
OpenText™ Static Application Security Testing
User Guide

Version : 26.1

PDF Generated on : January 16, 2026

 © Copyright 2026 Open Text

Table of Contents
1. User Guide 1

1.1. Support and documentation 2

1.2. Change log 3

1.3. Introduction 12

1.3.1. Product name changes 13

1.3.2. OpenText SAST 14

1.3.2.1. About the analyzers 15

1.3.3. Licensing 20

1.3.4. Renewing an expired license 21

1.3.5. OpenText Application Security Content 22

1.3.6. Fortify ScanCentral SAST 23

1.3.7. OpenText Application Security Tools 24

1.3.8. Sample projects 27

1.3.9. Related documents 28

1.4. System requirements 31

1.4.1. Hardware requirements 32

1.4.1.1. Sample scans 37

1.4.2. Supported platforms and architectures 41

1.4.3. Software requirements 44

1.4.4. AI-powered SAST requirements 52

1.4.4.1. Supported LLMs 53

1.4.5. Language compatibility 54

1.4.5.1. Libraries, frameworks, and technologies 59

1.4.5.2. Language compatibility for AI-assisted analysis 74

1.4.6. Supported build tools 75

1.4.7. Supported compilers 76

1.4.8. OpenText Application Security Content 77

1.4.9. Virtual Machine support 78

1.4.10. Acquiring software 79

1.4.11. Verifying software downloads 86

1.5. Installing OpenText SAST 88

1.5.1. About installing OpenText SAST 89

1.5.1.1. Installing OpenText SAST 91

1.5.1.2. Installing OpenText SAST silently 94

1.5.1.3. Installing OpenText SAST in text-based mode on non‑Windows platforms 99

1.5.1.4. Manually installing OpenText Application Security Content 100

1.5.2. Using Docker to install and run OpenText SAST 101

1.5.2.1. Creating a Dockerfile to install OpenText SAST 102

1.5.2.2. Running the container 105

1.5.3. Upgrading OpenText SAST 107

1.5.4. About uninstalling OpenText SAST 108

1.5.4.1. Uninstalling OpenText SAST 109

1.5.4.2. Uninstalling OpenText SAST silently 111

1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows platforms 112

1.5.5. Post-installation tasks 113

1.5.5.1. Running the post-install tool 114

1.5.5.2. Migrating properties files 115

1.5.5.3. Specifying a locale 116

1.5.5.4. Configuring Fortify Security Content updates 117

1.5.5.5. Configuring the connection to Application Security 118

1.5.5.6. Removing proxy server settings 119

1.5.5.7. Adding trusted certificates 120

1.6. Analysis process overview 122

1.6.1. Scanning Basics 123

1.6.2. Translation phase 124

1.6.3. Analysis phase 126

1.6.4. Translation and analysis phase verification 127

1.7. Analyzing using AI-powered SAST 128

1.7.1. Configuring the LLM 129

1.7.1.1. Connecting to an AWS Bedrock LLM 130

1.7.2. Connecting to the database 131

1.7.3. Using the dbTool 134

1.7.4. Sample analysis using AI-powered SAST 136

1.7.5. AI-powered SAST configuration options 138

1.7.6. Rate limiting 156

1.7.7. Using the pwtool to encrypt sensitive values 157

1.8. Analyzing Java, Kotlin and JSP projects 158

1.8.1. Integrating with Gradle 159

1.8.1.1. Using Gradle integration 160

1.8.1.2. Troubleshooting Gradle integration 162

1.8.1.3. Using the Gradle plugin 163

1.8.2. Integrating with Maven 167

1.8.2.1. Installing and updating the Fortify Maven Plugin 168

1.8.2.2. Testing the Fortify Maven Plugin installation 169

1.8.2.3. Using the Fortify Maven Plugin 171

1.8.3. Integrating with Bazel 173

1.8.3.1. Java Bazel integration examples 174

1.8.4. Integrating with Ant 175

1.8.5. Manual Java and Kotlin translation syntax 176

1.8.5.1. Java, Kotlin and JSP command-line options 178

1.8.5.2. Java command-line examples 184

1.8.5.3. Kotlin command-line examples 185

1.8.6. Analyzing Kotlin scripts 186

1.8.7. Kotlin and Java translation interoperability 187

1.8.8. Handling Java warnings 188

1.8.9. Analyzing Jakarta EE (Java EE) applications 190

1.8.9.1. Translating Java files 191

1.8.9.2. Translating JSP projects, configuration files, and deployment descriptors 192

1.8.9.3. Jakarta EE (Java EE) translation warnings 193

1.8.10. Analyzing Java bytecode 194

1.8.11. Troubleshooting JSP translation and analysis issues 196

1.9. Analyzing Android projects 198

1.9.1. Android project translation prerequisites 199

1.9.2. Android code analysis command-line syntax 200

1.9.3. Filtering issues detected in Android layout files 201

1.10. Analyzing Groovy code 202

1.10.1. Groovy analysis prerequisites 203

1.10.2. Groovy translation syntax 204

1.11. Analyzing Scala code 205

1.12. Analyzing Visual Studio projects 206

1.12.1. Visual Studio project translation prerequisites 207

1.12.2. Visual Studio Project command-line syntax 208

1.12.3. Handling special cases for translating Visual Studio projects 210

1.12.3.1. Running translation from a script 211

1.12.3.2. Translating plain .NET and ASP.NET projects 212

1.12.3.3. Translating C/C++ and Xamarin projects 213

1.12.3.4. Translating projects with settings containing spaces 214

1.12.3.5. Translating a single project from a Visual Studio solution 215

1.12.3.6. Analyzing projects that build multiple executable files 216

1.12.4. Alternative ways to translate Visual Studio projects 217

1.12.4.1. Alternative translation options for Visual Studio solutions 218

1.12.4.2. Translating without explicitly running OpenText SAST 219

1.13. Analyzing JavaScript and TypeScript code 222

1.13.1. Translating pure JavaScript projects 223

1.13.2. Excluding dependencies 224

1.13.3. Excluding NPM Dependencies 225

1.13.4. NPM dependencies 226

1.13.4.1. Examples of excluding NPM dependencies 227

1.13.5. Translating JavaScript projects with HTML files 230

1.13.6. Including external JavaScript or HTML in the translation (deprecated) 231

1.14. Analyzing Dart and Flutter code 233

1.14.1. Dart and Flutter translation prerequisites 234

1.14.2. Dart and Flutter command-line syntax 235

1.14.3. Dart and Flutter command-line examples 236

1.15. Analyzing Python and Jupyter Notebooks 237

1.15.1. Integrating with Bazel 238

1.15.1.1. Python Bazel integration examples 239

1.15.2. Python translation command-line syntax 240

1.15.2.1. Python command-line options 241

1.15.2.2. Python command-line examples 245

1.15.3. Translating Python in a virtual environment 246

1.15.4. Including imported modules and packages 247

1.15.5. Including namespace packages 248

1.15.6. Translating Django and Flask 249

1.16. Analyzing iOS and Xcode projects 250

1.16.1. iOS project translation prerequisites 251

1.16.2. iOS code analysis command-line syntax 252

1.17. Analyzing C and C++ code 254

1.17.1. C and C++ Code translation prerequisites 255

1.17.2. Integrating with Make 256

1.17.3. Integrating with CMake 257

1.17.4. Integrating with Gradle 258

1.17.5. Manual C and C++ translation syntax 259

1.17.6. Scanning pre-processed C and C++ code 261

1.17.7. C/C++ Precompiled Header Files 262

1.18. Analyzing Rust code 263

1.18.1. Rust analysis prerequisites 264

1.18.2. Rust translation syntax 265

1.19. Analyzing Go code 266

1.19.1. Go command-line syntax 267

1.19.2. Go command-line options 268

1.19.3. Including custom Go build tags 273

1.19.4. Resolving dependencies 274

1.20. Analyzing PHP code 275

1.20.1. PHP command-line options 276

1.21. Analyzing Perl code 277

1.21.1. Perl analysis prerequisites 278

1.21.2. Perl translation syntax 279

1.22. Analyzing Ruby code 280

1.22.1. Ruby command-line syntax 281

1.22.1.1. Ruby command-line options 283

1.22.2. Adding libraries 284

1.22.3. Adding gem paths 285

1.23. Analyzing Ada code 286

1.23.1. Ada analysis prerequisites 287

1.23.2. Ada translation syntax 288

1.24. Analyzing Delphi code 289

1.24.1. Delphi analysis prerequisites 290

1.24.2. Delphi translation syntax 291

1.25. Analyzing Elixir code 292

1.25.1. Elixir analysis prerequisites 293

1.25.2. Elixir translation syntax 294

1.26. Analyzing Erlang code 295

1.26.1. Erlang analysis prerequisites 296

1.26.2. Erlang translation syntax 297

1.27. Analyzing Lua code 298

1.27.1. Lua analysis prerequisites 299

1.27.2. Lua translation syntax 300

1.28. Analyzing Salesforce Apex and Visualforce code 301

1.28.1. Apex and Visualforce translation prerequisites 302

1.28.2. Apex and Visualforce command-line syntax 304

1.29. Analyzing ABAP code 305

1.29.1. About downloading source files 306

1.29.1.1. INCLUDE processing 307

1.29.2. Importing the transport request 308

1.29.3. Adding OpenText SAST to your Favorites list 309

1.29.4. Running the Fortify ABAP Extractor 310

1.29.5. Uninstalling the Fortify ABAP Extractor 315

1.30. Analyzing COBOL code 316

1.30.1. Preparing COBOL source and copybook files for translation 317

1.30.2. COBOL command-line syntax 318

1.30.2.1. Translating COBOL source files without file extensions 319

1.30.2.2. Translating COBOL source files with arbitrary file extensions 320

1.30.2.3. COBOL command-line options 321

1.30.3. Using Legacy COBOL translation 323

1.30.3.1. Legacy COBOL translation command-line options 324

1.31. Analyzing SQL 327

1.31.1. PL/SQL command-line example 328

1.31.2. T-SQL command-line example 329

1.32. Analyzing Infrastructure as Code (IaC) 330

1.33. Analyzing JSON 333

1.34. Analyzing YAML 334

1.35. Analyzing Dockerfiles 335

1.36. Analyzing Bash code 336

1.36.1. Bash analysis prerequisites 337

1.36.2. Bash translation syntax 338

1.37. Analyzing PowerShell code 339

1.37.1. PowerShell analysis prerequisites 340

1.37.2. PowerShell translation syntax 341

1.38. Analyzing R code 342

1.38.1. R analysis prerequisites 343

1.38.2. R translation syntax 344

1.39. Analyzing Solidity code 345

1.40. Analyzing other languages and configurations 346

1.40.1. Analyzing Flex and ActionScript 347

1.40.1.1. Flex and ActionScript command-line options 348

1.40.1.2. ActionScript command-line examples 351

1.40.1.3. Handling resolution warnings 353

1.40.2. Analyzing ColdFusion code 354

1.40.2.1. ColdFusion command-line syntax 355

1.40.2.2. ColdFusion (CFML) command-line options 356

1.40.3. Analyzing ASP/VBScript virtual roots 357

1.40.4. Classic ASP command-line example 360

1.40.5. VBScript command-line example 361

1.41. Analyzing Library code 362

1.42. Scanning for Secrets 364

1.42.1. Regular expression analysis 365

1.43. Optimizing results 366

1.43.1. Applying a scan policy to the analysis 367

1.43.2. Excluding issues with filter files 371

1.43.2.1. Filter file example 375

1.43.3. Using filter sets to exclude issues 378

1.43.4. Filtering using FortifyRemove comments 380

1.43.5. Fortify Java annotations 384

1.43.5.1. Dataflow annotations 386

1.43.5.2. Field and variable annotations 389

1.43.5.3. Other annotations 390

1.44. Optimizing performance 391

1.44.1. Antivirus software 392

1.44.2. Hardware considerations 393

1.44.3. Tuning options 396

1.44.4. Quick scan 398

1.44.5. Configuring scan speed with speed dial 400

1.44.6. Breaking down codebases 402

1.44.7. Limiting analyzers and languages 404

1.44.7.1. Disabling analyzers 405

1.44.7.2. Disabling languages 406

1.44.8. Optimizing FPR files 407

1.44.8.1. Using filter files 408

1.44.8.2. Using filter sets 409

1.44.8.3. Excluding source code from the FPR 410

1.44.8.4. Reducing the FPR file size 411

1.44.8.5. Opening large FPR files 414

1.44.9. Monitoring long running scans 417

1.44.9.1. Using the SCAState tool 418

1.44.9.2. Using JMX tools 419

1.44.9.2.1. Using JConsole 420

1.44.9.2.2. Using Java VisualVM 421

1.45. Using mobile build sessions 422

1.45.1. Mobile build session version compatibility 423

1.45.2. Creating a mobile build session 424

1.45.3. Importing a mobile build session 425

1.46. Troubleshooting 426

1.46.1. Exit codes 427

1.46.2. Memory tuning 429

1.46.2.1. Java heap exhaustion 430

1.46.2.2. Native heap exhaustion 432

1.46.2.3. Stack overflow 433

1.46.3. Scanning complex functions 434

1.46.3.1. Dataflow Analyzer limiters 435

1.46.3.2. Control Flow and Null Pointer analyzer limiters 437

1.46.4. Issue non-determinism 439

1.46.5. Locating the log files 440

1.46.6. Configuring log files 441

1.46.7. Reporting issues and requesting enhancements 443

1.47. Command-line reference 444

1.47.1. Specifying files and directories 445

1.47.2. Directives 448

1.47.2.1. LIM license directives 451

1.47.3. Translation options 454

1.47.4. Analysis options 460

1.47.5. Output options 467

1.47.6. Other options 475

1.48. Configuration options 480

1.48.1. Properties files 481

1.48.1.1. Properties file format 482

1.48.1.2. Overriding settings 483

1.48.2. fortify-sca.properties 487

1.48.2.1. Translation and analysis phase properties 488

1.48.2.2. Regex analysis properties 509

1.48.2.3. LIM license properties 510

1.48.2.4. Rule properties 514

1.48.2.5. Java and Kotlin properties 519

1.48.2.6. Visual Studio and MSBuild project properties 526

1.48.2.7. JavaScript and TypeScript properties 529

1.48.2.8. Python properties 534

1.48.2.9. Go properties 538

1.48.2.10. Ruby properties 540

1.48.2.11. COBOL properties 542

1.48.2.12. PHP properties 545

1.48.2.13. ABAP properties 546

1.48.2.14. Flex and ActionScript properties 547

1.48.2.15. ColdFusion (CFML) properties 550

1.48.2.16. SQL properties 552

1.48.2.17. Output properties 553

1.48.2.18. Mobile build session (MBS) properties 559

1.48.2.19. Proxy properties 560

1.48.2.20. Logging properties 561

1.48.2.21. Debug properties 564

1.48.3. fortify-sca-quickscan.properties 567

1.48.4. fortify-rules.properties 575

1.49. Command-line tools 595

1.49.1. About updating OpenText Application Security Content 598

1.49.1.1. Updating OpenText Application Security Content 599

1.49.1.2. fortifyupdate command-line options 600

1.49.2. Checking the scan status with SCAState 605

1.49.2.1. SCAState command-line options 606

1. User Guide
This section provides instructions for using OpenText™ Static Application Security

Testing (OpenText SAST) to scan code on most major programming platforms. This

section is intended for people responsible for security audits and secure coding.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 1 of 610

1.1. Support and documentation
When contacting Customer Support, provide the following product information:

Software Version: 25.4.0

Software Release Date: 25.4.0

Contacting Customer Support

Visit the Customer Support website to:

For more information
For more information about OpenText Application Security Testing products, visit

Application Security.

Product feature videos
You can find videos that highlight OpenText Application Security Software products

and features on the Fortify Unplugged YouTube™ channel.

Manage licenses and entitlements

Create and manage technical assistance requests

Browse documentation and knowledge articles

Download software

Explore the Community

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 2 of 610

https://portal.microfocus.com/
https://www.opentext.com/products/application-security
https://www.youtube.com/c/FortifyUnplugged

1.2. Change log
The following table lists changes made to this help/document. Revisions to this

help/document are published between software releases only if the changes made

affect product functionality.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 3 of 610

Software release /

Document version

Changes

26.1.0 Added:

Removed:

AI-assisted static analysis (see

Analyzing using AI)

Added new Python version (see

Language compatibility)

Added new xcodebuild version (see

Supported build tools)

Added frameworks for languages

supported for AI-assisted analysis

(see Libraries, frameworks, and

technologies)

Removed Ant version 1.9.x and

Xcode build versions 15.3 - 15.4

(see Supported build tools)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 4 of 610

Software release /

Document version

Changes

25.4.0 Added:

Updated:

Added new Xcode build and

MSBuild versions (see Supported

build tools)

Added new .NET (Core), C#, Java,

Go, Kotlin, Scala, and Swift

versions (see Language

compatibility)

Added new compiler

versions OpenJDK javac and Swiftc

(see Supported compilers)

Added new

com.fortify.sca.rules.Islibrary and

com.fortify.sca.rules.enablePQCRu

les properties (fortify-

rules.properties)

Added page on analyzing library

code (Analyzing Library Code)

Added new

com.fortify.sca.EnableSubtraceFilt

ering property (Translation and

analysis phase properties)

Added section on Composite Filters

to Excluding issues with filter files

Changed all mentions of Translating

<languages> to Analyzing

<languages>
Made all the language sections top

level for easy identification

Simplified Analysis process

overview

Build integration sections have now

been moved to the respective

language sections

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 5 of 610

Software release /

Document version

Changes

Removed:

Merged Java, Kotlin and Android

sections. (see Analyzing Java,

Kotlin and JSP projects)

Reorganized iOS section.

(see Analyzing iOS and Xcode

projects)

Moved the scan policy section out

of the analysis overview, combined

with filters and other ways to

improve results into a new section.

(see Optimizing Results)

Moved section about regex analysis

under a top-level section for secret

scanning

Removed ScanCentral SAST client

from the OpenText SAST installer.

Removed Gradle version 6.5 and

earlier versions (see Supported

build tools)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 6 of 610

Software release /

Document version

Changes

25.3.0 Added:

Updated:

Removed:

Updated Xcode build versions

(see System requirements)

Added new rule property to control

FortifyRemove comments

functionality (fortify-

rules.properties)

Added Filtering comments using

FortifyRemove

MacOS ARM installers (see

Acquiring software)

Changed all mentions of Fortify

Sofware Security content to
OpenText Application Security

Content

Removed xcodebuild versions 15,

15.0.1, 15.1, 15.2 (see Supported

build tools)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 7 of 610

Software release /

Document version

Changes

25.2.0
Added:

Updated:

Removed:

System requirements

Instructions on how to create a

custom scan policy (Applying a

scan policy to the analysis)

Incorporated product name

changes (see Product name

changes)

Installer file names changed for

product name change (see various

topics in Installing OpenText SAST)

Test projects are excluded by

default in translation of Visual

Studio projects (see Visual Studio

Project command-line syntax)

Added support for Jupyter

notebooks (see Translating Python

code)

Setting limiter properties is no

longer required to translate code

created using the Django or Flask

framework

Properties

com.fortify.sca.SuppressLowSever

ity and
com.fortify.sca.LowSeverityCutoff

were removed because they

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 8 of 610

Software release /

Document version

Changes

reference metadata that is

deprecated in the Rulepacks.

The com.fortify.sca.hoa.Enable
property was removed from this

helpdocument and will be removed

from the product in a future

release.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 9 of 610

Software release /

Document version

Changes

24.4.0
Updated:

Added installer for Linux on ARM

(see Installing OpenText SAST)

Scan policies can exclude dataflow

issues based on taint flags (see

Applying a Scan Policy to the

Analysis)

By default, NPM dependencies are

excluded from the analysis phase

(see Managing translation of NPM

dependencies)

Support added for Flask and Jinja2

(see Translating Python code)

Added the -gotags option to

include custom build tags in

OpenText SAST translation of Go

project (see Including Custom Go

Build Tags and Go Properties)

Changes to the command-line

options to analyze PL/SQL (see

AnalyzingTranslating SQL)

Added an option to disable build

tool name resolution and translate

build script files as source files (see

Translation Options and Translation

and Analysis Phase Properties)

The -exclude option is supported

in Ant, Bazel, Gradle, and Maven

build integrations (see Integrating

with Ant, Integrating with Bazel,

Using Gradle Integration, Using the

Fortify Maven Plugin, and

Translation Options)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 10 of 610

https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca

Software release /

Document version

Changes

Removed:

Modular analysis was removed

from this help/document. This

feature is deprecated and will be

removed from the product in the

next release.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 11 of 610

1.3. Introduction
This section contains the following topics:

Product name changes

OpenText SAST

Licensing

Renewing an expired license

OpenText Application Security Content

Fortify ScanCentral SAST

OpenText Application Security Tools

Sample projects

Related documents

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 12 of 610

1.3.1. Product name changes
OpenText is in the process of changing the following product names:

Previous name New name

Fortify Static Code Analyzer OpenText™ Static Application Security

Testing (OpenText SAST)

Fortify Software Security Center OpenText™ Application Security

Fortify WebInspect OpenText™ Dynamic Application

Security Testing (OpenText DAST)

Fortify on Demand OpenText™ Core Application Security

Debricked OpenText™ Core Software Composition

Analysis (OpenText Core SCA)

Fortify Applications and Tools OpenText™ Application Security Tools

The product names have changed on product splash pages, mastheads, login pages,

and other places where the product is identified. The name changes are intended to

clarify product functionality and to better align the Fortify Software products with

OpenText. In some cases, such as on the documentation title page, the old name

might temporarily be included in parenthesis. You can expect to see more changes in

future product releases.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 13 of 610

1.3.2. OpenText SAST
OpenText SAST (Fortify Static Code Analyzer) is a set of software security analyzers

that search for violations of security-specific coding rules and guidelines in a variety

of languages. OpenText SAST produces analysis information to help you deliver more

secure software, and make security code reviews more efficient, consistent, and

complete. Its design enables you to incorporate customer-specific security rules.

For a list of supported languages, libraries, compilers, and build tools, see System

requirements.

To analyze your application with OpenText SAST, you can:

Perform the analysis directly from an IDE using one of the Secure Code Plugins:

Fortify Extension for Visual Studio, Fortify Plugin for Eclipse, and Fortify Analysis

Plugin for IntelliJ IDEA and Android Studio). You can also run the analysis from

Fortify Audit Workbench.

You can also view the security vulnerability analysis results in the IDE and Fortify

Audit Workbench or upload the results to Application Security. For a description

of the tools, see OpenText Application Security Tools.

Integrate the analysis into your build system or run the analysis from the

command line.

This guide focuses primarily on this method of performing the analysis.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 14 of 610

1.3.2.1. About the analyzers
OpenText SAST comprises eight vulnerability analyzers: Buffer, Configuration,

Content, Control Flow, Dataflow, Null Pointer, Semantic, and Structural. Each analyzer

accepts a different type of rule specifically tailored to provide the information

necessary for the corresponding type of analysis performed. Rules are definitions

that identify elements in the source code that might result in security vulnerabilities or

are otherwise unsafe. The following table describes each analyzer.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 15 of 610

Analyzer Description

Dataflow The Dataflow Analyzer detects

potential vulnerabilities that involve

tainted data (user-controlled input or

private data) put to potentially

dangerous use. The Dataflow Analyzer

uses interprocedural taint propagation

analysis to detect the flow of data

between a site of user input (or private

data) through the application to a

dangerous function call or operation.

For example, the Dataflow Analyzer

detects whether a user-controlled input

string dynamically generates HTML

(Cross-Site Scripting) and detects

whether a user-controlled string

constructs SQL queries (SQL injection).

Control Flow The Control Flow Analyzer detects

potentially dangerous sequences of

operations. By analyzing control flow

paths in a program, the Control Flow

Analyzer determines whether a set of

operations are executed in a certain

order. For example, the Control Flow

Analyzer detects time of check/time of

use issues and race conditions, and

checks whether utilities, such as XML

readers, are configured properly before

being used.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 16 of 610

Analyzer Description

Buffer The Buffer Analyzer detects buffer

overflow vulnerabilities that involve

writing or reading more data than a

buffer can hold. The buffer can be

either stack-allocated or heap-

allocated. The Buffer Analyzer uses

limited interprocedural analysis to

determine whether there is a condition

that causes the buffer to overflow. If

any execution path to a buffer leads to

a buffer overflow, OpenText SAST

reports it as a buffer overflow

vulnerability and points out the

variables that might cause the

overflow. If the value of the variable

causing the buffer overflow is tainted

(user-controlled), then OpenText SAST

reports it as well and displays the

dataflow trace to show how the

variable is tainted. The Buffer Analyzer

also detects buffer under-read and

buffer underflow conditions.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 17 of 610

Analyzer Description

Structural The Structural Analyzer detects

potentially dangerous flaws in the

structure or definition of the program.

By understanding the way programs

are structured, the Structural Analyzer

identifies violations of secure

programming practices and techniques

that are often difficult to detect through

inspection because they encompass a

wide scope involving both the

declaration and use of variables and

functions. For example, the Structural

Analyzer detects hard-coded secrets,

cookie misconfiguration in code, and

encryption weaknesses.

Configuration The Configuration Analyzer searches

for mistakes, weaknesses, and policy

violations in application deployment

configuration files. For example, the

Configuration Analyzer checks for

reasonable timeouts in user sessions in

a web application. The Configuration

Analyzer also performs regular

expression analysis (see Regular

Expression Analysis).

Semantic The Semantic Analyzer detects

potentially dangerous uses of functions

and APIs at the intra-procedural level.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 18 of 610

Analyzer Description

Content The Content Analyzer searches for

security issues and policy violations in

HTML content. In addition to static

HTML pages, the Content Analyzer

performs these checks on files that

contain dynamic HTML, such as PHP,

JSP, and classic ASP files.

Null Pointer The Null Pointer Analyzer detects

dereferences of pointer variables that

are assigned the null value. The Null

Pointer Analyzer detection is

performed at the intra-procedural level.

Issues are detected only when the null

assignment, the dereference, and all

the paths between them occur within a

single function.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 19 of 610

1.3.3. Licensing
OpenText SAST requires a license to perform both the translation and analysis

(scan) phases of security analysis (for more information about these phases, see

Analysis Process).

You must download the Fortify license file for your product from the Software

Licenses and Downloads (SLD) portal. Use the credentials that Customer Support has

provided for access.

To install OpenText SAST, you must have a Fortify license file (fortify.license) and

optionally you can use the Fortify License and Infrastructure Manager to manage

concurrent licenses for OpenText SAST. With a LIM managed concurrent license,

multiple installations of OpenText SAST can share a single license. For information

about how to set up the LIM with licenses for OpenText SAST, see OpenText™ Fortify
License and Infrastructure Manager Installation and Usage Guide. For more

information about managing your LIM license from OpenText SAST, see LIM license

directives.

Note

Using OpenText™ Fortify License and Infrastructure Manager (LIM) to
manage concurrent licenses for OpenText SAST requires LIM version
21.2.0 or later.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 20 of 610

https://sld.microfocus.com/
https://sld.microfocus.com/

1.3.4. Renewing an expired license
The license for OpenText SAST expires annually.

To update an expired license:

Put the updated Fortify license file in the root directory where OpenText SAST is

installed.

To update an expired LIM managed concurrent license, see the OpenText™ Fortify
License and Infrastructure Manager Installation and Usage Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 21 of 610

1.3.5. OpenText Application Security
Content
OpenText SAST uses a knowledge base of rules to enforce secure coding standards

applicable to the codebase for static analysis. OpenText Application Security Content

is required for both translation and analysis. You can download and install security

content when you install OpenText SAST (see Installing OpenText SAST).

Alternatively, you can download or import previously downloaded OpenText

Application Security Content with the fortifyupdate command-line tool as a post-

installation task (see Manually Installing OpenText Application Security Content).

OpenText Application Security Content consists of Fortify Secure Coding Rulepacks

and external metadata:

Fortify Secure Coding Rulepacks describe general secure coding idioms for

popular languages and public APIs

External metadata includes mappings from the Fortify categories to alternative

categories (such as CWE, OWASP Top 10, and PCI)

OpenText provides the ability to write custom rules that add to the functionality of

OpenText SAST and the Fortify Secure Coding Rulepacks. For example, you might

need to enforce proprietary security guidelines or analyze a project that uses third-

party libraries or other pre-compiled binaries that are not already covered by the

Fortify Secure Coding Rulepacks. You can also customize the external metadata to

map Fortify issues to different taxonomies, such as internal application security

standards or additional compliance obligations. For instructions on how to create your

own custom rules or custom external metadata, see the OpenText™ Static Application
Security Testing Custom Rules Guide.

OpenText recommends that you periodically update the security content. You can use

fortifyupdate to obtain the latest security content. For more information, see

Updating Security Content.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 22 of 610

1.3.6. Fortify ScanCentral SAST
You can use OpenText™ ScanCentral SAST to manage your resources by offloading

the OpenText SAST analysis phase from build machines to a collection of machines

provisioned for this purpose. For most languages, ScanCentral SAST can perform

both the translation and the analysis (scan) phases. Users of Application Security can

direct ScanCentral SAST to output the FPR file directly to the server. You have the

option to install a ScanCentral SAST client when you install OpenText SAST.

You can analyze your code in one of two ways:

If your application is written in a language supported for ScanCentral SAST

translation, you can offload the translation and analysis (scan) phase of the

analysis to ScanCentral SAST.

Perform the translation phase on a local build machine and generate a mobile

build session (MBS). Start the scan with ScanCentral SAST using the MBS file. In

addition to freeing up the build machines, this process gives you the ability to

expand the system by adding more resources as needed, without having to

interrupt the build process. For more information about MBS, see Mobile build

sessions.

For information about the specific supported languages for translation and how to

configure and use ScanCentral SAST, see the OpenText™ ScanCentral SAST
Installation, Configuration, and Usage Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 23 of 610

1.3.7. OpenText Application Security Tools
OpenText provides applications and tools (including Secure Code Plugins) that

integrate with OpenText SAST, ScanCentral SAST, and Application Security. The

following table describes the applications that are available for installation with the

OpenText Application Security Tools installer. For instructions about installing the

OpenText Application Security Tools, see the OpenText™ Application Security Tools

Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 24 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

Application Description

OpenText™ Fortify Audit Workbench An application that provides a graphical

user interface to help you organize,

investigate, and prioritize analysis

results so that developers can fix

security flaws quickly.

OpenText™ Fortify Plugin for Eclipse Adds the ability to scan and analyze

the entire codebase of a project and

apply software security rules that

identify the vulnerabilities in your Java

code from the Eclipse IDE. The results

are displayed, along with descriptions

of each of the security issues and

suggestions for their elimination.

OpenText™ Fortify Analysis Plugin for

IntelliJ IDEA and Android Studio

Adds the ability to run scans on the

entire codebase of a project and apply

software security rules that identify the

vulnerabilities in your code from IntelliJ

IDEA and Android Studio.

OpenText™ Fortify Extension for Visual

Studio

Adds the ability to scan and locate

security vulnerabilities in your solutions

and projects and displays the scan

results in Visual Studio. The results

include a list of issues uncovered,

descriptions of the type of vulnerability

each issue represents, and

suggestions on how to fix them. This

extension also includes remediation

functionality that works with audit

results stored on a Application Security

server.

OpenText™ Fortify Custom Rules Editor An application to create and edit

custom rules.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 25 of 610

Application Description

Fortify Scan Wizard
Provides a graphical user interface that

enables you to prepare a script to scan

your code (either locally or remotely

using ScanCentral SAST) and then

optionally upload the results to

Application Security.

BIRTReportGenerator

ReportGenerator

Command-line tools to generate issue

reports (BIRT) and legacy reports from

FPR files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 26 of 610

1.3.8. Sample projects
OpenText provides sample projects available as a separate download in the

OpenText_SAST_Fortify_Samples_<version>.zip package.

The ZIP file contains two directories: basic and advanced . Each code sample

includes a README.txt file that provides instructions on how to scan the code with

OpenText SAST and view the results in Fortify Audit Workbench.

The basic directory includes an assortment of simple language-specific code

samples. The advanced directory includes more advanced samples.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 27 of 610

1.3.9. Related documents
This topic describes documents that provide information about OpenText Application

Security Software products.

All products

The following documents provide general information for all products. Unless

otherwise noted, these documents are available on the Product Documentation

website for each product.

Document / file name Description

About OpenText Application Security
Software Documentation

appsec-docs-n-<version>.pdf

This paper provides information about

how to access OpenText Application

Security Software product

documentation.

Note

This document is included
only with the product
download.

OpenText Application Security
Software Release Notes

appsec-rn-<version>.pdf

This document provides an overview of

the changes made to OpenText

Application Security Software for this

release and important information not

included elsewhere in the product

documentation.

OpenText SAST

The following documents provide information about OpenText SAST (Fortify Static

Code Analyzer). Unless otherwise noted, these documents are available on the

Product Documentation website at www.microfocus.com/documentation/fortify-

static-code-analyzer-and-tools/.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 28 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/

Document / file name Description

OpenText™ Static Application Security
Testing User Guide

sast-ugd-<version>.pdf

This document describes how to install

and use OpenText SAST to scan code

on many of the major programming

platforms. It is intended for people

responsible for security audits and

secure coding.

OpenText™ Static Application Security
Testing Custom Rules Guide

sast-cr-ugd-<version>.zip

This document provides the

information that you need to create

custom rules for OpenText SAST. This

guide includes examples that apply

rule-writing concepts to real-world

security issues.

Note

This document is included
only with the product
download.

OpenText™ Fortify License and
Infrastructure Manager Installation and
Usage Guide

lim-ugd-<version>.pdf

This document describes how to install,

configure, and use the Fortify License

and Infrastructure Manager (LIM),

which is available for installation on a

local Windows server and as a

container image on the Docker

platform.

OpenText Application Security Tools

The following documents provide information about OpenText Application Security

Tools. These documents are available on the Product Documentation website at

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 29 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools

Document / file name Description

OpenText™ Application Security Tools
Guide

sast-tgd-<version>.pdf

This document describes how to install

application security tools. It provides

an overview of the applications and

command-line tools that enable you to

scan your code with OpenText SAST,

review analysis results, work with

analysis results files, and more.

OpenText™ Fortify Audit Workbench
User Guide

awb-ugd-<version>.pdf

This document describes how to use

Fortify Audit Workbench to scan

software projects and audit analysis

results. This guide also includes how to

integrate with bug trackers, produce

reports, and perform collaborative

auditing.

OpenText™ Fortify Plugin for Eclipse
User Guide

ep-udg-<version>.pdf

This document provides information

about how to install and use the Fortify

Plugin for Eclipse to analyze and audit

your code.

OpenText™ Fortify Analysis Plugin for

IntelliJ IDEA and Android Studio User

Guide

iap-udg-<version>.pdf

This document describes how to install

and use the Fortify Analysis Plugin for

IntelliJ IDEA and Android Studio to

analyze your code and optionally

upload the results to Application

Security.

OpenText™ Fortify Extension for Visual
Studio User Guide

vse-ugd-<version>.pdf

This document provides information

about how to install and use the Fortify

Extension for Visual Studio to analyze,

audit, and remediate your code to

resolve security-related issues in

solutions and projects.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 30 of 610

1.4. System requirements
This contentchapter describes the system requirements, supported languages, build

tools, and compilers, and how to acquire the OpenText SAST software package.

This section contains the following topics:

Hardware requirements

Supported platforms and architectures

Software requirements

AI-powered SAST requirements

Language compatibility

Supported build tools

Supported compilers

OpenText Application Security Content

Virtual Machine support

Acquiring software

Verifying software downloads

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 31 of 610

https://docs.microfocus.com/doc/2263/26.1/a4ad5abf950e_security_content

1.4.1. Hardware requirements
System resources such as CPU, memory, and storage can drastically impact the

overall analysis time for a project. It depends on many factors related to the target

project codebase such as overall code size, composition, language, and code

complexity. The following guidance provides some general starting points based on

our experience scanning many different real-world applications.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 32 of 610

Application size

and complexity

CPU cores RAM (GB) Description

Small and simple 4 16
A small

standalone

system that runs

on a server or

desktop such as a

batch job or a

command-line

tool and includes:

Less than

10,000

functions

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 33 of 610

Application size

and complexity

CPU cores RAM (GB) Description

Small and simple

(dynamic

language)

8 32
A standalone

system that

works with

complex

computer models

such as a tax

calculation

system or a

scheduling

system and

includes:

Less than

10,000

functions

Primarily a

dynamic

language

such as

JavaScript,

TypeScript,

Python,

PHP, and

Ruby

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 34 of 610

Application size

and complexity

CPU cores RAM (GB) Description

Medium 16 64–128
A three-tiered

business system

with transactional

data processing

such as a

financial system

or a commercial

website and

includes:

Less than

100,000

functions

Over one

million lines

of code

Large and

complex

32 256
A system that

delivers content

such as an

application

server, database

server, or content

management

system and

includes:

Over 1

million

functions

Several

million lines

of code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 35 of 610

OpenText SAST takes advantage of all CPU cores available on your system to reduce

the scan time of large projects. When you run OpenText SAST, avoid running other

CPU intensive processes during the OpenText SAST execution because it expects to

have the full resources of your hardware available for the scan.

Additional system resource tuning considerations:

Virtual systems—Virtualization enables hardware resources to be scaled by

identifying unused resources in a workload and reallocating them to other

workloads. Because OpenText SAST analysis is generally a long running

resource intensive process (especially in large and complex projects), OpenText

recommends dedicated resources at the virtualization layer to reduce resource

swapping.

CPU—Overall processing power can have significant impact on the total time

required for analysis. OpenText recommends a high end processor with a fast

clock speed (GHz per core). It is important to note that there is a correlation

between the number of cores available to the system and the amount of memory

that might be needed.

Memory—For more information on how to determine the amount of memory

required for optimal performance, see Memory tuning. Note that analysis of

dynamic languages such as JavaScript, TypeScript, Python, PHP, and Ruby

require more memory during the scan phase that other languages.

Disk I/O—Project translation and scan are I/O intensive activities that serialize

large amounts of data and benefit from faster storage. OpenText recommends

that you run analysis on faster SSD storage when possible.

Number of functions—You can verify the number of functions modeled during

the analysis by running a scan with the -debug option and looking for the last

occurrence of the NameTable.funs: ### value in the Support log file.

See Also

Sample scans

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 36 of 610

1.4.1.1. Sample scans
These sample scans were performed using OpenText SAST version 25.4.0 on

dedicated virtual machines. These scans were run with OpenText Application Security

Content 25.4 Update. The following table shows the scan times you can expect for

several common open-source projects.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 37 of 610

Languag

e

Project

name

Translat

ion time

(mm:ss)

Analysis

(scan)

time

(mm:ss)

Total

issues

LOC System

configur

ation

.NET

(C#)

SharpZi

pLib

01:27 14:05 606 31,863 Window

s Server

2022

with

4 CPUs

and

32 GB of

RAM

ABAP abap2UI

5

00:13 00:52 11 59,111 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB of

RAM

C/C++ nasm

0.98.38

00:36 04:49 738 35,997 Linux

(Centos

7) with

8 CPUs

and

32 GB of

RAM

Java WebGoa

t 8

00:17 00:59 252 23,662 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB of

RAM

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 38 of 610

Languag

e

Project

name

Translat

ion time

(mm:ss)

Analysis

(scan)

time

(mm:ss)

Total

issues

LOC System

configur

ation

Java WordPre

ss for

Android

00:10 01:48 534 35,276 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB of

RAM

JavaScri

pt

three.js 06:14 14:43 277 639,230 Linux

(AlmaLin

ux 9)

with 8

CPUs

and

32 GB

RAM,Jav

a 17

PHP CakePH

P

00:22 00:03 4,182 136,594 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB of

RAM

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 39 of 610

Languag

e

Project

name

Translat

ion time

(mm:ss)

Analysis

(scan)

time

(mm:ss)

Total

issues

LOC System

configur

ation

PHP phpBB 3 00:34 02:05 1,305 206,873 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB of

RAM

Python 3 numpy-

1.13.3

02:24 09:28 217 563,457 Linux

(AlmaLin

ux 9)

with 4

CPUs

and 32

GB RAM

Swift MediaBr

owser

00:16 01:26 9 17,699 macOS®

with

4 CPUs

and

16 GB of

RAM

TypeScri

pt

rxjs-7.8.1 02:19 07:24 59 204,006 Linux

(AlmaLin

ux 9)

with 8

CPUs

and 32

GB RAM,

Java 17

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 40 of 610

1.4.2. Supported platforms and
architectures
OpenText SAST supports the platforms and architectures listed in the following table.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 41 of 610

Operating syste

m

Platforms Distributions and

versions

Notes

Microsoft

Windows®

x64
Windows 10, 11

Windows Server

2019, 2022

Linux® x64

ARM

CentOS Linux 7.x

(7.6 or later)

Red Hat®

Enterprise Linux®

7.x (7.2 or later),

8.x (8.2 or later),

9.x

SUSE® Linux®

Enterprise Server

15

Ubuntu® 20.04.1

LTS, 22.04.1 LTS

macOS® x64

M series

ARM

14, 15

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 42 of 610

Operating syste

m

Platforms Distributions and

versions

Notes

IBM® AIX®
Power ISA 7.1, 7.2, 7.3

Import

ant

You
must
have
the
IBM X
L
C/C+
+ for
AIX
16.1
Runti
me
enviro
nment
packa
ge
install
ed.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 43 of 610

1.4.3. Software requirements
The OpenText SAST installation includes an embedded OpenJDK/JRE version 21,

which the software requires. You do not need to install Java 21.

Note

OpenText does not recommend upgrading the embedded OpenJDK/JRE
to a later version.

To use OpenText SAST, you must have Read and Write permissions for the OpenText

SAST installation directory.

The following table lists software requirements for analysis of specific project types.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 44 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

Visual Studio,

MSBuild, or

.NET projects

.NET

Framework

4.8 or later

(MSBuild

only)

Windows Yes No

.NET SDK 8.0 Windows,

Linux

Yes No

ABAP®/BSP
Fortify

ABAP Extract

or is

supported on

a system

running ABAP

Platform

2023 / ABAP

Version 7.58.

All No No

Bicep
.NET SDK 8.0 Windows,

Linux

No Yes

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 45 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

COBOL
Microsoft

Visual C++

2017

Redistributabl

e (x86)

N

ot

e

T
hi
s
is
n
ot
a
re
q
ui
re
m
e
nt
fo
r
le
g
a
c
y
C
O
B
O
L
a
n
al
y
si
s.

Windows Yes No

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 46 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

Scala
The Akka

compiler

plugin is

available in

the Maven

Central

Repository.

All Yes No

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 47 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

Solidity The relevant

Solidity

compiler

version

All No Yes

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 48 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

N

ot

e

If
th
e
s
c
a
n
ni
n
g
m
a
c
hi
n
e
h
a
s
a
n
In
te
r
n
et
c
o
n
n
e
ct
io
n,
O
p
e
n
T
e
xt
S
A
S
T
w

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 49 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

ill
at
te
m
pt
to
d
o
w
nl
o
a
d
th
e
n
e
c
e
s
s
ar
y
S
ol
id
it
y
c
o
m
pi
le
rs
.
In
s
u
c
h
c
a
s
e
s,
th
e
S
ol
id

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 50 of 610

Language Software Operating

systems

Translation

Requirement

Scan

Requirement

it
y
c
o
m
pi
le
r
is
n
ot
re
q
ui
re
d
o
n
th
e
s
c
a
n
ni
n
g
m
a
c
hi
n
e
p
ri
o
r
to
th
e
s
c
a
n.

To use AI-assisted analysis, you must have a PostgreSQL database version 12.0 or

later. For more information, see Requirements for AI-assisted analysis.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 51 of 610

1.4.4. AI-powered SAST requirements
Before you configure AI-powered SAST:

You must have an Amazon Web Services (AWS) account.

The AWS IAM user or role that is used to make requests to AWS Bedrock must

have permissions to call the following APIs:

Bedrock Runtime: InvokeModel

Bedrock: GetInferenceProfile (Only required if you use an application

inference profile as the model ID)

For more information on AWS Identity and Access Management, see

AWS Documentation.

To enable caching of LLM results, you must have a PostgreSQL database version

12.0 or later.

Note

If you do not use a database for caching results, it could lead to
increased LLM costs.

(Optional) Ensure you have the pwtool that installs with OpenText Application

Security Tools if you want to obfuscate sensitive values before storing them in the
fortify-sca.properties file or using them on the command line.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 52 of 610

1.4.4.1. Supported LLMs
OpenText SAST leverages AWS Bedrock LLMs to analyze the source code files.

OpenText SAST supports the following models on AWS Bedrock:

Claude Sonnet 4.5

Claude Sonnet 4

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 53 of 610

1.4.5. Language compatibility
OpenText SAST verifies compatibility with the language versions listed below. While

these versions have been tested, OpenText SAST is designed with flexibility in mind

and may successfully scan other versions not explicitly verified.

We encourage users to upgrade to the latest version of OpenText SAST and attempt

scans to determine compatibility. If you encounter issues scanning a newer,

unverified version or wish to scan a language not currently supported, please reach

out to OpenText Support for assistance.

In addition to the list below, there is a set of languages that can utilize AI-powered

analysis, which is compatible with all versions and frameworks for each language.

See Language compatibility for AI-assisted analysis for further details.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 54 of 610

Language / framework Verified Compatibility

.NET (Core)
2.0-10.x

.NET Framework 2.0–4.8

ABAP/BSP 6.x, 7.x

ActionScript 3.0

Apex 55–61

Bicep 0.12.x–0.15.31

C#
5–14

C C11, C17, C23 (see Compilers)

C++ C++11, C++14, C++17, C++20 (see

Compilers)

Classic ASP (with VBScript) 2.0, 3.0

COBOL IBM Enterprise COBOL for z/OS 6.1–6.3

(CICS, IMS, DB2, and IBM MQ)

Visual COBOL 6.0–8.0

ColdFusion 8–10

Dart™ 2.12-3.8

Docker® (Dockerfiles) any

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 55 of 610

Language / framework Verified Compatibility

Go™ programming language
1.12–1.25

HCL
2.0

Note

HCL language support is
specific to Terraform and
supported cloud provider
Infrastructure as Code
(IaC) configurations.

HTML 5 or earlier

Java (including Android) 7–25

JavaScript ECMAScript® 2015–2024

JSON ECMA-404

JSP 1.2–2.1

Kotlin 1.3–2.1

MXML (Flex®) 4

Objective-C/C++ 2.0 (see Compilers)

PHP 7.3–8.4

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 56 of 610

Language / framework Verified Compatibility

PL/SQL 8–23

Python® 2.6–3.14

Ruby 1.x with normal SAST analysis, all

versions supported with AI-assisted

analysis. See Language compatibility

for AI-assisted analysis for more

information.

Scala
2.11–2.13, 3.3–3.6

Solidity 0.4.12–0.8.21

Swift®
5.10, 6.0 - 6.2. (see Compilers for

supported swiftc versions)

T-SQL SQL Server 2005, 2008, 2012

TypeScript 3.6–5.4

VBScript 2.0, 5.0

Visual Basic (VB.NET)
15.0–16.9

Visual Basic 6.0

XML 1.0, 1.1

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 57 of 610

Language / framework Verified Compatibility

YAML 1.2

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 58 of 610

1.4.5.1. Libraries, frameworks, and
technologies
OpenText SAST supports the libraries, frameworks, and technologies listed in this

section with dedicated Fortify Secure Coding Rulepacks and vulnerability coverage

beyond core supported languages.

Java

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 59 of 610

Adobe Flex

Blaze DS

Ajanta

Amazon Web

Services

(AWS) SDK

Android

Android

Jetpack

Apache

Axiom

Apache Axis

Apache

Beam

Apache

Beehive

NetUI

Apache

Catalina

Apache

Cocoon

Apache

Commons

Apache ECS

Apache

Hadoop

Apache

HttpCompon

ents

Apache

Jasper

Apache Slide

Apache

Spring

Security

(Acegi)

Apache

Struts

Apache

Tapestry

Apache

Tomcat

Apache

Torque

Apache Util

Apache

Velocity

Apache

Wicket

Apache Xalan

Apache

Xerces

ATG Dynamo

Azure SDK

Castor

Display Tag

Dom4j

GDS AntiXSS

Google Cloud

Google

Dataflow

iBatis

IBM MQ

IBM

WebSphere

Jackson

Jakarta

Activation

Jakarta EE

(Java EE)

Jasypt

Java

Annotations

Java Excel

API

JavaMail

JAX-RS

JAXB

Jaxen

JBoss

JDesktop

JDOM

Jetty

JGroups

json-simple

JTidy Servlet

JXTA

JYaml

Liferay Portal

Mozilla Rhino

MyBatis

MyBatis-Plus

Netscape

LDAP API

OkHttp

OpenCSV

Oracle

Application

Development

Framework

(ADF)

Oracle BC4J

Oracle JDBC

Oracle OA

Framework

Oracle

tcDataSet

Oracle XML

Developer Kit

(XDK)

OWASP

Enterprise

Security API

(ESAPI)

OWASP

HTML

Sanitizer

OWASP Java

Encoder

Spring AI

Spring MVC

Spring Boot

Spring Data

Commons

Spring Data

JPA

Spring Data

MongoDB

Spring Data

Redis

Spring for

GraphQL

Spring

HATEOAS

Spring JMS

Spring JMX

Spring

Messaging

Spring

Security

Spring

Webflow

Spring

WebSockets

Spring WS

Stripes

Sun

JavaServer

Faces (JSF)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 60 of 610

Apache

Log4j

Apache

Lucene

Apache

MyFaces

Apache

OGNL

Apache ORO

Apache POI

Apache

SLF4J

Google

Guava

Google Web

Toolkit

gRPC

Gson

Hibernate

MongoDB Plexus

Archiver

Realm

Restlet

SAP Web

Dynpro

Saxon

SnakeYAML

Spring

Tungsten

Weblogic

WebSocket

XStream

YamlBeans

ZeroTurnarou

nd ZIP

Zip4J

Kotlin

Kotlin support includes all libraries covered for Java and the following Kotlin libraries.

