM BRE-COPY-INPUT-DATA.

 (Business Logic)....

 *Enterprise Analyzer added statement
 GO TO BRE-EXIT-PROGRAM.
BRE-EXIT-PROGRAM-SECTION SECTION.
 BRE-EXIT-PROGRAM.
 PERFORM BRE-COPY-OUTPUT-DATA.
 GOBACK.
BRE-COPY-INPUT-DATA.
 MOVE BRE-I-A TO A.
BRE-COPY-OUTPUT-DATA.
 MOVE B TO BRE-O-B.

Extracting Computation-Based Cobol Components
Follow the instructions below to extract computation-based Cobol components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. Select the variable or statement you want to slice on in the Source pane. In the Point field, click the link
for the current selection and choose Set in the pop-up menu.

Note: If you slice on a variable, you must select Variable in the Component Type Specific options
for computation-based extraction.

To unset a variable or statement, click it and choose Unset in the pop-up menu. To navigate
quickly to a variable or statement in the source, click it and choose Locate in the pop-up menu.

3. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

4. If you plan to specify Use Blocking from Component Definitions in the Interface options, select the
list of statements to block in Clipper, then click the link for the current selection in the Block statements
field and choose Set in the drop-down menu.

Note: Choose Show to display the current list in Clipper. Choose (none) to unset the list. For
Clipper usage, see Analyzing Programs in the product documentation set.

5. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

6. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

7. The Extraction Options dialog opens. Set options for the extraction and click Finish.

8. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Extracting Computation-Based Natural Components
Follow the instructions below to extract computation-based Natural components.

Extracting Computation-Based Components | 27

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. Select the variable or statement you want to slice on in the Source pane. In the Point field, click the link
for the current selection and choose Set in the pop-up menu.

Note: If you slice on a variable, you must select Variable in the Component Type Specific options
for computation-based extraction.

To unset a variable or statement, click it and choose Unset in the pop-up menu. To navigate
quickly to a variable or statement in the source, click it and choose Locate in the pop-up menu.

3. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and click Finish.

6. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

28 | Extracting Computation-Based Components

Extracting Domain-Based Components
Domain-Based Componentization lets you "specialize" a program based on the values of one or more
variables. The specialized program is typically intended for reuse "in place," in the original application but
under new external circumstances.

After a change in your business practices, for example, a program that invokes processing for a "payment
type" variable could be specialized on the value PAYMENT-TYPE = "CHECK". Component Maker isolates
every process dependent on the CHECK value to create a functionally complete program that processes
check payments only.

Two modes of domain-based componentization are offered:

• In simplified mode, you set the specialization variable to its value anywhere in the program except a
data port. The value of the variable is "frozen in memory." Operations that could change the value are
ignored.

• In advanced mode, you set the specialization variable to its value at a data port. Subsequent operations
can change the value, following the data and control flow of the program.

Use the simplified mode when you are interested only in the final value of a variable, or when a variable
never receives a value from outside the program. Use the advanced mode when you need to account for
data coming into a variable (when the variable's value is repeatedly reset, for example). The next two
sections describe these modes in detail.

Tip: Component Maker lets you set the specialization variable to a range of values (between 1 and 10
inclusive, for example) or to multiple values (not only CHECK but CREDIT-CARD, for example). You
can also set the variable to all values not in the range or set of possible values (every value but
CHECK and CREDIT-CARD, for example).

Understanding Program Specialization in Simplified Mode
In the simplified mode of program specialization, you set the specialization variable to its value anywhere in
the program except a data port. The value of the variable is "frozen in memory." The table below shows the
result of using the simplified mode to specialize on the values CURYEAR = 1999, MONTH = 1,
CURMONTH = 12,DAY1 = 4, and CURDAY = 7.

Source Program Specialized Program Comment

INP3.
DISPLAY "INPUT DAY".
ACCEPT DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF DAY1 > tt of MONTHS
(MONTH) OR DAY1 < 1
THEN
DISPLAY "WRONG DAY".

INP3.
DISPLAY "INPUT DAY".
MOVE YEAR TO tmp1.
PERFORM ISV.
IF 0004 > TT OF
MONTHS(MONTH) THEN
DISPLAY "WRONG DAY"
END-IF.

ACCEPT removed.

No changes in these statements
(YEAR is a "free" variable).

Value for DAY1 substituted. The 2nd
condition for DAY1 is removed as
always false. END-IF added.

MAINCALC.
IF YEAR > CURYEAR
THEN
MOVE YEAR TO
INT0001
MOVE CURYEAR TO

MAINCALC.
IF YEAR > 1999
THEN
MOVE YEAR TO INT0001
MOVE 1999 TO
INT0002

Value for CURYEAR substituted.

Extracting Domain-Based Components | 29

Source Program Specialized Program Comment

INT0002
MOVE 1 TO direction
ELSE
MOVE YEAR TO
INT0002
MOVE 2 TO direction
MOVE CURYEAR TO
INT0001.

