User’s Guide

AcuSQL®

Version 8.1

Micro Focus

9920 Pacific Heights Blvd.
San Diego, CA 92121
858.790.1900

© Copyright Micro Focus (1P) Ltd. 1998-2008. All rights reserved.

Acucorp, ACUCOBOL-GT, AcudGL, AcuBench, AcuConnect, AcuServer, AcuSQL, AcuXDBC,
AcuXUI, extend, and “ The new face of COBOL"” are registered trademarks or registered service
marks of Micro Focus. “COBOL Virtual Machine” isatrademark of Micro Focus. Acu4GL is
protected by U.S. patent 5,640,550, and AcuXDBC is protected by U.S. patent 5,826,076.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries. UNIX isaregistered trademark of the Open Group in the United States and
other countries. Solarisis atrademark of Sun Microsystems, Inc., in the United States and other
countries. Other brand and product names are trademarks or registered trademarks of their
respective holders.

DB2 Connect isatrademark, and IBM, AlX, CICS, DB2, Informix, MQSeries, AS/400, OS/390,
PowerPC, RS/6000, TX Series, WebSphere, pSeries, and zSeries are registered trademarks of IBM
in the United States. UNIX is aregistered trademark of the Open Group in the United States and
other countries. Sun, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. or other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by
Sun Microsystems, Inc. MySQL isaregistered trademark of MySQL AB in the United States, the
European Union, and other countries. Other brand and product names are trademarks or registered
trademarks of their respective holders.

E-01-UG-080901-AcuSQL-8.1

Contents

Chapter 1: Getting Started

1.2 INtroduCtion t0 ACUSQLviiueeieiitieeieiie ittt ettt teere e e eresreeaesreestesaeesbesbessbesbeennenseenns 1-2
1.2 ACUSQL Pre-COMPIIEN ...ouiiieeseeee ettt ne e srenns 1-2
1.3 ACUSQL RUNIME LIDIAIY .eecviieeee ettt s 1-3
LA REQUITEIMENTS ...ttt sttt e et e hesae e e e be s e se e e eaeeseeaeeaeebeebesaesbenbeseessenseneens 1-4
B 1 0TS = 1 = 1o o S 1-7

1.5.1 Installation Under WINAOWS..........coviieiiicieiecieesee ettt e sre e snesneen 1-7

1.5.2 Installation Under UNIXcooooieiieie et eese e sseseesnesnenes 1-8
MRG0 T= T (o) o 1-11
1.7 DemMONStration PrOgramSccieeieieeiiesieeesteee st ete s ste e ste e te et sne et sne e s e enas 1-12
1.8 TECHNICAl SEIVICES....ccii ittt st sttt s re e e s reenesaeeeesaean 1-12

Chapter 2: Program Preparation

2.1 Preparing Y OUr PrOgraMIScucciieieriecieesecieeste st s e et ssae e eseesne e e snesneesaesneensesnnens 2-2
2.2 COdiNG CONSIAEIALIONS.......cueeereeieeierie st sae st e e e e e b sbesbe b e beee e e e enenas 2-4
2.2.1 User-Supplied ODJeCt NAMES ..o 2-4
2.2.2 COING ATEAL ...ttt sttt sttt b e s b e e b ekt et e bt se b saebeseebennenens 2-4
2.2.3 COMMIBS....cuiiuirtiriistesreste sttt e et sae st s h e bt s besee s s e s e seene e st e b e sseebeeresbese e s e s e e e e e e ennenes 2-5
A S T 0o I D= T 1L (= 2-5
2.3 DA DIVISION ...ttt ettt b b et b bbb e e s e s 2-5
B T N O U £ o = PSP P U UPTPRT 2-6
2.3.2 SQL INCLUDE fIlE5..utiuiiiiiieiisiese ettt sttt s sne s e 2-6
2.3.3HOSE VAIADIES ...ttt et 2-8
A I T = R 1Y/ 0= S 2-9
2.4.1 DB2 Data Type Compatibility.......cccceveiieeisiciiee et 2-9
2.4.2 Microsoft SQL Server Data Type Compatibilitycccccevveevevierievienesisieniens 2-10
2.4.3 Access Data Type CompatibDilityccoerireneieniereeeeeee s 2-11
2.4.4 MySQL Data Type Compatibilityccccoeerrereiinnenrerreeee e 2-12
2.5 ProCeOUre DIVISION ...ccoveieeieeiee ettt st s e e se s saesnesresbe e seenean 2-13
2.5. 1 CUISOIS....eeueeiietiriesieet sttt sttt b bbbt sb e se et e e e e e e s e e s e st ene e b e e b e snenrenas 2-13
2.5.2 ROWSEL FUNCLIONS ...ttt 2-14
2.5.3 StOred PrOCEAUIES.........coiiuirie ettt et 2-15

PRSI I =SS 1 T (0] LU 2-17

Contents-2

2.6 SQL VEIDS ...ttt ettt e et et 2-17
2.6.1 CONNECT SEateMENL........cevverireerireeresieesierisieseseesessesessesessssessesessessssessssessssessses 2-18
2.6.2 DISCONNECT SEAEMENEcuviereirieirieesieisieesresessesessessssessssessesessesessssessesesseses 2-19

2.7 ChECKING SYNEBX ...ttt sttt sttt sttt b e b e sbe e 2-19

PRSI (o gl 0T | o S 2-20

2.9 ETTON MESSAgES.eueeeeieeeeesiesseesteestesteeseesseeneesseeseesseeaesseessesseentesseensesseensesneessesnnensessenss 2-21

2.10 LimitS and RESIITCLIONSc.coeiiiiiierie ettt e 2-23

2.11 Detecting and Handling NULL ValUES.........ccooriririiiinieieeeree e 2-23

Chapter 3: Pre-compiler Function and Use

3.1 The ESQL Transalion PrOCESS.......cccvcuirieieiecieesesitestesae e ste e eeesne e e naesresnaessesnee s 3-2
3.2 USING the Pre-COMPITEN ..ottt s 3-3
3.2.1Using AcuSQL From Within ACUBENCH ..ot 35
3.2.2 Using AcuSQL as a StandalOne Program........c..cccoeereereenienesiesesieses e 35
3.2.3 Using AcuSQL from the COMPILENcccoveveeeeieeeece e 39
3.3 ENVIronment Vari@bleSooveireiriirieiree et 3-12
ACUSQL_DATASET .ottt sttt ettt st st b 3-13
ACUSQL_INCLUDE ..ottt st st 3-13
ACUSQL_PASSWORD......coeirieeirienirieisiesesieessesessesssesssesse e s e ssesessesessessssessssessssens 3-13
ACUSQL _USER ...ttt sttt et st ae et nas et sne e 314
3.4 Pre-COMPIlation EITOIS......cccviiiieese ettt ne e ne e sne s 314

Chapter 4: Program Execution

4.1 RUNNING Y OUF APPLICELION. ...ttt e 4-2
4.2 Running Y our Application with Microsoft SQL SErVEr........cccveevererereereereeeere e seseens 4-2
4.2.1 Runtime Configuration Variablesfor SQL Servercooovveveeveneecese e, 4-4
ASQL_BUFFER_SIZEcoiiitiieirieieriete sttt sttt st st e 4-4
ASQL_CONNECT _DATABASE ...ttt sttt st seese e 4-4
ASQL_NULL_ALPHA _SPACES.......cccotreereerieesteesiees sttt st st 4-5
ACUSQL_SQLSTATE_2000_ON_EODccccsieririeririereniereniesestesesiesesresessesessesens 4-5

4.2.2 Runtime Configuration Variables for esgllib.........cccoovvveiiieneieeece e, 4-5
ACUSQL_NO_AUTOCOMMIT ..ottt sesnas 4-6
ACUSQL_ODBC_CURSORS.......cccectiieirieririeesieesteesieessesessesessesessesessesessesessenens 4-6
ACUSQL_USE_CONCURRENTcctittirieririeerieesieesieesieseseesessesessesessesessesessenens 4-6
ODBC_CURSOR _TYPEcciiitiristeiete ettt st st 4-7

4.3 Debugging and FIle TraCingcccoerieriieererere sttt e 4-7

A A EITON MESSAGES......eeceiiieeite ittt sttt r e sae e sr e s e sae e e sre e e sre s nenre e 4-8

Contents-3

Chapter 5: Sample Programs

IS 0T o = = 0o = 1 RS 5-2
5.2 SEAHC SQL ...ttt ettt bbb 5-3
5.3 Creating Tables With ESQL - Create.SqD.cooierieireeireeesiese et 5-3
5.3. 1 WHENEVER DiTECHVE.....couruieiririririeieresirieteie sttt s 5-4
I 7 U 1= oo 1 SRS 55
5.3.3 INSERT SAEMENLvvereieriereeererr e 5-6
5.3.4 DA FOIMMELcoveeirereereeeerereereree et r e er e e re e nnenen 5-7
5.3.5PUtting It All TOQELNE ..o 57
5.4 Using Working-Storage Items — SEl€Ct1.S0boouivueieieinee s 5-8
5.4.1 SELECT SEALEIMENE......coueteuiiireeeeieseresiete e ises e sis e se bbb s sees 5-9
5.4.2 HOSE VaIADIES ..ottt e 5-10
B5A.3INTO ClAUSE.....ccvcveeirerrereresesesresee st 5-10
544 WHERE ClAUSE.......coireirereierreieeee st 5-12
5.4.5 MIN and MAX Group FUNCLIONScccceiieiieesierieieeeesee e esee e see e e e eeeseeens 5-12
5.4.6 PULting [t All TOGEINENcoueiiiiiiere et 5-13
5.5 Group Itemsin the INTO Clause — SeleCt2.50Dcoevireirerieieeeeeeeere e 5-14
5.6 Working With More Than One Row — SeleCt3.50Dccovveereiriiniccceces 5-15
5.6.1 SET ROWCOUNT SEAEMENLc.orvrreremiirereereriresesreseesesesree e senens 5-16
5.6.2 CUISOIS....c.evireetireere st ettt sttt st r et re e n e n s 5-16
5.6.3 DECIAriNG @ CUISONueeieeeeeteeeeeste st e ste st e ste s e e ste st et e st e e e e e nee s e e seesreeneesreeneenrenns 5-16
5.6.4 OPENING B CUISOLueiuiiuiitieierie sttt et e e ste st sbe sttt ssessanee s e e eneebesaesaesreneas 5-17
5.6.5 FETCH SEALEIMENL.......cocuiiiiririeieieierinieee ettt 5-17
5.6.6 ClOSING @ CUISONccviirtieiteirteseete ettt sttt st st sttt sttt sbe s 5-18
5.6.7 PULtiNg [t All TOGEINETecveeeeeece et eneas 5-19
5.7 Updating Data — UPAate.SOD ... ccveeeeereiiriesiesee st eseesee st see st e e sne e seeees 5-20
5.7.1 FOR UPDATE ClaUSE......ctrtrerieueriririereieiseses et sesss e s seens 5-21
5.7.2 The SET ClAUSE.....cueuiirireeieiererieieiestsesis et ses bbbt s bbbt 5-21
5.7.3 Positioning the Cursor for the UPDATEccciveiriineee s 5-22
5.7.4 Putting [t All TOGEINESc..cuiiiiice e 5-23
R U LIS @ I = oo =" o 5-25

Glossary of Terms

Index

Contents-4

Getting Started

Key Topics

INtroduction tO ACUSQLc.eeiuiiieieeeie et e 1-2
ACUSQL Pre-COMPIlErocuiie et 1-2
AcUSQL RUNtIME Librarycccocv e 1-3
REQUITEMENTS......ceiei ettt s ene 1-4
INSEBHTELTON ... b 1-7
(@070l (o] o 1-11
Demonstration Programs.........c.coeoeerereererene s es e sie e 1-12

TECNNICAl SENVICES.....teiieeeetee sttt st sb s saeeree s 1-12

1-2 m Getting Started

1.1 Introduction to AcuSQL

Welcome to the AcuSQL® pre-compiler and runtime library. This add-on
tool to the ACUCOBOL-GT® devel opment system isasimple, cost-effective
solution for those who want or need to use embedded SQL (ESQL)
statementsin COBOL programs to access SQL -conversant data sources.
AcuSQL ispart of the extend® fami ly of technologiesand isdesigned to give
COBOL applications access to IBM® DB2®, Microsoft® SQL Server, and
ISO/ANSI SQL92 compliant data sources. AcuSQL also supports the open
source database, MySQL®.

AcuSQL is available for 32-bit Windows® operating systems (Windows
Vista, Windows XP, Windows NT® 4.0, Windows 2000) 64-bit versions of
the Windows operating system (Windows Server 2003, 2008 x64, Vistax64)
and for most UNIX® operating system platforms, including 64-bit
environments.

The AcuSQL pre-compiler is a powerful programming tool that allows you
to embed SQL statementsin your COBOL application. ESQL enablesyouto
access the power and flexibility of Structured Query Language (SQL) from
within your COBOL application. With AcuSQL, you can execute complex
data selection and processing operations using the database engineto perform
most of the work, greatly simplifying the COBOL code needed to perform
the operation. AcuSQL supports both static and dynamic SQL.

AcuSQL support of native dialects of SQL (DB2, MySQL, SQL Server),
ISO/ANSI SQL92, and a“relaxed” version of SQL enables you to write
applications custom-tailored to awide variety of individual databases or a
more generic version able to run across multiple databases and data sources.

AcuSQL support for ESQL is provided by a special pre-compiler and
runtime library.

1.2 AcuSQL Pre-compiler

The pre-compiler gives you the option of specifying various levels of SQL
syntax checking, including modes that are specific to IBM DB2 SQL,
MySQL, Microsoft SQL Server, and a mode that directs the pre-compiler to

AcuSQL Runtime Library m 1-3

send SQL statements directly to the database engine for syntax verification.
These syntax checking options give you a great deal of flexibility in
developing your ESQL applications. In addition, you can stipulate relaxed
or strict checking for certain individual commands in your program.

The AcuSQL pre-compiler works by scanning both the COBOL source file
and all copy filesfor ESQL statements. It preservesthe original statements
in acomment block, performs syntax checking (either directly or indirectly),
and then translates each statement into a standard COBOL CALL statement
to the AcuSQL runtime library. All other code is untouched.

Although pre-compiling adds an additional step to the devel opment process,
agreat deal of time and effort are saved by not requiring you to write
database-specific API callsin your application. A single SQL statement in
your COBOL program may translate to many API callsin the generated
AcuSQL code. Embedded SQL isalso easier to write and maintain than the
corresponding API calls.

Pre-compilation isinitiated from within the AcuBench® devel opment
environment or from the ACUCOBOL-GT command line. In AcuBench,
when you set the “ pre-compile” option on an ESQL file, the workbench
automatically pre-compilesthefile every timethe project isbuilt or thefileis
compiled. All pre-compilation errors are displayed in the AcuBench Output
Window. Onthe ACUCOBOL-GT command line a set of compiler flags
initiates pre-compilation. Error messages are directed to standard output.

1.3 AcuSQL Runtime Library

Successful pre-compilation followed by successful compilation resultsin the
creation of an object file. The abject fileis ready for execution by the
runtime. When the object file is executed, the embedded SQL statements
(now standard COBOL statements) are passed to the AcuSQL library, which
in turn communicates with the database connectivity software (an ODBC
level 2 API), establishing connections, retrieving and writing data, and
exchanging messages.

1-4 m Getting Started

The AcuSQL D eveloper's W orld

| COBOL source with ESQL |

!

AcuSQL (optional direct syntax checking)
pre-compiler
l The User's W orld
ACUCOBOL-GT ACUCOBOL-GT
compiler object code RDBMS | I—

RDBMS
engine

middleware f——

| S

ACUCOBOL-GT

runtime system

i

with
AcuSQL

libraries

The AcuSQL development and deployment model

1.4 Requirements

To use AcuSQL, your environment must satisfy the following requirements:

¢ Your COBOL application must run on a Windows system or aUNIX
system supported by Micro Focus. Unless otherwise indicated, the
referencesto “Windows’ in this manual denote the following 32-bit
versions of the Windows operating systems: Windows Vista, Windows
XP, Windows NT 4.0 or later, Windows 2000, Windows 2003; and the
following 64-bit versions of the Windows operating system: Windows
Server 2003 and 2008 x64, Vista x64. In those instances whereit is
necessary to make a distinction among the individual versions of those
operating systems, we refer to them by their specific version numbers
(“Windows 2000,” “Windows NT 4.0,” etc.).

e AcuSQL must beinstalled, along with the ACUCOBOL-GT
development system, on your Windows or UNIX system.

Requirements m 1-5

» If you are working with a database other than Microsoft SQL Server,
you must have aworking ODBC level 2 API connection to your
database, including any required networking software support.

