
CASL Script Language
Guide

Copyrights and Notices

Attachmate® INFOConnect® Enterprise Edition

© 2011 Attachmate Corporation. All Rights Reserved.

Patents

This Attachmate software is protected by U.S. patents 6252607 and 6803914.

Trademarks

Attachmate, the Attachmate logo, CryptoConnect, FileXpress, and PEPgate are either registered
trademarks or trademarks of Attachmate Corporation in the USA. INFOConnect is a registered
trademark of Unisys Corporation. FIPS 140-1 Validated is a certification mark of NIST, which
does not imply product endorsement by NIST, the U.S. or Canadian Governments. All other
trademarks, trade names, or company names referenced in product materials are used for
identification only and are the property of their respective owners.

Attachmate Software License Agreement

A copy of the Attachmate software license agreement governing this product can be found in a
‘license’ file in the root directory of the product.

Licensor
Attachmate Corporation
1500 Dexter Avenue North
Seattle, WA 98109 USA
USA
+1.206.217.7100
http://www.attachmate.com

Third-Party Notices

Third Party Terms and notices are provided in a ‘thirdpartynotices’ file in the root directory of the
product.

Contents

About This Guide xv

Audience .xvi

Documentation Conventions . xvii

Abbreviations. xx

Related Documentation. .xxi

Chapter 1 Introducing CASL 1

About CASL. 2

Why Use Macros? . 3

Creating and Editing CASL Macros. 4

Creating a CASL Macro . 4

Types of Macros . 6

The Structure of Macros . 7

Comments. 7

Declarations . 7

Directives . 8

The Elements of a Macro . 9

Statements . 9

Variables . 9

Constants . 9

Expressions . 9

Labels . 9

Procedures and Functions . 9

Keywords . 10
iii

Contents
Chapter 1 Introducing CASL, continued

Designing a Macro .11

Sample: A Basic Logon Macro. .12

Describing the Purpose of the Macro 12

Documenting the Macro’s History .13

Displaying a Message .13

Using String Constants .13

Establishing Communications with MCI Mail.14

Waiting for a Prompt from the Host14

Sending the Logon Sequence .14

Using CASL Predeclared Variables.14

Using Keywords .15

Ending the Macro .15

Using Comments and Blank Lines 15

Sample: Verifying the Host Connection16

Declaring Variables .17

Initializing Variables. .18

Performing a Task While a Condition Is True18

Using a Relational Expression to Control the Process 18

Waiting for a Character String .18

Checking if a Timeout Occurred .19

Testing the Outcome with a Boolean Expression19

Branching to a Different Macro Location19

Continuing the Logon if the Connection Is Established20

Incrementing a Counter Using an Arithmetic Expression . .20

Alerting the User if the Connection Failed20

Disconnecting the Session .21

Using Indentation .21

Using Braces with a Statement Group 22

Sample: Controlling the Entire Logon Process 23

Performing a Task while Multiple Conditions Are True25

Watching for One of Several Host Responses25

Sounding an Alarm .27

Using the Line-Continuation Sequence.28

Compiling a CASL Macro. .29

Running a CASL Macro .30

Chapter 2 Understanding the Basics of CASL 31

Statements. .32

Line Continuation Characters .32

Comments .33

Block Comments .33
iv

Contents
Chapter 2 Understanding the Basics of CASL, continued

Line Comments. 33

Identifiers . 35

Data Types . 36

Constants . 37

Integer Constants . 37

Real Constants . 38

String Constants . 39

Boolean Constants . 43

Expressions. 44

Order of Evaluation . 45

Arithmetic Expressions . 46

String Expressions . 50

String Concatenation Operation . 50

Relational Expressions . 51

Boolean Expressions. 53

Type Conversion . 54

Converting an Integer to a String . 54

Converting a String to an Integer . 54

Converting an Integer to a Hexadecimal String 54

Converting an ASCII Value to a Character String. 55

Compiler Directives . 56

Suppressing Label Information . 56

Suppressing Line Number Information 56

Trapping an Error . 56

Including an External File . 57

Defining a Macro Description . 57

Reserved Keywords . 58

Chapter 3 Variables, Arrays, Procedures, and Functions 63

Variables . 64

Predefined Variables. 64

User-Defined Variables. 64

Explicit Variable Declarations . 65

Single-Variable Declarations. 65

Multiple-Variable Declarations . 65

Initializers . 66

Public and External Variables . 66

Implicit Variable Declarations . 67

Arrays . 68

Single-Dimensional Arrays . 68

Multidimensional Arrays . 68
v

Contents
Chapter 3 Variables, Arrays, Procedures, and Functions, continued

Arrays with Alternative Bounds .69

Procedures. .70

Procedure Argument Lists .70

Forward Declarations for Procedures71

External Procedures .72

Functions .73

Function Argument Lists .73

Forward Declarations for Functions.74

External Functions. .74

Scope Rules. .75

Local Variables .75

Global Variables .75

Default Variable Initialization Values75

Labels .76

Calling DLL Functions .77

Declaring DLL Functions .77

Parameter and Return Values. .78

Non-Supported Parameters and Return Values80

Writing Windows DLLs .80

Chapter 4 Interacting with the Host, Users, and Other Macros 83

Interacting with the Host .84

Waiting for a Character String .84

Watching for Conditions to Occur .85

Setting and Testing Time Limits .86

Sending a Reply to the Host .86

Communicating with a User .87

Displaying Information .87

Requesting Information .88

Invoking Other Macros. .90

Chaining to Another Macro .90

Calling Another Macro .90

Passing Arguments .90

Exchanging Variables .91

Trapping and Handling Errors .92

Enabling Error Trapping .92

Testing if an Error Occurred .92

Checking the Type of Error .92

Checking the Error Number. .92
vi

Contents
Chapter 5 Functional Purpose of CASL Elements 95

Overview . 96

Date and Time Operations . 97

Error Control . 98

File Input/Output Operations . 99

Host Interaction . 101

Macro Management . 102

Mathematical Operations . 103

Printer Control . 104

Program Flow Control . 105

Session Management . 107

String Operations . 109

Type Conversion Operations. 111

Window Control . 112

Miscellaneous Elements . 114

Chapter 6 CASL Language 115

How CASL Elements Are Documented 124

abs (function). 125

activate (statement) . 126

activatesession (statement). 127

alarm (statement) . 128

alert (statement) . 130

arg (function) . 132

asc (function) . 133

assume (statement). 134

backups (module variable) . 135

binary (function). 136

bitstrip (function) . 137

busycursor (statement) . 138

bye (statement) . 139

capture (statement) . 140

case...endcase (statments) . 142

chain (statement). 144

chdir (statement) . 145

choice (system variable) . 146

chr (function) . 147

cksum (function) . 148

class (function) . 149

clear (statement) . 150

close (statement) . 151

cls (statement) . 152
vii

Contents
Chapter 6 CASL Language, continued

compile (statement) .153

connected (function) .154

copy (statement) .155

count (function) .156

crc (function) .157

curday (function) .158

curdir (function) .159

curdrive (function) .160

curhour (function). .161

curminute (function) .162

curmonth (function) .163

cursecond (function) .164

curyear (function) .165

date (function) .166

definput (system variable) .167

defoutput (system variable) .168

dehex (function) .169

delete (statement) .170

delete (function) .171

description (system variable) .172

destore (function) .173

detext (function) .174

device (system variable) .175

dialogbox...enddialog (statements) .176

display (system variable) .183

do (statement) .184

drive (statement) .186

end (statement) .187

enhex (function) .188

enstore (function) .189

entext (function) .190

environ (function) .191

eof (function) .192

eol (function) .193

errclass (system variable) .195

errno (system variable) .196

error (function) .197

exists (function) .198

exit (statement) .199

false (constant) .200

filefind (function). .201

filesize (function) .203

fncheck (function). .204
viii

Contents
Chapter 6 CASL Language, continued

fnstrip (function). 205

footer (system variable) . 207

for...next (statements) . 208

freemem (function) . 210

freetrack (function) . 211

func...endfunc (function declaration) . 212

genlabels (compiler directive) . 214

genlines (compiler directive) . 215

get (statement) . 216

go (statement) . 217

gosub...return (statements) . 218

goto (statement) . 219

grab (statement) . 220

halt (statement) . 221

header (system variable) . 222

hex (function). 223

hide (statement) . 224

hideallquickpads (statement). 225

hidequickpad (statement) . 226

hms (function) . 227

homedir (system variable) . 228

if...then...else (statements) . 229

include (compiler directive) . 231

inject (function) . 232

inkey (function) . 233

input (statement) . 235

inscript (function) . 236

insert (function) . 237

instr (function) . 238

intval (function) . 239

jump (statement) . 240

keys (system variable). 241

label (statement) . 242

left (function) . 243

length (function). 244

loadquickpad (statement) . 245

loc (function) . 246

lowcase (function) . 247

lprint (statement) . 248

match (system variable) . 249

max (function) . 250

maximize (statement) . 251

mid (function). 252
ix

Contents
Chapter 6 CASL Language, continued

min (function) .253

minimize (statement) .254

mkdir (statement) .255

mkint (function) .256

mkstr (function) .257

move (statement) .258

name (function) .259

netid (system variable). .260

new (statement) .261

nextchar (function) .262

nextline (statement) .263

nextline (function). .265

null (function) .267

octal (function) .268

off (constant) .269

on (constant) .270

online (function) .271

ontime (function) .272

open (statement) .273

pack (function) .274

pad (function) .275

passchar (system variable) .277

password (system variable) .278

perform (statement) .279

pop (statement) .280

press (statement) .281

print (statement). .283

printer (system variable) .284

proc...endproc (procedure declaration)285

protocol (system variable) .288

put (statement). .289

quit (statement) .290

quote (function) .291

read (statement). .292

read line (statement) .293

receive (statement) .294

rename (statement) .295

repeat...until (statements) .296

reply (statement) .297

request (statement) .298

restore (statement). .299

return (statement) .300

right (function) .301
x

Contents
Chapter 6 CASL Language, continued

rmdir (statement) . 302

run (statement) . 303

save (statement) . 304

script (system variable) . 305

scriptdesc (compiler directive) . 306

secno (function). 307

seek (statement) . 308

send (statement) . 309

sendbreak (statement) . 310

session (function) . 311

sessname (function) . 312

sessno (function) . 313

show (statement) . 314

showallquickpads (statement) . 315

showquickpad (statement) . 316

size (statement). 317

slice (function) . 318

startup (system variable) . 319

str (function) . 320

strip (function) . 321

stroke (function). 322

subst (function) . 323

systime (function) . 324

tabwidth (module variable) . 325

terminal (system variable) . 326

terminate (statement) . 327

time (function) . 328

timeout (system variable) . 329

trace (statement) . 330

track (statement) . 331

track (function). 334

trap (compiler directive) . 336

true (constant) . 337

unloadallquickpads (statement). 338

unloadquickpad (statement) . 339

upcase (function) . 340

userid (system variable) . 341

val (function) . 342

version (function) . 343

wait (statement). 344

watch...endwatch (statements) . 348

weekday (function) . 351

while...wend (statements) . 352
xi

Contents
Chapter 6 CASL Language, continued

winchar (function). .353

winsizex (function) .354

winsizey (function) .355

winstring (function). .356

winversion (function) .357

write (statement) .358

write line (statement) .359

xpos (function) .360

ypos (function) .361

zoom (statement) .362

Chapter 7 Connection, Terminal, and File Transfer Tools 363

Tool Concept .364

Connection Tools .365

Terminal Tools .366

File Transfer Tools .367

Using Tool Variables .368

Connection Tool Variables. .369

IT 27 Variables. .370

UTS Variables .374

Appendix A Error Messages 379

Classes of Error Message .380

Internal Errors .381

Compiler Errors .382

Input/Output Errors .390

Mathematical and Range Errors .392

State Errors .393

Critical Errors .394

Macro Execution Errors .395

Compatibility Errors .398

Upload/Download Errors .399

Missing Information Errors .400

Multiple Document Interface Errors .401
xii

Contents
Appendix A Error Messages, continued

Emulator or File Transfer Protocol Errors 402

DLL Errors . 403

Generic Module Errors . 404

File Transfer Errors . 405

Navigation Errors. 407

Index 409
xiii

About This Guide

The INFOConnect CASL Script Language Guide is designed to

assist you in creating and implementing macros that enhance

communication between your PC and host. It introduces CASL,

the Common Accessory Script Language. This guide explains how

to use CASL with Accessory Manager.

This preface contains the following sections:

Audience . xiv

Documentation Conventions . xv

Abbreviations . xviii

Related Documentation . xix
xv

About This Guide
Audience

This guide is written for Accessory Manager users who want to

write CASL macros. It begins with conceptual information so that

the inexperienced programmer can learn the hows and whys of

writing macros. The guide provides reference material on

implementing each macro element. This reference material also

includes details for the sophisticated application developer.

If you are new to writing macros, you may benefit from first

reading Chapter 1, “Introducing CASL.”

Before reading this guide, you should understand general concepts

for Accessory Manager.
xvi Audience

About This Guide
Documentation Conventions

The following documentation conventions are used in this guide:

� All text that you type on a screen or messages and prompts that

appear on the screen are displayed in this type style.

This type style also is used for CASL macro text.

� Square brackets ([]) indicate that the argument is optional.

The following example illustrates the notational use of square

brackets:

alarm [integer]

In this example, the argument integer is optional.

� Words or characters in braces ({ }) represent multiple

arguments from which to choose. The choices are separated by

a vertical line, as shown in the following example:

genlines {on | off}

In this example, there are two choices: on and off. These are

the only possible choices.

� An ellipsis (...) can have one of several meanings.

❏ If the ellipses occurs at the end of a line, it indicates that the

line is continued on the following line, or that the code

continues but no additional data is shown, as in these

examples:

[edittext x, y, w, h, init_text, ...
str_result_var [, options]]

if arg(1) = "barkley" then ...

❏ If the ellipses occurs on a line of its own, it indicates that

intervening lines of code have been omitted, as in the

following example:

done = false
while not done
 ...
 ...
wend
Documentation Conventions xvii

About This Guide
❏ If the ellipses follows an item in italics, you can repeat the

previous item one or more times, as in the following example:

digit ...

In this example, you can have just one digit, or you may

have multiple digits. You must have at least one digit.

❏ If the ellipses follows an item in square brackets, you can

repeat the item zero or more times, as in the following

example:

[, var] ...

In this example, var is optional. If you choose to use var as

an argument, the ellipsis indicates that you can have

multiple variables as arguments.

� Italic type is used in the following situations:

❏ To show emphasis, as in, “Do not use the Copy command.”

❏ To show that a word is a placeholder that stands for

something else, as in the following example:

delete filename

In this case, you enter the actual file name rather than the

word filename.

The following are some common placeholders:

char (Integer)—The integer ASCII value of a character

expression (Any)—More than one type of expression can

be used here. Read the text to determine which is suitable.

filename (String)—A legal file specification. You can use

full path names, as well as wild card characters (where

appropriate.

filenum (Integer)—A file number. Range 1–8. These

expressions are usually optional and must be preceded by a

pound sign (#) if they are specified.

time_expr (Integer)—An amount of time. You can use any

numeric expression followed by ticks, seconds, minutes, or

hours. If you do not specify a keyword, seconds is assumed.
xviii Documentation Conventions

About This Guide
� The word PC refers to any personal computer running Windows

98 SE, Windows 2000, Windows XP, or

Windows NT® 4.0.

� The word host refers to any mainframe, mini-computer, or

information hub with which the PC communicates.

� File names are shown in all capital letters, as in

INSTALL.EXE, unless a file name is part of a command. In this

situation, lowercase letters are used to show that you do not

have to enter the file name in all capitals.
Documentation Conventions xix

About This Guide
Abbreviations

The following abbreviations are used in this guide.

Abbreviation Meaning

API Application programming interface

ASCII American Standard Code for Information Interchange

BPS Bits per second

CASL Common Accessory Script Language

CR Carriage return

CRC Cyclical redundancy check

CR/LF Carriage-return/line-feed

DLL Dynamic Link Library

DTE Data Terminal Equipment

FCC Federal Communications Commission

GDI Graphical Device Interface

IEEE Institute of Electrical and Electronics Engineers

KB Kilobyte
xx Abbreviations

About This Guide
Related Documentation

For information on Windows 98 SE, Windows 2000, Windows XP,

or Windows NT 4.0, refer to the documentation provided by

Microsoft®.
Related Documentation xxi

Introducing CASL

In This Chapter This chapter contains the following headings:

About CASL . 2

Why Use Macros? . 3

Creating and Editing CASL Macros . 4

Types of Macros . 6

The Structure of Macros . 7

The Elements of a Macro . 9

Designing a Macro . 11

Sample: A Basic Logon Macro . 12

Sample: Verifying the Host Connection . 16

Sample: Controlling the Entire Logon Process 23

Compiling a CASL Macro . 29

Running a CASL Macro . 30

1

1

Chapter 1 Introducing CASL
About CASL

CASL is a scripting language that you can use to create macros

that can interact with hosts, users, and other macros. The macros

you develop can be simple or complex. For instance, you can create

a simple macro that waits for a prompt from the host and then

replies with a user ID and password. More complex macros can

automate entire communications sessions or create custom dialog

boxes that enable users to operate a host application without

learning its commands.

While CASL is designed to simplify the process of communicating

with other computers, it is not limited to that function. CASL is a

full-featured programming language that can handle almost any

task, including complex mathematical computations and the

display of sophisticated dialog boxes.

CASL macros work with any emulator that runs within Accessory

Manager. Any limitations that are specific to a particular

emulator (such as ALC or EXTRA!® Enterprise for Accessory

Manager) are noted throughout this guide or the Readme file for

the product.
2 About CASL

Chapter 1 Introducing CASL
Why Use Macros?

When you work in a data communication environment, you often

have to perform the same functions over and over again to

complete your daily activities. For instance, each time you open a

session with a host, you have to type your logon ID and password.

You can eliminate the manual repetition of routine tasks by using

macros to communicate with the host. You have to create and save

a macro to be able to use it, but once you have done this, you will

find it invaluable in saving time and effort in the future.

Using macros, you can do any of the following:

� Perform keystroke sequences

� Run another PC application

� Perform almost any function that can be performed using

Accessory Manager, such as loading a QuickPad™

� Create dialog boxes so that you can request user input

In addition, creating and implementing CASL macros are not

difficult tasks. Traditionally, developing applications and utilities

that run in a communications environment required a complex

programming language and an Application Programming

Interface (API) to access the host. You also had to understand the

underlying data communications link. CASL removes these

obstacles. When you write a CASL macro, you do not have to

concern yourself with the details of communication programming;

CASL handles the communication interface.
Why Use Macros? 3

Chapter 1 Introducing CASL
Creating and Editing CASL Macros

Creating a
CASL Macro

You can create a CASL macro in two ways:

• Learn Mode—you perform the actions that you want to include
in the macro, and Accessory Manager records those actions in a
CASL macro file, which you can then edit if needed.

• CASL Macro Editor—you open the CASL Macro Editor and
write the macro using the CASL script language.

Using Learn Mode To create a CASL macro using Learn Mode, follow these steps:

1 With a session open, click Learn CASL Macro from the Tools
menu.

The CASL Macro Editor starts in a minimized state.

2 Perform the tasks that you want to include in the macro.

3 When you have finished, click Stop CASL Learn from the Tools
menu.

4 When you are prompted about saving the CASL macro, do one of
the following:

If you need to edit the CASL macro, you can do so using the CASL
Macro Editor. Refer to the online Help for Accessory Manager for
detailed information.

Caution: CASL macro files have a size limit of 64K bytes.

To do this Do this

Save the
CASL macro

Click Yes, type a name for the macro in the File Name text box
(you do not have to include a file extension), and click Save on
the Save As dialog box.

Note: In INFOConnect 9.1 and later, the CASL Macro Editor
encrypts macros (and any related source files) during the save
process if the Encrypt macros setting is selected in the Accessory
Manager Global Preferences dialog box.

Not save the
CASL macro

Click No.
4 Creating and Editing CASL Macros

Chapter 1 Introducing CASL
Using the CASL

Macro Editor

To create a CASL macro using the CASL Macro Editor, follow

these steps:

1 With a session open, click CASL Macro from the Tools menu.

2 Click New.

The CASL Macro Editor starts, displaying a window similar to the

one shown below:

For information about using this editor, refer to the online Help.
Creating and Editing CASL Macros 5

Chapter 1 Introducing CASL
Types of Macros

There are two main types of CASL macros:

� Online

� Offline

Online macros work while Accessory Manager is connected to a

host. Usually, these interact with the host to automate all or part

of a communications session. You can use online macros to log on

to the host, or create a custom dialog box for interacting with a

host application.

Offline macros do not interact with a host. For example, you can

use an offline macro to display a list of hosts to which a user might

want to log on.

Note: A session must be open for you to run either an online or

an offline macro.
6 Types of Macros

Chapter 1 Introducing CASL
The Structure of Macros

CASL is flexible enough to accommodate most writing styles. If

you have written computer programs before, you should be able to

retain the same style you have used in the past.

In general, the contents of a macro include such items as

comments, declarations, and directives. A comment documents a

macro; a declaration defines a variable, an array, a procedure, or

function; and a directive specifies an action to be taken.

Comments Use comments to explain what will happen when a segment of

code is executed or to block out part of a macro that you do not

want to execute. Comments are ignored by the macro compiler and

do not take up any memory after a macro is compiled. So you can

include many comments to document the flow of a macro.

Starting your macro with a comment header is good practice. This

header should include your name, the creation date, and some

explanation of its objective. An example of this type of comment is

as follows:

-- Macro name: LOGON.XWS
-- Date: 6/24/2000
-- Author: John Doe

In this example, the double hyphen is used to indicate a comment.

Chapter 2, “Understanding the Basics of CASL,” describes other

notations you can use to designate a comment.

Declarations Set up your declarations and assign values to them, if appropriate,

immediately after the comment header. This will help you keep

the declarations easy to find, as shown here:

-- Macro name: LOGON.XWS
-- Date: 6/24/2000
-- Author: John Doe
integer count, access_number
count = 1
access_number = NetID
The Structure of Macros 7

Chapter 1 Introducing CASL
Directives The body of a macro, which follows the declarations, is made up of

directives, or statements, that specify actions to be taken. You can

structure your macro statements with one statement on a line,

multiple statements on a line separated by colons (:), or a series

of statements enclosed in braces ({ }). The following example

shows one macro statement on a line:

print "Hello!"

Chapter 2, “Understanding the Basics of CASL,” provides

examples of how to write statements using the alternate

structures.

To make your macro more readable and maintainable, you can

indent statements that are part of a larger construct. Indentation,

which is ignored by the compiler, is shown in the following

example of a for...next construct:

-- This segment prints 1 through 10 vertically.

integer count
for count = 1 to 10

print count
next

As shown in the preceding example, you can also use blank lines to

improve program readability.
8 The Structure of Macros

Chapter 1 Introducing CASL
The Elements of a Macro

Your macros can consist of many different kinds of language

elements. The sample macro you develop in a later section

contains examples of many of them. A brief description of the more

commonly used CASL components follows.

Statements Statements perform such functions as assignment of values, file

input/output, file transfer, macro flow control, host interaction,

window control, and communications session management. CASL

statements are described in detail in Chapter 6, “CASL

Language.”

Variables Variables are elements that can store data. In your macros, you

can use variables that you create and variables that are

predeclared by CASL. CASL’s predeclared variables are described

in Chapter 6, “CASL Language.”

Constants Constants are elements that have a fixed value. Use the value

directly in your macro.

Expressions Expressions include arithmetic expressions, string expressions,

relational expressions, and Boolean expressions.

Labels Labels are named reference points in a macro. A label can be the

destination of a goto statement or it can mark the beginning of a

subroutine. Guidelines for using the label statement in a macro

are presented in Chapter 6, “CASL Language.” Label scope rules

are explained in Chapter 3, “Variables, Arrays, Procedures, and

Functions.”

Procedures and

Functions

Procedures and functions perform unique tasks. They differ in

that functions return a value, and procedures do not. CASL

provides built-in functions, which are predeclared. You can use

these built-in elements as well as implement your own procedures

and functions. See Chapter 6, “CASL Language,” for details.
The Elements of a Macro 9

Chapter 1 Introducing CASL
Keywords Keywords make your macro more readable. CASL keywords are

reserved for a particular use in your macro; for example,

statement names and words that bind arguments are all reserved

keywords. You cannot use keywords as names for your variables,

functions, procedures, or subroutines. Chapter 2, “Understanding

the Basics of CASL,” contains a table of the keywords reserved by

CASL.
10 The Elements of a Macro

Chapter 1 Introducing CASL
Designing a Macro

In the process of developing and implementing a more complex

macro, the following is a typical development cycle:

� Design the macro.

� Write and edit the macro.

� Compile the macro and locate any compile errors.

� Fix the errors and compile again.

� Run the macro to be sure it works.

� Correct any problems.

Before you write a macro, you should map out what you want the

macro to accomplish. This step in the development cycle is

especially important when you create macros to use with

communications programs. It is difficult to predict exactly what

another computer will do during a communication session.

Therefore, it is advisable to design your macro to handle any type

of situation that may occur.

Your macro design can be as simple as a list of steps that outline

the goals you want to accomplish. You can produce more detailed

design plans by drawing flow charts. Listing goals and drawing

flow charts are not always necessary, but they can often save you

hours of work later.
Designing a Macro 11

Chapter 1 Introducing CASL
Sample: A Basic Logon Macro

In this sample, you send a logon sequence to MCI Mail. The

example assumes that your macro will run in a trouble-free

environment, that is, it will not encounter errors or slow responses

from the host.

/* This macro shows how to display messages and send a
user ID and password to MCI Mail. */

-- Macro name: SAMPLE1.XWS
-- Created: 6/24/2000 - Jane Smith

/* Display a message on the status line to tell the user
what is going on. */

message "MCI Mail auto-logon in progress"

/* Send a carriage return (CR) to get MCI's attention and
then send the logon user ID and password. */

reply -- Send a CR
wait 2 seconds -- Wait for prompt
reply userid -- Send User ID
wait 2 seconds -- Wait for prompt
reply password -- Send password

message 'MCI auto-logon complete'-- Tell the user

end -- End the macro

Describing the

Purpose of the

Macro

The macro begins with a comment describing the purpose of the

macro.

/* This macro shows how to display messages and send a
user ID and password to MCI Mail. */

This is a block comment, which is enclosed in the symbol pair /*

and */. When you start your macro with an explanatory comment,

you assist other macro writers who later need to understand your

work.
12 Sample: A Basic Logon Macro

Chapter 1 Introducing CASL
Documenting the

Macro’s History

The sample macro comment header also provides a history of the

script’s development, including the macro file name, the creation

date, and the author’s name. This comment begins with a double

hyphen, which tells the macro compiler that this is a line

comment. Line comments do not require an end-of-comment

symbol.

-- Macro name: SAMPLE.XWS
-- Created: 6/24/2000 - Jane Smith

After subsequent macro modifications, the header might appear as

follows:

-- Macro name: SAMPLE.XWS
-- Created: 2/14/2000 - Jane Smith
-- Modified: 4/23/2000 - Jane Smith
-- Modified: 5/10/2000 - John Doe

The additional comments record the history of the macro

development.

Displaying a

Message

The first line of code displays a message that tells the user what is

occurring. To display this type of simple message, use the message

statement.

message "MCI Mail auto-logon in progress"

Using String

Constants

As you can see in the message statement, the words that are

displayed are enclosed in quotation marks. A character string

enclosed in quotation marks is called a string constant. When you

use CASL, you must enclose all string constants with quotation

marks. You can use either double quotation marks, as shown in

the preceding example, or single quotation marks, as shown in the

script’s second message.

message 'MCI auto-logon complete'

Be sure to use the same type of beginning and ending quotation

marks.
Sample: A Basic Logon Macro 13

Chapter 1 Introducing CASL
Establishing

Communications

with MCI Mail

To establish communications with MCI Mail, use the reply

statement.

reply

When you use the reply statement without an argument, a

carriage return is sent to the host. This alerts the host to prompt

for a user ID.

Waiting for a

Prompt from the

Host

After you send a carriage return to the host, you should wait for a

brief period to allow the host to send a prompt.

wait 2 seconds

The wait statement causes the macro to pause for two seconds to

allow the host to respond with the first prompt. The amount of

time to wait depends on your operating environment and the host.

Sending the Logon

Sequence

Once you have set up the connection, you can send your user ID

and password. To do this, use two reply statements—one to send

the user ID and one to send the password. Be sure to wait for a

brief period before sending the second reply statement to allow

time for the host to send the password prompt.

reply userid
wait 2 seconds
reply password

Using CASL

Predeclared

Variables

CASL provides a rich set of predeclared variables, which include

system variables and module variables. The sample macro

contains two of the predeclared system variables: userid and

password.

userid and password are set up as system variables to make it

easy for everyone to use CASL macros and also to help maintain

security. You can define these variables from Accessory Manager

by clicking Session Preferences from the Options menu and

clicking the CASL Macro tab. You can also modify these variables

in a macro. The sample macro uses the predefined contents of the

variables to send the user ID and password to MCI Mail.

reply userid
reply password
14 Sample: A Basic Logon Macro

Chapter 1 Introducing CASL
Using Keywords In the wait statement, you find the word seconds.

wait 2 seconds

This word is one of many CASL keywords that make your macro

more readable and flexible. Use the keywords only where specified

in the various language elements.

Ending the Macro There are several ways to end a macro, depending on the reason

for its termination. The most common way is to use the end

statement, as shown in the sample macro.

The end statement brings the macro to an orderly conclusion.

Other CASL statements, such as halt, quit, and terminate, cause

related macros, sessions, or Accessory Manager to end also. These

statements are discussed in detail in Chapter 6, “CASL

Language.”

Using Comments

and Blank Lines

Throughout the sample macro there are comments explaining

what the programming code is to accomplish. Some of the

comments are block comments, which are enclosed in the symbol

pair /* and */.

/* Display a message on the status line to tell the user
what is going on. */

Other comments are line comments.

-- Macro name: SAMPLE.XWS
reply -- Send a CR

As you can see, the line comments begin with a double hyphen

(--). You can use both of these commenting methods in your

macro.

The sample macro also shows how to use blank lines to make a

macro more readable. You can use blank lines almost anywhere in

your macro.
Sample: A Basic Logon Macro 15

Chapter 1 Introducing CASL
Sample: Verifying the Host Connection

The previous sample macro assumed that MCI Mail responded to

the initial carriage return within the expected time frame. But

this may not always be the case. The following sample macro

shows how to verify that communications have, in fact, been

established.

/* This macro shows how to display messages and send a
user ID and password to MCI Mail. It also verifies that
the MCI Mail connection is active. */

-- Macro name:SAMPLE2.XWS
-- Created:6/24/2000 - Jane Smith
-- Modified:6/25/2000 - Jane Smith (Added code to
-- check for the "port:" prompt.)

/* First, define the required variable. */

integer i

/* Display a message on the status line to tell the user
what is going on. */

message "MCI Mail auto-logon in progress"

/* Try to get MCI Mail's attention by sending a carriage
return (CR) until the "port:" prompt is received. */

i = 1 -- Initialize the
-- variable to 1

while i <= 10 -- Perform while i is
-- less than or equal
-- to 10

reply -- Send a CR
wait 2 seconds for "port:" -- Wait for prompt
if not timeout then -- If no timeout
{

goto LOGIN -- Branch to LOGIN
to

-- wait for prompts
}
i = i + 1 -- Increment counter

wend

/* Could not get MCI Mail's attention. Tell the user and
hang up. */
16 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL
alert "System not responding - Logon canceled.", ok
bye -- Disconnect
end -- End

label LOGIN
wait for "name:" -- First prompt
reply userid -- Send user ID
wait for "password:" -- Next prompt
reply password -- Send password
message 'MCI auto-logon complete' -- Tell the user

end -- End the macro

Declaring

Variables

As in the first sample macro, this sample starts with a description

of its purpose and an outline of its history. (The comment header

is updated to reflect a modification to the original macro.) This

macro adds functionality that takes control in the event that MCI

Mail does not respond to the initial reply statement.

First the macro declares a variable that it will use as part of a

conditional expression that determines how long to perform a

task. As part of the task, it sends a carriage return to establish

communications with MCI Mail and then waits for the expected

character string from the application. If a time-out does not occur,

the macro branches to a different location to send the logon

sequence to the application. If, however, communications cannot

be established after ten carriage returns are sent, the macro alerts

the user to the failure, disconnects the session, and ends.

To declare a variable, specify a data-type identifier and a variable

name. In the sample macro, a variable named i, with a data type

of integer, is declared.

integer i

This macro uses only one variable. If your macro contains multiple

variables of the same data type, you can declare all of them on the

same line.

integer i, tries

Note: If the variables have different data types, you must

declare them on separate lines.
Sample: Verifying the Host Connection 17

Chapter 1 Introducing CASL
Initializing

Variables

The macro compiler initializes an integer variable to a default

value of 0. To initialize the variable to a different value, use the

equal sign (=). In the sample macro, the i variable is initialized to

the value 1.

i = 1

Performing a Task

While a Condition

Is True

To execute statements repeatedly while a condition is true, use the

while...wend construct. If the condition is initially false, the

statements are not executed at all. This macro uses the

while...wend construct to control the process of connecting to

MCI Mail.

while i <= 10
 reply
 wait 2 seconds for "port:"
 if not timeout then
{
 goto LOGIN
 }
 i = i + 1
wend

The statements between the while and wend are continually

executed until the condition i <= 10 is no longer true. Then

control passes to the statement following the wend.

Using a Relational

Expression to

Control the

Process

Expressions that use relational operators (such as < and =) are

called relational expressions. When you use these operators, the

result is always a Boolean value (true or false). In this macro, the

relational expression i <= 10 is used to determine how many

times the while...wend construct is performed. As long as the

condition is true, the statements within the construct are

executed. When the condition is no longer true, the statement

following the wend is executed.

Waiting for a

Character String

If you want your macro to wait for one specific text string, use the

wait statement. This sample macro waits for the character string

"port:" to ensure that a connection with MCI Mail is established.

To prevent the macro from waiting forever, a duration time of two

seconds is specified.

wait 2 seconds for "port:"

You can determine if a time-out occurred before the character

string arrived, as explained in the next section.
18 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL
Checking if a

Timeout Occurred

Use the if...then construct and the timeout system variable to

determine the outcome of the wait statement.

if not timeout then
{
 goto LOGIN
}
i = i + 1

The timeout system variable is either true or false indicating

whether the last wait statement timed out. In this macro, timeout

is true if the wait statement exceeds the time specification of 2

seconds before finding the "port:" text string.

When you use the if...then construct, the statement(s) following

the then are executed only if the condition is true. In this macro,

the goto LOGIN statement is executed if a time-out does not occur;

if a time-out occurs, the i = i + 1 statement is executed.

Testing the

Outcome with a

Boolean

Expression

The condition you use in an if...then statement is usually a

Boolean expression. Boolean expressions return either true or

false. Your Boolean expressions can be simple, as shown in this

macro:

if not timeout then

You can also use more complex expressions, involving multiple

conditions with Boolean operators, as shown in the following

example:

if var1 >= 12 and var2 <= 5 then

In the sample macro, if the Boolean expression is true, the macro

transfers control to a logon routine, which is located in a different

part of the macro, as explained in the next section.

Branching to a

Different Macro

Location

Sometimes it is preferable to handle a certain piece of coding logic

in a separate part of a macro. To branch to this location, you can

use the goto statement.

if not timeout then
{
 goto LOGIN
}

Sample: Verifying the Host Connection 19

Chapter 1 Introducing CASL
To enable the macro compiler to know where to branch, you must

supply a label name in the goto statement. In the sample macro,

the label LOGIN is used to indicate the location where the next

logical piece of code is located. The actual location is identified by

the label statement.

label LOGIN

CASL provides another statement that allows you to branch to a

label: gosub...return. For detailed information about this

statement, refer to “gosub...return (statements)” on page 218.

Continuing the

Logon if the

Connection Is

Established

If the macro receives the "port:" prompt before a time-out occurs,

it sends the logon sequence to the host, displays a message, and

ends.

label LOGIN
wait for "name:"
reply userid
wait for "password:"
reply password
message 'MCI auto-logon complete'
end

If the "port:" prompt does not arrive in time, the macro

increments the while...wend conditional counter.

Incrementing a

Counter Using an

Arithmetic

Expression

The number of times the while...wend construct is performed

depends on the value in the variable i. To increment that value,

you must use an arithmetic expression. Arithmetic expressions

consist of numeric arguments and arithmetic operators. In the

sample macro, the addition operator, which is a plus sign (+), is

used to add 1 to i.

i = i + 1

The counter continues to increment until the host sends the

character string "port:" or until the counter’s value no longer

satisfies the condition for the while...wend construct (i <= 10).

If the host does not respond, the macro alerts the user to the

failure.

Alerting the User if

the Connection

Failed

In general, the sample macro uses the message statement to

inform the user of current events. A message, which is displayed

without a dialog box, does not require any user intervention and is

replaced by other messages.
20 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL
To display information to which the user must respond, use the

alert statement. The alert statement displays a message in a

dialog box, which requires the user to choose a command to exit

the dialog box. In the sample macro, the alert statement provides

an OK button for the user.

alert "System not responding - Logon canceled.", ok

The macro pauses at the alert statement until the user clicks OK.

Disconnecting the

Session

If the connection with MCI Mail cannot be established, the macro

uses the bye statement to end the session. The bye statement

immediately disconnects the current session.

Using Indentation As you can see, some of the lines of code in the macro are indented.

For instance, the code within the while...wend loop is indented.

while i <= 10
reply
wait 2 seconds for "port:"
if not timeout then
{

goto LOGIN
}
i = i + 1

wend

Indentation is not required, but it helps to make your macro more

readable. If indentation was not used in the sample macro, it

would be difficult to determine which lines of code applied to the

while...wend construct.
Sample: Verifying the Host Connection 21

Chapter 1 Introducing CASL
Using Braces with

a Statement Group

You can use braces to enclose one or more statements that belong

together. In the sample macro, braces enclose the goto statement

that follows the if...then statement, indicating that the goto

statement is part of the if...then construct.

if not timeout then
{
 goto LOGIN
}

22 Sample: Verifying the Host Connection

Chapter 1 Introducing CASL
Sample: Controlling the Entire Logon Process

In the previous examples, the sample macros did not verify the

logon prompts sent by the host and therefore did not take

corrective action if a prompt never appeared. In this macro, you

can see how to use the watch...endwatch construct, within a

while...wend loop, to wait for any one of multiple character

strings from the host and then take appropriate action based on

the string that is received. The programming logic in this macro

gives you greater control over the sequence of events that may

occur when communicating with your host.

/* This macro shows how to display messages and send a
user ID and password to MCI Mail. It also verifies that
the MCI Mail connection is active and uses the watch
statement to verify that the logon sequence is
successfully sent to the host. */

-- Macro name: SAMPLE3.XWS
-- Created: 6/24/92 - Jane Smith
-- Modified: 6/25/92 - Jane Smith (Added code to
-- check for the "port:" prompt.)
-- Modified: 7/02/92 - John Jones (Added code to
-- check for specific logon
-- prompts.)

/* First, define the required variables. */

integer i, tries

/* Display a message on the status line to tell the user
what is going on. */

message "MCI Mail auto-logon in progress"

/* Send a carriage return until the "port:" prompt is
received. */

i = 1 -- Initialize
-- variable

while i <= 10 -- Perform while i is
-- less than or equal
-- to 10

reply -- Send CR
wait 2 seconds for "port:" -- Wait for prompt
if not timeout then goto LOGIN -- If no timeout,
Sample: Controlling the Entire Logon Process 23

Chapter 1 Introducing CASL
-- branch to LOGIN
-- to check next
-- prompts

i = i + 1 -- Increment counter
wend

/* Could not get MCI Mail's attention. Tell the user and
hang up. */

alert "System not responding - Logon canceled.", ok
bye -- Disconnect
end -- End the macro

label LOGIN -- Branch-to location

/* Try to log on to MCI Mail for 50 seconds. If not
successful, disconnect the session and exit. */

tries = 1 -- Initialize
-- variable

while online and tries < 5 -- Perform while both
-- conditions are
-- true

watch 10 seconds for -- Wait for any one
-- of the following
-- host responses

quiet 2 seconds : reply
"name:" : wait 5 ticks : reply userid
"password:" : wait 5 ticks : reply password
"sorry, inc" : wait 5 ticks : bye : ...

message "Unable to log on." : end
"COM" : alarm 1 : message "MCI " + ...

"Mail auto-logon complete." : end
"call Customer Service" : ...
 alert "Connection refused.", ok : end

endwatch
tries = tries + 1 -- Increment counter
wend

if tries < 5 then -- If not successful
{
bye -- Disconnect
alert "Lost the connection.", ok -- Tell the user
}
end -- End
24 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL
As in the second sample macro, which verified the MCI Mail

connection, this macro contains the appropriate lead-in comments,

attempts to establish communications with MCI Mail, waits for

the "port:" prompt from the host, and branches to a different

location to handle the balance of the logon process. At this point,

however, this macro uses a more comprehensive technique to

ensure that it sends the correct logon responses to the host.

Based on two controlling conditions (the macro is online and

tries is less than 5), the macro repeatedly watches for one of

several host responses to arrive. If either of the two controlling

conditions becomes invalid, the logon process terminates.

Otherwise the macro responds appropriately to whichever host

prompt or message it receives.

Performing a Task

while Multiple

Conditions Are

True

In the previous sample macro, the while...wend construct

contained one relational expression that determined how many

times the while loop was repeated. This macro uses two conditions

to determine the duration of the loop: the result of the online

function and the result of a relational expression.

while online and tries < 5

As long as both conditions are true, the statements in the

while...wend construct are repeatedly executed. If either of the

conditions becomes false, macro execution continues with the

statement following the wend.

The online function returns true as long as the macro is online to

the host. The relational expression tries < 5 returns true as long

as tries is less than 5. Since the variable tries is initialized to 1

before the while loop and then is incremented by 1 each time the

loop is executed, the while...wend construct will be repeated a

maximum of four times. It may be repeated fewer than four times,

depending on what happens while the macro is watching for one of

several host responses.

Watching for One

of Several Host

Responses

If you know that the host may send one of several different

prompts, use the watch...endwatch construct with multiple

conditions to watch for each possible prompt or message. The

sample macro watches ten seconds for six potential conditions.
Sample: Controlling the Entire Logon Process 25

Chapter 1 Introducing CASL
Write each watch condition as a separate entity. When one of the

conditions occurs, the statements for that watch condition are

executed and the watch...endwatch construct ends. If the ten-

second time-out expires before a watch condition is satisfied,

processing returns to the while...wend construct. If both of the

while conditions are still true, the macro executes the

watch...endwatch construct again.

You need to write the actual watch statement only once for all of

the watch conditions.

watch 10 seconds for

Each watch condition, along with its accompanying directives, is

specified individually. These conditions are discussed in the

paragraphs that follow. As you can see in this macro, the watch

conditions are followed by a colon (:). The colon is required.

A Quiet Connection The first watch condition waits for the connection to be quiet for

two consecutive seconds.

quiet 2 seconds : reply

If this condition is met, the macro sends a carriage return to MCI

Mail and processing returns to the while...wend construct. If the

macro is still online and tries is less than 5, the

watch...endwatch construct is executed again.

The "name:" Prompt The second watch condition looks for the character string "name:"

"name:" : wait 5 ticks : reply userid

If the macro receives the "name:" prompt, it waits five ticks (a

tick is one tenth of a second) and then sends the contents of

userid to MCI Mail. If the macro is still online and tries is less

than 5, the watch...endwatch construct is executed again.

The "password:"

Prompt

If the host sends the "password:" prompt, the macro executes the

statements associated with the third watch condition.

"password:" : wait 5 ticks : reply password
26 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL
After a brief wait of five ticks, the macro sends the contents of the

system variable password to MCI Mail and then processing

returns to the while...wend construct. The watch...endwatch

construct is executed again if both of the while conditions remain

true.

The "sorry, inc"

Message

The fourth watch condition looks for the character string "sorry,

inc".

"sorry, inc" : wait 5 ticks : bye : ...
message "Unable to log on." : end

If the macro receives this message, it waits five ticks, disconnects

the session, displays a message for the user, and ends. Processing

does not return to the while...wend construct if this character

string is received.

The "COM" Message If the host sends the "COM" message, the statements associated

with the fifth watch condition are executed.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end

In this case, the macro recognizes that the logon process has

completed successfully. Therefore, it sounds an alarm to get the

user’s attention, displays an appropriate message, and ends.

The "call Customer

Service" Message

If the macro receives the "call Customer Service" message, it

executes the statements associate with the last watch condition.

"call Customer Service" : ...
alert "Connection refused.", ok : end

The macro displays a dialog box and waits for the user to click OK;

then it ends.

Sounding an

Alarm

To get the user’s attention, you can use the alarm statement to

make the PC emit a sound. This macro uses the alarm statement,

with an argument of 1.

"COM" : alarm 1 : message "MCI " + ...
"Mail auto-logon complete." : end
Sample: Controlling the Entire Logon Process 27

Chapter 1 Introducing CASL
The alarm statement argument determines the type of sound that

the PC makes. In this case, an argument of 1 specifies that the PC

should play the .WAV file associated with the SystemAsterisk key

in the Windows Registry. For more information about alarm

sounds, refer to “alarm (statement)” on page 128.

