3 opentext”

OpenText™ Static Application Security Testing
User Guide

Version : 26.1
PDF Generated on : January 16, 2026

© Copyright 2026 Open Text

Table of Contents

1. User Guide

1.1. Support and documentation

1.2. Change log

1.3. Introduction

1.3.1. Product name changes

1.3.2. OpenText SAST

1.3.2.1. About the analyzers

1.3.3. Licensing

1.3.4. Renewing an expired license

1.3.5. OpenText Application Security Content
1.3.6. Fortify ScanCentral SAST

1.3.7. OpenText Application Security Tools
1.3.8. Sample projects

1.3.9. Related documents

1.4. System requirements

1.4.1. Hardware requirements

1.4.1.1. Sample scans

1.4.2. Supported platforms and architectures
1.4.3. Software requirements

1.4.4. Al-powered SAST requirements
1.4.4.1. Supported LLMs

1.4.5. Language compatibility

1.4.5.1. Libraries, frameworks, and technologies

1.4.5.2. Language compatibility for Al-assisted analysis

1.4.6. Supported build tools
1.4.7. Supported compilers

1.4.8. OpenText Application Security Content

12

13

14

15

20

21

22

23

24

27

28

31

32

37

41

44

52

53

54

59

74

75

76

77

1.4.9. Virtual Machine support

1.4.10. Acquiring software

1.4.11. Verifying software downloads

1.5. Installing OpenText SAST

1.5.1. About installing OpenText SAST

1.5.1.1. Installing OpenText SAST

1.5.1.2. Installing OpenText SAST silently

1.5.1.3. Installing OpenText SAST in text-based mode on non-Windows platforms
1.5.1.4. Manually installing OpenText Application Security Content
1.5.2. Using Docker to install and run OpenText SAST

1.5.2.1. Creating a Dockerfile to install OpenText SAST

1.5.2.2. Running the container

1.5.3. Upgrading OpenText SAST

1.5.4. About uninstalling OpenText SAST

1.5.4.1. Uninstalling OpenText SAST

1.5.4.2. Uninstalling OpenText SAST silently

1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows platforms
1.5.5. Post-installation tasks

1.5.5.1. Running the post-install tool

1.5.5.2. Migrating properties files

1.5.5.3. Specifying a locale

1.5.5.4. Configuring Fortify Security Content updates

1.5.5.5. Configuring the connection to Application Security
1.5.5.6. Removing proxy server settings

1.5.5.7. Adding trusted certificates

1.6. Analysis process overview

1.6.1. Scanning Basics

1.6.2. Translation phase

78

79

86

88

89

91

94

99

100

101

102

105

107

108

109

111

112

113

114

115

116

117

118

119

120

122

123

124

1.6.3. Analysis phase

1.6.4. Translation and analysis phase verification
1.7. Analyzing using Al-powered SAST

1.7.1. Configuring the LLM

1.7.1.1. Connecting to an AWS Bedrock LLM

1.7.2. Connecting to the database

1.7.3. Using the dbTool

1.7.4. Sample analysis using Al-powered SAST
1.7.5. Al-powered SAST configuration options
1.7.6. Rate limiting

1.7.7. Using the pwtool to encrypt sensitive values
1.8. Analyzing Java, Kotlin and JSP projects

1.8.1. Integrating with Gradle

1.8.1.1. Using Gradle integration

1.8.1.2. Troubleshooting Gradle integration
1.8.1.3. Using the Gradle plugin

1.8.2. Integrating with Maven

1.8.2.1. Installing and updating the Fortify Maven Plugin
1.8.2.2. Testing the Fortify Maven Plugin installation
1.8.2.3. Using the Fortify Maven Plugin

1.8.3. Integrating with Bazel

1.8.3.1. Java Bazel integration examples

1.8.4. Integrating with Ant

1.8.5. Manual Java and Kotlin translation syntax
1.8.5.1. Java, Kotlin and JSP command-line options
1.8.5.2. Java command-line examples

1.8.5.3. Kotlin command-line examples

1.8.6. Analyzing Kotlin scripts

126

127

128

129

130

131

134

136

138

156

157

158

159

160

162

163

167

168

169

171

173

174

175

176

178

184

185

186

1.8.7. Kotlin and Java translation interoperability

1.8.8. Handling Java warnings

1.8.9. Analyzing Jakarta EE (Java EE) applications

1.8.9.1. Translating Java files

1.8.9.2. Translating JSP projects, configuration files, and deployment descriptors

1.8.9.3. Jakarta EE (Java EE) translation warnings

1.8.10. Analyzing Java bytecode

1.8.11. Troubleshooting JSP translation and analysis issues

1.9. Analyzing Android projects

1.9.1. Android project translation prerequisites

1.9.2. Android code analysis command-line syntax

1.9.3. Filtering issues detected in Android layout files

1

1

1

.10. Analyzing Groovy code

.10.1. Groovy analysis prerequisites

.10.2. Groovy translation syntax

.11. Analyzing Scala code

.12. Analyzing Visual Studio projects

.12.1. Visual Studio project translation prerequisites

.12.2. Visual Studio Project command-line syntax

.12.3. Handling special cases for translating Visual Studio projects
.12.3.1. Running translation from a script

.12.3.2. Translating plain .NET and ASP.NET projects

.12.3.3. Translating C/C++ and Xamarin projects

.12.3.4. Translating projects with settings containing spaces
.12.3.5. Translating a single project from a Visual Studio solution
.12.3.6. Analyzing projects that build multiple executable files
.12.4. Alternative ways to translate Visual Studio projects

.12.4.1. Alternative translation options for Visual Studio solutions

187

188

190

191

192

193

194

196

198

199

200

201

202

203

204

205

206

207

208

210

211

212

213

214

215

216

217

218

.12.4.2. Translating without explicitly running OpenText SAST
.13. Analyzing JavaScript and TypeScript code

.13.1. Translating pure JavaScript projects

.13.2. Excluding dependencies

.13.3. Excluding NPM Dependencies

.13.4. NPM dependencies

.13.4.1. Examples of excluding NPM dependencies
.13.5. Translating JavaScript projects with HTML files
.13.6. Including external JavaScript or HTML in the translation (deprecated)
.14. Analyzing Dart and Flutter code

.14.1. Dart and Flutter translation prerequisites
.14.2. Dart and Flutter command-line syntax

.14.3. Dart and Flutter command-line examples

.15. Analyzing Python and Jupyter Notebooks

.15.1. Integrating with Bazel

.15.1.1. Python Bazel integration examples

.15.2. Python translation command-line syntax
.15.2.1. Python command-line options

.15.2.2. Python command-line examples

.15.3. Translating Python in a virtual environment
.15.4. Including imported modules and packages
.15.5. Including namespace packages

.15.6. Translating Django and Flask

.16. Analyzing iOS and Xcode projects

.16.1.i0S project translation prerequisites

.16.2. i0S code analysis command-line syntax

.17. Analyzing C and C++ code

.17.1. Cand C++ Code translation prerequisites

219

222

223

224

225

226

227

230

231

233

234

235

236

237

238

239

240

241

245

246

247

248

249

250

251

252

254

255

1

1

1

.17.2. Integrating with Make
.17.3. Integrating with CMake
.17.4. Integrating with Gradle
.17.5. Manual C and C++ translation syntax
.17.6. Scanning pre-processed C and C++ code
.17.7. C/C++ Precompiled Header Files
.18. Analyzing Rust code

.18.1. Rust analysis prerequisites
.18.2. Rust translation syntax

.19. Analyzing Go code

.19.1. Go command-line syntax

.19.2. Go command-line options

.19.3. Including custom Go build tags

.19.4. Resolving dependencies

1.20. Analyzing PHP code

1.20.1. PHP command-line options

1.21. Analyzing Perl code

1.21.1. Perl analysis prerequisites

1.21.2. Perl translation syntax

1.22. Analyzing Ruby code

1.22.1. Ruby command-line syntax

1.22.1.1. Ruby command-line options

1.22.2. Adding libraries

1.22.3. Adding gem paths

1.23. Analyzing Ada code

1.23.1. Ada analysis prerequisites

1.23.2. Ada translation syntax

1.24. Analyzing Delphi code

256

257

258

259

261

262

263

264

265

266

267

268

273

274

275

276

277

278

279

280

281

283

284

285

286

287

288

289

1.24.1. Delphi analysis prerequisites

1.24.2. Delphi translation syntax

1.25. Analyzing Elixir code

1.25.1. Elixir analysis prerequisites

1.25.2. Elixir translation syntax

1.26. Analyzing Erlang code

1.26.1. Erlang analysis prerequisites

1.26.2. Erlang translation syntax

1.27. Analyzing Lua code

1.27.1. Lua analysis prerequisites

1.27.2. Lua translation syntax

1.28. Analyzing Salesforce Apex and Visualforce code

1.28.1. Apex and Visualforce translation prerequisites

1.28.2. Apex and Visualforce command-line syntax

1.29. Analyzing ABAP code

1.29.1. About downloading source files

1.29.1.1. INCLUDE processing

1.29.2. Importing the transport request

1.29.3. Adding OpenText SAST to your Favorites list

1.29.4. Running the Fortify ABAP Extractor

1.29.5. Uninstalling the Fortify ABAP Extractor

1.30. Analyzing COBOL code

1.30.1. Preparing COBOL source and copybook files for translation
1.30.2. COBOL command-line syntax

1.30.2.1. Translating COBOL source files without file extensions
1.30.2.2. Translating COBOL source files with arbitrary file extensions
1.30.2.3. COBOL command-line options

1.30.3. Using Legacy COBOL translation

290

291

292

293

294

295

296

297

298

299

300

301

302

304

305

306

307

308

309

310

315

316

317

318

319

320

321

323

1.30.3.1. Legacy COBOL translation command-line options 324

1.31. Analyzing SQL 327
1.31.1. PL/SQL command-line example 328
1.31.2. T-SQL command-line example 329
1.32. Analyzing Infrastructure as Code (IaC) 330
1.33. Analyzing JSON 333
1.34. Analyzing YAML 334
1.35. Analyzing Dockerfiles 335
1.36. Analyzing Bash code 336
1.36.1. Bash analysis prerequisites 337
1.36.2. Bash translation syntax 338
1.37. Analyzing PowerShell code 339
1.37.1. PowerShell analysis prerequisites 340
1.37.2. PowerShell translation syntax 341
1.38. Analyzing R code 342
1.38.1. R analysis prerequisites 343
1.38.2. R translation syntax 344
1.39. Analyzing Solidity code 345
1.40. Analyzing other languages and configurations 346
1.40.1. Analyzing Flex and ActionScript 347
1.40.1.1. Flex and ActionScript command-line options 348
1.40.1.2. ActionScript command-line examples 351
1.40.1.3. Handling resolution warnings 353
1.40.2. Analyzing ColdFusion code 354
1.40.2.1. ColdFusion command-line syntax 355
1.40.2.2. ColdFusion (CFML) command-line options 356
1.40.3. Analyzing ASP/VBScript virtual roots 357

1.40.4. Classic ASP command-line example 360

1.40.5. VBScript command-line example
1.41. Analyzing Library code

1.42. Scanning for Secrets

1.42.1. Regular expression analysis

1.43. Optimizing results

1.43.1. Applying a scan policy to the analysis
1.43.2. Excluding issues with filter files
1.43.2.1. Filter file example

1.43.3. Using filter sets to exclude issues
1.43.4. Filtering using FortifyRemove comments
1.43.5. Fortify Java annotations

1.43.5.1. Dataflow annotations

1.43.5.2. Field and variable annotations
1.43.5.3. Other annotations

1.44. Optimizing performance

1.44.1. Antivirus software

1.44.2. Hardware considerations

1.44.3. Tuning options

1.44.4. Quick scan

1.44.5. Configuring scan speed with speed dial
1.44.6. Breaking down codebases

1.44.7. Limiting analyzers and languages
1.44.7.1. Disabling analyzers

1.44.7.2. Disabling languages

1.44.8. Optimizing FPR files

1.44.8.1. Using filter files

1.44.8.2. Using filter sets

1.44.8.3. Excluding source code from the FPR

361

362

364

365

366

367

371

375

378

380

384

386

389

390

391

392

393

396

398

400

402

404

405

406

407

408

409

410

1.44.8.4. Reducing the FPR file size

1.44.8.5. Opening large FPR files

1.44.9. Monitoring long running scans

1.44.9.1. Using the SCAState tool

1.44.9.2. Using JMX tools

1.44.9.2.1. Using JConsole

1.44.9.2.2. Using Java VisualVM

1.45. Using mobile build sessions

1.45.1. Mobile build session version compatibility
1.45.2. Creating a mobile build session

1.45.3. Importing a mobile build session

1.46. Troubleshooting

1.46.1. Exit codes

1.46.2. Memory tuning

1.46.2.1. Java heap exhaustion

1.46.2.2. Native heap exhaustion

1.46.2.3. Stack overflow

1.46.3. Scanning complex functions

1.46.3.1. Dataflow Analyzer limiters

1.46.3.2. Control Flow and Null Pointer analyzer limiters
1.46.4. Issue non-determinism

1.46.5. Locating the log files

1.46.6. Configuring log files

1.46.7. Reporting issues and requesting enhancements
1.47. Command-line reference

1.47.1. Specifying files and directories

1.47.2. Directives

1.47.2.1. LIM license directives

411

414

417

418

419

420

421

422

423

424

425

426

427

429

430

432

433

434

435

437

439

440

441

443

444

445

448

451

1.47.3. Translation options

1.47.4. Analysis options

1.47.5. Output options

1.47.6. Other options

1.48. Configuration options

1.48.1. Properties files

1.48.1.1. Properties file format
1.48.1.2. Overriding settings
1.48.2. fortify-sca.properties
1.48.2.1. Translation and analysis phase properties
1.48.2.2. Regex analysis properties
1.48.2.3. LIM license properties
1.48.2.4. Rule properties

1.48.2.5. Java and Kotlin properties

1.48.2.6. Visual Studio and MSBuild project properties

1.48.2.7. JavaScript and TypeScript properties
1.48.2.8. Python properties

1.48.2.9. Go properties

1.48.2.10. Ruby properties

1.48.2.11. COBOL properties

1.48.2.12. PHP properties

1.48.2.13. ABAP properties

1.48.2.14. Flex and ActionScript properties
1.48.2.15. ColdFusion (CFML) properties
1.48.2.16. SQL properties

1.48.2.17. Output properties

1.48.2.18. Mobile build session (MBS) properties

1.48.2.19. Proxy properties

454

460

467

475

480

481

482

483

487

488

509

510

514

519

526

529

534

538

540

542

545

546

547

550

552

553

559

560

1.48.2.20. Logging properties

1.48.2.21. Debug properties

1.48.3. fortify-sca-quickscan.properties

1.48.4. fortify-rules.properties

1.49. Command-line tools

1.49.1. About updating OpenText Application Security Content
1.49.1.1. Updating OpenText Application Security Content
1.49.1.2. fortifyupdate command-line options

1.49.2. Checking the scan status with SCAState

1.49.2.1. SCAState command-line options

561

564

567

575

595

598

599

600

605

606

m opentext- Static Application Security Testing 26.1

1. User Guide

This section provides instructions for using OpenText™ Static Application Security
Testing (OpenText SAST) to scan code on most major programming platforms. This
section is intended for people responsible for security audits and secure coding.

This PDF was generated on January 16, 2026 Page 1 of 610

m opentext- Static Application Security Testing 26.1

1.1. Support and documentation

When contacting Customer Support, provide the following product information:
Software Version: 25.4.0
Software Release Date: 25.4.0

Contacting Customer Support
Visit the Customer Support website to:
e Manage licenses and entitlements
» Create and manage technical assistance requests
o Browse documentation and knowledge articles
» Download software

o Explore the Community

For more information
For more information about OpenText Application Security Testing products, visit
Application Security.

Product feature videos
You can find videos that highlight OpenText Application Security Software products
and features on the Fortify Unplugged YouTube™ channel.

This PDF was generated on January 16, 2026 Page 2 of 610

https://portal.microfocus.com/
https://www.opentext.com/products/application-security
https://www.youtube.com/c/FortifyUnplugged

m opentext- Static Application Security Testing 26.1

1.2. Change log

The following table lists changes made to this help/document. Revisions to this
help/document are published between software releases only if the changes made
affect product functionality.

This PDF was generated on January 16, 2026 Page 3 of 610

3 opentext" Static Application Security Testing 26.1

Software release / Changes
Document version

26.1.0 Added:

» Al-assisted static analysis (see
Analyzing using Al)

e Added new Python version (see
Language compatibility)

o Added new xcodebuild version (see
Supported build tools)

o Added frameworks for languages
supported for Al-assisted analysis
(see Libraries, frameworks, and
technologies)

Removed:

e Removed Ant version 1.9.x and
Xcode build versions 15.3 - 15.4
(see Supported build tools)

This PDF was generated on January 16, 2026 Page 4 of 610

3 opentext" Static Application Security Testing 26.1

Software release / Changes
Document version

25.4.0 Added:

e Added new Xcode build and
MSBuild versions (see Supported
build tools)

o Added new .NET (Core), C#, Java,
Go, Kotlin, Scala, and Swift
versions (see Language
compatibility)

e Added new compiler
versions OpendJDK javac and Swiftc
(see Supported compilers)

e Added new
com.fortify.sca.rules.Islibrary and
com.fortify.sca.rules.enablePQCRu
les properties (fortify-
rules.properties)

o Added page on analyzing library
code (Analyzing Library Code)

e Added new
com.fortify.sca.EnableSubtraceFilt
ering property (Translation and
analysis phase properties)

e Added section on Composite Filters
to Excluding issues with filter files

Updated:

» Changed all mentions of Translating
<languages> to Analyzing
<languages>

» Made all the language sections top
level for easy identification

» Simplified Analysis process
overview

 Build integration sections have now
been moved to the respective
language sections

This PDF was generated on January 16, 2026 Page 5 of 610

3 opentext" Static Application Security Testing 26.1

Software release / Changes
Document version

e Merged Java, Kotlin and Android
sections. (see Analyzing Java,
Kotlin and JSP projects)

e Reorganized iOS section.

(see Analyzing iOS and Xcode
projects)

» Moved the scan policy section out
of the analysis overview, combined
with filters and other ways to
improve results into a new section.
(see Optimizing Results)

e Moved section about regex analysis
under a top-level section for secret
scanning

Removed:

e Removed ScanCentral SAST client
from the OpenText SAST installer.

 Removed Gradle version 6.5 and
earlier versions (see Supported
build tools)

This PDF was generated on January 16, 2026 Page 6 of 610

3 opentext" Static Application Security Testing 26.1

Software release / Changes
Document version

25.3.0 Added:

e Updated Xcode build versions
(see System requirements)

e Added new rule property to control
FortifyRemove comments
functionality (fortify-
rules.properties)

o Added Filtering comments using
FortifyRemove

e MacOS ARM installers (see
Acquiring software)

Updated:

e Changed all mentions of Fortify
Sofware Security contentto
OpenText Application Security
Content

Removed:

e Removed xcodebuild versions 15,
15.0.1, 151, 15.2 (see Supported
build tools)

This PDF was generated on January 16, 2026 Page 7 of 610

3 opentext"

Software release /
Document version

25.2.0

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Changes

Added:

e System requirements

e Instructions on how to create a

custom scan policy (Applying a
scan policy to the analysis)

Updated:

Incorporated product name
changes (see Product name
changes)

Installer file names changed for
product name change (see various
topics in Installing OpenText SAST)

Test projects are excluded by
default in translation of Visual
Studio projects (see Visual Studio
Project command-line syntax)

Added support for Jupyter
notebooks (see Translating Python
code)

Setting limiter properties is no
longer required to translate code
created using the Django or Flask
framework

Removed:

e Properties

com.fortify.sca.SuppressLowSever
ity and
com.fortify.sca.LowSeverityCutoff
were removed because they

Page 8 of 610

m opentext- Static Application Security Testing 26.1

Software release / Changes
Document version

reference metadata that is
deprecated in the Rulepacks.

 The com.fortify.sca.hoa.Enable
property was removed from this
helpdocument and will be removed
from the product in a future
release.

This PDF was generated on January 16, 2026 Page 9 of 610

3 opentext"

Software release /
Document version

24.4.0

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Changes

Updated:

Added installer for Linux on ARM
(see Installing OpenText SAST)

Scan policies can exclude dataflow
issues based on taint flags (see
Applying a Scan Policy to the
Analysis)

By default, NPM dependencies are
excluded from the analysis phase
(see Managing translation of NPM
dependencies)

Support added for Flask and Jinja2
(see Translating Python code)

Added the -gotags option to
include custom build tags in
OpenText SAST translation of Go
project (see Including Custom Go
Build Tags and Go Properties)

Changes to the command-line
options to analyze PL/SQL (see
AnalyzingTranslating SQL)

Added an option to disable build
tool name resolution and translate
build script files as source files (see
Translation Options and Translation
and Analysis Phase Properties)

The -exclude option is supported
in Ant, Bazel, Gradle, and Maven
build integrations (see Integrating
with Ant, Integrating with Bazel,
Using Gradle Integration, Using the
Fortify Maven Plugin, and
Translation Options)

Page 10 of 610

https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca

m opentext- Static Application Security Testing 26.1

Software release / Changes
Document version

Removed:

e Modular analysis was removed
from this help/document. This
feature is deprecated and will be
removed from the product in the
next release.

This PDF was generated on January 16, 2026 Page 11 of 610

3 opentext" Static Application Security Testing 26.1

1.3. Introduction

This section contains the following topics:

e Product name changes

e OpenText SAST

e Licensing

* Renewing an expired license

o OpenText Application Security Content
o Fortify ScanCentral SAST

o OpenText Application Security Tools

o Sample projects

e Related documents

This PDF was generated on January 16, 2026 Page 12 of 610

m opentext- Static Application Security Testing 26.1

1.3.1. Product nhame changes

OpenText is in the process of changing the following product names:

Previous name New name

Fortify Static Code Analyzer OpenText™ Static Application Security
Testing (OpenText SAST)

Fortify Software Security Center OpenText™ Application Security

Fortify Weblnspect OpenText™ Dynamic Application
Security Testing (OpenText DAST)

Fortify on Demand OpenText™ Core Application Security

Debricked OpenText™ Core Software Composition
Analysis (OpenText Core SCA)

Fortify Applications and Tools OpenText™ Application Security Tools

The product names have changed on product splash pages, mastheads, login pages,
and other places where the product is identified. The name changes are intended to
clarify product functionality and to better align the Fortify Software products with
OpenText. In some cases, such as on the documentation title page, the old nhame
might temporarily be included in parenthesis. You can expect to see more changes in
future product releases.

This PDF was generated on January 16, 2026 Page 13 of 610

m opentext- Static Application Security Testing 26.1

1.3.2. OpenText SAST

OpenText SAST (Fortify Static Code Analyzer) is a set of software security analyzers
that search for violations of security-specific coding rules and guidelines in a variety
of languages. OpenText SAST produces analysis information to help you deliver more
secure software, and make security code reviews more efficient, consistent, and
complete. Its design enables you to incorporate customer-specific security rules.

For a list of supported languages, libraries, compilers, and build tools, see System
requirements.

To analyze your application with OpenText SAST, you can:

e Perform the analysis directly from an IDE using one of the Secure Code Plugins:
Fortify Extension for Visual Studio, Fortify Plugin for Eclipse, and Fortify Analysis
Plugin for Intellid IDEA and Android Studio). You can also run the analysis from
Fortify Audit Workbench.

You can also view the security vulnerability analysis results in the IDE and Fortify
Audit Workbench or upload the results to Application Security. For a description
of the tools, see OpenText Application Security Tools.

» Integrate the analysis into your build system or run the analysis from the
command line.

This guide focuses primarily on this method of performing the analysis.

This PDF was generated on January 16, 2026 Page 14 of 610

m opentext- Static Application Security Testing 26.1

1.3.2.1. About the analyzers

OpenText SAST comprises eight vulnerability analyzers: Buffer, Configuration,
Content, Control Flow, Dataflow, Null Pointer, Semantic, and Structural. Each analyzer
accepts a different type of rule specifically tailored to provide the information
necessary for the corresponding type of analysis performed. Rules are definitions
that identify elements in the source code that might result in security vulnerabilities or
are otherwise unsafe. The following table describes each analyzer.

This PDF was generated on January 16, 2026 Page 15 of 610

m opentext- Static Application Security Testing 26.1

Analyzer Description

Dataflow The Dataflow Analyzer detects
potential vulnerabilities that involve
tainted data (user-controlled input or
private data) put to potentially
dangerous use. The Dataflow Analyzer
uses interprocedural taint propagation
analysis to detect the flow of data
between a site of user input (or private
data) through the application to a
dangerous function call or operation.
For example, the Dataflow Analyzer
detects whether a user-controlled input
string dynamically generates HTML
(Cross-Site Scripting) and detects
whether a user-controlled string
constructs SQL queries (SQL injection).

Control Flow The Control Flow Analyzer detects
potentially dangerous sequences of
operations. By analyzing control flow
paths in a program, the Control Flow
Analyzer determines whether a set of
operations are executed in a certain
order. For example, the Control Flow
Analyzer detects time of check/time of
use issues and race conditions, and
checks whether utilities, such as XML
readers, are configured properly before
being used.

This PDF was generated on January 16, 2026 Page 16 of 610

3 opentext"

Analyzer

Buffer

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

The Buffer Analyzer detects buffer
overflow vulnerabilities that involve
writing or reading more data than a
buffer can hold. The buffer can be
either stack-allocated or heap-
allocated. The Buffer Analyzer uses
limited interprocedural analysis to
determine whether there is a condition
that causes the buffer to overflow. If
any execution path to a buffer leads to
a buffer overflow, OpenText SAST
reports it as a buffer overflow
vulnerability and points out the
variables that might cause the
overflow. If the value of the variable
causing the buffer overflow is tainted
(user-controlled), then OpenText SAST
reports it as well and displays the
dataflow trace to show how the
variable is tainted. The Buffer Analyzer
also detects buffer under-read and
buffer underflow conditions.

Page 17 of 610

3 opentext"

Analyzer

Structural

Configuration

Semantic

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

The Structural Analyzer detects
potentially dangerous flaws in the
structure or definition of the program.
By understanding the way programs
are structured, the Structural Analyzer
identifies violations of secure
programming practices and techniques
that are often difficult to detect through
inspection because they encompass a
wide scope involving both the
declaration and use of variables and
functions. For example, the Structural
Analyzer detects hard-coded secrets,
cookie misconfiguration in code, and
encryption weaknesses.

The Configuration Analyzer searches
for mistakes, weaknesses, and policy
violations in application deployment
configuration files. For example, the
Configuration Analyzer checks for
reasonable timeouts in user sessions in
a web application. The Configuration
Analyzer also performs regular
expression analysis (see Regular
Expression Analysis).

The Semantic Analyzer detects
potentially dangerous uses of functions
and APIs at the intra-procedural level.

Page 18 of 610

m opentext- Static Application Security Testing 26.1

Analyzer Description

Content The Content Analyzer searches for
security issues and policy violations in
HTML content. In addition to static
HTML pages, the Content Analyzer
performs these checks on files that
contain dynamic HTML, such as PHP,
JSP, and classic ASP files.

Null Pointer The Null Pointer Analyzer detects
dereferences of pointer variables that
are assigned the null value. The Null
Pointer Analyzer detection is
performed at the intra-procedural level.
Issues are detected only when the null
assignment, the dereference, and all
the paths between them occur within a
single function.

This PDF was generated on January 16, 2026 Page 19 of 610

3 opentext" Static Application Security Testing 26.1

1.3.3. Licensing

OpenText SAST requires a license to perform both the translation and analysis
(scan) phases of security analysis (for more information about these phases, see
Analysis Process).

You must download the Fortify license file for your product from the Software
Licenses and Downloads (SLD) portal. Use the credentials that Customer Support has
provided for access.

To install OpenText SAST, you must have a Fortify license file (fortify.license) and
optionally you can use the Fortify License and Infrastructure Manager to manage
concurrent licenses for OpenText SAST. With a LIM managed concurrent license,
multiple installations of OpenText SAST can share a single license. For information
about how to set up the LIM with licenses for OpenText SAST, see OpenText™ Fortify
License and Infrastructure Manager Installation and Usage Guide. For more
information about managing your LIM license from OpenText SAST, see LIM license
directives.

Note

Using OpenText™ Fortify License and Infrastructure Manager (LIM) to
manage concurrent licenses for OpenText SAST requires LIM version
21.2.0 or later.

This PDF was generated on January 16, 2026 Page 20 of 610

https://sld.microfocus.com/
https://sld.microfocus.com/

m opentext- Static Application Security Testing 26.1

1.3.4. Renewing an expired license

The license for OpenText SAST expires annually.

To update an expired license:

o Put the updated Fortify license file in the root directory where OpenText SAST is
installed.

To update an expired LIM managed concurrent license, see the OpenText™ Fortify
License and Infrastructure Manager Installation and Usage Guide.

This PDF was generated on January 16, 2026 Page 21 of 610

m opentext- Static Application Security Testing 26.1

1.3.5. OpenText Application Security
Content

OpenText SAST uses a knowledge base of rules to enforce secure coding standards
applicable to the codebase for static analysis. OpenText Application Security Content
is required for both translation and analysis. You can download and install security
content when you install OpenText SAST (see Installing OpenText SAST).
Alternatively, you can download or import previously downloaded OpenText
Application Security Content with the fortifyupdate command-line tool as a post-
installation task (see Manually Installing OpenText Application Security Content).

OpenText Application Security Content consists of Fortify Secure Coding Rulepacks
and external metadata:

o Fortify Secure Coding Rulepacks describe general secure coding idioms for
popular languages and public APIs

o External metadata includes mappings from the Fortify categories to alternative
categories (such as CWE, OWASP Top 10, and PCI)

OpenText provides the ability to write custom rules that add to the functionality of
OpenText SAST and the Fortify Secure Coding Rulepacks. For example, you might
need to enforce proprietary security guidelines or analyze a project that uses third-
party libraries or other pre-compiled binaries that are not already covered by the
Fortify Secure Coding Rulepacks. You can also customize the external metadata to
map Fortify issues to different taxonomies, such as internal application security
standards or additional compliance obligations. For instructions on how to create your
own custom rules or custom external metadata, see the OpenText™ Static Application
Security Testing Custom Rules Guide.

OpenText recommends that you periodically update the security content. You can use
fortifyupdate to obtain the latest security content. For more information, see
Updating Security Content.

This PDF was generated on January 16, 2026 Page 22 of 610

m opentext- Static Application Security Testing 26.1

1.3.6. Fortify ScanCentral SAST

You can use OpenText™ ScanCentral SAST to manage your resources by offloading
the OpenText SAST analysis phase from build machines to a collection of machines
provisioned for this purpose. For most languages, ScanCentral SAST can perform
both the translation and the analysis (scan) phases. Users of Application Security can
direct ScanCentral SAST to output the FPR file directly to the server. You have the
option to install a ScanCentral SAST client when you install OpenText SAST.

You can analyze your code in one of two ways:

 If your application is written in a language supported for ScanCentral SAST
translation, you can offload the translation and analysis (scan) phase of the
analysis to ScanCentral SAST.

» Perform the translation phase on a local build machine and generate a mobile
build session (MBS). Start the scan with ScanCentral SAST using the MBS file. In
addition to freeing up the build machines, this process gives you the ability to
expand the system by adding more resources as needed, without having to
interrupt the build process. For more information about MBS, see Mobile build
sessions.

For information about the specific supported languages for translation and how to
configure and use ScanCentral SAST, see the OpenText™ ScanCentral SAST
Installation, Configuration, and Usage Guide.

This PDF was generated on January 16, 2026 Page 23 of 610

m opentext- Static Application Security Testing 26.1

1.3.7. OpenText Application Security Tools

OpenText provides applications and tools (including Secure Code Plugins) that
integrate with OpenText SAST, ScanCentral SAST, and Application Security. The
following table describes the applications that are available for installation with the
OpenText Application Security Tools installer. For instructions about installing the
OpenText Application Security Tools, see the OpenText™ Application Security Tools
Guide.

This PDF was generated on January 16, 2026 Page 24 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

3 opentext"

Application

OpenText™ Fortify Audit Workbench

OpenText™ Fortify Plugin for Eclipse

OpenText™ Fortify Analysis Plugin for
Intellid IDEA and Android Studio

OpenText™ Fortify Extension for Visual
Studio

OpenText™ Fortify Custom Rules Editor

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

An application that provides a graphical
user interface to help you organize,
investigate, and prioritize analysis
results so that developers can fix
security flaws quickly.

Adds the ability to scan and analyze
the entire codebase of a project and
apply software security rules that
identify the vulnerabilities in your Java
code from the Eclipse IDE. The results
are displayed, along with descriptions
of each of the security issues and
suggestions for their elimination.

Adds the ability to run scans on the
entire codebase of a project and apply
software security rules that identify the
vulnerabilities in your code from IntelliJ
IDEA and Android Studio.

Adds the ability to scan and locate
security vulnerabilities in your solutions
and projects and displays the scan
results in Visual Studio. The results
include a list of issues uncovered,
descriptions of the type of vulnerability
each issue represents, and
suggestions on how to fix them. This
extension also includes remediation
functionality that works with audit
results stored on a Application Security
server.

An application to create and edit
custom rules.

Page 25 of 610

m opentext- Static Application Security Testing 26.1

Application Description

Fortify Scan Wizard)))
Provides a graphical user interface that

enables you to prepare a script to scan
your code (either locally or remotely
using ScanCentral SAST) and then
optionally upload the results to
Application Security.

BIRTReportGenerator Command-line tools to generate issue
reports (BIRT) and legacy reports from
ReportGenerator .
FPR files.

This PDF was generated on January 16, 2026 Page 26 of 610

m opentext- Static Application Security Testing 26.1

1.3.8. Sample projects

OpenText provides sample projects available as a separate download in the
OpenText_SAST_Fortify_Samples_<version>.zip package.

The ZIP file contains two directories: basic and advanced . Each code sample
includes a README.txt file that provides instructions on how to scan the code with
OpenText SAST and view the results in Fortify Audit Workbench.

The basic directory includes an assortment of simple language-specific code
samples. The advanced directory includes more advanced samples.

This PDF was generated on January 16, 2026 Page 27 of 610

m opentext- Static Application Security Testing 26.1

1.3.9. Related documents

This topic describes documents that provide information about OpenText Application
Security Software products.

All products

The following documents provide general information for all products. Unless
otherwise noted, these documents are available on the Product Documentation
website for each product.

Document / file name Description
About OpenText Application Security This paper provides information about
Software Documentation how to access OpenText Application

. Security Software product
appsec-docs-n-<version>.pdf .
documentation.

Note

e This document is included
only with the product
download.

This document provides an overview of

the changes made to OpenText

Application Security Software for this

appsec-rn-<version>.pdf release and important information not
included elsewhere in the product
documentation.

OpenText Application Security
Software Release Notes

OpenText SAST

The following documents provide information about OpenText SAST (Fortify Static
Code Analyzer). Unless otherwise noted, these documents are available on the
Product Documentation website at www.microfocus.com/documentation/fortify-
static-code-analyzer-and-tools/.

This PDF was generated on January 16, 2026 Page 28 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/

3 opentext"

Document / file name

OpenText™ Static Application Security
Testing User Guide

sast-ugd-<version>.pdf

OpenText™ Static Application Security
Testing Custom Rules Guide

sast-cr-ugd-<version>.zip

OpenText™ Fortify License and
Infrastructure Manager Installation and
Usage Guide

lim-ugd-<version>.pdf

Static Application Security Testing 26.1

Description

This document describes how to install
and use OpenText SAST to scan code
on many of the major programming
platforms. It is intended for people
responsible for security audits and
secure coding.

This document provides the
information that you need to create
custom rules for OpenText SAST. This
guide includes examples that apply
rule-writing concepts to real-world
security issues.

Note

9 This document is included
only with the product
download.

This document describes how to install,
configure, and use the Fortify License
and Infrastructure Manager (LIM),
which is available for installation on a
local Windows server and as a
container image on the Docker
platform.

OpenText Application Security Tools

The following documents provide information about OpenText Application Security
Tools. These documents are available on the Product Documentation website at
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools.

This PDF was generated on January 16, 2026 Page 29 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools

3 opentext"

Document / file name

OpenText™ Application Security Tools
Guide

sast-tgd-<version>.pdf

OpenText™ Fortify Audit Workbench
User Guide

awb-ugd-<version>.pdf

OpenText™ Fortify Plugin for Eclipse
User Guide

ep-udg-<version>.pdf

OpenText™ Fortify Analysis Plugin for
Intellid IDEA and Android Studio User
Guide

iap-udg-<version>.pdf

OpenText™ Fortify Extension for Visual
Studio User Guide

vse-ugd-<version>.pdf

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

This document describes how to install
application security tools. It provides
an overview of the applications and
command-line tools that enable you to
scan your code with OpenText SAST,
review analysis results, work with
analysis results files, and more.

This document describes how to use
Fortify Audit Workbench to scan
software projects and audit analysis
results. This guide also includes how to
integrate with bug trackers, produce
reports, and perform collaborative
auditing.

This document provides information
about how to install and use the Fortify
Plugin for Eclipse to analyze and audit
your code.

This document describes how to install
and use the Fortify Analysis Plugin for
Intellid IDEA and Android Studio to
analyze your code and optionally
upload the results to Application
Security.

This document provides information
about how to install and use the Fortify
Extension for Visual Studio to analyze,
audit, and remediate your code to
resolve security-related issues in
solutions and projects.

Page 30 of 610

3 opentext" Static Application Security Testing 26.1

1.4. System requirements

This contentchapter describes the system requirements, supported languages, build
tools, and compilers, and how to acquire the OpenText SAST software package.

This section contains the following topics:

e Hardware requirements

e Supported platforms and architectures
e Software requirements

o Al-powered SAST requirements

e Language compatibility

e Supported build tools

e Supported compilers

e OpenText Application Security Content
e Virtual Machine support

e Acquiring software

» Verifying software downloads

This PDF was generated on January 16, 2026 Page 31 of 610

https://docs.microfocus.com/doc/2263/26.1/a4ad5abf950e_security_content

m opentext- Static Application Security Testing 26.1

1.4.1. Hardware requirements

System resources such as CPU, memory, and storage can drastically impact the
overall analysis time for a project. It depends on many factors related to the target
project codebase such as overall code size, composition, language, and code
complexity. The following guidance provides some general starting points based on
our experience scanning many different real-world applications.

This PDF was generated on January 16, 2026 Page 32 of 610

m opentext- Static Application Security Testing 26.1

Application size CPU cores RAM (GB) Description
and complexity

Small and simple 4 16
A small

standalone
system that runs
on a server or
desktop such as a
batch job or a
command-line
tool and includes:

e Less than
10,000
functions

This PDF was generated on January 16, 2026 Page 33 of 610

m opentext- Static Application Security Testing 26.1

Application size CPU cores RAM (GB) Description
and complexity

Small and simple 8 32
. A standalone
(dynamic
system that
language) .
works with
complex

computer models
such as a tax
calculation
system or a
scheduling
system and
includes:

e Less than
10,000
functions

e Primarily a
dynamic
language
such as
JavaScript,
TypeScript,
Python,
PHP, and
Ruby

This PDF was generated on January 16, 2026 Page 34 of 610

m opentext- Static Application Security Testing 26.1

Application size CPU cores RAM (GB) Description
and complexity

Medium 16 64-128)
A three-tiered

business system
with transactional
data processing
such as a
financial system
or a commercial
website and
includes:

e Less than
100,000
functions

e Over one
million lines
of code

Large and 32 256

A system that
complex

delivers content
such as an
application
server, database
server, or content
management
system and
includes:

e Over1
million
functions

e Several
million lines
of code

This PDF was generated on January 16, 2026 Page 35 of 610

m opentext- Static Application Security Testing 26.1

OpenText SAST takes advantage of all CPU cores available on your system to reduce
the scan time of large projects. When you run OpenText SAST, avoid running other
CPU intensive processes during the OpenText SAST execution because it expects to
have the full resources of your hardware available for the scan.

Additional system resource tuning considerations:

» Virtual systems—Virtualization enables hardware resources to be scaled by
identifying unused resources in a workload and reallocating them to other
workloads. Because OpenText SAST analysis is generally a long running
resource intensive process (especially in large and complex projects), OpenText
recommends dedicated resources at the virtualization layer to reduce resource
swapping.

o CPU—Overall processing power can have significant impact on the total time
required for analysis. OpenText recommends a high end processor with a fast
clock speed (GHz per core). It is important to note that there is a correlation
between the number of cores available to the system and the amount of memory
that might be needed.

e Memory—For more information on how to determine the amount of memory
required for optimal performance, see Memory tuning. Note that analysis of
dynamic languages such as JavaScript, TypeScript, Python, PHP, and Ruby
require more memory during the scan phase that other languages.

o Disk I/0—Project translation and scan are I/O intensive activities that serialize
large amounts of data and benefit from faster storage. OpenText recommends
that you run analysis on faster SSD storage when possible.

e Number of functions—You can verify the number of functions modeled during
the analysis by running a scan with the -debug option and looking for the last
occurrence of the NameTable.funs: ### value in the Support log file.

See Also

Sample scans

This PDF was generated on January 16, 2026 Page 36 of 610

m opentext- Static Application Security Testing 26.1

1.4.1.1. Sample scans

These sample scans were performed using OpenText SAST version 25.4.0 on
dedicated virtual machines. These scans were run with OpenText Application Security
Content 25.4 Update. The following table shows the scan times you can expect for
several common open-source projects.

This PDF was generated on January 16, 2026 Page 37 of 610

3 opentext"

Languag
e

NET
(C#)

ABAP

C/C++

Java

Project
name

SharpZi
pLib

abap2Ul
5

nasm
0.98.38

WebGoa
t8

Translat
ion time
(mm:ss)

01:27

00:13

00:36

00:17

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Analysis Total LOC
(scan) issues

time

(mm:ss)

14:05 606 31,863
00:52 1 59,11
04:49 738 35,997
00:59 252 23,662

System
configur
ation

Window
s Server
2022
with

4 CPUs
and

32 GB of
RAM

Linux
(AlmaLin
ux 9)
with 4
CPUs
and 32
GB of
RAM

Linux
(Centos
7) with

8 CPUs
and

32 GB of
RAM

Linux
(AlmalLin
ux 9)
with 4
CPUs
and 32
GB of
RAM

Page 38 of 610

3 opentext"

Languag
e

Java

JavaScri
pt

PHP

Project
name

WordPre
ss for
Android

three.js

CakePH

Translat
ion time
(mm:ss)

00:10

06:14

00:22

This PDF was generated on January 16, 2026

Analysis Total
(scan) issues
time

(mm:ss)

01:48 534
14:43 277
00:03 4182

LOC

35,276

639,230

136,594

Static Application Security Testing 26.1

System
configur
ation

Linux
(AlmalLin
ux 9)
with 4
CPUs
and 32
GB of
RAM

Linux
(AlmaLin
ux 9)
with 8
CPUs
and

32 GB
RAM,Jav
al’

Linux
(AlmalLin
ux 9)
with 4
CPUs
and 32
GB of
RAM

Page 39 of 610

3 opentext"

Languag
e

PHP

Python 3

Swift

TypeScri
pt

Project
name

phpBB 3

numpy-
113.3

MediaBr
owser

rxjs-7.8.1

Translat
ion time
(mm:ss)

00:34

02:24

00:16

02:19

This PDF was generated on January 16, 2026

Analysis
(scan)

time

(mm:ss)

02:05

09:28

01:26

07:24

LOC

206,873

563,457

17,699

204,006

Static Application Security Testing 26.1

System
configur
ation

Linux
(AlmalLin
ux 9)
with 4
CPUs
and 32
GB of
RAM

Linux
(AlmaLin
ux 9)
with 4
CPUs
and 32
GB RAM

macOS®
with

4 CPUs
and

16 GB of
RAM

Linux
(AlmalLin
ux 9)
with 8
CPUs
and 32
GB RAM,
Java 17

Page 40 of 610

m opentext- Static Application Security Testing 26.1

1.4.2. Supported platforms and
architectures

OpenText SAST supports the platforms and architectures listed in the following table.

This PDF was generated on January 16, 2026 Page 41 of 610

3 opentext"

Operating syste
m

Microsoft
Windows®

Linux®

macOS®

Platforms

xX64

xX64

ARM

x64

M series

ARM

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Distributions and
versions

Windows 10, 1

Windows Server
2019, 2022

CentOS Linux 7.x
(7.6 or later)

Red Hat®
Enterprise Linux®
7.x (7.2 or later),
8.x (8.2 or later),
9.x

SUSE® Linux®
Enterprise Server
15

Ubuntu® 20.04.1
LTS, 22.041LTS

14,15

Notes

Page 42 of 610

m opentext- Static Application Security Testing 26.1

Operating syste Platforms Distributions and Notes
m versions

IBM® AIX®

Power ISA 71,7.2,7.3
Import

ant

You
must
have
the
IBM X
L
C/C+
+ for
AIX
161
Runti
me
enviro
nment
packa
ge
install
ed.

This PDF was generated on January 16, 2026 Page 43 of 610

m opentext- Static Application Security Testing 26.1

1.4.3. Software requirements

The OpenText SAST installation includes an embedded OpenJDK/JRE version 21,
which the software requires. You do not need to install Java 21.

Note

OpenText does not recommend upgrading the embedded OpenJDK/JRE
to a later version.

To use OpenText SAST, you must have Read and Write permissions for the OpenText
SAST installation directory.

The following table lists software requirements for analysis of specific project types.

This PDF was generated on January 16, 2026 Page 44 of 610

3 opentext"

Language

Visual Studio,
MSBuild, or
.NET projects

ABAP®/BSP

Bicep

Software

.NET
Framework
4.8 or later
(MSBuild
only)

.NET SDK 8.0

Fortify

ABAP Extract
oris
supported on
a system
running ABAP
Platform
2023 /| ABAP
Version 7.58.

.NET SDK 8.0

This PDF was generated on January 16, 2026

Operating
systems

Windows

Windows,
Linux

All

Windows,
Linux

Static Application Security Testing 26.1

Scan
Requirement

Translation
Requirement

Yes No
Yes No
No No
No Yes

Page 45 of 610

3 opentext"

Language Software

COBOL)
Microsoft
Visual C++
2017

Redistributabl

e (x86)

This PDF was generated on January 16, 2026

nt

owmoono<oovQ g~ g

»O<DSor

Operating
systems

Windows

Static Application Security Testing 26.1

Translation
Requirement

Yes

Scan
Requirement

No

Page 46 of 610

m opentext- Static Application Security Testing 26.1

Language Software Operating Translation Scan
systems Requirement Requirement

Scala All Yes No
The Akka

compiler
plugin is
available in
the Maven
Central
Repository.

This PDF was generated on January 16, 2026 Page 47 of 610

m opentext- Static Application Security Testing 26.1

Language Software Operating Translation Scan
systems Requirement Requirement
Solidity The relevant All No Yes
Solidity
compiler
version

This PDF was generated on January 16, 2026 Page 48 of 610

m opentext- Static Application Security Testing 26.1

Language Software Operating Translation Scan
systems Requirement Requirement

S5S000

3@ S

S0 WO SODS S0

=

X® -5 00 O5

S H40>0n

This PDF was generated on January 16, 2026 Page 49 of 610

3 opentext"

Language Software

This PDF was generated on January 16, 2026

~+ —+
oS 379

WODODSDOITOMOSSOQ

50 n<

it

SONOZFVDVWLOTOCOK I

Operating
systems

Static Application Security Testing 26.1

Translation
Requirement

Scan
Requirement

Page 50 of 610

m opentext- Static Application Security Testing 26.1

Language Software Operating Translation Scan
systems Requirement Requirement

S000DEFEZ3TOITOITONIQIISIVONDFESOQG

To use Al-assisted analysis, you must have a PostgreSQL database version 12.0 or
later. For more information, see Requirements for Al-assisted analysis.

This PDF was generated on January 16, 2026 Page 51 of 610

m opentext- Static Application Security Testing 26.1

1.4.4. Al-powered SAST requirements

Before you configure Al-powered SAST:

e You must have an Amazon Web Services (AWS) account.
o The AWS IAM user or role that is used to make requests to AWS Bedrock must
have permissions to call the following APIs:
o Bedrock Runtime: InvokeModel
o Bedrock: GetInferenceProfile (Only required if you use an application
inference profile as the model ID)

For more information on AWS Identity and Access Management, see
AWS Documentation.

o To enable caching of LLM results, you must have a PostgreSQL database version
12.0 or later.

Note

If you do not use a database for caching results, it could lead to
increased LLM costs.

» (Optional) Ensure you have the pwtool that installs with OpenText Application
Security Tools if you want to obfuscate sensitive values before storing them in the
fortify-sca.properties file or using them on the command line.

This PDF was generated on January 16, 2026 Page 52 of 610

m opentext- Static Application Security Testing 26.1

1.4.4.1. Supported LLMs

OpenText SAST leverages AWS Bedrock LLMs to analyze the source code files.
OpenText SAST supports the following models on AWS Bedrock:

e Claude Sonnet 4.5
e Claude Sonnet 4

This PDF was generated on January 16, 2026 Page 53 of 610

m opentext- Static Application Security Testing 26.1

1.4.5. Language compatibility

OpenText SAST verifies compatibility with the language versions listed below. While
these versions have been tested, OpenText SAST is designed with flexibility in mind
and may successfully scan other versions not explicitly verified.

We encourage users to upgrade to the latest version of OpenText SAST and attempt
scans to determine compatibility. If you encounter issues scanning a newer,
unverified version or wish to scan a language not currently supported, please reach
out to OpenText Support for assistance.

In addition to the list below, there is a set of languages that can utilize Al-powered
analysis, which is compatible with all versions and frameworks for each language.
See Language compatibility for Al-assisted analysis for further details.

This PDF was generated on January 16, 2026 Page 54 of 610

3 opentext" Static Application Security Testing 26.1

Language / framework Verified Compatibility
.NET (Core)
2.0-10.x
.NET Framework 2.0-4.8
ABAP/BSP 6.Xx, 7.X
ActionScript 3.0
Apex 55-61
Bicep 0.12.x-0.15.31
C#
5-14
C C1, C17, C23 (see Compilers)
C++ C++11, C++14, C++17, C++20 (see
Compilers)
Classic ASP (with VBScript) 2.0,3.0
COBOL IBM Enterprise COBOL for z/OS 6.1-6.3

(CICS, IMS, DB2, and IBM MQ)

Visual COBOL 6.0-8.0

ColdFusion 8-10
Dart™ 212-3.8
Docker® (Dockerfiles) any

This PDF was generated on January 16, 2026 Page 55 of 610

3 opentext" Static Application Security Testing 26.1

Language / framework Verified Compatibility
Go™ programming language
prog g fanguag 112-1.25
HCL
2.0
Note
5 HCL language support is

specific to Terraform and
supported cloud provider
Infrastructure as Code
(laC) configurations.

HTML 5 or earlier

Java (including Android) 7-25

JavaScript ECMAScript® 2015-2024

JSON ECMA-404

JSP 1.2-2.1

Kotlin 1.3-2.1

MXML (Flex®) 4

Objective-C/C++ 2.0 (see Compilers)

PHP 7.3-8.4

This PDF was generated on January 16, 2026 Page 56 of 610

3 opentext"

Language / framework

PL/SQL

Python®

Ruby

Scala

Solidity

Swift®

T-SQL

TypeScript

VBScript

Visual Basic (VB.NET)

Visual Basic

XML

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Verified Compatibility

8-23

2.6-3.14

1.x with normal SAST analysis, all
versions supported with Al-assisted
analysis. See Language compatibility
for Al-assisted analysis for more
information.

211-213, 3.3-3.6

0.412-0.8.21

5.0, 6.0 - 6.2. (see Compilers for
supported swiftc versions)

SQL Server 2005, 2008, 2012

3.6-5.4

2.0,5.0

15.0-16.9

6.0

1.0, 11

Page 57 of 610

m opentext- Static Application Security Testing 26.1

Language / framework Verified Compatibility

YAML 1.2

This PDF was generated on January 16, 2026 Page 58 of 610

m opentext- Static Application Security Testing 26.1

1.4.5.1. Libraries, frameworks, and
technologies

OpenText SAST supports the libraries, frameworks, and technologies listed in this
section with dedicated Fortify Secure Coding Rulepacks and vulnerability coverage
beyond core supported languages.

Java

This PDF was generated on January 16, 2026 Page 59 of 610

3 opentext"

Adobe Flex
Blaze DS

Ajanta

Amazon Web
Services
(AWS) SDK

Android

Android
Jetpack

Apache
Axiom

Apache Axis

Apache
Beam

Apache
Beehive
NetUI

Apache
Catalina

Apache
Cocoon

Apache
Commons

Apache ECS

Apache
Hadoop

Apache
HttpCompon
ents

Apache
Jasper

Apache Slide

Apache
Spring
Security
(Acegi)

Apache
Struts

Apache
Tapestry

Apache
Tomcat

Apache
Torque

Apache Util

Apache
Velocity

Apache
Wicket

Apache Xalan

Apache
Xerces

ATG Dynamo
Azure SDK
Castor
Display Tag
Dom4;j

GDS AntiXSS
Google Cloud

Google
Dataflow

This PDF was generated on January 16, 2026

iBatis
IBM MQ

IBM
WebSphere

Jackson

Jakarta
Activation

Jakarta EE
(Java EE)

Jasypt

Java
Annotations

Java Excel
API

JavaMail
JAX-RS
JAXB
Jaxen
JBoss
JDesktop
JDOM
Jetty
JGroups
json-simple
JTidy Servlet
JXTA

JYaml

Liferay Portal

Static Application Security Testing 26.1

Mozilla Rhino
MyBatis
MyBatis-Plus

Netscape
LDAP API

OkHttp
OpenCSV

Oracle
Application
Development
Framework
(ADF)

Oracle BC4J
Oracle JDBC

Oracle OA
Framework

Oracle
tcDataSet

Oracle XML
Developer Kit
(XDK)

OWASP
Enterprise
Security API
(ESAPI)

OWASP
HTML
Sanitizer

OWASP Java
Encoder

Spring Al
Spring MVC
Spring Boot

Spring Data
Commons

Spring Data
JPA

Spring Data
MongoDB

Spring Data
Redis

Spring for
GraphQL

Spring
HATEOAS

Spring JMS
Spring JMX

Spring
Messaging

Spring
Security

Spring
Webflow

Spring
WebSockets

Spring WS
Stripes

Sun
JavaServer
Faces (JSF)

Page 60 of 610

m opentext- Static Application Security Testing 26.1

Apache Google MongoDB Plexus Tungsten
Log4j Guava Archiver .
Weblogic
Apache Google Web Realm
. WebSocket
Lucene Toolkit
Restlet
XStream
Apache gRPC
SAP Web
MyFaces Yaml|Beans
Gson Dynpro
Apache ZeroTurnarou
Hibernate Saxon
OGNL nd ZIP
Apache ORO SnakeYAML 4y
Apache POI Spring
Apache
SLF4J
Kotlin

Kotlin support includes all libraries covered for Java and the following Kotlin libraries.

i Android KTX OkHttp
Kotlin

standard
library

Scala

Scala support includes all libraries covered for Java and the following Scala libraries.