Itisup toyou to procure and configure this software and any related network
software.

Your data source may be located on any host for which you have aworking
ODBC level 2 API connection.

SQL Server Requirements

If you are running the AcuSQL interface to Microsoft SQL Server, you must
have the SQL Server client software from Microsoft.

To seeif the SQL Server client software from Microsoft is on your system,
Open the Query Analyzer. (For information on opening the Query Analyzer
see SQL Server client documentation.)

If the Query Analyzer opens and you are able to connect to the database, the
client libraries are most likely al present.Your SQL Server data source may
be hosted on one (or more) of the following environments:

e Windows NT Server

* Windows 2000, 2003, 2008 Server

DB2 Requirements

If your application is going to access DB2 data, we recommend IBM’s DB2
Connect™ software. At Micro Focus, access to DB2 databases has been
tested with DB2 Connect. However, any vendor’s properly configured
ODBC level 2 API connectivity software should work.

Your DB2 data source may be hosted on one (or more) of the following
environments:

« 0S/390%

« AS400%

1-6 m Getting Started

* WindowsNT

* Windows 2000, 2003, 2008

« HP-UX
e Solaris™
. AIX®

MySQL Requirements

If you are running the AcuSQL interface to MySQL, you must have the
following software:

e MySQL 5.0 Database Server Version 5.0.18 or later (Generally
Availablerelease). Testing was done with MySQL 5.0.18 Standard.

e MySQL Connector/ODBC Version 3.51.11 or later (Generally Available
release). Testing was done with the “libmyodbc3-3.51.12.s0" library.
Thisfileis available from http://dev.mysgl.com/.

You can check the version of your server by connecting using “mysgl”. The
version of the server will be printed upon connection. For example:
[testing]: mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 29 to server version:
5.0.18-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

Oncein MySQL, you can also use the following:

mysgl> select version();

e PR +
| version() |
B e +
| 5.0.18-standard |
B e et +

1 row in set (0.09 sec)

Installation m 1-7

1.5 Installation

Beforeinstalling AcuSQL, you should install, configure, and test your
application-host to data-host connection software. For accessing DB2
databases, AcuSQL hasbeen tested with IBM DB2 Connect software, and we
recommend itsuse. However, any vendor’s properly installed and configured
ODBC level 2 API connection is acceptable. This middleware connection
softwareisessential to AcuSQL'’s successful use. You must ensure that your
connection middleware is functioning properly before attempting to run an
AcuSQL-supported application.

1.5.1 Installation Under Windows

AcuSQL isinstalled using Windows Installer. To install AcuSQL on your
Windows host:

1. Log onto your Windows system.

Under Windows NT or Windows 2000, to ensure that all files are
installed with the correct permissions, we recommend that you log on
using the Administrator account or an account that belongs to the
Administrators group. We also recommend that you close al
applications running on the system.

2. Insert theinstallation CD-ROM into your disk drive. If theinstallation
program does not start automatically, click Sart, select Run, and then
enter:

D:\autorun.exe

replacing “D” with the device designation of your CD-ROM drive.
Follow the instructions on the screen, entering your product code and
product key when prompted.

3. When the Products Selection screen appears, select Custom from the
list and click Next.

4. Select AcuSQL from the product list, and if desired, Online
Documentation. Before clicking Next, take specia notice of the
default installation directory appearing near the bottom of the window.
Click Browse to designate a different directory. If you specify a

1-8 m Getting Started

different directory, a subdirectory named with the release version (e.g.
Acuchl800) is not created. AcuSQL isinstalled in the directory you

specify.

5. Click Next to proceed with the installation and follow the instructions
on the screen. The program will inform you when installation is
complete.

There is nothing on the AcuSQL distribution mediato install on your data
source host machines.

On the Start menu under “ Programs/Acucorp 8.x.x/AcuSQL” (or the name of
the program group you specified), you will find entries for the AcuSQL
Release Notesfile. To view the online help for AcuSQL, select extend8
Documentation Set from the Start/Programs/Acucorp 8.x.x menu. This
opens adocument containing alisting of available documentation. Then
select the AcuSQL User’s Guide from thislisting.

1.5.2 Installation Under UNIX

Note: In the following directions, the term “runtime system” refers to the
runtime shared object on systems where the ACUCOBOL-GT runtimeisa
shared object and to runcbl on other systems, where the runtime is static.
The runtimeisashared object on the following systems: AlX 5.1 and later,
HP/UX 11 and later, and Solaris 7 and later. To check, look at the contents
of the“lib” subdirectory of your ACUCOBOL-GT instalation. If thefiles
“libruncbl.so” or “librunchbl.gl” reside in that directory, the runtimeisa
shared object on your system.

Toinstall AcuSQL on your UNIX host:

1. Werecommend that you install AcuSQL into your ACUCOBOL-GT
home directory. When you install in thisway, the AcuSQL libraries and
executables are added to the existing ACUCOBOL-GT “bin” and “lib”
subdirectories. If you choosetoinstall into adifferent directory, separate
“bin” and“lib” subdirectoriesare created. You must includethelocation
of the new “bin” directory in the definition of your “path” environment

Installation m 1-9

variable. No matter which directory you select for your installation, you
must make sure that AcuSQL and the ACUCOBOL-GT compiler
executable (ccbl) are in the same subdirectory.

Insert the installation CD-ROM, floppy disk, or tape into its
corresponding device. The instructions for installing from CD-ROM
are provided on a Getting Sarted card supplied with the CD-ROM. If
you are installing from floppy or tape, change (“cd”) into the target
directory and extract the AcuSQL software.

Because the software isin TAR format, you should use a command
similar to the following:

tar xfv device name

where device_name is the appropriate hardware device on your system
(for example, “/dev/rfd0” or “/dev/rmt0”). Follow the instructions on
the screen, entering your product code and product key when prompted.

Relink the runtime system to include your ODBC API library.

Note: Relinking the runtime requires access to the C compiler
supplied by the vendor of your UNIX software; in some cases the C
compiler isoffered as an add-on option. |f the C compiler used to build
the ODBC libraries creates files that are incompatible with those
created by the C compiler used to build the runtime, the link may fail.

a Inthe“lib” subdirectory (of the directory into which you installed
AcuSQL), edit “config85.c” and set the value of “NO_ACUSQL”
to“0".

b. Edit “Makefile” and locate the line that reads:

ACUSQL _ODBC LIB =

Add the name of your ODBC AP library to the end of theline. For
example:

ACUSQL ODBC_LIB = ODBC lib
where ODBC_lib isthe name of your ODBC API library. If you are

working with DB2, the name of thelibrary is“libdb.so”. If you are
working with MySQL, the name of thelibrary is*“libmyodbc3”.

1-10 m Getting Started

If thislibrary isnot statically linked, your operating system must be
abletolocatethislibrary. Onsome systems, thisisaccomplished by
listing the directory in the environment variable

LD _LIBRARY_PATH. (Seeyour operating system documentation
for more information on shared libraries.)

Also in “Makefile”, locate the lines:

ACUSQL FLAGS = -DNO_ACUSQL=1
ACUSQL LIBS = # no acusqgl runtime libraries are necessary

Make sure that the above lines are commented out (use the
comment character “#").

Next, locate the lines:

#ACUSQL_FLAGS =
#ACUSQL LIBS = $(ACU LIBDIR)/libesql.a $ (ACUSQL_ODBC_LIB)

Make sure that the above lines are un-commented (remove the
comment character “#").

Save and close “Makefile”.

Relink the runtime system by entering the following commands:

make clean
make

The default target of the Makefile is the runtime system, so this
relinks runcbl on machines that do not have shared objects, and
libruncbl.so on those that do.

You can aso relink the runtime system by executing the following
command:

make relinkrun
Thisworkson all systems.

If you get unresolved reference errors that refer to your ODBC
library, you will need to further modify the “Makefile”’ to include
the needed libraries (see your ODBC API documentation). Such
libraries can be added to the end of the LDFLAGS lines, or at the
end of thelist for “runchl” and “acusgl”.

Organization m 1-11

h. If the runtime system is a statically linked runcbl, move the new
executable file into the “bin” directory. This step is not necessary
when the runtime system is a shared library. In these cases, the
shared object runtime, lib/libruncbl.so, is aready in the correct
location.

4. If you plan to use the pre-compiler mode that connects directly to your
database engine to verify the SQL syntax, you must relink acusgl to
include your ODBC AP libraries.

a. If you haven't already done so, perform steps “a’ and “b” of
item 3 above.

b. Relink the pre-compiler by entering the following command:

make acusql

c. Movethe new acusgl executable file into the “bin” directory.

1.6 Organization

This book comprises five chapters:

Chapter 1, “ Getting Started,” provides an overview of the AcuSQL product.
It also provides installation information.

Chapter 2, “Program Preparation,” describes how to prepare your embedded
SQL program, including an introduction to SQL syntax.

Chapter 3, “Pre-compiler Function and Use,” discusses the pre-compiler,
including usage, environment variables, and errors.

Chapter 4, “Program Execution,” discusses running your application.
Chapter 5, “Sample Programs’ describes five of the sample programs

included with AcuSQL. In addition, several SQL commands and concepts
are introduced.

1.7 Demonstration Programs

Included with your AcuSQL software are several ESQL demonstration
programs. These programs provide working examples of ESQL COBOL
program code that connectsto DB2, Access, MySQL, and Oracle databases.
The source files are located in the “ sample/acusgl” subdirectory where
ACUCOBOL-GT isinstalled. A different directory is provided for each
database. Program source files have the three-character suffix “.sgb”. For
those using AcuBench, an AcuSQL demonstration programisincludedinthe
sample project “ Samprj”.

Chapter 5, “Sample Programs,” provides a description of five of these
programs and uses them to highlight examples of SQL syntax. We
recommend that you acquaint yourself with these programs and, if you have
the underlying middleware support, that you pre-compile, compile, and run
them (the DB2 program requires a\Windows-to-DB2 ODBC data connection;
the Access and Oracle programs require an ODBC data source). The
program code includes examples of how to establish connections and how to
access and manipul ate data.

1.8 Technical Services

You can reach Technical Servicesin the United States Monday through
Friday from 6:00 a.m. to 5:00 p.m. Pacific time, excluding holidays. You can
also raise and manage product issues online and follow the progress of the
issue or post additional information directly through the website. Following
is our contact information:

Phone: +1 858.795.1902

Phone: 800.399.7220 (in the USA and Canada)
Fax: +1 858.795.1965

E-mail: support@microfocus.com

Online; http://supportline.microfocus.com

For worldwide technical support information, please visit
http://supportline.microfocus.com.

mailto:support@microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com
http://supportline.microfocus.com

Program Preparation

Key Topics

Preparing YOUr ProgramisS........c..ooeeouereeeerereresiesie s seesie e ses e ssese e e e 2-2
Coding CoNSIAEratioNS.........cccerereieriereereere et se s ese e ene e 2-4
Data DIVISION......ciiiiiiiirieiie ittt st sb e sre e 2-5
(D= = Y 0= TS OUUPUR PR OUURURPO 2-9
Procedure DIVISION......c.coe ittt e 2-13
SQL VEIDS ...t 2-17
CheCKing SYNEAXcoeieirieieererierere e s e 2-19
g (o g o = o | Vo 2-20
ErrOr MESSAgES......ocviiiieiiiie ittt sttt b 2-21
Limits and RESIICHIONS.........coeiiriirieieeeieeerere e 2-22

Detecting and Handling NULL ValUES..........ccccevvvevnnerenieeee e 2-23

2-2 m Program Preparation

2.1 Preparing Your Programs

Preparing your ESQL source code for use with the pre-compiler is
straightforward. All ESQL statement blocks must start with the keywords
“EXEC SQL” and end with the keyword “END-EXEC”. The structure and
syntax of the SQL statements within each code block should conform to the
variant of SQL required by the target database.

Note that the pre-compiler mode used to perform syntax checking can create
variability with respect to errors encountered at runtime and, therefore,
should be taken into consideration when you prepare your source code. For
example, if you direct the pre-compiler to pass ESQL statements to the
database engine for syntax checking (provided that your ODBC driver
supports the return of syntax errors), you will know exactly what is
acceptable and unacceptabl e to the database engine. This method ensures
that your SQL statements are syntactically correct when the source code
successfully pre-compiles. If, instead, you use the pre-compiler’s relaxed
syntax checking mode (by specifying the“-Pr” option at compiletime), some
of your ESQL statementswill pass through the pre-compiler without any test
against the syntax accepted by the target database, increasing the likelihood
of undetected SQL syntax errors causing problems at run time. For a
description of the “-Pr” option, see section 3.2.2, “Using AcuSQL asa
Standalone Program.”

Note: The AcuSQL® precompiler does not currently support any large
object data types (LOBs). If your existing applications include LOBSs,
contact our Technical Service personnel for assistance in evaluating the
steps you may need to take to make the best use of AcuSQL.

Also note: This manual provides only abrief treatment of the rules and
application of SQL and ESQL. It isup to the programmers to know SQL
and ESQL and to have a comprehensive SQL/ESQL reference manual at
their disposal. Programmers will benefit from studying the special
provisions of ESQL because they offer some supportsfor the programmatic
application of SQL that are not included in interactive SQL.

By default, the pre-compiler performs syntax checking for compliance with
the ISO/ANSI SQL 92 standard. For complete information about
pre-compiler options, see section 3.2, “Using the Pre-compiler.”

Preparing Your Programs m 2-3

Working with DB2 databases

If your program will access a DB2 database, your ESQL statements should
conform to the IBM SQL standard described in IBM publication
S10J-8158-00, “Embedded SQL Programming Guide, Version 5.” A
reference level definition of IBM SQL isincluded in IBM publication
S10J-8165, “ SQL Reference.” When you pre-compileyour program, specify
the “-Pk DB2" option to direct the pre-compiler to perform DB2-specific
syntax checking, or use the “-Pc” option to have the DB2 engine perform
direct validation.

Working with Microsoft SQL Server databases

If your program will access a Microsoft SQL Server database, specify the
“-Pk mssgl” optionto direct the pre-compiler to perform SQL Server-specific
syntax checking.

In order to accommodate SQL Server function syntax (db_name(), for
example), AcuSQL also supports SELECT statements that do not include
“FROM ... tablelist”. Notethat if thisisthe only SQL Server-specific syntax
your program contains, you do not need to usethe“-Pk mssgl” option onyour
command line.

AcuSQL supports the following SQL Server syntax for embedded
transactions:

* BEGIN TRANSACTION name
* COMMIT TRANSACTION name

* ROLLBACK TRANSACTION name

The name will be passed to SQL Server asis, and must match the rules for
embedded transaction names. For information on configuration variables
supported by AcuSQL in a SQL Server environment, see section 4.2.1,
“Runtime Configuration Variables for SQL Server.” For additional
information on running applications with AcuSQL in a SQL Server
environment, see section 4.2, “Running Your Application with Microsoft
SQL Server.”

2-4 m Program Preparation

In addition, it is possible to nest transactions, as supported by SQL Server.
When you use nested transactions, note how many transactions you BEGIN,
because you must COMMIT the same number of transactions for the
transaction to be considered complete. For example, if you execute three
BEGIN TRANSACTION statements, you must |later executethree COMMIT
TRANSACTION or COMMIT WORK statements to commit the work you
have done.

Note, however, that asingle ROLLBACK rolls back all nested transactions.
This behavior is afeature of SQL Server, and is not controlled by the
AcuSQL interface.

2.2 Coding Considerations

This section describes several points to keep in mind as your write your
ESQL program:

2.2.1 User-Supplied Object Names

AcuSQL iscase sensitive when reading the names of objectsin SQL supplied
by the user, such as connection names or cursor names. For example,
AcuSQL reads “mycursor”, “MyCursor”, and “MY CURSOR” as the names
of three different cursors. Therefore, be consistent in your use of uppercase
and lowercase |etters when referring to these objects.

2.2.2 Coding Area

Code EXEC SQL statementsin columns 12 — 72 unless you are using
Terminal mode input. You can indicate the format of a source file with the
“-Sa’” and “-St” compile options. For more information on these options, see
section 3.2.2, “Using AcuSQL as a Standal one Program.”

Data Division m 2-5

2.2.3 Commas

Use commas to separate list items in embedded SQL statements. For
example:

EXEC SQL
SELECT FIRST NAME, LAST NAME FROM EMPLOYEE
END-EXEC.

2.2.4 String Delimiters

To ensure the greatest portability of your SQL code, use single quotation
marks around string constantsin SQL.

EXEC SQL
SELECT LAST NAME INTO :LAST-NAME FROM EMPLOYEE
WHERE LAST NAME = 'SMITH'

END-EXEC.