Using the Line-

Continuation

Sequence

To write a directive that continues on another line, you must use

the line-continuation sequence (...) at the end of the line to be

continued. You can see an example of this in the sample macro.

"sorry, inc" : wait 5 ticks : bye : ...
 message "Unable to log on." : end

If you have a string constant that is too long to fit on one line, you

can break the string into segments and use the line-continuation

sequence to indicate the string continues on another line. You

must enclose each string segment with quotation marks and use

the string concatenation operator (+) to join the strings.

"COM" : alarm 1 : message "MCI " + ...
 "Mail auto-logon complete." : end

Note: You can skip using the line continuation sequence and

keep the entire statement on one line. However, the statement

may be too long to fit in your editor window, and you will have

to scroll to the right and left to see the entire line.
28 Sample: Controlling the Entire Logon Process

Chapter 1 Introducing CASL
Compiling a CASL Macro

Once you have created and saved a CASL macro, you should

compile it to determine possible syntax errors. The compiler

converts your source macro into a binary, machine-readable form

and reports any errors that it detects. The compilation process

takes only a small amount of time. When you have corrected all of

the syntax errors, you can run the macro.

There are two types of macro files:

� Source file (.XWS), which you create and edit

� Executable file (.XWC), which is created when you compile your

macro

Procedure To compile a CASL macro, follow these steps:

1 If the CASL macro that you want to compile is not already open,

open it.

From an Accessory Manager session, click CASL Macro from the

Tools menu, click the desired .XWS file, and click Edit.

From the CASL Macro Editor, click Open from the File menu and

double-click the desired .XWS file.

2 From the Macro menu, click Compile.

3 If any compilation errors occur, correct the errors.

4 Repeat steps 2 and 3 until your macro compiles without errors.

Note: The macro compiler automatically compiles any macro

you run if the macro has not already been compiled or if the

most recent version of the source macro is newer than the

compiled version. However, you should compile your macros

before trying to run them to ensure that all syntax errors are

corrected.
Compiling a CASL Macro 29

Chapter 1 Introducing CASL
Running a CASL Macro

You can run macros at any of the following times:

� When you start Accessory Manager (application start-up

macro)

� When you open a session (session start-up macro)

� When you click CASL Macro from the Tools menu, click the

desired macro, and click Run

� When you click a toolbar or QuickPad button, press a key, or

double-click a HotSpot that has been configured to run a macro

� When the left mouse double-click has been configured to run a

macro with the same name as the word under the mouse

pointer

� When you click Run from the CASL Macro Editor’s Macro menu

For detailed information about these procedures, refer to the

online Help for Accessory Manager.
30 Running a CASL Macro

Understanding the
Basics of CASL

In This Chapter This chapter includes the following headings:

Statements . 32

Comments . 33

Identifiers . 35

Data Types . 36

Constants . 37

Expressions . 44

Arithmetic Expressions . 46

String Expressions . 50

Relational Expressions . 51

Boolean Expressions . 53

Type Conversion . 54

Compiler Directives . 56

Reserved Keywords . 58

2

31

Chapter 2 Understanding the Basics of CASL
Statements

Statements specify an action to be taken. You can write the

statements in any of the following ways:

� One statement to a logical line, as shown in the following

example:

activate

� Multiple statements to a logical line with a colon (:) between

each statement, as shown in the following example:

wait for "Enter user ID:" : reply userid
wait for "Enter password:" : reply password

� A series of statements enclosed in braces ({ }), as shown in the

following example:

if online then
{
 reply userid
 wait for "?"
 reply password
}

Line Continuation

Characters

You can continue a statement on the next line by placing line

continuation characters (...) at the end of the previous line. You

can use the line continuation sequence anywhere in a macro

except inside quotation marks. The following example shows how

to use the line continuation characters:

proc add_integers takes integer one_num, ...
integer second_num

The line continuation sequence after the word one_num indicates

that there is more information to follow.
32 Statements

Chapter 2 Understanding the Basics of CASL
Comments

Use comments to document your macro. Comments are useful for

maintaining, modifying, or debugging the macro in the future.

You can add two types of comments to a macro:

� Block comments

� Line comments

Block Comments When you want to add a block of comments, enclose the comment

text with the symbol pair /* and */ as shown in the following

example:

/* This macro logs on to the host. First send the host
logon. Then send the user ID and password.*/

You can use block comments anywhere in a macro except in the

middle of an identifier (such as a function or variable name) or

inside a string constant. You can even nest comments in a block

comment; the macro processor sorts out the pairs correctly.

Be careful when using block comments, however. If you fail to

terminate the block comment correctly, the compiler will treat

every statement in the rest of the macro as part of the block

comment.

Line Comments Use line comments when your comment text is brief. Line

comments do not require a matching end-of-comment symbol.

There are two types of line comments:

� Double hyphens (--)

� Semicolon (;)

Note: Use double hyphens for your line comments because the

semicolon has special meaning for some of the CASL elements,

such as the print statement. The semicolon comment indicator

is supported only for backward compatibility.
Comments 33

Chapter 2 Understanding the Basics of CASL
Double Hyphens When you use the double-hyphen indicator, any characters that

follow the hyphens, through the end of the line, are considered

comment text. Since double hyphens are used only to designate a

comment, you can use them anywhere (except in the middle of

identifiers or string constants).

The following is an example of a double-hyphen comment:

-- Macro name: HELLO.XWS
-- Date: 12-18-2000

Semicolon Use the semicolon indicator only in a location where you would

normally place a CASL statement, as shown in the following

examples:

print "Hi," : ; This is a comment

reply userid
; Send your user ID to the host
34 Comments

Chapter 2 Understanding the Basics of CASL
Identifiers

Each variable, procedure, function, label, and other type of

element used in a macro must have a unique name, referred to as

an identifier.

An identifier can be any length up to 128 characters. The first

character must be alphabetic, or one of the following special

characters: $, %, or _. The remaining characters can be alphabetic

characters, special characters, or numbers; spaces cannot be used.

Identifier names are not case-sensitive.

Unlike in some other programming languages (for example,

BASIC), using the percent (%) or dollar ($) symbol in a variable

name does not force the variable to be a particular data type.

CASL determines the data type of a variable from the keyword

used in its explicit declaration or from the type of expression

assigned to it in an implicit declaration. Refer to Chapter 3,

“Variables, Arrays, Procedures, and Functions,” for more

information on variable declarations.

Note: Do not use the same identifier for different elements (for

example, do not identify a variable with the same name

assigned to a procedure). Duplicate identifiers are an error.
Identifiers 35

Chapter 2 Understanding the Basics of CASL
Data Types

CASL supports the following data types:

Data Type Description

Integer The integer data type represents positive and negative

numbers. Internally, integers are stored as 32-bit signed

integers, so values between -2,147,483,648 and

2,147,483,647 are possible.

Real The real data type represents positive and negative floating

point numbers. Internally, reals are stored as 4-byte IEEE

floating point numbers, consisting of a sign bit, an 8-bit excess

127-bit binary exponent, and a 23-bit mantissa. The range of

possible values is approximately 3.4E-38 to 3.4E+38.

String The string data type represents variable length strings. A null

string has zero length. The maximum length of any string is

32,767 characters.

A string variable has a particular length at any given time, but

the length can change when a new value is assigned to the

variable. The new length can be longer or shorter than the

original length of the string.

Boolean The Boolean data type represents true or false values.

Byte The byte data type consists of unsigned, non-fractional values

of 0 (zero) to 255. It is often preferable to use bytes, rather

than integers, in arrays because bytes require less memory

than integers.

Word The word data type consists of unsigned, non-fractional

values from 0 (zero) to 65,535. As with the byte data type, you

may find it preferable to set up your arrays using words, rather

than integers.

Char The char data type consists of a single-character string that

can be assigned as strings or bytes.

Array The array data type consists of multiple elements of a data

type. You can have an array of integers, reals, strings,

Booleans, bytes, words, or chars.

Note: For type-checking purposes, integer, byte, and word are

all considered integers.
36 Data Types

Chapter 2 Understanding the Basics of CASL
Constants

A CASL constant can be one of the following four types:

� Integer

� Real

� String

� Boolean

Integer Constants Integer constants have one of the following formats:

Decimal Integers Decimal integers use a base of 10, which means that 0 through 9

are valid digits. The following are examples of decimal integers:

1
-61

Hexadecimal

Integers

Integer constants that end with an h or H are hexadecimal

constants. These constants use a base of 16; therefore, the digits of

the constant can be 0 through 9 and also a through f (lowercase or

uppercase).

The first digit of a hexadecimal constant must always be numeric.

If the leading digit is not numeric, you must supply a leading zero.

The following are examples of hexadecimal constants:

0F0H
3f8h

[-] digit ... Decimal integers

[-] digit ... {h | H} Hexadecimal integers

[-] digit ... {o | O | q | Q} Octal integers

[-] digit ... {b | B} Binary integers

[-] digit ... {k | K} Kilo integers
Constants 37

Chapter 2 Understanding the Basics of CASL
Octal Integers Integer constants that end with the letter o, O, q, or Q are octal

constants. These constants use a base of 8, which means that 0

through 7 are valid digits. The following are examples:

17o
17Q

Binary Integers Integer constants that end with a b or B are binary constants.

Valid digits are 0 (zero) or 1 (one). Since the binary suffix b or B is

also a valid hexadecimal digit, the macro processor treats a b or B

in an integer constant as a binary suffix only if the b or B is not

followed by a legitimate hexadecimal digit or by the hexadecimal

character h or H.

The following is an example of a binary constant:

1001001B

Kilo Integers Integer constants that end with a k or K are kilo integers. Valid

digits for this type of integer constant are 0 (zero) through 9.

When the macro processor encounters a k or K following an

integer constant, it multiplies the constant by 1,024. For example,

32K becomes 32,768.

The following are examples of kilo integers:

64K
128k

Real Constants Real constants specify a numeric value that may have a fractional

component. For CASL to recognize a constant as a real constant,

rather than as an integer constant, a decimal point (.) or the

exponent indicator (e or E) must appear somewhere in it. A real

constant must start with a digit (0 through 9) or a decimal point,

optionally preceded by a minus sign.

Real constants have one of the following formats:

[-] [digit...] "." digit... [exponent]
[-] digit... exponent

The exponent has the following format:

{e | E} [+ | -] digit...
38 Constants

Chapter 2 Understanding the Basics of CASL
The following are examples of real constants:

0.2
-0.4e10
12.2e+10
20.3e-4

String Constants String constants consist of a string of characters enclosed in single

quotation marks (') or double quotation marks ("). You must use

the same type of beginning and ending quotation marks. A null

string is represented as '' if you use single quotation marks or "" if

you use double quotation marks.

The following is an example of a string constant:

'This is a string'

In this example, the macro processor recognizes that This is a

string is a string constant because it is enclosed in single

quotation marks.

Embedded Quotation

Marks

If you have a quotation embedded in a string constant, use the

other type of quotation marks to enclose the embedded quotation,

as shown in the following example:

'She said, "Hello."'

In this example, the quotation Hello is enclosed in double

quotation marks because it is embedded in a longer string, which

is enclosed in single quotation marks.

Unprintable

Characters

To include an unprintable control character in a string constant,

put a carat symbol before the control character (for example, ^G

for the control-G). To specify a numeric string, enclose the string

in angle brackets (for example, <007> for the ASCII value 7). The

following table lists the control characters and their corresponding

ASCII values.
Constants 39

Chapter 2 Understanding the Basics of CASL
ASCII Control Codes The following table lists ASCII control codes and corresponding

control values.

ASCII Control+Character Name Description

0 ^@ NUL Null

1 ^A SOH Start of header

2 ^B STX Start of text

3 ^C ETX End of text

4 ^D EOT End of transmission

5 ^E ENQ Enquiry

6 ^F ACK Positive acknowledgment

7 ^G BEL Bell

8 ^H BS Backspace

9 ^I HT Horizontal tab

10 ^J LF Line feed

11 ^K VT Vertical tab

12 ^L FF Form feed

13 ^M CR Carriage return

14 ^N SO Shift out

15 ^O SI Shift in

16 ^P DLE Data link escape

17 ^Q DC1 Device control 1

18 ^R DC2 Device control 2

19 ^S DC3 Device control 3

20 ^T DC4 Device control 4

21 ^U NAK Negative acknowledgment

22 ^V SYN Synchronous idle

23 ^W ETB End of transmission block

24 ^X CAN Cancel

25 ^Y EM End of medium

26 ^Z SUB Substitute
40 Constants

Chapter 2 Understanding the Basics of CASL
To send a control code, use the Control+Character value or the

name listed in the preceding table. If you use the name, be sure to

enclose it in angle brackets. For example, you can use ^[or <ESC>

to represent the ASCII code for Escape. The macro processor

interprets this as the Escape code 1B hexadecimal.

To send the code as a string, precede it with a grave accent (`).

Special Characters Some characters have special meanings to Accessory Manager’s

CASL processor. If you want a special character to be recognized

as part of a string constant, precede the character with a grave

accent.

This is illustrated in the following examples:

� reply "|"

� reply "‘|"

In the first example, the macro processor interprets the "|" as a

carriage return. In the second example, the macro processor

interprets "|" as the vertical bar character.

27 ^[ESC Escape

28 ^\ FS File separator

29 ^] GS Group separator

30 ^^ RS Record separator

31 ^_ US Unit separator

ASCII Control+Character Name Description
Constants 41

Chapter 2 Understanding the Basics of CASL
The special characters are as follows:

If you want a grave accent to be recognized as part of the string,

precede it with another grave accent. The first one protects the

second.

Using the grave accent with these special characters is essential

when using the wait statement to wait for a string that contains

these characters. Refer to “wait (statement)” on page 344.

When working with a block mode terminal emulator, such as T 27

or UTS, you often need to use the grave accent in a press or reply

statement that includes control characters. Refer to “press

(statement)” on page 281 and “reply (statement)” on page 297.

Keystroke Names If you need to specify a key on the PC keyboard or a terminal

emulation keystroke in a string constant, enter it as follows:

"‘<Transmit>"

Character Special Meaning to the CASL Processor

" Double quotation mark. Delimiter around a string

constant.

' Single quotation mark. Delimiter around a string

constant.

\ Backslash. Precedes an ASCII value.

| Vertical bar. A carriage return.

` Grave accent. Marks special characters in a string.

^ Caret. Precedes another character to denote an ASCII

control character, as in ^A for start of header control

character.

< Less-than symbol. Used to mark the beginning of a

keystroke name .
42 Constants

Chapter 2 Understanding the Basics of CASL
String Constants

That Continue on a

New Line

When you have a string constant that is too long to fit on one line,

break the string into segments, enclosing each segment with

quotation marks, and use the string concatenation symbol (+) to

join the segments. Do not use the line continuation sequence (...)

or a carriage return inside the quotation marks. The following

example shows how to continue a string constant on a new line:

message "You are running a new system " + ...
"software version"

Boolean

Constants

A Boolean constant is one of the following:

false
true
Constants 43

Chapter 2 Understanding the Basics of CASL
Expressions

CASL expressions include arithmetic, string, relational, and

Boolean expressions. There is a specific order of evaluation

applied to these expressions based on precedence and the use of

parentheses. A type conversion can be performed for some

expressions. When a type conversion is performed, the original

type of the expression is converted to a different type. Type

conversion is explained later in this chapter.

Operators perform mathematical, logical, and string operations on

expressions, or arguments. Most of the CASL operators have two

arguments in the following format:

argument1 operator argument2

argument1 and argument2 must be expressions of the valid type

for the operator involved. In general, you can use any expression

containing a syntactically correct mixture of arguments and

operators in a macro wherever the result is allowed. For example,

the following statements are functionally equivalent:

wait 9 seconds

wait 4 + 5 seconds

wait 3 * 3 seconds

wait 18 / 2 seconds
44 Expressions

Chapter 2 Understanding the Basics of CASL
Order of

Evaluation

Expressions are normally evaluated based on the precedence of

the operators; higher precedence operators are applied before

lower precedence operators. You can control the order of

evaluation of any expression by using parentheses. Sub-

expressions inside parentheses are evaluated before the main

expression.

The general precedence of operators is as follows:

� Highest—Arithmetic and string operators

� Next highest—Relational operators

� Lowest—Boolean operators

Arithmetic and string operators share the same precedence level

because they cannot be mixed. Arithmetic and string expressions

are completely evaluated before participating in relational

expressions. Relational expressions are completely evaluated

before participating in Boolean expressions.

Within a particular type of expression, the precedence rules for

that type are followed.
Expressions 45

Chapter 2 Understanding the Basics of CASL
Arithmetic Expressions

You build arithmetic expressions using numeric arguments and

arithmetic operators. Unary operators are evaluated from right to

left, and binary operators of the same precedence are evaluated

from left to right.

The standard arithmetic operators you can use are listed in groups

of decreasing precedence. Each operator has a symbolic

representation and a name.

The operators with the highest precedence are as follows:

The operators with the second highest precedence are as follows:

The operators with the third highest precedence are as follows:

~ BitNot

- Negate

rol Rol

ror Ror

shl Shl

shr Shr

& BitAnd

^ BitXor

/ Division

\ IntDivision

mod Modulo

* Multiplication
46 Arithmetic Expressions

Chapter 2 Understanding the Basics of CASL
The operators with the lowest precedence are as follows:

These operators, which are listed in alphabetical order, are

explained in the paragraphs that follow.

Addition produces the numeric sum of its arguments. The

following is an example:

2 + 2

BitAnd, BitOr, BitXor, and BitNot are bitwise operators. They are

common operators in the assembler language. In the following

diagrams, which show how these operators work, x and y are bit

arguments and z is the result of the bitwise operation.

+ Addition

| BitOr

- Subtraction

BitAnd BitOr

x y z x y z

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

BitXor BitNot

x y z x z

0 0 0 0 1

0 1 1 1 0

1 0 1

1 1 0
Arithmetic Expressions 47

Chapter 2 Understanding the Basics of CASL
The following examples use BitAnd, BitOr, BitXor, and BitNot, in

that order:

somevar = bitvar1 & bitvar2
somevar = somevar | bitvar3
somevar = somevar ^ bitvar3
somevar = ~ bitvar1

Division and IntDivision cause the mathematical division of the

first argument by the second argument. For Division, the result

is a real (floating point) value if either of the two quantities is a

real; for IntDivision, only integers are allowed, and the result is

an integer, possibly truncated. The following are examples:

x = 3.0 / 2.0 The result is 1.5

an_integer = 3 \ 2 The result is 1

Modulo returns the remainder after dividing its first argument by

its second argument, as shown in the following example:

10 mod 4 The result is 2

Multiplication is an algebraic operator that returns the product

of two arguments. The following is an example:

2 * 2

Negate is also called unary minus in some programming

languages. It multiplies a numeric value by minus one. The

Negate operator is used in the following example:

neg_num = - pos_num

Rol, Ror, Shl, and Shr are bitwise operators that either rotate or

shift the bits in an individual 8-bit, 16-bit, or 32-bit argument.

When you use these operators, the first argument has its value

moved the number of positions specified in the second argument.

In rotation, the bits that are moved off one end of the first

argument are moved back onto the other end of the argument. In

shifting, the bits that are moved off the end of the argument are

discarded and replaced with zeros on the other end of the

argument.

The Rol and Shl operators move bits to the left (toward the most

significant bit) while the Ror and Shr operators move bits to the

right (toward the least significant bit). The following are examples

of these operators:
48 Arithmetic Expressions

Chapter 2 Understanding the Basics of CASL
print 1 ror 8
print 1 shr 8
print 1 rol 8
print 1 shl 8

For the first example, '16,777,216' is printed. For the second

example, '0' (zero) is printed. For the third and fourth examples,

'256' is printed.

Subtraction reduces the first argument by the value in the second

argument. Both arguments must be numeric. The following is an

example:

4 - 2
Arithmetic Expressions 49

Chapter 2 Understanding the Basics of CASL
String Expressions

There is only one string operator-the string concatenation

operator. However, CASL provides a comprehensive set of

statements and functions that you can use to perform other string

operations.

String

Concatenation

Operation

String concatenation joins two strings. The string concatenation

operator is a plus sign (+).

When you use the string concatenation operator, two strings

connected by a plus sign (+) are joined together to make one long

string. This is shown in the following example:

"123" + "456" is the string "123456"

For a complete list and description of the statements and

functions that perform string operations, refer to Chapter 5,

“Functional Purpose of CASL Elements,” and Chapter 6, “CASL

Language.”
50 String Expressions

Chapter 2 Understanding the Basics of CASL
Relational Expressions

Relational expressions result in Boolean values. The relational

operators have no precedence.

You can use the following relational operators to compare

numbers, strings, or Booleans:

Equality compares two expressions (either numeric or string) and

returns true if the two items compared are exactly the same.

Trailing spaces are significant in string comparisons. The

following are examples of the Equality operation:

if a_variable = 2 then statement

GreaterOrEqual, GreaterThan, LessOrEqual, LessThan, and

Inequality are also comparison operators. They apply to numeric

quantities or strings. While the comparison of numeric quantities

is straightforward, the comparison of strings is more complex.

In string comparisons, single characters are compared on the basis

of their ASCII collating sequence; therefore, "Z" is less than "a."

For longer strings, characters are compared position by position

until a character is found that is different; then the characters

that are different are compared on the basis of their ASCII

collating sequence.

Operator Description

= Equal

>= GreaterOrEqual

> GreaterThan

<> Inequality

<= LessOrEqual

< LessThan

Note: The equal sign is also used for variable assignment, as

shown in the following example where the variable

a_variable is assigned a value of 2:

a_variable = 2
Relational Expressions 51

Chapter 2 Understanding the Basics of CASL
The following examples show the LessThan, LessOrEqual,

GreaterThan, and GreaterOrEqual operators:

if some_var < 2 then statement

if string1 <= string2 then statement

while length(a_string) > 12

statement until rec_pointer => max_records
52 Relational Expressions

Chapter 2 Understanding the Basics of CASL
Boolean Expressions

The Boolean operators you can use are listed in the order of

decreasing precedence.

The operator with the highest precedence is not. The operator

with the next highest precedence is and. The operator with the

lowest precedence is or.

The arguments to Boolean operators can be Boolean variables,

relational expressions, or other Boolean expressions.

And, Or, and Not produce a true or false result from their

arguments, that is, they see their arguments only as true or false,

not as quantities. The And operator returns true only if both

arguments are true. The Or operator returns true if either or both

of its arguments are true. The Not operator returns the opposite of

its argument.

The following examples contain these operators:

if null(a_string) and x = 1 then statement
if counter > maximum or inkey then statement
if not eof(fl) and inkey <> 27 then statement
flip = not flip

If the value of the left argument of a logical operator is sufficient

to determine the outcome of the expression, the right argument is

not evaluated at all. This is the case when the left argument of the

And operator is false, or when the left argument of the Or operator

is true.

For instance, in the following example, the array reference

data[n] will never attempt to index beyond the end of the array.

If n were greater than 10, the expression n <= 10 would be false,

and the right argument would never be evaluated.

integer data[10]
if n <= 10 and data[n] >= 0 then statement
Boolean Expressions 53

Chapter 2 Understanding the Basics of CASL
Type Conversion

You may find it is necessary to convert values from one type to

another. CASL provides the means to perform a variety of type

conversions. This section explains how to convert an integer to a

string, a string to an integer, an integer to a hexadecimal string,

and an ASCII value to its corresponding character string.

Converting an

Integer to a String

To convert an integer to a string, use the str function. This

function does not add leading or trailing spaces.

The following example illustrates how to use the str function:

reply str(share_to_buy)

In this example, str converts share_to_buy to a string, which is

sent to the host with the reply statement.

Converting a

String to an

Integer

To convert a string to an integer, use the intval function. This

function ignores leading spaces and evaluates the string until a

non-numeric character is found.

You can convert a string to a decimal or hexadecimal integer. If

you need a hexadecimal integer, add an H to the end of the string.

If your hexadecimal string does not begin with a numeric

character, place a 0 at the beginning of the string. If you need a

kilo integer, add a K to the end of the string.

The following example illustrates how to use the intval function:

num = intval(user_input_string)

In this example, intval converts user_input_string to an integer

and returns the result in num.

Converting an

Integer to a

Hexadecimal

String

To convert an integer to a hexadecimal string, use the hex

function. If the integer is below 65,536, the string is four

characters long; otherwise, it is eight characters long.

The following example shows how to use this function:

print hex(32767)

In this example, the hex function converts the integer 32,767 to a

hexadecimal string and displays the result on the screen.
54 Type Conversion

Chapter 2 Understanding the Basics of CASL
Converting an

ASCII Value to a

Character String

To convert an ASCII value to its corresponding one-byte character

string, use the chr function. The following is an example of how to

use this function:

cr = chr(13)

In this example, chr converts the ASCII value 13 to its

corresponding carriage return character and returns the result in

cr.

For more information on these and other CASL functions that

perform type conversions, refer to Chapter 5, “Functional Purpose

of CASL Elements,” and Chapter 6, “CASL Language.”
Type Conversion 55

Chapter 2 Understanding the Basics of CASL
Compiler Directives

Compiler directives provide instructions for the macro compiler.

CASL compiler directives let you do the following:

� Suppress label information

� Suppress line number information

� Trap an error

� Include an external file

� Define a macro description

Suppressing Label

Information

By default, information about labels is included in the compiled

version of your macro. To suppress the label information, add the

genlabels off compiler directive at the beginning of your source

macro. The default for this directive is genlabels on.

Suppressing Line

Number

Information

Information about line numbers is also included as part of a

compiled macro. To suppress this information, add the genlines

off compiler directive at the beginning of your macro. The default

for this directive is genlines on.

Trapping an Error Use the trap compiler directive to enable and disable CASL’s

error trapping feature. Error trapping is disabled (trap off) by

default. To enable error trapping, set trap on just prior to a

statement that might generate an error. For additional

information about trapping and handling errors, refer to

Chapter 4, “Interacting with the Host, Users, and Other Macros.”

Note: If you use the genlabels off directive, you cannot use

the inscript function or the goto @ expression statement in

your macro.

Note: The trap compiler directive does not affect whether

errors occur. It simply provides a way to effectively handle the

errors if they do occur.
56 Compiler Directives

Chapter 2 Understanding the Basics of CASL
Including an

External File

Use the include compiler directive when you want to include

another file in the macro being compiled. The file is included in

the macro following the include directive, as if the included file

were part of the original file.

The include directive includes the file only once, no matter how

many times you use the directive. The reason for this is that

included files typically contain declarations, and including them

more than once causes duplicate declaration errors.

Defining a Macro

Description

Use the scriptdesc compiler directive to define descriptive text

for a macro.

For more detailed information about these compiler directives,

refer to Chapter 6, “CASL Language.”
Compiler Directives 57

Chapter 2 Understanding the Basics of CASL
Reserved Keywords

CASL reserves certain words called keywords. You may not use

any of the keywords as identifier names. The reserved words are

not case-sensitive.

Keywords include statements (such as watch), words that define

time (such as seconds and ticks), and words that bind statements

(such as for and next).

The following are the CASL keywords.

abs accept across

activate activatesession active

alarm alert align

alluc and answer

append arg arrow

as asc assume

at attr aux

backups binary bitstrap

bitstrip black blue

bol bool Boolean

border bow box

bright brown browse

builtin busycursor bye

byte call cancel

capacity capture case

cd chain char

char chdir checkbox

chmod choice choices

chr cksum class

clear close cls

cmode color compile

connected connectreliable copy
58 Reserved Keywords

Chapter 2 Understanding the Basics of CASL
count crc ctext

curday curdir curdrive

curhour curminute curmonth

cursecond curyear cyan

date default definput

defoutput defpushbutton dehex

delay delete deletesubstring

description destore detext

device devicevar dialmodifier

dialogbox dir direct

diskspace display do

down draw drive

drop echo edit

editor edittext else

end endcase enddialog

endfunc endproc endwatch

enhex enstore entext

environ eof eoj

eol eop eow

errclass errno error

exec exists exit

extern external fail

false field fileattr

filedate filefind filesize

filetime fill filter

filtervar fkey flashing

flood fncheck fnstrip

focus footer for

form forward freefile

freemem freetrack from
Reserved Keywords 59

Chapter 2 Understanding the Basics of CASL
func function genlabels

genlines get getnextline

global go gosub

goto gray green

group groupbox halt

header height help

hex hidden hide

hideallquickpads hidequickpad hms

hollow hour hours

if include index

inject inkey input

inscript insert instr

integer intval inverse

is isnt istrackhit

jump keep key

keys label left

leftjustify len length

library lift line

listbox load loadquickpad

loc locked lowcase

lprint ltext magenta

match max maximize

maxlength md message

mid millisecond min

minimize minus minute

minutes mkdir mkint

mkstr mod modem

move name netid

new next nextchar

nextline noask noblanks
60 Reserved Keywords

Chapter 2 Understanding the Basics of CASL
nobye nocase none

nopause normal not

null number octal

of off offset

ok on online

only ontime open

optional or output

over pack pad

page paint pan

password pause perform

picture plus pop

preserve press print

printer proc procedure

prompt protocol protocolvar

public pure pushbutton

put quiet quit

quote radiobutton random

rd read real

receive red redialcount

redialwait release remove

rename repeat replace

reply request reset

restore resume return

returns reverse right

rmdir rol ror

routine rtext run

save script scriptdesc

scroll secno second

seconds seek send

sendbreak session sessionvar
Reserved Keywords 61

Chapter 2 Understanding the Basics of CASL
sessname sessno setup

setvar shl show

showquickpad shr shut

size slice some

sort space start

startup statevar static

status step str

string strip stripclass

stripwild stroke style

subst subtitle swap

systemvar systime tabstop

tabwidth takes terminal

terminalvar terminate then

tick ticks time

timeout times title

to toggle trace

track trackhit trap

true type unloadallquickpads

unloadquickpad until up

upcase userid val

version view viewport

wait watch weekday

wend while white

width winchar window

winsizex winsizey winstring

winversion word write

xpos xsep yellow

yourself ypos ysep

zone zoom
62 Reserved Keywords

Variables, Arrays,
Procedures, and Functions

In This Chapter In a CASL macro, you use declarations to define your variables,

arrays, procedures, and functions. Declarations make your macro

more readable and maintainable; in some instances, they are

mandatory.

This chapter contains information about declaring elements in the

CASL language. It includes the following headings:

Variables . 64

Explicit Variable Declarations . 65

Implicit Variable Declarations . 67

Arrays . 68

Procedures . 70

Functions . 73

Scope Rules . 75

Calling DLL Functions . 77

3

63

Chapter 3 Variables, Arrays, Procedures, and Functions
Variables

A variable is a language element whose value can change during

the course of running a macro. You use variables as storage areas

where you can keep the results of a computation, data arriving

from the host, and other data such as a user name or password.

With CASL, you can use two types of variables:

� Predefined variables (which you can reference in your macro)

� User-defined variables (which you define in your macro)

Predefined

Variables

There are two types of predefined variables:

� System variables

� Module variables

System variables contain user-profile (or configuration)

information or session information. The variables that contain

session information are stored in a session profile. Each session

entry contains session parameters such as the terminal emulation

type, user ID, and password.

Module variables contain tool-specific information and are stored

in a session profile. For example, if a session uses the INFOConnect

connection tool, the entry contains settings for INFOConnect

paths and so on. To reference these variables, use the assume

statement as follows:

assume device "ICSTOOL"

User-Defined

Variables

User-defined variables are those you define in your macro. These

variables can be local to one macro or shared across multiple

macros.
64 Variables

Chapter 3 Variables, Arrays, Procedures, and Functions
Explicit Variable Declarations

Explicitly declare your variables to make your macro more

readable and maintainable.

Explicit declarations consist of a data-type identifier and a

variable name. You can use any variable name you like as long as

it is not the same as that of another language element in your

macro. It is often helpful to assign a name that reflects the

variable's purpose; for example, the name file_name is more

descriptive than the name xyz.

Your variable names can contain any combination of

alphanumeric characters as well as some symbols. The first

character must be alphabetic, or one of these special characters:

$, %, or _. Variable names can consist of up to 32,767 characters.

The following illustrates the general form of explicit declaration:

data_type name [, name]...

Single-Variable

Declarations

You can declare variables one to a line. The following is an

example of single declaration:

integer counter

In this example, counter is declared as an integer variable.

Multiple-Variable

Declarations

You can also declare more than one variable on a logical line, but

the variables must be of the same type. Multiple declaration is

shown in the following example:

integer row, col

In this example, both row and col are declared as integer

variables.
Explicit Variable Declarations 65

Chapter 3 Variables, Arrays, Procedures, and Functions
The following are examples of explicit declarations for other data

types:

boolean failed
real percentage
string file_name, extension

Initializers Variables you declare explicitly are automatically initialized by

the compiler: strings are initialized to nulls; reals and integers

are initialized to zero. To initialize these variables to a different

value, use the assignment operator (=).

The following are examples of variable initialization:

a_var = 10

amount = "Quantity"

In the first example, the integer variable a_var is initialized to 10.

In the second example, the string variable amount is initialized to

Quantity.

Public and

External Variables

If you want to share a variable among multiple macros, declare

the variable as public in the main macro (parent macro) and as

external in the other macros (child macros). The data type of the

variables must match. If the variable is an array, the declared

array size must match. As with any other explicit declaration, you

can declare multiple public or external variables of the same

type on one logical line, separating the variable names with

commas.

The following are examples of public and external variables:

public integer user_name (parent macro declaration)

external integer user_name (child macro declaration)

For additional information about public and external variables,

refer to Chapter 4, “Interacting with the Host, Users, and Other

Macros.”
66 Explicit Variable Declarations

Chapter 3 Variables, Arrays, Procedures, and Functions
Implicit Variable Declarations

You can implicitly declare a variable if the first time it is used it is

possible to infer its type from the context. However, use implicit

declarations sparingly, for your macro is less readable and

maintainable when variables are not declared explicitly.

The most common case of implicit declaration is where the

variable is assigned a value. In this case, the type of the variable is

implicitly declared to match the type of the expression assigned to

it. In the following example, user_name is implicitly declared as a

string variable because the string "John" is assigned to it. "John"

is enclosed in quotation marks; you must use quotation marks to

enclose a data string assigned to a string variable.

user_name = "John"

The same concept applies for all other cases where the variable

type can be inferred. For instance, the following example

implicitly declares count to be an integer variable because the

initial value is an integer.

for count = 1 to 10
...
...

next
Implicit Variable Declarations 67

Chapter 3 Variables, Arrays, Procedures, and Functions
Arrays

Arrays require an explicit declaration; it is not possible to

implicitly declare an array.

An array declaration is similar to other declarations, but you must

also declare the dimensions. Enclose the dimensions of the array

in square brackets.

Single-

Dimensional

Arrays

Some arrays have only one dimension. For example, you declare a

single-dimension array of 30 integers as follows:

integer epsilon[29]

In this example, the size of the array epsilon is 29, but there are

actually 30 elements in the array because the first element is

element 0 (zero).

Multidimensional

Arrays

Arrays can also be multidimensional. You declare multiple

dimensions by providing multiple dimension sizes, separated by

commas. For example, you declare a 10-by-20 string matrix in the

following way:

string matrix[9, 19]

Note: The elements in CASL arrays are numbered starting

from zero; therefore, there are actually n + 1 elements in an

array of size n.
68 Arrays

Chapter 3 Variables, Arrays, Procedures, and Functions
Arrays with

Alternative

Bounds

You can use alternative bounds declarations when you need to use

bounds other than the default. The following examples show how

to declare arrays with alternative bounds:

integer vector[0:99]
integer profile[3:6]
integer samples[-10:10]

The first example, an array of 100 elements, is equivalent to

integer vector[99] because 0 is the default lower bound. In the

second example, the array profile, an array of 4 elements, is

indexed from 3 to 6. The array samples, an array of 21 elements, is

indexed from -10 to 10 in the third example.

When you declare multiple dimensions, you can use alternative

bounds declarations for each dimension individually. For example,

declare a matrix whose first dimension is indexed from 10 to 30

and whose second dimension contains 100 integers in the

following way:

integer data[10:30, 99]
Arrays 69

Chapter 3 Variables, Arrays, Procedures, and Functions
Procedures

A procedures definition is a declaration because it only defines

the statements that make up the procedure. The statements

themselves are not executed until the procedure is called.

You must declare a procedure before you use it. A procedure

cannot be inside a function or another procedure.

Procedures are useful for replacing groups of statements that are

frequently used. For example, a macro that repeatedly performs a

complicated sequence of steps can use one common procedure to

perform the task. The statement(s) that call the procedure simply

pass the appropriate information to the procedure, and it performs

the task. If you need to return a result, consider using a function

instead of a procedure.

The following example illustrates the syntax of a procedure

definition:

proc name [takes arglist]
...
...

endproc

Procedure

Argument Lists

As shown in the preceding syntax illustration, a procedure can

have an argument list. The arglist is optional, and is used only

if the procedure takes arguments. If arguments are included, you

must use the same number and type of arguments in both the

procedure and the statement that calls the procedure. The

arguments are assumed to be strings unless otherwise specified.

The syntax of arglist is as follows:

[type] <argument [, [type] argument]...
70 Procedures

Chapter 3 Variables, Arrays, Procedures, and Functions
The following is an example of a procedure definition:

/*
This procedure sends the user ID and password to the
host.
*/
proc logon takes username, passwrd

reply username
wait 2 seconds
reply passwrd

endproc

In this example, the statements enclosed in the /* and */ symbols

are comments describing the procedure’s purpose. The procedure,

which is named logon, expects two string arguments—username

and passwrd—and it sends the arguments to the host. When the

procedure ends (endproc), control is passed to the statement

immediately following the one that called the procedure.

You call this procedure as follows:

logon userid, password

The arguments userid and password are passed to the procedure

logon.

Forward

Declarations for

Procedures

You can use forward declarations to declare procedures whose

definitions occur later in the macro. The syntax of a forward

procedure declaration is the same as the first line of a procedure

definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your

procedures near the end of your macro. A procedure must be

declared before you can call it; the forward declaration provides

the means to declare a procedure and later define what the

procedure is to perform.

The following syntax is used for a forward declaration:

proc name [takes arglist] forward

When the procedure definition is encountered, each of its

arguments (if provided) must match the data type of the

corresponding argument in the forward declaration.
Procedures 71

Chapter 3 Variables, Arrays, Procedures, and Functions
The following example shows how to set up the logon procedure

using a forward declaration:

proc logon takes ... -- The forward declaration
username, passwrd forward

logon userid, password -- The procedure call

proc logon takes username, passwrd -- The procedure
reply username
wait 2 seconds
reply passwrd

endproc

You can also use the perform statement to call a procedure before

it is declared. This is shown in the following example:

perform logon userid, password

External

Procedures

Procedures can be an integral part of a macro, or they can be in

separate files. The latter allows you to keep a library of procedures

you often use; you don’t have to duplicate the procedure for each

macro you create.

To include an external procedure in a macro, use the include

compiler directive. For example, suppose the logon procedure,

which was described previously, is an external procedure that is

stored in a file called MYPROCS.XWS. To include it in your

macro, add the following line at the beginning of the macro:

include "myprocs"

For more information about the proc...endproc procedure

construct, the perform statement, and the include compiler

directive, refer to Chapter 6, “CASL Language.”
72 Procedures

Chapter 3 Variables, Arrays, Procedures, and Functions
Functions

A function is similar to a procedure, but it returns a value. You

must declare the type of the return value within the function

definition and specify a return value before returning.

You must declare a function before you can use it. A function

cannot be inside a procedure or another function.

The syntax of a function definition is as follows:

func name [(arglist)] returns type
...
...

endfunc

Function

Argument Lists

As for a procedure, the arglist is optional. The syntax of the

arglist is the same as for procedure arguments.

The following example illustrates a function with an arglist:

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and y are the function arguments.

The values of x and y are passed to the function when it is called.

The function returns one or the other value depending on the

outcome of the if...then...else comparison. If x is less than y, x

is the return value; if x is not less than y, the value of y is

returned.

You call this function as follows:

integer return_value

return_value = calc(3, 8)

The integer values of 3 and 8 are passed to the function calc

where they are used as the values x and y in the function. The

function returns the result of its calculations in the variable

return_value.
Functions 73

Chapter 3 Variables, Arrays, Procedures, and Functions
Forward

Declarations for

Functions

You can use forward declarations to declare functions whose

definition occurs later in the macro. The syntax of a forward

function declaration is the same as the first line of a function

definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your

functions near the end of your macro. A function must be declared

before you can call it. The forward declaration provides the means

to declare a function and later define what the function is to do.

The following syntax is used for a forward declaration:

func name [(arglist)] returns type ...
forward

When the function definition is encountered, each of its arguments

(if provided) must match the data type of the corresponding

argument in the forward declaration.

The following shows how to set up the calc function using a

forward declaration:

integer return_value -- The integer declaration

func calc(integer x, integer y) ... -- The forward
returns integer forward -- declaration

return_value = calc(3,8) -- The function call

func calc(integer x, integer y) ... -- The function
returns integer
if x < y then return x else return y

endfunc

External Functions As with procedures, functions can be in separate files. To include

an external function in a macro, use the include compiler

directive. For example, if the calc function is external to the

macro and is stored in a file called MYPROCS.XWS, add the

following line at the beginning of the macro to include it in the

macro:

include "myprocs"

For more information about the func...endfunc function and the

include compiler directive, refer to Chapter 6, “CASL Language.”
74 Functions

Chapter 3 Variables, Arrays, Procedures, and Functions
Scope Rules

You can reference a variable from the line on which it is declared

until the end of its scope. This is true for both implicit and explicit

declarations.

Local Variables The variables you declare inside procedures and functions are

local variables. The scope of local variables terminates when the

function or procedure that defines them ends. You can refer to and

modify these variables only while the procedure or function is

executing. Their values are lost when the procedure or function

returns control.

Global Variables The variables you declare outside procedures and functions are

global variables. The scope of global variables terminates when

the macro ends. You can refer to and modify these variables

within and outside procedures and functions. They retain their

values throughout execution of the macro.

Default Variable

Initialization

Values

The local and global variables you declare are initialized to default

values when they are created. The default value for each data type

is as follows:

Local variables are initialized each time the procedure or function

begins execution. Global variables are initialized once when the

macro begins execution.

Procedure and function arguments are like local variables, but

they are not initialized to default values like other local variables.

They receive their values from the actual arguments.

Data Type Default Value

Integer 0

Real 0.0

String "" (the null string)

Boolean False

Array Each element is initialized to the array-type default.
Scope Rules 75

Chapter 3 Variables, Arrays, Procedures, and Functions
Labels The scope of labels you declare inside procedures and functions

terminates when the function or procedure that defines them

ends. You can refer to these labels only while the procedure or

function is executing, and only from within the procedure or

function.

The scope of labels you declare outside procedures and functions

terminates when the macro ends. Procedures and functions cannot

reference labels that are not defined within the procedure or

function.
76 Scope Rules

Chapter 3 Variables, Arrays, Procedures, and Functions
Calling DLL Functions

In a CASL macro, you can call functions located in external

libraries. These libraries are referred to as Dynamic Link

Libraries (DLLs) in the Windows environment. This provides

access to Windows’ kernel, user, or GDI functions, third-party

libraries, and in-house libraries. The advantage of using external

libraries is to provide capabilities not found in CASL and to

improve the efficiency of critical routines.

An external library is a collection of functions that exist in a

separate file. That file is loaded by the operating system only

when a program (or macro in our case) calls one of the functions

contained in it. This reduces the size of programs, since many

programs can call the same library, and allows new functionality

to be added to CASL.

Declaring DLL

Functions

The functions in your CASL macro that call DLL functions are

declared in a manner similar to CASL forward declarations. Once

declared, the functions can be used exactly like other functions in

your macro. Use the following syntax to declare the functions:

Function with a return value:

func name [(arglist)] returns type ...
library filename [name (string)]

Procedure without a return value:

proc name [takes arglist] library filename ...
[name (string)]

The name can be the real name of the function or a name

preferred by the user. In the latter case, the optional name

parameter at the end of the declaration must provide the real

function name.

The following examples illustrate library declarations:

func IsCharAlpha(char x) returns boolean ...
library "user.exe"

Note: The following information is intended for experienced

Windows programmers.
Calling DLL Functions 77

Chapter 3 Variables, Arrays, Procedures, and Functions
USER.EXE is one of the DLLs that comprise the Windows core.

func myFunc(integer x, real y) returns integer ...
library "mylib.dll" name "FredsFunc"

func countLetters(string x) returns integer ...
library "stringlib.dll"

proc do_something takes integer x, byte y,
string z ...

library "something.dll"

Parameter and

Return Values

The following CASL data types can be passed as parameters to

DLL functions: integer, real, string, boolean, byte, and word.

The list is the same for return values with the exception of real,

which is not returned.

A DLL function is written in a language such as C/C++. You need

to match the CASL data type to the data type expected by the

function being called.

Note: Since the functions are only declared in the macro, the

parameter names used in the declarations (x, y, and z) are

place holders and can be any valid variable name. Make sure

you include the file name extension .DLL. Also, a path is

required if the DLL is not located in any directory that is

searched automatically by Windows.
78 Calling DLL Functions

Chapter 3 Variables, Arrays, Procedures, and Functions
Use the following table to select the data type you need.

