
Basic Developer’s Guide

P/N UD 028155
The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a duly
executed agreement to purchase or lease equipment or to license software. The only warranties made
by Unisys, if any, with respect to the products described in this document are set forth in such agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your use of the
information in this document or software material, including direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise
of such changes and/or additions.

© 1993 Unisys Corporation. All rights reserved.

RESTRICTED RIGHTS LEGEND
Use, reproduction, or disclosure is subject to the restrictions set forth in DFARS 252.227–7013 and
FARS 52.227–14 for commercial computer software.

Attachmate and the Attachmate logo are registered trademarks of Attachmate Corporation in the United States and other countries.
INFOConnect is a trademark and Unisys is a registered trademark of Unisys Corporation.

All other trademarks and registered trademarks are property of their respective owners.

The names, places, and/or events used in this publication are not intended to correspond to any individual, group, or
association existing, living, or otherwise. Any similarity or likeness of the names, places, and/or events with the names of
any individual, living or otherwise, or that of any group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including direct,
special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

RESTRICTED RIGHTS LEGEND. Use, reproduction, or disclosure is subject to the restrictions set forth in DFARS
252.227–7013 and FARS 52.227–14 for commercial computer software.

Correspondence regarding this publication may be forwarded using the Documentation Questionnaire supplied with
this document, or may be addressed directly to Unisys Corporation, INFOConnect Development Group, Malvern
Development Center, 2450 Swedesford Road, Room B101, Paoli, Pennsylvania, 19301.

Borland products are trademarks or registered trademarks of Borland International, Inc.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

Novell is a registered trademark of Novell, Inc.

Unisys and INFOConnect are trademarks of Unisys Corporation.

UNIX AND UNIX System V are registered trademarks of UNIX System Laboratories.

XVT is a trademark of XVT Software Inc.

4173 5408-000 v

Contents

About this Guide .. xvii

Section 1. Installation

Windows Platform ... 1–1
System Requirements ... 1–1
Package Contents ... 1–3

Basic IDK Package 1–3
Basic IDK Samples Package 1–9

Installing the IDK ... 1–17
Environment Variables .. 1–17
System Verification Checklist for Windows 1–19

Preparing XVT for Use with INFOConnect 1–22

Section 2. An Introduction to INFOConnect Connectivity
Services

Architecture Diagram .. 2–5

Terminology ... 2–6

Accessory API Functions ... 2–15

Accessory API Events ... 2–18

Section 3. Writing INFOConnect/Windows Applications

Basic Procedures for Windows Applications 3–2
Initializing INFOConnect Connectivity Services 3–2
Opening a Session and Allocating Buffers 3–5
Transmitting a Buffer ... 3–8
Receiving a Buffer ... 3–12
Using Datacomm Buffers 3–15
Basic Error Handling ... 3–17
Basic Status Handling ... 3–22
Closing a Session ... 3–26
Terminating your Application 3–28

Contents

vi 4173 5408-000

Advanced Procedures for Windows Applications 3–32
Canceling Pending Requests 3–32
Handling Data Communications Errors 3–33
Advanced Status and Error Handling 3–36
Encoding and Decoding 3–38
Data Compression and Error Detection 3–38
Running with Old Versions of INFOConnect 3–39

Procedures for INFOConnect Accessories 3–41
Calling INFOConnect Accessories 3–41
Making your Application an INFOConnect

Accessory .. 3–42

Compiling .. 3–44

Resource Files .. 3–46

Linking ... 3–51

IcWinApp - a Sample Windows Application 3–53

CoupleW - a Windows Application that Connects Two
INFOConnect Sessions 3–76

Section 4. Writing INFOConnect/XVT Applications

Basic procedures for XVT Applications 4–2
Initializing INFOConnect Connectivity

Services ... 4–2
Opening a Session and Allocating Buffers 4–3
Transmitting a Buffer .. 4–6
Receiving a Buffer .. 4–8
Using Datacomm Buffers 4–10
Basic Error Handling ... 4–12
Basic Status Handling .. 4–16
Closing a Session ... 4–19
Terminating your Application 4–20

Advanced Procedures for XVT Applications 4–24
Canceling Pending Requests 4–24
Handling Data Communications Errors 4–25
Advanced Status and Error Handling 4–26
Using Event Hooks with XVT 3.0 4–29
Using Keyboard and Event Hooks with XVT2.0 ... 4–30
Encoding and Decoding 4–31
Data Compression and Error Detection 4–32
Running with Old Versions of INFOConnect 4–32

Contents

4173 5408-000 vii

Procedures for INFOConnect Accessories 4–33
Calling INFOConnect Accessories 4–34
Making your Application an INFOConnect

Accessory ... 4–34

Compiling .. 4–37
Windows Platform ... 4–37

Compiler Errors .. 4–39

Resource Files .. 4–39

Linking ... 4–40
Windows Platform ... 4–40

IcXvtApp - A sample XVT application 4–44

Couple - An XVT Application that Connects Two
INFOConnect Sessions 4–46

IcOpenAc - An XVT Application that Opens an
INFOConnect Accessory 4–48

Section 5. Writing INFOConnect/DosLink Applications

Basic Procedures for DosLink Applications 5–3
Initializing INFOConnect Connectivity

Services ... 5–3
Opening a Session .. 5–4
Transmitting a Buffer ... 5–8
Receiving a Buffer ... 5–11
Allocating and Using Datacomm Buffers 5–13
Error Handling ... 5–15
Closing a Session ... 5–17

Advanced Procedures for DosLink Applications 5–19
Canceling Pending Requests 5–19
Handling Data Communications Errors 5–20
Running with Old Versions of INFOConnect 5–21

A Closer Look at the DosLink Solution 5–23

Compiling and Linking ... 5–26

IcDosApp - a Sample DosLink Application 5–29

IcBDrive - a Sample DosLink TSR 5–30

Contents

viii 4173 5408-000

Section 6. A Closer Look at the INFOConnect Architecture

Manager Components ... 6–1

Structure of Service and External Interface Libraries 6–3

ICS Control Flow ... 6–4
Processing an Open Session Request 6–4
Processing a Transmit (or Receive) Request 6–8
Processing Status and Error Events 6–11

Section 7. Writing INFOConnect Libraries for Windows 3.x

Design Issues ... 7–2
Choosing Between Accessories, Services and

Interfaces ... 7–2
Session Attributes ... 7–3
Configuration Management 7–4

Table Design ... 7–6
Table Description .. 7–8
Table Processing ... 7–12

Session and Channel Runtime-record Layout 7–13
Error Management .. 7–15
Status Management ... 7–16
Using IC_STATUS_BUFFER Extended

Status ... 7–17
Version Control ... 7–19
Filtering Service Libraries 7–24
Windows 3.x Issues .. 7–25

Writing the Required IcLib Functions 7–26
IcLibInstall ... 7–26
IcLibTerminate .. 7–28
IcLibUpdateConfig .. 7–29
IcLibVerifyConfig .. 7–31
IcLibPrintConfig .. 7–33
IcLibOpenChannel .. 7–34
IcLibCloseChannel ... 7–35
IcLibOpenSession .. 7–36
IcLibCloseSession .. 7–37
IcLibXmt / IcLibRcv ... 7–38
IcLibLcl ... 7–40
IcLibSetResult .. 7–41
IcLibEvent ... 7–42
IcLibGetSessionInfo ... 7–46

Contents

4173 5408-000 ix

IcLibGetString ... 7–48
IcLibIdentifySession .. 7–51
Windows DLL requirements 7–52

Other Procedures and Guidelines 7–53
Session and Channel Aliasing 7–53
Generating Errors from your Library 7–57
Requesting Session Termination 7–60
On-line Help .. 7–61
Modifying Global Variables 7–63
Communicating with Applications Using Status

Messages ... 7–63
System Timers .. 7–68
Tracing .. 7–70
Running with Multiple Versions of

INFOConnect ... 7–71
Library Checklist ... 7–72

Compiling .. 7–73

Resource Files .. 7–75

INFOConnect Header Files ... 7–84

Linking ... 7–86

PS2TTY - A Sample Service Library 7–89

CoupleS - A Sample Service Library 7–90

Service - A Generic Service Library 7–92

Reflect - A Sample External Interface 7–93

IcStack2- A Sample External Interface 7–94

Intrface - A Generic External Interface 7–95

Section 8. Debugging

General Debugging Procedures 8–1
Tracing INFOConnect Datacomm Activity 8–1
Adding Trace Information to the Trace Log 8–3
Using the Diagnostic Library 8–5
Using the Assert Macro in Applications 8–5
Using the INFOConnect -d Debug Option 8–6

Contents

x 4173 5408-000

Windows 3.x Debugging Procedures 8–6
Windows 3.1 Issues .. 8–6
Source Level Debugging 8–6
Using Debug version of Windows 8–7

Common Coding Mistakes ... 8–7

Section 9. Packaging INFOConnect Components

Overview ... 9–1
Terminology .. 9–2

Writing a .INF Script File .. 9–6

Creating the Package Diskette(s) 9–9

A Closer Look at Processing Flow 9–10
Installation Flow .. 9–10
Deinstallation Flow ... 9–15

INF SYNTAX ... 9–16
Data Section ... 9–18
Dialog Section .. 9–19
Disks Section .. 9–20
Package Section ... 9–21
Progman.Groups

SectionPublish.Progman.Groups
SectionStandAlone.Progman.Groups Sect...... 9–23

Needed.Space Section 9–26
App.Copy.AppStuff

SectionApp.Copy.NoRemove
SectionApp.Copy.Publish
SectionApp.Copy.Subscribe
SectionApp.Copy.StandAlone Section 9–27

.INF Examples .. 9–34
IcWinApp INF ... 9–34
Reflect INF .. 9–36

Section 10. Converting from Previous Releases

Converting From Release 2.0 to 3.0 10–1
3.0 Features ... 10–1

Architecture Diagram 10–1
Manager Components 10–3
Application Interface Library 10–3
Interprocess Interface Library 10–4

Contents

4173 5408-000 xi

Stack Interface Library 10–4
Switching Library ... 10–4
Hook Library .. 10–4
Shell ... 10–4
Configuration API ... 10–5
Configurator ... 10–5
ICS Version Numbers 10–5
Component Numbers 10–7
Trace Functions ... 10–7
IC_STATUS_BUFFER 10–8

Changes Affecting Applications and Libraries 10–8
INFOConnect Version Identification 10–8
Component Numbers 10–12

Defining Component Numbers 10–12
Managing Branded Component

Numbers .. 10–13
Changes Affecting Applications 10–13

CommMgr.lib Removed 10–14
New XVT Link Libraries (.LIB) 10–14
ICXVTWIN Tag .. 10–15
New IC_STATUS_COMMMGR Status 10–15
New IC_STATUS_TRANS Statuses 10–15
IcRegisterMsgSession 10–15
Running with Old Versions of

INFOConnect .. 10–16
Changes Affecting Libraries 10–16

Library API Changes 10–16
Changes for IcLib Functions 10–17
Changes for Service Libraries 10–22
Running with Multiple Versions of

INFOConnect .. 10–22

Converting From Release 1.0 to 2.0 10–23
2.0 Features .. 10–23

Architecture Diagram 10–23
Terminology ... 10–25
INFOConnect Installation Manager 10–27
Accessory IDs .. 10–27
Accessory Window States 10–27
DosLink .. 10–28
Library Configuration 10–28
Library API Control Flow Diagrams 10–28
Session and Channel Aliasing 10–28
Tracing INFOConnect Activity 10–28
INFOConn.ini ... 10–29

Contents

xii 4173 5408-000

Running Old INFOConnect Modifiers and
Interfaces .. 10–29

Multiplexing Libraries 10–29

Changes Affecting Applications 10–29
Running with Old Versions of

INFOConnect .. 10–30
CommMgr.lib Replaced by IcWin.lib 10–30
HANDLE Versus HIC_SESSION 10–30
New INFOConnect Events 10–31
Freeing Buffers Immediately after Session

Closure ... 10–31
New IC_STATUS_COMMMGR Statuses 10–32
IcGetSessionName and IcGetPathName 10–32
IcOpenAccessory and

ic_open_accessory 10–34
New Requirements for Accessories 10–35

Changes Affecting Libraries 10–38
COMMMGR.LIB Replaced by ICWIN.LIB ... 10–38
New Header (.H) Files 10–38
Function Name Changes 10–39
HANDLE Versus HIC_SESSION 10–42
IcLibInstall ... 10–43
Library Configuration 10–43
Session Establishment 10–43
IcP-ConfigPath Replacements 10–44
Session and Channel Aliases 10–44

4173 5408-000 xiii

Figures

2–1. Application's Perspective of ICS .. 2–2
2–2. Simplified Transmit Illustration ... 2–3
2–3. INFOConnect 3.0 Architecture ... 2–5
2–5. Path .. 2–11
2–6. Session/Path Relationship ... 2–12
2–5. Session/Architecture Relationship ... 2–13
2–7. Path Template .. 2–14

5–1. The DosLink Solution ... 5–23

6–1. Manager Components and APIs .. 6–2
6–2. Processing During Session Establishment .. 6–4
6–3. Processing During Transmit ... 6–8
6–4. Status Initiated by the Application .. 6–11
6–5. Status Initiated by a Library .. 6–13

10–2. INFOConnect 3.0 Architecture ... 10–2
10–1. INFOConnect 2.0 Architecture ... 10–24

0–1

4173 5408-000 xv

Tables

1–1. IDK Files/Purpose .. 1–3
1–2. Sample Files/Purpose .. 1–9

6–1. Manager Component, DLL/EXE, and API .. 6–1

0–1

4173 5408-000 xvii

About This Guide

Purpose
This guide explains how to install and use the 3.0 release of the INFOConnect
Development Kit . It is intended to help the experienced programmer write
INFOConnect applications and components.

Why use the INFOConnect Development Kit?

• To decrease your development time.

• Because INFOConnect has been chosen as the standard workstation interconnect
platform for the Unisys Architecture.

• To avoid writing and debugging communications code.

• To increase your application's transport options.

Scope
This guide is relative to release 3.0 of INFOConnect Connectivity Services and the
INFOConnect Development Kit. This is a Basic INFOConnect Developer's Kit. It
describes how to develop INFOConnect Connectivity Services (ICS) Accessories,
additional data filters (Service Libraries) and connection types (External Interface
Libraries). It does not provide support for developing INFOConnect Application
Interface Libraries, Quick Configuration Libraries, Hook Libraries or for developing
with Visual Basic.

Audience
This guide is written for application and system developers who are developing
cooperative applications that use INFOConnect Connectivity Services (ICS) for data
communications. This manual is also geared towards the developer who wishes to
build additional data filters (Service Libraries) and connection types (External
Interface Libraries).

The INFOConnect Development Kit Basic Developer's Guide does not describe how
to develop INFOConnect Application Interface Libraries, Configurators, Shells,
Quick Configuration Libraries, or Hook Libraries.

About This Guide

xviii 4173 5408-000

Prerequisites
You should be familiar with the C programming language, event-driven
programming, and the appropriate platform for which you are developing. For
example, Windows, XVT, and so forth.

How to Use This Guide
Use this guide in conjunction with the INFOConnect Development Kit Basic
Programming Reference Manual.

It is recommended that all developers read the following sections:

Section 1, "Installation"
Section 2, "An Introduction to INFOConnect Connectivity Services"
Section 8, "Debugging"
Section 9, "Packaging INFOConnect Components"

Native Windows application developers should read:

Section 3, "Writing INFOConnect/Windows Applications"

XVT application developers should read:

Section 4, "Writing INFOConnect/XVT Applications"

DosLink application developers should read:

Section 5, "Writing INFOConnect/DosLink Applications"

Library developers should read:

Section 6, "A Closer Look at the INFOConnect Architecture"
Section 7, "Writing INFOConnect Libraries for Windows 3.x"

Developers upgrading from previous INFOConnect Releases should read:

Section 10, "Converting from Previous Releases"

About This Guide

4173 5408-000 xix

Organization
This guide consists of the following sections.

Section 1. Installation

This section describes the installation of the INFOConnect Development Kit.

Section 2. An Introduction to INFOConnect Connectivity Services

This section discusses INFOConnect Architecture, basic INFOConnect terminology,
and the Accessory Application Programming Interface (AAPI) functions and events.

Section 3. Writing INFOConnect/Windows Applications

This section discusses how to write an INFOConnect application using the facilities
of Microsoft Windows.

Section 4. Writing INFOConnect/XVT Applications

This section discusses how to write an INFOConnect application using the XVT
presentation toolkit.

Section 5. Writing INFOConnect/DosLink Applications

This section discusses how to write an INFOConnect application that allows DOS
applications to make connections to other computers using INFOConnect
Connectivity Services.

Section 6. A Closer Look at the INFOConnect Architecture

This section discusses the architecture of INFOConnect in more detail, the structure
of Service and External Interface Libraries, and ICS control flow.

Section 7. Writing INFOConnect Libraries for Windows 3.x

This section discusses how to build INFOConnect Service and External Interface
Libraries.