2.3 Data Division

The following SQL statements are supported in the Data Division:

SQL DECLARE CURSOR
SQL INCLUDE
SQL declarations

For example:

EXEC SQL
DECLARE cursorname CURSOR FOR SELECT statement
END EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.
EXEC SQL INCLUDE SQLDA END-EXEC.
EXEC SQL INCLUDE filename END-EXEC.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
SQL declarations
EXEC SQL END DECLARE SECTION END-EXEC.

2-6 m Program Preparation

2.3.1 Cursors

You can define cursorsin both the Data Division and the Procedure Division.
Note that when cursors are defined in the Data Division, the period (.) after
the END-EXEC keyword isoptional. However, if you do include the period,
it must appear on the same line asthe END-EXEC keyword. Therefore, both
of the following are acceptable syntax when a cursor is defined in the Data
Division section.
EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT
C_FIRST NAME,
C_LAST NAME,
FROM CUSTOMER
WHERE C_NUMBER >= 'SMITH'
END-EXEC.
EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT
C_FIRST NAME,
C_LAST NAME,
FROM CUSTOMER
WHERE C NUMBER >= 'SMITH'
END-EXEC

See section 5.6.2 for a brief introduction to cursors. Consult any of the
commercialy available books on SQL for more complete details.

2.3.2 SQL INCLUDE files

You can include files of terminal or ANSI format in your ESQL source by
using the SQL INCLUDE statement.

The standard SQLCA and SQLDA INCLUDE files are built into the
pre-compiler and are included whenever they are named in the source, asin:
* Include the SQL Communications Area (SQLCA)

EXEC SQL INCLUDE SQLCA END-EXEC.

These filesinclude specific adaptations for AcuSQL. Do not attempt to
substitute other versions of these files.

Data Division m 2-7

User-defined INCLUDE files must begin with an SQL BEGIN DECLARE
statement and end with an SQL END DECLARE statement if the codeisto
be used as ESQL code. Variables not within the BEGIN/END DECLARE
section cannot be used as host variables. They can still be used as “local”
variables. See section 2.3.3, “Host Variables,” for additional information.

In statements of the form:
EXEC SQL INCLUDE filename END-EXEC.

the compiler adds to filename the standard file extension for COBOL source
files (the default is“.cbl”). To specify another extension, or to exclude an
extension, filename must be enclosed in either single or double quotation
marks. For example:

EXEC SQL INCLUDE 'SQLCOPYBOOK' END-EXEC.

If the user-defined INCLUDE files do not reside in the current directory, you
must indicate where they’re located using the “-Pi” compiler option or
ACUSQL_INCLUDE environment variable.

SQL Communications Area (SQLCA)

The SQLCA isaCOBOL group item that is used to provide information to
your ESQL/COBOL program. The SQLCA contains dataitems for error
checking, warnings, and status information that is updated whenever an
ESQL statement isexecuted. Your COBOL program can check this structure
after each ESQL operation or in a centralized error-checking routine if you
areusing the WHENEVER directivein your application. Seesection 2.7 and
section 5.3.1 for information on the WHENEVER directive.

The field most commonly used in the SQLCA group item is SQLCODE,
which contains the status of the last statement executed. SQLCODE can
contain the following values:

0 The executed statement succeeded without an
error or warning.

>0 The executed statement succeeded, but therewas
awarning. Check the other fieldsin the SQLCA
structure to determine the nature of the warning.

<0 The executed statement encountered an error.
Check the other fields in the SQLCA structureto
determine the nature of the error.

2-8 m Program Preparation

If SQLCODE containsanon-zero value, your application can check thevalue
of SQLERRMC for the text associated with the error or warning, and, when
appropriate, display that text as an error message or warning.

SQL Descriptor Area (SQLDA)

The SQLDA isaCOBOL group item used in performing dynamic SQL
operations. SQLDA is used to store information about the input and output
variables of dynamically prepared SQL statements.

2.3.3 Host Variables

Host variables are the key to communication in an ESQL application. These
are data items in Working-Storage that are made available to ESQL for
communicating information to and from the database. Put another way, host
variables can provide input to your ESQL program and the program can
return information to host variables.

Host variables are standard COBOL Working-Storage itemsthat are enclosed
by BEGIN/END DECL ARE statements. For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEE-NAME.
03 FIRST-NAME PIC X(20).
03 LAST-NAME PIC X(20).
EXEC SQL END DECLARE SECTION END-EXEC.

This makesthe variables “FIRST-NAME” and “LAST-NAME" available to
the AcuSQL pre-compiler. When these variables are used in the Procedure
Divisionin an SQL statement, they must be preceded by a colon (:). This
differentiates host variables from local data objects with the same name. If
you are using the variables in COBOL operations (rather than SQL
operations), the colon should not be used. The pre-compiler recognizes
COBOL variables only if they have been declared in an SQL BEGIN
DECLARE section. See section 5.4.2 for afurther discussion of host
variables.

Data Types m 2-9

2.4 Data Types

To ensure proper and accurate data matches between the data source and your
COBOL program, you must match the SQL data type in your source code
with the appropriate COBOL datatype. Note that only fixed-length and
variable-length character strings are supported (LOB-type datais not
supported). This section describes the data type compatibility between
AcuSQL and DB2, Microsoft SQL Server, Microsoft Access, and MySQL.

2.4.1 DB2 Data Type Compatibility

The following table describes data type compatibility for DB2.

SQL Type COBOL Type Description
CHAR 01 name PIC X(n) Fixed-length character string
DATE 01 name PIC X(10). 10-byte character string
DECIMAL 01 name PIC S9(M) V9(N) Packed decimal
COMP-3. (wherem=p-n)
DOUBLE 01 name USAGE IS Double-precision floating point
DOUBLE.
INTEGER 01 name PIC S9(9) COMP-5. | 32-bit signed integer
LONG 01 name. Variable-length character string
VARCHAR(N) 49 name-length PIC S9(4)
COMP-5.
49 name-name PIC X(n).
REAL 01 name PIC S9(4) USAGE Single-precision floating point
IS COMP-1.
TIME 01 name PIC X(8). 8-byte character string
TIMESTAMP 01 name PIC X(26). 26-byte character string
VARCHAR(n)* 01 name. Variable-length character string (n
49 name-length PIC S9(4) <= 4000)
COMP-5.
49 name-name PIC X(n).

2-10 m Program Preparation

* To betreated as aVARCHAR, the elementary itemsin a group item
consisting of only a numeric item and a character item need to be level 49 as
in the following:

01 my-record.
49 my-number pic s9(3) comp-5.
49 my-name pic x(20).

2.4.2 Microsoft SQL Server Data Type Compatibility

The following table describes data type compatibility for SQL Server.

SQL Type COBOL Type Description

CHAR(n)* 01 name PIC X(n). Fixed-length character string

DATETIME 01 name PIC X(25). 25-byte character string

DECIMAL (p,n) 01 name PIC Packed decimal
S9(m)V9 (n) COMP-3. (wherem=p-n)

DOUBLE 01 name USAGE IS Double-precision floating point

PRECISION DOUBLE.

INTEGER 01 name PIC S9(9) 32-bit signed integer
COMP-5.

REAL 01 name PIC S9(4) Single-precision floating point
USAGE IS COMP-1.

SMALLINT 01 name PIC S9(4) 16-bit signed integer
COMP-5.

VARCHAR(n)** 01 name. Variable-length character string

49 name-length PIC | (n<=4000)
S9(4) COMP-5.

49 name-name PIC
X(n) .

* To optimize performance, make your datavariables one byte larger than the
columns you are selecting. Data variables that are exactly the same size of
the columns you are selecting may negatively impact performance. Thisis
due to the API used to access the data, which requires room for a

NUL -termination character for string data.

Data Types m 2-11

**To be treated as a VARCHAR, the elementary itemsin a group item
consisting of only anumeric item and a character item need to be level 49 as
in the following:

01 my-record.
49 my-number pic s9(3) comp-5.
49 my-name pic x(20).

2.4.3 Access Data Type Compatibility

The following table describes data type compatibility for Microsoft Access

and AcuSQL.
SQL Type COBOL Type Description
CHAR (n) 01 name PIC X(n). Fixed-length character
string
DOUBLE 01 name USAGE IS DOUBLE. Double-precision
PRECISION floating point
INTEGER 01 name PIC s9(8) COMP-5. 32-hit signed integer
SMALLINT 01 name PIC s9(3) COMP-5. 16-bit signed integer
VARCHAR(n)* 01 name. Variable-length
49 name-length PIC s9(4) character string (n <=
COMP-5. 4000)
49 name-name PIC X (n) .
DATETIME 01 name PIC X (24). 8-character string

* To be treated as a VARCHAR, the elementary itemsin agroup item
consisting of only anumeric item and a character item need to be level 49 as
in the following:

01 my-record.

49 my-number pic s9(3) comp-5.
49 my-name pic x(20).

2-12 m Program Preparation

2.4.4 MySQL Data Type Compatibility

The following table describes data type compatibility for MySQL and

AcuSQL.

SQL Type COBOL Type Description

CHAR (n) 01 name PIC X(n). Fixed-length character
string n <= 255

VARCHAR(N) 01 name. Variable-length

. character string (n <=
49 name-length PIC S9(4) COMP-5. 255). Sub-items should
49 name-name PIC X(n). be level 49.

TINYINT PIC 9(04) / PIC 9(02). * 1 byte-128 to +127

SMALLINT PIC 9(09) / PIC 9(04). * 2 bytes-32768 to
+32767

MEDIUMINT PIC 9(09) / PIC 9(06). * 3 bytes -8388608 to
+8388607

INTEGER (INT) PIC 9(10) / PIC 9(09). * 4 bytes -2147483648 to
+2147483647

FLOAT 01 name USAGE IS FLOAT. 4-bytefield

DOUBLE 01 name USAGE ISDOUBLE. 8-bytefield

DECIMAL(p,n) 01 name PIC S9(m)V9(n). Numericwherem=p-n
and p denotes the
precision (in digits).

DATE 01 name PIC X(10). Format is
YYYY-MM-DD

TIME 01 name PIC X(8) or X(14) Format HH:MM:SS or

HHHH:MM:SS

range -839:59:59 to
838:59:59

Procedure Division m 2-13

SQL Type COBOL Type Description

DATETIME 01 name PIC X(19) Format is
YYYY-MM-DD
HH:MM:SS

(space between day and
hour)

Range 1000-01-01
00:00:00 to 9999-12-31
23:59:59

TIMESTAMP 01 name PIC X(19) Format is
YYYY-MM-DD
HH:MM:SS

(space between day and
hour)

Range 1970-01-01
00:00:00 to 2037

* For numeric fields, unlessthe COBOL program is compiled with the“-Dz”

option, the number will be truncated based on the number of 9'sin the picture
clause. For maximum compatibility, we recommend using the larger picture
size.

Note: Database and table namesin MySQL are case-sensitive. Column
names are not. There are multiple possible engines with MySQL .

2.5 Procedure Division

AcuSQL supportsmany SQL programming conceptsand techniques. Several
of the these areas are described in this section.

2.5.1 Cursors

Cursors are defined in the Procedure Division or in the Data Division. For
example:

EXEC SQL DECLARE MYCURSOR CURSOR FOR
SELECT FIRST NAME, LAST NAME
FROM TEST TABLE

END-EXEC.

2-14 m Program Preparation

AcuSQL also supports the declaration of scroll cursors, and the use of the
following FETCH extensions:

Extension Use

FETCH FIRST Returns the first row of query results.
FETCH LAST Returns the last row of query resullts.
FETCH PRIOR Returns the row immediately preceding the

current curser row.

FETCH NEXT Returns the row immediately following the
current Curser row.

FETCH ABSOLUTE | Returnsaspecific row identified by aconstant or
host variable*.

FETCH RELATIVE Moves the cursor forward or backward a
specified number of times from its current
position.

* |f specifying arow position through a host variable, the host variable does
not need to be declared in the DECL A RE section of working-storage, and can
be any numeric working-storage variable.

See section 5.6.2 for a brief introduction to cursors. Consult any of the
commercially available books on SQL for more complete details.

2.5.2 Rowset Functions

The AcuSQL pre-processor alows for the use of Rowset functions.
Microsoft SQL Server includes several built-in rowset functions, and also
allows users to define their own rowset functions.

Please refer to the Microsoft SQL Server documentation for information
about using and creating rowset functions.

2.5.3 Stored Procedures

If using Microsoft SQL Server, stored procedures can be called viaembedded
SQL. Somerestrictions apply. (See section 2.5.3.1 for details.)

Procedure Division m 2-15

Generally, you can execute two types of stored procedures: those that return
no result sets, and those that return asingle result set. 1f you execute stored
proceduresthat return morethan one result, theresultsare not availableto the
COBOL program. AcuSQL does support output parameters and return code
values, however.

Consider the following stored procedure that has one output parameter and
aso returns avalue:
create procedure sp listcustomer

@lastname varchar(100) = NULL,

@numrows int output

as
select @numrows = count (*) from customer where c_last name = @lastname
select c_last name, c_first name, c birthday from customer

where c_last name = @lastname
return 23

This stored procedure returns asingle result set (c_last_name, c_first_name,
and c_birthday). Depending on the rowsin the customer table, this can
consist of many rows.

There are two ways to execute this procedure from a COBOL program:

1. Ignoretheresult sets, and just use the output parameters and return code.
This can be done with the following code:

display "Enter the name to search for: ", no.
accept c-last-name.

EXEC SQL exec :ret-code = exec sp_listcustomer
(:c-last-name, :num-rows out)

END-EXEC.

Note that c-last-name, ret-code, and num-rows need to have been
declared asvalid variablesin a DECLARE section. When executed this
way, al the rows returned by the stored procedure are thrown away, and
only the num-rows variable and the ret-code variable are changed.
ret-code will be the value 23 (based on the “return 23" in the stored
procedure)and num-rows will be the number of rows that match the
WHERE.

2. Have the result set returned to the COBOL program. This requires a
cursor to be declared, and is done with the following code:

2-16 m Program Preparation

display "Enter the name to search for: ", no.
accept c-last-name.
EXEC SQL declare spcursor cursor for
:ret-code = exec sp_listcustomer (:c-last-name,
:num-rows out)
END-EXEC.

EXEC SQL
open sSpcursor
END-EXEC.

move 0 to num-rows-read.
perform until SQLCODE not = 0
EXEC SQL
FETCH spcursor into
:c-last-name, :c-first-name,
:c-birthday
END-EXEC
if SQLCODE = 0
add 1 to num-rows-read
display c-last-name, ", ", c-first-name, ", ",
c-birthday
end-if
end-perform.
if num-rows not = num-rows-read
display "stored procedure error, " num-rows,
" not = ", num-rows-read
end-if.

Note that c-last-name, ret-code, num-rows, c-first-name, and c-birthday
need to have been declared as valid variables in a DECLARE section.
When executed this way, the num-rows and ret-code variables are set to
the values given by the stored procedure at the time the cursor is opened.
You must then execute FETCH commands in order to get the result set
columns. This particular example tests the number of rows actually
fetched against the num-rows value returned by the stored procedure.

There are two types of syntax allowed by the precompiler when MSSQL
syntax isin effect (that is, when you specify the “-Pk mssgl” option).

EXEC SQL [:status-var =] EXEC procedure-name
[[:param-var [out[putll]l,...]

and

SQL Verbs m 2-17

EXEC SQL DECLARE cursor-name CURSOR FOR
[:status-var =] EXEC procedure-name [[:param-var
[out [put]]l], ...]

The second form requires all the usual steps necessary for cursors: you
must open the cursor and then fetch from it until al the rows have been
fetched.

Any output parameters, including thereturn value, are not returned to the
COBOL program until an UNPREPARE or CLOSE (for cursors) is
executed.

2.5.3.1 Restrictions

The stored procedures you execute must return no result setsor oneresult set.
Stored procedures that return multiple result sets will execute, but all result
sets except the first are thrown away.

The connection used when getting result sets from a stored procedure is not
available for any other processing while the cursor is open. In other words,
if you need to execute other SQL statements based on information from a
stored procedure, you must open multiple connections to the database.

2.6 SQL Verbs

In embedded SQL applications, two of the most vital SQL verbs are
CONNECT and DISCONNECT. These are the commands that open and
close communication between your application and your data source. Your
data source vendor most likely recommends the CONNECT and
DISCONNECT syntax to access the data source. When accessing your data
source through AcuSQL, however, you should use the CONNECT and
DISCONNECT syntax described below instead of the syntax recommended
for your data source.

With AcuSQL, SQL data can be read (using the SELECT or FETCH
statement) or written to (using the INSERT statement). Most other SQL
verbs are supported as well, including, but not limited to, DELETE and
UPDATE. Whileit isnot within the scope of this document to explain these
standard SQL verbs, brief introductions are provided in Chapter 5 with the
sample programs. In order to understand which SQL features your database
supports, be sure to work with a knowledgeabl e database administrator.