Scala Slick
Akka HTTP

Scala Play

.NET

This PDF was generated on January 16, 2026 Page 61 of 610

3 opentext"

.NET
Framework,
.NET Core,
and .NET
Standard

NET
WebSockets

ADO.NET
Entity
Framework

ADODB

Amazon Web
Services
(AWS) SDK

ASP.NET
MVC

ASP.NET
SignalR

ASP.NET
Web API

ActiveDirecto
ry LDAP

Apple System

Logging
(ASL)

C++

Azure SDK

Castle
ActiveRecord

CsvHelper
Dapper

DB2 .NET
Provider

DotNetZip

Entity
Framework

Entity
Framework
Core

fastJSON

gRPC

CURL Library
GLib

JNI

This PDF was generated on January 16, 2026

Hot
Chocolate

IBM Informix
.NET Provider

Json.NET
Log4Net

Microsoft
ApplicationBl
ocks

Microsoft My
Framework

Microsoft
Practices
Enterprise
Library

Microsoft
Web
Protection
Library

MySQL

Netscape
LDAP

ODBC

Static Application Security Testing 26.1

MongoDB

MySQL
Connector/N
ET

NHibernate
NLog
Npgsql

Open XML
SDK

Oracle Data
Provider for
NET

OWASP
AntiSamy

Saxon

OpenSSL

POSIX
Threads

SQLite

SharePoint
Services

SharpCompre
SS

SharpZipLib

SQLite .NET
Provider

SubSonic

Sybase ASE
ADO.NET
Data Provider

Xamarin

Xamarin
Forms

YamIDotNet

Sun RPC

WiInAPI

Page 62 of 610

3 opentext"

Boost Smart
Pointers

MFC

SQL

Oracle ModPLSQL

PHP

ADOdb

Advanced
PHP
Debugging

CakePHP

PHP Debug

STL

WMI

PHP DOM

PHP
Extension

PHP Hash
PHP JSON

PHP Mcrypt

JavaScript/TypeScript/HTMLS

Angular

Anthropic
Claude

Apollo Server
Bluebird

child-
process-
promise

Express

PowerShell

Gemini API
GraphQL.js
Handlebars
Helmet

i0S
JavaScript
Bridge

jQuery

This PDF was generated on January 16, 2026

PHP Mhash
PHP Mysql
PHP OCI8

PHP
OpenSSL

PHP
PostgreSQL

JS-YAML
LangChain
Mustache

Node.js
Azure
Storage

Node.js Core

OpenAl

Static Application Security Testing 26.1

PHP
Reflection

PHP
Simdjson

PHP
SimpleXML

PHP Smarty

PHP Sodium

React
React Native

React Native
Async
Storage

React Router

SAPUI5/Open
uls

PHP WordPre
SS

PHP XML

PHP
XMLReader

PHP Zend

PHP Zip

Sequelize

Underscore.j
s

Vertex Al

Vue

Page 63 of 610

m opentext- Static Application Security Testing 26.1

Basic PS scripts SQL Server
Azure
Python
aiopg Google Cloud = memcache- psycopg?2 requests
client

Amazon Web Graphene pycrypto simplejson

Services mysql

(AWS) gRPC -mysd PyCryptodom six

MySQL e

Lambda li I

httplib2 Connector/Py | TensorFlow
cur

Amazon Jinja2 thon by Twisted Mail

SageMaker libmc
LangChain MySQLdb Py urllib3

Anthropic _ PyMongo

Claude libxml2 OpenAl I Vertex Al
Ixml oslo.config yopar WebKit

Azure

. PyYAML

Functions pandas

boto3 Paramiko

Django

Flask

Ruby

ActiveRecord
MySQL Thor

Grape
P9 Ruby on Rails = Devise
Rack Sinatra
ac Rack
SQLite
Rust
Rocket Warp

This PDF was generated on January 16, 2026 Page 64 of 610

3 opentext"

Objective-C

AFNetworkin
g

Apple
AddressBook

Apple AppKit

Apple
CFNetwork

Apple
ClockKit

Apple
CommonCry
pto

Apple
CoreData

Swift

Alamofire

Apple
AddressBook

Apple
CFNetwork

Apple
ClockKit

Apple
CommonCry
pto

Apple
CoreData

Apple
CoreFoundati
on

Apple
CorelLocation

Apple
CoreServices

Apple
CoreTelepho
ny

Apple
Foundation

Apple
HealthKit

Apple
CoreFoundati
on

Apple
CorelLocation

Apple
Foundation

Apple
HealthKit

Apple
LocalAuthenti
cation

This PDF was generated on January 16, 2026

Apple
LocalAuthenti
cation

Apple
MessageUl

Apple
Security

Apple Social

Apple UIKit

Apple
MessageUl

Apple
Security

Apple Social
Apple SwiftUl
Apple UIKit

Apple
WatchConne
ctivity

Static Application Security Testing 26.1

Apple
WatchConne
ctivity

Apple
WatchKit

Apple WebKit
Hpple
Objective-Zip

Realm

Apple
WatchKit

Apple WebKit
Hpple
Realm
SQLite

SSZipArchive

SBJson

SFHFKeychai
nUtils

SSZipArchive
ZipArchive
ZipUtilities

ZipZap

Zip
ZipArchive

ZIPFoundatio
n

ZipUtilities

ZipZap

Page 65 of 610

3 opentext"

COBOL

Auditor Micro Focus
COBOL Run-
time System

CICS

DLI
MQ

Go

GORM
logrus

gRPC

Ada
Ada Web Server

Dart

Flutter

Delphi

WebBroker

Elixir

Phoenix
Plug
Ecto

Erlang

Cowboy
Elli

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

DataSnap

Guardian
Comeonin

gun
anything SQL related

Page 66 of 610

m opentext- Static Application Security Testing 26.1

Groovy
Grails Jenkinsfiles
Gradle Grails Spring Security
Perl
CGl* Dancer
Catalyst Mojolicious
Lua
scripting Sailor
Lapis SQL
R
Shiny SQL
httr

Configuration

This PDF was generated on January 16, 2026 Page 67 of 610

3 opentext"

.NET
Configuration

Adobe Flex
(ActionScript)
Configuration

Ajax
Frameworks

Amazon Web
Service
(AWS)

Ansible

AWS CloudFo
rmation

Azure
Resource
Manager
(ARM)

Build
Management

Docker
Configuration
(Dockerfiles)

GitHub
Actions

Google
Android
Configuration

iOS Property
List

J2EE
Configuration

Java Apache
Axis

Java Apache
Log4j
Configuration

Java Apache
Spring
Security
(Acegi)

Java Apache
Struts

Java Apache
Tomcat
Configuration

Java Blaze
DS

Java
Hibernate
Configuration

Java iBatis
Configuration

Java IBM
WebSphere

Java MyBatis
Configuration

Infrastructure as Code: Amazon Web Services

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Java OWASP
AntiSamy

Java Spring
and Spring
MVC

Java Spring
Boot

Java Spring
Mail

Java Spring
Security

Java Spring
WebSockets

Java
Weblogic

Kubernetes

Mule

OpenAPI
Specification

Oracle
Application
Development
Framework
(ADF)

PHP
Configuration

PHP WordPre
SS

Silverlight
Configuration

Terraform
(AWS, Azure,
GCP)

WS-
SecurityPolic
y

XML Schema

Page 68 of 610

3 opentext"

API Gateway
App Mesh
AppSync
Athena
Aurora
Backup
Batch

Certificate
Manager

CloudFormati
on

CloudFront
CloudTrall
CloudWatch
CodeBuild
CodeCommit
CodeStar

Cognito

Config

Configuration
Recorder

Database
Migration
Service
(DMS)

DataSync
DocumentDB
DynamoDB
EC2

Elastic Block
Store (EBS)

Elastic
Container
Registry
(ECR)

Elastic
Container
Service (ECS)

Elastic File
System (EFS)

Elastic
Kubernetes
Service (EKS)

Elastic Load
Balancing
(ELB)

ElastiCache
EMR
FinSpace
FSx

Global
Accelerator

Glue
GuardDuty
HealthLake

Identity and
Access
Management
(IAM)

Image Builder

Key
Management
Service
(KMS)

Kinesis

Kinesis Video
Streams

Infrastructure as Code: Microsoft Azure

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Lightsail

Location
Service

Lookout for
Equipment

Mainframe
Modernizatio
n

Managed
Streaming for
Apache
Kafka (MSK)

MemoryDB
for Redis

MQ
Neptune

OpenSearch
Service

Quantum
Ledger
Database
(QLDB)

RDS
Redshift
Rekognition

Route 53

SageMaker

Secrets
Manager

Simple
Notification
Service
(SNS)

Simple
Queue
Service
(SQS)

Simple
Storage
Service (S3)

Step
Functions

Systems
Manager

Timestream

Transfer
Family

VPC
VPC Lattice

WorkSpaces
Family

Page 69 of 610

3 opentext"

App Service

Application
Gateway

Automation

Microsoft
Entra Domain
Services

Azure Health
Data Services

Azure
Kubernetes
Service
(AKS)

Batch

Blob Storage

Cache for
Redis

Cognitive
Search

Container
Registry

Cosmos DB

Database for
MariaDB

Database for
MySQL

Database for
PostgreSQL

Databricks

Data Box

Data Factory

Defender for
Cloud

Event Hubs
Front Door
Grafana

Hosthname
Binding

loT Central
loT Hub
Key Vault

Logic Apps

Infrastructure as Code: Google Cloud

Access
Context
Manager

AlloyDB

Apigee API
Management

App Engine

Artifact
Registry

Backup for
GKE

BigQuery

Cloud
Bigtable

Cloud DNS

Cloud
Functions

Cloud Key
Management

This PDF was generated on January 16, 2026

Cloud Load
Balancing

Cloud
Logging

Cloud
Spanner

Cloud SQL

Cloud
Storage

Compute
Engine

Static Application Security Testing 26.1

Machine
Learning

MariaDB

Media
Services

Monitor
NetApp Files
Private Cloud
Policy

Portal

SignalR
Service

Filestore

Google Cloud
Platform

Google
Kubernetes
Engine (GKE)

|dentity and
Access
Management
(IAM)

Site Recovery
Spring Apps
SQL

Storage
Accounts

Virtual
Machine
Scale Sets

Virtual
Machines

Web PubSub

Media CDN
Memorystore
Pub/Sub

Secret
Manager

Workflows

Page 70 of 610

m opentext- Static Application Security Testing 26.1

Secrets

This PDF was generated on January 16, 2026 Page 71 of 610

3 opentext"

.netrc
1TPassword

Actually Goo
d Encryption
(AGE)

Adafruit
Adobe
Airtable
Algolia

Alibaba
(Aliyun)

Amazon
(AWS, MWS)

Apple
(macOS)

Apache
HTTP

Asana
Atlassian
Authress

Basic access
authenticatio
n

bcrypt
Beamer
Bearer token
Bitbucket

Bittrex

Defined
DES
DigitalOcean
Docker
Doppler
Droneci
Dropbox
Duffel
Dynatrace
EasyPost

Encryption
key

Etsy
Facebook
Fastly
Finicity
Finnhub
Flickr
Flutterwave
Frame.io
Freshbooks
Git

GitHub
GitLab
Gitter

GNOME

This PDF was generated on January 16, 2026

HashiCorp
(Terraform,
Vault)

Heroku
HexChat
HubSpot
Intercom
Java

JFrog
(Artifactory)

JSON Web
Token

KDE Wallet
(Kwallet)

KeePass
Kraken
Kucoin
LaunchDarkly
Linear
LinkedIn
Lob
Mailchimp
Mailgun
Mapbox
Mattermost
MD5

MessageBird

Static Application Security Testing 26.1

New Relic
npm
NuGet
Okta
OpenVPN

Password in
comment

Password in
connection
string

Password in
PowerShell
script

Password in
URI

Password
Safe

PayPal
(Braintree)

Pidgin

Plaid
Planetscale
PostgreSQL
Postman
Prefect
Pulumi
PutTY

PyPI

RapidAPI

Sendbird
SendGrid
Sentry
SHA1
SHA256
SHA512
Shippo
Shopify
Sidekiq
Slack
SonarQube
Square
Squarespace
StackHawk
Stripe
Sumologic
Telegram
Travis
Trello
Twilio
Twitch
Twitter
Typeform
Yandex

Zendesk

Page 72 of 610

3 opentext"

Brevo
(Sendinblue)

Clojars

Code Climate

Codecov
Coinbase
Confluent
Contentful
Databricks

Datadog

GNU (Bash)
GoCardless

Google (API,

Google
Cloud,
OAuth)

Grafana

This PDF was generated on January 16, 2026

Microsoft (Az
ure App
Storage,
Cosmos DB,
Functions
and Bitlocker,
PowerShell,
RDP,
VBScript)

Microsoft
(Outlook)

Mutt
MySQL

Netlify

Static Application Security Testing 26.1

Readme

RSA Security

Ruby (Ruby
on Rails,
RubyGems)

Sauce Labs

Secret key

Secure Shell

Protocol
(SSH)

Page 73 of 610

m opentext- Static Application Security Testing 26.1

1.4.5.2. Language compatibility for Al-
assisted analysis

The following languages are supported for Al-assisted static analysis.

o Ada

e Bash
e Delphi
o Elixir
+ Erlang
o Groovy
e Lua

o Perl

o PowerShell
e R

¢ Ruby*
o Rust

*Al-assisted analysis is replacing normal SAST analysis.

This PDF was generated on January 16, 2026 Page 74 of 610

m opentext- Static Application Security Testing 26.1

1.4.6. Supported build tools

OpenText SAST supports the build tools listed in the following table.

Build tool Versions Notes

Apache Ant™ 1.10.x

Bazel 6.X=7.X Bazel integration
supports Java and
Python.

dotnet 6.0-10.x

Gradle 6.6-8.10 OpenText SAST Gradle

(build integration) integration supports

Java, Kotlin, and C/C++.

Gradle 6.6-8.5 OpenText SAST Gradle
(Gradle plugin) Plugin supports Java and
Kotlin.
Apache Maven™ 3.6.x, 3.8.x, 3.9.x
Software
T AST
MSBuild 14.x-1714 OpenText SAS
MSBuild 17.4

integration is compatible
with .NET 7.0 or later and
.NET Framework 4.7.2 or
later

. 16-16.4, 26-26.1.1
xcodebuild

This PDF was generated on January 16, 2026 Page 75 of 610

3 opentext"

1.4.7. Supported compilers

OpenText SAST supports the compilers listed in the following table.

Compiler

gcc

g++

OpendDK javac

Oracle javac

cl (MSVC)

Clang

Swiftc

Versions

GNU gcc 6.x-13

GNU gcc 4.9-5.x

GNU g++ 6.x— 13

GNU g++ 4.9-5.x

9,10, 11,12, 13, 14, 17, 21,
24, 25

7,8,9

2015, 2017, 2019, 2022

15.0.0, 16.0.0, 17.0.0

5.10, 6.0, 6.0.2, 6.0.31,
6.1.0, 6.1.2, 6.2

Static Application Security Testing 26.1

Operating systems

Windows, Linux, macOS

Windows, Linux, macOS,
AlIX

Windows, Linux, macOS

Windows, Linux, macOS,
AIX

Windows, Linux, macOS,
AlIX

Windows, Linux, macOS

Windows

macOS

macOS

1OpenText SAST supports applications built in the following Xcode versions: 16-16.4,

26-26.1.1.

This PDF was generated on January 16, 2026

Page 76 of 610

m opentext- Static Application Security Testing 26.1

1.4.8. OpenText Application Security
Content

Fortify Secure Coding Rulepacks are backward compatible with all supported
OpenText SAST versions. This ensures that Rulepack updates do not break any
working OpenText SAST installation.

This PDF was generated on January 16, 2026 Page 77 of 610

m opentext- Static Application Security Testing 26.1

1.4.9. Virtual Machine support

You can run OpenText Application Security Software products on an approved
operating system in virtual machine environments. You must provide dedicated CPU
and memory resources that meet the minimum hardware requirements. If you find
issues that cannot be reproduced on the native environments with the recommended
processing, memory, and disk resources, you must work with the provider of the
virtual environment to resolve them.

Note

If you run OpenText Application Security Software products in a VM
environment, OpenText strongly recommends that you have CPU and
memory resources fully committed to the VM to avoid performance
degradation.

This PDF was generated on January 16, 2026 Page 78 of 610

m opentext- Static Application Security Testing 26.1

1.4.10. Acquiring software

OpenText SAST (Fortify Static Code Analyzer) is available as an electronic download.
For instructions on how to download the software from the Software Licenses and
Downloads (SLD) portal, click Contact Us / Self Help to review the videos and the
Quick Start Guide.

The following table lists the available packages and describes their contents.

This PDF was generated on January 16, 2026 Page 79 of 610

https://sld.microfocus.com/
https://sld.microfocus.com/

m opentext- Static Application Security Testing 26.1

File name Description

OpenText_SAST_Fortify_Windows_<ver @ OpenText SAST package for Windows

sion>.zip . .
This package includes:

e OpenText SAST installer, which
includes the following components

o Fortify License and Infrastructure
Manager installer

e OpenText SAST Custom Rules
Guide bundle

o About OpenText Application
Security Software Documentation

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Windows_<ver Signature file for the OpenText SAST
sion>.zip.sig Windows package

This PDF was generated on January 16, 2026 Page 80 of 610

m opentext- Static Application Security Testing 26.1

File name Description

OpenText SAST package for Linux on

OpenText_SAST_Fortify_Linux- ARM

ARM_<version>.tar.gz
This package includes:

e OpenText SAST installer, which
includes the following components

e OpenText SAST Custom Rules
Guide bundle

e About OpenText Application
Security Software Documentation

Note

9 OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Linux-

) i Signature file for the OpenText SAST
ARM_<version>.tar.gz.sig

Linux on ARM package

This PDF was generated on January 16, 2026 Page 81 of 610

m opentext- Static Application Security Testing 26.1

File name Description

OpenText_SAST_Fortify_Linux_<version = OpenText SAST package for Linux

>.tar.gz
g This package includes:

e OpenText SAST installer, which
includes the following components

e OpenText SAST Custom Rules
Guide bundle

e About OpenText Application
Security Software Documentation

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Linux_<version = Signature file for the OpenText SAST
>.tar.gz.sig Linux package

This PDF was generated on January 16, 2026 Page 82 of 610

m opentext- Static Application Security Testing 26.1

File name Description

OpenText_SAST_Fortify_Mac_<version> OpenText SAST package for macOS

tar.gz . .
This package includes:

e OpenText SAST installer, which
includes the following components

e OpenText SAST Custom Rules
Guide bundle

e About OpenText Application
Security Software Documentation

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the
installation.

OpenText_SAST_Fortify_Mac_<version>

. Signature file for the OpenText SAST
.tar.gz.sig

macOS package

This PDF was generated on January 16, 2026 Page 83 of 610

m opentext- Static Application Security Testing 26.1

File name Description

OpenText_SAST_Fortify_Mac-

ARM_<version>tar.gz OpenText SAST package for macOS-

ARM

This package includes:

e OpenText SAST installer, which
includes the following components

e OpenText SAST Custom Rules
Guide bundle

e About OpenText Application
Security Software Documentation

Note

OpenText Application
Security Content
(Rulepacks and external
metadata) can be
downloaded during the

installation.
OpenText_SAST_Fortify_Mac- Signature file for the OpenText SAST
ARM_<version>.tar.gz.sig macOS-ARM package

OpenText_SAST_Fortify_AIX_<version>. = OpenText SAST package for AIX

tar.gz . .
This package includes:

e OpenText SAST installer

e OpenText SAST Custom Rules
Guide bundle

e About OpenText Application
Security Software Documentation

OpenText_SAST_Fortify_AIX_<version>. = Signature file for the OpenText SAST
tar.gz.sig AlX package

This PDF was generated on January 16, 2026 Page 84 of 610

m opentext- Static Application Security Testing 26.1

File name Description

OpenText_SAST_Fortify_Samples_<vers = Code samples to help you learn to use
ion>.zip OpenText SAST

OpenText_SAST_Fortify_Samples_<vers Signature file for OpenText SAST code
ion>.zip.sig samples

This PDF was generated on January 16, 2026 Page 85 of 610

m opentext- Static Application Security Testing 26.1

1.4.11. Verifying software downloads

This topic describes how to verify the digital signature of the signed file that you
downloaded from the Customer Support website. Verification ensures that the
downloaded package has not been altered since it was signed and posted to the site.
Before proceeding with verification, download the OpenText Application Security
Software product files and their associated signature (*sig) files. You are not
required to verify the package to use the software, but your organization might
require it for security reasons.

Preparing your system for digital signature
verification

Note

e These instructions describe a third-party product and might not match the
specific, supported version you are using. See your product
documentation for the instructions for your version.

To prepare your system for electronic media verification:

1. Go to the GnuPG website.
2. Download and install GnuPG Privacy Guard.

3. Generate a private key, as follows:

1. Run the following command (on a Windows system, run the command
without the $ prompt):

$ gpg --gen-key

2. When prompted for key type, select DSA and Elgamal .

. When prompted for a key size, select 2048 .

4. When prompted for the length of time the key should be valid, select key
does not expire .

5. Answer the user identification questions and provide a passphrase to
protect your private key.

w

4. Download the OpenText GPG public keys (compressed tar file) from
https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz.

5. Extract the public keys.

6. Import each downloaded key with GnuPG with the following command:

This PDF was generated on January 16, 2026 Page 86 of 610

http://www.gnupg.org/
https://mysupport.microfocus.com/documents/10180/0/MF_public_keys.tar.gz

m opentext- Static Application Security Testing 26.1

gpg --import <path_to_key>/<key._file>

This PDF was generated on January 16, 2026 Page 87 of 610

3 opentext" Static Application Security Testing 26.1

1.5. Installing OpenText SAST

This section describes how to install and uninstall OpenText SAST (Fortify Static Code
Analyzer). This section also describes basic post-installation tasks. See System
requirements to be sure that your system meets the minimum hardware and software
requirements.

This section contains the following topics:

o About installing OpenText SAST

e Using Docker to install and run OpenText SAST
e Upgrading OpenText SAST

e About uninstalling OpenText SAST

o Post-installation tasks

This PDF was generated on January 16, 2026 Page 88 of 610

3 opentext" Static Application Security Testing 26.1

1.5.1. About installing OpenText SAST

This section describes how to install OpenText SAST. Several command-line tools are
installed automatically with OpenText SAST (see Command-Line Tools). You can
optionally include a ScanCentral SAST client and the Application Security fortifyclient
utility with the OpenText SAST installation. For information about ScanCentral SAST,
see the OpenText™ ScanCentral SAST Installation, Configuration, and Usage Guide.

You must provide a Fortify license file and optionally LIM license pool credentials
during the installation. The following table lists the different ways to install OpenText
SAST.

Installation method Instructions

Perform the installation using a Installing OpenText SAST and
standard install wizard Applications

Perform the installation silently Installing OpenText SAST silently
(unattended)

Perform a text-based installation on Installing OpenText SAST and
non-Windows systems Applications in Text-Based Mode on

Non-Windows Platforms

Perform the installation using Docker Using Docker to Install and Run
OpenText SAST

For best performance, install OpenText SAST on the same local file system where the
code that you want to scan resides.

Note

e On non-Windows systems, you must install OpenText SAST as a user that
has a home directory with write permission. Do not install OpenText SAST
as a non-root user that has no home directory.

After you complete the installation, see About the Post-Installation Tasks for additional
steps you can perform to complete your system setup. You can also configure
settings for runtime analysis, output, and performance of OpenText SAST by updating
the installed configuration files. For information about the configuration options for
OpenText SAST, see Configuration Options.

This PDF was generated on January 16, 2026 Page 89 of 610

https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca
https://docs.microfocus.com/doc/2263/26.1/ede68409a70a_installsca

m opentext- Static Application Security Testing 26.1

This PDF was generated on January 16, 2026 Page 90 of 610

m opentext- Static Application Security Testing 26.1

1.51.1. Installing OpenText SAST
To install OpenText SAST:

1. Run the installer file for your operating system to start the OpenText SAST Setup
wizard:

o Windows: OpenText_SAST_Fortify_windows-x64_<version>.exe
o Linux: OpenText_SAST_Fortify_linux-x64_<version>.run or
OpenText_SAST_Fortify_linux-arm64_<version>.run

o macOS: OpenText_SAST_Fortify_osx-x64_<version>.app.zip or
OpenText_SAST_Fortify _osx-arm64.app.zip

Uncompress the ZIP file before you run the APP installer file.
o AIX: OpenText_SAST_Fortify_aix-ppc64_<version>.run
where <version> is the software release version, and then click Next.
2. Review and accept the license agreement, and then click Next.
3. (Optional) Select components to install, and then click Next.

4. If the installer detects that the system does not include the minimum software
required to analyze some types of projects, a System Requirements page
displays any missing requirements and which projects require them. Click Next.

See Software requirements for all software requirements.
5. Choose where to install OpenText SAST, and then click Next.
If you selected to include ScanCentral SAST client with the installation in step 3,
then you must specify a location that does not include spaces in the path.
Important

Do not install OpenText SAST in the same directory where
OpenText™ Application Security Tools is installed.

6. Specify the path to the fortify.license file, and then click Next.

7. (Optional) On the LIM License page, select Yes to manage your concurrent
licenses with Fortify License and Infrastructure Manager (LIM), and then click
Next.

This PDF was generated on January 16, 2026 Page 91 of 610

m opentext- Static Application Security Testing 26.1

Note

When OpenText SAST performs a task that requires a license, the
application will attempt to acquire a LIM lease from the license pool.
If OpenText SAST fails to acquire a license due to a communication
issue with the LIM server, it will use the Fortify license file. To
change this behavior, use the
com.fortify.sca.lim.WaitForlnitialLicense in the fortify-
sca.properties file (see LIM license properties).

1. Type the LIM API URL, the license pool name, and the license pool
password.

2. Click Next.
The LIM Proxy Settings page opens.

3. If connection to the LIM server requires a proxy server, type the proxy host
(hostname or IP address of your proxy server) and optionally a port
number.

4. Click Next.

8. To update the security content for your installation:

Note

For deployment environments that do not have access to the internet
during installation, you can update the security content using the
fortifyupdate command-line tool. See Manually installing OpenText
Application Security Content.

1. Type the web address of the update server.

To use the Fortify Rulepack update server for security content updates,
keep the web address https://update.fortify.com . You can also use
Application Security as the update server.

2. (Optional) If connection to the update server requires a proxy server, type
the proxy host and port number.

3. If you want to update the security content manually, clear the Update
security content after installation check box.

This PDF was generated on January 16, 2026 Page 92 of 610

m opentext- Static Application Security Testing 26.1

4. Click Next.
9. Specify if you want to migrate from a previous installation on your system.

Migrating from a previous installation preserves OpenText SAST artifact files. For
more information, see About upgrading OpenText SAST.

Note

You can also migrate artifacts using the scapostinstall command-
line tool. For information on how to use the post-install tool to
migrate from a previous installation, see Migrating properties files.

To migrate artifacts from a previous installation:

1. On the OpenText SAST (Fortify) Migration page, select Yes, and then
click Next.

2. Specify the location of the existing installation on your system, and then
click Next.

To skip migration of artifacts from a previous release, leave the migration
selection set to No, and then click Next.

10. Click Next on the Ready to Install page to install OpenText SAST, any selected
components, and OpenText Application Security Content.

If you selected to update security content, the Security Content Update Result
window displays the security content update results.

11. Click Finish to close the Setup wizard.

This PDF was generated on January 16, 2026 Page 93 of 610

m opentext- Static Application Security Testing 26.1

1.5.1.2. Installing OpenText SAST silently

A silent installation enables you to complete the installation without any user prompts.
To install silently, you need to create an option file to provide the necessary
information to the installer. Using the silent installation, you can replicate the
installation parameters on multiple machines.

Important

Do not install OpenText SAST in the same directory where OpenText™
Application Security Tools is installed.

When you install OpenText SAST silently, the installer does not download the
Application Security by default. You can enable download of the OpenText Application
Security Content in the options file or you can install the OpenText Application
Security Content manually (see Manually Installing OpenText Application Security
Content).

To install OpenText SAST silently:

1. Create an options file.

1. Create a text file that contains the following line:

fortify license path=<license file location>

where <license_file_location> is the full path to your fortify.license file.

2. To use a LIM license server, add the following lines with your LIM license
pool credentials to the options file:

lim url=<lim url>lim_pool name=
<license pool name>lim pool password=<license pool pwd>

3. To use a location for OpenText Application Security Content updates that is
different than the default of https://update.fortify.com , add the following
line:

update server=<update server url>

This PDF was generated on January 16, 2026 Page 94 of 610

m opentext- Static Application Security Testing 26.1

4. If you require a proxy server for the OpenText Application Security Content
download, add the following lines:

update proxy server=<proxy server>update proxy port=
<port number>

5. To enable download of OpenText Application Security Content, add the
following line:

update_security_content=1
6. Add more installation instructions, as needed, to the options file.

To obtain a list of installation options that you can add to your options file,
open a command prompt, and then type the installer file name and the --
help option. This command displays each available command-line option
preceded with a double dash and the available parameters enclosed in
angle brackets. For example, if you want to see the progress of the install
displayed at the command line, add unattendedmodeui=minimal to your
options file.

Notes:
= The command-line options are case-sensitive.

» The installation options are not the same on all supported operating
systems. Run the installer with --help to see the options available for
your operating system.

The following example Windows options file specifies the location of the
license file, the location of a Application Security server and proxy
information to obtain OpenText Application Security Content, a request to
migrate from a previous release, and the location of the OpenText SAST
installation directory:

fortify license path=C:\Users\admin\Desktop\fortify.lice
nse

update server=https://my ssc host:8080/ssc

update proxy server=webproxy.abc.company.com
update proxy port=8080

migrate sca=1

install dir=C:\Fortify

This PDF was generated on January 16, 2026 Page 95 of 610

m opentext- Static Application Security Testing 26.1
The following options file example is for Linux and macOS®:

fortify license path=/opt/Fortify/fortify.license
update server=https://my ssc host:8080/ssc

update proxy server=webproxy.abc.company.com
update proxy port=8080

migrate sca=1

install dir=/opt/Fortify

2. Save the options file.

3. Run the silent install command for your operating system.

Note

You might need to run the command prompt as an administrator
before you run the installer.

This PDF was generated on January 16, 2026 Page 96 of 610

m opentext- Static Application Security Testing 26.1

Windows OpenText_SAST_Fortify _windows-
X64_<version>.exe --mode
unattended --optionfile
<full_path_to_options_file>

Linux ./OpenText_SAST_Fortify_linux-
x64_<version>.run --mode
unattended --optionfile
<full_path_to_options_file>
or
./OpenText_SAST_Fortify_linux-
arm64_<version>.run --mode
unattended --optionfile
<full_path_to_options_file>

macOS® You must uncompress the ZIP file
before you run the command.
OpenText_SAST_Fortify_osx-
x64_<version>.app/Contents/MacO
S/installbuilder.sh --mode
unattended --optionfile
<full_path_to_options_file>
or
OpenText_SAST_Fortify_osx-
arm64_<version>.app/Contents/Mac
OS/installbuilder.sh --mode
unattended --optionfile
<full_path_to_options_file>

AlIX ./OpenText_SAST_Fortify_aix-
ppc64_<version>.run --mode
unattended --optionfile
<full_path_to_options_file>

The installer creates an installer log file when the installation is complete. This log file
is in the following location, which depends on your operating system.

This PDF was generated on January 16, 2026 Page 97 of 610

m opentext- Static Application Security Testing 26.1

Windows C:\Users\
<username>\AppData\Local\Temp\Ope
nTextSASTFortify- <version>-install.log

Non-Windows /tmp/OpenTextSASTFortify-<version>-
install.log

This PDF was generated on January 16, 2026 Page 98 of 610

m opentext- Static Application Security Testing 26.1

1.5.1.3. Installing OpenText SAST in text-
based mode on hon-Windows platforms

You perform a text-based installation on the command line. During the installation,
you are prompted for information required to complete the installation. Text-based
installations are not supported on Windows systems.

Important

Do not install OpenText SAST in the same directory where OpenText™
Application Security Tools is installed.

To perform a text-based installation of OpenText SAST, run the text-based install
command for your operating system as listed in the following table.

Linux ./OpenText_SAST_Fortify_linux-
x64_<version>.run --mode text
or

./OpenText_SAST_Fortify_linux-
arm64_<version>.run --mode text

MacOS You must uncompress the provided ZIP
file before you run the command.
OpenText_SAST_Fortify_osx-
x64_<version>.app/Contents/MacOS/in
stallbuilder.sh --mode text
or
OpenText_SAST_Fortify_osx-
arm64_<version>.app/Contents/MacO
S/installbuilder.sh --mode text

AIX OpenText_SAST_Fortify_aix-
ppc64_<version>.run --mode text

This PDF was generated on January 16, 2026 Page 99 of 610

m opentext- Static Application Security Testing 26.1

1.5.1.4. Manually installing OpenText
Application Security Content

You can install OpenText Application Security Content (Fortify Secure Coding
Rulepacks and metadata) automatically during the installation. However, you can also
download OpenText Application Security Content from the Fortify Rulepack update
server, and then use the fortifyupdate command-line tool to install it. This option is
provided for deployment environments that do not have access to the Internet during
installation.

Use fortifyupdate to install OpenText Application Security Content from either a
remote server or a locally downloaded file.

To install security content:

1. Open a command window and go to <sast_install_dir>/bin/ .
2. At the command prompt, type fortifyupdate .

If you have previously downloaded the OpenText Application Security Content
from the Fortify Rulepack update server, run fortifyupdate with the -import
option and the path to the directory where you downloaded the ZIP file.

You can also use this same tool to update your OpenText Application Security
Content. For more information about the fortifyupdate command-line tool, see
Updating Security Content.

This PDF was generated on January 16, 2026 Page 100 of 610

m opentext- Static Application Security Testing 26.1

1.5.2. Using Docker to install and run
OpenText SAST

You can install OpenText SAST in a Docker image and then run OpenText SAST as a
Docker container.

Note

You can only run OpenText SAST in Docker on supported Linux platforms.

This section contains the following topics:

e Creating a Dockerfile to install OpenText SAST
e Running the container

This PDF was generated on January 16, 2026 Page 101 of 610

3 opentext" Static Application Security Testing 26.1

1.5.2.1. Creating a Dockerfile to install
OpenText SAST

This topic describes how to create a Dockerfile to install OpenText SAST in a Docker
image.

The Dockerfile must include the following instructions:

1. Set a Linux system to use for the base image.

For more information on supported platforms and architecture, see Supported
platforms and architectures

Note

If you intend to use build tools when you run OpenText SAST, make
sure that the required build tools are installed in the image. For
information about using the supported build tools, see Supported build
tools.

2. Copy the OpenText SAST installer, the Fortify license file, and installation options
file to the Docker image using the COPY instruction.

For instructions on how to create an installation options file, see Installing
OpenText SAST silently.

3. Run the OpenText SAST installer using the RUN instruction.

You must run the installer in unattended mode. For more information, see
Installing OpenText SAST silently.

4. Run fortifyupdate to install the OpenText Application Security Content using the
RUN instruction.

This PDF was generated on January 16, 2026 Page 102 of 610

m opentext- Static Application Security Testing 26.1

Important

OpenText SAST requires installation of the OpenText Application
Security Content to perform analysis of projects. The following
example installs OpenText Application Security Content from a
previously downloaded local file during the build of the image. For
more information about downloading and installing OpenText
Application Security Content using the fortifyupdate tool, see
Manually installing OpenText Application Security Content.

5. To configure the image so you can run OpenText SAST, set the entry point to the
location of the installed sourceanalyzer executable using the ENTRYPOINT
instruction.

The default sourceanalyzer installation path is:
[opt/Fortify/OpenText_SAST_Fortify_<version>/bin/sourceanalyzer .

The following is an example of a Dockerfile to install OpenText SAST:

FROM ubuntu:18.04

WORKDIR /app

ENV APP HOME="/app"

ENV RULEPACK="MyRulepack.zip"

COPY fortify.license ${APP_HOME}

COPY OpenText SAST Fortify linux-x64 25.4.0.run ${APP_HOME}
COPY optionFile ${APP HOME}

COPY ${RULEPACK} ${APP HOME}

RUN ./OpenText SAST Fortify linux-x64 25.4.0.run --mode
unattended \

--optionfile "${APP HOME}/optionFile" && \

/opt/Fortify/OpenText SAST Fortify 25.4.0/bin/fortifyupdate -
import ${RULEPACK} && \

rm OpenText SAST Fortify linux-x64 25.4.0.run optionFile

ENTRYPOINT
["/opt/Fortify/OpenText SAST Fortify 25.4.0/bin/sourceanalyzer"]

This PDF was generated on January 16, 2026 Page 103 of 610

m opentext- Static Application Security Testing 26.1

To create the docker image using the Dockerfile from the current directory, you must
use the docker build command. For example:

docker buildx build -f <docker file> -t <image name> "."

This PDF was generated on January 16, 2026 Page 104 of 610

m opentext- Static Application Security Testing 26.1

1.5.2.2. Running the container

This topic describes how to run the OpenText SAST image as a container and
provides example Docker run commands for translation and scan.

Note

When you run OpenText SAST in a container and especially if you also
leverage runtime container protections, make sure that OpenText SAST
has the appropriate permission to run build commands (for example,
javac).

To run the OpenText SAST image as a container, you must mount two directories from
the host file system to the container:

e The directory that contains the source files you want to analyze.

o Atemporary directory to store the OpenText SAST build session between the
translate and scan phases and to share the output files (logs and FPR file) with
the host.

Specify this directory using the —project-root command-line option in both the
OpenText SAST translate and scan commands.

The following example commands mount the input directory /sources in /src and
the temporary directory in /scratch_docker . The image name in the example is
fortify-sast .

Example Docker run commands for translation and
scan

The following example mounts the temporary directory and the sources directory, and
then runs OpenText SAST from the container for the translation phase:

docker run -v /scratch local/:/scratch docker -v /sources/:/src
-it fortify-sast —b MyProject -project-root /scratch docker
[<sca options>] /src

The following example mounts the temporary directory, and then runs OpenText SAST
from the container for the analysis phase:

This PDF was generated on January 16, 2026 Page 105 of 610

m opentext- Static Application Security Testing 26.1

docker run -v /scratch local/:/scratch docker
-it fortify-sast —b MyProject -project-root /scratch docker —
scan [<sca options>] —f /scratch docker/MyResults.fpr

The MyResults.fpr output file is created in the host's /scratch_local directory.

This PDF was generated on January 16, 2026 Page 106 of 610

m opentext- Static Application Security Testing 26.1

1.5.3. Upgrading OpenText SAST

To upgrade OpenText SAST, install the new version in a different location than where

your current version is installed and choose to migrate settings from the previous

installation. This migration preserves and updates the artifact files located in the
<sast_install_dir>/Core/config directory.

If you choose not to migrate any settings from a previous release, OpenText
recommends that you save a backup of the following data if it has been modified:

e <sast install_dir>/Core/config/rules folder

e <sast_install_dir>/Core/config/customrules folder

e <sast_install_dir>/Core/config/ExternalMetadata folder

e <sast_install_dir>/Core/config/CustomExternalMetadata folder
e <sast_install_dir>/Core/config/server.properties file

e <sast_install_dir>/Core/config/scales folder

After you install the new version, you can uninstall the previous version. For more
information, see About Uninstalling OpenText SAST.

Note

B You can leave the previous version installed. If you have multiple versions
installed on the same system, the most recently installed version is used
when you run the command from the command line.

This PDF was generated on January 16, 2026 Page 107 of 610

3 opentext" Static Application Security Testing 26.1

1.5.4. About uninstalling OpenText SAST

This section describes how to uninstall OpenText SAST. You can use the standard
install wizard, or you can silently install OpenText SAST. You can also perform a text-
based uninstallation on non-Windows systems.

This section contains the following topics:

e Uninstalling OpenText SAST
e Uninstalling OpenText SAST silently
e Uninstalling OpenText SAST in text-based mode on non-Windows platforms

This PDF was generated on January 16, 2026 Page 108 of 610

m opentext- Static Application Security Testing 26.1

1.5.4.1. Uninstalling OpenText SAST

To uninstall OpenText SAST:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the
following table.

(015} Uninstall command

Windows . .
Uninstall_OpenTextSASTFortify.exe

Alternatively, you can uninstall the
application from the Windows
interface. See the Microsoft
Windows documentation for
instructions.

Linux .JUninstall_OpenTextSASTFortify
AlX

macOS® . .
Uninstall_OpenTextSASTFortify.app

3. You are prompted to indicate whether to remove the entire application or
individual components. Make your selection, and then click Next.

If you are uninstalling specific components, select the components to remove on
the Select Components to Uninstall page, and then click Next.

4. You are prompted to indicate whether to remove all application settings. Do one
of the following:

o Click Yes to remove the application settings for the components installed
with the version of OpenText SAST that you are uninstalling.

The OpenText SAST (sca<version>) application settings folder is not
removed.

This PDF was generated on January 16, 2026 Page 109 of 610

m opentext- Static Application Security Testing 26.1

o Click No to retain the application settings on your system.

This PDF was generated on January 16, 2026 Page 110 of 610

m opentext- Static Application Security Testing 26.1

1.5.4.2. Uninstalling OpenText SAST
silently

To uninstall OpenText SAST silently:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the
following table.

(015} Uninstall command

Windows . .
Uninstall_OpenTextSASTFortify.exe

--mode unattended

Linux ./Uninstall_OpenTextSASTFortify --
mode unattended

AlX

macOS® . .
Uninstall_OpenTextSASTFortify.app/
Contents/MacOS/installbuilder.sh
--mode unattended

Note

For Windows, Linux, and macOS®, the uninstaller removes the application
settings for the components installed with the version of OpenText SAST
that you are uninstalling.

This PDF was generated on January 16, 2026 Page 111 of 610

m opentext- Static Application Security Testing 26.1

1.5.4.3. Uninstalling OpenText SAST in
text-based mode on non-Windows
platforms

To uninstall OpenText SAST in text-based mode:

1. Go to the installation directory.

2. Run the uninstall command for your operating system as described in the
following table.

(0133 Uninstall command

Linux ./Uninstall_OpenTextSASTFortify --
mode text

AlX

macOS® Uninstall_OpenTextSASTFortify.app/
Contents/MacOS/installbuilder.sh --
mode text

This PDF was generated on January 16, 2026 Page 112 of 610

3 opentext" Static Application Security Testing 26.1

1.5.5. Post-installation tasks

Post-installation tasks prepare you to start using OpenText SAST.

This section contains the following topics:

e Running the post-install tool

» Migrating properties files

e Specifying a locale

» Configuring Fortify Security Content updates

o Configuring the connection to Application Security
e Removing proxy server settings

e Adding trusted certificates

This PDF was generated on January 16, 2026 Page 113 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.1. Running the post-install tool

You can use the post-install command-line tool to migrate properties files from a
previous version of OpenText SAST, configure OpenText Application Security Content
updates, and configure settings to connect to Application Security.

To run the post-install tool:

1. Go to <sast_install_dir>/bin/ .
2. At the command prompt, type scapostinstall .

3. Type one of the following:

o To display settings, type s .
o To return to the previous prompt, type r.
o To exit the tool, type q.

This PDF was generated on January 16, 2026 Page 114 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.2. Migrating properties files

To migrate properties files from a previous version of OpenText SAST to the current
version installed on your system:

. Goto <sast_install_dir>/bin/ .

. At the command prompt, type scapostinstall .

. Type 1 to select Migration .

. Type 1 to select Static Code Analyzer Migration .

. Type 1 to select Migrate from an existing Fortify installation .
. Type 1 to select Set previous Fortify installation directory .

. Type the previous install directory.

. Type s to confirm the settings.

. Type 2 to perform the migration.

. Type y to confirm.

© 00 NO O WDN P

=
o

This PDF was generated on January 16, 2026 Page 115 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.3. Specifying a locale

English is the default locale for an OpenText SAST installation.

To change the locale for your OpenText SAST installation:

1. Goto <sast_install_dir>/bin/ .
2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .
4. Type 1 to select General .
5. Type 1 to select Locale .

6. Type one of the following locale codes:

o en (English)

o es (Spanish)

o ja (Japanese)

o ko (Korean)

o pt_BR (Brazilian Portuguese)
o zh_CN (Simplified Chinese)
o zh_TW (Traditional Chinese)

This PDF was generated on January 16, 2026 Page 116 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.4. Configuring Fortify Security
Content updates

Specify how you want to obtain OpenText Application Security Content. You must also
specify proxy information if it is required to reach the server.

To specify settings for OpenText Application Security Content updates:

. Go to <sast_install_dir>/bin/ .

. At the command prompt, type scapostinstall .
. Type 2 to select Settings .

. Type 2 to select Fortify Update .

A W DN P

()]

. To change the Fortify Rulepack update server URL, type 1, and then type the
URL.

The default Fortify Rulepack update server URL is https://update.fortify.com .

6. To specify a proxy for OpenText Application Security Content updates, do the
following:

1. Type 2 to select Proxy Server , and then type the name of the proxy
server.

Exclude the protocol and port number (for example,
some.secureproxy.com).

2. Type 3 to select Proxy Server Port , and then type the proxy server port
number.

3. (Optional) You can also specify a proxy server user name (option 4) and
password (option 5).

This PDF was generated on January 16, 2026 Page 117 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.5. Configuring the connection to
Application Security

Specify how to connect to Application Security. If your network uses a proxy server to
reach the Application Security server, you must specify the proxy information.

To specify settings for connecting to Application Security:

1. Go to <sast_install_dir>[bin/ .

2. At the command prompt, type scapostinstall .

3. Type 2 to select Settings .

4. Type 3 to select Software Security Center Settings .

5. Type 1 to select Server URL , and then type the Application Security server
URL.

6. To specify proxy settings for the connection, do the following:

1. Type 2 to select Proxy Server , and then type the name of the proxy
server.

Exclude the protocol and port number (for example,
some.secureproxy.com).

2. Type 3 to select Proxy Server Port , and then type the proxy server port
number.

3. To specify a proxy server user name and password, use option 4 for the
username and option 5 for the password.

7. (Optional) You can also specify the following:

o Whether to update OpenText Application Security Content from your
Application Security server (option 6)
o The Application Security user name (option 7))

This PDF was generated on January 16, 2026 Page 118 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.6. Removing proxy server settings

If you previously specified proxy server settings for the Fortify Rulepack update
server or Application Security and it is no longer required, you can remove these
settings.

To remove the proxy settings for obtaining OpenText Application Security Content
updates or connecting to Application Security:

. Go to <sast_install_dir>/bin/ .

. At the command prompt, type scapostinstall .

. Type 2 to select Settings .

. Type 2 to select Fortify Update ortype 3 to select Software Security Center
Settings .

5. Type the number that corresponds to the proxy setting you want to remove, and

then type a minus sign (-) to remove the setting.
6. Repeat step 5 for each proxy setting you want to remove.

A WODN P

This PDF was generated on January 16, 2026 Page 119 of 610

m opentext- Static Application Security Testing 26.1

1.5.5.7. Adding trusted certificates

Connection from OpenText SAST to other OpenText Application Security Software
products and external systems might require communication over HTTPS. Some
examples include:

o OpenText SAST by default requires an HTTPS connection to communicate with
the LIM server for license management.

The property com.fortify.sca.lim.RequireTrustedSSLCert determines whether
the connection with the LIM server requires a trusted SSL certificate. For more
information about this property, see LIM Properties.

e The fortifyupdate command-line tool uses an HTTPS connection either
automatically during a Windows system installation or manually (see Manually
installing OpenText Application Security Content) to update OpenText
Application Security Content.

e OpenText SAST configured as a ScanCentral SAST sensor uses an
HTTPS connection to communicate with the Controller.

When using HTTPS, OpenText SAST and its applications will by default apply
standard checks to the presented SSL server certificate, including a check to
determine if the certificate is trusted. If your organization runs its own certificate
authority (CA) and OpenText SAST needs to trust connections where the server
presents a certificate issued by this CA, you must configure OpenText SAST to trust
the CA. Otherwise, the use of HTTPS connections might fail.

You must add the trusted certificate of the CA to the OpenText SAST keystore. The
OpenText SAST keystore is in the <sast_install_dir>/jre/lib/security/cacerts file. You
can use the keytool command to add the trusted certificate to the keystore.

To add a trusted certificate to the OpenText SAST keystore:

1. Open a command prompt, and then run the following command:

<sast install dir>/jre/bin/keytool -importcert -alias
<alias name> -cacerts -file <cert file>

where:

o <alias_name> is a unique name for the certificate you are adding.

This PDF was generated on January 16, 2026 Page 120 of 610

m opentext- Static Application Security Testing 26.1

o <cert_file> is the name of the file that contains the trusted root certificate
in PEM or DER format.

2. Enter the keystore password.

Note

The default password is changeit .

3. When prompted to trust this certificate, select yes.

This PDF was generated on January 16, 2026 Page 121 of 610

3 opentext" Static Application Security Testing 26.1

1.6. Analysis process overview

This section contains the following topics:

e Scanning Basics

e Translation phase

e Analysis phase

o Translation and analysis phase verification

This PDF was generated on January 16, 2026 Page 122 of 610

m opentext- Static Application Security Testing 26.1

1.6.1. Scanning Basics

The following is the fundamental sequence of commands to translate and analyze
code:

1. Remove all existing OpenText SAST temporary files for the specified build ID.
sourceanalyzer -b MyProject -clean

Always begin an analysis with this step to analyze a project with a previously
used build ID.

2. Translate the project code. Where available, we recommend using build
integration to automate picking up your source files and configuring the
translation settings correctly.

Build integration typically takes the form:

sourceanalyzer -b MyProject ... <build command>
Or manually:

sourceanalyzer -b MyProject <files to analyze>
<options specific to language>

For more details about translation, check under the section of the programming
language you are trying to analyze.
3. Analyze the project code and save the results in a Fortify Project Results(FPR)

file.

sourceanalyzer -b MyProject -scan -f MyResults.fpr

For more information, see Analysis Phase.

This can also be simplified or even performed remotely via OpenText™
ScanCentral SAST. For more information, see the OpenText™ ScanCentral SAST
Installation, Configuration, and Usage Guide.

This PDF was generated on January 16, 2026 Page 123 of 610

m opentext- Static Application Security Testing 26.1

1.6.2. Translation phase

To successfully translate a project that is normally compiled, make sure that you have
any dependencies required to build the project available. For languages that have any
specific requirements, see the sections for the specific source code type.

The basic command-line syntax to perform the first step of the analysis process, file
translation, is:

sourceanalyzer -b <build id> ... <files>
or

sourceanalyzer -b <build id> ... <compiler command>

The translation phase consists of one or more invocations of OpenText SAST using
the sourceanalyzer command. OpenText SAST uses a build ID (-b option) to tie the
invocations together. Subsequent invocations of sourceanalyzer add any newly
specified source or configuration files to the file list associated with the build ID.

After translation, you can use the -show-build-warnings directive to list any
warnings and errors that occurred in the translation phase:

sourceanalyzer -b <build id> -show-build-warnings

To view the files associated with a build ID, use the -show-files directive:

sourceanalyzer -b <build id> -show-files

Special considerations for the translation phase

Consider the following special considerations before you perform the translation
phase on your project:

o When you translate dynamic languages (JavaScript/TypeScript, PHP, Python,
and Ruby), you must specify all source files together in one invocation.
OpenText SAST does not support adding new files to the file list associated with
the build ID on subsequent invocations.

This PDF was generated on January 16, 2026 Page 124 of 610

m opentext- Static Application Security Testing 26.1

o Generated code is automatically generated by a script or a tool such as a
parsing tool. This code can be optimized, minimized, or large and complex.
Therefore, OpenText recommends that you exclude it from translation because it
would be challenging to fix any vulnerabilities OpenText SAST might report in
this code. Use the -exclude command-line option to exclude this type of code
from translation.

» To translate the project on a build machine, and then run the scan on a better
performance system, see Using mobile build sessions.

This PDF was generated on January 16, 2026 Page 125 of 610

m opentext- Static Application Security Testing 26.1

1.6.3. Analysis phase

The analysis phase scans the intermediate files created during translation and creates
the vulnerability results file (FPR).

This phase consists of one invocation of sourceanalyzer . You specify the build ID
and include the -scan directive with any other required analysis or output options
(see Analysis Options and Output Options).

The following example shows the command-line syntax to perform the analysis phase
and save the results in an FPR file:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

Note

By default, OpenText SAST includes the source code in the FPR file.

To combine multiple builds into a single scan command, add the additional builds to
the command line:

sourceanalyzer -b MyProjectl -b MyProject2 -b MyProject3 -scan -
f MyResults.fpr

To analyze code using Al-assisted analysis, you should set up a PostgreSQL database
to configure the LLM connection and configure the database in the fortify-
sca.properties file. Alternatively, these properties can be specified at the command
line, but it may incur additional costs as caching of results is avoided. For more
information on Al-assisted analysis, see Analyzing using Al.

If you are analyzing languages that require Al-assisted analysis and do not configure
the LLM or database connection, those files will only be scanned via Secret Scanning.

This PDF was generated on January 16, 2026 Page 126 of 610

m opentext- Static Application Security Testing 26.1

1.6.4. Translation and analysis phase
verification

Fortify Audit Workbench certification indicates whether the code analysis from a scan
is complete and valid. The project summary in Fortify Audit Workbench shows the
following specific information about OpenText SAST scanned code:

 List of files scanned, with file sizes and timestamps

e Java class path used for the translation (if applicable)

o Rulepacks used for the analysis

e OpenText SAST runtime settings and command-line options

e Any errors or warnings encountered during translation or analysis
e Machine and platform information

Note

To obtain result certification, you must specify FPR for the analysis phase
output format.

To view result certification information, open the FPR file in Fortify Audit Workbench
and select Tools > Project Summary > Certification. For more information, see the
OpenText™ Fortify Audit Workbench User Guide.

This PDF was generated on January 16, 2026 Page 127 of 610

3 opentext" Static Application Security Testing 26.1

1.7. Analyzing using Al-powered SAST

OpenText SAST uses Al-powered SAST to analyze source files of a subset of
languages by passing them to a configured Large Language Model (LLM) along with
guidance and rules to identify dozens of vulnerabilty categories.

Al-powered SAST supplements existing analysis and enables scanning of languages
that would otherwise require significantly more time to provide native support.

Off-cloud users must provision their own LLM instance and configure it through a
PostgreSQL database that they maintain independently. For more information, see Al-
assisted Analysis Requirements and Supported LLMs.

This section contains the following topics:

o Configuring the LLM

e Connecting to the database

e Using the dbTool

o Sample analysis using Al-powered SAST

o Al-powered SAST configuration options

e Rate limiting

e Using the pwtool to encrypt sensitive values

This PDF was generated on January 16, 2026 Page 128 of 610

3 opentext" Static Application Security Testing 26.1

1.7.1. Configuring the LLM

Enable Al-powered SAST by specifying the provider and model.

com.fortify.sca.ai.provider=<provider>
com.fortify.sca.ai.model=<inference profile ID or inference
profile ARN>

Example

com.fortifv.sca.ai.orovider=aws
com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-20250929-
v1:0

For more detailed information on configuring access to specific LLM providers,
see Connecting to an AWS Bedrock LLM.

For more information about supported LLM providers and models, see LLM request
configuration and Supported LLMs.

This PDF was generated on January 16, 2026 Page 129 of 610

m opentext- Static Application Security Testing 26.1

1.7.1.1. Connecting to an AWS Bedrock
LLM

OpenText SAST uses the AWS SDK for Java (version 2) to make API requests to AWS
Bedrock. The AWS SDK requires credentials to ensure the requests are authenticated
and authorized.

There are multiple ways to provide the necessary credentials to the SDK.

o SDK Default Provider Chain

The SDK will attempt to automatically discover credentials using the default
credential provider chain. Credentials can be provided through any of the
credential provider methods in the default credential provider chain. For more
information, see AWS Documentation.

Use any of the common credential provider methods such as:
o Credentials file:

You can specify the AWS access key, AWS secret key, and optional AWS
session token in the AWS credentials file. The credentials file is located
at <HOME_DIR>/.aws/credentials on Linux or macOS, or

at C:\Users\ USERNAME \.aws\credentials on Windows. For more
information on configuring the credentials file, see AWS Documentation.

o Configure environment variables

You can specify the AWS access key, AWS secret key, and optional AWS
session token as system environment variables. For more information on
configuring the environment variables, see AWS Documentation.

o Store the credentials in the PostgreSQL database

You can store the AWS access key, AWS secret key, and optional AWS session
token directly in the provided database by using the dbTool. For more information,
see Using the dbTool.