MOVE 1 TO direction
ELSE
MOVE YEAR TO INT0002
MOVE 2 TO direction
MOVE 1999 TO
INT0001.

MOVE int0001 TO
tmp3.
MOVE int0002 TO
tmp4.
IF YEAR NOT EQUAL
CURYEAR THEN
PERFORM YEARS.

MOVE int0002 TO tmp4.
IF YEAR NOT = 1999 THEN
PERFORM YEARS.

Component Maker removes the first
line for tmp3, because this variable is
never used again. Value for
CURYEAR substituted.

IF MONTH > CURMONTH
THEN
MOVE MONTH TO
INT0001
MOVE CURMONTH TO
INT0002
MOVE 1 TO direction

 Value for MONTH substituted, making
the condition (1>12) false, so
Component Maker removes the IF
branch and then the whole
conditional statement as such.

ELSE
MOVE MONTH TO
INT0002
MOVE 2 TO direction
MOVE CURMONTH TO
INT0001.

MOVE 0001 TO
INT0002
MOVE 2 TO direction
MOVE 0012 TO
INT0001.

The three unconditional statements
remain from the former ELSE branch.
Value for CURMONTH substituted.

IF MONTH NOT EQUAL
CURMONTH THEN
PERFORM MONTHS.

PERFORM MONTHS. The condition is true, so the
statement is made unconditional.

IF DAY1 > CURDAY THEN
MOVE DAY1 TO
INT0001
MOVE CURDAY TO
INT0002
MOVE 1 TO direction

 This condition (4>7) is false, so
Component Maker removes the IF
branch and then the whole
conditional statement as such.

ELSE
MOVE DAY1 TO
INT0002
MOVE 2 TO direction
MOVE CURDAY TO
INT0001.

MOVE 4 TO INT0002
MOVE 2 TO direction
MOVE 0007 TO
INT0001.

The three unconditional statements
remain from the former ELSE branch.
Values for DAY1 and CURDAY
substituted.

IF day1 NOT EQUAL
CURDAY THEN
PERFORM DAYS.

PERFORM DAYS. The condition is true, so the
statement is made unconditional.

30 | Extracting Domain-Based Components

Understanding Program Specialization in Advanced Mode
In the advanced mode of program specialization, you set the specialization variable to its value at a data
port: any statement that allows the program to receive the variable's value from a keyboard, database,
screen, or other input source. Subsequent operations can change the value, following the data and control
flow of the program. The table below shows the result of using the advanced mode to specialize on the
values MONTH = 1 and DAY1 = 4.

Source Program Specialized Program Comment

INP1.
DISPLAY "INPUT YEAR
(1600-2099)".
ACCEPT YEAR.
IF YEAR > 2099 OR YEAR
< 1600 THEN
DISPLAY "WRONG YEAR".

INP1.
DISPLAY "INPUT YEAR
(1600-2099)".
ACCEPT YEAR.
IF YEAR > 2099 OR YEAR
< 1600 THEN
DISPLAY "WRONG YEAR".

No changes in these statements
(YEAR is a "free" variable).

INP2.
DISPLAY "INPUT
MONTH".
ACCEPT MONTH.
IF MONTH > 12 OR MONTH
< 1 THEN
DISPLAY "WRONG MONTH".

INP2.
DISPLAY "INPUT MONTH".
MOVE 0001 TO MONTH.

ACCEPT is replaced by MOVE with
the set value for MONTH.

With the set value, this IF statement
can never be reached, so Component
Maker removes it.

INP3.
DISPLAY "INPUT DAY".
ACCEPT DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF DAY1 > tt of MONTHS
(MONTH) OR DAY1 < 1
THEN
DISPLAY "WRONG DAY".

INP3.
DISPLAY "INPUT DAY".
MOVE 0004 TO DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF 0004 > TT OF
MONTHS(MONTH) THEN
DISPLAY "WRONG DAY"
END-IF.

ACCEPT is replaced by MOVE with
the set value for DAY1.

No changes in these statements
(YEAR is a "free" variable).

The 2nd condition for DAY1 is
removed as always false. END-IF
added.

Understanding Program Specialization Lite
Ordinarily, you must turn on the Perform Program Analysis option in the project verification options before
verifying the Cobol program you want to specialize. If your application is very large, however, and you know
that the specialization variable is never reset, you can save time by skipping program analysis during
verification and using the simplified mode to specialize the program, so-called "program specialization lite."

Component Maker gives you the same result for a lite extraction as it would for an ordinary domain
extraction in simplified mode, with one important exception. Domain extraction lite cannot calculate the
value of a variable that depends on the value of the specialization variable. Consider the following example:

01 X Pic 99.
 01 Y Pic 99.
 ...
 MOVE X To Y.
 IF X = 1
 THEN ...
 ELSE ...
 END-IF.
 ...
 IF Y = 1
 THEN ...

Extracting Domain-Based Components | 31

 ELSE ...
 END-IF.