2-18 m Program Preparation

2.6.1 CONNECT Statement

When connecting to an SQL data source through AcuSQL, use the following
syntax for the CONNECT statement:

CONNECT TO server-name [AS connection-name] [USER userid USING passwd]

server-name, connection-name, and userid are a phanumeric literals or host
variables defined in an ESQL DECL ARE section of Working-Storage. Note
that you must place a colon (“:") before the host variable in the SQL
Statement.

passwd isavariable-length character string (VARCHAR, in DB2). Notethat
leading and trailing spaces are not stripped.

The CONNECTION statement attempts to establish a connection with
server-name as user userid. The“AS connection-name” clause assigns the
specified nameto the connection. Thisisespecially desirablewhen you want
to establish multiple connections.

Example:
CONNECT TO big-data AS conl USER :uid USING :pwd

Note that “ big-data” and “conl” are alphanumeric literals. “uid” and “pwd”
arehost variables. A colon must precede host variables (“:"). Seethesample
programs for aworking example

To use Windows authentication when connecting to SQL Server, omit the
USER and USING phrases..

2.6.2 DISCONNECT Statement

When disconnecting from an SQL data source through AcuSQL, use the
following syntax for the SQL DISCONNECT statement.

DISCONNECT { CURRENT | ALL | connection-name }
CONNECT RESET

connection-name is an aphanumeric literal or host variable defined in an
ESQL DECLARE section of Working-Storage. Note that you must place a
colon (“:") before the host variable in the statement.

Checking Syntax m 2-19

DISCONNECT closes the current connection, connection-name, or all
connections. DISCONNECT CURRENT and CONNECT RESET causethe
current connection to be closed. When the current connection is closed the
value of current connection remains empty. You must use SET
CONNECTION to set anew current connection.

2.7 Checking Syntax

The pre-compiler supports both relaxed and strict syntax checking. You
indicate relaxed checking with the “-Pr” command line option, strict
checking by not including this option. See section 3.2.2, “Using AcuSQL as
a Standalone Program,” for information on the “-Pr” option. These choices
operate on the entire source code file.

However, you may prefer to exercise strict checking in some parts of your
program and relaxed checking in others. You can indicate the mode of
syntax checking by indicating “Relaxed” or “Strict” with your EXEC ESQL
command.

For example,

EXEC SQL RELAXED
DECLARE COBCUR1 FOR
SELECT
C _NUMBER, C NAME, TO CHAR(C BIRTHDAY, 'DD-MM-YY'), C_INFO
FROM CUSTOMER
WHERE C_NUMBER >= :C_NUMBER
END-EXEC.

or

EXEC SQL STRICT
DECLARE COBCUR1 FOR
SELECT
C NUMBER, C NAME, TO CHAR(C BIRTHDAY, 'DD-MM-YY'), C INFO
FROM CUSTOMER
WHERE C NUMBER >= :C_NUMBER
END-EXEC.

(For adescription of this code, see section 5.6, “Working With More Than
One Row — select3.sgb.”)

2-20 m Program Preparation

Note that you cannot indicate “ Relaxed” or “Strict” in the following
instances:

» EXEC SQL BEGIN DECLARE SECTION
« EXEC SQL END DECLARE SECTION

« EXEC SQL INCLUDE

2.8 Error Handling

To strengthen error handling, you should consider embedding the SQL
WHENEVER directive in your source code. The WHENEVER directiveis
used to direct program logic when the application encountersawarning or an
error. You can choose to ignore errors or redirect them with WHENEVER.

The default behavior of AcuSQL isto attempt to ignore warnings and error
conditions, and continue processing, if possible. Your application can either
explicitly check error conditions or, for more automatic error processing, use
the WHENEVER directive. Your application can contain more than one
WHENEVER directive. A WHENEVER directive appliesto all embedded
ESQL statements that follow it, until it is superseded by another
WHENEVER directive.

Use the WHENEVER directive to specify what actions the program takes
when it encounters one of the following conditions:

* SQLERROR
« SQLWARNING

e NOT FOUND. This condition appliesonly to SELECT and FETCH
statements.

Specify one of the following actions when an error condition occurs:
¢ CONTINUE — control passes to the next statement

« PERFORM paragraph_name—the program performsparagraph_name
and then returns to read the next statement.

Error Messages m 2-21

* GOTO paragraph_name —the program branchesto paragraph_name, a
specified procedure in the program. Flow of the program continues
down this branch.

* STOP

Syntax
EXEC SQL WHENEVER {SQLERROR} | {CONTINUE}
{SQOLWARNING} | {PERFORM paragraph}
{voT FOUND} | {GO TO paragraph}
| {sTopr}

where paragraph is a specified procedure in the program.

See section 5.3.1 for an example of the WHENEVER directive.

2.9 Error Messages

The SQLCA can accommaodate only 70 characters of error information in the
error message field. Generally, thisisnot enough for auseful error message.
See “SQL Communications Area (SQLCA)” for additional information on
thisrequired file.

SQL Server Environments

In Microsoft SQL Server environments, the external variable F-ERRMSG is
set to the full text of the error message returned to accommodate error
messages longer than 70 characters.

F-ERRMSG is an external variable of USAGE POINTER that must be
manipulated in order to see its contents. The following code demonstrates
how to see the contents of the error message string:

01 f-errmsg usage pointer external.
01 my-errmsg pic x(512).
0000-START.

EXEC SQL WHENEVER SQLERROR GO TO ERROR-EXIT END-EXEC.

2-22 m Program Preparation

ERROR-EXIT.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "SQL ERROR: SQLCODE " SQLCODE
DISPLAY " SQLSTATE " SQLSTATE
DISPLAY SQLERRMC
call "cSmemcpy" using my-errmsg, by value f-errmsg, 512.
display my-errmsg
ACCEPT OMITTED
STOP RUN.

where

f-errmsg is an external variable that contains the full text of the error
message.

my-errmsg isthe full text of the error message, which in this case can contain
up to 512 bytes.

See Book 3, Reference Manual, of the ACUCOBOL-GT documentation set
for information on CSMEMCPY and USAGE POINTER.

2.10 Limits and Restrictions

AcuSQL does not currently support any large object datatypes (LOBs). If
your existing applications include LOBs, contact our Technical Services
department for help evaluating the steps you need to take in order to use
AcuSQL.

In addition, AcuSQL does not currently support compound SQL statements.
For this reason, statements of the form:

EXEC SQL
DROP TABLE table-namel
DROP TABLE table-name2
END-EXEC

should be broken into single statements of the form:

EXEC SQL

DROP TABLE table-namel
END-EXEC
EXEC SQL

DROP TABLE table-name2
END-EXEC

Detecting and Handling NULL Values m 2-23

Likewise, DCLGEN generated code must be “ split” into data and procedure
section files, and FILLER cannot be used as a group item.

Aside from these restrictions, you need to be aware that different databases
react differently to SQL commands. For instance, during transaction
management, Access performsan SQL COMMIT after aDROP TABLE, but
DB2 does not. In order to discover the limits and restrictions of your
database, talk with a knowledgeabl e database administrator.

2.11 Detecting and Handling NULL Values

Many SQL -conversant data sources allow aNULL (empty) value in adata
field. COBOL and ACUCOBOL-GT do not recognize or support the NUL L
value. Whenthevalue of afield returned from aquery isNULL, the contents
of thebound variable are undefined. Asaresult, the ESQL programmer must
make provisions for detecting and handling NULL when it isretrieved from
or must be stored in the database.

Toidentify aNULL value, ESQL offerstheindicator variable. Theindicator
variableis ahost variable that is used for the special purpose of indicating
whether the value of afield isNULL or some other value. Inthe COBOL
program, indicator variables are declared in an SQL DECL ARE section of
Working-Storage (the same as other host variables). Indicator variablestake
the form:

01 indicator name pic s9(5) usage comp-5.

where indicator_name is a user-defined name such as “myind” (used in the
example below).

In an ESQL statement, the indicator variable is paired with the bound
variable and together they indicate avalue. Inthe ESQL statement, the
indicator variable immediately follows the bound variable and must be
preceded with acolon (“:"). The ESQL reserved word “indicator” is
optional. For example:

exec sqgl fetch next from mytable into :myfield indicator :myind ...

2-24 m Program Preparation

Thevaue of theindicator valuableis checked to determineif the value of the
field isNULL or some other value. Note that there are no commas between
the variable and the indicator.

For input variables, such as those found in an INSERT or UPDATE
Statement:

If the value of theindicator | Then ...

variableis...

-1 AcuSQL attempts to set the value of the
columnto NULL.

>=0 AcuSQL attemptsto set the value of the

column to that of the host variable, or to the
number that appears. Thisbehavior isdatabase
dependent, and we strongly recommend that
you test your data source to understand the
values that are returned.

For output variables, such as those found in SELECT statements:

If the value of the Then ...

indicator variableis...

-1 The selected column's valueis NULL.

0 The column’s value is assigned to the host
variable.

>0 The column’s value is assigned to the host

variable, but that valueistruncated. Theindicator
variable is set to the number of characters read by
the program.

Consult the ESQL chapter of your SQL reference manual for more
information about the use of the indicator variable and the handling of NULL
values.

Pre-compiler Function and

Use

Key Topics

The ESQL Tranglation ProCESSccvvieveiieciee et 3-2
Using the Pre-CoOmMPILEN.........coceeeceeeeese e 33
Environment Variables..........ocooi i 312

Pre-compilation EFTOrS........coeiiiiiinere e 314

3-2 m Pre-compiler Function and Use

3.1 The ESQL Translation Process

The AcuSQL® pre-compiler identifies and trandates ESQL statementsinto
COBOL statements. It beginsitswork in the program’s Data Division. The
pre-compiler identifies ESQL statements by searching for the keywords
“EXEC SQL” and “END-EXEC” in the source code. When it finds these
markers, it encapsulates them with comments and line numbers and then
parses and generates COBOL code, including CALLstothe AcuSQL library.

For example, if your code specifies an include file such as:
EXEC SQL INCLUDE SQLCA END-EXEC.

Thislineistrandated into:

* ((PREPROC ACUSQL LINE BEGIN 12))
01 SQLCA IS EXTERNAL.

05 SQLCAID PIC X(8).
05 SQLCABC COMP-5 PIC S9(9).
05 SQLCODE COMP-5 PIC S9(9).
05 SQLERRM.

10 SQLERRML COMP-5 PIC S9(4).

10 SQLERRMC PIC X(70).
05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES COMP-5 PIC S9(9).
05 SQLWARN.

10 SQLWARNO PIC X.

10 SQLWARN1 PIC X.

10 SQLWARN2 PIC X.

10 SQLWARN3 PIC X.

10 SQLWARN4 PIC X.

10 SQLWARNS5 PIC X.

10 SQLWARN6 PIC X.

10 SQLWARN7 PIC X.

10 SQLWARNS PIC X.

10 SQLWARNS PIC X.

10 SQLWARNA PIC X.
05 SQLSTATE PIC X(5)

05 SQLERRM-PREFIX.
10 SQLERRPL COMP-5 PIC S9(4).
10 SQLERRPC PIC X(70)
*EXEC SQL INCLUDE SQLCA END-EXEC.
* ((PREPROC ACUSQL LINE END 12))

Using the Pre-compiler m 3-3

The following ESQL statement:

EXEC SQL
SELECT MIN (C NUMBER)
INTO :MIN-C-NUMBER
FROM CUSTOMER
END-EXEC.

istrandated into:

*((PREPROC ACUSQL LINE BEGIN 41))
PERFORM CALL "SQLSSTART" END-CALL CALL "SQLSPREPARE" USING 'S
- '"QLISTM' "SELECT MIN(C_NUMBER) FROM CUSTOMER " END-CALL IF SQ
- LCODE OF SQLCA < 0 THEN GO TO Error-Exit END-IF CALL "SQLSBIN
- "DCOLUMN" USING 'SQLISTM' 1 MIN-C-NUMBER END-CALL IF SQLCOD
- E OF SQLCA < 0 THEN GO TO Error-Exit END-IF CALL "SQLS$SCURSOR"
USING 'SQLICUR' 'SQLISTM' IF SQLCODE OF SQLCA < 0 THEN GO TO
Error-Exit END-IF CALL "SQLSOPEN" USING 'SQLICUR' IF SQLCODE
OF SQLCA < 0 THEN GO TO Error-Exit END-IF CALL "SQLSFETCH" U
- SING 1 0 'SQLICUR' IF SQLCODE OF SQLCA < 0 THEN GO TO Error-E
- xit END-IF CALL "SQLSCLOSE" USING 'SQLICUR' IF SQLCODE OF SQL
- CA < 0 THEN GO TO Error-Exit END-IF CALL "SQLSUNPREPARE" USIN
- G 'SQLISTM' END-CALL END-PERFORM
* EXEC SQL
* SELECT MIN(C_NUMBER)
* INTO :MIN-C-NUMBER
* FROM CUSTOMER
* END-EXEC.
* ((PREPROC ACUSQL LINE END 45))

The pre-compiler generates a standard 72-character line without regard for
the end of statements or other formatting considerations.

The line numbers that appear in the comment lines specify the original line
numbersin the input file.

Note: The preciseresults of these translations may vary depending on your
version of the pre-compiler.

3.2 Using the Pre-compiler

The ACUSQL pre-compiler offers three modes of SQL syntax checking.

3-4 m Pre-compiler Function and Use

« Thefirst mode, specified with the “-Pk” switch, usesinternal reserved
word lists and syntax rules to check IBM DB2 SQL, Transact-SQL, or
ISO/ANSI SQL 92.

* The second mode, called relaxed mode, is enabled with the“-Pr” switch
and provides only minimal syntax checking. It isintended for use with
unspecified SQL variants.

* Thethird mode establishes adirect connection to the target database
engine and uses the engine to directly check the syntax. Thisoptionis
specified with the “-Pc” switch. Note that for this mode to be effective,
your ODBC API middleware must support the return of syntax error
messages (not all ODBC drivers do). Also note that during syntax
verification it is possible that some error messages will be converted to
warning messages. Thisisdone, when possible, to prevent the compiler
from aborting so that syntax checking can continue. The text of the
warning message preserves the text of the error message.

These modes operate on the file asawhole. See section 2.7, “Checking
Syntax,” for information on indicating relaxed or strict checking for
individual EXEC SQL commands.

When the pre-compiler starts, it examines the source file to determine
whether it isin ANSI or terminal format and then processes the file
accordingly. If thefileisin ANSI format, the pre-compiler removes
characters from columns 1-6 and 72-80, replacing them with spaces.
Information contained in these columns may not appear in the
ACUCOBOL-GT compilation listing file.

You can start and use the AcuSQL pre-compiler in several ways:
¢ From AcuBench
e Asastandalone program from the command line

e From the compiler command line

Using the Pre-compiler m 3-5

3.2.1 Using AcuSQL From Within AcuBench

Using AcuSQL within AcuBenchiseasy. Simply set the“-Ps’ pre-compiler
option (and any other desired options) in the File Compiler Options dialog
box whenever you add an ESQL source file to the project. Thereafter,
AcuBench automatically pre-compiles the file every time the project is built
or thefileis compiled.

Pre-compiler options, such as“-Pe”, are set in the File Compiler Options
dialog box. To open the File Compiler Options dia og box, right-click on the
ESQL filein the Source tab and select Program Compile Options from the
menu. In the Catalog drop-down list of the File Compiler Options dialog
box, select Pre-compiler from thelist.

Pre-compiler options are identified on the command line by the “-Px” flag.
Pre-compiler options are described in Section 3.2.3

If your ESQL files have aunique file suffix, such as“.sqb” (asuffix used by
many IBM ESQL developers), you will want to add that suffix to the Source
tab properties so that your ESQL files will automatically be included in the
Sourcetab. To modify the Sourcetab properties, right click onthe Source tab
and select Properties from the pop-up menu. Add the suffix to thelistinthe
“Extension names’ entry field. Note that a semicolon separates each suffix
except the last one.

ESQL files, likeall COBOL sourcefiles, can be opened into the Code Editor
by double-clicking on the file name in the Source tab or by right-clicking the
fileicon and selecting View code from the pop-up menu.

3.2.2 Using AcuSQL as a Standalone Program

You can run the AcuSQL pre-compiler from the command line as a

standal one program or you can run it through the ACUCOBOL-GT compiler.
Running the pre-compiler as a standal one gives you access to more
pre-processor options, however, certain situations may require you to run
AcuSQL from the main compiler. In particular, if you want to pre-process
ESQL inside of copy files, you need to run AcuSQL from the compiler since
the copy files must first be located by the compiler.