Section 8. Debugging

This section discusses procedures for debugging applications you have written for
INFOConnect.

Section 9. Packaging INFOConnect Components

This section discusses how to package your INFOConnect components to provide a
common look and feel with all INFOConnect packages. It also covers information
about setting up your components for easy installation with INFOConnect.

About This Guide

xx 4173 5408-000

Section 10. Converting from Previous Releases

This section describes the new features of release 3.0 and provides conversion
guidelines for upgrading existing INFOConnect components from release 2.0 to 3.0.
It also describes the new features of release 2.0 and provides conversion guidelines
for upgrading INFOConnect components from release 1.0 to 2.0.

Related Product Information
INFOConnect Developer's Kit Basic Programming Reference Manual (4173
5390-000)

Provides detailed information about the programming interfaces, messages and data
types for the basic features of INFOConnect Connectivity Services.

INFOConnect Connectivity Services Installation and Configuration Guide (4240
0119-200)

Contains information on installing and configuring the INFOConnect runtime
product.

Microsoft Windows Software Development Kit Reference

Contains reference material for the Windows SDK.

Microsoft Windows Software Development Kit Guide to Programming

Describes how to use the Windows SDK to develop Windows applications and
dynamic link libraries.

XVT Programmer's Manual

Contains reference material for the XVT developers kit.

4173 5408-000 1–1

Section 1
Installation

This section covers the installation and preparation of the INFOConnect
Development Kit (IDK). Although only the Windows version is currently available,
a directory structure is used that will allow additional versions of the IDK to exist on
the same machine in the future. After installation, a directory will exist on your hard
disk named IDK.

The directory structure used by the IDK is:

idk
idk\include
idk\lib
idk\lib\win
idk\run
idk\run\win
idk\win
idk\sample

Windows Platform

System Requirements
• Unisys PC or compatible device

− 80286 or higher processor (80386 recommended)
− 2 MB memory (4MB recommended)
− EGA graphics
− Mouse
− 40 MB Hard disk (80 MB recommended)
− 3.5 or 5.25 floppy disk drive

Note: Be sure to check the hardware and software requirements for your C-
language compiler and the Windows 3.x Software Development Kit.

• MS-DOS 3.3 or higher running MS-Windows 3.x

• Windows 3.x Software Development Kit

Installation

1–2 4173 5408-000

• INFOConnect Connectivity Services
The INFOConnect runtimes are packaged separately from the IDK.

• C language compiler
The compiler must be compatible with Microsoft Windows. This includes, but
is not restricted to:
− Microsoft C version 5.1 or later
− Microsoft QuickC version 2.0 or later
− Borland C++ 2.0 or later
The IDK sample programs were developed using the Microsoft 7.0 compiler.
The IDK does not provide INFOConnect/C++ classes yet.

• XVT/Win Release 2.1 or later (optional)

To build on-line help files, you will need a word processor capable of building Rich
Text Format (.RTF) files.

Installation

4173 5408-000 1–3

Package Contents
The IDK consists of one installation disk that contains two INFOConnect packages:
Basic INFOConnect Development Kit and Basic IDK Samples. Check the
IDKReadM.txt file for last minute changes not included in this document.

Basic IDK Package

Table 1-1 contains an alphabetical list of all files in the Basic INFOConnect
Development Kit package, the directory in which they are found, and their purpose:

Table 1–1. IDK Files/Purpose

IDK File Name Directory Purpose

DcDevice.hic \idk\include Generic datacomm device shell header file
defining library-specific errors, statuses and
configuration tables

DosLink.lib \idk\lib\win DosLink API .lib file for linking DosLink
applications

Ic.hic \idk\include C header file that defines generic component
numbers and branded (supplier specific)
component supplier numbers

Ic2XvtL.lib \idk\lib\win Resolves all references to the 2.0 and 3.0
releases of ICS functions for XVT3.0x (Large
memory model). Use this link library for XVT
applications that will run with both ICS 2.0 and
3.0.

Ic2XvtM.lib \idk\lib\win Resolves all references to the 2.0 and 3.0
releases of ICS functions for XVT 3.0x
(Medium memory model). Use this link library
for XVT applications that will run with both ICS
2.0 and 3.0.

continued

Installation

1–4 4173 5408-000

Table 1–1. IDK Files/Purpose (cont.)

IDK File Name Directory Purpose

Ic2Xvt2L.lib \idk\lib\win Resolves all references to the 2.0 and 3.0
releases of ICS functions for XVT 2.0 (Large
memory model). Use this link library for XVT
applications that will run with both ICS 2.0 and
3.0.

Ic2Xvt2M.lib \idk\lib\win Resolves all references to the 2.0 and 3.0
releases of ICS functions for XVT 2.0 (Medium
memory model). Use this link library for XVT
applications that will run with both ICS 2.0 and
3.0.

IcAbtOem.dll \idk\run\win INFOConnect About DLL for Original
Equipment Manufacturer

IcAComs.hic \idk\include Communications Management Systems
header file defining library-specific errors,
statuses, and configuration tables

IcAssert.h \idk\include IDK C header file that provides a version of the
Assert macro to be used in Windows DLL
libraries. Note: the standard Assert macro
cannot be used in Windows DLL libraries

IcConfig.h \idk\include C header file for configuration utilities

IcDef.h \idk\include C header file included in IcWin.h and IcXvt.h

IcDef.rh \idk\include Resource include file that defines the version
template for INFOConnect version stamping

IcDict.h \idk\include C header file for the data dictionary --
INFOConnect libraries should include this into
the resource file

IcDos.h \idk\include C header file that contains the function
prototypes for the INFOConnect DosLink
services available to DOS applications

continued

Installation

4173 5408-000 1–5

Table 1–1. IDK Files/Purpose (cont.)

IDK File Name Directory Purpose

IcDosLnk.hic \idk\include INFOConnect DosLink Access header file
defining library-specific errors, statuses and
configuration tables

IcError.h \idk\include C header file for INFOConnect error
information

IcExit.h \idk\include C header file for install/exit hook libraries

Note: IcExit.h will be decommitted in the
next release of INFOConnect. The
necessary definitions have been
moved to IcLib.h. The function
prototypes have been moved to
IcProto.h.

IcDosApp.exe \idk\run\win IcDosApp executable

IcHLCNTS.hic \idk\include INFOConnect HLCNTS protocol header file
defining library-specific errors, statuses and
configuration tables

IcInstal.h \idk\include C header file for install/exit hook libraries

Note: IcInstal.h will be decommitted in the
next release of INFOConnect. The
necessary definitions have been
moved to IcLib.h. The function
prototypes have been moved to
IcProto.h.

IcLCW.hic \idk\include INFOConnect LCW service library header file
defining library-specific errors, statuses, and
configuration tables

IcLib.h \idk\include C header file to be included into service,
external interface, application interface, and
interprocess interface libraries

IcLocal.hic \idk\include Local protocol header file defining library-
specific errors, statuses and configuration
tables

IcMem.h \idk\include C header file for the memory management API

IcMgr.hic \idk\include IcMgr header file defining library-specific
errors, statuses and configuration tables

Installation

1–6 4173 5408-000

Table 1–1. IDK Files/Purpose (cont.)

IDK File Name Directory Purpose

IcMgrCfg.h \idk\include C header file for the INFOConnect
configuration API

IcMgrIns.hic \idk\include IcMgrIns header file defining library-specific
errors, statuses and configuration tables

IcMon.hic \idk\include INFOConnect Session Monitor header file
defining library-specific errors, statuses and
configuration tables

IcNBios.hic \idk\include INFOConnect NetBios protocol header file
defining library-specific errors, statuses and
configuration tables

IcNotWin.h \idk\include C header file for DOS applications to define
'standard' types normally defined in windows.h

IcOpenAc.exe \idk\run\win IcOpenAc executable

IcProto.h \idk\include C header file to prototype the procedures in
ICS library components

IcSample.hic \idk\include C header file that defines component numbers
for the IDK samples

IcShell.h \idk\include C header file for Shell utilities

IcStatus.h \idk\include C header file for INFOConnect status
definitions

IcTCP.hic \idk\include INFOConnect TCP header file defining library-
specific errors, statuses and configuration
tables

IcTelnet.hic \idk\include INFOConnect Telnet service library header file
defining library-specific errors, statuses and
configuration tables

IcTrace.hic \idk\include INFOConnect Trace header file defining
library-specific errors, statuses and
configuration tables

IcTraceL.hic \idk\include INFOConnect Trace Log header file defining
library-specific errors, statuses and
configuration tables

continued

Installation

4173 5408-000 1–7

Table 1–1. IDK Files/Purpose (cont.)

IDK File Name Directory Purpose

IcTTY.hic \idk\include INFOConnect TTY ASYNC protocol header file
defining library-specific errors, statuses and
configuration tables

IcUISMal.hic \idk\include C header file that defines component numbers
for the Malvern components

IcUtil.h \idk\include C header file for routines that are useful within the
INFOConnect environment, but the routines
themselves are not directly associated with the
INFOConnect Manager

IcWin.h \idk\include C header file to be included into applications

IcWin.lib \idk\lib\win Resolves all the references to the
INFOConnect Connectivity Services functions

IcWin20.lib \idk\lib\win Resolves all references to the 2.0 and 3.0
releases of ICS functions. Use this link library
for applications and libraries that will run with
both ICS 2.0 and 3.0.

IcXEHook.c \idk\win IcXEHook -- C source base file for terminals
providing an XVT interface

IcXEvent.obj \idk\lib\win IcXEvent.obj (INFOConnect event_hook
routine) must always be included when linking
XVT applications (Medium memory model)

IcXEvntL.obj \idk\lib\win IcXEvntL.obj (INFOConnect event_hook
routine) must always be included when linking
XVT applications (Large memory model)

IcXKey.obj \idk\lib\win IcXKey.obj is a default key_hook module
provided by INFOConnect. Replace it if you
are providing your own key_hook routine
(Medium memory model)

IcXKeyL.obj \idk\lib\win IcXKeyL.obj is a default key_hook module
provided by INFOConnect. Replace it if you
are providing your own key_hook routine
(Large memory model)

continued

Installation

1–8 4173 5408-000

Table 1–1. IDK Files/Purpose (cont.)

IDK File Name Directory Purpose

IcXMem.h \idk\include C header file for INFOConnect memory
management using XVT

IcXNS.hic \idk\include INFOConnect XNS (IPX/SPX interface)
external interface library header file defining
library-specific errors, statuses and
configuration tables

IcXvt2L.lib \idk\lib\win Resolves all references to the 3.0 Release of
ICS functions for XVT 2.0 (Large memory
model)

IcXvt2M.lib \idk\lib\win Resolves all references to the 3.0 Release of
ICS functions for XVT 2.0 (Medium memory
model)

IcXvt.h \idk\include C header file to be included in XVT
applications

IcXvtL.lib \idk\lib\win Resolves all references to the 3.0 Release of
ICS functions for XVT 3.0x (Large memory
model)

IcXvtM.lib \idk\lib\win Resolves all references to the 3.0 Release of
ICS functions for XVT 3.0x (Medium memory
model)

IcXvtMod.exe \idk Utility for XVT header file conversion

IDKReadM.txt \idk Last minute documentation changes

INFOConn.ico \idk\win INFOConnect icon file

Sys.ico \idk\win Icon file containing the letters SYS, there is
also a UNI icon file (UNISYS)

Uni.ico \idk\win Icon file containing the letters UNI, there is also
a SYS icon file (UNISYS)

Installation

4173 5408-000 1–9

Basic IDK Samples Package

Table 1-2 contains an alphabetical list of files that comprise the Basic IDK Samples
package, the directory in which they are found, and their purpose:

Table 1–2. Sample Files/Purpose

Sample File Name Directory Purpose

Couple.c \idk\sample Couple -- C-language source for
an XVT sample application that
connects two INFOConnect
sessions

Couple.def \idk\sample Couple module-definition file
used to link

Couple.h \idk\sample Couple header file

Couple.ico \idk\sample Couple icon file

Couple.url \idk\sample Couple resource file

CoupleS.c \idk\sample CoupleS -- C-language source for
a sample service library that
intercepts, encodes, and
transmits statuses across a
connection to a partner CoupleS
service library

CoupleS.def \idk\sample CoupleS module-definition file
used to link

CoupleS.dlg \idk\sample CoupleS configuration dialog
source statements

CoupleS.doc \idk\sample CoupleS on-line help text in
Microsoft Word format

CoupleS.h \idk\sample CoupleS header file

CoupleS.hh \idk\sample CoupleS header file for on-line
help

CoupleS.hic \idk\sample CoupleS header file defining
library-specific errors, statuses
and configuration tables

continued

Installation

1–10 4173 5408-000

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

CoupleS.hlp \idk\sample CoupleS help file

CoupleS.hpj \idk\sample CoupleS help project file for on-
line help

CoupleS.rc \idk\sample CoupleS resource file

CoupleS.rtf \idk\sample CoupleS on-line help text in Rich
Text Format

CoupleW.c \idk\sample CoupleW -- C-language source for
a Windows sample application that
connects two INFOConnect
sessions

CoupleW.def \idk\sample CoupleW module-definition file
used to link

CoupleW.h \idk\sample CoupleW header file

CoupleW.ico \idk\sample CoupleW icon file

CoupleW.rc \idk\sample CoupleW resource file

IcBDrive.c \idk\sample IcBDrive -- C-language source for
a DosLink sample application that
maps a subset of the BDrive API to
INFOConnect

IcBDrive.msg \idk\sample IcBDrive message source file

IcDosApp.c \idk\sample IcDosApp -- C-language source for
a DosLink sample application that
uses INFOConnect services

IcOpenAc.c \idk\sample IcOpenAc -- C-language source
code for an XVT application that
opens a INFOConnect accessory

IcOpenAc.def \idk\sample IcOpenAc module-definition file
used to link

IcOpenAc.h \idk\sample IcOpenAc header file

IcOpenAc.ico \idk\sample IcOpenAc icon file

IcOpenAc.url \idk\sample IcOpenAc resource file

continued

Installation

4173 5408-000 1–11

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

IcStack2.c \idk\sample IcStack2 -- C-language source
code for Stack Library that stacks
one INFOConnect path on top of
another.

IcStack2.def \idk\sample IcStack2 module-definition file
used to link

IcStack2.dlg \idk\sample IcStack2 configuration dialog
source statements

IcStack2.doc \idk\sample IcStack2 on-line help text in
Microsoft Word format

IcStack2.h \idk\sample IcStack2 header file

IcStack2.hh \idk\sample IcStack2 header file for on-line
help

IcStack2.hic \idk\sample IcStack2 header file defining
library-specific errors, statuses
and configuration tables

IcStack2.hlp \idk\sample IcStack2 help file

IcStack2.hpj \idk\sample IcStack2 help project file for on-
line help

IcStack2.rc \idk\sample IcStack2 resource file

IcStack2.rtf \idk\sample IcStack2 on-line help text in Rich
Text Format

IcWinApp.c \idk\sample IcWinApp -- C source file for a
windows application that allows a
user to enter messages to be sent
across the communications path
using dialog boxes

IcWinApp.def \idk\sample IcWinApp module-definition file
used to link

IcWinApp.h \idk\sample IcWinApp header file

IcWinApp.ico \idk\sample IcWinApp icon file

continued

Installation

1–12 4173 5408-000

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

IcWinApp.inf \idk\sample IcWinApp installation script file

IcWinApp.rc \idk\sample IcWinApp resource file

IcWinApp.txt \idk\sample IcWinApp README .txt file for
.INF file

IcXvtAp2.c \idk\sample IcXvtAp2-- C-language source file
for a sample XVT 2.0 application
that allows a user to enter
messages to be sent across the
communications path using dialog
boxes

IcXvtAp2.def \idk\sample IcXvtAp2 module-definition file
used to link

IcXvtAp2.h \idk\sample IcXvtAp2 header file

IcXvtAp2.ico \idk\sample IcXvtAp2 icon file

IcXvtAp2.url \idk\sample IcXvtAp2 resource file

IcXvtApp.c \idk\sample IcXvtApp -- C-language source file
for a sample XVT 3.0 application
that allows a user to enter
messages to be sent across the
communications path using dialog
boxes

IcXvtApp.def \idk\sample IcXvtApp module-definition file
used to link

IcXvtApp.h \idk\sample IcXvtApp header file

IcXvtApp.ico \idk\sample IcXvtApp icon file

IcXvtApp.url \idk\sample IcXvtApp resource file

Intrface.c \idk\sample Intrface -- C-language source
which can be used as a starting
point for external interface library
development

continued

Installation

4173 5408-000 1–13

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

Intrface.def \idk\sample Intrface module-definition file used
to link

Intrface.dlg \idk\sample Intrface configuration dialog
source statements

Intrface.doc \idk\sample Intrface on-line help text in
Microsoft Word format

Intrface.h \idk\sample Intrface header file

Intrface.hh \idk\sample Intrface header file for on-line help

Intrface.hic \idk\sample Intrface header file defining library-
specific errors, statuses and
configuration tables