CASL integers are 32-bit signed values, CASL words and bytes

are 16- and 8-bit unsigned values respectively. Keep this in mind

when assigning values to variables. Where a function takes or

returns an 8- or 16-bit value that is designated as true or false,

you can define it as Boolean and use the true or false keywords

built into CASL.

Sometimes functions use the pointer as a method of returning

data over and above the return value. Since the function has the

location of the string, it can write data to that location. For

example, a function that converts text to uppercase might simply

do the job “in place,” so that the string you passed as a parameter

is also the string that contains the uppercase text. In this case, a

string variable must be used so that you can reference the string

later.

C or C++ Data Type CASL’s Corresponding Type

long (32 bit data) integer

unsigned long integer

int (16 bit data) word

short word

unsigned int or short word

char (numeric value) \word

char (single letter) char

unsigned char byte

float not supported

double real

char * (pointer to char) string

Note: CASL does not pass the string itself to a function.

Instead the location (address) of the string is passed. In C, this

is referred to as a pointer. In CASL, you simply use a string

variable as a parameter or place the desired text in quotes.

CASL handles the job of passing the correct information.
Calling DLL Functions 79

Chapter 3 Variables, Arrays, Procedures, and Functions
You need to make sure that data returned in the string does not

exceed the length of the original string. For example, you may

have a function named path that takes the name of a file as a

parameter and returns, in the same string, the full path

specification for that file, as follows:

string file_str
file_str = "myfile.txt"
path (file_str)

In this case, you will get a truncated path name if it is longer than

the string. The function assumes it has enough space and will

write beyond the end of your original string. This can corrupt your

data or lock up your computer. The following macro shows the

correct approach, making the string long enough to accommodate

the longest string anticipated (in the case of DOS path names, 128

characters).

string file_str
file_str = "myfile.txt" -- Add extra blanks
path (file_str)
strip (file_str, " ", 1) -- Remove excess blanks

Non-Supported

Parameters and

Return Values

Functions written in languages such as C can accept a wide range

of parameters not supported by CASL DLL calls, such as arrays

and structures. If you want to access such functions (for example,

in third-party libraries), you must write intermediate libraries

that translate the data being passed or returned.

Writing Windows

DLLs

Before you write DLLs, you should have experience with a

language such as C and have access to a compiler that supports

Windows programming.
80 Calling DLL Functions

Chapter 3 Variables, Arrays, Procedures, and Functions
To access functions in a DLL, a DEF file must export each of the

callable functions in its EXPORTS section. If you are not already

familiar with writing DLLs, you should refer to the books

available that provide detailed explanations of how to program

Windows applications and DLLs.

As you write DLLs to interface to Windows, you might need access

to Accessory Manager parent and child (session) window handles.

To access these handles, declare the following at the top of the

macro:

/*Handle to Accessory Manager parent window */
systemvar integer _hWndFrame

/* Handle to script's child window */
sessionvar integer _hWndSession

After the declaration, _hWndSession and _hWndFrame are used in

the same manner as system and session variables.

Note: For string handling, remember that you are only

returning the address of the string. This means that the

address must remain valid after the function ends. Do not

return a local string (one on the stack). Declare any string to be

returned as static or allocate it from heap memory. However, if

any memory is allocated on the heap, whether for strings or for

any other data, it must be freed at some point before the macro

terminates. Therefore, you must free the memory from the

function that allocates it or provide another function to free it.
Calling DLL Functions 81

Interacting with the Host,
Users, and Other Macros

In This Chapter This chapter includes the following headings:

Interacting with the Host . 84

Communicating with a User . 87

Invoking Other Macros . 90

Exchanging Variables . 91

Trapping and Handling Errors . 92

4

83

Chapter 4 Interacting with the Host, Users, and Other Macros
Interacting with the Host

CASL provides a number of language elements you can use to

interact with a host. For example, the wait statement provides

basic data-handling functions, while the watch statement offers

more sophisticated methods for handling data.

Waiting for a

Character String

Use the wait statement when you need to wait for a specific,

unique string of text, as in the following example:

wait for "What is your first name?"

Note that the string "What is your first name?" is enclosed in

quotation marks because it is a string constant.

The wait statement does not require a complete sentence as

shown in the previous example. If just the word "name?" is unique

at the time the macro executes the wait statement, you can

shorten the statement as follows:

wait for "name?"

You can have your wait statement wait for one of several

conditions to occur. For example, if you want to send a carriage

return when your macro receives either "more" or "press enter"

from the host, write the statement as follows:

wait for "more", "press enter" : reply

The default wait time for the wait statement is forever. You can

specify a specific time period for the macro to wait, as shown in the

following example.

reply -- Send CR
wait 2 seconds for "login:" -- Wait
if timeout then{

alert "Host not responding", ok
end

}

In this example, the macro waits two seconds for the host to send

the login: prompt. If a timeout occurs before the prompt appears,

the user is alerted and the macro ends.
84 Interacting with the Host

Chapter 4 Interacting with the Host, Users, and Other Macros
By default, the wait statement is not case- or space-sensitive. If

your macro requires an exact match, you must use the statement’s

case or space modifiers (or both). There are several other

conditions for which a wait statement can wait, including waiting

to receive a specific count of characters and waiting for the

connection to be quiet. For a complete list of wait conditions, refer

to “wait (statement)” on page 344.

Watching for

Conditions to

Occur

Use the watch...endwatch construct when you need to wait for

any one of several conditions to occur and then take an action

based on that condition, as shown in the following example:

watch for
key 27, "$" : end
"more:" : wait 1 second : reply

endwatch

In this example, when the watch statement is encountered, the

macro pauses while waiting for one of the two conditions to take

place. The statement, or statements, to the right of the colon are

executed for whichever condition occurs first.

Note that watch...endwatch is not a looping construct. If you

want to repeat the watch...endwatch statements, enclose them in

a while...wend or a repeat...until construct. The following

example shows the while...wend construct:

while online
watch for

key 27, "$" : end
"more:" : wait 1 second : reply

endwatch
wend

This example is taken from a simple macro that automates

reading electronic mail on a host. The while...wend loop is

needed because the more: prompt will appear multiple times

during the reading process.

As specified by the first line of the watch construct in the previous

example, the macro ends if the user presses Esc (key 27). If more:

is found, the macro waits one second and then uses the reply

statement to send a carriage return to the host. If the dollar sign

($) appears, there is no more mail to read, and the macro ends.
Interacting with the Host 85

Chapter 4 Interacting with the Host, Users, and Other Macros
Like the wait statement, the watch statement can watch for

several different kinds of conditions. For a complete list of the

conditions, refer to “watch...endwatch (statements)” on page 348.

Setting and

Testing Time

Limits

Use the timeout system variable to determine if the condition for

which you are waiting or watching has occurred within an

expected time frame. To use the timeout system variable, you

must set a time-out value for the wait or watch condition. Then

you can test the timeout system variable; it returns true if the

condition was not satisfied or false if it was satisfied.

For example, sometimes a user has to press Enter a number of

times before the host recognizes the response. You can set up a

simple routine to handle this situation:

repeat
reply
wait 1 second for "Login:"

until not timeout
reply userid
end

This example shows how to use the repeat...until construct to

execute the same statements one or more times. When the

repeat...until condition is satisfied, macro execution continues

with the statement following the repeat...until construct.

In the example, the macro uses the reply statement without an

argument to send only a carriage return character to the host.

Then it waits one second for the string "Login:" to arrive. If the

string does not arrive within the one-second time frame (timeout

is true), the macro repeats the statements in the repeat...until

construct. If the string arrives within the time frame specified

(timeout is false), the macro sends the contents of the system

variable userid to the host and ends. The userid variable must be

defined in the session profile for the session running this macro.

Sending a Reply

to the Host

Many of the examples in this section use the reply statement to

respond to the host. The reply statement lets you send a string of

text to the host. If you use the statement without a text string

argument, only a carriage return is sent. You can concatenate

more than one string in a reply statement by using the plus

symbol (+) to join the strings, as shown in the following example:

reply userid + " " + password
86 Interacting with the Host

Chapter 4 Interacting with the Host, Users, and Other Macros
Communicating with a User

In addition to interacting with a host, your macros may also have

to communicate with a user. CASL has several language elements

specifically designed for interfacing with a user: print, message,

input, alert, and dialogbox...enddialog.

Displaying

Information

Use the print statement to display information in the session

window. You can display constants, variables, or a combination of

the two. You can also control such display characteristics as

attributes for bright or flashing characters and for color. Note that

attributes will work only if the terminal type, which controls the

interface between the macro and a terminal, understands what

the attributes mean.

The following are examples of simple print statements:

print "Greetings."

print time(cursecond)

print "The time is " ; time(cursecond)

print "This is all on the ";

print "same line."

The first example displays the phrase Greetings. The second and

third examples display the time. Note that the print statement in

the third example contains a semicolon. The semicolon causes the

text string and the time to be displayed with no space between

them.

The fourth example shows how to use the semicolon at the end of a

print statement to suppress a carriage return. In this example,

both print statements display text strings that appear on the

same line of the screen.

You create a more complex print statement when you display

words with an attribute, as shown in the following example:

print "This is a ";bright;"bright " ;...
normal;"idea!"
Communicating with a User 87

Chapter 4 Interacting with the Host, Users, and Other Macros
In this example, the bright option is used to display the word

bright using the bright attribute. When an attribute is set, it

remains in effect until another attribute is specified. In the

example, the normal option resets the attribute to normal.

A special character, ^G, causes the PC to beep when the print

statement is executed. The reason for this is that the print

statement can print ASCII control characters. This attribute is

shown in the following example:

print "Beep!^G"

The ^G in the example is the ASCII decimal 07 or Bell. For a list of

other ASCII control characters, refer to “ASCII Control Codes” on

page 40.

Requesting

Information

Use the input statement to obtain information from the user. The

input statement suspends the macro while waiting for the user to

enter data. When the user presses Enter, input knows that data

entry is complete. The data entered is stored in a specified

variable.

The following example shows how to use the input statement:

string user_name

print "Please enter your name: " ;
input user_name
print "Hello, "; user_name

In the previous example, user_name is declared as a string

variable. Since the input statement does not display a prompt, the

print statement requests the user to enter a name. After the user

enters a name and presses Enter, the entry is stored in the string

variable user_name. This variable is then used in the last print

statement to display the name that was entered.

The alert and dialogbox...enddialog statements let you create

dialog boxes for text input. The alert statement displays a simple

dialog box in which the user can enter text or respond by clicking a

button. The dialogbox...enddialog construct lets you create

more sophisticated dialog boxes, which can contain buttons, text,

edit boxes, radio buttons, check boxes, list boxes, and so on.

The following is an example of an alert statement that displays a

message:

alert "File not found", "Try again", cancel, ok
88 Communicating with a User

Chapter 4 Interacting with the Host, Users, and Other Macros
In this example, the message File not found appears in the

dialog box. The user can click either Try Again, Cancel, or OK to

exit the dialog box.

For additional information about the print, message, input,

alert, and dialogbox...enddialog statements, refer to Chapter ,

“CASL Language.”
Communicating with a User 89

Chapter 4 Interacting with the Host, Users, and Other Macros
Invoking Other Macros

With CASL, you can invoke, or start, another macro from your

macro. Depending on your programming requirements, your

macro can terminate and pass control (chain) to the other macro;

or your macro can use the do statement to call the other macro as

a child macro.

Chaining to

Another Macro

To pass control to another macro without returning control to your

macro, use the chain statement. For example, to pass control to a

macro called SCRIPT2, write the chain statement as follows:

chain "SCRIPT2"

Calling Another

Macro

To call another macro as a child macro, use the do statement.

When you use this statement, the child macro returns control to

the parent macro when the child macro has completed. The

following is an example of the do statement:

do "cvtsrc"

Passing

Arguments

To pass arguments to the invoked macro, add the arguments to

the chain or do statement after the name of the macro. In the

following chain statement, the argument CSERVE is passed to

SCRIPT2:

chain "SCRIPT2 CSERVE"

To retrieve the arguments in the invoked macro, use the arg

function. Use arg with no arguments (or an argument of 0) to

retrieve the arguments as one long string. Use arg(1) through

arg(n) to retrieve each individual argument.

Note: Any statements that follow the chain statement are not

executed.
90 Invoking Other Macros

Chapter 4 Interacting with the Host, Users, and Other Macros
Exchanging Variables

If you use the do statement to invoke another macro, the macros

can exchange variable information. To pass a variable between

macros, declare the variable as public in the invoking macro and

as external in the invoked macro.

In the following example, the invoking macro, SCRIPT1, declares

the string myname as public, invokes SCRIPT2, prints a message

when SCRIPT2 returns control, and ends.

public string myname
do "SCRIPT2"
print "My name is " + myname
end

In the next example, SCRIPT2, which was invoked by SCRIPT1,

declares the string variable myname as external, assigns a value to

myname, and returns control to SCRIPT1. Note that the value

SCRIPT2 assigns to myname is what SCRIPT1 prints when it

regains control (see the first example).

external string myname
myname = "Bert"
end

The message that SCRIPT1 displays on the screen is as follows:

My name is Bert

Note: You cannot exchange data with another macro if you use

the chain statement to invoke the macro. Also, if you are using

public and external variables, you must declare the variable

as public in the parent macro.
Exchanging Variables 91

Chapter 4 Interacting with the Host, Users, and Other Macros
Trapping and Handling Errors

Error trapping makes a macro capable of handling almost any

situation, and it is essential in macros that are interfacing with

other resources. With error trapping, you can control many

different situations. For example, you can set up recovery

procedures if a file transfer or file input/output operation fails.

Enabling Error

Trapping

Use the trap compiler directive to enable and disable error

trapping in your macro. The default setting for this directive is

trap off. If trap is off, a dialog box appears automatically and

the macro ends whenever a fatal error occurs. If trap is on, the

dialog box does not appear, and the macro continues running.

In general, it is best to turn trapping on just prior to a statement

that may generate an error and then turn it off after testing for

the error. Be sure to check the error-trapping function error, the

system variables errclass, and errno just after the statement

executes. Otherwise, you may lose the error information if a

subsequent statement resets the error function and variables.

Testing if an Error

Occurred

Use the error function to test if an error occurred. This function

returns true if an error occurs or false if no error occurs. When

you test the function, its value is reset to 0. To continue to trap

errors throughout the execution of the macro, you must test (reset)

the error function each time an error occurs.

Checking the Type

of Error

Use the errclass system variable to check the type of error that

occurred. This variable contains 0 if no error occurs. If an error

does occur, it contains an integer value that reflects the type of

error. This variable is not reset when you check its value; the

value remains unchanged until another error occurs. For

information on the errclass values you may encounter, refer to

“Classes of Error Message” on page 380.

Checking the Error

Number

Use the errno system variable to check the number of the error

that occurred. The error number is associated with the type of

error that is returned by the errclass system variable. For

example, the return code 13-08 represents the errclass value 13

and the errno value 08. This type of error is a file I/O read error.

For additional information, refer to Appendix A, “Error

Messages.”
92 Trapping and Handling Errors

Chapter 4 Interacting with the Host, Users, and Other Macros
If no error occurs, the errno variable contains 0. This variable is

not reset when you check its value; the value remains unchanged

until a different error occurs.

When setting up your macro to trap and handle errors, follow

these guidelines in the order shown:

� Set trap on right before a statement that could generate an

error condition (for example, a statement that sends files to the

host). Note that setting trap on suppresses error message

display.

� Set trap off immediately after the statement executes.

� Check the error function after setting trap off.

� If an error occurs (error is true), check the errclass and errno

system variables to determine the error type and number.

The following sample macro illustrates how to use CASL’s error

trapping capabilities. The script’s purpose is to send a file to the

host. If the file transfer is successful, the macro ends. If for any

reason the file transfer does not complete successfully, the macro

sounds an alarm and prints an error message.

/* Macro to send a file. */

string fname
fname = "*.exe"

trap on -- turn on error trapping
send fname -- send the file
trap off -- turn off error trapping
if error then
{

alarm
print "Send failed. Error: "; + ...

errclass; "-"; errno
}
end

This macro is very simple. Ideally, your error handling should be

more comprehensive. For example, if the macro is unattended,

error handling should either attempt to send the file again or hang

up and retry later, depending on the error type. If the macro is

attended, error handling might print a message that informs the

user of the error and instructs the user to correct the problem and

retry the file transfer.
Trapping and Handling Errors 93

Chapter 4 Interacting with the Host, Users, and Other Macros
It is not always necessary to determine the values in errclass

and errno; sometimes it is sufficient just to know that an error

occurred (by checking error). How you use error trapping and to

what extent depends on what your macro needs to accomplish.

Refer to Chapter 6, “CASL Language,” for more information on the

trap compiler directive, the error function, and the errclass and

errno system variables.
94 Trapping and Handling Errors

Functional Purpose of
CASLElements

In This Chapter This chapter groups CASL macro elements by function and

includes the following headings:

Overview . 96

Date and Time Operations . 97

Error Control . 98

File Input/Output Operations . 99

Host Interaction . 101

Macro Management . 102

Mathematical Operations . 103

Printer Control . 104

Program Flow Control . 105

Session Management . 107

String Operations . 109

Type Conversion Operations . 111

Window Control . 112

Miscellaneous Elements . 114

5

95

Chapter 5 Functional Purpose of CASL Elements
Overview

This chapter contains a quick reference to all of the CASL

elements. Detailed descriptions of the elements and examples

showing how to use them are covered in Chapter , “CASL

Language.”

In this chapter, CASL elements are grouped according to their

functional purpose, such as session management, program flow

control, file input/output operations, and so on. Some elements

might appear more than once if they have more than one purpose.

A brief description of the element is also included. Each

description ends with an element identifier, as follows:

Identifier Macro Element Group

F Function

S Statement

V Variable (system and module)

C Constant

D Declaration (procedure and function)

CD Compiler directive
96 Overview

Chapter 5 Functional Purpose of CASL Elements
Date and Time Operations

The following CASL elements determine the date and time:

Element Description

curday Returns the current day of the month. (F)

curhour Returns the current hour. (F)

curminute Returns the current minute. (F)

curmonth Returns the number of the current month. (F)

cursecond Returns the current second. (F)

curyear Returns the current year. (F)

date Returns today’s date as a string. (F)

hms Returns a string in hours, minutes, and seconds format.

(F)

secno Returns the number of seconds since midnight. (F)

time Returns the current time as a string. (F)

weekday Returns the number of the day of the week (0–6). (F)
Date and Time Operations 97

Chapter 5 Functional Purpose of CASL Elements
Error Control

The following CASL elements control error conditions:

Element Description

errclass Indicates the class of the last error. (V)

errno Indicates the type of the last error. (V)

error Indicates the occurrence of an error. (F)

trap Turns error trapping on and off. (CD)
98 Error Control

Chapter 5 Functional Purpose of CASL Elements
File Input/Output Operations

The following CASL elements provide file input and output

capabilities:

Element Description

backups Determines what is done with duplicate files after a file

transfer. (V)

chdir Changes to a different disk directory. (S)

close Closes a disk file. (S)

copy Copies a file or group of files. (S)

curdir Returns the current disk directory. (F)

curdrive Returns the current disk drive. (F)

definput Contains the default input file number. (V)

defoutput Contains the default output file number. (V)

delete Deletes disk files. (S)

drive Sets the current disk drive. (S)

eof Returns true if end-of-file is reached. (F)

eol Returns true if end-of-line is reached. (F)

exists Returns true if a file exists. (F)

filefind Locates files in the directory. (F)

filesize Returns the file size. (F)

fncheck Checks the validity of a file name. (F)

fnstrip Returns specified portions of a file name. (F)

get Reads characters from a random access file. (S)

loc Returns a file pointer position. (F)

mkdir Creates a new directory. (S)

open Opens a disk file. (S)

put Writes records to a random disk file. (S)

read Reads text fields from a file. (S)

read line Reads text lines from a file. (S)
File Input/Output Operations 99

Chapter 5 Functional Purpose of CASL Elements
receive Initiates a file transfer. (S)

rename Renames disk files. (S)

rmdir Removes a disk directory. (S)

seek Moves a file pointer to a specified position. (S)

send Initiates a file transfer to a remote computer. (S)

write Writes text fields to a file. (S)

write line Writes text lines to a file. (S)

Element Description
100 File Input/Output Operations

Chapter 5 Functional Purpose of CASL Elements
Host Interaction

The following CASL elements let you interact with a host:

Element Description

display Controls the display of incoming characters. (V)

match Specifies the string found by the last wait or watch

statement. (V)

nextchar Returns the next character from a

communications device. (F)

nextline Returns the next line, delimited by a carriage

return, from the communications device. (F/S)

online Returns true if a session is online. (F)

press Sends a series of keystrokes to the terminal

module. (S)

reply Sends a string of text to the communications

device. (S)

sendbreak Sets the length of a break signal. (S)

track Watches for string patterns or keystrokes while

online. (S)

wait Waits for a string of text from the communications

device or for a keystroke. (S)

watch...endwatch Watches for one of several conditions to occur.

(S)
Host Interaction 101

Chapter 5 Functional Purpose of CASL Elements
Macro Management

The following CASL elements manage CASL macros:

Element Description

chain Passes control to another macro. (S)

compile Compiles a macro. (S)

do Starts another macro and waits for it to return

control. (S)

genlabels Specifies whether to include or exclude label

information in a compiled macro. (CD)

genlines Specifies whether to include or exclude line

information in a compiled macro. (CD)

include Includes an external file in a compiled macro. (CD)

inscript Checks for labels in a macro. (F)

quit Closes a session window. (S)

scriptdesc Defines a macro description. (CD)

startup Contains the name of the macro to run at start-up.

(V)

terminate Terminates Accessory Manager. (S)

trace Turns tracing on and off. (S)
102 Macro Management

Chapter 5 Functional Purpose of CASL Elements
Mathematical Operations

The following CASL elements perform mathematical operations:

Element Description

abs Returns the absolute value of a number. (F)

cksum Returns the checksum of a string. (F)

crc Returns the CRC of a string. (F)

intval Returns the integer value of a string. (F)

max Returns the larger of two values. (F)

min Returns the smaller of two values. (F)

mkint Converts numeric strings to integers. (F)

val Returns the real (floating point) value of a string. (F)
Mathematical Operations 103

Chapter 5 Functional Purpose of CASL Elements
Printer Control

The following CASL elements control how data is printed:

If you use a CASL macro that contains the PRINTER=ON,

PRINTER=OFF, or CAPTURE NEW commands, the Capture

Mode must be Raw. To set this option, click Capture from the File

menu, click Options, click Raw, click OK, and then click OK again.

Element Description

capture Sends a continuous stream of data from the host to a file. (S)

footer Specifies the footer used when printing. (V)

grab Sends the contents of the session window to a file. (S)

header Specifies the header used when printing. (V)

lprint Sends a string of text to the printer. (S)

printer Sends a continuous stream of data from the host to a printer.

(V)
104 Printer Control

Chapter 5 Functional Purpose of CASL Elements
Program Flow Control

The following CASL elements provide program flow control:

Element Description

case...endcase Performs statements based on the value of a

specified expression. (S)

chain Passes control to another macro. (S)

do Starts another macro and waits until it returns

control. (S)

end Ends a macro. (S)

exit Exits a procedure. (S)

for...next Performs a series of statements a specified

number of times, usually while changing the value

of a variable. (S)

freetrack Returns the value of the lowest unused track

number for the current session. (F)

func...endfunc A function declaration. (D)

gosub...return Transfers program control to a subroutine. (S)

goto Transfers program control to a label or expression.

(S)

halt Stops a macro and its related parent and child

macros. (S)

if...then...else Controls program flow based on the value of an

expression. (S)

label Denotes a named reference point in a macro. (S)

perform Calls a procedure. (S)

proc...endproc A procedure declaration. (D)

quit Closes a session window. (S)

repeat...until Repeats a statement or series of statements until a

specified condition is true. (S)

return Returns a value from a function. (S)

terminate Terminates Accessory Manager. (S)

timeout Returns the status of the most recent wait or watch

statement. (V)
Program Flow Control 105

Chapter 5 Functional Purpose of CASL Elements
trace Turns tracing on and off. (S)

track Watches for string patterns or keystrokes while

online. (S)

wait Waits for a string of text from the communications

device or for a keystroke. (S)

watch...endwatch Watches for one of several conditions to occur. (S)

while...wend Performs a statement or group of statements as

long as a specified condition is true. (S)

Element Description
106 Program Flow Control

Chapter 5 Functional Purpose of CASL Elements
Session Management

The following CASL elements manage sessions:

Element Description

activate Activates Accessory Manager by moving the focus

to it. (S)

activatesession Makes the specified session active. (S)

assume Controls the way the CASL compiler handles

module variables for the Connection, Terminal, and

File Transfer tools. (S)

bye Disconnects the current session. (S)

description Describes a session. (V)

device Specifies a connection device. (V)

go Initiates a connection to a communications device.

(S)

keys Reads or sets the keyboard map to use. (V)

name Contains the name of the current session. (F)

netid Contains the network identifier for a session. (V)

new Creates or opens a session. (S)

ontime Indicates how long a session has been online. (F)

password Contains the password for the current session. (V)

protocol Specifies a file transfer protocol. (V)

quit Closes a session window. (S)

run Starts another application. (S)

save Saves the current session parameters. (S)

script Specifies the name of the macro file to use for the

current session. (V)

session Returns the session number of the current session.

(F)

sessname Returns the name of the session identified by a

specified session number. (F)

sessno Returns the session number of a specified session.

(F)
Session Management 107

Chapter 5 Functional Purpose of CASL Elements
startup Contains the name of the macro to run at start-up.

(V)

terminal Specifies the terminal emulation to use. (V)

terminate Terminates Accessory Manager. (S)

userid Contains the user account name for a session. (V)

Element Description
108 Session Management

Chapter 5 Functional Purpose of CASL Elements
String Operations

The following CASL elements perform string operations:

Element Description

arg Returns command line arguments. (F)

bitstrip Removes bits from strings. (F)

count Returns the number of occurrences of one string within

another string. (F)

dehex Converts ASCII strings in hexadecimal format to binary.

(F)

delete Returns a string with characters removed. (F)

destore Converts strings of printable ASCII characters back to

embedded control-character form. (F)

detext Converts 7-bit ASCII character strings to binary. (F)

enhex Converts a binary string to a string of ASCII characters in

hexadecimal format. (F)

enstore Converts strings with embedded control characters into

strings of printable ASCII characters. (F)

entext Converts a string of binary data to a string of 7-bit ASCII

characters. (F)

hex Converts an integer to a hexadecimal string. (F)

hms Returns a string in hours, minutes, and seconds format.

(F)

inject Changes some characters in a string. (F)

insert Adds characters to a string. (F)

instr Looks for a substring in a string. (F)

intval Returns the integer value of a string. (F)

left Returns the left portion of a string. (F)

length Returns the length of a string. (F)

lowcase Changes a string to all lowercase characters. (F)

mid Returns a middle portion of a string. (F)

mkstr Converts an integer to a string. (F)
String Operations 109

Chapter 5 Functional Purpose of CASL Elements
null Returns true if a string has zero length. (F)

pack Removes duplicate characters from a string. (F)

pad Adds extra characters to a string. (F)

quote Returns a string enclosed in quotation marks. (F)

right Returns the right portion of a string. (F)

slice Breaks out portions of a string. (F)

str Converts a number to string format. (F)

strip Returns a string with certain characters removed. (F)

subst Returns a string with certain characters changed. (F)

upcase Changes a string to all uppercase characters. (F)

val Returns the real (floating point) value of a string. (F)

winstring Reads a string from a window. (F)

Element Description
110 String Operations

Chapter 5 Functional Purpose of CASL Elements
Type Conversion Operations

The following CASL elements convert data from one type to

another:

Element Description

asc Returns the ASCII value of a string. (F)

binary Converts a string to a binary number. (F)

bitstrip Strips bits from strings. (F)

chr Returns a single-character string for an ASCII value. (F)

class Returns the class type of a single-character string. (F)

dehex Converts ASCII strings in hexadecimal format to binary.

(F)

detext Converts 7-bit ASCII character strings to binary. (F)

enhex Converts a binary string to a string of ASCII characters in

hexadecimal format. (F)

entext Converts a string of binary data to a string of 7-bit ASCII

characters. (F)

hex Converts an integer to a hexadecimal string. (F)

intval Returns the integer value of a string. (F)

mkint Converts numeric strings to integers. (F)

mkstr Converts an integer to a string. (F)

octal Converts a decimal integer to an octal integer. (F)

str Converts a number to string format. (F)

val Returns the real (floating point) value of a string. (F)
Type Conversion Operations 111

Chapter 5 Functional Purpose of CASL Elements
Window Control

The following CASL elements control the window size and how

data is input and displayed in a window:

Element Description

activate Activates Accessory Manager window by

moving the focus to it. (S)

alert Creates simple dialog boxes for display on

the screen. (S)

choice Contains the value of the button that

dismissed a dialog box. (V)

clear Clears a window. (S)

dialogbox...enddialog Creates more complex dialog boxes for

display on the screen. (S)

hide Reduces a session window to an icon. (S)

hideallquickpads Hides all of the QuickPads. (S)

hidequickpad Hides a QuickPad. (S)

input Accepts input from the screen. (S)

loadquickpad Activates a QuickPad. (S)

maximize Enlarges the Accessory Manager window

to full-screen size. (S)

minimize Reduces the Accessory Manager window

to an icon. (S)

move Moves the Accessory Manager window to

a new location on the screen. (S)

passchar Specifes the character to display in a text

box on a dialog box created using

dialogbox...enddialog and the
secret option. (V)

print Displays information on the screen. (S)

restore Restores the Accessory Manager window

to its original size. (S)

show Redisplays a session window. (S)

showquickpad Displays a QuickPad. (S)
112 Window Control

Chapter 5 Functional Purpose of CASL Elements
size Changes the size of a window. (S)

tabwidth Specifies the number of spaces a tab

character moves the cursor. (V)

unloadallquickpads Closes all of the QuickPads. (S)

unloadquickpad Closes a QuickPad. (S)

winchar Reads a character from a window. (F)

winsizex Returns the horizontal size of a window. (F)

winsizey Returns the vertical size of a window. (F)

winstring Reads a character string from a window.

(F)

xpos Returns the horizontal location of the

cursor. (F)

ypos Returns the vertical location of the cursor.

(F)

zoom Enlarges a session window to the size of

the Accessory Manager application

window. (S)

Element Description
Window Control 113

Chapter 5 Functional Purpose of CASL Elements
Miscellaneous Elements

The following are CASL elements that don’t fall into the preceding

categories:

Element Description

alarm Sounds an alarm at the terminal. (S)

busycursor Displays the cursor as an hourglass. (S)

environ Returns environment variables. (F)

false Sets a variable to logical false. (C)

freemem Returns the amount of available memory. (F)

inkey Returns the value of a keystroke. (F)

off Sets an item to logical false. (C)

on Sets an item to logical true. (C)

pop Discards a return address from the stack. (S)

review Defines the size of the review buffer. (V)

stroke Waits for the next keystroke from the keyboard. (F)

systime Indicates how long the current session has been active.

(F)

true Sets a variable to logical true. (C)

version Returns the Accessory Manager version number. (F)

winversion Returns the Windows version number. (F)
114 Miscellaneous Elements

CASL Language

In This Chapter This chapter provides detailed information about all CASL

elements, including the syntax of each element and examples of

how the element can be used.

How CASL Elements Are Documented. 124

abs (function) . 125

activate (statement) . 126

activatesession (statement) .127

alarm (statement). .128

alert (statement). 130

arg (function) . 132

asc (function). 133

assume (statement) . 134

backups (module variable) . 135

bitstrip (function) . 137

busycursor (statement) . 138

bye (statement) . 139

capture (statement) . 140

6

115

Chapter 6 CASL Language
chain (statement) .144

chdir (statement). .145

choice (system variable) .146

chr (function) .147

cksum (function) .148

class (function) .149

clear (statement) .150

close (statement) .151

cls (statement). .152

compile (statement) .153

connected (function) .154

copy (statement) .155

count (function) .156

crc (function) .157

curday (function) .158

curdir (function) .159

curdrive (function) .160

curhour (function) .161

curminute (function) .162

curmonth (function) .163

cursecond (function) .164

curyear (function) .165

date (function) .166

definput (system variable) .167

defoutput (system variable) .168

dehex (function). .169

delete (statement) .170
116

Chapter 6 CASL Language
delete (function) . 171

description (system variable). 172

destore (function) . 173

detext (function) . 174

device (system variable) . 175

dialogbox...enddialog (statements) . 176

display (system variable) . 183

do (statement). 184

drive (statement) . 186

end (statement). 187

enhex (function) . 188

enstore (function) . 189

entext (function) . 190

environ (function) . 191

eof (function) . 192

eol (function) . 193

errclass (system variable) . 195

errno (system variable) . 196

error (function) . 197

exists (function) . 198

exit (statement) . 199

false (constant) . 200

filefind (function) . 201

filesize (function) . 203

fncheck (function) . 204

fnstrip (function). 205

footer (system variable) . 207
117

Chapter 6 CASL Language
for...next (statements). .208

freemem (function) .210

freetrack (function) .211

func...endfunc (function declaration) .212

genlabels (compiler directive). .214

genlines (compiler directive) .215

get (statement) .216

go (statement) .217

gosub...return (statements) .218

goto (statement) .219

grab (statement) .220

halt (statement) .221

header (system variable) .222

hex (function) .223

hide (statement) .224

hideallquickpads (statement). .225

hidequickpad (statement). .226

hms (function) .227

homedir (system variable) .228

if...then...else (statements) .229

include (compiler directive) .231

inject (function) .232

inkey (function) .233

input (statement) .235

inscript (function) .236

insert (function). .237

instr (function) .238
118

Chapter 6 CASL Language
intval (function) . 239

jump (statement) . 240

keys (system variable) . 241

label (statement). 242

left (function) . 243

length (function) . 244

loadquickpad (statement). 245

loc (function) . 246

lowcase (function) . 247

lprint (statement) . 248

match (system variable) . 249

max (function). 250

maximize (statement). 251

mid (function) . 252

min (function) . 253

minimize (statement) . 254

mkdir (statement). 255

mkint (function) . 256

mkstr (function) . 257

move (statement) . 258

name (function). 259

netid (system variable). 260

new (statement) . 261

nextchar (function) . 262

nextline (statement) . 263

nextline (function) . 265

null (function) . 267
119

Chapter 6 CASL Language
octal (function) .268

off (constant) .269

on (constant) .270

online (function) .271

ontime (function). .272

open (statement) .273

pack (function). .274

pad (function) .275

passchar (system variable) .277

password (system variable) .278

perform (statement) .279

pop (statement) .280

press (statement) .281

print (statement). .283

printer (system variable) .284

proc...endproc (procedure declaration). .285

protocol (system variable). .288

put (statement) .289

quit (statement) .290

quote (function) .291

read (statement) .292

read line (statement) .293

receive (statement) .294

rename (statement). .295

repeat...until (statements) .296

reply (statement). .297

request (statement). .298
120

Chapter 6 CASL Language
restore (statement) . 299

return (statement) . 300

right (function) . 301

rmdir (statement) . 302

run (statement). 303

save (statement) . 304

script (system variable) . 305

scriptdesc (compiler directive) . 306

secno (function). 307

seek (statement) . 308

send (statement) . 309

sendbreak (statement) . 310

session (function) . 311

sessname (function) . 312

sessno (function) . 313

show (statement) . 314

showallquickpads (statement) . 315

showquickpad (statement) . 316

size (statement) . 317

slice (function). 318

startup (system variable) . 319

str (function) . 320

strip (function) . 321

stroke (function) . 322

subst (function) . 323

systime (function) . 324

tabwidth (module variable) . 325
121

Chapter 6 CASL Language
terminal (system variable) .326

terminate (statement). .327

time (function). .328

timeout (system variable). .329

trace (statement). .330

track (statement) .331

track (function) .334

trap (compiler directive) .336

true (constant). .337

unloadallquickpads (statement). .338

unloadquickpad (statement). .339

upcase (function) .340

userid (system variable) .341

val (function) .342

version (function) .343

wait (statement) .344

watch...endwatch (statements) .348

weekday (function) .351

while...wend (statements). .352

winchar (function). .353

winsizex (function) .354

winsizey (function) .355

winstring (function) .356

winversion (function) .357

write (statement) .358

write line (statement) .359

xpos (function). .360
122

Chapter 6 CASL Language
ypos (function) . 361

zoom (statement) . 362
123

Chapter 6 CASL Language
How CASL Elements Are Documented

In this chapter, all CASL elements are listed in alphabetical order.

(For a summary of CASL elements grouped by function, refer to

Chapter 5, “Functional Purpose of CASL Elements.”)

The name of each CASL element appears as a heading at the top

of the page. The type of element it is (such as function, statement,

system variable, and so on) appears in parentheses.

Immediately below the CASL element name is a brief description

of the element and how it should be used, followed by these

sections:

� Format—the syntax for the element

� Comments—additional descriptive information about the

element

� Example—an example of how the element can be used

� See Also—a list of other related elements

Note: For a description of the notation used in the format,

refer to Chapter 2, “Understanding the Basics of CASL.”
124 How CASL Elements Are Documented

Chapter 6 CASL Language
abs (function)

Use abs to get the absolute value of a number.

Format x = abs(expression)

Comments expression must be a real or signed integer. The result returned

by the abs function is always a positive number.

Example 1 positive_number = abs(negative_number)

In this example, abs assigns the absolute value of the contents of

negative_number to the variable called positive_number.

Example 2 if abs(net_worth) > 5 then alarm

In this example, an alarm sounds if the absolute value of the

net_worth variable is greater than five.

See Also cksum, crc, intval, max, min, mkint, val
abs (function) 125

Chapter 6 CASL Language
activate (statement)

Use activate to make the Accessory Manager application window

the active window.

Format activate

Example activate
126 activate (statement)

Chapter 6 CASL Language
activatesession (statement)

Use activatesession to make the specified session active.

Format activatesession sessionid

Comments When you use this statement, the session identified by sessionid

becomes active.

Example 1 activatesession sessA

In this example, session A becomes active.

Example 2 activatesession sessno("ABBS")

In this example, activatesession activates the session named

ABBS whose session number is returned by the sessno function.

See Also activate
activatesession (statement) 127

Chapter 6 CASL Language
alarm (statement)

Use alarm to make the PC sound an alarm.

Format alarm [integer]

Comments This function is useful for getting the user’s attention.

integer can be any integer between 0 and 5; values outside of

this range are treated as 0. Zero is the default value used when no

argument is specified.

The sounds produced by integer vary, depending on the .WAV

files specified in the Windows Registry in

HKEY_CURRENT_USER\AppEvents\Schemes\Apps\.Default.

The following table shows possible integer values and their

corresponding sounds or registry keys:

If the PC has no sound card, all the alarm values result in a beep

through the speaker.

Example 1 alarm 1

In this example, the PC makes the chord sound.

Integer Value Sound or Registry Key

0 Short beep

1 SystemAsterisk\.Current

2 SystemExclamation\.Current

3 SystemHand\.Current

4 SystemQuestion\.Current

5 .Default\.Current
128 alarm (statement)

Chapter 6 CASL Language
Example 2 if not exists("BBS.DAT") then alarm

In this example, the exists function is used to determine the

existence of a file. If the file does not exist, the macro sounds an

alarm.

Example 3 for i = 0 to 12
print "alarm "; i
alarm i
wait 1 second

next

In this example, the terminal sounds all of the alarms, with a

pause of one second between each alarm.
alarm (statement) 129

Chapter 6 CASL Language
alert (statement)

Use alert to display a dialog box that allows choices to be made.

Format alert string, button1 [, button2 ...
[, button3 [, button4]]] [, str_var]

Comments The alert statement displays a dialog box that prompts the user

for input, or notifies the user of some important occurrence.

A text message defined by string is centered in the dialog box.

The defined buttons are displayed from left to right along the

bottom of the dialog box. For button1 through button4 , you can

use either the text that you want to display on the button or the

predefined keywords ok and cancel.

If you use text for the buttons, enclose the text in quotation marks.

The maximum length of a button name is ten characters.

If you use the predefined keywords ok and cancel, you do not need

to enclose these keywords in quotation marks. If you use the ok

keyword, alert creates an OK button in the dialog box and

associates Enter with this button. If you use the cancel keyword,

alert creates a Cancel button in the dialog box and associates Esc

with this button.

str_var is a previously defined string variable that causes alert

to display an edit box in which the user can enter text. The edit

box appears between the text message string and the buttons in

the dialog box.

You can examine the variables that display or store user

information after the alert statement has executed. The system

variable, choice, contains a value between one and four that

corresponds to the button used to exit the dialog box. For example,

if button1 is chosen, choice is set to integer 1. Note that str_var

is not updated if the Cancel button is used to exit the dialog box.

Accessory Manager normally makes the first letter of the button

name an accelerator. You can define a different accelerator by

placing an ampersand (&) to the left of the desired letter. If you

use variables for the button names, make sure the OK and Cancel

buttons are last; if the last item is a variable, it is used for a text

box.
130 alert (statement)

Chapter 6 CASL Language
Example 1 string username

alert "Please enter your name:", ok, username
alert "You entered: " + username, ok

In this example, the macro displays a dialog box that prompts the

user to enter a name. The name is stored in the variable username.

A second dialog box displays the contents of username.

Example 2 if not exists(filename) then
{
 alert "File not found", "Try again", ok, cancel
 if choice = 1 then goto get_fname
}

In this example, the macro displays a dialog box that tells the user

an invalid file name has been entered. If the user clicks the Try

Again button, the macro branches to its get_fname label.

See Also dialogbox...enddialog
alert (statement) 131

Chapter 6 CASL Language
arg (function)

Use arg to check the command-line argument(s) at macro

invocation.

Format x$ = arg[(integer)]

Comments arg with no arguments (or an argument of 0) returns all of the

arguments that follow the name of a macro in the chain or do

statement. For session start-up macros, it can also return

everything that was typed in the Arguments text box on the CASL

Macro tab on the Session Preferences dialog box, which is accessed

from Accessory Manager’s Options menu.

arg(1) through arg(n) return the individual elements of the

argument, as separated by commas.

Example 1 script1.xws
do "script2", "barkley"

script2.xws:
fname = arg(1)
if arg(1) = "barkley" then ...

In this example, the first macro uses the do statement with the

argument barkley to start the second macro as a child macro. The

second macro assigns the value in arg(1) to the user variable

fname. Then it tests whether the first argument is barkley.

Example 2 menu.xws
do "LOGIN", "myuserid", "mypassword"

login.xws
reply arg(1)
wait for "password:"
reply arg(2)

In this example, the do statement is used to run the macro file

LOGIN. LOGIN reads its arguments and sends them to the host with

the reply statement.

See Also chain, do
132 arg (function)

Chapter 6 CASL Language
asc (function)

Use asc to convert the first character of a string to its

corresponding ASCII value.

Format x = asc(string)

Comments string can be a string constant or expression of any length. When

the statement is executed, x contains the ASCII value of the first

character in the string. If string is not null, the value returned is

in the range of 0–255. If string is null (has no length), asc returns

-1.

Example 1 sixty_five = asc("A")

In this example, asc returns the ASCII value of the character A in

the variable sixty_five.

Example 2 seventy = asc("For pity's sake")

In this example, asc returns the value of the character F (which is

the first character of the string, "For pity's sake") in the

variable seventy.

Example 3 x = asc(mid(thestring, 2, 1))

In this example, asc converts the second character of thestring

and returns the result in x.

See Also binary
asc (function) 133

Chapter 6 CASL Language
assume (statement)

Use assume to specify which connection, terminal, or file transfer

tool is being used by the session.

Format assume tool "filename" ... [, module "filename"]

Comments Before you can specify any configuration settings for a connection,

terminal, or file transfer tool, you must use the assume statement

to indicate which tool is loaded.

tool can be either device (for the connection tool), terminal (for

the terminal tool) or protocol (for the file transfer tool).

filename is the name of the tool (it must be enclosed in quotation

marks). For the connection tool, the only valid file name is

ICSTOOL. For valid terminal tool names, refer to “terminal

(system variable)” on page 318. For valid file transfer tool names,

refer to “protocol (system variable)” on page 280.

For more information about connection, terminal, and file transfer

tools, as well as a list of the configuration settings that you can

specify for each tool, refer to Chapter 7, “Connection, Terminal,

and File Transfer Tools.”

Example assume terminal "DCAT27"
CurShape = "Block"

In this example, the macro indicates that the session is a T 27

session and configures the cursor shape to a block.

See Also device, protocol, terminal

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this statement.
134 assume (statement)

Chapter 6 CASL Language
backups (module variable)

Use backups to determine whether to keep or discard duplicate

files during file transfers.

Format backups = option

Comments option is one of the following:

Example backups = off

In this example, backups is turned off.

Note: Some file transfer protocols do not use this variable.

Option Description

on If an existing file is received or edited, the old file is renamed with

a .BAK extension. If a backup file already exists, it is deleted.

off If an existing file is received or edited, the old copy of the file is

deleted.
backups (module variable) 135

Chapter 6 CASL Language
binary (function)

Use binary to convert an integer to a string, in binary format.

Format x$ = binary(integer)

Comments The binary function returns a binary string that represents the

value of integer. The string can be 8, 16, or 32 bytes long,

depending on the value of integer. Integer values and their

corresponding binary string lengths are shown in the following

table.

Example bin_num = binary(some_num)

In this example, the value of the variable some_num is converted to

its binary form, and the new value is stored in the variable

bin_num.