Kotlin

standard

library

Android KTX OkHttp

Scala

Scala support includes all libraries covered for Java and the following Scala libraries.

Akka HTTP

Scala Play

Scala Slick

.NET

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 61 of 610

.NET

Framework,

.NET Core,

and .NET

Standard

.NET

WebSockets

ADO.NET

Entity

Framework

ADODB

Amazon Web

Services

(AWS) SDK

ASP.NET

MVC

ASP.NET

SignalR

ASP.NET

Web API

Azure SDK

Castle

ActiveRecord

CsvHelper

Dapper

DB2 .NET

Provider

DotNetZip

Entity

Framework

Entity

Framework

Core

fastJSON

gRPC

Hot

Chocolate

IBM Informix

.NET Provider

Json.NET

Log4Net

Microsoft

ApplicationBl

ocks

Microsoft My

Framework

Microsoft

Practices

Enterprise

Library

Microsoft

Web

Protection

Library

MongoDB

MySQL

Connector/N

ET

NHibernate

NLog

Npgsql

Open XML

SDK

Oracle Data

Provider for

.NET

OWASP

AntiSamy

Saxon

SharePoint

Services

SharpCompre

ss

SharpZipLib

SQLite .NET

Provider

SubSonic

Sybase ASE

ADO.NET

Data Provider

Xamarin

Xamarin

Forms

YamlDotNet

C

ActiveDirecto

ry LDAP

Apple System

Logging

(ASL)

CURL Library

GLib

JNI

MySQL

Netscape

LDAP

ODBC

OpenSSL

POSIX

Threads

SQLite

Sun RPC

WinAPI

C++

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 62 of 610

Boost Smart

Pointers

MFC

STL

WMI

SQL

Oracle ModPLSQL

PHP

ADOdb

Advanced

PHP

Debugging

CakePHP

PHP Debug

PHP DOM

PHP

Extension

PHP Hash

PHP JSON

PHP Mcrypt

PHP Mhash

PHP Mysql

PHP OCI8

PHP

OpenSSL

PHP

PostgreSQL

PHP

Reflection

PHP

Simdjson

PHP

SimpleXML

PHP Smarty

PHP Sodium

PHP WordPre

ss

PHP XML

PHP

XMLReader

PHP Zend

PHP Zip

JavaScript/TypeScript/HTML5

Angular

Anthropic

Claude

Apollo Server

Bluebird

child-

process-

promise

Express

Gemini API

GraphQL.js

Handlebars

Helmet

iOS

JavaScript

Bridge

jQuery

JS-YAML

LangChain

Mustache

Node.js

Azure

Storage

Node.js Core

OpenAI

React

React Native

React Native

Async

Storage

React Router

SAPUI5/Open

UI5

Sequelize

Underscore.j

s

Vertex AI

Vue

PowerShell

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 63 of 610

Basic PS scripts

Azure

SQL Server

Python

aiopg

Amazon Web

Services

(AWS)

Lambda

Amazon

SageMaker

Anthropic

Claude

Azure

Functions

boto3

Django

Flask

Google Cloud

Graphene

gRPC

httplib2

Jinja2

LangChain

libxml2

lxml

memcache-

client

_mysql

MySQL

Connector/Py

thon

MySQLdb

OpenAI

oslo.config

pandas

Paramiko

psycopg2

pycrypto

PyCryptodom

e

pycurl

pylibmc

PyMongo

PySpark

PyYAML

requests

simplejson

six

TensorFlow

Twisted Mail

urllib3

Vertex AI

WebKit

Ruby

MySQL

pg

Rack

SQLite

Thor

Ruby on Rails

Sinatra

Rack

ActiveRecord

Grape

Devise

Rust

Actix Web

Rocket

Axum

Warp

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 64 of 610

Objective-C

AFNetworkin

g

Apple

AddressBook

Apple AppKit

Apple

CFNetwork

Apple

ClockKit

Apple

CommonCry

pto

Apple

CoreData

Apple

CoreFoundati

on

Apple

CoreLocation

Apple

CoreServices

Apple

CoreTelepho

ny

Apple

Foundation

Apple

HealthKit

Apple

LocalAuthenti

cation

Apple

MessageUI

Apple

Security

Apple Social

Apple UIKit

Apple

WatchConne

ctivity

Apple

WatchKit

Apple WebKit

Hpple

Objective-Zip

Realm

SBJson

SFHFKeychai

nUtils

SSZipArchive

ZipArchive

ZipUtilities

ZipZap

Swift

Alamofire

Apple

AddressBook

Apple

CFNetwork

Apple

ClockKit

Apple

CommonCry

pto

Apple

CoreData

Apple

CoreFoundati

on

Apple

CoreLocation

Apple

Foundation

Apple

HealthKit

Apple

LocalAuthenti

cation

Apple

MessageUI

Apple

Security

Apple Social

Apple SwiftUI

Apple UIKit

Apple

WatchConne

ctivity

Apple

WatchKit

Apple WebKit

Hpple

Realm

SQLite

SSZipArchive

Zip

ZipArchive

ZIPFoundatio

n

ZipUtilities

ZipZap

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 65 of 610

COBOL

Auditor

CICS

DLI

Micro Focus

COBOL Run-

time System

MQ

POSIX

SQL

Go

GORM

logrus

gRPC

Ada

Ada Web Server

Dart

Flutter

Delphi

WebBroker DataSnap

Elixir

Phoenix

Plug

Ecto

Guardian

Comeonin

Erlang

Cowboy

Elli

gun

anything SQL related

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 66 of 610

Groovy

Grails

Gradle

Jenkinsfiles

Grails Spring Security

Perl

CGI*

Catalyst

Dancer

Mojolicious

Lua

scripting

Lapis

Sailor

SQL

R

Shiny

httr

SQL

Configuration

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 67 of 610

.NET

Configuration

Adobe Flex

(ActionScript)

Configuration

Ajax

Frameworks

Amazon Web

Service

(AWS)

Ansible

AWS CloudFo

rmation

Azure

Resource

Manager

(ARM)

Build

Management

Docker

Configuration

(Dockerfiles)

GitHub

Actions

Google

Android

Configuration

iOS Property

List

J2EE

Configuration

Java Apache

Axis

Java Apache

Log4j

Configuration

Java Apache

Spring

Security

(Acegi)

Java Apache

Struts

Java Apache

Tomcat

Configuration

Java Blaze

DS

Java

Hibernate

Configuration

Java iBatis

Configuration

Java IBM

WebSphere

Java MyBatis

Configuration

Java OWASP

AntiSamy

Java Spring

and Spring

MVC

Java Spring

Boot

Java Spring

Mail

Java Spring

Security

Java Spring

WebSockets

Java

Weblogic

Kubernetes

Mule

OpenAPI

Specification

Oracle

Application

Development

Framework

(ADF)

PHP

Configuration

PHP WordPre

ss

Silverlight

Configuration

Terraform

(AWS, Azure,

GCP)

WS-

SecurityPolic

y

XML Schema

Infrastructure as Code: Amazon Web Services

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 68 of 610

API Gateway

App Mesh

AppSync

Athena

Aurora

Backup

Batch

Certificate

Manager

CloudFormati

on

CloudFront

CloudTrail

CloudWatch

CodeBuild

CodeCommit

CodeStar

Cognito

Config

Configuration

Recorder

Database

Migration

Service

(DMS)

DataSync

DocumentDB

DynamoDB

EC2

Elastic Block

Store (EBS)

Elastic

Container

Registry

(ECR)

Elastic

Container

Service (ECS)

Elastic File

System (EFS)

Elastic

Kubernetes

Service (EKS)

Elastic Load

Balancing

(ELB)

ElastiCache

EMR

FinSpace

FSx

Global

Accelerator

Glue

GuardDuty

HealthLake

Identity and

Access

Management

(IAM)

Image Builder

Key

Management

Service

(KMS)

Kinesis

Kinesis Video

Streams

Lightsail

Location

Service

Lookout for

Equipment

Mainframe

Modernizatio

n

Managed

Streaming for

Apache

Kafka (MSK)

MemoryDB

for Redis

MQ

Neptune

OpenSearch

Service

Quantum

Ledger

Database

(QLDB)

RDS

Redshift

Rekognition

Route 53

SageMaker

Secrets

Manager

Simple

Notification

Service

(SNS)

Simple

Queue

Service

(SQS)

Simple

Storage

Service (S3)

Step

Functions

Systems

Manager

Timestream

Transfer

Family

VPC

VPC Lattice

WorkSpaces

Family

Infrastructure as Code: Microsoft Azure

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 69 of 610

App Service

Application

Gateway

Automation

Microsoft

Entra Domain

Services

Azure Health

Data Services

Azure

Kubernetes

Service

(AKS)

Batch

Blob Storage

Cache for

Redis

Cognitive

Search

Container

Registry

Cosmos DB

Database for

MariaDB

Database for

MySQL

Database for

PostgreSQL

Databricks

Data Box

Data Factory

Defender for

Cloud

Event Hubs

Front Door

Grafana

Hostname

Binding

IoT Central

IoT Hub

Key Vault

Logic Apps

Machine

Learning

MariaDB

Media

Services

Monitor

NetApp Files

Private Cloud

Policy

Portal

SignalR

Service

Site Recovery

Spring Apps

SQL

Storage

Accounts

Virtual

Machine

Scale Sets

Virtual

Machines

Web PubSub

Infrastructure as Code: Google Cloud

Access

Context

Manager

AlloyDB

Apigee API

Management

App Engine

Artifact

Registry

Backup for

GKE

BigQuery

Cloud

Bigtable

Cloud DNS

Cloud

Functions

Cloud Key

Management

Cloud Load

Balancing

Cloud

Logging

Cloud

Spanner

Cloud SQL

Cloud

Storage

Compute

Engine

Filestore

Google Cloud

Platform

Google

Kubernetes

Engine (GKE)

Identity and

Access

Management

(IAM)

Media CDN

Memorystore

Pub/Sub

Secret

Manager

Workflows

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 70 of 610

Secrets

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 71 of 610

.netrc

1Password

Actually Goo

d Encryption

(AGE)

Adafruit

Adobe

Airtable

Algolia

Alibaba

(Aliyun)

Amazon

(AWS, MWS)

Apple

(macOS)

Apache

HTTP

Asana

Atlassian

Authress

Basic access

authenticatio

n

bcrypt

Beamer

Bearer token

Bitbucket

Bittrex

Defined

DES

DigitalOcean

Docker

Doppler

Droneci

Dropbox

Duffel

Dynatrace

EasyPost

Encryption

key

Etsy

Facebook

Fastly

Finicity

Finnhub

Flickr

Flutterwave

Frame.io

Freshbooks

Git

GitHub

GitLab

Gitter

GNOME

HashiCorp

(Terraform,

Vault)

Heroku

HexChat

HubSpot

Intercom

Java

JFrog

(Artifactory)

JSON Web

Token

KDE Wallet

(Kwallet)

KeePass

Kraken

Kucoin

LaunchDarkly

Linear

LinkedIn

Lob

Mailchimp

Mailgun

Mapbox

Mattermost

MD5

MessageBird

New Relic

npm

NuGet

Okta

OpenVPN

Password in

comment

Password in

connection

string

Password in

PowerShell

script

Password in

URI

Password

Safe

PayPal

(Braintree)

Pidgin

Plaid

Planetscale

PostgreSQL

Postman

Prefect

Pulumi

PuTTY

PyPI

RapidAPI

Sendbird

SendGrid

Sentry

SHA1

SHA256

SHA512

Shippo

Shopify

Sidekiq

Slack

SonarQube

Square

Squarespace

StackHawk

Stripe

Sumologic

Telegram

Travis

Trello

Twilio

Twitch

Twitter

Typeform

Yandex

Zendesk

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 72 of 610

Brevo

(Sendinblue)

Clojars

Code Climate

Codecov

Coinbase

Confluent

Contentful

Databricks

Datadog

GNU (Bash)

GoCardless

Google (API,

Google

Cloud,

OAuth)

Grafana

Microsoft (Az

ure App

Storage,

Cosmos DB,

Functions

and Bitlocker,

PowerShell,

RDP,

VBScript)

Microsoft

(Outlook)

Mutt

MySQL

Netlify

Readme

RSA Security

Ruby (Ruby

on Rails,

RubyGems)

Sauce Labs

Secret key

Secure Shell

Protocol

(SSH)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 73 of 610

1.4.5.2. Language compatibility for AI-
assisted analysis
The following languages are supported for AI-assisted static analysis.

*AI-assisted analysis is replacing normal SAST analysis.

Ada

Bash

Delphi

Elixir

Erlang

Groovy

Lua

Perl

PowerShell

R

Ruby*

Rust

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 74 of 610

1.4.6. Supported build tools
OpenText SAST supports the build tools listed in the following table.

Build tool Versions Notes

Apache Ant™ 1.10.x

Bazel 6.x–7.x Bazel integration

supports Java and

Python.

dotnet 6.0–10.x

Gradle

(build integration)

6.6–8.10 OpenText SAST Gradle

integration supports

Java, Kotlin, and C/C++.

Gradle

(Gradle plugin)

6.6–8.5 OpenText SAST Gradle

Plugin supports Java and

Kotlin.

Apache Maven™

Software

3.6.x, 3.8.x, 3.9.x

MSBuild 14.x–17.14
OpenText SAST

MSBuild 17.4

integration is compatible

with .NET 7.0 or later and

.NET Framework 4.7.2 or

later

xcodebuild
16-16.4, 26-26.1.1

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 75 of 610

1.4.7. Supported compilers
OpenText SAST supports the compilers listed in the following table.

Compiler Versions Operating systems

gcc GNU gcc 6.x– 13 Windows, Linux, macOS

GNU gcc 4.9–5.x Windows, Linux, macOS,

AIX

g++
GNU g++ 6.x– 13

Windows, Linux, macOS

GNU g++ 4.9–5.x Windows, Linux, macOS,

AIX

OpenJDK javac 9, 10, 11, 12, 13, 14, 17, 21,

24, 25

Windows, Linux, macOS,

AIX

Oracle javac 7, 8, 9 Windows, Linux, macOS

cl (MSVC) 2015, 2017, 2019, 2022 Windows

Clang
15.0.0, 16.0.0, 17.0.0 macOS

Swiftc
5.10, 6.0, 6.0.2, 6.0.31,
6.1.0, 6.1.2, 6.2

macOS

1OpenText SAST supports applications built in the following Xcode versions: 16-16.4,
26-26.1.1.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 76 of 610

1.4.8. OpenText Application Security
Content
Fortify Secure Coding Rulepacks are backward compatible with all supported

OpenText SAST versions. This ensures that Rulepack updates do not break any

working OpenText SAST installation.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 77 of 610

1.4.9. Virtual Machine support
You can run OpenText Application Security Software products on an approved

operating system in virtual machine environments. You must provide dedicated CPU

and memory resources that meet the minimum hardware requirements. If you find

issues that cannot be reproduced on the native environments with the recommended

processing, memory, and disk resources, you must work with the provider of the

virtual environment to resolve them.

Note

If you run OpenText Application Security Software products in a VM
environment, OpenText strongly recommends that you have CPU and
memory resources fully committed to the VM to avoid performance
degradation.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 78 of 610

1.4.10. Acquiring software
OpenText SAST (Fortify Static Code Analyzer) is available as an electronic download.

For instructions on how to download the software from the Software Licenses and

Downloads (SLD) portal, click Contact Us / Self Help to review the videos and the

Quick Start Guide.

The following table lists the available packages and describes their contents.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 79 of 610

https://sld.microfocus.com/
https://sld.microfocus.com/

File name Description

OpenText_SAST_Fortify_Windows_<ver
sion>.zip

OpenText SAST package for Windows

This package includes:

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Windows_<ver
sion>.zip.sig

Signature file for the OpenText SAST

Windows package

OpenText SAST installer, which

includes the following components

Fortify License and Infrastructure

Manager installer

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 80 of 610

File name Description

OpenText_SAST_Fortify_Linux-

ARM_<version>.tar.gz

OpenText SAST package for Linux on

ARM

This package includes:

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Linux-

ARM_<version>.tar.gz.sig
Signature file for the OpenText SAST

Linux on ARM package

OpenText SAST installer, which

includes the following components

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 81 of 610

File name Description

OpenText_SAST_Fortify_Linux_<version
>.tar.gz

OpenText SAST package for Linux

This package includes:

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Linux_<version
>.tar.gz.sig

Signature file for the OpenText SAST

Linux package

OpenText SAST installer, which

includes the following components

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 82 of 610

File name Description

OpenText_SAST_Fortify_Mac_<version>
.tar.gz

OpenText SAST package for macOS

This package includes:

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Mac_<version>
.tar.gz.sig

Signature file for the OpenText SAST

macOS package

OpenText SAST installer, which

includes the following components

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 83 of 610

File name Description

OpenText_SAST_Fortify_Mac-

ARM_<version>.tar.gz
OpenText SAST package for macOS-

ARM

This package includes:

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Mac-

ARM_<version>.tar.gz.sig

Signature file for the OpenText SAST

macOS-ARM package

OpenText_SAST_Fortify_AIX_<version>.

tar.gz

OpenText SAST package for AIX

This package includes:

OpenText_SAST_Fortify_AIX_<version>.

tar.gz.sig

Signature file for the OpenText SAST

AIX package

OpenText SAST installer, which

includes the following components

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

OpenText SAST installer

OpenText SAST Custom Rules

Guide bundle

About OpenText Application

Security Software Documentation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 84 of 610

File name Description

OpenText_SAST_Fortify_Samples_<vers

ion>.zip

Code samples to help you learn to use

OpenText SAST

OpenText_SAST_Fortify_Samples_<vers

ion>.zip.sig

Signature file for OpenText SAST code

samples

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 85 of 610

1.4.11. Verifying software downloads
This topic describes how to verify the digital signature of the signed file that you

downloaded from the Customer Support website. Verification ensures that the

downloaded package has not been altered since it was signed and posted to the site.

Before proceeding with verification, download the OpenText Application Security

Software product files and their associated signature (*.sig) files. You are not

required to verify the package to use the software, but your organization might

require it for security reasons.

Preparing your system for digital signature
verification

Note

These instructions describe a third-party product and might not match the
specific, supported version you are using. See your product
documentation for the instructions for your version.

To prepare your system for electronic media verification:

1. Go to the GnuPG website.

2. Download and install GnuPG Privacy Guard.

3. Generate a private key, as follows:

1. Run the following command (on a Windows system, run the command

without the $ prompt):

$ gpg ‑‑gen‑key

2. When prompted for key type, select DSA and Elgamal .

3. When prompted for a key size, select 2048 .

4. When prompted for the length of time the key should be valid, select key

does not expire .

5. Answer the user identification questions and provide a passphrase to

protect your private key.

4. Download the OpenText GPG public keys (compressed tar file) from

https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz.

5. Extract the public keys.

6. Import each downloaded key with GnuPG with the following command:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 86 of 610

http://www.gnupg.org/
https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz

gpg --import <path_to_key>/<key_file>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 87 of 610

1.5. Installing OpenText SAST
This section describes how to install and uninstall OpenText SAST (Fortify Static Code

Analyzer). This section also describes basic post-installation tasks. See System

requirements to be sure that your system meets the minimum hardware and software

requirements.

This section contains the following topics:

About installing OpenText SAST

Using Docker to install and run OpenText SAST

Upgrading OpenText SAST

About uninstalling OpenText SAST

Post-installation tasks

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 88 of 610

1.5.1. About installing OpenText SAST
This section describes how to install OpenText SAST. Several command-line tools are

installed automatically with OpenText SAST (see Command-Line Tools). You can

optionally include a ScanCentral SAST client and the Application Security fortifyclient

utility with the OpenText SAST installation. For information about ScanCentral SAST,

see the OpenText™ ScanCentral SAST Installation, Configuration, and Usage Guide.

You must provide a Fortify license file and optionally LIM license pool credentials

during the installation. The following table lists the different ways to install OpenText

SAST.

Installation method Instructions

Perform the installation using a

standard install wizard

Installing OpenText SAST and

Applications

Perform the installation silently

(unattended)

Installing OpenText SAST silently

Perform a text-based installation on

non-Windows systems

Installing OpenText SAST and

Applications in Text-Based Mode on

Non‑Windows Platforms

Perform the installation using Docker Using Docker to Install and Run

OpenText SAST

For best performance, install OpenText SAST on the same local file system where the

code that you want to scan resides.

Note

On non-Windows systems, you must install OpenText SAST as a user that
has a home directory with write permission. Do not install OpenText SAST
as a non-root user that has no home directory.

After you complete the installation, see About the Post-Installation Tasks for additional

steps you can perform to complete your system setup. You can also configure

settings for runtime analysis, output, and performance of OpenText SAST by updating

the installed configuration files. For information about the configuration options for

OpenText SAST, see Configuration Options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 89 of 610

https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca
https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 90 of 610

1.5.1.1. Installing OpenText SAST
To install OpenText SAST:

1. Run the installer file for your operating system to start the OpenText SAST Setup

wizard:

Windows: OpenText_SAST_Fortify_windows-x64_<version>.exe
Linux: OpenText_SAST_Fortify_linux-x64_<version>.run or

OpenText_SAST_Fortify_linux-arm64_<version>.run

macOS: OpenText_SAST_Fortify_osx-x64_<version>.app.zip or
OpenText_SAST_Fortify _osx-arm64.app.zip

Uncompress the ZIP file before you run the APP installer file.

AIX: OpenText_SAST_Fortify_aix-ppc64_<version>.run

where <version> is the software release version, and then click Next.

2. Review and accept the license agreement, and then click Next.

3. (Optional) Select components to install, and then click Next.

4. If the installer detects that the system does not include the minimum software

required to analyze some types of projects, a System Requirements page

displays any missing requirements and which projects require them. Click Next.

See Software requirements for all software requirements.

5. Choose where to install OpenText SAST, and then click Next.

If you selected to include ScanCentral SAST client with the installation in step 3,

then you must specify a location that does not include spaces in the path.

Important

Do not install OpenText SAST in the same directory where

OpenText™ Application Security Tools is installed.

6. Specify the path to the fortify.license file, and then click Next.

7. (Optional) On the LIM License page, select Yes to manage your concurrent

licenses with Fortify License and Infrastructure Manager (LIM), and then click

Next.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 91 of 610

Note

When OpenText SAST performs a task that requires a license, the

application will attempt to acquire a LIM lease from the license pool.

If OpenText SAST fails to acquire a license due to a communication

issue with the LIM server, it will use the Fortify license file. To

change this behavior, use the
com.fortify.sca.lim.WaitForInitialLicense in the fortify-

sca.properties file (see LIM license properties).

1. Type the LIM API URL, the license pool name, and the license pool

password.

2. Click Next.

The LIM Proxy Settings page opens.

3. If connection to the LIM server requires a proxy server, type the proxy host

(hostname or IP address of your proxy server) and optionally a port

number.

4. Click Next.

8. To update the security content for your installation:

Note

For deployment environments that do not have access to the internet

during installation, you can update the security content using the

fortifyupdate command-line tool. See Manually installing OpenText

Application Security Content.

1. Type the web address of the update server.

To use the Fortify Rulepack update server for security content updates,

keep the web address https://update.fortify.com . You can also use

Application Security as the update server.

2. (Optional) If connection to the update server requires a proxy server, type

the proxy host and port number.

3. If you want to update the security content manually, clear the Update

security content after installation check box.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 92 of 610

4. Click Next.

9. Specify if you want to migrate from a previous installation on your system.

Migrating from a previous installation preserves OpenText SAST artifact files. For

more information, see About upgrading OpenText SAST.

Note

You can also migrate artifacts using the scapostinstall command-

line tool. For information on how to use the post-install tool to

migrate from a previous installation, see Migrating properties files.

To migrate artifacts from a previous installation:

1. On the OpenText SAST (Fortify) Migration page, select Yes, and then

click Next.

2. Specify the location of the existing installation on your system, and then

click Next.

To skip migration of artifacts from a previous release, leave the migration

selection set to No, and then click Next.

10. Click Next on the Ready to Install page to install OpenText SAST, any selected

components, and OpenText Application Security Content.

If you selected to update security content, the Security Content Update Result

window displays the security content update results.

11. Click Finish to close the Setup wizard.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 93 of 610

1.5.1.2. Installing OpenText SAST silently
A silent installation enables you to complete the installation without any user prompts.

To install silently, you need to create an option file to provide the necessary

information to the installer. Using the silent installation, you can replicate the

installation parameters on multiple machines.

Important

Do not install OpenText SAST in the same directory where OpenText™
Application Security Tools is installed.

When you install OpenText SAST silently, the installer does not download the

Application Security by default. You can enable download of the OpenText Application

Security Content in the options file or you can install the OpenText Application

Security Content manually (see Manually Installing OpenText Application Security

Content).

To install OpenText SAST silently:

1. Create an options file.

1. Create a text file that contains the following line:

fortify_license_path=<license_file_location>

where <license_file_location> is the full path to your fortify.license file.

2. To use a LIM license server, add the following lines with your LIM license

pool credentials to the options file:

lim_url=<lim_url>lim_pool_name=

<license_pool_name>lim_pool_password=<license_pool_pwd>

3. To use a location for OpenText Application Security Content updates that is

different than the default of https://update.fortify.com , add the following

line:

update_server=<update_server_url>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 94 of 610

4. If you require a proxy server for the OpenText Application Security Content

download, add the following lines:

update_proxy_server=<proxy_server>update_proxy_port=

<port_number>

5. To enable download of OpenText Application Security Content, add the

following line:

update_security_content=1

6. Add more installation instructions, as needed, to the options file.

To obtain a list of installation options that you can add to your options file,

open a command prompt, and then type the installer file name and the --

help option. This command displays each available command-line option

preceded with a double dash and the available parameters enclosed in

angle brackets. For example, if you want to see the progress of the install

displayed at the command line, add unattendedmodeui=minimal to your

options file.

Notes:

The command-line options are case-sensitive.

The installation options are not the same on all supported operating

systems. Run the installer with --help to see the options available for

your operating system.

The following example Windows options file specifies the location of the

license file, the location of a Application Security server and proxy

information to obtain OpenText Application Security Content, a request to

migrate from a previous release, and the location of the OpenText SAST

installation directory:

fortify_license_path=C:\Users\admin\Desktop\fortify.lice

nse

update_server=https://my_ssc_host:8080/ssc

update_proxy_server=webproxy.abc.company.com

update_proxy_port=8080

migrate_sca=1

install_dir=C:\Fortify

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 95 of 610

The following options file example is for Linux and macOS®:

fortify_license_path=/opt/Fortify/fortify.license

update_server=https://my_ssc_host:8080/ssc

update_proxy_server=webproxy.abc.company.com

update_proxy_port=8080

migrate_sca=1

install_dir=/opt/Fortify

2. Save the options file.

3. Run the silent install command for your operating system.

Note

You might need to run the command prompt as an administrator

before you run the installer.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 96 of 610

Windows OpenText_SAST_Fortify _windows-

x64_<version>.exe --mode

unattended --optionfile

<full_path_to_options_file>

Linux ./OpenText_SAST_Fortify_linux-

x64_<version>.run --mode

unattended --optionfile

<full_path_to_options_file>
or

./OpenText_SAST_Fortify_linux-

arm64_<version>.run --mode

unattended --optionfile

<full_path_to_options_file>

macOS® You must uncompress the ZIP file

before you run the command.

OpenText_SAST_Fortify_osx-

x64_<version>.app/Contents/MacO

S/installbuilder.sh --mode

unattended --optionfile

<full_path_to_options_file>
or

OpenText_SAST_Fortify_osx-

arm64_<version>.app/Contents/Mac

OS/installbuilder.sh --mode

unattended --optionfile

<full_path_to_options_file>

AIX ./OpenText_SAST_Fortify_aix-

ppc64_<version>.run --mode

unattended --optionfile

<full_path_to_options_file>

The installer creates an installer log file when the installation is complete. This log file

is in the following location, which depends on your operating system.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 97 of 610

Windows C:\Users\

<username>\AppData\Local\Temp\Ope

nTextSASTFortify-<version>-install.log

Non‑Windows /tmp/OpenTextSASTFortify-<version>-

install.log

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 98 of 610

Linux ./OpenText_SAST_Fortify_linux-

x64_<version>.run --mode text
or

./OpenText_SAST_Fortify_linux-

arm64_<version>.run --mode text

MacOS You must uncompress the provided ZIP

file before you run the command.

OpenText_SAST_Fortify_osx-

x64_<version>.app/Contents/MacOS/in

stallbuilder.sh --mode text
or

OpenText_SAST_Fortify_osx-

arm64_<version>.app/Contents/MacO

S/installbuilder.sh --mode text

AIX OpenText_SAST_Fortify_aix-

ppc64_<version>.run --mode text

1.5.1.3. Installing OpenText SAST in text-
based mode on non‑Windows platforms
You perform a text-based installation on the command line. During the installation,

you are prompted for information required to complete the installation. Text-based

installations are not supported on Windows systems.

Important

Do not install OpenText SAST in the same directory where OpenText™
Application Security Tools is installed.

To perform a text-based installation of OpenText SAST, run the text-based install

command for your operating system as listed in the following table.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 99 of 610

1.5.1.4. Manually installing OpenText
Application Security Content
You can install OpenText Application Security Content (Fortify Secure Coding

Rulepacks and metadata) automatically during the installation. However, you can also

download OpenText Application Security Content from the Fortify Rulepack update

server, and then use the fortifyupdate command-line tool to install it. This option is

provided for deployment environments that do not have access to the Internet during

installation.

Use fortifyupdate to install OpenText Application Security Content from either a

remote server or a locally downloaded file.

To install security content:

1. Open a command window and go to <sast_install_dir>/bin/ .

2. At the command prompt, type fortifyupdate .

If you have previously downloaded the OpenText Application Security Content

from the Fortify Rulepack update server, run fortifyupdate with the -import

option and the path to the directory where you downloaded the ZIP file.

You can also use this same tool to update your OpenText Application Security

Content. For more information about the fortifyupdate command-line tool, see

Updating Security Content.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 100 of 610

1.5.2. Using Docker to install and run
OpenText SAST
You can install OpenText SAST in a Docker image and then run OpenText SAST as a

Docker container.

Note

You can only run OpenText SAST in Docker on supported Linux platforms.

This section contains the following topics:

Creating a Dockerfile to install OpenText SAST

Running the container

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 101 of 610

1.5.2.1. Creating a Dockerfile to install
OpenText SAST
This topic describes how to create a Dockerfile to install OpenText SAST in a Docker

image.

The Dockerfile must include the following instructions:

1. Set a Linux system to use for the base image.

For more information on supported platforms and architecture, see Supported

platforms and architectures

Note

If you intend to use build tools when you run OpenText SAST, make

sure that the required build tools are installed in the image. For

information about using the supported build tools, see Supported build

tools.

2. Copy the OpenText SAST installer, the Fortify license file, and installation options

file to the Docker image using the COPY instruction.

For instructions on how to create an installation options file, see Installing

OpenText SAST silently.

3. Run the OpenText SAST installer using the RUN instruction.

You must run the installer in unattended mode. For more information, see

Installing OpenText SAST silently.

4. Run fortifyupdate to install the OpenText Application Security Content using the

RUN instruction.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 102 of 610

The following is an example of a Dockerfile to install OpenText SAST:

FROM ubuntu:18.04

WORKDIR /app

ENV APP_HOME="/app"

ENV RULEPACK="MyRulepack.zip"

COPY fortify.license ${APP_HOME}

COPY OpenText_SAST_Fortify_linux-x64_25.4.0.run ${APP_HOME}

COPY optionFile ${APP_HOME}

COPY ${RULEPACK} ${APP_HOME}

RUN ./OpenText_SAST_Fortify_linux-x64_25.4.0.run --mode

unattended \

 --optionfile "${APP_HOME}/optionFile" && \

 /opt/Fortify/OpenText_SAST_Fortify_25.4.0/bin/fortifyupdate -

import ${RULEPACK} && \

 rm OpenText_SAST_Fortify_linux-x64_25.4.0.run optionFile

ENTRYPOINT

["/opt/Fortify/OpenText_SAST_Fortify_25.4.0/bin/sourceanalyzer"]

Important

OpenText SAST requires installation of the OpenText Application

Security Content to perform analysis of projects. The following

example installs OpenText Application Security Content from a

previously downloaded local file during the build of the image. For

more information about downloading and installing OpenText

Application Security Content using the fortifyupdate tool, see

Manually installing OpenText Application Security Content.

5. To configure the image so you can run OpenText SAST, set the entry point to the

location of the installed sourceanalyzer executable using the ENTRYPOINT

instruction.

The default sourceanalyzer installation path is:
/opt/Fortify/OpenText_SAST_Fortify_<version>/bin/sourceanalyzer .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 103 of 610

To create the docker image using the Dockerfile from the current directory, you must

use the docker build command. For example:

docker buildx build -f <docker_file> -t <image_name> "."

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 104 of 610

1.5.2.2. Running the container
This topic describes how to run the OpenText SAST image as a container and

provides example Docker run commands for translation and scan.

Note

When you run OpenText SAST in a container and especially if you also
leverage runtime container protections, make sure that OpenText SAST
has the appropriate permission to run build commands (for example,
javac).

To run the OpenText SAST image as a container, you must mount two directories from

the host file system to the container:

The directory that contains the source files you want to analyze.

A temporary directory to store the OpenText SAST build session between the

translate and scan phases and to share the output files (logs and FPR file) with

the host.

Specify this directory using the –project-root command-line option in both the

OpenText SAST translate and scan commands.

The following example commands mount the input directory /sources in /src and

the temporary directory in /scratch_docker . The image name in the example is
fortify-sast .

Example Docker run commands for translation and
scan

The following example mounts the temporary directory and the sources directory, and

then runs OpenText SAST from the container for the translation phase:

docker run -v /scratch_local/:/scratch_docker -v /sources/:/src

-it fortify-sast –b MyProject -project-root /scratch_docker

[<sca_options>] /src

The following example mounts the temporary directory, and then runs OpenText SAST

from the container for the analysis phase:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 105 of 610

docker run -v /scratch_local/:/scratch_docker

-it fortify-sast –b MyProject -project-root /scratch_docker –

scan [<sca_options>] –f /scratch_docker/MyResults.fpr

The MyResults.fpr output file is created in the host's /scratch_local directory.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 106 of 610

1.5.3. Upgrading OpenText SAST
To upgrade OpenText SAST, install the new version in a different location than where

your current version is installed and choose to migrate settings from the previous

installation. This migration preserves and updates the artifact files located in the

<sast_install_dir>/Core/config directory.

If you choose not to migrate any settings from a previous release, OpenText

recommends that you save a backup of the following data if it has been modified:

<sast_install_dir>/Core/config/rules folder

<sast_install_dir>/Core/config/customrules folder

<sast_install_dir>/Core/config/ExternalMetadata folder

<sast_install_dir>/Core/config/CustomExternalMetadata folder

<sast_install_dir>/Core/config/server.properties file

<sast_install_dir>/Core/config/scales folder

After you install the new version, you can uninstall the previous version. For more

information, see About Uninstalling OpenText SAST.

Note

You can leave the previous version installed. If you have multiple versions
installed on the same system, the most recently installed version is used
when you run the command from the command line.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 107 of 610

1.5.4. About uninstalling OpenText SAST
This section describes how to uninstall OpenText SAST. You can use the standard

install wizard, or you can silently install OpenText SAST. You can also perform a text-

based uninstallation on non-Windows systems.

This section contains the following topics:

Uninstalling OpenText SAST

Uninstalling OpenText SAST silently

Uninstalling OpenText SAST in text-based mode on non-Windows platforms

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 108 of 610

1.5.4.1. Uninstalling OpenText SAST
To uninstall OpenText SAST:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the

following table.

OS Uninstall command

Windows
Uninstall_OpenTextSASTFortify.exe

Alternatively, you can uninstall the

application from the Windows

interface. See the Microsoft

Windows documentation for

instructions.

Linux

AIX

./Uninstall_OpenTextSASTFortify

macOS®
Uninstall_OpenTextSASTFortify.app

3. You are prompted to indicate whether to remove the entire application or

individual components. Make your selection, and then click Next.

If you are uninstalling specific components, select the components to remove on

the Select Components to Uninstall page, and then click Next.

4. You are prompted to indicate whether to remove all application settings. Do one

of the following:

Click Yes to remove the application settings for the components installed

with the version of OpenText SAST that you are uninstalling.

The OpenText SAST (sca<version>) application settings folder is not

removed.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 109 of 610

Click No to retain the application settings on your system.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 110 of 610

1.5.4.2. Uninstalling OpenText SAST
silently
To uninstall OpenText SAST silently:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the

following table.

OS Uninstall command

Windows
Uninstall_OpenTextSASTFortify.exe

--mode unattended

Linux

AIX

./Uninstall_OpenTextSASTFortify --

mode unattended

macOS®
Uninstall_OpenTextSASTFortify.app/

Contents/MacOS/installbuilder.sh

--mode unattended

Note

For Windows, Linux, and macOS®, the uninstaller removes the application
settings for the components installed with the version of OpenText SAST
that you are uninstalling.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 111 of 610

1.5.4.3. Uninstalling OpenText SAST in
text-based mode on non-Windows
platforms
To uninstall OpenText SAST in text-based mode:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the

following table.

OS Uninstall command

Linux

AIX

./Uninstall_OpenTextSASTFortify --

mode text

macOS® Uninstall_OpenTextSASTFortify.app/

Contents/MacOS/installbuilder.sh --

mode text

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 112 of 610

1.5.5. Post-installation tasks
Post-installation tasks prepare you to start using OpenText SAST.

This section contains the following topics:

Running the post-install tool

Migrating properties files

Specifying a locale

Configuring Fortify Security Content updates

Configuring the connection to Application Security

Removing proxy server settings

Adding trusted certificates

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 113 of 610

1.5.5.1. Running the post-install tool
You can use the post-install command-line tool to migrate properties files from a

previous version of OpenText SAST, configure OpenText Application Security Content

updates, and configure settings to connect to Application Security.

To run the post-install tool:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type one of the following:

To display settings, type s .

To return to the previous prompt, type r .

To exit the tool, type q .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 114 of 610

1.5.5.2. Migrating properties files
To migrate properties files from a previous version of OpenText SAST to the current

version installed on your system:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type 1 to select Migration .

4. Type 1 to select Static Code Analyzer Migration .

5. Type 1 to select Migrate from an existing Fortify installation .

6. Type 1 to select Set previous Fortify installation directory .

7. Type the previous install directory.

8. Type s to confirm the settings.

9. Type 2 to perform the migration.

10. Type y to confirm.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 115 of 610

1.5.5.3. Specifying a locale
English is the default locale for an OpenText SAST installation.

To change the locale for your OpenText SAST installation:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .

4. Type 1 to select General .

5. Type 1 to select Locale .

6. Type one of the following locale codes:

en (English)

es (Spanish)

ja (Japanese)

ko (Korean)

pt_BR (Brazilian Portuguese)

zh_CN (Simplified Chinese)

zh_TW (Traditional Chinese)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 116 of 610

1.5.5.4. Configuring Fortify Security
Content updates
Specify how you want to obtain OpenText Application Security Content. You must also

specify proxy information if it is required to reach the server.

To specify settings for OpenText Application Security Content updates:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .

4. Type 2 to select Fortify Update .

5. To change the Fortify Rulepack update server URL, type 1 , and then type the

URL.

The default Fortify Rulepack update server URL is https://update.fortify.com .

6. To specify a proxy for OpenText Application Security Content updates, do the

following:

1. Type 2 to select Proxy Server , and then type the name of the proxy

server.

Exclude the protocol and port number (for example,

some.secureproxy.com).

2. Type 3 to select Proxy Server Port , and then type the proxy server port

number.

3. (Optional) You can also specify a proxy server user name (option 4) and

password (option 5).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 117 of 610

1.5.5.5. Configuring the connection to
Application Security
Specify how to connect to Application Security. If your network uses a proxy server to

reach the Application Security server, you must specify the proxy information.

To specify settings for connecting to Application Security:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .

4. Type 3 to select Software Security Center Settings .

5. Type 1 to select Server URL , and then type the Application Security server

URL.

6. To specify proxy settings for the connection, do the following:

1. Type 2 to select Proxy Server , and then type the name of the proxy

server.

Exclude the protocol and port number (for example,

some.secureproxy.com).

2. Type 3 to select Proxy Server Port , and then type the proxy server port

number.

3. To specify a proxy server user name and password, use option 4 for the

username and option 5 for the password.

7. (Optional) You can also specify the following:

Whether to update OpenText Application Security Content from your

Application Security server (option 6)

The Application Security user name (option 7)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 118 of 610

1.5.5.6. Removing proxy server settings
If you previously specified proxy server settings for the Fortify Rulepack update

server or Application Security and it is no longer required, you can remove these

settings.

To remove the proxy settings for obtaining OpenText Application Security Content

updates or connecting to Application Security:

1. Go to <sast_install_dir>/bin/ .

2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .

4. Type 2 to select Fortify Update or type 3 to select Software Security Center

Settings .

5. Type the number that corresponds to the proxy setting you want to remove, and

then type a minus sign (-) to remove the setting.

6. Repeat step 5 for each proxy setting you want to remove.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 119 of 610

1.5.5.7. Adding trusted certificates
Connection from OpenText SAST to other OpenText Application Security Software

products and external systems might require communication over HTTPS. Some

examples include:

OpenText SAST by default requires an HTTPS connection to communicate with

the LIM server for license management.

The property com.fortify.sca.lim.RequireTrustedSSLCert determines whether

the connection with the LIM server requires a trusted SSL certificate. For more

information about this property, see LIM Properties.

The fortifyupdate command-line tool uses an HTTPS connection either

automatically during a Windows system installation or manually (see Manually

installing OpenText Application Security Content) to update OpenText

Application Security Content.

OpenText SAST configured as a ScanCentral SAST sensor uses an

HTTPS connection to communicate with the Controller.

When using HTTPS, OpenText SAST and its applications will by default apply

standard checks to the presented SSL server certificate, including a check to

determine if the certificate is trusted. If your organization runs its own certificate

authority (CA) and OpenText SAST needs to trust connections where the server

presents a certificate issued by this CA, you must configure OpenText SAST to trust

the CA. Otherwise, the use of HTTPS connections might fail.

You must add the trusted certificate of the CA to the OpenText SAST keystore. The

OpenText SAST keystore is in the <sast_install_dir>/jre/lib/security/cacerts file. You

can use the keytool command to add the trusted certificate to the keystore.

To add a trusted certificate to the OpenText SAST keystore:

1. Open a command prompt, and then run the following command:

<sast_install_dir>/jre/bin/keytool -importcert -alias

<alias_name> -cacerts -file <cert_file>

where:

<alias_name> is a unique name for the certificate you are adding.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 120 of 610

<cert_file> is the name of the file that contains the trusted root certificate

in PEM or DER format.

2. Enter the keystore password.

Note

The default password is changeit .

3. When prompted to trust this certificate, select yes.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 121 of 610

1.6. Analysis process overview
This section contains the following topics:

Scanning Basics

Translation phase

Analysis phase

Translation and analysis phase verification

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 122 of 610

1.6.1. Scanning Basics
The following is the fundamental sequence of commands to translate and analyze

code:

1. Remove all existing OpenText SAST temporary files for the specified build ID.

sourceanalyzer -b MyProject -clean

Always begin an analysis with this step to analyze a project with a previously

used build ID.

2. Translate the project code. Where available, we recommend using build

integration to automate picking up your source files and configuring the

translation settings correctly.

Build integration typically takes the form:

sourceanalyzer -b MyProject ... <build_command>

Or manually:

sourceanalyzer -b MyProject <files_to_analyze>

<options_specific_to_language>

For more details about translation, check under the section of the programming

language you are trying to analyze.

3. Analyze the project code and save the results in a Fortify Project Results(FPR)

file.

sourceanalyzer -b MyProject -scan -f MyResults.fpr

For more information, see Analysis Phase.

This can also be simplified or even performed remotely via OpenText™

ScanCentral SAST. For more information, see the OpenText™ ScanCentral SAST
Installation, Configuration, and Usage Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 123 of 610

1.6.2. Translation phase
To successfully translate a project that is normally compiled, make sure that you have

any dependencies required to build the project available. For languages that have any

specific requirements, see the sections for the specific source code type.

The basic command-line syntax to perform the first step of the analysis process, file

translation, is:

sourceanalyzer -b <build_id> ... <files>

or

sourceanalyzer -b <build_id> ... <compiler_command>

The translation phase consists of one or more invocations of OpenText SAST using

the sourceanalyzer command. OpenText SAST uses a build ID (-b option) to tie the

invocations together. Subsequent invocations of sourceanalyzer add any newly

specified source or configuration files to the file list associated with the build ID.

After translation, you can use the -show-build-warnings directive to list any

warnings and errors that occurred in the translation phase:

sourceanalyzer -b <build_id> -show-build-warnings

To view the files associated with a build ID, use the -show-files directive:

sourceanalyzer -b <build_id> -show-files

Special considerations for the translation phase

Consider the following special considerations before you perform the translation

phase on your project:

When you translate dynamic languages (JavaScript/TypeScript, PHP, Python,

and Ruby), you must specify all source files together in one invocation.

OpenText SAST does not support adding new files to the file list associated with

the build ID on subsequent invocations.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 124 of 610

Generated code is automatically generated by a script or a tool such as a

parsing tool. This code can be optimized, minimized, or large and complex.

Therefore, OpenText recommends that you exclude it from translation because it

would be challenging to fix any vulnerabilities OpenText SAST might report in

this code. Use the -exclude command-line option to exclude this type of code

from translation.

To translate the project on a build machine, and then run the scan on a better

performance system, see Using mobile build sessions.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 125 of 610

1.6.3. Analysis phase
The analysis phase scans the intermediate files created during translation and creates

the vulnerability results file (FPR).

This phase consists of one invocation of sourceanalyzer . You specify the build ID

and include the -scan directive with any other required analysis or output options

(see Analysis Options and Output Options).

The following example shows the command-line syntax to perform the analysis phase

and save the results in an FPR file:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

Note

By default, OpenText SAST includes the source code in the FPR file.

To combine multiple builds into a single scan command, add the additional builds to

the command line:

sourceanalyzer -b MyProject1 -b MyProject2 -b MyProject3 -scan -

f MyResults.fpr

To analyze code using AI-assisted analysis, you should set up a PostgreSQL database

to configure the LLM connection and configure the database in the fortify-

sca.properties file. Alternatively, these properties can be specified at the command

line, but it may incur additional costs as caching of results is avoided. For more

information on AI-assisted analysis, see Analyzing using AI.

If you are analyzing languages that require AI-assisted analysis and do not configure

the LLM or database connection, those files will only be scanned via Secret Scanning.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 126 of 610

1.6.4. Translation and analysis phase
verification
Fortify Audit Workbench certification indicates whether the code analysis from a scan

is complete and valid. The project summary in Fortify Audit Workbench shows the

following specific information about OpenText SAST scanned code:

List of files scanned, with file sizes and timestamps

Java class path used for the translation (if applicable)

Rulepacks used for the analysis

OpenText SAST runtime settings and command-line options

Any errors or warnings encountered during translation or analysis

Machine and platform information

Note

To obtain result certification, you must specify FPR for the analysis phase
output format.

To view result certification information, open the FPR file in Fortify Audit Workbench

and select Tools > Project Summary > Certification. For more information, see the

OpenText™ Fortify Audit Workbench User Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 127 of 610

1.7. Analyzing using AI-powered SAST
OpenText SAST uses AI-powered SAST to analyze source files of a subset of

languages by passing them to a configured Large Language Model (LLM) along with

guidance and rules to identify dozens of vulnerabilty categories.

AI-powered SAST supplements existing analysis and enables scanning of languages

that would otherwise require significantly more time to provide native support.

Off-cloud users must provision their own LLM instance and configure it through a

PostgreSQL database that they maintain independently. For more information, see AI-

assisted Analysis Requirements and Supported LLMs.

This section contains the following topics:

Configuring the LLM

Connecting to the database

Using the dbTool

Sample analysis using AI-powered SAST

AI-powered SAST configuration options

Rate limiting

Using the pwtool to encrypt sensitive values

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 128 of 610

1.7.1. Configuring the LLM
Enable AI-powered SAST by specifying the provider and model.

com.fortify.sca.ai.provider=<provider>
com.fortify.sca.ai.model=<inference profile ID or inference

profile ARN>

Example

com.fortify.sca.ai.provider=aws
com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-20250929-
v1:0

For more detailed information on configuring access to specific LLM providers,

see Connecting to an AWS Bedrock LLM.

For more information about supported LLM providers and models, see LLM request

configuration and Supported LLMs.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 129 of 610

1.7.1.1. Connecting to an AWS Bedrock
LLM
OpenText SAST uses the AWS SDK for Java (version 2) to make API requests to AWS

Bedrock. The AWS SDK requires credentials to ensure the requests are authenticated

and authorized.

There are multiple ways to provide the necessary credentials to the SDK.

SDK Default Provider Chain

The SDK will attempt to automatically discover credentials using the default

credential provider chain. Credentials can be provided through any of the

credential provider methods in the default credential provider chain. For more

information, see AWS Documentation.

Use any of the common credential provider methods such as:

Credentials file:

You can specify the AWS access key, AWS secret key, and optional AWS

session token in the AWS credentials file. The credentials file is located

at <HOME_DIR>/.aws/credentials on Linux or macOS, or

at C:\Users\ USERNAME \.aws\credentials on Windows. For more

information on configuring the credentials file, see AWS Documentation.

Configure environment variables

You can specify the AWS access key, AWS secret key, and optional AWS

session token as system environment variables. For more information on

configuring the environment variables, see AWS Documentation.

Store the credentials in the PostgreSQL database

You can store the AWS access key, AWS secret key, and optional AWS session

token directly in the provided database by using the dbTool. For more information,

see Using the dbTool.