If you set X to 1, both simplified mode and domain extraction lite resolve the IF X = 1 condition correctly.
Only simplified mode, however, resolves the IF Y = 1 condition.

Extracting Domain-Based Cobol Components
Follow the instructions below to extract domain-based Cobol components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. In the Data Item Value field, click the here link. Choose one of the following methods in the pop-up
menu:

• HyperCode List to set the specialization variable to the constant values in a list of constants.
• User Specified Value(s) to set the specialization variable to a value or values you specify.

3. Select the specialization variable or its declaration in the Source pane. Click the link for the current
selection in the Data Item field and choose Set in the drop-down menu. For advanced program
specialization, you can enter a structure in Data Item and a field inside the structure in Field.

Note: To delete an entry, select the link for the numeral that identifies it and choose Delete in the
pop-up menu. To unset an entry, click it and choose Unset in the pop-up menu. To navigate quickly
to a variable or declaration in the source, click it and choose Locate in the pop-up menu.

4. In the Comparison field, click the link for the current comparison operator and choose:

• equals to set the specialization variable to the specified values.
• not equals to set the specialization variable to every value but the specified values.

5. If you chose HyperCode List, select the list of constants in Clipper, then click the link for the current
selection in the List Name field and choose Set in the drop-down menu.

Note: Choose Show to display the current list in Clipper. Choose (none) to unset the list. For
Clipper usage, see Analyzing Programs in the product documentation set.

6. If you chose User Specified Value(s), click the here link in the Values field. Choose one of the
following methods in the pop-up menu:

• Value to set the specialization variable to one or more values. In the Value field, click the link for the
current selection. A dialog opens where you can enter a value in the text field. Click OK.

Note: Put double quotation marks around a string constant with blank spaces at the beginning
or end.

• Value Range to set the specialization variable to a range of values. In the Lower field, click the link
for the current selection. A dialog opens where you can enter a value for the lower range end in the
text field. Click OK. Follow the same procedure for the Upper field.

Note: For value ranges, the specialization variable must have a numeric data type. Only
numeric values are supported.

7. Repeat this procedure for each value or range of values you want to set and for each variable you want
to specialize on. For a given specialization variable, you can specify the methods in any combination.
For a given extraction, you can specify simplified and advanced modes in any combination.

Note: To delete a value or range, select the link for the numeral that identifies it and choose Delete
in the pop-up menu.

8. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

32 | Extracting Domain-Based Components

9. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

10.Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

11.The Extraction Options dialog opens. Set options for the extraction and click Finish.
12.Component Maker performs the extraction. You are notified that the extraction is complete. If the

extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Extracting Domain-Based PL/I Components
Follow the instructions below to extract domain-based PL/I components.

Note: Not-equals comparisons and value ranges are not supported in PL/I.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. In the Data Item Value field (to set a single specialization variable) or the Value for Data Item List (to
set a list of specialization variables), click the here link. Choose one of the following methods in the pop-
up menu:

• HyperCode List to set the specialization variable(s) to the constant values in a list of constants.
• User Specified Value(s) to set the specialization variable(s) to a value or values you specify.

3. If you are setting:

• A single specialization variable, select the specialization variable or its declaration in the Source
pane. Click the link for the current selection in the Data Item field and choose Set in the drop-down
menu. For advanced program specialization, you can enter a structure in Data Item and a field
inside the structure in Field.

• A list of specialization variables, click the link for the current selection and choose the list of variables
or declarations to use in the pop-up menu.

Note: To delete an entry, select the link for the numeral that identifies it and choose Delete in the
pop-up menu. To unset an entry, click it and choose Unset in the pop-up menu. To navigate quickly
to a variable or declaration in the source, click it and choose Locate in the pop-up menu.

4. If you chose HyperCode List, select the list of constants in Clipper, then click the link for the current
selection in the List Name field and choose Set in the drop-down menu.

Note: Choose Show to display the current list in Clipper. Choose (none) to unset the list. For
Clipper usage, see Analyzing Programs in the product documentation set.

5. If you chose User Specified Value(s), click the here link in the Values field. Choose one of the
following methods in the pop-up menu:

• Value to set the specialization variable to one or more values. In the Value field, click the link for the
current selection. A dialog opens where you can enter a value in the text field. Click OK.

Note: Put double quotation marks around a string constant with blank spaces at the beginning
or end.

• Value Range to set the specialization variable to a range of values. In the Lower field, click the link
for the current selection. A dialog opens where you can enter a value for the lower range end in the
text field. Click OK. Follow the same procedure for the Upper field.

Extracting Domain-Based Components | 33

Note: For value ranges, the specialization variable must have a numeric data type. Only
numeric values are supported.