« Add the credentials in the fortify-sca.properties file

The AWS access key, AWS secret key, and optional AWS session token can be
explicitly set as Fortify properties in the fortify-sca.properties file. You can also
specify the property on the command line with the -D option. For more
information about the specific properties, see AWS configuration properties.

This PDF was generated on January 16, 2026 Page 130 of 610

m opentext- Static Application Security Testing 26.1

1.7.2. Connecting to the database

You can configure OpenText SAST to connect to a PostgreSQL database to enable the
following features:

e Caching LLM results to reduce cost and scan time.

» Storing centralized configuration properties used to connect to the LLM and for
configuring the behavior of Al-powered SAST.

e Enabling distributed rate limiting across multiple instances of sourceanalyzer .

o Storing LLM token usage data.

To connect to the database, provide the following JDBC connection properties in
the fortify-sca.properties file or as command-line arguments:

This PDF was generated on January 16, 2026 Page 131 of 610

3 opentext"

Property

com.fortify.sca.ai.db.url

com.fortify.sca.ai.db.prop.username

com.fortify.sca.ai.db.prop.password

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the JDBC connection URL of
the database.

Example

idbc:postaresal:mv.domain
.com:5432/sast-ai-db

Specifies the username to use to con-
nect to the database.

Specifies the password to use to con-
nect to the database.

This is a sensitive property. Users can
choose to obfuscate the value using
the pwtool to avoid storing it in plain
text in the properties file or as a com-
mand line argument.

Page 132 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.db.prop.* Any PostgreSQL JDBC connection
properties can be set by prefixing them
with " com.fortify.sca.ai.db.prop. ".

For example, set the following proper-
ties to enable authentication using SSL:

com.fortify.ai.db.prop.ssl=true

com.fortify.ai.db.prop.ssimode=verify-
full

com.fortify.ai.db.prop.sslcert=my/dir/p
ostgresql.crt

com.fortify.ai.db.prop.sslkey=my/dir/p
ostgresql.pk8

com.fortify.ai.db.prop.sslrootcert=my/
dir/root.crt

For more information about the avail-
able Postgres JDBC connection prop-
erties, see

the PostgreSQL Documentation

For more information, see Database configuration properties

This PDF was generated on January 16, 2026 Page 133 of 610

m opentext- Static Application Security Testing 26.1

1.7.3. Using the dbTool

The dbTool is used to provision and update configuration values in the database.

The dbTool is installed with OpenText SAST and located in the
<sast_install_directory>/bin directory.

When you invoke the dbTool, you must provide the necessary database connection
properties.

Example

dbTool --com.fortifv.sca.ai.db.url=<ai-db-ur/> --
com.fortifv.sca.ai.db.pron.username=<ai-db-username> --
com.fortify.sca.ai.db.prop.password=<ai-db-password>

Use the dbTool to store property values in the database using the --store=
<property>=<value> argument.

Example

--store="com.fortifv.sca.ai.nrovider=aws" --
store="com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-
20250929-v1:0"

Use the dbTool to store a collection of properties from a properties file using the --
storeFile=<path to .properties file> argument.

Example
--storeFile=/path/to/my.properties

The properties file should have one property on each line using a key=value format.

Example

com.fortifv.sca.ai.provider=aws
com.fortify.sca.ai.model=us.anthropic.claude-sonnet-4-5-20250929-
v1:0

You may provide a base64 encoded AES 256 encryption key to encrypt values of
sensitive properties before they are stored in the database. The encryption key must

This PDF was generated on January 16, 2026 Page 134 of 610

m opentext- Static Application Security Testing 26.1

be provided to sourceanalyzer when scanning files in order to decrypt the
encrypted property values.

You can use the following property values to specify an encryption key or an
encryption key file:

o com.fortify.sca.ai.config.encryptionKey
o com.fortify.sca.ai.config.encryptionKeyFile

Example

com.fortifv.sca.ai.confia.encryptionKey="ZWm2HqvK3Jjrgb12neTWu/pU8
qla/CHQcSBxKa/7qru="

Note

B If you do not specify an encryption key or an encryption key file,
the dbTool will obfuscate sensitive property values to ensure the sensitive
values are not stored in plain text in the database.

Here is an example usage of the dbTool:

Example

dbTool --
com.fortify.sca.ai.db.url=jdbc:postgresql:my.domain.com:5432/sast-
ai-db --com.fortify.sca.ai.db.prop.username=ai-db-
username --com.fortify.sca.ai.db.prop.password=ai-db-
password --store="com.fortify.sca.ai.provider=aws" --
store="com.fortify.sca.ai.model=us.anthropic.claude-
sonnet-4-5-20250929-v1:0" --
storeFile="/path/to/file.properties" --

com. fortify.sca.ai.config.encryptionKey="ZWm2HqvK3Jjrqb
12nelWu/pU8qgIa/CHQcSBxKa/7qru="

This PDF was generated on January 16, 2026 Page 135 of 610

m opentext- Static Application Security Testing 26.1

1.7.4. Sample analysis using Al-powered
SAST

See the relevant language section to understand how to enable source files for Al-
powered SAST.

During the scan phase, if you have configured your LLM properties inside a database,
the basic command-line syntax is as follows:

Example

sourceanalyzer -b <build id> -scan
<database connection properties> <other scan options>

If you configure the database connection properties in
the <SAST_INSTALL_DIR>/Core/config/fortify-sca.properties file, you do not need to
specify the database connection properties during the scan.

Alternatively, you can specify all the LLM properties during the scan and fetch the
credentials using the default credential provider chain or set the relevant credentials
in the fortify-sca.properties file or on the command line.

Providing configuration for connecting to a database is not strictly required to use Al-
powered SAST. Use the following basic command-line syntax when you analyze
using Al-powered SAST without a database:

Example

sourceanalyzer -b <build id> -scan
<AI configuration properties> <other scan options>

Caution

A OpenText does not recommended using Al-powered SAST without a
database as it prevents result caching which is likely to incur additional
costs.

The following example shows the basic command-line syntax to analyze a sample
Erlang source file using Al-powered SAST:

This PDF was generated on January 16, 2026 Page 136 of 610

m opentext- Static Application Security Testing 26.1

Example

sourceanalyzer -b myProject -clean

sourceanalyzer -b myProject <file path>/sample.erl
sourceanalyzer -b myProject -scan -

Dcom. fortify.sca.ai.provider=aws -
Dcom.fortify.sca.ai.model="us.anthropic.claude-sonnet-
4-5-20250929-v1:0" -f my AI results.fpr

This PDF was generated on January 16, 2026 Page 137 of 610

m opentext- Static Application Security Testing 26.1

1.7.5. Al-powered SAST configuration
options

The following sections describe the properties available for configuring Al-powered
SAST. Store a property in the database using the dbTool, set a property in the fortify-
sca.properties file, or specify the property on the command line with the -D option.

LLM request configuration

This PDF was generated on January 16, 2026 Page 138 of 610

m opentext- Static Application Security Testing 26.1

Property Description
com.fortify.sca.ai.provider Required. Specifies the LLM vendor.
Default: null

Supported values: aws

This PDF was generated on January 16, 2026 Page 139 of 610

m opentext- Static Application Security Testing 26.1

Property Description
com.fortify.sca.ai.model Required. Specifies the LLM.
Default: null
For AWS:

Accepts an inference profile ID or infer-
ence profile ARN for a system infer-
ence profile or application inference
profile that uses one of the following
foundation models:

e Claude Sonnet 4.5
(anthropic.claude-sonnet-4-
20250514-v1:0)

o Claude Sonnet 4 (anthropic.claude-
sonnet-4-5-20250929-v1:0)

Supported AWS system inference
profiles:

e Claude Sonnet 4.5
o global.anthropic.claude-
sonnet-4-5-20250929-v1:0
o us.anthropic.claude-sonnet-
4-5-20250929-v1:0
o au.anthropic.claude-sonnet-
4-5-20250929-v1:0
o eu.anthropic.claude-sonnet-
4-5-20250929-v1:0
o jp.anthropic.claude-sonnet-4-
5-20250929-v1:0
e Claude Sonnet 4
o global.anthropic.claude-
sonnet-4-20250514-v1:0
o us.anthropic.claude-sonnet-
4-20250514-v1:0
o apac.anthropic.claude-son-
net-4-20250514-v1:0

This PDF was generated on January 16, 2026 Page 140 of 610

3 opentext"

Property

com.fortify.sca.ai.llm.parallelism

com.fortify.sca.ai.llm.rateLimiter.enable

d

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

o eu.anthropic.claude-sonnet-

4-20250514-v1:0

Note

System inference profiles
must be used in an AWS
region that is supported by
the system inference
profile.

Example

us.anthrooic.claude-
sonnet-4-5-20250929-
v1:0 mav be used in

the us-east-1 reaion but
not in the eu-west-1
region.

The maximum number of concurrent
LLM requests.

Default: 4 x available processors

Specifies whether the LLM request rate
limiter is enabled.

Default: true

Page 141 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.llm.rateLimiter.update = Specifies whether the provided re-

DistributedLimits questsPerMinute and tokensPer-
Minute should update existing limits in
the database.

If set to true, the limits in the database
will be updated. If set to false, the
existing limits will not be updated and
the provided limits will be ignored.

Default: false

OpenText recommends to use the
dbTool to set the distributed rate limits
in the database.

com.fortify.sca.ai.llm.requestsPerMinut = Specifies the maximum number of LLM

e requests allowed per minute. This
property sets the total limit across all
instances of sourceanalyzer con-
nected to the same database.

If there are no database configured,
this property sets the maximum limit for
a single sourceanalyzer instance.

Default: 200

This PDF was generated on January 16, 2026 Page 142 of 610

3 opentext"

Property

com.fortify.sca.ai.llm.tokensPerMinute

com.fortify.sca.ai.llm.maxRequestCoun
t

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the maximum number of LLM
request input and output tokens al-
lowed per minute. This property

sets the total limit across all instances
of sourceanalyzer connected to the
same database.

If there are no database configured,
this property sets the maximum limit for
a single sourceanalyzer instance.

Default: 200,000

The maximum number of LLM requests
that may be made in a single scan.

This property ensures users to avoid
incurring a large bill due to accidentally
scanning a large project. Before
making any LLM requests, the number
of necessary requests is calculated. If
the number of required requests
exceeds the limit, the scan is aborted
without making any LLM requests.

Default: 10,000

Page 143 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.fileChunkSize The maximum number of characters al-
lowed in a request to a LLM. If a file ex-
ceeds this amount, the file will be split
into multiple file chunks.

If the chunk size is changed, it may
cause some cache entries to become
stale if the associated file content
changes due to the chunk size chang-
ing. New LLM requests will be required
for the affected file chunks.

Default: 50,000

Vendor configuration

This PDF was generated on January 16, 2026 Page 144 of 610

3 opentext"

Property

AWS configuration properties

com.fortify.sca.ai.aws.region

com.fortify.sca.ai.aws.profile

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the AWS region in which to
make the LLM request.

Default: null

Alternatively may be provided by the
following:

e Environment variable:
AWS_REGION

o AWS config or credentials file: re-
gion

» Alternate property: aws.region

Specifies which profile in the AWS
config or credentials file to use to
authenticate with AWS.

Default: null

Alternatively may be provided by the
following:

e Environment variable:
AWS_PROFILE
o Alternate property: aws.profile

Page 145 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.aws.accessKeyld Specifies the AWS access key to use
when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.secretAccessKe
y and
com.fortify.sca.ai.aws.sessionToken (i
f you are using short-term credentials).

Default: null

Alternatively may be provided by the
following:

e Environment variable:
AWS_ACCESS_KEY_ID

e AWS config or credentials file:
aws_access_key_id

o Alternate property:
aws.accessKeyld

This PDF was generated on January 16, 2026 Page 146 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.aws.secretAccessKe Specifies the AWS secret access key to
y use when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.secretAccessKe
y and
com.fortify.sca.ai.aws.sessionToken (i
f you are using short-term credentials).

Default: null

Alternatively may be provided by the
following:

e Environment variable:
AWS_SECRET_ACCESS_KEY

e AWS config or credentials file:
aws_secret_access_key

o Alternate property:
aws.secretAccessKey

This is a sensitive property. Its value
will be masked in logs. Users can
choose to obfuscate the value using
pwtool to avoid storing it in plain text
in the properties file or as a command
line argument.

This PDF was generated on January 16, 2026 Page 147 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.aws.sessionToken Specifies the AWS session token to use
when authenticating with AWS.

If set, must also set
com.fortify.sca.ai.aws.accessKeyld
and
com.fortify.sca.ai.aws.secretAccessKe

Y.

Alternatively may be provided by the
following:

e Environment variable:
AWS_SESSION_TOKEN

» AWS config or credentials file:
aws_session_token

o Alternate property:
aws.sessionToken

This is a sensitive property. Its value
will be masked in logs. Users can
choose to obfuscate the value using
pwtool to avoid storing it in plain text
in the properties file or as a command
line argument.

Database configuration

This PDF was generated on January 16, 2026 Page 148 of 610

m opentext- Static Application Security Testing 26.1

Property Description

Database Connection Properties

com.fortify.sca.ai.db.url Specifies the JDBC connection URL of
the database.

Example

idbc:postaresal:mv.domain
.com:5432/sast-ai-db

Required to connect to database for
LLM result caching, centralized config-
uration, distributed rate limiting, and
LLM request usage data.

For more information, see the
PostgreSQL Documentation.

Default: null

com.fortify.sca.ai.db.prop.username Specifies the username to use to con-
nect to the database.

Required to connect to database for
LLM result caching, centralized config-
uration, distributed rate limiting, and
LLM request usage data.

Default: null

This PDF was generated on January 16, 2026 Page 149 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.db.prop.password Specifies the password to use to con-
nect to the database.

This is a sensitive property. Its value
will be masked in logs. Users can
choose to obfuscate the value using
the pwtool to avoid storing it in plain
text in the properties file or as a com-
mand line argument.

Default: null

com.fortify.sca.ai.db.prop.* Any PostgreSQL JDBC connection
properties can be set by prefixing them
with " com.fortify.sca.ai.db.prop. ".

Default: null

For example, set the following proper-
ties to enable authentication using SSL:

com.fortify.ai.db.prop.ssl=true

com.fortify.ai.db.prop.ssimode=verify-
full

com.fortify.ai.db.prop.sslcert=my/dir/p
ostgresql.crt

com.fortify.ai.db.prop.sslkey=my/dir/p
ostgresql.pk8

com.fortify.ai.db.prop.sslrootcert=my/
dir/root.crt

For more information about the avail-
able Postgres JDBC connection prop-
erties, see PostgreSQL Documentation

Database Behavior Properties

This PDF was generated on January 16, 2026 Page 150 of 610

3 opentext"

Property

com.fortify.sca.ai.cache.enabled

com.fortify.sca.ai.cache.read.enabled

com.fortify.sca.ai.cache.write.enabled

com.fortify.sca.ai.cache.missOnNewPr
ompt

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies whether the LLM result cache
should be enabled. If disabled, both
cache reads and writes will be
disabled.

Default: true

The more specific properties
com.fortify.sca.ai.cache.read.enabled
and
com.fortify.sca.ai.cache.write.enable
d take precedence over this property
if set.

Specifies whether reading from the
LLM result cache should be enabled.

Default: true

Specifies whether writing to the LLM
result cache should be enabled.

Default: true

Specifies whether to consider an LLM
result in the cache to be a cache miss if
the LLM prompt used in the cached re-
sult is different from the prompt for the
current request.

Effectively, setting this to true will make
it so that cached results are evicted if
the relevant rule pack is updated.

Default: true

Page 151 of 610

3 opentext"

Property

com.fortify.sca.ai.cache.maxSize

com.fortify.sca.ai.cache.ttl.day

com.fortify.sca.ai.remoteConfig.enable
d

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

The maximum number of LLM results
cached before LRU eviction.

Default: 1,000,000

The number of days after which LLM
results that have not been used will be
evicted from the cache.

Default: 30

Specifies whether configuration prop-
erties may be obtained from the con-
nected database.

Default: true

Page 152 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.config.encryptionKey = The optional base64 encoded AES-256
symmetric encryption key that is used
to encrypt and decrypt values of sensi-
tive properties that are stored in the
database.

The encryption key must be distributed
to all sourceanalyzer instances in or-
der for them to retrieve sensitive con-
figuration from the database. You can
distribute encryption keys using KMS,
OS key store, password manager, and
SO on.

Caution

A If the encryption key is lost,
the configuration values
that were encrypted using
the key will be
unrecoverable.

If no encryption key is provided
through either
com.fortify.sca.ai.config.encryptionKe
y or
com.fortify.sca.ai.config.encryptionKe
yFile , the values of sensitive proper-
ties that are stored in the database will
be obfuscated so they are not stored in
plain text.

This is a sensitive property. Its value
will be masked in logs. Users can
choose to obfuscate the value using
the pwtool to avoid storing it in plain
text in the properties file or as a com-
mand line argument.

Default: null

This PDF was generated on January 16, 2026 Page 153 of 610

m opentext- Static Application Security Testing 26.1

Property Description

com.fortify.sca.ai.config.encryptionKey = The optional path to the file that con-

File tains the base64 encoded AES-256
symmetric encryption key that is used
to encrypt and decrypt values of sensi-
tive properties that are stored in the
database.

The encryption key must be distributed
to all sourceanalyzer instances in or-
der for them to retrieve sensitive con-
figuration from the database. You can
distribute encryption keys using KMS,
OS key store, password manager, and
SO on.

Caution

A WARNING: If the encryption
key is lost, the
configuration values that
were encrypted using the
key will be unrecoverable.

If no encryption key is provided
through either
com.fortify.sca.ai.config.encryptionKe
y or
com.fortify.sca.ai.config.encryptionKe
yFile , the values of sensitive proper-
ties that are stored in the database will
be obfuscated so they at least are not
stored in plain text.

Default: null

com.fortify.sca.ai.usage.enabled Specifies whether writing to the usage
table is enabled.

Default: true

This PDF was generated on January 16, 2026 Page 154 of 610

m opentext- Static Application Security Testing 26.1

PwTool configuration

Property Description

com.fortify.sca.ai.pwtool.encryptionKe The path to the encryption key file gen-

yFile erated by pwtool. Required if the user
provides values for sensitive properties
that were obfuscated using pwtool.

Default: null

This PDF was generated on January 16, 2026 Page 155 of 610

m opentext- Static Application Security Testing 26.1

1.7.6. Rate limiting

LLM providers enforce request rate limits and token rate limits to ensure service
reliability and fair resource allocation. Exceeding these limits can result in throttling.
When a request is throttled, OpenText SAST temporarily reduces the request rate and
retries each throttled request up to a maximum number of attempts. Occasional
throttling should have minimal impact on scan results, but heavy throttling can cause
increased scan times and missing results due to some files not being analyzed.

You can resolve throttling issues in one of the following ways:

* You can submit a request to the LLM provider to increase your request rate limits
and token rate limits for the model you use.

* You can set client-side rate limits to adjust the rate at which OpenText SAST
makes requests to the LLM provider. If you are using a connected database, use
the dbTool to setthe com.fortify.sca.ai.llm.requestsPerMinute and

com.fortify.sca.ai.llm.tokensPerMinute properties to enable distributed rate
limiting across all instances of OpenText SAST that are connected to the
database.

Alternatively, set com.fortify.sca.ai.llm.rateLimiter.updateDistributedLimits to true
(if you are using a connected database) and set the
com.fortify.sca.ai.llm.requestsPerMinute and
com.fortify.sca.ai.llm.tokensPerMinute properties in the fortify-sca.properties
file or on the command line with the -D option.

This PDF was generated on January 16, 2026 Page 156 of 610

m opentext- Static Application Security Testing 26.1

1.7.7. Using the pwtool to encrypt
sensitive values

You can use the pwtool to generate encrypted values for sensitive property values
and use the encrypted values in place of the plain text values. This allows you to
avoid storing sensitive values in plain text in the fortify-sca.properties file or to avoid
passing sensitive values in plain text as command-line arguments.

You can encrypt the following properties using the pwtool:

o com.fortify.sca.ai.db.prop.password
o com.fortify.sca.ai.aws.secretAccessKey
o com.fortify.sca.ai.aws.sessionToken
o com.fortify.sca.ai.config.encryptionKey

To encrypt a sensitive property value:

1. At the command prompt, run the following command:
<tools_install_dir>/bin/pwtool <pwtool_keys_file>

2. When prompted, type the sensitive value and press Enter.

3. The pwtool generates a new key stored in the file on the path specified in step 1
or reuses an existing file on the specified path. The pwtool uses the key to
encrypt the typed sensitive value.

4. Copy the encrypted secret, and paste it as the value for the property in
the fortify-sca.properties file or as a command-line argument.

5. To encrypt more sensitive property values, repeat steps 1through 4 for each
property value you want to encrypt.

6. Set the following property in the fortify-sca.properties file or pass as a
command-line argument:

com.fortify.sca.ai.pwtool.encryptionKeyFile= <pwtool_keys_file>

This PDF was generated on January 16, 2026 Page 157 of 610

3 opentext" Static Application Security Testing 26.1

1.8. Analyzing Java, Kotlin and JSP
projects

This section describes how to translate Java, Kotlin as well as JSP projects, as well as
projects that use a combination of these languages.

OpenText SAST supports analysis of Jakarta EE (Java EE) applications (including JSP
files, configuration files, and deployment descriptors), Java Bytecode, and Java code
with Lombok annotations.

This section contains the following topics:

e Integrating with Gradle

e Integrating with Maven

» Integrating with Bazel

e Integrating with Ant

» Manual Java and Kotlin translation syntax

e Analyzing Kotlin scripts

» Kotlin and Java translation interoperability

» Handling Java warnings

e Analyzing Jakarta EE (Java EE) applications
e Analyzing Java bytecode

e Troubleshooting JSP translation and analysis issues

This PDF was generated on January 16, 2026 Page 158 of 610

3 opentext" Static Application Security Testing 26.1

1.8.1. Integrating with Gradle

OpenText SAST provides translation integration with projects that are built with
Gradle. You can either integrate without modifying your build script or use the
OpenText SAST Gradle plugin, which invokes OpenText SAST using tasks.

This section contains the following topics:

e Using Gradle integration
e Troubleshooting Gradle integration
e Using the Gradle plugin

This PDF was generated on January 16, 2026 Page 159 of 610

m opentext- Static Application Security Testing 26.1

1.8.1.1. Using Gradle integration

You can translate projects that are built with Gradle without any modification of the
build.gradle file. When the build runs, OpenText SAST translates the source files as
they are compiled. Alternatively, you can use the OpenText SAST Gradle Plugin to
perform the analysis from within your Gradle build script (see Using the OpenText
SAST Gradle Plugin).

See Build tools for platforms and languages supported specifically for Gradle
integration. Any files in the project in unsupported languages for Gradle integration
are not translated (with no error reporting). These files are therefore not analyzed,
and any existing potential vulnerabilities can go undetected.

To integrate OpenText SAST into your Gradle build, make sure that the

sourceanalyzer executable is included in the PATH environment variable. Always use
the sourceanalyzer executable from the system PATH for all Gradle commands to
build the project.

Note

If you have multiple OpenText SAST installations, make sure that the
version you want to use for your Gradle projects is defined before all
other OpenText SAST versions included in the PATH environment variable.

Prepend the Gradle command line with the sourceanalyzer command as follows:

sourceanalyzer -b <build id> <sca options> gradle
[<gradle options>] <gradle tasks>

Gradle integration examples

sourceanalyzer -b MyProject gradle clean build
sourceanalyzer -b MyProject gradle --info assemble

If your build file name is different than build.gradle , then include the build file name
with the --build-file option as shown in the following example:

sourceanalyzer -b MyProject gradle --build-file sample.gradle
clean assemble

This PDF was generated on January 16, 2026 Page 160 of 610

m opentext- Static Application Security Testing 26.1

You can also use the Gradle Wrapper (gradlew) as shown in the following example:

sourceanalyzer -b MyProject gradlew [<gradle options>]

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProject -exclude "src\test***" gradlew
build

If your application uses XML or property configuration files, translate these files with
a separate sourceanalyzer command. Use the same build ID that you used for the
project files. The following are examples:

sourceanalyzer -b MyProject <path to xml files>
sourceanalyzer -b MyProject <path to properties files>

After OpenText SAST translates the project with gradle or gradlew, you can then
perform the analysis phase and save the results in an FPR file as shown in the
following example:

sourceanalyzer -b MyProject -scan -f MyResults.fpr

See Also

Using the OpenText SAST Gradle Plugin

This PDF was generated on January 16, 2026 Page 161 of 610

m opentext- Static Application Security Testing 26.1

1.8.1.2. Troubleshooting Gradle integration

If you use configuration caching (--configuration-cache option) in your Gradle build
with OpenText SAST Gradle integration, the build reports the following messages:

Configuration cache problems found in this build.
You also might see a message similar to the following:
FAILURE: Build failed with an exception...

You can safely ignore this message with respect to the OpenText SAST translation
because the project is translated. You can verify that the project is translated using
the -show-files option. For example:

sourceanalyzer -b mybuild -show-files

This PDF was generated on January 16, 2026 Page 162 of 610

m opentext- Static Application Security Testing 26.1

1.8.1.3. Using the Gradle plugin

The OpenText SAST installation includes a Gradle plugin located in

<sast_install_dir>/plugins/gradle . To use the OpenText SAST Gradle Plugin, you
need to first configure the plugin for your Java or Kotlin project and then use the
plugin to analyze your project. The Gradle plugin provides three OpenText SAST tasks
for the analysis: sca.clean, sca.translate, and sca.scan. See Build tools for platforms
and languages supported specifically for OpenText SAST Gradle plugin.

Note

e If you have multiple OpenText SAST installations, make sure that the
version you want to use for your Gradle projects is defined before all
other OpenText SAST versions included in the PATH environment variable.

To configure the OpenText SAST Gradle Plugin:

1. Edit the Gradle settings file to specify the path to the plugin:

Groovy DSL (settings.gradle):

pluginManagement {

repositories {

gradlePluginPortal()

maven {

url = uri("file://<sast plugin path>")
}

}
}

Kotlin DSL (settings.gradle.kts):

pluginManagement {

repositories {

maven(url = uri("file://<sast plugin path>"))
gradlePluginPortal()

}
}

2. Add entries to the build script as shown in the following examples:

This PDF was generated on January 16, 2026 Page 163 of 610

m opentext- Static Application Security Testing 26.1

Groovy DSL (build.gradle):

id 'com.fortify.sca.plugins.gradlebuild' version '25.4'

and

SCAPluginExtension {

buildId "MyProject"”

options ["-encoding"”, "utf-8", "-logfile",
"MyProject.log",

"-debug-verbose"]

}

or the following example entry excludes files from the translation:

SCAPluginExtension {
buildId = "MyProject"

options = ["-encoding", "utf-8", "-logfile",
"MyProject.log",

"-debug-verbose", "-exclude", "src/test/**/*"]
}

Kotlin DSL (build.gradle.kts):

plugins { id ("com.fortify.sca.plugins.gradlebuild") version
"25.4"

}

and

SCAPluginExtension {

buildId = "MyProject"

options = listOf("-encoding", "utf-8", "-logfile",
"MyProject.log",

"-debug-verbose")

}

or the following example entry excludes files from the translation:

This PDF was generated on January 16, 2026 Page 164 of 610

m opentext- Static Application Security Testing 26.1

SCAPluginExtension {
buildId = "MyProject"

options = listOf("-encoding"”, "utf-8", "-logfile",
"MyProject.log",
“-debug-verbose", "-exclude", "src/test/**/*")

}

3. Save and close the Gradle settings and Gradle build files.
Analyze a Java or Kotlin project with following command sequence:

» To remove all existing OpenText SAST temporary files for an existing Java or
Kotlin project build, run the following:

gradlew sca.clean

o To run the translation phase for the configured Java or Kotlin project, run the
following:

gradlew sca.translate

e To analyze the configured Java or Kotlin project, run the following:

gradlew sca.scan

This task runs successfully if OpenText SAST has already translated the project
using the OpenText SAST Gradle Plugin.

Working with Java or Kotlin projects that have
subprojects

If you have a Java or Kotlin multi-project build (with subprojects), then you must
configure the OpenText SAST Gradle plugin using an allprojects block. This is shown
in the following examples.

Groovy DSL (build.gradle)

This PDF was generated on January 16, 2026 Page 165 of 610

3 opentext"

Static Application Security Testing 26.1

allprojects {

apply plugin: "com.fortify.sca.plugins.gradlebuild"
SCAPluginExtension {

buildId = "MyProject"

options = ["-encoding", "utf-8", "-logfile", "MyProject.log",
“-debug-verbose"]

Kotlin DSL (build.gradle.kts):

allprojects {

apply(plugin = "com.fortify.sca.plugins.gradlebuild")
SCAPluginExtension {

buildId = "MyProject"

options = listOf("-encoding", "utf-8", "-logfile",
"MyProject.log",

"-debug-verbose")

See Also

Using Gradle Integration

This PDF was generated on January 16, 2026 Page 166 of 610

3 opentext" Static Application Security Testing 26.1

1.8.2. Integrating with Maven

OpenText SAST includes a Maven plugin that provides a way to add the following
capabilities to your Maven project builds:

o OpenText SAST clean, translate, scan

o OpenText SAST export mobile build session (MBS) for a translated project
e Send translated code to ScanCentral SAST

e Upload results to Application Security

You can use the plugin directly or integrate its functionality into your build process.

This section contains the following topics:

 Installing and updating the Fortify Maven Plugin
e Testing the Fortify Maven Plugin installation
» Using the Fortify Maven Plugin

This PDF was generated on January 16, 2026 Page 167 of 610

m opentext- Static Application Security Testing 26.1

1.8.2.1. Installing and updating the Fortify
Maven Plugin

The Fortify Maven Plugin is located in <sast_install_dir>/plugins/maven . This
directory contains a binary and a source version of the plugin in both zip and tarball
archives. To install the plugin, extract the version (binary or source) that you want to
use, and then follow the instructions in the included README.TXT file. Perform the
installation in the directory where you extracted the archive.

For information about supported versions of Maven, see Build tools.

If you have a previous version of the Fortify Maven Plugin installed, then install the
latest version.

Uninstalling the Fortify Maven Plugin

To uninstall the Fortify Maven Plugin, manually delete all files from the
<maven_local_repo>[repository/com/fortify/ps/maven/plugin directory.

This PDF was generated on January 16, 2026 Page 168 of 610

m opentext- Static Application Security Testing 26.1

1.8.2.2. Testing the Fortify Maven Plugin
installation

After you install the Fortify Maven Plugin, use one of the included sample files to be
sure your installation works properly.

To test the Fortify Maven Plugin using the Eightball sample file:

1. Add the directory that contains the sourceanalyzer executable to the path
environment variable.

For example:

export set PATH=$PATH:/<sast_install_dir>/bin
or

set PATH=%PATH%; <sast_install_dir>/bin

2. Type sourceanalyzer -version to test the path setting.
OpenText SAST displays the version information if the path setting is correct.
3. Go to the sample Eightball directory: <root_dir>/samples/EightBall .

4. Type the following command:

mvn com.fortify.sca.plugins.maven:sca-maven-plugin:
<ver>:clean

where <ver> is the version of the Fortify Maven Plugin you are using. If the
version is not specified, Maven uses the latest version of the Fortify Maven
Plugin installed in the local repository.

Note

To see the version of the Fortify Maven Plugin, open the pom.xml
file that you extracted in <root_dir> in a text editor. The Fortify
Maven Plugin version is specified in the <version> element.

This PDF was generated on January 16, 2026 Page 169 of 610

m opentext- Static Application Security Testing 26.1

5. If the command in step 4 completed successfully, then the Fortify Maven Plugin
is installed correctly. The Fortify Maven Plugin is not installed correctly if you get
the following message:

[ERROR] Error resolving version for plugin
‘com.fortify.sca.plugins.maven:sca-maven-plugin' from the
repositories

Check the Maven local repository and try to install the Fortify Maven Plugin
again.

This PDF was generated on January 16, 2026 Page 170 of 610

m opentext- Static Application Security Testing 26.1

1.8.2.3. Using the Fortify Maven Plugin

There are two ways to perform an analysis on a maven project:

e In an OpenText SAST build integration

In this method, prepend the maven command used to build your project with the
sourceanalyzer command and any OpenText SAST options. To analyze your
files as part of an OpenText SAST build integration:

1. Clean out the previous build:
sourceanalyzer -b MyProject -clean
2. Translate the code:

sourceanalyzer -b MyProject [<sca options>]
[<mvn_command with options>]

Examples:

sourceanalyzer -b MyProject mvn package

sourceanalyzer -b MyProject -exclude "**/Test/*.java"
mvn clean install

See Command-Line Interface for descriptions of available OpenText SAST
options.

3. Run the scan and save the results in an FPR file as shown in the following
example:

sourceanalyzer -b MyProject [<sca scan options>] -scan -
f MyResults.fpr

e As a Maven Plugin

In this method, you perform the analysis tasks as goals with the mvn
command. For example, use the following command to translate source code:

This PDF was generated on January 16, 2026 Page 171 of 610

m opentext- Static Application Security Testing 26.1

mvn com.fortify.sca.plugins.maven:sca-maven-
plugin:25.4.0:translate

For example, use the following command to translate source code and exclude
test files:

mvn -Dfortify.sca.exclude=“**/Test/*.java"
com.fortify.sca.plugins.maven:sca-maven-
plugin:25.4.0:translate

To analyze your code this way, see the documentation included with the Fortify
Maven Plugin. The following table describes where to find the documentation
after you install the Fortify Maven Plugin.

Package type Documentation location
Binary <root_dir>/docs/index.html
Source <root_dir>/sca-maven-

plugin/target/site/index.html

This PDF was generated on January 16, 2026 Page 172 of 610

m opentext- Static Application Security Testing 26.1

1.8.3. Integrating with Bazel

To integrate with Bazel builds, OpenText SAST translates the source files as they are
compiled. Therefore, a prerequisite for Bazel builds is that the Bazel build runs
successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run
sourceanalyzer with the Bazel target you want to build. You can specify other
sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build id> <sca options> bazel build <target>
Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-
APP\src\proj\content.py bazel build //projc:my-python-prj

This PDF was generated on January 16, 2026 Page 173 of 610

m opentext- Static Application Security Testing 26.1

1.8.3.1. Java Bazel integration examples

Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj
Translate target abc in package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc
or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc
Translate all targets in the package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc:all
Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...
Specify a specific JDK version for the translation:

sourceanalyzer -b MyProjectC -jdk 17 bazel build //projc:my-
java-prij

Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-
APP\src\main\java\com\example\HelpContent. java bazel build
//projc:my-java-prij

OpenText SAST Bazel integration does not support multiple targets and related
actions such as excluding targets.

This PDF was generated on January 16, 2026 Page 174 of 610

m opentext- Static Application Security Testing 26.1

1.8.4. Integrating with Ant

You can translate Java source files for projects that use an Ant build file. You can
apply this integration on the command line without modifying the Ant build.xml file.
When the build runs, OpenText SAST intercepts all javac task invocations and
translates the Java source files as they are compiled. Make sure that you pass any
properties to Ant by adding them to the ANT_OPTS environment variable. Do not
include them in the sourceanalyzer command.

Note

You must translate any JSP files, configuration files, or any other non-
Java source files that are part of the application in a separate step.

To use the Ant integration, make sure that the sourceanalyzer executable is in the
PATH environment variable.

Prepend your Ant command-line with the sourceanalyzer command as follows:
sourceanalyzer -b <build id> [<sca options>] ant [<ant options>]
For example, to translate a Java project and exclude a file from the translation:

sourceanalyzer -b MyProjectA -logfile MyProjectA.log -exclude
src/module-info.java ant

This PDF was generated on January 16, 2026 Page 175 of 610

m opentext- Static Application Security Testing 26.1

1.8.5. Manual Java and Kotlin translation
syhtax

To translate Java or Kotlin code manually, include all source file on the command line
and provide all of the dependencies via .jar files, .class files, or source files. Failing to
provide dependencies may lead to suboptimal scan results.

Kotlin to Java interoperability does not support Kotlin files provided by the -
sourcepath option. For more information about the —sourcepath option, see Java
Command-Line Options.

The basic command-line syntax to translate Java or Kotlin code is shown in the
following example:

sourceanalyzer -b <build id> -cp <classpath>
[<translation options>] <files> | <file specifiers>

where:

o <translation_options> are options passed to the compiler.

e -Cp <classpath> specifies the class path to use for resolving Java and Kotlin
symbols.

Include all JAR dependencies normally used to build the project. Separate
multiple paths with semicolons (Windows) or colons (non-Windows).

Similar to javac, OpenText SAST loads classes in the order they appear in the
class path. If there are multiple classes with the same name in the list, OpenText
SAST uses the first loaded class. In the following example, if both A.jar and
B.jar include a class called MyData.class , OpenText SAST uses the
MyData.class from A.jar .

sourceanalyzer -cp A.jar:B.jar myfile.java

OpenText strongly recommends that you avoid using duplicate classes with the
-Cp option.

OpenText SAST loads JAR files in the following order:
1. From the -cp option

2. From jre/lib

This PDF was generated on January 16, 2026 Page 176 of 610

m opentext- Static Application Security Testing 26.1

3. From <sast_install_dir>/Core/default_jars

This enables you to override a library class by including the similarly-named
class in a JAR specified with the -cp option.

For descriptions of all the available Java-specific command-line options, see
"Java/J2EE Command-Line Options".

With Java code, OpenText SAST can additionally emulate the compiler to help
integrate more easily into custom build scripts.

To have OpenText SAST emulate the compiler, type:

sourceanalyzer -b <build id> javac [<translation options>]

This PDF was generated on January 16, 2026 Page 177 of 610

m opentext- Static Application Security Testing 26.1

1.8.5.1. Java, Kotlin and JSP command-
line options

The following table describes the Java command-line options (for Java SE and
Jakarta EE).

This PDF was generated on January 16, 2026 Page 178 of 610

3 opentext"

Java, Kotlin or Jakarta EE option

-appserver weblogic | websphere

-appserver-home <dir>

-appserver-version <version>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the application server to
process JSP files.

Equivalent property name:
com.fortify.sca.AppServer

Specifies the application server's
home.

o For Oracle® WebLogic®, this is
the path to the directory that
contains the server/lib directory.

o For IBM® WebSphere®, this is the
path to the directory that contains
the JspBatchCompiler script.

Equivalent property name:
com.fortify.sca.AppServerHome

Specifies the version of the application
server.

Equivalent property nhame:
com.fortify.sca.AppServerVersion

Page 179 of 610

m opentext- Static Application Security Testing 26.1

Java, Kotlin or Jakarta EE option Description
-cp <paths> | Specifies the class path used to
-classpath <paths> resolve Java and Kotlin dependencies.

The format is the same as javac: a
semicolon- or colon-separated list of
directories. You can use OpenText
SAST file specifiers as shown in the
following example:

_Cp
"build/classes:lib/*.jar"

For information about file specifiers,
see Specifying files and directories.

Equivalent property nhame:
com.fortify.sca.JavaClasspath

-extdirs <dirs> Similar to the javac extdirs option,
accepts a semicolon- or colon-
separated list of directories. Any
JAR files found in these directories are
included implicitly on the class path.

Equivalent property name:
com.fortify.sca.JavaExtdirs

-java-build-dir <dirs> Specifies one or more directories that
contain compiled Java sources.

This PDF was generated on January 16, 2026 Page 180 of 610

m opentext- Static Application Security Testing 26.1

Java, Kotlin or Jakarta EE option Description
-source <version> | Indicates the Java™ Development Kit
-jdk <version> (JDK) version for which the Java or

Kotlin code is written. For supported
versions, see Supported languages.
The default is version 11.

Equivalent property name:
com.fortify.sca.JdkVersion

-custom-jdk-dir .)]
Specifies a directory that contains a

JDK. Use this option to specify a
version that is not included in the
OpenText SAST installation

(<sast_install_dir>/Core/bootcp/). For
supported versions, see Supported
languages.

Equivalent property name:
com.fortify.sca.CustomJdkDir

-show-unresolved-symbols])
Displays any unresolved types, fields,

and functions referenced in translated
Java source files at the end of the
translation. It lists only field and
function references for which the
receiver type is a resolved Java type.
Displays each class, field, and function
with the source information of the first
translated occurrence in the code. This
information is also written in the log
file.

Equivalent property name:
com.fortify.sca.ShowUnresolvedSymb
ols

This PDF was generated on January 16, 2026 Page 181 of 610

m opentext- Static Application Security Testing 26.1

Java, Kotlin or Jakarta EE option Description

-sourcepath <dirs> Specifies a semicolon- or colon-
separated list of directories that
contain source code that is not
included in the scan but is used for
name resolution. The source path is
similar to class path, except it uses
source files instead of class files for
resolution. Only source files that are
referenced by the target file list are
translated.

Equivalent property name:
com.fortify.sca.JavaSourcePath

-jvm-default <mode> .)
Specifies the generation of

the Defaultimpls class for methods
with bodies in Kotlin interfaces. The
valid values for <mode> are:

o disable —Specifies to generate
the Defaultimpls class for each
interface that contains methods
with bodies.

e all —Specifies to generate
the Defaultimpls class if an
interface is annotated
with @JvmDefaultWithCompatibil

ity .

« all-compatibility —Specifies to
generate the Defaultimpls class
unless an interface is annotated
with @JvmbDefaultWithoutCompa
tibility .

Equivalent property name:
com.fortify.sca.KotlindvmDefault

This PDF was generated on January 16, 2026 Page 182 of 610

m opentext- Static Application Security Testing 26.1

Java and Kotlin Properties

This PDF was generated on January 16, 2026 Page 183 of 610

m opentext- Static Application Security Testing 26.1

1.8.5.2. Java command-line examples

To translate a single file named MyServlet.java with javaee.jar as the class path,
type:

sourceanalyzer -b MyServlet -cp lib/javaee.jar MyServlet.java

To translate all .java files in the src directory using all JAR files in the lib directory
as a class path, type:

sourceanalyzer -b MyProject -cp "lib/*.jar" "src/**/*.java"
To translate and compile the MyCode.java file with the javac compiler, type:

sourceanalyzer -b MyProject javac -classpath libs.jar
MyCode. java

This PDF was generated on January 16, 2026 Page 184 of 610

m opentext- Static Application Security Testing 26.1

1.8.5.3. Kotlin command-line examples

To translate a single file named MyKotlin.kt with A.jar as the class path, type:

sourceanalyzer -b MyProject -cp lib/A.jar MyKotlin.kt

To translate all .kt files inthe src directory using all JAR files in the lib directory as
a class path, type:

sourceanalyzer -b MyProject -cp "lib/**/*.jar" "src/**/* kt"
To translate a gradle project using gradlew, type:
sourceanalyzer -b MyProject gradlew clean assemble

To translate all files in the src directory using Java dependencies from src/java and
all JAR files in the lib directory and subdirectories as a class path, type:

sourceanalyzer —b MyProject —cp "lib/**/*.jar" -sourcepath
“src/java" "src"

This PDF was generated on January 16, 2026 Page 185 of 610

m opentext- Static Application Security Testing 26.1

1.8.6. Analyzing Kotlin scripts

OpenText SAST supports translation of Kotlin scripts excluding experimental script
customization. Script customization includes adding external properties, providing
static or dynamic dependencies, and so on. Script definitions (templates) are used to
create custom scripts and the template is applied to the script based on the *kts
extension. OpenText SAST translates *kts files but does not apply these templates.

This PDF was generated on January 16, 2026 Page 186 of 610

m opentext- Static Application Security Testing 26.1

1.8.7. Kotlin and Java translation
interoperability

If your project contains Kotlin code that refers to Java code, you can provide Java
files to the translator the same way as Kotlin files that refers to another Kotlin file. You
can provide them as part of the translated project source or as —sourcepath
parameters.

If your project contains Java code that refers to Kotlin code, make sure that the Java
and Kotlin code are translated in the same OpenText SAST instance so that the Java
references to Kotlin elements are resolved correctly. Kotlin to Java interoperability
does not support Kotlin files provided by the -sourcepath option. For more
information about the —sourcepath option, see Java, Kotlin and JSP command-line
options.

This PDF was generated on January 16, 2026 Page 187 of 610

m opentext- Static Application Security Testing 26.1

1.8.8. Handling Java warnings

To see all warnings that were generated during translation, type the following
command before you start the scan phase:

sourceanalyzer -b <build id> -show-build-warnings

Java translation warnings

You might see the following warnings in the Java code translation.

This PDF was generated on January 16, 2026 Page 188 of 610

m opentext- Static Application Security Testing 26.1

Warning Resolution
Unable to resolve type... These warnings are typically caused by
Unable to resolve missing resources. For example, some
function... of the .jar and .class files required to
Unable to resolve field... build the application might not have

Unable to locate import...

been specified.
Unable to resolve symbol...

To resolve these warnings, make sure
that you include all the required files
that your application uses.

Multiple definitions found This warning is typically caused by
for class... duplicate classes in the Java files.

To resolve these warnings, make sure
that the source files displayed in the
warning are not duplicates of the same
file included several times in the
sources to translate (for example if it
contains two versions of the same
project). If a duplicate exists, remove
one of them from the files to translate.
Then OpenText SAST can determine
which version of the class to use.

This warning can also indicate that
classes are missing. To resolve this,
make sure to add all required JAR files
to the classpath.

This PDF was generated on January 16, 2026 Page 189 of 610

3 opentext" Static Application Security Testing 26.1

1.8.9. Analyzing Jakarta EE (Java EE)
applications

To translate Jakarta EE applications, OpenText SAST processes Java source files and
Jakarta EE components such as JSP files, deployment descriptors, and configuration
files. While you can process all the pertinent files in a Jakarta EE application in one
step, your project might require that you break the procedure into its components for
integration in a build process or to meet the needs of various stakeholders in your
organization.

This section contains the following topics:

e Translating Java files
» Translating JSP projects, configuration files, and deployment descriptors
« Jakarta EE (Java EE) translation warnings

This PDF was generated on January 16, 2026 Page 190 of 610

m opentext- Static Application Security Testing 26.1

1.8.9.1. Translating Java files

To translate Jakarta EE applications, use the same procedure used to translate Java
files. For examples, see "Java Command-Line Examples".

This PDF was generated on January 16, 2026 Page 191 of 610

m opentext- Static Application Security Testing 26.1

1.8.9.2. Translating JSP projects,
configuration files, and deployment
descriptors

In addition to translating the Java files in your Jakarta EE (Java EE) application, you
might also need to translate JSP files, configuration files, and deployment descriptors.
Your JSP files must be part of a Web Application Archive (WAR). If your source
directory is already organized in a WAR file format, you can translate the JSP files
directly from the source directory. If not, you might need to deploy your application
and translate the JSP files from the deployment directory.

For example:
sourceanalyzer -b MyJavaApp "/**/*.jsp" "/**/*.xml"

where /[**[*jsp refers to the location of your JSP project files and /**/*xml refers to
the location of your configuration and deployment descriptor files.

This PDF was generated on January 16, 2026 Page 192 of 610

m opentext- Static Application Security Testing 26.1

1.8.9.3. Jakarta EE (Java EE) translation
warnings

You might see the following warning in the translation of Jakarta EE applications:

Could not locate the root (WEB-INF) of the web application.
Please build your web application and try again. Failed to parse
the following jsp files:

<list of jsp files>

This warning indicates that your web application is not deployed in the standard WAR
directory format or does not contain the full set of required libraries. To resolve the
warning, make sure that your web application is in an exploded WAR directory format
with the correct WEB-INF/lib and WEB-INF/classes directories that contain all the
Jjar and .class files required for your application. Also verify that you have all the
TLD files for all your tags and the corresponding JAR files with their tag
implementations.

This PDF was generated on January 16, 2026 Page 193 of 610

m opentext- Static Application Security Testing 26.1

1.8.10. Analyzing Java bytecode

OpenText recommends that you do not translate Java bytecode and JSP/Java code in
the same call to sourceanalyzer . Use multiple invocations of sourceanalyzer with
the same build ID to translate a project that contains both bytecode and

JSP/Java code.

To translate bytecode:

1. Add the following properties to the fortify-sca.properties file (or include these
properties on the command line using the -D option):

com.fortify.sca.fileextensions.class=BYTECODE

com.fortify.sca.fileextensions.jar=ARCHIVE
This specifies how OpenText SAST processes .class and .jar files.
2. Do one of the following:

o Request that OpenText SAST decompile the bytecode classes to regular
Java files for inclusion in the translation.

Add the following property to the fortify-sca.properties file:
com. fortify.sca.DecompileBytecode=true

or include this property on the command line for the translation phase with
the -D option:

sourceanalyzer -b MyProject -
Dcom. fortify.sca.DecompileBytecode=true -cp "lib/*.jar"
"“src/**/*.class"

o Request that OpenText SAST translate bytecode without decompilation.

For best results, OpenText recommends that the bytecode be compiled
with full debug information (javac -g).

Include bytecode in the translation phase by specifying the Java bytecode
files that you want to translate. For best performance, specify only the .jar
or .class files that require scanning. In the following example, the .class
files are translated:

This PDF was generated on January 16, 2026 Page 194 of 610

m opentext- Static Application Security Testing 26.1

sourceanalyzer -b MyProject -cp "lib/*.jar"
“src/**/*.class"

This PDF was generated on January 16, 2026 Page 195 of 610

m opentext- Static Application Security Testing 26.1

1.8.11. Troubleshooting JSP translation
and analysis issues

The following sections provide troubleshooting information for JSP analysis.

Unable to translate some JSPs

OpenText SAST uses either the built-in compiler or your specific application server
JSP compiler to translate JSP files into Java files for analysis. If the JSP parser
encounters problems when OpenText SAST converts JSP files to Java files, you will
see a message similar to the following:

Failed to translate the following jsps into analysis model.
Please see the log file for any errors from the jsp parser and
the user manual for hints on fixing those

<list of jsp files>

This typically happens for one or more of the following reasons:

e The web application is not laid out in a proper deployable WAR directory format
o Some JAR files or classes required for the application are missing
« Some tag libraries or their definitions (TLD) for the application are missing

To obtain more information about the problem, perform the following steps:
1. Open the OpenText SAST log file in an editor.

2. Search for the following strings:

o Jsp parser stdout:
o Jsp parser stderr:

The JSP parser generates these errors. Resolve the errors and rerun OpenText SAST.

For more information about how to analyze Jakarta EE applications, see Translating
Jakarta EE (Java EE) applications.

Increased issues count in JSP-related categories

If the analysis results contain a considerable increase in the number of vulnerabilities
in JSP-related categories such as cross-site scripting compared with earlier OpenText
SAST versions, you can specify the -legacy-jsp-dataflow option in the analysis

This PDF was generated on January 16, 2026 Page 196 of 610

m opentext- Static Application Security Testing 26.1

phase (with the -scan option). This option enables additional filtering on JSP-related
dataflow to reduce the number of spurious false positives detected.

The equivalent property for this option that you can specify in the fortify-
sca.properties file is com.fortify.sca.jsp.LegacyDataflow .

This PDF was generated on January 16, 2026 Page 197 of 610

3 opentext" Static Application Security Testing 26.1

1.9. Analyzing Android projects

This section describes how to translate Java source code for Android applications.
You can use OpenText SAST to scan the code with Gradle from either:

e Your operating system's command line
e A terminal window running in Android Studio

The way you use Gradle is the same for either method.

Note

You can also scan Android code directly from Android Studio with the
Fortify Analysis Plugin for IntelliJ IDEA and Android Studio. For more
information, see the OpenText™ Fortify Analysis Plugin for IntelliJ
IDEA and Android Studio User Guide.

This section contains the following topics:

» Android project translation prerequisites
e Android code analysis command-line syntax
» Filtering issues detected in Android layout files

This PDF was generated on January 16, 2026 Page 198 of 610

m opentext- Static Application Security Testing 26.1

1.9.1. Android project translation
prerequisites

The following are the prerequisites for translating Android projects:

e Android Studio and the relevant Android SDKs are installed on the system where
you will run the scans

e Your Android project uses Gradle for builds.

If you have an older project that does not use Gradle, you must add Gradle
support to the associated Android Studio project

Use the same version of Gradle that is provided with the version of Android
Studio that you use to create your Android project

o Make sure you have available all dependencies that are required to build the
Android code in the application's project

e To translate your Android code from a command window that is not displayed
within Android Studio, make sure that Gradle Wrapper (gradlew) is defined on
the system path

This PDF was generated on January 16, 2026 Page 199 of 610

m opentext- Static Application Security Testing 26.1

1.9.2. Android code analysis command-
line syntax

Use gradlew to scan Android projects, which is similar to using Gradle except that you
use the Gradle Wrapper. For information about how to translate your Android project
using the Gradle Wrapper, see Gradle Integration.

This PDF was generated on January 16, 2026 Page 200 of 610

m opentext- Static Application Security Testing 26.1

1.9.3. Filtering issues detected in Android
layout files

If your Android project contains layout files (used to design the user interface), your
project files might include R.java source files that are automatically generated by
Android Studio. When you scan the project, OpenText SAST can detect issues
associated with these layout files.

OpenText recommends that Issues reported in any layout file be included in your
standard audit so you can carefully determine if any of them are false positives. After
you identify issues in layout files that you are not interested in, you can filter them out
as described in Optimizing results. You can filter out the issues based on the Instance
ID.

This PDF was generated on January 16, 2026 Page 201 of 610

m opentext- Static Application Security Testing 26.1

1.10. Analyzing Groovy code

This section describes how to analyze Groovy projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

e Groovy analysis prerequisites
o Groovy translation syntax

This PDF was generated on January 16, 2026 Page 202 of 610

m opentext- Static Application Security Testing 26.1

1.10.1. Groovy analysis prerequisites

Currently, Groovy code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Groovy code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 203 of 610

m opentext- Static Application Security Testing 26.1

1.10.2. Groovy translation syntax

To include Groovy code for analysis using Al-powered SAST, include all source files
that you want to analyze.

Use the following basic command-line syntax to analyze Groovy code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.groovy"

Important

Supported file extensions for the Groovy source files are: .groovy ,
.gvy, .gy,.gsh.

This PDF was generated on January 16, 2026 Page 204 of 610

m opentext- Static Application Security Testing 26.1

1.11. Analyzing Scala code

Translating Scala code requires the following:

e The Akka compiler plugin
You can download this plugin from the Maven Central Repository.
e An Akka (formerly Lightbend) license file

This license file is included with the OpenText SAST installation in the
<sast_install_dir>/plugins/lightbend directory

For instructions on how set up the license and translate Scala code, see the Akka
documentation Fortify SCA for Scala.

Important

If your project contains source code other than Scala, you must translate
the Scala code using the Scala Fortify compiler plugin, and then translate
other source code with sourceanalyzer using the same build ID before
you run the analysis phase.

This PDF was generated on January 16, 2026 Page 205 of 610

https://developer.lightbend.com/docs/fortify/current

3 opentext" Static Application Security Testing 26.1

1.12. Analyzing Visual Studio projects

OpenText SAST provides a build integration to support translation of the following
Visual Studio project types:

e C/C++ projects
o C# projects that target .NET Framework and .NET Core
o ASP.NET applications that target ASP.NET framework and ASP.NET Core

e Xamarin applications that target Android™ and iOS platforms

For a list of supported versions of relevant programming languages and frameworks,
as well as Visual Studio and MSBuild versions, see Supported languages and
Supported build tools.

This section contains the following topics:

Visual Studio project translation prerequisites

Visual Studio Project command-line syntax

Handling special cases for translating Visual Studio projects
Alternative ways to translate Visual Studio projects

This PDF was generated on January 16, 2026 Page 206 of 610

m opentext- Static Application Security Testing 26.1

1.12.1. Visual Studio project translation
prerequisites

OpenText recommends that each project you translate is complete and that you
perform the translation in an environment where you can build it without errors. For a
list of software environment requirements, see Software requirements. A complete
project contains the following:

o All necessary source code files (C/C++, C#, or VB.NET).
o All required reference libraries.