Add the credentials in the fortify-sca.properties file

The AWS access key, AWS secret key, and optional AWS session token can be

explicitly set as Fortify properties in the fortify-sca.properties file. You can also

specify the property on the command line with the -D option. For more

information about the specific properties, see AWS configuration properties.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 130 of 610

1.7.2. Connecting to the database
You can configure OpenText SAST to connect to a PostgreSQL database to enable the

following features:

To connect to the database, provide the following JDBC connection properties in

the fortify-sca.properties file or as command-line arguments:

Caching LLM results to reduce cost and scan time.

Storing centralized configuration properties used to connect to the LLM and for

configuring the behavior of AI-powered SAST.

Enabling distributed rate limiting across multiple instances of sourceanalyzer .

Storing LLM token usage data.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 131 of 610

Property Description

com.fortify.sca.ai.db.url Specifies the JDBC connection URL of

the database.

Example

jdbc:postgresql:my.domain
.com:5432/sast-ai-db

com.fortify.sca.ai.db.prop.username Specifies the username to use to con-

nect to the database.

com.fortify.sca.ai.db.prop.password Specifies the password to use to con-

nect to the database.

This is a sensitive property. Users can

choose to obfuscate the value using

the pwtool to avoid storing it in plain

text in the properties file or as a com-

mand line argument.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 132 of 610

Property Description

com.fortify.sca.ai.db.prop.* Any PostgreSQL JDBC connection

properties can be set by prefixing them

with " com.fortify.sca.ai.db.prop. ".

For example, set the following proper-

ties to enable authentication using SSL:

com.fortify.ai.db.prop.ssl=true

com.fortify.ai.db.prop.sslmode=verify-

full

com.fortify.ai.db.prop.sslcert=my/dir/p

ostgresql.crt

com.fortify.ai.db.prop.sslkey=my/dir/p

ostgresql.pk8

com.fortify.ai.db.prop.sslrootcert=my/

dir/root.crt

For more information about the avail-

able Postgres JDBC connection prop-

erties, see

the PostgreSQL Documentation

For more information, see Database configuration properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 133 of 610

1.7.3. Using the dbTool
The dbTool is used to provision and update configuration values in the database.

The dbTool is installed with OpenText SAST and located in the

<sast_install_directory>/bin directory.

When you invoke the dbTool, you must provide the necessary database connection

properties.

Example

dbTool --com.fortify.sca.ai.db.url=<ai-db-url> --
com.fortify.sca.ai.db.prop.username=<ai-db-username> --
com.fortify.sca.ai.db.prop.password=<ai-db-password>

Use the dbTool to store property values in the database using the --store=

<property>=<value> argument.

Example

--store="com.fortify.sca.ai.provider=aws" --
store="com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-
20250929-v1:0"

Use the dbTool to store a collection of properties from a properties file using the --

storeFile=<path to .properties file> argument.

Example

--storeFile=/path/to/my.properties

The properties file should have one property on each line using a key=value format.

Example

com.fortify.sca.ai.provider=aws
com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-20250929-
v1:0

You may provide a base64 encoded AES 256 encryption key to encrypt values of

sensitive properties before they are stored in the database. The encryption key must

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 134 of 610

be provided to sourceanalyzer when scanning files in order to decrypt the

encrypted property values.

You can use the following property values to specify an encryption key or an

encryption key file:

Example

--
com.fortify.sca.ai.config.encryptionKey="ZWm2HqvK3Jjrqb12ne1Wu/pU8
qIa/CHQcSBxKa/7qrU="

Note

If you do not specify an encryption key or an encryption key file,
the dbTool will obfuscate sensitive property values to ensure the sensitive
values are not stored in plain text in the database.

Here is an example usage of the dbTool:

Example

dbTool --
com.fortify.sca.ai.db.url=jdbc:postgresql:my.domain.com:5432/sast-
ai-db --com.fortify.sca.ai.db.prop.username=ai-db-

username --com.fortify.sca.ai.db.prop.password=ai-db-

password --store="com.fortify.sca.ai.provider=aws" --

store="com.fortify.sca.ai.model=us.anthropic.claude-

sonnet-4-5-20250929-v1:0" --

storeFile="/path/to/file.properties" --

com.fortify.sca.ai.config.encryptionKey="ZWm2HqvK3Jjrqb

12ne1Wu/pU8qIa/CHQcSBxKa/7qrU="

com.fortify.sca.ai.config.encryptionKey

com.fortify.sca.ai.config.encryptionKeyFile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 135 of 610

1.7.4. Sample analysis using AI-powered
SAST
See the relevant language section to understand how to enable source files for AI-

powered SAST.

During the scan phase, if you have configured your LLM properties inside a database,

the basic command-line syntax is as follows:

Example

sourceanalyzer -b <build_id> -scan

<database_connection_properties> <other_scan_options>

If you configure the database connection properties in

the <SAST_INSTALL_DIR>/Core/config/fortify-sca.properties file, you do not need to

specify the database connection properties during the scan.

Alternatively, you can specify all the LLM properties during the scan and fetch the

credentials using the default credential provider chain or set the relevant credentials

in the fortify-sca.properties file or on the command line.

Providing configuration for connecting to a database is not strictly required to use AI-

powered SAST. Use the following basic command-line syntax when you analyze

using AI-powered SAST without a database:

Example

sourceanalyzer -b <build_id> -scan

<AI_configuration_properties> <other_scan_options>

Caution

OpenText does not recommended using AI-powered SAST without a
database as it prevents result caching which is likely to incur additional
costs.

The following example shows the basic command-line syntax to analyze a sample

Erlang source file using AI-powered SAST:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 136 of 610

Example

sourceanalyzer -b myProject -clean

sourceanalyzer -b myProject <file_path>/sample.erl

sourceanalyzer -b myProject -scan -

Dcom.fortify.sca.ai.provider=aws -

Dcom.fortify.sca.ai.model="us.anthropic.claude-sonnet-

4-5-20250929-v1:0" -f my_AI_results.fpr

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 137 of 610

1.7.5. AI-powered SAST configuration
options
The following sections describe the properties available for configuring AI-powered

SAST. Store a property in the database using the dbTool, set a property in the fortify-

sca.properties file, or specify the property on the command line with the -D option.

LLM request configuration

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 138 of 610

Property Description

com.fortify.sca.ai.provider Required. Specifies the LLM vendor.

Default: null

Supported values: aws

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 139 of 610

Property Description

com.fortify.sca.ai.model Required. Specifies the LLM.

Default: null

For AWS:

Accepts an inference profile ID or infer-

ence profile ARN for a system infer-

ence profile or application inference

profile that uses one of the following

foundation models:

Supported AWS system inference

profiles:

Claude Sonnet 4.5

(anthropic.claude-sonnet-4-

20250514-v1:0)

Claude Sonnet 4 (anthropic.claude-

sonnet-4-5-20250929-v1:0)

Claude Sonnet 4.5

global.anthropic.claude-

sonnet-4-5-20250929-v1:0

us.anthropic.claude-sonnet-

4-5-20250929-v1:0

au.anthropic.claude-sonnet-

4-5-20250929-v1:0

eu.anthropic.claude-sonnet-

4-5-20250929-v1:0

jp.anthropic.claude-sonnet-4-

5-20250929-v1:0

Claude Sonnet 4

global.anthropic.claude-

sonnet-4-20250514-v1:0

us.anthropic.claude-sonnet-

4-20250514-v1:0

apac.anthropic.claude-son-

net-4-20250514-v1:0

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 140 of 610

Property Description

Note

System inference profiles
must be used in an AWS
region that is supported by
the system inference
profile.

Example

us.anthropic.claude-
sonnet-4-5-20250929-
v1:0 may be used in
the us-east-1 region but
not in the eu-west-1
region.

com.fortify.sca.ai.llm.parallelism The maximum number of concurrent

LLM requests.

Default: 4 x available processors

com.fortify.sca.ai.llm.rateLimiter.enable

d

Specifies whether the LLM request rate

limiter is enabled.

Default: true

eu.anthropic.claude-sonnet-

4-20250514-v1:0

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 141 of 610

Property Description

com.fortify.sca.ai.llm.rateLimiter.update

DistributedLimits

Specifies whether the provided re-

questsPerMinute and tokensPer-

Minute should update existing limits in

the database.

If set to true, the limits in the database

will be updated. If set to false, the

existing limits will not be updated and

the provided limits will be ignored.

Default: false

OpenText recommends to use the

dbTool to set the distributed rate limits

in the database.

com.fortify.sca.ai.llm.requestsPerMinut

e

Specifies the maximum number of LLM

requests allowed per minute. This

property sets the total limit across all

instances of sourceanalyzer con-

nected to the same database.

If there are no database configured,

this property sets the maximum limit for

a single sourceanalyzer instance.

Default: 200

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 142 of 610

Property Description

com.fortify.sca.ai.llm.tokensPerMinute Specifies the maximum number of LLM

request input and output tokens al-

lowed per minute. This property

sets the total limit across all instances

of sourceanalyzer connected to the

same database.

If there are no database configured,

this property sets the maximum limit for

a single sourceanalyzer instance.

Default: 200,000

com.fortify.sca.ai.llm.maxRequestCoun

t

The maximum number of LLM requests

that may be made in a single scan.

This property ensures users to avoid

incurring a large bill due to accidentally

scanning a large project. Before

making any LLM requests, the number

of necessary requests is calculated. If

the number of required requests

exceeds the limit, the scan is aborted

without making any LLM requests.

Default: 10,000

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 143 of 610

Property Description

 com.fortify.sca.ai.fileChunkSize The maximum number of characters al-

lowed in a request to a LLM. If a file ex-

ceeds this amount, the file will be split

into multiple file chunks.

If the chunk size is changed, it may

cause some cache entries to become

stale if the associated file content

changes due to the chunk size chang-

ing. New LLM requests will be required

for the affected file chunks.

Default: 50,000

Vendor configuration

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 144 of 610

Property Description

AWS configuration properties

com.fortify.sca.ai.aws.region Specifies the AWS region in which to

make the LLM request.

Default: null

Alternatively may be provided by the

following:

com.fortify.sca.ai.aws.profile Specifies which profile in the AWS

config or credentials file to use to

authenticate with AWS.

Default: null

Alternatively may be provided by the

following:

Environment variable:

AWS_REGION
AWS config or credentials file: re-

gion

Alternate property: aws.region

Environment variable:
AWS_PROFILE

Alternate property: aws.profile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 145 of 610

Property Description

com.fortify.sca.ai.aws.accessKeyId Specifies the AWS access key to use

when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.secretAccessKe

y and
com.fortify.sca.ai.aws.sessionToken (i

f you are using short-term credentials).

Default: null

Alternatively may be provided by the

following:

Environment variable:

AWS_ACCESS_KEY_ID
AWS config or credentials file:

aws_access_key_id
Alternate property:

aws.accessKeyId

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 146 of 610

Property Description

com.fortify.sca.ai.aws.secretAccessKe

y

Specifies the AWS secret access key to

use when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.secretAccessKe

y and
com.fortify.sca.ai.aws.sessionToken (i

f you are using short-term credentials).

Default: null

Alternatively may be provided by the

following:

This is a sensitive property. Its value

will be masked in logs. Users can

choose to obfuscate the value using

pwtool to avoid storing it in plain text

in the properties file or as a command

line argument.

Environment variable:

AWS_SECRET_ACCESS_KEY
AWS config or credentials file:

aws_secret_access_key
Alternate property:

aws.secretAccessKey

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 147 of 610

Property Description

com.fortify.sca.ai.aws.sessionToken Specifies the AWS session token to use

when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.accessKeyId

and

com.fortify.sca.ai.aws.secretAccessKe

y.

Alternatively may be provided by the

following:

This is a sensitive property. Its value

will be masked in logs. Users can

choose to obfuscate the value using

pwtool to avoid storing it in plain text

in the properties file or as a command

line argument.

Database configuration

Environment variable:

AWS_SESSION_TOKEN
AWS config or credentials file:

aws_session_token
Alternate property:

aws.sessionToken

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 148 of 610

Property Description

Database Connection Properties

com.fortify.sca.ai.db.url Specifies the JDBC connection URL of

the database.

Example

jdbc:postgresql:my.domain
.com:5432/sast-ai-db

Required to connect to database for

LLM result caching, centralized config-

uration, distributed rate limiting, and

LLM request usage data.

For more information, see the

PostgreSQL Documentation.

Default: null

com.fortify.sca.ai.db.prop.username Specifies the username to use to con-

nect to the database.

Required to connect to database for

LLM result caching, centralized config-

uration, distributed rate limiting, and

LLM request usage data.

Default: null

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 149 of 610

Property Description

com.fortify.sca.ai.db.prop.password Specifies the password to use to con-

nect to the database.

This is a sensitive property. Its value

will be masked in logs. Users can

choose to obfuscate the value using

the pwtool to avoid storing it in plain

text in the properties file or as a com-

mand line argument.

Default: null

com.fortify.sca.ai.db.prop.* Any PostgreSQL JDBC connection

properties can be set by prefixing them

with " com.fortify.sca.ai.db.prop. ".

Default: null

For example, set the following proper-

ties to enable authentication using SSL:

For more information about the avail-

able Postgres JDBC connection prop-

erties, see PostgreSQL Documentation

Database Behavior Properties

com.fortify.ai.db.prop.ssl=true

com.fortify.ai.db.prop.sslmode=verify-

full

com.fortify.ai.db.prop.sslcert=my/dir/p

ostgresql.crt

com.fortify.ai.db.prop.sslkey=my/dir/p

ostgresql.pk8

com.fortify.ai.db.prop.sslrootcert=my/

dir/root.crt

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 150 of 610

Property Description

com.fortify.sca.ai.cache.enabled Specifies whether the LLM result cache

should be enabled. If disabled, both

cache reads and writes will be

disabled.

Default: true

The more specific properties

com.fortify.sca.ai.cache.read.enabled
 and

com.fortify.sca.ai.cache.write.enable

d take precedence over this property

if set.

com.fortify.sca.ai.cache.read.enabled Specifies whether reading from the

LLM result cache should be enabled.

Default: true

com.fortify.sca.ai.cache.write.enabled Specifies whether writing to the LLM

result cache should be enabled.

Default: true

com.fortify.sca.ai.cache.missOnNewPr

ompt

Specifies whether to consider an LLM

result in the cache to be a cache miss if

the LLM prompt used in the cached re-

sult is different from the prompt for the

current request.

Effectively, setting this to true will make

it so that cached results are evicted if

the relevant rule pack is updated.

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 151 of 610

Property Description

com.fortify.sca.ai.cache.maxSize The maximum number of LLM results

cached before LRU eviction.

Default: 1,000,000

com.fortify.sca.ai.cache.ttl.day The number of days after which LLM

results that have not been used will be

evicted from the cache.

Default: 30

com.fortify.sca.ai.remoteConfig.enable

d

Specifies whether configuration prop-

erties may be obtained from the con-

nected database.

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 152 of 610

Property Description

com.fortify.sca.ai.config.encryptionKey The optional base64 encoded AES-256

symmetric encryption key that is used

to encrypt and decrypt values of sensi-

tive properties that are stored in the

database.

The encryption key must be distributed

to all sourceanalyzer instances in or-

der for them to retrieve sensitive con-

figuration from the database. You can

distribute encryption keys using KMS,

OS key store, password manager, and

so on.

Caution

If the encryption key is lost,
the configuration values
that were encrypted using
the key will be
unrecoverable.

If no encryption key is provided

through either
com.fortify.sca.ai.config.encryptionKe

y or
com.fortify.sca.ai.config.encryptionKe

yFile , the values of sensitive proper-

ties that are stored in the database will

be obfuscated so they are not stored in

plain text.

This is a sensitive property. Its value

will be masked in logs. Users can

choose to obfuscate the value using

the pwtool to avoid storing it in plain

text in the properties file or as a com-

mand line argument.

Default: null

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 153 of 610

Property Description

com.fortify.sca.ai.config.encryptionKey

File

The optional path to the file that con-

tains the base64 encoded AES-256

symmetric encryption key that is used

to encrypt and decrypt values of sensi-

tive properties that are stored in the

database.

The encryption key must be distributed

to all sourceanalyzer instances in or-

der for them to retrieve sensitive con-

figuration from the database. You can

distribute encryption keys using KMS,

OS key store, password manager, and

so on.

Caution

WARNING: If the encryption
key is lost, the
configuration values that
were encrypted using the
key will be unrecoverable.

If no encryption key is provided

through either
com.fortify.sca.ai.config.encryptionKe

y or
com.fortify.sca.ai.config.encryptionKe

yFile , the values of sensitive proper-

ties that are stored in the database will

be obfuscated so they at least are not

stored in plain text.

Default: null

com.fortify.sca.ai.usage.enabled Specifies whether writing to the usage

table is enabled.

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 154 of 610

PwTool configuration

Property Description

com.fortify.sca.ai.pwtool.encryptionKe

yFile

The path to the encryption key file gen-

erated by pwtool. Required if the user

provides values for sensitive properties

that were obfuscated using pwtool.

Default: null

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 155 of 610

1.7.6. Rate limiting
LLM providers enforce request rate limits and token rate limits to ensure service

reliability and fair resource allocation. Exceeding these limits can result in throttling.

When a request is throttled, OpenText SAST temporarily reduces the request rate and

retries each throttled request up to a maximum number of attempts. Occasional

throttling should have minimal impact on scan results, but heavy throttling can cause

increased scan times and missing results due to some files not being analyzed.

You can resolve throttling issues in one of the following ways:

You can submit a request to the LLM provider to increase your request rate limits

and token rate limits for the model you use.

You can set client-side rate limits to adjust the rate at which OpenText SAST

makes requests to the LLM provider. If you are using a connected database, use

the dbTool to set the com.fortify.sca.ai.llm.requestsPerMinute and

com.fortify.sca.ai.llm.tokensPerMinute properties to enable distributed rate

limiting across all instances of OpenText SAST that are connected to the

database.

Alternatively, set com.fortify.sca.ai.llm.rateLimiter.updateDistributedLimits to true

(if you are using a connected database) and set the

com.fortify.sca.ai.llm.requestsPerMinute and

com.fortify.sca.ai.llm.tokensPerMinute properties in the fortify-sca.properties
file or on the command line with the -D option.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 156 of 610

1.7.7. Using the pwtool to encrypt
sensitive values
You can use the pwtool to generate encrypted values for sensitive property values

and use the encrypted values in place of the plain text values. This allows you to

avoid storing sensitive values in plain text in the fortify-sca.properties file or to avoid

passing sensitive values in plain text as command-line arguments.

You can encrypt the following properties using the pwtool:

To encrypt a sensitive property value:

com.fortify.sca.ai.db.prop.password

com.fortify.sca.ai.aws.secretAccessKey

com.fortify.sca.ai.aws.sessionToken

com.fortify.sca.ai.config.encryptionKey

1. At the command prompt, run the following command:

<tools_install_dir>/bin/pwtool <pwtool_keys_file>

2. When prompted, type the sensitive value and press Enter.

3. The pwtool generates a new key stored in the file on the path specified in step 1

or reuses an existing file on the specified path. The pwtool uses the key to

encrypt the typed sensitive value.

4. Copy the encrypted secret, and paste it as the value for the property in

the fortify-sca.properties file or as a command-line argument.

5. To encrypt more sensitive property values, repeat steps 1 through 4 for each

property value you want to encrypt.

6. Set the following property in the fortify-sca.properties file or pass as a

command-line argument:

com.fortify.sca.ai.pwtool.encryptionKeyFile=<pwtool_keys_file>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 157 of 610

1.8. Analyzing Java, Kotlin and JSP
projects
This section describes how to translate Java, Kotlin as well as JSP projects, as well as

projects that use a combination of these languages.

OpenText SAST supports analysis of Jakarta EE (Java EE) applications (including JSP

files, configuration files, and deployment descriptors), Java Bytecode, and Java code

with Lombok annotations.

This section contains the following topics:

Integrating with Gradle

Integrating with Maven

Integrating with Bazel

Integrating with Ant

Manual Java and Kotlin translation syntax

Analyzing Kotlin scripts

Kotlin and Java translation interoperability

Handling Java warnings

Analyzing Jakarta EE (Java EE) applications

Analyzing Java bytecode

Troubleshooting JSP translation and analysis issues

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 158 of 610

1.8.1. Integrating with Gradle
OpenText SAST provides translation integration with projects that are built with

Gradle. You can either integrate without modifying your build script or use the

OpenText SAST Gradle plugin, which invokes OpenText SAST using tasks.

This section contains the following topics:

Using Gradle integration

Troubleshooting Gradle integration

Using the Gradle plugin

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 159 of 610

1.8.1.1. Using Gradle integration
You can translate projects that are built with Gradle without any modification of the

build.gradle file. When the build runs, OpenText SAST translates the source files as

they are compiled. Alternatively, you can use the OpenText SAST Gradle Plugin to

perform the analysis from within your Gradle build script (see Using the OpenText

SAST Gradle Plugin).

See Build tools for platforms and languages supported specifically for Gradle

integration. Any files in the project in unsupported languages for Gradle integration

are not translated (with no error reporting). These files are therefore not analyzed,

and any existing potential vulnerabilities can go undetected.

To integrate OpenText SAST into your Gradle build, make sure that the
sourceanalyzer executable is included in the PATH environment variable. Always use

the sourceanalyzer executable from the system PATH for all Gradle commands to

build the project.

Note

If you have multiple OpenText SAST installations, make sure that the
version you want to use for your Gradle projects is defined before all
other OpenText SAST versions included in the PATH environment variable.

Prepend the Gradle command line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> <sca_options> gradle

[<gradle_options>] <gradle_tasks>

Gradle integration examples

sourceanalyzer -b MyProject gradle clean build

sourceanalyzer -b MyProject gradle --info assemble

If your build file name is different than build.gradle , then include the build file name

with the --build-file option as shown in the following example:

sourceanalyzer -b MyProject gradle --build-file sample.gradle

clean assemble

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 160 of 610

You can also use the Gradle Wrapper (gradlew) as shown in the following example:

sourceanalyzer -b MyProject gradlew [<gradle_options>]

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProject -exclude "src\test***" gradlew

build

If your application uses XML or property configuration files, translate these files with

a separate sourceanalyzer command. Use the same build ID that you used for the

project files. The following are examples:

sourceanalyzer -b MyProject <path_to_xml_files>

sourceanalyzer -b MyProject <path_to_properties_files>

After OpenText SAST translates the project with gradle or gradlew, you can then

perform the analysis phase and save the results in an FPR file as shown in the

following example:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

See Also

Using the OpenText SAST Gradle Plugin

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 161 of 610

1.8.1.2. Troubleshooting Gradle integration
If you use configuration caching (--configuration-cache option) in your Gradle build

with OpenText SAST Gradle integration, the build reports the following messages:

Configuration cache problems found in this build.

You also might see a message similar to the following:

FAILURE: Build failed with an exception...

You can safely ignore this message with respect to the OpenText SAST translation

because the project is translated. You can verify that the project is translated using

the -show-files option. For example:

sourceanalyzer -b mybuild -show-files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 162 of 610

1.8.1.3. Using the Gradle plugin
The OpenText SAST installation includes a Gradle plugin located in

<sast_install_dir>/plugins/gradle . To use the OpenText SAST Gradle Plugin, you

need to first configure the plugin for your Java or Kotlin project and then use the

plugin to analyze your project. The Gradle plugin provides three OpenText SAST tasks

for the analysis: sca.clean, sca.translate, and sca.scan. See Build tools for platforms

and languages supported specifically for OpenText SAST Gradle plugin.

Note

If you have multiple OpenText SAST installations, make sure that the
version you want to use for your Gradle projects is defined before all
other OpenText SAST versions included in the PATH environment variable.

To configure the OpenText SAST Gradle Plugin:

1. Edit the Gradle settings file to specify the path to the plugin:

Groovy DSL (settings.gradle):

Kotlin DSL (settings.gradle.kts):

pluginManagement {

 repositories {

 maven(url = uri("file://<sast_plugin_path>"))

 gradlePluginPortal()

 }

}

pluginManagement {

 repositories {

 gradlePluginPortal()

 maven {

 url = uri("file://<sast_plugin_path>")

 }

 }

}

2. Add entries to the build script as shown in the following examples:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 163 of 610

Groovy DSL (build.gradle):

id 'com.fortify.sca.plugins.gradlebuild' version '25.4'

and

SCAPluginExtension {

 buildId = "MyProject"

 options = ["-encoding", "utf-8", "-logfile",

"MyProject.log",

 "-debug-verbose"]

}

or the following example entry excludes files from the translation:

SCAPluginExtension {

 buildId = "MyProject"

 options = ["-encoding", "utf-8", "-logfile",

"MyProject.log",

 "-debug-verbose", "-exclude", "src/test/**/*"]

}

Kotlin DSL (build.gradle.kts):

plugins { id ("com.fortify.sca.plugins.gradlebuild") version

"25.4" ...

}

and

SCAPluginExtension {

 buildId = "MyProject"

 options = listOf("-encoding", "utf-8", "-logfile",

"MyProject.log",

 "-debug-verbose")

}

or the following example entry excludes files from the translation:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 164 of 610

Analyze a Java or Kotlin project with following command sequence:

Working with Java or Kotlin projects that have
subprojects

If you have a Java or Kotlin multi-project build (with subprojects), then you must

configure the OpenText SAST Gradle plugin using an allprojects block. This is shown

in the following examples.

Groovy DSL (build.gradle)

SCAPluginExtension {

 buildId = "MyProject"

 options = listOf("-encoding", "utf-8", "-logfile",

"MyProject.log",

 "-debug-verbose", "-exclude", "src/test/**/*")

}

3. Save and close the Gradle settings and Gradle build files.

To remove all existing OpenText SAST temporary files for an existing Java or

Kotlin project build, run the following:

gradlew sca.clean

To run the translation phase for the configured Java or Kotlin project, run the

following:

gradlew sca.translate

To analyze the configured Java or Kotlin project, run the following:

gradlew sca.scan

This task runs successfully if OpenText SAST has already translated the project

using the OpenText SAST Gradle Plugin.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 165 of 610

allprojects {

 apply plugin: "com.fortify.sca.plugins.gradlebuild"

 SCAPluginExtension {

 buildId = "MyProject"

 options = ["-encoding", "utf-8", "-logfile", "MyProject.log",

 "-debug-verbose"]

 ...

 }

}

Kotlin DSL (build.gradle.kts):

allprojects {

 apply(plugin = "com.fortify.sca.plugins.gradlebuild")

 SCAPluginExtension {

 buildId = "MyProject"

 options = listOf("-encoding", "utf-8", "-logfile",

"MyProject.log",

 "-debug-verbose")

 ...

 }

}

See Also

Using Gradle Integration

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 166 of 610

1.8.2. Integrating with Maven
OpenText SAST includes a Maven plugin that provides a way to add the following

capabilities to your Maven project builds:

OpenText SAST clean, translate, scan

OpenText SAST export mobile build session (MBS) for a translated project

Send translated code to ScanCentral SAST

Upload results to Application Security

You can use the plugin directly or integrate its functionality into your build process.

This section contains the following topics:

Installing and updating the Fortify Maven Plugin

Testing the Fortify Maven Plugin installation

Using the Fortify Maven Plugin

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 167 of 610

1.8.2.1. Installing and updating the Fortify
Maven Plugin
The Fortify Maven Plugin is located in <sast_install_dir>/plugins/maven . This

directory contains a binary and a source version of the plugin in both zip and tarball

archives. To install the plugin, extract the version (binary or source) that you want to

use, and then follow the instructions in the included README.TXT file. Perform the

installation in the directory where you extracted the archive.

For information about supported versions of Maven, see Build tools.

If you have a previous version of the Fortify Maven Plugin installed, then install the

latest version.

Uninstalling the Fortify Maven Plugin

To uninstall the Fortify Maven Plugin, manually delete all files from the

<maven_local_repo>/repository/com/fortify/ps/maven/plugin directory.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 168 of 610

1.8.2.2. Testing the Fortify Maven Plugin
installation
After you install the Fortify Maven Plugin, use one of the included sample files to be

sure your installation works properly.

To test the Fortify Maven Plugin using the Eightball sample file:

1. Add the directory that contains the sourceanalyzer executable to the path

environment variable.

For example:

export set PATH=$PATH:/<sast_install_dir>/bin

or

set PATH=%PATH%;<sast_install_dir>/bin

2. Type sourceanalyzer -version to test the path setting.

OpenText SAST displays the version information if the path setting is correct.

3. Go to the sample Eightball directory: <root_dir>/samples/EightBall .

4. Type the following command:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:

<ver>:clean

where <ver> is the version of the Fortify Maven Plugin you are using. If the

version is not specified, Maven uses the latest version of the Fortify Maven

Plugin installed in the local repository.

Note

To see the version of the Fortify Maven Plugin, open the pom.xml

file that you extracted in <root_dir> in a text editor. The Fortify

Maven Plugin version is specified in the <version> element.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 169 of 610

5. If the command in step 4 completed successfully, then the Fortify Maven Plugin

is installed correctly. The Fortify Maven Plugin is not installed correctly if you get

the following message:

[ERROR] Error resolving version for plugin

'com.fortify.sca.plugins.maven:sca-maven-plugin' from the

repositories

Check the Maven local repository and try to install the Fortify Maven Plugin

again.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 170 of 610

1.8.2.3. Using the Fortify Maven Plugin
There are two ways to perform an analysis on a maven project:

In an OpenText SAST build integration

In this method, prepend the maven command used to build your project with the

sourceanalyzer command and any OpenText SAST options. To analyze your

files as part of an OpenText SAST build integration:

1. Clean out the previous build:

sourceanalyzer -b MyProject -clean

2. Translate the code:

sourceanalyzer -b MyProject [<sca_options>]

[<mvn_command_with_options>]

Examples:

sourceanalyzer -b MyProject mvn package

sourceanalyzer -b MyProject -exclude "**/Test/*.java"

mvn clean install

See Command-Line Interface for descriptions of available OpenText SAST

options.

3. Run the scan and save the results in an FPR file as shown in the following

example:

sourceanalyzer -b MyProject [<sca_scan_options>] -scan -

f MyResults.fpr

As a Maven Plugin

In this method, you perform the analysis tasks as goals with the mvn
command. For example, use the following command to translate source code:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 171 of 610

mvn com.fortify.sca.plugins.maven:sca-maven-

plugin:25.4.0:translate

For example, use the following command to translate source code and exclude

test files:

mvn -Dfortify.sca.exclude=“**/Test/*.java”

com.fortify.sca.plugins.maven:sca-maven-

plugin:25.4.0:translate

To analyze your code this way, see the documentation included with the Fortify

Maven Plugin. The following table describes where to find the documentation

after you install the Fortify Maven Plugin.

Package type Documentation location

Binary <root_dir>/docs/index.html

Source <root_dir>/sca-maven-

plugin/target/site/index.html

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 172 of 610

1.8.3. Integrating with Bazel
To integrate with Bazel builds, OpenText SAST translates the source files as they are

compiled. Therefore, a prerequisite for Bazel builds is that the Bazel build runs

successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run

sourceanalyzer with the Bazel target you want to build. You can specify other

sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build_id> <sca_options> bazel build <target>

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-

APP\src\proj\content.py bazel build //projc:my-python-prj

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 173 of 610

1.8.3.1. Java Bazel integration examples
Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj

Translate target abc in package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc

or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc

Translate all targets in the package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc:all

Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...

Specify a specific JDK version for the translation:

sourceanalyzer -b MyProjectC -jdk 17 bazel build //projc:my-

java-prj

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-

APP\src\main\java\com\example\HelpContent.java bazel build

//projc:my-java-prj

OpenText SAST Bazel integration does not support multiple targets and related

actions such as excluding targets.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 174 of 610

1.8.4. Integrating with Ant
You can translate Java source files for projects that use an Ant build file. You can

apply this integration on the command line without modifying the Ant build.xml file.

When the build runs, OpenText SAST intercepts all javac task invocations and

translates the Java source files as they are compiled. Make sure that you pass any

properties to Ant by adding them to the ANT_OPTS environment variable. Do not

include them in the sourceanalyzer command.

Note

You must translate any JSP files, configuration files, or any other non-
Java source files that are part of the application in a separate step.

To use the Ant integration, make sure that the sourceanalyzer executable is in the

PATH environment variable.

Prepend your Ant command-line with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> [<sca_options>] ant [<ant_options>]

For example, to translate a Java project and exclude a file from the translation:

sourceanalyzer -b MyProjectA -logfile MyProjectA.log -exclude

src/module-info.java ant

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 175 of 610

1.8.5. Manual Java and Kotlin translation
syntax
To translate Java or Kotlin code manually, include all source file on the command line

and provide all of the dependencies via .jar files, .class files, or source files. Failing to

provide dependencies may lead to suboptimal scan results.

Kotlin to Java interoperability does not support Kotlin files provided by the –

sourcepath option. For more information about the –sourcepath option, see Java

Command-Line Options.

The basic command-line syntax to translate Java or Kotlin code is shown in the

following example:

sourceanalyzer -b <build_id> -cp <classpath>

[<translation_options>] <files> | <file_specifiers>

where:

<translation_options> are options passed to the compiler.

-cp <classpath> specifies the class path to use for resolving Java and Kotlin

symbols.

Include all JAR dependencies normally used to build the project. Separate

multiple paths with semicolons (Windows) or colons (non-Windows).

Similar to javac, OpenText SAST loads classes in the order they appear in the

class path. If there are multiple classes with the same name in the list, OpenText

SAST uses the first loaded class. In the following example, if both A.jar and

B.jar include a class called MyData.class , OpenText SAST uses the

MyData.class from A.jar .

sourceanalyzer -cp A.jar:B.jar myfile.java

OpenText strongly recommends that you avoid using duplicate classes with the
-cp option.

OpenText SAST loads JAR files in the following order:

1. From the -cp option

2. From jre/lib

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 176 of 610

3. From <sast_install_dir>/Core/default_ jars

This enables you to override a library class by including the similarly-named

class in a JAR specified with the -cp option.

For descriptions of all the available Java-specific command-line options, see

"Java/J2EE Command-Line Options".

With Java code, OpenText SAST can additionally emulate the compiler to help

integrate more easily into custom build scripts.

To have OpenText SAST emulate the compiler, type:

sourceanalyzer -b <build_id> javac [<translation_options>]

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 177 of 610

1.8.5.1. Java, Kotlin and JSP command-
line options
The following table describes the Java command-line options (for Java SE and

Jakarta EE).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 178 of 610

Java, Kotlin or Jakarta EE option Description

-appserver weblogic | websphere Specifies the application server to

process JSP files.

Equivalent property name:

com.fortify.sca.AppServer

-appserver-home <dir> Specifies the application server’s

home.

For Oracle® WebLogic®, this is

the path to the directory that

contains the server/lib directory.

For IBM® WebSphere®, this is the

path to the directory that contains

the JspBatchCompiler script.

Equivalent property name:

com.fortify.sca.AppServerHome

-appserver-version <version> Specifies the version of the application

server.

Equivalent property name:

com.fortify.sca.AppServerVersion

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 179 of 610

Java, Kotlin or Jakarta EE option Description

-cp <paths> |
-classpath <paths>

Specifies the class path used to

resolve Java and Kotlin dependencies.

The format is the same as javac: a

semicolon- or colon-separated list of

directories. You can use OpenText

SAST file specifiers as shown in the

following example:

-cp

"build/classes:lib/*.jar"

For information about file specifiers,

see Specifying files and directories.

Equivalent property name:

com.fortify.sca.JavaClasspath

-extdirs <dirs> Similar to the javac extdirs option,

accepts a semicolon- or colon-

separated list of directories. Any

JAR files found in these directories are

included implicitly on the class path.

Equivalent property name:

com.fortify.sca.JavaExtdirs

-java-build-dir <dirs> Specifies one or more directories that

contain compiled Java sources.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 180 of 610

Java, Kotlin or Jakarta EE option Description

-source <version> |
-jdk <version>

Indicates the Java™ Development Kit

(JDK) version for which the Java or

Kotlin code is written. For supported

versions, see Supported languages.

The default is version 11.

Equivalent property name:

com.fortify.sca.JdkVersion

-custom-jdk-dir
Specifies a directory that contains a

JDK. Use this option to specify a

version that is not included in the

OpenText SAST installation

(<sast_install_dir>/Core/bootcp/). For

supported versions, see Supported

languages.

Equivalent property name:

com.fortify.sca.CustomJdkDir

-show-unresolved-symbols
Displays any unresolved types, fields,

and functions referenced in translated

Java source files at the end of the

translation. It lists only field and

function references for which the

receiver type is a resolved Java type.

Displays each class, field, and function

with the source information of the first

translated occurrence in the code. This

information is also written in the log

file.

Equivalent property name:

com.fortify.sca.ShowUnresolvedSymb

ols

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 181 of 610

Java, Kotlin or Jakarta EE option Description

-sourcepath <dirs> Specifies a semicolon- or colon-

separated list of directories that

contain source code that is not

included in the scan but is used for

name resolution. The source path is

similar to class path, except it uses

source files instead of class files for

resolution. Only source files that are

referenced by the target file list are

translated.

Equivalent property name:

com.fortify.sca.JavaSourcePath

-jvm-default <mode>
Specifies the generation of

the DefaultImpls class for methods

with bodies in Kotlin interfaces. The

valid values for <mode> are:

disable —Specifies to generate

the DefaultImpls class for each

interface that contains methods

with bodies.

all —Specifies to generate

the DefaultImpls class if an

interface is annotated

with @JvmDefaultWithCompatibil

ity .

all-compatibility —Specifies to

generate the DefaultImpls class

unless an interface is annotated

with @JvmDefaultWithoutCompa

tibility .

Equivalent property name:

com.fortify.sca.KotlinJvmDefault

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 182 of 610

Java and Kotlin Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 183 of 610

1.8.5.2. Java command-line examples
To translate a single file named MyServlet.java with javaee.jar as the class path,

type:

sourceanalyzer -b MyServlet -cp lib/javaee.jar MyServlet.java

To translate all .java files in the src directory using all JAR files in the lib directory

as a class path, type:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.java"

To translate and compile the MyCode.java file with the javac compiler, type:

sourceanalyzer -b MyProject javac -classpath libs.jar

MyCode.java

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 184 of 610

1.8.5.3. Kotlin command-line examples
To translate a single file named MyKotlin.kt with A.jar as the class path, type:

sourceanalyzer -b MyProject -cp lib/A.jar MyKotlin.kt

To translate all .kt files in the src directory using all JAR files in the lib directory as

a class path, type:

sourceanalyzer -b MyProject -cp "lib/**/*.jar" "src/**/*.kt"

To translate a gradle project using gradlew, type:

sourceanalyzer -b MyProject gradlew clean assemble

To translate all files in the src directory using Java dependencies from src/java and

all JAR files in the lib directory and subdirectories as a class path, type:

sourceanalyzer –b MyProject –cp "lib/**/*.jar" -sourcepath

"src/java" "src"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 185 of 610

1.8.6. Analyzing Kotlin scripts
OpenText SAST supports translation of Kotlin scripts excluding experimental script

customization. Script customization includes adding external properties, providing

static or dynamic dependencies, and so on. Script definitions (templates) are used to

create custom scripts and the template is applied to the script based on the *.kts
extension. OpenText SAST translates *.kts files but does not apply these templates.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 186 of 610

1.8.7. Kotlin and Java translation
interoperability
If your project contains Kotlin code that refers to Java code, you can provide Java

files to the translator the same way as Kotlin files that refers to another Kotlin file. You

can provide them as part of the translated project source or as –sourcepath

parameters.

If your project contains Java code that refers to Kotlin code, make sure that the Java

and Kotlin code are translated in the same OpenText SAST instance so that the Java

references to Kotlin elements are resolved correctly. Kotlin to Java interoperability

does not support Kotlin files provided by the –sourcepath option. For more

information about the –sourcepath option, see Java, Kotlin and JSP command-line

options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 187 of 610

1.8.8. Handling Java warnings
To see all warnings that were generated during translation, type the following

command before you start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

Java translation warnings

You might see the following warnings in the Java code translation.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 188 of 610

Warning Resolution

Unable to resolve type...

Unable to resolve

function...

Unable to resolve field...

Unable to locate import...

Unable to resolve symbol...

These warnings are typically caused by

missing resources. For example, some

of the .jar and .class files required to

build the application might not have

been specified.

To resolve these warnings, make sure

that you include all the required files

that your application uses.

Multiple definitions found

for class...

This warning is typically caused by

duplicate classes in the Java files.

To resolve these warnings, make sure

that the source files displayed in the

warning are not duplicates of the same

file included several times in the

sources to translate (for example if it

contains two versions of the same

project). If a duplicate exists, remove

one of them from the files to translate.

Then OpenText SAST can determine

which version of the class to use.

This warning can also indicate that

classes are missing. To resolve this,

make sure to add all required JAR files

to the classpath.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 189 of 610

1.8.9. Analyzing Jakarta EE (Java EE)
applications
To translate Jakarta EE applications, OpenText SAST processes Java source files and

Jakarta EE components such as JSP files, deployment descriptors, and configuration

files. While you can process all the pertinent files in a Jakarta EE application in one

step, your project might require that you break the procedure into its components for

integration in a build process or to meet the needs of various stakeholders in your

organization.

This section contains the following topics:

Translating Java files

Translating JSP projects, configuration files, and deployment descriptors

Jakarta EE (Java EE) translation warnings

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 190 of 610

1.8.9.1. Translating Java files
To translate Jakarta EE applications, use the same procedure used to translate Java

files. For examples, see "Java Command-Line Examples".

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 191 of 610

1.8.9.2. Translating JSP projects,
configuration files, and deployment
descriptors
In addition to translating the Java files in your Jakarta EE (Java EE) application, you

might also need to translate JSP files, configuration files, and deployment descriptors.

Your JSP files must be part of a Web Application Archive (WAR). If your source

directory is already organized in a WAR file format, you can translate the JSP files

directly from the source directory. If not, you might need to deploy your application

and translate the JSP files from the deployment directory.

For example:

sourceanalyzer -b MyJavaApp "/**/*.jsp" "/**/*.xml"

where /**/*.jsp refers to the location of your JSP project files and /**/*.xml refers to

the location of your configuration and deployment descriptor files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 192 of 610

1.8.9.3. Jakarta EE (Java EE) translation
warnings
You might see the following warning in the translation of Jakarta EE applications:

Could not locate the root (WEB-INF) of the web application.

Please build your web application and try again. Failed to parse

the following jsp files:

<list_of_jsp_files>

This warning indicates that your web application is not deployed in the standard WAR

directory format or does not contain the full set of required libraries. To resolve the

warning, make sure that your web application is in an exploded WAR directory format

with the correct WEB-INF/lib and WEB-INF/classes directories that contain all the

.jar and .class files required for your application. Also verify that you have all the

TLD files for all your tags and the corresponding JAR files with their tag

implementations.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 193 of 610

1.8.10. Analyzing Java bytecode
OpenText recommends that you do not translate Java bytecode and JSP/Java code in

the same call to sourceanalyzer . Use multiple invocations of sourceanalyzer with

the same build ID to translate a project that contains both bytecode and

JSP/Java code.

To translate bytecode:

1. Add the following properties to the fortify-sca.properties file (or include these

properties on the command line using the -D option):

com.fortify.sca.fileextensions.class=BYTECODE

com.fortify.sca.fileextensions.jar=ARCHIVE

This specifies how OpenText SAST processes .class and .jar files.

2. Do one of the following:

Request that OpenText SAST decompile the bytecode classes to regular

Java files for inclusion in the translation.

Add the following property to the fortify-sca.properties file:

com.fortify.sca.DecompileBytecode=true

or include this property on the command line for the translation phase with

the -D option:

sourceanalyzer -b MyProject -

Dcom.fortify.sca.DecompileBytecode=true -cp "lib/*.jar"

"src/**/*.class"

Request that OpenText SAST translate bytecode without decompilation.

For best results, OpenText recommends that the bytecode be compiled

with full debug information (javac -g).

Include bytecode in the translation phase by specifying the Java bytecode

files that you want to translate. For best performance, specify only the .jar

or .class files that require scanning. In the following example, the .class

files are translated:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 194 of 610

sourceanalyzer -b MyProject -cp "lib/*.jar"

"src/**/*.class"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 195 of 610

1.8.11. Troubleshooting JSP translation
and analysis issues
The following sections provide troubleshooting information for JSP analysis.

Unable to translate some JSPs

OpenText SAST uses either the built-in compiler or your specific application server

JSP compiler to translate JSP files into Java files for analysis. If the JSP parser

encounters problems when OpenText SAST converts JSP files to Java files, you will

see a message similar to the following:

Failed to translate the following jsps into analysis model.

Please see the log file for any errors from the jsp parser and

the user manual for hints on fixing those

<list_of_jsp_files>

This typically happens for one or more of the following reasons:

The web application is not laid out in a proper deployable WAR directory format

Some JAR files or classes required for the application are missing

Some tag libraries or their definitions (TLD) for the application are missing

To obtain more information about the problem, perform the following steps:

1. Open the OpenText SAST log file in an editor.

2. Search for the following strings:

Jsp parser stdout:

Jsp parser stderr:

The JSP parser generates these errors. Resolve the errors and rerun OpenText SAST.

For more information about how to analyze Jakarta EE applications, see Translating

Jakarta EE (Java EE) applications.

Increased issues count in JSP-related categories

If the analysis results contain a considerable increase in the number of vulnerabilities

in JSP-related categories such as cross-site scripting compared with earlier OpenText

SAST versions, you can specify the -legacy-jsp-dataflow option in the analysis

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 196 of 610

phase (with the -scan option). This option enables additional filtering on JSP-related

dataflow to reduce the number of spurious false positives detected.

The equivalent property for this option that you can specify in the fortify-

sca.properties file is com.fortify.sca.jsp.LegacyDataflow .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 197 of 610

1.9. Analyzing Android projects
This section describes how to translate Java source code for Android applications.

You can use OpenText SAST to scan the code with Gradle from either:

Your operating system's command line

A terminal window running in Android Studio

The way you use Gradle is the same for either method.

Note

You can also scan Android code directly from Android Studio with the
Fortify Analysis Plugin for IntelliJ IDEA and Android Studio. For more
information, see the OpenText™ Fortify Analysis Plugin for IntelliJ
IDEA and Android Studio User Guide.

This section contains the following topics:

Android project translation prerequisites

Android code analysis command-line syntax

Filtering issues detected in Android layout files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 198 of 610

1.9.1. Android project translation
prerequisites
The following are the prerequisites for translating Android projects:

Android Studio and the relevant Android SDKs are installed on the system where

you will run the scans

Your Android project uses Gradle for builds.

If you have an older project that does not use Gradle, you must add Gradle

support to the associated Android Studio project

Use the same version of Gradle that is provided with the version of Android

Studio that you use to create your Android project

Make sure you have available all dependencies that are required to build the

Android code in the application's project

To translate your Android code from a command window that is not displayed

within Android Studio, make sure that Gradle Wrapper (gradlew) is defined on

the system path

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 199 of 610

1.9.2. Android code analysis command-
line syntax
Use gradlew to scan Android projects, which is similar to using Gradle except that you

use the Gradle Wrapper. For information about how to translate your Android project

using the Gradle Wrapper, see Gradle Integration.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 200 of 610

1.9.3. Filtering issues detected in Android
layout files
If your Android project contains layout files (used to design the user interface), your

project files might include R.java source files that are automatically generated by

Android Studio. When you scan the project, OpenText SAST can detect issues

associated with these layout files.

OpenText recommends that Issues reported in any layout file be included in your

standard audit so you can carefully determine if any of them are false positives. After

you identify issues in layout files that you are not interested in, you can filter them out

as described in Optimizing results. You can filter out the issues based on the Instance

ID.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 201 of 610

1.10. Analyzing Groovy code
This section describes how to analyze Groovy projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Groovy analysis prerequisites

Groovy translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 202 of 610

1.10.1. Groovy analysis prerequisites
Currently, Groovy code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Groovy code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 203 of 610

1.10.2. Groovy translation syntax
To include Groovy code for analysis using AI-powered SAST, include all source files

that you want to analyze.

Use the following basic command-line syntax to analyze Groovy code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.groovy"

Important

Supported file extensions for the Groovy source files are: .groovy ,
.gvy , .gy , . gsh .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 204 of 610

1.11. Analyzing Scala code
Translating Scala code requires the following:

The Akka compiler plugin

You can download this plugin from the Maven Central Repository.

An Akka (formerly Lightbend) license file

This license file is included with the OpenText SAST installation in the
<sast_install_dir>/plugins/lightbend directory

For instructions on how set up the license and translate Scala code, see the Akka

documentation Fortify SCA for Scala.

Important

If your project contains source code other than Scala, you must translate
the Scala code using the Scala Fortify compiler plugin, and then translate
other source code with sourceanalyzer using the same build ID before
you run the analysis phase.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 205 of 610

https://developer.lightbend.com/docs/fortify/current

1.12. Analyzing Visual Studio projects
OpenText SAST provides a build integration to support translation of the following

Visual Studio project types:

C/C++ projects

C# projects that target .NET Framework and .NET Core

ASP.NET applications that target ASP.NET framework and ASP.NET Core

Xamarin applications that target Android™ and iOS platforms

For a list of supported versions of relevant programming languages and frameworks,

as well as Visual Studio and MSBuild versions, see Supported languages and

Supported build tools.

This section contains the following topics:

Visual Studio project translation prerequisites

Visual Studio Project command-line syntax

Handling special cases for translating Visual Studio projects

Alternative ways to translate Visual Studio projects

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 206 of 610

1.12.1. Visual Studio project translation
prerequisites
OpenText recommends that each project you translate is complete and that you

perform the translation in an environment where you can build it without errors. For a

list of software environment requirements, see Software requirements. A complete

project contains the following:

All necessary source code files (C/C++, C#, or VB.NET).

All required reference libraries.

This includes those from relevant frameworks, NuGet packages, and third-party

libraries.

For C/C++ projects, include all necessary header files that do not belong to the

Visual Studio or MSBuild installation.

For ASP.NET and ASP.NET Core projects, include all the necessary ASP.NET

page files.