6. Repeat this procedure for each value or range of values you want to set and for each variable you want
to specialize on. For a given specialization variable, you can specify the methods in any combination.
For a given extraction, you can specify simplified and advanced modes in any combination.

Note: To delete a value or range, select the link for the numeral that identifies it and choose Delete
in the pop-up menu.

7. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

8. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

9. The Extraction Options dialog opens. Set options for the extraction and click Finish.

10.Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

34 | Extracting Domain-Based Components

Injecting Events
Event Injection lets you adapt a legacy program to asynchronous, event-based programming models like
MQ Series. You specify candidate locations for event calls (reads/writes, screen transactions, or
subprogram calls, for example); the type of operation the event call performs (put or get); and the text of the
message.

For a put operation, for example, Component Maker builds a component that sends the message and any
associated variable values to a queue, where the message can be retrieved by monitoring applications.

Tip: The HyperView Clipper pane lets you create lists of candidate locations for event injection. Use
the predefined searches for file ports, screen ports, and subprogram calls, or define your own
searches. For Clipper pane usage, see Analyzing Programs in the product document set.

Understanding Event Injection
Suppose that you have a piece of code that checks whether the variables YEAR and MONTH belong to
admissible ranges:

IF YEAR > 2099 OR YEAR < 1600 THEN
 MOVE "WRONG YEAR" TO DOW1
 ELSE
 IF MONTH > 12 OR MONTH < 1 THEN
 MOVE "WRONG MONTH" TO DOW1
 ELSE
 MOVE YEAR TO tmp1
 PERFORM ISV

Suppose further that you want to send a message to your MQ Series middleware each time valid dates are
entered in these fields, along with the value that was entered for YEAR. Here, in schematic form, is the
series of steps you would perform in Component Maker to accomplish these tasks.

1. In HyperView, create a list that contains the MOVE YEAR TO tmp1 statement in Clipper.
2. In Component Maker, create a logical component with the following properties:

• Component of program: select the program that contains the fragment.
• List: select the HyperView list.
• Insert: specify where you want event-handling code to be injected, before or after the injection point.

In our case, after the MOVE statement.
• Operation: select the type of operation you want the event-handling code to perform, put or get.

Since we want to send a message to middleware, we choose put.
• Include Values: specify whether you want the values of variables at the injection point to be included

with the generated message. Since we want to send the value of YEAR with the message, we
choose true.

• Message: specify the text of the message you want to send. In our case, the text is "Valid dates
entered".

3. In Component Maker, extract the logical component, making sure to set the Use Middleware drop-
down in the Component Type Specific options for the extraction to MQ.

The result of the extraction appears below. Notice that Component Maker has arranged to insert the text of
the message and the value of the YEAR variable into the buffer, and added the appropriate PERFORM
PUTQ statements to the code.

IF YEAR > 2099 OR YEAR < 1600 THEN
 MOVE "WRONG YEAR" TO DOW1
 ELSE

Injecting Events | 35

 IF MONTH > 12 OR MONTH < 1 THEN
 MOVE "WRONG MONTH" TO DOW1
 ELSE
 MOVE '<TEXT Value= "Valid dates
 entered"></TEXT>' TO BUFFER
 PERFORM PUTQ
 STRING '<VAR Name= "YEAR" Value=
 "' YEAR '"></VAR>'
 '<VAR Name= "TMP1" Value= "' TMP1 '"></VAR>'
 DELIMITED BY SIZE
 INTO BUFFER END-STRING
 PERFORM PUTQ
 MOVE YEAR TO tmp1
 PERFORM ISV

Extracting Event-Injected Cobol Components
Follow the instructions below to extract event-injected Cobol components.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. In the Insertion Points field, click the here link. In Clipper, select the list of injection points, then click
the link for the current selection in the List field and choose Set in the drop-down menu.

Note: Choose Show to display the current list in Clipper. Choose (none) to unset the list. For
Clipper usage, see Analyzing Programs in the product documentation set.

3. In the Insert field, click the link for the current selection and choose:

• after to inject event-handling code after the selected injection point.
• before to inject event-handling code before the selected injection point.

4. In the Operation field, click the link for the current selection and choose:

• put to send a message to middleware.
• get to receive a message from middleware.

5. In the Include Values field, click the link for the current selection and choose true if you want the values
of variables at the injection point to be included with the generated message, false otherwise.

6. In the Message field, click the link for the current message. A dialog opens where you can enter the text
for the event message in the text field. Click OK.

7. Repeat this procedure for each list of candidate injection points. For a given extraction, you can specify
the properties for the selected lists in any combination. The figure below shows how the properties tab
might look for an extraction with multiple lists.

36 | Injecting Events

8. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

9. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

10.Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

11.The Extraction Options dialog opens. Set options for the extraction and click Finish.