This includes those from relevant frameworks, NuGet packages, and third-party
libraries.

e For C/C++ projects, include all necessary header files that do not belong to the
Visual Studio or MSBuild installation.

o For ASP.NET and ASP.NET Core projects, include all the necessary ASP.NET
page files.

The supported ASP.NET page types are ASAX, ASCX, ASHX, ASMX, ASPX,
AXML, BAML, CSHTML, Master, RAZOR, VBHTML, and XAML.

This PDF was generated on January 16, 2026 Page 207 of 610

m opentext- Static Application Security Testing 26.1

112.2. Visual Studio Project command-
line syntax

The basic syntax to translate a Visual Studio solution or project is to specify the
corresponding build option for your project as part of the OpenText SAST translation
command. This starts a build integration that analyzes your solution and project files
and automatically executes the appropriate translation steps.

Important

To ensure that the build integration correctly pulls in all of the appropriate
project dependencies and resources, you must run the OpenText SAST
command from a command prompt with access to your build environment
configuration. OpenText strongly recommends you run this command
from the Developer Command Prompt for Visual Studio to ensure an
optimal environment for the translation.

In the following examples, OpenText SAST translates all the projects contained in the
Visual Studio solution Sample.sIn . You can also translate one or more specific
projects by providing a semicolon-separated list of projects.

By default, test projects are excluded from the translation. Projects in your solution
that reference NUnit, xunit, or MSTest are considered a test project. To include test
projects in the translation, add the MSBuild option
/p:ScaForceTranslateTestProjects=True to your sourceanalyzer command.

e For a .NET 6.0 or later solution on Windows or Linux, use the following
commands to translate the solution:

1. Optionally, run the following command to remove any intermediate files
from previous project builds:

dotnet clean Sample.sln

2. Optionally, run the following command to ensure that all required reference
libraries are downloaded and installed in the project. Run this command
from the top-level folder of the project:

dotnet restore Sample.sln

This PDF was generated on January 16, 2026 Page 208 of 610

m opentext- Static Application Security Testing 26.1

3. Run one of the following OpenText SAST commands depending on how
your project build is implemented. You can include any additional build
parameters in this command:

sourceanalyzer —b MyProject dotnet msbuild Sample.sln

or

sourceanalyzer —b MyProject dotnet build Sample.sln

e ForaC, C++, and .NET Framework solution (4.8.x or earlier) on Windows, use
the following command to translate the solution:

sourceanalyzer —b MyProject msbuild /t:rebuild
[<msbuild options>] Sample.sln

Note

If you run OpenText SAST from a Windows Command Prompt
instead of the Visual Studio Developer Command Prompt, you must
set up the environment and make sure the path to the MSBuild
executable required to build your project is included in the PATH
environment variable.

After the translation is complete, perform the analysis phase and save the results in
an FPR file as shown in the following example:

sourceanalyzer —b MyProject -scan -f MyResults.fpr

This PDF was generated on January 16, 2026 Page 209 of 610

3 opentext"

1.12.3. Handling special cases for
translating Visual Studio projects

This section contains the following topics:

Running translation from a script

Translating plain .NET and ASP.NET projects
Translating C/C++ and Xamarin projects

Translating projects with settings containing spaces
Translating a single project from a Visual Studio solution
Analyzing projects that build multiple executable files

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Page 210 of 610

m opentext- Static Application Security Testing 26.1

1.12.3.1. Running translation from a script

To perform the translation in a non-interactive mode such as with a script, establish
an optimal environment for translation by executing the following command before
you run the OpenText SAST translation:

cmd.exe /k <vs install dir>/Common7/Tools/VSDevCmd.bat

where <vs_install_dir> is the directory where you installed Visual Studio.

This PDF was generated on January 16, 2026 Page 211 of 610

m opentext- Static Application Security Testing 26.1

112.3.2. Translating plain .NET and
ASP.NET projects

You can translate plain .NET and ASP.NET projects from the Windows Command
Prompt as well as from a Visual Studio environment. When you translate from the
Windows Command Prompt, make sure the path to the MSBuild executable required
to build your project is included in the PATH environment variable.

This PDF was generated on January 16, 2026 Page 212 of 610

m opentext- Static Application Security Testing 26.1

1.12.3.3. Translating C/C++ and Xamarin
projects

You must translate C/C++ and Xamarin projects either from a Developer Command
Prompt for Visual Studio or from the Fortify Extension for Visual Studio.

Note

For Xamarin projects, there is no need to use a custom rule for the
Xamarin.Android API if a rule for the corresponding native Android API
exists in the Fortify Secure Coding Rulepacks. Doing so can cause
duplicate issues to be reported.

This PDF was generated on January 16, 2026 Page 213 of 610

m opentext- Static Application Security Testing 26.1

112.3.4. Translating projects with settings
containing spaces

If your project is built with a configuration or other settings file that contains spaces,
make sure to enclose the setting values in quotes. For example, to translate a Visual
Studio solution Sample.sin that is built with configuration My Configuration , use the
following command:

sourceanalyzer —b MySampleProj msbuild /t:rebuild
/p:Configuration="My Configuration" Sample.sln

This PDF was generated on January 16, 2026 Page 214 of 610

m opentext- Static Application Security Testing 26.1

112.3.5. Translating a single project from
a Visual Studio solution

If your Visual Studio solution contains multiple projects, you have the option to
translate a single project instead of the entire solution. Project files have a file name
extension that ends with proj such as .vcxproj and .csproj . To translate a single
project, specify the project file instead of the solution as the parameter for the
MSBuild command.

The following example translates the Sample.vcxproj project file:

sourceanalyzer —b MySampleProj msbuild /t:rebuild Sample.vcxproj

This PDF was generated on January 16, 2026 Page 215 of 610

m opentext- Static Application Security Testing 26.1

1.12.3.6. Analyzing projects that build
multiple executable files

If your Visual Studio or MSBuild project builds multiple executable files (such as files
with the file name extension *.exe), OpenText strongly recommends that you run the
analysis phase separately for each executable file to avoid false positive issues in the
analysis results. To do this, use the —binary-name option when you run the analysis
phase and specify the executable file name or .NET assembly name as the parameter.

The following example shows how to translate and analyze a Visual Studio solution
Sample.sin that consists of two projects, Samplel (a C++ project with no associated
.NET assembly name) and Sample2 (a .NET project with .NET assembly name
Sample2). Each project builds a separate executable file, Samplel.exe and
Sample2.exe , respectively. The analysis results are saved in Samplel.fpr and
Sample2.fpr files.

sourceanalyzer -b MySampleProj msbuild /t:rebuild Sample.sln
sourceanalyzer -b MySampleProj -scan -binary-name Samplel.exe -f

Samplel.fpr
sourceanalyzer -b MySampleProj -scan -binary-name Sample2.exe -f

Sample2.fpr

For more information about the -binary-name option, see Analysis Options.

This PDF was generated on January 16, 2026 Page 216 of 610

m opentext- Static Application Security Testing 26.1

112.4. Alternative ways to translate Visual
Studio projects

This section describes alternative methods of translating Visual Studio projects.

This section contains the following topics:

» Alternative translation options for Visual Studio solutions
e Translating without explicitly running OpenText SAST

This PDF was generated on January 16, 2026 Page 217 of 610

m opentext- Static Application Security Testing 26.1

112.4.1. Alternative translation options for
Visual Studio solutions

The following are two alternative ways of translation available only for Visual Studio
solutions:

e Use the Fortify Extension for Visual Studio

The Fortify Extension for Visual Studio runs the translation and analysis (scan)
phases together in one step.

e Append a devenv command to the OpenText SAST command

The following command translates the Visual Studio solution Sample.sin :
sourceanalyzer —b MySampleProj devenv Sample.sln /rebuild

Note that OpenText SAST converts a devenv invocation to the equivalent
MSBuild invocation, therefore in this case, the solution with this command is built
by MSBuild instead of the devenv tool.

This PDF was generated on January 16, 2026 Page 218 of 610

m opentext- Static Application Security Testing 26.1

112.4.2. Translating without explicitly
running OpenText SAST

You have the option to translate your Visual Studio project without invoking OpenText
SAST directly. This requires the Fortify.targets file, which is located in
<sast_install_dir>\Core\private-bin\sca\MSBuildPlugin in the DotNet and
Framework directory. You can specify the file using an absolute or relative path in
the build command line that builds your project. Use the path with the Dotnet or
Framework directory depending on the build command you are using: dotnet.exe
or MSBuild.exe respectively. For example:

dotnet.exe msbuild /t:rebuild
/p:CustomAfterMicrosoftCommonTargets=

<sast install dir>\Core\private-
bin\sca\MSBuildPlugin\Dotnet\Fortify.targets Sample.sln

or

msbuild.exe /t:rebuild
/p:CustomAfterMicrosoftCommonTargets=

<sast install dir>\Core\private-
bin\sca\MSBuildPlugin\Framework\Fortify.targets Sample.sln

There are several environment variables that you can set to configure the translation
of your project. Most of them have default values, which OpenText SAST uses if the
variable is not set. These variables are listed in the following table.

This PDF was generated on January 16, 2026 Page 219 of 610

3 opentext"

Environment variable

FORTIFY_MSBUILD_BUIL
DID

FORTIFY_MSBUILD_DEB
uG

FORTIFY_MSBUILD_DEB
UG_VERBOSE

FORTIFY_MSBUILD_ME
M

This PDF was generated on January 16, 2026

Description

Specifies the OpenText
SAST build ID for
translation. Make sure
that you set this value.

This is equivalent to the
OpenText SAST -b
option.

Enables debug mode.
This is equivalent to the
OpenText SAST —-debug
option.

Enables verbose debug
mode. This is equivalent
to the OpenText SAST -
debug-verbose option.
Takes precedence over
FORTIFY_MSBUILD_DEB
UG variable if both are
set to true.

Specifies the memory
requirements for
translation in the form of
the JVM -Xmx option.
For example, -Xmx2G .

Static Application Security Testing 26.1

Default value

None

False

False

Automatic allocation
based on physical
memory available on the
system

Page 220 of 610

m opentext- Static Application Security Testing 26.1

Environment variable Description Default value
FORTIFY_MSBUILD_SCA Specifies the location %LOCALAPPDATA%/Fo
LOG (absolute path) of the rtify/

OpenText SAST log file. sca/log/sca.log

This is equivalent to the
OpenText SAST -lodfile
option.

This PDF was generated on January 16, 2026 Page 221 of 610

3 opentext" Static Application Security Testing 26.1

1.13. Analyzing JavaScript and TypeScript
code

You can analyze JavaScript projects that contain JavaScript, TypeScript, JSX, and
TSX source files, as well as JavaScript embedded in HTML files.

Some JavaScript frameworks are transpiled (source-to-source compilation) to plain
JavaScript, which is generated code. Use the -exclude command-line option to
exclude this type of code.

When you translate JavaScript and TypeScript code, make sure that you specify all
source files together in one invocation. OpenText SAST does not support adding new
files to the file list associated with the build ID on subsequent invocations.

OpenText SAST does not translate minified JavaScript (*xmin.js).

Note

B There are some types of minified JavaScript files that OpenText SAST
cannot automatically detect for exclusion from the translation. Use the -
exclude command-line option to exclude these files directly.

This section contains the following topics:

o Translating pure JavaScript projects

e Excluding dependencies

e Excluding NPM Dependencies

o NPM dependencies

» Translating JavaScript projects with HTML files

e Including external JavaScript or HTML in the translation (deprecated)

This PDF was generated on January 16, 2026 Page 222 of 610

m opentext- Static Application Security Testing 26.1

1.13.1. Translating pure JavaScript
projects

The basic command-line syntax to translate JavaScript is:
sourceanalyzer —b <build id> <js file or dir>

where <js_file_or_dir> is either the name of the JavaScript file to be translated or a
directory that contains multiple JavaScript files. You can also translate multiple files
by specifying *js forthe <js_file_or_dir> .

This PDF was generated on January 16, 2026 Page 223 of 610

m opentext- Static Application Security Testing 26.1

1.13.2. Excluding dependencies

You can avoid translating specific dependencies by adding them to the appropriate
property setting in the fortify-sca.properties file. Files specified in the following
properties are not translated:

o com.fortify.sca.skip.libraries.ES6
o com.fortify.sca.skip.libraries.jQuery
o com.fortify.sca.skip.libraries.javascript

o com.fortify.sca.skip.libraries.typescript

Each property specifies a list of comma- or colon-separated file names (without path
information).

The files specified in these properties apply to both local files and files on the
internet. Suppose, for example, that the JavaScript code includes the following local
file reference:

<script src="js/jquery-ui.js" type="text/javascript"
charset="utf-8"></script>

By default, the com.fortify.sca.skip.libraries.jQuery property in the fortify-
sca.properties file includes jquery-us.js , and therefore OpenText SAST does not
translate the file shown in the previous example.

You can use regular expressions for the file names. Note that OpenText SAST
automatically inserts the regular expression '(-?\d+\.\d+\.\d+)?' before .min.js or
.js for each file name included in the com.fortify.sca.skip.libraries.jQuery property
value.

Note

e You can also exclude local files or entire directories with the -exclude
command-line option. For more information about this option, see
Translation Options.

To provide a thorough analysis, dependent files are included in the translation even if
the dependency is in a language that is disabled with the -disable-language option.
For more information about the option to disable languages, see Translation Options).

This PDF was generated on January 16, 2026 Page 224 of 610

m opentext- Static Application Security Testing 26.1

1.13.3. Excluding NPM Dependencies

By default, OpenText SAST translates only the NPM dependencies that are imported
in the code. You can change this behavior with the following two properties:

e The com.fortify.sca.follow.imports property directs OpenText SAST to resolve
all imported files and include them in the translation.

This property is enabled by default. Setting this property to false prevents
NPM dependencies that are not explicitly included on the command-line from
being included in the translation.

e The com.fortify.sca.exclude.unimported.node.modules property directs
OpenText SAST to exclude all files in any node_modules directory from the
translation except files that are specifically imported by the

com.fortify.sca.follow.imports property.

This property is enabled by default to avoid translating dependencies that are
not needed for the final project such as those only required for the build system.

This PDF was generated on January 16, 2026 Page 225 of 610

3 opentext" Static Application Security Testing 26.1

113.4. NPM dependencies

By default, OpenText SAST does not report issues in NPM dependencies (files in the
node_modules directory). This is configured with the
com.fortify.sca.exclude.node.modules property, which is setto true by default.

Note

OpenText does not recommend usina the -exclude option to exclude node
modules if com.fortify.sca.exclude.node.modules is setto true ,
because it can change the quality of the results.

See Also

Examples of Excluding node_modules Dependencies

This PDF was generated on January 16, 2026 Page 226 of 610

m opentext- Static Application Security Testing 26.1

1.13.4.1. Examples of excluding NPM
dependencies

The following examples illustrate three different scenarios for excluding NPM
dependencies. All these examples use the following directory structure:

o/
RootProjectDir
innerSrcDir
node modules
innerProjectReferencedModule
index.ts
moduleNotReferencedByProject
index.ts
innerProject.ts (contains import from
innerProjectReferencedModule)
node modules
projectReferencedModule
index.ts
moduleNotReferencedByProject
index.ts
projectMain.ts (contains import from projectReferencedModule)

Example 1

This example shows the files are translated with
com.fortify.sca.exclude.unimported.node.modules setto false . In this case,
com.fortify.sca.follow.imports and
com.fortify.sca.exclude.unimported.node.modules are both setto true .

sourceanalyzer RootProjectDir/ -
Dcom. fortify.sca.exclude.node.modules=false

The following files are included in the translation for Example 1:

This PDF was generated on January 16, 2026 Page 227 of 610

m opentext- Static Application Security Testing 26.1

./RootProjectDir/innerSrcDir/innerProject.ts
./RootProjectDir/innerSrcDir/node modules/innerProjectReferenced
Module/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node modules/projectReferencedModule/index.ts

Example 2

This example shows that in addition to modules referenced by the project, modules
found during resolution but not referenced by the project are also included in the
translation.

sourceanalyzer RootProjectDir/ -
Dcom.fortify.sca.exclude.unimported.node.modules=false

The following files are included in the translation for Example 2:

./RootProjectDir/innerSrcDir/innerProject.ts
./RootProjectDir/innerSrcDir/node modules/innerProjectReferenced
Module/index.ts

./RootProjectDir/innerSrcDir/node modules/moduleNotReferencedByP
roject/index.ts

./RootProjectDir/projectMain.ts

./RootProjectDir/node modules/projectReferencedModule/index.ts
./RootProjectDir/node modules/moduleNotReferencedByProject/index
.ts

Example 3

This example shows use of the -exclude option to exclude all files under any
node_modules directory. The -exclude option overrides resolution of modules
based on the configuration of the com.fortify.sca.follow.imports and
com.fortify.sca.exclude.unimported.node.modules properties.

sourceanalyzer RootProjectDir/ -exclude "**/node modules/*.*"

The following files are included in the translation for Example 3:

This PDF was generated on January 16, 2026 Page 228 of 610

m opentext- Static Application Security Testing 26.1

./RootProjectDir/innerSrcDir/innerProject.ts
./RootProjectDir/projectMain.ts

This PDF was generated on January 16, 2026 Page 229 of 610

m opentext- Static Application Security Testing 26.1

1.13.5. Translating JavaScript projects
with HTML files

If the project contains HTML files in addition to JavaScript files, set the
com.fortify.sca.EnableDOMModeling property to true in the fortify-sca.properties
file or on the command line as shown in the following example:

sourceanalyzer —b MyProject <js file or dir>
-Dcom. fortify.sca.EnableDOMModeling=true

When you set the com.fortify.sca.EnableDOMModeling property to true, this can
decrease false negative reports of DOM-related attacks, such as DOM-related cross-
site scripting issues.

Note

s If you enable this option, OpenText SAST generates JavaScript code to
model the DOM tree structure in the HTML files. The duration of the
analysis phase might increase (because there is more translated code to
analyze).

If you set the com.fortify.sca.EnableDOMModeling property to true , you can also
specify additional HTML tags for OpenText SAST to include in the DOM modeling with
the com.fortify.sca.DOMModeling.tags property. By default, OpenText SAST
includes the following HTML tags: body , button, div, form , iframe, input,
head , html ,and p .

For example, to additionaly include the HTML tags ul and li in the DOM model, use
the following command:

sourceanalyzer —b MyProject <js file or dir>
-Dcom. fortify.sca.DOMModeling.tags=ul, li

This PDF was generated on January 16, 2026 Page 230 of 610

m opentext- Static Application Security Testing 26.1

1.13.6. Including external JavaScript or
HTML in the translation (deprecated)

To include external JavaScript or HTML files that are specified with the src attribute,
you can specify which domains OpenText SAST can download and include in the
translation phase. To do this, specify one or more domains with the
com.fortify.sca.JavaScript.src.domain.whitelist property.

Note

You can also set this property globally in the fortify-sca.properties file.

For example, you might have the following statement in your HTML file:

<script src="http://xyzdomain.com/foo/bar.js' language="text/javascript'/>

</script>

If you are confident that the xyzdomain.com domain is a safe location from which to
download files, then you can include it in the translation phase by adding the
following property specification on the command line:

Dcom.fortify.sca.JavaScript.src.domain.whitelist="xyzdomain.com/
foo"

Note

You can omit the www. prefix from the domain in the property value. For
example. if the src taa in the original HTML file specifies to download files
from www.google.com , you can specify just the google.com domain.

To trust more than one domain, include each domain separated by the vertical bar
character (|) as shown in the following example:

-Dcom. fortify.sca.JavaScript.src.domain.whitelist=
"xyzdomain.com/foo|abcdomain.com|123.456domain.com”

This PDF was generated on January 16, 2026 Page 231 of 610

m opentext- Static Application Security Testing 26.1

If you are using a proxy server, then you need to include the proxy server information
on the command line as shown in the following example:

-Dhttp.proxyHost=example.proxy.com -Dhttp.proxyPort=8080

For a complete list of proxy server options, see the Networking Properties Java
documentation.

This PDF was generated on January 16, 2026 Page 232 of 610

3 opentext" Static Application Security Testing 26.1

1.14. Analyzing Dart and Flutter code

This section describes how to translate Dart and Flutter code. OpenText SAST
supports analysis of Dart and Flutter code on Windows and Linux.

This section contains the following topics:

o Dart and Flutter translation prerequisites
e Dart and Flutter command-line syntax
o Dart and Flutter command-line examples

This PDF was generated on January 16, 2026 Page 233 of 610

m opentext- Static Application Security Testing 26.1

114 1. Dart and Flutter translation
prerequisites

The following are the prerequisites for translating Dart and Flutter projects:

o Make sure that you have a supported Dart SDK (for Dart-only projects) and the
Flutter SDK (for Flutter projects) installed on your system. See Supported
languages for the supported Dart and Flutter SDK versions.

» Download the project dependencies by running one of the following commands:
o For Flutter projects, use flutter pub get .
o For Dart-only projects, use dart pub get .

For example, to download the dependencies for a Flutter project that has the
project root myproject , run the following commands:

cd myproject
flutter pub get

Important

If the project includes nested packages with different

pubspec.yaml files, you must run dart pub get or flutter pub get
for each package root.

Important
Make sure that the following are included in the project directory:

o The pubspec.yaml file, which specifies the dependencies

o The .dart tool directory, which includes the

package_config.json file automatically generated by the pub
tool

This PDF was generated on January 16, 2026 Page 234 of 610

3 opentext"

Static Application Security Testing 26.1

114.2. Dart and Flutter command-Iline
syntax

The basic command-line syntax to translate Dart and Flutter code is:

sourceanalyzer —b <build id> <translation options> <dirs>
sourceanalyzer —b <build id> <translation options> <files>

This PDF was generated on January 16, 2026 Page 235 of 610

m opentext- Static Application Security Testing 26.1

114.3. Dart and Flutter command-line
examples

To translate a Dart or Flutter project with the my_app project root directory:

sourceanalyzer -b MyProject my app/

To translate the a_widget.dart file in the my_app project root directory:
sourceanalyzer -b MyProject my app/a widget.dart

To translate all dart source files in the my_dart_proj directory:

sourceanalyzer -b MyProject "my dart proj/**/*.dart"

This PDF was generated on January 16, 2026 Page 236 of 610

3 opentext" Static Application Security Testing 26.1

1.15. Analyzing Python and Jupyter
Notebooks

OpenText SAST translates Python applications, and processes files with the .py
extension as Python source code. Files with the extension .ipynb are recognized as
Jupyter Notebooks. OpenText SAST supports translation of Jupyter notebooks and
the Django and Flask frameworks.

This section contains the following topics:

e Integrating with Bazel

e Python translation command-line syntax

e Translating Python in a virtual environment
e Including imported modules and packages
e Including namespace packages

e Translating Django and Flask

This PDF was generated on January 16, 2026 Page 237 of 610

https://docs.microfocus.com/doc/2263/26.1/pythonbazel

m opentext- Static Application Security Testing 26.1

1.15.1. Integrating with Bazel

To integrate with Bazel builds, OpenText SAST translates the source files as they are
compiled. Therefore, a prerequisite for Bazel builds is that the Bazel build runs
successfully. See Build tools for supported Bazel versions.

To integrate with Bazel, navigate to the Bazel workspace directory, and then run
sourceanalyzer with the Bazel target you want to build. You can specify other
sourceanalyzer options for the translation as follows:

sourceanalyzer -b <build id> <sca options> bazel build <target>
Translate a project and exclude a file from the translation:

sourceanalyzer -b MyProjectC -exclude C:\test\MY-JAVA-
APP\src\proj\content.py bazel build //projc:my-python-prj

This PDF was generated on January 16, 2026 Page 238 of 610

m opentext- Static Application Security Testing 26.1

1.15.1.1. Python Bazel integration examples

Translate a project for a specific target:

sourceanalyzer -b MyProjectA bazel build //proja:my-prj
Translate target abc in package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc
or

sourceanalyzer -b MyProjectA bazel build //proja/abc:abc
Translate all targets in the package proja/abc :

sourceanalyzer -b MyProjectA bazel build //proja/abc:all
Translate all targets within the projb/ directory:

sourceanalyzer -b MyProjectB bazel build //projb/...
Specify Python project dependencies for the translation:

sourceanalyzer -b MyProjectD -python-path
/usr/local/lib/python3.6/ bazel build //projd:my-python-app

OpenText SAST Bazel integration does not support multiple targets and related
actions such as excluding targets.

This PDF was generated on January 16, 2026 Page 239 of 610

m opentext- Static Application Security Testing 26.1

1.15.2. Python translation command-line
syntax

The basic command-line syntax to translate Python code is:

sourceanalyzer -b <build id> -python-version <python version>
-python-path <dirs> <files>

Note
B When you translate Python code, make sure that you specify all source
files together in one invocation. OpenText SAST does not support adding
new files to the file list associated with the build ID on subsequent
invocations.

This PDF was generated on January 16, 2026 Page 240 of 610

m opentext- Static Application Security Testing 26.1

1.15.2.1. Python command-line options

The following table describes the Python options.

This PDF was generated on January 16, 2026 Page 241 of 610

3 opentext"

Python option

-python-version <version>

-python-no-auto-root-calculation

-python-path <dirs>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the Python source code
version to scan. The valid values for

<version> are 2 and 3. The default
valueis 3.

Equivalent property name:
com.fortify.sca.PythonVersion

Disables the automatic calculation of a
common root directory of all project
source files to use for importing
modules and packages.

Equivalent property nhame:
com.fortify.sca.PythonNoAutoRootCal
culation

Specifies a semicolon-

separated (Windows) or colon-
separated (non-Windows) list of
additional import directories. You can
use the -python-path option to
specify all paths used to import
packages or modules. Include all paths
to namespace package directories with
this option. OpenText SAST
sequentially searches the specified
paths for each imported file and uses
the first file encountered.

Equivalent property name:
com.fortify.sca.PythonPath

Page 242 of 610

3 opentext"

Python option

-django-template-dirs
<dirs>

-django-disable-autodiscover

-jinja-template-dirs
<dirs>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies a semicolon-

separated (Windows) or colon-
separated (non-Windows) list of
directories that contain Django
templates. OpenText SAST sequentially
searches the specified paths for each
Django template file and uses the first
template file encountered.

Equivalent property name:
com.fortify.sca.DjangoTemplateDirs

Specifies that OpenText SAST does not
automatically discover Django
templates.

Equivalent property nhame:
com.fortify.sca.DjangoDisableAutodisc
over

Specifies a semicolon-

separated (Windows) or colon-
separated (non-Windows) list of
directories that contain Jinja2
templates. OpenText SAST sequentially
searches the specified paths for each
Jinja2 template file and uses the first
template file encountered.

Equivalent property name:
com.fortify.sca.JinjaTemplateDirs

Page 243 of 610

m opentext- Static Application Security Testing 26.1

Python option Description

-disable-template-autodiscover .
Specifies that OpenText SAST does not

automatically discover Django or Jinja2
templates.

Equivalent property name:
com.fortify.sca.DisableTemplateAutodi
scover

Python Properties

This PDF was generated on January 16, 2026 Page 244 of 610

m opentext- Static Application Security Testing 26.1

1.15.2.2. Python command-line examples

Translate Python 3 code on Windows:

sourceanalyzer -b Python3Proj -python-path
"C:\Python312\Lib;C:\Python312\Lib\site-packages" src/*.py

Translate Python 2 code on Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path
“C:\Python27\Lib;C:\Python27\Lib\site-packages" src/*.py

Translate Python 3 code on non-Windows:

sourceanalyzer -b Python3Proj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages
src/*.py

Translate Python 2 code on non-Windows:

sourceanalyzer -b MyPython2 -python-version 2 -python-path
/usr/lib/python2.7:/usr/local/lib/python2.7/site-packages
src/*.py

This PDF was generated on January 16, 2026 Page 245 of 610

m opentext- Static Application Security Testing 26.1

1.15.3. Translating Python in a virtual
environment

This section describes how to translate Python projects in virtual environments. Make
sure that all project dependencies are installed in your virtual environment. To
translate a Python project in a virtual environment, include the -python-path option
to specify the project dependencies.

Python virtual environment example

To translate a Python project where the virtual environment name is myenv and the
dependencies for the project are installed in the myenv/lib/python<version>/site-
packages directory, type:

sourceanalyzer —b mybuild -python-path
“myenv/lib/python<version>/site-packages/" myproject/

Conda environment example

To translate a Python project where the conda environment name is myenv and the
project dependencies are installed in the
<conda_install_dir>/envs/myenv/lib/python<version>/site-packages directory, type:

sourceanalyzer —b mybuild -python-path "
<conda install dir>/envs/myenv/lib/python<version>/site-
packages/" myproject/

This PDF was generated on January 16, 2026 Page 246 of 610

m opentext- Static Application Security Testing 26.1

1.15.4. Including imported modules and
packages

To translate Python applications and prepare for a scan, OpenText SAST searches for
any imported modules and packages used by the application. OpenText SAST does
not respect the PYTHONPATH environment variable, which the Python runtime
system uses to find imported modules and packages.

OpenText SAST searches for imported modules and packages using the list of
directories in the following order:

1. The common root directory for all project source files. which OpenText SAST
calculates automatically. For example, if there are two project directories
PrimaryDir/project1/* and PrimaryDir/project2/* , the common root directory is
PrimaryDir .

To remove the common root directory as a search target for imported modules
and packages, include the -python-no-auto-root-calculation option in the
translation command.

2. The directories specified with the -python-path option.

OpenText SAST includes a subset of modules from the standard Python library
(module "builtins", all modules originally written in C, and others) in the
translation. OpenText SAST first searches for a standard Python library module
in the set included with OpenText SAST and then in the paths specified with the
-python-path option. If your Python code imports any module that OpenText
SAST cannot find, it produces a warning. To make sure that all modules of the
standard Python library are found, add the path to your standard Python library
in the -python-path list.

3. The current directory that contains the file being translated. For example, when
OpenText SAST translates a PrimaryDir/projecti/a.py , the directory
PrimaryDir/projectl is added as the last directory to search for imported
modules and packages.

This PDF was generated on January 16, 2026 Page 247 of 610

m opentext- Static Application Security Testing 26.1

1.15.5. Including namespace packages

To translate namespace packages, include all the paths to the namespace package
directories with the -python-path option. For example, if you have two subpackages
for a namespace package package_name in multiple folders:

/path 1/package name/subpackageA
/path 2/package name/subpackageB

Include /path_l;/path_2 with the -python-path option in the sourceanalyzer
command line.

This PDF was generated on January 16, 2026 Page 248 of 610

m opentext- Static Application Security Testing 26.1

1.15.6. Translating Django and Flask

By default, OpenText SAST attempts to discover Django and Jinja2 templates in the
project root directory. All detected Django and Jinja2 templates are automatically
added to the translation. You can specify additional locations of Django or Jinja2
template files by adding the -django-template-dirs or the -jinja-template-dirs
option to the sourceanalyzer command.

If you do not want OpenText SAST to automatically discover Django and Jinja2
templates, use the -disable-template-autodiscover option. If your project requires
Django or Jinja2 templates, but the project is configured such that the templates are
in an unexpected location, use the -django-template-dirs or -jinja-template-dirs
option to specify the directories that contain the templates in addition to the -disable-
template-autodiscover option as shown in the following non-Windows examples:

sourceanalyzer -b djangoProj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages
djangoProj -django-template-dirs
djangoProj/templatedirl:/djangoProj/dir2 -disable-template-
autodiscover

sourceanalyzer -b flaskProj -python-path
/usr/lib/python3.12:/usr/local/lib/python3.12/site-packages
flaskProj -jinja-template-dirs
flaskProj/templatedirl:/flaskProj/dir2 -disable-template-
autodiscover

The following example translates a Python project that has a combination of Django
and Jinja2 templates on Windows:

sourceanalyzer -b pythonProj -python-path
"C:\Python312\Lib;C:\Python312\Lib\site-packages" flaskProj -
django-template-dirs
"C:\djangoProj\templatedirl;C:\djangoProj\dir2" -jinja-template-
dirs "C:\flaskProj\templatedirl;C:\flaskProj\dir2" -disable-
template-autodiscover

This PDF was generated on January 16, 2026 Page 249 of 610

m opentext- Static Application Security Testing 26.1

1.16. Analyzing iOS and Xcode projects

This section describes how to translate Swift, Objective-C, and Objective-C++ source
code for iOS applications. OpenText SAST automatically integrates with the Xcode
Command Line Tool, Xcodebuild, to identify the project source files.

This section contains the following topics:

o iOS project translation prerequisites
e iOS code analysis command-line syntax

This PDF was generated on January 16, 2026 Page 250 of 610

m opentext- Static Application Security Testing 26.1

1.16.1. i0S project translation prerequisites

The following are the prerequisites for translating iOS projects:

e Objective-C++ projects must use the non-fragile Objective-C runtime (ABI
version 2 or 3).

e Use Apple's xcode-select command-line tool to set your Xcode path. OpenText
SAST uses the system global Xcode configuration to find the Xcode toolchain
and headers.

o Make sure that all source files required for a successful Xcode build are
provided.

You can exclude files from the analysis using the -exclude option (see
iOS Code Analysis Command-Line Syntax).

o Make sure that you have any dependencies required to build the project
available.

e To translate Swift code, make sure that you have available all third-party
modules, including CocoaPods. Bridging headers must also be available.
However, Xcode usually generates them automatically during the build.

 If your project includes property list files in binary format, you must first convert
them to XML format. You can do this with the Xcode putil command.

o To translate Objective-C projects, ensure that the headers for third-party
libraries are available.

» To translate Watchkit® applications, make sure that you translate both the
iPhone application target and the WatchKit extension target.

This PDF was generated on January 16, 2026 Page 251 of 610

m opentext- Static Application Security Testing 26.1

1.16.2. i0S code analysis command-line
syntax

The command-line syntax to translate iOS code using Xcodebuild is:
sourceanalyzer -b <build id> xcodebuild [<compiler options>]

where <compiler_options> are the supported options that are passed to the Xcode
compiler. You must include the build option with any <compiler_options> . The
OpenText SAST Xcodebuild integration does not support the output format of
alternate build commands such as xcodebuild archive .

Note

Xcodebuild compiles the source code when you run this command.

To exclude files from the analysis, use the -exclude option (see Translation Options).
All source files that match the exclude specification are not translated, even if they
are included in the Xcode build. The following is an example:

sourceanalyzer -b MyProject -exclude "**/TestFile.swift"
xcodebuild clean build

If your application uses any property list files (for example, <file>.plist), translate
these files with a separate sourceanalyzer command. Use the same build ID that you
used to translate the project files. The following is an example:

sourceanalyzer -b MyProject <path to plist files>

If your project uses CocoaPods, include -workspace to build the project. For
example:

sourceanalyzer -b DemoAppSwift xcodebuild clean build -workspace
DemoAppSwift.xcworkspace -scheme DemoAppSwift -sdk
iphonesimulator

This PDF was generated on January 16, 2026 Page 252 of 610

m opentext- Static Application Security Testing 26.1

After the translation is complete, you can perform the analysis phase and save the
results in an FPR file, as shown in the following example:

sourceanalyzer -b DemoAppSwift -scan -f MyResults.fpr

This PDF was generated on January 16, 2026 Page 253 of 610

3 opentext" Static Application Security Testing 26.1

1.17. Analyzing C and C++ code

This section describes how to translate C and C++ code. OpenText SAST supports
standard ANSI C and C++ and might not support all non-standard C++ constructs.

Important

This section describes how to translate C and C++ code that is not a part
of a Visual Studio or MSBuild project. For instructions on how to translate
Visual Studio or MSBuild projects, see Translating Visual Studio and MSBuild
Projects.

This section contains the following topics:

C and C++ Code translation prerequisites
e Integrating with Make

e Integrating with CMake

e Integrating with Gradle

e Manual C and C++ translation syntax

e Scanning pre-processed C and C++ code
e C/C++ Precompiled Header Files

This PDF was generated on January 16, 2026 Page 254 of 610

https://docs.microfocus.com/doc/2263/26.1/ccppgradleintegration

m opentext- Static Application Security Testing 26.1

117.1. C and C++ Code translation
prerequisites

Make sure that you have any dependencies required to build the project available,
including headers for third-party libraries. OpenText SAST translation does not require
object files and static/dynamic library files.

This PDF was generated on January 16, 2026 Page 255 of 610

m opentext- Static Application Security Testing 26.1

1.17.2. Integrating with Make

To integrate OpenText SAST with make, run sourceanalyzer with Make for the build
process. For example, if you build your project with the following build commands:

make clean
make
make install

You can simultaneously translate and compile the entire project with the following
example commands:

make clean
sourceanalyzer -b MyProject make
make install

As an alternative to build integration, you can modify your build script to prefix each
compiler, linker, and archiver operation with the sourceanalyzer command. For
example, a makefile often defines variables for the names of these tools:

CC=gcc
CXX=g++
LD=1d
AR=ar

You can prepend the tool references in the makefile with the sourceanalyzer
command and the appropriate options.

CC=sourceanalyzer -b MyProject gcc
CXX=sourceanalyzer -b MyProject g++
LD=sourceanalyzer -b MyProject ld
AR=sourceanalyzer -b MyProject ar

When you use the same build ID for each operation, OpenText SAST automatically
combines each of the separately-translated files into a single translated project.

This PDF was generated on January 16, 2026 Page 256 of 610

m opentext- Static Application Security Testing 26.1

1.17.3. Integrating with CMake

On non-Windows systems, you can translate projects that are built with CMake by
incorporating a JSON compilation database in the OpenText SAST command. This is
only supported for Makefile and Ninja generators (see the CMake Reference
Documentation for more information).

To integrate OpenText SAST with a CMake build:

1. Generate a compile_commands.json file for your CMake project.

Add -DCMAKE_EXPORT_COMPILE_COMMANDS=yes to the cmake configure
command. For example:

cmake -G Ninja -DCMAKE EXPORT COMPILE COMMANDS=yes

2. Include the JSON compilation database in your sourceanalyzer command as
follows:

sourceanalyzer -b <build id> compile commands.json

This PDF was generated on January 16, 2026 Page 257 of 610

m opentext- Static Application Security Testing 26.1

1.17.4. Integrating with Gradle

Gradle integration has a prerequisite on the C++ Application Plugin. Please make sure
it is added to your Gradle file in one of the following formats:

apply plugin: 'cpp'

plugins {
id 'cpp-application'

}

Gradle integration is as simple as prepending the Gradle or gradlew command line
with the sourceanalyzer command as follows:

sourceanalyzer -b <build id> <sca options> gradle
[<gradle options>] <gradle tasks>

For more detailed guides, see the Java and Kotlin integration: Using Gradle integration

This PDF was generated on January 16, 2026 Page 258 of 610

m opentext- Static Application Security Testing 26.1

1.17.5. Manual C and C++ translation
syhtax

Command-line options passed to the compiler affect preprocessor execution and can
enable or disable language features and extensions. For OpenText SAST to interpret
your source code in the same way as the compiler, the translation phase for C/C++
source code requires the complete compiler command line. Prefix your original
compiler command with the sourceanalyzer command and options.

The basic command-line syntax for translating a single file is:

sourceanalyzer -b <build id> [<sca options>] <compiler>
[<compiler options>] <file>.c

where:

e <sca_options> are options passed to OpenText SAST.
<compiler> is the name of the C/C++ compiler you use, such as gcc, g++ ,
or cl . See Supported languages for a list of supported C/C++ compilers.
<compiler_options> are options passed to the C/C++ compiler.
<file>.c must be in ASCIl or UTF-8 encoding.

Note

All OpenText SAST options must precede the compiler options.

The compiler command must successfully complete when executed on its own. If the
compiler command fails, then the OpenText SAST command prefixed to the compiler
command also fails.

For example, if you compile a file with the following command:

gcc -I. -0 hello.o -c helloworld.c

then you can translate this file with the following command:

sourceanalyzer -b MyProject gcc -I. -0 hello.o -c helloworld.c

This PDF was generated on January 16, 2026 Page 259 of 610

m opentext- Static Application Security Testing 26.1

OpenText SAST executes the original compiler command as part of the translation
phase. In the previous example, the command produces both the translated source
suitable for scanning, and the object file hello.o from the gcc execution. You can
use the OpenText SAST -nc option to disable the compiler execution.

This PDF was generated on January 16, 2026 Page 260 of 610

m opentext- Static Application Security Testing 26.1

1.17.6. Scanning pre-processed C and C++
code

If, before compilation, your C/C++ build executes a third-party C preprocessor that
OpenText SAST does not support, you must start the OpenText SAST translation on
the intermediate file. OpenText SAST touchless build integration automatically
translates the intermediate file provided that your build executes the unsupported
preprocessor and supported compiler as two commands connected by a temporary

file rather than a pipe chain.

This PDF was generated on January 16, 2026 Page 261 of 610

m opentext- Static Application Security Testing 26.1

117.7. C/C++ Precompiled Header Files

Some C/C++ compilers support Precompiled Header Files, which can improve
compilation performance. Some compilers' implementations of this feature have
subtle side-effects. When the feature is enabled, the compiler might accept
erroneous source code without warnings or errors. This can result in a discrepancy
where OpenText SAST reports translation errors even when your compiler does not.

If you use your compiler's Precompiled Header feature, disable Precompiled Headers,
and then perform a full build to make sure that your source code compiles cleanly.

This PDF was generated on January 16, 2026 Page 262 of 610

m opentext- Static Application Security Testing 26.1

1.18. Analyzing Rust code

This section describes how to analyze Rust projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

e Rust analysis prerequisites
e Rust translation syntax

This PDF was generated on January 16, 2026 Page 263 of 610

m opentext- Static Application Security Testing 26.1

1.18.1. Rust analysis prerequisites

Currently, Rust code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Rust code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 264 of 610

m opentext- Static Application Security Testing 26.1

1.18.2. Rust translation syntax

To include Rust code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Rust code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.rs"

This PDF was generated on January 16, 2026 Page 265 of 610

3 opentext" Static Application Security Testing 26.1

1.19. Analyzing Go code

This section describes how to translate Go code. OpenText SAST supports analysis of
Go code on Windows, Linux, and macOS®,

This section contains the following topics:

Go command-line syntax

Go command-line options
Including custom Go build tags
Resolving dependencies

This PDF was generated on January 16, 2026 Page 266 of 610

m opentext- Static Application Security Testing 26.1

1.19.1. Go command-line syntax

For the best results, your project must be compilable and you must have all required
dependencies available.

The following entities are excluded from the translation (and the scan):

e Vendor folder

» All projects defined by any go.mod files in subfolders, except the project
defined by the go.mod file under the %PROJECT_ROOT %

o All files with the _test.go suffix (unit tests)

The basic command-line syntax to translate Go code is:

sourceanalyzer -b <build id> [-gopath <dir>] [-goroot <dir>]
<files>

For best results, OpenText recommends that you use Go modules for all Go projects
and translate the Go code one module at a time. Ensure that the values for the <files>
parameter for the sourceanalyzer command are in the directory that contains the
go.mod file. This is the same directory where you run the go build command to
build the project. If the project consists of more than one module, you can run the
sourceanalyzer command multiple times with the same <build_id> value to tie the
translation results for all modules together.

Use of the GOPATH development mode for builds is still supported but be aware that
this can cause problems if you are trying to compare two scans in tools such as
Fortify Audit Workbench or Application Security. Without a go.mod file to define a
fixed identifier path for the module, the Go language system identifies each module
by its absolute path on the local file system. Therefore, two scans of the same module
from different subdirectories or on different machines produce different module
identifiers, which prevents matching issues from correlating properly across the two
scans. The GOPATH development mode is deprecated for the Go compiler and SDK
and will be removed in a future Go 1.xx release.

This PDF was generated on January 16, 2026 Page 267 of 610

m opentext- Static Application Security Testing 26.1

119.2. Go command-line options

The following table describes the command-line options that are specifically for
translating Go code.

This PDF was generated on January 16, 2026 Page 268 of 610

m opentext- Static Application Security Testing 26.1

Go option Description

-gotags <go_build_tags> . .
Specifies a comma-separated list of

custom build tags for a Go project. This
is equivalent to the -tags option for
the go command. For more
information, see Including Custom Go
Build Tags.

Equivalent property name:
com.fortify.sca.gotags

This PDF was generated on January 16, 2026 Page 269 of 610

m opentext- Static Application Security Testing 26.1

Go option Description

-gopath <dir> .
Specifies the value of the GOPATH

environment variable to use for
translating a Go project. If this option is
not specified, then OpenText SAST
uses the existing value of the GOPATH
system environment variable.

You must specify the gopath directory
as an absolute path. The following
examples show valid values for <dir> :

/home/projects/go workspace/
my proj

C:\projects\go workspace\my
proj

The following example is an invalid
value for <dir> :

go workspace/my proj

If this option and the GOPATH system
environment variable is not set, then
the gopath defaults to a subdirectory
named go inthe user's home
directory ($HOME/go on Linux and

%USERPROFILE%\go on Windows),
unless that directory contains a Go
distribution.

When using modules, the GOPATH
environment variable is not required to
resolve package imports. However,
GOPATH still determines the output
directory to use when downloading
missing module dependencies.

This PDF was generated on January 16, 2026 Page 270 of 610

m opentext- Static Application Security Testing 26.1

Go option Description

Note

e OpenText SAST does not
fully support older Go
projects that rely solely on
the GOPATH environment
variable to resolve package
imports.

Equivalent property name:
com.fortify.sca.GOPATH

-goroot <dir> .)
Specifies the location of the Go

installation. If this option is not
specified, the GOROOT system
environment variable is used.

If this option is not specified and the
GOROOT system environment variable
is not set, then OpenText SAST uses
the Go compiler included in the
OpenText SAST installation.

Equivalent property name:
com.fortify.sca.GOROOT

-goproxy <url/> .
Specifies one or more comma-

separated proxy URLs. You can also
specify direct or off (to disable
network usage).

If this option is not specified and the
GOPROXY system environment
variable is not set, then OpenText SAST
uses https://proxy.golang.org,direct .

Equivalent property name:
com.fortify.sca.GOPROXY

This PDF was generated on January 16, 2026 Page 271 of 610

m opentext- Static Application Security Testing 26.1

Go properties

This PDF was generated on January 16, 2026 Page 272 of 610

m opentext- Static Application Security Testing 26.1

1.19.3. Including custom Go build tags

If your Go project includes files that require custom build tags, then you can include
these build tags in the OpenText SAST translation using the -gotags option. For
example:

sourceanalyzer -b MyProject -gotags release "src/**/*.go"

The OpenText SAST -gotags option does not allow you to override automatic build
tags for the operating system, architecture, or Go version (for example, //go:build
linux , //go:build arm , //go:build go1.21). To translate your Go project for a different
operating system or architecture, set the appropriate cross-compile targets in the
GOOS and GOARCH environment variables. To set a specific Go version, specify the
path for the Go SDK version in the GOROOT environment variable or the -goroot
option.

This PDF was generated on January 16, 2026 Page 273 of 610

m opentext- Static Application Security Testing 26.1

1.19.4. Resolving dependencies

OpenText SAST supports two dependency management systems built into Go:

e Modules

To translate a Go project that uses modules, the project must include a go.mod
file that specifies the required dependencies, and a corresponding go.sum file
for verifying downloaded dependencies. Specify the directory that contains the
go.mod file as the project root in the sourceanalyzer command.

OpenText SAST downloads all required dependencies using the native Go
toolchain. If access to the internet is restricted on the machine where you run
OpenText SAST, then do one of the following:

o If you are using an artifact management system such as Artifactory, set the
GOPROXY environment variable or use the -goproxy option described in
Go Command-Line Options.

o Download all required dependencies using modules and vendoring.

If you use manual vendoring, set the GOFLAGS environment variable to -
mod=vendor before you start the translation.

o GOPATH dependency resolution

If you are using a third-party dependency management system such as dep, you
must download all dependencies before you start the translation.

The GOPATH development mode identifies dependencies using the absolute
path on the local file system, which can cause problems when correlating scans
from different subdirectories or on different machines.

See Also

Go command-line syntax

This PDF was generated on January 16, 2026 Page 274 of 610

m opentext- Static Application Security Testing 26.1

1.20. Analyzing PHP code

The syntax to translate a single PHP file named MyPHP.php is shown in the following
example:

sourceanalyzer -b <build id> MyPHP.php

To translate a file where the source or the php.ini file entry includes a relative path
name (starts with ./ or ../), consider setting the PHP source root as shown in the
following example:

sourceanalyzer -php-source-root <path> -b <build id> MyPHP.php
For more information about the -php-source-root option, see the description in

PHP Command-Line Options.

When you translate PHP code, make sure that you specify all source files together in
one invocation. OpenText SAST does not support adding new files to the file list
associated with the build ID on subsequent invocations.

This section contains the following topics:

e PHP command-line options

This PDF was generated on January 16, 2026 Page 275 of 610

m opentext- Static Application Security Testing 26.1

1.20.1. PHP command-line options

The following table describes the PHP-specific command-line options.

PHP option Description

-php-source-root <path> Specifies an absolute path to the
project root directory. The relative path
name first expands from the current
directory. If the file is not found, then
the path expands from the specified
PHP source root directory.

Equivalent property nhame:
com.fortify.sca.PHPSourceRoot

-php-version <version> Specifies the PHP version. The default
version is 8.2. For a list of valid
versions, see Supported languages.

Equivalent property name:
com.fortify.sca.PHPVersion

PHP Properties

This PDF was generated on January 16, 2026 Page 276 of 610

m opentext- Static Application Security Testing 26.1

1.21. Analyzing Perl code

This section describes how to analyze Perl projects. For projects combined with other
files, see the relevant section for those languages.

This section contains the following topics:

o Perl analysis prerequisites
o Perl translation syntax

This PDF was generated on January 16, 2026 Page 277 of 610

m opentext- Static Application Security Testing 26.1

1.21.1. Perl analysis prerequisites

Currently, Perl code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Perl code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 278 of 610

m opentext- Static Application Security Testing 26.1

1.21.2. Perl translation syntax

To include Perl code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Perl code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.pl"

Important
Supported file extensions for the Perl source files are: .pl, .pm .

This PDF was generated on January 16, 2026 Page 279 of 610

m opentext- Static Application Security Testing 26.1

1.22. Analyzing Ruby code
This section contains the following topics:

e Ruby command-line syntax
e Adding libraries
o Adding gem paths

This PDF was generated on January 16, 2026 Page 280 of 610

m opentext- Static Application Security Testing 26.1

1.22.1. Ruby command-line syntax

Ruby is analyzed with Al-powered SAST. Local analysis of Ruby projects is
deprecated and may be removed from a future version of the software. If Al-powered
SAST and a database connection is not specified, OpenText SAST automatically
reverts to performing local analysis of Ruby source files.

If you have Al-powered SAST enabled and want to ensure local analysis of Ruby
source files is still performed, you must make sure the following property is set during
both the translation and analysis phases:

com.fortify.sca.ruby.legacy.enabled=true

For more information about configuring scans for Al-powered SAST, see Analyzing
using Al-powered SAST.

Al-powered SAST

Use the following basic command-line syntax to analyze Ruby code using Al-powered
SAST:

sourceanalyzer —b <build id> <files> | <file specifiers>
For example, specifying files individually:

sourceanalyzer —b <build id> filel.rb file2.rb file3.erb
Alternatively use wildcards or directories to specify multiple files more easily:

sourceanalyzer —b <build id> "src/**/*.rb" "templates/

Local translation (deprecated)

The basic command-line syntax to translate Ruby code is:

sourceanalyzer —b <build id> <file>

This PDF was generated on January 16, 2026 Page 281 of 610

m opentext- Static Application Security Testing 26.1

where <file> is the name of the Ruby file you want to scan. To include multiple Ruby
files, separate them with a space, as shown in the following example:

sourceanalyzer —b <build id> filel.rb file2.rb file3.rb

In addition to listing individual Ruby files, you can use the asterisk (*) wildcard to
select all Ruby files in a specified directory. For example, to find all the Ruby files in a
directory called src , use the following sourceanalyzer command:

sourceanalyzer —b <build id> src/*.rb

Note

When performing local analysis of Ruby code, make sure that you specify
all source files together in one invocation. OpenText SAST does not
support adding new files to the file list associated with the build ID on
subsequent invocations.

In addition to the Ruby source files when translating locally, if you use any 3rd party
dependencies, these should be specified either via library or gem paths.

This PDF was generated on January 16, 2026 Page 282 of 610

m opentext- Static Application Security Testing 26.1

1.22.1.1. Ruby command-line options

The following table describes the Ruby translation options.

Ruby option Description
-ruby-path <dirs> Applicable when legacy Ruby analyzer
is enabled.

Specifies one or more paths to
directories that contain Ruby libraries
(see Adding Libraries)

Equivalent property name:
com.fortify.sca.RubyLibraryPaths

-rubygem-path <dirs> Applicable when legacy Ruby analyzer
is enabled.

Specifies the path(s) to a RubyGems
location (see Adding Gem Paths)

Equivalent property name:
com.fortify.sca.RubyGemPaths

For more information, see Ruby properties.

This PDF was generated on January 16, 2026 Page 283 of 610

m opentext- Static Application Security Testing 26.1

1.22.2. Adding libraries

If your Ruby source code requires a specific library, add the Ruby library to the
sourceanalyzer command. Include all ruby libraries that are installed with ruby gems.
For example, if you have a utils.rb file that resides in the
/usr/share/ruby/myPersonalLibrary directory, then add the following to the
sourceanalyzer command:

-ruby-path /usr/share/ruby/myPersonallLibrary

Separate multiple libraries with semicolons (Windows) or colons (non-Windows). The
following is an example of the option on non-Windows system:

-ruby-path /path/one:/path/two:/path/three

This PDF was generated on January 16, 2026 Page 284 of 610

m opentext- Static Application Security Testing 26.1

1.22.3. Adding gem paths

To add all RubyGems and their dependency paths, import all RubyGems. To obtain the
Ruby gem paths, run the gem env command. Under GEM PATHS, look for a directory
similar to:

/home/myUser/gems/ruby-version

This directory contains another directory called gems , which contains directories for
all the gem files installed on the system. For this example, use the following in your
command line:

-rubygem-path /home/myUser/gems/ruby-version/gems

If you have multiple gems directories, separate them with semicolons (Windows) or
colons (non-Windows) such as:

-rubygem-path /path/to/gems:/another/path/to/more/gems

Note

On Windows systems, separate the gems directories with a semicolon.

This PDF was generated on January 16, 2026 Page 285 of 610

m opentext- Static Application Security Testing 26.1

1.23. Analyzing Ada code

This section describes how to analyze Ada projects. For projects combined with other
files, please see the relevant section for those languages.

This section contains the following topics:

o Ada analysis prerequisites
o Ada translation syntax

This PDF was generated on January 16, 2026 Page 286 of 610

m opentext- Static Application Security Testing 26.1

1.23.1. Ada analysis prerequisites

Currently, Ada code is only compatible with Al-powered SAST. For more information
about configuring scans for Al-powered SAST, see Analyzing using Al-powered
SAST.

If Al-powered SAST is not configured, Ada code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 287 of 610

m opentext- Static Application Security Testing 26.1

1.23.2. Ada translation syntax

To include Ada code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Ada code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.ada"

Important

Supported file extensions for the Ada source files are: .ada, .adb,
.ads .

This PDF was generated on January 16, 2026 Page 288 of 610

m opentext- Static Application Security Testing 26.1

1.24. Analyzing Delphi code

This section describes how to analyze Delphi projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

o Delphi analysis prerequisites
o Delphi translation syntax

This PDF was generated on January 16, 2026 Page 289 of 610

m opentext- Static Application Security Testing 26.1

1.24 1. Delphi analysis prerequisites

Currently, Delphi code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Delphi code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 290 of 610

m opentext- Static Application Security Testing 26.1

1.24.2. Delphi translation syntax

To include Delphi code for analysis using Al-powered SAST, include all source files
that you want to analyze.

Use the following basic command-line syntax to analyze Delphi code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.pas"

Important

Supported file extensions for the Delphi source files are: .pas, .dpr,
.dpk .