The supported ASP.NET page types are ASAX, ASCX, ASHX, ASMX, ASPX,

AXML, BAML, CSHTML, Master, RAZOR, VBHTML, and XAML.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 207 of 610

1.12.2. Visual Studio Project command-
line syntax
The basic syntax to translate a Visual Studio solution or project is to specify the

corresponding build option for your project as part of the OpenText SAST translation

command. This starts a build integration that analyzes your solution and project files

and automatically executes the appropriate translation steps.

Important

To ensure that the build integration correctly pulls in all of the appropriate
project dependencies and resources, you must run the OpenText SAST
command from a command prompt with access to your build environment
configuration. OpenText strongly recommends you run this command
from the Developer Command Prompt for Visual Studio to ensure an
optimal environment for the translation.

In the following examples, OpenText SAST translates all the projects contained in the

Visual Studio solution Sample.sln . You can also translate one or more specific

projects by providing a semicolon-separated list of projects.

By default, test projects are excluded from the translation. Projects in your solution

that reference NUnit, xunit, or MSTest are considered a test project. To include test

projects in the translation, add the MSBuild option

/p:ScaForceTranslateTestProjects=True to your sourceanalyzer command.

For a .NET 6.0 or later solution on Windows or Linux, use the following

commands to translate the solution:

1. Optionally, run the following command to remove any intermediate files

from previous project builds:

dotnet clean Sample.sln

2. Optionally, run the following command to ensure that all required reference

libraries are downloaded and installed in the project. Run this command

from the top-level folder of the project:

dotnet restore Sample.sln

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 208 of 610

3. Run one of the following OpenText SAST commands depending on how

your project build is implemented. You can include any additional build

parameters in this command:

sourceanalyzer –b MyProject dotnet msbuild Sample.sln

or

sourceanalyzer –b MyProject dotnet build Sample.sln

For a C, C++, and .NET Framework solution (4.8.x or earlier) on Windows, use

the following command to translate the solution:

sourceanalyzer –b MyProject msbuild /t:rebuild

[<msbuild_options>] Sample.sln

Note

If you run OpenText SAST from a Windows Command Prompt

instead of the Visual Studio Developer Command Prompt, you must

set up the environment and make sure the path to the MSBuild

executable required to build your project is included in the PATH

environment variable.

After the translation is complete, perform the analysis phase and save the results in

an FPR file as shown in the following example:

sourceanalyzer –b MyProject -scan -f MyResults.fpr

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 209 of 610

1.12.3. Handling special cases for
translating Visual Studio projects
This section contains the following topics:

Running translation from a script

Translating plain .NET and ASP.NET projects

Translating C/C++ and Xamarin projects

Translating projects with settings containing spaces

Translating a single project from a Visual Studio solution

Analyzing projects that build multiple executable files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 210 of 610

1.12.3.1. Running translation from a script
To perform the translation in a non-interactive mode such as with a script, establish

an optimal environment for translation by executing the following command before

you run the OpenText SAST translation:

cmd.exe /k <vs_install_dir>/Common7/Tools/VSDevCmd.bat

where <vs_install_dir> is the directory where you installed Visual Studio.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 211 of 610

1.12.3.2. Translating plain .NET and
ASP.NET projects
You can translate plain .NET and ASP.NET projects from the Windows Command

Prompt as well as from a Visual Studio environment. When you translate from the

Windows Command Prompt, make sure the path to the MSBuild executable required

to build your project is included in the PATH environment variable.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 212 of 610

1.12.3.3. Translating C/C++ and Xamarin
projects
You must translate C/C++ and Xamarin projects either from a Developer Command

Prompt for Visual Studio or from the Fortify Extension for Visual Studio.

Note

For Xamarin projects, there is no need to use a custom rule for the
Xamarin.Android API if a rule for the corresponding native Android API
exists in the Fortify Secure Coding Rulepacks. Doing so can cause
duplicate issues to be reported.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 213 of 610

1.12.3.4. Translating projects with settings
containing spaces
If your project is built with a configuration or other settings file that contains spaces,

make sure to enclose the setting values in quotes. For example, to translate a Visual

Studio solution Sample.sln that is built with configuration My Configuration , use the

following command:

sourceanalyzer –b MySampleProj msbuild /t:rebuild

/p:Configuration="My Configuration" Sample.sln

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 214 of 610

1.12.3.5. Translating a single project from
a Visual Studio solution
If your Visual Studio solution contains multiple projects, you have the option to

translate a single project instead of the entire solution. Project files have a file name

extension that ends with proj such as .vcxproj and .csproj . To translate a single

project, specify the project file instead of the solution as the parameter for the

MSBuild command.

The following example translates the Sample.vcxproj project file:

sourceanalyzer –b MySampleProj msbuild /t:rebuild Sample.vcxproj

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 215 of 610

1.12.3.6. Analyzing projects that build
multiple executable files
If your Visual Studio or MSBuild project builds multiple executable files (such as files

with the file name extension *.exe), OpenText strongly recommends that you run the

analysis phase separately for each executable file to avoid false positive issues in the

analysis results. To do this, use the –binary-name option when you run the analysis

phase and specify the executable file name or .NET assembly name as the parameter.

The following example shows how to translate and analyze a Visual Studio solution

Sample.sln that consists of two projects, Sample1 (a C++ project with no associated

.NET assembly name) and Sample2 (a .NET project with .NET assembly name

Sample2). Each project builds a separate executable file, Sample1.exe and

Sample2.exe , respectively. The analysis results are saved in Sample1.fpr and

Sample2.fpr files.

sourceanalyzer -b MySampleProj msbuild /t:rebuild Sample.sln

sourceanalyzer -b MySampleProj -scan -binary-name Sample1.exe -f

Sample1.fpr

sourceanalyzer -b MySampleProj -scan -binary-name Sample2.exe -f

Sample2.fpr

For more information about the -binary-name option, see Analysis Options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 216 of 610

1.12.4. Alternative ways to translate Visual
Studio projects
This section describes alternative methods of translating Visual Studio projects.

This section contains the following topics:

Alternative translation options for Visual Studio solutions

Translating without explicitly running OpenText SAST

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 217 of 610

1.12.4.1. Alternative translation options for
Visual Studio solutions
The following are two alternative ways of translation available only for Visual Studio

solutions:

Use the Fortify Extension for Visual Studio

The Fortify Extension for Visual Studio runs the translation and analysis (scan)

phases together in one step.

Append a devenv command to the OpenText SAST command

The following command translates the Visual Studio solution Sample.sln :

sourceanalyzer –b MySampleProj devenv Sample.sln /rebuild

Note that OpenText SAST converts a devenv invocation to the equivalent

MSBuild invocation, therefore in this case, the solution with this command is built

by MSBuild instead of the devenv tool.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 218 of 610

1.12.4.2. Translating without explicitly
running OpenText SAST
You have the option to translate your Visual Studio project without invoking OpenText

SAST directly. This requires the Fortify.targets file, which is located in
<sast_install_dir>\Core\private-bin\sca\MSBuildPlugin in the DotNet and
Framework directory. You can specify the file using an absolute or relative path in

the build command line that builds your project. Use the path with the Dotnet or
Framework directory depending on the build command you are using: dotnet.exe

or MSBuild.exe respectively. For example:

dotnet.exe msbuild /t:rebuild

/p:CustomAfterMicrosoftCommonTargets=

<sast_install_dir>\Core\private-

bin\sca\MSBuildPlugin\Dotnet\Fortify.targets Sample.sln

or

msbuild.exe /t:rebuild

/p:CustomAfterMicrosoftCommonTargets=

<sast_install_dir>\Core\private-

bin\sca\MSBuildPlugin\Framework\Fortify.targets Sample.sln

There are several environment variables that you can set to configure the translation

of your project. Most of them have default values, which OpenText SAST uses if the

variable is not set. These variables are listed in the following table.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 219 of 610

Environment variable Description Default value

FORTIFY_MSBUILD_BUIL

DID

Specifies the OpenText

SAST build ID for

translation. Make sure

that you set this value.

This is equivalent to the

OpenText SAST -b

option.

None

FORTIFY_MSBUILD_DEB

UG

Enables debug mode.

This is equivalent to the

OpenText SAST –debug
option.

False

FORTIFY_MSBUILD_DEB

UG_VERBOSE

Enables verbose debug

mode. This is equivalent

to the OpenText SAST –

debug-verbose option.

Takes precedence over

FORTIFY_MSBUILD_DEB

UG variable if both are

set to true.

False

FORTIFY_MSBUILD_ME

M

Specifies the memory

requirements for

translation in the form of

the JVM -Xmx option.

For example, -Xmx2G .

Automatic allocation

based on physical

memory available on the

system

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 220 of 610

Environment variable Description Default value

FORTIFY_MSBUILD_SCA

LOG

Specifies the location

(absolute path) of the

OpenText SAST log file.

This is equivalent to the

OpenText SAST -logfile

option.

%LOCALAPPDATA%/Fo

rtify/

sca/log/sca.log

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 221 of 610

1.13. Analyzing JavaScript and TypeScript
code
You can analyze JavaScript projects that contain JavaScript, TypeScript, JSX, and

TSX source files, as well as JavaScript embedded in HTML files.

Some JavaScript frameworks are transpiled (source-to-source compilation) to plain

JavaScript, which is generated code. Use the -exclude command-line option to

exclude this type of code.

When you translate JavaScript and TypeScript code, make sure that you specify all

source files together in one invocation. OpenText SAST does not support adding new

files to the file list associated with the build ID on subsequent invocations.

OpenText SAST does not translate minified JavaScript (*.min.js).

Note

There are some types of minified JavaScript files that OpenText SAST
cannot automatically detect for exclusion from the translation. Use the -
exclude command-line option to exclude these files directly.

This section contains the following topics:

Translating pure JavaScript projects

Excluding dependencies

Excluding NPM Dependencies

NPM dependencies

Translating JavaScript projects with HTML files

Including external JavaScript or HTML in the translation (deprecated)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 222 of 610

1.13.1. Translating pure JavaScript
projects
The basic command-line syntax to translate JavaScript is:

sourceanalyzer –b <build_id> <js_file_or_dir>

where <js_file_or_dir> is either the name of the JavaScript file to be translated or a

directory that contains multiple JavaScript files. You can also translate multiple files

by specifying *.js for the <js_file_or_dir> .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 223 of 610

1.13.2. Excluding dependencies
You can avoid translating specific dependencies by adding them to the appropriate

property setting in the fortify-sca.properties file. Files specified in the following

properties are not translated:

com.fortify.sca.skip.libraries.ES6

com.fortify.sca.skip.libraries.jQuery

com.fortify.sca.skip.libraries.javascript

com.fortify.sca.skip.libraries.typescript

Each property specifies a list of comma- or colon-separated file names (without path

information).

The files specified in these properties apply to both local files and files on the

internet. Suppose, for example, that the JavaScript code includes the following local

file reference:

<script src="js/jquery-ui.js" type="text/javascript"

charset="utf-8"></script>

By default, the com.fortify.sca.skip.libraries.jQuery property in the fortify-

sca.properties file includes jquery-us.js , and therefore OpenText SAST does not

translate the file shown in the previous example.

You can use regular expressions for the file names. Note that OpenText SAST

automatically inserts the regular expression '(-?\d+\.\d+\.\d+)?' before .min.js or
.js for each file name included in the com.fortify.sca.skip.libraries.jQuery property

value.

Note

You can also exclude local files or entire directories with the -exclude
command-line option. For more information about this option, see
Translation Options.

To provide a thorough analysis, dependent files are included in the translation even if

the dependency is in a language that is disabled with the -disable-language option.

For more information about the option to disable languages, see Translation Options).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 224 of 610

1.13.3. Excluding NPM Dependencies
By default, OpenText SAST translates only the NPM dependencies that are imported

in the code. You can change this behavior with the following two properties:

The com.fortify.sca.follow.imports property directs OpenText SAST to resolve

all imported files and include them in the translation.

This property is enabled by default. Setting this property to false prevents

NPM dependencies that are not explicitly included on the command-line from

being included in the translation.

The com.fortify.sca.exclude.unimported.node.modules property directs

OpenText SAST to exclude all files in any node_modules directory from the

translation except files that are specifically imported by the
com.fortify.sca.follow.imports property.

This property is enabled by default to avoid translating dependencies that are

not needed for the final project such as those only required for the build system.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 225 of 610

1.13.4. NPM dependencies
By default, OpenText SAST does not report issues in NPM dependencies (files in the

node_modules directory). This is configured with the

com.fortify.sca.exclude.node.modules property, which is set to true by default.

Note

OpenText does not recommend using the -exclude option to exclude node
modules if com.fortify.sca.exclude.node.modules is set to true ,
because it can change the quality of the results.

See Also

Examples of Excluding node_modules Dependencies

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 226 of 610

1.13.4.1. Examples of excluding NPM
dependencies
The following examples illustrate three different scenarios for excluding NPM

dependencies. All these examples use the following directory structure:

./

 RootProjectDir

 innerSrcDir

 node_modules

 innerProjectReferencedModule

 index.ts

 moduleNotReferencedByProject

 index.ts

 innerProject.ts (contains import from

innerProjectReferencedModule)

 node_modules

 projectReferencedModule

 index.ts

 moduleNotReferencedByProject

 index.ts

 projectMain.ts (contains import from projectReferencedModule)

Example 1

This example shows the files are translated with

com.fortify.sca.exclude.unimported.node.modules set to false . In this case,

com.fortify.sca.follow.imports and

com.fortify.sca.exclude.unimported.node.modules are both set to true .

sourceanalyzer RootProjectDir/ -

Dcom.fortify.sca.exclude.node.modules=false

The following files are included in the translation for Example 1:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 227 of 610

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/innerSrcDir/node_modules/innerProjectReferenced

Module/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node_modules/projectReferencedModule/index.ts

Example 2

This example shows that in addition to modules referenced by the project, modules

found during resolution but not referenced by the project are also included in the

translation.

sourceanalyzer RootProjectDir/ -

Dcom.fortify.sca.exclude.unimported.node.modules=false

The following files are included in the translation for Example 2:

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/innerSrcDir/node_modules/innerProjectReferenced

Module/index.ts

./RootProjectDir/innerSrcDir/node_modules/moduleNotReferencedByP

roject/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node_modules/projectReferencedModule/index.ts

./RootProjectDir/node_modules/moduleNotReferencedByProject/index

.ts

Example 3

This example shows use of the -exclude option to exclude all files under any

node_modules directory. The -exclude option overrides resolution of modules

based on the configuration of the com.fortify.sca.follow.imports and

com.fortify.sca.exclude.unimported.node.modules properties.

sourceanalyzer RootProjectDir/ -exclude "**/node_modules/*.*"

The following files are included in the translation for Example 3:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 228 of 610

./RootProjectDir/innerSrcDir/innerProject.ts

./RootProjectDir/projectMain.ts

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 229 of 610

1.13.5. Translating JavaScript projects
with HTML files
If the project contains HTML files in addition to JavaScript files, set the
com.fortify.sca.EnableDOMModeling property to true in the fortify-sca.properties

file or on the command line as shown in the following example:

sourceanalyzer –b MyProject <js_file_or_dir>

-Dcom.fortify.sca.EnableDOMModeling=true

When you set the com.fortify.sca.EnableDOMModeling property to true, this can

decrease false negative reports of DOM-related attacks, such as DOM-related cross-

site scripting issues.

Note

If you enable this option, OpenText SAST generates JavaScript code to
model the DOM tree structure in the HTML files. The duration of the
analysis phase might increase (because there is more translated code to
analyze).

If you set the com.fortify.sca.EnableDOMModeling property to true , you can also

specify additional HTML tags for OpenText SAST to include in the DOM modeling with

the com.fortify.sca.DOMModeling.tags property. By default, OpenText SAST

includes the following HTML tags: body , button , div , form , iframe , input ,

head , html , and p .

For example, to additionaly include the HTML tags ul and li in the DOM model, use

the following command:

sourceanalyzer –b MyProject <js_file_or_dir>

-Dcom.fortify.sca.DOMModeling.tags=ul,li

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 230 of 610

1.13.6. Including external JavaScript or
HTML in the translation (deprecated)
To include external JavaScript or HTML files that are specified with the src attribute,

you can specify which domains OpenText SAST can download and include in the

translation phase. To do this, specify one or more domains with the
com.fortify.sca.JavaScript.src.domain.whitelist property.

Note

You can also set this property globally in the fortify-sca.properties file.

For example, you might have the following statement in your HTML file:

<script src='http://xyzdomain.com/foo/bar.js' language='text/javascript'/>

</script>

If you are confident that the xyzdomain.com domain is a safe location from which to

download files, then you can include it in the translation phase by adding the

following property specification on the command line:

-

Dcom.fortify.sca.JavaScript.src.domain.whitelist="xyzdomain.com/

foo"

Note

You can omit the www. prefix from the domain in the property value. For
example, if the src tag in the original HTML file specifies to download files
from www.google.com , you can specify just the google.com domain.

To trust more than one domain, include each domain separated by the vertical bar

character (|) as shown in the following example:

-Dcom.fortify.sca.JavaScript.src.domain.whitelist=

"xyzdomain.com/foo|abcdomain.com|123.456domain.com”

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 231 of 610

If you are using a proxy server, then you need to include the proxy server information

on the command line as shown in the following example:

-Dhttp.proxyHost=example.proxy.com -Dhttp.proxyPort=8080

For a complete list of proxy server options, see the Networking Properties Java

documentation.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 232 of 610

1.14. Analyzing Dart and Flutter code
This section describes how to translate Dart and Flutter code. OpenText SAST

supports analysis of Dart and Flutter code on Windows and Linux.

This section contains the following topics:

Dart and Flutter translation prerequisites

Dart and Flutter command-line syntax

Dart and Flutter command-line examples

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 233 of 610

1.14.1. Dart and Flutter translation
prerequisites
The following are the prerequisites for translating Dart and Flutter projects:

Make sure that you have a supported Dart SDK (for Dart-only projects) and the

Flutter SDK (for Flutter projects) installed on your system. See Supported

languages for the supported Dart and Flutter SDK versions.

Download the project dependencies by running one of the following commands:

For Flutter projects, use flutter pub get .

For Dart-only projects, use dart pub get .

For example, to download the dependencies for a Flutter project that has the

project root myproject , run the following commands:

cd myproject

flutter pub get

Important

If the project includes nested packages with different

pubspec.yaml files, you must run dart pub get or flutter pub get
for each package root.

Important

Make sure that the following are included in the project directory:

The pubspec.yaml file, which specifies the dependencies

The .dart_tool directory, which includes the
package_config.json file automatically generated by the pub
tool

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 234 of 610

1.14.2. Dart and Flutter command-line
syntax
The basic command-line syntax to translate Dart and Flutter code is:

sourceanalyzer –b <build_id> <translation_options> <dirs>

sourceanalyzer –b <build_id> <translation_options> <files>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 235 of 610

1.14.3. Dart and Flutter command-line
examples
To translate a Dart or Flutter project with the my_app project root directory:

sourceanalyzer -b MyProject my_app/

To translate the a_widget.dart file in the my_app project root directory:

sourceanalyzer -b MyProject my_app/a_widget.dart

To translate all dart source files in the my_dart_proj directory:

sourceanalyzer -b MyProject "my_dart_proj/**/*.dart"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 236 of 610

1.15. Analyzing Python and Jupyter
Notebooks
OpenText SAST translates Python applications, and processes files with the .py

extension as Python source code. Files with the extension .ipynb are recognized as

Jupyter Notebooks. OpenText SAST supports translation of Jupyter notebooks and

the Django and Flask frameworks.

This section contains the following topics:

Integrating with Bazel

Python translation command-line syntax

Translating Python in a virtual environment

Including imported modules and packages

Including namespace packages

Translating Django and Flask

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 237 of 610

https://docs.microfocus.com/doc/2263/26.1/pythonbazel

1.15.1. Integrating with Bazel
To integrate with Bazel builds, OpenText SAST translates the source files as they are

compiled. Therefore, a prerequisite for Bazel builds is that the Bazel build runs

successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run

sourceanalyzer with the Bazel target you want to build. You can specify other

sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build_id> <sca_options> bazel build <target>

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-

APP\src\proj\content.py bazel build //projc:my-python-prj

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 238 of 610

1.15.1.1. Python Bazel integration examples
Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj

Translate target abc in package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc

or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc

Translate all targets in the package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc:all

Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...

Specify Python project dependencies for the translation:

sourceanalyzer -b MyProjectD -python-path

/usr/local/lib/python3.6/ bazel build //projd:my-python-app

OpenText SAST Bazel integration does not support multiple targets and related

actions such as excluding targets.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 239 of 610

1.15.2. Python translation command-line
syntax
The basic command-line syntax to translate Python code is:

sourceanalyzer -b <build_id> -python-version <python_version>

-python-path <dirs> <files>

Note

When you translate Python code, make sure that you specify all source
files together in one invocation. OpenText SAST does not support adding
new files to the file list associated with the build ID on subsequent
invocations.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 240 of 610

1.15.2.1. Python command-line options
The following table describes the Python options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 241 of 610

Python option Description

-python-version <version> Specifies the Python source code

version to scan. The valid values for
<version> are 2 and 3 . The default

value is 3 .

Equivalent property name:

com.fortify.sca.PythonVersion

-python-no-auto-root-calculation
Disables the automatic calculation of a

common root directory of all project

source files to use for importing

modules and packages.

Equivalent property name:

com.fortify.sca.PythonNoAutoRootCal

culation

-python-path <dirs> Specifies a semicolon-

separated (Windows) or colon-

separated (non-Windows) list of

additional import directories. You can

use the -python-path option to

specify all paths used to import

packages or modules. Include all paths

to namespace package directories with

this option. OpenText SAST

sequentially searches the specified

paths for each imported file and uses

the first file encountered.

Equivalent property name:

com.fortify.sca.PythonPath

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 242 of 610

Python option Description

-django-template-dirs

<dirs>
Specifies a semicolon-

separated (Windows) or colon-

separated (non-Windows) list of

directories that contain Django

templates. OpenText SAST sequentially

searches the specified paths for each

Django template file and uses the first

template file encountered.

Equivalent property name:

com.fortify.sca.DjangoTemplateDirs

-django-disable-autodiscover Specifies that OpenText SAST does not

automatically discover Django

templates.

Equivalent property name:

com.fortify.sca.DjangoDisableAutodisc

over

-jinja-template-dirs

<dirs>
Specifies a semicolon-

separated (Windows) or colon-

separated (non-Windows) list of

directories that contain Jinja2

templates. OpenText SAST sequentially

searches the specified paths for each

Jinja2 template file and uses the first

template file encountered.

Equivalent property name:

com.fortify.sca.JinjaTemplateDirs

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 243 of 610

Python option Description

-disable-template-autodiscover
Specifies that OpenText SAST does not

automatically discover Django or Jinja2

templates.

Equivalent property name:

com.fortify.sca.DisableTemplateAutodi

scover

Python Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 244 of 610

1.15.2.2. Python command-line examples
Translate Python 3 code on Windows:

sourceanalyzer -b Python3Proj -python-path

"C:\Python312\Lib;C:\Python312\Lib\site-packages" src/*.py

Translate Python 2 code on Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path

"C:\Python27\Lib;C:\Python27\Lib\site-packages" src/*.py

Translate Python 3 code on non-Windows:

sourceanalyzer -b Python3Proj -python-path

/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages

src/*.py

Translate Python 2 code on non-Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path

/usr/lib/python2.7:/usr/local/lib/python2.7/site-packages

src/*.py

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 245 of 610

1.15.3. Translating Python in a virtual
environment
This section describes how to translate Python projects in virtual environments. Make

sure that all project dependencies are installed in your virtual environment. To

translate a Python project in a virtual environment, include the -python-path option

to specify the project dependencies.

Python virtual environment example

To translate a Python project where the virtual environment name is myenv and the

dependencies for the project are installed in the myenv/lib/python<version>/site-

packages directory, type:

sourceanalyzer –b mybuild -python-path

"myenv/lib/python<version>/site-packages/" myproject/

Conda environment example

To translate a Python project where the conda environment name is myenv and the

project dependencies are installed in the

<conda_install_dir>/envs/myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer –b mybuild -python-path "

<conda_install_dir>/envs/myenv/lib/python<version>/site-

packages/" myproject/

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 246 of 610

1.15.4. Including imported modules and
packages
To translate Python applications and prepare for a scan, OpenText SAST searches for

any imported modules and packages used by the application. OpenText SAST does

not respect the PYTHONPATH environment variable, which the Python runtime

system uses to find imported modules and packages.

OpenText SAST searches for imported modules and packages using the list of

directories in the following order:

1. The common root directory for all project source files. which OpenText SAST

calculates automatically. For example, if there are two project directories

PrimaryDir/project1/* and PrimaryDir/project2/* , the common root directory is

PrimaryDir .

To remove the common root directory as a search target for imported modules

and packages, include the -python-no-auto-root-calculation option in the

translation command.

2. The directories specified with the -python-path option.

OpenText SAST includes a subset of modules from the standard Python library

(module "builtins", all modules originally written in C, and others) in the

translation. OpenText SAST first searches for a standard Python library module

in the set included with OpenText SAST and then in the paths specified with the
-python-path option. If your Python code imports any module that OpenText

SAST cannot find, it produces a warning. To make sure that all modules of the

standard Python library are found, add the path to your standard Python library

in the -python-path list.

3. The current directory that contains the file being translated. For example, when

OpenText SAST translates a PrimaryDir/project1/a.py , the directory
PrimaryDir/project1 is added as the last directory to search for imported

modules and packages.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 247 of 610

1.15.5. Including namespace packages
To translate namespace packages, include all the paths to the namespace package

directories with the -python-path option. For example, if you have two subpackages

for a namespace package package_name in multiple folders:

/path_1/package_name/subpackageA

/path_2/package_name/subpackageB

Include /path_1;/path_2 with the -python-path option in the sourceanalyzer

command line.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 248 of 610

1.15.6. Translating Django and Flask
By default, OpenText SAST attempts to discover Django and Jinja2 templates in the

project root directory. All detected Django and Jinja2 templates are automatically

added to the translation. You can specify additional locations of Django or Jinja2

template files by adding the -django-template-dirs or the -jinja-template-dirs
option to the sourceanalyzer command.

If you do not want OpenText SAST to automatically discover Django and Jinja2

templates, use the -disable-template-autodiscover option. If your project requires

Django or Jinja2 templates, but the project is configured such that the templates are

in an unexpected location, use the -django-template-dirs or -jinja-template-dirs
option to specify the directories that contain the templates in addition to the -disable-

template-autodiscover option as shown in the following non-Windows examples:

sourceanalyzer -b djangoProj -python-path

/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages

djangoProj -django-template-dirs

djangoProj/templatedir1:/djangoProj/dir2 -disable-template-

autodiscover

sourceanalyzer -b flaskProj -python-path

/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages

flaskProj -jinja-template-dirs

flaskProj/templatedir1:/flaskProj/dir2 -disable-template-

autodiscover

The following example translates a Python project that has a combination of Django

and Jinja2 templates on Windows:

sourceanalyzer -b pythonProj -python-path

"C:\Python312\Lib;C:\Python312\Lib\site-packages" flaskProj -

django-template-dirs

"C:\djangoProj\templatedir1;C:\djangoProj\dir2" -jinja-template-

dirs "C:\flaskProj\templatedir1;C:\flaskProj\dir2" -disable-

template-autodiscover

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 249 of 610

1.16. Analyzing iOS and Xcode projects
This section describes how to translate Swift, Objective-C, and Objective-C++ source

code for iOS applications. OpenText SAST automatically integrates with the Xcode

Command Line Tool, Xcodebuild, to identify the project source files.

This section contains the following topics:

iOS project translation prerequisites

iOS code analysis command-line syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 250 of 610

1.16.1. iOS project translation prerequisites
The following are the prerequisites for translating iOS projects:

Objective-C++ projects must use the non-fragile Objective-C runtime (ABI

version 2 or 3).

Use Apple’s xcode-select command-line tool to set your Xcode path. OpenText

SAST uses the system global Xcode configuration to find the Xcode toolchain

and headers.

Make sure that all source files required for a successful Xcode build are

provided.

You can exclude files from the analysis using the -exclude option (see

iOS Code Analysis Command-Line Syntax).

Make sure that you have any dependencies required to build the project

available.

To translate Swift code, make sure that you have available all third-party

modules, including CocoaPods. Bridging headers must also be available.

However, Xcode usually generates them automatically during the build.

If your project includes property list files in binary format, you must first convert

them to XML format. You can do this with the Xcode putil command.

To translate Objective-C projects, ensure that the headers for third-party

libraries are available.

To translate Watchkit® applications, make sure that you translate both the

iPhone application target and the WatchKit extension target.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 251 of 610

1.16.2. iOS code analysis command-line
syntax
The command-line syntax to translate iOS code using Xcodebuild is:

sourceanalyzer -b <build_id> xcodebuild [<compiler_options>]

where <compiler_options> are the supported options that are passed to the Xcode

compiler. You must include the build option with any <compiler_options> . The

OpenText SAST Xcodebuild integration does not support the output format of

alternate build commands such as xcodebuild archive .

Note

Xcodebuild compiles the source code when you run this command.

To exclude files from the analysis, use the -exclude option (see Translation Options).

All source files that match the exclude specification are not translated, even if they

are included in the Xcode build. The following is an example:

sourceanalyzer -b MyProject -exclude "**/TestFile.swift"

xcodebuild clean build

If your application uses any property list files (for example, <file>.plist), translate

these files with a separate sourceanalyzer command. Use the same build ID that you

used to translate the project files. The following is an example:

sourceanalyzer -b MyProject <path_to_plist_files>

If your project uses CocoaPods, include -workspace to build the project. For

example:

sourceanalyzer -b DemoAppSwift xcodebuild clean build -workspace

DemoAppSwift.xcworkspace -scheme DemoAppSwift -sdk

iphonesimulator

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 252 of 610

After the translation is complete, you can perform the analysis phase and save the

results in an FPR file, as shown in the following example:

sourceanalyzer -b DemoAppSwift -scan -f MyResults.fpr

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 253 of 610

1.17. Analyzing C and C++ code
This section describes how to translate C and C++ code. OpenText SAST supports

standard ANSI C and C++ and might not support all non-standard C++ constructs.

Important

This section describes how to translate C and C++ code that is not a part
of a Visual Studio or MSBuild project. For instructions on how to translate
Visual Studio or MSBuild projects, see Translating Visual Studio and MSBuild
Projects.

This section contains the following topics:

C and C++ Code translation prerequisites

Integrating with Make

Integrating with CMake

Integrating with Gradle

Manual C and C++ translation syntax

Scanning pre-processed C and C++ code

C/C++ Precompiled Header Files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 254 of 610

https://docs.microfocus.com/doc/2263/26.1/ccppgradleintegration

1.17.1. C and C++ Code translation
prerequisites
Make sure that you have any dependencies required to build the project available,

including headers for third-party libraries. OpenText SAST translation does not require

object files and static/dynamic library files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 255 of 610

1.17.2. Integrating with Make
To integrate OpenText SAST with make, run sourceanalyzer with Make for the build

process. For example, if you build your project with the following build commands:

make clean

make

make install

You can simultaneously translate and compile the entire project with the following

example commands:

make clean

sourceanalyzer -b MyProject make

make install

As an alternative to build integration, you can modify your build script to prefix each

compiler, linker, and archiver operation with the sourceanalyzer command. For

example, a makefile often defines variables for the names of these tools:

CC=gcc

CXX=g++

LD=ld

AR=ar

You can prepend the tool references in the makefile with the sourceanalyzer
command and the appropriate options.

CC=sourceanalyzer -b MyProject gcc

CXX=sourceanalyzer -b MyProject g++

LD=sourceanalyzer -b MyProject ld

AR=sourceanalyzer -b MyProject ar

When you use the same build ID for each operation, OpenText SAST automatically

combines each of the separately-translated files into a single translated project.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 256 of 610

1.17.3. Integrating with CMake
On non-Windows systems, you can translate projects that are built with CMake by

incorporating a JSON compilation database in the OpenText SAST command. This is

only supported for Makefile and Ninja generators (see the CMake Reference

Documentation for more information).

To integrate OpenText SAST with a CMake build:

1. Generate a compile_commands.json file for your CMake project.

Add -DCMAKE_EXPORT_COMPILE_COMMANDS=yes to the cmake configure

command. For example:

 cmake -G Ninja -DCMAKE_EXPORT_COMPILE_COMMANDS=yes

2. Include the JSON compilation database in your sourceanalyzer command as

follows:

sourceanalyzer -b <build_id> compile_commands.json

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 257 of 610

1.17.4. Integrating with Gradle
Gradle integration has a prerequisite on the C++ Application Plugin. Please make sure

it is added to your Gradle file in one of the following formats:

apply plugin: 'cpp'

plugins {

 id 'cpp-application'

}

Gradle integration is as simple as prepending the Gradle or gradlew command line

with the sourceanalyzer command as follows:

sourceanalyzer -b <build_id> <sca_options> gradle

[<gradle_options>] <gradle_tasks>

For more detailed guides, see the Java and Kotlin integration: Using Gradle integration

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 258 of 610

1.17.5. Manual C and C++ translation
syntax
Command-line options passed to the compiler affect preprocessor execution and can

enable or disable language features and extensions. For OpenText SAST to interpret

your source code in the same way as the compiler, the translation phase for C/C++

source code requires the complete compiler command line. Prefix your original

compiler command with the sourceanalyzer command and options.

The basic command-line syntax for translating a single file is:

sourceanalyzer -b <build_id> [<sca_options>] <compiler>

[<compiler_options>] <file>.c

where:

<sca_options> are options passed to OpenText SAST.

<compiler> is the name of the C/C++ compiler you use, such as gcc , g++ ,

or cl . See Supported languages for a list of supported C/C++ compilers.

<compiler_options> are options passed to the C/C++ compiler.

<file>.c must be in ASCII or UTF-8 encoding.

Note

All OpenText SAST options must precede the compiler options.

The compiler command must successfully complete when executed on its own. If the

compiler command fails, then the OpenText SAST command prefixed to the compiler

command also fails.

For example, if you compile a file with the following command:

gcc -I. -o hello.o -c helloworld.c

then you can translate this file with the following command:

sourceanalyzer -b MyProject gcc -I. -o hello.o -c helloworld.c

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 259 of 610

OpenText SAST executes the original compiler command as part of the translation

phase. In the previous example, the command produces both the translated source

suitable for scanning, and the object file hello.o from the gcc execution. You can

use the OpenText SAST -nc option to disable the compiler execution.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 260 of 610

1.17.6. Scanning pre-processed C and C++
code
If, before compilation, your C/C++ build executes a third-party C preprocessor that

OpenText SAST does not support, you must start the OpenText SAST translation on

the intermediate file. OpenText SAST touchless build integration automatically

translates the intermediate file provided that your build executes the unsupported

preprocessor and supported compiler as two commands connected by a temporary

file rather than a pipe chain.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 261 of 610

1.17.7. C/C++ Precompiled Header Files
Some C/C++ compilers support Precompiled Header Files, which can improve

compilation performance. Some compilers' implementations of this feature have

subtle side-effects. When the feature is enabled, the compiler might accept

erroneous source code without warnings or errors. This can result in a discrepancy

where OpenText SAST reports translation errors even when your compiler does not.

If you use your compiler's Precompiled Header feature, disable Precompiled Headers,

and then perform a full build to make sure that your source code compiles cleanly.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 262 of 610

1.18. Analyzing Rust code
This section describes how to analyze Rust projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Rust analysis prerequisites

Rust translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 263 of 610

1.18.1. Rust analysis prerequisites
Currently, Rust code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Rust code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 264 of 610

1.18.2. Rust translation syntax
To include Rust code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Rust code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.rs"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 265 of 610

1.19. Analyzing Go code
This section describes how to translate Go code. OpenText SAST supports analysis of

Go code on Windows, Linux, and macOS®.

This section contains the following topics:

Go command-line syntax

Go command-line options

Including custom Go build tags

Resolving dependencies

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 266 of 610

1.19.1. Go command-line syntax
For the best results, your project must be compilable and you must have all required

dependencies available.

The following entities are excluded from the translation (and the scan):

Vendor folder

All projects defined by any go.mod files in subfolders, except the project

defined by the go.mod file under the %PROJECT_ROOT%

All files with the _test.go suffix (unit tests)

The basic command-line syntax to translate Go code is:

sourceanalyzer -b <build_id> [-gopath <dir>] [-goroot <dir>]

<files>

For best results, OpenText recommends that you use Go modules for all Go projects

and translate the Go code one module at a time. Ensure that the values for the <files>
parameter for the sourceanalyzer command are in the directory that contains the

go.mod file. This is the same directory where you run the go build command to

build the project. If the project consists of more than one module, you can run the

sourceanalyzer command multiple times with the same <build_id> value to tie the

translation results for all modules together.

Use of the GOPATH development mode for builds is still supported but be aware that

this can cause problems if you are trying to compare two scans in tools such as

Fortify Audit Workbench or Application Security. Without a go.mod file to define a

fixed identifier path for the module, the Go language system identifies each module

by its absolute path on the local file system. Therefore, two scans of the same module

from different subdirectories or on different machines produce different module

identifiers, which prevents matching issues from correlating properly across the two

scans. The GOPATH development mode is deprecated for the Go compiler and SDK

and will be removed in a future Go 1.xx release.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 267 of 610

1.19.2. Go command-line options
The following table describes the command-line options that are specifically for

translating Go code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 268 of 610

Go option Description

-gotags <go_build_tags>
Specifies a comma-separated list of

custom build tags for a Go project. This

is equivalent to the -tags option for

the go command. For more

information, see Including Custom Go

Build Tags.

Equivalent property name:

com.fortify.sca.gotags

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 269 of 610

Go option Description

-gopath <dir>
Specifies the value of the GOPATH

environment variable to use for

translating a Go project. If this option is

not specified, then OpenText SAST

uses the existing value of the GOPATH

system environment variable.

You must specify the gopath directory

as an absolute path. The following

examples show valid values for <dir> :

/home/projects/go_workspace/

my_proj

C:\projects\go_workspace\my_

proj

The following example is an invalid

value for <dir> :

go_workspace/my_proj

If this option and the GOPATH system

environment variable is not set, then

the gopath defaults to a subdirectory

named go in the user's home

directory ($HOME/go on Linux and

%USERPROFILE%\go on Windows),

unless that directory contains a Go

distribution.

When using modules, the GOPATH

environment variable is not required to

resolve package imports. However,

GOPATH still determines the output

directory to use when downloading

missing module dependencies.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 270 of 610

Go option Description

Note

OpenText SAST does not
fully support older Go
projects that rely solely on
the GOPATH environment
variable to resolve package
imports.

Equivalent property name:

com.fortify.sca.GOPATH

-goroot <dir>
Specifies the location of the Go

installation. If this option is not

specified, the GOROOT system

environment variable is used.

If this option is not specified and the

GOROOT system environment variable

is not set, then OpenText SAST uses

the Go compiler included in the

OpenText SAST installation.

Equivalent property name:

com.fortify.sca.GOROOT

-goproxy <url>
Specifies one or more comma-

separated proxy URLs. You can also

specify direct or off (to disable

network usage).

If this option is not specified and the

GOPROXY system environment

variable is not set, then OpenText SAST

uses https://proxy.golang.org,direct .

Equivalent property name:

com.fortify.sca.GOPROXY

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 271 of 610

Go properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 272 of 610

1.19.3. Including custom Go build tags
If your Go project includes files that require custom build tags, then you can include

these build tags in the OpenText SAST translation using the -gotags option. For

example:

sourceanalyzer -b MyProject -gotags release "src/**/*.go"

The OpenText SAST -gotags option does not allow you to override automatic build

tags for the operating system, architecture, or Go version (for example, //go:build

linux , //go:build arm , //go:build go1.21). To translate your Go project for a different

operating system or architecture, set the appropriate cross-compile targets in the

GOOS and GOARCH environment variables. To set a specific Go version, specify the

path for the Go SDK version in the GOROOT environment variable or the -goroot

option.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 273 of 610

1.19.4. Resolving dependencies
OpenText SAST supports two dependency management systems built into Go:

Modules

To translate a Go project that uses modules, the project must include a go.mod
file that specifies the required dependencies, and a corresponding go.sum file

for verifying downloaded dependencies. Specify the directory that contains the

go.mod file as the project root in the sourceanalyzer command.

OpenText SAST downloads all required dependencies using the native Go

toolchain. If access to the internet is restricted on the machine where you run

OpenText SAST, then do one of the following:

If you are using an artifact management system such as Artifactory, set the

GOPROXY environment variable or use the -goproxy option described in

Go Command-Line Options.

Download all required dependencies using modules and vendoring.

If you use manual vendoring, set the GOFLAGS environment variable to -

mod=vendor before you start the translation.

GOPATH dependency resolution

If you are using a third-party dependency management system such as dep, you

must download all dependencies before you start the translation.

The GOPATH development mode identifies dependencies using the absolute

path on the local file system, which can cause problems when correlating scans

from different subdirectories or on different machines.

See Also

Go command-line syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 274 of 610

1.20. Analyzing PHP code
The syntax to translate a single PHP file named MyPHP.php is shown in the following

example:

sourceanalyzer -b <build_id> MyPHP.php

To translate a file where the source or the php.ini file entry includes a relative path

name (starts with ./ or ../), consider setting the PHP source root as shown in the

following example:

sourceanalyzer -php-source-root <path> -b <build_id> MyPHP.php

For more information about the -php-source-root option, see the description in

PHP Command-Line Options.

When you translate PHP code, make sure that you specify all source files together in

one invocation. OpenText SAST does not support adding new files to the file list

associated with the build ID on subsequent invocations.

This section contains the following topics:

PHP command-line options

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 275 of 610

1.20.1. PHP command-line options
The following table describes the PHP-specific command-line options.

PHP option Description

-php-source-root <path> Specifies an absolute path to the

project root directory. The relative path

name first expands from the current

directory. If the file is not found, then

the path expands from the specified

PHP source root directory.

Equivalent property name:

com.fortify.sca.PHPSourceRoot

-php-version <version> Specifies the PHP version. The default

version is 8.2. For a list of valid

versions, see Supported languages.

Equivalent property name:

com.fortify.sca.PHPVersion

PHP Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 276 of 610

1.21. Analyzing Perl code
This section describes how to analyze Perl projects. For projects combined with other

files, see the relevant section for those languages.

This section contains the following topics:

Perl analysis prerequisites

Perl translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 277 of 610

1.21.1. Perl analysis prerequisites
Currently, Perl code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Perl code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 278 of 610

1.21.2. Perl translation syntax
To include Perl code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Perl code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.pl"

Important

Supported file extensions for the Perl source files are: .pl , .pm .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 279 of 610

1.22. Analyzing Ruby code
This section contains the following topics:

Ruby command-line syntax

Adding libraries

Adding gem paths

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 280 of 610

1.22.1. Ruby command-line syntax
Ruby is analyzed with AI-powered SAST. Local analysis of Ruby projects is

deprecated and may be removed from a future version of the software. If AI-powered

SAST and a database connection is not specified, OpenText SAST automatically

reverts to performing local analysis of Ruby source files.

If you have AI-powered SAST enabled and want to ensure local analysis of Ruby

source files is still performed, you must make sure the following property is set during

both the translation and analysis phases:

com.fortify.sca.ruby.legacy.enabled=true

For more information about configuring scans for AI-powered SAST, see Analyzing

using AI-powered SAST.

AI-powered SAST

Use the following basic command-line syntax to analyze Ruby code using AI-powered

SAST:

sourceanalyzer –b <build_id> <files> | <file_specifiers>

For example, specifying files individually:

sourceanalyzer –b <build_id> file1.rb file2.rb file3.erb

Alternatively use wildcards or directories to specify multiple files more easily:

sourceanalyzer –b <build_id> "src/**/*.rb" "templates/

Local translation (deprecated)

The basic command-line syntax to translate Ruby code is:

sourceanalyzer –b <build_id> <file>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 281 of 610

where <file> is the name of the Ruby file you want to scan. To include multiple Ruby

files, separate them with a space, as shown in the following example:

sourceanalyzer –b <build_id> file1.rb file2.rb file3.rb

In addition to listing individual Ruby files, you can use the asterisk (*) wildcard to

select all Ruby files in a specified directory. For example, to find all the Ruby files in a

directory called src , use the following sourceanalyzer command:

sourceanalyzer –b <build_id> src/*.rb

Note

When performing local analysis of Ruby code, make sure that you specify
all source files together in one invocation. OpenText SAST does not
support adding new files to the file list associated with the build ID on
subsequent invocations.

In addition to the Ruby source files when translating locally, if you use any 3rd party

dependencies, these should be specified either via library or gem paths.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 282 of 610

1.22.1.1. Ruby command-line options
The following table describes the Ruby translation options.

Ruby option Description

-ruby-path <dirs> Applicable when legacy Ruby analyzer

is enabled.

Specifies one or more paths to

directories that contain Ruby libraries

(see Adding Libraries)

Equivalent property name:

com.fortify.sca.RubyLibraryPaths

-rubygem-path <dirs> Applicable when legacy Ruby analyzer

is enabled.

Specifies the path(s) to a RubyGems

location (see Adding Gem Paths)

Equivalent property name:

com.fortify.sca.RubyGemPaths

For more information, see Ruby properties.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 283 of 610

1.22.2. Adding libraries
If your Ruby source code requires a specific library, add the Ruby library to the

sourceanalyzer command. Include all ruby libraries that are installed with ruby gems.

For example, if you have a utils.rb file that resides in the

/usr/share/ruby/myPersonalLibrary directory, then add the following to the

sourceanalyzer command:

-ruby-path /usr/share/ruby/myPersonalLibrary

Separate multiple libraries with semicolons (Windows) or colons (non-Windows). The

following is an example of the option on non-Windows system:

-ruby-path /path/one:/path/two:/path/three

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 284 of 610

1.22.3. Adding gem paths
To add all RubyGems and their dependency paths, import all RubyGems. To obtain the

Ruby gem paths, run the gem env command. Under GEM PATHS, look for a directory

similar to:

/home/myUser/gems/ruby-version

This directory contains another directory called gems , which contains directories for

all the gem files installed on the system. For this example, use the following in your

command line:

-rubygem-path /home/myUser/gems/ruby-version/gems

If you have multiple gems directories, separate them with semicolons (Windows) or

colons (non-Windows) such as:

-rubygem-path /path/to/gems:/another/path/to/more/gems

Note

On Windows systems, separate the gems directories with a semicolon.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 285 of 610

1.23. Analyzing Ada code
This section describes how to analyze Ada projects. For projects combined with other

files, please see the relevant section for those languages.

This section contains the following topics:

Ada analysis prerequisites

Ada translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 286 of 610

1.23.1. Ada analysis prerequisites
Currently, Ada code is only compatible with AI-powered SAST. For more information

about configuring scans for AI-powered SAST, see Analyzing using AI-powered

SAST.

If AI-powered SAST is not configured, Ada code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 287 of 610

1.23.2. Ada translation syntax
To include Ada code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Ada code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.ada"

Important

Supported file extensions for the Ada source files are: .ada , .adb ,
.ads .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 288 of 610

1.24. Analyzing Delphi code
This section describes how to analyze Delphi projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Delphi analysis prerequisites

Delphi translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 289 of 610

1.24.1. Delphi analysis prerequisites
Currently, Delphi code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Delphi code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 290 of 610

1.24.2. Delphi translation syntax
To include Delphi code for analysis using AI-powered SAST, include all source files

that you want to analyze.

Use the following basic command-line syntax to analyze Delphi code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.pas"

Important

Supported file extensions for the Delphi source files are: .pas , .dpr ,
.dpk .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 291 of 610

1.25. Analyzing Elixir code
This section describes how to analyze Elixir projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Elixir analysis prerequisites

Elixir translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 292 of 610

1.25.1. Elixir analysis prerequisites
Currently, Elixir code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Elixir code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 293 of 610

1.25.2. Elixir translation syntax
To include Elixir code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Elixir code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.ex"

Important

Supported file extensions for the Elixir source files are: .ex , .exs .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 294 of 610

1.26. Analyzing Erlang code
This section describes how to analyze Erlang projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Erlang analysis prerequisites

Erlang translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 295 of 610

1.26.1. Erlang analysis prerequisites
Currently, Erlang code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Erlang code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 296 of 610

1.26.2. Erlang translation syntax
To include Erlang code for analysis using AI-powered SAST, include all source files

that you want to analyze.

Use the following basic command-line syntax to analyze Erlang code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.erl"

Important

Supported file extensions for the Erlang source files are: .erl , .hrl .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 297 of 610

1.27. Analyzing Lua code
This section describes how to analyze Lua projects. For projects combined with other

files, see the relevant section for those languages.

This section contains the following topics:

Lua analysis prerequisites

Lua translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 298 of 610

1.27.1. Lua analysis prerequisites
Currently, Lua code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Lua code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 299 of 610

1.27.2. Lua translation syntax
To include Lua code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Lua code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.lua"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 300 of 610

1.28. Analyzing Salesforce Apex and
Visualforce code
This section contains the following topics:

Apex and Visualforce translation prerequisites

Apex and Visualforce command-line syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 301 of 610

1.28.1. Apex and Visualforce translation
prerequisites
To translate Apex and Visualforce projects, make sure that all the source code to scan

is available on the same machine where you have installed OpenText SAST.