Intrface.hlp \idk\sample Intrface help file

Intrface.hpj \idk\sample Intrface help project file for on-line
help

Intrface.rc \idk\sample Intrface resource file

Intrface.rtf \idk\sample Intrface on-line help text in Rich
Text Format

Makedos \idk\sample Makefile for compiling ICS
DosLink applications using
Microsoft C 7.0 and Visual C++
1.0

Makedos.bcc \idk\sample Makefile for compiling ICS
DosLink applications using
Borland C++ 3.1

Makefile \idk\sample Makefile for compiling ICS
applications using Microsoft C 7.0
and Visual C++ 1.0

Makefile.bcc \idk\sample Makefile for compiling ICS
applications using Borland C++
3.1

continued

Installation

1–14 4173 5408-000

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

Makelib \idk\sample Makefile for compiling ICS library
components using Microsoft C 7.0
and Visual C++ 1.0

Makelib.bcc \idk\sample Makefile for compiling ICS library
components using Borland C++
3.1

PS2TTY.c \idk\sample PS2TTY -- C-language source for
a sample service library that scans
receive buffers and removes any
poll/select escape-sequences
before passing the buffer on to the
application

PS2TTY.def \idk\sample PS2TTY module-definition file
used to link

PS2TTY.dlg \idk\sample PS2TTY configuration dialog
source statements

PS2TTY.doc \idk\sample PS2TTY on-line help text in
Microsoft Word format

PS2TTY.h \idk\sample PS2TTY header file

PS2TTY.hh \idk\sample PS2TTY header file for on-line
help

PS2TTY.hic \idk\sample PS2TTY header file defining
library-specific errors, statuses
and configuration tables

PS2TTY.hlp \idk\sample PS2TTY help file

PS2TTY.hpj \idk\sample PS2TTY help project file for on-
line help

PS2TTY.rc \idk\sample PS2TTY resource file

continued

Installation

4173 5408-000 1–15

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

PS2TTY.rtf \idk\sample PS2TTY on-line help text in Rich
Text Format

Reflect.c \idk\sample Reflect -- C-language source for a
sample external interface library
that stores any transmitted
messages from the application
and returns them to the application
when a receive is issued

Reflect.def \idk\sample Reflect module-definition file used
to link

Reflect.dlg \idk\sample Reflect configuration dialog
source statements

Reflect.doc \idk\sample Reflect on-line help text in
Microsoft Word format

Reflect.h \idk\sample Reflect header file

Reflect.hh \idk\sample Reflect header file for on-line help

Reflect.hic \idk\sample Reflect header file defining library-
specific errors, statuses and
configuration tables

Reflect.hlp \idk\sample Reflect help file

Reflect.hpj \idk\sample Reflect help project file for on-line
help

Reflect.inf \idk\sample Reflect installation script file

Reflect.rc \idk\sample Reflect resource file

Reflect.rtf \idk\sample Reflect on-line help text in Rich
Text Format

Service.c \idk\sample Service -- C-language source
which can be used as a starting
point for service library
development

continued

Installation

1–16 4173 5408-000

Table 1–1. Sample Files/Purpose (cont.)

Sample File Name Directory Purpose

Service.def \idk\sample Service module-definition file used
to link

Service.dlg \idk\sample Service configuration dialog
source statements

Service.doc \idk\sample Service on-line help text in
Microsoft Word format

Service.h \idk\sample Service header file

Service.hh \idk\sample Service header file for on-line help

Service.hic \idk\sample Service header file defining
library-specific errors, statuses
and configuration tables

Service.hlp \idk\sample Service help file

Service.hpj \idk\sample Service help project file for on-line
help

Service.rc \idk\sample Service resource file

Service.rtf \idk\sample Service on-line help text in Rich
Text Format

Installation

4173 5408-000 1–17

Installing the IDK
The Basic INFOConnect Development Kit consists of two packages, ICW10-IDK and
ICW10-IDK-SAMPLES. The first package contains the Basic INFOConnect
Development Kit and the second package contains the Basic IDK Samples. Both
packages are on the same distribution media (disk or floppy).

Insert the disk containing the Basic INFOConnect Development Kit. From Program
Manager, run a:\install. You are given an opportunity to name the destination
directory. The default directory is c:\idk. After the IDK files are installed,
installation of the Basic IDK samples (optional) is next. The default directory for the
Basic IDK samples is c:\idk\sample.

If you don't install the Basic IDK samples during the Basic IDK installation, they can
be installed later. Insert the Basic IDK Samples Disk into drive A. From Program
Manager, run a:\install. When prompted for the package root directory or the
package scriptfile name, type in a:\icsample.inf. You are given an opportunity to
name the destination directory. The default directory is c:\idk\sample.

Note: If you choose a destination directory other than c:\idk, the sample program
make files in the sample directories will need to be updated to reflect the
destination directory chosen.

Environment Variables
INCLUDE and LIB

The INCLUDE and LIB environment variables must be updated for those compilers
(e.g. Microsoft) that use them. If you've installed the C compiler or XVT, these
variables should be defined in AutoExec.bat. Modify them to include the IDK
directories as shown below:

set include = c:\idk\include;%include%
set lib = c:\idk\lib\win;%lib%

Installation

1–18 4173 5408-000

Microsoft compatible and Borland compatible makefiles

To build the sample programs, the IDK provides different makefiles for different C
compilers. Several environment variables are used with the Microsoft and Borland
makefiles to locate the different directories needed during INFOConnect
development. Recognized environment variables and their default values are listed
below. If the default value for a variable is correct for your machine, you don't have
to set that variable in your AutoExec.bat. In other words, if you installed the
Windows SDK into c:\windev, then you don't need to do the SET WINLIB=
statement because the IDK makefiles will correctly assume that the Windows
libraries are in c:\windev\lib. The WINSDKVER environment variable specifies the
level of the Windows SDK installed on your machine. The 3.1 SDK is the default.
Be sure to rerun AutoExec.bat or reboot your computer after you update any of these
environment variables:

set icwin=c:\idk\win

set iclib=c:\idk\lib\win

set xvtver=0x0301
 0x0302

; XVT 3.01
; XVT 3.02

set xvtdir=c:\xvt\bin ; XVT CURL processor

set winsdkver = 0x0300
 0x030a

; Windows 3.0 SDK
; Windows 3.1 SDK (default)

set winlib=c:\windev\lib ; Microsoft C

set bcclib=c:\borlandc\lib ; Borland C

set
bccinclude=c:\borlandc\include

; Borland C

Installation

4173 5408-000 1–19

System Verification Checklist for Windows
Before compiling and linking your own INFOConnect applications, please review
this checklist to insure that all the other required software has been properly installed
on your machine.

Did you update your INCLUDE environment variable properly?

The order of the directories in the INCLUDE environment variable are important. If
you are using Microsoft C, then the Windows INCLUDE directory must precede the
C compiler's INCLUDE directory. The recommended order of products in the
INCLUDE variable is: IDK, XVT, WINDOWS, C.

Are you using the Microsoft Segmented Linker?

If you have already successfully built Windows applications on your machine, you
can skip this check.

Some Microsoft compilers provide two linkers that are named LINK.EXE: an
overlay linker for DOS applications and a segmented linker for Windows and OS/2
applications. You must use the segmented linker to build Windows applications.
If you get a lot of link errors, you are probably using the overlay linker. Both linkers
display a title line identifying themselves. You may want to delete or rename the
overlay linker on your system. Microsoft C 5.1 provides both linkers; you may need
to manually copy the segmented linker from the OS/2 disks. See the Windows SDK
Tools Guide, "Chapter 2", for more information about linking Windows applications.

Did you install the Windows 3.0 SDK properly for DLL development?

If you have already successfully built Windows Dynamic Link Libraries (DLL) on
your machine, you can skip this check. Windows 3.1 SDK users can also skip this
check.

This warning concerns Windows DLLs and is only relevant for INFOConnect library
developers using the Windows 3.0 SDK. If you will only be developing applications
and accessories, you can ignore it.

There are special Windows SDK libraries needed to build DLLs. During the 3.0 SDK
installation, there is a question about optionally installing these libraries which are
named with the following format: \WINDEV\LIB\...DLLC...W.LIB. If they are
missing from your machine, you will get various errors when you try to link service
libraries and external-interface libraries. You can install these libraries without
reinstalling the entire SDK by running INSTALL with the -L option. See the
Windows SDK Installation and Update Guide for more information.

Installation

1–20 4173 5408-000

Microsoft C 7.0/Visual C++ 1.0 and OLDNAMES.LIB

If you get unresolved external references when you try to link the sample programs,
you may need to use the OLDNAMES.LIB library provided with the Microsoft C 7.0
compiler. Simply add the following statement:

set oldnames=oldnames

to AutoExec.bat to add OLDNAMES.LIB to the list of libraries to be searched. For
more information about OLDNAMES.LIB, refer to the "ANSI Compatibility" section
in the Microsoft C 7.0 Run-Time Library Reference manual.

link @reflectq.lnk

Microsoft (R) Segmented Executable Linker Version 5.30
Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

Object Modules [.obj]: /noe/nod/map/line/co reflectq.obj C:\windev\LIB\libentry
Run File [reflectq.exe]: reflectq.dll
List File [c:reflectq.map]: reflectq.map
Libraries [.lib]: icwin Sdllcew libw
Definitions File [nul.def]: reflectq.def

reflectq.obj(reflectq.c) : error L2029: '_itoa' : unresolved external

With Visual C++ 1.0 the opposite problem can occur: having oldnames set may
cause unresolved external references. If oldnames is set, execute the following
command to unset oldnames and retry the compile:

set oldnames=

link @ICXVTAP2.lnk

Microsoft (R) Segmented Executable Linker Version 5.50
Copyright (C) Microsoft Corp 1984-1993. All rights reserved.

Object Modules [.obj]: /noe/nod/map/line/co ICXVTAP2.obj C:\Karen\IDK\LIB\WIN\icxevent C:\Karen\IDK\LIB\WIN\icxkey
Run File [ICXVTAP2.exe]: ICXVTAP2.exe
List File [c:ICXVTAP2.map]: ICXVTAP2.map
Libraries [.lib]: icxvt2M Mmxvtw oldnames Mlibcew libw
Definitions File [nul.def]: ICXVTAP2.def

c:\windev\lib\Mlibcew.lib(_cflush.asm) : error L2029: '_flushall' : unresolved external
substitute symbol '__flushall' not found
c:\windev\lib\Mlibcew.lib(fflush.c) : error L2029: '_flushall' : unresolved external
substitute symbol '__flushall' not found
c:\windev\lib\Mlibcew.lib(ftell.c) : error L2029: '_lseek' : unresolved external
substitute symbol '__lseek' not found

Installation

4173 5408-000 1–21

Try building a sample Windows application

Before building an INFOConnect application, try building one of the Windows SDK
sample programs like GENERIC.

Try building a sample INFOConnect application

The final and best verification test is to actually build and execute one of the sample
programs provided with the IDK.

The IDK sample directories contains a variety of makefiles to build the sample
programs with different compilers. If you use any of the integrated environments
like PWB, IDE or Visual C++, you will have to set them up yourself. If you get
"Library not found" errors, you may also have to edit the IDK makefiles depending
on the "flavor" of Windows libraries installed on your machine (i.e.
alternate/emulator/387 math package, small/medium/large memory models).

Microsoft C 6.0, 7.0, and Visual C++ 1.0

nmake -f makefile PROGRAM=icwinapp
nmake -f makefile PROGRAM=icwinapp MODEL=L
nmake -f makefile PROGRAM=icxvtapp XVT=y
nmake -f makefile PROGRAM=icxvtap2 XVT=y XVTVER=0x200
nmake -f makelib LIBRARY=service
nmake -f makelib LIBRARY=service MODEL=M
nmake -f makelib LIBRARY=intrface
nmake -f makedos PROGRAM=icdosapp

Borland C++

Between the 2.0 and 3.0 releases, Borland changed the names of libraries used
during the link process. If you are using the 2.0 release, you must edit the
names in the BCCLIBS macro in the *.BCC makefiles.

make -f makefile.bcc -DPROGRAM=icwinapp
make -f makefile.bcc -DPROGRAM=icwinapp -DMODEL=L
make -f makefile.bcc -DPROGRAM=icxvtapp -DXVT=y
make -f makelib.bcc -DLIBRARY=service
make -f makelib.bcc -DLIBRARY=service -DMODEL=M
make -f makelib.bcc -DLIBRARY=intrface
make -f makedos.bcc -DPROGRAM=icdosapp

Installation

1–22 4173 5408-000

Preparing XVT for Use with INFOConnect
If you will be writing XVT applications and haven't installed XVT yet, you must do
that before proceeding.

Notes:

•• The IDK is compatible with XVT 2.0, 3.01 and 3.02, however, the XVT toolkit
changed substantially between XVT 2.0 and 3.0x. The sample code fragments
shown in this document are based on XVT 3.0x.

•• XVT 3.0 users must upgrade to the XVT 3.01 or 3.02 maintenance releases
before using the IDK. The INFOConnect/XVT interface is based on the XVT
event_hook mechanism which changed between XVT 3.0 and 3.01.

INFOConnect makes modifications to the XVT include files. To update the XVT
include files appropriately, a program called IcXvtMod is provided. IcXvtMod
should be run each time a new version of the IDK is installed. To execute it, type the
following at the DOS command line:

icxvtmod [XVT include directory]

For example:

cd \idk
icxvtmod \xvt\include

IcXvtMod automatically detects and works with XVT 2.0 or XVT 3.0. The new
header file, XvtType.h, (or Xvt.h for XVT 2.0) can still be used to write non-
INFOConnect XVT applications. The original XvtType.h file is saved in file
OldXvt.h.

If you need to rerun IcXvtMod

It is harmless if IcXvtMod is executed multiple times and reprocesses the XVT
include files. Earlier versions of IcXvtMod required caution to avoid processing the
include files more than once.

Try building a sample INFOConnect/XVT application

The final and best verification test is to actually build and execute one of the sample
programs, IcXvtApp, provided with the IDK. See section 4, Writing
INFOConnect/XVT Applications, for details about IcXvtApp.

4173 5408-000 2–1

Section 2
An Introduction to INFOConnect
Connectivity Services

What is the purpose of INFOConnect Connectivity Services?

INFOConnect Connectivity Services (ICS) provides data communications APIs to
applications written for graphical environments such as Windows. INFOConnect is
the standard workstation interconnect platform for the Unisys Architecture. The
INFOConnect APIs are available in both native-platform formats and XVT. Here are
some of the advantages and implications of using INFOConnect Connectivity
Services.

• Applications can immediately use new data communications transports without
having to be rebuilt. Your application is not "left behind" as new transport
technologies develop.

• Applications can be more readily ported to other GUIs by using a common data
communications API.

• Applications can easily coexist with other data communications applications on
the same workstation. (Datacomm applications have a tendency to take control
of datacomm resources and prevent other programs from simultaneously
operating).

• Outside developers can supply conforming components at the different layers of
INFOConnect's open architecture.

• Application developers can concentrate on the primary purpose of their
application and not get sidetracked in all the details of writing data
communications code.

• Applications are not concerned as to where the "partner" process is executing.
The same APIs are used no matter if the other process is on the same machine or
a different one.

• Two non-conforming, non-INFOConnect applications using completely different
data communications protocols can be made to communicate through an
INFOConnect "coupler" (or "translator") application.

An Introduction to INFOConnect Connectivity Services

2–2 4173 5408-000

What is the application's perspective of INFOConnect Connectivity Services?

INFOConnect helps you receive and send data across a communications connection
much like a file management system helps you read and write data to a file. An
INFOConnect path defines a data communications connection. Paths have names
just as files have names. To open a file, you provide the file's name and the file
system worries about the details of retrieving the file from disk. Similarly, to
establish a datacomm connection, you provide the path name and INFOConnect
worries about the specific components and transports needed to complete the
connection. After a path is opened, it is called a session. Just as you read and write
data blocks to a file, you receive and transmit data buffers over a session. Just as you
can have more than one file open at once, you can have more than one INFOConnect
session open at a time. Multiple sessions can be open to the same host or different
hosts. When you are finished, you must close sessions just like you close files.

The following diagram shows the relationship of an application, INFOConnect, and
the lower data communications transport layers. INFOConnect insulates the
application from the lower communications layers.

Figure 2–1. Application's Perspective of ICS

However, unlike a simple file management system, INFOConnect functions must
operate in an event-driven, multitasking environment. Therefore, INFOConnect
functions must always return to the calling code immediately. Often, this means
returning before an action is completed. Later, when the action is completed, a
message is posted to the application indicating the results. This design models the
event-driven architectures of GUI environments.

PC Host

INFOConnect

Transports

Application

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–3

The following diagram is a simplified illustration of an application calling
INFOConnect to transmit data (a more detailed diagram is provided in Section 6, "A
Closer Look at the INFOConnect Architecture"). A solid arrow represents a function
call or return. Function parameters are written beside the arrows. Functions
themselves are represented by boxes. Dotted arrows indicate posted messages which
result in separate execution sequences within the GUI system.