Integer Value Binary String Length

0–255 8

256–65,535 16

65,536–2,147,483,64 32
136 binary (function)

Chapter 6 CASL Language
bitstrip (function)

Use bitstrip to strip certain bits from a string.

Format x$ = bitstrip(string [, mask])

Comments bitstrip produces a new string that is the result of performing a

bitwise and of each character in string with mask. Refer to

Chapter 2, “Understanding the Basics of CASL,” for an

explanation of the bitwise and operation.

mask is an integer bitmap value that defaults to 127 (0x7F), thus

stripping the high order bit from each byte in string. Some word

processors, such as Microsoft Word, set the high bit in certain

characters to indicate various conditions such as special

formatting. Stripping the high bit makes such files readable, but it

is not a replacement for a true conversion program. A mask of

0x5F (95 decimal) converts lowercase letters to uppercase, but it

also changes other characters.

Because mask is a bitmap, it must be in the range of 0–255

(decimal); values in the range of 0–127 are the most useful.

Example 1 readable_string = bitstrip(Word_line)

In this example, bitstrip strips the high-order bit of each byte of

the string Word_line and returns the result in readable_string.

Example 2 reply bitstrip(Word_line)

In this example, bitstrip strips the high-order bit of each byte of

the string Word_line, and the result is sent to the host with the

reply statement.

Example 3 all_upcase = bitstrip("abc", 0x5F)

In this example, the letters abc are converted to ABC.

See Also lowcase, upcase
bitstrip (function) 137

Chapter 6 CASL Language
busycursor (statement)

Use busycursor to display the cursor as an hourglass when you

expect a command to take a noticeable time interval to execute.

Format busycursor [on | off]

Comments This statement displays the cursor as an hourglass.

Example busycursor on

wait 1 minute for "Login", "ID", "Password"
case match of

"Login": reply logon
"ID": reply userid
"Password": reply password

endcase

busycursor off

In this example, the cursor appears as an hourglass while the

match function proceeds.
138 busycursor (statement)

Chapter 6 CASL Language
bye (statement)

Use bye to end a connection.

Format bye

Comments This statement immediately disconnects the current session.

Example wait for "Logged off" : bye

In this example, the macro waits for the phrase "Logged off" and

then disconnects the session.

See Also quit

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this statement.
bye (statement) 139

Chapter 6 CASL Language
capture (statement)

Use capture to send screen output to a file.

Format capture option [filename]

Comments In Accessory Manager, clicking Capture from the File menu

initiates a continuous capture of data received from the host. The

capture statement performs a similar function, controlling

whether data is being captured at any particular time.

When you click Capture from the File menu in Accessory

Manager, you can specify whether to send the data to a printer or

file. In CASL, the destination is determined by the command. Use

capture to send a continuous stream of data to a file; use

printer to send the data to a printer.

For the capture statement, the macro syntax determines the file

name and whether the data in any existing file is overwritten or

appended. However, all other settings that affect the operation of

the capture (such as whether normal or raw data is captured) are

controlled by the options specified on the Capture Options and

Advanced Capture Options dialog boxes within Accessory

Manager. (To view these dialog boxes, make sure that Show

Capture Dialog When Start Capture is selected on the Global

Preferences dialog box. Then click Capture from the File menu,

and click Options on the Capture Printer Settings dialog box.)

Unless you specify a different drive and directory when you specify

the filename, all files are created in the ACCMGR32 folder

within the INFOConnect folder.

option can be any of the following values;

Option Description

new Starts capture and overwrites the specified file

If you use the new option, you must specify a filename.

to Starts capture and appends to the specified file

If you use the to option, you must specify a filename.
140 capture (statement)

Chapter 6 CASL Language
Example 1 capture on

In this example, data is captured to a file that is automatically

named based on the session name and current date.

Example 2 capture new "vutext.txt"

In this example, data is captured in a file called VUTEXT.TXT. If a

file of that name already exists, its content is overwritten.

See Also grab, printer

on Starts capture with automatic file naming

The file name is the first five letters of the session name,

followed by a letter for the month (January is A, February

is B, and so forth), and the day of the month. The file

extension is .TXT. For example, if the session name is

TCPA_1 and the file is created on April 15, the file name

is TCPA_D15.TXT.

If the file already exists, it is overwritten.

If you use the on option, do not specify a filename. If
you specify a filename, a compilation error will occur.

pause Suspends data capture

Data already captured is retained in a buffer. You can

restart capture with the capture on or capture
toggle commands, or end it with the capture off
command.

If you use the pause option, do not specify a filename.
If you specify a filename, a compilation error will occur.

toggle or / Toggles the capture state

If capture is on, capture toggle pauses thecapture. If
capture is paused or off, capture toggle starts
capture.

If you use the toggle or / option, do not specify a
filename. If you specify a filename, a compilation

error will occur.

off Stops data capture and closes the file

If you use the off option, do not specify a filename. If
you specify a filename, a compilation error will occur.

Option Description
capture (statement) 141

Chapter 6 CASL Language
case...endcase (statments)

Use case...endcase to perform statements based on the value of

a specified expression.

Format case expression of
list of values : statement group
list of values : statement group
 ...
...
[default : statement group]

endcase

Comments case lets you take a variety of actions based on the value of a

particular expression. expression can be any type of expression or

variable. list of values is a list of expected values for

expression and must match the data type of expression. The

values can be constants or expressions and must be separated by

commas if you use more than one value on a logical line.

statement group is a series of statements to perform if one of the

items in list of values matches the current expression. After

the associated statement group has been performed, the macro

continues to execute at the point after the endcase statement

(unless control was transferred somewhere else with a goto or a

gosub statement).

default and its associated statement group describe a statement

or group of statements to perform if none of the other values

match. If you include default, be sure it is the last item in the list.

endcase denotes the end of the case...endcase construct.

You can nest case...endcase statements.
142 case...endcase (statments)

Chapter 6 CASL Language
Example 1 label ask_again
print "Please choose a number (0-4): " ;
input choice
print
case choice of

0, 4 : end
1 : goto choose_speed
2 : goto main_menu
3 : goto save_setup
default : goto ask_again

endcase

In this example, case examines the value of the integer variable

choice. If choice is 0 or 4, the macro ends. If choice has a value

between 1 and 3, the macro branches to the appropriate label. If

choice is not 0 through 4, the default action is taken. If none of

the conditions were met (assuming a default was not provided),

the macro would continue execution at the statement following the

endcase.

Example 2 case left(date, 5) of
 "08/12" : print "Today is Aaron's birthday!"
 "07/04" : print "Why are you here today?"
 "10/31" : alarm 6 : print "Boo!"
endcase

This example shows that you can use case with any type of

expression. The actions taken in this example depend on the date.

See Also gosub, goto, if...then...else, watch...endwatch
case...endcase (statments) 143

Chapter 6 CASL Language
chain (statement)

Use chain to compile and run a macro.

Format chain filename [, args]

Comments chain compiles and runs the specified macro source file (.XWS) if

there is no compiled version of the macro, or if the date of the

source file is more current than the date of the compiled version.

Otherwise, chain runs the compiled version of the macro.

You do not have to include the macro extension, but you must

include the drive and directory where the macro is located.

args represents an optional argument list that contains the

individual arguments to be passed to the other macro. Individual

arguments must be separated by commas.

Example chain "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
MENU", "arg1", "arg2"

In this example, the macro chains to a macro called MENU and

passes the macro two arguments.

See Also arg, do

Note: The macro that issues a chain statement ends and is

removed from memory; therefore, control cannot be passed back

to it.
144 chain (statement)

Chapter 6 CASL Language
chdir (statement)

Use chdir to change the current disk directory.

Format chdir string

Comments string must be an expression containing a valid directory name.

The current working directory is set to the new value. This does

not change the current drive designation.

Example 1 chdir "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32"

In this example, the directory is changed to C:\PROGRAM

FILES\ATTACHMATE\INFOCN2K\ACCMGR32.

Example 2 chdir dirname

In this example, the directory is changed to the directory name

stored in the script’s dirname variable.

See Also drive

Note: You can also use the abbreviation cd for this statement.
chdir (statement) 145

Chapter 6 CASL Language
choice (system variable)

Use choice to check the value of the button that dismissed a

dialog box.

Format n = choice

Comments choice contains the value identifying the button used to exit a

dialog box.

Example 1 dialogbox 20, 50, 280, 100
defpushbutton 10, 10, 80, 80, "Choice 1", ok
pushbutton 100, 10, 80, 80, "Choice 2", cancel
pushbutton 190, 10, 80, 80, "Choice 3", focus

enddialog
print "Choice was "; choice

In this example, choice has a value of 1 if the Choice 1 (ok) button

is chosen, 2 if the Choice 2 (cancel) button is selected, or 3 if the

Choice 3 (focus) button is chosen.

Example 2 dialogbox 20, 50, 280, 100
pushbutton 100, 10, 80, 80, "Choice 1", cancel
pushbutton 190, 10, 80, 80, "Choice 2", ok
defpushbutton 10, 10, 80, 80, "Choice 3", focus

enddialog
print "Choice was "; choice

In this example, choice has a value of 1 if the Choice 1 (cancel)

button is chosen, 2 if the Choice 2 (ok) button is selected, or 3 if the

Choice 3 (focus) button is chosen.

In both of these examples, the buttons are displayed in the same

locations in the dialog box.

See Also dialogbox...enddialog
146 choice (system variable)

Chapter 6 CASL Language
chr (function)

Use chr to get a single character string defined by an ASCII value.

Format x$ = chr(integer)

Comments chr returns a one-byte string that contains the character with the

ASCII value contained in integer.

integer is a decimal number that is converted to its Modulo 255

value; therefore, it is in the range of 0–255.

Example 1 cr = chr(13)

In this example, the variable cr is set to ASCII value 13, which is

a carriage return.

Example 2 reply chr(3)

In this example, the ASCII value 3 is sent to the host.
chr (function) 147

Chapter 6 CASL Language
cksum (function)

Use cksum to get an integer checksum for a string of characters.

Format x = cksum(string)

Comments cksum returns the arithmetic checksum of the characters

contained in string. string can be any length. You can use this

function to develop a proprietary file transfer protocol, or to check

the integrity of a string transferred between two systems using a

non-protocol transfer.

Example 1 check = cksum(what_we_got)

In this example, the checksum value of the what_we_got variable

is stored in the check variable.

Example 2 if cksum(data_in) <> cksum(data_out) then alarm

In this example, an alarm sounds if the checksum of the data_in

variable is not the same as the checksum of the data_out variable.

See Also crc
148 cksum (function)

Chapter 6 CASL Language
class (function)

Use class to get the Accessory Manager class value for a single-

character string.

Format x = class(string)

Comments class returns the class number bitmap of the first character in

string.

The bitmap value returned indicates the class(es) in which the

first character in the string falls. Classes define such groupings as

capital letters (A–Z), decimal digits (0–9), and hexadecimal digits

(0–9 plus A–F or a–f). The following table lists class groupings.

A character may fall into more than one class. For example, the

comma is both a delimiter and a punctuation mark, and returns a

class value of 0xC0 or 192 decimal.

Example x = class(a_char) : if x = 1 then ...

In this example, a_char is a white space if x is 1.

Hexadecimal Decimal Class Contents

0x01 1 White space (space, tab, CR, LF, FF, BS, null)

0x02 2 Uppercase alpha (A–Z)

0x04 4 Lowercase alpha (a–z)

0x08 8 Legal identifier ($, %, _)

0x10 16 Decimal digit (0–9)

0x20 32 Hexadecimal digit (A–F, a–f)

0x40 64 Delimiters: space, comma, period, tab, (, /, \, :, ;, <,

=, >, !

0x80 128 Punctuation: !-\, :-@, [-^, {-~
class (function) 149

Chapter 6 CASL Language
clear (statement)

Use clear to clear the terminal screen.

Format clear [window] [, line] [, eow] [, bow] ...
[, eol] [, bol]

Comments If no option is specified, the entire session window is cleared, and

the cursor moves to the upper-left corner of the window. If an

option is specified, the cursor remains in place. The following table

explains the options.

Example 1 clear bow

In this example, the macro clears the session window from the

cursor to the beginning of the window.

Example 2 clear window

In this example, the macro clears the entire session window.

This option Clears this

window The entire window

line The line on which the cursor is located

eow From the cursor to the end of the window

bow From the cursor to the beginning of the window

eol From the cursor to the end of the current line

bol From the cursor to the beginning of the current line
150 clear (statement)

Chapter 6 CASL Language
close (statement)

Use close to close an open data file.

Format close [# filenum]

Comments close ends access to an open file. If a filenum is not specified, all

open files are closed. (All open files are closed automatically when

the macro that opened them terminates.)

The # symbol must precede the file number.

Example close

In this example, all open files are closed.

See Also open
close (statement) 151

Chapter 6 CASL Language
cls (statement)

The cls statement, which is a synonym for the clear statement, is

supported only for backward compatibility. Refer to “clear

(statement)” on page 142.
152 cls (statement)

Chapter 6 CASL Language
compile (statement)

Use compile to compile a macro file.

Format compile "filename"

Comments This statement compiles the specified macro. The compiled macro

file is saved in the same directory where the source macro is

found.

Example compile "MENU"

In this example, the macro called MENU is compiled.
compile (statement) 153

Chapter 6 CASL Language
connected (function)

The connected function, which is a synonym for the online

function, is supported only for backward compatibility. Refer to

“online (function)” on page 263.
154 connected (function)

Chapter 6 CASL Language
copy (statement)

Use copy to copy a file or group of files.

Format copy [some] filefrom, fileto

filefrom must be a legal file name (full path names and wild

cards are permitted). fileto specifies the new file name for the

copy; it defaults to the current directory.

If you specify some, the user must approve each file before it is

copied.

Example 1 copy "menu.xts", "menu2.xts"

In this example, MENU.XTS is copied to MENU2.XTS.

Example 2 copy "*.xts", "*.bak"

In this example, the macro copies each file with the .XTS

extension and gives the copied files a .BAK extension.

Example 3 copy some "*.xts", "A:"

In this example, the macro copies all files with the .XTS extension

to drive A, but confirmation is requested of the user before each

individual file is copied.
copy (statement) 155

Chapter 6 CASL Language
count (function)

Use count to determine the number of occurrences of a character

within a string.

Format x = count(string1, string2)

Comments count returns the number of times any of the characters in

string2 occur in string1. This function can take the place of the

instr function in a counting loop to determine how many times

your macro must take some future action.

This function is case-sensitive.

See Also instr

Example 1 x = count("sassafras", "s")

In this example, count returns the number of times the letter s

occurs in the string "sassafras". The result is 4.

Example 2 x = count("sassafras", "sa")

In this example, count returns the number of times the letters s

and a occur in the string "sassafras". The result is 7.
156 count (function)

Chapter 6 CASL Language
crc (function)

Use crc to determine the cyclical redundancy check value for a

string.

Format x = crc(string [, integer])

Comments x is returned as the crc of string. The crc starts with a value of 0

unless a starting value is given in integer.

As with the cksum function, you can use crc to develop a

proprietary file transfer protocol or to check the integrity of a

string.

Example 1 x = crc("AM")

In this example, x is assigned the crc value of the string AM.

Example 2 x = crc(text_line)

In this example, x is assigned the crc value of the text_line

variable.

See Also cksum
crc (function) 157

Chapter 6 CASL Language
curday (function)

Use curday to find out the current day of the month.

Format x = curday

Comments curday returns the current day of the month. The returned value

is always in the range of 1–31.

Example 1 x = curday

In this example, x is set to the current day of the month.

Example 2 if curday = 15 then gosub pay_bills

In this example, control passes to the subroutine pay_bills if the

current day is day 15.

See Also curmonth, curyear, date
158 curday (function)

Chapter 6 CASL Language
curdir (function)

Use curdir to check the name of the current directory.

Format x$ = curdir[(string)]

Comments curdir returns the current directory of the drive specified by

string. If you do not specify string, curdir returns the directory

of the current drive. curdir returns a null string if the specified

drive is not available.

Example 1 where_we_are = curdir

In this example, curdir stores the name of the current directory in

the where_we_are variable.

Example 2 whats_on_a = curdir("a:")

In this example, curdir stores the name of the current directory

for drive A in the whats_on_a variable.

See Also curdrive
curdir (function) 159

Chapter 6 CASL Language
curdrive (function)

Use curdrive to find out the current default drive.

Format x$ = curdrive

Comments curdrive returns a two-character string consisting of the letter of

the current drive followed by a colon.

Example 1 what_we_are_on = curdrive

In this example, curdrive stores the letter of the current drive in

the what_we_are_on variable.

Example 2 if curdrive > "C:" then ...

In this example, the macro takes some action if the letter of the

current drive is greater than C (such as D, E, F, and so on).

See Also curdir, drive
160 curdrive (function)

Chapter 6 CASL Language
curhour (function)

Use curhour to get the current hour in a 24-hour format.

Format x = curhour

Comments curhour returns an integer value containing the current hour, in

the range of 0–23.

Example 1 x = curhour

In this example, curhour sets the variable x to the number of the

current hour.

Example 2 if curhour = 23 then chain "CALLBBS"

In this example, the macro chains to a macro called CALLBBS if

curhour is set to 23.

See Also curminute, cursecond
curhour (function) 161

Chapter 6 CASL Language
curminute (function)

Use curminute to get the current minute.

Format x = curminute

Comments curminute returns an integer containing the current minute, in

the range of 0–59.

Example 1 x = curminute

In this example, x is set to the current minute.

Example 2 if curminute = 30 then ...

In this example, the macro takes some action if the current minute

is equal to 30.

See Also curhour, cursecond
162 curminute (function)

Chapter 6 CASL Language
curmonth (function)

Use curmonth to get the number of the current month.

Format x = curmonth

Comments curmonth returns an integer value containing the current month,

in the range of 1–12.

Example 1 x = curmonth

In this example, x is set to the current month.

Example 2 if curmonth = 12 then ...

In this example, the macro takes some action if the current month

is 12.

See Also curday, curyear, date
curmonth (function) 163

Chapter 6 CASL Language
cursecond (function)

Use cursecond to get the current second.

Format x = cursecond

Comments cursecond returns an integer value containing the current second,

in the range of 0–59.

Example 1 x = cursecond

In this example, x is set to the current second.

Example 2 if cursecond = 30 then ...

In this example, the macro takes some action if the current second

is equal to 30.

See Also curhour, curminute
164 cursecond (function)

Chapter 6 CASL Language
curyear (function)

Use curyear to find out the current year.

Format x = curyear

Comments curyear returns an integer value containing the current year.

Example 1 x = curyear

In this example, x is set to the current year.

Example 2 if curyear = 2000 then ...

In this example, the macro takes some action if the current year is

2000.

See Also curday, curmonth, date
curyear (function) 165

Chapter 6 CASL Language
date (function)

Use date to return a date string.

Format x = date[(integer)]

Comments If integer is not specified or has a value of 0, date returns a string

containing the current system date.

The returned string uses the format specified in the Short Date

Style in the Control Panel. To modify the format, click the

Windows Start button, point to Settings, and click Control Panel.

Double-click Regional Settings, click the Date tab, and click the

desired item from the Short Date Style list box.

If integer is specified and has a value other than 0, it indicates

the number of days that have elapsed since January 1, 1900, and

date returns the date string for that day.

Example 1 x = date(31354)

In this example, the macro sets x to 11/04/85.

See Also curday, curmonth, curyear
166 date (function)

Chapter 6 CASL Language
definput (system variable)

Use definput to select a default file number for input.

Format definput = filenum

Comments filenum must be an integer expression. definput lets you specify

a default file number for all file input operations that follow the

definput declaration. eof, eol, get, loc, read, read line, and

seek, assume the file number specified by definput if no explicit

file number is provided.

This variable is valid only for files opened in input or random

mode.

See Also eoof, eol, get, loc, open, read, read line, seek
definput (system variable) 167

Chapter 6 CASL Language
defoutput (system variable)

Use defoutput to select a default file number for output.

Format defoutput = filenum

Comments filenum must be an integer expression. defoutput lets you specify

a default file number for all file output operations that follow the

defoutput declaration. put, write, and write line assume the

file number specified by defoutput if no explicit file number is

provided.

This variable is valid only for files opened in output or random

mode.

See Also open, put, write, write line
168 defoutput (system variable)

Chapter 6 CASL Language
dehex (function)

Use dehex to convert an enhex string back to its original format.

Format x$ = dehex(string)

Comments dehex converts a string of ASCII characters in hexadecimal

format back to a string of binary data.

Since each byte in string is a two-byte hexadecimal

representation, the string returned by dehex is half as long as

string.

Like entext and detext, enhex and dehex are complementary

functions designed to permit the exchange of binary information

over communications services that allow only 7-bit transfers;

many of the electronic mail systems allow the transfer of only 7-bit

ASCII information.

Binary data strings that have been converted with enhex require

dehex to restore the 8-bit binary format.

Example 1 program_line = dehex(sendable)

In this example, dehex converts the ASCII hexadecimal string

sendable to binary and returns the result in program_line.

Example 2 spread_sheet_line = dehex(nextline)

In this example, dehex returns the binary equivalent of nextline

in spread_sheet_line.

See Also detext, enhex, entext
dehex (function) 169

Chapter 6 CASL Language
delete (statement)

Use the delete statement to delete files from the disk.

Format delete [noask] "filename"

Comments delete removes a file from the disk. filename must be a valid file

name, which can contain a drive and directory. If filename

contains wild cards, the user is asked to confirm the deletion of

each file.

Use noask to suppress user intervention.

Example 1 delete "script1.xws"

In this example, the file SCRIPT1.XWS is deleted.

Example 2 input f$: delete f$

In this example, the macro accepts the file name typed by the user

and then deletes the file.
170 delete (statement)

Chapter 6 CASL Language
delete (function)

Use the delete function to remove characters from a string.

Format x$ = delete(string [, start [, length]])

Comments delete returns string with length characters removed beginning

at the character represented by start. If length is not specified,

one character is removed. If start is omitted, the deletion starts

at the first character position in string.

start must be in the range 1 <= start <= length(string).

If start + length is greater than length(string), the leftmost

start -1 bytes are returned.

Example dog_name = delete("Fixxxdo", 3, 3)

In this example, the macro deletes three characters, starting at

position 3, from the string "Fixxxdo". The result is Fido.
delete (function) 171

Chapter 6 CASL Language
description (system variable)

Use description to read or set the description of the current

session.

Format description = string

Comments description sets and reads the descriptive text associated with

the current session. Only 40 characters are displayed. You can set

the description to a null string ("").

Example description = "Order Input"

In this example, the macro sets description to the indicated

string.

See Also name
172 description (system variable)

Chapter 6 CASL Language
destore (function)

Use destore to restore strings converted with the enstore

function;enstore function back to their original form.

Format x$ = destore(string)

Comments destore converts strings of printable ASCII characters, which

have been converted with enstore, back to their original

embedded control character form.

Control characters in caret notation, such as ^G, are converted

back to control characters, in this case a Ctrl+g (bell) character.

The vertical bar (|) is translated to a Ctrl+m (CR).

destore does not convert a caret preceded by a grave accent (`);

however, the grave accent is discarded since it is no longer needed

for protection; therefore, `^G becomes ^G.

You must have created string with enstore.

Example line_to_show_user = destore(password)

In this example, destore converts the string password back to its

original form and returns the result in line_to_show_user.

See Also enstore
destore (function) 173

Chapter 6 CASL Language
detext (function)

Use detext to convert an entext string back to its original form.

Format x$ = detext(string)

Comments This function works with the entext function to transfer 8-bit

data over 7-bit networks. entext takes binary data and converts it

to normal 7-bit ASCII characters (the result may even be

readable); detext takes the entext data and converts it back to its

original form.

You must have originally converted string with entext.

Example convtd_text = detext(ntxtd_string)

In this example, detext converts ntxtd_string from 7-bit ASCII

characters to 8-bit binary form and returns the result in

convtd_text.

See Also entext
174 detext (function)

Chapter 6 CASL Language
device (system variable)

Use device to read or set the connection tool for the current

session.

Format device = string

Comments The connection tool used by T 27, UTS, and ALC sessions is

ICSTOOL.

After you specify the connection tool with an assume statement,

you can read or set variables that affect the configuration of the

connection tool. For more information, refer to Chapter 7,

“Connection, Terminal, and File Transfer Tools.”

Example assume device "ICSTOOL"
print PathID

This example displays the name of the INFOConnect path type for

the current session.

See Also assume, protocol, terminal

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this system variable.
device (system variable) 175

Chapter 6 CASL Language
dialogbox...enddialog (statements)

Use dialogbox...enddialog to create custom dialog boxes.

Format dialogbox x,y,w,h [, caption]
[defpushbutton x, y, w, h, string [, options]]
[pushbutton x, y, w, h, string [, options]]
[ltext x, y, w, h, string]
[ctext x, y, w, h, string]
[rtext x, y, w, h, string]
[edittext x, y, w, h, init_text, ...

str_result_var [, options]]
[radiobutton x, y, w, h, string, result_var ...

[, options]]
[checkbox x, y, w, h, string, result_var ...

[, options]]
[groupbox x, y, w, h, title]
[listbox x, y, w, h, comma_string, ...

int_result_var [, options]]
[listbox x, y, w, h, string_array, ...

int_result_var [, options]]
enddialog

Comments This statement is useful for designing a user interface for your

macros. Using dialogbox...enddialog, you can create dialog

boxes that are easy to use and work like standard dialog boxes.

You must define all variables used in a dialog box before using the

dialogbox...enddialog construct. The values assigned to

variables for radiobutton, checkbox, and listbox are used to set

the initial value of these dialog items. For radiobutton and

checkbox, setting the Boolean variable result_var to true selects

it; false does not. For listbox, setting the integer variable

int_result_var determines which item in the list box is

highlighted. The range is limited by the number of items in the

list.

Unless otherwise specified, Accessory Manager defines the first

letter of a button or prompt as an accelerator. You can define your

own accelerator by placing an ampersand (&) in the string used for

the text. The letter after the ampersand becomes the accelerator.
176 dialogbox...enddialog (statements)

Chapter 6 CASL Language
The Dialog Box Items table describes the elements of the

dialogbox...enddialog syntax. The Dialog Box Options table

desribes the options supported by those dialog box items that

include options in their syntax.

Dialog Box Items

Item Description

x, y (for dialogbox) Pixel coordinates for the dialog box

w, h (for dialogbox) Width and height of the dialog box

caption The title of the dialog box

defpushbutton The default button (it has a bold border)

Pressing Enter peforms the same action as clicking

this button. You would normally use defpushbutton
for the dialog box OK button.

Any dialog box must have at least one button. If there

is only one button on the dialog box, use

defpushbutton to define it.

x, y (for all other items

in the syntax)

Pixel coordinates for the dialog box item within the

dialog box

The origin of x and y is 0,0, which is the upper-left

corner of the dialog box.

w, h (for all other items

in the syntax)

Width and height of the dialog box item

A horizontal unit is 1/4 of a system font character; a

vertical unit is 1/8 of a system character font.

string The text to display on the dialog box

options Refer to the Dialog Box Options table

pushbutton A button that the user can click (such as OK or

Cancel)

For this dialog box item, the width should be the length

of (string * 4) + 10. The height is usually 14.

ltext Left-justified text within the dialog box

The width should be 4 times the length of string.
The height is usually 8.

ctext Centered text within the dialog box

The width should be 4 times the length of string.
The height is usually 8.
dialogbox...enddialog (statements) 177

Chapter 6 CASL Language
rtext Right-justified text within the dialog box

The width should be 4 times the length of string.
The height is usually 8.

edittext A text box for user input

Precede edittext with ltext, ctext, or rtext to
display a label for the text box.

The width of the text box should be at least four times

the maximum length of the string the user may type.

The height is usually 12.

str_restul_var This returns the text typed in the edit box by the user

radiobutton A round radio or option button that is chosen when

clicked by the user

Radio buttons normally provide users with several

mutually exclusive options. The first radiobutton in
a group must have the tabstop group option set,
or the arrow keys might not work properly in the dialog

box.

The first dialog item after a group of radiobutton
definitions must also have the tabstop group
option so that the operating environment knows

where one group ends and the next one begins.

The width of a radiobutton is generally the length
of (string * 4) + 10. The height is generally 10.

result_var This item is true if the radio button or check box is

selected, false if not.

For radio buttons, you must examine result_var for
each radiobutton until you find one that is set to
true.

For check boxes, result_var is true or false
depending on whether the check box was checked or

not after the user exits the dialog box.

checkbox A square box that is checked or cleared when the user

clicks it

The width of a checkbox should be at least the length
of (string * 4) + 10. The height is usually 12.

groupbox A box for a group of dialog items yet to be defined

Dialog item definitions for this box should follow.

Dialog Box Items (Continued)

Item Description
178 dialogbox...enddialog (statements)

Chapter 6 CASL Language
title The title of the group box

This appears in the upper border of the group box.

listbox A list box

If you use comma_string with listbox, the list box
displays the comma-delimited strings in

comma_string. The width of the list box should be at

least four times the length of the longest string in

comma_string. The height should be eight times the

number of items from comma_string that you want

to display at one time. The height of the list box is

limited by the height of the dialog box.

If you use string_array with listbox, the list box
displays an array. The width of the list box should be

at least four times the length of the longest string in

string_array. The height should be eight times the

number of items from string_array that you want

to display at one time.

comma_string The items to display in the list box, separated by

commas

string_array The array to display in the list box

The array must be single-dimensional with an

alternative lower boundary of 1.

int_result_var The number of the list box item selected

If no item was selected, zero is returned.

Dialog Box Items (Continued)

Item Description
dialogbox...enddialog (statements) 179

Chapter 6 CASL Language
When the user exits the dialog box, the variable choice is

assigned the number of the button used to exit the dialog box. For

example, if the first button is chosen, choice is set to 1; if the

fourth button is selected, choice is set to 4. The macro can then

check choice to take appropriate action. Note that no variables

are updated if the user clicks Cancel.

Dialog Box Options

Option Description

tabstop Marks a dialog item to which you can tab using the keyboard

tabstop group Marks the beginning or end of a group of radio buttons

You normally press Tab to get to the first button in a group of

radio buttons, then use the arrow keys to move from one

button to the next. Pressing Tab again takes you to the next

dialog item after the radio button group.

focus Defines where to place the cursor within the dialog box

If this option is not used, the focus is set at the first tab stop in

the dialog box.

secret Specifies that placeholders should be displayed for the

characters entered by the user.

This option is useful for entries such as passwords and

applies only to edittext.

ok Identifies the button to associate with Enter

This option applies only to defpushbutton or pushbutton.

cancel Identifies the button to associate with Esc

This option applies only to defpushbutton or pushbutton.
180 dialogbox...enddialog (statements)

Chapter 6 CASL Language
Example 1 dialogbox 61, 20, 196, 76
ltext 6, 4, 148, 8, "About calling " + ...
"Administration directly ..."
ltext 6, 24, 176, 8, "When setting up " + ...
"Accessory Manager to call Administration"
ltext 6, 36, 188, 8, "directly, you must " + ...
"leave the NetID field blank."
defpushbutton 80, 56, 36, 14, "OK", tabstop

enddialog

This example displays a simple dialog box that provides some

information for the user. The user can read the text and click OK

when ready to continue.

Example 2 string edit$
boolean check1, check2
boolean radio1, radio2
integer list1
string items[1:8]

label SampleDialog

check1 = true -- true shows the check box selected
check2 = true
list1 = 3 -- a 3 highlights the 3rd

-- item in the list
radio1 = true -- true shows the radio

-- button selected
radio2 = false -- false shows that the radio

-- button is not selected
items[1] = "Item1" -- array elements 1 through 8
items[2] = "Item2"
items[3] = "Item3"
items[4] = "Item4"
items[5] = "Item5"
items[6] = "Item6"
items[7] = "Item7"
items[8] = "Item8"
dialogbox...enddialog (statements) 181

Chapter 6 CASL Language
dialogbox 34, 23, 253, 125
ltext 4, 4, 86, 8, "Sample Dialog Box"
groupbox 4, 18, 197, 52, "Accessory Manager"
checkbox 12, 30, 154, 12, "Designed for " + ...

"the Windows environment", check1, tabstop
checkbox 12, 42, 150, 12, "Includes a " + ...

"powerful macro language", check2, tabstop ...
focus

listbox 4, 74, 72, 40, items, list1, tabstop
ltext 87, 76, 44, 8, "Enter text:"
edittext 135, 76, 94, 12, "", edit$, tabstop
radiobutton 88, 91, 93, 12, "Radio Button 1", ...

radio1, tabstop group
radiobutton 88, 103, 93, 12, ...

"Radio Button 2", radio2
defpushbutton 208, 22, 36, 14, "OK", ok ...

tabstop group
pushbutton 208, 39, 36, 14, "Cancel", cancel ...

tabstop
enddialog

This example produces a more complex dialog box that contains

check boxes, a list box, text boxes, and radio buttons.

See Also alert, choice, passchar
182 dialogbox...enddialog (statements)

Chapter 6 CASL Language
display (system variable)

Use display to enable or disable the display of incoming

characters.

Format display = option

Comments option is one of the following:

Characters sent to the screen with the print statement are

considered incoming characters and are not displayed if display is

off.

display is active only while the macro that is using it is running.

Example wait for "Password:"
display = off
reply password
display = on

In this example, the macro waits for the password prompt from

the host. When the prompt is received, display is turned off, the

contents of the system variable password are sent to the host, and

display is turned back on.

See Also print

State Result

on Incoming characters are displayed.

off Incoming characters are not displayed.
display (system variable) 183

Chapter 6 CASL Language
do (statement)

Use do to compile and run a macro.

Format do filename [, args]

Comments Like the chain statement, the do statement invokes another

macro and passes control to that macro. However, unlike the

macro that uses the chain statement, the macro issuing the do

statement does not terminate after it invokes the child macro.

Instead, it waits until the other macro returns control.

Like chain, do compiles and runs a macro source file (.XWS) if

there is no compiled version of the macro, or if the date of the

source file is more current than the date of the compiled version.

Otherwise, do runs the compiled version of the macro.

You do not have to include the macro extension, but you must

include the drive and directory where the macro is located.

In the do statement, args represents an optional argument list

that contains the individual arguments to be passed to the other

macro. Individual arguments must be separated by commas.

When you use the do statement to invoke another macro, the

macros can exchange variable information. To pass a variable

between macros, declare the variable as public in the invoking

macro and as external in the invoked macro. (For information

about public and external variables, refer to Chapter 3,

“Variables, Arrays, Procedures, and Functions.”)

For more information about invoking other macros, refer to

Chapter 4, “Interacting with the Host, Users, and Other Macros.”

Example 1 do "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
SCRIPT2"

In this example, a macro called SCRIPT2 is invoked as a child

macro.
184 do (statement)

Chapter 6 CASL Language
Example 2 do "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
SCRIPT2", "CSERVE"

In this example, the argument CSERVE is passed to SCRIPT2.

See Also arg, chain, compile
do (statement) 185

Chapter 6 CASL Language
drive (statement)

Use drive to change the default disk drive.

Format drive string

Comments string must be an expression representing a valid disk drive. The

default drive for all subsequent file operations will be set to the

new drive.

Example 1 drive "A:"

In this example, the drive is changed to A.

Example 2 drive dname$

In this example, the drive is changed to the value contained in the

variable dname$.

See Also curdrive
186 drive (statement)

Chapter 6 CASL Language
end (statement)

Use end to indicate the logical end of a macro.

Format end

Comments end marks the logical end of a macro. When an end statement is

encountered, the following occurs:

� All variables associated with that macro are discarded.

� All files opened by the macro are closed.

� Execution of the macro is terminated.

� If the macro was invoked by a parent macro, execution

continues in the parent macro.

Although it is a good programming practice to have an end

statement at the physical end of the macro source code as well as

at the logical end of the source code, CASL accepts the physical

end of the macro as the logical end if no end statement is found.

Example if not online then end

In this example, the macro ends if it is not online.

See Also halt
end (statement) 187

Chapter 6 CASL Language
enhex (function)

Use enhex to convert a string of binary data to a string of ASCII

characters in hexadecimal format.

Format x$ = enhex(string)

Comments enhex returns a string of ASCII characters that represent, in

hexadecimal format, the data in string.

Since each byte in string is converted to a two-byte hexadecimal

representation, the string returned by enhex is twice as long as

string.

Like entext and detext, enhex and dehex are complementary

functions designed to permit the exchange of binary information

over communication services that allow only 7-bit transfers.

Binary data strings that have been converted with enhex require

dehex to restore them to 8-bit binary format.

Example 1 sendable = enhex(program_line)

In this example, enhex converts the binary string program_line to

a string of ASCII characters and returns the result in sendable.

Example 2 reply enhex(spread_sheet_line)

In this example, the macro sends the result of the enhex

conversion to the host.

See Also dehex, detext, entext
188 enhex (function)

Chapter 6 CASL Language
enstore (function)

Use enstore to convert strings that may have embedded control

characters into strings of printable ASCII characters.

Format x$ = enstore(string)

Comments In general, control characters are changed to caret notation (that

is, a Ctrl+g (bell) character is changed to ^G). When you use the

resulting string in a string operation (such as a reply statement),

the characters ^G are interpreted as Ctrl+g. The vertical bar (|)

is used to represent Ctrl+m (CR).

enstore uses the grave accent(`) to protect any existing carets

from later interpretation.

enstore is useful in macro file management of passwords and

other strings that often contain embedded control characters.

Strings that have been converted with the enstore function can be

returned to their original form with the destore function.

Example 1 password = enstore("ALE" + chr(3))

In this example, the result of the enstore conversion is returned

in password.

Example 2 reply enstore(line_input_by_user)

In this example, the macro sends the result of the enstore

conversion to the host.

See Also destore
enstore (function) 189

Chapter 6 CASL Language
entext (function)

Use entext to convert a string of binary data to a string of

printable ASCII characters.

Format x$ = entext(string)

Like enhex and dehex, entext and detext are complementary

functions designed to permit the exchange of binary information

over communication services that allow only 7-bit transfers.

Binary data strings that have been converted to ASCII with

entext require the detext function to restore them to 8-bit binary

format. The algorithm used by entext changes three 8-bit

characters to four printable characters.

Example 1 sendable = entext(program_line)

In this example, the ASCII equivalent of the binary string

program_line is assigned to sendable.

Example 2 reply entext(spread_sheet_line)

In this example, spread_sheet_line is converted to ASCII

characters and then sent to the host.

See Also dehex, detext, enhex
190 entext (function)

Chapter 6 CASL Language
environ (function)

Use environ to obtain the value of a DOS environment variable.

Format x$ = environ(string)

Comments environ returns the value of a specified operating system

environment, such as the path.

string is not case-sensitive. A null string is returned if string is

not found in the operating system environment.

Example string dpath
dpath = environ("PATH")

In this example, the path setting is placed in the script’s dpath

variable.
environ (function) 191

Chapter 6 CASL Language
eof (function)

Use eof to determine whether the end-of-file marker has been

reached.

Format x = eof[(filenum)]

Comments eof returns true if the file specified in filenum is at the end of the

file. It returns false until the last record has been read; then it

returns true.

If filenum is not specified, the file number defaults to the

definput system variable.

In random files, eof returns true when the most recent get

statement returns less than the requested number of bytes. get

does not read past the end of the file.

In input (sequential) files, eof returns true when the most recent

read or read line statement reads the last record in the file. The

contents of the last record of a file depend on the method used to

create it. Some applications place a Ctrl+z (ASCII 26 decimal)

character at the end of the file; other applications do not. Still

other applications round out the file to a length evenly divisible by

128, either by writing multiple Ctrl+z characters or by writing a

single Ctrl+z followed by whatever was in the rest of the output

buffer on the previous write.

Example string name
while not eof

read name
print name

wend
end

This code fragment reads strings from an already open sequential

file and prints them to the screen. When the end-of-file marker is

reached, the while...wend loop is terminated, and the macro

ends.

See Also definput, get, read, seek
192 eof (function)

Chapter 6 CASL Language
eol (function)

Use eol to determine if a carriage-return/line-feed character,

indicating the end of a line, was part of the data read during the

last read statement.

Format x = eol[(filenum)]

Comments eol returns true if the last read statement encountered a

carriage-return/line-feed (CR/LF) character.

filenum is the file number assigned to the file when it was opened.

If filenum is not specified, the file number defaults to the

definput system variable.

Like eof, eol indicates the status of a data file following a read

operation; however, eol works only on sequential input files, and

reports whether the most recent read statement read the last field

in the line (that is, encountered a CR/LF). Most applications use

CR/LF to indicate the end of a line.

When reading comma-delimited ASCII files with read statements,

use eol to ensure alignment of the file reading commands with the

contents of the file, especially when the file was written using

another application.

Example string name
open input "names.dat" as 1
definput = 1
while not eof

read name
print name ;
while not eol

read name
print " and " ; name ;

wend
print

wend
eol (function) 193

Chapter 6 CASL Language
In this example, a file with a file number of 1 is opened for input.

The two while...wend loops control the read operations. The

outer loop is set so that the file is read until the end-of-file marker

is reached. Within each read operation, the inner loop ensures

that all of the data through the end-of-line character is read and

printed.

See Also definput, read
194 eol (function)

Chapter 6 CASL Language
errclass (system variable)

Use errclass to check the type of the last error.

Format x = errclass

Comments errclass contains an integer reflecting the type of error that last

occurred. It is 0 if no error has occurred.

errclass is not cleared when you check it. It remains unchanged

until another error occurs.

Example trap on
send fname
trap off
if error then

case errclass of
45: goto file_tran_err
26: goto call_fail_err
default: goto other_err

endcase

This example shows how to test for such things as file transfer or

call failure errors after a macro executes a file transfer command.

See Also errno, error, trap
errclass (system variable) 195

Chapter 6 CASL Language
errno (system variable)

Use errno to check the specific type of the last error.

Format x = errno

Comments errno contains an integer reflecting the error number, within the

errclass, for the error that last occurred. It is 0 if no error has

occurred.

errno is not cleared when you check it. It remains unchanged

until a different error occurs.

Example trap on
send fname
trap off
if error then E1 = errclass : E2 = errno

In this example, error trapping is turned on, a file transfer is

attempted, and trapping is turned off. If an error occurred, E1 is

set to the value in errclass, and E2 is set to the value in errno.

See Also errclass, error, trap
196 errno (system variable)

Chapter 6 CASL Language
error (function)

Use error to check for the occurrence of an error.

Format x = error

Comments error reports the occurrence of an error. It returns true if an

error occurred and false if no error occurred.

error is reset each time it is tested. If you want to continue to trap

errors throughout the execution of the macro, error must be

cleared out (tested) after each error occurs.

When you use error with the trap compiler directive, you can

direct program flow to an error handling routine.

error merely indicates that there has been an error. errclass and

errno specify which error has occurred. errclass and errno are

not cleared when tested.

Example trap on
compile "zark"
trap off
if error then print "Compile failed."

In this example, error trapping is turned on and the macro zark is

compiled. Then error trapping is turned off. If an error occurred,

the macro prints an error message.

See Also errclass, errno, trap

Note: Fatal run-time errors cannot be trapped.
error (function) 197

Chapter 6 CASL Language
exists (function)

Use exists to determine whether a file or subdirectory exists.

Format x = exists(string)

Comments string must be a legal file name or subdirectory name, and can

contain drive specifiers, path names, and wildcard characters.

exists returns true if the item specified in string exists, and

false if it does not. This function returns true if the directory

exists, even if it’s empty.

Use exists only to check for files and subdirectories. It does not

work for root directories.

Example 1 print exists("ACCMGR32.EXE")

In this example, either true or false is displayed, depending on

the existence of the file ACCMGR32.EXE.

Example 2 if exists("C:\BIN") then
print "BIN directory!"

In this example, a message is displayed if the directory BIN exists

on the C drive.

Example 3 if not exists(dat_file) then goto dat_error

In this example, the macro branches to the label dat_error if the

dat_file does not exist.
198 exists (function)

Chapter 6 CASL Language
exit (statement)

Use exit to exit from a procedure.

Format exit

Comments When an exit statement is encountered, the procedure returns

control to the statement following the one that called it.

Example proc test takes integer x
if x < 1 then exit
print x; " seconds remaining."

endproc

In this example, the procedure test is called with the argument x.

If x is less than 1, the procedure returns control to the statement

following the one that called it. Otherwise, a message is displayed,

and then the procedure returns control when endproc is executed.

See Also chain, do, end, proc...endproc
exit (statement) 199

Chapter 6 CASL Language
false (constant)

Use false to set a Boolean variable to logical false.

Format x = false

Comments false is always logical false. Like its complement true, false

exists as a way to set variables on and off. If false is converted to

an integer, its value is 0.

Example done = false
while not done
 ...
 ...
wend

In this example, the statements in the while...wend construct are

repeated until done is true.

See Also off, on, true
200 false (constant)

Chapter 6 CASL Language
filefind (function)

Use filefind to check a file name.

Format x$ = filefind[(string [, integer])]

Comments string must be a legal file specification that can include drive

specifiers and path names as well as wildcard characters.

filefind returns the full path name of a file matching the pattern

specified in string. If string is not used, filefind returns the

name of the next file in the directory that fits the last file

specification given as string. If no such file is found, filefind

returns the null string.