To scan your custom Salesforce® app, download it to your local computer from your

Salesforce organization (org) where you develop and deploy it. The downloaded

version of your app consists of:

Apex classes in files with the .cls extension

Visualforce web pages in files with the .page extension

Apex code files called database “trigger” functions in files with the .trigger
extension

Visualforce component files in files with the .component extension

Objects in files with the .object extension

Use the Ant Migration Tool available on the Salesforce website to download your app

from your org in the Salesforce cloud to your local computer. Make sure that the

project manifest files are set up correctly for the specified target in your build.xml
file. For example, the following package.xml manifest file provides OpenText SAST

with all classes, custom objects, pages, and components.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 302 of 610

<?xml version="1.0" encoding="UTF-8"?>

<Package xmlns=http://soap.sforce.com/2006/04/metadata>

 <types>

 <members>*</members>

 <name>ApexClass</name>

 </types>

 <types>

 <members>*</members>

 <name>ApexTrigger</name>

 </types>

 <types>

 <members>*</members>

 <name>ApexPage</name>

 </types>

 <types>

 <members>*</members>

 <name>ApexComponent</name>

 </types>

 <types>

 <members>*</members>

 <name>CustomObject</name>

 </types>

 <version>55.0</version>

</Package>

Configure the retrieve targets using the Ant Migration Tool documentation. If your

organization uses any apps from the app exchange, make sure that these are

downloaded as packaged targets.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 303 of 610

1.28.2. Apex and Visualforce command-
line syntax
The basic command-line syntax to translate Apex and Visualforce code is:

sourceanalyzer -b <build_id> <files>

where <files> is an Apex or Visualforce file or a path to the source files.

Important

Supported file extensions for the source files are: .cls , .component ,
.trigger , .object , and .page .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 304 of 610

1.29. Analyzing ABAP code
ABAP code translation requires additional preparation steps to extract the code from

the SAP® database and prepare it for scanning. See Importing the Transport Request

for more information. This section assumes you have a basic understanding of SAP

and ABAP.

This section contains the following topics:

About downloading source files

Importing the transport request

Adding OpenText SAST to your Favorites list

Running the Fortify ABAP Extractor

Uninstalling the Fortify ABAP Extractor

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 305 of 610

1.29.1. About downloading source files
To translate ABAP code, the Fortify ABAP Extractor program downloads source files

to the presentation server, and optionally, starts OpenText SAST. You need to use an

account with permission to download files to the local system and execute operating

system commands.

Because the extractor program is executed online, you might receive a max dialog

work process time reached message if the volume of source files selected for

extraction exceeds the allowable process run time. To work around this, download

large projects as a series of smaller Extractor tasks. For example, if your project

consists of four different packages, download each package separately into the same

project directory. If the exception occurs frequently, work with your SAP Basis

administrator to increase the maximum time limit (rdisp/max_wprun_time).

When a PACKAGE is extracted from ABAP, the Fortify ABAP Extractor extracts

everything from TDEVC with a parentcl field that matches the package name. It

then recursively extracts everything else from TDEVC with a parentcl field equal to

those already extracted from TDEVC . The field extracted from TDEVC is
devclass .

The devclass values are treated as a set of program names and handled the same

way as a program name, which you can provide.

Programs are extracted from TRDIR by comparing the name field with either:

The program name specified in the selection screen

The list of values extracted from TDEVC if a package was provided

The rows from TRDIR are those for which the name field has the given program

name and the expression LIKE programname is used to extract rows.

This final list of names is used with READ REPORT to get code out of the SAP

system. This method reads classes and methods out as well as merely REPORTS , for

the record.

Each READ REPORT call produces a file in the temporary folder on the local system.

OpenText SAST translates and scans this set of files to produce an FPR file that you

can open with Fortify Audit Workbench.

ABAP Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 306 of 610

1.29.1.1. INCLUDE processing
As source code is downloaded, the Fortify ABAP Extractor detects INCLUDE
statements in the source. When found, it downloads the include targets to the local

machine for analysis.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 307 of 610

1.29.2. Importing the transport request
To scan ABAP code, you need to import the Fortify ABAP Extractor transport request

on your SAP Server. You can find the transport request in

<sast_install_dir>/Tools/SAP_Extractor.zip .

The Fortify ABAP Extractor package, SAP_Extractor.zip , contains the following files:

K900<release_number>.<system_id>
R900<release_number>.<system_id>

These files make up the SAP transport request that you must import into your SAP

system from outside your local Transport Domain. Have your SAP administrator or an

individual authorized to install transport requests on the system import the transport

request. These files contain a program, a transaction (YSCA), and the program user

interface. After you import them into your system, you can extract your code from the

SAP database and prepare it for OpenText SAST scanning.

Installation note

If you get the transport request import error: Install release does not match the

current version , then the transport request installation has failed. See Software

requirements for supported ABAP versions.

To try to resolve this issue, perform the following steps:

1. Re-run the transport request import.

The Import Transport Request dialog box opens.

2. Select the Options tab.

3. Select the Ignore Invalid Component Version check box.

4. Complete the import procedure.

If this does not resolve the issue or if your system runs on an SAP version with a

different table structure, OpenText recommends that you export your ABAP file

structure using your own technology so that OpenText SAST can scan the

ABAP code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 308 of 610

1.29.3. Adding OpenText SAST to your
Favorites list
Adding OpenText SAST to your Favorites list is optional, but doing so can make it

quicker to access and start OpenText SAST scans. The following steps assume that

you use the user menu in your day-to-day work. If your work is done from a different

menu, add the Favorites link to the menu that you use. Before you create the

OpenText SAST entry, make sure that the SAP server is running and you are in the

SAP Easy Access area of your web-based client.

To add OpenText SAST to your Favorites list:

1. From the SAP Easy Access menu, type S000 in the transaction box.

The SAP Menu opens.

2. Right-click the Favorites folder and select Insert transaction.

The Manual entry of a transaction dialog box opens.

3. Type YSCA in the Transaction Code box.

4. Click the green check mark icon.

The Extract ABAP code and launch SCA item appears in the Favorites list.

5. Click the Extract ABAP code and launch SCA link to start the Fortify

ABAP Extractor.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 309 of 610

1.29.4. Running the Fortify ABAP
Extractor
To run the Fortify ABAP Extractor:

1. Start the Fortify ABAP Extractor from the Favorites link, the transaction code, or

manually start the Extractor object.

This opens the Fortify ABAP Extractor.

2. Select the code to download.

Provide the start and end name for the range of software components,

packages, programs, or BSP applications that you want to scan.

Note

You can specify multiple objects or ranges.

3. Provide the OpenText SAST-specific parameters described in the following table.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 310 of 610

Field Description

FPR File Path
(Optional) Type or select the

directory where you want to store

the scan results file (FPR). Include

the name for the FPR file in the path

name. You must provide the FPR file

path to automatically scan the

downloaded code on the same

machine where you are running the

extraction process.

Working Directory
Type or select the directory where

you want to store the extracted

source code.

Build-ID (Optional) Type the build ID for the

scan. OpenText SAST uses the build

ID to identify the translated source

code, which is necessary to scan

the code. You must specify the build

ID to automatically translate the

downloaded code on the same

machine where you are running the

extraction process.

Translation Parameters (Optional) Type any additional

OpenText SAST command-line

translation options. You must specify

translation options to automatically

translate the downloaded code on

the same machine where you are

running the extraction process or to

customize the translation options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 311 of 610

Field Description

Scan Parameters
(Optional) Type any OpenText SAST

command-line scan options. You

must specify scan options to scan

the downloaded code automatically

on the same machine where you are

running the extraction process or to

customize the scan options.

ZIP File Name
(Optional) Type a ZIP file name if you

want your output in a compressed

package.

Maximum Call-chain Depth A global SAP-function F is not

downloaded unless F was explicitly

selected or unless F can be reached

through a chain of function calls that

start in explicitly-selected code and

whose length is this number or less.

OpenText recommends that you do

not specify a value greater than 2

unless directed to do so by

Customer Support.

4. Provide action information described in the following table.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 312 of 610

Field Description

Download Select the Download check box to

have OpenText SAST download the

source code extracted from your

SAP database.

Build Select the Build check box to have

OpenText SAST translate all

downloaded ABAP code and store it

using the specified build ID. This

action requires that you have an

installed version of OpenText SAST

on the machine where you are

running the Fortify ABAP Extractor. It

is often easier to move the

downloaded source code to a

system where OpenText SAST is

installed.

Scan Select the Scan check box to have

OpenText SAST run a scan of the

specified build ID. This action

requires that the translate (build)

action was previously performed.

This action requires that you have an

installed version of OpenText SAST

on the machine where you are

running the Fortify ABAP Extractor. It

is often easier to move the

downloaded source code to a

predefined OpenText SAST machine.

Launch AWB Select the Launch AWB check box

to start Fortify Audit Workbench and

open the specified FPR file.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 313 of 610

Field Description

Create ZIP File Select the Create ZIP File check box

to compress the output. You can

also manually compress the output

after the source code is extracted

from your SAP database.

Export SAP standard code Select the Export SAP standard

code check box to export SAP

standard code as well as custom

code.

5. Click Execute.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 314 of 610

1.29.5. Uninstalling the Fortify ABAP
Extractor
To uninstall the ABAP extractor:

1. In ABAP Workbench, open the Object Navigator.

2. Select package Y_FORTIFY_ABAP.

3. Expand the Programs tab.

4. Right-click the following element, and then select Delete.

Program: Y_FORTIFY_SCA

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 315 of 610

1.30. Analyzing COBOL code
The COBOL translation runs on Windows systems only and supports modern

COBOL dialects. Alternatively, you can use the legacy COBOL translation (see Using

the Legacy COBOL Translation).

For a list of supported technologies for translating COBOL code, see Supported

languages. OpenText SAST does not currently support custom rules for COBOL

applications.

Note

To scan COBOL with OpenText SAST, you must have an OpenText SAST
license file that specifically includes COBOL scanning capabilities.
Contact Customer Support for more information about how to obtain the
required license file.

This section contains the following topics:

Preparing COBOL source and copybook files for translation

COBOL command-line syntax

Using Legacy COBOL translation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 316 of 610

1.30.1. Preparing COBOL source and
copybook files for translation
Before you can analyze a COBOL program, you must copy the following program

components to the Windows system where you run OpenText SAST:

COBOL source code

OpenText strongly recommends that your COBOL source code files have

extensions .CBL , .cbl , .COB , or .cob . If your source code files do not have

extensions or have non-standard extensions, you must follow the instructions in

Translating COBOL Source Files Without File Extensions and Translating

COBOL Source Files with Arbitrary File Extensions.

All copybook files that the COBOL source code uses

This includes All SQL INCLUDE files that the COBOL source code references (a

SQL INCLUDE file is technically a copybook file)

Important

The copybook files must have the extension .CPY or .cpy .

If your COBOL source code contains:

COPY FOO

or

EXEC SQL INCLUDE FOO END-EXEC

then FOO is the name of a COBOL copybook and the corresponding copybook

file has the name FOO.CPY or FOO.cpy .

OpenText recommends that you place your COBOL source code files in a directory

called sources and your copybook files in a directory called copybooks . Create

these directories at the same level.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 317 of 610

1.30.2. COBOL command-line syntax
The basic syntax used to translate a single COBOL source code file is:

sourceanalyzer -b <build_id><path>

The basic syntax used to scan a translated COBOL program and save the analysis

results in an FPR file is:

sourceanalyzer -b <build_id> -scan -f <results>.fpr

See Also

Specifying Files and Directories

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 318 of 610

1.30.2.1. Translating COBOL source files
without file extensions
If you have COBOL source files (not copybook files) retrieved from a mainframe

without .COB or .CBL file extensions (which is typical for COBOL file names), then

you must include the following in the translation command line:

-noextension-type COBOL

The following example command translates COBOL source code without file

extensions:

sourceanalyzer ‐b MyProject ‐noextension‐type COBOL ‐copydirs

copybooks sources

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 319 of 610

1.30.2.2. Translating COBOL source files
with arbitrary file extensions
If you have COBOL source files with an arbitrary extension .xyz , then you must

include the following in the translation command line:

-Dcom.fortify.sca.fileextensions.xyz=COBOL

You must also include the expression *.xyz in the file or directory specifier, if any

(see Specifying Files and Directories).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 320 of 610

1.30.2.3. COBOL command-line options
The following table describes the COBOL command-line options. To use legacy

COBOL translation, see Legacy COBOL Translation Command-Line Options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 321 of 610

COBOL option Description

-copydirs <dirs> Specifies one or more semicolon-

separated directories where OpenText

SAST looks for copybook files.

Note

This option does not
accept wildcards.

Equivalent property name:

com.fortify.sca.CobolCopyDirs

-dialect <dialect> Specifies the COBOL dialect. The valid

values for <dialect> are COBOL390

and MICROFOCUS . The dialect value

is case insensitive. The default value is
COBOL390 .

Equivalent property name:

com.fortify.sca.CobolDialect

-checker-directives <directives> Specifies one or more semicolon-

separated COBOL checker directives.

Note

This option is intended for
advanced users of
OpenText™ Server Express.

Equivalent property name:

com.fortify.sca.CobolCheckerDirective

s

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 322 of 610

1.30.3. Using Legacy COBOL translation
Use the legacy COBOL translation if either of the following is true:

You run OpenText SAST on a non-Windows operating system.

For supported non-Windows platforms and architectures, see Platforms and

architectures.

Your COBOL dialect is different than what is supported by the default

COBOL translation (see the -dialect option in COBOL Command-Line Options).

Prepare the COBOL source code and copybook files as described in Preparing

COBOL Source and Copybook Files for Translation and use the command-line syntax

described in COBOL Command-Line Syntax. Note that the legacy COBOL translation

accepts copybook files with or without file extensions. If the copybook files have file

extensions, use the -copy-extensions command-line option (see Legacy

COBOL Translation Command-Line Options).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 323 of 610

1.30.3.1. Legacy COBOL translation
command-line options
The following table describes the command-line options for the legacy

COBOL translation.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 324 of 610

Legacy COBOL option Description

-cobol-legacy
Specifies translation of COBOL code

using legacy COBOL translation. This

option is required to enable legacy

COBOL translation.

Equivalent Property Name:

com.fortify.sca.CobolLegacy

-copydirs <dirs> Specifies one or more semicolon- or

colon-separated directories where

OpenText SAST looks for copybook

files.

Equivalent Property Name:

com.fortify.sca.CobolCopyDirs

-copy-extensions <ext> Specifies one or more semicolon- or

colon-separated copybook file

extensions.

Equivalent Property Name:

com.fortify.sca.CobolCopyExtensions

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 325 of 610

Legacy COBOL option Description

-fixed-format Specifies fixed-format COBOL to direct

OpenText SAST to only look for source

code between columns 8–72 in all lines

of code. The default is free-format.

IBM® Enterprise COBOL code is

typically fixed-format. The following

are indications that you might need the
-fixed-format option:

The COBOL translation appears to

hang indefinitely

OpenText SAST reports numerous

parsing errors in the

COBOL translation

Equivalent Property Name:

com.fortify.sca.CobolFixedFormat

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 326 of 610

1.31. Analyzing SQL
On Windows (and Linux for .NET projects only), OpenText SAST assumes that files

with the .sql extension are T-SQL rather than PL/SQL. If you have PL/SQL files with

the .sql extension on Windows, you must configure OpenText SAST to treat them as

PL/SQL.

The basic syntax to translate and scan PL/SQL is:

sourceanalyzer -b <build_id> -sql-language PL/SQL <files>

sourceanalyzer -b <build_id> -sql-language PL/SQL -scan -f

<results>.fpr

Alternatively, you can change the default behavior for files with the .sql extension. In

the fortify-sca.properties file, set the com.fortify.sca.fileextensions.sql property to
PLSQL .

The basic syntax to translate and scan T-SQL is:

sourceanalyzer -b <build_id> -sql-language TSQL <files>

sourceanalyzer -b <build_id> -scan -f <results>.fpr

SQL Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 327 of 610

1.31.1. PL/SQL command-line example
The following example commands translate and scan two PL/SQL files:

sourceanalyzer -b MyProject -sql-language PL/SQL x.pks y.pks

sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f

MyResults.fpr

The following example commands translate and scan all PL/SQL files in the sources

directory:

sourceanalyzer -b MyProject -sql-language PL/SQL

"sources/**/*.pks"

sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f

MyResults.fpr

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 328 of 610

1.31.2. T-SQL command-line example
The following example translates two T-SQL files:

sourceanalyzer -b MyProject x.sql y.sql

The following example translates all T-SQL files in the sources directory:

sourceanalyzer -b MyProject "sources***.sql"

Note

This example assumes the com.fortify.sca.fileextensions.sql property in
fortify-sca.properties is set to TSQL , which is the property's default
value.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 329 of 610

1.32. Analyzing Infrastructure as Code
(IaC)
OpenText SAST understands Azure Resource Manager (ARM), Bicep, AWS

CloudFormation, and HCL templates.

Note

HCL analysis support is specific to Terraform and supported cloud
provider Infrastructure as Code (IaC) configurations.

For best results, make sure that the template files are deployment valid. The templates

must not contain:

OpenText recommends that AWS CloudFormation file name extensions are .json ,

.yaml , .template , or .txt . OpenText SAST supports other extensions only if they

are not commonly used by other languages or file types (such as .java or .html).

By default, OpenText SAST translates files with the HCL extensions .hcl and .tf .

ARM translation command-line examples

Translate an ARM template:

sourceanalyzer -b MyProject ArmTemplate.json

Translate all ARM templates in a directory:

sourceanalyzer -b MyProject "src/**/*.json"

Bicep translation command-line examples

Validation errors that are static and locally detectable (for example, type errors or

references to undefined variables or functions).

Predeployment errors that occur during template interpretation, but before any

resources are deployed or modified (for example, invalid array indexing

operations).

Deployment errors that occur in the cloud (for example, dynamically referencing a

non-existent resource).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 330 of 610

Translate a single Bicep template:

sourceanalyzer -b MyProject BicepTemplate.bicep

Translate all Bicep templates in a directory:

sourceanalyzer -b MyProject "src/**/*.bicep"

Important

Bicep requires an Internet connection on the scan machine to download
dependencies to get optimal results. Using a scan machine without
Internet connection may results in suboptimal results.

AWS CloudFormation translation command-line
examples

Translate AWS CloudFormation templates that have different extensions:

sourceanalyzer -b MyProject CFTemplateA.template

CFTemplateB.yaml CFTemplateC.json CFTemplateD.customext

Translate all AWS CloudFormation templates in a directory that have the .template

extension:

sourceanalyzer -b MyProject "src/**/*.template"

Translate all AWS CloudFormation templates in a directory that have either the .json
or .yaml extension:

sourceanalyzer -b MyProject "src/**/*.json" "src/**/*.yaml"

HCL translation command-line examples

Translate two HCL templates with different extensions:

sourceanalyzer -b MyProject HCLTemplateA.hcl HCLTemplateB.tf

Translate all HCL templates in a directory:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 331 of 610

sourceanalyzer -b MyProject "src/**/*.tf" "src/**/*.hcl"

Important

Terraform requires an to internet connection on the scan machine to
download dependencies to get optimal results. Using a scan machine
without internet connection may results in suboptimal results.

Translating JSON

Translating YAML

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 332 of 610

1.33. Analyzing JSON
By default, OpenText SAST translates files with the JSON extension .json as JSON.

The following example translates a JSON file:

sourceanalyzer -b MyProject x.json

The following example translates all JSON files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.json"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 333 of 610

1.34. Analyzing YAML
By default, OpenText SAST translates files with the YAML extensions .yaml and

.yml . The following example translates two YAML files with different file extensions:

sourceanalyzer -b MyProject x.yaml y.yml

The following example translates all YAML files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.yaml"

"sources/**/*.yml"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 334 of 610

1.35. Analyzing Dockerfiles
By default, OpenText SAST recognizes the files as Dockerfiles if they are named in

one of the following formats: Dockerfile* , dockerfile* , *.Dockerfile , and

*.dockerfile .

Note

You can modify the file name extension used to detect Dockerfiles using
the com.fortify.sca.fileextensions property. See Translation and Analysis
Phase Properties.

OpenText SAST accepts the following escape characters in Dockerfiles: backslash

(\) and backquote (`). If the escape character is not set in the Dockerfile, then

OpenText SAST assumes that the backslash is the escape character.

The syntax to translate a directory that contains Dockerfiles is shown in the following

example:

sourceanalyzer -b <build_id> <dir>

If the Dockerfile is malformed, OpenText SAST writes an error to the log file to

indicate that the file cannot be parsed and skips the analysis of the Dockerfile. The

following is an example of the error written to the log:

Unable to parse dockerfile ProjA.Dockerfile, error on Line 1:20:

mismatched input '\n' expecting {LINE_EXTEND, WHITESPACE}

Unable to parse config file

C:/Users/jsmith/MyProj/docker/dockerfile/ProjA.Dockerfile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 335 of 610

1.36. Analyzing Bash code
This section describes how to analyze Bash projects. For projects combined with

other files, see the relevant section for those languages.

This section contains the following topics:

Bash analysis prerequisites

Bash translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 336 of 610

1.36.1. Bash analysis prerequisites
Currently, Bash code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, Bash code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 337 of 610

1.36.2. Bash translation syntax
To include Bash code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze Bash code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/*.sh"

Important

Supported file extensions for the Bash source files are: .sh , .bash .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 338 of 610

1.37. Analyzing PowerShell code
This section describes how to analyze PowerShell projects. For projects combined

with other files, see the relevant section for those languages.

This section contains the following topics:

PowerShell analysis prerequisites

PowerShell translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 339 of 610

1.37.1. PowerShell analysis prerequisites
Currently, PowerShell code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, PowerShell code will only be scanned via

Regular Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 340 of 610

1.37.2. PowerShell translation syntax
To include PowerShell code for analysis using AI-powered SAST, include all source

files that you want to analyze.

Use the following basic command-line syntax to analyze PowerShell code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/* .ps1 "

Important

Supported file extensions for the PowerShell source files are: .ps1 ,
.psm1 , .psd1 , .psd1xml .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 341 of 610

1.38. Analyzing R code
This section describes how to analyze R projects. For projects combined with other

files, see the relevant section for those languages.

This section contains the following topics:

R analysis prerequisites

R translation syntax

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 342 of 610

1.38.1. R analysis prerequisites
Currently, R code is only compatible with AI-powered SAST. For more

information about configuring scans for AI-powered SAST, see Analyzing using AI-

powered SAST.

If AI-powered SAST is not configured, R code will only be scanned via Regular

Expression Analysis and users may see suboptimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 343 of 610

1.38.2. R translation syntax
To include R code for analysis using AI-powered SAST, include all source files that

you want to analyze.

Use the following basic command-line syntax to analyze R code:

sourceanalyzer -b <build_id> <files> | <file_dir_specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build_id> "**/* .r "

Important

Supported file extensions for the R source files are: .r , .R .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 344 of 610

1.39. Analyzing Solidity code
The basic command-line syntax to translate and scan Solidity code is:

sourceanalyzer -b <build_id> <files>

sourceanalyzer -b <build_id> -scan -f <results>.fpr

Importing dependencies

OpenText SAST translation only supports import statements for files with relative and

absolute paths. Import statements for libraries is not supported.

Managing compiler versions

OpenText SAST downloads compilers that are referenced in the code with the pragma

statement from the Solidity compiler repository. By default, OpenText SAST

downloads Solidity compilers to ${flight.workdir}/solidity .

If a file does not contain a pragma statement, then the default of ^0.8.0 is used. You

can specify different default compiler version to use in the analysis by including the
flight.solidity.defaultCompilerVersion property on the command line. The version

you specify must exist in the Solidity compiler repository. For example:

sourceanalyzer -b MyProject ./

sourceanalyzer -b MyProject -scan -

Dflight.solidity.defaultCompilerVersion=0.8.16 -f MyResults.fpr

If a proxy is required for the connection to download Solidity compilers, include the

proxy information with -Dhttps.proxyHost and -Dhttps.proxyPort . For example:

sourceanalyzer -b MyProject ./

sourceanalyzer -b MyProject -scan -Dhttps.proxyHost=MyProxyHost

-Dhttps.proxyPort=1234 -f MyResults.fpr

You can add flight.solidity.defaultCompilerVersion to the fortify-sca.properties file.

See Also

OpenText SAST Properties Files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 345 of 610

1.40. Analyzing other languages and
configurations
This section contains the following topics:

Analyzing Flex and ActionScript

Analyzing ColdFusion code

Analyzing ASP/VBScript virtual roots

Classic ASP command-line example

VBScript command-line example

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 346 of 610

1.40.1. Analyzing Flex and ActionScript
The basic command-line syntax to translate ActionScript is:

sourceanalyzer -b <build_id> -flex-libraries <libs> <files>

where:

<libs> is a semicolon-separated (Windows) or a colon-separated (non-Windows) list

of library names to which you want to "link" and <files> are the files to translate.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 347 of 610

1.40.1.1. Flex and ActionScript command-
line options
Use the following command-line options to translate Flex files. You can also specify

this information in the properties configuration file (fortify-sca.properties) as noted

in each description.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 348 of 610

Flex and ActionScript option Description

-flex-sdk-root <dir> Specifies the location of the root of a

valid Flex SDK. This directory must

contain a frameworks folder that

contains a flex-config.xml file. It must

also contain a bin folder that contains

an MXMLC executable.

Equivalent property name:

com.fortify.sca.FlexSdkRoot

-flex-libraries <libs> Specifies a semicolon-separated

(Windows) or a colon-separated (non-

Windows) list of library names to which

you want to link. In most cases, this list

includes flex.swc , framework.swc ,

and playerglobal.swc (usually found

in frameworks/libs/ in your Flex SDK

root).

Note

You can specify SWC or
SWF files as Flex libraries
(SWZ is not currently
supported).

Equivalent property name:

com.fortify.sca.FlexLibraries

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 349 of 610

Flex and ActionScript option Description

-flex-source-roots <dirs> Specifies a semicolon-separated

(Windows) or a colon-separated (non-

Windows) list of root directories where

MXML sources are located. Normally,

these contain a subfolder named
com .

For example, if the Flex source root

specified is foo/bar/src , then
foo/bar/src/com/fortify/manager/util/F

oo.mxml is transformed into an object

named com.fortify.manager.util.Foo

(an object named Foo in the package
com.fortify.manager.util).

Equivalent property name:

com.fortify.sca.FlexSourceRoots

Note

The -flex-sdk-root and –flex-source-roots options are primarily for
MXML translation, and are optional if you are scanning pure ActionScript.
Use –flex-libraries for to resolve all ActionScript linked libraries.

OpenText SAST translates MXML files into ActionScript, and then runs them through

an ActionScript parser. The generated ActionScript is simple to analyze; not

rigorously correct like the Flex runtime model. Consequently, you might get parse

errors with MXML files. For instance, the XML parsing might fail, translation to

ActionScript might fail, and the parsing of the resulting ActionScript might also fail. If

you see any errors that do not have a clear connection to the original source code,

notify Customer Support.

Flex and ActionScript Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 350 of 610

1.40.1.2. ActionScript command-line
examples
The following examples provide command-line syntax to translation ActionScript.

Example 1

The following example is for a simple application that contains only one MXML file

and a single SWF library (MyLib.swf):

sourceanalyzer -b MyFlexApp -flex-libraries lib/MyLib.swf -flex-

sdk-root /home/myself/flex-sdk/ -flex-source-roots .

my/app/FlexApp.mxml

This identifies the location of the libraries to include and the Flex SDK and the Flex

source root locations. The single MXML file, located in /my/app/FlexApp.mxml ,

results in the translation of the MXML application as a single ActionScript class called
FlexApp and located in the my.app package.

Example 2

The following example is for an application in which the source files are relative to the

src directory. It uses a single SWF library, MyLib.swf , and the Flex and framework

libraries from the Flex SDK:

sourceanalyzer -b MyFlexProject -flex-sdk-root /home/myself/flex-sdk/

-flex-source-roots src/ -flex-libraries lib/MyLib.swf "src/**/*.mxml" "src/**/*.as"

This example locates the Flex SDK and uses file specifiers to include the .as and

.mxml files in the src folder. It is not necessary to explicitly specify the .SWC files

located in the –flex-sdk-root , although this example does so for the purposes of

illustration. OpenText SAST automatically locates all .SWC files in the specified Flex

SDK root, and it assumes that these are libraries intended for use in translating

ActionScript or MXML files.

Example 3

In this example, the Flex SDK root and Flex libraries are specified in the properties file

because typing the information for each sourceanalyzer run is time consuming and

the data does not change often. Divide the application into two sections and store

them in folders: a main section folder and a modules folder. Each folder contains a
src folder where the paths start. File specifiers contain wild cards to pick up all the

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 351 of 610

.mxml and .as files in both src folders. An MXML file in

main/src/com/foo/util/Foo.mxml is translated as an ActionScript class named Foo
in the package com.foo.util , for example, with the source roots specified here:

sourceanalyzer -b MyFlexProject -flex-source-roots

main/src:modules/src "./main/src/**/*.mxml" "./main/src/**/*.as"

"./modules/src/**/*.mxml" "./modules/src/**/*.as"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 352 of 610

1.40.1.3. Handling resolution warnings
To see all warnings that were generated during translation, type the following

command before you start the scan phase:

sourceanalyzer -b <build_id> -show-build-warnings

ActionScript warnings

You might receive a message similar to the following:

The ActionScript front end was unable to resolve the following

imports:

a.b at y.as:2. foo.bar at somewhere.as:5. a.b at foo.mxml:8.

This error occurs when OpenText SAST cannot find all the required libraries. You

might need to specify additional SWC or SWF Flex libraries (using the -flex-libraries
option or the com.fortify.sca.FlexLibraries property) so that OpenText SAST can

complete the analysis.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 353 of 610

1.40.2. Analyzing ColdFusion code
To treat undefined variables in a CFML page as tainted, uncomment the following line

in <sast_install_dir>/Core/config/fortify-sca.properties :

#com.fortify.sca.CfmlUndefinedVariablesAreTainted=true

This instructs the Dataflow Analyzer to watch out for register-globals-style

vulnerabilities. However, enabling this property interferes with Dataflow Analyzer

findings in which a variable in an included page is initialized to a tainted value in an

earlier-occurring included page.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 354 of 610

1.40.2.1. ColdFusion command-line
syntax
The basic command-line syntax to translate ColdFusion source code is:

sourceanalyzer -b <build_id> -source-base-dir <dir> <files> |

<file_specifiers>

where:

<build_id> specifies a build ID for the project

<dir> specifies the root directory of the web application

<files> | <file_specifiers> specifies the CFML source code files

For a description of how to use <file_specifiers> , see Specifying Files.

Note

OpenText SAST calculates the relative path to each CFML source file with
the
-source-base-dir directory as the starting point. OpenText SAST uses
these relative paths when it generates instance IDs. If you move the entire
application source tree to a different directory, the OpenText SAST-
generated instance IDs remain the same if you specify an appropriate
parameter for the -source-base-dir option.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 355 of 610

1.40.2.2. ColdFusion (CFML) command-
line options
The following table describes the CFML options.

ColdFusion option Description

-source-base-dir

<web_app_root_dir> <files> |

<file_specifiers>

The web application root directory.

Equivalent property name:

com.fortify.sca.SourceBaseDir

ColdFusion (CFML) Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 356 of 610

1.40.3. Analyzing ASP/VBScript virtual
roots
OpenText SAST allows you to handle ASP virtual roots. For web servers that use

virtual directories as aliases that map to physical directories, OpenText SAST enables

you to use an alias.

For example, you can have virtual directories named Include and Library that refer

to the physical directories C:\WebServer\CustomerOne\inc and

C:\WebServer\CustomerTwo\Stuff , respectively.

The following example shows the ASP/VBScript code for an application that uses

virtual includes:

<!--#include virtual="Include/Task1/foo.inc"-->

For this example, the previous ASP code refers to the file in the following physical

location:

C:\Webserver\CustomerOne\inc\Task1\foo.inc

The real directory replaces the virtual directory name Include in this example.

Accommodating virtual roots

To provide the mapping of each virtual directory to OpenText SAST, you must set the

com.fortify.sca.ASPVirtualRoots.name_of_virtual_directory property in your

OpenText SAST command-line invocation as shown in the following example:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.

<virtual_directory>=

<full_path_to_corresponding_physical_directory>

Note

On Windows, if the physical path includes spaces, you must enclose the
property setting in quotes:
sourceanalyzer "-Dcom.fortify.sca.ASPVirtualRoots.<virtual_directory>=

<full_path_to_corresponding_physical_directory>"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 357 of 610

To expand on the example in the previous section, pass the following property value

to OpenText SAST:

-

Dcom.fortify.sca.ASPVirtualRoots.Include="C:\WebServer\CustomerO

ne\inc"

-

Dcom.fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerT

wo\Stuff"

This maps Include to C:\WebServer\CustomerOne\inc and Library to
C:\WebServer\CustomerTwo\Stuff .

When OpenText SAST encounters the #include directive:

<!-- #include virtual="Include/Task1/foo.inc" -->

OpenText SAST determines if the project contains a physical directory named

Include . If there is no such physical directory, OpenText SAST looks through its

runtime properties and finds the -Dcom.fortify.sca.ASPVirtualRoots.Include=

"C:\WebServer\CustomerOne\inc" setting. OpenText SAST then looks for this file:

C:\WebServer\CustomerOne\inc\Task1\foo.inc .

Alternatively, you can set this property in the fortify-sca.properties file located in
<sast_install_dir>\Core\config . You must escape the backslash character (\) in the

path of the physical directory as shown in the following example:

com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerT

wo\\Stuff

com.fortify.sca.ASPVirtualRoots.Include=C:\\WebServer\\CustomerO

ne\\inc

Note

The previous version of the ASPVirtualRoot property is still valid. You can
use it on the OpenText SAST command line as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\WebServer\CustomerTwo\Stuff;

C:\WebServer\CustomerOne\inc

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 358 of 610

This prompts OpenText SAST to search through the listed directories in the order

specified when it resolves a virtual include directive.

Using virtual roots example

You have a file as follows:

C:\files\foo\bar.asp

To specify this file, use the following include:

<!-- #include virtual="/foo/bar.asp">

Then set the virtual root in the sourceanalyzer command as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\files\foo

This strips the /foo from the front of the virtual root. If you do not specify foo in the
com.fortify.sca.ASPVirtualRoots property, then OpenText SAST looks for
C:\files\bar.asp and fails.

The sequence to specify virtual roots is as follows:

1. Remove the first part of the path in the source.

2. Replace the first part of the path with the virtual root as specified on the

command line.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 359 of 610

1.40.4. Classic ASP command-line
example
To translate a single file classic ASP written in VBScript named MyASP.asp , type:

sourceanalyzer -b mybuild "MyASP.asp"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 360 of 610

1.40.5. VBScript command-line example
To translate a VBScript file named myApp.vb , type:

sourceanalyzer -b mybuild "myApp.vb"

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 361 of 610

1.41. Analyzing Library code
Library code refers to reusable software components or modules that are designed to

be integrated into other applications. Unlike application code, which contains the

business logic and entry points of a specific program, library code is typically:

As library code is intended to be called from other application code, it typically will

not provide interfaces for user-controllable data itself, minimizing the results that

SAST technologies can typically find.

Library code and application code comparision

Feature Application code Library code

Entry point Typically, yes No

Purpose Implement business

logic

Provides reusable

functionality

Usage Standalone or deployed Embedded in other apps

Analysis focus Full program behavior API exposure and usage

patterns

Analyzing library code effectively

To scan library code effectively, you should configure the OpenText SAST to treat the

code as a library.

Translate the code as normal as per the language. Go to the appropriate section of

this user guide for finding more information about analyzing the appropriate language.

Generic and reusable across multiple projects

Lacks a main entry point (e.g., main() method)

Provides functionality that other applications consume (e.g., utility classes,

frameworks, SDKs)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 362 of 610

Once ready to scan, set the following property during the scan step:

com.fortify.sca.rules.IsLibrary=true

When this property is enabled, the analysis engine understands to mimic calls from an

outside application calling the library code in order to provide a more thorough

analysis.

Other use cases

In addition to libraries, there are many declarative endpoint frameworks that make

application code appear similar to library code.

If your web API is using a framework that we do not currently have coverage for (see

[Supported technologies]), then enabling this property may also mimic coverage of

the framework, though it may also lead to some additional incorrect flows.

Note

This feature is currently supported only for Java code.

Caution

Enabling the property mimics outside code calling into the application,
vastly increasing the attack surface, which can lead to significantly more
issues and use more resources. This should generally not be enabled on
application code except for the stated use cases or unless advised to. In
addition, this property does not need to be enabled to support the many
declarative endpoint frameworks that we already have coverage for, such
as Spring Boot and JAX-RS.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 363 of 610

1.42. Scanning for Secrets
OpenText SAST scans are made up a series of analyzers, one of which is able to find

information generally across any file type. This enables OpenText SAST to find

information hidden in plain view such as secrets, and weaknesses that may be

vulnerable agnostic of programming language, such as using attacks involving

invisible control characters.

For more information on how to configure this, see Regular expression analysis.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 364 of 610

1.42.1. Regular expression analysis
Regular expression (regex) analysis provides the ability for using regular expression

rules to detect vulnerabilities in both file content and file names. This analysis can

detect vulnerable secrets such as passwords, keys, and credentials in project files.

Important

Regex analysis is language agnostic and therefore it might detect
vulnerabilities in file types that OpenText SAST does not officially support.

Regex analysis recursively examines all file paths and path patterns included in the

translation phase. Every file found is analyzed unless it is specifically excluded. To

manage the files that are included in regex analysis, the following options are

available:

Exclude any file or directory with the -exclude option in the translation phase.

For more information about this option, see Translation Options.

By default, regex analysis excludes all detectible binary files. To include binary

files in the analysis, add the following property to the fortify-sca.properties file

(or include this property on the command line using the -D option):

com.fortify.sca.regex.ExcludeBinaries = false

By default, regex analysis excludes files larger than 10 MB to ensure that the

scan time is acceptable. You can change the maximum file size (in megabytes)

with the following property:

com.fortify.sca.regex.MaxSize = <max_file_size_mb>

Regex analysis is enabled by default. To disable regex analysis, add the following

property to the fortify-sca.properties file or include it on the command line:

com.fortify.sca.regex.Enable = false

Regex Analysis Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 365 of 610

1.43. Optimizing results
This section provides guidelines and tips to optimize results when analyzing different

codebases with OpenText SAST.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 366 of 610

1.43.1. Applying a scan policy to the
analysis
For the analysis (scan) phase, you can specify a scan policy to help you identify the

most serious vulnerabilities so you can remediate the code quickly. The following

table describes the three provided scan policies.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 367 of 610

Policy name Description

security
This is the default scan policy, which

excludes issues related to code quality,

dataflow from sources that are typically

trusted, and issues that are typically

noisy from the analysis results. Use this

policy to focus code remediation on the

security issues.

devops
This scan policy expands on the

security policy, by excluding additional

issues that might be considered noise,

and reducing more low priority issues.

Use this scan policy when scan speed

is a priority, and developers review

results directly (without any

intermediate auditing). Issues that

remain after you apply this scan policy

are probably serious security issues

that require remediation.

Note

This devops scan policy
does not automatically
include any customization
made to the local security
scan policy.

classic This scan policy does not exclude any

issues. Use this scan policy to see all

issues, or if you prefer to filter issues

with project templates so it is easier to

see hidden issues.

To specify a scan policy for your analysis, include the -scan-policy (or -sc) option

in the analysis phase as shown in the following example:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 368 of 610

sourceanalyzer -b MyProject -scan -scan-policy devops -f

MyResults.fpr

Alternatively, you can specify the scan policy with the com.fortify.sca.ScanPolicy

property in the fortify-sca.properties file. For example:

com.fortify.sca.ScanPolicy=devops

Note

You can apply a filter file (see Excluding Issues with Filter Files) in addition to
a scan policy setting for an analysis. In this case, OpenText SAST applies
both the scan policy and the filter file to the analysis.

Creating custom scan policies

The scan policy files reside in the <sast_install_dir>/Core/config/scales directory.

There is one file for each scan policy. You can change the settings in these policy

files to customize your scan policies or you can create your own scan policy files. For

information about the syntax used for the scan policy files, see Excluding Issues with

Filter Files.

To create a custom scan policy file:

1. Go to <sast_install_dir>/Core/config/scales/ .

2. Open a text editor and create a file named scan-policy-<name>.txt , where

<name> is the name for your custom scan policy.

3. Add filters to the scan-policy-<name>.txt file and save it.

4. To use the custom scan policy for your analysis, type the command as shown in

the following example. In this example, the scan policy file name is scan-policy-

myscanpolicy.txt .

sourceanalyzer -b MyProject -scan -scan-policy myscanpolicy

-f MyResults.fpr

Alternatively, you can specify the custom scan policy in the fortify-

sca.properties file.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 369 of 610

See Also

Translation and Analysis Phase Properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 370 of 610

1.43.2. Excluding issues with filter files
You can create a file to filter out particular vulnerability instances, rules, and

vulnerability categories when you run the sourceanalyzer command. You specify the

file with the -filter analysis option.

A filter file is a text file that you can create with any text editor. You specify only the

filter items that you do not want in this file.

Note

The filter types described in this section apply to both filter files and scan
policy files (see Applying a Scan Policy to the Analysis).

The following table lists the available filter types and provides examples for each.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 371 of 610

Filter type Notes Examples

Category
Specifying only a

category will filter out all

subcategories

Note

OpenText
SAST applies
category
filters in the
initialization
phase before
any analysis
has taken
place.

Poor Error Handling

J2EE Bad Practices:

Leftover Debug Code

Instance ID An instance ID of a

specific issue

Note

OpenText
SAST applies
instance
ID filters
after the
analysis
phase.

6291C6A33303ED270C

269917AA8A1005

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 372 of 610

Filter type Notes Examples

Rule ID A rule ID that leads to the

reporting of a specific

issue

Note

OpenText
SAST applies
rule ID filters
in the
initialization
phase before
any analysis
has taken
place.

823FE039-A7FE-4AAD-

B976-9EC53FFE4A59

Priority1 The priority values in

ascending order are

low , medium , high ,

and critical .

priority <= low

priority < medium

Taint flags
Enclose taint flag

expressions in

parentheses. Use the

logical && , || , and !
operators to specify an

expression. For a list of

taint flags, see

OpenText™ Static
Application Security
Testing Custom Rules
Guide.

(SYSTEMINFO ||

EXCEPTIONINFO)

(WEB || (DATABASE &&

PRIVATE))

(NETWORK && !XSS)

Impact1
impact < 0.5

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 373 of 610

Filter type Notes Examples

Likelihood1
likelihood <= 1.5

Confidence1
confidence < 1.8

Probability1
probability <= 1.2

Accuracy1
accuracy <= 1.0

1For the priority and metadata filters, use less than (<) or less than or equal to (<=).

Composite Filters

When you specify a filter on different lines, OpenText SAST will apply each filter line

by line, one at a time. Additionally, you can combine them on one line and use

boolean logical operators (&& , || , !) and braces { } to group expressions to

create more advanced filters.

For example, if you want to filter out Cross-Site Scripting issues, given that the issue

had a confidence less than 4.0 , and the taint flags contained either DATABASE or

LDAP .

You can use the following filter:

{ Cross-Site Scripting && confidence < 4.0 } && (DATABASE ||

LDAP)

If any part of the composite filter is a filter type that can only run post-scan, it will run

post-scan regardless of it having items that typically filter pre-scan.

Note

Taint flag filters must be surrounded by parentheses regardless of curly
braces.

See Also

Filter File Example

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 374 of 610

1.43.2.1. Filter file example
As an example, the following output is from a scan of the EightBall.java sample. This

sample project is included in the OpenText_SAST_Fortify_Samples_<version>.zip
archive in the basic/eightball directory.

The following commands are executed to produce the analysis results:

sourceanalyzer -b eightball EightBall.java

sourceanalyzer -b eightball -scan

The following results show five detected issues:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 375 of 610

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value

: semantic]

EightBall.java(12) : Reader.read()

[6291C6A33303ED270C269917AA8A1005 : high : Path Manipulation :

dataflow]

EightBall.java(12) : ->new FileReader(0)

 EightBall.java(8) : <=> (filename)

 EightBall.java(8) : <->Integer.parseInt(0->return)

 EightBall.java(6) : <=> (filename)

 EightBall.java(4) : ->EightBall.main(0)

[176CC0B182267DD538992E87EF41815F : critical : Path Manipulation

: dataflow]

EightBall.java(12) : ->new FileReader(0)

 EightBall.java(6) : <=> (filename)

 EightBall.java(4) : ->EightBall.main(0)

[E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource :

Streams : controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)

 EightBall.java(14) : loaded -> end_of_scope : end scope :

Resource leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)

 EightBall.java(12) : java.io.IOException thrown

 EightBall.java(12) : loaded -> loaded : throw

 EightBall.java(12) : loaded -> end_of_scope : end scope :

Resource leaked : java.io.IOException thrown

[BB9F74FFA0FF75C9921D0093A0665BEB : low : J2EE Bad Practices :

Leftover Debug Code : structural]

 EightBall.java(4)

The following is an example filter file that performs the following:

Remove all results related to the J2EE Bad Practice category

Remove the Path Manipulation based on its instance ID

Remove any dataflow issues that were generated from a specific rule ID

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 376 of 610

#This is a category to filter from scan output

J2EE Bad Practices

#This is an instance ID of a specific issue to be filtered

#from scan output

6291C6A33303ED270C269917AA8A1005

#This is a specific Rule ID that leads to the reporting of a

#specific issue in the scan output: in this case the

#dataflow sink for a Path Manipulation issue.

823FE039-A7FE-4AAD-B976-9EC53FFE4A59

To test the filtered output, copy the above text and paste it into a file with the name
test_filter.txt .

To apply the filtering in the test_filter.txt file, execute the following command:

sourceanalyzer -b eightball -scan -filter test_filter.txt

The filtered analysis produces the following results:

[176CC0B182267DD538992E87EF41815F : critical : Path Manipulation

: dataflow]

EightBall.java(12) : ->new FileReader(0)

 EightBall.java(6) : <=> (filename)

 EightBall.java(4) : ->EightBall.main(0)

[E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource :

Streams : controlflow]

 EightBall.java(12) : start -> loaded : new FileReader(...)

 EightBall.java(14) : loaded -> end_of_scope : end scope :

Resource leaked

 EightBall.java(12) : start -> loaded : new FileReader(...)

 EightBall.java(12) : java.io.IOException thrown

 EightBall.java(12) : loaded -> loaded : throw

 EightBall.java(12) : loaded -> end_of_scope : end scope :

Resource leaked : java.io.IOException thrown

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 377 of 610

1.43.3. Using filter sets to exclude issues
You can use filter sets in an issue template created in Fortify Audit Workbench to filter

issues from the analysis results. When you apply a filter set that hides issues from

view during the analysis phase, OpenText SAST does not write the hidden issues to

the FPR. To do this, use Fortify Audit Workbench to create a filter set, and then run the

OpenText SAST scan with the filter set and the issue template, which contains the

filter set. For more detailed instructions about how to create filters and filter sets in

Fortify Audit Workbench, see the OpenText™ Fortify Audit Workbench User Guide.

The following example describes the basic steps for how to create and use a filter in

an issue template to remove issues from an FPR:

1. Suppose you use OWASP Top 10 2021, and you only want to see issues

categorized within this standard. In Fortify Audit Workbench, create a new filter

set called OWASP_Filter

2. In Fortify Audit Workbench, create a visibility filter in the OWASP_Filter filter

set:

If [OWASP Top 10 2021] does not contain A Then hide issue

This filter looks through the issues and if an issue does not map to an OWASP

Top 10 2021 category with ‘A’ in the name, then it hides it. Because all OWASP

Top 10 2021 categories start with ‘A’ (A01, A02, …, A10), then any category

without the letter ‘A’ is not in the OWASP Top 10 2021. The filter hides the issues

from view in Fortify Audit Workbench, but they are still in the FPR.

3. In Fortify Audit Workbench, export the issue template to a file called

IssueTemplate.xml .

4. Using OpenText SAST, specify the filter set in the analysis phase with the

following command:

sourceanalyzer -b MyProject -scan -project-template

IssueTemplate.xml

-Dcom.fortify.sca.FilterSet=OWASP_Filter -f

MyFilteredResults.fpr

Although filtering issues with a filter set can reduce the size of the FPR, it does not

usually reduce the scan time. OpenText SAST examines the filter set after it calculates

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 378 of 610

the issues to determine whether to write them to the FPR file. The filters in a filter set

determine the rule types that OpenText SAST loads.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 379 of 610

1.43.4. Filtering using FortifyRemove
comments
Similar to linters, compilers, and static analysis tools built directly into IDEs,

developers are accustomed to controlling the results of these tools directly from the

code. Similarly if required, developers can use inline comments to manage issues

triggered by OpenText SAST. Developers can prevent issues from being reported by

specifying either the rule ID that triggers the issue or the category of the finding in the
FortifyRemove() .

When issues are removed with comments, OpenText SAST logs the issues that are

removed, including their location and category.

Note

This functionality is available and enabled by default for Java and C#
code. The functionality can disabled in fortify-rules.properties by setting
com.fortify.sca.rules.EnableRuleComments=false . For more information,
see fortify-rules.properties

Basic Comments

For example, consider the following Java Hello World application.

public class MyClass {

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Consider there is a rule with an ID 625EEE1F-464F-42DC-85D6-269A637EF747 that

triggers on the main function as J2EE Bad Practices: Leftover Debug Code.

If the developer disagrees and they do not want this issue to display any longer, either

of the following configurations will prevent the issue from appearing.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 380 of 610

public class MyClass {

 // FortifyRemove(ID="625EEE1F-464F-42DC-85D6-269A637EF747")

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Or

public class MyClass {

 // FortifyRemove(Category="J2EE Bad Practices: Leftover

Debug Code")

 public static void main(String[] args) {

 System.out.println("Hello World");

 }

}

Note: the string argument can use either " or '

Wildcards
The * wildcard can be used to expand a category to cover multiple subcategories or

multiple matching categories.

For example:

// FortifyRemove(Category="Cross-Site Scripting: *")

Would remove all variants of Cross-Site Scripting issues.

Whereas:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 381 of 610

// FortifyRemove(Category="Cross-Site *")

Would remove all variants of Cross-Site Scripting issues, along with any categories

that start with "Cross-Site", such as "Cross-Site Request Forgery".

Multiple conditions
Other than using wildcards you can specify multiple categories or rule IDs using the

Categories or IDs properties respectively, which take arrays of strings.