Figure 2–2. Simplified Transmit Illustration

1. The application fills a buffer and passes its handle, hXmtBuf in the diagram, to
IcXmt. IcXmt is the name of the INFOConnect AAPI function for transmitting a
buffer of data. Do_transmit represents any function in your application that is
transmitting some data.

2. The Application Interface Library/Interprocess Interface Library (AIL/IIL) does
preliminary verification of the transmit request. If it looks like a valid request,
the AIL/IIL posts a message to an internal window on the INFOConnect message
queue and returns IC_OK to the application.

3. The application resumes processing until the transmit finishes. The data buffer
being transmitted, hXmtBuf, is still unavailable to the application until the
transmit done event is returned.

4. The GUI system gives control to the AIL/IIL's Window function to process the
message posted in step 2. The AIL/IIL passes the transmit request to the
Communication Manager.

Application Interface Library/

IcXmt()
2

hXmtBuf IC_OK IC_XmtDone

Window Function

Window Function

4

6

Application

do_transmit() MainWndProc()

(message == IC_XmtDone)

1 3 7

Interprocess Interface Library

5
IcLibEvent

IC_XMTDONE

An Introduction to INFOConnect Connectivity Services

2–4 4173 5408-000

5. The Communication Manager passes the transmit request through the
INFOConnect architecture, eventually returning a transmit done message to the
AIL/IIL. The AIL/IIL posts the transmit done message (IC_XmtDone) to an
internal window on the application message queue.

6. When the GUI system gives control to the AIL/IIL, the AIL/IIL posts the
transmit done message (IC_XmtDone) to the application.

7. The GUI system gives control to the application to process the transmit done
message.

Note: Applications running on event-driven GUI platforms operate as a series of
short execution sequences in response to messages or events. In this
example, the do_transmit and MainWndProc functions are executed in two
separate execution sequences.

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–5

Architecture Diagram
The following diagram illustrates the primary components of the INFOConnect
Connectivity Services architecture:

Figure 2–3. INFOConnect 3.0 Architecture

INFOConnect Connectivity Services operate at the upper layers of the OSI
communications model. Each corresponding OSI layer - application, presentation,
session and transport - is shown down the right side of the diagram. The large
vertical arrows represents the application's data passing through the INFOConnect
architecture. The thinner black lines indicate the flow of control through the
INFOConnect architecture. The INFOConnect Manager controls all interaction
between the four components of the INFOConnect architecture:
Accessory/Application, Application Interface Library, Service Library, and External
Interface Library. Developers can write any of these INFOConnect components.

Manager

Accessory/

Application Layer

Presentation Layer

Transport Layer

Service Library

External Interface

Interface Library

External
Interface Library

Application

Transports

Session Layer

INFOConnect Components

Application

An Introduction to INFOConnect Connectivity Services

2–6 4173 5408-000

Terminology
The following terminology is specific to INFOConnect:

Manager Components

Some of the services provided by the manager components are:

• The INFOConnect Manager provides the user interface to all INFOConnect
functions: installation, configuration and administration.

• The Communication Manager routes all calls between the library layers, starting
from the Application Interface Library down to the External Interface Library
(and back). At session establishment, the Communication Manager loads the set
of libraries required for the selected path.

• The Configuration Manager is used to configure paths. It is also responsible for
controlling library configuration information, the interaction between libraries
during configuration, and access to the configuration database.

• The Database Manager maintains a database of all the paths configured by the
user. These database files are called INFOConn.cfg and InstMgr.cfg.

• The Installation Manager controls the installation and deinstallation of packages.

• The Quick Configuration Manager controls the sequence of package quick
configuration.

Cooperative Application

A cooperative application consists of multiple components usually executing on
different systems. INFOConnect helps you write the workstation component of a
cooperative application. It is assumed that a graphical user interface (GUI) is
running on the workstation. INFOConnect Connectivity Services provides the
framework for a data communication session between the components of a
cooperative application.

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–7

Application

Unless specifically noted otherwise, the terms INFOConnect application, ICS
application or application in this document refer to the workstation piece of a
cooperative application. Applications are usually end-user programs that appear as
icons on the user's screen. They make use of INFOConnect data communications
services.

Accessory

INFOConnect applications that can be invoked and controlled by other INFOConnect
applications are called accessories. INFOConnect accessories are written so that
they can be used to build more sophisticated INFOConnect accessories. It is easy
and very useful to extend your INFOConnect application to become an accessory.

Accessory API

The Accessory API (AAPI) defines a collection of services for sending and receiving
data across a data communications connection in a transport-independent manner.

DosLink API

The DosLink API is a subset of the Accessory API and defines INFOConnect data
communications services available to DOS applications.

XVT

XVT is a software toolkit produced by XVT Software Inc. that provides graphical
presentation services like windows, list boxes, scroll bars, etc. to applications.

Application Interface Library

An Application Interface Library (AIL) is the component that supports a specific set
of INFOConnect interfaces and provides the application interface to INFOConnect
communications. In INFOConnect 3.0, the INFOConnect Accessory AIL
(IcAAPI16.dll) exports the session related interfaces of the Accessory API for the
Windows (Win16) platform.

The AIL component of an INFOConnect session enables the coexistence of multiple
communications interfaces. The AIL requests establishment of an INFOConnect
session by calling the Communication Manager to associate the AIL with a path.
This allows different applications to use the same path at the same time, or different
times, even though they may use different communication APIs.

An Introduction to INFOConnect Connectivity Services

2–8 4173 5408-000

Service Library

A Service Library (SL) is a filter between the application and the external interface.
Each message transmitted or received by the application is passed through the
service library. Zero or more service libraries can be stacked in a single
INFOConnect session, as indicated in the architecture diagram. Each service library
generally operates independently and is unaware of other libraries in the session.
Message status as well as message data can be altered by service libraries. Service
libraries operate at the OSI Presentation and Session layers. They can be used for
things like data compression, data encryption and data conversion. Service libraries
can be written for specific applications, but ideally they should be designed to be
useful in as many situations as possible. For example, some services may be
reusable for a specific class of accessories like Mapper graphics engines, or for a
specific hub platform like OS1100, or for a specific transport type like TCP/IP.

Generally, applications do not have to be concerned about service libraries.

External Interface Library

An External Interface Library (EIL) is an adapter to a particular type of
communications hardware or software. Each path is configured with a single
External Interface Library. EILs typically map into the OSI Transport layer.
Applications are unaware of EILs. As new transport technologies develop, new
external interfaces can be inserted beneath your applications and service libraries
without any changes.

EILs act as the point where a session connects to another "environmental context."
This is often an external communications driver, but an EIL can also connect to
another INFOConnect session and initiate another pass through the INFOConnect
architecture. This effectively means that sessions can be stacked on top of each other
and introduces many interesting possibilities.

Generally, applications do not have to be concerned about external interface
libraries.

Interprocess Interface Library

An Interprocess Interface library acts as both an AIL and an EIL. An IIL associates
two sessions in different processes by internally linking the EIL role of one session
to the AIL role of the other session. The IIL is automatically included in sessions
when an AIL requests a path that must be opened in a different process. An IIL
shields the application from needing to know in which underlying environment the
INFOConnect subsystem is running.

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–9

Stack Interface Library

A Stack Interface library acts as both an AIL and an EIL. A Stack Interface library
associates two sessions in the same processes by internally linking the EIL role of
one session to the AIL role of the other session. Stack libraries can be included in
path templates as an EIL.

Multiplexing Library

A multiplexing library is a type of Stack Interface library that can support multiple
communication sessions (where it is configured as an EIL) on top of another session.
The sessions are associated with a channel in the EIL role which is associated with a
lower level path.

Switching Library

A type of Stack Interface library that stacks one session (where it is configured as an
EIL) on top of another session and filters the data stream for commands to open and
close the lower session. A switching library can also dynamically switch
connections of lower sessions to upper sessions.

Hook Library

A special purpose library that provides additional features to the INFOConnect
Connectivity Manager. The INFOConnect Trace Facility uses a hook library, called
trace log, that manages the trace log file and writes trace information to it.

Quick Configuration Library

A Quick Configuration (Quick Config) library is called by the Quick Configuration
Manager after package installation and before package deinstallation. A Quick
Config library is also called when a user selects the Config All button or selects a
package and then selects the Configure button in the INFOConnect Packages
window. The intent of Quick Configuration after package installation is to get the
package into a turnkey state with a minimum amount of user input. The intent of
Quick Configuration before package deinstallation is to allow the package to
participate in package removal.

Exit Hook Library

An Exit Hook library is called by the Installation Manager at different points during
the installation and deinstallation of a package. Exit hooks are used to augment the
installation process.

An Introduction to INFOConnect Connectivity Services

2–10 4173 5408-000

INFOConnect Library

Application Interface, Service, External Interface, Stack Interface, Interprocess
Interface, Stack Interface, Multiplexing, Switching, Hook, Quick Configuration, and
Exit-Hook libraries are collectively referred to as INFOConnect libraries.

Shell

A Shell is an INFOConnect accessory that runs as the INFOConnect Manager. The
INFOConnect architecture requires the Shell to be a separately running Windows
task. The Shell can optionally provide a user interface to allow session monitoring.
It may also include a configurator. Different INFOConnect Shells can be developed
using the INFOConnect Shell API. Ic16SS.exe is an alternate INFOConnect Shell
available with INFOConnect 3.0.

Configurator

A Configurator is an INFOConnect accessory that provides the user interface for
INFOConnect configuration. The INFOConnect architecture allows more than one
configurator to be executing simultaneously. Configurators use the Configurator
API.

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–11

Path

A path defines a data communications connection between the components of a
cooperative application. A path is usually defined by the user and has a name called
a PathID. A path defines a particular configuration of INFOConnect libraries that
must be loaded by the Communications Manager to complete a connection. A path
consists of one external interface library and zero or more service libraries. A path
can involve communications within the system or with another computer.

Figure 2–4. Path

Path

An Introduction to INFOConnect Connectivity Services

2–12 4173 5408-000

Session

A session is an open or active instance of a path. There is often, but not always, a
one-to-one relationship between paths and sessions. Some paths can be used to
establish multiple, simultaneous sessions. Within an application, a session is
uniquely identified by a session handle. The HIC_SESSION data type is used to
define sessions. The following diagram shows the relationship between a session and
a path:

Figure 2–5. Session/Path Relationship

PC Host

INFOConnect

Transports

Application

Path

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–13

A session consists of the following INFOConnect components:
Accessory/Application, Application Interface library, Service libraries (optional),
and External Interface library. The following diagram shows the relationship
between a session and the INFOConnect architecture:

Figure 2–1. Session/Architecture Relationship

Manager

Accessory/

Application Layer

Presentation Layer

Transport Layer

Service Library

External Interface

Interface Library

External
Interface Library

Application

Transports

Session Layer

Session Components

Application

An Introduction to INFOConnect Connectivity Services

2–14 4173 5408-000

Path Template

A path template defines which libraries and channels go together. Templates are
"filled in" during path configuration to create paths. The empty boxes and question
marks in the diagram below represent dialog box fields that must be completed
during path configuration. Templates generally categorize the basic types of
connections available on a workstation. This simplifies the path configuration
process by reducing many different combinations of libraries to a small set of path
templates.

Figure 2–6. Path Template

Library Channel

Paths and path templates reference library channels to avoid duplicating information.
Channel data is shared by all paths and templates that use that channel. Channels are
provided as a convenience to libraries. Only some libraries define channels.
Channels often describe hardware characteristics.

For example, suppose a library makes use of a COM port. Instead of making every
path contain the port number, baud rate, etc. that information can be stored in a
single library channel record which the paths and path templates then reference.

Service Libraries External Interface Libraries

Path Template

Library Channels

?

?

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–15

Inter-application Buffers

Different platforms have different requirements for sharing buffers between
applications. Any data that must be passed between your application and
INFOConnect must be allocated with memory management functions provided by
INFOConnect. A primary example of this type of buffer is a datacomm buffer used
to pass transmit/receive data between your application and INFOConnect.
IcAllocBuffer allocates fixed, shareable memory. (For XVT, use ic_buf_alloc to
obtain an IC_BUFHND handle).

Intra-application Buffers

Some applications require large blocks (greater than provided by a normal heap) of
data for local use. GlobalAlloc can be used to allocate large amounts of global
memory. (For XVT, use ic_galloc to obtain an IC_MEMHND handle).

Session Information Block

The Session Information Block provides characteristics about a specific session. The
INFOConnect libraries are responsible for building the session information block
although from the application's perspective it is just a structure provided by
INFOConnect. An example of some information in the session block is the
maximum transmission blocksize supported across the connection.

IC_RESULT

An IC_RESULT is a small packet of data used to describe errors and statuses. Most
INFOConnect functions and events return an IC_RESULT indicating success or
failure. Functions exist to translate 'error' IC_RESULTs into displayable text strings.
IC_RESULT consists of three parts: a context, a type and a value. Macros exist to
tear down or build an IC_RESULT from its parts.

Context

The context is one part of an IC_RESULT packet. It indicates where an error or
status is defined, but not necessarily who issued the error or status. A unique context
is dynamically assigned at execution time to each INFOConnect component
(services, interfaces and accessories). INFOConnect components register a uniquely-
identifying string with INFOConnect. Functions exist to convert the assigned
context to the registered context-strings and vice versa. Dynamic contexts simplifies
the integration of third party INFOConnect components into the INFOConnect
environment.

An Introduction to INFOConnect Connectivity Services

2–16 4173 5408-000

Accessory API Functions
INFOConnect applications have several groups of functions available to them
through the Accessory API:

Basic session management functions
Path management functions
Error handling functions
Accessory management functions

The function names listed here are the from the Microsoft Windows version of the
Accessory API. The XVT interfaces are equivalent, but have different names which
are appropriate for the naming conventions XVT.

Basic Session Management Functions

Every INFOConnect application uses the following functions for basic data
communications:

IcInitIcs Initializes INFOConnect Connectivity Services

IcOpenSession Initiates session establishment

IcCloseSession Initiates session termination

IcXmt Initiates a transmit of a buffer of data

IcRcv Requests a buffer of data

IcLcl Cancels pending transmits and/or receives

Less frequently used session management functions:

IcGetSessionID Returns a session identification string

IcGetSessionInfo Returns pertinent information about a session

IcChangeHandle Changes the ownership of an open session

IcSetStatus Sends a status message

IcExitOk Responds to an ICS exit request

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–17

Path Management Functions

A session is established by selecting and opening a path. Your application can let
INFOConnect present a dialog box to the user with the available paths, or you can
use the following functions to programmatically choose or create a path to be
opened. This gives the application complete control over the user interface and
presentation style during path selection.

IcGetNewPath Initiates a path configuration dialog box

IcGetPathID Returns the path identification string an active session

IcGetPathNames Provides a list of configured paths

Error Handling Functions

INFOConnect provides flexible error reporting capabilities. All errors are returned
to the application. The application can return the error to INFOConnect for default
processing, or it can request text for the error and display the error itself. This gives
the application complete control over the user interface and presentation style of
errors.

IcDefaultErrorProc Lets INFOConnect handle the error

IcGetString Converts an error code to a string

IcSetError Used by accessories to generate errors

An Introduction to INFOConnect Connectivity Services

2–18 4173 5408-000

Accessory Management

Accessory functions allow applications to invoke and interact with INFOConnect
accessories and also allow applications to register as accessories themselves.

IcOpenAccessory Used to start an INFOConnect accessory and open a
local session to it

IcRunAccessory Used to start an INFOConnect accessory, but without
opening a session to it

IcGetContextString Converts a context into the accessories string
identifier

IcGetContext Companion to IcGetContextString, converts a string
identifier into a context

IcRegisterAccessory Identifies your application as an accessory

IcDeregisterAccessory Companion to IcRegisterAccessory

Memory Management Functions

INFOConnect provides a special set of functions for the allocation of data
communications buffers. Buffers passed to INFOConnect functions must be
allocated with INFOConnect routines. GUI platforms often have special
requirements for memory blocks that are shared by multiple tasks or processes;
INFOConnect ensures that these requirements are met.

IcAllocBuffer Allocates fixed, shareable memory (for data
communications buffers)

IcGetBufferSize Returns the size of a buffer allocated with IcAllocBufer

IcReAllocBuffer Resizes memory allocated with IcAllocBuffer

IcFreeBuffer Frees memory allocated with IcAllocBuffer

IcLockBuffer Locks memory allocated with IcAllocBuffer

IcUnlockBuffer Unlocks memory locked with IcLockBuffer

An Introduction to INFOConnect Connectivity Services

4173 5408-000 2–19

Accessory API Events
The heart of a GUI application is the message handler. (Some GUI environments
may use the term event instead of message). An INFOConnect application must be
prepared to handle INFOConnect messages in addition to the standard messages
generated by the native platform. Some INFOConnect functions return results
immediately to the caller, but others (for example, opening a session) return before
the action is completed. When the action is completed, an event is passed to the
application's message handler.