3-6 m Pre-compiler Function and Use

To start the pre-compiler from the command line, use the following syntax:

acusql [options] input filename

This causes ACUCOBOL-GT to pre-compile and compile the specified
source file. The following additional options affect pre-compiler behavior:

-Pc

-Pd dataset

-pe*

* (see special note at the
end of thislist)

Directs the pre-compiler to connect to and use
the database engine to perform SQL syntax
checking. This switch should be used in
conjunction with the “-Pd”, “-Pu”, and “-Pp”
switches; with the environment variables
ACUSQL_DATASET, ACUSQL_USER, and
ACUSQL_PASSWORD (see section 3.3,
“Environment Variables’); or with some
combination of switches and environment
variables. Values given on the command line
take precedence over values held by
environment variables.

Note that during syntax verification, in some
cases an error message may be converted to a
warning message in order to prevent the
compiler from aborting. Thetext of the
warning message preserves the text of the error
message.

Isused in conjunction with the “-Pc” option
and must be followed by the name of the
ODBC data source to use.

Includes ESQL linesin alisting or in the
debugger. If you want to see the preprocessed
output, use “-Pe” and include a source listing
by using “-Lf".

Using the Pre-compiler m 3-7

-Pi dir

-Pk rlist

-Po

-Pp password

Specifies the path that the pre-compiler will
search to locate files named in SQL
INCLUDE statements. For example

“-Pi c\SQL\include\” causesthe pre-compiler
to look in the “C:\SQL\include” directory for
filesnamed in SQL INCLUDE statements.
You can also specify a search path viathe
ACUSQL_INCLUDE environment variable
(see section 3.3, “Environment Variables’).
Note that “-Pi” takes precedence over
ACUSQL_INCLUDE when both are used.

Directs the pre-compiler to use the designated
reserved word set for syntax checking. rlist can
be“DB2”, to use the DB2 word set, “MSSQL”
to use the Microsoft SQL Server word set, or
“EXT", to use the extended reserved word set.
“EXT" isthe default.

Note: The syntax of the ALTER, CREATE,
and GRANT statements is not checked by
either the“-Pr” or “-Pk rlist” modes. These
statements are checked only when you use the
“-Pc” mode to connect directly to the database
engine.

use output-file for prepocessed output

I's used in conjunction with the “-Pc” option
and must be followed by the password that
matches the username specified by the “-Pu”
switch or by the ACUSQL_USER
environment variable.

3-8 m Pre-compiler Function and Use

-Pr

-Pu username

Directs the pre-compiler to perform relaxed
syntax checking. “-Pr” isintended for usein
situations where the embedded SQL syntax
does not conform to IBM SQL, Transact-SQL,
or SQL92, but is correct for the database that
you want to access.

“-Pr” does not perform syntax checking on the
following statements:

SELECT INTO FROM

VALUES

DELETE

INSERT

DECLARE CURSOR FOR SELECT
UPDATE

Note: The syntax of the ALTER, CREATE,
and GRANT statements is not checked by
either the “-Pr” or “-Pk rlist” modes. These
statements are checked only when you use the
“-Pc” mode to connect directly to the database
engine.

Is used in conjunction with the “-Pc” option
and must be followed by the username of an
authorized database user.

Causes the compiler to treat group items as
they were treated in releases earlier than
Version 6.2; that is, group items containing
both a numeric item and a character item only
do not need to be level 49 to be treated asa
VARCHAR. See Section 2.4, “Data Types,”
for additional information.

Using the Pre-compiler m 3-9

-Pw Causes the pre-compiler to dump the current
reserved word list to standard output (use the
“-Pk” option to set the reserved word list). No
pre-compilation or compilation is performed.
Note that “-Pw” should not be used with any
other pre-compiler switches. In AcuBench,
“-Pw” must be specified in the “ Additional
options” entry field at the top-right of the File
Compiler Options dialog box.

-St Sourceisin terminal format

-Sa Sourceisin ansi format

Note: Previous versions of the compiler accepted “-Po” filename, which
enables you to view the pre-processed output. The compiler no longer
accepts “-Po”, however, it isalowed if running AcuSQL as a standalone
program. If you are running AcuSQL from the compiler and want to view
the pre-processed output, use “-Pe” as described above.

3.2.3 Using AcuSQL from the Compiler

Use the“-Ps’ compiler switch, and specify the source file you wish to
pre-process. For example:

ccbl -Ps [options] input filename

The following options are available to modify how AcuSQL executes from
the compiler.

3-10 m Pre-compiler Function and Use

-Pd dataset

-pe*

* (see special note at the
end of thislist)

-Pi dir

Directsthe pre-compiler to connect to and use
the database engine to perform SQL syntax
checking. This switch should be used in
conjunction with the “-Pd”, “-Pu”, and “-Pp”
switches; with the environment variables
ACUSQL_DATASET, ACUSQL_USER, and
ACUSQL_PASSWORD (see section 3.3,
“Environment Variables’); or with some
combination of switches and environment
variables. Values given on the command line
take precedence over values held by
environment variables.

Note that during syntax verification, in some
cases an error message may be converted to a
warning message in order to prevent the
compiler from aborting. The text of the
warning message preserves the text of the error

message.

Is used in conjunction with the “-Pc” option
and must be followed by the name of the
ODBC data source to use.

Includes ESQL linesin alisting or in the
debugger. If you want to see the preprocessed
output, use “-Pe” and include a source listing
by using “-Lf".

Specifies the path that the pre-compiler will
search to locate files named in SQL
INCLUDE statements. For example

“-Pi ¢\SQL\include\” causesthe pre-compiler
to look in the “ C:\SQL\include” directory for
files named in SQL INCLUDE statements.
You can also specify a search path viathe
ACUSQL_INCLUDE environment variable
(see section 3.3, “Environment Variables’).
Note that “-Pi” takes precedence over
ACUSQL_INCLUDE when both are used.

Using the Pre-compiler m 3-11

-Pkrlist Directs the pre-compiler to use the designated
reserved word set for syntax checking. rlist can
be“DB2”, to use the DB2 word set, “MSSQL”
to use the Microsoft SQL Server word set, or
“EXT", to use the extended reserved word set.
“EXT" isthe default.

Note: The syntax of the ALTER, CREATE,
and GRANT statements is not checked by
either the“-Pr” or “-Pk rlist” modes. These
statements are checked only when you use the
“-Pc” mode to connect directly to the database
engine.

-Pp password Is used in conjunction with the “-Pc” option
and must be followed by the password that
matches the username specified by the “-Pu”
switch or by the ACUSQL_USER
environment variable.

-Pr Directs the pre-compiler to perform relaxed
syntax checking. “-Pr” isintended for usein
situations where the embedded SQL syntax
does not conform to IBM SQL, Transact-SQL,
or SQL92, but is correct for the database that
you want to access.

“-Pr” does not perform syntax checking on the
following statements:

SELECT INTO FROM

VALUES

DELETE

INSERT

DECLARE CURSOR FOR SELECT
UPDATE

Note: The syntax of the ALTER, CREATE,
and GRANT statementsis not checked by
either the“-Pr” or “-Pk rlist” modes. These
statements are checked only when you use the
“-Pc” mode to connect directly to the database
engine.

3-12 m Pre-compiler Function and Use

-Pu username

Is used in conjunction with the “-Pc” option
and must be followed by the username of an
authorized database user.

Causes the compiler to treat group items as
they were treated in releases earlier than
Version 6.2; that is, group items containing
both a numeric item and a character item only
do not need to be level 49 to be treated asa
VARCHAR. See Section 2.4, “Data Types,”
for additional information.

Causes the pre-compiler to dump the current
reserved word list to standard output (use the
“-Pk” option to set the reserved word list). No
pre-compilation or compilation is performed.
Note that “-Pw” should not be used with any
other pre-compiler switches. In AcuBench,
“-Pw” must be specified in the “ Additional
options” entry field at the top-right of the File
Compiler Options dialog box.

Note: Previous versions of the compiler accepted “-Po” filename, which
enables you to view the pre-processed output. The compiler no longer
accepts “-Po”, however, it isalowed if running AcuSQL as a standalone
program. If you are running AcuSQL from the compiler and want to view
the pre-processed output, use “-Pe” as described above.

3.3 Environment Variables

The following variables can be used to control the way AcuSQL accesses
your datasource. They can be set at the system/environment level or they can
be specified in aruntime configuration file.

ACUSQL_DATASET
ACUSQL_INCLUDE
ACUSQL_PASSWORD

ACUSQL_USER

Environment Variables m 3-13

ACUSQL_DATASET

The ACUSQL_DATASET environment variable is used in conjunction with
the “-Pc” pre-compiler switch (“-Pc” directs the pre-compiler to connect to
the target database engine to perform syntax checking).
ACUSQL_DATASET should be assigned the name of the ODBC data source
to use. (Windows users refer to thisvalue as the User DSN.)

ACUSQL_INCLUDE

The ACUSQL_INCLUDE environment variable can be used in place of the
“-Pi” option to specify multiple search directories for SQL INCLUDE files.
ACUSQL_INCLUDE is defined in the environment. Directories are
searched in the order specified, first to last. A semicolon (“;”) isused after
each path except the last one. For example, to set ACUSQL_INCLUDE to
search the current directory, the directory “C:\SQL\LIBRARY”, and the
directory “C:\COBOL\ESQL\LIBRARY", you would execute the following
statement in the DOS shell or in “autoexec.bat”:

SET ACUSQL INCLUDE = ; C:\sqgl\library; C:\cobol\esgl\library

Theinitial semicolon indicates an empty directory path (i.e., the current
directory). Note that when both “-Pi” and ACUSQL_INCLUDE are used,
the “-Pi” option takes precedence.

ACUSQL_PASSWORD

The ACUSQL_PASSWORD environment variable is used in conjunction
withthe“-Pc” pre-compiler switch (“-Pc” directsthe pre-compiler to connect
to the target database engine to perform syntax checking).
ACUSQL_PASSWORD should be assigned the value of the password that
goes with the username specified with the “-Pu” switch or in the
ACUSQL_USER environment variable.

3-14 m Pre-compiler Function and Use

ACUSQL_USER

The ACUSQL_USER environment variable is used in conjunction with the
“-Pc” pre-compiler switch (“-Pc” directs the pre-compiler to connect to the
target database engine to perform syntax checking). ACUSQL_USER
should be assigned the username of an authorized database user.

3.4 Pre-compilation Errors

If the pre-compiler encountersillegal ESQL, it attempts to report the error
and continue pre-compilation. If the pre-compiler cannot continue,
pre-compilation is terminated.

Refer to your SQL reference manual for the meanings of pre-compiler error
messages.

Program Execution

Key Topics

Running Your APPliCaLIONcooeiiiiiiiieee e e 4-2
Running Your Application with Microsoft SQL Servercccceevvevveenen. 4-2
Debugging and File TraCing.......cccevievverereeseseeseseesee e see e seesee e seens 4-7

EITOr MESSA0ES. ... e iueeeeiee sttt ettt st s n e bbb e sre e 4-8

4-2 m Program Execution

4.1 Running Your Application

Before using the AcuSQL® runtime for the first time, you should test your
Windows-to-data or UNIX-to-data host connection software. If you're using
IBM’s DB2 Connect software, you can test your connection under Windows
by launching the Client Configuration Assistant and clicking Test. For full
testing instructions, consult your DB2 Connect documentation. To test other
vendors' connectivity software, consult your product documentation. Itis
essential that you prove the proper functioning of your database connection
software before attempting to run your program.

The program object file created by successful pre-compilation and
compilationisready for immediate execution. Generally, there are no special
options or configuration settings needed to run an ESQL program. However,
if you are using transactionsin a SQL Server environment, you will need to
set some runtime configuration variables. Refer to section 4.2.1 for
information on these variables.

To start the program within AcuBench® integrated devel opment
environment, simply double-click on the executablefilein the Object tab. To
start the program from the DOS or UNIX command line, enter the name of
your ACUCOBOL-GT® runtime executable (“wrun32.exe” on DOS,
“runcbl” on UNIX) followed by the name of the executable file (the runtime
executable must be in adirectory that isincluded in the current PATH
definition). For adetailed discussion of the runtime environment and runtime
options, see section 2.2 of the ACUCOBOL-GT User’s Guide.

4.2 Running Your Application with Microsoft SQL
Server

AcuSQL offersaspecia runtime DLL for running the product with
Microsoft SQL Server. Note that the pre-compiler is unchanged. To
pre-compile COBOL programs with embedded SQL, use the procedures
found in Chapter 3.

The new runtime DLL isnamed “asqlsrvr.dll”. You can usethisDLL intwo
ways.

Running Your Application with Microsoft SQL Server m 4-3

* Renamethe DLL to “esqllib.dll” for the runtime to use this DLL when
attempting to execute any AcuSQL commands.

» Givethe DLL aname of your choice, and set the configuration variable
ACUSQL_RUNTIME_DLL to the name you have chosen. We
recommend keeping the name as “asglsrvr.dil” and setting
ACUSQL_RUNTIME_DLL to “asqlsrvr.dll”.

When getting runtime version information, in order to list the versions of the
AcuSQL runtime DLLs, the runtime attempts to find and load all AcuSQL
DLLsthat it knows about. Currently these are “esqgllib.dll” and
“asglsrvr.dil”. Thisiswhy we recommend not changing the name of the
DLL.

ACUSQL_RUNTIME_DLL must be set in the configuration file; this
variable cannot be set from the COBOL program. In addition, note that the
value of ACUSQL_RUNTIME_DLL cannot be changed from the COBOL
program once an AcuSQL command has been executed. In other words, itis
not possible to use both “esgllib.dll” and “asglsrvr.dll” in the same run unit.

When connecting to a server, the runtime DLL for the AcuSQL interface to
SQL Server environments takes the name of the server, not the name of a
datasource. Username and password information is used as described in
section 3.3, “Environment Variables.”

The following statements are not supported by AcuSQL interface to
Microsoft SQL Server:

DESCRIBE ident INTO parameter

FETCH ... USING DESCRIPTOR parameter
EXECUTE statement USING DESCRIPTOR parameter
OPEN cursor USING DESCRIPTOR parameter

CALL procname USING DESCRIPTOR parameter

All other statements are supported.

4-4 m Program Execution

4.2.1 Runtime Configuration Variables for SQL Server

In addition to the runtime configuration variable
ACUSQL_RUNTIME_DLL, described in section 4.2, AcuSQL support for
SQL Server includes additional runtime configuration variables:

ASQL_BUFFER_SIZE
ASQL_CONNECT _DATABASE
ASQL_NULL_ALPHA_SPACES
ACUSQL_SQLSTATE_2000 ON_EOD

These variables are of particular use when working with transactions. The
variables can be set in the environment or in aruntime configuration file.

ASQL_BUFFER_SIZE

ASQL_BUFFER_SIZE can be set to any positive number, and causes
AcuSQL to cachethat many rowsfrom acursor when the cursor isread. This
can result in much less traffic across the network, and, therefore, better
performance. Values assmall as“5" (to cache 5 rows) can resultin a
significant performance boost. Test your application for the optimal valueto
which to set thisvariable.

ASQL_BUFFER_SIZE istested when a cursor is opened. Setting the
variable programmatically after a cursor is open has no effect.

ASQL_CONNECT_DATABASE

The configuration variable ASQL_CONNECT_DATABASE enablesyou to
specify a database other than the default for accessing data. If
ASQL_CONNECT_DATABASE is set to anon-blank value, the driver
executes “ use [database_name]” as soon as the connection is established.
From that point, all data access viathat connection will be relative to the
specified database.

Note that the database can be specified only before the connection; it is not
possible to change databases on the fly.

Running Your Application with Microsoft SQL Server m 4-5

If the system cannot execute the USE statement, the connection attempt fails
with SQLCODE 08004. This can occur, for example, if the specified
database does not exist, or if the user doesn not have permissions to access
that database.

ASQL_NULL_ALPHA_SPACES

ASQL_NULL_ALPHA_SPACES alowsyou to determine how NULL data
being returned to an ALPHA field ishandled. In some cases, you may want
the NULL datareturned as ALL SPACES, or you may want the NULL data
returned unchanged. Set this variable to the non-default value of "TRUE" if
you want NULL datareturned to an ALPHA field as ALL SPACES. The
default valueis "FALSE", and will return NULL data to an ALPHA field
unchanged.

ACUSQL_SQLSTATE_2000_ON_EOD

Some embedded SQL products set SQL STATE to the value of “02000” when
end of dataisreached on FETCH (SQLCODE = 100). The
"ASQL_SQLSTATE_2000_ON_EOD" enables you to duplicate this
behavior. Set this variable to the non-default value of “TRUE” to cause
SQL STATE to have the value "02000" whenever end of datais reached.
When set to its default value of “FALSE”, SQLSTATE will have the value
"00000."