For example

// FortifyRemove(Categories=["Cross-Site Scripting: Reflected",

"Cross-Site Scripting: Persistent"])

would prevent either Cross-Site Scripting: Reflected or Cross-Site Scripting:

Persistent issues appearing on the following line.

// FortifyRemove(IDs=["A", "B", "C", "D"]

Would prevent rules with the IDs A , B , C , or D from triggering on the following

line.

Additionally you can specify multiple criteria together, separated by a semi-colon (;

).

For example:

// FortifyRemove(Category="SQL Injection"; ID="ABCD-1234")

Would prevent SQL Injection issues appearing on the following line, as well as

prevent issues from rule ID ABCD-1234 triggering.

Adding Justifications
Issues are logged as removed by FortifyRemove comments. A justification property

can be specified that accepts a string that will be logged alongside the removal

information that can help expand on why the issue is being removed.

For example:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 382 of 610

// FortifyRemove(Category="Cross-Site Scripting: *";

Justification="We remove XSS here because we're using custom

framework XYZ that automatically protects against the attack")

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 383 of 610

1.43.5. Fortify Java annotations
OpenText provides two versions of the Fortify Java annotations library.

Annotations with the retention policy set to CLASS (FortifyAnnotations-

CLASS.jar).

With this version of the library, Fortify Java annotations are propagated to the

bytecode during compilation.

Annotations with the retention policy set to SOURCE (FortifyAnnotations-

SOURCE.jar).

With this version of the library, Fortify Java annotations are not propagated to

the bytecode after the code that uses them is compiled.

If you use OpenText Application Security Software products to analyze bytecode of

your applications (for example, with OpenText™ Core Application Security

assessments), then use the version with the annotation retention policy set to CLASS.

If you use OpenText Application Security Software products to analyze the source

code of your applications, you can use either version of the library. However,

OpenText strongly recommends that you use the library with a retention policy set to

SOURCE.

Important

It is a security risk to leave Fortify Java annotations in production code
because they can leak information about potential security problems in
the code. OpenText recommends that you use annotations with the
retention policy set to CLASS only for internalanalysis, and never use
them in your application production builds.

This section outlines the annotations available. A sample application is included in the

OpenText_SAST_Fortify_Samples_<version>.zip archive in the

advanced/javaAnnotations directory. A README.txt file included in the directory

describes the sample application, problems that might arise from it, and how to fix

these problems using Fortify Java annotations.

There are two limitations with Fortify Java annotations:

Each annotation can specify only one input and/or one output.

You can apply only one annotation of each type to the same target.

OpenText provides three main types of annotations:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 384 of 610

Dataflow Annotations

Field and Variable Annotations

Other Annotations

You also can write rules to support your own custom annotations. Contact Customer

Support for more information.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 385 of 610

1.43.5.1. Dataflow annotations
There are four types of Dataflow annotations, similar to Dataflow rules: Source, Sink,

Passthrough, and Validate. All are applied to methods and specify the inputs and/or

outputs by parameter name or the strings this and return . Additionally, you can

apply the Dataflow Source and Sink annotations to the function arguments.

Source annotations

The acceptable values for the annotation parameter are this , return , or a function

parameter name. For example, you can assign taint to an output of the target method.

@FortifyDatabaseSource("return")

String [] loadUserProfile(String userID) {

 ...

}

For example, you can assign taint to an argument of the target method.

void retrieveAuthCode(@FortifyPrivateSource String authCode) {

 ...

}

In addition to specific source annotations, OpenText provides a generic untrusted

taint source called FortifySource .

The following is a complete list of source annotations:

FortifySource

FortifyDatabaseSource

FortifyFileSystemSource

FortifyNetworkSource

FortifyPCISource

FortifyPrivateSource

FortifyWebSource

Passthrough annotations

Passthrough annotations transfer any taint from an input to an output of the target

method. It can also assign or remove taint from the output, in the case of

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 386 of 610

FortifyNumberPassthrough and FortifyNotNumberPassthrough . The acceptable

values for the in annotation parameter are this or a function parameter name. The

acceptable values for the out annotation parameter are this , return , or a function

parameter name.

@FortifyPassthrough(in="a",out="return")

String toLowerCase(String a) {

 ...

}

Use FortifyNumberPassthrough to indicate that the data is purely numeric. Numeric

data cannot cause certain types of issues, such as cross-site scripting, regardless of

the source. Using FortifyNumberPassthrough can reduce false positives of this type.

If a program decomposes character data into a numeric type (int, int[], and so on),

you can use FortifyNumberPassthrough . If a program concatenates numeric data

into character or string data, then use FortifyNotNumberPassthrough .

The following is a complete list of passthrough annotations:

FortifyPassthrough

FortifyNumberPassthrough

FortifyNotNumberPassthrough

Sink annotations

Sink annotations report an issue when taint of the appropriate type reaches an input

of the target method. Acceptable values for the annotation parameter are this or a

function parameter name.

@FortifyXSSSink("a")

void printToWebpage(int a) {

 ...

}

You can also apply the annotation to the function argument or the return parameter. In

the following example, an issue is reported when taint reaches the argument a .

void printToWebpage(int b, @FortifyXSSSink String a) {

 ...

}

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 387 of 610

The following is a complete list of the sink annotations:

FortifySink

FortifyCommandInjectionSink

FortifyPCISink

FortifyPrivacySink

FortifySQLSink

FortifySystemInfoSink

FortifyXSSSink

Validate annotations

Validate annotations remove taint from an output of the target method. Acceptable

values for the annotation parameter are this , return , or a function parameter name.

@FortifyXSSValidate("return")

String xssCleanse(String a) {

 ...

}

The following is a complete list of validate sink annotations:

FortifyValidate

FortifyCommandInjectionValidate

FortifyPCIValidate

FortifyPrivacyValidate

FortifySQLValidate

FortifySystemInfoValidate

FortifyXSSValidate

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 388 of 610

1.43.5.2. Field and variable annotations
You can apply these annotations to fields and (in most cases) variables.

Password and private annotations

Use password and private annotations to indicate whether the target field or variable

is a password or private data.

@FortifyPassword String x;

@FortifyNotPassword String pass;

@FortifyPrivate String y;

@FortifyNotPrivate String cc;

In the previous example, string x will be identified as a password and checked for

privacy violations and hardcoded passwords. The string pass will not be identified as

a password. Without the annotation, it might cause false positives. The FortifyPrivate

and FortifyNotPrivate annotations work similarly, only they do not cause privacy

violation issues.

Non-negative and non-zero annotations

Use these annotations to indicate disallowed values for the target field or variable.

@FortifyNonNegative int index;

@FortifyNonZero double divisor;

In the previous example, an issue is reported if a negative value is assigned to index
or zero is assigned to divisor .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 389 of 610

1.43.5.3. Other annotations

Check return value annotation

Use the FortifyCheckReturnValue annotation to add a target method to the list of

functions that require a check of the return values.

@FortifyCheckReturnValue

int openFile(String filename) {

 ...

}

Dangerous annotations

With the FortifyDangerous annotation, any use of the target function, field, variable,

or class is reported. Acceptable values for the annotation parameter are CRITICAL ,

HIGH , MEDIUM , or LOW . These values indicat how to categorize the issue based

on the Fortify Priority Order values).

@FortifyDangerous{"CRITICAL"}

public class DangerousClass {

 @FortifyDangerous{"HIGH"}

 String dangerousField;

 @FortifyDangerous{"LOW"}

 int dangerousMethod() {

 ...

 }

}

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 390 of 610

1.44. Optimizing performance
This section provides guidelines and tips to optimize memory usage and performance

when analyzing different types of codebases with OpenText SAST.

This section contains the following topics:

Antivirus software

Hardware considerations

Tuning options

Quick scan

Configuring scan speed with speed dial

Breaking down codebases

Limiting analyzers and languages

Optimizing FPR files

Monitoring long running scans

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 391 of 610

1.44.1. Antivirus software
The use of antivirus software can negatively impact OpenText SAST performance. If

you notice long scan times, OpenText recommends that you temporarily exclude the

internal OpenText SAST files from your antivirus software scan. You can also do the

same for the directories where the source code resides, however the performance

impact on the analysis is less than with the internal directories.

By default, OpenText SAST creates internal files in the following location:

Windows: c:\Users\<username>\AppData\Local\Fortify\sca<version>
Non-Windows: <userhome>/.fortify/sca<version>

where <version> is the version of OpenText SAST you are using.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 392 of 610

1.44.2. Hardware considerations
The variety of source code makes accurate predictions of memory usage and scan

times impossible. The factors that affect memory usage and performance consists of

many different factors including:

Code type

Codebase size and complexity

Ancillary languages used (such as JSP, JavaScript, and HTML)

Number of vulnerabilities

Type of vulnerabilities (analyzer used)

OpenText developed the following set of "best guess" hardware recommendations

based on real-world application scan results. The following table lists these

recommendations based on the complexity of the application. In general, increasing

the number of available cores might improve scan times.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 393 of 610

Application

complexity

CPU cores RAM (GB) Average

scan time

Description

Simple 4 16 1 hour
A standalone

system that

runs on a

server or

desktop such

as a batch

job or a

command-

line tool.

Medium 8 32 5 hours
A standalone

system that

works with

complex

computer

models such

as a tax

calculation

system or a

scheduling

system.

Complex 16 128 4 days A three-

tiered

business

system with

transactional

data

processing

such as a

financial

system or a

commercial

website.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 394 of 610

Application

complexity

CPU cores RAM (GB) Average

scan time

Description

Very

Complex

32 256 7+ days
A system that

delivers

content such

as an

application

server,

database

server, or

content

management

system.

Note

TypeScript and JavaScript scans increase the analysis time significantly.
If the total lines of code in an application consist of more than 20%
TypeScript or JavaScript, use the next highest recommendation.

Hardware requirements describes the system requirements. However, for large and

complex applications, OpenText SAST requires more capable hardware. This includes:

Disk I/O—OpenText SAST is I/O intensive and therefore the faster the hard drive,

the more savings on the I/O transactions. OpenText recommends a 7,200 RPM

drive, although a 10,000 RPM drive (such as the WD Raptor) or an SSD drive is

better.

Memory—See Memory Tuning for more information about how to determine the

amount of memory required for optimal performance.

CPU—OpenText recommends a 2.1 GHz or faster processor.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 395 of 610

1.44.3. Tuning options
OpenText SAST can take a long time to process complex projects. The time is spent in

different phases:

Translation

Analysis

OpenText SAST can produce large analysis result files (FPRs), which can take a long

time to audit and upload to Application Security. This is referred to as the following

phase:

Audit/Upload

The following table lists tips on how to improve performance in the different time-

consuming phases.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 396 of 610

Phase Option Description More information

Translation
-export-build-

session

-import-build-

session

Translate and

scan on different

machines

Mobile Build

Sessions

Analysis
-quick

Run a quick scan Quick Scan

Analysis
-scan-precision

Set the scan

precision

Configuring Scan

Speed with

Speed Dial

Analysis
-bin

Scan the files

related to a binary

Breaking Down

Codebases

Analysis
-Xmx<size>M |
G

Set maximum

heap size

Memory Tuning

Analysis
-Xss<size>M |

G

Set stack size for

each thread

Memory Tuning

Analysis

Audit/Upload

-filter <file>
Apply a filter

using a filter file

Using Filter Files

Analysis

Audit/Upload

-disable-source-

bundling

Exclude source

files from the FPR

file

Excluding Source

Code from the

FPR

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 397 of 610

1.44.4. Quick scan
Quick scan mode provides a way to quickly scan your projects for critical- and high-

priority issues. OpenText SAST performs the scan faster by reducing the depth of the

analysis. It also applies the Quick View filter set. Quick scan settings are configurable.

For more details about the configuration of quick scan mode, see fortify-sca-

quickscan.properties.

Quick scans are a great way to get many applications through an assessment so that

you can quickly find issues and begin remediation. The performance improvement

you get depends on the complexity and size of the application. Although the scan is

faster than a full scan, it does not provide as robust a result set. OpenText

recommends that you run full scans whenever possible.

Limiters

The depth of the OpenText SAST analysis sometimes depends on the available

resources. OpenText SAST uses a complexity metric to trade off these resources with

the number of vulnerabilities that it can find. Sometimes, this means giving up on a

particular function when it does not look like OpenText SAST has enough resources

available.

OpenText SAST enables the user to control the “cutoff” point by using OpenText SAST

limiter properties. The different analyzers have different limiters. You can run a

predefined set of these limiters using a quick scan. See the fortify-sca-

quickscan.properties for descriptions of the limiters.

To enable quick scan mode, use the -quick option with -scan option. With quick

scan mode enabled, OpenText SAST applies the properties from the
<sast_install_dir>/Core/config/fortify-sca-quickscan.properties file, in addition to

the standard <sast_install_dir>/Core/config/fortify-sca.properties file. You can

adjust the limiters that OpenText SAST uses by editing the fortify-sca-

quickscan.properties file. If you modify fortify-sca.properties , it also affects quick

scan behavior. OpenText recommends that you do performance tuning in quick scan

mode, and leave the full scan in the default settings to produce a highly accurate

scan. For description of the quick scan mode properties, see OpenText SAST

Properties Files.

Using quick scan and full scan

Run full scans periodically—A periodic full scan is important as it might find

issues that quick scan mode does not detect. Run a full scan at least once per

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 398 of 610

software iteration. If possible, run a full scan periodically when it will not

interrupt the development workflow, such as on a weekend.

Compare quick scan with a full scan—To evaluate the accuracy impact of a

quick scan, perform a quick scan and a full scan on the same codebase. Open

the quick scan results in Fortify Audit Workbench and merge it into the full scan.

Group the issues by New Issue to produce a list of issues detected in the full

scan but not in the quick scan.

Quick scans and Application Security—To avoid overwriting the results of a full

scan, by default Application Security ignores uploaded FPR files scanned in

quick scan mode. However, you can configure a Application Security application

version so that FPR files scanned in quick scan are processed. For more

information, see analysis results processing rules in the OpenText™ Application
Security User Guide.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 399 of 610

1.44.5. Configuring scan speed with
speed dial
You can configure the speed and depth of the scan by specifying a precision level for

the analysis phase. You can use these precision levels to adjust the scan time to fit for

example, into a pipeline and quickly find a set of vulnerabilities while the developer is

still working on the code. Although scans with the speed dial settings are faster than a

full scan, it does not provide as robust a result set. OpenText recommends that you

run full scans whenever possible.

The precision level controls the depth and precision of the scan by associating

configuration properties with each level. The configuration properties files for each

level are in the <sast_install_dir>/Core/config/scales directory. There is one file for

each level: (level-<precision_level>.properties). You can modify the settings in these

files to create your own specific precision levels.

Notes:

By default, Application Security blocks uploaded analysis results that were

created with a precision level less than four. However, you can configure your

Application Security application version so that uploaded audit projects scanned

with these precision levels are processed.

If you merge a speed dial scan with a full scan, this might remove issues from

previous scans that still exist in your application (and would be detected again

with a full scan).

To specify the speed dial setting for a scan, include the -scan-precision (or -

p) option in the scan phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-precision <level> -f

MyResults.fpr

Note

You cannot use the speed dial setting and the -quick option in the same
scan command.

The following table describes the four precision levels.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 400 of 610

Precision level Description

1 This is the quickest scan and is

recommended to scan a few files. By

default, a scan with this precision level

disables the Buffer Analyzer, Control

Flow Analyzer, Dataflow Analyzer, and

Null Pointer Analyzer.

2
By default, a scan with this precision

level enables all analyzers. The scan

runs quicker by performing with

reduced limiters. This results in fewer

issues detected.

3 This precision level improves

intermediate development scan speeds

by up to 50% (with a reduction in

reported issues). Specifically, this level

improves the scan time for typed

languages such as Java and C/C++.

4 This is equivalent to a full scan.

You can also specify the scan precision level with the com.fortify.sca.PrecisionLevel

property in the fortify-sca.properties file. For example:

com.fortify.sca.PrecisionLevel=1

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 401 of 610

1.44.6. Breaking down codebases
It is more efficient to break down large projects into independent modules. For

example, if you have a portal application that consists of several modules that are

independent of each other or have few interactions, you can translate and scan the

modules separately. The caveat to this is that you might lose dataflow issue detection

if some interactions exist.

For C/C++, you might reduce the scan time by using the –bin option with the –scan
option. You need to pass the binary file as the parameter (such as -bin

<filename>.exe -scan or -bin <filename>.dll -scan). OpenText SAST finds the

related files associated with the binary and scans them. This is useful if you have

several binaries in a makefile.

The following table lists some useful OpenText SAST command-line options to break

down codebases.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 402 of 610

Option Description

-bin <binary> Specifies a subset of source files to

scan. Only the source files that were

linked in the named binary at build time

are included in the scan. You can use

this option multiple times to specify the

inclusion of multiple binaries in the

scan.

-show-binaries Displays all objects that were created

but not used in the production of any

other binaries. If fully integrated into

the build, it lists all the binaries

produced.

-show-build-tree
When used with the -bin option,

displays all files used to create the

binary and all files used to create those

files in a tree layout. If the -bin option

is not present, OpenText SAST displays

the tree for each binary.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 403 of 610

1.44.7. Limiting analyzers and languages
Occasionally, you might find that a significant amount of the scan time is spent either

running one analyzer or analyzing a particular language. It is possible that this

analyzer or language is not important to your security requirements. You can limit the

specific analyzers that run and the specific languages that OpenText SAST translates,

however, this may lead to suboptimal results.

This section contains the following topics:

Disabling analyzers

Disabling languages

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 404 of 610

1.44.7.1. Disabling analyzers
To disable specific analyzers, include the -analyzers option to OpenText SAST at

scan time with a comma- or colon-separated list of analyzers to enable. The valid

parameter values for the -analyzers option are buffer , content , configuration ,

controlflow , dataflow , nullptr , semantic , and structural .

For example, to run a scan that only includes the Dataflow, Control Flow, and Buffer

analyzers, use the following scan command:

sourceanalyzer -b MyProject -analyzers

dataflow:controlflow:buffer -scan -f MyResults.fpr

You can also do the same thing by setting com.fortify.sca.DefaultAnalyzers in the

OpenText SAST property file <sast_install_dir>/Core/config/fortify-sca.properties .

For example, to achieve the equivalent of the previous scan command, set the

following in the properties file:

com.fortify.sca.DefaultAnalyzers=dataflow:controlflow:buffer

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 405 of 610

1.44.7.2. Disabling languages
To disable specific languages, include the -disable-language option in the

translation phase, which specifies a list of languages that you want to exclude. The

valid language values are

abap , actionscript , apex , cfml , cobol , configuration , cpp , dart , dotnet ,

golang , objc , php , python , ruby , swift , and vb .

For example, to perform a translation that excludes configuration and PHP files, use

the following command:

sourceanalyzer -b MyProject <src_files> -disable-language

configuration:php

You can also disable languages by setting the com.fortify.sca.DISabledLanguages
property in the OpenText SAST properties file <sast_install_dir>/Core/config/fortify-

sca.properties . For example, to achieve the equivalent of the previous translation

command, set the following in the properties file:

com.fortify.sca.DISabledLanguages=configuration:php

For languages that are not available with the -disable-language , use the -exclude
option. For more information, see Translation options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 406 of 610

1.44.8. Optimizing FPR files
This section describes how to handle performance issues related to the audit results

(FPR) file. These topics describe how to reduce the scan time, reduce FPR file size,

and tips for opening large FPR files.

This section contains the following topics:

Using filter files

Using filter sets

Excluding source code from the FPR

Reducing the FPR file size

Opening large FPR files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 407 of 610

1.44.8.1. Using filter files
You can use a file to filter out specific vulnerability instances, rules, and vulnerability

categories from the analysis results. If you determine that a certain issue category or

rule is not relevant for a particular scan, you can stop OpenText SAST from adding

them to the FPR. Using a filter file can reduce both the scan time and analysis results

file size.

For example, if you scan a simple program that just reads a specified file, you might

not want to see path manipulation issues, because these are not likely planned as part

of the functionality. To filter out path manipulation issues, create a file that contains a

single line:

Path Manipulation

Save this file as filter.txt . Use the -filter option in the analysis phase as shown in

the following example:

sourceanalyzer -b MyProject -scan -filter filter.txt -f

MyResults.fpr

The analysis output in MyResults.fpr does not include any issues with the category

Path Manipulation. For more information and an example of a filter file, see Excluding

Issues with Filter Files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 408 of 610

1.44.8.2. Using filter sets
Filters in an issue template determine how the results from OpenText SAST are

shown. In addition to filters, filter sets enable you to have a selection of filters used at

any one time. Each FPR has an issue template associated with it. You can use filter

sets to reduce the number of issues based on conditions you specify with filters in an

issue template. This can dramatically reduce the size of an FPR.

To do this, use Fortify Audit Workbench to create a filter in a filter set, and then run

the OpenText SAST scan with the filter set and the containing issue template. For

more information and a basic example of how to create a filter set, see Excluding

Issues with Filters Sets.

Note

Although filtering issues with a filter set can reduce the size of the FPR,
they do not usually reduce the scan time. OpenText SAST examines the
filter set after it calculates the issues to determine whether to write them
to the FPR file. The filters in a filter set determine the rule types that
OpenText SAST loads.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 409 of 610

1.44.8.3. Excluding source code from the
FPR
You can reduce the size of the FPR file by excluding the source code information from

the FPR. This is especially valuable for large source files or codebases. Typically, you

do not get a scan time reduction for small source files using this method.

There are properties you can use to prevent OpenText SAST from including source

code in the FPR. You can set either property in the

<sast_install_dir>/Core/config/fortify-sca.properties file or specify an option on the

command line. The following table describes these settings.

Property name Description

com.fortify.sca.

FPRDisableSourceBundling=true

Command-Line Option:

-disable-source-bundling

Excludes source code from the FPR.

com.fortify.sca.

FVDLDisableSnippets=true

Command-Line Option:

–fvdl-no-snippets

Excludes code snippets from the FPR.

The following command-line example uses both options to exclude both the source

code and code snippets from the FPR:

sourceanalyzer -b MyProject -disable-source-bundling

-fvdl-no-snippets -scan -f MySourcelessResults.fpr

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 410 of 610

1.44.8.4. Reducing the FPR file size
There are a few ways to reduce the size of FPR files. The quickest way to do this

without affecting results is to exclude the source code from the FPR as described in

Excluding Source Code from the FPR. You can also reduce the size of a merged FPR

with the FPRUtility (see the OpenText™ Application Security Tools Guide).

There are a few other properties that you can use to select what is excluded from the

FPR. You can set these properties in the <sast_install_dir>/Core/config/fortify-

sca.properties file or specify an option on the command line for the analysis (scan)

phase.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 411 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

Property name Description

com.fortify.sca.

FPRDisableMetatable

=true

Command-Line Option:

-disable-metatable

Excludes the metatable from the FPR.

Fortify Audit Workbench uses the

metatable to map information in

Functions view.

com.fortify.sca.

FVDLDisableDescriptions

=true

Command-Line Option:

-fvdl-no-descriptions

Excludes rule descriptions from

the FPR. If you do not use custom

descriptions, the descriptions in the

Fortify Taxonomy

(https://vulncat.fortify.com) are used.

com.fortify.sca.

FVDLDisableEngineData

=true

Command-Line Option:

-fvdl-no-enginedata

Excludes engine data from the FPR.

This is useful if your FPR contains

many warnings when you open the file

in Fortify Audit Workbench.

Note

If you exclude engine data
from the FPR, you must
merge the FPR with the
current audit project locally
before you upload it to
Application Security.
Application Security cannot
merge it on the server
because the FPR does not
contain the OpenText SAST
version.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 412 of 610

https://vulncat.fortify.com/

Property name Description

com.fortify.sca.

FVDLDisableProgramData

=true

Command-Line Option:

-fvdl-no-progdata

Excludes the program data from the

FPR. This removes the Taint Sources

information from the Functions view in

Fortify Audit Workbench. This property

typically only has a minimal effect on

the overall size of the FPR file.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 413 of 610

1.44.8.5. Opening large FPR files
To reduce the time required to open a large FPR file in Fortify Audit Workbench, you

can set some properties in the <sast_install_dir>/Core/config/fortify.properties file.

For more information about these properties, see the OpenText™ Application Security

Tools Guide. The following table describes the properties you can use to reduce the

time to open large FPR files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 414 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

Property name Description

com.fortify.

model.DisableProgramInfo=true

Disables use of the code navigation

features in Fortify Audit Workbench.

com.fortify.

model.IssueCutoffStartIndex

=<num> (inclusive)

com.fortify.

model.IssueCutoffEndIndex

=<num> (exclusive)

Sets the start and end index for issue

cutoff. The IssueCutoffStartIndex

property is inclusive and
IssueCutoffEndIndex is exclusive so

that you can specify a subset of issues

you want to see. For example, to see

the first 100 issues, specify the

following:

com.fortify.model.
IssueCutoffStartIndex=0 com.fortif

y.model.
IssueCutoffEndIndex=101

Because the IssueCutoffStartIndex is
0 by default, you do not need to

specify this property.

com.fortify.

model.IssueCutoffByCategoryStartInde

x=

<num> (inclusive)

com.fortify.

model.IssueCutoffByCategoryEndIndex

=

<num> (exclusive)

Sets the start index for issue cutoff by

category. These two properties are

similar to the previous cutoff properties

except these are specified for each

category. For example, to see the first

five issues for every category, specify

the following:

com.fortify.model.

IssueCutoffByCategoryEndInde

x=6

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 415 of 610

Property name Description

com.fortify.

model.MinimalLoad=true

Minimizes the data loaded from the

FPR. This also restricts usage of the

Functions view and might prevent

Fortify Audit Workbench from loading

the source from the FPR.

com.fortify.

model.MaxEngineErrorCount=

<num>

Specifies the number of OpenText

SAST reported warnings to load from

the FPR. For projects with many scan

warnings, reducing this number from a

default of 3000 can speed up the load

time of large FPR files.

com.fortify.

model.ExecMemorySetting

Specifies the JVM heap memory size

for Fortify Audit Workbench to start

external command-line tools such as

iidmigrator and fortifyupdate.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 416 of 610

1.44.9. Monitoring long running scans
When you run OpenText SAST, large and complex scans can often take a long time to

complete. During the scan it is not always clear what is happening. While OpenText

recommends that you provide your debug logs to the Customer Support team, there

are a couple of ways to see what OpenText SAST is doing and how it is performing in

real-time.

This section contains the following topics:

Using the SCAState tool

Using JMX tools

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 417 of 610

1.44.9.1. Using the SCAState tool
The SCAState command-line tool enables you to see up-to-date state analysis

information during the analysis phase. The SCAState tool is located in the

<sast_install_dir>/bin directory. In addition to a live view of the analysis, it also

provides a set of timers and counters that show where OpenText SAST spends its

time during the analysis phase. For more information about how to use SCAState, see

the Checking the OpenText SAST Scan Status.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 418 of 610

1.44.9.2. Using JMX tools
You can use tools to monitor OpenText SAST with JMX technology. These tools can

provide a way to track OpenText SAST performance over time. For more information

about these tools, see the Oracle® documentation.

Note

These are third-party tools and OpenText does not provide or support
them.

This section contains the following topics:

Using JConsole

Using Java VisualVM

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 419 of 610

1.44.9.2.1. Using JConsole
JConsole is an interactive monitoring tool that complies with the JMX specification.

The disadvantage of JConsole is that you cannot save the output.

To use JConsole, you must first set some additional JVM parameters. Set the

following environment variable:

export SCA_VM_OPTS="-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.port=9090

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.authenticate=false"

After the JMX parameters are set, start a scan. During the scan, start JConsole to

monitor OpenText SAST locally or remotely with the following command:

jconsole <host_name>:9090

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 420 of 610

1.44.9.2.2. Using Java VisualVM
Java VisualVM offers the same capabilities as JConsole. It also provides more

detailed information on the JVM and enables you to save the monitor information to

an application snapshot file. You can store these files and open them later with Java

VisualVM.

Similar to JConsole, before you can use Java VisualVM, you must set the same JVM

parameters described in Using JConsole.

After the JVM parameters are set, start the scan. You can then start Java VisualVM to

monitor the scan either locally or remotely with the following command:

jvisualvm <host_name>:9090

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 421 of 610

1.45. Using mobile build sessions
With an OpenText SAST mobile build session (MBS), you can translate a project on

one machine and scan it on another. A common use case for this is to improve scan

time, such that the translation can be performed on a build computer with fewer

resources, and then a better equipped computer can be utilized for the scan.

Note

This is also necessary for several project types when utilizing ScanCentral
SAST or OpenText Core Application Security (Fortify on Demand)

Using an MBS allows you to translate on one machine and do one of the following:

You must have the same version of OpenText Application Security Content

(Rulepacks) installed on both the system where you perform the translation and the

system where you perform the analysis.

Note

The scan machines may have dependencies for certain types of projects.
For more information on dependencies that may be necessary on scan
machines, see Software Requirements.
Bicep and Terraform (HCL) projects additionally require an Internet
connection for optimal results.

This section contains the following topics:

Mobile build session version compatibility

Creating a mobile build session

Importing a mobile build session

Use ScanCentral SAST client to move the MBS to sensors for analysis (see

ScanCentral SAST)

Move the build session (MBS file) to another computer that has an OpenText SAST

installation, import the MBS (see Importing a mobile build session), and then run

the analysis.

Provide the MBS file to OpenText Core Application Security (Fortify on

Demand)for analysis

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 422 of 610

1.45.1. Mobile build session version
compatibility
The OpenText SAST version on the translate machine must be compatible with the

OpenText SAST version on the analysis machine. The version number format is

<major>.<minor>.<patch>.<build_number> (for example, 25.4.0.0140). The <major>
and <minor> portions of the OpenText SAST version numbers on both the translation

and the analysis machines must match. For example, 25.4.0 and 25.4.x are

compatible. To determine the OpenText SAST version number, type sourceanalyzer -

v on the command line.

You can obtain the build ID and the OpenText SAST version from an MBS file with the

following command:

sourceanalyzer -import-build-session <file>.mbs

-Dcom.fortify.sca.ExtractMobileInfo=true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 423 of 610

1.45.2. Creating a mobile build session
On the machine where you performed the translation, issue the following command to

generate a mobile build session:

sourceanalyzer -b <build_id> -export-build-session <file>.mbs

where <file>.mbs is the file name you provide for the OpenText SAST mobile build

session.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 424 of 610

1.45.3. Importing a mobile build session
After you move the <file>.mbs file to the machine where you want to perform the

scan, you can import the mobile build session into the OpenText SAST project root

directory.

To import the mobile build session, type the following command:

sourceanalyzer -import-build-session <file>.mbs

After you import your OpenText SAST mobile build session, you can proceed to the

analysis phase. Perform a scan with the same build ID that was used in the

translation.

You cannot merge multiple mobile build sessions into a single MBS file. Each exported

build session must have a unique build ID. However, after all the build IDs are

imported on the same OpenText SAST installation, you can scan multiple build IDs in

one scan with the -b option (see Analysis Phase).

Note

The scan machines may have dependencies for certain types of projects.
See Software Requirements for dependencies that may be necessary on
scan machines.
Bicep and Terraform (HCL) projects additionally require an internet
connection for optimal results.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 425 of 610

1.46. Troubleshooting
This section contains the following topics:

Exit codes

Memory tuning

Scanning complex functions

Issue non-determinism

Locating the log files

Configuring log files

Reporting issues and requesting enhancements

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 426 of 610

1.46.1. Exit codes
The following table describes the possible OpenText SAST exit codes.

Exit code Description

0 Success

1 Generic failure

2
Invalid input files

(this might indicate that an attempt was

made to translate a file that has an

extension that OpenText SAST does not

support)

3 Process timed out

4 Analysis completed with numbered

warning messages written to the

console and/or to the log file

5 Analysis completed with numbered

error messages written to the console

and/or to the log file

6 Scan phase was unable to generate

issue results

7 Unable to detect a valid license or the

LIM license expired at run time

By default, OpenText SAST only returns exit codes 0, 1, 2, 3, or 7.

You can extend the default exit code options by setting the

com.fortify.sca.ExitCodeLevel property in the <sast_install_dir>/Core/Config/fortify-

sca.properties file.

The valid values are:

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 427 of 610

nothing —Returns any of the default exit codes (0, 1, 2, 3, or 7).

warnings —Returns exit codes 4 and 5 in addition to the default exit codes.

errors —Returns exit code 5 in addition to the default exit codes.

no_output_file —Returns exit code 6 in addition to the default exit codes.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 428 of 610

1.46.2. Memory tuning
The amount of physical RAM required for a scan depends on the complexity of the

code. By default, OpenText SAST automatically allocates the memory it uses based

on the physical memory available on the system. This is generally sufficient. As

described in Output Options, you can adjust the Java heap size with the -Xmx

command-line option.

This section describes suggestions for what you can do if you encounter

OutOfMemory errors during the analysis.

Note

You can set the memory allocation options discussed in this section to run
for all scans by setting the SCA_VM_OPTS environment variable.

This section contains the following topics:

Java heap exhaustion

Native heap exhaustion

Stack overflow

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 429 of 610

1.46.2.1. Java heap exhaustion
Java heap exhaustion is the most common memory problem that might occur during

OpenText SAST scans. It is caused by allocating too little heap space to the Java

virtual machine that OpenText SAST uses to scan the code. You can identify Java

heap exhaustion from the following symptom.

Symptom

One or more of these messages appears in the OpenText SAST log file and in the

command-line output:

There is not enough memory available to complete analysis. For

details on making more memory available, please consult the user

manual.

java.lang.OutOfMemoryError: Java heap space

java.lang.OutOfMemoryError: GC overhead limit exceeded

Resolution

To resolve a Java heap exhaustion problem, allocate more heap space to the

OpenText SAST Java virtual machine when you start the scan. To increase the heap

size, use the -Xmx command-line option when you run the OpenText SAST scan. For

example, -Xmx1G makes 1 GB available. Before you use this parameter, determine

the maximum allowable value for Java heap space. The maximum value depends on

the available physical memory.

Heap sizes between 32 GB and 48 GB are not advised due to internal JVM

implementations. Heap sizes in this range perform worse than at 32 GB. Heap sizes

smaller than 32 GB are optimized by the JVM. If your scan requires more than 32 GB,

then you need 64 GB or more. As a guideline, assuming no other memory intensive

processes are running, do not allocate more than 2/3 of the available memory.

If the system is dedicated to running OpenText SAST, you do not need to change it.

However, if the system resources are shared with other memory‑intensive processes,

subtract an allowance for those other processes.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 430 of 610

Note

You do not need to account for other resident but not active processes
(while OpenText SAST is running) that the operating system might swap to
disk. Allocating more physical memory to OpenText SAST than is available
in the environment might cause “thrashing,” which typically slows down
the scan along with everything else on the system.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 431 of 610

1.46.2.2. Native heap exhaustion
Native heap exhaustion is a rare scenario where the Java virtual machine can allocate

the Java memory regions on startup, but is left with so few resources for its native

operations (such as garbage collection) that it eventually encounters a fatal memory

allocation failure that immediately terminates the process.

Symptom

You can identify native heap exhaustion by abnormal termination of the OpenText

SAST process and the following output on the command line:

A fatal error has been detected by the Java Runtime

Environment:

#

java.lang.OutOfMemoryError: requested ... bytes for GrET ...

Because this is a fatal Java virtual machine error, it is usually accompanied by an

error log created in the working directory with the file name hs_err_pidNNN.log .

Resolution

Because the problem is a result of overcrowding within the process, the resolution is

to reduce the amount of memory used for the Java memory regions (Java heap).

Reducing this value should reduce the crowding problem and allow the scan to

complete successfully.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 432 of 610

1.46.2.3. Stack overflow
Each thread in a Java application has its own stack. The stack holds return addresses,

function/method call arguments, and so on. If a thread tends to process large

structures with recursive algorithms, it might need a large stack for all those return

addresses. With the JVM, you can set that size with the -Xss option.

Symptoms

This message typically appears in the OpenText SAST log file, but might also appear

in the command-line output:

java.lang.StackOverflowError

Resolution

The default stack size is 16 MB. To increase the stack size, pass the -Xss option to

the sourceanalyzer command. For example, -Xss32M increases the stack to 32

MB.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 433 of 610

1.46.3. Scanning complex functions
During a scan, the Dataflow Analyzer might encounter a function for which it cannot

complete the analysis and reports the following message:

Function <name> is too complex for <analyzer> analysis and will

be skipped (<identifier>)

where:

<name> is the name of the source code function
<analyzer> is the name of the analyzer

<identifier> is the type of complexity, which is one of the following:

l : Too many distinct locations

m : Out of memory

s : Stack size too small

t : Analysis taking too much time

v : Function visits exceed the limit

The depth of analysis OpenText SAST performs sometimes depends on the available

resources. OpenText SAST uses a complexity metric to trade off these resources

against the number of vulnerabilities that it can find. Sometimes, this means giving up

on a particular function when OpenText SAST does not have enough resources

available. This is normally when you see the "Function too complex" messages.

When you see this message, it does not necessarily mean that OpenText SAST

completely ignored the function in the program. For example, the Dataflow Analyzer

typically visits a function many times before completing the analysis, and might not

have run into this complexity limit in the previous visits. In this case, the results

include everything learned from the previous visits.

You can control the "give up" point using OpenText SAST properties called limiters.

Different analyzers have different limiters.

The following sections provide a discussion of a resolution for this issue.

This section contains the following topics:

Dataflow Analyzer limiters

Control Flow and Null Pointer analyzer limiters

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 434 of 610

1.46.3.1. Dataflow Analyzer limiters
There are three types of complexity identifiers for the Dataflow Analyzer:

l : Too many distinct locations

m : Out of memory

s : Stack size too small

v : Function visits exceed the limit

To resolve the issue identified by s , increase the stack size for by setting -Xss to a

value greater than 16 MB.

To resolve the complexity identifier of m , increase the physical memory for

OpenText SAST.

To resolve the complexity identifier of l , you can adjust the following limiters in the

OpenText SAST property file <sast_install_dir>/Core/config/fortify-sca.properties or

on the command line.

Property name Default value

com.fortify.sca.

limiters.MaxTaintDefForVar

1000

com.fortify.sca.

limiters.MaxTaintDefForVarAbort

4000

com.fortify.sca.

limiters.MaxFieldDepth

4

The MaxTaintDefForVar limiter is a dimensionless value expressing the complexity of

a function, while MaxTaintDefForVarAbort is the upper bound for it. Use the
MaxFieldDepth limiter to measure the precision when the Dataflow Analyzer

analyzes any given object. OpenText SAST always tries to analyze objects at the

highest precision possible.

If a given function exceeds the MaxTaintDefForVar limit at a given precision, the

Dataflow Analyzer analyzes that function with lower precision (by reducing

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 435 of 610

the MaxFieldDepth limiter). When you reduce the precision, it reduces the

complexity of the analysis. When the precision cannot be reduced any further,

OpenText SAST then proceeds with analysis at the lowest precision until either it

finishes, or the complexity exceeds the MaxTaintDefForVarAbort limiter. In other

words, OpenText SAST tries harder at the lowest precision to get at least some results

from the function. If OpenText SAST reaches the MaxTaintDefForVarAbort limiter, it

gives up on the function entirely and you get the "Function too complex" warning.

To resolve the complexity identifier of v , you can adjust the property
com.fortify.sca.limiters.MaxFunctionVisits . This property sets the maximum number

of times the taint propagation analyzer visits functions. The default is 50 .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 436 of 610

1.46.3.2. Control Flow and Null Pointer
analyzer limiters
There are two types of complexity identifiers for both Control Flow and Null Pointer

analyzers:

m : Out of memory
t : Analysis taking too much time

Due to the way that the Dataflow Analyzer handles function complexity, it does not

take an indefinite amount of time. Control Flow and Null Pointer analyzers, however,

can take an exceptionally long time when analyzing complex functions. Therefore,

OpenText SAST provides a way to abort the analysis when this happens, and then you

get the "Function too complex" message with a complexity identifier of t .

To change the maximum amount of time these analyzers spend to analyze functions,

you can adjust the following property values in the OpenText SAST property file

<sast_install_dir>/Core/config/fortify-sca.properties or on the command line.

Property name
Description

Default value

com.fortify.sca.

CtrlflowMaxFunctionTim

e

Sets the time limit (in

milliseconds) for Control

Flow analysis on a single

function.

600000 (10 minutes)

com.fortify.sca.

NullPtrMaxFunctionTime

Sets the time limit (in

milliseconds) for Null

Pointer analysis on a

single function.

300000 (5 minutes)

To resolve the complexity identifier of m , increase the physical memory for

OpenText SAST.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 437 of 610

Note

If you increase these limiters or time settings, it makes the analysis of
complex functions take longer. It is difficult to characterize the exact
performance implications of a particular value for the limiters/time,
because it depends on the specific function in question. If you never want
to see the "Function too complex" warning, you can set the limiters/time
to an extremely high value, however it can cause unacceptable scan time.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 438 of 610

1.46.4. Issue non-determinism
Running in parallel analysis mode might introduce issue non-determinism. If you

experience any problems, contact Customer Support, and disable parallel analysis

mode. Disabling parallel analysis mode results in sequential analysis, which can be

substantially slower but provides deterministic results across multiple scans.

To disable parallel analysis mode:

1. Open the fortify-sca.properties file located in the

<sast_install_dir>/Core/config directory in a text editor.

2. Change the value for the com.fortify.sca.MultithreadedAnalysis property to
false .

com.fortify.sca.MultithreadedAnalysis=false

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 439 of 610

1.46.5. Locating the log files
We will announce deprecation of the -debug , -verbose , and -debug-verbose
options in the System Requirements doc and release notes in the future. The GUI

Tools team uses these options in the tools so we need to let them know too.>>

By default, OpenText SAST creates log files in the following location:

Windows: C:\Users\<username>\AppData\Local\Fortify\sca<version>\log
Non-Windows: <userhome>/.fortify/sca<version>/log

where <version> is the version of OpenText SAST that you are using.

The following table describes the OpenText SAST default log files.

File names Description

sca.log

scaX.log

The standard log provides a log of

informational messages, warnings, and

errors that occurred in the run of

sourceanalyzer.

sca_FortifySupport.log

scaX_FortifySupport.log

The OpenText SAST Support log

provides:

The same log messages as the

standard log file, but with

additional details

Additional detailed messages that

are not included in the standard

log file

This log file is helpful to Customer

Support or the development team to

troubleshoot any issues.

To specify a log file on the command line, see Other options.

If you encounter warnings or errors that you cannot resolve, provide the OpenText

SAST Support log file to Customer Support.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 440 of 610

1.46.6. Configuring log files
You can configure the information that OpenText SAST writes to the log files by

setting logging properties (see Logging Properties) and by updating the

<sast_install_dir>/Core/config/log4j2.xml file. You can configure the following log

file settings:

The location and name of the log file

Property: com.fortify.sca.LogFile

Log level (see Understanding Log Levels)

Property: com.fortify.sca.LogLevel

Whether to overwrite the log files for each run of sourceanalyzer

Property: com.fortify.sca.ClobberLogFile

Command-line option: -clobber-log

For information about how to make changes to the log4j2.xml file, see

https://logging.apache.org/log4j/2.x/manual/index.html.

Understanding log levels

The log level you select gives you all log messages equal to and greater than it. The

following table lists the log levels in order from least to greatest. For example, the

default log level of INFO includes log messages with the following levels: INFO,

WARN, ERROR, and FATAL. You can set the log level with the

com.fortify.sca.LogLevel property in the <sast_install_dir>/Core/config/fortify-

sca.properties file or on the command-line using the -D option.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 441 of 610

https://logging.apache.org/log4j/2.x/manual/index.html

Log level Description

DEBUG Includes information that Customer

Support or the development team can

use to troubleshoot an issue

INFO Basic information about the translation

or scan process

WARN Information about issues where the

translation or scan did not stop, but

might require your attention for

accurate results

ERROR
Information about an issue that might

require attention

FATAL Information about an error that caused

the translation or scan to abort

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 442 of 610

1.46.7. Reporting issues and requesting
enhancements
Feedback is critical to the success of this product. To request enhancements or

patches, or to report issues, visit Customer Support at

https://www.microfocus.com/support.

Include the following information when you contact customer support:

Product: OpenText SAST

Version number of OpenText SAST and any independent OpenText SAST

modules: To determine the version numbers, run the following:

sourceanalyzer -version

Platform: (for example, Red Hat Enterprise Linux <version>)

Operating system: (such as Linux)

To request an enhancement, include a description of the feature enhancement.

To report an issue, provide enough detail so that support can duplicate the issue. The

more descriptive you are, the faster support can analyze and resolve the issue. Also

include the log files, or the relevant portions of them, from when the issue occurred.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 443 of 610

https://www.microfocus.com/support

1.47. Command-line reference
This section describes general OpenText SAST command-line options and how to

specify source files for analysis. Command-line options that are specific to a

language are described in the section for that language.

This section contains the following topics:

Specifying files and directories

Directives

Translation options

Analysis options

Output options

Other options

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 444 of 610

1.47.1. Specifying files and directories
File specifiers are expressions that allow you to pass a long list of files or a directory

to OpenText SAST using wildcard characters. OpenText SAST recognizes two types

of wildcard characters: a single asterisk character (*) matches part of a file name, and

double asterisk characters (**) recursively matches directories. You can specify one

or more files, one or more file specifiers, or a combination of files and file specifiers.

Separate multiple file specifiers with semicolons (Windows) or colons (non-Windows).

<files> | <file_dir_specifiers>

Windows and many Linux shells automatically expand parameters that contain the

asterisk character (*), so you must enclose file-specifier expressions in quotes. Also,

on Windows, you can use the backslash character (\) as the directory separator

instead of the forward slash (/).

Note

File specifiers do not apply to languages that require compiler or build
integration.

The following table describes examples of file and directory specifiers.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 445 of 610

File or directory specifier Description

<dir>

"<dir>/**/*"

Matches all files in the named directory

and any subdirectories or the named

directory when used for a directory

parameter.

"<dir>/**/Example.java" Matches any file named Example.java
found in the named directory or any

subdirectories.

"<dir>/*.java"

"<dir>/*.jar"

Matches any file with the specified

extension found in the named

directory.

"<dir>/**/*.kt"

"<dir>/**/*.jar"

Matches any file with the specified

extension found in the named directory

or any subdirectories.

"<dir>/**/beta/**" Matches all directories and files found

in the named directory that have beta
in the path, including beta as a file

name.

"<dir>/**/classes/" Matches all directories and files with

the name classes found in the named

directory and any subdirectories.

"**/test/**" Matches all files in the current directory

tree that have a test element in the

path, including test as a file name.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 446 of 610

File or directory specifier Description

"**/test/**/*;**/build/**/*"

or

"**/test/**/*:**/build/**/*"

Matches all files in the current directory

tree that have a test or a build
element in the path, including test or

build as a file name.

"**/webgoat/*" Matches all files in any webgoat
directory in the current directory tree.

Matches:

/src/main/java/org/owasp/webgo

at

/test/java/org/owasp/webgoat

Does not match (assignments

directory does not match)

/test/java/org/owasp/webgoat/as

signments

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 447 of 610

1.47.2. Directives
Use only one directive at a time and do not use any directive in conjunction with

translation or analysis commands. Use the directives described in the following table

to list information about previous translation commands.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 448 of 610

Directive Description

-clean Deletes all OpenText SAST intermediate

files and build records. If you specify a

build ID, only files and build records

that relate to that build ID are deleted.

-show-binaries Displays all objects created but not

used in the production of any other

binaries. If fully integrated into the

build, it lists all the binaries produced.

-show-build-ids Displays a list of all known build IDs.

-show-build-tree When you scan with the -bin option,

displays all files used to create the

binary and all files used to create those

files in a tree layout. If the -bin option

is not present, the tree is displayed for

each binary.

Note

This option can generate
an extensive amount of
information.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 449 of 610

Directive Description

-show-build-warnings Use with the -b option to display any

errors and warnings that occurred in

the translation phase on the console.

Note

Fortify Audit Workbench
also displays these errors
and warnings in the results
Certification tab.

-show-files Displays the files included in the

specified build ID. When the -bin
option is present, displays only the

source files that went into the binary.

-show-loc Use with the -b option to display the

number of lines in the translated code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 450 of 610

1.47.2.1. LIM license directives
OpenText SAST provides directives to manage the usage of your LIM license. You can

store or clear the LIM license pool credentials. You can also request (and release) a

detached lease for offline analysis if the specified license pool permits detached

leases.

Note

By default, OpenText SAST requires an HTTPS connection to the LIM
server and you must have a trusted certificate. For more information, see
Adding Trusted Certificates.

Use the directives described in the following table for a license managed by the LIM.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 451 of 610

LIM directive Description

-store-license-pool-credentials "

<lim_url>|<lim_pool_name>|

<lim_pool_pwd>|<proxy_url>|

<proxy_user>|<proxy_pwd>"

Stores your LIM license pool

credentials so that OpenText SAST

uses the LIM for licensing. The proxy

information is optional. OpenText SAST

stores the pool password and the proxy

credentials provided with this directive

in the fortify-sca.properties file as

encrypted data. If your license pool

credentials change after you have

installed OpenText SAST, you can run

this directive again to save the new

credentials.

Example:

sourceanalyzer -store-license-pool-

credentials " https://<ip_address>:

<port> |TeamA|mypassword"

Associated property names:

com.fortify.sca.lim.Url

com.fortify.sca.lim.PoolName

com.fortify.sca.lim.PoolPassword

com.fortify.sca.lim.ProxyUrl

com.fortify.sca.lim.ProxyUsername

com.fortify.sca.lim.ProxyPassword

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 452 of 610

LIM directive Description

-clear-license-pool-credentials
Removes the LIM license pool

credentials from the fortify-

sca.properties file. If your license pool

credentials change, you can remove

them with this directive, and then use

the -store-license-pool-credentials

directive to save the new credentials.

-request-detached-lease <duration>
Requests a detached lease from the

LIM license pool for exclusive use on

this system for the specified duration

(in minutes). This enables you to run

OpenText SAST even when

disconnected from your corporate

intranet.