If both string and integer are used, filefind returns the name

of the first file in the directory whose name matches string and

whose attribute bitmap equals integer. The bitmap returned is

the total of the possible attributes shown in the following table:

Hexadecimal Decimal Attribute Meaning

0x01 1 A read-only file.

0x02 2 A hidden file. The file is excluded from

directory searches.

0x04 4 A system file. The file is excluded from

directory searches.

0x08 8 The volume name of a disk.

Note: This is not supported.

0x10 16 A directory.

0x20 32 An archive bit. This bit indicates the file

has been changed since it was last

backed up.
filefind (function) 201

Chapter 6 CASL Language
Example x = filefind("*.*")
while not null(x)

print x
x = filefind

wend

In this example, the macro displays a list of files in the current

directory.
202 filefind (function)

Chapter 6 CASL Language
filesize (function)

Use filesize to check the size of a file.

Format x = filesize[(filename)]

Comments If filename is used, filesize returns the size of the specified file.

If filename is not used, filesize returns the size of the file found

by the most recent filefind.

filename must be a legal file specification that can contain drive

specifiers and path names as well as wildcard characters.

Example 1 progsize = filesize("ACCMGR32.EXE")

In this example, the size of ACCMGR32.EXE is returned in

progsize.

Example 2 print filesize

In this example, the macro displays the size of the file found by the

most recent filefind.

See Also filefind
filesize (function) 203

Chapter 6 CASL Language
fncheck (function)

Use fncheck to check the validity of a file name specification.

Format x = fncheck(string)

Comments fncheck provides a quick way to parse file names. It returns a

value indicating the presence or absence of various file name parts

such as the drive letter, path, name, file type extension, and

wildcards. For this to work properly, string must be a legal file

name.

The parts of the file name are determined by the punctuation

found in the name. For example, if a colon is found, fncheck

assumes that a drive letter is present. The following table lists the

punctuation that is checked, the parts of the file name that are

assumed as a result, and the values that are returned

(hexadecimal and decimal).

The values are added together for every part of a file name that is

found.

Example print fncheck(long_file_spec)

In this example, the various parts of the file name

long_file_spec are displayed.

See Also fnstrip

Punctuation Part

Hexadecimal

Value

Decimal

Value

Colon Drive 0x01 1

Backslash Directory 0x02 2

Period Extension 0x04 4

Question mark Wild card 0x08 8

Asterisk Wild card 0x10 16
204 fncheck (function)

Chapter 6 CASL Language
fnstrip (function)

Use fnstrip to return specified portions of a file name.

Format x$ = fnstrip(string, specifier)

Comments fnstrip provides a quick way to parse file names, breaking them

down into component parts like the drive letter, directory, and file

name.

string must be a legal file name and can include a drive,

directory, file name, and extension, as shown in the following

example:

C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
ACCMGR32.EXE

The parts of string that are returned are controlled by the value

of specifier. Valid values for specifier are shown in the

following table.

Add 8 to specifier to return the string in all uppercase

characters; add 16 (decimal) to return the string in all lowercase

characters.

Hexadecimal Decimal Portion Returned

0x00 0 The full file name

0x01 1 The directory, file name, and extension

0x02 2 The drive, file name, and extension

0x03 3 The file name and extension

0x04 4 The drive, directory, and file name (no

extension)

0x05 5 The directory and file name (no

extension)

0x06 6 The drive and file name (no extension)

0x07 7 The file name only (no extension)
fnstrip (function) 205

Chapter 6 CASL Language
Example 1 print fnstrip(long_file_name, 3)

In this example, the macro displays the file name and extension.

Example 2 progname = fnstrip(long_file_name, 7)

In this example, fnstrip returns only the file name (no

extension).

Example 3 U_Case_ProgName = fnstrip ("C:\PROGRAM FILES\ ...
ACCMGR32\ACCMGR32.EXE", 15)

In this example, fnstrip returns the file name in uppercase

characters.

See Also fncheck
206 fnstrip (function)

Chapter 6 CASL Language
footer (system variable)

Use footer to define the footer to use when printing from

Accessory Manager.

Format footer = string

Comments string can be any valid string expression. You can embed special

characters in the string to print the date, time, and so on.

Example footer = "Date: " + date

In this example, the word Date: and the current date are assigned

to footer.

See Also header
footer (system variable) 207

Chapter 6 CASL Language
for...next (statements)

Use for...next to perform a series of statements a given number

of times while changing a variable.

Format for variable = startvalue to endvalue ...
[step stepvalue]
...
...

next [variable]

Comments variable can be any integer or real variable. You do not have to

declare the variable previously, but doing so is recommended. Do

not change the value of variable within the for...next contruct;

this can produce erroneous results.

startvalue, endvalue, and stepvalue can be any type of numeric

expression. startvalue specifies the starting value for the

counter, and endvalue specifies the ending value. (If you do not

specify a stepvalue, 1 is assumed.)

The statements in the for...next contruct are performed only

under the following conditions:

� The stepvalue is greater than or equal to 0, and the

startvalue is less than the endvalue.

� The stepvalue is less than zero, and the startvalue is

greater than the endvalue.

The statements in the for...next construct are performed until

the next statement is encountered. The value of stepvalue is then

added to variable. If stepvalue is greater than or equal to 0,

and if variable is not greater than endvalue, the statements

are repeated. If stepvalue is less than 0, and if variable is not

less than endvalue, the statements are repeated.

You can nest for...next constructs; that is, you can place one

construct inside another one. If you use nested constructs, be sure

to use different variables in each construct. In addition, make sure

that a nested construct resides entirely within another construct.
208 for...next (statements)

Chapter 6 CASL Language
Example 1 for i = 1 to 10
print i

next i

In this example, the i variable is incremented by 1 each time the

for...next construct is repeated. With each repetition, the value

of i is displayed on the screen.

Example 2 for i = 10 to 1 step -1
print i

next i

In this example, the i variable is decremented by 1 each time the

for...next construct is repeated. With each repetition, the value

of i is displayed on the screen.

Example 3 for i = 0 to 100 step 5
print i

next

In this example, the i variable is incremented by 5 each time the

for...next construct is repeated. With each repetition, the value

of i is displayed on the screen.

Example 4 for i = 0 to 10
print "Times table for "; i
for j = 1 to 10

print , i; " times "; j; " is: "; i * j
next
print

next

This is an example of nested for...next constructs.

Multiplication tables for 1
*
1 through 10

*
10 are printed.

Indentation is used here to show the relationship of the two

constructs and for program readability.
for...next (statements) 209

Chapter 6 CASL Language
freemem (function)

Use freemem to find out how much memory is available.

Format x = freemem

Comments freemem returns the amount of memory that is available at the

time the function is executed. The amount of available memory

changes depending on the activity of other applications.

Example 1 print freemem

In this example, the macro displays the amount of unused

memory.

Example 2 if freemem > 64k then ...

In this example, the macro tests whether available memory

exceeds 64 KB and then performs a certain action.
210 freemem (function)

Chapter 6 CASL Language
freetrack (function)

Use freetrack to return the lowest unused track number for the

current session.

Format x = freetrack

Comments freetrack returns the value of the next available track number. It

lets you write general-purpose macros that do not require a

specific track number. This is particularly valuable in a macro

that might form part of several other macros.

You can have any number of track statements active at one time,

limited only by available memory. freetrack returns zero if no

track numbers are available.

Always store the results of the freetrack function in a variable,

since the value of the function will change every time a new track

is used.

Example t1 = freetrack
track t1, space "system going down"
wait for key 27
if track(t1) then { bye : end }

In this example, the next available track number is assigned to t1.

The track statement, using t1, watches for the specified string.

Its occurrence is tested with the track function.

See Also track (function), track (statement)
freetrack (function) 211

Chapter 6 CASL Language
func...endfunc (function declaration)

Use func...endfunc to define and name a function.

Format func name [([type] argument ...
[, [type] argument]...)] returns type
...
...

endfunc

Comments A function is similar to a procedure, but it returns a value. You

must declare the type of the return value within the function

definition and specify a return value before returning.

The arguments are optional. If arguments are included, you must

use the same number and type of arguments in both the function

and the statement that calls the function. The arguments are

assumed to be strings unless otherwise specified.

Any variable declared within a function is local to the function.

The function can reference variables that are outside the function,

but variables within the function cannot be referenced outside the

function.

Functions can contain labels, and the labels can be the target of

gosub...return and goto statements, but such activity must be

wholly contained within the function. If you reference a label

inside a function from outside the function, an error occurs.

You can nest functions at the execution level; that is, one function

can call another. However, you must not nest functions at the

definition level; one function definition cannot contain another

function definition.

You can use forward declarations to declare functions whose

definition occurs later in the macro. The syntax of a forward

function declaration is the same as the first line of a function

definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your

functions near the end of your macro. A function must be declared

before you can call it; the forward declaration provides the means

to declare a function and later define what the function is to

perform.
212 func...endfunc (function declaration)

Chapter 6 CASL Language
The following format is used for a forward declaration:

func name [(arglist)] returns type forward

You can use a similar approach to call functions in a Windows

Dynamic Link Library (DLL). For more information, refer to

“Calling DLL Functions” on page 77.

Functions can be in separate files. To include an external function

in a macro, use the include compiler directive.

Example 1 func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the integers x and y are the function arguments.

The values of x and y are passed to the function when it is called.

The value returned by the function depends on the outcome of the

if...then...else comparison. If x is less than y, x is the return

value. If x is not less than y, y is the return value.

Example 2 func calc(integer x, integer y) returns ...
integer forward

return_value = calc(3, 8)

func calc(integer x, integer y) returns integer
if x < y then return x else return y

endfunc

In this example, the function calc is declared as a forward

declaration. Then the function is called.

See Also include, proc...endproc

Note: For ease of programming, you do not have to supply the

parameters in the actual function definition if you use a

forward declaration. For instance, the preceding example can

also be written as follows:

func calc(integer x, integer y) returns ...
 integer forward

return_value = calc(3, 8)

func calc
 if x < y then return x else return y
endfunc
func...endfunc (function declaration) 213

Chapter 6 CASL Language
genlabels (compiler directive)

Use genlabels to include or exclude label information in a

compiled macro.

Format genlabels option

Comments option is one of the following:

Example genlabels off

In this example, genlabels is set to off.

See Also genlines

Value Result

off The macro compiler suppresses label information in the compiled

macro. The resulting macro is usually smaller if you use this

directive.

on The macro compiler does not suppress label information in the

compiled macro. The default for the directive is on.

Note: You cannot use the goto @expression statement if your

macro contains the genlabels off compiler directive.
214 genlabels (compiler directive)

Chapter 6 CASL Language
genlines (compiler directive)

Use genlines to include or exclude line information in a compiled

macro.

Format genlines option

Comments option is one of the following:

Example genlines off

In this example, genlines is set to off.

See Also genlabels, trace

Value Result

off The macro compiler excludes line information from the

compiled macro.

on The macro compiler includes line information from the

compiled macro. The default for the directive is on.
genlines (compiler directive) 215

Chapter 6 CASL Language
get (statement)

Use get to read characters from a random file.

Format get [# filenum,] integer, stringvar

Comments get reads integer bytes from the random file identified by

filenum and places the bytes read in the string variable

stringvar. If filenum is not provided, the macro uses the value in

definput.

If the end-of-file marker is reached during the read, stringvar

might contain fewer than integer bytes, and might even be null.

Each get advances the file I/O pointer by integer positions or to

the end-of-file marker, whichever comes first.

To use the get statement, you must open the file in random mode

and have already declared stringvar.

Example proc byte_check takes one_byte forward
string one_byte
get #fileno, 1, one_byte
while not eof(fileno)

byte_check one_byte
get #fileno, 1, one_byte

wend

This code fragment reads an already opened random file one byte

at a time and calls a procedure to process the byte. This continues

to happen until the end-of-file marker is reached.

See Also definput, open, put, seek
216 get (statement)

Chapter 6 CASL Language
go (statement)

Use go to establish communications with the host.

Format go

Comments go establishes a connection to the host and runs a session startup

macro (if the session uses a session startup macro).

To determine whether the session uses a session startup macro,

open the session, click Session Preferences from the Options

menu, and click the CASL Macro tab. Any macro specified in the

File Name text box is the session startup macro.

If the session is already connected to the host, go does nothing.

See Also bye, quit
go (statement) 217

Chapter 6 CASL Language
gosub...return (statements)

Use gosub to transfer program control temporarily to a

subroutine. Use return to return control to the calling routine.

Format gosub label
label:
...
...
return

Comments label must be the name of a subroutine label. The subroutine

must end with a return statement.

Subroutines are helpful when you need to execute the same

statements many times in a macro. You can use subroutines as

many times as needed, and you can use the gosub statement in a

subroutine to pass control to other subroutines. You can have up

to eight nested subroutines.

When a gosub statement is encountered, the macro branches to

label. When a return statement is encountered, program control

returns to the statement after the one that called the subroutine.

A subroutine can have more than one return statement.

Subroutines can appear anywhere in a macro, but it is a good

programming practice to put all of your subroutines together,

usually at the end of the macro.

Example text = "Hello there."
gosub print_centered
end
label print_centered

l = length(text)
if l = 0 then return
print at ypos, (80/2)-(length(text)/2), text
return

This example shows a subroutine called print_centered that

displays a string called text centered on the screen.

See Also goto, label, pop
218 gosub...return (statements)

Chapter 6 CASL Language
goto (statement)

Use goto to branch to a label or expression.

Format goto label

or

goto @expression

Comments label must be the name of a program label.

expression can be any string expression that represents a label in

the macro. If you specify an expression, you must precede the

expression with the “at” sign (@), which forces the expression to be

evaluated at run time.

When a goto statement is encountered in a macro, the macro

branches to label.

Example 1 goto main_menu

In this example, the macro branches to the label main_menu.

Example 2 goto @"handle_" + xvi_keyword

In this example, the macro branches to the specified expression.

See Also gosub...return, label

Note: If you use the goto @expression form of this statement,

you cannot use the genlabels off compiler directive.
goto (statement) 219

Chapter 6 CASL Language
grab (statement)

Use grab to send the contents of the session window to a file.

Format grab

Comments grab places the text in the session window into the file specified on

the Print Screen Options dialog box.

For this statement to work, Print To File must be selected on the

Print Screen Printer Settings dialog box. To do this, open a

session, click Print Screen from the File menu, select Print To

File, and click OK.

By default, the file name is the first five letters of the session

name, followed by a letter for the month (January is A, February

is B, and so forth), and the day of the month. The file extension is

.TXT. For example, if the session name is TCPA_1 and the file is

created on April 15, the file name is TCPA_D15.TXT. To change

the file name, click Print Screen from the File menu, make sure

Print To File is selected, click Options, clear Auto Name The File,

and type the desired file name in the File Name text box. (You can

also click Browse and select the desired file from a list of available

files.)

Example grab

See Also capture, printer
220 grab (statement)

Chapter 6 CASL Language
halt (statement)

Use halt to stop macro execution.

Format halt

Comments When a halt statement is encountered, the macro stops

immediately. If there is a related parent macro, it terminates also.

Example if not online then halt

In this example, the macro stops executing if the session is not

connected to the host.

See Also end

Note: To stop a running macro using Accessory Manager, click

Stop CASL Macro from the Tools menu.
halt (statement) 221

Chapter 6 CASL Language
header (system variable)

Use header to define the header to use when printing from

Accessory Manager.

Format header = string

Comments string can be a any valid string expression. You can embed

special characters in the string to print the date, time, and so on.

Example header = "Printed using the " + description ...
 + " session."

In this example, the specified string is assigned to header.

See Also footer
222 header (system variable)

Chapter 6 CASL Language
hex (function)

Use hex to convert an integer to a hexadecimal string.

Format x$ = hex(integer)

Comments hex returns a string giving the hexadecimal representation of

integer. If integer is between 0 and 65,535, the string is 4

characters long; otherwise, it is 8 characters long.

Example print hex(32767)

In this example, the macro displays the hexadecimal equivalent of

the integer 32,767.
hex (function) 223

Chapter 6 CASL Language
hide (statement)

Use hide to minimize the session window.

Format hide

Comments This statement minimizes the session window. To minimize the

Accessory Manager application window, use the minimize

statement.

Example hide

See Also minimize, show, zoom
224 hide (statement)

Chapter 6 CASL Language
hideallquickpads (statement)

The hideallquickpads statement is supported only for backward

compatibility. Refer to “unloadallquickpads (statement)” on

page 330.
hideallquickpads (statement) 225

Chapter 6 CASL Language
hidequickpad (statement)

The hidequickpad statement is supported only for backward

compatibility. Refer to “unloadquickpad (statement)” on page 331.
226 hidequickpad (statement)

Chapter 6 CASL Language
hms (function)

Use hms to return a string in a time format.

Format x$ = hms(integer [, time_type])

Comments hms converts integer to a string in any one of a number of time

formats. integer is a number expressed in tenths of seconds, the

same unit of time CASL uses for systime.

time_type is a value that controls the format returned. It defaults

to 0. The following table shows valid values for time_type and

the resulting time format:

Example 1 print hms(300011)

In this example, the macro displays the time.

Example 2 print hms(systime, 6)

In this example, the macro displays the number of ticks that

Accessory Manager has been active in the 0h0m0s format.

See Also systime

Hexadecimal Decimal 300011 Format 101 Format

0x00 0 8:20:01.1 0:00:10.1

0x01 1 8:20:01.1 10.1

0x02 2 8:20:01 0:00:10

0x03 3 8:20:01 10

0x04 4 8h20m1.1s 0h0m10.1s

0x05 5 8h20m1.1s 10.1s

0x06 6 8h20m1s 0h0m10s

0x07 7 8h20m1s 10s
hms (function) 227

Chapter 6 CASL Language
homedir (system variable)

Use homedir to specify the drive and directory where Accessory

Manager is installed.

Format homedir

Comments This is a read-only string variable. You can use it as an argument

for another function or statement, or you can assign the value of

homedir to a variable you create.

Example 1 chdir homedir

In this example, the macro changes the active directory to the

Accessory Manager directory.

Example 2 run "winhelp.exe " + homedir + "\accmgr32.hlp"

In this example, the value of homedir is concatenated with the

strings before and after it.

Example 3 mydir = homedir

In this example, the value of homedir is assigned to another

variable. Because the new variable is not read-only, you can

manipulate its value.

See Also chdir, curdir
228 homedir (system variable)

Chapter 6 CASL Language
if...then...else (statements)

Use if...then...else to control program flow based on the value

of an expression.

Format if expression then
statement group ...

[else statement group]

Comments expression can be any type of numeric, string, or Boolean

expression. It can also be a combination of numeric, string, and

Boolean expressions connected with logical operators such as or,

and, or not. expression must logically evaluate to either true or

false. Integers do not have to be explicitly compared to 0, but

strings must be compared to produce a true/false value.

For example, the following values evaluate logically to true:

1
1 = 1
1 = (2-1)
"X" = "X"
"X" = upcase("x")

The following conditions evaluate to false:

0
1 - 1
1 = 2
"X" = "Y"

then specifies the statement to perform if expression is true.

then must appear on the same line as the if with which it is

associated, as shown in the following example:

if done = true then
print "Done!"

else specifies an optional statement to perform if expression is

not true. Each else matches the most recent unresolved if.

Blank lines are not allowed within a then...else statement

group. If you want to place blank lines in the then...else

statement group to make the text more readable, use braces ({ })

to enclose a series of statements.
if...then...else (statements) 229

Chapter 6 CASL Language
Example 1 label ask
integer user_choice
input user_choice
if user_choice = 1 then

print "Choice was 1." else
if user_choice = 2 then

print "Choice was 2." else goto ask

This example shows how to nest if statements in other if

statements.

Exampe 2 if choice = 1 then print "That was 1." : alarm

This example shows how to specify multiple statements after an

if statement. In this case, the print and alarm statements are

performed only if choice equals 1.

Example 3 if choice=1 or choice=2 then print "One or two."

if online and (choice=1) then print "We're OK."

if x=1 or (x=2 and y<>9) then ...

These three examples show how to specify multiple conditions in

an if...then statement. If the order in which the conditions are

evaluated is important, use parentheses to force the order, as

shown in the second and third examples.

Example 4 if track(1) then
{
 bye
 wait 8 minutes
 print "Eight minutes have elapsed."
 end
}

This example shows how to use braces to indicate a series of

statements in an if...then contruct. This can make if...then

statements easier to read.

Example 5 if x then { if y then a } else b

This example shows how to use braces to denote the then with

which an else should be associated.
230 if...then...else (statements)

Chapter 6 CASL Language
include (compiler directive)

Use include to include an external file in your macro.

Format include "filename"

Comments include is a compile-time directive. It is normally used to include

a source file of commonly used procedures and subroutines in a

macro.

filename is required and must be the name of an existing file

containing CASL language elements. If a file extension is omitted,

.XWS is assumed.

include does not include the same file more than once during

compilation.

Example include "myprocs"

In this example, the file MYPROCS.XWS is included in the macro.

See Also chain, do, func...endfunc, proc...endproc
include (compiler directive) 231

Chapter 6 CASL Language
inject (function)

Use inject to return a string with some characters changed.

Format x$ = inject("old_string", "repl_string" ...
[, integer])

Comments inject creates a new character string by replacing part of

old_string with the characters in repl_string, beginning at

the first character in integer. The resulting string is the same

length as old_string.

old_string cannot be null. If repl_string is too long, it is

truncated.integer must be in the range of 1 <= integer <=

length of old_string. If integer is omitted, the first character

position is assumed.

Example 1 print inject("ACTMGR32.EXE", "C", 3)

In this example, the T in ACTMGR32.EXE is changed to a C and

the result is displayed.

Example 2 dog_name = inject("xido", "F")

In this example, the x in xido is changed to an F and the result is

stored in dog_name.

See Also insert
232 inject (function)

Chapter 6 CASL Language
inkey (function)

Use inkey to return the value of a keystroke.

Format x = inkey

Comments inkey tests for keystrokes without stopping the macro to wait for a

keystroke. This is useful if you want to check for a keystroke while

performing other operations.

inkey returns the ASCII value (0–255 decimal) of the key pressed

for the printable characters and a special value for the arrow keys,

function keys, and special purpose keys (shown in the following

table):

If no keystroke is waiting, inkey returns 0.

To clear the keyboard buffer before testing for a keystroke, use the

following code:

while inkey : wend

Keyboard Key Value

F1–F10 1025–1034

Shift+F1–Shift+F10 1035–1044

Ctrl+F1–Ctrl+F10 1045–1054

Alt+F1–Alt+F10 1055–1064

Up Arrow 1281

Down Arrow 1282

Left Arrow 1283

Right Arrow 1284

Home 1285

End 1286

Page Up 1287

Page Down 1288

Insert 1297

Delete 1298
inkey (function) 233

Chapter 6 CASL Language
If the key is important, store it in a variable, and then test the

variable as shown in the following example:

x = inkey
if x <> 0 then ...

To make the user press Esc so the macro can continue, use the

following code:

print at 0, 0 , "Press Esc";
while inkey <> 27
wend

Example 1 if inkey then end

In this example, the macro ends if any key is pressed.

Example 2 while not eof(file1) and inkey <> 27 ...

In this example, a task is performed while the end-of-file marker

has not been reached and Esc is not pressed.

See Also input, stroke
234 inkey (function)

Chapter 6 CASL Language
input (statement)

Use input to accept input from the keyboard.

Format input variable

Comments variable is required, and can be any type of numeric or string

variable. You can use the backspace key to edit input.

Example input username

In this example, the data in username is accepted by the macro.

See Also inkey
input (statement) 235

Chapter 6 CASL Language
inscript (function)

Use inscript to check the labels in a macro.

Format x = inscript(expression)

Comments inscript uses expression to check for the presence of a particular

label in a macro. The value returned is true if expression is a

label in the currently running macro, false if it is not. expression

must be a string.

Example if inscript("HA_" + user_input) then ...

In this example, the macro tests for the presence of the specified

label.

See Also enlabels, label

Note: The genlabels compiler directive must be on for this

function to work properly.
236 inscript (function)

Chapter 6 CASL Language
insert (function)

Use insert to return a string with some characters added.

Format x$ = insert("old_string", "insert_string" ...
[, integer])

Comments insert creates a new character string by adding the characters in

insert_string at the integer character position in old_string.

The length of the resulting string is the combined length of

old_string and insert_string.

old_string cannot be null. integer must be in the range of

1 <= integer <= length of old_string. If integer is omitted, the

first character position is assumed.

Example 1 print insert("ACMGR32.EXE", "C", 2)

In this example, the macro inserts a C in the second position of

ACMGR32.EXE and displays the result.

Example 2 dog_name = insert("ido", "F")

In this example, an F is inserted in the first position of ido and the

result is stored in dog_name.

See Also inject
insert (function) 237

Chapter 6 CASL Language
instr (function)

Use instr to return the position of a substring within a string.

Format x = instr(string, sub_string [, integer])

Comments instr reports the position of sub_string in string starting its

search at character integer. If integer is omitted, the search

begins at the first character. If sub_string is not found within

string, 0 is returned.

instr can be used within a loop to detect the presence of a

character that you want to change to another character. The

following code fragment expands the tab characters, which some

text editors automatically embed in lines of text.

tb=chr(9)
t=instr(S, tb)
while t

s=left(S, t-1) + pad("", 9-(t mod 8)) + ...
mid(S, t+1)

t=instr(S, tb)
wend

Example 1 dog_place = instr("Here, Fido!", "Fido")

In this example, the substring Fido is found in position 7 of the

string and the result is returned in dog_place.

Example 2 if instr(fname, ".") = 0 then
fname = fname + ".XWS"

In this example, the macro looks for the presence of the file

extension for fname. If an extension delimiter (.) is not found, the

extension is added.
238 instr (function)

Chapter 6 CASL Language
intval (function)

Use intval to return the numeric value of a string.

Format x = intval(string)

Comments intval returns an integer; it evaluates string for its numerical

meaning and returns that meaning as the result. Leading white-

space characters are ignored, and string is evaluated until a non-

numeric character is encountered.

The macro language is quite flexible as to the number base

(decimal or hexadecimal) used; end string with an h if it is

hexadecimal, or k if it is decimal. (k is for kilobytes, so 1k = 1024).

A hexadecimal string cannot begin with an alphabetic character.

If the string does not start with a numeric character, place a 0 at

the beginning of the string.

The characters that have meaning to the intval function are 0

through 9, a through f, A through F, h, H, b, B, o, O, q, Q, k, K, and

hyphen (-).

Example num = intval(user_input_string)

In this example, user_input_string is converted to an integer

and returned in num.

See Also str, val
intval (function) 239

Chapter 6 CASL Language
jump (statement)

The jump statement, which is a synonym for the goto statement,

is supported only for backward compatibility. For more

information, refer to “goto (statement)” on page 211.
240 jump (statement)

Chapter 6 CASL Language
keys (system variable)

Use keys to read or set the keyboard map for the current session.

Format keys = string

Comments keys specifies the name of keyboard map for the current session.

You have to specify the full DOS path (drive and directory) where

the file is located, as well as the .EKM file extension.

Example 1 keys = "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
HSW.EKM"

In this example, the keyboard map for the session is changed to

HSW.EKM.

Example 2 if keys = "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
HSW.EKM" then ...

In this example, the macro performs some action if the keyboard

map for the current session is HSW.EKM.
keys (system variable) 241

Chapter 6 CASL Language
label (statement)

Use label to specify a named reference point in a macro file.

Format label labelname

Comments labelname can be almost any printable characters. (Do not use

reserved words or special characters as a label name.)

Labels are used in macros to provide a means of identifying a

particular line in a program.

Example label ask
input user_choice
if user_choice = 1 then

print "Choice = 1."
return

In this example, the label statement defines the location of the

ask subroutine.

See Also gosub...return, goto
242 label (statement)

Chapter 6 CASL Language
left (function)

Use left to return the left portion of a string.

Format x$ = left(string [, integer])

Comments left returns the leftmost integer characters in string. If

integer is not specified, the first character in string is returned.

If integer is greater than the length of string, then string is

returned.

Example 1 dog_name = left("Fidox", 4)

In this example, left returns Fido.

Example 2 print left(long_string, 78)

In this example, the first 78 characters of long_string are

displayed.

Example 3 reply left(dat_rec, 24)

In this example, the first 24 characters of dat_rec are sent to the

host.

See Also mid, right, slice, strip, subst
left (function) 243

Chapter 6 CASL Language
length (function)

Use length to return the length of a string.

Format x = length(string)

Comments Since CASL allows strings of up to 32,767 characters, length

always returns integers in the range of 0 <= length of string <=
32767. length returns 0 if string is null.

Example 1 print length(dog_name), dog_name

In this example, the macro displays both the length of the string

dog_name and the contents of the string.

Example 2 if length(txt_ln) then reply txt_ln
else reply "-"

In this example, the macro sends the contents of txt_ln to the

host if txt_ln contains data. Otherwise, the macro sends a dash to

the host.
244 length (function)

Chapter 6 CASL Language
loadquickpad (statement)

Use loadquickpad to open and display a QuickPad.

Format loadquickpad string

Comments This statement loads the QuickPad specified in string. You do not

have to include the .EQP file extension.

Example if online then
loadquickpad "apad"

In this example, the QuickPad named APAD.EQP is loaded if the

session is connected to a host.

See Also hideallquickpads, hidequickpad, showallquickpads,
showquickpad, unloadallquickpads, unloadquickpad
loadquickpad (statement) 245

Chapter 6 CASL Language
loc (function)

Use loc to return the position of the file pointer.

Format x = loc[(filenum)]

Comments loc returns the byte position of the next read or write in a

random file.

If filenum is omitted, the default file number is assumed. You can

set the default file number using the definput system variable.

This function is valid only for files opened in random mode.

Example 1 print loc(1)

In this example, the macro displays the location of the input/

output pointer for file number 1.

Example 2 if loc(1) = 8k then print "Eight kilobytes read."

In this example, the macro prints the specified phrase if the file

pointer is 8 KB into the file.

See Also definput, open, seek
246 loc (function)

Chapter 6 CASL Language
lowcase (function)

Use lowcase to convert a string to lowercase letters.

Format x$ = lowcase(string)

Comments lowcase converts only the letters A–Z to lowercase characters.

Numerals, punctuation marks, and notational symbols are

unaffected.

lowcase is useful for testing string equivalence since it makes the

string case-insensitive.

Example 1 print "Can't find "; lowcase(fl_name)

In this example, the macro displays a phrase that contains a file

name in lowercase letters.

Example 2 if lowcase(password) = "secret" then ...

In this example, the macro takes some action if the contents of

password is secret.

See Also upcase
lowcase (function) 247

Chapter 6 CASL Language
lprint (statement)

Use lprint to send text to a printer.

Format lprint [item] [{ , | ; } [item]] ... [;]

Comments lprint can take any item or list of items, including integers,

strings, and quoted text, separated by semicolons or commas.

item can be either an expression to be printed, the EOP keyword,

or the EOJ keyword. EOP indicates that printing should continue on

another page. EOJ indicates the end of the print job; that is, the

print spooler can now send the data to the printer. If your macro

ends without executing an lprint EOJ, the macro processor

executes one for you. If item is omitted, a blank line is printed.

If the items in the list are separated by semicolons, they are

printed with no space between them. If they are separated by

commas, they are printed at the next tab position.

A trailing semicolon at the end of the lprint statement causes the

statement to be printed without a carriage return. This is useful

when you want to print something immediately after the

statement on the same line.

Example 1 lprint "This is being sent to the printer."

This example shows how to print a simple phrase.

Example 2 lprint "There's no carriage return after this.";

This example shows how to suppress a carriage return.

Example 3 lprint "Current protocol is " ; protocol

This example shows how to print two phrases with no space

between them.

Example 4 lprint "Hello, " , name$

This example shows how to print a phrase followed by an

automatic tab to name$.

See Also print
248 lprint (statement)

Chapter 6 CASL Language
match (system variable)

Use match to check the string found during the last wait or watch

statement.

Format x$ = match

Comments match returns the most recent string for which the macro was

watching or waiting (up to 512 characters). For example, if the last

wait or watch was looking for a keystroke, match returns the

string value of the key pressed.

Use match only when the session is online.

Example wait 1 minute for "Login", "ID", "Password"
case match of

"Login": reply logon
"ID": reply userid
"Password": reply password

endcase

In this example, the macro waits up to one minute for the host to

send a prompt. The macro then uses the case...endcase

construct to determine what response to send to the host.

See Also wait, watch...endwatch
match (system variable) 249

Chapter 6 CASL Language
max (function)

Use max to return the greater of two numbers.

Format x = max(number1, number2)

Comments max compares two numbers and returns the greater of the two.

Example integer a, b, c
a = 1
b = 2
c = max(a, b)

In this example, the macro declares three variables as integers

and initializes two of them. Then it uses the max function to

compare the integers a and b and returns the greater of the two in

c. The result is c = 2.

See Also min
250 max (function)

Chapter 6 CASL Language
maximize (statement)

Use maximize to enlarge the Accessory Manager application

window to full screen size.

Format maximize

Comments maximize lets you maximize the Accessory Manager application

window. To maximize a session window, use the zoom statement.

Example maximize

See Also minize, move, restore, size, zoom
maximize (statement) 251

Chapter 6 CASL Language
mid (function)

Use mid to return the middle portion of a string.

Format x$ = mid(string, start [, len])

Comments mid returns the middle portion of string beginning at start, and

returns len bytes. If len is omitted, or if start plus len is greater

than the length of string, then the rest of the string is returned.

Example 1 dog_name = mid("Here, Fido, here boy!", 7, 4)

In this example, mid returns Fido in dog_name.

Example 2 if mid(fname, 2, 1) = ":" then dv = left(fname, 1)

In this example, dv is assigned the first character in fname if the

second character in fname is a colon.

See Also left, right, slice, strip, subst
252 mid (function)

Chapter 6 CASL Language
min (function)

Use min to return the lesser of two numbers.

Format x = min(number1, number2)

Comments min compares two numbers and returns the lesser of the two.

Example integer a, b, c
a = 1
b = 2
c = min(a, b)

In this example, the macro declares three variables as integers

and initializes two of them. Then it uses the min function to

compare the integers a and b and returns the lesser of the two in

c. The result is c = 1.

See Also max
min (function) 253

Chapter 6 CASL Language
minimize (statement)

Use minimize to reduce the Accessory Manager application

window to an icon.

Format minimize

Comments minimize lets you minimize the Accessory Manager application

window. To minimize a session window, use the hide statement.

Example minimize

See Also hide, maximize, move, restore, size
254 minimize (statement)

Chapter 6 CASL Language
mkdir (statement)

Use mkdir to create a new subdirectory.

Format mkdir directory

Comments directory must be a string expression containing a valid

directory name.

An error occurs if directory or a file with the same name as the

one you specified for the directory already exists.

You can also use the abbreviation md for this statement.

Example 1 mkdir "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
FILE"

In this example, the macro creates a directory called FILE in the

C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\

ACCMGR32 directory.

Example 2 mkdir "FILE"

In this example, the macro creates a subdirectory called FILE

under the current drive and directory.

See Also rmdir
mkdir (statement) 255

Chapter 6 CASL Language
mkint (function)

Use mkint to convert strings to integers.

Format x = mkint(string)

Comments Use mkstr to convert 32-bit integers into 4-byte strings for

compact storage in a file. When you read the file, use mkint to

convert the strings to integers.

Example get #1, 4, a_string : a_num = mkint(a_string)

In this example, the get statement reads four bytes of data from

the file with file number #1 and stores the bytes in a_string. Then

the mkint function converts the data in a_string to an integer and

stores the result in a_num.

See Also mkstr
256 mkint (function)

Chapter 6 CASL Language
mkstr (function)

Use mkstr to convert integers to strings for more compact file

storage.

Format x$ = mkstr(integer)

Comments Use mkstr to convert 32-bit integers into 4-byte strings for

compact storage in a file. When you read the file, use mkint to

convert the strings to integers.

Example 1 print mkstr(65), mkstr(6565), mkint("A")

In this example, mkstr converts 65 and 6565 to strings, and mkint

converts A to its equivalent integer value.

Example 2 put #1, mkstr(very_big_num)

In this example, the mkstr function converts very_big_num to a

string, and the put statement writes the string to a file.

See Also mkint
mkstr (function) 257

Chapter 6 CASL Language
move (statement)

Use move to move the Accessory Manager application window to a

new location on the screen.

Format move x, y

Comments This statement moves the upper-left corner of the Accessory

Manager application window to the location specified by x and y.

x and y are the pixel coordinates of the columns and rows on the

screen. The range of coordinates depends on the video hardware

used.

Example 1 move 2, 30

This example shows how to move the application window to

column 2, row 30.

Example 2 move x, y

In this example, the macro moves the application window to the

location defined by the x and y variables.

See Also maximize, minimize, restore, size
258 move (statement)

Chapter 6 CASL Language
name (function)

Use name to get the name of the current session.

Format x$ = name

Comments name returns the name of the current session. The name of the

session is the same as the .ADP file name and appears in the title

bar of the session window.

Example if name = "ansi" then go

In this example, if the name of the session is ANSI, the macro

connects the session to the host.
name (function) 259

Chapter 6 CASL Language
netid (system variable)

Use netid to read or set a network identifier for the current

session.

Format netid = string

Comments netid sets and reads the network address associated with the

current session. The netid is limited to 40 characters.

Example netid = "CIS02"

In this example, netid is set to CIS02.

Note: To set this parameter using Accessory Manager, click

Session Preferences from the Options menu, click the CASL

Macro tab, and type the desired string in the Network ID text

box.
260 netid (system variable)

Chapter 6 CASL Language
new (statement)

Use new to create or open a session.

Format new [path\filename]

Comments path is the directory where the session profiles are stored.

filename is the name of a session (.ADP file).

� If you omit the path and file name, the New Session Wizard

runs, and you can create a new session.

� If you include the path and file name with no extension, CASL

looks for a file named with the default session profile extension.

(The default is .ADP.) If you have changed the default extension

in Accessory Manager, CASL will look for a file named with this

new extension.

� If you include the path and file name with an extension, CASL

looks for a file named with the specified session profile

extension.

If you include path\filename and you receive an error message

indicating that the file could not be found, specify the drive and

directory where the session is located and try again, or check

Accessory Manager to determine if you are using the correct

session profile extension.

Example new "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
TCPA_1"

Note: For information on changing session profile extensions,

see the INFOConnect User’s Reference.
new (statement) 261

Chapter 6 CASL Language
nextchar (function)

Use nextchar to return the character waiting at the

communication device.

Format x$ = nextchar

Comments nextchar returns the character waiting at the communication

device. If no character is waiting, nextchar returns a null string

and processing continues.

The nextchar function clears the current character from the

device. If you want to retain the character, store it in a variable

and then test the variable.

Note that nextchar returns a string, while inkey returns an

integer.

Example 1 /* The terminal assumes full duplex host. */
string nchar
integer kpress
while kpress <> 27

nchar = nextchar
if not null(nchar) then print nchar;
kpress = inkey
if kpress then reply chr(kpress);

wend

This example uses the nextchar and inkey functions to get

characters from the device and the keyboard, respectively.

Example 2 nchr = nextchar : if null(nchr) then
gosub a_label

In this example, the macro tests whether or not the next character

is a blank; if it is, control is passed to the subroutine a_label.

See Also inkey, nextline
262 nextchar (function)

Chapter 6 CASL Language
nextline (statement)

Use the nextline statement to get a line of characters from the

communication port.

Format nextline string [, time_expr [, maxsize]]

Comments nextline accumulates the characters that arrive at the

communication port (delimited by carriage returns) and returns

them in the variable string.

If a carriage return has not been received since the last nextline,

the program accumulates characters until one of the following

occurs:

� A carriage return is encountered.

� The amount of time specified in time_expr is reached.

� maxsize characters have accumulated.

When one of these conditions is met, nextline returns the

resulting string and processing continues. If no characters have

been received, nextline returns a null string.

time_expr is the number of seconds to wait for the next carriage

return or the next character. This number can be an integer or a

real (floating point) number. If time_expr is reached between the

receipt of characters, the characters accumulated to that point are

returned and macro execution continues. You can use the timeout

system variable to determine if the value in time_expr was

exceeded. If time_expr is omitted, nextline accumulates

characters until a carriage return is encountered or maxsize

characters have accumulated.

maxsize is the number of bytes to accumulate before continuing if

a carriage return is not encountered. The default (and maximum)

is 255 bytes.

A line feed following a carriage return is ignored.
nextline (statement) 263

Chapter 6 CASL Language
Example 1 nextline new_string

In this example, nextline waits for characters to come in from the

port and stores them in the script’s new_string variable.

Example 2 nextline big_string, 5.5, 100
if timeout then bye

In this example, nextline waits up to 5.5 seconds for as many as

100 characters or a carriage return. The nextline statement

terminates if the specified conditions are not met within the

specified 5.5-second time period. The timeout system variable is

used to determine whether or not nextline timed out.

See Also nextchar, nextline (function), timeout
264 nextline (statement)

Chapter 6 CASL Language
nextline (function)

Use the nextline function to return a line of characters from the

communication port.

Format x$ = nextline[(delay [, maxsize])]

Comments nextline looks for a carriage return and then returns the string of

characters that have accumulated at the communication port.

If a carriage return has not been received since the last nextline,

the characters accumulate until one of the following occurs:

� A carriage return is encountered.

� The amount of time specified in delay is reached.

� maxsize characters have accumulated.

The resulting string is then returned and processing continues. If

no characters have been received, a null string is returned.

delay is the number of seconds to wait for the next carriage return

or the next character. This number can be an integer or a real

(floating point) number. If delay is reached between the receipt of

characters, the characters accumulated to that point are returned

and the macro continues executing. By default, the nextline

function waits indefinitely.

maxsize is the number of bytes to accumulate before continuing if

a carriage return is not encountered. The default is 255 bytes.

A line feed following a carriage return is ignored.
nextline (function) 265

Chapter 6 CASL Language
Example 1 new_string = nextline

In this example, nextline waits for characters to come in from the

port and stores them in the script’s new_string variable.

Example 2 big_string = big_string + nextline(15, 1024)
if timeout then bye

In this example, nextline waits up to 15 seconds between

characters for as many as 1,024 characters or a carriage return.

The nextline function terminates if a carriage return is received,

1,024 characters are received, or 15 seconds elapse between

characters. The characters are accumulated in the variable

big_string.

See Also nextchar, nextline (statement), timeout
266 nextline (function)

Chapter 6 CASL Language
null (function)

Use null to determine if a string is null.

Format x = null(string)

Comments null returns true if string is null; otherwise, it returns false.

(Null strings have no length or contents.)

The following code fragments have equivalent results when

testing the string a_string:

if null(a_string) then ...
if length(a_string) = 0 then ...

or

if length(a_string) then ...
if not null(a_string) then ...
if length(a_string) > 0 then ...

Example print null("Fido"), null("")

In this example, the null function displays false for "Fido" and

true for "".

See Also length
null (function) 267

Chapter 6 CASL Language
octal (function)

Use octal to return a number as a string in octal format.

Format x$ = octal(integer)

Comments octal returns a string containing the octal (base 8) representation

of integer. The string is 6 or 11 bytes long, depending on the

value of integer. The following table shows possible integer

ranges and the corresponding byte length.

Example print octal(32767)

This example show how to print the octal equivalent of 32,767

decimal.

Integer Ranges Byte Length

0–65,535 6

65,536–2,147,483,647 11
268 octal (function)

Chapter 6 CASL Language
off (constant)

Use off to set a variable to logical false.

Format x = off

Comments off is always logical false. Like its complement on, off exists as a

way to set variables.

Example echo = off

In this example, echo is set to off.

See Also false, on, true
off (constant) 269

Chapter 6 CASL Language
on (constant)

Use on to set a variable to logical true.

Format x = on

Comments on is always logical true. Like its complement off, on exists as a

way to set variables.

Example echo = on

In this example, the variable echo is set to on.

See Also false, off, true
270 on (constant)

Chapter 6 CASL Language
online (function)

Use online to determine whether a connection is successful.

Format x = online

Comments online returns true or false , depending on whether the session

is online to another computer. Some macro statements and

functions (such as reply) are inappropriate unless you are online

when they are executed. You can use online to control program

flow.

Example 1 while online ...

In this example, the macro performs some task while the session

is connected to the host.

Example 2 if not online then new "C:\PROGRAM FILES\ATTACHMATE\
INFOCN2K\ACCMGR32\TCPA_1"

In this example, if the session is not online, the macro opens the

specified session.
online (function) 271

Chapter 6 CASL Language
ontime (function)

Use ontime to determine the number of ticks that the session has

been online.

Format x = ontime

Comments ontime returns the number of ticks that the session has been

online. (One tick is one tenth of a second.) You can use ontime to

call accounting routines, random number routines, and similar

routines.

ontime is set to zero when a connection is established and stops

counting when the session is disconnected.

To determine the number of ticks that Accessory Manager has

been active, use the systime function.

Example 1 print ontime

In this example, the macro displays the value in ontime.

Example 2 if ontime/600 > 30 then ...

In this example, the macro tests the result of a mathematical

computation and takes some action if the result is true.

See Also online, systime
272 ontime (function)

Chapter 6 CASL Language
open (statement)

Use open to open a disk file.

Format open mode filename as #filenum

Comments Before a macro can read from or write to a file, the file must be

opened. open opens filename using filenum for the activities

allowed by mode.

mode can be any of the following options:

filename can be any legal file name. Drive and directory names

are allowed, but wild cards are not.

filenum must be in the range 1 <= filenum <= 8.