12.Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Injecting Events | 37

Eliminating Dead Code
Dead Code Elimination (DCE) is an option in each of the main component extraction methods, but you can
also perform it on a standalone basis. For each program analyzed for dead code, DCE generates a
component that consists of the original source code minus any unreferenced data items or unreachable
procedural statements. Optionally, you can have DCE comment out dead code in Cobol and Natural
applications, rather than remove it.

Note: Use the batch DCE feature to find dead code across your project. If you are licensed to use the
Batch Refresh Process (BRP), you can use it to perform dead code elimination across a workspace.

Generating Dead Code Statistics
Set the Perform Dead Code Analysis option in the project verification options if you want the parser to
collect statistics on the number of unreachable statements and dead data items in a program, and to mark
the constructs as dead in Interactive Analysis. You can view the statistics in the Legacy Estimation tool, as
described in Analyzing Projects in the product documentation set.

Note: You do not need to set this option to perform dead code elimination in Component Maker.

For COBOL programs, you can use a DCE coverage report to identify dead code in a source program. The
report displays the text of the source program with its "live," or extracted, code shaded in pink.

Understanding Dead Code Elimination
Let's look at a simple before-and-after example to see what you can expect from Dead Code Elimination.

Before:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 01 DEAD-VARS.
 05 DEAD1 PIC 9.
 05 DEAD2 PIC X.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.
 MOVE 2 TO USED1.

 DEAD-PARA1.
 MOVE 0 TO DEAD2.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

38 | Eliminating Dead Code

After:
WORKING-STORAGE SECTION.

 01 USED-VARS.
 05 USED1 PIC 9.

 PROCEDURE DIVISION.

 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

Extracting Optimized Components
Follow the instructions below to extract optimized components for all supported languages.

1. Select the program you want to analyze for dead code in the Interactive Analysis Objects pane and click

the button. To analyze the entire project of which the program is a part, click the button.

2. A dialog opens where you can enter the name of the new component in the text field. Click OK.
Component Maker adds the new components to the list of components. If you selected batch mode,
Component Maker creates a logical component for each program in the project, appending _n to the
name of the component.

3. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

4. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

5. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

6. The Extraction Options dialog opens. Set options for the extraction and click Finish.

7. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

Eliminating Dead Code | 39

Performing Entry Point Isolation
Entry Point Isolation lets you build a component based on one of multiple entry points in a legacy program
(an inner entry point in a Cobol program, for example) rather than the start of the Procedure Division.
Component Maker extracts only the functionality and data definitions required for invocation from the
selected point.

Entry Point Isolation is built into the main methods as an optional optimization tool. It's offered separately in
case you want to use it on a stand-alone basis.

Extracting a Cobol Component with Entry Point Isolation
Follow the instructions below to extract a Cobol Component with entry point isolation.

1.
Select the program you want to slice in the HyperView Objects pane and click the button. A dialog
opens where you can enter the name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click the component to edit its
properties.

2. In the Entry Point to use field, click the link for the current selection and choose the entry point you
want to use in the pop-up menu. To unset an entry point, click it and choose Unset in the pop-up menu.

3. In the Description field, click the here link to open a text editor where you can enter a description of the
component. The description appears in the box below the Description field in the Properties tab and in
the Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical component. You are prompted to
confirm that you want to continue. Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and click Finish.

6. Component Maker performs the extraction. You are notified that the extraction is complete. If the
extraction completed without errors or warnings, click OK to continue. If the extraction completed with
errors or warnings, click Yes in the notification dialog to view the errors or warnings in the Activity Log.
Otherwise, click No.

40 | Performing Entry Point Isolation

Technical Details
This appendix gives technical details of Component Maker behavior for a handful of narrowly focused
verification and extraction options; for Cobol parameterized slice generation; and for Cobol arithmetic
exception handling.

Verification Options
This section describes how a number of verification options may affect component extraction. For more
information on the verification options, see Preparing Projects in the product documentation set.

Use Special IMS Calling Conventions
Select Use Special IMS Calling Conventions in the project verification options if you want to show
dependencies and analyze CALL 'CBLTDLI' statements for the CHNG value of their first parameter, and if
the value of the third parameter is known, then generate Calls relationship in the repository.

For example:

MOVE 'CHNG' TO WS-IMS-FUNC-CODE
MOVE 'MGRW280' TO WS-IMS-TRANSACTION
CALL 'CBLTDLI' USING WS-IMS-FUNC-CODE
 LS03-ALT-MOD-PCB
 WS-IMS-TRANSACTION

When both WS-IMS-FUNC-CODE = 'CHNG' and WS-IMS-TRANSACTION have known values, the
repository is populated with the CALL relationship between the current program and the WS-IMS-
TRANSACTION <value> program (in the example, 'MGRW280').

Override CICS Program Terminations
Select Override CICS Program Terminations in the project verification options if you want the parser to
interpret CICS RETURN, XCTL, and ABEND commands in Cobol files as not terminating program
execution.