The event names listed here are the from the Microsoft Windows version of the
Accessory API. The XVT interfaces are equivalent, but have different names which
are appropriate for the naming conventions XVT.

IC_SESSIONESTABLISH
ED

Generated after an earlier IcOpenSession request has
completed

IC_SESSIONCLOSED Generated after an earlier IcCloseSession request has
completed

IC_RCVDONE Generated when a receive request completes

IC_RCVERROR Generated when a receive request fails

IC_XMTDONE Generated when a transmit request completes

IC_XMTERROR Generated when a transmit request fails

IC_ERROR Generated when an unexpected error occurs

IC_STATUS Generated when a change in INFOConnect status
occurs

IC_NEWPATH Generated when a user finishes an application-
initiated configuration dialog

An Introduction to INFOConnect Connectivity Services

2–20 4173 5408-000

The following code fragment illustrates how your application's Main Window
Procedure (MainWndProc) is updated to acknowledge INFOConnect messages.
Once again, the Windows interface is used in the example, but the XVT environment
is very similar.

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{

 switch (message) { /* Windows messages */
 case WM_COMMAND:
 break;
 case WM_PAINT:
 break;
 case WM_DESTROY:
 break;

 ...
 /* INFOConnect messages */
 case (IC_MSGBASE+IC_SESSIONESTABLISHED):
 ICSSessionEstablished(hWnd, HSESSION, ICRESULT);
 break;
 case (IC_MSGBASE+IC_SESSIONCLOSED):
 ICSSessionClosed(hWnd, HSESSION);
 break;

 ...

 default:
 return(DefWindowProc(hWnd,message,wParam,lParam));
 }
 return(NULL);
}

4173 5408-000 3–1

Section 3
Writing INFOConnect/Windows
Applications

Writing a Windows application that uses INFOConnect Connectivity Services is like
writing a normal Windows application enhanced by extra message capabilities, data
structures and functions. It is assumed you are familiar with developing standard
Windows applications.

Section 3 leads you through the development of a simple Windows application that
uses INFOConnect Connectivity Services. An actual program, IcWinApp, is
presented at the end of the section. All source files necessary to build IcWinApp are
provided with the IDK development kit.

A Windows application is made up of several source files, some of which include:

a C-language source (.C) file
a Header (.H) file
a Resource (.RC) file

Let's begin by looking at some of the basic data communications tasks you will
encounter as you write the C-language source (.C) file.

Writing INFOConnect/Windows Applications

3–2 4173 5408-000

Basic Procedures for Windows Applications
This section shows how to use the INFOConnect functions to accomplish the basic
procedures or tasks that all INFOConnect applications must follow.

Initializing INFOConnect Connectivity Services
All INFOConnect functions and types are defined in one header file, IcWin.h.
Include this file after the standard Windows.h header file.

The messages that INFOConnect uses to communicate with your application must be
registered with an INFOConnect function, called IcRegisterMsgSession. This
function registers messages with Windows on a per-session basis. This function
allows developers to add INFOConnect messages to the message switch statement in
MainWinProc.

Sample code

The sample code is from IcWinApp.c. It demonstrates how to register INFOConnect
messages IcRegisterMsgSession when the application is running with ICS Release
3.0 or higher.

#include <windows.h>
#include <icwin.h>

#define HSESSION wParam

IC_RESULT icerror;
unsigned ICSVersion = IC_VERSION_3_0;

BOOL InitInstance(HANDLE hInstance,
 int nCmdShow,
 LPSTR lpCmdLine)
{
...

 /* Initialize INFOConnect Interfaces */
 icerror = IcInitIcs(IC_VERSION_3_0,IC_REVISION_3_0);
...
 if (ICSVersion >= IC_VERSION_3_0)
 icerror = IcRegisterMsgSession(s.hSession, hWnd, s.hSession,
 IC_MSGBASE, IC_LCLRESULT);
...
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–3

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
...
 switch (message) {
...
 case (IC_MSGBASE+IC_SESSIONESTABLISHED):
 ICSSessionEstablished(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_SESSIONCLOSED):
 ICSSessionClosed(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_STATUS):
 ICSStatus(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_XMTDONE):
 ICSXmtDone(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_RCVDONE):
 ICSRcvDone(hWnd, HSESSION, ICBUFFER, ICLENGTH);
 break;
...
 default:
 if ((ICSVersion >= IC_VERSION_3_0) ||
 (! ProcessICS20Msg(hWnd, message, wParam, lParam)))
 return(DefWindowProc(hWnd, message, wParam, lParam));
 }
 return(NULL);
}

Another way to register the messages that INFOConnect uses to communicate with
your application is with the Windows function RegisterWindowMessage. Use this
method if the application is intended to run with old versions of ICS. A good place
to register messages is in your InitInstance routine. The
REGISTERWINDOWMESSAGE macro used in the following example is not
required, but you may find it useful.

Writing INFOConnect/Windows Applications

3–4 4173 5408-000

Sample code

The sample code is from IcWinApp.c. It demonstrates how to register INFOConnect
messages RegisterWindowMessage when the application is running with ICS Release
2.0. The messages are registered in function RegisterICS20Msgs.

#include <windows.h>
#include <icwin.h>

IC_RESULT icerror;

/* INFOConnect message numbers for 2.0 support*/
static unsigned IC_SessionEstablished;
static unsigned IC_SessionClosed;
...
static unsigned IC_LclResult;

BOOL InitInstance(HANDLE hInstance,
 int nCmdShow,
 LPSTR lpCmdLine)
{
...
 icerror = IcInitIcs(IC_VERSION_2_0,IC_REVISION_2_0);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 LoadString(hInst, ICS_INIT_FAILED, sNoteBuf, sizeof(sNoteBuf));
 MessageBox(hWnd, sNoteBuf, QAPPNAME, MB_OK);
 } else {
 RegisterICS20Msgs();
 ICSVersion=IC_VERSION_2_0; /* for IcOpenSession/IcRegisterMsgSession */
 }
...
}

BOOL RegisterICS20Msgs (void)
{
#define REGISTERWINDOWMESSAGE(n) (n=RegisterWindowMessage(#n))

 /* Register INFOConnect message numbers */
 if ((!REGISTERWINDOWMESSAGE(IC_SessionEstablished)) ||
 (!REGISTERWINDOWMESSAGE(IC_SessionClosed)) ||
...
 (!REGISTERWINDOWMESSAGE(IC_LclResult))) {
 assert(FALSE);
 return(FALSE);
 }
 return(TRUE);
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–5

Opening a Session and Allocating Buffers
Before you can send data with INFOConnect, you must open an INFOConnect
session. The steps to open a session and allocate datacomm buffers follow:

Initialize INFOConnect

Initialize INFOConnect Connectivity Services using IcInitIcs if you haven't done so
already.

Call IcOpenSession

Call IcOpenSession to request a path to be opened. You can supply a path or let
INFOConnect prompt the user for a path. If INFOConnect returns with a non-severe
error, then a pending session handle has been created. INFOConnect will pass an
IC_SessionEstablished message to your window function later when the session is
actually established.

Do not use the pending session handle before the IC_SessionEstablished message
occurs. No IC_SessionEstablished message is generated if INFOConnect returns a
severe error on the IcOpenSession call.

Handle the IC_SessionEstablished message and allocate buffers

Add a test for IC_SessionEstablished to your window function with code to process
the session establishment message and allocate buffers for transmitting and receiving
data. Call IcGetSessionInfo to find the maximum buffer size the underlying
communications software can support. Since connections may support very large
buffers, you may want to put a ceiling on the buffer size as shown in the code
fragment. Function IcAllocBuffer must be used to allocate the buffers to satisfy
underlying platform requirements for shared global handles. Be sure to check for
NULL on the allocation requests.

Define a boolean indicating 'session establishment'

It's a good idea to create and set a global boolean variable in your application to
indicate the current state of your session. This is primarily needed during the time
between the IcOpenSession call and before the IC_SessionEstablished message is
returned to your application. The sample code uses bSessionEst within the session
structure and makes no INFOConnect requests using the pending session handle until
bSessionEst is TRUE.

Call IcCloseSession after errors

If the IC_SessionEstablished message contains a severe error you must call
IcCloseSession to release the pending session handle.

Writing INFOConnect/Windows Applications

3–6 4173 5408-000

Sample code

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
} s;

IC_SINFO sinfo;
IC_RESULT icerror;

#define MAXBUFSIZE 4096
#define HSESSION wParam

BOOL InitInstance(HANDLE hInstance,
 int nCmdShow,
 LPSTR lpCmdLine)
{
 HWND hWnd;

 hInst = hInstance;
 hWnd = CreateWindow(...);

 if ((icerror = IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0)) != IC_OK) {
 HandleIcError(hWnd, NULL, NULL, icerror);
 return(FALSE);
 }
 s.hSession = NULL_HIC_SESSION;
 s.hXmtBuf = NULL;
 s.hRcvBuf = NULL;
 s.bSessionEst = FALSE;
 s.uBufsize = 0;

 icerror = IcOpenSession(hWnd, NULL, &s.hSession);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 IcDefaultErrorProc(hWnd, s.hSession, NULL, icerror);
 return(FALSE);
 }
 return(TRUE);
}

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
...
 switch (message) {
...
 case (IC_MSGBASE+IC_SESSIONESTABLISHED):
 ICSSessionEstablished(hWnd, HSESSION, ICRESULT);
 break;
...
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–7

void ICSSessionEstablished(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)

{
 assert(hSession==s.hSession); /* bad session */
 if IC_CHECK_RESULT_SEVERE(result) {
 HandleIcError(hWnd,hSession,IC_SESSIONESTABLISHED,result);
 IcCloseSession(hSession);
 }
 else {
 icerror = IcGetSessionInfo(hSession, &sinfo);
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.bFocusNotify = sinfo.focus_notify;
 s.bBlockingOn = sinfo.block_mode;
 UpdateWindowName(hWnd, sWindowName);

 /* Allocate INFOConnect buffers. */
 s.uBufsize=min((unsigned)sinfo.max_size,MAXBUFSIZE);
 s.hXmtBuf = IcAllocBuffer(s.uBufsize);
 s.hRcvBuf = IcAllocBuffer(s.uBufsize);
 assert(s.hXmtBuf!=NULL);
 assert(s.hRcvBuf!=NULL);
 s.bSessionEst = TRUE;
 IcSetStatus(hSession, IC_TRANSACTION_ON);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
 }
}

Writing INFOConnect/Windows Applications

3–8 4173 5408-000

Transmitting a Buffer
The IcXmt function attempts to transmit a buffer of data. This function is
asynchronous in nature; it returns immediately to the application before the transmit
is completed. A non-severe error is returned indicating the transmit has been
initiated. When the transmit finishes, one of two messages is passed to your window
function: IC_XmtDone or IC_XmtError. The basic steps to follow are:

Don't transmit prematurely

Don't transmit over a session before the IC_SessionEstablished message is returned
for that session. Don't transmit while a previous transmit request is still pending for
that session. The sample code below uses two variables, bSessionEst and nXmtTries,
to manage these conditions.

Allocate and lock a transmit buffer

Allocate a transmit buffer using IcAllocBuffer if you haven't already done so. Lock
the transmit buffer with IcLockBuffer.

Fill the buffer and unlock it

Fill the transmit buffer and unlock it with IcUnlockBuffer.

Call IcXmt

Pass the buffer to INFOConnect with IcXmt.

You should declare a variable to indicate that a transmit request is outstanding.
Check this variable to avoid transmitting a second buffer before a previous transmit
has finished.

One approach is to simply use a boolean to indicate outstanding transmit requests.
Don't transmit unless the boolean is clear, then set the boolean after calling IcXmt
successfully. Clear the boolean when an IC_XMTDONE or IC_XMTERROR
message is received.

The sample program, IcWinApp, uses a different approach. A counter named
nXmtTries indicates when a transmit request is pending and will also be useful later
to manage transmit errors and retries.

Writing INFOConnect/Windows Applications

4173 5408-000 3–9

Handle the IC_XmtDone and IC_XmtError messages

Add tests for IC_XmtDone and IC_XmtError to your window function. Set your
variable to indicate that transmits are now allowed.

The IC_XmtDone message contains the buffer handle and buffer length of the
transmitted data.

The IC_XmtError message contains an IC_RESULT with the reason for the transmit
failure. Don't ignore these messages. You may want to display the error or retry the
transmit. See page 3 - 32 for more on handling data communications errors.

Writing INFOConnect/Windows Applications

3–10 4173 5408-000

Sample code

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
 int nXmtTries;
} s;

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {
 case WM_CHAR:
 /*
 The user has pressed a key. Use a dialog box
 to get the message text to be transmitted.
 Put it in sNOTEBUF, then use 'lstrcpy' to move
 the message text into the transmit buffer.
 */

 if ((s.nXmtTries>0) || (!s.bSessionEst)) {
 LoadString(hInst, XMT_NOT_DONE,
 sNoteBuf, sizeof(sNoteBuf));
 MessageBox (hWnd,
 (LPSTR)sNoteBuf,
 QAPPNAME,
 MB_ICONEXCLAMATION | MB_OK);
 }
 else {
 lpXmtDlg = MakeProcInstance(XmtDlg, hInst);
 if (DialogBox(hInst, "XmtDlg", hWnd, lpXmtDlg)) {
 if ((buf=IcLockBuffer(s.hXmtBuf)) == NULL) {
 assert(FALSE);
 }
 else {
 if (!s.bBlockingOn)
 lstrcat(sNoteBuf, "\r\n");
 lstrcpy(buf, (LPSTR)sNoteBuf);
 IcUnlockBuffer(s.hXmtBuf);
 IcSetStatus(s.hSession, IC_TRANSACTION_BEGIN);
 s.nXmtTries = 1;
 icerror = IcXmt(s.hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 HandleIcError(hWnd, s.hSession,
 NULL, icerror);
 }
 }
 }
 FreeProcInstance(lpXmtDlg);
 }
 break;
...
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–11

void ICSXmtDone(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
 s.nXmtTries = 0; /* no outstanding transmits */
}

void ICSXmtError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{

 /* Ignore warnings and informational errors,
 Xmt request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 assert(hSession==s.hSession);
 if (++(s.nXmtTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_XMTERROR,result);
 s.nXmtTries = 1;
 }
 if (s.bSessionEst) {
 /* Try again. No need to IC_TRANSACTION_BEGIN since its
 already been sent in WM_CHAR.
 */
 icerror = IcXmt(hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 }
 }
 else
 s.nXmtTries = 0;
 }
}

Writing INFOConnect/Windows Applications

3–12 4173 5408-000

Receiving a Buffer
The IcRcv function requests a buffer of data. This function is asynchronous in
nature; it returns immediately to the application before the receive request is
completed. A non-severe error is returned indicating the receive request was
initiated. When the receive request finishes, one of two messages is passed to your
window function: IC_RcvDone or IC_RcvError. The basic steps to follow are:

Don't issue a receive request prematurely

Don't use a session before the IC_SessionEstablished message is returned for that
session. Don't make a receive request while a previous receive request is still
pending for that session. The sample code below uses two variables, bSessionEst and
nRcvTries, to manage these conditions.

Allocate a receive buffer

Allocate a receive buffer using IcAllocBuffer if you haven't already done so.

Call IcRcv

Pass the buffer to INFOConnect with IcRcv.

You should declare a variable to indicate that a receive request is outstanding. Check
this variable to avoid making a second receive request with the previous one still
outstanding.

One approach is to simply use a global boolean to indicate outstanding receive
requests. Don't issue a receive request unless the boolean is clear, then set the
boolean after calling IcRcv successfully. Clear the boolean when an IC_RcvDone or
IC_RcvError message is received.

The sample program, IcWinApp, uses a different approach. A counter named
nRcvTries indicates when a receive request is pending and will also be useful later to
manage receive errors and retries.

Writing INFOConnect/Windows Applications

4173 5408-000 3–13

Handle the IC_RcvDone and IC_RcvError messages

Add tests for IC_RcvDone and IC_RcvError messages to your window function. Set
your variable to indicate new receive requests are now allowed.

IC_RcvDone messages contain the buffer handle and buffer length of the received
data.

IC_RcvError messages contain an IC_RESULT with the reason for the receive
failure. Don't ignore these messages. You may want to display the error or retry the
receive. See page 3 - 32 for more on handling data communications errors.