Note

To use this directive, the
license pool must be
configured to allow
detached leases.

-release-detached-lease Releases a detached lease back to the

license pool.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 453 of 610

1.47.3. Translation options
The following table describes the general translation options that can be used with

most translation commands.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 454 of 610

Translation option Description

-b <build_id> Specifies a build ID. OpenText SAST

uses a build ID to track the files that are

compiled and combined as part of a

build, and then later, to scan those

files.

Equivalent property name:

com.fortify.sca.BuildID

-disable-language <languages>
Specifies a colon-separated list of

languages to exclude from the

translation phase. The valid language

values are

abap , actionscript , apex , cfml ,

cobol , configuration , cpp , dart ,

dotnet ,

golang , objc , php , python , ruby ,

swift , and vb .

Equivalent property name:

com.fortify.sca.DISabledLanguages

-enable-language <languages>
Specifies a colon-separated list of

languages to translate. The valid

language values are

abap , actionscript , apex , cfml ,

cobol , configuration , cpp , dart ,

dotnet ,

golang , objc , php , python , ruby ,

swift , and vb .

Equivalent property name:

com.fortify.sca.EnabledLanguages

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 455 of 610

Translation option Description

-exclude

<file_specifiers>
Specifies the files to exclude from the

translation. Files excluded from

translation are also not scanned.

Separate multiple file paths with

semicolons (Windows) or colons (non-

Windows). The following example

excludes all Java files in any Test

subdirectory.

sourceanalyzer -b MyProject

–cp "**/*.jar" "**/*"

-exclude "**/Test/*.java"

See Specifying files and directories for

more information on how to use file

specifiers.

Equivalent property name:

com.fortify.sca.exclude

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 456 of 610

Translation option Description

-encoding <encoding_name> Specifies the source file encoding type.

OpenText SAST enables you to scan a

project that contains differently

encoded source files. To work with a

multi-encoded project, you must

specify the -encoding option in the

translation phase, when OpenText

SAST first reads the source code file.

OpenText SAST remembers this

encoding in the build session and

propagates it into the FVDL file.

Valid encoding names are from the
java.nio.charset.Charset .

Typically, if you do not specify the

encoding type, OpenText SAST uses

file.encoding from the

java.io.InputStreamReader
constructor with no encoding

parameter. In a few cases (for example

with the ActionScript parser), OpenText

SAST defaults to UTF-8 encoding.

Equivalent property name:

com.fortify.sca.InputFileEncoding

-nc When specified before a compiler

command line, OpenText SAST

translates the source file but does not

run the compiler.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 457 of 610

Translation option Description

-noextension-type <file_type> Specifies the file type for source files

that have no extension. The valid file

type values are ABAP ,
ACTIONSCRIPT , APEX ,
APEX_OBJECT , APEX_TRIGGER ,
ARCHIVE , ASPNET , ASP , ASPX ,
BITCODE , BSP , BYTECODE ,
CFML , COBOL , CSHARP , DART ,
DOCKERFILE , FLIGHT , GENERIC ,
GO , HCL , HOCON , HTML , INI ,
JAVA , JAVA_PROPERTIES ,
JAVASCRIPT , JINJA , JSON , JSP ,
JSPX , JUPYTER , KOTLIN , MSIL ,
MXML , OBJECT , PHP , PLSQL ,
PYTHON , RUBY , RUBY_ERB ,
SCALA , SWIFT , SWC , SWF ,
TLD , SQL , TSQL , TYPESCRIPT ,
VB , VB6 , VBSCRIPT ,
VISUAL_FORCE , VUE , and XML ,

and YAML .

-disable-compiler-resolution
Specifies to include build script files

that have the same name as a build tool

(such as gradlew) during translation as

source files.

Equivalent property name:

com.fortify.sca.DisableCompilerName

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 458 of 610

Translation option Description

-project-root
Specifies the directory to store

intermediate files generated in the

translation and analysis phases.

OpenText SAST makes extensive use

of intermediate files located in this

project root directory. In some cases,

you can achieve better performance for

analysis by making sure this directory

is on local storage rather than on a

network drive.

Equivalent property name:

com.fortify.sca.ProjectRoot

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 459 of 610

1.47.4. Analysis options
The following table describes the general analysis options (typically with -scan).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 460 of 610

Analysis option Description

-b <build_id> Specifies the build ID used in a prior

translation command.

Equivalent property name:

com.fortify.sca.BuildID

-scan Causes OpenText SAST to perform a

security analysis for the specified build

ID.

-scan-policy <policy_name> |

-sc <policy_name>
Specifies a scan policy for the analysis.

The valid policy names are classic ,
security , and devops . For more

information, see Applying a Scan Policy

to the Analysis.

Equivalent property name:

com.fortify.sca.ScanPolicy

-analyzers <analyzer_list> Specifies the analyzers you want to

enable with a colon- or comma-

separated list of analyzers. The valid

analyzer names are buffer , content ,

configuration , controlflow ,

dataflow , nullptr , semantic , and

structural . You can use this option to

disable analyzers that are not required

for your security requirements.

Equivalent property name:

com.fortify.sca.DefaultAnalyzers

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 461 of 610

Analysis option Description

-p <level> |
-scan-precision <level>

Uses speed dial to scan the project

with a scan precision level. The lower

the scan precision level, the faster the

scan performance. The valid values are
1 , 2 , 3 , and 4 . For more

information, see Configuring Scan

Speed.

Equivalent property name:

com.fortify.sca.PrecisionLevel

-project-root
Specifies the directory to store

intermediate files generated in the

translation and analysis phases.

OpenText SAST makes extensive use

of intermediate files located in this

project root directory. In some cases,

you can achieve better performance for

analysis by making sure this directory

is on local storage rather than on a

network drive.

Equivalent property name:

com.fortify.sca.ProjectRoot

-project-template <file> Specifies the issue template file to use

for the scan. This only affects scans on

the local machine. If you upload the

FPR to Application Security, it uses the

issue template assigned to the

application version.

Equivalent property name:

com.fortify.sca.ProjectTemplate

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 462 of 610

Analysis option Description

-quick Quickly scan the project for critical-

and high-priority issues using the
fortify-sca-quickscan.properties file,

which provides a less in-depth

analysis. By default, quick scan

disables the Buffer Analyzer and the

Control Flow Analyzer. In addition, it

applies the Quick View filter set. For

more information, see Quick Scan.

Equivalent property name:

com.fortify.sca.QuickScanMode

-filter <file> Specifies a results filter file. For more

information, see Optimizing results.

Equivalent property name:

com.fortify.sca.FilterFile

-bin <binary> |
-binary-name <binary>

Specifies a subset of source files to

scan. Only the source files that were

linked in the named binary at build time

are included in the scan. You can use

this option multiple times to specify the

inclusion of multiple binaries in the

scan.

Equivalent property name:

com.fortify.sca.BinaryName

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 463 of 610

Analysis option Description

-disable-default-rule-type

<type>

Used to test custom rules. Disables all

rules of the specified type in the

default Rulepacks. You can use this

option multiple times to specify

multiple rule types.

The <type> parameter is the XML tag

minus the suffix Rule . For example,

use DataflowSource for

DataflowSourceRule elements. You can

also specify specific sections of

characterization rules, such as
Characterization:Control flow ,
Characterization:Issue , and
Characterization:Generic .

The <type> parameter is case-

insensitive.

-no-default-issue-rules Used to test custom rules. Disables

rules in default Rulepacks that lead

directly to issues. OpenText SAST still

loads rules that characterize the

behavior of functions.

Note

This is equivalent to
disabling the following rule
types: DataflowSink,
Semantic, Controlflow,
Structural, Configuration,
Content, Statistical,
Internal, and
Characterization:Issue.

Equivalent property name:

com.fortify.sca.NoDefaultIssueRules

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 464 of 610

Analysis option Description

-no-default-rules Used to test custom rules. Disables

loading of rules from the default

Rulepacks. OpenText SAST processes

the Rulepacks for description elements

and language libraries, but processes

no rules.

Equivalent property name:

com.fortify.sca.NoDefaultRules

-no-default-source-rules Used to test custom rules. Disables

source rules in the default Rulepacks.

Note

Characterization source
rules are not disabled.

Equivalent property name:

com.fortify.sca.NoDefaultSourceRule

s

-no-default-sink-rules Used to test custom rules. Disables

sink rules in the default Rulepacks.

Note

Characterization sink rules
are not disabled.

Equivalent property name:

com.fortify.sca.NoDefaultSinkRules

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 465 of 610

Analysis option Description

-rules <file> | <dir> Specifies a custom Rulepack or

directory. You can use this option

multiple times to specify multiple

Rulepack files. If you specify a

directory, OpenText SAST includes all

the files in the directory with the .bin

and .xml extensions.

Equivalent property name:

com.fortify.sca.RulesFile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 466 of 610

1.47.5. Output options
The following table describes the output options. Apply all these options during the

analysis phase (with the -scan option). You can specify the build-label , build-

project , and build-version options during the translation phase and they are

overridden if specified again for the analysis phase.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 467 of 610

Output option Description

-f <file> |
-output-file <file>

Specifies the file to which analysis

results are written. If you do not

specify an output file, OpenText SAST

writes the output to the terminal.

Equivalent property name:

com.fortify.sca.ResultsFile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 468 of 610

Output option Description

-format <format> Controls the output format. Valid

options are fpr , fvdl , fvdl.zip , text ,

and auto . The default is auto , which

selects the output format based on the

file name extension of the file provided

with the -f option.

The FVDL is an XML file that contains

the detailed OpenText SAST analysis

results. This includes vulnerability

details, rule descriptions, code

snippets, command-line options used

in the scan, and any scan errors or

warnings.

The FPR is a package of the analysis

results that includes the FVDL file as

well as extra information such as a

copy of the source code used in the

scan, the external metadata, and

custom rules (if applicable). Fortify

Audit Workbench is automatically

associated with the .fpr extension.

Note

If you use result
certification, you must
specify the fpr format.
See the OpenText™ Fortify
Audit Workbench User
Guide for information about
result certification.

You can prevent some information from

being included in the FPR or FVDL file

to improve scan time or output file size.

See other options in this table and see

Optimizing FPR Files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 469 of 610

Output option Description

Equivalent property name:

com.fortify.sca.Renderer

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 470 of 610

Output option Description

-append Appends results to the file specified

with the -f option. The resulting FPR

file contains the issues from the earlier

scan as well as issues from the current

scan. The build information and

program data (lists of sources and

sinks) sections are also merged. To use

this option, the output file format must

be fpr or fvdl . For information on the
-format output option, see the

description in this table.

The engine data, which includes

OpenText Application Security

Content information, command-line

options, system properties, warnings,

errors, and other information about the

execution of OpenText SAST (as

opposed to information about the

program being analyzed), is not

merged. Because engine data is not

merged with the -append option,

OpenText does not certify results

generated with -append .

If this option is not specified, OpenText

SAST adds any new findings to the FPR

file, and labels the older result as

previous findings.

In general, only use the -append
option when it is impossible to analyze

an entire application at once.

Equivalent property name:

com.fortify.sca.OutputAppend

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 471 of 610

Output option Description

-build-label <label> Specifies a label for the project to

include in the analysis results. You can

include this option during the

translation or the analysis phase.

OpenText SAST does not use this label

for code analysis. If this option is

specified for both translation and

analysis, then only the last specified

label is passed to the analysis results.

Equivalent property name:

com.fortify.sca.BuildLabel

-build-project <project_name> Specifies a name for the project to

include in the analysis results. You can

include this option during the

translation or the analysis phase.

OpenText SAST does not use this name

for code analysis.

Equivalent property name:

com.fortify.sca.BuildProject

-build-version <version> Specifies a version for the project to

include in the analysis results. You can

include this option during the

translation or the analysis phase.

OpenText SAST does not use this

version for code analysis.

Equivalent property name:

com.fortify.sca.BuildVersion

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 472 of 610

Output option Description

-disable-source-bundling Excludes source files from the analysis

results file. The analysis results will still

include snippets.

Equivalent property name:

com.fortify.sca.FPRDisableSourceBun

dling

-fvdl-no-descriptions Excludes the OpenText Application

Security Content descriptions from the

analysis results file.

Equivalent property name:

com.fortify.sca.FVDLDisableDescriptio

ns

-fvdl-no-enginedata Excludes engine data from the analysis

results file. The engine data includes

OpenText Application Security

Content information, command-line

options, system properties, warnings,

errors, and other information about the

OpenText SAST execution.

Equivalent property name:

com.fortify.sca.FVDLDisableEngineDat

a

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 473 of 610

Output option Description

-fvdl-no-progdata Excludes program data from the

analysis results file. This removes the

taint source information from the

Functions view in Fortify Audit

Workbench.

Equivalent property name:

com.fortify.sca.FVDLDisableProgramD

ata

-fvdl-no-snippets Excludes the code snippets from the

analysis results file.

Equivalent property name:

com.fortify.sca.FVDLDisableSnippets

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 474 of 610

1.47.6. Other options
The following table describes other options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 475 of 610

Other option Description

@<file> Reads command-line options from the

specified file. The plain text <file>
contains options and parameters, each

on a separate line.

For example, instead of running the

command sourceanalyzer -b

my_build_id -source 17 -cp lib.jar

Test.java , you can run the following

command: sourceanalyzer

@optfile.txt where the optfile.txt file

contains:

"-b"

"my_build_id"

"-source"

"17"

"-cp"

"lib.jar"

"Test.java"

-h |
-? |
-help

Prints a summary of the command-line

options.

-debug Includes debug information in the

OpenText SAST Support log file, which

is only useful for Customer Support to

help troubleshoot.

Equivalent property name:

com.fortify.sca.Debug

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 476 of 610

Other option Description

-debug-verbose This is the same as the -debug

option, but it includes more details,

specifically for parse errors.

Equivalent property name:

com.fortify.sca.DebugVerbose

-debug-mem
Includes performance information in

the OpenText SAST Support log.

Equivalent property name:

com.fortify.sca.DebugTrackMem

-verbose Sends verbose status messages to the

console and to the OpenText SAST

Support log file.

Equivalent property name:

com.fortify.sca.Verbose

-logfile <file> Specifies the log file that OpenText

SAST creates. For default log file

locations, see Locating the log files.

Equivalent property name:

com.fortify.sca.LogFile

-clobber-log Directs OpenText SAST to overwrite the

log file for each run of sourceanalyzer.

Without this option, OpenText SAST

appends information to the log file.

Equivalent property name:

com.fortify.sca.ClobberLogFile

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 477 of 610

Other option Description

-quiet Disables the command-line progress

information.

Equivalent property name:

com.fortify.sca.Quiet

-version |

-v

Displays the OpenText SAST version

and versions of various independent

modules included with OpenText SAST

(all other functionality is contained in

OpenText SAST).

-autoheap
Enables automatic allocation of

memory based on the physical memory

available on the system. This is the

default memory allocation setting.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 478 of 610

Other option Description

-Xmx<size>M | G Manually specifies the maximum

amount of memory OpenText SAST

uses.

Note

OpenText recommends that
you use the default
memory allocation setting
defined by -autoheap
instead of manually
specifying the maximum
memory with this option.

Heap sizes between 32 GB and 48 GB

are not advised due to internal JVM

implementations. Heap sizes in this

range perform worse than at 32 GB.

The JVM optimizes heap sizes smaller

than 32 GB. If your scan requires more

than 32 GB, then you need 64 GB or

more. As a guideline, assuming no

other memory intensive processes are

running, do not allocate more than 2/3

of the available memory.

When you specify this option, make

sure that you do not allocate more

memory than is physically available,

because this degrades performance.

As a guideline, and the assumption that

no other memory intensive processes

are running, do not allocate more than

2/3 of the available memory.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 479 of 610

1.48. Configuration options
The OpenText SAST installer places a set of properties files on your system.

Properties files contain configurable settings for OpenText SAST runtime analysis,

output, and performance.

This section contains the following topics:

Properties files

fortify-sca.properties

fortify-sca-quickscan.properties

fortify-rules.properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 480 of 610

1.48.1. Properties files
The properties files are located in the <sast_install_dir>/Core/config directory. The

installed properties files contain default values. OpenText recommends that you

consult with your project leads before you make changes to the properties in the

properties files. You can modify any of the properties in the configuration file with any

text editor. You can also specify the property on the command line with the -D
option.

The following table lists the OpenText SAST properties files. Property files for the

OpenText SAST applications and tools are described in the OpenText™ Application

Security Tools Guide.

Properties file name Description More information

fortify-sca.properties Defines the OpenText

SAST configuration

properties.

fortify-sca.properties

fortify-sca-

quickscan.properties

Defines the configuration

properties applicable for

an OpenText SAST quick

scan.

fortify-sca-

quickscan.properties

fortify-rules.properties Defines the configuration

properties that

determine rule behavior.

fortify-rules.properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 481 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

1.48.1.1. Properties file format
In the properties file, each property consists of a pair of strings: the first string is the

property name and the second string is the property value.

com.fortify.sca.fileextensions.htm=HTML

As shown above, the property sets the translation to use for .htm files. The property

name is com.fortify.sca.fileextensions.htm and the value is set to HTML .

Note

When you specify a path for Windows systems as the property value, you
must escape any backslash character (\) with a backslash (for example:
com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerA\\inc

).

Disabled properties are commented out of the properties file. To enable these

properties, remove the comment symbol (#) and save the properties file. In the

following example, the com.fortify.sca.LogFile property is disabled in the properties

file and is not part of the configuration:

default location for the log file

#com.fortify.sca.LogFile=${com.fortify.sca.ProjectRoot}/sca/log/

sca.log

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 482 of 610

1.48.1.2. Overriding settings
OpenText SAST uses properties settings in a specific order. You can override any

previously set properties with the values that you specify. Keep this order in mind

when making changes to the properties files.

The following table lists the order of precedence for OpenText SAST properties.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 483 of 610

Order Property specification Description

1
Command line with the -

D option

Properties specified on

the command line have

the highest priority and

you can specify them in

any scan.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 484 of 610

Order Property specification Description

2 OpenText SAST quick

scan configuration file Note

You can
specify
either quick
scan or a
scan
precision
level.
Therefore,
these
property
settings both
have second
priority.

Properties specified in

the quick scan

configuration file

(fortify-sca-

quickscan.properties)

have the second priority,

but only if you include

the -quick option to

enable quick scan mode.

OpenText SAST scan

precision property files
Properties specified in

the scan precision

property files have the

second priority, but only

if you include the -scan-

precision option to

enable scan precision.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 485 of 610

Order Property specification Description

3 OpenText SAST

configuration file
Properties specified in

the OpenText SAST

configuration file

(fortify-sca.properties)

have the lowest priority.

Edit this file to change

the property values on a

more permanent basis

for all scans.

OpenText SAST also relies on some properties that have internally defined default

values.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 486 of 610

1.48.2. fortify-sca.properties
The following sections describe the properties available for use in the fortify-

sca.properties file. See fortify-sca-quickscan.properties for additional properties that

you can use in this properties file. Each property description includes the value type,

the default value, the equivalent command-line option (if applicable), and an example.

This section contains the following topics:

Translation and analysis phase properties

Regex analysis properties

LIM license properties

Rule properties

Java and Kotlin properties

Visual Studio and MSBuild project properties

JavaScript and TypeScript properties

Python properties

Go properties

Ruby properties

COBOL properties

PHP properties

ABAP properties

Flex and ActionScript properties

ColdFusion (CFML) properties

SQL properties

Output properties

Mobile build session (MBS) properties

Proxy properties

Logging properties

Debug properties

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 487 of 610

1.48.2.1. Translation and analysis phase
properties
The properties for the fortify-sca.properties file in the following table are general

properties that apply to the translation and/or analysis (scan) phase.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 488 of 610

Property name Description

Translation and scan

com.fortify.sca.BuildID Specifies the build ID of the build.

Value type: String

Default: (none)

Command-line option: -b

com.fortify.sca.CmdlineOptionsFileEnc

oding

Specifies the encoding of the

command-line options file provided

with @<filename> (see Other

Options). You can use this property, for

example, to specify Unicode file paths

in the options file. Valid encoding

names are from the
java.nio.charset.Charset

This property is only valid in the
fortify-sca.properties file and does

not work in the fortify-sca-

quickscan.properites file or with the -

D option.

Value type: String

Default: JVM system default encoding

Example: com.fortify.sca.CmdlineOpti

onsFileEncoding=UTF-8

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 489 of 610

Property name Description

com.fortify.sca.DISabledLanguages Specifies a colon-separated list of

languages to exclude from the

translation phase. The valid language

values are.

abap , actionscript , apex , cfml ,
cobol , configuration , cpp , dart ,
dotnet ,
golang , objc , php , python , ruby ,
swift , and vb .

Value type: String

Default: (none)

Command-line option: -disable-

language

com.fortify.sca.EnabledLanguages Specifies a colon-separated list of

languages to translate. The valid

language values are.

abap , actionscript , apex , cfml ,

cobol , configuration , cpp , dart ,

dotnet ,

golang , objc , php , python , ruby ,

swift , and vb .

Value type: String

Default: All languages in the specified

source are translated unless explicitly

excluded with the

com.fortify.sca.DISabledLanguages
property.

Command-line option: -enable-

language

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 490 of 610

Property name Description

com.fortify.sca.DisableCompilerName
If set to true, OpenText SAST includes

build script files that have the same

name as a build tool (such as gradlew)

during translation as source files.

Value type: Boolean

Default: false

Command-line option: -disable-

compiler-resolution

com.fortify.sca.ProjectRoot Specifies the directory to store

intermediate files generated in the

translation and analysis phases.

OpenText SAST makes extensive use

of intermediate files located in this

project root directory. In some cases,

you achieve better performance for

analysis by making sure this directory

is on local storage rather than on a

network drive.

Value type: String (path)

Default (Windows):

${win32.LocalAppdata}/Fortify

${win32.LocalAppdata} is a variable

that points to the Windows Local

Application Data shell folder.

Default (non-Windows):

$home/.fortify

Command-line option: -project-root

Example:

com.fortify.sca.ProjectRoot=C:\Users\

<username>\AppData\Local\

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 491 of 610

Property name Description

Translation

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 492 of 610

Property name Description

com.fortify.sca.fileextensions.java

com.fortify.sca.fileextensions.cs

com.fortify.sca.fileextensions.js

com.fortify.sca.fileextensions.py

com.fortify.sca.fileextensions.rb

com.fortify.sca.fileextensions.aspx

com.fortify.sca.fileextensions.php

This is a partial list. For the complete

list, see the properties file.

Specifies how to translate specific file

name extensions of languages that do

not require build integration. The valid

extension types are ABAP ,
ACTIONSCRIPT , APEX ,
APEX_OBJECT , APEX_TRIGGER ,
ARCHIVE , ASPNET , ASP , ASPX ,
BITCODE , BSP , BYTECODE ,
CFML , COBOL , CSHARP , DART ,
DOCKERFILE , FLIGHT , GENERIC ,
GO , HCL , HOCON , HTML , INI ,
JAVA , JAVA_PROPERTIES ,
JAVASCRIPT , JINJA , JSON , JSP ,
JSPX , JUPYTER , KOTLIN , MSIL ,
MXML , OBJECT , PHP , PLSQL ,
PYTHON , RUBY , RUBY_ERB ,
SCALA , SWIFT , SWC , SWF ,
TLD , SQL , TSQL , TYPESCRIPT ,
VB , VB6 , VBSCRIPT ,
VISUAL_FORCE , VUE , and XML ,

and YAML

Value type: String (valid language

type)

Default: See the fortify-sca.properties
file for the complete list.

Examples:

com.fortify.sca.fileextensions.java=JA

VA

com.fortify.sca.fileextensions.cs=CSH

ARP

com.fortify.sca.fileextensions.js=TYPE

SCRIPT

com.fortify.sca.fileextensions.py=PYT

HON

com.fortify.sca.fileextensions.swift=S

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 493 of 610

Property name Description

WIFT

com.fortify.sca.fileextensions.razor=A

SPNET

com.fortify.sca.fileextensions.php=PH

P

com.fortify.sca.fileextensions.tf=HCL

You can also specify a value of oracle:

<path_to_script> to programmatically

supply a language type. Provide a

script that accepts one command-line

parameter of a file name that matches

the specified extension. The script

must write the valid OpenText SAST file

type (see previous list) to stdout and

exit with a return value of zero. If the

script returns a non-zero return code

or the script does not exist, the file is

not translated and OpenText SAST

writes a warning to the log file.

Example:

com.fortify.sca.fileextensions.jsp=orac

le:<path_to_script>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 494 of 610

Property name Description

com.fortify.sca.compilers.javac=com.f

ortify.sca.util.compilers.JavacCompiler

com.fortify.sca.compilers.c++=com.fo

rtify.sca.util.compilers.GppCompiler

com.fortify.sca.compilers.make=com.f

ortify.sca.util.compilers.TouchlessCom

piler

com.fortify.sca.compilers.mvn=com.fo

rtify.sca.util.compilers.MavenAdapter

This is a partial list. For the complete

list,

see the properties file.

Specifies custom-named compilers.

Value type: String (compiler)

Default: See the Compilers section in

the fortify-sca.properties file for the

complete list.

Example:

To tell OpenText SAST that “my-gcc” is

a gcc compiler:

com.fortify.sca.compilers.my-

gcc=com.fortify.sca.util.compilers.Gcc

Compiler

Notes:

com.fortify.sca.UseAntListener
If set to true, OpenText SAST includes

com.fortify.dev.ant.SCAListener in the

compiler options.

Value type: Boolean

Default: false

Compiler names can begin or end

with an asterisk (*), which matches

zero or more characters.

Execution of clang/clang++ is not

supported with the gcc/g++

command names. You can specify

the following:
com.fortify.sca.compilers.g++=

com.fortify.sca.util.compilers.GppC

ompiler

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 495 of 610

Property name Description

com.fortify.sca.exclude Specifies one or more files to exclude

from translation. Separate multiple files

with semicolons (Windows) or colons

(non-Windows). See Specifying Files

and Directories for more information on

how to use file specifiers.

Value type: String

Default: Not enabled

Command-line option: -exclude

Example:

com.fortify.sca.exclude=file1.x;file2.x

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 496 of 610

Property name Description

com.fortify.sca.InputFileEncoding Specifies the source file encoding type.

OpenText SAST allows you to scan a

project that contains differently

encoded source files. To work with a

multi-encoded project, you must

specify the -encoding option in the

translation phase, when OpenText

SAST first reads the source code file.

OpenText SAST remembers this

encoding in the build session and

propagates it into the FVDL file.

Typically, if you do not specify the

encoding type, OpenText SAST uses
file.encoding from the
java.io.InputStreamReader

constructor with no encoding

parameter. In a few cases (for example

with the ActionScript parser), OpenText

SAST defaults to UTF-8 .

Value type: String

Default: (none)

Command-line option: -encoding

Example:

com.fortify.sca.InputFileEncoding=UT

F-16

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 497 of 610

Property name Description

com.fortify.sca.RegExecutable On Windows platforms, specifies the

path to the reg.exe system utility.

Specify the paths in Windows syntax,

not Cygwin syntax, even when you run

OpenText SAST from within Cygwin.

Escape backslashes with an additional

backslash.

Value type: String (path)

Default: reg

Example:

com.fortify.sca.RegExecutable=C:\\Wi

ndows\\System32\\reg.exe

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 498 of 610

Property name Description

com.fortify.sca.xcode.TranslateAfterEr

ror

Specifies whether the xcodebuild

touchless adapter continues translation

if the xcodebuild subprocess exited

with a non-zero exit code. If set to

false, translation stops after

encountering a non-zero xcodebuild

exit code and the OpenText SAST

touchless build halts with the same exit

code. If set to true, the OpenText SAST

touchless build executes translation of

the build file identified prior to the

xcodebuild exit, and OpenText SAST

exits with an exit code of zero (unless

some other error also occurs).

Regardless of this setting, if xcodebuild

exits with a non-zero code, then the

xcodebuild exit code, stdout, and

stderr are written to the log file.

Value type: Boolean

Default: false

Scan

com.fortify.sca.AddImpliedMethods If set to true, OpenText SAST generates

implied methods when it encounters

implementation by inheritance.

Value type: Boolean

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 499 of 610

Property name Description

com.fortify.sca.alias.Enable If set to true, enables alias analysis.

Value type: Boolean

Default: true

com.fortify.sca.analyzer.controlflow.En

ableTimeOut

Specifies whether to enable Control

Flow Analyzer timeouts.

Value type: Boolean

Default: true

com.fortify.sca.BinaryName Specifies a subset of source files to

scan. Only the source files that were

linked in the named binary at build time

are included in the scan.

Value type: String (path)

Default: (none)

Command-line option: -bin or -

binary-name

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 500 of 610

Property name Description

com.fortify.sca.DefaultAnalyzers Specifies a comma- or colon-

separated list of the types of analysis

to perform. The valid values for this

property are buffer , content ,
configuration , controlflow ,
dataflow , nullptr , semantic , and
structural .

Value type: String

Default: This property is commented

out and all analysis types are used in

scans.

Command-line option: -analyzers

com.fortify.sca.DisableFunctionPointer

s

If set to true, disables function pointers

during the scan.

Value type: Boolean

Default: false

com.fortify.sca.EnableAnalyzer Specifies a comma- or colon-

separated list of analyzers to use for a

scan in addition to the default

analyzers. The valid values for this

property are buffer , content ,

configuration , controlflow ,

dataflow , nullptr , semantic , and

structural .

Value type: String

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 501 of 610

Property name Description

com.fortify.sca.EnableSubtraceFilterin

g

If set to true, filters out partial

duplicates where issues are a subtrace

of a given issue.

For example, if the engine finds 2

similar issues with the traces:

A -> B -> C -> D

B -> C -> D
The second issue is removed as a

subtrace duplicate of the first, leaving

only the longer issue, as it is the overall

more accurate one.

Value type: Boolean

Default: true

com.fortify.sca.ExitCodeLevel
Extends the default exit code options.

See Exit Codes for a description of the

exit codes and the valid values for this

property.

com.fortify.sca.FilterFile
Specifies the path to a filter file for the

scan. See About Filter Files for more

information.

Value type: String (path)

Default: (none)

Command-line option: -filter

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 502 of 610

Property name Description

com.fortify.sca.FilteredInstanceIDs Specifies a comma-separated list of

IIDs to be filtered out using a filter file.

Value type: String

Default: (none)

Example:

com.fortify.sca.FilteredInstanceIDs=C

A4E1623A2424919B98EC19FCA279FF

A,4418B3DC072647158B3758E6183C1

4CD

com.fortify.sca.FilteredRuleLanguage

s

Specifies a comma- or colon-

separated list of languages for which to

remove rules. The valid language

values are

abap , actionscript , apex , cfml ,
cobol , configuration , cpp , dart ,
dotnet ,
golang , objc , php , python , ruby ,
swift , and vb .

Value type: String

Default: (none)

Example:

com.fortify.sca.FileredRuleLanguages

=apex:php

com.fortify.sca.MaxPassthroughChain

Depth

Specifies the length of a taint path

between input and output parameters

in a function call.

Value type: Integer

Default: 4

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 503 of 610

Property name Description

com.fortify.sca.MultithreadedAnalysis Specifies whether OpenText SAST runs

in parallel analysis mode.

Value type: Boolean

Default: true

com.fortify.sca.Phase0HigherOrder.La

nguages
Specifies a comma-separated list of

languages for which to run higher-

order analysis. Higher-order analysis

improves the ability to track dataflow

through higher-order code, which is

commonly used in modern dynamic

languages. Valid values are python ,

swift , ruby , javascript , and

typescript .

Value type: String

Default: python,ruby,swift,javascript,ty

pescript

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 504 of 610

Property name Description

com.fortify.sca.Phase0HigherOrder.Ti

meout.Hard
Specifies the total time (in seconds) for

higher-order analysis. When the

analyzer reaches the hard timeout limit,

it exits immediately.

OpenText recommends this timeout

limit in case some issue causes the

analysis to run too long. OpenText

recommends that you set the hard

timeout to about 50% longer than the

soft timeout, so that either the fixpoint

pass limiter or the soft timeout occurs

first.

Value type: Number

Default: 2700

com.fortify.sca.PrecisionLevel Specifies the scan precision. Scans

with a lower precision level are

performed faster. The valid values are
1 , 2 , 3 , and 4 .

Value type: Number

Default: (none)

Command-line option: -scan-

precision | -p

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 505 of 610

Property name Description

com.fortify.sca.ProjectTemplate Specifies the issue template file to use

for the scan. This only affects scans on

the local machine. If you upload the

FPR to Application Security, it uses the

issue template assigned to the

application version.

Value type: String

Default: (none)

Command-line option: -project-

template

Example:

com.fortify.sca.ProjectTemplate=test_i

ssuetemplate.xml

com.fortify.sca.QuickScanMode If set to true, OpenText SAST performs

a quick scan. OpenText SAST uses the

settings from fortify-sca-

quickscan.properties , instead of the
fortify-sca.properties configuration

file.

Value type: Boolean

Default: (not enabled)

Command-line option: -quick

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 506 of 610

Property name Description

com.fortify.sca.ScanPolicy Specifies the scan policy for prioritizing

reported vulnerabilities (see Applying a

Scan Policy to the Analysis). The valid

scan policy values are classic ,
security , and devops .

Value type: String

Default: security

Command-line option: -sc or -scan-

policy

com.fortify.sca.ThreadCount Specifies the number of threads for

parallel analysis mode. Add this

property only if you need to reduce the

number of threads used because of a

resource constraint. If you experience

an increase in scan time or problems

with your scan, a reduction in the

number of threads used might solve

the problem.

Value type: Integer

Default: (number of available

processor cores)

com.fortify.sca.TypeInferenceFunction

Timeout

The amount of time (in seconds) that

type inference can spend to analyze a

single function. Unlimited if set to zero

or is not specified.

Value type: Long

Default: 60

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 507 of 610

Property name Description

com.fortify.sca.TypeInferenceLanguag

es

Comma- or colon-separated list of

languages that use type inference. This

setting improves the precision of the

analysis for dynamically-typed

languages.

Value type: String

Default:

javascript,python,ruby,typescript

com.fortify.sca.TypeInferencePhase0T

imeout

Specifies the total amount of time (in

seconds) that type inference can

spend in phase 0 (the interprocedural

analysis). Unlimited if set to zero or is

not specified.

Value type: Long

Default: 300

com.fortify.sca.UniversalBlacklist
Specifies a colon-separated list of

functions to hide from all analyzers.

Value type: String

Default: .*yyparse.*

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 508 of 610

1.48.2.2. Regex analysis properties
The properties for the fortify-sca.properties file in the following table apply to

regular expression analysis.

Property name Description

com.fortify.sca.regex.Enable If set to true, regular expression

analysis is enabled.

Value type: Boolean

Default: true

com.fortify.sca.regex.ExcludeBinaries
If set to true, binary files are excluded

from a regular expression analysis.

Value type: Boolean

Default: true

com.fortify.sca.regex.MaxSize
Specifies the maximum size (in

megabytes) for files that are scanned

in a regular expression analysis. Files

that exceed this file size maximum are

excluded from a regular expression

analysis.

Value type: Number

Default: 10

See Also

Regular Expression Analysis

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 509 of 610

1.48.2.3. LIM license properties
The properties for the fortify-sca.properties file in the following table apply to

licensing with the LIM.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 510 of 610

Property name Description

com.fortify.sca.lim.Url
Specifies the LIM server API URL. Do

not edit this value directly with a text

editor. Use the command-line option to

change this value.

Value type: String

Default: (none)

Command-line option: -store-license-

pool-credentials

Examples:

https://<ip_address>:<port>

com.fortify.sca.lim.PoolName
Specifies the LIM license pool name.

Do not edit this value directly with a

text editor. Use the command-line

option to change this value.

Value type: String

Default: (none)

Command-line option: -store-license-

pool-credentials

com.fortify.sca.lim.PoolPassword
Specifies the LIM license pool

password (encrypted). Do not edit this

value directly with a text editor. Use the

command-line option to change this

value.

Value type: String

Default: (none)

Command-line option: -store-license-

pool-credentials

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 511 of 610

Property name Description

com.fortify.sca.lim.ProxyUrl
Specifies the proxy server used to

connect to the LIM server.

Value type: String

Default: (none)

Examples: http://proxy.example.com:8

080

https://proxy.example.com

Command-line option: -store-license-

pool-credentials

com.fortify.sca.lim.ProxyUsername
Specifies an encrypted user name for

proxy authentication to connect to the

LIM server. Do not edit this value

directly with a text editor. Use the

command-line option to change this

value.

Value type: String

Default: (none)

Command-line option: -store-license-

pool-credentials

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 512 of 610

Property name Description

com.fortify.sca.lim.ProxyPassword
Specifies an encrypted password for

proxy authentication to connect to the

LIM server. Do not edit this value

directly with a text editor. Use the

command-line option to change this

value.

Value type: String

Default: (none)

Command-line option: -store-license-

pool-credentials

com.fortify.sca.lim.RequireTrustedSSL

Cert
If set to true, any attempt to connect to

the LIM server without a trusted

certificate fails. If this property is set to

false, a message displays when any

attempt to connect to the LIM server

without a trusted certificate occurs.

Value type: Boolean

Default: true

com.fortify.sca.lim.WaitForInitialLicens

e
If set to true and LIM license pool

credentials are stored, OpenText SAST

waits for a LIM license to become

available before starting a translation or

scan. If this property is set to false,

OpenText SAST aborts if it cannot

obtain a LIM license.

Value type: Boolean

Default: true

LIM License Directives

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 513 of 610

1.48.2.4. Rule properties
The properties for the fortify-sca.properties file in the following table apply to rules

(and custom rules) and Rulepacks.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 514 of 610

Property name Description

com.fortify.sca.DefaultRulesDir Sets the directory used to search for

the OpenText provided encrypted rules

files.

Value Type: String (path)

Default:

${com.fortify.Core}/config/rules

com.fortify.sca.RulesFile Specifies a custom Rulepack or

directory. If you specify a directory, all

of the files in the directory with the

.bin and .xml extensions are

included.

Value Type: String (path)

Default: (none)

Command-line option: -rules

com.fortify.sca.CustomRulesDir Sets the directory used to search for

custom rules.

Value Type: String (path)

Default:

${com.fortify.Core}/config/customrule

s

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 515 of 610

Property name Description

com.fortify.sca.RulesFileExtensions Specifies a list of file extensions for

rules files. Any files in
<sast_install_dir>/Core/config/rules

(or a directory specified with the -

rules option) whose extension is in this

list is included. The .bin extension is

always included, regardless of the

value of this property. The delimiter for

this property is the system path

separator.

Value Type: String

Default: .xml

com.fortify.sca.NoDefaultRules
If set to true, rules from the default

Rulepacks are not loaded. OpenText

SAST processes the Rulepacks for

description elements and language

libraries, but no rules are processed.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-

rules

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 516 of 610

Property name Description

com.fortify.sca.NoDefaultIssueRules If set to true, disables rules in default

Rulepacks that lead directly to issues.

OpenText SAST still loads rules that

characterize the behavior of functions.

This can be helpful when creating

custom issue rules.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-

issue-rules

com.fortify.sca.NoDefaultSourceRule

s
If set to true, disables source rules in

the default Rulepacks. This can be

helpful when creating custom source

rules.

Note

Characterization source
rules are not disabled.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-

source-rules

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 517 of 610

Property name Description

com.fortity.sca.NoDefaultSinkRules If set to true, disables sink rules in the

default Rulepacks. This can be helpful

when creating custom sink rules.

Note

Characterization sink rules
are not disabled.

Value Type: Boolean

Default: (none)

Command-line option: -no-default-

sink-rules

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 518 of 610

1.48.2.5. Java and Kotlin properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of Java and Kotlin code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 519 of 610

Property name Description

com.fortify.sca.JavaClasspath Specifies the class path used to

analyze Java or Kotlin source code.

Separate multiple paths with

semicolons (Windows) or colons (non-

Windows).

Value type: String (paths)

Default: (none)

Command-line option: -cp or -

classpath

com.fortify.sca.JdkVersion
Specifies the Java source code version

for Java or Kotlin translation.

Value type: String

Default: 11

Command-line option: -jdk or -

source

com.fortify.sca.CustomJdkDir
Specifies a directory that contains a

JDK version that is not included in the

OpenText SAST installation

(<sast_install_dir>/Core/bootcp/).

Value type: String (path)

Default: (none)

Command-line option: -custom-jdk-

dir

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 520 of 610

Property name Description

com.fortify.sca.JavaSourcepath Specifies a semicolon- (Windows) or

colon-separated (non-Windows) list of

Java or Kotlin source file directories

that are not included in the scan but

are used for name resolution. The

source path is similar to class path,

except it uses source files rather than

class files for resolution.

Value type: String (paths)

Default: (none)

Command-line option: -sourcepath

com.fortify.sca.Appserver
Specifies the application server to

process JSP files. The valid values are
weblogic or websphere .

Value type: String

Default: (none)

Command-line option: -appserver

com.fortify.sca.AppserverHome Specifies the application server's home

directory. For WebLogic, this is the

path to the directory that contains
server/lib . For WebSphere, this is the

path to the directory that contains the
JspBatchCompiler script.

Value type: String (path)

Default: (none)

Command-line option: -appserver-

home

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 521 of 610

Property name Description

com.fortify.sca.AppserverVersion Specifies the version of the WebLogic

or WebSphere application server.

Value type: String

Default: (none)

Command-line option: -appserver-

version

com.fortify.sca.JavaExtdirs Specifies directories to include

implicitly on the class path for

WebLogic and WebSphere application

servers.

Value type: String

Default: (none)

Command-line option: -extdirs

com.fortify.sca.JavaSourcepathSearc

h

If set to true, OpenText SAST only

translates Java source files that are

referenced by the target file list.

Otherwise, OpenText SAST translates

all files included in the source path.

Value type: Boolean

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 522 of 610

Property name Description

com.fortify.sca.DefaultJarsDirs
Specifies semicolon- or colon-

separated list of directories of

commonly used JAR files. JAR files

located in these directories are

appended to the end of the class path

option (-cp).

Value type: String

Default: default_ jars

com.fortify.sca.DecompileBytecode
If set to true, Java bytecode is

decompiled for the translation.

Value type: Boolean

Default: false

com.fortify.sca.jsp.UseSecurityManag

er

If set to true, the JSP parser uses JSP

security manager.

Value type: Boolean

Default: true

com.fortify.sca.jsp.DefaultEncoding Specifies the encoding for JSPs.

Value type: String (encoding)

Default: ISO-8859-1

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 523 of 610

Property name Description

com.fortify.sca.jsp.LegacyDataflow
If set to true, enables additional filtering

on JSP-related dataflow to reduce the

amount of spurious false positives

detected.

Value type: Boolean

Default: false

Command-line option: -legacy-jsp-

dataflow

com.fortify.sca.KotlinJvmDefault
Specifies the generation of the
DefaultImpls class for methods with

bodies in Kotlin interfaces. The valid

values are:

Value type: String

Default: disable

disable —Specifies to generate the
DefaultImpls class for each

interface that contains methods

with bodies.

all —Specifies to generate the
DefaultImpls class if an interface

is annotated with
@JvmDefaultWithCompatibility .

all-compatibility —Specifies to

generate the DefaultImpls class

unless an interface is annotated

with

@JvmDefaultWithoutCompatibility .

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 524 of 610

Property name Description

com.fortify.sca.ShowUnresolvedSymb

ols
If set to true, displays any unresolved

types, fields, and functions referenced

in translated Java source files at the

end of the translation.

Value type: Boolean

Default: false

Command-line option: -show-

unresolved-symbols

Analyzing Java, Kotlin and JSP projects

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 525 of 610

1.48.2.6. Visual Studio and MSBuild
project properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of .NET projects and solutions.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 526 of 610

Property name Description

WinForms.TransformDataBindings

WinForms.TransformMessageLoops

WinForms.TransformChangeNotificatio

nPattern

WinForms.CollectionMutationMonitor.L

abel

WinForms.ExtractEventHandlers

Sets various .NET options.

Value type: Boolean and String

Defaults and examples:

WinForms.TransformDataBindings=tru

e

WinForms.TransformMessageLoops=t

rue

WinForms.TransformChangeNotificatio

nPattern=true

WinForms.CollectionMutationMonitor.L

abel=WinFormsDataSource

WinForms.ExtractEventHandlers=true

com.fortify.sca.ASPVirtualRoots.

<virtual_path>
Specifies a semicolon-separated list of

full paths to virtual roots used.

Value type: String

Default: (none)

Example:

com.fortify.sca.ASPVirtualRoots.Librar

y=c:\\WebServer\\CustomerTwo\\Stuff

com.fortify.sca.ASPVirtualRoots.Includ

e=c:\\WebServer\\CustomerOne\\inc

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 527 of 610

Property name Description

com.fortify.sca.DisableASPExternalEnt

ries
If set to true, disables ASP external

entries in the scan.

Value type: Boolean

Default: false

Translating Visual Studio and MSBuild Projects

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 528 of 610

1.48.2.7. JavaScript and TypeScript
properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of JavaScript and TypeScript code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 529 of 610

Property name Description

com.fortify.sca.EnableDOMModeling
If set to true, OpenText SAST generates

JavaScript code to model the DOM tree

that an HTML file generated during the

translation phase and identifies DOM-

related issues (such as cross-site

scripting issues). Enable this property if

the code you are translating includes

HTML files that have embedded or

referenced JavaScript code.

Enabling this property can increase the

translation time.

Value type: Boolean

Default: false

com.fortify.sca.DOMModeling.tags
If you set the
com.fortify.sca.EnableDOMModeling

property to true, you can specify

additional coma-separated HTML tags

names for OpenText SAST to include in

the DOM modeling.

Value type: String

Default: body , button , div , form ,

iframe , input , head , html , and p .

Example: com.fortify.sca.DOMModelin

g.tags=ul,li

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 530 of 610

Property name Description

com.fortify.sca.JavaScript.src.domain.

whitelist

Specifies trusted domain names where

OpenText SAST can download

referenced JavaScript files for the

scan. Delimit the URLs with vertical

bars.

Value type: String

Default: (none)

Example: com.fortify.sca.JavaScript.sr

c.domain.whitelist=http://www.xyz.com

|http://www.123.org

com.fortify.sca.DisableJavascriptExtra

ction
If set to true, JavaScript code

embedded in JSP, JSPX, PHP, and

HTML files is not extracted and not

scanned.

Value type: Boolean

Default: false

com.fortify.sca.EnableTranslationMinifi

edJS

If set to true, enables translation for

minified JavaScript files.

Value type: Boolean

Default: false

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 531 of 610

Property name Description

com.fortify.sca.skip.libraries.ES6

com.fortify.sca.skip.libraries.jQuery

com.fortify.sca.skip.libraries.javascrip

t

com.fortify.sca.skip.libraries.typescrip

t

Specifies a list of comma- or colon-

separated JavaScript or TypeScript

technology library files that are not

translated. You can use regular

expressions in the file names. Note that

the regular expression '(-\d\.\d\.\d)?'

is automatically inserted before
.min.js or .js for each file name

included in the
com.fortify.sca.skip.libraries.jQuery

property value.

Value type: String

Defaults:

ES6: es6-shim.min.js,system-

polyfills.js,shims_for_IE.js
jQuery: jquery.js,jquery.min.js,

jquery-migrate.js,jquery-

migrate.min.js, jquery-ui.js,jquery-

ui.min.js,

jquery.mobile.js,jquery.mobile.min.j

s, jquery.color.js,jquery.color.min.js,

jquery.color.svg-names.js,

jquery.color.svg-names.min.js,

jquery.color.plus-names.js,

jquery.color.plus-names.min.js,

jquery.tools.min.js

javascript:

bootstrap.js,bootstrap.min.js,types

cript.js,typescriptServices.js
typescript:

typescript.d.ts,typescriptServices.

d.ts

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 532 of 610

Property name Description

com.fortify.sca.follow.imports
If set to true, files included with an

import statement are included in the

translation.

Value type: Boolean

Default: true

com.fortify.sca.exclude.node.modules
If set to true, files in a node_modules

directory are excluded from the

analysis phase.

Value type: Boolean

Default: true

com.fortify.sca.exclude.unimported.no

de.modules
Specifies whether to exclude source

code in a node_modules directory. If

set to true, only imported

node_modules are included in the

translation.

This property is only applied if

com.fortify.sca.exclude.node.modules
is set to false.

Value type: Boolean

Default: true

Translating JavaScript and TypeScript Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 533 of 610

1.48.2.8. Python properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of Python code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 534 of 610

Property name Description

com.fortify.sca.PythonPath Specifies a semicolon-separated

(Windows) or colon-separated (non-

Windows) list of additional import

directories. OpenText SAST does not

respect PYTHONPATH environment

variable that the Python runtime

system uses to find import files. Use

this property to specify the additional

import directories.

Value type: String (path)

Default: (none)

Command-line option: -python-path

com.fortify.sca.PythonVersion Specifies the Python source code

version to scan. The valid values are
2 and 3 .

Value type: Number

Default: 3

Command-line option: -python-

version

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 535 of 610

Property name Description

com.fortify.sca.PythonNoAutoRootCal

culation
If set to true, disables the automatic

calculation of a common root directory

of all project files to use for importing

modules and packages For more

details, see Including Imported

Modules and Packages.

Value type: Boolean

Default: false

Command-line option: -python-no-

auto-root-calculation

com.fortify.sca.DjangoTemplateDirs
Specifies semicolon-separated

(Windows) or colon-separated (non-

Windows) list of directories for Django

templates. OpenText SAST does not

use the TEMPLATE_DIRS setting from

the Django settings.py file.

Value type: String (paths)

Default: (none)

Command-line option: -django-

template-dirs

com.fortify.sca.DjangoDisableAutodisc

over
Specifies that OpenText SAST does not

automatically discover Django

templates.

Value type: Boolean

Default: (none)

Command-line option: -django-

disable-autodiscover

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 536 of 610

Property name Description

com.fortify.sca.JinjaTemplateDirs
Specifies semicolon-separated

(Windows) or colon-separated (non-

Windows) list of directories for Jinja2

templates.