This PDF was generated on January 16, 2026 Page 291 of 610

m opentext- Static Application Security Testing 26.1

1.25. Analyzing Elixir code

This section describes how to analyze Elixir projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

o Elixir analysis prerequisites
o Elixir translation syntax

This PDF was generated on January 16, 2026 Page 292 of 610

m opentext- Static Application Security Testing 26.1

1.25.1. Elixir analysis prerequisites

Currently, Elixir code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Elixir code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 293 of 610

m opentext- Static Application Security Testing 26.1

1.25.2. Elixir translation syntax

To include Elixir code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Elixir code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.ex"

Important
Supported file extensions for the Elixir source files are: .ex, .exs.

This PDF was generated on January 16, 2026 Page 294 of 610

m opentext- Static Application Security Testing 26.1

1.26. Analyzing Erlang code

This section describes how to analyze Erlang projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

o Erlang analysis prerequisites
o Erlang translation syntax

This PDF was generated on January 16, 2026 Page 295 of 610

m opentext- Static Application Security Testing 26.1

1.26.1. Erlang analysis prerequisites

Currently, Erlang code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Erlang code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 296 of 610

m opentext- Static Application Security Testing 26.1

1.26.2. Erlang translation syntax

To include Erlang code for analysis using Al-powered SAST, include all source files
that you want to analyze.

Use the following basic command-line syntax to analyze Erlang code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.erl"

Important
Supported file extensions for the Erlang source files are: .erl, .hrl.

This PDF was generated on January 16, 2026 Page 297 of 610

m opentext- Static Application Security Testing 26.1

1.27. Analyzing Lua code

This section describes how to analyze Lua projects. For projects combined with other
files, see the relevant section for those languages.

This section contains the following topics:

e Lua analysis prerequisites
e Lua translation syntax

This PDF was generated on January 16, 2026 Page 298 of 610

m opentext- Static Application Security Testing 26.1

1.27.1. Lua analysis prerequisites

Currently, Lua code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Lua code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 299 of 610

m opentext- Static Application Security Testing 26.1

1.27.2. Lua translation syntax

To include Lua code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Lua code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.lua"

This PDF was generated on January 16, 2026 Page 300 of 610

m opentext- Static Application Security Testing 26.1

1.28. Analyzing Salesforce Apex and
Visualforce code

This section contains the following topics:

o Apex and Visualforce translation prerequisites
e Apex and Visualforce command-line syntax

This PDF was generated on January 16, 2026 Page 301 of 610

m opentext- Static Application Security Testing 26.1

1.28.1. Apex and Visualforce translation
prerequisites

To translate Apex and Visualforce projects, make sure that all the source code to scan
is available on the same machine where you have installed OpenText SAST.

To scan your custom Salesforce® app, download it to your local computer from your
Salesforce organization (org) where you develop and deploy it. The downloaded
version of your app consists of:

o Apex classes in files with the .cls extension

» Visualforce web pages in files with the .page extension

e Apex code files called database “trigger” functions in files with the .trigger
extension

» Visualforce component files in files with the .component extension

o Objects in files with the .object extension

Use the Ant Migration Tool available on the Salesforce website to download your app
from your org in the Salesforce cloud to your local computer. Make sure that the
project manifest files are set up correctly for the specified target in your build.xml
file. For example, the following package.xml manifest file provides OpenText SAST
with all classes, custom objects, pages, and components.

This PDF was generated on January 16, 2026 Page 302 of 610

3 opentext"

<?xml version="1.0" encoding="UTF-8"7>

Static Application Security Testing 26.1

<Package xmlns=http://soap.sforce.com/2006/04/metadata>

<types>
<members>*</members>
<name>ApexClass</name>
</types>
<types>
<members>*</members>
<name>ApexTrigger</name>
</types>
<types>
<members>*</members>
<name>ApexPage</name>
</types>
<types>
<members>*</members>
<name>ApexComponent</name>
</types>
<types>
<members>*</members>
<name>CustomObject</name>
</types>
<version>55.0</version>
</Package>

Configure the retrieve targets using the Ant Migration Tool documentation. If your
organization uses any apps from the app exchange, make sure that these are

downloaded as packaged targets.

This PDF was generated on January 16, 2026

Page 303 of 610

m opentext- Static Application Security Testing 26.1

1.28.2. Apex and Visualforce command-
line syntax

The basic command-line syntax to translate Apex and Visualforce code is:
sourceanalyzer -b <build id> <files>

where <files> is an Apex or Visualforce file or a path to the source files.

Important

Sunnorted file extensions for the source files are: .cls, .component ,
trigger , .object, and .page.

This PDF was generated on January 16, 2026 Page 304 of 610

3 opentext" Static Application Security Testing 26.1

1.29. Analyzing ABAP code

ABAP code translation requires additional preparation steps to extract the code from
the SAP® database and prepare it for scanning. See Importing the Transport Request
for more information. This section assumes you have a basic understanding of SAP
and ABAP.

This section contains the following topics:

e About downloading source files

e Importing the transport request

e Adding OpenText SAST to your Favorites list
e Running the Fortify ABAP Extractor

« Uninstalling the Fortify ABAP Extractor

This PDF was generated on January 16, 2026 Page 305 of 610

m opentext- Static Application Security Testing 26.1

1.29.1. About downloading source files

To translate ABAP code, the Fortify ABAP Extractor program downloads source files
to the presentation server, and optionally, starts OpenText SAST. You need to use an
account with permission to download files to the local system and execute operating
system commands.

Because the extractor program is executed online, you might receive a max dialog
work process time reached message if the volume of source files selected for
extraction exceeds the allowable process run time. To work around this, download
large projects as a series of smaller Extractor tasks. For example, if your project
consists of four different packages, download each package separately into the same
project directory. If the exception occurs frequently, work with your SAP Basis
administrator to increase the maximum time limit (rdisp/max_wprun_time).

When a PACKAGE is extracted from ABAP, the Fortify ABAP Extractor extracts
everything from TDEVC with a parentcl field that matches the package name. It
then recursively extracts everything else from TDEVC with a parentcl field equal to
those already extracted from TDEVC . The field extracted from TDEVC is

devclass .

The devclass values are treated as a set of program names and handled the same
way as a program name, which you can provide.

Programs are extracted from TRDIR by comparing the name field with either:

e The program name specified in the selection screen
e The list of values extracted from TDEVC if a package was provided

The rows from TRDIR are those for which the name field has the given program
name and the expression LIKE programname is used to extract rows.

This final list of names is used with READ REPORT to get code out of the SAP
system. This method reads classes and methods out as well as merely REPORTS , for
the record.

Each READ REPORT call produces a file in the temporary folder on the local system.
OpenText SAST translates and scans this set of files to produce an FPR file that you
can open with Fortify Audit Workbench.

ABAP Properties

This PDF was generated on January 16, 2026 Page 306 of 610

m opentext- Static Application Security Testing 26.1

1.29.1.1. INCLUDE processing

As source code is downloaded, the Fortify ABAP Extractor detects INCLUDE
statements in the source. When found, it downloads the include targets to the local
machine for analysis.

This PDF was generated on January 16, 2026 Page 307 of 610

m opentext- Static Application Security Testing 26.1

1.29.2. Importing the transport request

To scan ABAP code, you need to import the Fortify ABAP Extractor transport request
on your SAP Server. You can find the transport request in
<sast_install_dir>/Tools/SAP_Extractor.zip .

The Fortify ABAP Extractor package, SAP_Extractor.zip , contains the following files:

 K900<release_number>.<system_id>
e R900<release_number>.<system_id>

These files make up the SAP transport request that you must import into your SAP
system from outside your local Transport Domain. Have your SAP administrator or an
individual authorized to install transport requests on the system import the transport
request. These files contain a program, a transaction (YSCA), and the program user
interface. After you import them into your system, you can extract your code from the
SAP database and prepare it for OpenText SAST scanning.

Installation note

If you get the transport request import error: Install release does not match the
current version , then the transport request installation has failed. See Software
requirements for supported ABAP versions.

To try to resolve this issue, perform the following steps:

1. Re-run the transport request import.
The Import Transport Request dialog box opens.

2. Select the Options tab.
3. Select the Ignore Invalid Component Version check box.
4. Complete the import procedure.

If this does not resolve the issue or if your system runs on an SAP version with a
different table structure, OpenText recommends that you export your ABAP file
structure using your own technology so that OpenText SAST can scan the

ABAP code.

This PDF was generated on January 16, 2026 Page 308 of 610

m opentext- Static Application Security Testing 26.1

1.29.3. Adding OpenText SAST to your
Favorites list

Adding OpenText SAST to your Favorites list is optional, but doing so can make it
quicker to access and start OpenText SAST scans. The following steps assume that
you use the user menu in your day-to-day work. If your work is done from a different
menu, add the Favorites link to the menu that you use. Before you create the
OpenText SAST entry, make sure that the SAP server is running and you are in the
SAP Easy Access area of your web-based client.

To add OpenText SAST to your Favorites list:

1. From the SAP Easy Access menu, type S000 in the transaction box.
The SAP Menu opens.
2. Right-click the Favorites folder and select Insert transaction.
The Manual entry of a transaction dialog box opens.
3. Type YSCA in the Transaction Code box.
4. Click the green check mark icon.
The Extract ABAP code and launch SCA item appears in the Favorites list.

5. Click the Extract ABAP code and launch SCA link to start the Fortify
ABAP Extractor.

This PDF was generated on January 16, 2026 Page 309 of 610

m opentext- Static Application Security Testing 26.1

1.29.4. Running the Fortify ABAP
Extractor

To run the Fortify ABAP Extractor:

1. Start the Fortify ABAP Extractor from the Favorites link, the transaction code, or
manually start the Extractor object.

This opens the Fortify ABAP Extractor.
2. Select the code to download.

Provide the start and end name for the range of software components,
packages, programs, or BSP applications that you want to scan.

Note

You can specify multiple objects or ranges.

3. Provide the OpenText SAST-specific parameters described in the following table.

This PDF was generated on January 16, 2026 Page 310 of 610

m opentext- Static Application Security Testing 26.1

Field Description

FPR File Path .
(Optional) Type or select the

directory where you want to store
the scan results file (FPR). Include
the name for the FPR file in the path
name. You must provide the FPR file
path to automatically scan the
downloaded code on the same
machine where you are running the
extraction process.

Working Director
g y Type or select the directory where

you want to store the extracted
source code.

Build-ID (Optional) Type the build ID for the
scan. OpenText SAST uses the build
ID to identify the translated source
code, which is necessary to scan
the code. You must specify the build
ID to automatically translate the
downloaded code on the same
machine where you are running the
extraction process.

Translation Parameters (Optional) Type any additional
OpenText SAST command-line
translation options. You must specify
translation options to automatically
translate the downloaded code on
the same machine where you are
running the extraction process or to
customize the translation options.

This PDF was generated on January 16, 2026 Page 311 of 610

m opentext- Static Application Security Testing 26.1

Field Description

Scan Parameters .
(Optional) Type any OpenText SAST

command-line scan options. You
must specify scan options to scan
the downloaded code automatically
on the same machine where you are
running the extraction process or to
customize the scan options.

ZIP File Name
(Optional) Type a ZIP file name if you
want your output in a compressed
package.

Maximum Call-chain Depth A global SAP-function F is not

downloaded unless F was explicitly
selected or unless F can be reached
through a chain of function calls that
start in explicitly-selected code and
whose length is this number or less.
OpenText recommends that you do
not specify a value greater than 2
unless directed to do so by
Customer Support.

4. Provide action information described in the following table.

This PDF was generated on January 16, 2026 Page 312 of 610

3 opentext"

Field

Download

Build

Scan

Launch AWB

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Select the Download check box to
have OpenText SAST download the
source code extracted from your
SAP database.

Select the Build check box to have
OpenText SAST translate all
downloaded ABAP code and store it
using the specified build ID. This
action requires that you have an
installed version of OpenText SAST
on the machine where you are
running the Fortify ABAP Extractor. It
is often easier to move the
downloaded source code to a
system where OpenText SAST is
installed.

Select the Scan check box to have
OpenText SAST run a scan of the
specified build ID. This action
requires that the translate (build)
action was previously performed.
This action requires that you have an
installed version of OpenText SAST
on the machine where you are
running the Fortify ABAP Extractor. It
is often easier to move the
downloaded source code to a
predefined OpenText SAST machine.

Select the Launch AWB check box
to start Fortify Audit Workbench and
open the specified FPR file.

Page 313 of 610

3 opentext"

Field

Create ZIP File

Export SAP standard code

5. Click Execute.

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Select the Create ZIP File check box
to compress the output. You can
also manually compress the output
after the source code is extracted
from your SAP database.

Select the Export SAP standard
code check box to export SAP
standard code as well as custom
code.

Page 314 of 610

m opentext- Static Application Security Testing 26.1

1.29.5. Uninstalling the Fortify ABAP
Extractor

To uninstall the ABAP extractor:

1. In ABAP Workbench, open the Object Navigator.
2. Select package Y_FORTIFY_ABAP.
3. Expand the Programs tab.

4. Right-click the following element, and then select Delete.

o Program: Y_FORTIFY_SCA

This PDF was generated on January 16, 2026 Page 315 of 610

3 opentext" Static Application Security Testing 26.1

1.30. Analyzing COBOL code

The COBOL translation runs on Windows systems only and supports modern
COBOL dialects. Alternatively, you can use the legacy COBOL translation (see Using
the Legacy COBOL Translation).

For a list of supported technologies for translating COBOL code, see Supported
languages. OpenText SAST does not currently support custom rules for COBOL
applications.

Note

B To scan COBOL with OpenText SAST, you must have an OpenText SAST
license file that specifically includes COBOL scanning capabilities.
Contact Customer Support for more information about how to obtain the
required license file.

This section contains the following topics:

e Preparing COBOL source and copybook files for translation
o COBOL command-line syntax
e Using Legacy COBOL translation

This PDF was generated on January 16, 2026 Page 316 of 610

m opentext- Static Application Security Testing 26.1

1.30.1. Preparing COBOL source and
copybook files for translation

Before you can analyze a COBOL program, you must copy the following program
components to the Windows system where you run OpenText SAST:

e COBOL source code

OpenText strongly recommends that your COBOL source code files have
extensions .CBL, .cbl, .COB, or .cob . If your source code files do not have
extensions or have non-standard extensions, you must follow the instructions in
Translating COBOL Source Files Without File Extensions and Translating
COBOL Source Files with Arbitrary File Extensions.

» All copybook files that the COBOL source code uses

This includes All SQL INCLUDE files that the COBOL source code references (a
SQL INCLUDE file is technically a copybook file)

Important

The copybook files must have the extension .CPY or .cpy .

If your COBOL source code contains:
COPY FOO
or

EXEC SQL INCLUDE FOO END-EXEC

then FOO is the name of a COBOL copybook and the corresponding copybook
file has the name FOO.CPY or FOO.cpy .

OpenText recommends that you place your COBOL source code files in a directory
called sources and your copybook files in a directory called copybooks . Create
these directories at the same level.

This PDF was generated on January 16, 2026 Page 317 of 610

m opentext- Static Application Security Testing 26.1

1.30.2. COBOL command-line syntax

The basic syntax used to translate a single COBOL source code file is:

sourceanalyzer -b <build id><path>

The basic syntax used to scan a translated COBOL program and save the analysis
results in an FPR file is:

sourceanalyzer -b <build id> -scan -f <results>.fpr

See Also

Specifying Files and Directories

This PDF was generated on January 16, 2026 Page 318 of 610

m opentext- Static Application Security Testing 26.1

1.30.2.1. Translating COBOL source files
without file extensions

If you have COBOL source files (not copybook files) retrieved from a mainframe
without .COB or .CBL file extensions (which is typical for COBOL file names), then
you must include the following in the translation command line:

-noextension-type COBOL

The following example command translates COBOL source code without file
extensions:

sourceanalyzer -b MyProject -noextension-type COBOL -copydirs
copybooks sources

This PDF was generated on January 16, 2026 Page 319 of 610

m opentext- Static Application Security Testing 26.1

1.30.2.2. Translating COBOL source files
with arbitrary file extensions

If you have COBOL source files with an arbitrary extension .Xyz , then you must
include the following in the translation command line:

-Dcom. fortify.sca.fileextensions.xyz=C0BOL

You must also include the expression *xyz in the file or directory specifier, if any
(see Specifying Files and Directories).

This PDF was generated on January 16, 2026 Page 320 of 610

m opentext- Static Application Security Testing 26.1

1.30.2.3. COBOL command-line options

The following table describes the COBOL command-line options. To use legacy
COBOL translation, see Legacy COBOL Translation Command-Line Options.

This PDF was generated on January 16, 2026 Page 321 of 610

m opentext- Static Application Security Testing 26.1

COBOL option Description

-copydirs <dirs> Specifies one or more semicolon-
separated directories where OpenText
SAST looks for copybook files.

Note

This option does not
accept wildcards.

Equivalent property nhame:
com.fortify.sca.CobolCopyDirs

-dialect <dialect> Specifies the COBOL dialect. The valid
values for <dialect>are COBOL390
and MICROFOCUS . The dialect value
is case insensitive. The default value is

COBOL390 .

Equivalent property name:
com.fortify.sca.CobolDialect

-checker-directives <directives> Specifies one or more semicolon-
separated COBOL checker directives.

Note

5 This option is intended for
advanced users of
OpenText™ Server Express.

Equivalent property nhame:
com.fortify.sca.CobolCheckerDirective
S

This PDF was generated on January 16, 2026 Page 322 of 610

3 opentext" Static Application Security Testing 26.1

1.30.3. Using Legacy COBOL translation

Use the legacy COBOL translation if either of the following is true:

e You run OpenText SAST on a non-Windows operating system.

For supported non-Windows platforms and architectures, see Platforms and
architectures.

e Your COBOL dialect is different than what is supported by the default
COBOL translation (see the -dialect option in COBOL Command-Line Options).

Prepare the COBOL source code and copybook files as described in Preparing
COBOL Source and Copybook Files for Translation and use the command-line syntax
described in COBOL Command-Line Syntax. Note that the legacy COBOL translation
accepts copybook files with or without file extensions. If the copybook files have file
extensions, use the -copy-extensions command-line option (see Legacy

COBOL Translation Command-Line Options).

This PDF was generated on January 16, 2026 Page 323 of 610

m opentext- Static Application Security Testing 26.1

1.30.3.1. Legacy COBOL translation
command-line options

The following table describes the command-line options for the legacy
COBOL translation.

This PDF was generated on January 16, 2026 Page 324 of 610

m opentext- Static Application Security Testing 26.1

Legacy COBOL option Description

-cobol-legac
S Specifies translation of COBOL code

using legacy COBOL translation. This
option is required to enable legacy
COBOL translation.

Equivalent Property Name:
com.fortify.sca.CobolLegacy

-copydirs <dirs> Specifies one or more semicolon- or
colon-separated directories where
OpenText SAST looks for copybook
files.

Equivalent Property Name:
com.fortify.sca.CobolCopyDirs

-copy-extensions <ext> Specifies one or more semicolon- or
colon-separated copybook file
extensions.

Equivalent Property Name:
com.fortify.sca.CobolCopyExtensions

This PDF was generated on January 16, 2026 Page 325 of 610

m opentext- Static Application Security Testing 26.1

Legacy COBOL option Description

-fixed-format Specifies fixed-format COBOL to direct
OpenText SAST to only look for source
code between columns 8-72 in all lines
of code. The default is free-format.

IBM® Enterprise COBOL code is

typically fixed-format. The following
are indications that you might need the
-fixed-format option:

o The COBOL translation appears to
hang indefinitely

o OpenText SAST reports numerous
parsing errors in the
COBOL translation

Equivalent Property Name:
com.fortify.sca.CobolFixedFormat

This PDF was generated on January 16, 2026 Page 326 of 610

m opentext- Static Application Security Testing 26.1

1.31. Analyzing SQL

On Windows (and Linux for .NET projects only), OpenText SAST assumes that files
with the .sqgl extension are T-SQL rather than PL/SQL. If you have PL/SQL files with
the .sqgl extension on Windows, you must configure OpenText SAST to treat them as
PL/SQL.

The basic syntax to translate and scan PL/SQL is:
sourceanalyzer -b <build id> -sql-language PL/SQL <files>

sourceanalyzer -b <build id> -sql-language PL/SQL -scan -f
<results>.fpr

Alternatively, you can change the default behavior for files with the .sgl extension. In
the fortify-sca.properties file, set the com.fortify.sca.fileextensions.sqgl property to
PLSQL .

The basic syntax to translate and scan T-SQL is:

sourceanalyzer -b <build id> -sql-language TSQL <files>
sourceanalyzer -b <build id> -scan -f <results>.fpr

SQL Properties

This PDF was generated on January 16, 2026 Page 327 of 610

m opentext- Static Application Security Testing 26.1

1.31.1. PL/SQL command-line example

The following example commands translate and scan two PL/SQL files:

sourceanalyzer -b MyProject -sql-language PL/SQL x.pks y.pks
sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f
MyResults.fpr

The following example commands translate and scan all PL/SQL files in the sources
directory:

sourceanalyzer -b MyProject -sql-language PL/SQL
“sources/**/*.pks"

sourceanalyzer -b MyProject -sql-language PL/SQL -scan -f
MyResults.fpr

This PDF was generated on January 16, 2026 Page 328 of 610

m opentext- Static Application Security Testing 26.1

1.31.2. T-SQL command-line example

The following example translates two T-SQL files:
sourceanalyzer -b MyProject x.sql y.sql
The following example translates all T-SQL files in the sources directory:

sourceanalyzer -b MyProject "sources***.sql"

Note
This example assumes the com.fortifv.sca.fileextensions.sqgl property in

fortify-sca.properties is setto TSQL , which is the property's default
value.

This PDF was generated on January 16, 2026 Page 329 of 610

m opentext- Static Application Security Testing 26.1

1.32. Analyzing Infrastructure as Code
(1aC)

OpenText SAST understands Azure Resource Manager (ARM), Bicep, AWS
CloudFormation, and HCL templates.

Note

HCL analysis support is specific to Terraform and supported cloud
provider Infrastructure as Code (laC) configurations.

For best results, make sure that the template files are deployment valid. The templates
must not contain:

» Validation errors that are static and locally detectable (for example, type errors or
references to undefined variables or functions).

* Predeployment errors that occur during template interpretation, but before any
resources are deployed or modified (for example, invalid array indexing
operations).

o Deployment errors that occur in the cloud (for example, dynamically referencing a
non-existent resource).

OpenText recommends that AWS CloudFormation file name extensions are .json ,
.yaml , .template , or .txt . OpenText SAST supports other extensions only if they
are not commonly used by other languages or file types (such as .java or .html).

By default, OpenText SAST translates files with the HCL extensions .hcl and .tf .

ARM translation command-line examples

Translate an ARM template:
sourceanalyzer -b MyProject ArmTemplate.json
Translate all ARM templates in a directory:

sourceanalyzer -b MyProject "src/**/*.json"

Bicep translation command-line examples

This PDF was generated on January 16, 2026 Page 330 of 610

3 opentext" Static Application Security Testing 26.1
Translate a single Bicep template:

sourceanalyzer -b MyProject BicepTemplate.bicep
Translate all Bicep templates in a directory:

sourceanalyzer -b MyProject "src/**/*.bicep"

Important

Bicep requires an Internet connection on the scan machine to download
dependencies to get optimal results. Using a scan machine without
Internet connection may results in suboptimal results.

AWS CloudFormation translation command-line
examples

Translate AWS CloudFormation templates that have different extensions:

sourceanalyzer -b MyProject CFTemplateA.template
CFTemplateB.yaml CFTemplateC.json CFTemplateD.customext

Translate all AWS CloudFormation templates in a directory that have the .template
extension:

sourceanalyzer -b MyProject "src/**/*.template"

Translate all AWS CloudFormation templates in a directory that have either the .json
or .yaml extension:

sourceanalyzer -b MyProject "src/**/*.json" "src/**/*.yaml"

HCL translation command-line examples

Translate two HCL templates with different extensions:
sourceanalyzer -b MyProject HCLTemplateA.hcl HCLTemplateB.tf
Translate all HCL templates in a directory:

This PDF was generated on January 16, 2026 Page 331 of 610

m opentext- Static Application Security Testing 26.1

sourceanalyzer -b MyProject "src/**/*.tf" "src/**/*.hcl"

Important

Terraform requires an to internet connection on the scan machine to
download dependencies to get optimal results. Using a scan machine
without internet connection may results in suboptimal results.

Translating JSON

Translating YAML

This PDF was generated on January 16, 2026 Page 332 of 610

m opentext- Static Application Security Testing 26.1

1.33. Analyzing JSON

By default, OpenText SAST translates files with the JSON extension .json as JSON.
The following example translates a JSON file:

sourceanalyzer -b MyProject x.json

The following example translates all JSON files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.json"

This PDF was generated on January 16, 2026 Page 333 of 610

m opentext- Static Application Security Testing 26.1

1.34. Analyzing YAML

By default, OpenText SAST translates files with the YAML extensions .yaml and
.yml . The following example translates two YAML files with different file extensions:

sourceanalyzer -b MyProject x.yaml y.yml
The following example translates all YAML files in the sources directory:

sourceanalyzer -b MyProject "sources/**/*.yaml"
"sources/**/* . yml"

This PDF was generated on January 16, 2026 Page 334 of 610

m opentext- Static Application Security Testing 26.1

1.35. Analyzing Dockerfiles

By default, OpenText SAST recognizes the files as Dockerfiles if they are named in
one of the following formats: Dockerfile* , dockerfile* , *Dockerfile , and
* dockerfile .

Note

You can modifv the file name extension used to detect Dockerfiles using
the com.fortify.sca.fileextensions property. See Translation and Analysis
Phase Properties.

OpenText SAST accepts the following escape characters in Dockerfiles: backslash
(\) and backquote ("). If the escape character is not set in the Dockerfile, then
OpenText SAST assumes that the backslash is the escape character.

The syntax to translate a directory that contains Dockerfiles is shown in the following
example:

sourceanalyzer -b <build id> <dir>

If the Dockerfile is malformed, OpenText SAST writes an error to the log file to
indicate that the file cannot be parsed and skips the analysis of the Dockerfile. The
following is an example of the error written to the log:

Unable to parse dockerfile ProjA.Dockerfile, error on Line 1:20:
mismatched input '\n' expecting {LINE EXTEND, WHITESPACE}

Unable to parse config file
C:/Users/jsmith/MyProj/docker/dockerfile/ProjA.Dockerfile

This PDF was generated on January 16, 2026 Page 335 of 610

m opentext- Static Application Security Testing 26.1

1.36. Analyzing Bash code

This section describes how to analyze Bash projects. For projects combined with
other files, see the relevant section for those languages.

This section contains the following topics:

o Bash analysis prerequisites
e Bash translation syntax

This PDF was generated on January 16, 2026 Page 336 of 610

m opentext- Static Application Security Testing 26.1

1.36.1. Bash analysis prerequisites

Currently, Bash code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, Bash code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 337 of 610

m opentext- Static Application Security Testing 26.1

1.36.2. Bash translation syntax

To include Bash code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze Bash code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.sh”

Important
Supported file extensions for the Bash source files are: .sh, .bash .

This PDF was generated on January 16, 2026 Page 338 of 610

m opentext- Static Application Security Testing 26.1

1.37. Analyzing PowerShell code

This section describes how to analyze PowerShell projects. For projects combined
with other files, see the relevant section for those languages.

This section contains the following topics:

o PowerShell analysis prerequisites
o PowerShell translation syntax

This PDF was generated on January 16, 2026 Page 339 of 610

m opentext- Static Application Security Testing 26.1

1.37.1. PowerShell analysis prerequisites

Currently, PowerShell code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, PowerShell code will only be scanned via
Regular Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 340 of 610

m opentext- Static Application Security Testing 26.1

1.37.2. PowerShell translation syntax

To include PowerShell code for analysis using Al-powered SAST, include all source
files that you want to analyze.

Use the following basic command-line syntax to analyze PowerShell code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/* ps1 "

Important

Supported file extensions for the PowerShell source files are: .ps1,
.psm1, .psdl, .psdixml.

This PDF was generated on January 16, 2026 Page 341 of 610

m opentext- Static Application Security Testing 26.1

1.38. Analyzing R code

This section describes how to analyze R projects. For projects combined with other
files, see the relevant section for those languages.

This section contains the following topics:

e R analysis prerequisites
e R translation syntax

This PDF was generated on January 16, 2026 Page 342 of 610

m opentext- Static Application Security Testing 26.1

1.38.1. R analysis prerequisites

Currently, R code is only compatible with Al-powered SAST. For more
information about configuring scans for Al-powered SAST, see Analyzing using Al-
powered SAST.

If Al-powered SAST is not configured, R code will only be scanned via Regular
Expression Analysis and users may see suboptimal results.

This PDF was generated on January 16, 2026 Page 343 of 610

m opentext- Static Application Security Testing 26.1

1.38.2. R translation syntax

To include R code for analysis using Al-powered SAST, include all source files that
you want to analyze.

Use the following basic command-line syntax to analyze R code:
sourceanalyzer -b <build id> <files> | <file dir specifiers>

See Specifying files and directories for more information.

Example

sourceanalyzer -b <build id> "**/*.r "

Important
Supported file extensions for the R source files are: .r, .R.

This PDF was generated on January 16, 2026 Page 344 of 610

m opentext- Static Application Security Testing 26.1

1.39. Analyzing Solidity code

The basic command-line syntax to translate and scan Solidity code is:

sourceanalyzer -b <build id> <files>
sourceanalyzer -b <build id> -scan -f <results>.fpr

Importing dependencies

OpenText SAST translation only supports import statements for files with relative and
absolute paths. Import statements for libraries is not supported.

Managing compiler versions

OpenText SAST downloads compilers that are referenced in the code with the pragma
statement from the Solidity compiler repository. By default, OpenText SAST
downloads Solidity compilers to ${flight.workdir}/solidity .

If a file does not contain a pragma statement, then the default of *0.8.0 is used. You
can specify different default compiler version to use in the analysis by including the
flight.solidity.defaultCompilerVersion property on the command line. The version
you specify must exist in the Solidity compiler repository. For example:

sourceanalyzer -b MyProject ./
sourceanalyzer -b MyProject -scan -
Dflight.solidity.defaultCompilerVersion=0.8.16 -f MyResults.fpr

If a proxy is required for the connection to download Solidity compilers, include the
proxy information with -Dhttps.proxyHost and -Dhttps.proxyPort . For example:

sourceanalyzer -b MyProject ./
sourceanalyzer -b MyProject -scan -Dhttps.proxyHost=MyProxyHost
-Dhttps.proxyPort=1234 -f MyResults.fpr

You can add flight.solidity.defaultCompilerVersion to the fortify-sca.properties file.
See Also

OpenText SAST Properties Files

This PDF was generated on January 16, 2026 Page 345 of 610

3 opentext" Static Application Security Testing 26.1

1.40. Analyzing other languages and
configurations

This section contains the following topics:

e Analyzing Flex and ActionScript

e Analyzing ColdFusion code

» Analyzing ASP/VBScript virtual roots
e Classic ASP command-line example
e VBScript command-line example

This PDF was generated on January 16, 2026 Page 346 of 610

m opentext- Static Application Security Testing 26.1

1.40.1. Analyzing Flex and ActionScript

The basic command-line syntax to translate ActionScript is:
sourceanalyzer -b <build id> -flex-libraries <libs> <files>

where:

<libs> is a semicolon-separated (Windows) or a colon-separated (non-Windows) list
of library names to which you want to "link" and <files> are the files to translate.

This PDF was generated on January 16, 2026 Page 347 of 610

m opentext- Static Application Security Testing 26.1

1.40.1.1. Flex and ActionScript command-
line options

Use the following command-line options to translate Flex files. You can also specify
this information in the properties configuration file (fortify-sca.properties) as noted
in each description.

This PDF was generated on January 16, 2026 Page 348 of 610

m opentext- Static Application Security Testing 26.1

Flex and ActionScript option Description

-flex-sdk-root <dir> Specifies the location of the root of a
valid Flex SDK. This directory must
contain a frameworks folder that
contains a flex-config.xml file. It must
also contain a bin folder that contains
an MXMLC executable.

Equivalent property name:
com.fortify.sca.FlexSdkRoot

-flex-libraries </ibs> Specifies a semicolon-separated

(Windows) or a colon-separated (non-
Windows) list of library names to which
you want to link. In most cases, this list
includes flex.swc , framework.swc ,
and playerglobal.swc (usually found
in frameworks/libs/ in your Flex SDK
root).

Note

You can specify SWC or
SWEF files as Flex libraries
(SWZ is not currently
supported).

Equivalent property name:
com.fortify.sca.FlexLibraries

This PDF was generated on January 16, 2026 Page 349 of 610

m opentext- Static Application Security Testing 26.1

Flex and ActionScript option Description

-flex-source-roots <dirs> Specifies a semicolon-separated
(Windows) or a colon-separated (non-
Windows) list of root directories where
MXML sources are located. Normally,
these contain a subfolder named
com .

For example, if the Flex source root
specified is foo/bar/src , then
foo/bar/src/com/fortify/manager/util/F
oo.mxml is transformed into an object
named com.fortify.manager.util.Foo
(an object named Foo in the package
com.fortify.manager.util).

Equivalent property name:
com.fortify.sca.FlexSourceRoots

Note

The -flex-sdk-root and —flex-source-roots options are primarily for
MXML translation. and are optional if you are scanning pure ActionScript.
Use —flex-libraries for to resolve all ActionScript linked libraries.

OpenText SAST translates MXML files into ActionScript, and then runs them through
an ActionScript parser. The generated ActionScript is simple to analyze; not
rigorously correct like the Flex runtime model. Consequently, you might get parse
errors with MXML files. For instance, the XML parsing might fail, translation to
ActionScript might fail, and the parsing of the resulting ActionScript might also fail. If
you see any errors that do not have a clear connection to the original source code,
notify Customer Support.

Flex and ActionScript Properties

This PDF was generated on January 16, 2026 Page 350 of 610

m opentext- Static Application Security Testing 26.1

1.40.1.2. ActionScript command-line
examples

The following examples provide command-line syntax to translation ActionScript.
Example 1

The following example is for a simple application that contains only one MXML file
and a single SWF library (MyLib.swf):

sourceanalyzer -b MyFlexApp -flex-libraries lib/MyLib.swf -flex-
sdk-root /home/myself/flex-sdk/ -flex-source-roots
my/app/FlexApp.mxml

This identifies the location of the libraries to include and the Flex SDK and the Flex
source root locations. The single MXML file, located in /my/app/FlexApp.mxml ,
results in the translation of the MXML application as a single ActionScript class called
FlexApp and located in the my.app package.

Example 2

The following example is for an application in which the source files are relative to the
src directory. It uses a single SWF library, MyLib.swf , and the Flex and framework
libraries from the Flex SDK:

sourceanalyzer -b MyFlexProject -flex-sdk-root /home/myself/flex-sdk/
-flex-source-roots src/ -flex-libraries lib/MyLib.swf "src/**/*mxmI" "src/**/*.as"

This example locates the Flex SDK and uses file specifiers to include the .as and
.mxml files inthe src folder. It is not necessary to explicitly specify the .SWC files
located in the —flex-sdk-root , although this example does so for the purposes of
illustration. OpenText SAST automatically locates all .SWC files in the specified Flex
SDK root, and it assumes that these are libraries intended for use in translating
ActionScript or MXML files.

Example 3

In this example, the Flex SDK root and Flex libraries are specified in the properties file
because typing the information for each sourceanalyzer run is time consuming and
the data does not change often. Divide the application into two sections and store
them in folders: a main section folder and a modules folder. Each folder contains a
src folder where the paths start. File specifiers contain wild cards to pick up all the

This PDF was generated on January 16, 2026 Page 351 of 610

m opentext- Static Application Security Testing 26.1

.mxml and .as files in both src folders. An MXML file in
main/src/com/foo/util/Foo.mxml is translated as an ActionScript class named Foo
in the package com.foo.util , for example, with the source roots specified here:

sourceanalyzer -b MyFlexProject -flex-source-roots
main/src:modules/src "./main/src/**/* mxml" "./main/src/**/* . as"
", /modules/src/**/* . mxml" "./modules/src/**/*.as"

This PDF was generated on January 16, 2026 Page 352 of 610

m opentext- Static Application Security Testing 26.1

1.40.1.3. Handling resolution warnings

To see all warnings that were generated during translation, type the following
command before you start the scan phase:

sourceanalyzer -b <build id> -show-build-warnings

ActionScript warnings

You might receive a message similar to the following:

The ActionScript front end was unable to resolve the following
imports:
a.b at y.as:2. foo.bar at somewhere.as:5. a.b at foo.mxml:8.

This error occurs when OpenText SAST cannot find all the required libraries. You
might need to specify additional SWC or SWF Flex libraries (using the -flex-libraries
option or the com.fortify.sca.FlexLibraries property) so that OpenText SAST can
complete the analysis.

This PDF was generated on January 16, 2026 Page 353 of 610

m opentext- Static Application Security Testing 26.1

1.40.2. Analyzing ColdFusion code

To treat undefined variables in a CFML page as tainted, uncomment the following line
in <sast_install_dir>/Core/config/fortify-sca.properties :

#com.fortify.sca.CfmlUndefinedVariablesAreTainted=true

This instructs the Dataflow Analyzer to watch out for register-globals-style
vulnerabilities. However, enabling this property interferes with Dataflow Analyzer
findings in which a variable in an included page is initialized to a tainted value in an
earlier-occurring included page.

This PDF was generated on January 16, 2026 Page 354 of 610

m opentext- Static Application Security Testing 26.1

1.40.2.1. ColdFusion command-line
syntax

The basic command-line syntax to translate ColdFusion source code is:

sourceanalyzer -b <build id> -source-base-dir <dir> <files> |
<file specifiers>

where:

e <build_id> specifies a build ID for the project
e <dir> specifies the root directory of the web application

. <files> | <file_specifiers> specifies the CFML source code files

For a description of how to use <file_specifiers> , see Specifying Files.

Note

e OpenText SAST calculates the relative path to each CFML source file with
the
-source-base-dir directory as the starting point. OpenText SAST uses
these relative paths when it generates instance IDs. If you move the entire
application source tree to a different directory, the OpenText SAST-
generated instance IDs remain the same if you specify an appropriate
parameter for the -source-base-dir option.

This PDF was generated on January 16, 2026 Page 355 of 610

m opentext- Static Application Security Testing 26.1

1.40.2.2. ColdFusion (CFML) command-
line options

The following table describes the CFML options.

ColdFusion option Description

-source-base-dir The web application root directory.
<web_app_root_dir> <files> |

. . Equivalent property name:
<file_specifiers> 9 property

com.fortify.sca.SourceBaseDir

ColdFusion (CFML) Properties

This PDF was generated on January 16, 2026 Page 356 of 610

m opentext- Static Application Security Testing 26.1

1.40.3. Analyzing ASP/VBScript virtual
roots

OpenText SAST allows you to handle ASP virtual roots. For web servers that use
virtual directories as aliases that map to physical directories, OpenText SAST enables
you to use an alias.

For example, you can have virtual directories named Include and Library that refer
to the physical directories C:\WebServer\CustomerOne\inc and
C:\WebServer\CustomerTwo\Stuff , respectively.

The following example shows the ASP/VBScript code for an application that uses
virtual includes:

<!--#include virtual="Include/Taskl/foo.inc"-->

For this example, the previous ASP code refers to the file in the following physical
location:

C:\Webserver\CustomerOne\inc\Taskl\foo.inc

The real directory replaces the virtual directory name Include in this example.

Accommodating virtual roots

To provide the mapping of each virtual directory to OpenText SAST, you must set the
com.fortify.sca.ASPVirtualRoots.name_of_virtual_directory property in your
OpenText SAST command-line invocation as shown in the following example:

sourceanalyzer -Dcom.fortify.sca.ASPVirtualRoots.
<virtual directory>=
<full path to corresponding physical directory>

Note

On Windows, if the physical path includes spaces, you must enclose the
propertv settina in auotes:

sourceanalvzer "-Dcom.fortifv.sca.ASPVirtualRoots. <virtual_directory >=
<full_path_to_corresponding_physical_directory>"

This PDF was generated on January 16, 2026 Page 357 of 610

m opentext- Static Application Security Testing 26.1

To expand on the example in the previous section, pass the following property value
to OpenText SAST:

Dcom.fortify.sca.ASPVirtualRoots.Include="C:\WebServer\Customer0
ne\inc"

Dcom.fortify.sca.ASPVirtualRoots.Library="C:\WebServer\CustomerT
wo\Stuff"

This maps Include to C:\WebServer\CustomerOne\inc and Library to
C:\WebServer\CustomerTwo\Stuff .

When OpenText SAST encounters the #include directive:

<!-- #include virtual="Include/Taskl/foo.inc" -->

OpenText SAST determines if the project contains a physical directory named
Include . If there is no such physical directory, OpenText SAST looks through its
runtime properties and finds the -Dcom.fortify.sca.ASPVirtualRoots.Include=

"C:\WebServer\CustomerOne\inc" setting. OpenText SAST then looks for this file:
C:\WebServer\CustomerOne\inc\Task1\foo.inc .

Alternatively, you can set this property in the fortify-sca.properties file located in
<sast_install_dir>\Core\config . You must escape the backslash character (\) in the
path of the physical directory as shown in the following example:

com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerT
wo\\Stuff
com.fortify.sca.ASPVirtualRoots.Include=C:\\WebServer\\Customer0
ne\\inc

Note

5 The previous version of the ASPVirtualRoot property is still valid. You can
use it on the OpenText SAST command line as follows:

-Dcom.fortify.sca.ASPVirtualRoots=C:\WebServer\CustomerTwo\Stuff;

C:\WebServer\CustomerOne\inc

This PDF was generated on January 16, 2026 Page 358 of 610

m opentext- Static Application Security Testing 26.1

This prompts OpenText SAST to search through the listed directories in the order
specified when it resolves a virtual include directive.

Using virtual roots example

You have a file as follows:
C:\files\foo\bar.asp

To specify this file, use the following include:

<!-- #include virtual="/foo/bar.asp">

Then set the virtual root in the sourceanalyzer command as follows:

-Dcom. fortify.sca.ASPVirtualRoots=C:\files\foo

This strips the /foo from the front of the virtual root. If you do not specify foo in the
com.fortify.sca.ASPVirtualRoots property, then OpenText SAST looks for
C:\files\bar.asp and fails.

The sequence to specify virtual roots is as follows:

1. Remove the first part of the path in the source.
2. Replace the first part of the path with the virtual root as specified on the
command line.

This PDF was generated on January 16, 2026 Page 359 of 610

3 opentext"

Static Application Security Testing 26.1

1.40.4. Classic ASP command-line
example

To translate a single file classic ASP written in VBScript named MyASP.asp , type:

sourceanalyzer -b mybuild "MyASP.asp"

This PDF was generated on January 16, 2026 Page 360 of 610

m opentext- Static Application Security Testing 26.1

1.40.5. VBScript command-line example

To translate a VBScript file named myApp.vb , type:

sourceanalyzer -b mybuild "myApp.vb"

This PDF was generated on January 16, 2026 Page 361 of 610

m opentext- Static Application Security Testing 26.1

1.41. Analyzing Library code

Library code refers to reusable software components or modules that are designed to
be integrated into other applications. Unlike application code, which contains the
business logic and entry points of a specific program, library code is typically:

e Generic and reusable across multiple projects

e Lacks a main entry point (e.g., main() method)

» Provides functionality that other applications consume (e.g., utility classes,
frameworks, SDKs)

As library code is intended to be called from other application code, it typically will
not provide interfaces for user-controllable data itself, minimizing the results that
SAST technologies can typically find.

Library code and application code comparision

Feature Application code Library code
Entry point Typically, yes No
Purpose Implement business Provides reusable
logic functionality
Usage Standalone or deployed Embedded in other apps
Analysis focus Full program behavior API exposure and usage
patterns

Analyzing library code effectively

To scan library code effectively, you should configure the OpenText SAST to treat the
code as a library.

Translate the code as normal as per the language. Go to the appropriate section of
this user guide for finding more information about analyzing the appropriate language.

This PDF was generated on January 16, 2026 Page 362 of 610

m opentext- Static Application Security Testing 26.1
Once ready to scan, set the following property during the scan step:

com.fortify.sca.rules.IsLibrary=true

When this property is enabled, the analysis engine understands to mimic calls from an
outside application calling the library code in order to provide a more thorough
analysis.

Other use cases

In addition to libraries, there are many declarative endpoint frameworks that make
application code appear similar to library code.

If your web APl is using a framework that we do not currently have coverage for (see
[Supported technologies]), then enabling this property may also mimic coverage of
the framework, though it may also lead to some additional incorrect flows.

Note
e This feature is currently supported only for Java code.

Caution

A Enabling the property mimics outside code calling into the application,
vastly increasing the attack surface, which can lead to significantly more
issues and use more resources. This should generally not be enabled on
application code except for the stated use cases or unless advised to. In
addition, this property does not need to be enabled to support the many
declarative endpoint frameworks that we already have coverage for, such
as Spring Boot and JAX-RS.

This PDF was generated on January 16, 2026 Page 363 of 610

m opentext- Static Application Security Testing 26.1

1.42. Scanning for Secrets

OpenText SAST scans are made up a series of analyzers, one of which is able to find
information generally across any file type. This enables OpenText SAST to find
information hidden in plain view such as secrets, and weaknesses that may be
vulnerable agnostic of programming language, such as using attacks involving
invisible control characters.

For more information on how to configure this, see Regular expression analysis.

This PDF was generated on January 16, 2026 Page 364 of 610

m opentext- Static Application Security Testing 26.1

1.42.1. Regular expression analysis

Regular expression (regex) analysis provides the ability for using regular expression
rules to detect vulnerabilities in both file content and file names. This analysis can
detect vulnerable secrets such as passwords, keys, and credentials in project files.

Important

Regex analysis is language agnostic and therefore it might detect
vulnerabilities in file types that OpenText SAST does not officially support.

Regex analysis recursively examines all file paths and path patterns included in the
translation phase. Every file found is analyzed unless it is specifically excluded. To
manage the files that are included in regex analysis, the following options are
available:

» Exclude any file or directory with the -exclude option in the translation phase.
For more information about this option, see Translation Options.

o By default, regex analysis excludes all detectible binary files. To include binary
files in the analysis, add the following property to the fortify-sca.properties file
(or include this property on the command line using the -D option):

com.fortify.sca.regex.ExcludeBinaries = false

» By default, regex analysis excludes files larger than 10 MB to ensure that the
scan time is acceptable. You can change the maximum file size (in megabytes)
with the following property:

com.fortify.sca.regex.MaxSize = <max_file_size_mb>

Regex analysis is enabled by default. To disable regex analysis, add the following
property to the fortify-sca.properties file or include it on the command line:

com.fortify.sca.regex.Enable = false

Regex Analysis Properties

This PDF was generated on January 16, 2026 Page 365 of 610

m opentext- Static Application Security Testing 26.1

1.43. Optimizing results

This section provides guidelines and tips to optimize results when analyzing different
codebases with OpenText SAST.

This PDF was generated on January 16, 2026 Page 366 of 610

m opentext- Static Application Security Testing 26.1

1.43.1. Applying a scan policy to the
analysis
For the analysis (scan) phase, you can specify a scan policy to help you identify the

most serious vulnerabilities so you can remediate the code quickly. The following
table describes the three provided scan policies.

This PDF was generated on January 16, 2026 Page 367 of 610

m opentext- Static Application Security Testing 26.1

Policy name Description

security . . .
This is the default scan policy, which

excludes issues related to code quality,
dataflow from sources that are typically
trusted, and issues that are typically
noisy from the analysis results. Use this
policy to focus code remediation on the
security issues.

devops
P This scan policy expands on the

security policy, by excluding additional
issues that might be considered noise,
and reducing more low priority issues.
Use this scan policy when scan speed
is a priority, and developers review
results directly (without any
intermediate auditing). Issues that
remain after you apply this scan policy
are probably serious security issues
that require remediation.

Note

This devops scan policy
does not automatically
include any customization
made to the local security
scan policy.

classic This scan policy does not exclude any
issues. Use this scan policy to see all
issues, or if you prefer to filter issues
with project templates so it is easier to
see hidden issues.

To specify a scan policy for your analysis, include the -scan-policy (or -sc) option
in the analysis phase as shown in the following example:

This PDF was generated on January 16, 2026 Page 368 of 610

m opentext- Static Application Security Testing 26.1

sourceanalyzer -b MyProject -scan -scan-policy devops -f
MyResults.fpr

Alternatively, you can specify the scan policy with the com.fortify.sca.ScanPolicy
property in the fortify-sca.properties file. For example:

com. fortify.sca.ScanPolicy=devops

Note

e You can apply a filter file (see Excluding Issues with Filter Files) in addition to
a scan policy setting for an analysis. In this case, OpenText SAST applies
both the scan policy and the filter file to the analysis.

Creating custom scan policies

The scan policy files reside in the <sast_install_dir>/Core/config/scales directory.
There is one file for each scan policy. You can change the settings in these policy
files to customize your scan policies or you can create your own scan policy files. For
information about the syntax used for the scan policy files, see Excluding Issues with
Filter Files.

To create a custom scan policy file:

1. Go to <sast_install_dir>/Core/config/scales/ .

2. Open a text editor and create a file named scan-policy-<name>.ixt , where
<name> is the name for your custom scan policy.

3. Add filters to the scan-policy-<name>.txt file and save it.

4. To use the custom scan policy for your analysis, type the command as shown in
the following example. In this example, the scan policy file name is scan-policy-
myscanpolicy.txt .

sourceanalyzer -b MyProject -scan -scan-policy myscanpolicy
-f MyResults.fpr

Alternatively, you can specify the custom scan policy in the fortify-
sca.properties file.

This PDF was generated on January 16, 2026 Page 369 of 610

3 opentext" Static Application Security Testing 26.1

See Also

Translation and Analysis Phase Properties

This PDF was generated on January 16, 2026 Page 370 of 610

m opentext- Static Application Security Testing 26.1

1.43.2. Excluding issues with filter files

You can create a file to filter out particular vulnerability instances, rules, and
vulnerability categories when you run the sourceanalyzer command. You specify the
file with the -filter analysis option.

A filter file is a text file that you can create with any text editor. You specify only the
filter items that you do not want in this file.

Note

The filter types described in this section apply to both filter files and scan
policy files (see Applying a Scan Policy to the Analysis).

The following table lists the available filter types and provides examples for each.

This PDF was generated on January 16, 2026 Page 371 of 610

3 opentext"

Filter type

Category

Instance ID

This PDF was generated on January 16, 2026

Notes

Specifying only a
category will filter out all
subcategories

Note

OpenText
SAST applies
category
filters in the
initialization
phase before
any analysis
has taken
place.

An instance ID of a
specific issue

Note

OpenText
SAST applies
instance

ID filters
after the
analysis
phase.

Static Application Security Testing 26.1

Examples

Poor Error Handling

J2EE Bad Practices:
Leftover Debug Code

6291C6A33303ED270C
269917AA8A1005

Page 372 of 610

3 opentext"

Filter type

Rule ID

Priority’

Taint flags

Impact’

This PDF was generated on January 16, 2026

Notes

A rule ID that leads to the
reporting of a specific
issue

Note

OpenText
SAST applies
rule ID filters
in the
initialization
phase before
any analysis
has taken
place.

The priority values in
ascending order are
low , medium , high,
and critical .

Enclose taint flag
expressions in
parentheses. Use the
logical &&, ||, and !
operators to specify an
expression. For a list of
taint flags, see
OpenText™ Static
Application Security
Testing Custom Rules
Guide.

Static Application Security Testing 26.1

Examples

823FE039-A7FE-4AAD-
B976-9ECS3FFE4AS59

priority <= low

priority < medium

(SYSTEMINFO ||
EXCEPTIONINFO)

(WEB || (DATABASE &&
PRIVATE))

(NETWORK && !XSS)

impact < 0.5

Page 373 of 610

m opentext- Static Application Security Testing 26.1

Filter type Notes Examples
Likelihood likelihood <= 1.5
Confidence'

confidence < 1.8

I
Probability probability <= 1.2

Accuracy’
y accuracy <= 1.0

For the priority and metadata filters, use less than (<) or less than or equal to (<=).

Composite Filters

When you specify a filter on different lines, OpenText SAST will apply each filter line
by line, one at a time. Additionally, you can combine them on one line and use
boolean logical operators (&& , ||, ') andbraces { } to group expressions to
create more advanced filters.

For example, if you want to filter out Cross-Site Scripting issues, given that the issue
had a confidence less than 4.0, and the taint flags contained either DATABASE or
LDAP .

You can use the following filter:

{ Cross-Site Scripting && confidence < 4.0 } && (DATABASE | |
LDAP)

If any part of the composite filter is a filter type that can only run post-scan, it will run
post-scan regardless of it having items that typically filter pre-scan.

Note

Taint flag filters must be surrounded by parentheses regardless of curly
braces.

See Also

Filter File Example

This PDF was generated on January 16, 2026 Page 374 of 610

m opentext- Static Application Security Testing 26.1

1.43.2 1. Filter file example

As an example, the following output is from a scan of the EightBall.java sample. This
sample project is included in the OpenText_SAST_Fortify_Samples_<version>.zip
archive in the basic/eightball directory.

The following commands are executed to produce the analysis results:

sourceanalyzer -b eightball EightBall. java
sourceanalyzer -b eightball -scan

The following results show five detected issues:

This PDF was generated on January 16, 2026 Page 375 of 610

m opentext- Static Application Security Testing 26.1

[F7A138CDE5235351F6A4405BA4AD7C53 : low : Unchecked Return Value
: semantic]
EightBall.java(12) : Reader.read()

[6291C6A33303ED270C269917AA8A1005 : high : Path Manipulation :
dataflow]
EightBall.java(12) ->new FileReader(0)
EightBall.java(8) : <=> (filename)
EightBall.java(8) : <->Integer.parseInt(0->return)
EightBall.java(6) : <=> (filename)
EightBall. java(4) ->EightBall.main(0)

[176CCOB182267DD538992E87EF41815F : critical : Path Manipulation
: dataflow]
EightBall.java(12) : ->new FileReader(0)

EightBall.java(6) : <=> (filename)

EightBall.java(4) : ->EightBall.main(0)

[E4AB3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource :
Streams : controlflow]

EightBall.java(1l2) : start -> loaded : new FileReader(...)
EightBall.java(14) : loaded -> end of scope : end scope :
Resource leaked

start -> loaded : new FileReader(...)
: java.io.IOException thrown

EightBall. java)
)
) : loaded -> loaded : throw
)
j

EightBall. java
EightBall. java
EightBall. java
Resource leaked :

12
12
12
12

~ o~ o~ o~

: loaded -> end of scope : end scope :
ava.io.IOException thrown

[BBOF74FFAOFF75C9921D0O093A0665BEB : low : J2EE Bad Practices :
Leftover Debug Code : structural]
EightBall.java(4)

The following is an example filter file that performs the following:

o Remove all results related to the J2EE Bad Practice category
e Remove the Path Manipulation based on its instance ID
 Remove any dataflow issues that were generated from a specific rule ID

This PDF was generated on January 16, 2026 Page 376 of 610

m opentext- Static Application Security Testing 26.1

#This is a category to filter from scan output

J2EE Bad Practices

#This is an instance ID of a specific issue to be filtered
#from scan output

6291C6A33303ED270C269917AA8A1005

#This is a specific Rule ID that leads to the reporting of a
#specific issue in the scan output: in this case the
#dataflow sink for a Path Manipulation issue.
823FE039-A7FE-4AAD-B976-9EC53FFE4A59

To test the filtered output, copy the above text and paste it into a file with the name
test_filter.txt .