Sample code

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
 int nRcvTries;
} s;

void ICSSessionEstablished(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)

{
...
 /* Allocate INFOConnect buffers. */
 s.uBufsize=min((unsigned)sinfo.max_size,MAXBUFSIZE);
 s.hXmtBuf = IcAllocBuffer(s.uBufsize);
 s.hRcvBuf = IcAllocBuffer(s.uBufsize);
 assert(s.hXmtBuf!=NULL);
 assert(s.hRcvBuf!=NULL);
 s.bSessionEst = TRUE;
 IcSetStatus(hSession, IC_TRANSACTION_ON);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
 }
}

Writing INFOConnect/Windows Applications

3–14 4173 5408-000

void ICSRcvDone(HWND hWnd,
 HIC_SESSION hSession,
 HANDLE hBuffer,
 unsigned buflen)
{
 LPSTR buf;
 char sTitle[100];
 unsigned i;

 /* Display the received message */
 assert(hSession==s.hSession);
 s.nRcvTries = 0; /* no outstanding receives */
 buf = IcLockBuffer(hBuffer);
 assert(buf!=NULL);
 for (i=0; i < buflen && i < sizeof(sNoteBuf)-2; i++)
 sNoteBuf[i] = buf[i];
 sNoteBuf[i] = 0;
 IcUnlockBuffer(hBuffer);
 IcSetStatus(hSession, IC_TRANSACTION_END);
 LoadString(hInst, RCV_MSG_PREFIX, sTitle, sizeof(sTitle));
 MessageBox (hWnd,
 (LPSTR)sNoteBuf,
 sTitle,
 MB_ICONINFORMATION | MB_OK);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
}

void ICSRcvError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 /* Ignore warnings and informational errors,
 Rcv request still outstanding. */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 /* Don't send IC_TRANSACTION_END since we keep trying until
 successful.
 */
 assert(hSession==s.hSession);
 if (++(s.nRcvTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_RCVERROR,result);
 s.nRcvTries = 1;
 }
 if (s.bSessionEst) {
 /* try receive again */
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nRcvTries = 0;
 }
 }
 else
 s.nRcvTries = 0;
 }
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–15

Using Datacomm Buffers
This section covers some guidelines that will help you better manage your
application's datacomm buffers. The IcRcv and IcXmt functions are asynchronous in
nature; they return immediately before the datacomm request is actually completed.
This means your application must be careful about accessing the datacomm buffers
that were passed to these functions. The following list will help you better manage
the data communications of your application.

Allocate datacomm buffers using INFOConnect routines

Use IcAllocBuffer to allocate buffers that will be passed to INFOConnect. This
ensures that the buffers have the proper system attributes. Datacomm buffers must
be global and shareable across applications.

INFOConnect datacomm is asynchronous

Calls to IcRcv and IcXmt return to your application immediately before the request
has actually completed. A message will be sent to your window function when the
request is completed. Until this message is returned, your request is referred to as
pending.

Don't use pending buffers

Do not access a buffer that is associated with a pending request. It's a good idea to
define and set a variable for each buffer that tracks when the buffer is associated with
a pending request.

Don't issue a receive or transmit request until the IC_SessionEstablished message
has been returned.

Don't issue a receive request while a pending receive request exists for the same
session. The state of the first receive request is undefined. Normally, the first
request is canceled without returning an IC_RcvDone or IC_RcvError message, but
your application cannot assume that all external interfaces will behave similarly for
this situation. The same holds true for premature transmit requests.

Writing INFOConnect/Windows Applications

3–16 4173 5408-000

Use one receive buffer and one transmit buffer

You can have as many datacomm buffers as you like, but most sessions can only
have one active transmit buffer and one active receive buffer at a time. Therefore, it
is recommended to allocate one receive buffer and one transmit buffer.

You can use one buffer for both transmitting and receiving, but for maximum
interoperability use separate buffers. Your application can be more responsive using
separate buffers since it can keep a receive request pending while waiting for a
pending transmit request to complete.

Note: Some sessions, dependent on the libraries, may be able to handle multiple
transmit requests and multiple receive requests. Most libraries only allow
one outstanding receive request and one outstanding transmit request at a
time. This should be considered during the design phase of the application
so as not to limit the usage of the application.

Cancel pending requests with IcLcl

Pending requests can be canceled by using IcLcl. You must wait until an
IC_LclResult message is returned to your application on behalf of the canceled
messages before you can safely access any datacomm buffers.

Don't ignore errors

Don't ignore error messages (IC_XmtError and IC_RcvError). You may want to
retry the request at least some number of times. See page 3 - 32 for more on
handling data communications errors.

Writing INFOConnect/Windows Applications

4173 5408-000 3–17

Basic Error Handling
Nearly every INFOConnect function and message returns a 'long' (type IC_RESULT)
indicating the success of the function or message. Any value other than IC_OK
indicates an error. Your application can handle errors in several ways:

• Pass errors back to INFOConnect for handling

• Display and handle errors yourself

• Test for standard errors and resume without any user intervention

• Handling IC_Error messages

Here are the four categories of errors and recommended actions for each:

IC_ERROR_INFO Log this error if the application has a log file. Don't
bother displaying a message to the user. The
requested function was completed.

IC_ERROR_WARNIN
G

The requested function was completed, but something
unusual or noteworthy happened. The application
can choose to log or display this error. The default
error procedure will display these errors.

IC_ERROR_SEVERE The requested function did not complete successfully.
The user should usually see this error.

IC_ERROR_TERMINA
TE

Display this error and close the session.

Passing errors back to INFOConnect for handling

If your application doesn't need to control the presentation style of the error message,
the simplest way to handle errors is to pass them back to the INFOConnect default
error procedure.

Note: The INFOConnect default error procedure will automatically call
IcCloseSession on your behalf for errors of type IC_ERROR_TERMINATE.
On return from the default procedure, it is good practice to test for
IC_ERROR_TERMINATE type errors and, at a minimum, mark the session
as closed. Otherwise, you might inadvertently make a transmit or receive
request before the IC_SessionClosed event is sent to your application.

Writing INFOConnect/Windows Applications

3–18 4173 5408-000

The following code fragment illustrates using the default error procedure after
receiving an INFOConnect message (IC_XMTERROR) and also after calling an
INFOConnect function.

void ICSXmtError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{

 /* Ignore warnings and informational errors,
 Xmt request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 assert(hSession==s.hSession);
 if (++(s.nXmtTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_XMTERROR,result);
 s.nXmtTries = 1;
 }
 if (s.bSessionEst) {
 /* Try again. No need to IC_TRANSACTION_BEGIN since its
 already been sent in WM_CHAR.
 */
 icerror = IcXmt(hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 }
 }
 else
 s.nXmtTries = 0;
 }
}

void HandleIcError(HWND hWnd,
 HIC_SESSION session,
 unsigned message,
 IC_RESULT icerror)
{
 IcDefaultErrorProc(hWnd,session,message,icerror);
 if (IC_GET_RESULT_TYPE(icerror) >= IC_ERROR_TERMINATE)
 TerminateApplication(hWnd);}

The advantage of using function HandleIcError instead of calling IcDefaultErrorProc
directly is to leave your application the flexibility of adding code in HandleIcError to
format your own messages in the future.

Writing INFOConnect/Windows Applications

4173 5408-000 3–19

Look at the two calls to HandleIcError. Compare the 3rd parameter on each call. On
the first call, the message type is known (IC_XMTERROR) and is passed to
IcDefaultErrorProc. On the second call, NULL is passed because there is no relevant
'message type' after making an INFOConnect function call. Most of the time, you
will be passing NULL for the 3rd parameter. For more examples on using the
message-type parameter with IcDefaultErrorProc, see the IDK sample programs.

Displaying and handling errors yourself

To display error messages directly from your application, IcGetString is available to
retrieve the text of the error. You must also satisfy the following requirements
normally provided by IcDefaultErrorProc.

• Don't display informational errors. Informational errors are of type
IC_ERROR_INFO. IC_GET_RESULT_TYPE is an INFOConnect macro used
to extract the error type from an IC_RESULT.

• There are a few termination messages used by INFOConnect to close sessions
without displaying anything to the user. You should suppress displaying the
following:

IC_ERROR_TERMINATE_NOMSG
IC_ERROR_TERMINATE_CLEAR
IC_ERROR_TERMINATE_EXIT
IC_ERROR_TERMINATE_SHUTDOWN.

• Close the session for errors of type IC_ERROR_TERMINATE.
IC_GET_RESULT_TYPE is an INFOConnect macro used to extract the error-
type from an IC_RESULT.

Writing INFOConnect/Windows Applications

3–20 4173 5408-000

void foobar()
{
IC_RESULT icerror;

icerror = IcGetSessionInfo(hSession, ...)
if IC_CHECK_RESULT_SEVERE(icerror)

HandleIcError(hWnd, hSession, NULL, icerror);

}

void HandleIcError(HWND hWnd,
 HIC_SESSION hSession,
 unsigned uType,
 IC_RESULT icerror)
{
 char msg[256];

 if (((IC_GET_RESULT_TYPE(icerror) & IC_ERROR_MASK) ==
 IC_ERROR_INFO) &&

 (icerror != IC_ERROR_TERMINATE_NOMSG) &&
 (icerror != IC_ERROR_TERMINATE_CLEAR) &&
 (icerror != IC_ERROR_TERMINATE_EXIT))
 {
 if (IcGetString(hSession,
 icerror,
 (LPSTR)msg,
 sizeof(msg)) == IC_OK) {

 MessageBox(hWnd, msg, "My Caption", IDOK);
 }
 }
 if ((IC_GET_RESULT_TYPE(icerror) & IC_ERROR_MASK) ==
 IC_ERROR_TERMINATE) {
 IcCloseSession(hSession);
 }
 return IC_OK;
}

Testing for standard errors

Standard INFOConnect errors are defined in IcError.h. You may find some errors
that your application can intercept and resolve without bothering the user.

Writing INFOConnect/Windows Applications

4173 5408-000 3–21

Handling IC_Error messages

Although they are infrequent, all applications must be prepared to handle IC_Error
messages. Assuming you have written a function like HandleIcError shown above,
you can call it as follows:

#define HSESSION wParam

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {
...
 case (IC_MSGBASE+IC_ERROR):
 ICSError(hWnd, HSESSION, ICRESULT);
 break;
...
}

void ICSError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
 HandleIcError(hWnd,hSession,IC_ERROR,result);
}

Writing INFOConnect/Windows Applications

3–22 4173 5408-000

Basic Status Handling
Status messages are used to communicate between your application and
INFOConnect. Statuses can travel in one of two directions: from the application to
INFOConnect or from INFOConnect to the application. Your application uses
function IcSetStatus to send statuses and watches for message IC_Status to receive
statuses from INFOConnect.

Standard statuses are defined in the IcStatus.h header file. Here is a sampling of
statuses:

/* Line state values */
#define IC_LINESTATE_XMT ...
#define IC_LINESTATE_RCV ...
#define IC_LINESTATE_LCL ...

/* Connection state */
#define IC_CONNECT_EOF ...
#define IC_CONNECT_CLOSE ...
#define IC_CONNECT_OPEN ...
#define IC_CONNECT_NOACTIVITY ...
#define IC_CONNECT_ACTIVITY ...

/* Reactivate session when sinfo.focus_notify == TRUE */
#define IC_REACTIVATE_ON ...
#define IC_REACTIVATE_OFF ...

/* Requests to applications */
#define IC_CONTROL_ACTIVATE ...
#define IC_CONTROL_RCVREADY ...
#define IC_CONTROL_RCVAVAIL ...

Does my application need to do something for every possible status?

No. Most statuses can be ignored by your application. Here are the primary statuses
your application should support:

• IC_CONTROL_ACTIVATE

• IC_REACTIVATE_ON and IC_REACTIVATE_OFF

• IC_CONTROL_RCVAVAIL

• IC_STATUS_TRANS

Writing INFOConnect/Windows Applications

4173 5408-000 3–23

Handling IC_CONTROL_ACTIVATE statuses

If INFOConnect wants your application to become the active window, it sends an
IC_CONTROL_ACTIVATE status. The following code fragment shows how to
support this status:

void ICSStatus(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
...
 if (result==IC_CONTROL_ACTIVATE)
 SetFocus(hWnd);
...
}

Writing INFOConnect/Windows Applications

3–24 4173 5408-000

Sending IC_REACTIVATE statuses

Sometimes the underlying INFOConnect libraries are required to be notified when
your application-window gains and loses focus. This is an attribute of the session
and is referred to as focus-notification. Your application must do two things related
to focus-notification.

• Call IcGetSessionInfo to determine if your session requires focus-notification

• Recognize WM_ACTIVATE messages and send IC_REACTIVATE statuses

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {
 case WM_ACTIVATE:
 /*
 'wParam' indicates whether we are 'activating'
 or 'deactivating' a window.
 */
 if ((s.bFocusNotify) && (s.bSessionEst)) {
 if (wParam)
 s.icstatus = IC_REACTIVATE_ON;
 else
 s.icstatus = IC_REACTIVATE_OFF;
 icerror=IcSetStatus(s.hSession,s.icstatus);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.icstatus = IC_OK;
 s.bFocusNotify = FALSE;
 HandleIcError(hWnd, s.hSession, NULL, icerror);
 s.bFocusNotify = TRUE;
 }
 }
 return(DefWindowProc(hWnd, message, wParam, lParam));
...
}

void ICSSessionEstablished(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)

{
...
 icerror = IcGetSessionInfo(hSession, &sinfo);
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.bFocusNotify = sinfo.focus_notify;
 s.bBlockingOn = sinfo.block_mode;
 UpdateWindowName(hWnd, sWindowName);
...
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–25

Handling IC_CONTROL_RCVAVAIL statuses

If your application normally stays in receive mode, you do not need to watch for
IC_CONTROL_RCVAVAIL statuses, but applications that intentionally stay out of
receive mode for long periods of time should recognize this status. When an
application is not in receive mode and a message becomes available, the underlying
INFOConnect libraries can send an IC_CONTROL_RCVAVAIL status to request
your application to go into receive mode. Ignoring IC_CONTROL_RCVAVAIL
statuses may result in your application appearing sluggish and unresponsive.

Sending IC_STATUS_TRANS statuses

In order for INFOConnect to keep an accurate count of transactions, your application
needs to notify INFOConnect of the beginning and the end of the transactions. Use
IC_TRANSACTION_ON and IC_TRANSACTION_OFF to indicate whether or not
the transactions will be flanked by IC_TRANSACTION_BEGIN and
IC_TRANSACTION_END status messages.

Writing INFOConnect/Windows Applications

3–26 4173 5408-000

Closing a Session
Call IcCloseSession to end an INFOConnect session. This function returns
immediately. Message IC_SessionClosed is passed to the window function when the
session is actually closed. The basic steps to follow are:

Clear the boolean indicating 'session establishment'

The sample code uses a variable named bSessionEst for this purpose. This variable
was originally set when the IC_SessionEstablished message was received by the
application.

Call IcCloseSession and deallocate buffers

Use INFOConnect memory management routines to free datacomm buffers. Notice
that datacomm buffers can be freed immediately after returning from IcCloseSession
rather than waiting for the IC_SessionClosed message. The Manager cancels any
outstanding transmit or receive requests during IcCloseSession to ensure that the
datacomm buffers are idle. It's a good idea to set the buffer handle variables to
NULL after releasing the buffers.

Handle the IC_SessionClosed message

This is the best place to clear the session handle with NULL_HIC_SESSION rather
than immediately after the IcCloseSession function call.

Writing INFOConnect/Windows Applications

4173 5408-000 3–27

Sample code

#define HSESSION wParam

void TerminateApplication(HWND hWnd)
{
 s.bSessionEst = FALSE;
 if (s.hSession != NULL_HIC_SESSION) {
 IcCloseSession(s.hSession);
 }
 if (s.hXmtBuf != NULL) {
 IcFreeBuffer(s.hXmtBuf);
 s.hXmtBuf = NULL;
 }
 if (s.hRcvBuf != NULL) {
 IcFreeBuffer(s.hRcvBuf);
 s.hRcvBuf = NULL;
 }
 if (bDestroyWindow) {
 bDestroyWindow = FALSE;
 DestroyWindow(hWnd); /* sends a WM_DESTROY msg */
 }
 if (iccontext != IC_RESULT_CONTEXT_INVALID) {
 IcDeregisterAccessory(iccontext);
 iccontext = IC_RESULT_CONTEXT_INVALID;
 }
}

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {
 case (IC_MSGBASE+IC_SESSIONCLOSED):
 ICSSessionClosed(hWnd, HSESSION);
 break;

...
}

Writing INFOConnect/Windows Applications

3–28 4173 5408-000

Terminating your Application
The sequence of messages during application termination can vary depending on who
initiated the termination: the user, INFOConnect, the system or your application
itself. For each scenario, the first message passed to your application is different.
See the discussion after the code fragment for specific details about each scenario.

Close any open INFOConnect sessions and free any buffers before terminating your
application. Notice the precautions taken in the code fragment below such as setting
released resources to NULL.

The following scheme handles termination cleanly no matter how it is initiated.