If the source program contains CICS HANDLE CONDITION handlers, for example, some exceptions can
arise only on execution of CICS RETURN. For this reason, if you want to see the code of the
corresponding handler in the component, you need to check the override box. Otherwise, the call of the
handler and hence the handler's code are unreachable.

Support CICS HANDLE Statements
Select Support CICS HANDLE statements in the project verification options if you want the parser to
recognize CICS HANDLE statements in Cobol files. EXEC CICS HANDLE statements require processing
to detect all dependencies with error-handling statements. That may result in adding extra paragraphs to a
component.

Perform Unisys TIP and DPS Calls Analysis
Select Perform Unisys TIP and DPS Calls Analysis in the project verification options if you are working
on a project containing Unisys 2200 Cobol files and need to perform TIP and DPS calls analysis.

Technical Details | 41

This analysis tries to determine the name (value of the data item of size 8 and offset 20 from the beginning
of form-header) of the screen form used in input/output operation (at CALL 'D$READ', 'D$SEND', 'D
$SENDF', 'D$SENDF1') and establish the repository relationships ProgramSendsMap and
ProgramReadsMap between the program being analyzed and the detected screen.

For example:

01 SCREEN-946.
 02 SCREEN-946-HEADER.
 05 FILLER PIC X(2)VALUE SPACES.
 05 FILLER PIC 9(5)COMP VALUE ZERO.
 05 FILLER PIC X(4)VALUE SPACES.
 05 S946-FILLER PIC X(8) VALUE 'DPSSWS'
 05 S946-NUMBER PIC 9(4) VALUE 946.
 05 S946-NAME PIC X(8) VALUE 'SCRN946'.
CALL 'D$READ USING DPS-STATUS, SCREEN-946.

Relationship ProgramSendsMap is established between the program and screen 'SCRN946'.

Note: Select DPS routines may end with error if you want to perform call analysis of DPS routines
that end in an error.

Perform Unisys Common-Storage Analysis
Select Perform Unisys Common-Storage Analysis in the project verification options if you want the
system to include in the analysis for Unisys Cobol files variables that are not explicitly declared in CALL
statements. This analysis adds implicit use of variables declared in the Common Storage Section to every
CALL statement of the program being analyzed, as well as for its PROCEDURE DIVISION USING phrase.
That could lead to superfluous data dependencies between the caller and called programs in case the
called program does not use data from Common Storage.

Relaxed Parsing
The Relaxed Parsing option in the workspace verification options lets you verify a source file despite
errors. Ordinarily, the parser stops at a statement when it encounters an error. Relaxed parsing tells the
parser to continue to the next statement.

For code verified with relaxed parsing, Component Maker behaves as follows:

• Statements included in a component that contain errors are treated as CONTINUE statements and
appear in component text as comments.

• Dummy declarations for undeclared identifiers appear in component text as comments.
• Declarations that are in error appear in component text as they were in the original program. Corrected

declarations appear in component text as comments.
• Commented-out code is identified by an extra comment line: "Enterprise Analyzer assumption".

PERFORM Behavior for Micro Focus Cobol
For Micro Focus Cobol applications, use the PERFORM behavior option in the workspace verification
options window to specify the type of PERFORM behavior the application was compiled for. You can select:

• Stack if the application was compiled with the PERFORM-type option set to allow recursive
PERFORMS.

• All exits active if the application was compiled with the PERFORM-type option set to not allow
recursive PERFORMS.

For non-recursive PERFORM behavior, a COBOL program can contain PERFORM mines. In informal
terms, a PERFORM mine is a place in a program that can contain an exit point of some active but not
current PERFORM during program execution.

42 | Technical Details

The program below, for example, contains a mine at the end of paragraph C. When the end of paragraph C
is reached during PERFORM C THRU D execution, the mine "snaps" into action: control is transferred to
the STOP RUN statement of paragraph A.

A.
 PERFORM B THRU C.
 STOP RUN.
 B.
 PERFORM C THRU D.
 C.
 DISPLAY 'C'.
 * mine
 D.
 DISPLAY 'D'.

Setting the compiler option to allow non-recursive PERFORM behavior where appropriate allows the
Enterprise Analyzer parser to detect possible mines and determine their properties. That, in turn, lets
Component Maker analyze control flow and eliminate dead code with greater precision. To return to our
example, the mine placed at the end of paragraph C snaps each time it is reached: such a mine is called
stable. Control never falls through a stable mine. Here it means that the code in paragraph D is
unreachable.

Keep Legacy Copybooks Extraction Option
Select Keep Legacy Copybooks in the General extraction options for Cobol if you want Component Maker
not to generate modified copybooks for the component. Component Maker issues a warning if including the
original copybooks in the component would result in an error.