You can open a file in only one mode at a time.

Example open random "PATCH.DAT" as #1

In this example, the macro opens PATCH.DAT in random mode

with a file number of 1.

See Also get, loc, put, read, read line, seek, write, write line

Option Description

random Allows input and output to the file at any location using seek,

get, put, and loc. If the file does not exist, it is created.

input Allows read-only sequential access of an existing file using

read for comma-delimited ASCII records and read line for

lines of text. If the file does not exist, a run-time error occurs.

output Allows write-only sequential access to a newly created file

using write for comma-delimited ASCII records and write
line for lines of text. If the file exists, it is deleted and a new

one is created.

append Allows write-only sequential access to a file using write for

comma-delimited ASCII records and write line for lines of

text. If the file exists, the new data is appended to the end of it;

otherwise, a new file is created.
open (statement) 273

Chapter 6 CASL Language
pack (function)

Use pack to return a condensed string.

Format x$ = pack(string [, wild [, integer]])

Comments pack returns string with duplicate occurrences of the characters

in wild compressed according to the value of integer.

If wild is omitted, it defaults to a space.

integer specifies how consecutive characters in string are

treated. The following integer values are valid:

Example 1 pack("aabcccdd", "abc", 0)

In this example, pack returns add because aabccc is compressed to

the first occurrence of the first character (a).

Example 2 pack("aabcccdd", "abc", 1)

In this example, pack returns abcdd because only identical

consecutive characters are compressed.

Example 3 pack("HELLO WORLD!", "L", 1)

In this example, pack returns HELO WORLD! because the two Ls

in HELLO are compressed to one L.

Value Result

0 All consecutive characters in string are compressed to a single

occurrence of the first character. If integer is omitted, 0 is the

default.

1 Only identical consecutive characters in string are compressed.
274 pack (function)

Chapter 6 CASL Language
pad (function)

Use pad to return a string padded with spaces, zeros, or other

characters.

Format x$ = pad(orig_str, len_int [, pad_str ...
[, where_int]])

Comments pad can expand, truncate, or center orig_str to length len_int by

adding multiple occurrences of pad_str on one or both sides as

directed by where_int.

pad is essentially the opposite of the strip function, which

removes certain characters from a string.

orig_str can be any string.

len_int is the number of characters that the returned string

should be. If len_int is shorter than the length of orig_str,

orig_str is truncated to len_int characters, with the truncation

occurring on the right side of the string.

pad_str can be any character. If pad_str is omitted, it defaults to

a space.

The value of where_int indicates where to place the padding in

the string (as shown in the following table.) If where_int is

omitted, it defaults to 1.

This value Places the pads here

1 On the right side

2 On the left side

3 On both sides, centering orig_str in a field len_int
characters long
pad (function) 275

Chapter 6 CASL Language
Example 1 print pad("Hi", 6); pad("Hi", 6, "-"); ...
pad("Hi", 4, "+", 2)

In this example, the first pad function adds four spaces to the right

of Hi to expand the string to six characters. The second pad

function adds four hyphens to the right of Hi to expand the string

to six characters. The third pad function adds two plus signs to the

left of Hi to expand the string to four characters.

Example cntrd_string = pad("Hello!", 78, "*", 3)

In this example, the pad function centers Hello! between two sets

of 36 asterisks and returns the result in cntrd_string.

See Also strip
276 pad (function)

Chapter 6 CASL Language
passchar (system variable)

Use passchar to specify the character to display in a text box on a

dialog box created using dialogbox...enddialog and the secret

option.

Format passchar = char

Comments By default, if you create a dialog box using

dialogbox...enddialog and use edittext with the secret

option, any text that you type in the resulting text box appears as

asterisks on the screen.

Using passchar, you can specify a different character to display.

For example, rather than displaying asterisks, you could display

the plus sign.

Example passchar = "+"

See Also dialogbox...enddialog
passchar (system variable) 277

Chapter 6 CASL Language
password (system variable)

Use password to read or set a password string for the current

session.

Format password = string

Comments password sets or reads the password associated with the current

session. The password is limited to 40 characters.

Example 1 password = "PRIVATE"

This example shows how to set the password.

Example 2 print password

This example shows how to print the password.

Example 3 reply password

This example shows how to send the password to the host.

Note: To set this parameter using Accessory Manager, click

Session Preferences from the Options menu, click the CASL

Macro tab, and type the desired string in the Password text box.
278 password (system variable)

Chapter 6 CASL Language
perform (statement)

Use perform to call a procedure.

Format perform procedurename [arglist]

Comments perform is an alternate method of calling a procedure. It is like a

combination of a forward declaration and a call. Use it to call

procedures when they are located near the end of the macro.

procedurename is the name of the procedure to call.

arglist is a list of arguments that can be passed to the

procedure. arglist must contain the same number and types of

arguments in the same order as specified in the procedure

declaration. Be sure to separate the arguments with commas.

Example perform some_proc

In this example, the procedure identified by some_proc is called.

See Also proc...endproc
perform (statement) 279

Chapter 6 CASL Language
pop (statement)

Use pop to remove a return address from the gosub return stack.

Format pop

Comments You can use pop in a subroutine to alter the flow of control. pop

removes the top address from the gosub return stack so that a

subsequent return statement returns control to the previous

gosub rather than the calling gosub.

When you use the pop statement, the logic of your macro becomes

somewhat convoluted. Therefore, use this statement only on those

occasions where it cannot be avoided.

If the return stack is empty when the pop statement is

encountered, an error occurs.

Example pop

See Also gosub...return
280 pop (statement)

Chapter 6 CASL Language
press (statement)

Use press to send a series of keystrokes to the terminal emulator.

Format press [string [, string] ...] [;]

Comments press sends the string expression string to the emulator.

string can be plain text, special keystrokes (such as F1), or

terminal keystrokes that vary, depending on the type of terminal

that the session is emulating.

Be sure to enclose special keystrokes and terminal emulation

keystrokes in angle brackets, such as <F1> and <Transmit>. You

can also use the ASCII value for a keystroke, such as <8> to

represent the backspace. (Additional keystroke values are listed in

“inkey (function)” on page 225.) Characters that are not enclosed

in angle brackets are treated as plain text.

To suppress a trailing carriage return, use a semicolon at the end

of the statement. You usually need the semicolon with a T 27

session. Omitting the semicolon (and thus sending a carriage

return after the keystroke) can cause problems. For example, if

you’re sending a communication keystroke, the carriage return

generates a beep to indicate that the carriage return is being

canceled. If you’re sending a cursor movement keystroke, the

keystroke is performed, but then the carriage return moves the

cursor to the first column.

press differs from reply in that reply sends its output directly to

the host, while press passes its output through the terminal

emulator. reply does not honor any terminal keystrokes that are

part of the terminal emulator; press does honor such keystrokes.

This statement is valid only when the session is online.

Example 1 keys_out = "<up><left>" : press keys_out ;

In this example, the Up Arrow and Left Arrow keystrokes are

assigned to the variable keys_out, which is sent using the press

statement.
press (statement) 281

Chapter 6 CASL Language
Example 2 press "AM";

In this example, the macro sends the string AM without a trailing

carriage return.

Example 3 press "<8>" ;

In this example, the macro sends a backspace.

See Also reply
282 press (statement)

Chapter 6 CASL Language
print (statement)

Use print to display text in a session window.

Format print [item] [{ , | ; } [item]] ... [;]

Comments item is one of the following:

{expression | at row, col}

The keyword at specifies a position in the session window; if it is

omitted, printing begins at the current cursor position.

item can be any expression or list of expressions, including

integers, strings, and quoted text, separated by semicolons or

commas.

If the items in the list are separated by semicolons, they are

printed with no space between them. If the items are separated by

commas, they are printed at the next tab position. If no expression

is included, a blank line is printed.

A trailing semicolon at the end of the print statement causes the

item to be printed without a carriage return. This is useful when

you want to print something else on the same line, or when

printing on the last line of a session window.

print can be abbreviated as a question mark (?).

Example 1 print "The current protocol is " ; protocol

In this example, the macro prints the text The current protocol

is followed by the name of the selected protocol.

Example 2 print "This is all printed on the ";
print "same line."

In this example, the macro prints the text on a single line.

Example 3 print date , time(-1)

In this example, the macro prints the date and the current time,

with the time starting at the next tab stop.

See Also grab, printer
print (statement) 283

Chapter 6 CASL Language
printer (system variable)

Use printer to send screen output to a printer.

Format printer = option

Comments For the printer system variable, option is one of the following:

The settings specified on the Capture Options and Advanced

Capture Options dialog boxes within Accessory Manager

determine how the printing operates. To view these dialog boxes,

make sure that Show Capture Dialog When Start Capture is

selected on the Global Preferences dialog box. Then click Capture

from the File menu, and click Options on the Capture Printer

Settings dialog box.

Example printer = off

This example shows how to turn printing off.

See Also capture, grab

Option Result

on Accessory Manager sends the stream of characters coming

from the communications port to the system printer.

off Accessory Manager does not send the stream of characters

to the system printer.
284 printer (system variable)

Chapter 6 CASL Language
proc...endproc (procedure declaration)

Use proc...endproc to define and name a procedure.

Format proc name [takes [type] argument
[, [type] argument]...]
...
...

endproc

Comments A procedure is a group of statements that can be predefined in a

macro and later referred to by name.

name is the name given to the procedure. It must be unique within

the macro.

takes is optional and introduces a list of arguments that are

passed to the procedure.

type is optional and indicates the type of argument. The

arguments are assumed to be strings unless otherwise specified.

argument is any argument to the procedure. Arguments are

optional, and procedures can take a number of arguments. If

arguments are included, you must use the same number and type

of arguments in both the procedure and the statement that calls

the procedure.

endproc ends the procedure. To leave a procedure before the

endproc, use the exit statement to return control to the calling

routine.

Any variable declared within a procedure is local to the procedure.

The procedure can reference variables that are outside the

procedure, but variables within the procedure cannot be

referenced outside the procedure.

Procedures can contain labels, and the labels can be the target of

gosub...return and goto statements, but such activity must be

wholly contained within the procedure. If you reference a label

inside a procedure from outside the procedure, an error occurs.

You can nest procedures at the execution level; that is, one

procedure can call another. However, you must not nest

procedures at the definition level; one procedure definition cannot

contain another procedure definition.
proc...endproc (procedure declaration) 285

Chapter 6 CASL Language
You can use forward declarations to declare procedures whose

definition occurs later in the macro. The syntax of a forward

procedure declaration is the same as the first line of a procedure

definition, with the addition of the forward keyword.

Forward declarations are useful if you want to place your

procedures near the end of your macro. A procedure must be

declared before you can call it. The forward declaration provides

the means to declare a procedure and later define what the

procedure is to perform.

The following format is used for a forward declaration:

proc name [takes arglist] forward

You can use the proc statement to call a procedure in a Windows

Dynamic Link Library (DLL). For more information, refer to

“Calling DLL Functions” on page 77.

Procedures can be in separate files. To include an external

procedure in a macro, use the include compiler directive.

Example 1 proc logon takes string username, ...
string logon_password
watch for

"Enter user ID:" : reply username
"Enter password:" : reply logon_password
key 27 : exit

endwatch
endproc

In this example, username and logon_password are the procedure

arguments. The values of username and logon_password are

passed to the procedure when it is called. The procedure watches

for the appropriate prompts from the host and responds with one

or the other of the arguments. If the Esc key is received, the

procedure exits to the calling routine.

Note: You can also use the perform statement to call a

procedure that is not yet declared.
286 proc...endproc (procedure declaration)

Chapter 6 CASL Language
Example 2 proc logon takes string username, string ...
logon_password forward

logon "John", "secret"
proc logon takes string username, ...

string logon_password
watch for
"Enter user ID:" : reply username
"Enter password:" : reply logon_password
key 27 : exit

endwatch
endproc

In this example, the procedure logon is declared as a forward

declaration. Then it is called.

See Also func...endfunc, exit, include, gosub...return, goto,
perform

Note: For ease of programming, you do not have to supply the

parameters in the actual procedure definition if you use a

forward declaration. For instance, the foregoing example can

also be written as follows:

proc logon takes string username, ...
string logon_password forward

logon "John", "secret"
proc logon

watch for
"Enter user ID:": reply username
"Enter password:": reply logon_password
key 27: exit

endwatch
endproc
proc...endproc (procedure declaration) 287

Chapter 6 CASL Language
protocol (system variable)

Use protocol to set or read the file transfer protocol.

Format protocol = string

Comments protocol checks or changes the protocol to use for file transfers.

string can be one of the file transfer protocols listed in the

following table:

For more information about file transfer protocols, refer to

Chapter 7, “Connection, Terminal, and File Transfer Tools.”

Example 1 assume protocol "CANDE"
protocol = "CANDE"

In this example, the CANDE file transfer protocol is loaded.

Example 2 print protocol

In this example, the macro prints the current protocol selection.

See Also assume, device, terminal

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this system variable.

This protocol name Loads this file transfer protocol

CANDE CANDE

OS2200 OS2200

MAPPER MAPPER®

NOFT No file transfer protocol

Note: You cannot change to a file transfer protocol that is not

supported by the session’s terminal type. For example, you can

change from CANDE to NOFT, but you cannot change from

CANDE to OS2200, since the former is designed for use with T

27, and the latter for use with UTS. Any changes made using

this command are written to the session’s .ADP file.
288 protocol (system variable)

Chapter 6 CASL Language
put (statement)

Use put to write characters to a random file.

Format put [#filenum,] string

Comments put writes string to the random file specified by filenum. The

length of string is the number of bytes written to the file.

filenum must be an open random file number. If filenum is

omitted, the file number stored in the variable defoutput is

assumed.

Each put advances the file I/O pointer by the number of positions

in string. The put statement does not pad string to a particular

length. (To pad the string, you must use the pad function.) The put

statement also does not add quotation marks, carriage returns, or

end-of-file markers.

If the end-of-file marker is reached during the write, the file is

extended.

Example 1 put #1, some_string

In this example, the macro writes some_string to a file with a file

number of 1.

Example 2 put #fileno1, pad(rec, rec_len)

In this example, rec is padded on the right with spaces to expand

the string to rec_len characters, and then rec is written to the

file designated by fileno1.

See Also defoutput, open, pad, seek
put (statement) 289

Chapter 6 CASL Language
quit (statement)

Use quit to close a session window.

Format quit

Comments quit closes a session window. Unlike the terminate statement,

quit does not close Accessory Manager, even if you use quit to end

the last or only active session.

Example quit

See Also terminate

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this statement.
290 quit (statement)

Chapter 6 CASL Language
quote (function)

Use quote to return a string enclosed in quotation marks.

Format x$ = quote(string)

Comments quote analyzes string and returns it enclosed in quotation marks

to make it compatible with the type of comma-delimited ASCII

sequential file input/output used by many applications.

quote encloses any string that contains a comma in double (")

quotation marks.

string cannot contain both single and double quotation marks.

Example print quote("Hello, world!")

In this example, the phrase "Hello, world!" is enclosed in double

quotation marks when it is displayed on the screen.
quote (function) 291

Chapter 6 CASL Language
read (statement)

Use read to read lines containing comma-delimited fields of ASCII

data in a sequential file.

Format read [#filenum,] string_var_list

Comments The read statement operates only on files opened in input mode.

filenum must be an open input file number. If filenum is omitted,

the default input file number stored in definput is assumed.

The read statement reads lines containing comma-delimited fields

of ASCII data. Each read puts fields into the members of

string_var_list until either all of the members have had values

assigned or the end-of-file marker is reached. Quotation marks are

automatically stripped. When an end-of-line marker is reached, it

is treated as a comma (delimiter).

To use the read statement, you must have previously defined all

members of string_var_list.

Example read #fileno, alpha, beta, gamma

In this example, the read statement uses file number #fileno to

read fields of ASCII data into the variables alpha, beta, and

gamma.

See Also definput, open, read line
292 read (statement)

Chapter 6 CASL Language
read line (statement)

Use read line to read lines of text from a sequential file.

Format read line [#filenum,] string_var

Comments The read line statement operates only on files opened in input

mode.

filenum must be an open input file number. If filenum is omitted,

the default input file number stored in definput is assumed.

The read line statement reads lines of text from files. Each read

line puts in string_var all the text read, up to the next carriage-

return/line-feed (CR/LF) character or a maximum of 255

characters, whichever comes first. If the end-of-file marker has

already been reached, string_var is null.

To use the read line statement, you must have previously

declared string_var.

Example read line #1, some_text

In this example, the read line statement uses the file number #1

to read a line of text into the variable some_text.

See Also definput, open, read
read line (statement) 293

Chapter 6 CASL Language
receive (statement)

Use receive to receive a file from the host.

Format receive filename

Comments receive tells Accessory Manager to download a file from the host.

filename is the name of the file to download.

The way receive works depends on the file transfer protocol you

use. For example, some protocols automatically request

information from the host while other protocols require user

intervention to request data.

An error occurs if the statement is executed while the session is

offline.

For 3270, you must indicate the source and destination for the file.

Example 1 receive fname

In this example, receive downloads the file with the name

assigned to the fname variable.

Example 2 receive "SALES"

In this example, receive downloads a file named SALES.

Example 3 receive test.txt C:\test\test.txt

In this example, receive downloads a file named TEXT.TXT to

the test folder on the C drive. Note the single space separating the

source and the destination for the file.

See Also online, send
294 receive (statement)

Chapter 6 CASL Language
rename (statement)

Use rename to rename a file.

Format rename [some] oldname, newname

Comments This statement renames a file. oldname must be the name of an

existing file and can contain wildcards. If some is included, the

user is prompted for verification before each file is renamed.

Example 1 rename "TEST.XWS", "MAIL.XWS"

In this example, the macro renames the existing file TEST.XWS to

MAIL.XWS.

Example 2 rename FNAME1, FNAME2

In this example, the macro renames the file in the FNAME1 variable

to the name in the FNAME2 variable.
rename (statement) 295

Chapter 6 CASL Language
repeat...until (statements)

Use repeat...until to repeat a statement or series of statements

until a given condition becomes true.

Format repeat
...
...
...

until expression

Comments repeat lets you repeat a group of statements until some condition

occurs. until specifies the condition that ends the repeat

condition. expression can be any Boolean, numeric, or string

expression.

The loop is executed once before expression is checked. If

expression is false, the loop repeats until expression is true.

The repeat...until construct is a good alternative to the

while...wend construct in those instances where a loop must be

executed at least once before its terminating condition is tested.

Example 1 x = 0
repeat

x = x + 1
print x

until x = 100

In this example, the macro prints numbers from 1 to 100.

Example 2 string guess
print "Guess how to get out of here:"
repeat

input guess
until guess = "Good Bye!"

This example shows how a macro can prompt the user to type a

string and repeat the prompt until the correct string (Good Bye!)

is typed.

See Also while...wend
296 repeat...until (statements)

Chapter 6 CASL Language
reply (statement)

Use reply to send a string of text to the communication device.

Format reply [string [, string] ...] [;]

Comments reply sends one or more strings of text directly to the

communication device. string is a string expression containing

the text to be transmitted.

reply sends a carriage return after it sends string. To suppress

this, include a semicolon at the end of the statement. If you use

reply without a string, it sends only a carriage return. You

usually need the semicolon with T 27 sessions.

Use this statement only when the session is online.

For related information, see the press statement.

Example 1 reply "Hello!"

In this example, the macro sends Hello!

Example 2 reply userid + " " + password

or

reply userid, " ", password

or

reply userid;
reply " ";
reply password

In this example, the macro sends the user ID, a space, and the

password.

Example 3 reply chr(3);

In this example, the macro sends a ^C to the host.

See Also press
reply (statement) 297

Chapter 6 CASL Language
request (statement)

The request statement, which is a synonym for the receive

statement, is supported only for backward compatibility. Refer to

“receive (statement)” on page 286.
298 request (statement)

Chapter 6 CASL Language
restore (statement)

Use restore to restore the Accessory Manager application window

to its previous size.

Format restore

Comments The restore statement restores the Accessory Manager

application window to the size it was before it was maximized or

minimized.

This statement applies only to the Accessory Manager application

window. To restore a session window, use the show statement.

Example restore

See Also maximize, minimize, move, show, size
restore (statement) 299

Chapter 6 CASL Language
return (statement)

Use return to exit a function or to return from a subroutine.

Format return [expression]

Comments When the return statement is used to exit a function, it returns a

value. expression is the return value.

When return is used in a subroutine, the statement does not

return a value.

Example 1 func calc_largest (integer num1, ...
integer num2) returns integer
if num1 > num2 then return num1
else return num2

endfunc

In this example, the function compares two numbers to determine

which is larger and returns that number.

Example 2 integer i
gosub count_to_10
end
label count_to_10

for i = 1 to 10
print i

next
return

In this example, the macro calls a subroutine to display the

numbers 1 to 10. Note that the return statement does not return a

value in this example.

See Also func...endfunc, gosub...return
300 return (statement)

Chapter 6 CASL Language
right (function)

Use right to return the right portion of a string.

Format x$ = right(string [, integer])

Comments right returns the rightmost integer characters in string. If

integer is not specified, the last character in string is returned.

If integer is greater than the length of string, string is

returned.

Example 1 dog_name = right("Hey, Fido", 4)

In this example, right returns Fido in dog_name.

Example 2 print right(long_string, 78)

In this example, the last 78 characters in long_string are printed

on the screen.

See Also left, mid, slice, strip, subst
right (function) 301

Chapter 6 CASL Language
rmdir (statement)

Use rmdir to remove a subdirectory.

Format rmdir directory

Comments directory must be a string expression containing a valid

directory name. If the directory name exists and contains no files

or subdirectories, it is removed. If it does not exist or if it contains

files or subdirectories, an error occurs.

You can also use the abbreviation rd for this statement.

Example 1 rmdir "C:\PROGRAM FILES\ATTACHMATE\INFOCN2K\ACCMGR32\
TMP"

In this example, the rmdir statement removes the TMP

subdirectory.

Example 2 rmdir some_dirname

In this example, rmdir removes the directory contained in

some_dirname.

See Also mkdir
302 rmdir (statement)

Chapter 6 CASL Language
run (statement)

Use run to run another application.

Format run "filename"

Comments This statement starts another application. filename is the name

of the executable file.

If the file does not reside in a directory included in the PATH

statement of your AUTOEXEC.BAT file, you must specify the

drive and directory where the file is located.

Example 1 run "NOTEPAD.EXE"

In this example, the macro runs Notepad. (In this case, the drive

and directory are included in the PATH statement in the

AUTOEXEC.BAT file, and are therefore not required in the run

statement.)

Example 2 run "D:\APPS\CLOCK.EXE"

In this example, the macro runs CLOCK.EXE, which is located in

the APPS directory on drive D. In this case, the drive and

directory are included in the run statement, since they are not

included in the PATH statement in the AUTOEXEC.BAT file.
run (statement) 303

Chapter 6 CASL Language
save (statement)

Use save to save a session.

Format save ["name"]

Comments name is optional. If name is included, it must be a valid file name,

and the session is saved using that name. You do not have to

include the .ADP file extension. If name is not included, the session

is saved under its current name.

Example 1 save

In this example, the script saves the session using its current

name.

Example 2 save "Source"

In this example, the script saves the session as SOURCE.ADP.
304 save (statement)

Chapter 6 CASL Language
script (system variable)

Use script to specify the name of the session start-up macro.

Format script = filename

Comments script specifies the name of the macro to run each time you open

the session. filename must be a valid file name; you do not have to

include the .XWC file extension.

Example 1 script = "LOGON"

In this example, the session start-up macro is set to

LOGON.XWC.

Example 2 if script = "LOGON" then ...

In this example, some action is taken if the start-up macro for the

session is named LOGON.XWC.

See Also startup
script (system variable) 305

Chapter 6 CASL Language
scriptdesc (compiler directive)

Use scriptdesc to specify a description for a macro.

Format scriptdesc string

Comments scriptdesc defines descriptive text for a macro. string can be up

to 40 characters in length.

Example scriptdesc "Login macro for MARC"

In this example, scriptdesc is set to the specified string.
306 scriptdesc (compiler directive)

Chapter 6 CASL Language
secno (function)

Use secno to return the number of seconds since midnight.

Format x = secno[(hh, mm, ss)]

Comments secno returns the number of seconds since midnight.

You can get the number of seconds that have elapsed since

midnight for any given time by passing the hours, minutes, and

seconds of that time as hh, mm, and ss (24-hour format).

Example 1 print secno

In this example, the number of elapsed seconds since midnight are

printed on the screen.

Example 2 print secno(14, 2, 31)

In this example the macro prints the number of elapsed seconds

since midnight for the time 2:02:31 P.M.
secno (function) 307

Chapter 6 CASL Language
seek (statement)

Use seek to move a random file input/output pointer.

Format seek [#filenum,] integer

Comments seek moves a random file input/output pointer to character

position integer. The next get or put action commences at that

point. (The first byte in a file is character position 0.)

filenum must be an open input file number. If filenum is omitted,

the default input file number stored in definput is assumed.

integer is the number of bytes from the beginning of the file, not

the current location. (See the loc function earlier in this chapter

for more information.)

seek does not move the pointer beyond the end-of-file marker.

Each get or put advances the input/output pointer by the number

of bytes read or written. If the records in a random file are of fixed

length and each get reads one record, reading the file backwards

requires that after each get you must seek backwards two

records.

You must open the file in random mode to use this statement.

Examples seek #1, 0

In this example, the pointer is positioned at the beginning of the

file.

seek #1, rec_len * rec_num

In this example, seek moves the I/O pointer to the position that

results from multiplying the record length by the record number.

See Also get, loc, open, put
308 seek (statement)

Chapter 6 CASL Language
send (statement)

Use send to transfer a file to a host.

Format send filename

Comments send initiates a file transfer to the host. filename is the name of

the file to send, and can be a full path name.

The operation of this command depends on the file transfer

protocol in use. For example, some file transfer protocols display a

dialog box when you initiate a file transfer; others do not.

This statement is valid only when the session is online.

For 3270, you must indicate the source and destination for the file.

Example 1 send "B:\INVOICE"

In this example, the send statement sends the file INVOICE from

drive B on the PC to the host.

Example 2 send some_fname

In this example, the send statement sends the file assigned to

some_fname.

Example 3 send C:\test\test.txt test.txt

In this example, the send statement sends the file TEXT.TXT

from the test folder on the C drive. Note the single space

separating the source and the destination for the file.

See Also receive
send (statement) 309

Chapter 6 CASL Language
sendbreak (statement)

Use sendbreak to send a break signal to the host.

Format sendbreak

Comments This statement sends a break signal to the host. Break signals are

often interpreted by host systems as a cancel signal, and they

usually stop some action.

This statement is valid only when a session is connected to a host.

Example sendbreak

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this statement.
310 sendbreak (statement)

Chapter 6 CASL Language
session (function)

Use session to find out the current session number.

Format x = session

Comments The session function returns the session number of the current

session, which may or may not be the active session. The active

session is the session that is currently using the keyboard or is

waiting for keyboard input. The current session is the one in

which the macro is running.

To determine if the session in which the macro is running is the

active session, test the session function.
session (function) 311

Chapter 6 CASL Language
sessname (function)

Use sessname to find out the name of another session.

Format x$ = sessname(integer)

Comments sessname returns the name of the session represented by

integer. If there is no session with that number, a null string is

returned.

You can use this function to find out which sessions are running

concurrently.

Example print sessname(1), sessno(sessname(1))

In this example, the macro displays the name and number of the

session identified by the integer 1.

See Also sessno
312 sessname (function)

Chapter 6 CASL Language
sessno (function)

Use sessno to find out the session number of a session.

Format x = sessno [(string)]

Comments sessno returns the number of the session whose name is string.

You do not have to include the .ADP file extension. If there is no

session with that name, 0 is returned. If you do not specify an

argument, sessno returns the number of open sessions.

As with the sessname function, you can use sessno to find out

which sessions are running concurrently.

Example if sessno ("TCPA_1") then
print "A TCPA session exists."

In this example, the macro displays a message if one of the

currently open sessions is TCPA_1.ADP.

See Also sessname
sessno (function) 313

Chapter 6 CASL Language
show (statement)

Use show to redisplay a minimized session window.

Format show

Comments This command redisplays a session window that was previously

minimized with the hide statement.

To redisplay the Accessory Manager application window, use the

restore statement.

Example show

See Also hide, restore, zoom
314 show (statement)

Chapter 6 CASL Language
showallquickpads (statement)

Use showallquickpads to show all of the QuickPads that are

loaded for the current session.

Format showallquickpads

Comments This statement displays all of the QuickPads that were previously

hidden.

Example showallquickpads

See Also hideallquickpads, hidequickpad, loadquickpad,
showquickpad

Note: The QuickPads for the session must already be loaded,

using the loadquickpad statement.
showallquickpads (statement) 315

Chapter 6 CASL Language
showquickpad (statement)

The showquickpad statement is supported only for backward

compatibility. Refer to “loadquickpad (statement)” on page 237.
316 showquickpad (statement)

Chapter 6 CASL Language
size (statement)

Use size to change the size of the Accessory Manager application

window.

Format size x, y

Comments This statement changes the size of the Accessory Manager

application window. The window can be made larger or smaller

than its current size.

x and y are the horizontal and vertical size, in pixels.

The range of coordinates is determined by the resolution of the

video adapter and monitor in use.

Example size 200, 350

In this example, the application window is resized to be 200 pixels

wide and 350 pixels high.

See Also maximize, minimize, move, restore
size (statement) 317

Chapter 6 CASL Language
slice (function)

Use slice to return portions of a string.

Format x$ = slice(string, integer ...
[, delin_str [, where_int]])

Comments slice returns portions of strings. string is the string that you

want to work with. It is divided into substrings as delineated by

delin_str. For example, the string alpha beta gamma consists of

three substrings (alpha, beta, and gamma) which are delimited by

spaces. delin_str can be a space, comma, or any other delimiter.

(If delin_str is omitted, a space is assumed.) You can specify more

than one delimiter (for example, ";:").

When you use slice, the substring in integer position is

returned. For example, if the string consists of three substrings

and integer is 2, the second substring is returned.

where_int specifies where the function is to begin its analysis in

string.

Example 1 sub_string = slice("alpha beta gamma", 2)

In this example, slice returns beta.

Example 2 print slice("alpha, beta, gamma", 2, ",")

In this example, beta is displayed on the screen.

Example 3 sub_string = slice("alpha, beta gamma.delta", ...
3,",.")

In this example, slice returns delta.

See Also left, mid, right, strip, subst
318 slice (function)

Chapter 6 CASL Language
startup (system variable)

Use startup to read or set the name of a macro to run when

Accessory Manager is started.

Format startup = string

Comments startup sets or reads the name of the macro to run automatically

when you run Accessory Manager. If startup is null, no macro is

run at start-up time.

string must be a valid file name. You do not have to include the

.XWC file extension.

Example 1 startup = "AUTOEXEC"

In this example, a macro called AUTOEXEC.XWC runs when

Accessory Manager is started.

Example 2 startup = ""

In this example, startup is null, so no macro is run when

Accessory Manager is started.

See Also script

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this system variable.
startup (system variable) 319

Chapter 6 CASL Language
str (function)

Use str to convert a number to string format.

Format x$ = str(number)

Comments str converts numbers to strings. number can be a real (floating

point) number or an integer. str does not add any leading or

trailing spaces.

Example 1 print 2 : print str(2) : print length(str(2))

In this example, the macro displays three lines. The first line

contains the integer 2. The second line contains the string that

results from converting integer 2 to a string. The last line contains

the length of the string displayed in line 2.

Example 2 reply str(shares_to_buy)

In this example, the macro sends the string equivalent of

shares_to_buy to the host.

Example 3 integer counter
string items[10]
for counter = 1 to 10

items[counter] = "item" + str(counter)
print items[counter]

next

In this example, the macro declares counter as an integer and

items as an array of ten strings. The for...next construct is used

to display the individual elements in the array.

See Also intval, val
320 str (function)

Chapter 6 CASL Language
strip (function)

Use strip to return a string with certain characters removed.

Format x$ = strip(string [, wild [, where_int]])

Comments strip removes unwanted characters from strings. This function is

useful for removing unwanted characters from lines read from

word processing text files, leading zeros, and similar characters.

string is the string to work with. wild can be either the string of

characters that you want to remove from string or an integer that

represents the Accessory Manager character classes that you want

to remove. (For a list of these integers, refer to “class (function)” on

page 141.) The default value for wild is a space.

where_int can be one of the following:

Example 1 print strip("0123456", "0", 2)

In this example, the macro displays 123456.

Example 2 print strip("Sassafras", "as", 0)

In this example, the macro prints fr.

Example 3 reply strip(strip(user_resp, junk, 0), " ", 3)

In this example, the macro first strips out junk from user_resp

and then strips leading and trailing spaces from what remains of

user_resp. The result is sent to the host.

See Also left, mid, right, slice, subst

Value Result

0 Strip all occurrences of wild. This is the default.

1 Strip from the right side, stopping at the first occurrence of a

character not in wild.

2 Strip from the left side, stopping at the first occurrence of a character

not in wild.

3 Strip from both the right and left sides, stopping on each side at the

first occurrence of a character not in wild.
strip (function) 321

Chapter 6 CASL Language
stroke (function)

Use stroke to wait for the next keystroke from the keyboard.

Format x = stroke

Comments stroke is similar to the inkey function, but stroke stops the

macro to wait for a keystroke and returns the value of the

keystroke.

The value returned is the ASCII value of the key pressed for the

printable characters (0–127 decimal) and special keystrokes such

as the arrow keys, function keys, and special-purpose keys. (Refer

to “inkey (function)” on page 225 for a list of keys and their

corresponding numbers.)

Example print "Press a key to see its value"; : print stroke

In this example, the macro prints a message followed by the value

of the key that is pressed.

See Also inkey
322 stroke (function)

Chapter 6 CASL Language
subst (function)

Use subst to return a string with certain characters substituted.

Format x$ = subst(string, old_str, new_str)

Comments subst searches string for each occurrence of old_str and

substitutes the characters in new_str.

Example print subst("alpha", "a", "b")

In this example, the macro prints blphb.

See Also left, mid, right, slice, strip
subst (function) 323

Chapter 6 CASL Language
systime (function)

Use systime to return the number of ticks Accessory Manager has

been active.

Format x = systime

Comments systime returns the number of ticks that Accessory Manager has

been active. (One tick is one tenth of a second.) You can use

systime in delay loops, random number routines, and similar

routines.

To determine the number of ticks that a session has been online,

use the ontime function.

Example 1 print systime

In this example, the value of systime is displayed.

Example 2 if systime mod 100 = 0 then ...

In this example, the macro takes some action if the value of

systime divided by 100 is zero.

See Also ontime
324 systime (function)

Chapter 6 CASL Language
tabwidth (module variable)

Use tabwidth to determine the number of spaces a tab character

moves the cursor.

Format tabwidth = integer

Comments This variable determines the number of spaces that the cursor

moves when the tab character is received. integer can be any

number from 1 to 80. The default is 8.

Example tabwidth = 15

In this example, tabwidth is set to 15 spaces.
tabwidth (module variable) 325

Chapter 6 CASL Language
terminal (system variable)

Use terminal to read or set the type of the terminal emulation

used by the session.

Format terminal = string

Comments terminal specifies the type of terminal emulation to use for the

current session. string can be one of the following:

For more information about terminal tools, refer to Chapter 7,

“Connection, Terminal, and File Transfer Tools.”

Example 1 assume terminal "AMUTS"
terminal = "AMUTS"
termmodel = "UTS60"

This example shows how to load UTS 60 terminal emulation.

Example 2 print terminal

This example shows how to print the current terminal emulation

selection.

See Also assume, device, protocol

Note: EXTRA! Enterprise for Accessory Manager 3270 and

5250 sessions do not support this item; VT™ sessions do

support it.

String

Sub-Models (use the

termmodel variable) Emulation Type

DCAT27 None T 27

AMUTS UTS20, UTS40, UTS60 UTS

Note: You cannot change a session from one terminal

emulation type to another. For example, you cannot change a

T 27 session to a UTS session. However, you can change from

one sub-model to another. For example, you can change from a

UTS 20 to a UTS 60 session.
326 terminal (system variable)

Chapter 6 CASL Language
terminate (statement)

Use terminate to exit Accessory Manager.

Format terminate

Comments terminate exits Accessory Manager.

To close just a session, use the quit statement.

Example clear
print "Accessory Manager will close in 5 seconds."
for i = 1 to 5

print at 5, 5, time(-1)
wait 1 second

next
terminate

In this example, the macro clears the window and then displays a

message on the screen. Next, using the for...next construct, the

macro displays the current time once every second until five

seconds have elapsed. Finally, it closes Accessory Manager.

See Also quit
terminate (statement) 327

Chapter 6 CASL Language
time (function)

Use time to return a formatted time string.

Format x$ = time(integer)

Comments time returns the time in the correct format for the operating

system country code.

integer is required; it is the number of seconds elapsed since

midnight. You can use -1 as the argument to indicate the current

number of elapsed seconds since midnight.

Example 1 print time(-1)

This example prints the current time.

Example 2 x = time(32431)

In this example, the time represented by 32,431 seconds after

midnight is returned in x.

Example 3 open output "time.tst" as #1
write #1, "The file open time is " + time(-1)
while online

string_in = nextline
write line #1, string_in

wend
close #1

In this example, the file TIME.TST is opened for output, and a

phrase is written to the file using the write statement. While the

macro is online, each line of text from the host is written to the

file. Then the file is closed.

See Also curhour, curminute, cursecond
328 time (function)

Chapter 6 CASL Language
timeout (system variable)

Use timeout to determine the status of the most recent nextline,

wait, or watch...endwatch statement.

Format timeout

Comments timeout is true or false indicating whether the last nextline,

wait, or watch...endwatch statement timed out. timeout is true if

the statement exceeded the time specified before finding the

condition for which it was looking.

Example repeat
reply
wait 1 second for "Login:"

until timeout = false

This example uses the timeout system variable and wait

statement to log on to a host. In this case, the host wants a

number of carriage returns so it can check the baud rate, parity,

and stop bits. The carriage returns should be sent about once

every second, and it will take an arbitrary number of carriage

returns before the host returns the login prompt. When it is ready,

the host sends the phrase Login:.

See Also nextline, wait, watch...endwatch
timeout (system variable) 329

Chapter 6 CASL Language
trace (statement)

Use trace to trace how the lines in a macro are executing.

Format trace option

Comments trace can be useful for debugging macros.

option is one of the following:

Example trace on

In this example, tracing is activated.

See Also genlines

Value Result

on The macro displays source macro line numbers as the statements

in the macro are executed.

off The macro does not display source macro line numbers as the

statements in the macro are executed.
330 trace (statement)

Chapter 6 CASL Language
track (statement)

Use the track statement to watch for strings or keystrokes while

online.

Format track [tracknum,] condition

Comments track lets you check for any number of events or incoming strings

while the macro is online, and then take some action based on

which events occur.

track events take precedence over wait and watch events. If a

track event occurs while a macro is at a wait or watch, the wait or

watch is terminated and program control passes to the next

statement. If you use track routine (described below), control

passes to the specified subroutine.

You can check events that you are tracking only at a wait or

watch. If you do not use track routine, you have to check the

event with an if...then...else statement.

In the track statement, tracknum is the track number for the

track statement. You should include tracknum unless the

condition is routine label | procedure or clear. You can

have any number of track statements active at one time. You can

get an available track number with the freetrack function. Track

numbers stay active as long as the macro that set them is still

running. When the macro ends, the track numbers are closed.
track (statement) 331

Chapter 6 CASL Language
condition is one or more of the following, separated by commas:

Condition Result

[case] [space] string When the string specified in string is received, the value of the

corresponding track function is set to true.

case indicates that the case of string must be matched. If case is omitted,

the case of string is ignored.

space indicates that all white-space characters in string (such as spaces

or tabs) must be matched. If space is omitted, white space is ignored.

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

A tilde (~) with a dash (-) followed by a special sequence character

indicates that one or more occurrences of the sequence should be tracked.

For example, ~-# indicates that one or more occurrences of any digit (0–9)

should be tracked.

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is

quiet (no characters are received) for the amount of time specified in time.

time is one of the following time expressions:

� n hours

� n minutes

� n seconds

� n ticks (1/10 second each)

For this condition to work properly, the session must be online.
332 track (statement)

Chapter 6 CASL Language
To stop tracking a particular item, set the item to a null string.

You can use the match system variable to return the string found

during the last track operation.

Example track clear
track 1, space "system going down"
track 2, case space "no more messages"
track 3, case "thank you for calling"
track 4, key 833 -- Alt+A
track 5, quiet 1 minute
track routine check_track

wait for key 27 -- Esc
...
...
end

label check_track
if track(1) then

{ bye : wait 8 minutes : new "megamail" : end }
if track(2) then goto send_outbound_messages
if track(3) then { bye : end }
if track(4) then end
if track(5) then { alarm 6 : reply : return }

This example uses both the track statement and the track

function to watch for problems or Alt+A during an e-mail session.

See Also freetrack, inkey, match, track (function), wait,
watch...endwatch

key stroke_value key specifies a keyboard character to track.

stroke_value is the ASCII value (0–127) of the key pressed. For the

values for special keystrokes (such as the function keys or arrow keys), refer

to “inkey (function)” on page 225. The keyboard character comes from the

local keyboard, not the communication line.

routine procedure Use track routine to designate a subroutine or procedure that handles

the track event.

procedure is the name of the subroutine or procedure.

clear Use track clear to clear all tracked items and reset all of the track flags.

Condition Result
track (statement) 333

Chapter 6 CASL Language
track (function)

Use the track function to determine if a string or event for which

a track statement is watching has occurred.

Format x = track

or

x = track(tracknum)

Comments The track function checks if one of the strings or events for which

a track statement is watching has been received and, if so, which

one. Use this function with the wait and watch...endwatch

statements.

track events take precedence over wait and watch events. If a

track event occurs while a macro is at a wait or watch, the wait or

watch is terminated and program control passes to the next

statement. If you use track routine, control first passes to the

specified subroutine.

You can check events that you are tracking only at a wait or

watch. If you do not use track routine, you have to check the

event with an if...then...else statement.

tracknum is the track number for the track event. The track

function is set to true when the string or event in the

corresponding track statement is received.

The first form of the track function (x = track) returns the value

of the lowest track number that has had an event occur. If none of

the track statements has found a match, the track function

returns false.

The second form of the track function (x = track(tracknum))
returns true if the specified track event has occurred. Checking

the function clears it.
334 track (function)

Chapter 6 CASL Language
Example track 1, "System is going down"
wait for key 27
if track(1) then reply "logout"

In this example, the track statement is using track number 1 to

watch for a string. The macro is waiting for the Esc key. The track

function for track 1 is checked to determine if the string was

found, and if so, a logout message is sent to the host.

See Also match, track (statement), wait, watch...endwatch
track (function) 335

Chapter 6 CASL Language
trap (compiler directive)

Use trap to control error trapping.

Format trap option

Comments trap lets you control whether the macro continues to run when

errors occur that would normally stop the macro.

option is one of the following:

When trap is on, use the error function and the errclass and

errno system variables to determine the occurrence, class, and

number of the error. When the error function is tested for a value,

it is cleared out. If it is not cleared, the next error that occurs will

stop the macro.

In general, it is best to set trap to on just prior to a statement that

might generate an error, and then set it to off immediately after

the statement executes. Be sure to check the error return codes

because a subsequent statement may reset the codes.

Example string fname
fname = "*.exe"
trap on
send fname
trap off
if error then goto error_handler

In this example, the macro branches to an error-handling routine

if an error occurs when the send statement is executed.

See Also errclass, errno, error

Value Result

on An error condition does not interrupt the running of the macro.

off An error condition interrupts the running of the macro. This is the

default state.
336 trap (compiler directive)

Chapter 6 CASL Language
true (constant)

Use true to set a variable to logical true.

Format x = true

Comments true is always logical true. Like its complement false, true exists

as a way to set variables on and off. If true is converted to an

integer, its value is 1.

Example x = 1
done = false
while not done

x = x + 1
if x = 10 then done = true

wend

In this example, the statements in the while...wend construct are

repeated until done is true.

See Also false, off, on
true (constant) 337

Chapter 6 CASL Language
unloadallquickpads (statement)

Use unloadallquickpads to unload all QuickPads for the current

session.

Format unloadallquickpads

Comments This statement unloads all loaded QuickPads for the current

session. To unload one specific QuickPad, use the unloadquickpad

statement.

Example unloadallquickpads

See Also hideallquickpads, hidequickpad, loadquickpad,
showallquickpads, showquickpad, unloadquickpad
338 unloadallquickpads (statement)

Chapter 6 CASL Language
unloadquickpad (statement)

Use unloadquickpad to unload the specified QuickPad for the

current session.

Format unloadquickpad string

Comments This statement unloads the QuickPad specified in string. You do

not have to specify the .EQP file extension.

Example unloadquickpad "apad"

In this example, the QuickPad APAD.EQP is unloaded.

See Also hideallquickpads, hidequickpad, loadquickpad,
showallquickpads, showquickpad, unloadallquickpads
unloadquickpad (statement) 339

Chapter 6 CASL Language
upcase (function)

Use upcase to convert a string to uppercase letters.

Format x$ = upcase(string)

Comments upcase converts only the letters a–z to uppercase characters.