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 switch (message) {
 case WM_COMMAND:
 switch (wParam) {
 case IDM_EXIT:
 TerminateApplication(hWnd);
 break;
...
 break;

 case WM_CLOSE:
 TerminateApplication();
 break;

 case WM_DESTROY:
 PostQuitMessage(0);
 break;

 case (IC_MSGBASE+IC_SESSIONCLOSED):
 ICSSessionClosed(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_STATUS):
 ICSStatus(hWnd, HSESSION, ICRESULT);

 default:
 return(DefWindowProc(hWnd,message,wParam,lParam));
 }
 return(NULL);
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–29

void TerminateApplication(HWND hWnd)
{
 /*
 Clean up any INFOConnect resources still assigned.
 */
 static BOOL bDestroyWindow = TRUE;
 s.bSessionEst = FALSE;
 if (s.hSession != NULL_HIC_SESSION) {
 IcCloseSession(s.hSession);
 }
 if (s.hXmtBuf != NULL) {
 IcFreeBuffer(s.hXmtBuf);
 s.hXmtBuf = NULL;
 }
 if (s.hRcvBuf != NULL) {
 IcFreeBuffer(s.hRcvBuf);
 s.hRcvBuf = NULL;
 }
 if (bDestroyWindow) {
 bDestroyWindow = FALSE;
 DestroyWindow(hWnd); /* sends a WM_DESTROYmsg */
 }
 if (iccontext != IC_RESULT_CONTEXT_INVALID) {
 IcDeregisterAccessory(iccontext);
 iccontext = IC_RESULT_CONTEXT_INVALID;
 }
}

void ICSSessionClosed(HWND hWnd, HIC_SESSION hSession)
{
 /*
 Calling TerminateApplication() from here results in an
 orderly termination if the user clears your application's
 session from the INFOConnect status window.
 If your application can stay active in this situation,
 don't call TerminateApplication() from here.
 */
 assert(hSession==s.hSession);
 s.hSession = NULL_HIC_SESSION;
 TerminateApplication(hWnd);
}

Writing INFOConnect/Windows Applications

3–30 4173 5408-000

void ICSStatus(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 assert(hSession==s.hSession ||
 IC_GET_RESULT_TYPE(result) == IC_STATUS_COMMMGR);
 if (result==IC_CONTROL_ACTIVATE)
 SetFocus(hWnd);
 if ((result==IC_COMMMGR_QUERYEXIT) ||
 (result==IC_COMMMGR_QUERYSHUTDOWN))
 IcExitOk(TRUE);
 if (result==IC_COMMMGR_CANCELEXIT)
 ; /* Some other app responded QUERYEXIT/FALSE.
 INFOConnect won't exit after all.
 */
 if (result==IC_COMMMGR_EXIT)
 ; /* INFOConnect is really going away.
 All apps responded QUERYEXIT/TRUE.
 */
...
}

User-initiated termination of your application - WM_COMMAND

Most applications have a File-menu/Exit-option that allows the user to terminate the
application by choosing the Exit option. This results in an WM_COMMAND
message. Your application needs to be prepared to close INFOConnect sessions and
free any associated buffers. The code fragment shown above accomplishes this by
calling the TerminateApplication function.

INFOConnect-initiated termination - IC_SessionClosed

If the user clears the session associated with your application from the INFOConnect
Manager window, INFOConnect sends your application an IC_SessionClosed
message. To abort your application at this point, the recommended procedure is to
call TerminateApplication from IC_SessionClosed processing. Do not call
TerminateApplication from IC_SessionClosed processing if you want to keep your
application active in this situation.

Writing INFOConnect/Windows Applications

4173 5408-000 3–31

User-initiated termination of the INFOConnect Manager

If the user shuts down INFOConnect from the INFOConnect Manager window (ALT-
F4 keystroke), a series of status messages are sent to all active INFOConnect
applications. First your application receives IC_COMMMGR_QUERYEXIT. The
application must call IcExitOk with either TRUE if it's OK to terminate or FALSE if
its not OK to terminate. If it's OK, then INFOConnect will continue querying the
other INFOConnect applications.

If an application refuses to shut down, all applications that had agreed to the
shutdown are sent IC_COMMMGR_CANCELEXIT and may continue with normal
execution. If all applications agree to the shutdown, the Manager then sends
IC_COMMMGR_EXIT to confirm that all applications have agreed to close. As a
final notice, the application will receive a terminate severity error,
IC_ERROR_TERMINATE_EXIT. The application can temporarily delay closing the
session if necessary.

System-initiated termination - WM_QUIT, WM_CLOSE, WM_DESTROY

Termination invoked by the system will result in WM_QUIT, WM_CLOSE, and
WM_DESTROY messages. The recommended procedure is to call your local
TerminateApplication function.

Application-initiated termination

Your application can force termination itself by calling TerminateApplication. The
bDestroyWindow boolean in TerminateApplication is used as a sanity check to
prevent the Windows DestroyWindow function from being called more than once.
This is necessary because there are so many ways an application can be terminated;
some of them can result in multiple calls on TerminateApplication.

Writing INFOConnect/Windows Applications

3–32 4173 5408-000

Advanced Procedures for Windows
Applications

Canceling Pending Requests
Many applications typically stay in receive mode so they're ready to respond to any
messages from the partner activity. Occasionally, it may be necessary to cancel this
outstanding receive request.

The IcLcl function selectively cancels pending actions. A parameter indicates what
is to be canceled: the pending transmit request, pending receive request, or both.
Your application should wait for an IC_LclResult message before accessing the
datacomm buffers associated with the canceled actions. By waiting for this message,
you are sure to process any IC_RcvDone or IC_XmtDone messages that were already
in your message queue before the IcLcl was done.

/* The following definitions are in ICDEF.H */
/* You do NOT need to define these in your application */

#define IC_LCL_RCV 1
#define IC_LCL_XMT 2
#define IC_LCL_RCVXMT (IC_LCL_RCV | IC_LCL_XMT)
#define IC_LCL_CLOSESESSION 4

Sample code

The following code cancels any pending receive or transmit requests.

icerror = IcLcl(hSession, IC_LCL_RCVXMT);
if IC_CHECK_RESULT_SEVERE(icerror) {
 IcDefaultErrorProc(hWnd, hSession, NULL, icerror);

Writing INFOConnect/Windows Applications

4173 5408-000 3–33

Handling Data Communications Errors
Data communications errors show up as IC_XmtError and IC_RcvError messages in
your window function. A good application will act on these messages. Often, you
may just want to retry the request for some number of times.

The following code fragment will retry datacomm errors five times before displaying
an error to the user. Two variables, nXmtTries and nRcvTries, are the basis of this
technique. They are incremented when a request results in an error. They are set to
zero after successful completion (IC_XmtDone and IC_RcvDone) indicating there is
no longer an outstanding request.

#define MAXRETRIES 5

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
 int nXmtTries;
 int nRcvTries;
} s;

void ICSXmtDone(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
 s.nXmtTries = 0; /* no outstanding transmits */
}

Writing INFOConnect/Windows Applications

3–34 4173 5408-000

void ICSXmtError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 /* Ignore warnings and informational errors,
 Xmt request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 assert(hSession==s.hSession);
 if (++(s.nXmtTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_XMTERROR,result);
 s.nXmtTries = 1;
 }
 if (s.bSessionEst) {
 /* Try again. No need to IC_TRANSACTION_BEGIN since its
 already been sent in WM_CHAR.
 */
 icerror = IcXmt(hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 }
 }
 else
 s.nXmtTries = 0;
 }
}

void ICSRcvDone(HWND hWnd,
 HIC_SESSION hSession,
 HANDLE hBuffer,
 unsigned buflen)
{
 LPSTR buf;
 char sTitle[100];
 unsigned i;

 /* Display the received message */
 assert(hSession==s.hSession);
 s.nRcvTries = 0; /* no outstanding receives */
 buf = IcLockBuffer(hBuffer);
 assert(buf!=NULL);
 for (i=0; i < buflen && i < sizeof(sNoteBuf)-2; i++)
 sNoteBuf[i] = buf[i];
 sNoteBuf[i] = 0;
 IcUnlockBuffer(hBuffer);
 IcSetStatus(hSession, IC_TRANSACTION_END);
 LoadString(hInst, RCV_MSG_PREFIX, sTitle, sizeof(sTitle));
 MessageBox (hWnd,
 (LPSTR)sNoteBuf,
 sTitle,
 MB_ICONINFORMATION | MB_OK);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–35

void ICSRcvError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{

 /* Ignore warnings and informational errors,
 Rcv request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 /* Don't send IC_TRANSACTION_END since we keep trying until
 successful.
 */
 assert(hSession==s.hSession);
 if (++(s.nRcvTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_RCVERROR,result);
 s.nRcvTries = 1;
 }
 if (s.bSessionEst) {
 /* try receive again */
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nRcvTries = 0;
 }
 }
 else
 s.nRcvTries = 0;
 }
}

Writing INFOConnect/Windows Applications

3–36 4173 5408-000

Advanced Status and Error Handling
Before reading this discussion, you should be familiar with the definition of context
given in Section 2, "An Introduction to INFOConnect Connectivity Services."

What is typedef IC_RESULT?

INFOConnect statuses and errors are defined with type IC_RESULT. An
IC_RESULT type is a 'long' made up of three parts: a context, a type and a value.
The formal names for these three are: IC_RESULT_CONTEXT, IC_RESULT_TYPE
and IC_RESULT_VALUE.

The following macros are available for building and tearing down IC_RESULT
types.

IC_MAKE_RESULT Builds IC_RESULT from its 3 parts

IC_GET_RESULT_CONTE
XT

Extracts 'context' from IC_RESULT

IC_GET_RESULT_TYPE Extracts 'type' from IC_RESULT

IC_GET_RESULT_VALUE Extracts 'value' from IC_RESULT

How do I test for library-specific statuses and errors?

If necessary, you can determine where a status or error is defined by extracting the
context from the IC_RESULT. This might be useful when you are formatting your
own error messages and want to include the name of the library that defines the error.

Note: The library that defines a message is not necessarily the only library that
uses or generates that message, although that is generally the case.
Standard INFOConnect statuses and errors have a context of
IC_RESULT_CONTEXT_STD and are defined in IcError.h and IcStatus.h.

Each INFOConnect library or accessory that defines unique statuses and errors must
provide a header file defining the types and values for its statuses and errors. The
naming convention for the header file is to use the .HIC suffix for the header file.
For example, TTY-specific definitions from IcTTY.dll are defined in IcTTY.hic.

Writing INFOConnect/Windows Applications

4173 5408-000 3–37

What is the scope or visibility of statuses and errors?

Generally, statuses and errors are only 'seen' by the components in the current path:
the application, service libraries and external interface. Status and error messages
are not sent across the connection by INFOConnect except for accessories executing
locally (invoked via IcOpenAccessory). One of the sample programs, CoupleS, is a
service library that extends the scope of statuses and errors by encoding them and
sending them across the connection.

What are these status messages telling me?

The following paragraphs give a brief description of several of the status messages
listed in Appendix B of the IDK Programming Reference Manual.

IC_CONTROL_RCVAVAIL status

The IC_CONTROL_RCVAVAIL status is sent to the application when a
message is available but the application isn't in receive mode and ready to get
it. Although a terminal emulator generally returns to receive mode as quickly
as possible after each host message, there might be times when an
IC_CONTROL_RCVAVAIL status is sent to the terminal because another
message is available, but the terminal is still in a local state.

IC_CONNECT_... statuses

These statuses originate with the external interface. They can be used by the
application to show the user some kind of status about the datacomm
connection.

The IC_CONNECT_ACTIVITY and IC_CONNECT_NOACTIVITY pair of
statuses indicate the presence of line activity. The exact meaning of a line
depends on the specific external interface, but generally a line carries much
more than the traffic for just one session. Therefore,
IC_CONNECT_ACTIVITY means that something is happening on the line, but
not necessarily for your session. IC_CONNECT_NOACTIVITY indicates the
absence of any line activity for some reasonable period of time (for example,
10 seconds). External interfaces must choose an appropriate time period so
that the application is not flooded with nuisance statuses.

The IC_CONNECT_OPEN and IC_CONNECT_CLOSE pair of statuses
indicate activity for a specific INFOConnect session, namely, the current one.
Once again, the exact meaning varies with the external interface.

Writing INFOConnect/Windows Applications

3–38 4173 5408-000

IC_CONTROL_ACTIVATE status

When a session with an INFOConnect terminal is minimized and focus is
switched to the main INFOConnect window, the INFOConnect window shows
the active sessions. By selecting the Goto button while the session for the
INFOConnect terminal is selected, INFOConnect sends an
IC_CONTROL_ACTIVATE status to the application requesting it to grab the
input focus.

IC_LINESTATE_... statuses

Three line state statuses, IC_LINESTATE_XMT, IC_LINESTATE_RCV, and
IC_LINESTATE_LCL, are intended to help terminal emulators tell the user
about the current state of the line. Depending on the underlying libraries, calls
to IcRcv and IcXmt are sometimes followed by IC_LINESTATE_RCV and
IC_LINESTATE_XMT statuses. Also, IC_RCVDONE messages are
sometimes followed by IC_LINESTATE_LCL statuses.

Using IC_STATUS_BUFFER extended status

When an application needs to exchange more information with an ICS library than
IC_RESULT_VALUE can store, it can send a buffer of information with the
IC_STATUS_BUFFER extended status. To accomplish this, a HIC_STATUSBUF
buffer handle is assigned to the IC_RESULT_VALUE member of the IC_RESULT
structure.

Extended statuses can be exchanged in two ways: synchronously and
asynchronously. Refer to Section 7, "Writing INFOConnect Libraries for Windows
3.x" for detailed steps on exchanging extended statuses.

Encoding and Decoding
Some transports do not guarantee that all binary data streams can be safely sent
across the connection (that is, SINFO.transparent=FALSE). Binary data must be
encoded by the sender and decoded by the receiver. This requires close coordination
between the workstation and host components; INFOConnect does not currently
provide encoding and decoding services. A service library is a good place to
implement the workstation side of this functionality.

Writing INFOConnect/Windows Applications

4173 5408-000 3–39

Data Compression and Error Detection
INFOConnect does not currently provide routines for data compression and error
detection. Error detection is generally the responsibility of the communications
layers beneath the INFOConnect architecture. Data compression, on the other hand,
is an ideal application for an INFOConnect service library.

Running with Old Versions of INFOConnect
Note: IcWinApp has been coded to run with ICS Releases 2.0 and 3.0.

The basic philosophy of INFOConnect version control is "Old applications must still
run with new versions of the Manager, but new applications are not required to run
with old Managers." In fact, the Manager normally refuses to run applications built
with a version of the IDK that is newer than the Manager itself. The assumption is
that new applications might make new API calls that an old Manager doesn't know
about.

If you are upgrading an existing application to a new version of the IDK, and can
function properly without making new INFOConnect API calls, this section describes
how to build your application with the latest IDK and initialize with different
versions of the Manager at run time. Your application must remember which version
of the Manager is executing and only make appropriate API calls known by that
version of the Manager.

The version of an application is normally "marked" on the initial call to IcInitIcs:

icerror = IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0);
if IC_CHECK_RESULT_SEVERE(icerror)
 // error processing. INFOConnect services are not available.

IC_VERSION_3_0 and IC_REVISION_3_0 are defined in IcDef.h. A new
IC_VERSION_... is added at major release levels (Release 1.0, 2.0, 3.0).
IC_REVISION_... has a finer granularity -- a new one is added each time the
INFOConnect APIs are extended or changed.

If you compile your application using the 2.0 values for version and revision
(IC_VERSION_2_0 and IC_REVISION_2_0) and attempt to run with INFOConnect
1.0, an error IC_ERROR_NEWVERSION is returned. However, your application can
successfully run with INFOConnect 2.0 or 3.0.

Writing INFOConnect/Windows Applications

3–40 4173 5408-000

The following code sample is suggested for initializing with the Manager:

int icversion; /* global variable */
IC_RESULT icerror;

if ((icerror=IcInitIcs(IC_VERSION_CHECK,IC_REVISION_1_0)) == IC_OK)
 icversion = IC_VERSION_1_0;
else if ((icerror=IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0)) == IC_OK)
 icversion = IC_VERSION_3_0;
else if ((icerror=IcInitIcs(IC_VERSION_2_0,IC_REVISION_2_0)) == IC_OK)
 icversion = IC_VERSION_2_0;
else {
 IcDefaultErrorProc(hWnd, NULL, NULL, icerror);
 /* INFOConnect services are unavailable!! */
}

At the end of this code fragment, icversion is set to the level of the Manager with
which you are running.

CAUTION

Be careful to check icversion before making any API calls undefined in
older versions of INFOConnect. Otherwise, you will encounter unexpected
behavior.

The recommended way to isolate new API calls in your application follows:

if (icversion >= IC_VERSION_3_0) {
 /* call some new 3.0 INFOConnect API */
}
else {
 /* alternative action using pre 3.0 API calls */
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–41

Procedures for INFOConnect Accessories
INFOConnect applications that can be invoked and controlled by other INFOConnect
applications are called accessories. INFOConnect accessories are written so that
they can be used to build more sophisticated INFOConnect accessories. You
communicate with an accessory through an INFOConnect session. It is easy and very
useful to extend your INFOConnect application to become an accessory.