Example 1:
[COBOL]
01 A PIC X.
PROCEDURE DIVISION.
COPY CP.
[END-COBOL]
[COPYBOOK CP.CPY]
STOP RUN.
DISPLAY A.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared identifier after Dead Code
Elimination.

Example 2:
[COBOL]
PROCEDURE DIVISION.
COPY CP.
STOP RUN.
P.
[END-COBOL]
[COPYBOOK CP.CPY]
DISPLAY "QA is out there"
STOP RUN.
PERFORM P.
[END-COPYBOOK CP.CPY]

For this example, Component Maker issues a warning for an undeclared paragraph after Dead Code
Elimination.

Example 3:
[COBOL]
working-storage section.

Technical Details | 43

copy file.
PROCEDURE DIVISION.
p1.
 move 1 to a.
p2.
 display b.
 display a.
p3.
 stop run.
[END-COBOL]
[COPYBOOK file.cpy]
01 a pic 9.
01 b pic 9.
[END-COPYBOOK file.cpy]

For this example, the range component on paragraph p2 looks like this:

[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1.
 LINKAGE SECTION.
 PROCEDURE DIVISION USING A.
[END-COBOL]
while, with the option turned off, it looks like this:
[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1-A$RULE-0.
 LINKAGE SECTION.
 COPY FILE1-A$RULE-1.
[END-COBOL]

That is, turning the option on overrides the splitting of the copybook file into two files. Component Maker
issues a warning if that could result in an error.

How Parameterized Slices Are Generated for Cobol
Programs

The specifications for input and output parameters are:

• Input

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an input parameter if one or more of its bits are used for reading before writing.

A system variable (field of DFHEIB/DFHEIBLK structures) is classified as an input parameter if the
Create CICS Program option is turned off and the variable is used for writing before reading.

• Output

A variable of an arbitrary level from the LINKAGE section or PROCEDURE DIVISION USING is
classified as an output parameter if it is modified during component execution.

A system variable (a field of DFHEIB/DFHEIBLK structures) is classified as an output parameter if the
Create CICS Program option is turned off and the variable is modified during component execution.

• For each input parameter, the algorithm finds its first usage (it does not have to be unique, the algorithm
processes all of them), and if the variable (parameter from the LINKAGE section) is used for reading,
code to copy its value from the corresponding field of BRE-INPUT-STRUCTURE is inserted as close to
this usage as possible.

• The algorithm takes into account all partial or conditional assignments for this variable before its first
usage and places PERFORM statements before these assignments.

If a PERFORM statement can be executed more than once (as in the case of a loop), then a flag
variable (named BRE-INIT-COPY-FLAG-[<n>] of the type PIC 9 VALUE 0 is created in the WORKING-

44 | Technical Details

STORAGE section, and the parameter is copied into the corresponding variable only the first time this
PERFORM statement is executed.

• For all component exit points, the algorithm inserts code to copy all output parameters from working-
storage variables to the corresponding fields of BRE-OUTPUT-STRUCTURE.

Variables of any level (rather than only 01-level structures together with all their fields) can act as
parameters. This allows exclusion of unnecessary parameters, making the resulting programs more
compact and clear.

For each operator for which a parameter list is generated, the following transformations are applied to
the entire list:

• All FD entries are replaced with their data descriptions.
• All array fields are replaced with the corresponding array declarations.
• All upper-level RENAMES clauses are replaced with the renamed declarations.
• All upper-level REDEFINES clauses with an object (including the object itself, if it is present in the

parameter list) are replaced with a clause of a greater size.
• All REDEFINES and RENAMES entries of any level are removed from the list.
• All variable-length arrays are converted into fixed-length of the corresponding maximal size.
• All keys and indices are removed from array declarations.
• All VALUE clauses are removed from all declarations.
• All conditional names are replaced with the corresponding data items.

Setting a Specialization Variable to Multiple Values
For Domain-Based Componentization, Component Maker lets you set the specialization variable to a range
of values (between 1 and 10 inclusive, for example) or to multiple values (not only CHECK but CREDIT-
CARD, for example). You can also set the variable to all values not in the range or set of possible values
(every value but CHECK and CREDIT-CARD, for example).

Component Maker uses multiple values to predict conditional branches intelligently. In the following code
fragment, for example, the second IF statement cannot be resolved with a single value, because of the two
conflicting values of Z coming down from the different code paths of the first IF. With multiple values,
however, Component Maker correctly resolves the second IF, because all the possible values of the
variable at the point of the IF are known:

IF X EQUAL Y
 MOVE 1 TO Z
ELSE
 MOVE 2 TO Z
DISPLAY Z.
IF Z EQUAL 3
 DISPLAY "Z=3"
ELSE
 DISPLAY "Z<>3"

Keep in mind that only the following COBOL statements are interpreted with multiple values:

• COMPUTE
• MOVE
• ADD
• SUBTRACT
• MULTIPLY
• DIVIDE

That is, if the input of such a statement is defined, then, after interpretation, its output can be defined as
well.