4.2.2 Runtime Configuration Variables for esqllib

When using the esqgllib.dll as described in Section 4.2, AcuSQL support for
esgllib.dll includes additional runtime configuration variables:

ACUSQL_NO_AUTOCOMMIT
ACUSQL_ODBC_CURSORS
ACUSQL_USE_CONCURRENT
ODBC_CURSOR_TYPE

4-6 m Program Execution

ACUSQL_NO_AUTOCOMMIT

ACUSQL_NO_AUTOCOMMIT explicitly turns off any auto-commit
behavior that your ODBC driver may have. AUTOCOMMIT affects items
such asrecord locking and the ability to roll back work. It isup to the driver
vendor to determine whether a driver auto-commits work. |f
ACUSQL_NO_AUTOCOMMIT issetto “1”, the runtime explicitely turns
auto-commit off whether or not it is the default. If

ACUSQL_NO AUTOCOMMIT issetto “0”, the runtime leaves the driver
initsdefault state. Please refer to the documentation provided by your driver
vendor for default COMMIT behavior.

ACUSQL_ODBC_CURSORS

This variable prevents the Microsoft cursor library from loading. When
loaded, this library removes the "FOR UPDATE" clause from SELECT
statements resulting in records not being locked. To prevent this, set
ACUSQL_ODBC_CURSORSto “0”, which will block the library from
loading. The default valueis“1”, and will allow the Microsoft cursor library
to load.

Note: The effect on your application is application and ODBC driver
dependent. Please refer to the Microsoft documentation and the
documentation from your driver vendor.

ACUSQL_USE_CONCURRENT

On some machines, callsto set concurrency mode can cause amemory access
violation (MAV). The ACUSQL_USE_CONCURRENT configuration
variable can be used to prevent such aviolation. Set ACUSQL_USE_
CONCURRENT to “0" (off, false, no) to prevent concurrency mode calls
from being made. The defaultis“1” (on, true, yes).

Debugging and File Tracing m 4-7

ODBC_CURSOR_TYPE

Set ODBC_CURSOR_TY PE to one of the following to specify acursor type
to use:

For cursor type... Set ODBC_CURSOR_TYPE to ...

SQL_CURSOR FORWARD ONLY | 0
SQL_CURSOR KEYSET DRIVEN | 1
SQL_CURSOR _DYNAMIC 2
SQL_CURSOR_STATIC 3

For example:
ODBC_CURSOR_TYPE 3

sets the curor type to a static cursor.

On Windows, the default is“ 3" (static). On other systems, the default isthe
driver defaullt.

Note that not all cursor types are supported by all driversor in all
circumstances. Therefore, you are encouraged to check your database and
operating system documentation before using this variable.

4.3 Debugging and File Tracing

Should you encounter an error in the execution of your program, you can use
the debugging facilitiesin AcuBench or ACUCOBOL-GT to investigate the
problem. See section 1.7.2 and Chapter 3 of the ACUCOBOL-GT User’s
Guide for adetailed description of debugger options and use. Once the
debugger is running, it may be helpful to use the “tf” option to turn on file
tracing. Included inthefiletraceareall callsto “esqllib.dll” and
“asglsrvr.dil”. To generate the most detailed level of file tracing, follow “tf”
with the number “9".

4-8 m Program Execution

4.4 Error Messages

SQL error messages reported during program execution are directed to
standard error output. Refer to your SQL reference manual for the meanings
of SQL error messages. Programmers can check for error codesin their
programs by examining the values of SQL STATE and SQLCODE.

MySQL Users

Note that some MySQL driversdo not correctly clear their error buffers after
reporting an error. This can cause the driver to produce an infinite loop
reporting the same error message. |If you keep receiving the same error
message over and over, thiscould be the source of the problem. Please check
with your driver manufacturer for detail.

DB2 Users

For error messages generated by DB2 Connect or other connectivity
software, refer to your product documentation.

Sample Programs

Key Topics

SAMPIE PrOGIaMS.......cviieiieieie ettt e 5-2
SHELC SQL e 5-3
Creating Tables With ESQL — create.sgb........cceovvvevveecci e, 53
Using Working-Storage Items — SeleCt1.S0booeeeeeererenicnire e 5-8
Group Itemsin the INTO Clause — select2.5gb.....ccccoeveevcvvecvnevecienne 5-14
Working With More Than One Row — select3.50bveevvevcceecvceecieen, 5-15
Updating Data — Update.SObcoerereerierieieniesie e 5-20

FUIl SQL Programc.ccceeesereereeeeeeeseseseseessessesessessessesssssessesseseenees 5-25

5-2 m Sample Programs

5.1 Sample Programs

Your AcusSQL® pre-compiler comes with several sample programs that
demonstrate embedded SQL in a COBOL program. This chapter describes
five of these sample programs, and uses these programs to introduce SQL
concepts and syntax. In several places, a syntax statement appears. Given
thevariety of databases, this syntax statement isquite ssimplified. Full syntax
statements can run pages in length. We encourage you to check your
database documentation or any of the commercially available SQL texts for
a broader treatment of the concepts and syntax described in this chapter.

The sample progams on your distribution have been placed in different
sub-directoriesfor different data sources, for example Access, DB2, etc. Not
all of the data sources will support all of the sample applications. The
samples also differ in areas such as table creation syntax and date formats.
We recommend that you take the time to review the differencesin these
sample programs if you intend to write ESQL applications that run on
multiple databases. If you data source is not explicitely listed in the
examples, you may examine the various samples to find the one whose
syntax most closely matches your target data source.

Note: All examples of syntax given in this chapter pertain to embedded
SQL in ACUCOBOL-GT® programswith the specified sample database. |If
necessary, please consult any of the commercially available books on SQL
for amore generic treatment of embedded SQL.

The following sample files are provided with AcuSQL and documented in

this chapter:
File Name Description
create.sgb L oads sample data into database
selectl.sgb Simple SELECT using Working-Storage

items

select2.sgb Simple SELECT using a group item
select3.sgb Working with CURSORs
update.sgb Modifying data through a CURSOR

Static SQL m 5-3

The programswere compiled on aWindows using the following command in
a Windows2000 environment:

ccbl32 -ps filename.sgb

The program was then run by executing the following command:

wrun32 filename

5.2 Static SQL

Embedded SQL programsare based on either static SQL or dynamic SQL. A
program can be said to be static SQL when access to the database has been
predetermined by the programmer. While the user may input valuesin
response to a query, the query syntax itself isalready in place. Put another
way, al SQL statements are already part of the program when it is executed.

5.3 Creating Tables With ESQL — create.sgb

The “create” program creates atable and loads datainto it from the text or
line sequentia “customer” file. Thetable that is created provides the source
data for the other sample programs, so be sure to compile “create.sgb” and
run “create.acu” before working with the other programs.

This program demonstrates the following ESQL and SQL concepts:
¢ The WHENEVER statement
e Useof DDL (Data Definition Language) to create tables

* ThelINSERT statement

5-4 m Sample Programs

When you run the “create” program, you see the following on your screen:

Dropping existing table if it exists...
Creating CUSTOHMER table...

Loading CUSTOMER table with data...
Program Complete. Press Enter to Exit.

5.3.1 WHENEVER Directive

The WHENEVER directive controls the flow of the program in the event it
encounters an error, warning, or NOT FOUND condition. Note that NOT
FOUND conditions are the result of a SELECT or FETCH operation. See
section 5.4.1 and section 5.6.5, respectively, for more information on

SELECT and FETCH.
Syntax
EXEC SQL WHENEVER {SQLERROR} | {CONTINUE}
{SQLWARNING} | {PERFORM paragraph}
{voT FOUND} | {GO TO paragraph}
| {

STOP}

where paragraph is a specified procedure in the program.

Example

The following statement appears in the “ create.sgb” program:
EXEC SQL WHENEVER SQLERROR GO TO Error-Exit END-EXEC.

This indicates that when the program encounters an error condition, it
proceedsto the Error-Exit routine. See section 2.8 for additional information
on the WHENEVER directive.

Creating Tables With ESQL — create.sgb m 5-5

5.3.2 Using DDL

DDL isan acronym for Data Definition Language. You use DDL statements
to create or modify the structure of the database. Creating or dropping tables,
or changing the number of columnsin atable are all done by means of the
DDL.

The*“create.sgb” program containstwo examplesof DDL statements: DROP
TABLE and CREATE TABLE. The DROP TABLE statement causes the
program to del ete the specified table from the database. Conversely, the
CREATE TABLE statement causes the program to create a table with the
specified name in the database.

Syntax

DROP TABLE tablename
CREATE TABLE tablename (columnl [, column 2, ..])

Note: These statements are intended to demonstrate basic, generic syntax.
However, syntax for creating tablesis database dependent. When creating
tables, please refer to the documentation that accompanied your database.

Examples

The following statements appear in the “ create.sgb” program.

EXEC SQL
DROP TABLE customer
END-EXEC.
EXEC SQL
CREATE TABLE customer
C_NUMBER INTERGER NOT NULL,
C_FIRST NAME CHAR (20) .
PRIMARY KEY (C_NUMBER)

END-EXEC.

5-6 m Sample Programs

With these statements, the program del etes from the database any tables
called “customer” that are owned by the user issuing the command. (The
user’s area of the database is called aschema). A new table by the same
name is then created and defined. This precludes overwriting the original
“customer” table.

Note: It is possible to delete tables from other areas of the database by
using aqualified name. See any of the commercially available SQL texts
for more information.

5.3.3 INSERT Statement

The INSERT statement is an example of DML (Data Manipulation
Language). With INSERT, you are adding datato atable in the database, but
you are not changing the structure of the datain any way. The database till
contains the same number of tables, and the tables still contain the same
number of columns. (Compare this with the CREATE statement, which
creates the table, but does not insert data into the table.)

Syntax

Thefollowing isagenera syntax statement for INSERT

INSERT INTO <tablename> [(field-list)]
VALUES (<values-list>)

where ...
tablename is the name of the table where you are inserting data

field-list isan optional list of fieldsto which you want to assign values. This
list must be written according to the following syntax:

<field-name> [,<field-name] ..

Omitting thislist specifies all the fields of the table, using the same order as
they are defined.

Creating Tables With ESQL — create.sgb m 5-7

values-listisalist of literals. The values of these literals are assigned to the
fields specified in <field-list>, according to the order in which they arelisted.
For this reason, the number of elements of both lists must be equal. At the
same time, the value of the literal must be compliant with the type of field
(alphanumeric, numeric, etc.) used in the table definition.

value-list has the following format:

<literal> [,<literals] ..

Example

EXEC SQL
INSERT INTO CUSTOMER VALUES
(:C-NUMBER, :C-FIRST-NAME, :C-LAST-NAME, :C=BIRTHDAY: C:-INFO)
END-EXEC.

With this statement, the program inserts values into the columns of the
“customer” table. See section 2.3.3 for ageneral introduction to host
variables and section 5.4.2 for an example using host variables.

5.3.4 Date Format

Asadeveloper, you must keep in mind that date formats can vary by database
and by country. Another thing to consider iswhether you want to indicate the
date alone or atimestamp. Be sure to check the documentation that comes
with your database for information on date formats. In the coming sections,
you'll see sample code refering to the “c_hirthday” variable. Thisissimply
aplaceholder; if you are working with the sample files, you will want to
substitute database-specific code to specify the date.

5.3.5 Putting It All Together

You have now created a database table with the following format:

Name Nullable Type

C_NUMBER Not null NUMBER(38)
C_FIRST_NAME Yes CHAR(20)

5-8 m Sample Programs

Name Nullable Type
C_LAST_NAME Yes CHAR(20)
C_BIRTHDAY Yes DATE
C_INFO Yes CHAR(10)

The contents of the “customer” table looks similar to the following:

C_NUMBER C_FIRST NAME C_LAST_NAME C BIRTHDAY C_INFO

1 Sam Snead 13-APR-52 New
2 John Future 01-JAN-01 New
3 Betty Falcon 01-FEB-90 New
4 Saly Snead 31-DEC-54 New
5 John Jones 29-FEB-60 New

5.4 Using Working-Storage ltems — select1.sqgb

Compile and run the “select1” program to find the range of customer
numbersinthe*customer” table, prompt the user for acustomer number, and
thenretrievethat record. Remember to compile and runthe*create”’ program
before running “selectl.”

This program demonstrates the following SQL concepts:
e SELECT statements for returning asingle row of data.

* host variables.

Using Working-Storage Items - selectl.sqb = 5-9

* MIN and MAX functions. These are group functionsthat operate on a
field, or column, of data.

Finding out range of customer records..

Select a customer number between 1 and 5: 3

You selected: 3

First Hame: Betty
Last Hame: Falcon
Birthday: B1-FEB-1998
Info: Hew

press Enter to Exit

5.4.1 SELECT Statement

Use SQL's SELECT statement to view information in the database. You can
seethe values of al fields for an entry or you can see a specified subset.

Note: You can also use SELECT statements to view data from more than
one table. See your SQL documentation for information about JOIN
statements.

Syntax

At its most basic, the syntax for the SELECT statement is as follows:

SELECT <field-name-1>[, <field-name-2>] ..
FROM tablename

where
field-name represents a column or columns in tablename.

tablename is the name of the database table .

5-10 m Sample Programs

Example

For example, the statement
SELECT C_FIRST NAME, C_LAST NAME FROM CUSTOMER

returns the first and last names of customers listed in the “customer” table:

C_FIRST_HAME C_LAST_HAME
S5am Snead

John Future
Betty Falcon
Sally Snead

John Jones

press Enter to Exit

5.4.2 Host Variables

Host variables provide away for embedded SQL to use variablesthat are
declared in COBOL. They are declared in the SQL DECLARE section of
Working-Storage. They are distinguished from database objects (such as
columns or tables) by aleading colon (“:"). Host variables can be used as
input to a SELECT statement or they can be used as output to store the results
of an SQL query. The pre-compiler recognizes COBOL variables only if
they have been declared in an SQL BEGIN DECL ARE section.

For example, in the “select1.sgb” program, the variables MIN-C-NUMBER
and MAX-C-NUMBER are declared in Working-Storage. When embedded
SQL statements refer to these variables, they appear as :MIN-C-NUMBER
and :MAX-C-NUMBER. See section 2.3.3 for more information on host
variables.

5.4.3 INTO Clause

Asindicated above, host variables are used to store the result of an SQL
query. Theresulting valueisput INTO the variable.

Using Working-Storage Items - selectl.sqb m 5-11

Syntax

SELECT database-field(s)
INTO :host-variable

where
database-field(s) is one or more variables defined in Working-Storage.

host-variable is the name of a COBOL variable.

Example

The “selectl.sgb” program contains the following code:

EXEC SQL
SELECT
C_FIRST NAME, C_LAST NAME,
C_BIRTHDAY, C_INFO
INTO
:C-FIRST-NAME, :C-LAST-NAME, :C-BIRTHDAY, :C-INFO
FROM CUSTOMER

END-EXEC.

This series of statements instructs the program to place the values for these
fields INTO the corresponding COBOL variables, which are
C-FIRST-NAME, C-LAST-NAME, etc., so that COBOL statements can
refer to them. The semicolon in the code indicates that these are COBOL
(host) variables.

Note: In this example, there is a one-to-one match between variables
declared in Working-Storage and the columns in the table. The program
“select2.sgb” provides an example where the values to INTO a group item
rather than individual fields.

5-12 m Sample Programs

5.4.4 WHERE Clause

The WHERE clause imposes conditions on the SELECT statement. Put
another way, it restricts the number of rows returned, based on the indicated
criteria.

Syntax

SELECT <field-name-1>[, <field-name-2>] ..
FROM tablename
WHERE condition

Example

EXEC SQL
SELECT
C_FIRST NAME, C LAST NAME,
TO CHAR, C_INFO
INTO
:C-FIRST-NAME, :C-LAST-NAME, :C-BIRTHDAY, :C-INFO
FROM CUSTOMER
WHERE C_NUMBER = :C-NUMBER
END-EXEC.

Using the example from the previous section, the program to place valuesfor
these fields INTO the corresponding COBOL variables, which are
C-FIRST-NAME, C-LAST-NAME, etc. The semicolon in the codeindicates
that these are COBOL (host) variables. See an SQL text for more
information on conditions and operators supported by SQL.

5.4.5 MIN and MAX Group Functions

A SELECT statement can include any of a number of SQL aggregate
functions. The MIN and MAX functions are two functions supported by
AcuSQL. The MIN function returns the minimum value of the column from
al the rowsin atable; the MAX function returns the maximum value.

Using Working-Storage Items - selectl.sqb m 5-13

Syntax

The field name to which the function applies must follow the name of the
function and must be enclosed in parentheses.

SELECT MIN (fieldname)
SELECT MAX (fieldname)

Example

The “selectl.sgb” program specifies records containing a customer number.
Thisfield iscalled “c-number”.