To apply the filtering in the test_filter.txt file, execute the following command:

sourceanalyzer -b eightball -scan -filter test filter.txt

The filtered analysis produces the following results:

[176CCOB182267DD538992E87EF41815F : critical : Path Manipulation
: dataflow]

EightBall.java(12) : ->new FileReader(0)

EightBall.java(6) : <=> (filename)

EightBall.java(4) : ->EightBall.main(0)

[E4B3ACF92911ED6D98AAC15876739EC7 : high : Unreleased Resource :
Streams : controlflow]

EightBall.java(1l2) : start -> loaded : new FileReader(...)
EightBall.java(14) : loaded -> end of scope : end scope :
Resource leaked

EightBall. java
EightBall. java
EightBall. java
EightBall. java
Resource leaked

) start -> loaded : new FileReader(...)
) : java.io.IOException thrown

) : loaded -> loaded : throw

) : loaded -> end of scope : end scope :
java.io.IOException thrown

This PDF was generated on January 16, 2026 Page 377 of 610

m opentext- Static Application Security Testing 26.1

1.43.3. Using filter sets to exclude issues

You can use filter sets in an issue template created in Fortify Audit Workbench to filter
issues from the analysis results. When you apply a filter set that hides issues from
view during the analysis phase, OpenText SAST does not write the hidden issues to
the FPR. To do this, use Fortify Audit Workbench to create a filter set, and then run the
OpenText SAST scan with the filter set and the issue template, which contains the
filter set. For more detailed instructions about how to create filters and filter sets in
Fortify Audit Workbench, see the OpenText™ Fortify Audit Workbench User Guide.

The following example describes the basic steps for how to create and use a filter in
an issue template to remove issues from an FPR:

1. Suppose you use OWASP Top 10 2021, and you only want to see issues
categorized within this standard. In Fortify Audit Workbench, create a new filter
set called OWASP_Filter

2. In Fortify Audit Workbench, create a visibility filter in the OWASP_Filter filter
set:

If [OWASP Top 10 2021] does not contain A Then hide issue

This filter looks through the issues and if an issue does not map to an OWASP
Top 10 2021 category with ‘A’ in the name, then it hides it. Because all OWASP
Top 10 2021 categories start with ‘A’ (A01, A02, ..., A10), then any category
without the letter ‘A" is not in the OWASP Top 10 2021. The filter hides the issues
from view in Fortify Audit Workbench, but they are still in the FPR.

3. In Fortify Audit Workbench, export the issue template to a file called
IssueTemplate.xml .

4. Using OpenText SAST, specify the filter set in the analysis phase with the
following command:

sourceanalyzer -b MyProject -scan -project-template
IssueTemplate.xml

-Dcom. fortify.sca.FilterSet=0WASP_Filter -f
MyFilteredResults. fpr

Although filtering issues with a filter set can reduce the size of the FPR, it does not
usually reduce the scan time. OpenText SAST examines the filter set after it calculates

This PDF was generated on January 16, 2026 Page 378 of 610

m opentext- Static Application Security Testing 26.1

the issues to determine whether to write them to the FPR file. The filters in a filter set
determine the rule types that OpenText SAST loads.

This PDF was generated on January 16, 2026 Page 379 of 610

m opentext- Static Application Security Testing 26.1

1.43.4. Filtering using FortifyRemove
comments

Similar to linters, compilers, and static analysis tools built directly into IDEs,
developers are accustomed to controlling the results of these tools directly from the
code. Similarly if required, developers can use inline comments to manage issues
triggered by OpenText SAST. Developers can prevent issues from being reported by
specifying either the rule ID that triggers the issue or the category of the finding in the
FortifyRemove() .

When issues are removed with comments, OpenText SAST logs the issues that are
removed, including their location and category.

Note

B This functionality is available and enabled bv default for Java and C#
code. The functionalitv can disabled in fortifv-rules.properties by setting
com.fortify.sca.rules.EnableRuleComments=false . For more information,
see fortify-rules.properties

Basic Comments

For example, consider the following Java Hello World application.

public class MyClass {
public static void main(String[] args) {

System.out.println("Hello World");

Consider there is a rule with an ID 625EEE1F-464F-42DC-85D6-269A637EF747 that
triggers on the main function as J2EE Bad Practices: Leftover Debug Code.

If the developer disagrees and they do not want this issue to display any longer, either
of the following configurations will prevent the issue from appearing.

This PDF was generated on January 16, 2026 Page 380 of 610

m opentext- Static Application Security Testing 26.1

public class MyClass {
// FortifyRemove (ID="625EEE1F-464F-42DC-85D6-269A637EF747")
public static void main(String[] args) {

System.out.println("Hello World");

Or

public class MyClass {

// FortifyRemove(Category="J2EE Bad Practices: Leftover
Debug Code")

public static void main(String[] args) {

System.out.println("Hello World");

Note: the string argument can use either " or'

Wildcards

The * wildcard can be used to expand a category to cover multiple subcategories or
multiple matching categories.
For example:

// FortifyRemove(Category="Cross-Site Scripting: *")

Would remove all variants of Cross-Site Scripting issues.
Whereas:

This PDF was generated on January 16, 2026 Page 381 of 610

m opentext- Static Application Security Testing 26.1

// FortifyRemove(Category="Cross-Site *")

Would remove all variants of Cross-Site Scripting issues, along with any categories
that start with "Cross-Site", such as "Cross-Site Request Forgery".

Multiple conditions

Other than using wildcards you can specify multiple categories or rule IDs using the
Categories or IDs properties respectively, which take arrays of strings.
For example

// FortifyRemove(Categories=["Cross-Site Scripting: Reflected",
"Cross-Site Scripting: Persistent"])

would prevent either Cross-Site Scripting: Reflected or Cross-Site Scripting:
Persistent issues appearing on the following line.

// FortifyRemove(IDs=["A", "B", "C", "D"]

Would prevent rules withthe IDs A, B, C,or D from triggering on the following
line.

Additionally you can specify multiple criteria together, separated by a semi-colon (;
).

For example:
// FortifyRemove(Category="SQL Injection"; ID="ABCD-1234")

Would prevent SQL Injection issues appearing on the following line, as well as
prevent issues from rule ID ABCD-1234 triggering.

Adding Justifications

Issues are logged as removed by FortifyRemove comments. A justification property
can be specified that accepts a string that will be logged alongside the removal
information that can help expand on why the issue is being removed.

For example:

This PDF was generated on January 16, 2026 Page 382 of 610

m opentext- Static Application Security Testing 26.1

// FortifyRemove(Category="Cross-Site Scripting: *";
Justification="We remove XSS here because we're using custom
framework XYZ that automatically protects against the attack")

This PDF was generated on January 16, 2026 Page 383 of 610

m opentext- Static Application Security Testing 26.1

1.43.5. Fortify Java annotations

OpenText provides two versions of the Fortify Java annotations library.

e Annotations with the retention policy set to CLASS (FortifyAnnotations-
CLASS.jar).

With this version of the library, Fortify Java annotations are propagated to the
bytecode during compilation.

e Annotations with the retention policy set to SOURCE (FortifyAnnotations-
SOURCE jar).

With this version of the library, Fortify Java annotations are not propagated to
the bytecode after the code that uses them is compiled.

If you use OpenText Application Security Software products to analyze bytecode of
your applications (for example, with OpenText™ Core Application Security
assessments), then use the version with the annotation retention policy set to CLASS.
If you use OpenText Application Security Software products to analyze the source
code of your applications, you can use either version of the library. However,
OpenText strongly recommends that you use the library with a retention policy set to
SOURCE.

Important

It is a security risk to leave Fortify Java annotations in production code
because they can leak information about potential security problems in
the code. OpenText recommends that you use annotations with the
retention policy set to CLASS only for internalanalysis, and never use
them in your application production builds.

This section outlines the annotations available. A sample application is included in the
OpenText_SAST_Fortify_Samples_<version>.zip archive in the
advanced/javaAnnotations directory. A README.txt file included in the directory

describes the sample application, problems that might arise from it, and how to fix

these problems using Fortify Java annotations.

There are two limitations with Fortify Java annotations:

o Each annotation can specify only one input and/or one output.
e You can apply only one annotation of each type to the same target.

OpenText provides three main types of annotations:

This PDF was generated on January 16, 2026 Page 384 of 610

3 opentext" Static Application Security Testing 26.1

o Dataflow Annotations
e Field and Variable Annotations
e Other Annotations

You also can write rules to support your own custom annotations. Contact Customer
Support for more information.

This PDF was generated on January 16, 2026 Page 385 of 610

m opentext- Static Application Security Testing 26.1

1.43.5.1. Dataflow annotations

There are four types of Dataflow annotations, similar to Dataflow rules: Source, Sink,
Passthrough, and Validate. All are applied to methods and specify the inputs and/or
outputs by parameter name or the strings this and return . Additionally, you can
apply the Dataflow Source and Sink annotations to the function arguments.

Source annotations

The acceptable values for the annotation parameter are this , return , or a function
parameter name. For example, you can assign taint to an output of the target method.

@FortifyDatabaseSource("return")
String [] loadUserProfile(String userID) {

For example, you can assign taint to an argument of the target method.

void retrieveAuthCode(@FortifyPrivateSource String authCode) {

In addition to specific source annotations, OpenText provides a generic untrusted
taint source called FortifySource .

The following is a complete list of source annotations:

e FortifySource

o FortifyDatabaseSource

o FortifyFileSystemSource
o FortifyNetworkSource

o FortifyPClISource

» FortifyPrivateSource

o FortifyWebSource

Passthrough annotations

Passthrough annotations transfer any taint from an input to an output of the target
method. It can also assign or remove taint from the output, in the case of

This PDF was generated on January 16, 2026 Page 386 of 610

m opentext- Static Application Security Testing 26.1

FortifyNumberPassthrough and FortifyNotNumberPassthrough . The acceptable
values for the in annotation parameter are this or a function parameter name. The
acceptable values for the out annotation parameter are this, return, or a function
parameter name.

@FortifyPassthrough(in="a",out="return")
String toLowerCase(String a) {

Use FortifyNumberPassthrough to indicate that the data is purely numeric. Numeric
data cannot cause certain types of issues, such as cross-site scripting, regardless of
the source. Using FortifyNumberPassthrough can reduce false positives of this type.
If a program decomposes character data into a numeric type (int, int[], and so on),
you can use FortifyNumberPassthrough . If a program concatenates numeric data
into character or string data, then use FortifyNotNumberPassthrough .

The following is a complete list of passthrough annotations:

o FortifyPassthrough
o FortifyNumberPassthrough
o FortifyNotNumberPassthrough

Sink annotations

Sink annotations report an issue when taint of the appropriate type reaches an input
of the target method. Acceptable values for the annotation parameter are this or a
function parameter name.

@FortifyXSSSink("a")
void printToWebpage(int a) {

You can also apply the annotation to the function argument or the return parameter. In
the following example, an issue is reported when taint reaches the argument a .

void printToWebpage(int b, @FortifyXSSSink String a) {

This PDF was generated on January 16, 2026 Page 387 of 610

m opentext- Static Application Security Testing 26.1

The following is a complete list of the sink annotations:

o FortifySink

e FortifyCommandinjectionSink
o FortifyPCISink

o FortifyPrivacySink

o FortifySQLSink

o FortifySysteminfoSink

e FortifyXSSSink

Validate annotations

Validate annotations remove taint from an output of the target method. Acceptable
values for the annotation parameter are this , return, or a function parameter name.

@FortifyXSSValidate("return")
String xssCleanse(String a) {

The following is a complete list of validate sink annotations:

o FortifyValidate

o FortifyCommandinjectionValidate
o FortifyPClValidate

o FortifyPrivacyValidate

o FortifySQLValidate

o FortifySysteminfoValidate

o FortifyXSSValidate

This PDF was generated on January 16, 2026 Page 388 of 610

m opentext- Static Application Security Testing 26.1

1.43.5.2. Field and variable annotations

You can apply these annotations to fields and (in most cases) variables.

Password and private annotations

Use password and private annotations to indicate whether the target field or variable
is a password or private data.

@FortifyPassword String x;
@FortifyNotPassword String pass;
@FortifyPrivate String y;
@FortifyNotPrivate String cc;

In the previous example, string x will be identified as a password and checked for
privacy violations and hardcoded passwords. The string pass will not be identified as
a password. Without the annotation, it might cause false positives. The FortifyPrivate
and FortifyNotPrivate annotations work similarly, only they do not cause privacy
violation issues.

Non-negative and non-zero annotations

Use these annotations to indicate disallowed values for the target field or variable.

@FortifyNonNegative int index;
@FortifyNonZero double divisor;

In the previous example, an issue is reported if a negative value is assigned to index
or zero is assigned to divisor .

This PDF was generated on January 16, 2026 Page 389 of 610

m opentext- Static Application Security Testing 26.1

1.43.5.3. Other annotations

Check return value annotation

Use the FortifyCheckReturnValue annotation to add a target method to the list of
functions that require a check of the return values.

@FortifyCheckReturnValue
int openFile(String filename) {

Dangerous annotations

With the FortifyDangerous annotation, any use of the target function, field, variable,
or class is reported. Acceptable values for the annotation parameter are CRITICAL ,
HIGH , MEDIUM , or LOW . These values indicat how to categorize the issue based
on the Fortify Priority Order values).

@FortifyDangerous{"CRITICAL"}
public class DangerousClass {
@FortifyDangerous{"HIGH"}
String dangerousField;
@FortifyDangerous{"LOW"}
int dangerousMethod() {

This PDF was generated on January 16, 2026 Page 390 of 610

3 opentext" Static Application Security Testing 26.1

1.44. Optimizing performance

This section provides guidelines and tips to optimize memory usage and performance
when analyzing different types of codebases with OpenText SAST.

This section contains the following topics:

e Antivirus software

o Hardware considerations

e Tuning options

e Quick scan

o Configuring scan speed with speed dial
e Breaking down codebases

e Limiting analyzers and languages

e Optimizing FPR files

e Monitoring long running scans

This PDF was generated on January 16, 2026 Page 391 of 610

m opentext- Static Application Security Testing 26.1

1.44 1. Antivirus software

The use of antivirus software can negatively impact OpenText SAST performance. If
you notice long scan times, OpenText recommends that you temporarily exclude the
internal OpenText SAST files from your antivirus software scan. You can also do the
same for the directories where the source code resides, however the performance
impact on the analysis is less than with the internal directories.

By default, OpenText SAST creates internal files in the following location:

o Windows: c:\Users\<username>\AppData\Local\Fortify\sca<version>
e Non-Windows: <userhome>/.fortify/sca<version>

where <version> is the version of OpenText SAST you are using.

This PDF was generated on January 16, 2026 Page 392 of 610

m opentext- Static Application Security Testing 26.1

1.44.2. Hardware considerations

The variety of source code makes accurate predictions of memory usage and scan
times impossible. The factors that affect memory usage and performance consists of
many different factors including:

o Code type

Codebase size and complexity

Ancillary languages used (such as JSP, JavaScript, and HTML)
Number of vulnerabilities

Type of vulnerabilities (analyzer used)

OpenText developed the following set of "best guess" hardware recommendations
based on real-world application scan results. The following table lists these
recommendations based on the complexity of the application. In general, increasing
the number of available cores might improve scan times.

This PDF was generated on January 16, 2026 Page 393 of 610

m opentext- Static Application Security Testing 26.1

Application CPU cores RAM (GB) Average Description
complexity scan time
Simple 4 16 1 hour

A standalone
system that
runs on a
server or
desktop such
as a batch
job ora
command-
line tool.

Medium 8 32 5 hours
A standalone

system that
works with
complex
computer
models such
as a tax
calculation
system or a
scheduling
system.

Complex 16 128 4 days A three-
tiered
business
system with
transactional
data
processing
such as a
financial
system or a
commercial
website.

This PDF was generated on January 16, 2026 Page 394 of 610

3 opentext"
Application CPU cores
complexity

Very 32
Complex

Note

RAM (GB)

256

Static Application Security Testing 26.1

Average
scan time

7+ days

Description

A system that
delivers
content such
as an
application
server,
database
server, or
content
management
system.

TypeScript and JavaScript scans increase the analysis time significantly.

If the total lines of code in an application consist of more than 20%
TypeScript or JavaScript, use the next highest recommendation.

Hardware requirements describes the system requirements. However, for large and
complex applications, OpenText SAST requires more capable hardware. This includes:

e Disk I/0—OpenText SAST is I/O intensive and therefore the faster the hard drive,
the more savings on the I/O transactions. OpenText recommends a 7,200 RPM
drive, although a 10,000 RPM drive (such as the WD Raptor) or an SSD drive is

better.

e Memory—See Memory Tuning for more information about how to determine the
amount of memory required for optimal performance.

e CPU—OpenText recommends a 2.1 GHz or faster processor.

This PDF was generated on January 16, 2026

Page 395 of 610

m opentext- Static Application Security Testing 26.1

1.44.3. Tuning options

OpenText SAST can take a long time to process complex projects. The time is spent in
different phases:

e Translation
e Analysis

OpenText SAST can produce large analysis result files (FPRs), which can take a long
time to audit and upload to Application Security. This is referred to as the following
phase:

e Audit/Upload

The following table lists tips on how to improve performance in the different time-
consuming phases.

This PDF was generated on January 16, 2026 Page 396 of 610

3 opentext"

Phase Option

Translation)
-export-build-
session
-import-build-
session

Analysis .
-quick

Analysis -
-scan-precision

Analysis

y -bin

Analysis .
-Xmx<size>M |
G

Analysis .
-Xss<size>M |
G

Analysis -filter <file>

Audit/Upload

Analysis -disable-source-

. bundling
Audit/Upload

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Translate and
scan on different
machines

Run a quick scan

Set the scan
precision

Scan the files
related to a binary

Set maximum
heap size

Set stack size for
each thread

Apply a filter
using a filter file

Exclude source
files from the FPR
file

More information

Mobile Build
Sessions

Quick Scan

Configuring Scan
Speed with
Speed Dial

Breaking Down
Codebases

Memory Tuning

Memory Tuning

Using Filter Files

Excluding Source
Code from the
FPR

Page 397 of 610

m opentext- Static Application Security Testing 26.1

1.44.4. Quick scan

Quick scan mode provides a way to quickly scan your projects for critical- and high-
priority issues. OpenText SAST performs the scan faster by reducing the depth of the
analysis. It also applies the Quick View filter set. Quick scan settings are configurable.
For more details about the configuration of quick scan mode, see fortify-sca-
quickscan.properties.

Quick scans are a great way to get many applications through an assessment so that
you can quickly find issues and begin remediation. The performance improvement
you get depends on the complexity and size of the application. Although the scan is
faster than a full scan, it does not provide as robust a result set. OpenText
recommends that you run full scans whenever possible.

Limiters

The depth of the OpenText SAST analysis sometimes depends on the available
resources. OpenText SAST uses a complexity metric to trade off these resources with
the number of vulnerabilities that it can find. Sometimes, this means giving up on a
particular function when it does not look like OpenText SAST has enough resources
available.

OpenText SAST enables the user to control the “cutoff” point by using OpenText SAST
limiter properties. The different analyzers have different limiters. You can run a
predefined set of these limiters using a quick scan. See the fortify-sca-
quickscan.properties for descriptions of the limiters.

To enable quick scan mode, use the -quick option with -scan option. With quick
scan mode enabled, OpenText SAST applies the properties from the

<sast_install_dir>/Core/config/fortify-sca-quickscan.properties file, in addition to
the standard <sast_install_dir>/Core/config/fortify-sca.properties file. You can
adjust the limiters that OpenText SAST uses by editing the fortify-sca-
quickscan.properties file. If you modify fortify-sca.properties , it also affects quick
scan behavior. OpenText recommends that you do performance tuning in quick scan
mode, and leave the full scan in the default settings to produce a highly accurate
scan. For description of the quick scan mode properties, see OpenText SAST
Properties Files.

Using quick scan and full scan

e Run full scans periodically—A periodic full scan is important as it might find
issues that quick scan mode does not detect. Run a full scan at least once per

This PDF was generated on January 16, 2026 Page 398 of 610

m opentext- Static Application Security Testing 26.1

software iteration. If possible, run a full scan periodically when it will not
interrupt the development workflow, such as on a weekend.

» Compare quick scan with a full scan—To evaluate the accuracy impact of a
quick scan, perform a quick scan and a full scan on the same codebase. Open
the quick scan results in Fortify Audit Workbench and merge it into the full scan.
Group the issues by New Issue to produce a list of issues detected in the full
scan but not in the quick scan.

» Quick scans and Application Security—To avoid overwriting the results of a full
scan, by default Application Security ignores uploaded FPR files scanned in
quick scan mode. However, you can configure a Application Security application
version so that FPR files scanned in quick scan are processed. For more
information, see analysis results processing rules in the OpenText™ Application
Security User Guide.

This PDF was generated on January 16, 2026 Page 399 of 610

m opentext- Static Application Security Testing 26.1

1.44.5. Configuring scan speed with
speed dial

You can configure the speed and depth of the scan by specifying a precision level for
the analysis phase. You can use these precision levels to adjust the scan time to fit for
example, into a pipeline and quickly find a set of vulnerabilities while the developer is
still working on the code. Although scans with the speed dial settings are faster than a
full scan, it does not provide as robust a result set. OpenText recommends that you
run full scans whenever possible.

The precision level controls the depth and precision of the scan by associating
configuration properties with each level. The configuration properties files for each
level are in the <sast_install_dir>/Core/config/scales directory. There is one file for
each level: (level-<precision_level>.properties). You can modify the settings in these
files to create your own specific precision levels.

Notes:

o By default, Application Security blocks uploaded analysis results that were
created with a precision level less than four. However, you can configure your
Application Security application version so that uploaded audit projects scanned
with these precision levels are processed.

» If you merge a speed dial scan with a full scan, this might remove issues from
previous scans that still exist in your application (and would be detected again
with a full scan).

To specify the speed dial setting for a scan, include the -scan-precision (or -
p) option in the scan phase as shown in the following example:

sourceanalyzer -b MyProject -scan -scan-precision <level> -f
MyResults.fpr

Note

You cannot use the speed dial setting and the -quick option in the same
scan command.

The following table describes the four precision levels.

This PDF was generated on January 16, 2026 Page 400 of 610

3 opentext"

Precision level

Static Application Security Testing 26.1

Description

This is the quickest scan and is
recommended to scan a few files. By
default, a scan with this precision level
disables the Buffer Analyzer, Control
Flow Analyzer, Dataflow Analyzer, and
Null Pointer Analyzer.

By default, a scan with this precision
level enables all analyzers. The scan
runs quicker by performing with
reduced limiters. This results in fewer
issues detected.

This precision level improves
intermediate development scan speeds
by up to 50% (with a reduction in
reported issues). Specifically, this level
improves the scan time for typed
languages such as Java and C/C++.

This is equivalent to a full scan.

You can also specify the scan precision level with the com.fortify.sca.PrecisionLevel
property in the fortify-sca.properties file. For example:

com.fortify.sca.PrecisionLevel=1

This PDF was generated on January 16, 2026

Page 401 of 610

m opentext- Static Application Security Testing 26.1

1.44.6. Breaking down codebases

It is more efficient to break down large projects into independent modules. For
example, if you have a portal application that consists of several modules that are
independent of each other or have few interactions, you can translate and scan the
modules separately. The caveat to this is that you might lose dataflow issue detection
if some interactions exist.

For C/C++, you might reduce the scan time by using the -bin option with the -scan
option. You need to pass the binary file as the parameter (such as -bin
<filename>.exe -scan or -bin <filename>.dll -scan). OpenText SAST finds the
related files associated with the binary and scans them. This is useful if you have
several binaries in a makefile.

The following table lists some useful OpenText SAST command-line options to break
down codebases.

This PDF was generated on January 16, 2026 Page 402 of 610

m opentext- Static Application Security Testing 26.1

Option Description

-bin <binary> Specifies a subset of source files to
scan. Only the source files that were
linked in the named binary at build time
are included in the scan. You can use
this option multiple times to specify the
inclusion of multiple binaries in the
scan.

-show-binaries Displays all objects that were created
but not used in the production of any
other binaries. If fully integrated into
the build, it lists all the binaries
produced.

-show-build-tree)))
When used with the -bin option,

displays all files used to create the
binary and all files used to create those
files in a tree layout. If the -bin option
is not present, OpenText SAST displays
the tree for each binary.

This PDF was generated on January 16, 2026 Page 403 of 610

m opentext- Static Application Security Testing 26.1

1.44.7. Limiting analyzers and languages

Occasionally, you might find that a significant amount of the scan time is spent either
running one analyzer or analyzing a particular language. It is possible that this
analyzer or language is not important to your security requirements. You can limit the
specific analyzers that run and the specific languages that OpenText SAST translates,
however, this may lead to suboptimal results.

This section contains the following topics:

o Disabling analyzers
» Disabling languages

This PDF was generated on January 16, 2026 Page 404 of 610

m opentext- Static Application Security Testing 26.1

1.44.7.1. Disabling analyzers

To disable specific analyzers, include the -analyzers option to OpenText SAST at
scan time with a comma- or colon-separated list of analyzers to enable. The valid
parameter values for the -analyzers option are buffer, content, configuration
controlflow , dataflow , nullptr , semantic , and structural .

For example, to run a scan that only includes the Dataflow, Control Flow, and Buffer
analyzers, use the following scan command:

sourceanalyzer -b MyProject -analyzers
dataflow:controlflow:buffer -scan -f MyResults.fpr

You can also do the same thing by setting com.fortify.sca.DefaultAnalyzers in the
OpenText SAST property file <sast_install_dir>/Core/config/fortify-sca.properties .
For example, to achieve the equivalent of the previous scan command, set the
following in the properties file:

com.fortify.sca.DefaultAnalyzers=dataflow:controlflow:buffer

This PDF was generated on January 16, 2026 Page 405 of 610

m opentext- Static Application Security Testing 26.1

1.44.7.2. Disabling languages

To disable specific languages, include the -disable-language option in the
translation phase, which specifies a list of languages that you want to exclude. The
valid language values are

abap , actionscript, apex, cfml, cobol, configuration, cpp, dart, dotnet,
golang , objc, php, python, ruby, swift,and vb.

For example, to perform a translation that excludes configuration and PHP files, use
the following command:

sourceanalyzer -b MyProject <src files> -disable-language
configuration:php

You can also disable languages by setting the com.fortify.sca.DISabledLanguages
property in the OpenText SAST properties file <sast_install_dir>/Core/config/fortify-
sca.properties . For example, to achieve the equivalent of the previous translation
command, set the following in the properties file:

com.fortify.sca.DISabledLanguages=configuration:php

For languages that are not available with the -disable-language , use the -exclude
option. For more information, see Translation options.

This PDF was generated on January 16, 2026 Page 406 of 610

3 opentext" Static Application Security Testing 26.1

1.44.8. Optimizing FPR files

This section describes how to handle performance issues related to the audit results
(FPR) file. These topics describe how to reduce the scan time, reduce FPR file size,
and tips for opening large FPR files.

This section contains the following topics:

» Using filter files

e Using filter sets

e Excluding source code from the FPR
e Reducing the FPR file size

e Opening large FPR files

This PDF was generated on January 16, 2026 Page 407 of 610

m opentext- Static Application Security Testing 26.1

1.44.8.1. Using filter files

You can use a file to filter out specific vulnerability instances, rules, and vulnerability
categories from the analysis results. If you determine that a certain issue category or
rule is not relevant for a particular scan, you can stop OpenText SAST from adding
them to the FPR. Using a filter file can reduce both the scan time and analysis results
file size.

For example, if you scan a simple program that just reads a specified file, you might
not want to see path manipulation issues, because these are not likely planned as part
of the functionality. To filter out path manipulation issues, create a file that contains a
single line:

Path Manipulation
Save this file as filter.txt . Use the -filter option in the analysis phase as shown in

the following example:

sourceanalyzer -b MyProject -scan -filter filter.txt -f
MyResults.fpr

The analysis output in MyResults.fpr does not include any issues with the category
Path Manipulation. For more information and an example of a filter file, see Excluding
Issues with Filter Files.

This PDF was generated on January 16, 2026 Page 408 of 610

m opentext- Static Application Security Testing 26.1

1.44.8.2. Using filter sets

Filters in an issue template determine how the results from OpenText SAST are
shown. In addition to filters, filter sets enable you to have a selection of filters used at
any one time. Each FPR has an issue template associated with it. You can use filter
sets to reduce the number of issues based on conditions you specify with filters in an
issue template. This can dramatically reduce the size of an FPR.

To do this, use Fortify Audit Workbench to create a filter in a filter set, and then run
the OpenText SAST scan with the filter set and the containing issue template. For
more information and a basic example of how to create a filter set, see Excluding
Issues with Filters Sets.

Note

B Although filtering issues with a filter set can reduce the size of the FPR,
they do not usually reduce the scan time. OpenText SAST examines the
filter set after it calculates the issues to determine whether to write them
to the FPR file. The filters in a filter set determine the rule types that
OpenText SAST loads.

This PDF was generated on January 16, 2026 Page 409 of 610

m opentext- Static Application Security Testing 26.1

1.44.8.3. Excluding source code from the
FPR

You can reduce the size of the FPR file by excluding the source code information from
the FPR. This is especially valuable for large source files or codebases. Typically, you
do not get a scan time reduction for small source files using this method.

There are properties you can use to prevent OpenText SAST from including source
code in the FPR. You can set either property in the

<sast_install_dir>/Core/config/fortify-sca.properties file or specify an option on the
command line. The following table describes these settings.

Property nhame Description

com.fortify.sca. Excludes source code from the FPR.
FPRDisableSourceBundling=true

Command-Line Option:
-disable-source-bundling

. Excludes code snippets from the FPR.
com.fortify.sca.

FVDLDisableSnippets=true

Command-Line Option:
—fvdl-no-snippets

The following command-line example uses both options to exclude both the source
code and code snippets from the FPR:

sourceanalyzer -b MyProject -disable-source-bundling
-fvdl-no-snippets -scan -f MySourcelessResults.fpr

This PDF was generated on January 16, 2026 Page 410 of 610

m opentext- Static Application Security Testing 26.1

1.44.8.4. Reducing the FPR file size

There are a few ways to reduce the size of FPR files. The quickest way to do this
without affecting results is to exclude the source code from the FPR as described in
Excluding Source Code from the FPR. You can also reduce the size of a merged FPR
with the FPRULtility (see the OpenText™ Application Security Tools Guide).

There are a few other properties that you can use to select what is excluded from the
FPR. You can set these properties in the <sast_install_dir>/Core/config/fortify-
sca.properties file or specify an option on the command line for the analysis (scan)
phase.

This PDF was generated on January 16, 2026 Page 411 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

3 opentext"

Property name

com.fortify.sca.
FPRDisableMetatable
=true

Command-Line Option:
-disable-metatable

com.fortify.sca.
FVDLDisableDescriptions
=true

Command-Line Option:
-fvdl-no-descriptions

com.fortify.sca.
FVDLDisableEngineData
=true

Command-Line Option:
-fvdl-no-enginedata

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Excludes the metatable from the FPR.
Fortify Audit Workbench uses the
metatable to map information in
Functions view.

Excludes rule descriptions from

the FPR. If you do not use custom
descriptions, the descriptions in the
Fortify Taxonomy
(https://vulncat.fortify.com) are used.

Excludes engine data from the FPR.
This is useful if your FPR contains
many warnings when you open the file
in Fortify Audit Workbench.

Note

If you exclude engine data
from the FPR, you must
merge the FPR with the
current audit project locally
before you upload it to
Application Security.
Application Security cannot
merge it on the server
because the FPR does not
contain the OpenText SAST
version.

Page 412 of 610

https://vulncat.fortify.com/

m opentext- Static Application Security Testing 26.1

Property name Description

Excludes the program data from the
FPR. This removes the Taint Sources
information from the Functions view in

com.fortify.sca.
FVDLDisableProgramData

=true . . .
Fortify Audit Workbench. This property
Command-Line Option: typically only has a minimal effect on
-fvdl-no-progdata the overall size of the FPR file.

This PDF was generated on January 16, 2026 Page 413 of 610

m opentext- Static Application Security Testing 26.1

1.44.8.5. Opening large FPR files

To reduce the time required to open a large FPR file in Fortify Audit Workbench, you
can set some properties in the <sast_install_dir>/Core/config/fortify.properties file.
For more information about these properties, see the OpenText™ Application Security
Tools Guide. The following table describes the properties you can use to reduce the
time to open large FPR files.

This PDF was generated on January 16, 2026 Page 414 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

3 opentext"

Property name

com.fortify.
model.DisablePrograminfo=true

com.fortify.
model.lssueCutoffStartindex
=<num> (inclusive)

com.fortify.
model.lssueCutoffEndindex
=<num> (exclusive)

com.fortify.
model.IssueCutoffByCategoryStartinde
X=

<num> (inclusive)

com.fortify.
model.IssueCutoffByCategoryEndindex

<num> (exclusive)

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Disables use of the code navigation
features in Fortify Audit Workbench.

Sets the start and end index for issue
cutoff. The IssueCutoffStartindex
property is inclusive and

IssueCutoffEndindex is exclusive so
that you can specify a subset of issues
you want to see. For example, to see
the first 100 issues, specify the
following:

com.fortify.model.
IssueCutoffStartindex=0 com.fortif
y.model.

IssueCutoffEndindex=101

Because the IssueCutoffStartindex is
O by default, you do not need to
specify this property.

Sets the start index for issue cutoff by
category. These two properties are
similar to the previous cutoff properties
except these are specified for each
category. For example, to see the first
five issues for every category, specify
the following:

com.fortify.model.
IssueCutoffByCategoryEndInde
X=6

Page 415 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify. Minimizes the data loaded from the
model.MinimalLoad=true FPR. This also restricts usage of the

Functions view and might prevent
Fortify Audit Workbench from loading
the source from the FPR.

com.fortify. Specifies the number of OpenText
model.MaxEngineErrorCount= SAST reported warnings to load from
<hum> the FPR. For projects with many scan

warnings, reducing this number from a
default of 3000 can speed up the load
time of large FPR files.

Specifies the JVM heap memory size
for Fortify Audit Workbench to start
external command-line tools such as
iidmigrator and fortifyupdate.

com.fortify.
model.ExecMemorySetting

This PDF was generated on January 16, 2026 Page 416 of 610

m opentext- Static Application Security Testing 26.1

1.44.9. Monitoring long running scans

When you run OpenText SAST, large and complex scans can often take a long time to
complete. During the scan it is not always clear what is happening. While OpenText
recommends that you provide your debug logs to the Customer Support team, there
are a couple of ways to see what OpenText SAST is doing and how it is performing in
real-time.

This section contains the following topics:

e Using the SCAState tool
e Using JMX tools

This PDF was generated on January 16, 2026 Page 417 of 610

m opentext- Static Application Security Testing 26.1

1.44.9.1. Using the SCAState tool

The SCAState command-line tool enables you to see up-to-date state analysis
information during the analysis phase. The SCAState tool is located in the

<sast_install_dir>/bin directory. In addition to a live view of the analysis, it also
provides a set of timers and counters that show where OpenText SAST spends its
time during the analysis phase. For more information about how to use SCAState, see
the Checking the OpenText SAST Scan Status.

This PDF was generated on January 16, 2026 Page 418 of 610

m opentext- Static Application Security Testing 26.1

1.44.9.2. Using JMX tools

You can use tools to monitor OpenText SAST with JMX technology. These tools can
provide a way to track OpenText SAST performance over time. For more information
about these tools, see the Oracle® documentation.

Note

These are third-party tools and OpenText does not provide or support
them.

This section contains the following topics:

e Using JConsole
e Using Java VisualVM

This PDF was generated on January 16, 2026 Page 419 of 610

m opentext- Static Application Security Testing 26.1

1.44.9.2.1. Using JConsole

JConsole is an interactive monitoring tool that complies with the JMX specification.
The disadvantage of JConsole is that you cannot save the output.

To use JConsole, you must first set some additional JVM parameters. Set the
following environment variable:

export SCA VM OPTS="-Dcom.sun.management.jmxremote
-Dcom. sun.management. jmxremote.port=9090
-Dcom. sun.management. jmxremote.ssl=false
-Dcom. sun.management. jmxremote.authenticate=false"

After the JMX parameters are set, start a scan. During the scan, start JConsole to
monitor OpenText SAST locally or remotely with the following command:

jconsole <host name>:9090

This PDF was generated on January 16, 2026 Page 420 of 610

m opentext- Static Application Security Testing 26.1

1.44.9.2.2. Using Java VisualVM

Java VisualVM offers the same capabilities as JConsole. It also provides more
detailed information on the JVM and enables you to save the monitor information to
an application snapshot file. You can store these files and open them later with Java
VisualVM.

Similar to JConsole, before you can use Java VisualVM, you must set the same JVM
parameters described in Using JConsole.

After the JVM parameters are set, start the scan. You can then start Java VisualVM to
monitor the scan either locally or remotely with the following command:

jvisualvm <host name>:9090

This PDF was generated on January 16, 2026 Page 421 of 610

3 opentext" Static Application Security Testing 26.1

1.45. Using mobile build sessions

With an OpenText SAST mobile build session (MBS), you can translate a project on
one machine and scan it on another. A common use case for this is to improve scan
time, such that the translation can be performed on a build computer with fewer
resources, and then a better equipped computer can be utilized for the scan.

Note

This is also necessary for several project types when utilizing ScanCentral
SAST or OpenText Core Application Security (Fortify on Demand)

Using an MBS allows you to translate on one machine and do one of the following:

e Use ScanCentral SAST client to move the MBS to sensors for analysis (see
ScanCentral SAST)

e Move the build session (MBS file) to another computer that has an OpenText SAST
installation, import the MBS (see Importing a mobile build session), and then run
the analysis.

e Provide the MBS file to OpenText Core Application Security (Fortify on
Demand)for analysis

You must have the same version of OpenText Application Security Content
(Rulepacks) installed on both the system where you perform the translation and the
system where you perform the analysis.

Note

e The scan machines may have dependencies for certain types of projects.
For more information on dependencies that may be necessary on scan
machines, see Software Requirements.

Bicep and Terraform (HCL) projects additionally require an Internet
connection for optimal results.

This section contains the following topics:

o Mobile build session version compatibility
e Creating a mobile build session
e Importing a mobile build session

This PDF was generated on January 16, 2026 Page 422 of 610

m opentext- Static Application Security Testing 26.1

1.45.1. Mobile build session version
compatibility

The OpenText SAST version on the translate machine must be compatible with the
OpenText SAST version on the analysis machine. The version number format is
<major>.<minor>.<patch>.<build_number> (for example, 25.4.0.0140). The <major>
and <minor> portions of the OpenText SAST version numbers on both the translation
and the analysis machines must match. For example, 25.4.0 and 25.4.x are
compatible. To determine the OpenText SAST version number, type sourceanalyzer -
vV on the command line.

You can obtain the build ID and the OpenText SAST version from an MBS file with the
following command:

sourceanalyzer -import-build-session <file>.mbs
-Dcom. fortify.sca.ExtractMobileInfo=true

This PDF was generated on January 16, 2026 Page 423 of 610

m opentext- Static Application Security Testing 26.1

1.45.2. Creating a mobile build session

On the machine where you performed the translation, issue the following command to
generate a mobile build session:

sourceanalyzer -b <build id> -export-build-session <file>.mbs

where <file>.mbs is the file name you provide for the OpenText SAST mobile build
session.

This PDF was generated on January 16, 2026 Page 424 of 610

m opentext- Static Application Security Testing 26.1

1.45.3. Importing a mobile build session

After you move the <file>.mbs file to the machine where you want to perform the
scan, you can import the mobile build session into the OpenText SAST project root
directory.

To import the mobile build session, type the following command:

sourceanalyzer -import-build-session <file>.mbs

After you import your OpenText SAST mobile build session, you can proceed to the
analysis phase. Perform a scan with the same build ID that was used in the
translation.

You cannot merge multiple mobile build sessions into a single MBS file. Each exported
build session must have a unique build ID. However, after all the build IDs are
imported on the same OpenText SAST installation, you can scan multiple build IDs in
one scan with the -b option (see Analysis Phase).

Note

B The scan machines may have dependencies for certain types of projects.
See Software Requirements for dependencies that may be necessary on
scan machines.

Bicep and Terraform (HCL) projects additionally require an internet
connection for optimal results.

This PDF was generated on January 16, 2026 Page 425 of 610

3 opentext" Static Application Security Testing 26.1

1.46. Troubleshooting

This section contains the following topics:

o Exit codes

e Memory tuning

e Scanning complex functions

e Issue non-determinism

e Locating the log files

» Configuring log files

e Reporting issues and requesting enhancements

This PDF was generated on January 16, 2026 Page 426 of 610

m opentext- Static Application Security Testing 26.1

1.46.1. Exit codes

The following table describes the possible OpenText SAST exit codes.

Exit code Description

0 Success

1 Generic failure
2

Invalid input files

(this might indicate that an attempt was
made to translate a file that has an
extension that OpenText SAST does not

support)
3 Process timed out
4 Analysis completed with numbered

warning messages written to the
console and/or to the log file

5 Analysis completed with numbered
error messages written to the console
and/or to the log file

6 Scan phase was unable to generate
issue results

7 Unable to detect a valid license or the
LIM license expired at run time

By default, OpenText SAST only returns exit codes 0, 1, 2, 3, or 7.

You can extend the default exit code options by setting the
com.fortify.sca.ExitCodelLevel property inthe <sast_ install_dir>/Core/Config/fortify-
sca.properties file.

The valid values are:

This PDF was generated on January 16, 2026 Page 427 of 610

m opentext- Static Application Security Testing 26.1

e nothing —Returns any of the default exit codes (0, 1, 2, 3, or 7).

e warnings —Returns exit codes 4 and 5 in addition to the default exit codes.
e errors —Returns exit code 5 in addition to the default exit codes.

» no_output_file —Returns exit code 6 in addition to the default exit codes.

This PDF was generated on January 16, 2026 Page 428 of 610

3 opentext" Static Application Security Testing 26.1

1.46.2. Memory tuning

The amount of physical RAM required for a scan depends on the complexity of the
code. By default, OpenText SAST automatically allocates the memory it uses based
on the physical memory available on the system. This is generally sufficient. As
described in Output Options, you can adjust the Java heap size with the -Xmx
command-line option.

This section describes suggestions for what you can do if you encounter
OutOfMemory errors during the analysis.

Note

You can set the memory allocation opntions discussed in this section to run
for all scans by setting the SCA_VM_OPTS environment variable.

This section contains the following topics:

o Java heap exhaustion
o Native heap exhaustion
o Stack overflow

This PDF was generated on January 16, 2026 Page 429 of 610

m opentext- Static Application Security Testing 26.1

1.46.2.1. Java heap exhaustion

Java heap exhaustion is the most common memory problem that might occur during
OpenText SAST scans. It is caused by allocating too little heap space to the Java
virtual machine that OpenText SAST uses to scan the code. You can identify Java
heap exhaustion from the following symptom.

Symptom

One or more of these messages appears in the OpenText SAST log file and in the
command-line output:

There is not enough memory available to complete analysis. For
details on making more memory available, please consult the user
manual.

java.lang.OQutOfMemoryError: Java heap space
java.lang.QutOfMemoryError: GC overhead limit exceeded

Resolution

To resolve a Java heap exhaustion problem, allocate more heap space to the
OpenText SAST Java virtual machine when you start the scan. To increase the heap
size, use the -Xmx command-line option when you run the OpenText SAST scan. For
example, -Xmx1G makes 1 GB available. Before you use this parameter, determine
the maximum allowable value for Java heap space. The maximum value depends on
the available physical memory.

Heap sizes between 32 GB and 48 GB are not advised due to internal JVM
implementations. Heap sizes in this range perform worse than at 32 GB. Heap sizes
smaller than 32 GB are optimized by the JVM. If your scan requires more than 32 GB,
then you need 64 GB or more. As a guideline, assuming no other memory intensive
processes are running, do not allocate more than 2/3 of the available memory.

If the system is dedicated to running OpenText SAST, you do not need to change it.
However, if the system resources are shared with other memory-intensive processes,
subtract an allowance for those other processes.

This PDF was generated on January 16, 2026 Page 430 of 610

m opentext- Static Application Security Testing 26.1

Note

You do not need to account for other resident but not active processes
(while OpenText SAST is running) that the operating system might swap to
disk. Allocating more physical memory to OpenText SAST than is available
in the environment might cause “thrashing,” which typically slows down
the scan along with everything else on the system.

This PDF was generated on January 16, 2026 Page 431 of 610

m opentext- Static Application Security Testing 26.1

1.46.2.2. Native heap exhaustion

Native heap exhaustion is a rare scenario where the Java virtual machine can allocate
the Java memory regions on startup, but is left with so few resources for its native
operations (such as garbage collection) that it eventually encounters a fatal memory
allocation failure that immediately terminates the process.

Symptom

You can identify native heap exhaustion by abnormal termination of the OpenText
SAST process and the following output on the command line:

A fatal error has been detected by the Java Runtime
Environment:

#

java.lang.OutOfMemoryError: requested ... bytes for GrET ...

Because this is a fatal Java virtual machine error, it is usually accompanied by an
error log created in the working directory with the file name hs_err_pidNNN.log .

Resolution

Because the problem is a result of overcrowding within the process, the resolution is
to reduce the amount of memory used for the Java memory regions (Java heap).
Reducing this value should reduce the crowding problem and allow the scan to
complete successfully.

This PDF was generated on January 16, 2026 Page 432 of 610

m opentext- Static Application Security Testing 26.1

1.46.2.3. Stack overflow

Each thread in a Java application has its own stack. The stack holds return addresses,
function/method call arguments, and so on. If a thread tends to process large
structures with recursive algorithms, it might need a large stack for all those return
addresses. With the JVM, you can set that size with the -Xss option.

Symptoms

This message typically appears in the OpenText SAST log file, but might also appear
in the command-line output:

java.lang.StackOverflowError

Resolution

The default stack size is 16 MB. To increase the stack size, pass the -Xss option to
the sourceanalyzer command. For example, -Xss32M increases the stack to 32
MB.

This PDF was generated on January 16, 2026 Page 433 of 610

m opentext- Static Application Security Testing 26.1

1.46.3. Scanning complex functions

During a scan, the Dataflow Analyzer might encounter a function for which it cannot
complete the analysis and reports the following message:

Function <name> is too complex for <analyzer> analysis and will
be skipped (<identifier>)

where:

e <name> is the name of the source code function
e <analyzer> is the name of the analyzer

o <identifier> is the type of complexity, which is one of the following:

o | :Too many distinct locations

m : Out of memory

s : Stack size too small

t : Analysis taking too much time
v : Function visits exceed the limit

[e]

[e]

[e]

[e]

The depth of analysis OpenText SAST performs sometimes depends on the available
resources. OpenText SAST uses a complexity metric to trade off these resources
against the number of vulnerabilities that it can find. Sometimes, this means giving up
on a particular function when OpenText SAST does not have enough resources
available. This is normally when you see the "Function too complex" messages.

When you see this message, it does not necessarily mean that OpenText SAST
completely ignored the function in the program. For example, the Dataflow Analyzer
typically visits a function many times before completing the analysis, and might not
have run into this complexity limit in the previous visits. In this case, the results
include everything learned from the previous visits.

You can control the "give up" point using OpenText SAST properties called limiters.
Different analyzers have different limiters.

The following sections provide a discussion of a resolution for this issue.

This section contains the following topics:

o Dataflow Analyzer limiters
e Control Flow and Null Pointer analyzer limiters

This PDF was generated on January 16, 2026 Page 434 of 610

m opentext- Static Application Security Testing 26.1

1.46.3.1. Dataflow Analyzer limiters

There are three types of complexity identifiers for the Dataflow Analyzer:

e | : Too many distinct locations

m : Out of memory

s : Stack size too small

v : Function visits exceed the limit

To resolve the issue identified by s , increase the stack size for by setting -Xss to a
value greater than 16 MB.

To resolve the complexity identifier of m , increase the physical memory for
OpenText SAST.

To resolve the complexity identifier of |, you can adjust the following limiters in the
OpenText SAST property file <sast_install_dir>/Core/config/fortify-sca.properties or
on the command line.

Property hame Default value
. 1000
com.fortify.sca.
limiters.MaxTaintDefForVar
. 4000
com.fortify.sca.
limiters.MaxTaintDefForVarAbort
4

com.fortify.sca.
limiters.MaxFieldDepth

The MaxTaintDefForVar limiter is a dimensionless value expressing the complexity of
a function, while MaxTaintDefForVarAbort is the upper bound for it. Use the
MaxFieldDepth limiter to measure the precision when the Dataflow Analyzer
analyzes any given object. OpenText SAST always tries to analyze objects at the
highest precision possible.

If a given function exceeds the MaxTaintDefForVar limit at a given precision, the
Dataflow Analyzer analyzes that function with lower precision (by reducing

This PDF was generated on January 16, 2026 Page 435 of 610

m opentext- Static Application Security Testing 26.1

the MaxFieldDepth limiter). When you reduce the precision, it reduces the
complexity of the analysis. When the precision cannot be reduced any further,
OpenText SAST then proceeds with analysis at the lowest precision until either it
finishes, or the complexity exceeds the MaxTaintDefForVarAbort limiter. In other
words, OpenText SAST tries harder at the lowest precision to get at least some results
from the function. If OpenText SAST reaches the MaxTaintDefForVarAbort limiter, it
gives up on the function entirely and you get the "Function too complex" warning.

To resolve the complexity identifier of v, you can adjust the property
com.fortify.sca.limiters.MaxFunctionVisits . This property sets the maximum number
of times the taint propagation analyzer visits functions. The defaultis 50 .

This PDF was generated on January 16, 2026 Page 436 of 610

m opentext- Static Application Security Testing 26.1

1.46.3.2. Control Flow and Null Pointer
analyzer limiters

There are two types of complexity identifiers for both Control Flow and Null Pointer
analyzers:

e m : Out of memory
e t: Analysis taking too much time

Due to the way that the Dataflow Analyzer handles function complexity, it does not
take an indefinite amount of time. Control Flow and Null Pointer analyzers, however,
can take an exceptionally long time when analyzing complex functions. Therefore,
OpenText SAST provides a way to abort the analysis when this happens, and then you
get the "Function too complex" message with a complexity identifier of t .

To change the maximum amount of time these analyzers spend to analyze functions,
you can adjust the following property values in the OpenText SAST property file
<sast_install_dir>/Core/config/fortify-sca.properties or on the command line.

Property hame Lo Default value
Description

Sets the time limit (in 600000 (10 minutes)
milliseconds) for Control

Flow analysis on a single

function.

com.fortify.sca.
CtriflowMaxFunctionTim
e

Sets the time limit (in 300000 (5 minutes)
milliseconds) for Null

Pointer analysis on a

single function.

com.fortify.sca.
NullPtrMaxFunctionTime

To resolve the complexity identifier of m , increase the physical memory for
OpenText SAST.

This PDF was generated on January 16, 2026 Page 437 of 610

m opentext- Static Application Security Testing 26.1

Note

e If you increase these limiters or time settings, it makes the analysis of
complex functions take longer. It is difficult to characterize the exact
performance implications of a particular value for the limiters/time,
because it depends on the specific function in question. If you never want
to see the "Function too complex" warning, you can set the limiters/time
to an extremely high value, however it can cause unacceptable scan time.

This PDF was generated on January 16, 2026 Page 438 of 610

m opentext- Static Application Security Testing 26.1

1.46.4. Issue non-determinism

Running in parallel analysis mode might introduce issue non-determinism. If you
experience any problems, contact Customer Support, and disable parallel analysis
mode. Disabling parallel analysis mode results in sequential analysis, which can be
substantially slower but provides deterministic results across multiple scans.

To disable parallel analysis mode:

1. Open the fortify-sca.properties file located in the
<sast_install_dir>/Core/config directory in a text editor.

2. Change the value for the com.fortify.sca.MultithreadedAnalysis property to
false .

com.fortify.sca.MultithreadedAnalysis=false

This PDF was generated on January 16, 2026 Page 439 of 610

m opentext- Static Application Security Testing 26.1

1.46.5. Locating the log files

We will announce deprecation of the -debug , -verbose , and -debug-verbose
options in the System Requirements doc and release notes in the future. The GUI
Tools team uses these options in the tools so we need to let them know too.>>

By default, OpenText SAST creates log files in the following location:

o Windows: C:\Users\<username>\AppData\Local\Fortify\sca<version>\log
e Non-Windows: <userhome>/.fortify/sca<version>/log

where <version> is the version of OpenText SAST that you are using.

The following table describes the OpenText SAST default log files.

File names Description

sca.log The standard log provides a log of
informational messages, warnings, and

scaX.log

errors that occurred in the run of
sourceanalyzer.

sca_FortifySupport.log The OpenText SAST Support log

) provides:
scaX_FortifySupport.log

e The same log messages as the
standard log file, but with
additional details

o Additional detailed messages that
are not included in the standard
log file

This log file is helpful to Customer
Support or the development team to
troubleshoot any issues.

To specify a log file on the command line, see Other options.

If you encounter warnings or errors that you cannot resolve, provide the OpenText
SAST Support log file to Customer Support.

This PDF was generated on January 16, 2026 Page 440 of 610

m opentext- Static Application Security Testing 26.1

1.46.6. Configuring log files

You can configure the information that OpenText SAST writes to the log files by
setting logging properties (see Logging Properties) and by updating the

<sast_install_dir>/Core/config/log4j2.xml file. You can configure the following log
file settings:

e The location and name of the log file
Property: com.fortify.sca.LogFile

e Log level (see Understanding Log Levels)
Property: com.fortify.sca.LogLevel

» Whether to overwrite the log files for each run of sourceanalyzer
Property: com.fortify.sca.ClobberLogFile

Command-line option: -clobber-log

For information about how to make changes to the log4j2.xml file, see
https://logging.apache.org/log4j/2.x/manual/index.html.

Understanding log levels

The log level you select gives you all log messages equal to and greater than it. The
following table lists the log levels in order from least to greatest. For example, the
default log level of INFO includes log messages with the following levels: INFO,
WARN, ERROR, and FATAL. You can set the log level with the
com.fortify.sca.LoglLevel property in the <sast_install_dir>/Core/config/fortify-
sca.properties file or on the command-line using the -D option.

This PDF was generated on January 16, 2026 Page 441 of 610

https://logging.apache.org/log4j/2.x/manual/index.html

m opentext- Static Application Security Testing 26.1

Log level Description

DEBUG Includes information that Customer
Support or the development team can
use to troubleshoot an issue

INFO Basic information about the translation
or scan process

WARN Information about issues where the
translation or scan did not stop, but
might require your attention for
accurate results

ERROR . . .
Information about an issue that might
require attention

FATAL Information about an error that caused

the translation or scan to abort

This PDF was generated on January 16, 2026 Page 442 of 610

m opentext- Static Application Security Testing 26.1

1.46.7. Reporting issues and requesting
enhancements

Feedback is critical to the success of this product. To request enhancements or
patches, or to report issues, visit Customer Support at
https://www.microfocus.com/support.

Include the following information when you contact customer support:

Product: OpenText SAST

Version number of OpenText SAST and any independent OpenText SAST
modules: To determine the version numbers, run the following:

sourceanalyzer -version

Platform: (for example, Red Hat Enterprise Linux <version>)
Operating system: (such as Linux)

To request an enhancement, include a description of the feature enhancement.

To report an issue, provide enough detail so that support can duplicate the issue. The
more descriptive you are, the faster support can analyze and resolve the issue. Also
include the log files, or the relevant portions of them, from when the issue occurred.

This PDF was generated on January 16, 2026 Page 443 of 610

https://www.microfocus.com/support

3 opentext" Static Application Security Testing 26.1

1.47. Command-line reference

This section describes general OpenText SAST command-line options and how to
specify source files for analysis. Command-line options that are specific to a
language are described in the section for that language.