Value type: String (paths)

Default: (none)

Command-line option: -jinja-

template-dirs

com.fortify.sca.DisableTemplateAutodi

scover
Specifies that OpenText SAST does not

automatically discover Django or Jinja2

templates.

Value type: Boolean

Default: (none)

Command-line option: -disable-

template-autodiscover

Translating Python Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 537 of 610

1.48.2.9. Go properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of Go code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 538 of 610

Property name Description

com.fortify.sca.gotags
Specifies custom build tags for a Go

project. This is equivalent to the -tags

option for the go command.

Value type: String

Default: (none)

Command-line option: -gotags

com.fortify.sca.GOPATH
Specifies the root directory of your

project/workspace.

Value type: String

Default: (GOPATH system environment

variable)

com.fortify.sca.GOROOT
Specifies the location of the Go

installation.

Value type: String

Default: (GOROOT system environment

variable)

com.fortify.sca.GOPROXY
Specifies one or more comma-

separated proxy URLs. You can also

specify direct or off .

Value type: String

Default: (GOPROXY system

environment variable)

See Also

Translating Go Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 539 of 610

1.48.2.10. Ruby properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of Ruby code.

Property name Description

com.fortify.sca.ruby.legacy.enabled If set to true, legacy Ruby is enabled

and AI Ruby is disabled.

If set to false, legacy Ruby is disabled

and AI Ruby is enabled.

If not set, AI Ruby is enabled if
com.fortify.sca.ai.provider or
com.fortify.sca.ai.db.url is set.

Otherwise, legacy Ruby is enabled.

Default: null

com.fortify.sca.RubyLibraryPaths Specifies one or more paths to

directories that contain Ruby libraries.

Value type: String (path)

Default: (none)

Command-line option: -ruby-path

com.fortify.sca.RubyGemPaths Specifies one or more paths to

RubyGems locations. Set this value if

the project has associated gems to

scan.

Value type: String (path)

Default: (none)

Command-line option: -rubygem-

path

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 540 of 610

Translating Ruby Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 541 of 610

1.48.2.11. COBOL properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of COBOL code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 542 of 610

Property name Description

com.fortify.sca.CobolCopyDirs
Specifies one or more semicolon- or

colon-separated directories where

OpenText SAST looks for copybook

files.

Value type: String (path)

Default: (none)

Command-line option: -copydirs

com.fortify.sca.CobolDialect
Specifies the COBOL dialect. The valid

values for dialect are COBOL390 or
MICROFOCUS . The dialect value is

case-insensitive.

Value type: String

Default: COBOL390

Command-line option: -dialect

com.fortify.sca.CobolCheckerDirective

s
Specifies one or more semicolon-

separated COBOL checker directives.

Value type: String

Default: (none)

Command-line option: -checker-

directives

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 543 of 610

Property name Description

com.fortify.sca.CobolLegacy
If set to true, enables legacy

COBOL translation.

Value type: Boolean

Default: false

Command-line option: -cobol-legacy

com.fortify.sca.CobolFixedFormat
If set to true, specifies fixed-format

COBOL to direct OpenText SAST to

only look for source code between

columns 8-72 in all lines of code

(legacy COBOL translation only).

Value type: Boolean

Default: false

Command-line option: -fixed-format

com.fortify.sca.CobolCopyExtensions
Specifies one or more semicolon- or

colon-separated copybook file

extensions (legacy COBOL translation

only).

Value type: String

Default: (none)

Command-line option: -copy-

extensions

Translating COBOL Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 544 of 610

1.48.2.12. PHP properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of PHP code.

Property name Description

com.fortify.sca.PHPVersion Specifies the PHP version. For a list of

valid versions, see Supported

languages.

Value type: String

Default: 8.2

Command-line option: -php-version

com.fortify.sca.PHPSourceRoot Specifies the PHP source root.

Value type: Boolean

Default: (none)

Command-line option: -php-source-

root

Translating PHP Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 545 of 610

1.48.2.13. ABAP properties
The properties described in the following table apply to the translation of ABAP code.

Property name Description

com.fortify.sca.AbapDebug If set to true, OpenText SAST adds

ABAP statements to debug messages.

Value type: Boolean

Default: (none)

com.fortify.sca.AbapIncludes When OpenText SAST encounters an

ABAP 'INCLUDE' directive, it looks in

the named directory.

Value type: String (path)

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 546 of 610

1.48.2.14. Flex and ActionScript
properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of Flex and ActionScript code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 547 of 610

Property name Description

com.fortify.sca.FlexLibraries Specifies a semicolon-separated

(Windows) or colon-separated (non-

Windows) of libraries to "link" to. This

list must include flex.swc ,
framework.swc , and
playerglobal.swc (which are usually

located in the frameworks/libs

directory in your Flex SDK root). Use

this property primarily to resolve

ActionScript.

Value type: String (path)

Default: (none)

Command-line option: -flex-libraries

com.fortify.sca.FlexSdkRoot Specifies the root location of a valid

Flex SDK. The folder must contain a

frameworks folder that contains a flex-

config.xml file. It must also contain a
bin folder that contains an mxmlc

executable.

Value type: String (path)

Default: (none)

Command-line option: -flex-sdk-root

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 548 of 610

Property name Description

com.fortify.sca.FlexSourceRoots Specifies any additional source

directories for a Flex project. Separate

multiple directories with semicolons

(Windows) or colons (non-Windows).

Value type: String (path)

Default: (none)

Command-line option: -flex-source-

root

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 549 of 610

1.48.2.15. ColdFusion (CFML) properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of CFML code.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 550 of 610

Property name Description

com.fortify.sca.CfmlUndefinedVariable

sAreTainted

If set to true, OpenText SAST treats

undefined variables in CFML pages as

tainted. This serves as a hint to the

Dataflow Analyzer to watch out for

register-globals-style vulnerabilities.

However, enabling this property

interferes with dataflow findings where

a variable in an included page is

initialized to a tainted value in an

earlier-occurring included page.

Value type: Boolean

Default: false

com.fortify.sca.CaseInsensitiveFiles If set to true, make CFML files case-

insensitive for applications developed

using a case-insensitive file system

and scanned on case-sensitive file

systems.

Value type: Boolean

Default: (not enabled)

com.fortify.sca.SourceBaseDir Specifies the base directory for

ColdFusion projects.

Value type: String (path)

Default: (none)

Command-line option: -source-base-

dir

Translating ColdFusion Code

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 551 of 610

1.48.2.16. SQL properties
The properties for the fortify-sca.properties file in the following table apply to the

translation of SQL code.

Property name Description

com.fortify.sca.SqlLanguage Specifies the SQL language variant.

The valid SQL language type values are

PLSQL (for Oracle PL/SQL) and

TSQL (for Microsoft T-SQL).

Value type: String

Default: TSQL

Command-line option: -sql-language

Translating SQL

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 552 of 610

1.48.2.17. Output properties
The properties for the fortify-sca.properties file in the following table apply to the

analysis output.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 553 of 610

Property name Description

com.fortify.sca.ResultsFile The file to which results are written.

Value type: String

Default: (none)

Command-line option: -f

Example:

com.fortify.sca.ResultsFile=MyResults.

fpr

com.fortify.sca.Renderer Controls the output format. The valid

values are fpr , fvdl , text , and
auto . The default of auto selects the

output format based on the extension

of the file provided with the -f option.

Value type: String

Default: auto

Command-line option: -format

com.fortify.sca.OutputAppend If set to true, OpenText SAST appends

results to an existing results file.

Value type: Boolean

Default: false

Command-line option: -append

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 554 of 610

Property name Description

com.fortify.sca.ResultsAsAvailable If set to true, OpenText SAST prints

results as they become available. This

is helpful if you do not specify the -f

option (to specify an output file) and

print to stdout.

Value type: Boolean

Default: false

com.fortify.sca.BuildLabel Specifies a label for the scanned

project. OpenText SAST does not use

this label but includes it in the results.

Value type: String

Default: (none)

Command-line option: -build-label

com.fortify.sca.BuildProject Specifies a name for the scanned

project. OpenText SAST does not use

this name but includes it in the results.

Value type: String

Default: (none)

Command-line option: -build-project

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 555 of 610

Property name Description

com.fortify.sca.BuildVersion Specifies a version number for the

scanned project. OpenText SAST does

not use this version number but it is

included in the results.

Value type: String

Default: (none)

Command-line option: -build-version

com.fortify.sca.MachineOutputMode Output information in a format that

scripts or OpenText SAST tools can use

rather than printing output interactively.

Instead of a single line to display scan

progress, a new line is printed below

the previous one on the console to

display updated progress.

Value type: Boolean

Default: (not enabled)

Command-line option: -machine-

output

com.fortify.sca.SnippetContextLines Sets the number of lines of code to

display surrounding an issue. Snippets

always include the two lines of code on

each side of the line where the error

occurs. By default, five lines of code

are displayed.

Value type: Number

Default: 2

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 556 of 610

Property name Description

com.fortify.sca.FVDLDisableDescriptio

ns

If set to true, excludes OpenText

Application Security Content

descriptions from the analysis results

file (FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-

descriptions

com.fortify.sca.FVDLDisableEngineDat

a

If set to true, excludes engine data

from the analysis results file (FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-

enginedata

com.fortify.sca.FVDLDisableLabelEvid

ence

If set to true, excludes label evidence

from the analysis results file (FVDL).

Value type: Boolean

Default: false

com.fortify.sca.FVDLDisableProgramD

ata

If set to true, excludes the

ProgramData section from the

analysis results file (FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-

progdata

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 557 of 610

Property name Description

com.fortify.sca.FVDLDisableSnippets If set to true, excludes code snippets

from the analysis results file (FVDL).

Value type: Boolean

Default: false

Command-line option: -fvdl-no-

snippets

com.fortify.sca.FVDLStylesheet Specifies location of the style sheet for

the analysis results.

Value type: String (path)

Default:

${com.fortify.Core}/resources/sca/fvdl

2html.xsl

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 558 of 610

1.48.2.18. Mobile build session (MBS)
properties
The properties for the fortify-sca.properties file in the following table apply to MBS

files.

Property name Description

com.fortify.sca.MobileBuildSessions If set to false, OpenText SAST does not

copy source files into the build session

directory.

Value type: Boolean

Default: true

com.fortify.sca.ExtractMobileInfo
If set to true, OpenText SAST extracts

the build ID and the OpenText SAST

version number from the mobile build

session.

Note

OpenText SAST does not
extract the mobile build
with this property.

Value type: Boolean

Default: false

Mobile Build Sessions

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 559 of 610

1.48.2.19. Proxy properties
The properties for the fortify-sca.properties file in the following table apply to proxy

settings.

Property name Description

com.fortify.sca.

https.proxyHost

Specifies a proxy host name.

Value type: String

Default: (none)

com.fortify.sca.

https.proxyPort

Specifies a proxy port number.

Value type: Number

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 560 of 610

1.48.2.20. Logging properties
The properties for the fortify-sca.properties file in the following table apply to log

files.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 561 of 610

Property name Description

com.fortify.sca.LogFile Specifies the default log file name and

location.

Value type: String (path)

Default: ${com.fortify.sca.ProjectRoot}

/log/sca.log and ${com.fortify.sca.Proj

ectRoot}/log/sca_FortifySupport.log

Command-line option: -logfile

com.fortify.sca.LogLevel Specifies the minimum log level for

both log files. The valid values are
DEBUG , INFO , WARN , ERROR ,

and FATAL . For more information, see

Accessing Log Files and Configuring

Log Files.

Value type: String

Default: INFO

com.fortify.sca.ClobberLogFile
If set to true, OpenText SAST

overwrites the log file for each run of

sourceanalyzer.

Value type: Boolean

Default: false

Command-line option: -clobber-log

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 562 of 610

Property name Description

com.fortify.sca.PrintPerformanceData

AfterScan

If set to true, OpenText SAST writes

performance-related data to the

OpenText SAST Support log file after

the scan is complete. This value is

automatically set to true when in debug

mode.

Value type: Boolean

Default: false

Configuring Log Files

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 563 of 610

1.48.2.21. Debug properties
The properties for the fortify-sca.properties file in the following table apply to debug

settings.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 564 of 610

Property name Description

com.fortify.sca.Debug Includes debug information in the

OpenText SAST Support log file, which

is only useful for Customer Support to

help troubleshoot.

Value type: Boolean

Default: false

Command-line option: -debug

com.fortify.sca.DebugVerbose This is the same as the
com.fortify.sca.Debug property, but it

includes more details, specifically for

parse errors.

Value type: Boolean

Default: (not enabled)

Command-line option: -debug-

verbose

com.fortify.sca.Verbose If set to true, includes verbose

messages in the OpenText SAST

Support log file.

Value type: Boolean

Default: false

Command-line option: -verbose

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 565 of 610

Property name Description

com.fortify.sca.DebugTrackMem If set to true, additional performance

information is written to the OpenText

SAST Support log.

Value type: Boolean

Default: (not enabled)

Command-line option: -debug-mem

com.fortify.sca.CollectPerformanceDat

a

If set to true, enables additional timers

to track performance.

Value type: Boolean

Default: (not enabled)

com.fortify.sca.Quiet If set to true, disables the command-

line progress information.

Value type: Boolean

Default: false

Command-line option: -quiet

com.fortify.sca.MonitorSca If set to true, OpenText SAST monitors

its memory use and warns when JVM

garbage collection becomes excessive.

Value type: Boolean

Default: true

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 566 of 610

1.48.3. fortify-sca-quickscan.properties
OpenText SAST offers a less in-depth scan known as a quick scan. This option scans

the project in quick scan mode, using the property values in the fortify-sca-

quickscan.properties file. By default, a quick scan reduces the depth of the analysis

and applies the Quick View filter set. The Quick View filter set provides only critical

and high priority issues.

Note

Properties in this file are only used if you specify the -quick option on
the command line for your scan.

The following table provides two sets of default values: the default value for quick

scans and the default value for normal scans. If only one default value is shown, the

value is the same for both normal scans and quick scans.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 567 of 610

Property name Description

com.fortify.sca.

CtrlflowMaxFunctionTime

Sets the time limit (in milliseconds) for

Control Flow analysis on a single

function.

Value type: Integer

Quick scan default: 30000

Default: 600000

com.fortify.sca.

DisableAnalyzers

Specifies a comma- or colon-

separated list of analyzers to disable

during a scan. The valid analyzer

names are buffer , content ,
configuration , controlflow ,
dataflow , nullptr , semantic , and
structural .

Value type: String

Quick scan default:

controlflow:buffer

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 568 of 610

Property name Description

com.fortify.sca.

FilterSet

Specifies the filter set to use. You can

use this property with an issue

template to filter at scan-time instead

of post-scan. See
com.fortify.sca.ProjectTemplate

described in Translation and Analysis

Phase Properties to specify an issue

template that contains the filter set to

use.

When set to Quick View , this property

runs rules that have a potentially high

impact and a high likelihood of

occurring and rules that have a

potentially high impact and a low

likelihood of occurring. Filtered issues

are not written to the FPR and therefore

this can reduce the size of an FPR. For

more information about filter sets, see

the OpenText™ Fortify Audit Workbench
User Guide.

Value type: String

Quick scan default: Quick View

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 569 of 610

Property name Description

com.fortify.sca.

FPRDisableMetatable
Disables the creation of the metatable,

which includes information for the

Function view in Fortify Audit

Workbench. This metatable enables

right-click on a variable in the source

window to show the declaration. If

C/C++ scans take an extremely long

time, setting this property to true can

potentially reduce the scan time by

hours.

Value type: Boolean

Quick scan default: true

Default: false

Command-line option: -disable-

metatable

com.fortify.sca.

FPRDisableSourceBundling

Disables source code inclusion in the

FPR file. Prevents OpenText SAST from

generating marked-up source code

files during a scan. If you plan to

upload FPR files that are generated as

a result of a quick scan to Application

Security, you must set this property to
false .

Value type: Boolean

Quick scan default: true

Default: false

Command-line option: -disable-

source-bundling

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 570 of 610

Property name Description

com.fortify.sca.

NullPtrMaxFunctionTime

Sets the time limit (in milliseconds) for

Null Pointer analysis for a single

function. The standard default is five

minutes. If this value is set to a shorter

limit, the overall scan time decreases.

Value type: Integer

Quick scan default: 10000

Default: 300000

com.fortify.sca.

TrackPaths

Disables path tracking for Control Flow

analysis. Path tracking provides more

detailed reporting for issues, but

requires more scan time. To disable

this for JSP only, set it to NoJSP .

Specify None to disable all functions.

Value type: String

Quick scan default: (none)

Default: NoJSP

com.fortify.sca.

limiters.ConstraintPredicateSize
Specifies the size limit for complex

calculations in the Buffer Analyzer.

Skips calculations that are larger than

the specified size value in the Buffer

Analyzer to improve scan time.

Value type: Integer

Quick scan default: 10000

Default: 500000

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 571 of 610

Property name Description

com.fortify.sca.

limiters.MaxChainDepth
Controls the maximum call depth

through which the Dataflow Analyzer

tracks tainted data. Increase this value

to increase the coverage of dataflow

analysis, which results in longer scan

times.

Note

Call depth refers to the
maximum call depth on a
dataflow path between a
taint source and sink,
rather than call depth from
the program entry point,
such as main() .

Value type: Integer

Quick scan default: 3

Default: 5

com.fortify.sca.

limiters.MaxFunctionVisits
Sets the number of times taint

propagation analyzer visits functions.

Value type: Integer

Quick scan default: 5

Default: 50

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 572 of 610

Property name Description

com.fortify.sca.

limiters.MaxPaths
Controls the maximum number of paths

to report for a single dataflow

vulnerability. Changing this value does

not change the results that are found,

only the number of dataflow paths

displayed for an individual result.

Note

OpenText does not
recommend setting this
property to a value larger
than 5 because it might
increase the scan time.

Value type: Integer

Quick scan default: 1

Default: 5

com.fortify.sca.

limiters.MaxTaintDefForVar
Sets a complexity limit for the Dataflow

Analyzer. Dataflow incrementally

decreases precision of analysis on

functions that exceed this complexity

metric for a given precision level. This

value controls how much taint is

tracked for a variable chain.

Value type: Integer

Quick scan default: 250

Default: 1000

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 573 of 610

Property name Description

com.fortify.sca.

limiters.MaxTaintDefForVarAbort
Sets a hard limit for function

complexity. If complexity of a function

exceeds this limit at the lowest

precision level, the analyzer skips

analysis of the function.

Value type: Integer

Quick scan default: 500

Default: 4000

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 574 of 610

1.48.4. fortify-rules.properties
This topic describes the properties available for use in the fortify-rules.properties
file.

Improving Results

Use these properties to modify behavior of scan results, either enabling new sets of

rules, filtering rules, or enabling correlation of results with OpenText DAST.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 575 of 610

Property name Description

com.fortify.sca.rules.EnableRuleComm

ents

If set to true, enables the ability to

prevent issues appearing in results

using the // FortifyRemove()
comments. For more information,

see Filtering using FortifyRemove

comments

Value Type: Boolean

Default: true

com.fortify.sca.rules.IsLibrary
If set to true, enables new entrypoint

rules in code that adds WEB ,XSS, and

PRIVATE taint to every public function

variable (certain exclusions apply).

(Currently only Java and JVM

languages apply)

Value type: Boolean

Default: false

com.fortify.sca.rules.enablePQCRules
If set to true, enables rules to identify

issues related to Post-Quantum

Cryptographic threats. See security

content updates and documentation for

more details, including which

languages and libraries are supported.

Value type: Boolean

Default: false

DAST Correlation & Verification

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 576 of 610

Property name Description

com.fortify.sca.rules.enable_wi_correl

ation
If set to true and OpenText SAST scans

an application with a supported

framework, produces a results file to

be imported into OpenText™ Dynamic

Application Security Testing to improve

results.

Value type: Boolean

Default: false

Google Cloud Function Integration
Scanning Google Cloud Functions either provide a JSON or YAML cloud build config

file or set the properties in the below table to optimize results.

Property name Description

com.fortify.sca.rules.GCPFunctionNam

e
Name of the serverless function called

when no JSON/YAML cloud build

config file exists.

Value type: String

Default: (none)

com.fortify.sca.rules.GCPHttpTrigger
If set to true, the scanned cloud

function is an HTTP trigger.

Value type: Boolean

Default: false

Properties to Customize Regular Expressions

Although many techniques are used to identify vulnerabilities in code, some rules

have to rely upon regular expressions to try to find identifiers in code, and these can

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 577 of 610

often be configured by properties. The following table describes a list of properties

that can be used to modify the regular expressions used by the rules.

It is advised to set these within the fortify-rules.properties file instead of directly on

the command line to prevent clashes between regular expression and shell syntax.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 578 of 610

Property name Description

com.fortify.sca.rules.password_regex.

global

The regular expression to match

password identifiers across all

languages unless a language-specific

rules property is set.

Value type: String

Default: (?i)(s|_)?

(user|usr|member|admin|guest|login|d

efault|

new|current|old|client|server|proxy|sql

server|

my|mysql|mongo|mongodb|db|databas

e|ldap|smtp|

email|email(_)?smtp)?

(_|\.)?(pass(wd|word|phrase)|secret)

com.fortify.sca.rules.password_regex.

abap

Regular expression to match password

identifiers in ABAP code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 579 of 610

Property name Description

com.fortify.sca.rules.password_regex.

actionscript

Regular expression to match password

identifiers in ActionScript code. Setting

this property overrides the global regex

password rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

apex
Regular expression to match password

identifiers in Salesforce Apex code.

Setting this property overrides the

global regex password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

cfml

Regular expression to match password

identifiers in ColdFusion (CFML) code.

Setting this property overrides the

global regex password rules property.

Value type: String

Default: (none)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 580 of 610

Property name Description

com.fortify.sca.rules.password_regex.

cobol

Regular expression to match password

identifiers in COBOL code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

config

Regular expression to match password

identifiers in XML. Setting this property

overrides the global regex password

rules property. Do not use regular

expression modifiers. The value is

case-insensitive.

Value type: String

Default: (s|_)?

(user|usr|member|admin|guest|login|d

efault|

new|current|old|client|server|proxy|sql

server|

my|mysql|mongo|mongodb|db|databas

e|ldap|smtp|

email|email(_)?smtp)?

(_|\.)?pass(wd|word|phrase)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 581 of 610

Property name Description

com.fortify.sca.rules.password_regex.

cpp

Regular expression to match password

identifiers in C and C++ code. Setting

this property overrides the global regex

password rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

dart

Regular expression to match password

identifiers in Dart code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

dotnet

Regular expression to match password

identifiers in .NET code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 582 of 610

Property name Description

com.fortify.sca.rules.password_regex.

docker

Regular expression to match password

identifiers in Dockerfiles. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: .*pass(wd|word|phrase).*

com.fortify.sca.rules.password_regex.

golang

Regular expression to match password

identifiers in Go code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.j

ava

Regular expression to match password

identifiers in Java code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 583 of 610

Property name Description

com.fortify.sca.rules.password_regex.j

avascript

Regular expression to match password

identifiers in JavaScript and TypeScript

code. Setting this property overrides

the global regex password rules

property.

Value type: String

Default: (value for

com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.j

son

Regular expression to match password

identifiers in JSON. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

com.fortify.sca.rules.password_regex.j

sp

Regular expression used to match

password identifiers in JSP code.

Setting this property overrides the

global regex password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 584 of 610

Property name Description

com.fortify.sca.rules.password_regex.

objc

Regular expression to match password

identifiers in Objective-C and

Objective-C++ code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (?i)(s|_)?

(user|usr|member|admin|guest|login|d

efault|

new|current|old|client|server|proxy|sql

server|

my|mysql|mongo|mongodb|db|databas

e|ldap|smtp|

email|email(_)?smtp)?

(_|\.)?

(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.password_regex.

php

Regular expression to match password

identifiers in PHP code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 585 of 610

Property name Description

com.fortify.sca.rules.password_regex.

powershell
Regular expression to match password

identifiers in PowerShell files. Setting

this property overrides the global regex

password rules property.

Value type: String

Default: (?i)([a-z_]*|\{.*)

(pass(wd|word|phrase)|pwd)(.*\}|[a-

z_]*)

com.fortify.sca.rules.password_regex.

properties

Regular expression to match password

identifiers in Properties files. Setting

this property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

python

Regular expression to match password

identifiers in Python code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 586 of 610

Property name Description

com.fortify.sca.rules.password_regex.

ruby

Regular expression to match password

identifiers in Ruby code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.password_regex.

global)

com.fortify.sca.rules.password_regex.

sql

Regular expression to match password

identifiers in SQL code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 587 of 610

Property name Description

com.fortify.sca.rules.password_regex.

swift

Regular expression to match password

identifiers in Swift code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (?i)(s|_)?

(user|usr|member|admin|guest|login|d

efault|

new|current|old|client|server|proxy|sql

server|

my|mysql|mongo|mongodb|db|databas

e|ldap|smtp|

email|email(_)?smtp)?

(_|\.)?

(token|pin|pass(wd|word|phrase))

com.fortify.sca.rules.password_regex.

vb

Regular expression to match password

identifiers in VB6 code. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.

global)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 588 of 610

Property name Description

com.fortify.sca.rules.password_regex.

yaml

Regular expression to match password

identifiers in YAML. Setting this

property overrides the global regex

password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

com.fortify.sca.rules.key_regex.global The regular expression to match key

identifiers across all languages unless

a language-specific regex key rules

property is set.

Value type: String

Default: (?i)((enc|dec)(ryption|rypt)?

|crypto|secret|private)(_)?key

com.fortify.sca.rules.key_regex.abap Regular expression to match key

identifiers in ABAP code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 589 of 610

Property name Description

com.fortify.sca.rules.key_regex.action

script

Regular expression to match key

identifiers in ActionScript code. Setting

this property overrides the global regex

key rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.key_regex.global
)

com.fortify.sca.rules.key_regex.cfml Regular expression to match key

identifiers in CFML code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.cpp Regular expression to match key

identifiers in C and C++ code. Setting

this property overrides the global regex

key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 590 of 610

Property name Description

com.fortify.sca.rules.key_regex.golan

g

Regular expression to match key

identifiers in Go code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.key_regex.global
)

com.fortify.sca.rules.key_regex.java Regular expression to match key

identifiers in Java code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.javascr

ipt

Regular expression to match key

identifiers in JavaScript and TypeScript

code. Setting this property overrides

the global regex key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 591 of 610

Property name Description

com.fortify.sca.rules.key_regex.jsp Regular expression to match key

identifiers in JSP code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.key_regex.global
)

com.fortify.sca.rules.key_regex.objc Regular expression used to match key

identifiers in Objective-C and

Objective-C++ code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.php Regular expression to match key

identifiers in PHP code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 592 of 610

Property name Description

com.fortify.sca.rules.key_regex.pytho

n

Regular expression to match key

identifiers in Python code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.key_regex.global
)

com.fortify.sca.rules.key_regex.ruby Regular expression used to match key

identifiers in Ruby code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.sql Regular expression to match key

identifiers in SQL code. Setting this

property overrides the global regex key

rules property.

Default: (value for

com.fortify.sca.rules.key_regex.global
)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 593 of 610

Property name Description

com.fortify.sca.rules.key_regex.swift Regular expression used to match key

identifiers in Swift code. Setting this

property overrides the global regex key

rules property.

Value type: String

Default: (value for

com.fortify.sca.rules.key_regex.global
)

com.fortify.sca.rules.key_regex.vb Regular expression to match key

identifiers in Visual Basic 6 code.

Setting this property overrides the

global regex key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 594 of 610

1.49. Command-line tools
OpenText SAST command-line tools enable you to manage OpenText Application

Security Content, perform post-installation configurations, and monitor scans. These

tools are located in <sast_install_dir>/bin . The tools for Windows are provided as

.bat or .cmd files. The following table describes the command-line tools installed

with OpenText SAST.

Note

By default, log files for OpenText SAST tools are written to the following
directory:

Windows: C:\Users\<username>\AppData\Local\Fortify\
<tool_name>-<version>\log
Non-Windows: <userhome>/.fortify/<tool_name>-<version>/log

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 595 of 610

Tool Description More information

fortifyupdate
Compares installed

security content to the

current version and

makes any required

updates

About updating

OpenText Application

Security Content

FPRUtility
With this tool you can:

Merge audited

projects

Verify FPR

signatures

Display information

from an FPR file

Combine or split

source code files

and audit projects

into FPR files

Alter an FPR

OpenText™ Application

Security Tools Guide

scapostinstall This tool enables you to

migrate properties files

from a previous version

of OpenText SAST,

specify a locale, and

specify a proxy server

for security content

updates and for

Application Security.

Running the post-install

tool

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 596 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

Tool Description More information

SCAState
Provides state analysis

information on the JVM

during the analysis

phase

Checking the scan status

with SCAState

This section contains the following topics:

About updating OpenText Application Security Content

Checking the scan status with SCAState

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 597 of 610

1.49.1. About updating OpenText
Application Security Content
You can use the fortifyupdate command-line tool to download the latest Fortify

Secure Coding Rulepacks and metadata from OpenText.

The fortifyupdate tool gathers information about the existing security content in your

OpenText SAST installation and contacts the Fortify Rulepack update server with this

information. The server returns new or updated security content, and removes any

obsolete security content from your OpenText SAST installation. If your installation is

current, a message is displayed to that effect.

This section contains the following topics:

Updating OpenText Application Security Content

fortifyupdate command-line options

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 598 of 610

1.49.1.1. Updating OpenText Application
Security Content
Use the fortifyupdate command-line tool to either download security content or

import a local copy of the security content. This tool is located in the
<sast_install_dir>/bin directory.

The default read timeout for this tool is 180 seconds. To change the timeout setting,

add the rulepackupdate.SocketReadTimeoutSeconds property in the

server.properties configuration file. For more information, see the OpenText™

Application Security Tools Guide.

The basic command-line syntax for fortifyupdate is shown in the following example:

fortifyupdate [<options>]

To update your OpenText SAST installation with the latest Fortify Secure Coding

Rulepacks and external metadata from the Fortify Rulepack update server, type the

following command:

fortifyupdate

To update security content from the local system:

fortifyupdate -import <my_local_rules>.zip

To update security content from a Application Security server using credentials:

fortifyupdate -url <ssc_url> -sscUser <username> -sscPassword

<password>

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 599 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

1.49.1.2. fortifyupdate command-line
options
The following table describes the fortifyupdate options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 600 of 610

fortifyupdate option Description

-acceptKey
Specifies to accept the public key.

When this is specified, you are not

prompted to provide a public key. Use

this option to accept the public key if

you update OpenText Application

Security Content from a non-standard

location with the -url option.

-acceptSSLCertificate Specifies to use the SSL certificate

provided by the server.

-import <file>.zip
Imports the ZIP file that contains

security content. By default, Rulepacks

are imported into the

<sast_install_dir>/Core/config/rules
directory.

-coreDir <dir>
Specifies a core directory where

fortifyupdate stores the update. If this

is not specified, the fortifyupdate

performs the update in the

<sast_install_dir>.

Important

Make sure that you copy
the contents of the
<sast_install_dir>/config/k
eys folder and paste it to a
config/keys folder in this
directory before you run
fortifyupdate .

-includeMetadata Specifies to only update external

metadata.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 601 of 610

fortifyupdate option Description

-includeRules Specifies to only update Rulepacks.

-locale <locale>
Specifies a locale. English is the default

if no security content exists for the

specified locale. The valid values are:

en (English)

es (Spanish)

ja (Japanese)

ko (Korean)

pt_BR (Brazilian Portuguese)

zh_CN (Simplified Chinese)

zh_TW (Traditional Chinese)

Note

The values are not case-
sensitive.

Alternatively, you can specify a default

locale for security content updates in

the fortify.properties configuration

file. For more information, see the

OpenText™ Application Security Tools

Guide.

-proxyhost <host> Specifies a proxy server network name

or IP address.

-proxyport <port> Specifies a proxy server port number.

-proxyUsername

<username>
Specifies a user name if the proxy

server requires authentication.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 602 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

fortifyupdate option Description

-proxyPassword

<password>
Specifies the password if the proxy

server requires authentication.

-showInstalledRules
Displays the currently installed

Rulepacks including any custom rules

and custom metadata.

-showInstalledExternalMetadata Displays the currently installed external

metadata.

-url <url>
Specifies a URL from which to

download the security content. The

default URL is

https://update.fortify.com or the value

set for the rulepackupdate.server
property in the server.properties
configuration file.

For more information about the

server.properties configuration file,

see the OpenText™ Application Security

Tools Guide.

You can download the security content

from a Application Security server by

providing a Application Security URL.

Specify one of the following types of credentials if you update security content

from Application Security with the -url option:

-sscUsername

-sscPassword

Specifies a Application Security user

account by user name and password.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 603 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

fortifyupdate option Description

-sscAuthToken
Specifies a Application

Security authentication token of type

UnifiedLoginToken, CIToken, or

ToolsConnectToken.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 604 of 610

1.49.2. Checking the scan status with
SCAState
Use the SCAState tool to see up-to-date state analysis information during the analysis

phase.

To check the state:

1. Start a scan.

2. Open another command window.

3. Type the following at the command prompt:

SCAState [<options>]

See Also

SCAState command-line options

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 605 of 610

1.49.2.1. SCAState command-line options
The following table describes the SCAState options.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 606 of 610

SCAState option Description

-a |
--all

Displays all available information.

-debug Displays information that is useful to

debug SCAState behavior.

-ftd |

--full-thread-dump

Prints a thread dump for every thread.

-h |
--help

Displays the help information for the

SCAState tool.

-hd <filename> |

--heap-dump <filename>

Specifies the file to which the heap

dump is written. The file is interpreted

relative to the remote scan’s working

directory; this is not necessarily the

same directory where you are running

SCAState.

-liveprogress Displays the ongoing status of a

running scan. This is the default. If

possible, this information is displayed

in a separate terminal window.

-nogui Causes the OpenText SAST state

information to display in the current

terminal window instead of in a

separate window.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 607 of 610

SCAState option Description

-pi |
--program-info

Displays information about the source

code being scanned, including how

many source files and functions it

contains.

-pid <process_id>
Specifies the currently running

OpenText SAST process ID. Use this

option if there are multiple OpenText

SAST processes running

simultaneously.

To obtain the process ID on Windows

systems:

1. Open a command window.

2. At the command prompt, type

tasklist .

A list of processes is displayed.

3. Find the java.exe process in the

list and note its PID.

To find the process ID on Linux

systems:

At the command prompt, type ps

aux | grep sourceanalyzer .

-progress Displays scan information up to the

point at which the command is issued.

This includes the elapsed time, the

current phase of the analysis, and the

number of results already obtained.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 608 of 610

SCAState option Description

-properties Displays configuration settings (this

does not include sensitive information

such as passwords).

-scaversion Displays the OpenText SAST version

number for the sourceanalyzer that is

currently running.

-td |

--thread-dump

Prints a thread dump for the main

scanning thread.

-timers Displays information from the timers

and counters that are instrumented in

OpenText SAST.

-version Displays the SCAState version.

-vminfo Displays the following statistics that

JVM standard MXBeans provides:

ClassLoadingMXBean,

CompilationMXBean,

GarbageCollectorMXBeans,

MemoryMXBean,

OperatingSystemMXBean,

RuntimeMXBean, and ThreadMXBean.

<none> Displays scan progress information

(this is the same as -progress).

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 609 of 610

Note

OpenText SAST writes Java process information to the location of the
TMP system environment variable. On Windows systems, the TMP system
environment variable location is C:\Users\
<username>\AppData\Local\Temp . If you change this TMP system
environment variable to point to a different location, SCAState cannot
locate the sourceanalyzer Java process and does not return the
expected results. To resolve this issue, change the TMP system
environment variable to match the new TMP location. OpenText
recommends that you run SCAState as an administrator on Windows.

Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 610 of 610

© Copyright 2026 Open Text

For more info, visit https://docs.microfocus.com

https://docs.microfocus.com/

	Title
	Table of Contents
	1. User Guide
	1.1. Support and documentation
	1.2. Change log
	1.3. Introduction
	1.3.1. Product name changes
	1.3.2. OpenText SAST
	1.3.2.1. About the analyzers
	1.3.3. Licensing
	1.3.4. Renewing an expired license
	1.3.5. OpenText Application Security Content
	1.3.6. Fortify ScanCentral SAST
	1.3.7. OpenText Application Security Tools
	1.3.8. Sample projects
	1.3.9. Related documents
	1.4. System requirements
	1.4.1. Hardware requirements
	1.4.1.1. Sample scans
	1.4.2. Supported platforms and architectures
	1.4.3. Software requirements
	1.4.4. AI-powered SAST requirements
	1.4.4.1. Supported LLMs
	1.4.5. Language compatibility
	1.4.5.1. Libraries, frameworks, and technologies
	1.4.5.2. Language compatibility for AI-assisted analysis
	1.4.6. Supported build tools
	1.4.7. Supported compilers
	1.4.8. OpenText Application Security Content
	1.4.9. Virtual Machine support
	1.4.10. Acquiring software
	1.4.11. Verifying software downloads
	1.5. Installing OpenText SAST
	1.5.1. About installing OpenText SAST
	1.5.1.1. Installing OpenText SAST
	1.5.1.2. Installing OpenText SAST silently
	1.5.1.3. Installing OpenText SAST in text-based mode on non�Windows platforms
	1.5.1.4. Manually installing OpenText Application Security Content
	1.5.2. Using Docker to install and run OpenText SAST
	1.5.2.1. Creating a Dockerfile to install OpenText SAST
	1.5.2.2. Running the container
	1.5.3. Upgrading OpenText SAST
	1.5.4. About uninstalling OpenText SAST
	1.5.4.1. Uninstalling OpenText SAST
	1.5.4.2. Uninstalling OpenText SAST silently
	1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows platforms
	1.5.5. Post-installation tasks
	1.5.5.1. Running the post-install tool
	1.5.5.2. Migrating properties files
	1.5.5.3. Specifying a locale
	1.5.5.4. Configuring Fortify Security Content updates
	1.5.5.5. Configuring the connection to Application Security
	1.5.5.6. Removing proxy server settings
	1.5.5.7. Adding trusted certificates
	1.6. Analysis process overview
	1.6.1. Scanning Basics
	1.6.2. Translation phase
	1.6.3. Analysis phase
	1.6.4. Translation and analysis phase verification
	1.7. Analyzing using AI-powered SAST
	1.7.1. Configuring the LLM
	1.7.1.1. Connecting to an AWS Bedrock LLM
	1.7.2. Connecting to the database
	1.7.3. Using the dbTool
	1.7.4. Sample analysis using AI-powered SAST
	1.7.5. AI-powered SAST configuration options
	1.7.6. Rate limiting
	1.7.7. Using the pwtool€to encrypt sensitive values
	1.8. Analyzing Java, Kotlin and JSP projects
	1.8.1. Integrating with Gradle
	1.8.1.1. Using Gradle integration
	1.8.1.2. Troubleshooting Gradle integration
	1.8.1.3. Using the Gradle plugin
	1.8.2. Integrating with Maven
	1.8.2.1. Installing and updating the Fortify Maven Plugin
	1.8.2.2. Testing the Fortify Maven Plugin installation
	1.8.2.3. Using the Fortify Maven Plugin
	1.8.3. Integrating with Bazel
	1.8.3.1. Java Bazel integration examples
	1.8.4. Integrating with Ant
	1.8.5. Manual Java and Kotlin translation syntax
	1.8.5.1. Java, Kotlin and JSP command-line options
	1.8.5.2. Java command-line examples
	1.8.5.3. Kotlin command-line examples
	1.8.6. Analyzing Kotlin scripts
	1.8.7. Kotlin and Java translation interoperability
	1.8.8. Handling Java warnings
	1.8.9. Analyzing Jakarta EE (Java EE) applications
	1.8.9.1. Translating Java files
	1.8.9.2. Translating JSP projects, configuration files, and deployment descriptors
	1.8.9.3. Jakarta EE (Java EE) translation warnings
	1.8.10. Analyzing Java bytecode
	1.8.11. Troubleshooting JSP translation and analysis issues
	1.9. Analyzing Android projects
	1.9.1. Android project translation prerequisites
	1.9.2. Android code analysis command-line syntax
	1.9.3. Filtering issues detected in Android layout files
	1.10. Analyzing Groovy code
	1.10.1. Groovy analysis prerequisites
	1.10.2. Groovy translation syntax
	1.11. Analyzing Scala code
	1.12. Analyzing Visual Studio projects
	1.12.1. Visual Studio project translation prerequisites
	1.12.2. Visual Studio Project command-line syntax
	1.12.3. Handling special cases for translating Visual Studio projects
	1.12.3.1. Running translation from a script
	1.12.3.2. Translating plain .NET and ASP.NET projects
	1.12.3.3. Translating C/C++ and Xamarin projects
	1.12.3.4. Translating projects with settings containing spaces
	1.12.3.5. Translating a single project from a Visual Studio solution
	1.12.3.6. Analyzing projects that build multiple executable files
	1.12.4. Alternative ways to translate Visual Studio projects
	1.12.4.1. Alternative translation options for Visual Studio solutions
	1.12.4.2. Translating without explicitly running OpenText SAST
	1.13. Analyzing JavaScript and TypeScript code
	1.13.1. Translating pure JavaScript projects
	1.13.2. Excluding dependencies
	1.13.3. Excluding NPM Dependencies
	1.13.4. NPM dependencies
	1.13.4.1. Examples of excluding NPM dependencies
	1.13.5. Translating JavaScript projects with HTML files
	1.13.6. Including external JavaScript or HTML in the translation (deprecated)
	1.14. Analyzing Dart and Flutter code
	1.14.1. Dart and Flutter translation prerequisites
	1.14.2. Dart and Flutter command-line syntax
	1.14.3. Dart and Flutter command-line examples
	1.15. Analyzing Python and Jupyter Notebooks
	1.15.1. Integrating with Bazel
	1.15.1.1. Python Bazel integration examples
	1.15.2. Python translation command-line syntax
	1.15.2.1. Python command-line options
	1.15.2.2. Python command-line examples
	1.15.3. Translating Python in a virtual environment
	1.15.4. Including imported modules and packages
	1.15.5. Including namespace packages
	1.15.6. Translating Django and Flask
	1.16. Analyzing iOS and Xcode projects
	1.16.1. iOS project translation prerequisites
	1.16.2. iOS code analysis command-line syntax
	1.17. Analyzing C and C++ code
	1.17.1. C and C++ Code translation prerequisites
	1.17.2. Integrating with Make
	1.17.3. Integrating with CMake
	1.17.4. Integrating with Gradle
	1.17.5. Manual C and C++ translation syntax
	1.17.6. Scanning pre-processed C and C++ code
	1.17.7. C/C++ Precompiled Header Files
	1.18. Analyzing Rust code
	1.18.1. Rust analysis prerequisites
	1.18.2. Rust translation syntax
	1.19. Analyzing Go code
	1.19.1. Go command-line syntax
	1.19.2. Go command-line options
	1.19.3. Including custom Go build tags
	1.19.4. Resolving dependencies
	1.20. Analyzing PHP code
	1.20.1. PHP command-line options
	1.21. Analyzing Perl code
	1.21.1. Perl analysis prerequisites
	1.21.2. Perl translation syntax
	1.22. Analyzing Ruby code
	1.22.1. Ruby command-line syntax
	1.22.1.1. Ruby command-line options
	1.22.2. Adding libraries
	1.22.3. Adding gem paths
	1.23. Analyzing Ada code
	1.23.1. Ada analysis prerequisites
	1.23.2. Ada translation syntax
	1.24. Analyzing Delphi code
	1.24.1. Delphi analysis prerequisites
	1.24.2. Delphi translation syntax
	1.25. Analyzing Elixir code
	1.25.1. Elixir analysis prerequisites
	1.25.2. Elixir translation syntax
	1.26. Analyzing Erlang code
	1.26.1. Erlang analysis prerequisites
	1.26.2. Erlang translation syntax
	1.27. Analyzing Lua code
	1.27.1. Lua analysis prerequisites
	1.27.2. Lua translation syntax
	1.28. Analyzing Salesforce Apex and Visualforce code
	1.28.1. Apex and Visualforce translation prerequisites
	1.28.2. Apex and Visualforce command-line syntax
	1.29. Analyzing ABAP code
	1.29.1. About downloading source files
	1.29.1.1. INCLUDE processing
	1.29.2. Importing the transport request
	1.29.3. Adding OpenText SAST to your Favorites list
	1.29.4. Running the Fortify ABAP Extractor
	1.29.5. Uninstalling the Fortify ABAP Extractor
	1.30. Analyzing COBOL code
	1.30.1. Preparing COBOL source and copybook files for translation
	1.30.2. COBOL command-line syntax
	1.30.2.1. Translating COBOL source files without file extensions
	1.30.2.2. Translating COBOL source files with arbitrary file extensions
	1.30.2.3. COBOL command-line options
	1.30.3. Using Legacy COBOL translation
	1.30.3.1. Legacy COBOL translation command-line options
	1.31. Analyzing SQL
	1.31.1. PL/SQL command-line example
	1.31.2. T-SQL command-line example
	1.32. Analyzing Infrastructure as Code (IaC)
	1.33. Analyzing JSON
	1.34. Analyzing YAML
	1.35. Analyzing Dockerfiles
	1.36. Analyzing Bash code
	1.36.1. Bash analysis prerequisites
	1.36.2. Bash translation syntax
	1.37. Analyzing PowerShell code
	1.37.1. PowerShell analysis prerequisites
	1.37.2. PowerShell translation syntax
	1.38. Analyzing R code
	1.38.1. R analysis prerequisites
	1.38.2. R translation syntax
	1.39. Analyzing Solidity code
	1.40. Analyzing other languages and configurations
	1.40.1. Analyzing Flex and ActionScript
	1.40.1.1. Flex and ActionScript command-line options
	1.40.1.2. ActionScript command-line examples
	1.40.1.3. Handling resolution warnings
	1.40.2. Analyzing ColdFusion code
	1.40.2.1. ColdFusion command-line syntax
	1.40.2.2. ColdFusion (CFML) command-line options
	1.40.3. Analyzing ASP/VBScript virtual roots
	1.40.4. Classic ASP command-line example
	1.40.5. VBScript command-line example
	1.41. Analyzing Library code
	1.42. Scanning for Secrets
	1.42.1. Regular expression analysis
	1.43. Optimizing results
	1.43.1. Applying a scan policy to the analysis
	1.43.2. Excluding issues with filter files
	1.43.2.1. Filter file example
	1.43.3. Using filter sets to exclude issues
	1.43.4. Filtering using€FortifyRemove comments
	1.43.5. Fortify Java annotations
	1.43.5.1. Dataflow annotations
	1.43.5.2. Field and variable annotations
	1.43.5.3. Other annotations
	1.44. Optimizing performance
	1.44.1. Antivirus software
	1.44.2. Hardware considerations
	1.44.3. Tuning options
	1.44.4. Quick scan
	1.44.5. Configuring scan speed with speed dial
	1.44.6. Breaking down codebases
	1.44.7. Limiting analyzers and languages
	1.44.7.1. Disabling analyzers
	1.44.7.2. Disabling languages
	1.44.8. Optimizing FPR files
	1.44.8.1. Using filter files
	1.44.8.2. Using filter sets
	1.44.8.3. Excluding source code from the FPR
	1.44.8.4. Reducing the FPR file size
	1.44.8.5. Opening large FPR files
	1.44.9. Monitoring long running scans
	1.44.9.1. Using the SCAState tool
	1.44.9.2. Using JMX tools
	1.44.9.2.1. Using JConsole
	1.44.9.2.2. Using Java VisualVM
	1.45. Using mobile build sessions
	1.45.1. Mobile build session version compatibility
	1.45.2. Creating a mobile build session
	1.45.3. Importing a mobile build session
	1.46. Troubleshooting
	1.46.1. Exit codes
	1.46.2. Memory tuning
	1.46.2.1. Java heap exhaustion
	1.46.2.2. Native heap exhaustion
	1.46.2.3. Stack overflow
	1.46.3. Scanning complex functions
	1.46.3.1. Dataflow Analyzer limiters
	1.46.3.2. Control Flow and Null Pointer analyzer limiters
	1.46.4. Issue non-determinism
	1.46.5. Locating the log files
	1.46.6. Configuring log files
	1.46.7. Reporting issues and requesting enhancements
	1.47. Command-line reference
	1.47.1. Specifying files and directories
	1.47.2. Directives
	1.47.2.1. LIM license directives
	1.47.3. Translation options
	1.47.4. Analysis options
	1.47.5. Output options
	1.47.6. Other options
	1.48. Configuration options
	1.48.1. Properties files
	1.48.1.1. Properties file format
	1.48.1.2. Overriding settings
	1.48.2. fortify-sca.properties
	1.48.2.1. Translation and analysis phase properties
	1.48.2.2. Regex analysis properties
	1.48.2.3. LIM license properties
	1.48.2.4. Rule properties
	1.48.2.5. Java and Kotlin properties
	1.48.2.6. Visual Studio and MSBuild project properties
	1.48.2.7. JavaScript and TypeScript properties
	1.48.2.8. Python properties
	1.48.2.9. Go properties
	1.48.2.10. Ruby properties
	1.48.2.11. COBOL properties
	1.48.2.12. PHP properties
	1.48.2.13. ABAP properties
	1.48.2.14. Flex and ActionScript properties
	1.48.2.15. ColdFusion (CFML) properties
	1.48.2.16. SQL properties
	1.48.2.17. Output properties
	1.48.2.18. Mobile build session (MBS) properties
	1.48.2.19. Proxy properties
	1.48.2.20. Logging properties
	1.48.2.21. Debug properties
	1.48.3. fortify-sca-quickscan.properties
	1.48.4. fortify-rules.properties
	1.49. Command-line tools
	1.49.1. About updating OpenText Application Security Content
	1.49.1.1. Updating OpenText Application Security Content
	1.49.1.2. fortifyupdate command-line options
	1.49.2. Checking the scan status with SCAState
	1.49.2.1. SCAState command-line options