Given that thisfield contains a range of numbers, if you want to find the
smallest value in the range, use the following SELECT statement:

SELECT MIN (C_NUMBER)

Similarly, to find the highest value in the range, use the following SELECT
statement:

SELECT MAX (C_NUMBER)

5.4.6 Putting It All Together

Putting this all together, the following statement that appears in the
“selectl.sgb” program

EXEC SQL
SELECT MIN (C NUMBER)
INTO :MIN-C-NUMBER
FROM CUSTOMER
END-EXEC.

instructs the program to do the following:
Start executing an embedded SQL statement.
Find the minimum value in the “c_number” field of the customer table.

Assign that value to the COBOL host variable “:min-c-number”.

A wobdpoRE

Stop executing the embedded SQL statement.

5-14 m Sample Programs

If you haven't done so already, compile and run the “select1” program.
These steps provide one input for the statement “ Select a customer number
between 1 and 5.”

5.5 Group ltems in the INTO Clause - select2.sgb

The program “select2.sqb” isvery similar to “ selectl.sgb.” Userswill seeno
difference when they run it. From a developer standpoint, however, the use
of the INTO clauseis different: the datais placed INTO agroup item. This
providesa*“shortcut” for you, the programmer. Please read section 5.4.2 and
section 5.4.3 about host variables and the INTO clause, respectively, for
background information.

The “select2.sgb” program contains the following code:

EXEC SQL
SELECT
C_NUMBER, C_FIRST NAME, C_LAST NAME,
C_BIRTHDAY, C_INFO
INTO :C-RECORD
FROM CUSTOMER
WHERE C_NUMBER = :C-NUMBER
END-EXEC.

Thisinstructs the program to take the values of fields in the database table
and put these respective values INTO a COBOL group item host variable
caled :C-RECORD. The host variableis a group item; generated code will
have individual fields.

Note: Thereisaspecia case when working with group items where the
generated code is not broken up into the individual fields. Thisisthe case
of aVARCHAR datatype. The structure of the COBOL group item must
meet a strict format. Please refer to the data type compatibility section of
the documentation for your data source for more information.

Working With More Than One Row - select3.sqb m 5-15

5.6 Working With More Than One Row - select3.sgb

The programs “select1.sgb” and “ select2.sgb” each returned one row of data
when you entered a customer number. Compile and run the program
“select3” to receive data on more than onerow. (Remember to compile and
run the “create” program if you haven't already. This generates the data for
the sample programs.)

This program demonstrates
» working with cursors

» the FETCH statement

When you run “select3.acu”, you are asked for a starting customer number,
and the program returnsinformation on al customers with the number you
provide, or higher, as shown below:

Finding out range of customer records..

Select a starting customer number between 1 and 5: 3
3: Betty Falcon Heuw
4: Sally Snead Heuw
5: John Jones Hew

press Enter to Exit

Note: The behavior and duration of acursor can be affected by the state of
transaction processing for your data source. For example, many databases
do not have cursors that maintain their state across a commit or rollback.
Please refer to you database documentation for more details.

5.6.1 SET ROWCOUNT Statement

AcuSQL supports the SQL Server-specific SET ROWCOUNT statement.
SET ROWCOUNT affectsall SELECT statemets made on the connection,
and remains in effect until the connection ends or a new rowcount to “0” to
turn off this option.

5-16 m Sample Programs

5.6.2 Cursors

A cursor is an embedded SQL query that returns multiple rows. The cursor
identifies the current row from a SELECT operation that returns multiple
rows.

When you work with a cursor, you:

1. DECLARE the cursor, which identifiesit to the program.
2. OPEN the cursor, which starts the SELECT process.

3. FETCH until not found, which positions the cursor at each row that
meets the conditions set in the SELECT statement and INSERTS the
value as designated in the SELECT statement.

4. CLOSE the cursor, which ends the SELECT operation and releases any
resources that had been assigned to the cursor.

5.6.3 Declaring a Cursor

Essentially, a cursor is an SQL statement, introduced with a DECLARE
statement in the Procedure Division or the Data Division. The cursor does
not start the query; the cursor simply identifies the query in the program.

Syntax

DECLARE cursorname CURSOR FOR SELECT statement

where cursorname is the name you assign to the cursor and
SELECT _statement isa SELECT statement that returns multiple rows.

Example

The program “select3.sgb” contains the following code:

EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT
C_NUMBER, C_FIRST NAME, C_LAST NAME,
TO CHAR, C_INFO

Working With More Than One Row - select3.sqb m 5-17

FROM CUSTOMER
WHERE C NUMBER >= :C_NUMBER
END-EXEC.

Here COBCURL1 isthe name of the cursor. The operator in the WHERE
clause indicates the possibility that more than one row will be returned.

5.6.4 Opening a Cursor

To start the query, you OPEN the cursor.

Syntax

EXEC SQL
OPEN cursorname
END-EXEC.

Example

EXEC SQL
OPEN COBCURL1
END-EXEC.

5.6.5 FETCH Statement

The FETCH statement positions the cursor at the start of the first row, takes
the values returned by the query, and assigns these values to the appropriate
host variables. Each time a FETCH is performed, the cursor movesto the
next row of results and again assigns the values to host variables.

Syntax

EXEC SQL
FETCH cursorname INTO :host-variable
END-EXEC.

Example

The program “select3.sgb” contains the following code:

5-18 m Sample Programs

EXEC SQL
FETCH COBCUR1 INTO :C_RECORD
END-EXEC.

This positions the cursor, COBCUR1, at the beginning of the table of results
returned by the query. The values returned by the query are FETCHed and
placed INTO the group item host variable :C_RECORD. FETCH, then, is
similar to a SELECT or INSERT operation, except that SELECT applies to
results that return asingle row and FETCH appliesto results that return
multiple rows.

5.6.6 Closing a Cursor

When the cursor has completed its work, usually by encountering no more
data, you must CLOSE it.

Syntax

EXEC SQL
CLOSE cursorname
END-EXEC.

Example

EXEC SQL
CLOSE COBCUR1
END-EXEC.

5.6.7 Putting It All Together

In this program, which builds upon the previous programs, the following
lines of code:

EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT
C_NUMBER, C_FIRST NAME, C_LAST NAME,
TO CHAR, C_INFO
FROM CUSTOMER
WHERE C_NUMBER >= :C-NUMBER
END-EXEC.

Working With More Than One Row - select3.sqb m 5-19

EXEC SQL
OPEN COBCUR1
END-EXEC.

perform until SQLCODE not equal 0

EXEC SQL
FETCH COBCUR1 INTO :C-RECORD
END-EXEC
IF sglcode EQUAL 0
display c-number, ": ",c-first-name,
c-last-name, c-info
end-if

end-perform.

EXEC SQL
CLOSE COBCURL
END-EXEC.

cause the program to do the following:

1. Identify thecursor: for al customers numbers greater than or equal to
that supplied by the user, retrieve the values of C NUMBER,
C_FIRST_NAME, C_LAST_NAME, C_BIRTHDAY, and C_INFO and
place them in atable of results.

2. Open the cursor.

3. Fetchthe values of the indicated variables and assign them to the group
item host variable :C_RECORD.

4. If there are no errors or warnings, display the values of the variables.

5. Do this until the program internaly indicates that there are no more
rows left in the table of results.

6. Close the cursor.

5-20 m Sample Programs

5.7 Updating Data — update.sgb

The “update.sgqb” program uses a cursor to select rows from atable and
update information in the database. The program demonstrates

« the FOR UPDATE clause when declaring a cursor
e positioned updates

* the SET clause

Note: Thissampleisnot supported by MySQL, because it does not support
updatabl e cursors or implement the “UPDATE WHERE CURRENT OF’
and “DELETE WHERE CURRENT OF” phrases. Please refer to the
MySQL documentation for any changes in database support of these
features.

Run the “update” program to change information for Sam and Sally Snead in
the sample data source you created with the “ create” program.

Finding out range of customer records..

Select a starting customer number between 1 and 5: 3
3: Betty Falcon Hew
4: Sally Snead Hew
5: John Jones Hew

press Enter to Exit

5.7.1 FOR UPDATE Clause

You must indicate in the program that the cursor you are declaring may be
used to update data in the database table. Programs operate more efficiently
if the purpose of the cursor isidentified: to only read (SELECT) or to write
(INSERT or UPDATE) aswell. Remember that you can declarethe cursor in
either the Procedure or Data Divisions.

Updating Data - update.sqb m 5-21

Syntax

EXEC SQL
DECLARE cursorname FOR SELECT_statement
FOR UPDATE

END-EXEC.

Example

EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT C_FIRST NAME, C_LAST NAME

FROM CUSTOMER
WHERE C_LAST NAME = 'Snead'
FOR UPDATE
END-EXEC.

This code opens a cursor that contains a query to SELECT the

C FIRST_NAMEandC LAST _NAMEfieldsfor customer “Snead.” Itaso
indicates, by means of the FOR UPDATE clause, that this information will
change and the cursor will write to the database. If you areworkingina
transaction environment, declaring a cursor FOR UPDATE may start
transaction logging or may impose locks on the database table.

5.7.2 The SET Clause

Usethe SET clause to modify current values at the location pointed to by the
cursor.

Syntax

EXEC SQL
UPDATE tablename SET field = 'new value'

END-EXEC
where

tablename is the name of the database table containing the data you want to
update.

new_value isthe new value you are assigning to that field.

5-22 m Sample Programs

Example

EXEC SQL
UPDATE CUSTOMER SET C INFO = 'Revised'

END-EXEC

Thistellsthe “update” program to change the value of C_INFO in the
“customer” table to “Revised.”

5.7.3 Positioning the Cursor for the UPDATE

How does the program know which row in the table to update?

In section 5.7.1, you saw that when the cursor was declared, it contained a
WHERE condition to indicate which rows were affected by the SQL query.
The WHERE CURRENT OF clause uses thisinformation to position the
cursor. Thisis called a positioned update.

Syntax

EXEC SQL
UPDATE tablename SET field = 'new value'
WHERE CURRENT OF cursorname

END-EXEC

where cursorname is the name of the cursor containing the SQL query.

Example

EXEC SQL
UPDATE CUSTOMER SET C INFO = 'Revised'
WHERE CURRENT OF COBCURL

END-EXEC

In section 5.7.1, acursor was declared to select the C_FIRST_NAME and
C _LAST_NAME fields from the “ customer” table in those instances where
C_LAST_NAME was equa to “Snead.”

Now, when the cursor getsto arow that meetsthis condition, the value of the
C_INFO field will be updated to “Revised”.

Updating Data - update.sqb m 5-23

Note: You can also use cursors to perform positioned deletesin AcuSQL.
See any commercially available SQL text for information on positioned
deletes.

5.7 .4 Putting It All Together

This section showed how to use a cursor to update a table in the database.
The following code:

EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT C_FIRST NAME, C_LAST NAME
FROM CUSTOMER
WHERE C_LAST NAME = 'Snead’
FOR UPDATE
END-EXEC.

EXEC SQL
OPEN COBCUR1
END-EXEC.

perform until SQLCODE not equal 0

EXEC SQL

FETCH COBCUR1

INTO :C-FIRST-NAME, :C-LAST-NAME
END-EXEC
IF sglcode EQUAL 0

DISPLAY "Updating " C-FIRST-NAME , C-LAST-NAME
EXEC SQL
UPDATE CUSTOMER SET C INFO = 'Revised'
WHERE CURRENT OF COBCUR1
END-EXEC
end-if
end-perform.

EXEC SQL
CLOSE COBCUR1
END-EXEC.

instructs the program to perform these steps:

1

6.

Declare acursor to SELECT thevaluesof C_FIRST_NAME and
C_LAST_NAME from the “customer” table in those rows where
C_LAST-NAME equals “Snead”. These rows will be updated.

Open the cursor.

Fetch the values and insert them into the host variables
:C_FIRST_NAME and :C LAST-NAME.

If the program doesn’t encounter an error condition, display a message
indicating that the fields are being updated.

Change the value of the C_INFO field to “Revised” for those rows that
meet the condition set in the cursor (C_LAST_NAME equals
13 &]%{jﬂ) .

Close the cursor.

Thefigurein section 5.7 showed the output of the “update” program. If you
want, run the “select3” program to see the contents of the updated fields.

Finding out range of customer records..

Select a starting customer number between 1 and 5: 3
3: Betty Falcon Hew
4: Sally Snead Revised
5: John Jones Hew

press Enter to Exit

5.8 Full SQL Program

The following program performs asimple ESQL CONNECT, DROR,
CREATE, INSERT, SELECT, UPDATE, DELETE and DISCONNECT
statement.

IDENTIFICATION DIVISION.

PROGRAM-ID. t006146.

Full SQL Program m 5-25

Kk hhk kA hkh kA Ak kA hkhhkhkk ko hkkhk ko khk ko hkkkhhkhk ko hkk ko hkhkkhkhkhkkkhkhhkkkdkhkkkkhkx

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CUSTFILE
ASSIGN TO "customer"
ORGANIZATION IS LINE SEQUENTIAL
FILE STATUS IS CUSTFILE-STATUS.

DATA DIVISION.
FILE SECTION.

FD CUSTFILE.

01 CUST-RECORD.

05 CUST-NUMBER PIC 9(3).
05 CUST-FIRST-NAME PIC X(20).
05 CUST-LAST-NAME PIC X (20
05 CUST-BIRTHDAY.
07 SYEAR PIC X(4).
07 SMONTH PIC X(2).
07 SDAY PIC X(2).

WORKING-STORAGE SECTION.
01 CUSTFILE-STATUS PIC XX.

EXEC SQL INCLUDE SQLCA END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 C-RECORD.

05 C-NUMBER PIC S9(3) COMP-5
05 C-FIRST-NAME PIC X(20)
05 C-LAST-NAME PIC X (20)
05 C-BIRTHDAY PIC X(10)
05 C-INFO PIC X(10)
01 servername pic x(30).
01 wuserid pic x(8
01 passwd.
49 passwd-length PIC s9(4) comp-5 value 0.
49 passwd-name PIC x(18).

EXEC SQL END DECLARE SECTION END-EXEC.

01 pyyyymmdd.

03 syear pic 9(4).
03 smonth pic 9(2).
03 sday pic 9(2).

01 e-yyyymmdd.
03 syear pic 9(4).

5-26 m Sample Programs

03 filler pic x value "-"
03 smonth pic 9(2).
03 filler pic x value "-"
03 sday pic 9(2).

Ak hkhhkkkhhhkhkhk kA h ko hkkkhhhkkh ko hkhk ko hkkhkhkhkkhkhkhhkkkhkhkkkhkhkhkkkhkhkhkkhkhkhkkkhkhxx

PROCEDURE DIVISION.

Main Section.
EXEC SQL WHENEVER SQLERROR GO TO Error-Exit END-EXEC.
PERFORM initialization-routine.
PERFORM make-connection.
PERFORM drop-table.
PERFORM create-table.
PERFORM load-table
DISPLAY "Table created with 15 rows."
DISPLAY "Press Enter to retrieve and display these rows."
ACCEPT OMITTED.
PERFORM list-rows.
DISPLAY "Press Enter to perform a UPDATE on table row."
ACCEPT OMITTED.
PERFORM update-row.
DISPLAY "Press Enter to perform to DISPLAY updated list."
ACCEPT OMITTED.
PERFORM list-rows.
DISPLAY "Press Enter to DELETE row 15."
ACCEPT OMITTED.
PERFORM delete-row.
DISPLAY "Press Enter to display all remaining rows."
ACCEPT OMITTED.
PERFORM list-rows.
DISPLAY "Press Enter to DISCONNECT and Exit program."
PERFORM disconnect-connection.
ACCEPT OMITTED.
STOP RUN.

drop-table.
DISPLAY "Dropping existing table if it exists...".
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
EXEC SQL
DROP TABLE CUSTOMER
END-EXEC.
* Ignore SQLCODE as we do not expect table to exist at this point
EXEC SQL WHENEVER SQLERROR GO TO Error-Exit END-EXEC.

create-table.
DISPLAY "Creating CUSTOMER table...".
EXEC SQL
CREATE TABLE CUSTOMER (

Full SQL Program m 5-27

C_NUMBER INTEGER NOT NULL,
C FIRST NAME CHAR(20),

C LAST NAME CHAR (20) ,
C_BIRTHDAY DATETIME,

C_INFO CHAR (10) ,

PRIMARY KEY (C_NUMBER))

END-EXEC.
IF SQLCODE < 0 PERFORM error-exit.

load-table.
DISPLAY "Loading CUSTOMER table with data...".
OPEN INPUT CUSTFILE.
PERFORM UNTIL CUSTFILE-STATUS = "10"
READ CUSTFILE NEXT RECORD
AT END
CONTINUE
NOT AT END
PERFORM insert-record
END-READ
END-PERFORM.
CLOSE CUSTFILE.

insert-record.
MOVE CUST-NUMBER TO C-NUMBER.
MOVE CUST-FIRST-NAME TO C-FIRST-NAME.
MOVE CUST-LAST-NAME TO C-LAST-NAME.
MOVE "New" TO C-INFO.