This section contains the following topics:

» Specifying files and directories
e Directives

o Translation options

e Analysis options

e Output options

e Other options

This PDF was generated on January 16, 2026 Page 444 of 610

m opentext- Static Application Security Testing 26.1

1.47.1. Specifying files and directories

File specifiers are expressions that allow you to pass a long list of files or a directory
to OpenText SAST using wildcard characters. OpenText SAST recognizes two types
of wildcard characters: a single asterisk character (*) matches part of a file name, and
double asterisk characters (**) recursively matches directories. You can specify one
or more files, one or more file specifiers, or a combination of files and file specifiers.
Separate multiple file specifiers with semicolons (Windows) or colons (non-Windows).

<files> | <file dir specifiers>

Windows and many Linux shells automatically expand parameters that contain the
asterisk character (*), so you must enclose file-specifier expressions in quotes. Also,
on Windows, you can use the backslash character (\) as the directory separator
instead of the forward slash (/).

Note

File specifiers do not apply to languages that require compiler or build
integration.

The following table describes examples of file and directory specifiers.

This PDF was generated on January 16, 2026 Page 445 of 610

3 opentext"

File or directory specifier

<dir>

" <dlir>[** "

"<dir>/**/Example.java"

"<dir>[*java"

"<dir>/*jar"

"<dir>**[*kt"

"<dir>[**[*jar"

" <dir>/**[beta/**"

"<dir>/**/classes/"

“**/test/**"

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Matches all files in the named directory
and any subdirectories or the named
directory when used for a directory
parameter.

Matches any file named Example.java
found in the named directory or any
subdirectories.

Matches any file with the specified
extension found in the named
directory.

Matches any file with the specified
extension found in the named directory
or any subdirectories.

Matches all directories and files found
in the named directory that have beta
in the path, including beta as a file
name.

Matches all directories and files with
the name classes found in the named
directory and any subdirectories.

Matches all files in the current directory
tree that have a test elementin the
path, including test as a file name.

Page 446 of 610

m opentext- Static Application Security Testing 26.1

File or directory specifier Description

Matches all files in the current directory
tree that have a test or a build

or element in the path, including test or
build as a file name.

“**/test/**/*;**/build/**/*“

"k [fagt/Rk [*k* [pyild /R *"

"**/webgoat/*" Matches all files in any webgoat
directory in the current directory tree.

Matches:

e /src/main/java/org/owasp/webgo
at
e [test/java/org/owasp/webgoat

Does not match (assignments
directory does not match)

« [test/java/org/owasp/webgoat/as
signments

This PDF was generated on January 16, 2026 Page 447 of 610

m opentext- Static Application Security Testing 26.1

1.47.2. Directives

Use only one directive at a time and do not use any directive in conjunction with
translation or analysis commands. Use the directives described in the following table
to list information about previous translation commands.

This PDF was generated on January 16, 2026 Page 448 of 610

m opentext- Static Application Security Testing 26.1

Directive Description

-clean Deletes all OpenText SAST intermediate
files and build records. If you specify a
build ID, only files and build records
that relate to that build ID are deleted.

-show-binaries Displays all objects created but not
used in the production of any other
binaries. If fully integrated into the
build, it lists all the binaries produced.

-show-build-ids Displays a list of all known build IDs.

-show-build-tree When you scan with the -bin option,
displays all files used to create the
binary and all files used to create those
files in a tree layout. If the -bin option
is not present, the tree is displayed for
each binary.

Note

This option can generate
an extensive amount of
information.

This PDF was generated on January 16, 2026 Page 449 of 610

m opentext- Static Application Security Testing 26.1

Directive Description

-show-build-warnings Use with the -b option to display any
errors and warnings that occurred in
the translation phase on the console.

Note

9 Fortify Audit Workbench
also displays these errors
and warnings in the results
Certification tab.

-show-files Displays the files included in the
specified build ID. When the -bin
option is present, displays only the
source files that went into the binary.

-show-loc Use with the -b option to display the
number of lines in the translated code.

This PDF was generated on January 16, 2026 Page 450 of 610

m opentext- Static Application Security Testing 26.1

1.47.2.1. LIM license directives

OpenText SAST provides directives to manage the usage of your LIM license. You can
store or clear the LIM license pool credentials. You can also request (and release) a
detached lease for offline analysis if the specified license pool permits detached
leases.

Note

e By default, OpenText SAST requires an HTTPS connection to the LIM
server and you must have a trusted certificate. For more information, see
Adding Trusted Certificates.

Use the directives described in the following table for a license managed by the LIM.

This PDF was generated on January 16, 2026 Page 451 of 610

3 opentext"

LIM directive

-store-license-pool-credentials "
<lim_url>| <lim_pool_name>|
<lim_pool_pwd>| <proxy_url>|
<proxy._user>| <proxy_pwd>"

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Stores your LIM license pool
credentials so that OpenText SAST
uses the LIM for licensing. The proxy
information is optional. OpenText SAST
stores the pool password and the proxy
credentials provided with this directive
in the fortify-sca.properties file as
encrypted data. If your license pool
credentials change after you have
installed OpenText SAST, you can run
this directive again to save the new
credentials.

Example:

sourceanalyzer -store-license-pool-
credentials " https://<ip_address>:
<port> |TeamA|mypassword"

Associated property names:
com.fortify.sca.lim.Url

com.fortify.sca.lim.PoolName

com.fortify.sca.lim.PoolPassword

com.fortify.sca.lim.ProxyUrl

com.fortify.sca.lim.ProxyUsername

com.fortify.sca.lim.ProxyPassword

Page 452 of 610

m opentext- Static Application Security Testing 26.1

LIM directive Description

-clear-license-pool-credentials)
Removes the LIM license pool

credentials from the fortify-
sca.properties file. If your license pool
credentials change, you can remove
them with this directive, and then use
the -store-license-pool-credentials
directive to save the new credentials.

-request-detached-lease <duration>
Requests a detached lease from the

LIM license pool for exclusive use on
this system for the specified duration
(in minutes). This enables you to run
OpenText SAST even when
disconnected from your corporate
intranet.

Note

9 To use this directive, the
license pool must be
configured to allow
detached leases.

-release-detached-lease Releases a detached lease back to the
license pool.

This PDF was generated on January 16, 2026 Page 453 of 610

m opentext- Static Application Security Testing 26.1

1.47.3. Translation options

The following table describes the general translation options that can be used with
most translation commands.

This PDF was generated on January 16, 2026 Page 454 of 610

m opentext- Static Application Security Testing 26.1

Translation option Description

-b <build_id> Specifies a build ID. OpenText SAST
uses a build ID to track the files that are
compiled and combined as part of a
build, and then later, to scan those
files.

Equivalent property nhame:
com.fortify.sca.BuildID

-disable-language </anguages>
B H Specifies a colon-separated list of

languages to exclude from the
translation phase. The valid language
values are

abap , actionscript, apex, cfml,
cobol , configuration, cpp, dart,
dotnet ,

golang , objc, php, python, ruby,
swift , and vb .

Equivalent property nhame:
com.fortify.sca.DISabledLanguages

-enable-language <languages>
o s Specifies a colon-separated list of

languages to translate. The valid
language values are

abap , actionscript, apex, cfml,
cobol , configuration, cpp, dart,
dotnet ,

golang , objc, php, python, ruby,
swift , and vb .

Equivalent property nhame:
com.fortify.sca.EnabledLanguages

This PDF was generated on January 16, 2026 Page 455 of 610

m opentext- Static Application Security Testing 26.1

Translation option Description
-exclude Specifies the files to exclude from the
<file_specifiers> translation. Files excluded from

translation are also not scanned.
Separate multiple file paths with
semicolons (Windows) or colons (non-
Windows). The following example
excludes all Java files in any Test
subdirectory.

sourceanalyzer -b MyProject
_Cp II**/*.jarll Il**/*ll
-exclude "**/Test/*.java"

See Specifying files and directories for
more information on how to use file
specifiers.

Equivalent property nhame:
com.fortify.sca.exclude

This PDF was generated on January 16, 2026 Page 456 of 610

m opentext- Static Application Security Testing 26.1

Translation option Description

-encoding <encoding_name> Specifies the source file encoding type.
OpenText SAST enables you to scan a
project that contains differently
encoded source files. To work with a
multi-encoded project, you must
specify the -encoding option in the
translation phase, when OpenText
SAST first reads the source code file.
OpenText SAST remembers this
encoding in the build session and
propagates it into the FVDL file.

Valid encoding names are from the
java.nio.charset.Charset .

Typically, if you do not specify the
encoding type, OpenText SAST uses
file.encoding from the
java.io.InputStreamReader

constructor with no encoding
parameter. In a few cases (for example
with the ActionScript parser), OpenText
SAST defaults to UTF-8 encoding.

Equivalent property nhame:
com.fortify.sca.InputFileEncoding

-nc When specified before a compiler
command line, OpenText SAST
translates the source file but does not
run the compiler.

This PDF was generated on January 16, 2026 Page 457 of 610

m opentext- Static Application Security Testing 26.1

Translation option Description

-noextension-type <file_type> Specifies the file type for source files
that have no extension. The valid file
type values are ABAP ,

ACTIONSCRIPT , APEX,
APEX_OBJECT , APEX_TRIGGER ,
ARCHIVE , ASPNET , ASP, ASPX,
BITCODE , BSP, BYTECODE ,
CFML , COBOL, CSHARP , DART,
DOCKERFILE , FLIGHT , GENERIC ,
GO, HCL, HOCON, HTML, INI
JAVA , JAVA_PROPERTIES ,
JAVASCRIPT , JINJA, JSON, JSP,
JSPX, JUPYTER, KOTLIN , MSIL,
MXML , OBJECT , PHP, PLSQL,
PYTHON , RUBY , RUBY_ERB,
SCALA , SWIFT, SWC, SWF,
TLD, SQL, TSQL, TYPESCRIPT ,
VB, VB6, VBSCRIPT ,
VISUAL_FORCE , VUE , and XML ,
and YAML .

I

-disable-compiler-resolution . . . L
Specifies to include build script files

that have the same name as a build tool
(such as gradlew) during translation as
source files.

Equivalent property name:
com.fortify.sca.DisableCompilerName

This PDF was generated on January 16, 2026 Page 458 of 610

m opentext- Static Application Security Testing 26.1

Translation option Description

-project-root .)
Specifies the directory to store

intermediate files generated in the
translation and analysis phases.
OpenText SAST makes extensive use
of intermediate files located in this
project root directory. In some cases,
you can achieve better performance for
analysis by making sure this directory
is on local storage rather than on a
network drive.

Equivalent property nhame:
com.fortify.sca.ProjectRoot

This PDF was generated on January 16, 2026 Page 459 of 610

m opentext- Static Application Security Testing 26.1

1.47.4. Analysis options

The following table describes the general analysis options (typically with -scan).

This PDF was generated on January 16, 2026 Page 460 of 610

3 opentext"

Analysis option

-b <build_id>

-Scan

-scan-policy <policy_name>
-sc <policy_name>

-analyzers <analyzer_list>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the build ID used in a prior
translation command.

Equivalent property nhame:
com.fortify.sca.BuildID

Causes OpenText SAST to perform a
security analysis for the specified build
ID.

Specifies a scan policy for the analysis.
The valid policy names are classic ,
security , and devops . For more
information, see Applying a Scan Policy
to the Analysis.

Equivalent property nhame:
com.fortify.sca.ScanPolicy

Specifies the analyzers you want to
enable with a colon- or comma-
separated list of analyzers. The valid
analyzer names are buffer , content,
configuration , controlflow ,
dataflow , nullptr , semantic , and
structural . You can use this option to
disable analyzers that are not required
for your security requirements.

Equivalent property name:
com.fortify.sca.DefaultAnalyzers

Page 461 of 610

3 opentext"

Analysis option

-p <level> |
-scan-precision <level/>

-project-root

-project-template <file>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Uses speed dial to scan the project
with a scan precision level. The lower
the scan precision level, the faster the
scan performance. The valid values are
1, 2, 3,and 4 .For more
information, see Configuring Scan
Speed.

Equivalent property nhame:
com.fortify.sca.PrecisionLevel

Specifies the directory to store
intermediate files generated in the
translation and analysis phases.
OpenText SAST makes extensive use
of intermediate files located in this
project root directory. In some cases,
you can achieve better performance for
analysis by making sure this directory
is on local storage rather than on a
network drive.

Equivalent property name:
com.fortify.sca.ProjectRoot

Specifies the issue template file to use
for the scan. This only affects scans on
the local machine. If you upload the
FPR to Application Security, it uses the
issue template assigned to the
application version.

Equivalent property name:
com.fortify.sca.ProjectTemplate

Page 462 of 610

3 opentext"

Analysis option

-quick

-filter <file>

-bin <binary> |
-binary-name <binary>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Quickly scan the project for critical-
and high-priority issues using the
fortify-sca-quickscan.properties file,
which provides a less in-depth
analysis. By default, quick scan
disables the Buffer Analyzer and the
Control Flow Analyzer. In addition, it
applies the Quick View filter set. For
more information, see Quick Scan.

Equivalent property nhame:
com.fortify.sca.QuickScanMode

Specifies a results filter file. For more
information, see Optimizing results.

Equivalent property name:
com.fortify.sca.FilterFile

Specifies a subset of source files to
scan. Only the source files that were
linked in the named binary at build time
are included in the scan. You can use
this option multiple times to specify the
inclusion of multiple binaries in the
scan.

Equivalent property name:
com.fortify.sca.BinaryName

Page 463 of 610

m opentext- Static Application Security Testing 26.1

Analysis option Description
-disable-default-rule-type Used to test custom rules. Disables all
rules of the specified type in the
<type> default Rulepacks. You can use this

option multiple times to specify
multiple rule types.

The <type> parameter is the XML tag
minus the suffix Rule . For example,
use DataflowSource for
DataflowSourceRule elements. You can
also specify specific sections of
characterization rules, such as
Characterization:Control flow ,
Characterization:lssue , and
Characterization:Generic .

The <type> parameter is case-
insensitive.

-no-default-issue-rules Used to test custom rules. Disables
rules in default Rulepacks that lead
directly to issues. OpenText SAST still
loads rules that characterize the
behavior of functions.

Note

9 This is equivalent to
disabling the following rule
types: DataflowSink,
Semantic, Controlflow,
Structural, Configuration,
Content, Statistical,
Internal, and
Characterization:lssue.

Equivalent property name:
com.fortify.sca.NoDefaultlssueRules

This PDF was generated on January 16, 2026 Page 464 of 610

3 opentext"

Analysis option

-no-default-rules

-no-default-source-rules

-no-default-sink-rules

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Used to test custom rules. Disables
loading of rules from the default
Rulepacks. OpenText SAST processes
the Rulepacks for description elements
and language libraries, but processes
no rules.

Equivalent property nhame:
com.fortify.sca.NoDefaultRules

Used to test custom rules. Disables
source rules in the default Rulepacks.

Note

Characterization source
rules are not disabled.

Equivalent property name:
com.fortify.sca.NoDefaultSourceRule
S

Used to test custom rules. Disables
sink rules in the default Rulepacks.

Note

Characterization sink rules
are not disabled.

Equivalent property name:
com.fortify.sca.NoDefaultSinkRules

Page 465 of 610

m opentext- Static Application Security Testing 26.1

Analysis option Description

-rules <file> | <dir> Specifies a custom Rulepack or
directory. You can use this option
multiple times to specify multiple
Rulepack files. If you specify a
directory, OpenText SAST includes all
the files in the directory with the .bin
and .xml extensions.

Equivalent property nhame:
com.fortify.sca.RulesFile

This PDF was generated on January 16, 2026 Page 466 of 610

m opentext- Static Application Security Testing 26.1

1.47.5. Output options

The following table describes the output options. Apply all these options during the
analysis phase (with the -scan option). You can specify the build-label , build-
project , and build-version options during the translation phase and they are
overridden if specified again for the analysis phase.

This PDF was generated on January 16, 2026 Page 467 of 610

m opentext- Static Application Security Testing 26.1

Output option Description
-f <file> | Specifies the file to which analysis
-output-file <file> results are written. If you do not

specify an output file, OpenText SAST
writes the output to the terminal.

Equivalent property nhame:
com.fortify.sca.ResultsFile

This PDF was generated on January 16, 2026 Page 468 of 610

m opentext- Static Application Security Testing 26.1

Output option Description

-format <format> Controls the output format. Valid
options are fpr, fvdl, fvdl.zip , text,
and auto . The defaultis auto , which
selects the output format based on the
file name extension of the file provided
with the -f option.

The FVDL is an XML file that contains
the detailed OpenText SAST analysis
results. This includes vulnerability
details, rule descriptions, code
shippets, command-line options used
in the scan, and any scan errors or
warnings.

The FPR is a package of the analysis
results that includes the FVDL file as
well as extra information such as a
copy of the source code used in the
scan, the external metadata, and
custom rules (if applicable). Fortify
Audit Workbench is automatically
associated with the .fpr extension.

Note

If you use result
certification. vou must
specify the fpr format.
See the OpenText™ Fortify
Audit Workbench User
Guide for information about
result certification.

You can prevent some information from
being included in the FPR or FVDL file
to improve scan time or output file size.
See other options in this table and see
Optimizing FPR Files.

This PDF was generated on January 16, 2026 Page 469 of 610

m opentext- Static Application Security Testing 26.1

Output option Description

Equivalent property name:
com.fortify.sca.Renderer

This PDF was generated on January 16, 2026 Page 470 of 610

m opentext- Static Application Security Testing 26.1

Output option Description

-append Appends results to the file specified

with the -f option. The resulting FPR
file contains the issues from the earlier
scan as well as issues from the current
scan. The build information and
program data (lists of sources and
sinks) sections are also merged. To use
this option, the output file format must
be fpr or fvdl . For information on the
-format output option, see the
description in this table.

The engine data, which includes
OpenText Application Security
Content information, command-line
options, system properties, warnings,
errors, and other information about the
execution of OpenText SAST (as
opposed to information about the
program being analyzed), is not
merged. Because engine data is not
merged with the -append option,
OpenText does not certify results
generated with -append .

If this option is not specified, OpenText
SAST adds any new findings to the FPR
file, and labels the older result as
previous findings.

In general, only use the -append
option when it is impossible to analyze
an entire application at once.

Equivalent property name:
com.fortify.sca.OutputAppend

This PDF was generated on January 16, 2026 Page 471 of 610

3 opentext"

Output option

-build-label </abel>

-build-project <project_name>

-build-version <version>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies a label for the project to
include in the analysis results. You can
include this option during the
translation or the analysis phase.
OpenText SAST does not use this label
for code analysis. If this option is
specified for both translation and
analysis, then only the last specified
label is passed to the analysis results.

Equivalent property nhame:
com.fortify.sca.BuildLabel

Specifies a nhame for the project to
include in the analysis results. You can
include this option during the
translation or the analysis phase.
OpenText SAST does not use this name
for code analysis.

Equivalent property name:
com.fortify.sca.BuildProject

Specifies a version for the project to
include in the analysis results. You can
include this option during the
translation or the analysis phase.
OpenText SAST does not use this
version for code analysis.

Equivalent property name:
com.fortify.sca.BuildVersion

Page 472 of 610

m opentext- Static Application Security Testing 26.1

Output option Description

-disable-source-bundling Excludes source files from the analysis
results file. The analysis results will still
include snippets.

Equivalent property nhame:
com.fortify.sca.FPRDisableSourceBun
dling

-fvdl-no-descriptions Excludes the OpenText Application
Security Content descriptions from the
analysis results file.

Equivalent property name:
com.fortify.sca.FVDLDisableDescriptio
ns

-fvdl-no-enginedata Excludes engine data from the analysis
results file. The engine data includes
OpenText Application Security
Content information, command-line
options, system properties, warnings,
errors, and other information about the
OpenText SAST execution.

Equivalent property name:
com.fortify.sca.FVDLDisableEngineDat
a

This PDF was generated on January 16, 2026 Page 473 of 610

m opentext- Static Application Security Testing 26.1

Output option Description

-fvdl-no-progdata Excludes program data from the
analysis results file. This removes the
taint source information from the
Functions view in Fortify Audit
Workbench.

Equivalent property nhame:
com.fortify.sca.FVDLDisableProgramD
ata

-fvdl-no-snippets Excludes the code snippets from the
analysis results file.

Equivalent property name:
com.fortify.sca.FVDLDisableSnippets

This PDF was generated on January 16, 2026 Page 474 of 610

m opentext- Static Application Security Testing 26.1

1.47.6. Other options

The following table describes other options.

This PDF was generated on January 16, 2026 Page 475 of 610

3 opentext"

Other option

@<file>

_?|

-help

-debug

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Reads command-line options from the
specified file. The plain text <file>
contains options and parameters, each
on a separate line.

For example, instead of running the
command sourceanalyzer -b
my_build_id -source 17 -cp lib.jar
Test.java , you can run the following
command: sourceanalyzer
@optfile.txt where the optfile.txt file
contains:

n_pn
"my build id"
"-source"
nq7m

".cp"
"lib.jar"
"Test.java"

Prints a summary of the command-line
options.

Includes debug information in the
OpenText SAST Support log file, which
is only useful for Customer Support to
help troubleshoot.

Equivalent property nhame:
com.fortify.sca.Debug

Page 476 of 610

m opentext- Static Application Security Testing 26.1

Other option Description

-debug-verbose This is the same as the -debug
option, but it includes more details,
specifically for parse errors.

Equivalent property nhame:
com.fortify.sca.DebugVerbose

-debug-mem) o
Includes performance information in

the OpenText SAST Support log.

Equivalent property name:
com.fortify.sca.DebugTrackMem

-verbose Sends verbose status messages to the
console and to the OpenText SAST
Support log file.

Equivalent property name:
com.fortify.sca.Verbose

-logfile <file> Specifies the log file that OpenText
SAST creates. For default log file
locations, see Locating the log files.

Equivalent property nhame:
com.fortify.sca.LogFile

-clobber-log Directs OpenText SAST to overwrite the
log file for each run of sourceanalyzer.
Without this option, OpenText SAST
appends information to the log file.

Equivalent property name:
com.fortify.sca.ClobberLogFile

This PDF was generated on January 16, 2026 Page 477 of 610

m opentext- Static Application Security Testing 26.1

Other option Description
-quiet Disables the command-line progress
information.

Equivalent property nhame:
com.fortify.sca.Quiet

-version Displays the OpenText SAST version

-V and versions of various independent
modules included with OpenText SAST
(all other functionality is contained in
OpenText SAST).

Enables automatic allocation of
memory based on the physical memory
available on the system. This is the
default memory allocation setting.

-autoheap

This PDF was generated on January 16, 2026 Page 478 of 610

m opentext- Static Application Security Testing 26.1

Other option Description

-Xmx<size>sM | G Manually specifies the maximum
amount of memory OpenText SAST
uses.

Note

OpenText recommends that
you use the default
memory allocation setting
defined by -autoheap
instead of manually
specifying the maximum
memory with this option.

Heap sizes between 32 GB and 48 GB
are not advised due to internal JVM
implementations. Heap sizes in this
range perform worse than at 32 GB.
The JVM optimizes heap sizes smaller
than 32 GB. If your scan requires more
than 32 GB, then you need 64 GB or
more. As a guideline, assuming no
other memory intensive processes are
running, do not allocate more than 2/3
of the available memory.

When you specify this option, make
sure that you do not allocate more
memory than is physically available,
because this degrades performance.
As a guideline, and the assumption that
no other memory intensive processes
are running, do not allocate more than
2/3 of the available memory.

This PDF was generated on January 16, 2026 Page 479 of 610

3 opentext" Static Application Security Testing 26.1

1.48. Configuration options

The OpenText SAST installer places a set of properties files on your system.
Properties files contain configurable settings for OpenText SAST runtime analysis,
output, and performance.

This section contains the following topics:

e Properties files

» fortify-sca.properties

» fortify-sca-quickscan.properties
» fortify-rules.properties

This PDF was generated on January 16, 2026 Page 480 of 610

3 opentext"

1.48.1. Properties files

The properties files are located in the <sast_install_dir>/Core/config directory. The
installed properties files contain default values. OpenText recommends that you
consult with your project leads before you make changes to the properties in the
properties files. You can modify any of the properties in the configuration file with any
text editor. You can also specify the property on the command line with the -D

option.

Static Application Security Testing 26.1

The following table lists the OpenText SAST properties files. Property files for the
OpenText SAST applications and tools are described in the OpenText™ Application

Security Tools Guide.

Properties file name

fortify-sca.properties

fortify-sca-
quickscan.properties

fortify-rules.properties

This PDF was generated on January 16, 2026

Description

Defines the OpenText
SAST configuration
properties.

Defines the configuration
properties applicable for
an OpenText SAST quick
scan.

Defines the configuration
properties that
determine rule behavior.

More information

fortify-sca.properties

fortify-sca-
quickscan.properties

fortify-rules.properties

Page 481 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

m opentext- Static Application Security Testing 26.1

1.48.1.1. Properties file format

In the properties file, each property consists of a pair of strings: the first string is the
property name and the second string is the property value.

com.fortify.sca.fileextensions.htm=HTML

As shown above, the property sets the translation to use for .htm files. The property
name is com.fortify.sca.fileextensions.htm and the value is setto HTML .

Note

When you specify a path for Windows systems as the property value, you
must escape anv backslash character (\) with a backslash (for example:
com.fortify.sca.ASPVirtualRoots.Library=C:\\WebServer\\CustomerA\\inc
).

Disabled properties are commented out of the properties file. To enable these
properties, remove the comment symbol (#) and save the properties file. In the
following example, the com.fortify.sca.LogFile property is disabled in the properties
file and is not part of the configuration:

default location for the log file
#com.fortify.sca.LogFile=${com.fortify.sca.ProjectRoot}/sca/log/
sca.log

This PDF was generated on January 16, 2026 Page 482 of 610

m opentext- Static Application Security Testing 26.1

1.48.1.2. Overriding settings

OpenText SAST uses properties settings in a specific order. You can override any
previously set properties with the values that you specify. Keep this order in mind
when making changes to the properties files.

The following table lists the order of precedence for OpenText SAST properties.

This PDF was generated on January 16, 2026 Page 483 of 610

m opentext- Static Application Security Testing 26.1

Order Property specification Description

1 . . . o
Command line with the - = Properties specified on
D option the command line have

the highest priority and
you can specify them in
any scan.

This PDF was generated on January 16, 2026 Page 484 of 610

m opentext- Static Application Security Testing 26.1

Order Property specification Description

2 OpenText SAST quick
scan configuration file Note

e You can

specify
either quick
scanora
scan
precision
level.
Therefore,
these

property
settings both
have second
priority.

Properties specified in
the quick scan
configuration file

(fortify-sca-
quickscan.properties)
have the second priority,
but only if you include
the -quick option to
enable quick scan mode.

OpenText SAST scan

.. . Properties specified in
precision property files

the scan precision
property files have the
second priority, but only
if you include the -scan-
precision option to
enable scan precision.

This PDF was generated on January 16, 2026 Page 485 of 610

m opentext- Static Application Security Testing 26.1

Order Property specification Description

3 OpenText SAST

configuration file Properties specified in

the OpenText SAST
configuration file

(fortify-sca.properties)
have the lowest priority.
Edit this file to change
the property values on a
more permanent basis
for all scans.

OpenText SAST also relies on some properties that have internally defined default
values.

This PDF was generated on January 16, 2026 Page 486 of 610

3 opentext"

1.48.2. fortify-sca.properties

Static Application Security Testing 26.1

The following sections describe the properties available for use in the fortify-
sca.properties file. See fortify-sca-quickscan.properties for additional properties that
you can use in this properties file. Each property description includes the value type,
the default value, the equivalent command-line option (if applicable), and an example.

This section contains the following topics:

Translation and analysis phase properties

Regex analysis properties
LIM license properties
Rule properties

Java and Kotlin properties

Visual Studio and MSBuild project properties

JavaScript and TypeScript properties
Python properties

Go properties

Ruby properties

COBOL properties

PHP properties

ABAP properties

Flex and ActionScript properties
ColdFusion (CFML) properties

SQL properties

Output properties

Mobile build session (MBS) properties
Proxy properties

Logging properties

Debug properties

This PDF was generated on January 16, 2026

Page 487 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.1. Translation and analysis phase
properties

The properties for the fortify-sca.properties file in the following table are general
properties that apply to the translation and/or analysis (scan) phase.

This PDF was generated on January 16, 2026 Page 488 of 610

3 opentext"

Property name

Translation and scan

com.fortify.sca.BuildID

com.fortify.sca.CmdlineOptionsFileEnc
oding

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the build ID of the build.
Value type: String
Default: (none)

Command-line option: -b

Specifies the encoding of the
command-line options file provided
with @<filename> (see Other
Options). You can use this property, for
example, to specify Unicode file paths
in the options file. Valid encoding
names are from the
java.nio.charset.Charset

This property is only valid in the
fortify-sca.properties file and does
not work in the fortify-sca-
quickscan.properites file or with the -
D option.

Value type: String
Default: JVM system default encoding

Example: com.fortify.sca.CmdlineOpti
onsFileEncoding=UTF-8

Page 489 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DISabledLanguages Specifies a colon-separated list of
languages to exclude from the
translation phase. The valid language
values are.

abap , actionscript, apex, cfml,
cobol , configuration , cpp, dart,
dotnet ,

golang, objc, php, python, ruby,
swift , and vb .

Value type: String
Default: (none)

Command-line option: -disable-
language

com.fortify.sca.EnabledLanguages Specifies a colon-separated list of
languages to translate. The valid
language values are.

abap , actionscript, apex, cfml,
cobol , configuration , cpp , dart,
dotnet ,

golang , objc, php, python, ruby,
swift , and vb .

Value type: String

Default: All languages in the specified
source are translated unless explicitly
excluded with the
com.fortify.sca.DISabledLanguages

property.

Command-line option: -enable-
language

This PDF was generated on January 16, 2026 Page 490 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DisableCompilerName .
If set to true, OpenText SAST includes

build script files that have the same
name as a build tool (such as gradlew)
during translation as source files.

Value type: Boolean
Default: false

Command-line option: -disable-
compiler-resolution

com.fortify.sca.ProjectRoot Specifies the directory to store
intermediate files generated in the
translation and analysis phases.
OpenText SAST makes extensive use
of intermediate files located in this
project root directory. In some cases,
you achieve better performance for
analysis by making sure this directory
is on local storage rather than on a
network drive.

Value type: String (path)

Default (Windows):
${win32.LocalAppdata}/Fortify

${win32.LocalAppdata} is a variable
that points to the Windows Local
Application Data shell folder.

Default (non-Windows):
$home/.fortify

Command-line option: -project-root

Example:
com.fortify.sca.ProjectRoot=C:\Users\
<username>\AppData\Local\

This PDF was generated on January 16, 2026 Page 491 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

Translation

This PDF was generated on January 16, 2026 Page 492 of 610

3 opentext"

Property name

com.fortify.sca.fileextensions.java
com.fortify.sca.fileextensions.cs
com.fortify.sca.fileextensions.js
com.fortify.sca.fileextensions.py
com.fortify.sca.fileextensions.rb
com.fortify.sca.fileextensions.aspx
com.fortify.sca.fileextensions.php

This is a partial list. For the complete
list, see the properties file.

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies how to translate specific file
name extensions of languages that do
not require build integration. The valid
extension types are ABAP ,
ACTIONSCRIPT , APEX,
APEX_OBJECT , APEX_TRIGGER ,
ARCHIVE , ASPNET , ASP, ASPX,
BITCODE , BSP, BYTECODE ,
CFML , COBOL, CSHARP , DART,
DOCKERFILE , FLIGHT , GENERIC ,
GO, HCL, HOCON, HTML, INI
JAVA , JAVA_PROPERTIES ,
JAVASCRIPT , JINJA, JSON, JSP,
JSPX , JUPYTER, KOTLIN, MSIL ,
MXML , OBJECT, PHP, PLSQL,
PYTHON , RUBY , RUBY_ERB,
SCALA , SWIFT, SWC, SWF,
TLD, SQL, TSQL, TYPESCRIPT ,
VB, VB6, VBSCRIPT ,
VISUAL_FORCE , VUE , and XML,
and YAML

I

Value type: String (valid language
type)

Default: See the fortify-sca.properties
file for the complete list.

Examples:

com.fortify.sca.fileextensions.java=JA
VA
com.fortify.sca.fileextensions.cs=CSH
ARP
com.fortify.sca.fileextensions.js=TYPE
SCRIPT
com.fortify.sca.fileextensions.py=PYT
HON
com.fortify.sca.fileextensions.swift=S

Page 493 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

WIFT
com.fortify.sca.fileextensions.razor=A
SPNET
com.fortify.sca.fileextensions.php=PH
P
com.fortify.sca.fileextensions.tf=HCL

You can also specify a value of oracle:
<path_to_script> to programmatically
supply a language type. Provide a
script that accepts one command-line
parameter of a file name that matches
the specified extension. The script
must write the valid OpenText SAST file
type (see previous list) to stdout and
exit with a return value of zero. If the
script returns a non-zero return code
or the script does not exist, the file is
not translated and OpenText SAST
writes a warning to the log file.

Example:
com.fortify.sca.fileextensions.jsp=orac
le:<path_to_script>

This PDF was generated on January 16, 2026 Page 494 of 610

3 opentext"

Property name

com.fortify.sca.compilers.javac=com.f
ortify.sca.util.compilers.JavacCompiler

com.fortify.sca.compilers.c++=com.fo
rtify.sca.util.compilers.GppCompiler

com.fortify.sca.compilers.make=com.f
ortify.sca.util.compilers.TouchlessCom
piler

com.fortify.sca.compilers.mvn=com.fo
rtify.sca.util.compilers.MavenAdapter

This is a partial list. For the complete
list,
see the properties file.

com.fortify.sca.UseAntListener

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies custom-named compilers.
Value type: String (compiler)

Default: See the Compilers section in
the fortify-sca.properties file for the
complete list.

Example:

To tell OpenText SAST that "“my-gcc” is
a gcc compiler:

com.fortify.sca.compilers.my-
gcc=com.fortify.sca.util.compilers.Gcc
Compiler

Notes:

e Compiler names can begin or end
with an asterisk (*), which matches
zero or more characters.

» Execution of clang/clang++ is not
supported with the gcc/g++
command names. You can specify
the following:

com.fortify.sca.compilers.g++=

com.fortify.sca.util.compilers.GppC
ompiler

If set to true, OpenText SAST includes
com.fortify.dev.ant.SCAListener in the
compiler options.

Value type: Boolean

Default: false

Page 495 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.exclude Specifies one or more files to exclude
from translation. Separate multiple files
with semicolons (Windows) or colons
(non-Windows). See Specifying Files
and Directories for more information on
how to use file specifiers.

Value type: String
Default: Not enabled
Command-line option: -exclude

Example:
com.fortify.sca.exclude=filel.x;file2.x

This PDF was generated on January 16, 2026 Page 496 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.InputFileEncoding Specifies the source file encoding type.
OpenText SAST allows you to scan a
project that contains differently
encoded source files. To work with a
multi-encoded project, you must
specify the -encoding option in the
translation phase, when OpenText
SAST first reads the source code file.
OpenText SAST remembers this
encoding in the build session and
propagates it into the FVDL file.

Typically, if you do not specify the
encoding type, OpenText SAST uses
file.encoding from the
java.io.InputStreamReader

constructor with no encoding
parameter. In a few cases (for example
with the ActionScript parser), OpenText
SAST defaults to UTF-8 .

Value type: String
Default: (none)
Command-line option: -encoding

Example:
com.fortify.sca.lnputFileEncoding=UT
F-16

This PDF was generated on January 16, 2026 Page 497 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.RegExecutable On Windows platforms, specifies the
path to the reg.exe system utility.
Specify the paths in Windows syntax,
not Cygwin syntax, even when you run
OpenText SAST from within Cygwin.
Escape backslashes with an additional
backslash.

Value type: String (path)
Default: reg

Example:
com.fortify.sca.RegExecutable=C:\\Wi
ndows\\System32\\reg.exe

This PDF was generated on January 16, 2026 Page 498 of 610

3 opentext"

Property name

com.fortify.sca.xcode.TranslateAfterEr
ror

Scan

com.fortify.sca.AddImpliedMethods

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies whether the xcodebuild
touchless adapter continues translation
if the xcodebuild subprocess exited
with a non-zero exit code. If set to
false, translation stops after
encountering a non-zero xcodebuild
exit code and the OpenText SAST
touchless build halts with the same exit
code. If set to true, the OpenText SAST
touchless build executes translation of
the build file identified prior to the
xcodebuild exit, and OpenText SAST
exits with an exit code of zero (unless
some other error also occurs).

Regardless of this setting, if xcodebuild
exits with a non-zero code, then the
xcodebuild exit code, stdout, and
stderr are written to the log file.

Value type: Boolean

Default: false

If set to true, OpenText SAST generates
implied methods when it encounters
implementation by inheritance.

Value type: Boolean

Default: true

Page 499 of 610

3 opentext"

Property name

com.fortify.sca.alias.Enable

com.fortify.sca.analyzer.controlflow.En
ableTimeOut

com.fortify.sca.BinaryName

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, enables alias analysis.
Value type: Boolean

Default: true

Specifies whether to enable Control
Flow Analyzer timeouts.

Value type: Boolean

Default: true

Specifies a subset of source files to
scan. Only the source files that were
linked in the named binary at build time
are included in the scan.

Value type: String (path)
Default: (none)

Command-line option: -bin or -
binary-name

Page 500 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DefaultAnalyzers Specifies a comma- or colon-
separated list of the types of analysis
to perform. The valid values for this
property are buffer , content,
configuration , controlflow ,
dataflow , nullptr , semantic , and
structural .

Value type: String

Default: This property is commented
out and all analysis types are used in
scans.

Command-line option: -analyzers

com.fortify.sca.DisableFunctionPointer If set to true, disables function pointers
s during the scan.

Value type: Boolean

Default: false

com.fortify.sca.EnableAnalyzer Specifies a comma- or colon-
separated list of analyzers to use for a
scan in addition to the default
analyzers. The valid values for this
property are buffer , content,
configuration , controlflow ,
dataflow , nullptr , semantic , and
structural .

Value type: String

Default: (none)

This PDF was generated on January 16, 2026 Page 501 of 610

3 opentext"

Property name

com.fortify.sca.EnableSubtraceFilterin
g

com.fortify.sca.ExitCodelLevel

com.fortify.sca.FilterFile

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, filters out partial
duplicates where issues are a subtrace
of a given issue.

For example, if the engine finds 2
similar issues with the traces:
A->B->C->D

B>C->D

The second issue is removed as a
subtrace duplicate of the first, leaving
only the longer issue, as it is the overall
more accurate one.

Value type: Boolean

Default: true

Extends the default exit code options.
See Exit Codes for a description of the
exit codes and the valid values for this

property.

Specifies the path to a filter file for the
scan. See About Filter Files for more
information.

Value type: String (path)
Default: (none)

Command-line option: -filter

Page 502 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.FilteredinstancelDs Specifies a comma-separated list of
[IDs to be filtered out using a filter file.

Value type: String
Default: (none)

Example:
com.fortify.sca.FilteredinstancelDs=C

A4E1623A2424919B98EC19FCA279FF

A,4418B3DC072647158B3758E6183C1

4CD
com.fortify.sca.FilteredRuleLanguage Specifies a comma- or colon-
s separated list of languages for which to
remove rules. The valid language
values are

abap , actionscript, apex, cfml,
cobol , configuration, cpp, dart,
dotnet ,

golang, objc, php, python, ruby,
swift , and vb .

Value type: String
Default: (none)

Example:
com.fortify.sca.FileredRuleLanguages
=apex:php

com.fortify.sca.MaxPassthroughChain Specifies the length of a taint path
Depth between input and output parameters
in a function call.

Value type: Integer

Default: 4

This PDF was generated on January 16, 2026 Page 503 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.MultithreadedAnalysis Specifies whether OpenText SAST runs
in parallel analysis mode.

Value type: Boolean

Default: true

com.fortify.sca.PhaseOHigherOrder.La

Specifies a comma-separated list of
nguages

languages for which to run higher-
order analysis. Higher-order analysis
improves the ability to track dataflow
through higher-order code, which is
commonly used in modern dynamic
languages. Valid values are python ,
swift , ruby , javascript , and
typescript .

Value type: String

Default: python,ruby,swift,javascript,ty
pescript

This PDF was generated on January 16, 2026 Page 504 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify.sca.PhaseOHigherOrder.Ti Specifies the total time (in seconds) for
meout.Hard higher-order analysis. When the

analyzer reaches the hard timeout limit,
it exits immediately.

OpenText recommends this timeout
limit in case some issue causes the
analysis to run too long. OpenText
recommends that you set the hard
timeout to about 50% longer than the
soft timeout, so that either the fixpoint
pass limiter or the soft timeout occurs
first.

Value type: Number

Default: 2700

com.fortify.sca.PrecisionLevel Specifies the scan precision. Scans
with a lower precision level are
performed faster. The valid values are
1, 2, 3,and 4.

Value type: Number
Default: (none)

Command-line option: -scan-
precision | -p

This PDF was generated on January 16, 2026 Page 505 of 610

3 opentext"

Property name

com.fortify.sca.ProjectTemplate

com.fortify.sca.QuickScanMode

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the issue template file to use
for the scan. This only affects scans on
the local machine. If you upload the
FPR to Application Security, it uses the
issue template assigned to the
application version.

Value type: String
Default: (none)

Command-line option: -project-
template

Example:
com.fortify.sca.ProjectTemplate=test_i
ssuetemplate.xml

If set to true, OpenText SAST performs
a quick scan. OpenText SAST uses the
settings from fortify-sca-
quickscan.properties , instead of the
fortify-sca.properties configuration
file.

Value type: Boolean
Default: (not enabled)

Command-line option: -quick

Page 506 of 610

3 opentext"

Property name

com.fortify.sca.ScanPolicy

com.fortify.sca.ThreadCount

com.fortify.sca.TypelnferenceFunction
Timeout

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the scan policy for prioritizing
reported vulnerabilities (see Applying a
Scan Policy to the Analysis). The valid
scan policy values are classic ,
security , and devops .

Value type: String
Default: security

Command-line option: -sc or -scan-
policy

Specifies the number of threads for
parallel analysis mode. Add this
property only if you need to reduce the
number of threads used because of a
resource constraint. If you experience
an increase in scan time or problems
with your scan, a reduction in the
number of threads used might solve
the problem.

Value type: Integer

Default: (number of available
processor cores)

The amount of time (in seconds) that
type inference can spend to analyze a
single function. Unlimited if set to zero
or is not specified.

Value type: Long

Default: 60

Page 507 of 610

3 opentext"

Property name

com.fortify.sca.TypelnferenceLanguag
es

com.fortify.sca.TypelnferencePhaseQOT
imeout

com.fortify.sca.UniversalBlacklist

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Comma- or colon-separated list of
languages that use type inference. This
setting improves the precision of the
analysis for dynamically-typed
languages.

Value type: String

Default:
javascript,python,ruby,typescript

Specifies the total amount of time (in
seconds) that type inference can
spend in phase 0 (the interprocedural
analysis). Unlimited if set to zero or is
not specified.

Value type: Long

Default: 300

Specifies a colon-separated list of
functions to hide from all analyzers.

Value type: String

Default: .*yyparse.*

Page 508 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.2. Regex analysis properties

The properties for the fortify-sca.properties file in the following table apply to
regular expression analysis.

Property name Description

com.fortify.sca.regex.Enable If set to true, regular expression
analysis is enabled.

Value type: Boolean

Default: true

com.fortify.sca.regex.ExcludeBinaries . .
If set to true, binary files are excluded
from a regular expression analysis.
Value type: Boolean
Default: true

com.fortify.sca.regex.MaxSize . . o
Specifies the maximum size (in

megabytes) for files that are scanned
in a regular expression analysis. Files
that exceed this file size maximum are
excluded from a regular expression
analysis.

Value type: Number

Default: 10

See Also

Regular Expression Analysis

This PDF was generated on January 16, 2026 Page 509 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.3. LIM license properties

The properties for the fortify-sca.properties file in the following table apply to
licensing with the LIM.

This PDF was generated on January 16, 2026 Page 510 of 610

3 opentext"

Property name

com.fortify.sca.lim.Url

com.fortify.sca.lim.PoolName

com.fortify.sca.lim.PoolPassword

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the LIM server APl URL. Do
not edit this value directly with a text
editor. Use the command-line option to
change this value.

Value type: String
Default: (none)

Command-line option: -store-license-
pool-credentials

Examples:
https:// <ip_address>:<port>

Specifies the LIM license pool hame.
Do not edit this value directly with a
text editor. Use the command-line
option to change this value.

Value type: String
Default: (none)

Command-line option: -store-license-
pool-credentials

Specifies the LIM license pool
password (encrypted). Do not edit this
value directly with a text editor. Use the
command-line option to change this
value.

Value type: String
Default: (none)

Command-line option: -store-license-
pool-credentials

Page 511 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.lim.ProxyUrl .
Specifies the proxy server used to

connect to the LIM server.
Value type: String

Default: (none)

Examples: http://proxy.example.com:8
080

https://proxy.example.com

Command-line option: -store-license-
pool-credentials

com.fortify.sca.lim.ProxyUsername .
Specifies an encrypted user name for

proxy authentication to connect to the
LIM server. Do not edit this value
directly with a text editor. Use the
command-line option to change this
value.

Value type: String
Default: (none)

Command-line option: -store-license-
pool-credentials

This PDF was generated on January 16, 2026 Page 512 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.lim.ProxyPassword .
Specifies an encrypted password for

proxy authentication to connect to the
LIM server. Do not edit this value
directly with a text editor. Use the
command-line option to change this
value.

Value type: String
Default: (none)

Command-line option: -store-license-
pool-credentials

com.fortify.sca.lim.RequireTrustedSSL

If set to true, any attempt to connect to
Cert

the LIM server without a trusted
certificate fails. If this property is set to
false, a message displays when any
attempt to connect to the LIM server
without a trusted certificate occurs.

Value type: Boolean

Default: true

com.fortify.sca.lim.WaitForlnitialLicens

. If set to true and LIM license pool

credentials are stored, OpenText SAST
waits for a LIM license to become
available before starting a translation or
scan. If this property is set to false,
OpenText SAST aborts if it cannot
obtain a LIM license.

Value type: Boolean

Default: true

LIM License Directives

This PDF was generated on January 16, 2026 Page 513 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.4. Rule properties

The properties for the fortify-sca.properties file in the following table apply to rules
(and custom rules) and Rulepacks.

This PDF was generated on January 16, 2026 Page 514 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DefaultRulesDir Sets the directory used to search for
the OpenText provided encrypted rules
files.

Value Type: String (path)

Default:
${com.fortify.Core}/config/rules

com.fortify.sca.RulesFile Specifies a custom Rulepack or
directory. If you specify a directory, all
of the files in the directory with the
.bin and .xml extensions are
included.

Value Type: String (path)
Default: (none)

Command-line option: -rules

com.fortify.sca.CustomRulesDir Sets the directory used to search for
custom rules.

Value Type: String (path)

Default:
${com.fortify.Core}/config/customrule
S

This PDF was generated on January 16, 2026 Page 515 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.RulesFileExtensions Specifies a list of file extensions for

rules files. Any files in
<sast_install_dir>/Core/config/rules

(or a directory specified with the -
rules option) whose extension is in this
listis included. The .bin extension is
always included, regardless of the
value of this property. The delimiter for
this property is the system path
separator.

Value Type: String
Default: .xml

com.fortify.sca.NoDefaultRules
If set to true, rules from the default

Rulepacks are not loaded. OpenText
SAST processes the Rulepacks for
description elements and language
libraries, but no rules are processed.

Value Type: Boolean
Default: (none)

Command-line option: -no-default-
rules

This PDF was generated on January 16, 2026 Page 516 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.NoDefaultlssueRules If set to true, disables rules in default
Rulepacks that lead directly to issues.
OpenText SAST still loads rules that
characterize the behavior of functions.
This can be helpful when creating
custom issue rules.

Value Type: Boolean
Default: (none)

Command-line option: -no-default-
issue-rules

com.fortify.sca.NoDefaultSourceRule

. If set to true, disables source rules in

the default Rulepacks. This can be
helpful when creating custom source
rules.

Note

Characterization source
rules are not disabled.

Value Type: Boolean
Default: (none)

Command-line option: -no-default-
source-rules

This PDF was generated on January 16, 2026 Page 517 of 610

3 opentext"

Property name

com.fortity.sca.NoDefaultSinkRules

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, disables sink rules in the
default Rulepacks. This can be helpful
when creating custom sink rules.

Note

Characterization sink rules
are not disabled.

Value Type: Boolean
Default: (none)

Command-line option: -no-default-
sink-rules

Page 518 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.5. Java and Kotlin properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of Java and Kotlin code.

This PDF was generated on January 16, 2026 Page 519 of 610

3 opentext"

Property name

com.fortify.sca.JavaClasspath

com.fortify.sca.JdkVersion

com.fortify.sca.CustomJdkDir

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the class path used to
analyze Java or Kotlin source code.
Separate multiple paths with
semicolons (Windows) or colons (non-
Windows).

Value type: String (paths)
Default: (none)

Command-line option: -cp or -
classpath

Specifies the Java source code version
for Java or Kotlin translation.

Value type: String
Default: 1

Command-line option: -jdk or -
source

Specifies a directory that contains a
JDK version that is not included in the
OpenText SAST installation

(<sast_install_dir>/Core/bootcp/).

Value type: String (path)
Default: (none)

Command-line option: -custom-jdk-
dir

Page 520 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.JavaSourcepath Specifies a semicolon- (Windows) or
colon-separated (non-Windows) list of
Java or Kotlin source file directories
that are not included in the scan but
are used for name resolution. The
source path is similar to class path,
except it uses source files rather than
class files for resolution.

Value type: String (paths)
Default: (none)
Command-line option: -sourcepath

com.fortify.sca.Appserver . o
Specifies the application server to

process JSP files. The valid values are
weblogic or websphere .

Value type: String
Default: (none)

Command-line option: -appserver

com.fortify.sca.AppserverHome Specifies the application server's home
directory. For WebLogic, this is the
path to the directory that contains
server/lib . For WebSphere, this is the
path to the directory that contains the
JspBatchCompiler script.

Value type: String (path)
Default: (none)

Command-line option: -appserver-
home

This PDF was generated on January 16, 2026 Page 521 of 610

3 opentext"

Property name

com.fortify.sca.AppserverVersion

com.fortify.sca.JavaExtdirs

com.fortify.sca.JavaSourcepathSearc
h

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the version of the WebLogic
or WebSphere application server.

Value type: String
Default: (none)

Command-line option: -appserver-
version

Specifies directories to include
implicitly on the class path for
WebLogic and WebSphere application
servers.

Value type: String
Default: (none)

Command-line option: -extdirs

If set to true, OpenText SAST only
translates Java source files that are
referenced by the target file list.
Otherwise, OpenText SAST translates
all files included in the source path.

Value type: Boolean

Default: true

Page 522 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DefaultJarsDirs .)
Specifies semicolon- or colon-

separated list of directories of
commonly used JAR files. JAR files
located in these directories are
appended to the end of the class path
option (-cp).

Value type: String

Default: default_jars

com.fortify.sca.DecompileBytecode .
If set to true, Java bytecode is
decompiled for the translation.
Value type: Boolean

Default: false

com.fortify.sca.jsp.UseSecurityManag If set to true, the JSP parser uses JSP
er security manager.

Value type: Boolean

Default: true

com.fortify.sca.jsp.DefaultEncoding Specifies the encoding for JSPs.
Value type: String (encoding)

Default: 1SO-8859-1

This PDF was generated on January 16, 2026 Page 523 of 610

3 opentext"

Property name

com.fortify.sca.jsp.LegacyDataflow

com.fortify.sca.KotlindvmDefault

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, enables additional filtering
on JSP-related dataflow to reduce the
amount of spurious false positives
detected.

Value type: Boolean
Default: false

Command-line option: -legacy-jsp-
dataflow

Specifies the generation of the
Defaultimpls class for methods with
bodies in Kotlin interfaces. The valid
values are:

« disable —Specifies to generate the
Defaultimpls class for each
interface that contains methods
with bodies.

« all —Specifies to generate the
Defaultimpls class if an interface
is annotated with
@JvmDefaultWithCompatibility .

e all-compatibility —Specifies to
generate the Defaultimpls class
unless an interface is annotated
with
@JvmbDefaultWithoutCompatibility .

Value type: String

Default: disable

Page 524 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.ShowUnresolvedSymb

ols If set to true, displays any unresolved

types, fields, and functions referenced
in translated Java source files at the
end of the translation.

Value type: Boolean
Default: false

Command-line option: -show-
unresolved-symbols

Analyzing Java, Kotlin and JSP projects

This PDF was generated on January 16, 2026 Page 525 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.6. Visual Studio and MSBuild
project properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of .NET projects and solutions.

This PDF was generated on January 16, 2026 Page 526 of 610

3 opentext"

Property name

WinForms.TransformDataBindings
WinForms.TransformMessagelLoops

WinForms.TransformChangeNotificatio
nPattern

WinForms.CollectionMutationMonitor.L
abel

WinForms.ExtractEventHandlers

com.fortify.sca.ASPVirtualRoots.
<virtual_path>

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Sets various .NET options.
Value type: Boolean and String
Defaults and examples:

WinForms.TransformDataBindings=tru
e

WinForms.TransformMessagelLoops=t
rue

WinForms.TransformChangeNotificatio
nPattern=true

WinForms.CollectionMutationMonitor.L
abel=WinFormsDataSource

WinForms.ExtractEventHandlers=true

Specifies a semicolon-separated list of
full paths to virtual roots used.

Value type: String
Default: (none)

Example:
com.fortify.sca.ASPVirtualRoots.Librar
y=c:\\WebServer\\CustomerTwo\\Stuff

com.fortify.sca.ASPVirtualRoots.Includ
e=c:\\WebServer\\CustomerOne\\inc

Page 527 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DisableASPExternalEnt

fies If set to true, disables ASP external

entries in the scan.
Value type: Boolean

Default: false

Translating Visual Studio and MSBuild Projects

This PDF was generated on January 16, 2026 Page 528 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.7. JavaScript and TypeScript
properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of JavaScript and TypeScript code.

This PDF was generated on January 16, 2026 Page 529 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.EnableDOMModeling
If set to true, OpenText SAST generates

JavaScript code to model the DOM tree
that an HTML file generated during the
translation phase and identifies DOM-
related issues (such as cross-site
scripting issues). Enable this property if
the code you are translating includes
HTML files that have embedded or
referenced JavaScript code.

Enabling this property can increase the
translation time.

Value type: Boolean

Default: false

com.fortify.sca.DOMModeling.tags
If you set the

com.fortify.sca.EnableDOMModeling
property to true, you can specify
additional coma-separated HTML tags
names for OpenText SAST to include in
the DOM modeling.

Value type: String

Default: body , button, div, form,
iframe , input, head, html,and p.

Example: com.fortify.sca.DOMModelin
g.tags=ul,li

This PDF was generated on January 16, 2026 Page 530 of 610

3 opentext"

Property name

com.fortify.sca.JavaScript.src.domain.
whitelist

com.fortify.sca.DisableJavascriptExtra
ction

com.fortify.sca.EnableTranslationMinifi
eddS

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies trusted domain names where
OpenText SAST can download
referenced JavaScript files for the
scan. Delimit the URLs with vertical
bars.

Value type: String
Default: (none)

Example: com.fortify.sca.JavaScript.sr
c.domain.whitelist=http://www.xyz.com
|http://www.123.0rg

If set to true, JavaScript code
embedded in JSP, JSPX, PHP, and
HTML files is not extracted and not
scanned.

Value type: Boolean

Default: false

If set to true, enables translation for
minified JavaScript files.