Numerals, punctuation marks, and notational symbols are

unaffected.

Example string yn
print "Do this again?";
input yn
if upcase(yn) = "Y" then goto start

In this example, the character typed by the user (which is stored

in the yn variable) is checked to determine if it is an uppercase Y.

If it is, the macro branches to the label start.

See Also lowcase
340 upcase (function)

Chapter 6 CASL Language
userid (system variable)

Use userid to read or set a user number or identifier for a session.

Format userid = string

Comments userid sets or reads the user identification associated with the

current session. userid is limited to 40 characters.

Example 1 userid = "76004,302"

In this example, userid is set to the specified string.

Example 2 reply userid

In this example, userid is sent to the host.

Example 3 userid = ""

In this example, userid is cleared.

Note: To set this parameter using Accessory Manager, click

Session Preferences from the Options menu, click the CASL

Macro tab, and type the desired string in the User ID text box.
userid (system variable) 341

Chapter 6 CASL Language
val (function)

Use val to return the numeric value of a string.

Format x = val(string)

Comments Like the intval function, val returns a numeric value. However,

val returns a real (floating point) number rather than an integer.

The val function evaluates string for its numerical meaning and

returns that meaning as a real number. Leading white-space

characters are ignored, and string is evaluated until a non-

numeric character is encountered.

The characters that have meaning to the val function are 0–9, ., e,

E, -, and +.

Example num = val(user_input_string)

In this example, user_input_string is converted to a real number

and returned in num.

See Also intval, str
342 val (function)

Chapter 6 CASL Language
version (function)

Use version to return the Accessory Manager version number.

Format x$ = version

Comments version returns the Accessory Manager version number as a

string.

To check the version number of Windows, use the winversion

function.

Example print version

In this example, the Accessory Manager version number is

displayed.

See Also winversion
version (function) 343

Chapter 6 CASL Language
wait (statement)

Use wait to wait for a specific event to occur or to pause the macro.

Format wait [time] [for condition]

Comments The wait statement waits the amount of time specified in time for

the specified condition to occur.

time is one of the following time expressions:

� n hours

� n minutes

� n seconds

� n ticks (1/10 second each)

If time is included and the specified condition occurs within that

time period, the macro resumes running.

If time is included and the specified condition does not occur

within that time period, the timeout system variable returns

true.

If time is omitted, the macro waits indefinitely for the specified

condition to occur.

The wait time construct can be used whether the session is off

line or online.

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support this statement.
344 wait (statement)

Chapter 6 CASL Language
condition is one or more of the following, separated by commas:

Condition Result

[case] [space] string When the string specified in string is received, the macro continues.

case indicates that the case of string must be matched. If case is omitted,
the case of string is ignored.

space indicates that all white-space characters in string (such as spaces
or tabs) must be matched. If string ends with a space and you want to
match that space, you must use <Space> in your string. If space is omitted,
white space is ignored.

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is
quiet (no characters are received) for the amount of time specified in time.

time is one of the following time expressions:

� n hours

� n minutes

� n seconds

� n ticks (1/10 second each)

For this condition to work properly, the session must be online.
wait (statement) 345

Chapter 6 CASL Language
When writing very long macros, you might need to add some wait

statements to give Accessory Manager time to process the macro.

To do this, add wait 5 ticks at several points throughout the

macro.

If you have problems with the wait for string construct (for

example, if data seems to be missing from the display), add a

second wait statement. You can wait for a string that is not at the

end of a data stream and still display the entire data stream by

using two wait statements in sequence as follows:

wait for "string"
/* data up to and including string is displayed */
wait for quiet 1 tick
/* the rest of the data stream is displayed */

Example 1 wait for "Login:" : reply userid

In this example, the macro waits indefinitely for the specified

phrase and sends the information stored in the userid system

variable to the host.

Example 2 wait 1 second for "Hello"

In this example, the macro waits one second for the specified

phrase.

key stroke_value key specifies a keyboard character for which to wait.

stroke_value is the ASCII value (1–127) of the key pressed. For the
values for special keystrokes (such as the function keys or arrow keys), refer

to “inkey (function)” on page 225. key 0 causes the macro to wait for any

keystroke.

You can retrieve the value of the key that was pressed using the match
function.

Note that the keyboard character comes from the local keyboard, not the

communication line.

count integer count indicates to wait for the number of characters specified in integer.

For this condition to work properly, the session must be online.

Condition Result
346 wait (statement)

Chapter 6 CASL Language
Example 3 wait for "A", "B", "C"
string_in = match
case string_in of

"A" : reply 'We received an "A"'
"B" : reply 'We received a "B"'
"C" : reply 'We received a "C"'

endcase

In this example, the macro waits for any one of the characters A,

B, or C. Depending on which value is received, the appropriate

response is sent to the host.

Example 4 wait 20 seconds for "in:" : if timeout then
goto no_ans

In this example, the macro waits 20 seconds for a phrase. If the

phrase does not arrive within 20 seconds, the macro branches to

the label no_ans.

Example 5 wait for count 10

In this example, the macro waits until ten characters are received.

Example 6 wait for case "UserID:"

In this example, the macro waits for an exact upper- and

lowercase match for the UserID: prompt.

See Also inkey, match, online, timeout, track (statement),
watch...endwatch
wait (statement) 347

Chapter 6 CASL Language
watch...endwatch (statements)

Use watch...endwatch to watch for one of several strings of text

from the communication device or for a keystroke.

Format watch [time] for
[[case] [space] string : [statement group]]
[quiet time] : [statement group]
[key stroke_value] : [statement group]
[count integer] : [statement group]

endwatch

Comments The watch statement waits the length of time specified in time for

one of the specified conditions to occur and then performs the

specified statement group.

time is one of the following time expressions:

� n hours

� n minutes

� n seconds

� n ticks (1/10 second each)

If time is included and the specified condition occurs within that

time period, the specified statement group is performed, and the

program logic then continues with the statement following

endwatch.

If time is included and the specified condition does not occur

within that time period, the timeout system variable returns

true.

If time is omitted, the macro waits indefinitely for the specified

condition to occur.

Note: EXTRA! Enterprise for Accessory Manager sessions do

not support these statements.
348 watch...endwatch (statements)

Chapter 6 CASL Language
The following table explains the watch conditions:

Condition Result

[case] [space] string When the string specified in string is received, the subsequent
statement group is performed.

case indicates that the case of string must be matched. If case is omitted,
the case of string is ignored.

space indicates that all white-space characters in string (such as spaces
or tabs) must be matched. If space is omitted, white space is ignored.

string can be any string or one of the following special sequences:

Sequence Meaning

~_ (underscore) Any white-space character

~A Any uppercase letter

~a Any lowercase letter

~# Any digit (0–9)

~X Any letter or digit

~? Any single character

For this condition to work properly, the session must be online.

quiet time quiet indicates that the macro should wait until the communication line is
quiet (no characters are received) for the amount of time specified in time
before performing the statement group.

time is one of the following time expressions:

� n hours

� n minutes

� n seconds

� n ticks (1/10 second each)

For this condition to work properly, the session must be online.
watch...endwatch (statements) 349

Chapter 6 CASL Language
statement group is any CASL statement.

The watch...endwatch construct is not a looping construct. When

one of the watch conditions is met, the macro executes the

appropriate statement(s). To use these statements in a loop, place

them inside a while...wend construct.

Example 1 watch for
"Login:" : goto login_procedure
"system down" : goto cant_log_in
quiet 10 minutes : goto system_is_dead
key 27 : reply "logoff" : bye : end

endwatch

In this example, the macro watches for one of the specified events.

If any of the events occurs, the statements to the right of the colon

are executed, and the watch...endwatch construct is completed.

Example 2 while online
watch for

"graphics" : reply "Yes"
"first name" : reply userid
"password" : reply password : end

endwatch
wend

This example includes the watch...endwatch construct in a

while...wend loop. The while...wend construct continues to loop

until watch receives the password: prompt.

See Also inkey, match, track, wait, while...wend

key stroke_value key specifies a keyboard character for which to watch.

stroke_value is the ASCII value (0–127) of the key pressed. For the
values for special keystrokes (such as the function keys or arrow keys), refer

to “inkey (function)” on page 225.

You can retrieve the value of the key using the match function.

The keyboard character comes from the keyboard, not the communication

line.

count integer count indicates to watch for the number of characters specified in integer.

For this condition to work properly, the session must be online.

Condition Result
350 watch...endwatch (statements)

Chapter 6 CASL Language
weekday (function)

Use weekday to return the number of the day of the week.

Format x = weekday[(integer)]

Comments weekday returns the number of the current day of the week.

Sunday is 0, Monday is 1, and so on.

If integer is specified, weekday returns the day of the week for a

given date in the past or future.

Example print weekday, weekday(365)

For a Friday, the macro in this example prints 5, a tab, and 1.

See Also curday
weekday (function) 351

Chapter 6 CASL Language
while...wend (statements)

Use while ...wend to perform a statement or group of statements

as long as a specified condition is true.

Format while expression
...
...
...

wend

Comments while...wend lets you perform one or more statements as long as

a certain expression is true.

expression is any logical expression. It can be a combination of

numerical, Boolean, or string comparisons that can be evaluated

as either true or false.

Unlike the repeat...until construct, the while...wend construct

is not executed at all if the expression is false the first time it is

evaluated.

wend indicates the end of the conditional statements.

When using any looping construct, make sure that the

terminating condition (expression) will eventually become true,

or that there is some other exit from the loop.

Example x = 1
while x <> 100

print x
x = x + 1

wend

In this example, the macro prints the numbers 1 through 99.

See Also repeat...until
352 while...wend (statements)

Chapter 6 CASL Language
winchar (function)

Use winchar to return the ASCII value of a character read from a

session window.

Format x = winchar(row, col)

Comments winchar reads a character from a session window at row, col. The

winchar function helps you determine the results of operations not

under macro control, such as the appearance of a certain character

at a certain location on the screen while under the control of a

host.

Example char1 = winchar(1, 1)

In this example, the character at row 1, column 1 is stored in

char1.

See Also nextchar, nextline, winstring
winchar (function) 353

winsizex (function)

Use winsizex to return the number of visible columns in the

session window.

Format x = winsizex

Comments winsizex returns the number of visible columns in the session

window. This function is useful in macros that display information

on the screen and have to accommodate the size of the session

window.

Example 1 print winsizex

In this example, the macro prints the number of visible columns in

the session window at its current size.

Example 2 if winsizex < 80 then zoom

If the session window is less than 80 columns in width, this

statement maximizes it.

See Also winsizey

Chapter 6 CASL Language
winsizey (function)

Use winsizey to return the number of visible rows in the session

window.

Format x = winsizey

Comments winsizey returns the number of visible rows in the session

window. This function is useful in macros that display information

on the screen and have to accommodate the size of the session

window.

Example if winsizey < 24 then zoom

If the session window is less than 24 rows in length, this

statement maximizes it.

See Also winsizex
winsizey (function) 355

Chapter 6 CASL Language
winstring (function)

Use winstring to return a string read from a session window.

Format x$ = winstring(row, col, len)

Comments winstring reads a string of characters from the session window,

beginning at row, col, for len characters, with any trailing

spaces removed.

winstring lets you determine the results of operations not under

macro control, such as the appearance of a certain string at a

certain location on the screen while under the control of a host.

Example string data
data = winstring(10, 10, 11)
if data = "Login name:" then reply userid

In this example, if the phrase Login name: appears in the session

window beginning at row 10, column 10, then the userid system

variable is sent to the host.
356 winstring (function)

Chapter 6 CASL Language
winversion (function)

Use winversion to check the Windows version number.

Format x$ = winversion

Comments winversion returns the Windows version number as a string.

To check the version number of Accessory Manager, use the

version function.

Example print winversion

In this example, the macro displays the Windows version number

on the screen.

See Also version
winversion (function) 357

Chapter 6 CASL Language
write (statement)

Use write to write lines containing comma-delimited fields of

ASCII data to a sequential file.

Format write [#filenum,] [item] [{, | ;} ...
[item]] ... [;]

Comments The write statement writes lines containing comma-delimited

fields of ASCII data to a sequential file. This statement operates

only on files opened in output or append modes.

filenum must be an open file output number. If filenum is

omitted, the file number stored in the variable defoutput is

assumed.

Each write adds the specified items to the file, with each

separated from the next by a comma. To suppress the commas in

the output file, separate the items in the list with semicolons

instead of commas. If an item includes a comma or quotation

marks, use the quote function to enclose the item in quotation

marks.

Normally, write terminates each addition to the file with a

carriage-return/line-feed (CR/LF). To suppress the CR/LF, use the

trailing semicolon.

Example 1 open output file_name as #1
write #1, alpha, beta, gamma;
close #1

In this example, the macro opens a file, writes the specified strings

to the file, and closes the file.

Example 2 write #1, quote(var1), quote(var2), quote(var3)

In this example, the macro encloses the data strings in quotation

marks before writing them to the file.

See Also defoutput, open, quote, write line
358 write (statement)

Chapter 6 CASL Language
write line (statement)

Use write line to write lines of data to a sequential file.

Format write line [#filenum,] [item] [{, | ;} ...
[item]] ... [;]

Comments The write line statement writes a line of data to a sequential

file. This statement operates only on files opened in output or

append modes.

filenum must be an open file output number. If filenum is

omitted, the file number stored in the variable defoutput is

assumed.

To write each item on a separate line, separate the items with a

comma. To write the data on a single line rather than separate

lines, separating the items with a semicolon.

Normally, write line terminates each addition to the file with a

carriage-return/line-feed (CR/LF) pair. To suppress the CR/LF,

use the trailing semicolon.

Example 1 write line "end of test"

In this example, the text end of test is written to a file. Since the

file number is not specified, the default file number in defoutput

is used.

Example 2 write line #1, some_text

In this example, the macro writes the contents of some_text to the

file identified by the file number 1.

See Also defoutput, open, write
write line (statement) 359

Chapter 6 CASL Language
xpos (function)

Use xpos to find out the column location of the cursor.

Format x = xpos

Comments xpos returns the number of the column in which the cursor is

located.

Example 1 cur_col = xpos

In this example, the macro assigns the cursor’s current column

position to the cur_col variable.

Example 2 if xpos = winsizex - 1 then alarm

In this example, the PC sounds an alarm if the cursor is located

one column less than the size of the window.

See Also ypos
360 xpos (function)

Chapter 6 CASL Language
ypos (function)

Use ypos to find out the row location of the cursor.

Format x = ypos

Comments ypos returns the number of the row in which the cursor is located.

Example 1 cur_row = ypos

In this example, the macro assigns the cursor’s current row

position to the cur_row variable.

Example 2 if ypos = winsizey - 1 then alarm

In this example, the PC sounds an alarm if the cursor position is

one row less than the size of the window.

See Also xpos
ypos (function) 361

Chapter 6 CASL Language
zoom (statement)

Use zoom to maximize a session window.

Format zoom

Comments zoom maximizes a session window.

To maximize the Accessory Manager application window, use the

maximize function.

Example if online then
zoom

In this example, the session window is maximized if the session is

online to the host.

See Also hide, show, maximize
362 zoom (statement)

Connection, Terminal, and
File Transfer Tools

In This Chapter This chapter provides information on Accessory Manager’s tools

for connecting to a host, emulating a terminal, and transferring

files.The chapter also lists the variables used by each tool.

Tool Concept . 364

Connection Tools . 365

Terminal Tools . 366

File Transfer Tools . 367

Using Tool Variables . 368

Connection Tool Variables . 369

T 27 Variables . 370

UTS Variables . 374

7

363

Chapter 7 Connection, Terminal, and File Transfer Tools
Tool Concept

A tool is a code file that controls a specific aspect of a session.

There are three types of tools:

� Connection tool

� Terminal tool

� File transfer tool

The tools correspond to the options on the Session Type dialog box

in Accessory Manager. The connection tool corresponds to the

Connection Type; the terminal tool corresponds to the Display/

Device Type; and the file transfer tool corresponds to the File

Transfer Protocol.

For example, a T 27 session uses the INFOConnect connection

tool, the T 27 terminal tool, and the CANDE file transfer tool.

Minimally, each session must have a connection tool and a

terminal tool; a file transfer tool is needed only when you want to

transfer files. Each of these tools is described in detail later in this

chapter.

You can configure the settings for the tools using the Settings

dialog box in Accessory Manager. For example, to configure the

connection tool, click Settings from the Options menu, click

Connection from the Categories list box, and complete the right

half of the dialog box. To configure the terminal tool, click Display

from the Categories list box. To configure the file transfer tool,

click File Transfer.

You can also configure many of these settings using a CASL

macro. For more information, refer to “Using Tool Variables” on

page 368.
364 Tool Concept

Chapter 7 Connection, Terminal, and File Transfer Tools
Connection Tools

The connection tool determines which mechanism the session uses

to communicate with the host. For example, T 27 and UTS use the

INFOConnect connection tool. This connection tool lets you select

the INFOConnect path to use with your session, as well as

configure other options (such as the action to take if the session is

disconnected, or the host graphics protocol to use).

You can configure the INFOConnect connection tool using either

the Settings dialog box in Accessory Manager or a CASL macro.

For information on doing this using a CASL macro, refer to “Using

Tool Variables” on page 368 and “Connection Tool Variables” on

page 369.

EXTRA! Enterprise for Accessory Manager and WinFTP sessions

do not use the INFOConnect connection tool; they have separate

connection tools of their own.

Currently, you cannot use a CASL macro to specify which

connection tool to use for EXTRA! Enterprise for Accessory

Manager or WinFTP sessions. To specify the connection tool, you

must click Session Type from Accessory Manager’s Options menu

and click the desired item from the Connection Type list box.

In addition, you cannot use a CASL macro to configure an EXTRA!

Enterprise for Accessory Manager or WinFTP connection tool. To

configure the connection tool, you must click Settings from the

Options menu, click Connection from the Categories list box, and

complete the Settings dialog box.
Connection Tools 365

Chapter 7 Connection, Terminal, and File Transfer Tools
Terminal Tools

The terminal tool determines which kind of terminal the PC will

emulate during a session. For example, the T 27 terminal tool

emulates a T 27 terminal; the UTS terminal tool emulates a UTS

20, UTS 40, or UTS 60 terminal. Each terminal tool lets you

interact with a particular type of host in the manner that the host

expects.

You cannot change a session from one terminal emulation type to

another. For example, you cannot change a T 27 session to a UTS

session. However, you can change from one sub-model to another.

For example, you can change from a UTS 20 to a UTS 60 session.

For more information, refer to “terminal (system variable)” on

page 326.

Although you cannot change the terminal tool for a session, you

can configure it using either the Settings dialog box in Accessory

Manager or a CASL macro. For information on doing this using a

CASL macro, refer to “Using Tool Variables” on page 368, “T 27

Variables” on page 370, and “UTS Variables” on page 374.

Currently, you cannot use a CASL macro to configure the ALC or

EXTRA! Enterprise for Accessory Manager terminal tools. To

configure these terminal tools, you must click Settings from the

Options menu, click Display from the Categories list box, and

complete the Settings dialog box.
366 Terminal Tools

Chapter 7 Connection, Terminal, and File Transfer Tools
File Transfer Tools

The file transfer tools determines which file transfer protocol to

use for a session. Each file transfer protocol has a unique set of

rules and conventions that define, among other things, the

number of bytes to send for each block of data and how to detect

and correct errors.

Each product comes with its own file transfer tools. For example,

T 27 comes with a CANDE file transfer tool; UTS comes with a

MAPPER and OS2200 file transfer tool; 3270 comes with a

IND$FILE file transfer tool.

You cannot change to a file transfer protocol that is not supported

by the session’s terminal type. For example, you cannot change

from CANDE to OS2200, since the former is designed for use with

T 27, and the latter for use with UTS. For more information, refer

to “protocol (system variable)” on page 288.

Currently, you cannot use a CASL macro to specify which file

transfer tool to use for EXTRA! Enterprise for Accessory Manager

sessions. To specify the file transfer tool, you must click Session

Type from Accessory Manager’s Options menu and click the

desired item from the File Transfer Protocol list box.

You can configure UTS’s MAPPER file transfer protocol using

either the Settings dialog box in Accessory Manager or a CASL

macro. For information on doing this using a CASL macro, refer to

“Using Tool Variables” on page 368 and “UTS Variables” on

page 374.

However, you cannot use a CASL macro to configure T 27’s file

transfer protocol (CANDE) or UTS’s OS2200 file transfer protocol.

To do this, you must click Settings from the Options menu, click

File Transfer from the Categories list box, and complete the

Settings dialog box.
File Transfer Tools 367

Chapter 7 Connection, Terminal, and File Transfer Tools
Using Tool Variables

The connection, terminal, and file transfer tools have predefined

variables that you can read or change using a CASL macro. These

variables correspond to options that you can change on the

Settings dialog box. The values for these variables are stored in

each session’s .ADP file.

The variable names are stored in text files with file extensions of

.PRE.

To read or set a variable, use the assume statement to specify the

tool type and file name. Then use the format variable_name =
value to set the desired configuration option. For more

information about the assume statement, refer to “assume

(statement)” on page 134.

Example assume terminal "dcat27"
CurShape = "block"

T 27 has a string variable CurShape that can have the values

Block, Underline, or VerticalBar. This macro changes the

cursor shape to a block.

Note: Do not alter the .PRE files in any manner. Otherwise,

compiling a macro becomes unpredictable.
368 Using Tool Variables

Chapter 7 Connection, Terminal, and File Transfer Tools
Connection Tool Variables

The INFOConnect connection tool supports the variables in

ICSTOOL.PRE:

Variable Type Description Values

DevModel String An internal setting that does not

appear on the Settings dialog

box but determines which paths

appear in the Path ID list box

The DevModel must match the
OpenID.

All paths
Telnet/TTY paths
Unassociated paths
Unisys® A/V Series Paths
Unisys 1100/2200 paths

DynamicPath Boolean If this variable is true, the user

must select a path from the

Select INFOConnect Path dialog

box. If it is false, the path

specified by PathID is used
automatically.

true, false

HostGraphics Integer The host graphics protocol to

use with the session

0=GraphX is not installed
1=GraphX for an 1100/2200 Series host
2=GraphX for an A Series host
3=GraphX for a UNIX® host

OpenID String An internal setting that does not

appear on the Settings dialog

box but determines which paths

appear in the Path ID list box

To use this, UseOpenID must be

set to true, and OpenID must
match the DevModel.

ANSI (Telenet/TTY paths)
MT (Unisys A Series paths)
UTS60 (Unisys 1100/2200 paths)
"" (unassociated paths)

PathID String The INFOConnect path to use

for the session

Any valid INFOConnect path name

UseOpenID Boolean Determines whether the

connection tool lists only the

INFOConnect paths matching

those specified by the OpenID

true, false
Connection Tool Variables 369

Chapter 7 Connection, Terminal, and File Transfer Tools
T 27 Variables

T 27 supports the variables in DCAT27.PRE:

Variable Type Description Values

AlarmLevel Boolean Determines whether the PC

sounds a beep when the cursor

reaches a specified location

true, false

AlternateRS Integer Character to use for the record

separator field delimiter

1–255

AlternateUS Integer Character to use for the unit

separator field delimiter

1–255

AutoSizeFont Boolean Determines whether the font

size changes with the session

window size

true, false

ClrInForms String The data to clear when you

clear data in forms mode

Unprotected, All

ColumnAlarm Integer Column number at which the

alarm will sound (if enabled)

1–100

Columns Integer Number of columns per page 1–132

CR_Interp String The interpretation of a received

CR character

CR, CRLF

CurShape String Cursor shape Block, Underline, or
VerticalBar

CursorWrap Boolean Determines whether a word

wraps to the next line

true, false

DC1_Function String The interpretation of a received

DC1 character

LineClr, StayInRcv

DC2_Function String The interpretation of a received

DC2 character

ToggleForms, AdvanceDCP

DelimiterVisible Boolean Determines whether field

delimiters are displayed or

replaced by blanks

true, false

DispCRSym Boolean Determines whether a CR

entered from the keyboard is

displayed

true, false

DisplayETX Boolean Determines whether an ETX

received from the host is

displayed

true, false
370 T 27 Variables

Chapter 7 Connection, Terminal, and File Transfer Tools
DisplayRcvdCR Boolean Determines whether a CR

received from the host is

displayed

true, false

DisplayRcvdHT Boolean Determines whether an HT

received from the host is

displayed

true, false

DispTabSym Boolean Determines whether an HT

entered from the keyboard is

displayed

true, false

ETX_Advance Boolean Determines whether the cursor

advances one position when

an ETX is received

true, false

FF_ClrsTabs Boolean Determines whether variable

tabs are cleared when a form

feed is received

true, false

Font String The name of the font to use InterComW N, InterComW
B, or a fixed-width typeface
name, such as Terminal or
Courier

FontSize Integer Point size of the font to use Varies with the font

FormXmitToCursor Boolean Determines whether only the

data up to the cursor be sent to

the host

true, false

HostScreenInvert Boolean Determines whether the Host

To Screen translation table will

be inverted

true, false

HostScreenTable String File name of the Host To

Screen translation table

filename

InsSpace Boolean Determines whether toggling

on insert mode inserts a space

at the cursor

true, false

KbdCROnly Boolean Determines whether the cursor

stays on the current row when

a CR is entered

true, false

LF_Interp String The interpretation of a received

line feed character

LF, CRLF

LineAtATimeXmit Boolean Determines whether the

transmit key sends only the line

containing the cursor

true, false

Variable Type Description Values
T 27 Variables 371

Chapter 7 Connection, Terminal, and File Transfer Tools
LowerCase Boolean Determines whether lower

case characters can be

entered from the keyboard

true, false

NoSkipField Boolean Determines whether the cursor

stays in the current field when

the field is full or goes to the

next field

true, false

Pages Integer Number of terminal pages 1–99

RawEightBit Boolean Determines whether extended

characters are sent to the host

true, false

RcvModeHold Boolean Determines whether the PC

remains in receive mode after

receiving a buffer

true, false

RowAlarm Integer Row number at which alarm

sounds (if enabled)

1–50

Rows Integer Number of rows per page 1–50

ScreenHostInvert Boolean Determines whether the

Screen to Host translation table

will be inverted

true, false

ScreenHostTable String File name of the Screen to Host

translation table

filename

ExtendedSOSI Boolean Determines whether to use SO

and SI to send extended

characters

true, false

TranslateSOSI Boolean Determines whether SO and SI

will be used to receive

extended characters

true, false

SOH_ClrsScreen Boolean Determines whether the start of

each buffer clears the screen

true, false

SOH_ExitsForms Boolean Determines whether the start of

each buffer exits forms mode

true, false

SpcfyKeyHex Boolean Determines whether the

Specify key sends the cursor

position in hexadecimal

true, false

SpcfySendsPage Boolean Determines whether the

Specify key sends the page

number as well as the cursor

position

true, false

Variable Type Description Values
372 T 27 Variables

Chapter 7 Connection, Terminal, and File Transfer Tools
SpecialScroll Boolean Determines whether received

data causes the display to

scroll

true, false

TabSize Integer The spacing between fixed tab

stops

1–100

TabStops String If variable tabs are used, a

string where a T represents

each tab

"T T T T"

TabType String How tab settings are specified Fixed, Variable

VT_PageAdvance Boolean Determines whether a received

VT causes a page advance

true, false

Variable Type Description Values
T 27 Variables 373

Chapter 7 Connection, Terminal, and File Transfer Tools
UTS Variables

UTS supports the following variables in AMUTS.PRE:

Variable Type Specifies Values

AltBrightness String The way the cursor should blink LowIntensity,
Reverse,
NormalIntensity

AlwaysHomeCursor Boolean Determines whether the cursor is

placed at the home position even if

it is protected

true, false

AutoShiftLB Integer The lower boundary for changing

to uppercase or lowercase

1–255, indicating the
character number

AutoShiftUB Integer The upper boundary for changing

to uppercase or lowercase

1–255, indicating the
character number

BeepOnSysMessage Integer Number of beeps when the host

sends a message

0–99

BlinkEnabled Boolean Determines whether blink is

enabled when the host sends a

character with a blinking attribute

true, false

CPFlags: Integer Control page flags:

Display control characters

Destructive spaces

System response mode

Upper case shift

Keyboard click

Intensity of status line (UTS 20/40)

Ignore host color (UTS 60)

Sound screen alarm (UTS 60)

Repeat screen alarm (UTS 60)

Cursor return (UTS 60)

Sets all values to their defaults

Note: All apply to UTS 20/40/60

unless noted otherwise. For

example, intensity of status line

applies only to UTS 20/40.

To specify a combination of Control

Page flags, add the values in the

Value column. For example, to

both display control characters and

use a destructive space, set

CPFlags = 0x0003.

0x0001

0x0002

0x0004

0x0008

0x0010

0x0100

0x0200

0x1000

0x2000

0x4000

0x3312
374 UTS Variables

Chapter 7 Connection, Terminal, and File Transfer Tools
CursorShape String Shape of the cursor block, underline,
verticalbar

DefaultAppName String Name of host application specified

in Windows registry

application_name

DNPartialEnd Integer The end line of a partial file transfer

in a MAPPER download

line_number

DNPartialStart Integer The start line of a partial file

transfer in a MAPPER download

line_number

DNPCFileMode String The file mode for a MAPPER

download

append, overwrite,
insert

DNPCFileType String The file type for a MAPPER

download

csv, textwithtabs,
textnotabs

DNSilentMode Integer MAPPER downloads in silent

mode

1=silent mode
0=off

DNStripHeader Integer MAPPER downloads stripping the

header

1=strip header
0=off

DynamicSizing Boolean Determines whether the font size

changes with the session window

size

true, false

EmphasisTransmit String Type of emphasis to transmit emphxmit_none,
emphxmit_e2,
emphxmit_e3

ExtendedCP Boolean Determines whether the extended

control page is enabled

true, false

FaceName String Font name UTSFONT, PEPFONT, or a
fixed-width typeface

name, such as Terminal
or Courier

FCCTransmit String Type of FCCs to transmit fccxmit_none,
fccxmit_expanded,
fccxmit_color

HostAutoLogon Boolean Determines whether automatic

logon occurs when the session is

started

true, false

HSTableName String Name of Host To Screen

translation table

filename

OverrideHostFCCs Boolean Determines whether host FCC

changes are overridden

true, false

Variable Type Specifies Values
UTS Variables 375

Chapter 7 Connection, Terminal, and File Transfer Tools
Pages Integer Number of pages 1–9

PointSize Integer Size of the font Varies with the font

PrintArea String Specifies which data to print prange_soecursor,
prange_fullpage,
prange_selected

PrinterDID Integer Device identifier where the host

should send host-initiated print

jobs

A valid DID value

(hexadecimal)

PrintMode String Controls the way data on the

screen is printed

print_form,
print_prnt,
print_xpar

ProtCPPageColor Integer Color of protected characters in the

control page

BgFg (hexadecimal)

ReadDID Integer Device identifier that will receive

data from a device such as a host

disk drive or tape system

A valid DID value

SaveHostCPChanges Boolean Determines whether to save any

Control Page settings sent by the

host

true, false

ScanBackOn
ProctectedFields

Boolean Determines whether the cursor

goes to the previous unprotected

character when you try to put

cursor on a protected field using

the arrow key

true, false

ScreenColor Integer Color of screen BgFg (hexadecimal)

SHTableName String Name of Screen To Host

translation table

filename

SplEOLProcessing Boolean Determines whether the PC scans

for an end-of-line or end-of-field

character

true, false

StatusLineColor Integer Color of status bar BgFg (hexadecimal)

TerminalType String The terminal type UTS20, UTS40, UTS60

TransmitMode String Controls how data is transmitted xmit_all, xmit_chan,
xmit_var

UnprotCPPageColor Integer Color of unprotected characters in

the control page

BgFg (hexadecimal)

Variable Type Specifies Values
376 UTS Variables

Chapter 7 Connection, Terminal, and File Transfer Tools
UPInsertLine String Indicates the line in the MAPPER

report where the insertion should

begin

line_number

UPMapperCommand Integer MAPPER command character character

UPMaxLines Integer The number of lines downloaded at

a time in a MAPPER upload

number

UPPartialEnd Integer The end line of a partial file transfer

in a MAPPER upload

line_number

UPPartialStart Integer The start line of a partial file

transfer in a MAPPER upload

line_number

UPPCFileMode String The action to take if data already

exists in the MAPPER report

append, overwrite,
insert

UPPCFileType String The file type for a MAPPER upload csv, textwithtabs,
textnotabs

UPSilentMode Integer MAPPER upload in silent mode 1=silent mode
0=off

WSCols Integer Number of columns per page 2–132

WSFCCs Integer Maximum number of FCCs per

page

number

WSRows Integer Number of rows per page 2–50

Variable Type Specifies Values
UTS Variables 377

Error Messages

In This Appendix This appendix includes the following headings:

Classes of Error Message . 380

Internal Errors . 381

Compiler Errors . 382

Input/Output Errors . 390

Mathematical and Range Errors . 392

State Errors . 393

Critical Errors . 394

Macro Execution Errors . 395

Compatibility Errors . 398

Upload/Download Errors . 399

Missing Information Errors . 400

Multiple Document Interface Errors . 401

Emulator or File Transfer Protocol Errors 402

DLL Errors . 403

Generic Module Errors . 404

File Transfer Errors . 405

Navigation Errors . 407

A

379

Appendix A Error Messages
Classes of Error Message

The tables on the following pages list the error messages that

might appear while you are compiling or running CASL macros,

as well as possible solutions to these problems.

The following table lists error message classes and a description of

each class. A class number precedes each error number.

Class Description

10 Internal errors

12 Compiler errors

13 Input/output errors

14 Mathematical and range errors

15 State errors

16 Critical errors

17 Macro execution errors

18 Compatibility errors

19 Upload/download errors

21 Missing information errors

23 Multiple Document Interface errors

28 Emulator or file transfer protocol error

33 DLL errors

40 Generic module errors

45 File transfer errors

50 Navigation errors
380 Classes of Error Message

Appendix A Error Messages
Internal Errors

Error Code Error Message Explanation

10-08 Internal error: Cannot
find a connection, file
transfer, or terminal tool.
All tools must be installed
to the frame directory
before running Accessory
Manager.

When you run Accessory Manager, it refers to the

GI32.INI file for a list of installed connection, terminal,

and file transfer protocols. There must be at least one

of each. This error can occur under the following

circumstances:

� No terminal emulator has been installed. Install a

terminal emulator (such as UTS or T27) before

running Accessory Manager.

� The GI32.INI file has been moved or deleted. Put

a copy of the GI32.INI file in your Windows

directory, or reinstall Accessory Manager.

� The GI32.INI file has been modified, and

Accessory Manager cannot read it. Delete the

GI32.INI file and reinstall Accessory Manager.

10-12 Internal error: Unknown GI
error.

An internal error has occurred. Contact Customer

Support.

10-49 Internal error: Bad row
number.

Your CASL macro has set an invalid row number. Edit

the macro to ensure that the row number is valid.

10-50 Internal error: Bad column
number.

Your CASL macro has set an invalid column number.

Edit the macro to ensure that the column number is

valid.

10-51 Internal error: Bad
length.

The length of data in your CASL macro is invalid. Edit

the macro to ensure that the data length is valid.

10-96 Unrecognized error code. An internal error has occurred. Contact Customer

Support.
Internal Errors 381

Appendix A Error Messages
Compiler Errors

Error Code Error Message Explanation

12-001 Too few arguments to
procedure/ function
'procedure/ function name'.

When calling a previously defined function or

procedure, you specified more arguments than you

originally defined. Check the definition of the

referenced procedure or function, and correct your

macro.

12-002 Too many arguments to
procedure/ function
'procedure/ function name'.

When calling a previously defined function or

procedure, you did not specify all the arguments that

you originally defined. Check the definition of the

referenced procedure or function, and correct your

macro.

12-003 Array 'array name' is too
large.

Arrays are limited to a size of 32 KB. The referenced

array exceeds that size. You can calculate the size of

an array by multiplying the size of the data elements

by the total number of elements in the array. Redefine

the size of your array.

12-004 Invalid left hand side of
assignment statement.

The operand on the left side of the assignment

statement is invalid and cannot be assigned a value.

This operand must be a variable. You cannot assign

a value to a procedure, function, or constant. Correct

the assignment statement and try again.

12-005 Bad combination of type
modifiers.

The modifiers of this declaration are mutually

exclusive. Modify the statement and try again.

12-006 No more cases allowed after
the default case.

The default case must be the last value in a case
statement. Check the structure of the case
statement.

12-007 This format of the
statement name statement is
not supported in this
version.

The statement in the macro is not supported or is

incorrectly formatted. Refer to Chapter , “CASL

Language," for the correct syntax.

12-008 End of file was encountered
in a comment.

The compiler reached the end of the source file while

processing a comment. Check to see if the end-of-

comment delimiter was accidentally deleted.

12-009 language element must be a
compile time constant.

You must use a constant. You cannot use a variable.

12-018 Duplicate declaration of
'variable'.

You have declared this variable twice. Only one

declaration is allowed.
382 Compiler Errors

Appendix A Error Messages
12-019 Reference to undeclared
variable 'variable'.

This variable has not been declared, and the

compiler was unable to determine its data type from

the context. Declare the variable in your macro.

12-020 Division by zero. In evaluating the expression in this statement, you

attempted to divide by zero. This is not allowed.

Correct your macro and try again.

12-021 Unable to open file 'bad
file'.

The compiler received an error when it tried to open

this file. Check that the file name is specified

correctly.

12-022 Error reading file 'bad
file'.

The compiler encountered an error while trying to

read this file. Make sure the file exists and is not

damaged.

12-023 For loop needs assignment. You did not set the initial value of the loop control

variable in a for statement. Correct the for statement

in your macro.

12-024 'procedure/ function name'
was declared forward as
procedure or function, not
procedure or function.

One of two things occurred:

� You declared this procedure or function as a

procedure in the forward declaration, but defined it

as a function in the actual definition.

� You declared this procedure or function as a

function in the forward declaration, but defined it

as a procedure in the actual definition.

Correct your macro so the forward declaration and

the definition match.

12-025 Too few parameters to
'procedure/ function name'
to match forward
declaration.

The definition of this procedure or function has fewer

parameters than its forward declaration. Make sure

the forward declaration and the actual definition

match exactly.

12-026 Too many parameters to
'procedure/ function name'
to match forward
declaration.

The definition of this procedure or function has more

parameters than its forward declaration. Make sure

the forward declaration and the actual definition

match exactly.

12-027 Unresolved forward
procedure or function
'procedure/ function name'.

You made a forward declaration for this procedure or

function, but you never provided an actual definition

of it. Provide a definition for this procedure or function

in your macro.

12-028 'identifier' is not a
function name.

You have used an identifier as a function, but it is not

a function. You must use a valid function name.

Error Code Error Message Explanation
Compiler Errors 383

Appendix A Error Messages
12-029 genlabels directive must be
on to use a computed goto.

At some point in your macro, you specified

genlabels off. This directive must be on (its

default state) to use the goto statement in a macro.

12-030 'identifier' is not a
label.

You have used identifier as a label, but it is not a

label. You must use a valid label.

12-031 Input statement needs a
variable, not a constant.

You must specify a variable rather than a constant for

the input statement. The input statement will use

this variable to process keyboard input.

12-032 Internal error: compiler
module line number.

An internal error has occurred in the compiler.

Contact Customer Support and be prepared to

furnish a copy of the macro that caused the error

along with the exact information in this message.

12-033 Invalid time interval. You specified a time interval incorrectly. Check the

way you expressed the time.

12-034 Unresolved label:
'identifier'.

This label was never defined anywhere in your

macro. Add the label to the appropriate section of

your macro.

12-035 Lexical analysis error:
specific error.

This error occurred during the lexical analysis phase

of the compilation process. Check this section of your

macro for syntax errors.

12-036 List box contents must be
string or one-dimensional
string array.

The variable that contains the list of items to be

included in a list box must be either a string of items

separated by commas or a one-dimensional array of

strings.

12-037 Compiler out of memory. The compiler ran out of memory while compiling your

macro. Close any unneeded applications and try

again.

12-038 Too many arguments to
Nextline.

Too many arguments were specified for the

nextline statement. Check the list of arguments

you are passing to this statement.

12-040 Second operand of mod
operator must be positive.

The modulus function allows only positive numbers

for its second operand. Revise your statement to use

a positive number.

12-042 Cannot have more than one
OK or Cancel button.

A dialog box can have only one OK button and one

Cancel button. Revise your macro accordingly.

12-043 Could not open module file
'bad file'.

Accessory Manager could not open the module file

you specified. Make sure that the file name is correct

and that the file resides in the proper location.

Error Code Error Message Explanation
384 Compiler Errors

Appendix A Error Messages
12-044 Parsing error: specific
error.

This error occurred during the syntactic analysis

phase of the compilation process. Check this section

of your macro for syntax errors.

12-045 Print format specification
is not supported in this
version.

Accessory Manager does not support print format

specifications. Revise your macro to eliminate these

specifications.

12-046 'identifier' is not a
procedure name.

You have used an identifier as a procedure, but it is

not a procedure. You must use a valid procedure

name.

12-047 Exit can only be used
inside a procedure.

The compiler encountered an exit statement

outside of a procedure. Check the procedures and

functions in your macro and make sure that they

begin and end properly.

12-048 Return with value can only
be used inside a function.

The compiler encountered a return with a value

outside of a function. Values can only be returned

from functions. Check the procedure and functions in

your macro begin and make sure that they begin and

end properly.

12-049 Exit cannot be used in a
function.

The exit statement cannot be used to leave a

function. It can only be used to leave procedures.

Use the return statement instead of the exit
statement in a function.

12-050 Return in a procedure
cannot return a value.

Procedures cannot return values. The return
statement is used to return a value inside a function.

Either redefine your procedure as a function, or

change the return statement in your procedure.

12-051 Bad use of '^' in string
constant.

The caret symbol followed by a control character

indicates an unprintable control character in a string

constant. The character following the caret is not a

valid control character. Check the character following

the caret in the string constant.

12-052 String constant too long. The maximum length of a constant is 256 characters.

Shorten your string to fit within this limit.

12-053 String subscript out of
range.

The subscript you specified to access a character in

this string is beyond the end of the string. Make sure

the subscript is within the bounds of the string.

12-054 Too few subscripts to array
name.

You have not specified enough subscripts to

reference this array. You specified more dimensions

when you declared the array than you used when you

referenced it. Correct either the declaration or the

reference.

Error Code Error Message Explanation
Compiler Errors 385

Appendix A Error Messages
12-055 Too many subscripts to
array name.

You have specified too many subscripts to reference

this array. You specified fewer dimensions when you

declared the array than you used when you

referenced it. Correct either the declaration or the

reference.

12-056 Syntax error at 'bad
token'.

The compiler found an error in your macro near bad

token. Make sure that all language elements in this

section of your macro are specified properly.

12-057 Bad token: 'string'. The compiler did not recognize a string in your

macro. Make sure that all language elements in

string, and in the instructions surrounding it, are

specified properly.

12-058 Track procedure cannot take
parameters.

The procedure you named to the track statement

cannot have any parameters. Make sure that both

the track statement and the procedure definition

are specified properly.

12-059 Track procedure cannot be a
function.

The procedure you named to the track statement

must be a procedure, not a function. Make sure that

both the track statement and the procedure

definition are specified properly.

12-060 Track procedure can only be
a label or user procedure.

The procedure you named to the track statement

may only be a procedure or a label. Make sure that

both the track statement and the procedure

definition are specified properly.

12-061 Type error: Assume file
name must be a string
constant.

The file name you specified in the assume statement

must be a string constant, not a variable. Make sure

that the name is a string and a constant.

12-062 Type error: cannot perform
"operator" on types type 1
and type 2.

This operation cannot be performed on variables of

these types. Check the operation and make sure that

the operands are of compatible types.

12-063 Type error: case selector
cannot be bad type.

The type specified in the message cannot be used for

the selector in a case statement. Use a different type

for the selector.

12-064 Type error: cannot convert
type 1 to type 2.

The compiler cannot convert the values specified.

Check the operation and make sure that the

operands are of compatible types.

Error Code Error Message Explanation
386 Compiler Errors

Appendix A Error Messages
12-065 Type error: "string" cannot
be converted to type.

The compile encountered an error when attempting

to convert this string into type. This conversion was

required by the usage of the string in your macro.

Make sure the value in this string is compatible with

the data types required by this statement. Perhaps a

string is not required in this case and some other data

type could be used.

12-066 Type error: language
element must be good type,
not bad type.

You used an invalid type for language element. You

must use the type specified in good type.

12-067 Type error: language
element must be a type
variable.

You used an invalid type for language element. You

must use a variable of the type specified in type. A

constant is not allowed in this situation.

12-068 Type error: Parameter
number of 'procedure/
function name' was declared
forward as good type, not
bad type.

In the forward declaration of this procedure or

function, this parameter was declared to be of a

different type than in the actual definition. Make sure

the forward declaration and the actual definition

match exactly.

12-069 Type error: Return type of
'function name' was
declared forward as good
type, not bad type.

In the forward declaration of this function, the return

value was declared to be of a different type than in

the actual definition. Make sure the forward

declaration and the actual definition match exactly.

12-070 Type error: colors must be
integer or specific color
names.

You must either use an integer expression or specific

color names, such as "red," to specify a color.

12-071 Type error: argument number
of procedure or function
'procedure/ function name'
must be good type, not bad
type.