MOVE CORRESPONDING CUST-BIRTHDAY TO E-YYYYMMDD.
MOVE E-YYYYMMDD TO C-BIRTHDAY.

EXEC SQL
INSERT INTO CUSTOMER VALUES
(:C-NUMBER, :C-FIRST-NAME,
:C-LAST-NAME, :C-BIRTHDAY, :C-INFO)
END-EXEC.
MOVE LOW-VALUES TO CUST-RECORD.
MOVE LOW-VALUES TO C-RECORD.

initialization-routine.
DISPLAY "Enter MS SQL Servername or ODBC DSN:", no.
ACCEPT servername.

DISPLAY "Enter your user id (default none): ", no.
ACCEPT userid.
DISPLAY "Enter your password : ", no.

ACCEPT passwd-name.
IF userid = spaces then
DISPLAY "Using NT Authentication...".

5-28 m Sample Programs

INSPECT passwd-name TALLYING passwd-length FOR CHARACTERS
BEFORE INITIAL " .

make-connection.
EXEC SQL CONNECT TO :servername as C1l
USER :userid USING :passwd
END-EXEC.
IF SQLCODE < 0 PERFORM error-exit.
IF SQLCODE = 0 DISPLAY "Connection successful".

disconnect-connection.
EXEC SQL COMMIT END-EXEC.
EXEC SQL DISCONNECT ALL END-EXEC.
IF SQLCODE < 0 PERFORM error-exit.

Error-Exit.
EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
DISPLAY "SQL Error: SQLCODE " SQLCODE of SQLCA.
DISPLAY " SQLSTATE " SQLSTATE of SQLCA.
DISPLAY SQLERRMC OF SQLCA.
ACCEPT OMITTED.
EXEC SQL DISCONNECT ALL END-EXEC.
STOP RUN.

list-rows.
EXEC SQL
DECLARE COBCUR1 CURSOR FOR
SELECT
C_NUMBER,
C_FIRST NAME,
C_LAST NAME,
C_BIRTHDAY,
C_INFO
FROM CUSTOMER
WHERE C_NUMBER > 0
END-EXEC.

EXEC SQL
OPEN COBCUR1
END-EXEC.

PERFORM UNTIL SQLCODE NOT EQUAL 0

EXEC SQL

FETCH COBCUR1 INTO :C-RECORD
END-EXEC
IF SQLCODE EQUAL 0

DISPLAY c-number, ": ",c-first-name,

Full SQL Program m 5-29

c-last-name, c-info
END-TIF
END-PERFORM.

EXEC SQL
CLOSE COBCUR1
END-EXEC.

update-row.
EXEC SQL
DECLARE COBCUR2 CURSOR FOR
SELECT C_FIRST NAME,
C_LAST NAME
FROM CUSTOMER
WHERE C_NUMBER = 002
FOR UPDATE
END-EXEC.

EXEC SQL
OPEN COBCUR2
END-EXEC.

PERFORM UNTIL SQLCODE NOT EQUAL 0

EXEC SQL
FETCH COBCUR2
INTO :C-FIRST-NAME,
:C-LAST-NAME
END-EXEC
IF SQLCODE EQUAL 0

DISPLAY "Updating " C-FIRST-NAME , C-LAST-NAME
EXEC SQL
UPDATE CUSTOMER SET C_INFO = 'Revised'
WHERE CURRENT OF COBCUR2
END-EXEC
END-IF
END-PERFORM.

EXEC SQL
CLOSE COBCUR2
END-EXEC.

delete-row.
DISPLAY "Deleting row 15..."
EXEC SQL
DELETE FROM CUSTOMER
WHERE C_FIRST NAME = 'OOOOO'
END-EXEC

5-30 m Sample Programs

Glossary of Terms

cursor

An embedded SQL query that returns multiple rows. Cursors can be
declared in either the Procedure Division or the Data Division.

Data Definition Language (DDL)

The set of SQL statements related to the structure of the database, such as
creating tables. Thisbook contains examples of the CREATE statement, an
element of SQL's Data Definition Language. Data Definition Languageis
also referred to as DDL. Compare this with Data Manipulation Language.

Data Manipulation Language (DML)

The set of SQL statements that pertain to manipulating the data. The
structure of the database, such as the number of tables or the number of
columnsin atable, remains the same. Data Manipulation Languageis also
called DML. Compare this with Data Definition Language.

dynamic SQL

A program in which user input determines how the program interacts with
the database. Put another way, the SQL statements are not part of the
program when it is launched; instead they are built as the program runs.
Compare this with static SQL.

ESQL

Embedded Structured Query Language. Commands that enable non-SQL
programs such as COBOL programs to communicate with SQL databases.
These commands reside in the program along with commands in the host,
in this case COBOL, language.

Glossary-2 m

host variable

Any dataitem defined in an SQL DECL ARE section of Working-Storage.
Host variables are often used in SQL statements and must be preceded with
acolon (“:").

intermediate file

An AcuSQL system file created between pre-compil ation and compilation.
Useful for debugging purposes. Intermediate files can be opened into the
Code Editor; however, you should not modify the intermediate filesin any
way. Intermediate files created by AcuSQL have the extension “.asq”.

ODBC
Open Database Connectivity. A standard protocol used to facilitate
communi cations between Windows-based applications and data sources.
positioned update
An update using a cursor. Use the WHERE CURRENT OF clause to
position the cursor at the proper row(s).
pre-compiler

A compiler that isrun prior to a standard program compiler to perform
preparatory translation tasks. AcuSQL isan ESQL pre-compiler. Itisrun
before the standard ACUCOBOL-GT compiler to translate ESQL
commands into ODBC API calls.

schema

A user’s area of the database. Generally speaking, users can add tables to
or delete tables from only their area of the database unless they use a
qualified name for the table.

static SQL

A program where access to the database has been predetermined by the
programmer and any input from the user will not change this access pattern.
Put another way, all SQL statements are already part of the program when
it is executed. Compare this with dynamic SQL.

Index

A

Access data type mapping 2-11, 2-12
ACUSQL_DATASET configuration variable 3-13
ACUSQL_INCLUDE configuration variable 3-13
ACUSQL_PASSWORD configuration variable 3-13
ACUSQL_RUNTIME_DLL configuration variable 4-3
ACUSQL_USE_CONCURRENT configuration varigble 4-6
ACUSQL_USER configuration variable 3-14

adding database tables 5-5

application execution 4-2

ASQL_BUFFER_SIZE configuration variable 4-4
asglsrvr.dll 4-3

autocommit, turning off 4-6

C

caching rows 4-4
case sensitivity for SQL objects 2-4
CHAR datatype
DB2 2-9
SQL Server 2-10
checking syntax 2-19
CLOSE statement 5-18
closing cursors 5-18
coding areafor EXEC SQL statements 2-4
colonsin host variables 2-8
commasin list items 2-5
compiler options
-Pk DB2 2-3
-Pk mssgl 2-3

Index-2

configuration variables
ACUSQL_DATASET 3-13
ACUSQL_INCLUDE 3-13
ACUSQL_NO_AUTOCOMMIT 4-6
ACUSQL_PASSWORD 3-13
ACUSQL_RUNTIME_DLL 4-3
ACUSQL_USE_CONCURRENT 4-6
ACUSQL_USER 3-14
ASQL_BUFFER_SIZE 4-4
defining 5-10

CONNECT RESET statement 2-19

CONNECT statement 2-18

create.sgb sample program 5-3

creating database tables 5-3, 5-5

current connection 2-19

Cursors
caching rows 4-4
closing 5-18
declared in Data Division section 2-6
declared in Procedure Division section 2-13
declaring 5-16
defined 5-16
opening 5-17

D

Data Definition Language 5-5
Data Division statements 2-5
Data Manipulation Language 5-6
data types, matching SQL to COBOL 2-9
database tables
creating 5-3
updating datain 5-21
DATE datatype, DB2 2-9
DATETIME datatype, SQL Server 2-10
DB2

Index-3

datatype mapping 2-9
demonstration program 1-12
host environments 1-5
middleware 1-5, 1-7
reserved word list 3-7, 3-11
DB2 Connect 1-5, 1-7
testing 4-2
DDL 5-5
debugging programs 4-7
DECIMAL datatype
DB2 2-9
SQL Server 2-10
declaring cursors 5-16
FOR UPDATE clause 5-21
in Data Division section 2-6
in Procedure Division section 2-13
defining variables 5-10
deleting database tables 5-5
demonstration programs 1-12
DISCONNECT statement 2-19
DLLs, naming 4-2
DOUBLE datatype, DB2 2-9
DOUBLE PRECISION datatype, SQL Server 2-10

E

error handling 2-7
WHENEVER statement 5-4
error messages, mapping to SQLSTATE values 4-8
errors, pre-compiler 3-14
ESQL 2-2
trandation 3-2
esqgllib.dll 4-3
EXEC SQL statement 3-2

Index-4

F

FETCH statement 5-17

File Compiler Option dialog 3-5
filetracing 4-7

FOR UPDATE clause 5-21

G

group items, storing valuesin 5-14

H

host variables 2-8, 5-10
in the CONNECT statement 2-18

IBM SQL, working with 2-3
INCLUDE files 2-6

SQLCA 2-7

SQLDA 2-8
indicator variables 2-24

input 2-24

output 2-25
INSERT statement 5-6
installation

UNIX 1-8

Windows 1-7
INTEGER data type

DB2 2-9

SQL Server 2-10
INTO clause 5-10

group itemsin 5-14

Index-5

L

large object datatypes (LOBs) 2-2, 2-23
listitems 2-5
LONG VARCHAR datatype, DB2 2-9

M

mapping SQL Server errorsto SQLSTATE values 4-8
MAX function 5-12

Microsoft SQL Server datatype mapping 2-10
Microsoft SQL Server databases, working with 2-3
MIN function 5-12

MySQL Connector/ODBC 1-6

MySQL DataType 2-12

MySQL Database Server 1-6

MySQL requirements 1-6

N

nested transactions 2-4
NULL values 2-23

o)

ODBCAPI 1-5
OPEN statement 5-17
opening cursors 5-17

P

-Pk DB2 compiler option 2-3
-Pk mssgl compiler option 2-3
positioned updates 5-22

Index-6

pre-compiler
errors 3-14
invoking 3-4
invoking from ACUCOBOL-GT 3-5
options 3-5
usein AcuBench 3-5
pre-compiling
DB2 syntax 2-3
SQL Server syntax 2-3
Procedure Division 2-13

Q

query results, multiple rows 5-15
quotation marksin string delimiters 2-5

R

REAL datatype
DB2 2-9
SQL Server 2-10
relaxed syntax checking 2-19, 3-8, 3-11
relinking
pre-compiler 1-11
runtime 1-9
reserved word list 3-7, 3-11
to standard output 3-9, 3-12

S

sample programs 5-2
create.sgb 5-3
selectl.sgb 5-8
select2.sgb 5-14
select3.sgb 5-15

Index-7

update.sgb 5-20
SELECT statement 5-8, 5-9
selectl.sqb sample program 5-8
select2.sgb sample program 5-14
select3.sgb sample program 5-15
SET clause 5-21
SMALLINT datatype, SQL Server 2-10
source code preparation 2-2
SQL
error messages 4-8
relaxed syntax checking 3-8, 3-11
static 5-3
SQL Communications Area 2-7
SQL Descriptor Area 2-8
SQL Server data type mapping 2-10
SQL syntax
CLOSE statement 5-18
cursors 5-16
declaring cursors 5-16
FETCH statement 5-17
FOR UPDATE clause 5-21
INSERT statement 5-6
INTO clause 5-10, 5-14
MAX function 5-12
MIN function 5-12
OPEN statement 5-17
SELECT statement 5-8, 5-9
SET clause 5-21
WHENEVER directive 5-4
WHERE clause 5-12
WHERE CURRENT OF clause 5-22
SQLCA 2-7
SQLCODE 4-8
SQLDA 2-8
SQLSTATE values, mapping error messages 4-8
statements not supported 4-3
static SQL 5-3

Index-8

strict syntax checking 2-19
string delimiters 2-5
syntax
case sensitivity 2-4
coding area 2-4
colons 2-8
commas 2-5
host variables 2-8
guotation marksin string deliminters 2-5
syntax checking 2-19
designated reserved word list 3-7, 3-11
direct 3-3, 3-6, 3-10
modes 3-3
relaxed 3-3, 3-8, 3-11
strict 2-19
system requirements 1-4

T

tables
creating in databases 5-5
deleting from databases 5-5
TIME datatype, DB2 2-9
TIMESTAMP datatype, DB2 2-9
transactions
in Microsoft SQL Server 2-3
nested 2-4

U

UNIX, installation 1-8
unsupported statements 4-3
update.sgb sample program 5-20
updating data 5-21
positioning the cursor 5-22
SET clause 5-21

Index-9

\

VARCHAR datatype
DB2 2-9
SQL Server 2-10
variables. See configuration variables

W

WHENEVER directive 5-4
WHERE clause 5-12

WHERE CURRENT OF clause 5-22
Working-Storage section 5-10

Index-10

	Getting Started
	1.1 Introduction to AcuSQL
	1.2 AcuSQL Pre-compiler
	1.3 AcuSQL Runtime Library
	1.4 Requirements
	1.5 Installation
	1.5.1 Installation Under Windows
	1.5.2 Installation Under UNIX

	1.6 Organization
	1.7 Demonstration Programs
	1.8 Technical Services

	Program Preparation
	2.1 Preparing Your Programs
	2.2 Coding Considerations
	2.2.1 User-Supplied Object Names
	2.2.2 Coding Area
	2.2.3 Commas
	2.2.4 String Delimiters

	2.3 Data Division
	2.3.1 Cursors
	2.3.2 SQL INCLUDE files
	2.3.3 Host Variables

	2.4 Data Types
	2.4.1 DB2 Data Type Compatibility
	2.4.2 Microsoft SQL Server Data Type Compatibility
	2.4.3 Access Data Type Compatibility
	2.4.4 MySQL Data Type Compatibility

	2.5 Procedure Division
	2.5.1 Cursors
	2.5.2 Rowset Functions
	2.5.3 Stored Procedures
	2.5.3.1 Restrictions

	2.6 SQL Verbs
	2.6.1 CONNECT Statement
	2.6.2 DISCONNECT Statement

	2.7 Checking Syntax
	2.8 Error Handling
	2.9 Error Messages
	2.10 Limits and Restrictions
	2.11 Detecting and Handling NULL Values

	Pre-compiler Function and Use
	3.1 The ESQL Translation Process
	3.2 Using the Pre-compiler
	3.2.1 Using AcuSQL From Within AcuBench
	3.2.2 Using AcuSQL as a Standalone Program
	3.2.3 Using AcuSQL from the Compiler

	3.3 Environment Variables
	3.4 Pre-compilation Errors

	Program Execution
	4.1 Running Your Application
	4.2 Running Your Application with Microsoft SQL Server
	4.2.1 Runtime Configuration Variables for SQL Server
	4.2.2 Runtime Configuration Variables for esqllib

	4.3 Debugging and File Tracing
	4.4 Error Messages

	Sample Programs
	5.1 Sample Programs
	5.2 Static SQL
	5.3 Creating Tables With ESQL - create.sqb
	5.3.1 WHENEVER Directive
	5.3.2 Using DDL
	5.3.3 INSERT Statement
	5.3.4 Date Format
	5.3.5 Putting It All Together

	5.4 Using Working-Storage Items - select1.sqb
	5.4.1 SELECT Statement
	5.4.2 Host Variables
	5.4.3 INTO Clause
	5.4.4 WHERE Clause
	5.4.5 MIN and MAX Group Functions
	5.4.6 Putting It All Together

	5.5 Group Items in the INTO Clause - select2.sqb
	5.6 Working With More Than One Row - select3.sqb
	5.6.1 SET ROWCOUNT Statement
	5.6.2 Cursors
	5.6.3 Declaring a Cursor
	5.6.4 Opening a Cursor
	5.6.5 FETCH Statement
	5.6.6 Closing a Cursor
	5.6.7 Putting It All Together

	5.7 Updating Data - update.sqb
	5.7.1 FOR UPDATE Clause
	5.7.2 The SET Clause
	5.7.3 Positioning the Cursor for the UPDATE
	5.7.4 Putting It All Together

	5.8 Full SQL Program

	Glossary of Terms
	Index