Value type: Boolean

Default: false

Page 531 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.skip.libraries.ES6 Specifies a list of comma- or colon-
separated JavaScript or TypeScript
technology library files that are not
com.fortify.sca.skip.libraries.javascrip translated. You can use regular
t expressions in the file names. Note that
the regular expression '(-\d\.\d\.\d)?"'
is automatically inserted before
.min.js or .js for each file name
included in the
com.fortify.sca.skip.libraries.jQuery
property value.

com.fortify.sca.skip.libraries.jQuery

com.fortify.sca.skip.libraries.typescrip
t

Value type: String

Defaults:

e ESG: es6-shim.min.js,system-
polyfills.js,shims_for_IE.js

e jQuery: jguery.js,jquery.min.js,
jquery-migrate.js,jquery-
migrate.min.js, jquery-ui.js,jquery-
ui.min.js,
jquery.mobile.js,jquery.mobile.min.j
s, jquery.color.js,jquery.color.min.js,
jquery.color.svg-names.js,
jquery.color.svg-names.min.js,
jquery.color.plus-names.js,
jquery.color.plus-names.min.js,
jquery.tools.min.js

e javascript:
bootstrap.js,bootstrap.min.js,types
cript.js,typescriptServices.js
e typescript:
typescript.d.ts,typescriptServices.
d.ts

This PDF was generated on January 16, 2026 Page 532 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.follow.imports o .
If set to true, files included with an

import statement are included in the
translation.

Value type: Boolean
Default: true

com.fortify.sca.exclude.node.modules o
If set to true, files in a node_modules

directory are excluded from the
analysis phase.

Value type: Boolean

Default: true

com.fortify.sca.exclude.unimported.no

Specifies whether to exclude source
de.modules

code in a node_modules directory. If
set to true, only imported
node_modules are included in the
translation.

This property is only applied if
com.fortify.sca.exclude.node.modules
is set to false.

Value type: Boolean

Default: true

Translating JavaScript and TypeScript Code

This PDF was generated on January 16, 2026 Page 533 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.8. Python properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of Python code.

This PDF was generated on January 16, 2026 Page 534 of 610

3 opentext"

Property name

com.fortify.sca.PythonPath

com.fortify.sca.PythonVersion

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies a semicolon-separated
(Windows) or colon-separated (non-
Windows) list of additional import
directories. OpenText SAST does not
respect PYTHONPATH environment
variable that the Python runtime
system uses to find import files. Use
this property to specify the additional
import directories.

Value type: String (path)
Default: (none)

Command-line option: -python-path

Specifies the Python source code
version to scan. The valid values are
2 and 3.

Value type: Number
Default: 3

Command-line option: -python-
version

Page 535 of 610

3 opentext"

Property name

com.fortify.sca.PythonNoAutoRootCal
culation

com.fortify.sca.DjangoTemplateDirs

com.fortify.sca.DjangoDisableAutodisc
over

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, disables the automatic
calculation of a common root directory
of all project files to use for importing
modules and packages For more
details, see Including Imported
Modules and Packages.

Value type: Boolean
Default: false

Command-line option: -python-no-
auto-root-calculation

Specifies semicolon-separated
(Windows) or colon-separated (non-
Windows) list of directories for Django
templates. OpenText SAST does not
use the TEMPLATE_DIRS setting from
the Django settings.py file.

Value type: String (paths)
Default: (none)

Command-line option: -django-
template-dirs

Specifies that OpenText SAST does not
automatically discover Django
templates.

Value type: Boolean
Default: (none)

Command-line option: -django-
disable-autodiscover

Page 536 of 610

3 opentext"

Property name

com.fortify.sca.JinjaTemplateDirs

com.fortify.sca.DisableTemplateAutodi
scover

Translating Python Code

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies semicolon-separated
(Windows) or colon-separated (non-
Windows) list of directories for Jinja2
templates.

Value type: String (paths)
Default: (none)

Command-line option: -jinja-
template-dirs

Specifies that OpenText SAST does not
automatically discover Django or Jinja2
templates.

Value type: Boolean
Default: (none)

Command-line option: -disable-
template-autodiscover

Page 537 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.9. Go properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of Go code.

This PDF was generated on January 16, 2026 Page 538 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.gotags - .
Specifies custom build tags for a Go

project. This is equivalent to the -tags
option for the go command.

Value type: String

Default: (none)

Command-line option: -gotags
com.fortify.sca.GOPATH . .

Specifies the root directory of your

project/workspace.

Value type: String

Default: (GOPATH system environment
variable)

com.fortify.sca.GOROOT . .
Specifies the location of the Go
installation.
Value type: String

Default: (GOROOT system environment
variable)

com.fortify.sca.GOPROXY .
Specifies one or more comma-

separated proxy URLs. You can also
specify direct or off .

Value type: String

Default: (GOPROXY system
environment variable)

See Also

Translating Go Code

This PDF was generated on January 16, 2026 Page 539 of 610

3 opentext"

Static Application Security Testing 26.1

1.48.2.10. Ruby properties

The properties for the fortify-sca.properties file in the following table apply to the

translation of Ruby code.

Property name

com.fortify.sca.ruby.legacy.enabled

com.fortify.sca.RubyLibraryPaths

com.fortify.sca.RubyGemPaths

This PDF was generated on January 16, 2026

Description

If set to true, legacy Ruby is enabled
and Al Ruby is disabled.

If set to false, legacy Ruby is disabled
and Al Ruby is enabled.

If not set, Al Ruby is enabled if
com.fortify.sca.ai.provider or
com.fortify.sca.ai.db.url is set.
Otherwise, legacy Ruby is enabled.

Default: null

Specifies one or more paths to
directories that contain Ruby libraries.

Value type: String (path)
Default: (none)

Command-line option: -ruby-path

Specifies one or more paths to
RubyGems locations. Set this value if
the project has associated gems to
scan.

Value type: String (path)
Default: (none)

Command-line option: -rubygem-
path

Page 540 of 610

m opentext- Static Application Security Testing 26.1

Translating Ruby Code

This PDF was generated on January 16, 2026 Page 541 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.11. COBOL properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of COBOL code.

This PDF was generated on January 16, 2026 Page 542 of 610

3 opentext"

Property name

com.fortify.sca.CobolCopyDirs

com.fortify.sca.CobolDialect

com.fortify.sca.CobolCheckerDirective
s

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies one or more semicolon- or
colon-separated directories where
OpenText SAST looks for copybook
files.

Value type: String (path)
Default: (none)

Command-line option: -copydirs

Specifies the COBOL dialect. The valid
values for dialect are COBOL390 or
MICROFOCUS . The dialect value is
case-insensitive.

Value type: String
Default: COBOL390

Command-line option: -dialect

Specifies one or more semicolon-
separated COBOL checker directives.

Value type: String
Default: (none)

Command-line option: -checker-
directives

Page 543 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.CobolLegacy If set to true, enables legacy
COBOL translation.
Value type: Boolean
Default: false
Command-line option: -cobol-legacy

com.fortify.sca.CobolFixedFormat . .
If set to true, specifies fixed-format

COBOL to direct OpenText SAST to
only look for source code between
columns 8-72 in all lines of code
(legacy COBOL translation only).

Value type: Boolean
Default: false

Command-line option: -fixed-format

com.fortify.sca.CobolCopyExtensions o)
Specifies one or more semicolon- or

colon-separated copybook file
extensions (legacy COBOL translation
only).

Value type: String
Default: (none)

Command-line option: -copy-
extensions

Translating COBOL Code

This PDF was generated on January 16, 2026 Page 544 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.12. PHP properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of PHP code.

Property name Description

com.fortify.sca.PHPVersion Specifies the PHP version. For a list of
valid versions, see Supported
languages.

Value type: String
Default: 8.2

Command-line option: -php-version

com.fortify.sca.PHPSourceRoot Specifies the PHP source root.
Value type: Boolean
Default: (none)

Command-line option: -php-source-
root

Translating PHP Code

This PDF was generated on January 16, 2026 Page 545 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.13. ABAP properties

The properties described in the following table apply to the translation of ABAP code.

Property name Description

com.fortify.sca.AbapDebug If set to true, OpenText SAST adds
ABAP statements to debug messages.

Value type: Boolean

Default: (none)

com.fortify.sca.Abapincludes When OpenText SAST encounters an
ABAP 'INCLUDE' directive, it looks in
the named directory.

Value type: String (path)

Default: (none)

This PDF was generated on January 16, 2026 Page 546 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.14. Flex and ActionScript
properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of Flex and ActionScript code.

This PDF was generated on January 16, 2026 Page 547 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.FlexLibraries Specifies a semicolon-separated
(Windows) or colon-separated (non-
Windows) of libraries to "link" to. This
list must include flex.swc ,
framework.swc , and
playerglobal.swc (which are usually
located in the frameworks/libs
directory in your Flex SDK root). Use
this property primarily to resolve
ActionScript.

Value type: String (path)
Default: (none)

Command-line option: -flex-libraries

com.fortify.sca.FlexSdkRoot Specifies the root location of a valid
Flex SDK. The folder must contain a
frameworks folder that contains a flex-
config.xml file. It must also contain a
bin folder that contains an mxmic
executable.

Value type: String (path)
Default: (none)

Command-line option: -flex-sdk-root

This PDF was generated on January 16, 2026 Page 548 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.FlexSourceRoots Specifies any additional source
directories for a Flex project. Separate
multiple directories with semicolons
(Windows) or colons (non-Windows).

Value type: String (path)
Default: (none)

Command-line option: -flex-source-
root

This PDF was generated on January 16, 2026 Page 549 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.15. ColdFusion (CFML) properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of CFML code.

This PDF was generated on January 16, 2026 Page 550 of 610

3 opentext"

Property name

com.fortify.sca.CfmlUndefinedVariable

sAreTainted

com.fortify.sca.CaselnsensitiveFiles

com.fortify.sca.SourceBaseDir

Translating ColdFusion Code

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, OpenText SAST treats
undefined variables in CFML pages as
tainted. This serves as a hint to the
Dataflow Analyzer to watch out for
register-globals-style vulnerabilities.
However, enabling this property
interferes with dataflow findings where
a variable in an included page is
initialized to a tainted value in an
earlier-occurring included page.

Value type: Boolean

Default: false

If set to true, make CFML files case-
insensitive for applications developed
using a case-insensitive file system
and scanned on case-sensitive file
systems.

Value type: Boolean

Default: (not enabled)

Specifies the base directory for
ColdFusion projects.

Value type: String (path)
Default: (none)

Command-line option: -source-base-
dir

Page 551 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.16. SQL properties

The properties for the fortify-sca.properties file in the following table apply to the
translation of SQL code.

Property name Description

com.fortify.sca.SqglLanguage Specifies the SQL language variant.
The valid SQL language type values are
PLSQL (for Oracle PL/SQL) and
TSQL (for Microsoft T-SQL).

Value type: String
Default: TSQL

Command-line option: -sql-language

Translating SQL

This PDF was generated on January 16, 2026 Page 552 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.17. Output properties

The properties for the fortify-sca.properties file in the following table apply to the
analysis output.

This PDF was generated on January 16, 2026 Page 553 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.ResultsFile The file to which results are written.
Value type: String
Default: (none)
Command-line option: -f

Example:
com.fortify.sca.ResultsFile=MyResults.
fpr

com.fortify.sca.Renderer Controls the output format. The valid
values are fpr, fvdl, text, and
auto . The default of auto selects the
output format based on the extension
of the file provided with the -f option.

Value type: String
Default: auto

Command-line option: -format

com.fortify.sca.OutputAppend If set to true, OpenText SAST appends
results to an existing results file.

Value type: Boolean
Default: false

Command-line option: -append

This PDF was generated on January 16, 2026 Page 554 of 610

3 opentext"

Property name

com.fortify.sca.ResultsAsAvailable

com.fortify.sca.BuildLabel

com.fortify.sca.BuildProject

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, OpenText SAST prints
results as they become available. This
is helpful if you do not specify the -f
option (to specify an output file) and
print to stdout.

Value type: Boolean

Default: false

Specifies a label for the scanned
project. OpenText SAST does not use
this label but includes it in the results.

Value type: String
Default: (none)

Command-line option: -build-label

Specifies a name for the scanned
project. OpenText SAST does not use
this name but includes it in the results.

Value type: String
Default: (none)

Command-line option: -build-project

Page 555 of 610

3 opentext"

Property name

com.fortify.sca.BuildVersion

com.fortify.sca.MachineOutputMode

com.fortify.sca.SnippetContextLines

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies a version number for the
scanned project. OpenText SAST does
not use this version number but it is
included in the results.

Value type: String
Default: (none)

Command-line option: -build-version

Output information in a format that
scripts or OpenText SAST tools can use
rather than printing output interactively.
Instead of a single line to display scan
progress, a new line is printed below
the previous one on the console to
display updated progress.

Value type: Boolean
Default: (not enabled)

Command-line option: -machine-
output

Sets the number of lines of code to
display surrounding an issue. Snippets
always include the two lines of code on
each side of the line where the error
occurs. By default, five lines of code
are displayed.

Value type: Number

Default: 2

Page 556 of 610

3 opentext"

Property name

com.fortify.sca.FVDLDisableDescriptio
ns

com.fortify.sca.FVDLDisableEngineDat
a

com.fortify.sca.FVDLDisableLabelEvid
ence

com.fortify.sca.FVDLDisableProgramD
ata

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, excludes OpenText
Application Security Content
descriptions from the analysis results
file (FVDL).

Value type: Boolean
Default: false

Command-line option: -fvdl-no-
descriptions

If set to true, excludes engine data
from the analysis results file (FVDL).

Value type: Boolean
Default: false

Command-line option: -fvdl-no-
enginedata

If set to true, excludes label evidence
from the analysis results file (FVDL).

Value type: Boolean

Default: false

If set to true, excludes the
ProgramData section from the
analysis results file (FVDL).

Value type: Boolean
Default: false

Command-line option: -fvdl-no-
progdata

Page 557 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.FVDLDisableSnippets If set to true, excludes code snippets
from the analysis results file (FVDL).

Value type: Boolean
Default: false

Command-line option: -fvdl-no-
shippets

com.fortify.sca.FVDLStylesheet Specifies location of the style sheet for
the analysis results.

Value type: String (path)

Default:
${com.fortify.Core}/resources/sca/fvdl
2html.xsl

This PDF was generated on January 16, 2026 Page 558 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.18. Mobile build session (MBS)
properties

The properties for the fortify-sca.properties file in the following table apply to MBS
files.

Property name Description

com.fortify.sca.MobileBuildSessions If set to false, OpenText SAST does not
copy source files into the build session
directory.

Value type: Boolean

Default: true

com.fortify.sca.ExtractMobilelnfo
If set to true, OpenText SAST extracts

the build ID and the OpenText SAST
version number from the mobile build
session.

Note

5 OpenText SAST does not
extract the mobile build
with this property.

Value type: Boolean

Default: false

Mobile Build Sessions

This PDF was generated on January 16, 2026 Page 559 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.19. Proxy properties

The properties for the fortify-sca.properties file in the following table apply to proxy
settings.

Property name Description

com.fortify.sca. Specifies a proxy host name.
https.proxyHost
s) Value type: String

Default: (none)

com.fortify.sca. Specifies a proxy port number.
https.proxyPort
B Value type: Number

Default: (none)

This PDF was generated on January 16, 2026 Page 560 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.20. Logging properties

The properties for the fortify-sca.properties file in the following table apply to log
files.

This PDF was generated on January 16, 2026 Page 561 of 610

3 opentext"

Property name

com.fortify.sca.LogFile

com.fortify.sca.LogLevel

com.fortify.sca.ClobberLogFile

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Specifies the default log file name and
location.

Value type: String (path)

Default: ${com.fortify.sca.ProjectRoot}
/log/sca.log and ${com.fortify.sca.Proj
ectRoot}/log/sca_FortifySupport.log

Command-line option: -logfile

Specifies the minimum log level for
both log files. The valid values are
DEBUG , INFO, WARN, ERROR,
and FATAL . For more information, see
Accessing Log Files and Configuring
Log Files.

Value type: String

Default: INFO

If set to true, OpenText SAST
overwrites the log file for each run of
sourceanalyzer.

Value type: Boolean
Default: false

Command-line option: -clobber-log

Page 562 of 610

3 opentext"

Property name

com.fortify.sca.PrintPerformanceData
AfterScan

Configuring Log Files

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

If set to true, OpenText SAST writes
performance-related data to the
OpenText SAST Support log file after
the scan is complete. This value is
automatically set to true when in debug
mode.

Value type: Boolean

Default: false

Page 563 of 610

m opentext- Static Application Security Testing 26.1

1.48.2.21. Debug properties

The properties for the fortify-sca.properties file in the following table apply to debug
settings.

This PDF was generated on January 16, 2026 Page 564 of 610

3 opentext"

Property name

com.fortify.sca.Debug

com.fortify.sca.DebugVerbose

com.fortify.sca.Verbose

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Includes debug information in the
OpenText SAST Support log file, which
is only useful for Customer Support to
help troubleshoot.

Value type: Boolean
Default: false

Command-line option: -debug

This is the same as the
com.fortify.sca.Debug property, but it
includes more details, specifically for
parse errors.

Value type: Boolean
Default: (not enabled)

Command-line option: -debug-
verbose

If set to true, includes verbose
messages in the OpenText SAST
Support log file.

Value type: Boolean
Default: false

Command-line option: -verbose

Page 565 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.DebugTrackMem If set to true, additional performance
information is written to the OpenText
SAST Support log.

Value type: Boolean
Default: (not enabled)

Command-line option: -debug-mem

com.fortify.sca.CollectPerformanceDat If set to true, enables additional timers
a to track performance.

Value type: Boolean

Default: (not enabled)

com.fortify.sca.Quiet If set to true, disables the command-
line progress information.

Value type: Boolean
Default: false

Command-line option: -quiet

com.fortify.sca.MonitorSca If set to true, OpenText SAST monitors
its memory use and warns when JVM
garbage collection becomes excessive.

Value type: Boolean

Default: true

This PDF was generated on January 16, 2026 Page 566 of 610

m opentext- Static Application Security Testing 26.1

1.48.3. fortify-sca-quickscan.properties

OpenText SAST offers a less in-depth scan known as a quick scan. This option scans
the project in quick scan mode, using the property values in the fortify-sca-
quickscan.properties file. By default, a quick scan reduces the depth of the analysis
and applies the Quick View filter set. The Quick View filter set provides only critical
and high priority issues.

Note

Properties in this file are only used if you specify the -quick option on
the command line for your scan.

The following table provides two sets of default values: the default value for quick
scans and the default value for normal scans. If only one default value is shown, the
value is the same for both normal scans and quick scans.

This PDF was generated on January 16, 2026 Page 567 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca. Sets the time limit (in milliseconds) for

CtriflowMaxFunctionTime Control Flow analysis on a single
function.

Value type: Integer
Quick scan default: 30000

Default: 600000

com.fortify.sca. Specifies a comma- or colon-

DisableAnalyzers separated list of analyzers to disable
during a scan. The valid analyzer
names are buffer , content
configuration , controlflow |,
dataflow , nullptr , semantic , and
structural .

Value type: String

Quick scan default:
controlflow:buffer

Default: (none)

This PDF was generated on January 16, 2026 Page 568 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify.sca. Specifies the filter set to use. You can
FilterSet use this property with an issue

template to filter at scan-time instead
of post-scan. See
com.fortify.sca.ProjectTemplate
described in Translation and Analysis
Phase Properties to specify an issue
template that contains the filter set to
use.

When set to Quick View , this property
runs rules that have a potentially high
impact and a high likelihood of
occurring and rules that have a
potentially high impact and a low
likelihood of occurring. Filtered issues
are not written to the FPR and therefore
this can reduce the size of an FPR. For
more information about filter sets, see
the OpenText™ Fortify Audit Workbench
User Guide.

Value type: String
Quick scan default: Quick View

Default: (none)

This PDF was generated on January 16, 2026 Page 569 of 610

3 opentext"

Property name

com.fortify.sca.
FPRDisableMetatable

com.fortify.sca.
FPRDisableSourceBundling

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Disables the creation of the metatable,
which includes information for the
Function view in Fortify Audit
Workbench. This metatable enables
right-click on a variable in the source
window to show the declaration. If
C/C++ scans take an extremely long
time, setting this property to true can
potentially reduce the scan time by
hours.

Value type: Boolean
Quick scan default: true
Default: false

Command-line option: -disable-
metatable

Disables source code inclusion in the
FPR file. Prevents OpenText SAST from
generating marked-up source code
files during a scan. If you plan to
upload FPR files that are generated as
a result of a quick scan to Application
Security, you must set this property to
false .

Value type: Boolean
Quick scan default: true
Default: false

Command-line option: -disable-
source-bundling

Page 570 of 610

3 opentext"

Property name

com.fortify.sca.
NullPtrMaxFunctionTime

com.fortify.sca.
TrackPaths

com.fortify.sca.
limiters.ConstraintPredicateSize

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Sets the time limit (in milliseconds) for
Null Pointer analysis for a single
function. The standard default is five
minutes. If this value is set to a shorter
limit, the overall scan time decreases.

Value type: Integer
Quick scan default: 10000

Default: 300000

Disables path tracking for Control Flow
analysis. Path tracking provides more
detailed reporting for issues, but
requires more scan time. To disable
this for JSP only, setitto NoJSP .
Specify None to disable all functions.

Value type: String
Quick scan default: (none)

Default: NoJSP

Specifies the size limit for complex
calculations in the Buffer Analyzer.
Skips calculations that are larger than
the specified size value in the Buffer
Analyzer to improve scan time.

Value type: Integer
Quick scan default: 10000

Default: 500000

Page 571 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify.sca. Controls the maximum call depth
limiters.MaxChainDepth through which the Dataflow Analyzer

tracks tainted data. Increase this value
to increase the coverage of dataflow
analysis, which results in longer scan
times.

Note

9 Call depth refers to the
maximum call depth on a
dataflow path between a
taint source and sink,
rather than call depth from
the program entry point,
such as main() .

Value type: Integer

Quick scan default: 3

Default: 5
com.fortify.sca. Sets the number of times taint
limiters.MaxFunctionVisits propagation analyzer visits functions.

Value type: Integer
Quick scan default: 5

Default: 50

This PDF was generated on January 16, 2026 Page 572 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.

L. Controls the maximum number of paths
limiters.MaxPaths P

to report for a single dataflow
vulnerability. Changing this value does
not change the results that are found,
only the number of dataflow paths
displayed for an individual result.

Note

OpenText does not
recommend setting this
property to a value larger
than 5 because it might
increase the scan time.

Value type: Integer

Quick scan default: 1

Default: 5
com.fortify.sca. Sets a complexity limit for the Dataflow
limiters.MaxTaintDefForVar Analyzer. Dataflow incrementally

decreases precision of analysis on
functions that exceed this complexity
metric for a given precision level. This
value controls how much taint is
tracked for a variable chain.

Value type: Integer
Quick scan default: 250

Default: 1000

This PDF was generated on January 16, 2026 Page 573 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify.sca. Sets a hard limit for function
limiters.MaxTaintDefForVarAbort complexity. If complexity of a function

exceeds this limit at the lowest
precision level, the analyzer skips
analysis of the function.

Value type: Integer
Quick scan default: 500

Default: 4000

This PDF was generated on January 16, 2026 Page 574 of 610

m opentext- Static Application Security Testing 26.1

1.48.4. fortify-rules.properties

This topic describes the properties available for use in the fortify-rules.properties
file.

Improving Results

Use these properties to modify behavior of scan results, either enabling new sets of
rules, filtering rules, or enabling correlation of results with OpenText DAST.

This PDF was generated on January 16, 2026 Page 575 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.rules.EnableRuleComm If set to true, enables the ability to
ents prevent issues appearing in results
using the // FortifyRemove()
comments. For more information,
see Filtering using FortifyRemove
comments
Value Type: Boolean
Default: true

com.fortify.sca.rules.IsLibrary .
If set to true, enables new entrypoint

rules in code that adds WEB , XSS, and
PRIVATE taint to every public function
variable (certain exclusions apply).
(Currently only Java and JVM
languages apply)

Value type: Boolean
Default: false

com.fortify.sca.rules.enablePQCRules))
If set to true, enables rules to identify

issues related to Post-Quantum
Cryptographic threats. See security
content updates and documentation for
more details, including which
languages and libraries are supported.

Value type: Boolean

Default: false

DAST Correlation & Verification

This PDF was generated on January 16, 2026 Page 576 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.rules.enable_wi_correl

) If set to true and OpenText SAST scans
ation

an application with a supported
framework, produces a results file to
be imported into OpenText™ Dynamic
Application Security Testing to improve
results.

Value type: Boolean

Default: false

Google Cloud Function Integration

Scanning Google Cloud Functions either provide a JSON or YAML cloud build config
file or set the properties in the below table to optimize results.

Property name Description

com.fortify.sca.rules.GCPFunctionNam
e

Name of the serverless function called
when no JSON/YAML cloud build
config file exists.

Value type: String

Default: (none)

com.fortify.sca.rules.GCPHttpTrigger
If set to true, the scanned cloud

function is an HTTP trigger.
Value type: Boolean

Default: false

Properties to Customize Regular Expressions

Although many techniques are used to identify vulnerabilities in code, some rules
have to rely upon regular expressions to try to find identifiers in code, and these can

This PDF was generated on January 16, 2026 Page 577 of 610

m opentext- Static Application Security Testing 26.1

often be configured by properties. The following table describes a list of properties
that can be used to modify the regular expressions used by the rules.

It is advised to set these within the fortify-rules.properties file instead of directly on
the command line to prevent clashes between regular expression and shell syntax.

This PDF was generated on January 16, 2026 Page 578 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.
global

com.fortify.sca.rules.password_regex.
abap

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

The regular expression to match
password identifiers across all
languages unless a language-specific
rules property is set.

Value type: String

Default: (?i)(s|_)?
(user|usr|member|admin|guest|login|d
efault|

new|current|old|client|server|proxy|sq|
server|

my|mysgl|mongo|mongodb|db|databas
e|ldap|smtp|

email|email (_)?smtp)?
(_|\.)?(pass(wd|word|phrase)|secret)

Regular expression to match password
identifiers in ABAP code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 579 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.

actionscript

com.fortify.sca.rules.password_regex.

apex

com.fortify.sca.rules.password_regex.

cfml

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in ActionScript code. Setting
this property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in Salesforce Apex code.
Setting this property overrides the
global regex password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in ColdFusion (CFML) code.
Setting this property overrides the

global regex password rules property.

Value type: String

Default: (none)

Page 580 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.rules.password_regex. Regular expression to match password

cobol identifiers in COBOL code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

com.fortify.sca.rules.password_regex. Regular expression to match password

config identifiers in XML. Setting this property
overrides the global regex password
rules property. Do not use regular
expression modifiers. The value is
case-insensitive.

Value type: String

Default: (s|_)?
(user|usr|member|admin|guest|login|d
efault|

new|current|old|client|server|proxy|sql
server|

my|mysgl|mongo|mongodb|db|databas
e|ldap|smtp|

email|email (_)?smtp)?
(_|\.)?pass(wd|word|phrase)

This PDF was generated on January 16, 2026 Page 581 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.

cpp

com.fortify.sca.rules.password_regex.

dart

com.fortify.sca.rules.password_regex.

dotnet

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in C and C++ code. Setting
this property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in Dart code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in .NET code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 582 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.
docker

com.fortify.sca.rules.password_regex.
golang

com.fortify.sca.rules.password_regex.j
ava

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in Dockerfiles. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: .*pass(wd|word|phrase).*

Regular expression to match password
identifiers in Go code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in Java code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 583 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.j
avascript

com.fortify.sca.rules.password_regex.j
son

com.fortify.sca.rules.password_regex.j
Sp

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in JavaScript and TypeScript
code. Setting this property overrides
the global regex password rules

property.
Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in JSON. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

Regular expression used to match
password identifiers in JSP code.
Setting this property overrides the
global regex password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 584 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.
objc

com.fortify.sca.rules.password_regex.
php

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in Objective-C and
Objective-C++ code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (?i)(s|_)?
(user|usr|member|admin|guest|login|d
efault|

new|current|old|client|server|proxy|sq|
server|

my|mysgl|mongo|mongodb|db|databas
e|ldap|smtp|

email|email (_)?smtp)?
\)?

(token|pin|pass(wd|word|phrase))

Regular expression to match password
identifiers in PHP code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 585 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.

powershell

com.fortify.sca.rules.password_regex.

properties

com.fortify.sca.rules.password_regex.

python

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in PowerShell files. Setting
this property overrides the global regex
password rules property.

Value type: String

Default: (?i)([a-z_1*|\{.*)
(pass(wd|word|phrase)|pwd)(.*\}|[a-
z_]*)

Regular expression to match password
identifiers in Properties files. Setting
this property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in Python code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 586 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.
ruby

com.fortify.sca.rules.password_regex.
sql

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in Ruby code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Regular expression to match password
identifiers in SQL code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 587 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.
swift

com.fortify.sca.rules.password_regex.
vb

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in Swift code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (?i)(s|_)?
(user|usr|member|admin|guest|login|d
efault|

new|current|old|client|server|proxy|sq|
server|

my|mysgl|mongo|mongodb|db|databas
e|ldap|smtp|

email|email (_)?smtp)?
\)?

(token|pin|pass(wd|word|phrase))

Regular expression to match password
identifiers in VB6 code. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.password_regex.
global)

Page 588 of 610

3 opentext"

Property name

com.fortify.sca.rules.password_regex.

yaml

com.fortify.sca.rules.key_regex.global

com.fortify.sca.rules.key_regex.abap

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match password
identifiers in YAML. Setting this
property overrides the global regex
password rules property.

Value type: String

Default: (?i).*pass(wd|word|phrase).*

The regular expression to match key
identifiers across all languages unless
a language-specific regex key rules
property is set.

Value type: String

Default: (?i)((enc|dec)(ryption|rypt)?
|crypto|secret|private)(_)?key

Regular expression to match key
identifiers in ABAP code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Page 589 of 610

3 opentext"

Property name

com.fortify.sca.rules.key_regex.action

script

com.fortify.sca.rules.key_regex.cfml

com.fortify.sca.rules.key_regex.cpp

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match key
identifiers in ActionScript code. Setting
this property overrides the global regex
key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression to match key
identifiers in CFML code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression to match key
identifiers in C and C++ code. Setting
this property overrides the global regex
key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Page 590 of 610

m opentext- Static Application Security Testing 26.1

Property name Description
com.fortify.sca.rules.key_regex.golan Regular expression to match key
g identifiers in Go code. Setting this

property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.java Regular expression to match key
identifiers in Java code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.javascr = Regular expression to match key

ipt identifiers in JavaScript and TypeScript
code. Setting this property overrides
the global regex key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

This PDF was generated on January 16, 2026 Page 591 of 610

3 opentext"

Property name

com.fortify.sca.rules.key_regex.jsp

com.fortify.sca.rules.key_regex.objc

com.fortify.sca.rules.key_regex.php

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match key
identifiers in JSP code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression used to match key
identifiers in Objective-C and
Objective-C++ code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression to match key
identifiers in PHP code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Page 592 of 610

3 opentext"

Property name

com.fortify.sca.rules.key_regex.pytho

n

com.fortify.sca.rules.key_regex.ruby

com.fortify.sca.rules.key_regex.sql

This PDF was generated on January 16, 2026

Static Application Security Testing 26.1

Description

Regular expression to match key
identifiers in Python code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression used to match key
identifiers in Ruby code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Regular expression to match key
identifiers in SQL code. Setting this
property overrides the global regex key
rules property.

Default: (value for
com.fortify.sca.rules.key_regex.global

)

Page 593 of 610

m opentext- Static Application Security Testing 26.1

Property name Description

com.fortify.sca.rules.key_regex.swift Regular expression used to match key
identifiers in Swift code. Setting this
property overrides the global regex key
rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

com.fortify.sca.rules.key_regex.vb Regular expression to match key
identifiers in Visual Basic 6 code.
Setting this property overrides the
global regex key rules property.

Value type: String

Default: (value for
com.fortify.sca.rules.key_regex.global

)

This PDF was generated on January 16, 2026 Page 594 of 610

m opentext- Static Application Security Testing 26.1

1.49. Command-line tools

OpenText SAST command-line tools enable you to manage OpenText Application
Security Content, perform post-installation configurations, and monitor scans. These
tools are located in <sast_install_dir>/bin . The tools for Windows are provided as

.bat or .cmd files. The following table describes the command-line tools installed
with OpenText SAST.

Note

By default, log files for OpenText SAST tools are written to the following
directory:

e Windows: C:\Users\<username>\AppData\Local\Fortify\
<tool_name>-<version>\loa
e Non-Windows: <userhome>/.fortify/<tool_name>-<version>/log

This PDF was generated on January 16, 2026 Page 595 of 610

3 opentext"

Static Application Security Testing 26.1

Tool Description More information

fortifyupdate))
Compares installed About updating
security content to the OpenText Application
current version and Security Content
makes any required
updates

FPRUtility

OpenText™ Application
Security Tools Guide

With this tool you can:

e Merge audited
projects

e Verify FPR
signatures

» Display information
from an FPR file

e Combine or split
source code files
and audit projects
into FPR files

e Alter an FPR

This tool enables you to Running the post-install
migrate properties files tool

from a previous version

of OpenText SAST,

specify a locale, and

specify a proxy server

for security content

updates and for

Application Security.

scapostinstall

This PDF was generated on January 16, 2026 Page 596 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

3 opentext" Static Application Security Testing 26.1

Tool Description More information

SCAState) . .
Provides state analysis Checking the scan status

information on the JVM with SCAState
during the analysis
phase

This section contains the following topics:

e About updating OpenText Application Security Content
e Checking the scan status with SCAState

This PDF was generated on January 16, 2026 Page 597 of 610

m opentext- Static Application Security Testing 26.1

1.49.1. About updating OpenText
Application Security Content

You can use the fortifyupdate command-line tool to download the latest Fortify
Secure Coding Rulepacks and metadata from OpenText.

The fortifyupdate tool gathers information about the existing security content in your
OpenText SAST installation and contacts the Fortify Rulepack update server with this
information. The server returns new or updated security content, and removes any
obsolete security content from your OpenText SAST installation. If your installation is
current, a message is displayed to that effect.

This section contains the following topics:

o Updating OpenText Application Security Content
» fortifyupdate command-line options

This PDF was generated on January 16, 2026 Page 598 of 610

m opentext- Static Application Security Testing 26.1

1.49.1.1. Updating OpenText Application
Security Content

Use the fortifyupdate command-line tool to either download security content or
import a local copy of the security content. This tool is located in the
<sast_install_dir>/bin directory.

The default read timeout for this tool is 180 seconds. To change the timeout setting,
add the rulepackupdate.SocketReadTimeoutSeconds property in the
server.properties configuration file. For more information, see the OpenText™
Application Security Tools Guide.

The basic command-line syntax for fortifyupdate is shown in the following example:
fortifyupdate [<options>]

To update your OpenText SAST installation with the latest Fortify Secure Coding
Rulepacks and external metadata from the Fortify Rulepack update server, type the
following command:

fortifyupdate
To update security content from the local system:
fortifyupdate -import <my local rules>.zip
To update security content from a Application Security server using credentials:

fortifyupdate -url <ssc url> -sscUser <username> -sscPassword
<password>

This PDF was generated on January 16, 2026 Page 599 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

3 opentext"

Static Application Security Testing 26.1

1.49.1.2. fortifyupdate command-line
options

The following table describes the fortifyupdate options.

This PDF was generated on January 16, 2026 Page 600 of 610

m opentext- Static Application Security Testing 26.1

fortifyupdate option Description

-acceptKey . .
Specifies to accept the public key.

When this is specified, you are not
prompted to provide a public key. Use
this option to accept the public key if
you update OpenText Application
Security Content from a non-standard
location with the -url option.

-acceptSSLCertificate Specifies to use the SSL certificate
provided by the server.

-import <file>.zi
2 2 Imports the ZIP file that contains

security content. By default, Rulepacks
are imported into the

<sast_install_dir>/Core/config/rules
directory.

-coreDir <dir> - .
Specifies a core directory where

fortifyupdate stores the update. If this
is not specified, the fortifyupdate
performs the update in the
<sast_install_dir>.

Important

Make sure that you copy
the contents of the
<sast_install_dir>/config/k
evs folder and paste itto a
config/keys folder in this
directorv before you run
fortifyupdate .

-includeMetadata Specifies to only update external
metadata.

This PDF was generated on January 16, 2026 Page 601 of 610

m opentext- Static Application Security Testing 26.1

fortifyupdate option Description
-includeRules Specifies to only update Rulepacks.

-locale <locale> e L
Specifies a locale. English is the default

if no security content exists for the
specified locale. The valid values are:

e en (English)

e es (Spanish)

e ja (Japanese)

e ko (Korean)

e pt_BR (Brazilian Portuguese)
e« zh_CN (Simplified Chinese)

e zh_TW (Traditional Chinese)

Note

The values are not case-
sensitive.

Alternatively, you can specify a default
locale for security content updates in
the fortify.properties configuration
file. For more information, see the
OpenText™ Application Security Tools
Guide.

-proxyhost <host> Specifies a proxy server network name
or IP address.

-proxyport <port> Specifies a proxy server port number.
-proxyUsername Specifies a user name if the proxy
<username> server requires authentication.

This PDF was generated on January 16, 2026 Page 602 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

m opentext- Static Application Security Testing 26.1

fortifyupdate option Description
-proxyPassword Specifies the password if the proxy
<password> server requires authentication.

-showlnstalledRules .)
Displays the currently installed

Rulepacks including any custom rules
and custom metadata.

-showlnstalledExternalMetadata Displays the currently installed external
metadata.

-url <url> .)
Specifies a URL from which to

download the security content. The
default URL is
https://update.fortify.com or the value
set for the rulepackupdate.server
property in the server.properties
configuration file.

For more information about the
server.properties configuration file,
see the OpenText™ Application Security
Tools Guide.

You can download the security content
from a Application Security server by
providing a Application Security URL.

Specify one of the following types of credentials if you update security content
from Application Security with the -url option:

Specifies a Application Security user

-sscUsername
account by user name and password.

-sscPassword

This PDF was generated on January 16, 2026 Page 603 of 610

https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D
https://www.microfocus.com/documentation/fortify-static-code-analyzer-and-tools/%5B%=_HPc_Basic_Variables._HP_Web_Version%%5D

m opentext- Static Application Security Testing 26.1

fortifyupdate option Description

Specifies a Application

Security authentication token of type
UnifiedLoginToken, CIToken, or
ToolsConnectToken.

-sscAuthToken

This PDF was generated on January 16, 2026 Page 604 of 610

m opentext- Static Application Security Testing 26.1

1.49.2. Checking the scan status with
SCAState

Use the SCAState tool to see up-to-date state analysis information during the analysis
phase.

To check the state:

1. Start a scan.
2. Open another command window.

3. Type the following at the command prompt:
SCAState [<options>]

See Also

SCAState command-line options

This PDF was generated on January 16, 2026 Page 605 of 610

m opentext- Static Application Security Testing 26.1

1.49.2.1. SCAState command-line options

The following table describes the SCAState options.

This PDF was generated on January 16, 2026 Page 606 of 610

m opentext- Static Application Security Testing 26.1

SCAState option Description

-a | Displays all available information.
--all

-debug Displays information that is useful to

debug SCAState behavior.

-ftd | Prints a thread dump for every thread.
--full-thread-dump

-h | Displays the help information for the
--help SCAState tool.

-hd <filename> | Specifies the file to which the heap
--heap-dump <filename> dump is written. The file is interpreted

relative to the remote scan’s working
directory; this is not necessarily the
same directory where you are running
SCAState.

-liveprogress Displays the ongoing status of a
running scan. This is the default. If
possible, this information is displayed
in a separate terminal window.

-nogui Causes the OpenText SAST state
information to display in the current
terminal window instead of in a
separate window.

This PDF was generated on January 16, 2026 Page 607 of 610

m opentext- Static Application Security Testing 26.1

SCAState option Description

-pi | Displays information about the source

--program-info code being scanned, including how
many source files and functions it
contains.

-pid <process_id> e .
Specifies the currently running

OpenText SAST process ID. Use this
option if there are multiple OpenText
SAST processes running
simultaneously.

To obtain the process ID on Windows
systems:

1. Open a command window.

2. At the command prompt, type
tasklist .

A list of processes is displayed.

3. Find the java.exe process in the
list and note its PID.

To find the process ID on Linux
systems:

o At the command prompt, type ps
aux | grep sourceanalyzer .

-progress Displays scan information up to the
point at which the command is issued.
This includes the elapsed time, the
current phase of the analysis, and the
number of results already obtained.

This PDF was generated on January 16, 2026 Page 608 of 610

m opentext- Static Application Security Testing 26.1

SCAState option Description

-properties Displays configuration settings (this
does not include sensitive information
such as passwords).

-scaversion Displays the OpenText SAST version
number for the sourceanalyzer that is
currently running.

-td | Prints a thread dump for the main

--thread-dump scanning thread.

-timers Displays information from the timers
and counters that are instrumented in
OpenText SAST.

-version Displays the SCAState version.

-vminfo Displays the following statistics that

JVM standard MXBeans provides:
ClassLoadingMXBean,
CompilationMXBean,
GarbageCollectorMXBeans,
MemoryMXBean,
OperatingSystemMXBean,
RuntimeMXBean, and ThreadMXBean.

<none> Displays scan progress information
(this is the same as -progress).

This PDF was generated on January 16, 2026 Page 609 of 610

m opentext- Static Application Security Testing 26.1

Note

e OpenText SAST writes Java process information to the location of the
TMP system environment variable. On Windows systems, the TMP system
environment variable location is C:\Users\
<username>\AppData\Local\Temp . If you change this TMP system
environment variable to noint to a different location, SCAState cannot
locate the sourceanalyzer Java process and does not return the
expected results. To resolve this issue, change the TMP system
environment variable to match the new TMP location. OpenText
recommends that you run SCAState as an administrator on Windows.

This PDF was generated on January 16, 2026 Page 610 of 610

3 opentext-

© Copyright 2026 Open Text

For more info, visit https://docs.microfocus.com

https://docs.microfocus.com/

	Title
	Table of Contents
	1. User Guide
	1.1. Support and documentation
	1.2. Change log
	1.3. Introduction
	1.3.1. Product name changes
	1.3.2. OpenText SAST
	1.3.2.1. About the analyzers
	1.3.3. Licensing
	1.3.4. Renewing an expired license
	1.3.5. OpenText Application Security Content
	1.3.6. Fortify ScanCentral SAST
	1.3.7. OpenText Application Security Tools
	1.3.8. Sample projects
	1.3.9. Related documents
	1.4. System requirements
	1.4.1. Hardware requirements
	1.4.1.1. Sample scans
	1.4.2. Supported platforms and architectures
	1.4.3. Software requirements
	1.4.4. AI-powered SAST requirements
	1.4.4.1. Supported LLMs
	1.4.5. Language compatibility
	1.4.5.1. Libraries, frameworks, and technologies
	1.4.5.2. Language compatibility for AI-assisted analysis
	1.4.6. Supported build tools
	1.4.7. Supported compilers
	1.4.8. OpenText Application Security Content
	1.4.9. Virtual Machine support
	1.4.10. Acquiring software
	1.4.11. Verifying software downloads
	1.5. Installing OpenText SAST
	1.5.1. About installing OpenText SAST
	1.5.1.1. Installing OpenText SAST
	1.5.1.2. Installing OpenText SAST silently
	1.5.1.3. Installing OpenText SAST in text-based mode on non�Windows platforms
	1.5.1.4. Manually installing OpenText Application Security Content
	1.5.2. Using Docker to install and run OpenText SAST
	1.5.2.1. Creating a Dockerfile to install OpenText SAST
	1.5.2.2. Running the container
	1.5.3. Upgrading OpenText SAST
	1.5.4. About uninstalling OpenText SAST
	1.5.4.1. Uninstalling OpenText SAST
	1.5.4.2. Uninstalling OpenText SAST silently
	1.5.4.3. Uninstalling OpenText SAST in text-based mode on non-Windows platforms
	1.5.5. Post-installation tasks
	1.5.5.1. Running the post-install tool
	1.5.5.2. Migrating properties files
	1.5.5.3. Specifying a locale
	1.5.5.4. Configuring Fortify Security Content updates
	1.5.5.5. Configuring the connection to Application Security
	1.5.5.6. Removing proxy server settings
	1.5.5.7. Adding trusted certificates
	1.6. Analysis process overview
	1.6.1. Scanning Basics
	1.6.2. Translation phase
	1.6.3. Analysis phase
	1.6.4. Translation and analysis phase verification
	1.7. Analyzing using AI-powered SAST
	1.7.1. Configuring the LLM
	1.7.1.1. Connecting to an AWS Bedrock LLM
	1.7.2. Connecting to the database
	1.7.3. Using the dbTool
	1.7.4. Sample analysis using AI-powered SAST
	1.7.5. AI-powered SAST configuration options
	1.7.6. Rate limiting
	1.7.7. Using the pwtool€to encrypt sensitive values
	1.8. Analyzing Java, Kotlin and JSP projects
	1.8.1. Integrating with Gradle
	1.8.1.1. Using Gradle integration
	1.8.1.2. Troubleshooting Gradle integration
	1.8.1.3. Using the Gradle plugin
	1.8.2. Integrating with Maven
	1.8.2.1. Installing and updating the Fortify Maven Plugin
	1.8.2.2. Testing the Fortify Maven Plugin installation
	1.8.2.3. Using the Fortify Maven Plugin
	1.8.3. Integrating with Bazel
	1.8.3.1. Java Bazel integration examples
	1.8.4. Integrating with Ant
	1.8.5. Manual Java and Kotlin translation syntax
	1.8.5.1. Java, Kotlin and JSP command-line options
	1.8.5.2. Java command-line examples
	1.8.5.3. Kotlin command-line examples
	1.8.6. Analyzing Kotlin scripts
	1.8.7. Kotlin and Java translation interoperability
	1.8.8. Handling Java warnings
	1.8.9. Analyzing Jakarta EE (Java EE) applications
	1.8.9.1. Translating Java files
	1.8.9.2. Translating JSP projects, configuration files, and deployment descriptors
	1.8.9.3. Jakarta EE (Java EE) translation warnings
	1.8.10. Analyzing Java bytecode
	1.8.11. Troubleshooting JSP translation and analysis issues
	1.9. Analyzing Android projects
	1.9.1. Android project translation prerequisites
	1.9.2. Android code analysis command-line syntax
	1.9.3. Filtering issues detected in Android layout files
	1.10. Analyzing Groovy code
	1.10.1. Groovy analysis prerequisites
	1.10.2. Groovy translation syntax
	1.11. Analyzing Scala code
	1.12. Analyzing Visual Studio projects
	1.12.1. Visual Studio project translation prerequisites
	1.12.2. Visual Studio Project command-line syntax
	1.12.3. Handling special cases for translating Visual Studio projects
	1.12.3.1. Running translation from a script
	1.12.3.2. Translating plain .NET and ASP.NET projects
	1.12.3.3. Translating C/C++ and Xamarin projects
	1.12.3.4. Translating projects with settings containing spaces
	1.12.3.5. Translating a single project from a Visual Studio solution
	1.12.3.6. Analyzing projects that build multiple executable files
	1.12.4. Alternative ways to translate Visual Studio projects
	1.12.4.1. Alternative translation options for Visual Studio solutions
	1.12.4.2. Translating without explicitly running OpenText SAST
	1.13. Analyzing JavaScript and TypeScript code
	1.13.1. Translating pure JavaScript projects
	1.13.2. Excluding dependencies
	1.13.3. Excluding NPM Dependencies
	1.13.4. NPM dependencies
	1.13.4.1. Examples of excluding NPM dependencies
	1.13.5. Translating JavaScript projects with HTML files
	1.13.6. Including external JavaScript or HTML in the translation (deprecated)
	1.14. Analyzing Dart and Flutter code
	1.14.1. Dart and Flutter translation prerequisites
	1.14.2. Dart and Flutter command-line syntax
	1.14.3. Dart and Flutter command-line examples
	1.15. Analyzing Python and Jupyter Notebooks
	1.15.1. Integrating with Bazel
	1.15.1.1. Python Bazel integration examples
	1.15.2. Python translation command-line syntax
	1.15.2.1. Python command-line options
	1.15.2.2. Python command-line examples
	1.15.3. Translating Python in a virtual environment
	1.15.4. Including imported modules and packages
	1.15.5. Including namespace packages
	1.15.6. Translating Django and Flask
	1.16. Analyzing iOS and Xcode projects
	1.16.1. iOS project translation prerequisites
	1.16.2. iOS code analysis command-line syntax
	1.17. Analyzing C and C++ code
	1.17.1. C and C++ Code translation prerequisites
	1.17.2. Integrating with Make
	1.17.3. Integrating with CMake
	1.17.4. Integrating with Gradle
	1.17.5. Manual C and C++ translation syntax
	1.17.6. Scanning pre-processed C and C++ code
	1.17.7. C/C++ Precompiled Header Files
	1.18. Analyzing Rust code
	1.18.1. Rust analysis prerequisites
	1.18.2. Rust translation syntax
	1.19. Analyzing Go code
	1.19.1. Go command-line syntax
	1.19.2. Go command-line options
	1.19.3. Including custom Go build tags
	1.19.4. Resolving dependencies
	1.20. Analyzing PHP code
	1.20.1. PHP command-line options
	1.21. Analyzing Perl code
	1.21.1. Perl analysis prerequisites
	1.21.2. Perl translation syntax
	1.22. Analyzing Ruby code
	1.22.1. Ruby command-line syntax
	1.22.1.1. Ruby command-line options
	1.22.2. Adding libraries
	1.22.3. Adding gem paths
	1.23. Analyzing Ada code
	1.23.1. Ada analysis prerequisites
	1.23.2. Ada translation syntax
	1.24. Analyzing Delphi code
	1.24.1. Delphi analysis prerequisites
	1.24.2. Delphi translation syntax
	1.25. Analyzing Elixir code
	1.25.1. Elixir analysis prerequisites
	1.25.2. Elixir translation syntax
	1.26. Analyzing Erlang code
	1.26.1. Erlang analysis prerequisites
	1.26.2. Erlang translation syntax
	1.27. Analyzing Lua code
	1.27.1. Lua analysis prerequisites
	1.27.2. Lua translation syntax
	1.28. Analyzing Salesforce Apex and Visualforce code
	1.28.1. Apex and Visualforce translation prerequisites
	1.28.2. Apex and Visualforce command-line syntax
	1.29. Analyzing ABAP code
	1.29.1. About downloading source files
	1.29.1.1. INCLUDE processing
	1.29.2. Importing the transport request
	1.29.3. Adding OpenText SAST to your Favorites list
	1.29.4. Running the Fortify ABAP Extractor
	1.29.5. Uninstalling the Fortify ABAP Extractor
	1.30. Analyzing COBOL code
	1.30.1. Preparing COBOL source and copybook files for translation
	1.30.2. COBOL command-line syntax
	1.30.2.1. Translating COBOL source files without file extensions
	1.30.2.2. Translating COBOL source files with arbitrary file extensions
	1.30.2.3. COBOL command-line options
	1.30.3. Using Legacy COBOL translation
	1.30.3.1. Legacy COBOL translation command-line options
	1.31. Analyzing SQL
	1.31.1. PL/SQL command-line example
	1.31.2. T-SQL command-line example
	1.32. Analyzing Infrastructure as Code (IaC)
	1.33. Analyzing JSON
	1.34. Analyzing YAML
	1.35. Analyzing Dockerfiles
	1.36. Analyzing Bash code
	1.36.1. Bash analysis prerequisites
	1.36.2. Bash translation syntax
	1.37. Analyzing PowerShell code
	1.37.1. PowerShell analysis prerequisites
	1.37.2. PowerShell translation syntax
	1.38. Analyzing R code
	1.38.1. R analysis prerequisites
	1.38.2. R translation syntax
	1.39. Analyzing Solidity code
	1.40. Analyzing other languages and configurations
	1.40.1. Analyzing Flex and ActionScript
	1.40.1.1. Flex and ActionScript command-line options
	1.40.1.2. ActionScript command-line examples
	1.40.1.3. Handling resolution warnings
	1.40.2. Analyzing ColdFusion code
	1.40.2.1. ColdFusion command-line syntax
	1.40.2.2. ColdFusion (CFML) command-line options
	1.40.3. Analyzing ASP/VBScript virtual roots
	1.40.4. Classic ASP command-line example
	1.40.5. VBScript command-line example
	1.41. Analyzing Library code
	1.42. Scanning for Secrets
	1.42.1. Regular expression analysis
	1.43. Optimizing results
	1.43.1. Applying a scan policy to the analysis
	1.43.2. Excluding issues with filter files
	1.43.2.1. Filter file example
	1.43.3. Using filter sets to exclude issues
	1.43.4. Filtering using€FortifyRemove comments
	1.43.5. Fortify Java annotations
	1.43.5.1. Dataflow annotations
	1.43.5.2. Field and variable annotations
	1.43.5.3. Other annotations
	1.44. Optimizing performance
	1.44.1. Antivirus software
	1.44.2. Hardware considerations
	1.44.3. Tuning options
	1.44.4. Quick scan
	1.44.5. Configuring scan speed with speed dial
	1.44.6. Breaking down codebases
	1.44.7. Limiting analyzers and languages
	1.44.7.1. Disabling analyzers
	1.44.7.2. Disabling languages
	1.44.8. Optimizing FPR files
	1.44.8.1. Using filter files
	1.44.8.2. Using filter sets
	1.44.8.3. Excluding source code from the FPR
	1.44.8.4. Reducing the FPR file size
	1.44.8.5. Opening large FPR files
	1.44.9. Monitoring long running scans
	1.44.9.1. Using the SCAState tool
	1.44.9.2. Using JMX tools
	1.44.9.2.1. Using JConsole
	1.44.9.2.2. Using Java VisualVM
	1.45. Using mobile build sessions
	1.45.1. Mobile build session version compatibility
	1.45.2. Creating a mobile build session
	1.45.3. Importing a mobile build session
	1.46. Troubleshooting
	1.46.1. Exit codes
	1.46.2. Memory tuning
	1.46.2.1. Java heap exhaustion
	1.46.2.2. Native heap exhaustion
	1.46.2.3. Stack overflow
	1.46.3. Scanning complex functions
	1.46.3.1. Dataflow Analyzer limiters
	1.46.3.2. Control Flow and Null Pointer analyzer limiters
	1.46.4. Issue non-determinism
	1.46.5. Locating the log files
	1.46.6. Configuring log files
	1.46.7. Reporting issues and requesting enhancements
	1.47. Command-line reference
	1.47.1. Specifying files and directories
	1.47.2. Directives
	1.47.2.1. LIM license directives
	1.47.3. Translation options
	1.47.4. Analysis options
	1.47.5. Output options
	1.47.6. Other options
	1.48. Configuration options
	1.48.1. Properties files
	1.48.1.1. Properties file format
	1.48.1.2. Overriding settings
	1.48.2. fortify-sca.properties
	1.48.2.1. Translation and analysis phase properties
	1.48.2.2. Regex analysis properties
	1.48.2.3. LIM license properties
	1.48.2.4. Rule properties
	1.48.2.5. Java and Kotlin properties
	1.48.2.6. Visual Studio and MSBuild project properties
	1.48.2.7. JavaScript and TypeScript properties
	1.48.2.8. Python properties
	1.48.2.9. Go properties
	1.48.2.10. Ruby properties
	1.48.2.11. COBOL properties
	1.48.2.12. PHP properties
	1.48.2.13. ABAP properties
	1.48.2.14. Flex and ActionScript properties
	1.48.2.15. ColdFusion (CFML) properties
	1.48.2.16. SQL properties
	1.48.2.17. Output properties
	1.48.2.18. Mobile build session (MBS) properties
	1.48.2.19. Proxy properties
	1.48.2.20. Logging properties
	1.48.2.21. Debug properties
	1.48.3. fortify-sca-quickscan.properties
	1.48.4. fortify-rules.properties
	1.49. Command-line tools
	1.49.1. About updating OpenText Application Security Content
	1.49.1.1. Updating OpenText Application Security Content
	1.49.1.2. fortifyupdate command-line options
	1.49.2. Checking the scan status with SCAState
	1.49.2.1. SCAState command-line options