One of the arguments for this procedure or function is

of the wrong type. Check the definition of the

procedure or function and make sure that you are

calling it properly.

12-072 Type error: cannot
subscript variable.

This variable is not an array variable and cannot be

subscripted. Either declare the variable to be an

array, or use an existing array variable.

12-073 Type error: subscript
'number' of 'array name'
must be good type, not bad
type.

This subscript is of the wrong type. Make sure the

subscript is of the type specified in good type.

Error Code Error Message Explanation
Compiler Errors 387

Appendix A Error Messages
12-074 Type error: subscript
'string name' must be good
type, not bad type.

This subscript is the wrong type. Make sure the

subscript is of type specified in good type.

12-075 Type error: cannot perform
'operator' on type bad
type.

This operation cannot be performed on a variable of

bad type. Check the operation and make sure that

the operand's type is compatible with the operation.

12-076 Type error: procedure must
be a user procedure.

A user-defined procedure is required here. You

cannot use a CASL built-in procedure.

12-077 The number of buttons is
limited to four.

An alert box can have only four buttons. You have

tried to put too many buttons in your box. Limit the

number of buttons to four.

12-078 Statement or expression is
too complex.

This statement or expression is too complex for the

compiler to compile. Simplify the statement or

expression, or break it up into smaller parts.

12-079 Type error: cannot assign
right-side type to left-
side type.

The type of expression on the right side of the

assignment statement is not compatible with the

variable on the left side. Correct the assignment

statement to make the types agree.

12-080 Error writing file 'bad
file'.

The compiler received an error from the file system

when it tried to write to the specified file. Possible

reasons for this error are as follows:

� Your disk is full. Free up space on this disk or use

another disk.

� You have too many files open in other applications.

Close any applications you are not using.

� Your disk is bad. Check to make sure your disk is

not damaged.

� A removable disk or a network disk is no longer

online. Make sure the disk you are trying to write to

is online.

12-081 String constant must be one
line.

A string constant must be entirely on one line. It

cannot extend across multiple lines. Your string is too

long. Make sure the string has a closing quotation

mark.

Error Code Error Message Explanation
388 Compiler Errors

Appendix A Error Messages
12-082 Keyword 'bad-keyword'
cannot be used here.

The referenced CASL keyword cannot be used in this

context. If you were not aware that this was a CASL

keyword, you can correct this problem by adding the

or my to the word. For example, you can use

my_password rather than password.

12-255 Unrecognized keyword: 'bad
keyword'.

The keyword is not known by the compiler. Revise

your macro to eliminate this keyword.

Error Code Error Message Explanation
Compiler Errors 389

Appendix A Error Messages
Input/Output Errors

Error Code Error Message Explanation

13-05 The file number is invalid
or missing.

Make sure you specify a file number in the get, put,
read, and write statements. You must precede the

number with the pound symbol (#).

13-06 The specified file channel
number is already open. You
must first close the
channel or use another one.

The specified file channel number is already open.

You must first close the channel or use another one.

13-07 The specified channel
number is not open.

You tried to manipulate a file using read, write,
get, or put without first opening the file, or the file
was previously closed. Open the file before using

read, write, get, or put.

13-08 Accessory Manager cannot
read an output file.

You opened this file for output only and tried to issue

a read or get statement. Modify your macro and try

again.

13-09 Accessory Manager cannot
write to an input file.

You opened this file for input only and tried to write to

it using the write or put statements. Modify your

macro and try again.

13-10 Accessory Manager cannot
get/put a text file.

You opened the file for input or output. These are

read and written to sequentially using the read and
write statements. Use get and put for random

files.

13-11 Accessory Manager cannot
read from or write to a
random file.

You opened the file in random mode and tried to use

the read or write statements. Use get and put
for random files.

13-16 Window coordinates out of
range.

The coordinates you have specified for accessing a

window are not valid. The coordinates must access a

valid portion of the window or display.

13-18 The specified window is not
open.

You have specified a window that is not open. You

cannot perform operations on a window unless it is

open.

13-28 Attempt to send output to
the display failed.

An error occurred while Accessory Manager was

trying to write information to the screen. Try running

the macro again. If it still fails, exit Accessory

Manager and/or Windows and try again.
390 Input/Output Errors

Appendix A Error Messages
13-29 A file copy failed. Accessory Manager was unable to copy a file. The

following are possible reasons for this error:

� Your disk is full. Delete unneeded files and try

again.

� You have too many files open in other applications.

Close the open files and try again.

� Your disk is bad. Contact your system

administrator.

� A removable disk or a network disk is no longer

online. Try again when the specified disk is online.

13-30 The script attempted a seek
in a sequential file; you
can use seek only with
random files.

The file was not opened properly for performing the

seek function. Open the file using the appropriate

mode.

13-31 Multiple windows in a
session are not supported
in this version.

This feature is not currently supported. Revise your

macro to use other language elements.

13-32 An error has occurred in
attempting to create a new
window.

An error occurred with the new command in your
macro. If you are using this command to open an

existing session, be sure to specify the file name of

the existing session.

13-33 There is already a file
that has the name selected.

You must use a unique name for each file. Change

the file name and try again.

13-48 File creation error. Accessory Manager was unable to create a file. Verify

that you have adequate space on your disk and that

you have write privileges.

13-64 You must use -k or -c when
using -p command line
parameter.

The -p command line parameter specifies which

INFOConnect path to use for a particular session.

You must first open a session using the -k or -c

command line parameters before you can specify a

path for the session.

13-65 The caption specified is
too long. It will be
truncated.

The caption specified for the session window title bar

is greater than 128 characters. Accessory Manager

will truncate the caption unless you reduce its size.

13-66 Administration utility file
not found. See your
administrator for further
instructions.

If the file AMFULL.RCF is not in the Windows

directory, Accessory Manager cannot run. Copy this

file to the Windows directory, or reinstall Accessory

Manager.

Error Code Error Message Explanation
Input/Output Errors 391

Appendix A Error Messages
Mathematical and Range Errors

Error Code Error Message Explanation

14-03 Division by zero was
attempted.

You tried to divide by 0. Check your macro, and the

expression used for the divisor, to determine why the

divisor contained a value of 0.

14-05 The expression is not valid
for the variable.

You tried to assign a different variable type to this

variable. Be sure to use valid expressions for each

variable.

14-06 The value is outside the
permissible range.

You specified a range for the indexes in an array

variable. The index falls outside that range.

14-09 A string was truncated. Accessory Manager truncated a string because it

was too long. Strings can be up to 32 KB.

14-10 Invalid characters were
found in a numeric string.

You tried to make an assignment to an integer value.

The expression contained alphabetic or non-numeric

characters. If you are using hexadecimal

representation, make sure the number ends in h.

14-11 The specified value is
outside the acceptable
range.

You specified a range for the indexes in an array

variable. The index falls outside that range. Increase

the size of the array. If you are using a variable for the

index, make sure that the variable contains a value

inside the defined array range.

14-18 An invalid string was
specified for the quote
function.

A string specified for the quote function cannot
contain both single and double quotation marks.

Make sure that both types of marks are not used in

the string you pass to the quote function.
392 Mathematical and Range Errors

Appendix A Error Messages
State Errors

Error Code Error Message Explanation

15-01 The specified command is
applicable only when you
are online.

You were running a macro meant to be used online,

and you were not connected to a host. You may want

to use the trap, error, and online functions in
the macro to determine if you are connected.

15-07 The specified session does
not currently exist.

This function requires a session number as a

parameter. Make sure the session exists by using the

sessno function to get its session number.

15-08 Feature is not supported by
the current terminal.

Modify your macro to ensure that only valid functions

for the specified terminal type are executed.
State Errors 393

Appendix A Error Messages
Critical Errors

Error Code Error Message Explanation

16-02 Drive is invalid or
unknown.

Specify a valid drive and try again.

16-03 Drive is not ready. Insert a disk or close the drive door.

16-07 A seek error has occurred. Accessory Manager could not find the specified data.

Use the CHKDSK utility to make sure your disk has

not been corrupted.

16-11 A write fault has occurred. Accessory Manager could not find the specified data.

Use the CHKDSK utility to make sure your disk has

not been corrupted.

16-12 A read fault has occurred. Accessory Manager could not find the specified data.

Use the CHKDSK utility to make sure your disk has

not been corrupted.
394 Critical Errors

Appendix A Error Messages
Macro Execution Errors

Error Code Error Message Explanation

17-01 The specified label cannot
be found.

Make sure the label you specified in the gosub or
goto statements has a corresponding label

statement where you want it to go. Labels are not

case-sensitive.

17-03 'gosub' statements are
nested too deep.

You can have only a certain number of gosub
statements without issuing a return. Refer to

Chapter , “CASL Language,” for the correct syntax.

17-05 A data type mismatch for an
external variable was
found.

You are referencing a variable declared in another

macro. Check the other macro for the appropriate

data type for that variable.

17-07 The script was canceled by
the user.

This is an informational message. You can run the

macro again.

17-08 A reference to an
unresolved external
variable was found.

This variable is declared as external in this macro. It

must be declared as public in a macro that calls this

macro using the do statement.

17-10 An unavailable module
variable was found.

The module in the assume statement is not yet

loaded. Use the device, terminal, or protocol
system variables to load a given tool. The assume
statement only makes these variables and settings

known to the compiler; it does not load the tool to

make it accessible to running macros.

17-12 A 'return' statement
without a corresponding
'gosub' statement was
found.

While executing the macro, a return statement

was encountered, but the macro is not in a gosub.
There may be a logic error in the macro. Examine the

logic of the macro carefully and revise it.

17-14 A script compilation failed
when 'chain', 'do', or
'compile' statement was
executed.

When a chain, do, or compile statement is

issued, Accessory Manager checks to see if the

macro needs compiling. If it does, Accessory

Manager recompiles it before it runs. This error

message appears when a macro is compiled in this

manner, but has an error and cannot continue. Use

the CASL Macro Editor to correct errors in the macro,

and try again.

17-15 A return value was missing
in the return from a
function.

You declared a function, but never used the return
statement to return a value. The value must be the

same data type you used when you declared the

function.
Macro Execution Errors 395

Appendix A Error Messages
17-16 Generic error. This error can occur when the PC is out of memory.

Close any unneeded applications, and try again.

17-17 An internal error occurred.
Delete the .xwc file and
recompile the script.

The .XWC file has become corrupted. Delete the file

and recompile the macro.

17-18 An invalid count expression
was used.

The count expression used in this statement is not

valid. Correct this portion of the statement.

17-19 A string expression is too
long.

Strings are limited to 32 KB in size. Change the logic

of your macro so that you do not create strings

exceeding this length.

17-20 There is not enough global
memory available.

Accessory Manager does not have enough memory

to perform the function. Try closing sessions,

QuickPads, and other windows that you are not

currently using.

17-21 A 'dialogbox' keyword was
used outside a 'dialogbox'
statement.

The keywords which describe a dialog box can only

be used inside a dialogbox statement. Revise

your macro to eliminate this occurrence of the

keyword.

17-22 'dialogbox' statements are
nested. These statements
cannot be nested.

Revise your macro to eliminate nested dialogbox
statements.

17-23 The dialog cannot be
displayed.

The dialog is too complex to be displayed. Simplify

the dialog box or break it into multiple dialog boxes.

17-24 No pushbutton was specified
for a dialog box.

Every dialog box must have at least one button so

that the user can close the dialog box. Add at least

one button to your dialog box.

17-25 'watch' statements cannot
be nested.

Revise your macro so that a second watch
statement is not called while another watch is
active.

17-26 Too many track channels are
open.

Check your usage of the track statement and

reduce the number of channels being used at once.

17-27 A stack overflow has
occurred. Procedures or
functions are nested too
deep.

You have made too many nested calls to procedures

and functions. Revise your macro so that calls are

not nested as deeply.

Error Code Error Message Explanation
396 Macro Execution Errors

Appendix A Error Messages
17-28 The specified QuickPad file
cannot be found.

Make sure that you have specified the correct drive,

directory, file name, and file extension for the

QuickPad. If you are trying to access the QuickPad

file from a network drive, make sure that you are still

connected to the network.

17-29 The specified QuickPad file
has not been loaded.

You have referred to a QuickPad file that is not

loaded. Load the QuickPad file and then perform

other operations on it.

17-30 Cannot compile script
because the compiler is
already compiling another
script.

You can compile only one macro at a time. Wait for

the first compilation to finish before starting another.

Error Code Error Message Explanation
Macro Execution Errors 397

Appendix A Error Messages
Compatibility Errors

Error Code Error Message Explanation

18-01 One or more specified
modules are of an
incompatible version.

Your GI.DLL file is incompatible with Accessory

Manager. Reinstall Accessory Manager.

18-03 The .XWC file is bad.
Recompile the .XWS file.

You must recompile the .XWS file.

18-05 The specified feature is
not supported in this
version.

Modify your macro to ensure that only valid functions

for the specified terminal type are executed.

18-16 Invalid profile. A problem has been detected in your file. Create a

new file and try again.

18-17 Section not found in
profile.

A problem has been detected in your file. Create a

new file and try again.

18-19 Keyword not found in
profile.

A problem has been detected in your file. Create a

new file and try again.

18-20 Invalid keyword in
settings.

A problem has been detected in your file. Create a

new file and try again.

18-21 Invalid value in settings A problem has been detected in your file. Create a

new file and try again.

18-22 Profile section read error. A problem has been detected in your file. Create a

new file and try again.
398 Compatibility Errors

Appendix A Error Messages
Upload/Download Errors

Error Code Error Message Explanation

19-01 An unexpected DOS error has
occurred.

An unexpected error occurred. Contact Customer

Support.

19-02 The specified file cannot
be found.

Verify that the specified drive, directory, and file name

are correct.

19-03 The specified path cannot
be found.

Verify that the specified drive and directory are

correct.

19-05 Access has been denied to
the specified file.

You do not have access privileges to the specified

file, or the file is write-protected. Make sure the

attributes for the file are not read-only and that the

disk is not write-protected.

19-13 An invalid file name was
specified.

The file name is not valid. Correct the file name and

try again.

19-14 Nonexistent file specified. The specified file name does not exist. Type a valid

file name and try again.

19-15 Nonexistent directory
specified.

The specified directory name does not exist. Type a

valid directory name and try again.

19-19 Diskette is write-
protected.

You cannot write to the specified disk. Use a different

disk, or obtain write privileges.

19-21 Disk full. The disk is full. Delete unneeded files from the disk

and try again.

19-22 Invalid filename. The specified file name is not valid. Type a valid file

name and try again.

19-23 Invalid directory name. The specified directory name is not valid. Type a valid

directory name and try again.

19-24 Cannot run application
specified.

The specified application cannot be run. Make sure

that the application name is specified properly or try

another application.
Upload/Download Errors 399

Appendix A Error Messages
Missing Information Errors

Error Code Error Message Explanation

21-01 The specified script file
cannot be found. Check the
name and make sure the file
is in the ACCMGR directory.

Accessory Manager cannot find the specified macro

file. Check the name, make sure the file is in

Accessory Manager directory, and try again.

21-09 There is no default file
name; 'filefind' must be
used to set up a default
file.

The first time that you call filefind you must specify a

legal file specification that can include drive

specifiers and directory names as well as wildcard

characters. Only on subsequent calls can you omit

the string to receive additional file names in the list.

21-10 The ADP file contains a
reference to an unknown
tool.

The session profile is using a connection type,

terminal type, or file transfer protocol that Accessory

Manager no longer recognizes. Open the session

and reconfigure it using valid tools, or edit the .ADP

file using a text editor.
400 Missing Information Errors

Appendix A Error Messages
Multiple Document Interface Errors

Error Code Error Message Explanation

23-08 Unable to create an MDI
document window. Try
freeing some memory.

Before trying this operation again, close other open

applications.
Multiple Document Interface Errors 401

Appendix A Error Messages
Emulator or File Transfer Protocol Errors

Error Code Error Message Explanation

28-16 Invalid module or module
not found.

A connection, terminal type, or file transfer protocol

specified in your session profile cannot be found.

Make sure the tools have been installed. If this error

persists, recreate the session.
402 Emulator or File Transfer Protocol Errors

Appendix A Error Messages
DLL Errors

Error Code Error Message Explanation

33-01 DLL file could not be
found.

Accessory Manager could not find a required DLL

file. Verify that all the files are in Accessory Manager

directory.

33-02 Path for DLL was not valid. The directory specified for a required DLL file does

not exist. Verify that all the files are in Accessory

Manager directory.

33-03 DLL file was invalid or
corrupt.

Reinstall Accessory Manager to overwrite the corrupt

DLL file.

33-04 Unable to use requested DLL
file.

Accessory Manager could not access a required DLL

file. Make sure that you have read privileges to

Accessory Manager directory and try again.

33-05 Unable to use requested DLL
function.

Accessory Manager could not access a required DLL

function. Make sure that you have read privileges to

Accessory Manager directory and try again.

33-06 Attempt to use a data type
that is not supported.

Refer to Chapter 2, “Understanding the Basics of

CASL,” for information about the types of data

supported.
DLL Errors 403

Appendix A Error Messages
Generic Module Errors

Error Code Error Message Explanation

40-16 Invalid module or module
not found.

You tried to open a session that uses a terminal type

that has not yet been installed or is not listed in the

GI32.INI file. Use a different session, or install the

desired terminal emulator, or modify the GI32.INI file

to indicate that the terminal emulator has been

installed.

40-17 [No error message] No printer is currently associated with this session.

Click Print Screen from Accessory Manager File

menu and select a printer.

40-18 Could not locate and load
library.

Accessory Manager cannot find the error strings

.DLL (DCAAMERR.DLL). Reinstall Accessory

Manager and try again.
404 Generic Module Errors

Appendix A Error Messages
File Transfer Errors

Error Code Error Message Explanation

45-01 General time-out. A general time-out has occurred. The host’s protocol

did not respond. Try increasing the timing specified

for your file transfer protocol.

45-02 Host not responding. The host is not responding. Accessory Manager tried

to transfer the file, but received no response from the

host. Check the communications link and try the

transfer again.

45-04 Too many errors - transfer
canceled.

Accessory Manager automatically canceled the

transfer because the maximum number of errors was

reached. Try again. If the problem persists, change

the timing for the file transfer protocol or raise the

number of errors that are allowed.

45-06 Sequencing failure -
transfer canceled.

Accessory Manager canceled the transfer because

of a sequencing failure. The file transfer protocol

encountered an internal error. Try the transfer again.

If the problem persists, contact Customer Support.

45-07 Transfer canceled by local
operator.

The user canceled the file transfer. This is an

informational message only. You can transfer the file

again.

45-08 Transfer canceled by host. The host canceled the file transfer. Too many errors

may have occurred, or the host disk may be full.

Check the host disk or increase the maximum

number of errors allowed.

45-09 Protocol can't do wildcard
transfers.

You used a file transfer protocol that does not support

a wildcard transfer for the file name. Transfer a single

file at a time or use a protocol that allows wildcard

transfers.

45-11 Local disk full. The file transfer cannot take place or was canceled

because the local disk is full. Clear some space on

the specified disk drive or change drives.

45-12 Host disk full. The file transfer did not occur because the host disk

is full. Clear some space on the specified host drive

or change drives.
File Transfer Errors 405

Appendix A Error Messages
45-16 Bad protocol selection. Accessory Manager does not support the file transfer

protocol you selected. Choose a supported protocol

and try again.

45-18 The server command is not
valid.

You issued a Kermit command that is not currently

supported. Revise your macro to remove this

command.

Error Code Error Message Explanation
406 File Transfer Errors

Appendix A Error Messages
Navigation Errors

Error Code Error Message Explanation

50-176 Error in navigation. An
attempt to follow a path
took us to an unknown
screen. Playback is
terminated.

While using the recorded navigation paths,

Accessory Manager got to an screen that it could not

identify. This can occur if the original recording

included data that does not always appear on the

host screen, or that has changed since the original

recording was made. You might have to delete or

truncate an identification field and try again. Refer to

the online Help for information on this procedure.

50-177 Error in navigation. An
attempt to follow a path
took us back to the same
screen. Playback is
terminated.

You recorded a procedure that invokes the same host

screen, or Accessory Manager cannot distinguish

between two very similar host screens. Re-record the

host screens and try again, or modify the

identification fields for the recorded screens and try

again.

50-178 Error in navigation. An
attempt to follow a path
took us to an unexpected
screen. Playback is
terminated.

While using the recorded navigation paths,

Accessory Manager went to a screen that could be

identified, but this was not the screen it expected to

arrive at as a result of following the navigation path.

Re-record the procedure to arrive at the desired host

screen and try again.

50-182 No path exists from the
current screen to the
destination screen.

You clicked the name of a recorded host screen on

the Bookmarks/Pages dialog box, but no navigation

path exists to get to that screen. Re-record the

procedure to get from the current screen to the

desired screen and try again.
Navigation Errors 407

Index

3270 sessions (see EXTRA! Enterprise for

Accessory Manager)

5250 sessions (see EXTRA! Enterprise for

Accessory Manager)

A

Abbreviations, used in this guide xx

abs function 117

activate statement 118

activatesession statement 119

Addition operator 47

alarm statement 120

ALC 2, 358
alert statement 88, 122
AMUTS.PRE 366

And operator 53

Append mode 265

Application start-up macro 30

arg function 124

Arguments, passing to other macros 90

Arithmetic expressions 46–49
Arithmetic operators

Addition 47

BitAnd 46, 47
BitNot 46, 47
BitOr 47

BitXor 46, 47
Division 46, 48

Arithmetic operators, continued

IntDivision 46, 48
Modulo 46, 48
Multiplication 46, 48
Negate 46, 48
Rol 46, 48
Ror 46, 48
Shl 46, 48
Shr 46, 48
Subtraction 47, 49

Array data type 36

Array declarations

multidimensional 68

multidimensional with alternative

bounds 69

single dimension 68

single dimension with alternative

bounds 69

asc function 125

ASCII control characters 39

assume statement 126

B

backups module variable 127

binary function 128

Binary integers 38

BitAnd operator 46, 47
BitNot operator 46, 47
409

Index
BitOr operator 47

bitstrip function 129

BitXor operator 46, 47
Blank lines, using 15

Block comments 33

Boolean data type 36

Boolean operators 53

Braces, using 32

busycursor statement 130

bye statement 131

Byte data type 36

C

capture statement 132–133
case...endcase statement 134

CASL Macro Editor 5

CASL overview 2

chain statement 90, 124, 136, 176
Char data type 36

chdir statement 137

Child macros 66, 90
choice system variable 122, 138
chr function 55, 139
cksum function 140, 149
class function 141

clear statement 142

close statement 143

cls statement (see clear statement)

Comments 7, 33–34
block 33

line 33–34
using 15

Compatibility errors 390

compile statement 145

Compiler directives 56–57
genlabels 206

genlines 207

include 223

scriptdesc 298

trap 328

Compiler errors 374–381
Compiling a macro 29

connected function (see online function)

Connection tools 126, 167, 357, 361
Constants 9, 37–43

Boolean 43

false 192

integer 37

Constants, continued
on 262

real 38

string 39

true 329

Conversions, type

asc function 125

binary function 128

bitstrip function 129

chr function 139

class function 141

dehex function 161

detext function 166

enhex function 180

entext function 182

hex function 215

intval function 231

mkint function 248

mkstr function 249

octal function 260

str function 312

val function 334

copy statement 147

count function 148

crc function 149

Critical errors 386

curday function 150

curdir function 151

curdrive function 152

curhour function 153

curminute function 154

curmonth function 155

cursecond function 156

curyear function 157

Cyclical redundancy check 149

D

Data capture statement 132–133
Data type conversion 54–55
Data types 36

date function 158

Date operations

curday function 150

curmonth function 155

curyear function 157

date function 158

overview 97

weekday 343
410

Index
DCAT27.PRE 362

Decimal integers 37

Declarations 7

arrays 68

explicit 65

func...endfunc 204

functions 73

implicit 67

proc...endproc 277

procedures 70

public and external variables 66

scope rules for labels 76

scope rules for variables 75

Default keyword 134

definput system variable 159

defoutput system variable 160

dehex function 161

delete function 163

delete statement 162

description system variable 164

destore function 165

detext function 166

device system variable 167

dialogbox...enddialog statement 88, 168
Directives 8

display system variable 175

Display/device type 318

Division operator 46, 48
DLL errors 395

do statement 90, 124, 176
Double hyphens, line comments 34

drive statement 178

E

Emulator or file transfer protocol errors 394

end statement 179

enhex function 180

enstore function 181

entext function 182

environ function 183

eof function 184

eol function 185

Equality operator 51

errclass system variable 92, 187
errno system variable 92, 93, 188

Error control

errclass system variable 187

errno system variable 188

error function 189

overview 98

trap compiler directive 328

error function 92, 189
trap compiler directive 187

Error messages 372–399
classes of error messages 372

compatibility errors 390

compiler errors 374–381
critical errors 386

DLL errors 395

emulator or file transfer protocol

errors 394

file transfer errors 397–398
generic module errors 396

input/output errors 382–383
internal errors 373

macro execution errors 387–389
mathematical and range errors 384

missing information errors 392

multiple document interface errors 393

navigation errors 399

state errors 385

upload/download errors 391

Error trapping 56, 92
Executable files, macro 29

exists function 190

exit statement 191

Explicit variable declarations 65–66
Expressions 44–45

arithmetic 46–49
Boolean 53

order of evaluation 45

overview 9

relational 51

string 50

External variables 66, 91
EXTRA! Enterprise for Accessory Manager 2

connection tools 357

terminal tools 358

unsupported

commands 126, 131, 167, 280, 282, 30
2, 311, 318, 336, 340
411

Index
F

false constant 192

File I/O operations

backups module variable 127

capture statement 132–133
chdir statement 137

close statement 143

copy statement 147

curdir function 151

curdrive function 152

definput system variable 159

defoutput system variable 160

delete statement 162

drive statement 178

eof function 184

eol function 185

exists 190

filefind function 193

filesize function 195

fncheck function 196

fnstrip function 197

get statement 208

loc function 238

mkdir statement 247

open statement 265

overview 99–100
put statement 281

read line 285

read statement 284

receive statement 286

rename statement 287

rmdir statement 294

seek statement 300

send statement 301

write line statement 351

write statement 350

File transfer errors 397–398
File transfer protocol 280

File transfer tools 126, 359
filefind function 193

filesize function 195

fncheck function 196

fnstrip function 197

Focus option 172

footer system variable 199

for...next statement 200

Forward declarations

functions 74

procedures 71

freemem function 202

freetrack function 203

func...endfunc declaration 73, 204
Function declarations

argument list 73

forward function declaration 74

general description 73

using the forward keyword 74

Functions

abs 117

arg 124

asc 125

binary 128

bitstrip 129

chr 139

cksum 140

class 141

count 148

crc 149

curday 150

curdir 151

curdrive 152

curhour 153

curminute 154

curmonth 155

cursecond 156

curyear 157

date 158

declaring 73

dehex 161

delete 163

destore 165

detext 166

enhex 180

enstore 181

entext 182

environ 183

eof 184

eol 185

error 189

exists 190

external 74

filefind 193

filesize 195

fncheck 196
412

Index
Functions, continued

fnstrip 197

freemem 202

freetrack 203

hex 215

hms 219

inject 224

inkey 225

inscript 228

insert 229

instr 230

intval 231

left 235

length 236

loc 238

lowcase 239

max 242

mid 244

min 245

mkint 248

mkstr 249

name 251

nextchar 254

nextline 257

null 259

octal 260

online 263

ontime 264

pack 266

pad 267

quote 283

right 293

secno 299

session 303

sessname 304

sessno 305

slice 310

str 312

strip 313

stroke 314

subst 315

systime 316

time 320

track 326

upcase 332

val 334

version 335

Functions, continued

weekday 343

winchar 345

winsizex 346

winsizey 347

winstring 348

winversion 349

xpos 352

ypos 353

G

Generic module errors 396

genlabels compiler directive 56, 206
genlines compiler directive 56, 207
get statement 208

go statement 209

gosub...return statement 210

goto statement 206, 211
grab statement 212

GreaterOrEqual operator 51

GreaterThan operator 51

H

halt statement 213

header system variable 214

hex function 54, 215
Hexadecimal integers 37

hide statement 216

hideallquickpads statement (see

unloadallquickpads statement)

hidequickpad statement (see unloadquickpad

statement)

hms function 219

homedir system variable 220

Host interaction

display system variable 175

match system variable 241

nextchar function 254

nextline function 257

nextline statement 255

online function 263

overview 84–86, 101
press statement 273

reply statement 289

sendbreak statement 302

Hyphens, double 34
413

Index
I

ICSTOOL 357, 361
Identifiers 35

if...then...else statement 221

include compiler directive 57, 72, 74, 223
INFOConnect connection tool 357, 361
inject function 224

inkey function 225

Input mode 265

input statement 88, 227
Input/output errors 382–383
inscript function 228

insert function 229

instr function 230

IntDivision operator 46, 48
Integer data type 36

Integers

binary 38

decimal 37

hexadecimal 37

kilo 38

octal 38

Internal errors 373

intval function 54, 231

J

jump statement (see goto statement)

K

Keys

in string constants 42

numeric values 225

keys system variable 233

Keywords 10, 58–62
Kilo integers 38

L

label statement 234

Labels

overview 9

scope rules 76

Learn Mode 4

left function 235

length function 236

LessOrEqual operator 51

LessThan operator 51

Limitations 2

Line comments 33–34
using a semicolon 34

using double hyphens 34

Line continuation characters 32

loadquickpad statement 237

loc function 238

lowcase function 239

lprint statement 240

M

Macro elements

constants 9

expressions 9

keywords 10

labels 9

procedures and functions 9

variables 9

Macro execution errors 387–389
Macro management

chain statement 136

compile statement 145

do statement 176

genlabels compiler directive 206

genlines compiler directive 207

include compiler directive 223

inscript function 228

overview 102

quit statement 282

scriptdesc compiler directive 298

startup system variable 311

terminate statement 319

trace statement 322

Macros

calling another macro 90

chaining to another macro 90

comments 7

compiling 29

creating 4–5
declarations 7

designing 11

directives 8

elements of 9

exchanging variables with other

macros 91

file types 29

passing arguments to other macros 90
414

Index
Macros, continued

running 30

structure of 7

types of 6

match system variable 241

Mathematical and range errors 384

Mathematical operations

abs function 117

cksum function 140

crc function 149

intval function 231

max function 242

min function 245

mkint function 248

overview 103

val function 334

max function 242

maximize statement 243

Messages, error 372–399
mid function 244

min function 245

minimize statement 246

Missing information errors 392

mkdir statement 247

mkint function 248

mkstr function 249

Module variables 64

backups 127

tabwidth 317

Modulo operator 46, 48
move statement 250

Multidimensional arrays 68

Multiple document interface errors 393

Multiple-variable declarations 65

Multiplication operator 46, 48

N

name function 251

Navigation errors 399

Negate operator 46, 48
netid system variable 252

new statement 253

nextchar function 254

nextline function 257

nextline statement 255

noask keyword 162

Not operator 53

null function 259

O

octal function 260

Octal integers 38

off constant 261

Offline macros 6

on constant 262

online function 263

Online macros 6

ontime function 264

open statement 265

Or operator 53

Output mode 265

P

pack function 266

pad function 267

Parent macros 66

passchar system variable 269

password system variable 270

perform statement 72, 271, 278
pop statement 272

Predefined variables 64

press statement 273

print statement 87, 275
Printer control

capture statement 132–133
footer system variable 199

grab statement 212

header system variable 214

lprint statement 240

overview 104

printer system variable 276

printer system variable 276

proc...endproc procedure declaration 70, 277
Procedure declarations 70

Procedures

argument list 70

declaring 70

external 72

forward declarations 71

overview 9

Program flow control

case...endcase statement 134

chain statement 136

do statement 176

end statement 179

exit statement 191

Program flow control, continued
415

Index
for...next statement 200

freetrack function 203

func...endfunc declaration 204

gosub...return statement 210

goto statement 211

halt statement 213

if...then...else statement 221

label statement 234

overview 105

perform statement 271

proc...endproc declaration 277

quit statement 282

repeat...until statement 288

return statement 292

terminate statement 319

timeout system variable 321

trace statement 322

track function 326

track statement 323

wait statement 336

watch...endwatch statement 340

while...wend statement 344

protocol system variable 280

Protocol types 280

Public variables 66, 91
put statement 281

Q

quit statement 282

Quotation marks, embedded in string

constants 39

quote function 283

R

Random mode 265

read line statement 285

read statement 284

Real data type 36

receive statement 286

Relational expressions 51

rename statement 287

repeat...until statement 85, 288
reply statement 86, 289
request statement (see receive statement)

Reserved keywords 58–62
restore statement 291

return statement 210, 292
right function 293

rmdir statement 294

Rol operator 46, 48
Ror operator 46, 48
run statement 295

S

Sample macros

basic logon macro 12–15
controlling the logon process 23–28
verifying the host connection 16–22

save statement 296

Scope rules

global variables 75

labels 76

local variables 75

script system variable 297

scriptdesc compiler directive 57, 298
secno function 299

Secret option 172

seek statement 300

Semicolon, line comments 34

send statement 301

sendbreak statement 302

Session

creating 253

opening 253

start-up macro 297

session function 303

Session management

activate statement 118

activatesession statement 119

assume statement 126

bye statement 131

description system variable 164

device system variable 167

go statement 209

keys system variable 233

name function 251

netid system variable 252

new statement 253

ontime function 264

overview 107

password system variable 270

protocol system variable 280

quit statement 282

run statement 295

save statement 296

Session management, continued
416

Index
script system variable 297

session function 303

sessname function 304

sessno function 305

startup system variable 311

terminal system variable 318

terminate statement 319

userid system variable 333

Session start-up macro 30

sessname function 304

sessno function 305

Shl operator 46, 48
show statement 306

showallquickpads statement 307

showquickpad statement (see loadquickpad

statement)

Shr operator 46, 48
Single-dimensional arrays 68

Single-variable declarations 65

size statement 309

slice function 310

Some keyword 147

Source files, macro 29

Start-up macro, session 297

startup system variable 311

State errors 385

Statements 32

activate 118

activatesession 119

alarm 120

alert 122

assume 126

busycursor 130

bye 131

capture 132–133
case...endcase 134

chain 136

chdir 137

clear 142

close 143

compile 145

copy 147

delete 162

dialogbox...enddialog 168

do 176

drive 178

end 179

Statements, continued

exit 191

for...next 200

get 208

go 209

gosub...return 210

goto 211

halt 213

hide 216

if...then...else 221

input 227

label 234

loadquickpad 237

lprint 240

maximize 243

minimize 246

mkdir 247

move 250

new 253

nextline 255

open 265

perform 271

pop 272

press 273

print 275

put 281

quit 282

read 284

read line 285

receive 286

rename 287

repeat...until 288

reply 289

restore 291

return 292

rmdir 294

run 295

save 296

seek 300

send 301

sendbreak 302

show 306

showallquickpads 307

size 309

terminate 319

trace 322

track 323

unloadallquickpads 330

Statements, continued
417

Index
unloadquickpad 331

wait 336

watch...endwatch 340

while...wend 344

write 350

write line 351

zoom 354

str function 54, 312
String constants 39

ASCII control characters 39

continuing on a new line 43

embedded quotation marks 39

key names 42

String data type 36

String expressions 50

String operations

arg function 124

bitstrip function 129

count function 148

dehex function 161

delete function 163

destore function 165

detext function 166

enhex function 180

enstore function 181

entext function 182

hex function 215

hms function 219

inject function 224

insert function 229

instr function 230

intval function 231

left function 235

length function 236

lowcase function 239

mid function 244

mkstr function 249

null function 259

overview 109

pack function 266

pad function 267

quote function 283

right function 293

slice function 310

str function 312

strip function 313

upcase 332

String operations, continued

val function 334

winstring function 348

strip function 313

stroke function 314

subst function 315

Subtraction operator 49

System variables 64

choice 138

definput 159

defoutput 160

description 164

device 167

display 175

errclass 187

errno 188

footer 199

header 214

keys 233

match 241

netid 252

passchar 269

password 270

printer 276

protocol 280

script 297

startup 311

terminal 318

timeout 321

userid 333

systime function 316

T

T 27, variables 362

Tabstop group option 172

Tabstop option 172

tabwidth module variable 317

Takes keyword 277

Terminal emulation types 318

terminal system variable 318

Terminal tools 126, 318, 358, 362, 366
terminate statement 319

time function 320

Time operations

curhour function 153

curminute function 154

cursecond function 156

hms function 219

overview 97
418

Index
Time operations, continued

secno function 299

time function 320

timeout system variable 86, 321, 336, 340
Tools 356–369

connection 126, 167, 357
file transfer 126, 359
terminal 126, 318, 358

trace statement 322

track function 326

track statement 203, 323
trap compiler directive 56, 92, 189, 328
true constant 329

Type conversion

asc function 125

binary function 128

bitstrip function 129

chr function 139

class function 141

dehex function 161

detext function 166

enhex function 180

entext function 182

hex function 215

intval function 231

mkint function 248

mkstr function 249

octal function 260

overview 54–55, 111
str function 312

val function 334

U

unloadallquickpads statement 330

unloadquickpad statement 331

upcase function 332

Upload/download errors 391

userid system variable 333

UTS, variables 366

V

val function 334

Variable declarations

explicit 65

implicit 67

public and external 66

Variables 9

backups module variable 127

choice system variable 138

Variables, continued
definput system variable 159

defoutput system variable 160

description system variable 164

device system variable 167

display system variable 175

errclass system variable 187

errno system variable 188

exchanging with other macros 91

external 66

footer system variable 199

global 75

header system variable 214

INFOConnect connection tool 361

initialization 66

initialization values 75

keys system variable 233

local 75

match system variable 241

module 64

multiple-variable declarations 65

netid system variable 252

passchar system variable 269

password system variable 270

predefined 64

printer system variable 276

protocol system variable 280

public 66, 91
scope rules 75

script system variable 297

single-variable declarations 65

startup system variable 311

system 64

tabwidth module variable 317

terminal system variable 318

timeout system variable 321

userid system variable 333

version function 335

VT sessions (see EXTRA! Enterprise for

Accessory Manager)

W

wait statement 84, 336
watch...endwatch statement 85, 340
weekday function 343

while...wend statement 85, 342, 344
winchar function 345
419

Index
Window control

activate statement 118

alert statement 122

choice system variable 138

clear statement 142

dialogbox...enddialog statement 168

hide statement 216

input statement 227

loadquickpad statement 237

maximize statement 243

minimize statement 246

move statement 250

overview 112

passchar system variable 269

print statement 275

restore statement 291

show statement 306

size statement 309

tabwidth module variable 317

unloadallquickpads statement 330

unloadquickpad statement 331

winchar function 345

winsizex function 346

winsizey function 347

Window control, continued

winstring function 348

xpos function 352

ypos function 353

zoom statement 354

WinFTP, connection tools 357

winsizex function 346

winsizey function 347

winstring function 348

winversion function 349

Word data type 36

write line statement 351

write statement 350

X

xpos function 352

XWC files 29

XWS files 29

Y

ypos function 353

Z

zoom statement 354
420

	Contents
	About This Guide
	Audience
	Documentation Conventions
	Abbreviations

	Introducing CASL
	About CASL
	Why Use Macros?
	Creating and Editing CASL Macros
	Types of Macros
	The Structure of Macros
	The Elements of a Macro
	Designing a Macro
	Sample: A Basic Logon Macro
	Sample: Verifying the Host Connection
	Sample: Controlling the Entire Logon Process
	Compiling a CASL Macro
	Running a CASL Macro

	Understanding the Basics�of CASL
	Statements
	Comments
	Identifiers
	Data Types
	Constants
	Expressions
	Arithmetic Expressions
	String Expressions
	Relational Expressions
	Boolean Expressions
	Type Conversion
	Compiler Directives
	Reserved Keywords

	Variables, Arrays, Procedures, and Functions
	Variables
	Explicit Variable Declarations
	Implicit Variable Declarations
	Arrays
	Procedures
	Functions
	Scope Rules
	Calling DLL Functions

	Interacting with the Host, Users, and Other Macros
	Interacting with the Host
	Communicating with a User
	Invoking Other Macros
	Exchanging Variables
	Trapping and Handling Errors

	Functional Purpose of CASL�Elements
	Overview
	Date and Time Operations
	Error Control
	File Input/Output Operations
	Host Interaction
	Macro Management
	Mathematical Operations
	Printer Control
	Program Flow Control
	Session Management
	String Operations
	Type Conversion Operations
	Window Control
	Miscellaneous Elements

	CASL Language
	How CASL Elements Are Documented
	abs (function)
	activate (statement)
	activatesession (statement)
	alarm (statement)
	alert (statement)
	arg (function)
	asc (function)
	assume (statement)
	backups (module variable)
	binary (function)
	bitstrip (function)
	busycursor (statement)
	bye (statement)
	capture (statement)
	case...endcase (statments)
	chain (statement)
	chdir (statement)
	choice (system variable)
	chr (function)
	cksum (function)
	class (function)
	clear (statement)
	close (statement)
	cls (statement)
	compile (statement)
	connected (function)
	copy (statement)
	count (function)
	crc (function)
	curday (function)
	curdir (function)
	curdrive (function)
	curhour (function)
	curminute (function)
	curmonth (function)
	cursecond (function)
	curyear (function)
	date (function)
	definput (system variable)
	defoutput (system variable)
	dehex (function)
	delete (statement)
	delete (function)
	description (system variable)
	destore (function)
	detext (function)
	device (system variable)
	dialogbox...enddialog (statements)
	display (system variable)
	do (statement)
	drive (statement)
	end (statement)
	enhex (function)
	enstore (function)
	entext (function)
	environ (function)
	eof (function)
	eol (function)
	errclass (system variable)
	errno (system variable)
	error (function)
	exists (function)
	exit (statement)
	false (constant)
	filefind (function)
	filesize (function)
	fncheck (function)
	fnstrip (function)
	footer (system variable)
	for...next (statements)
	freemem (function)
	freetrack (function)
	func...endfunc (function declaration)
	genlabels (compiler directive)
	genlines (compiler directive)
	get (statement)
	go (statement)
	gosub...return (statements)
	goto (statement)
	grab (statement)
	halt (statement)
	header (system variable)
	hex (function)
	hide (statement)
	hideallquickpads (statement)
	hidequickpad (statement)
	hms (function)
	homedir (system variable)
	if...then...else (statements)
	include (compiler directive)
	inject (function)
	inkey (function)
	input (statement)
	inscript (function)
	insert (function)
	instr (function)
	intval (function)
	jump (statement)
	keys (system variable)
	label (statement)
	left (function)
	length (function)
	loadquickpad (statement)
	loc (function)
	lowcase (function)
	lprint (statement)
	match (system variable)
	max (function)
	maximize (statement)
	mid (function)
	min (function)
	minimize (statement)
	mkdir (statement)
	mkint (function)
	mkstr (function)
	move (statement)
	name (function)
	netid (system variable)
	new (statement)
	nextchar (function)
	nextline (statement)
	nextline (function)
	null (function)
	octal (function)
	off (constant)
	on (constant)
	online (function)
	ontime (function)
	open (statement)
	pack (function)
	pad (function)
	passchar (system variable)
	password (system variable)
	perform (statement)
	pop (statement)
	press (statement)
	print (statement)
	printer (system variable)
	proc...endproc (procedure declaration)
	protocol (system variable)
	put (statement)
	quit (statement)
	quote (function)
	read (statement)
	read line (statement)
	receive (statement)
	rename (statement)
	repeat...until (statements)
	reply (statement)
	request (statement)
	restore (statement)
	return (statement)
	right (function)
	rmdir (statement)
	run (statement)
	save (statement)
	script (system variable)
	scriptdesc (compiler directive)
	secno (function)
	seek (statement)
	send (statement)
	sendbreak (statement)
	session (function)
	sessname (function)
	sessno (function)
	show (statement)
	showallquickpads (statement)
	showquickpad (statement)
	size (statement)
	slice (function)
	startup (system variable)
	str (function)
	strip (function)
	stroke (function)
	subst (function)
	systime (function)
	tabwidth (module variable)
	terminal (system variable)
	terminate (statement)
	time (function)
	timeout (system variable)
	trace (statement)
	track (statement)
	track (function)
	trap (compiler directive)
	true (constant)
	unloadallquickpads (statement)
	unloadquickpad (statement)
	upcase (function)
	userid (system variable)
	val (function)
	version (function)
	wait (statement)
	watch...endwatch (statements)
	weekday (function)
	while...wend (statements)
	winchar (function)
	winsizex (function)
	winsizey (function)
	winstring (function)
	winversion (function)
	write (statement)
	write line (statement)
	xpos (function)
	ypos (function)
	zoom (statement)

	Connection, Terminal, and File Transfer Tools
	Tool Concept
	Connection Tools
	Terminal Tools
	File Transfer Tools
	Using Tool Variables
	Connection Tool Variables
	T 27 Variables
	UTS Variables

	Error Messages
	Classes of Error Message
	Internal Errors
	Compiler Errors
	Input/Output Errors
	Mathematical and Range Errors
	State Errors
	Critical Errors
	Macro Execution Errors
	Compatibility Errors
	Upload/Download Errors
	Missing Information Errors
	Multiple Document Interface Errors
	Emulator or File Transfer Protocol Errors
	DLL Errors
	Generic Module Errors
	File Transfer Errors
	Navigation Errors

	Index