Technical Details | 45

Single-Value Example:

MOVE 1 TO Y.
MOVE 1 TO X.
ADD X TO Y.
DISPLAY Y.
IF Y EQUAL 2 THEN...

In this fragment of code, the value of Y in the IF statement (as well as in DISPLAY) is known, and so the
THEN branch can be predicted.

Multiple-Value Example:

IF X EQUAL 0
 MOVE 1 TO Y
ELSE
 MOVE 2 TO Y.
ADD 1 TO Y.
IF Y = 10 THEN... ELSE...

In this case, Component Maker determines that Y in the second IF statement can equal only 2 or 3, so the
statement can be resolved to the ELSE branch.

The statement interpretation capability is available only when you define the specialization variable
"positively" (as equalling a range or set of values), not when you define the variable "negatively" (as not
equalling a range or set of values).

Arithmetic Exception Handling
For Cobol, the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements can have ON SIZE
ERROR and NOT ON SIZE ERROR phrases. The phrase ON SIZE ERROR contains an arithmetic
exception handler.

Statements in the ON SIZE ERROR phrase are executed when one of the following arithmetic exception
conditions take place:

• The value of an arithmetic operation result is larger than the resultant-identifier picture size.
• Division by zero.
• Violation of the rules for the evaluation of exponentiation.

For MULTIPLY arithmetic statements, if any of the individual operations produces a size error condition, the
statements in the ON SIZE ERROR phrase is not executed until all of the individual operations are
completed.

Control is transferred to the statements defined in the phrase NOT ON SIZE ERROR when a NOT ON
SIZE ERROR phrase is specified and no exceptions occurred. In that case, the ON SIZE ERROR is
ignored.

Component Maker specialization processes an arithmetic statement with exception handlers in the
following way:

• If a (NOT) ON SIZE ERROR condition occurred in some interpreting pass, then the arithmetic statement
is replaced by the statements in the corresponding phrase.

• Those statements will be interpreted at the next pass.

46 | Technical Details

	Contents
	Introducing Component Maker
	Componentization Methods
	Structure-Based Componentization
	Computation-Based Componentization
	Domain-Based Componentization
	Event Injection
	Dead Code Elimination (DCE)
	Entry Point Isolation
	Language Support

	Componentization Outputs
	Component Maker Basics
	Getting Started in the Components Pane
	Creating Components
	Extracting Components
	Converting Components
	Deleting Components
	Viewing the Text for Generated Files
	Restricting the Display to Program-Related Components
	Working with Interactive Analysis Lists
	Viewing Audit Reports
	Generating Coverage Reports

	Setting Component Maker Options
	Setting General Options
	Setting Interface Options
	Setting Optimize Options
	Setting Document Options
	Setting Component Type-Specific Options
	Setting Structure-Based Type-Specific Options
	Setting Computation-Based Type-Specific Options
	Setting Domain-Based Type-Specific Options
	Setting Event Injection Type-Specific Options

	Setting Component Conversion Options

	Extracting Structure-Based Components
	Understanding Ranges
	Specifying Ranges for Cobol Programs
	Specifying Ranges for PL/I Programs
	Specifying Ranges for RPG Programs

	Understanding Parameterized Slices
	Cobol Naming Conventions
	Parameterization Example

	Extracting Structure-Based Cobol Components
	Extracting Structure-Based PL/I Components
	Extracting Structure-Based RPG Components

	Extracting Computation-Based Components
	Understanding Variable-Based Extraction
	Understanding Blocking
	Understanding Parameterized Slices
	Cobol Naming Conventions
	Parameterization Example

	Extracting Computation-Based Cobol Components
	Extracting Computation-Based Natural Components

	Extracting Domain-Based Components
	Understanding Program Specialization in Simplified Mode
	Understanding Program Specialization in Advanced Mode
	Understanding Program Specialization Lite
	Extracting Domain-Based Cobol Components
	Extracting Domain-Based PL/I Components

	Injecting Events
	Understanding Event Injection
	Extracting Event-Injected Cobol Components

	Eliminating Dead Code
	Generating Dead Code Statistics
	Understanding Dead Code Elimination
	Extracting Optimized Components

	Performing Entry Point Isolation
	Extracting a Cobol Component with Entry Point Isolation

	Technical Details
	Verification Options
	Use Special IMS Calling Conventions
	Override CICS Program Terminations
	Support CICS HANDLE Statements
	Perform Unisys TIP and DPS Calls Analysis
	Perform Unisys Common-Storage Analysis
	Relaxed Parsing
	PERFORM Behavior for Micro Focus Cobol

	Keep Legacy Copybooks Extraction Option
	How Parameterized Slices Are Generated for Cobol Programs
	Setting a Specialization Variable to Multiple Values
	Arithmetic Exception Handling