Calling INFOConnect Accessories
Two functions are available to invoke accessories: IcOpenAccessory and
IcRunAccessory. IcOpenAccessory is the more powerful of the two; a connection is
established between your application and the accessory using the Local external
interface.

Sample code

#define HSESSION wParam
IC_RESULT icerror;
IC_SINFO sinfo;
HIC_SESSION hMyHostConnection, hMyAnsiSession;

/* Retrieve characteristics of the host connection */
icerror = IcGetSessionInfo(hMyHostConnection, &sinfo);
if IC_CHECK_RESULT_SEVERE(icerror {
 HandleIcError(hWnd, HSESSION, NULL, icerror);
 TerminateApplication();
}

/* Open an accessory named ANSI using pathname MYPATH */
icerror = IcOpenAccessory(hWnd, "ANSI", NULL,
 "MYPATH", &sinfo, &hMyAnsiSession);
if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd, NULL, NULL, icerror);
 TerminateApplication();
}

Notice the sinfo structure required as one of the parameters on IcOpenAccessory.
This code fragment assumes that a host connection has already been established. The
session attributes of the host connection are retrieved and used to initialize the local
connection to the ANSI accessory. For an example of using IcOpenAccessory in
complete context, see the sample program, IcOpenAc. Although IcOpenAc uses the
INFOConnect/XVT API, translating to the INFOConnect/Windows API is
straightforward. Search for the function ic_open_accessory.

Writing INFOConnect/Windows Applications

3–42 4173 5408-000

Making your Application an INFOConnect Accessory
Note: See Section 6 of the IDK Programming Reference Manual for a complete list

of requirements for accessories.

All INFOConnect accessories are expected to do the following:

Parse the command line

All INFOConnect accessories should accept the -P and -L command line options for
pathname and window location.

For a coding example of parsing the pathname, see function GetCmdLineOption in
the sample program IcWinApp.

Display the INFOConnect session name

Where relevant, accessories should incorporate the INFOConnect session name in the
window's title bar. This will help the user differentiate between multiple, active
copies of an accessory.

The following code fragment was taken from the IcWinApp sample program.

void UpdateWindowName(HWND hWnd, LPSTR lpWindowName)
{
 /*
 Append the INFOConnect session name to the Window name
 and display it.
 */

 char SessionName[IC_MAXSESSIONIDSIZE];

 icerror = IcGetSessionID(s.hSession,
 SessionName,
 sizeof(SessionName));
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd, s.hSession, NULL, icerror);
 lstrcat(lpWindowName,(LPSTR)" - ");
 lstrcat(lpWindowName,SessionName);
 SetWindowText(hWnd, lpWindowName);
}

Handle the IC_CONTROL_ACTIVATE status message

The code necessary to support this status was covered earlier under Basic status
handling. INFOConnect sends this status when the user presses the GoTo button on
the INFOConnect window display of active sessions.

Writing INFOConnect/Windows Applications

4173 5408-000 3–43

Registering and Deregistering as an accessory

Accessories that define statuses or errors must obtain a context by calling
IcRegisterAccessory. See the IcRegisterAccessory and IcDeregisterAccessory calls
in the IcWinApp sample program.

Provide a header file for accessory callers

Accessories must provide an .HIC header file that defines their identifying context
string and any nonstandard, accessory-specific errors or statuses defined by the
accessory. The compile-time name and value of the context string must be unique
from all other INFOConnect accessories.

/***/
/* SAMPLE.HIC */
/* */
/***/

#define SAMPLE_CONTEXTSTRING "SAMPLE"

/* status types - none defined */

/* error types - none defined */

Writing INFOConnect/Windows Applications

3–44 4173 5408-000

Compiling
Note: Before compiling and linking any INFOConnect applications, review the

System Verification Checklist in the Installation section.

Memory Models

The medium or small memory models are recommended for Windows-specific
applications.

The Windows 3.1 SDK Guide to Programming covers the use of various memory
models in Chapter 16, "More Memory Management." The INFOConnect architecture
places no additional constraints on memory model usage.

Include files

#include <windows.h> /* must precede icwin.h */
#include <icwin.h>

Writing INFOConnect/Windows Applications

4173 5408-000 3–45

C compiler options

The sample programs provided with the IDK Development Kit are built with the
following options using the Microsoft C compiler.

cl -c -AM -Gsw -W3 -Oils -Zp -FPc icwinapp.c

-c Compile only - don't link

-AM Medium memory model

-Gsw (s) remove stack probes
(w) compile for Windows

-W3 Generate warnings

-Oils (i) enable intrinsic functions
(l) enable loop optimization
(s) favor code size
(t) favor execution time
(d) optional flag for debugging

Notes:

• Choosing between (s) and (t) can have a significant impact
on your application. You may want to experiment before
settling on one of them.

• Using the (d) flag disables optimization and is recommended
when using debuggers like CodeView. Some of the sample
programs use the (d) flag in their make files. Don't forget to
remove it when building the production version of your code.

-Zp (p) pack structures on 1 byte boundaries
(i) optional flag for CodeView debugging

-FPc Generate calls to the emulator floating-point library

Writing INFOConnect/Windows Applications

3–46 4173 5408-000

Resource Files
Note: Only INFOConnect accessories have resource file requirements. If your

application is not called by other INFOConnect applications as an
accessory, you are not required to have any of these sections in your
resource file. However, you may still be interested in the version
information resource.

Applications use resource files to define things like menus, icons, stringtables,
bitmaps, and so forth. INFOConnect accessories must also have an INFOConnect
RCDATA section plus some additional strings included in the STRINGTABLE
section of the resource file.

This portion of IcWinApp.h shows those definitions used in the RC resource file.
You will need to provide similar local definitions in your application's header file.

/***/
/* ICWINAPP.H - C Header file */
/* */
/* Sample INFOConnect/Windows 3.x application */
/* */
/***/

#define APPNAME IcWinApp
#define QAPPNAME "IcWinApp"
#define QMARKETINGNAME "INFOConnect Sample Accessory"
#define QVENDOR "Unisys"
#define QMODULEID "ICWINAPP"

#define IC_ACCESSORYID 101
#define IC_ACCESSORYDESC 102
#define IC_VENDOR 103

Here is the beginning of IcWinApp.rc:

/***/
/* ICWINAPP.RC- Resource file */
/* */
/* Sample INFOConnect/Windows 3.x application */
/* */
/***/

#include <windows.h>
#include <icdef.h>
#include <icdict.h>
#include <icsample.hic>
#include "icwinapp.h"

Writing INFOConnect/Windows Applications

4173 5408-000 3–47

IcDef.h and IcDict.h are INFOConnect header files containing general definitions
needed in all INFOConnect resource files. IcWinApp.h contains local definitions
specific to this application.

The INFOConnect resource is an RCDATA resource that points to all other
INFOConnect-related resources. It specifies whether the component is an
application or library, the vendor of the component, and so forth. See data type
IC_RC_NODE in the IDK Programming Reference Manual for a detailed description
of this resource.

INFOConnect RCDATA
BEGIN
 IC_VERSION_2_0,
 IC_REVISION_2_0,
 IC_ACCESSORY, // IC_SERVICE vs IC_INTERFACE vs IC_ACCESSORY
 IC_HEADER_3_0, // size of the INFOConnect RCDATA section
 0, // link to dictionary tables
 IC_ACCESSORYID, // STRINGTABLE link
 IC_ACCESSORYDESC, // STRINGTABLE link
 IC_VENDOR, // STRINGTABLE link
 0, 0, 0, 0,
 /* The following fields are new for 2.02 */
 IC_VERSION_3_0,
 IC_REVISION_3_0,
 0, // reserved, must be zero
 0, // reserved, must be zero
 0, 0, // no generic component value
 SAMPLE_ICWINAPP, UIS_SAMPLE // Supplier number for IcWinApp
END

IC_VERSION_2_0 and IC_REVISION_2_0 refer to the minimum (or oldest) level of
Connectivity Services that the accessory requires for proper operation. Older levels
of Connectivity Services will refuse to run the application.

IC_ACCESSORY in the type field specifies that this component is an accessory.

IC_HEADER_3_0 designates the size of the header.

The next field is set to 0 since it is only needed by INFOConnect libraries.

IC_ACCESSORYID defines the context string for your accessory. This is the same
string that is defined in your .HIC file and used by other INFOConnect applications
and libraries to detect application-specific statuses and errors generated by your
application. The accessory ID can be IC_MAXACCESSORYIDLEN characters long.
The user sees the accessory ID in various Manager status lists and windows.

Writing INFOConnect/Windows Applications

3–48 4173 5408-000

IC_ACCESSORYDESC is the string table number of the default description which is
used when the accessory is installed.

IC_VENDOR is the string table number of the vendor identification string.

The next four fields pertain to INFOConnect libraries and are set to 0.

IC_VERSION_3_0 and IC_REVISION_3_0 specify the maximum (or latest) level of
Connectivity Services with which the application was developed in order to take
advantage of that level of ICS features.

Note: Specify IC_VERSION_3_0 or IC_REVISION_3_0 only after all requirements
in Chapter 10, "Converting from Release 2.0 to 3.0" have been completed.
Specify IC_VERSION_2_0 and IC_REVISION_2_0 until the enhancements to
the application have been completed.

The next two fields are reserved fields and must be set to 0.

The next two entries are the LO, HI values of the generic component number defined
by the IC_COMPONENT data type. Components that specify a non-zero generic
IC_COMPONENT perform a specific function and must conform to the interface
defined by the specific component's .HIC file. Generic component numbers are
assigned by the Malvern Development Group.

The last two entries are the LO, HI values of the branded (supplier-specific)
component number defined by the IC_COMPONENT data type. The branded
IC_COMPONENT uniquely identifies the component. Refer to "Component
Numbers" in Appendix A of the IDK Programming Reference Manual for more
information on Component numbers.

Note: The supplier-specific component numbers for the IDK samples are defined
in IcSample.hic. If the component is defined as 0,0, a unique value will be
assigned when the accessory ID is added to the INFOConnect configuration
database.

The version information can be viewed by examining the accessory. To examine the
accessory, open the INFOConnect Accessories window by selecting Accessories
from the Install menu. Next, select the accessory you want to view and then select
the Examine button.

Writing INFOConnect/Windows Applications

4173 5408-000 3–49

STRINGTABLE

You should already have a STRINGTABLE in your resource file. INFOConnect
requires the STRINGTABLE to contain some additional entries with text for things
like the application name, the vendor name, error messages and so forth.

STRINGTABLE DISCARDABLE
BEGIN
 IC_ACCESSORYID, MYAPP_CONTEXTSTRING
 IC_ACCESSORYDESC, QMARKETINGNAME
 IC_VENDOR, QVENDOR
END

Writing INFOConnect/Windows Applications

3–50 4173 5408-000

Version information

Windows 3.1 has version checking capabilities available to installation programs.
The INFOConnect Installation Manager does version checking when installing files
that have version information in their resource section. The sample programs and
makefiles use the technique shown below. Version information is compiled into the
resource file if the WINSDKVER environment variable is defined and if
WINSDKVER indicates that the Windows 3.1 SDK is available. The VER.H header
file is not available in the Windows 3.0 SDK. The constants used on the right side of
the #define statements (such as QMARKETINGNAME, QMODULEID) are generally
defined in the .H file and specifically tailored for your component.

#ifdef WINSDKVER
#if (WINSDKVER >= 0x030a)
/* VER.DLL is only available in the Windows 3.1 SDK */
#include <ver.h>
#define VER_FILETYPE VFT_APP
/* VFT_APP for applications */
/* VFT_DLL for libraries */

#define VER_FILESUBTYPE VFT_UNKNOWN
#define VER_FILEDESCRIPTION_STR QMARKETINGNAME
#define VER_INTERNALNAME_STR QMODULEID
#define VER_FILEVERSION NFILEVERSION
#define VER_PRODUCTVERSION NPRODUCTVERSION
#define IC_FILEVERSION_STR QVERSION
#define IC_PRODUCTVERSION_STR QVERSION
#define IC_LEGALCOPYRIGHT_STR QCOPYRIGHT
#define IC_LEGALTRADEMARKS_STR QTRADEMARK
#define IC_PRODUCTNAME_STR QPRODUCTNAME
#define IC_COMPANYNAME_STR QVENDOR
#include <icdef.rh>
#endif
#endif /* WINSDKVER */

The command line used to process the resource file for the sample Windows
application is:.

rc -r icwinapp.rc

Writing INFOConnect/Windows Applications

4173 5408-000 3–51

Linking
Note: Before compiling and linking any INFOConnect applications, review the

System Verification Checklist in the Installation section.

Link in the usual way for Windows applications. The .EXE file is first built by the
linker and then combined with the .RES resource file built earlier.

The sample Windows application, IcWinApp, was built with the following
statements:

link @icwinapp.lnk
rc icwinapp.res icwinapp.exe

Linker (LNK) files

A typical LNK file (for example, IcWinApp.lnk) contains:

/noe/nod/map/line/co icwinapp.obj
icwinapp.exe
icwin Mlibcew libw
icwinapp.def

IcWinApp is the name of the application object file.

The /NOD option allows you to specify the Windows libraries explicitly. It tells the
linker not to search any libraries specified in the object file to resolve external
references.

The /NOE option allows you to override an object file built into the libraries with one
of your own. This option prevents the linker from searching the extended dictionary,
which is an internal list of symbol locations that the linker maintains.

Never use the /NOI option with Windows.

The /CO option is optionally used to prepare for debugging with the Microsoft
CodeView debugger. Don't forget to remove it from the production version of your
code.

IcWin.lib resolves all the references to the INFOConnect ICS functions. IcWin20.lib
resolves all the references for the INFOConnect 2.0 and 3.0 ICS functions.

Mlibcew.lib is a Windows library for medium memory model.

Libw.lib is another Windows library.

Writing INFOConnect/Windows Applications

3–52 4173 5408-000

Module definition (DEF) files

A typical module definition file (for example, IcWinApp.def) contains:

NAME IcWinApp
DESCRIPTION 'Sample INFOConnect/Windows 3.0 Application'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
SEGMENTS
; the entry point of the code (WinMain) must be PRELOAD
 _TEXT MOVEABLE DISCARDABLE PRELOAD
HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows

; All functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
 MainWndProc @1
 About @2
 XmtDlg @3

Writing INFOConnect/Windows Applications

4173 5408-000 3–53

IcWinApp - a Sample Windows Application
The following is the complete source for IcWinApp, a Windows application that uses
INFOConnect services. Most of the code fragments used as examples in the
preceding discussion were taken from this program.

What does IcWinApp do?

IcWinApp is a simple communications program. It opens an INFOConnect session
and allows the user to enter messages to be sent across the communications path
using dialog boxes. Received messages are also displayed using dialog boxes.

Additional Features of IcWinApp

IcWinApp has been coded to run with ICS Releases 2.0 and 3.0.

Source file descriptions

IcWinApp.c C-language source

IcWinApp.h Header file

IcWinApp.rc Resource file

IcWinApp.def Module-definition file used to link

IcWinApp.ico Icon file

All source files needed to build this application are provided with the IDK in the
SAMPLE directory. To build the windows version of this application, do:

nmake -f makefile PROGRAM=icwinapp

Writing INFOConnect/Windows Applications

3–54 4173 5408-000

Source listing for IcWinApp.C

/***/
/* ICWINAPP.C */
/* */
/* Sample INFOConnect Windows application */
/* */
/***/

/*

What is the purpose of this sample?

 1) Provide a template for application development.

 The source files used for this sample can be used as
 a starting point for INFOConnect/Windows cooperative
 applications.

 This sample can also be built to verify the proper
 installation of your development environment.

 2) Demonstrate techniques for managing datacomm buffers.

 This sample follows the recommended techniques for
 managing buffers during error handling, application
 termination, etc.

What does this sample program do when it is run?

 This application opens an INFOConnect session and displays
 received messages in a message box. If a key is pressed,
 the user is prompted for a message to transmit.

 Windows functions are used for all presentation services
 and INFOConnect is used for all data communications.

NOTE:

 This application was translated from IcXvtApp.
 You may find it useful to compare the two programs.

What are the #ifdef/PING code sequences for?

 The PING compile time flag activates code that demonstrates
 the use of an IC_STATUS_BUFFER extended status message for
 communication between an accessory and library.

 The Reflect sample external interface library can be built
 to respond to the PING status message by simply adding a
 #define PING
 statement at the beginning of REFLECT.H

 The IcWinApp sample application can be built to emit
 the PING status message by adding a
 #define PING
 statement at the beginning of ICWINAPP.H

Writing INFOConnect/Windows Applications

4173 5408-000 3–55

HISTORY:
 05/18/92 Converted to release 2.0
 Accessory registration added.
 08/31/92 PING code to demonstrate library-specific statuses
 10/02/92 Update termination processing to do DestroyWindow.
 11/2/93 Converted to Release 3.0 by adding support for
 IcRegisterMsgSession and IC_STATUS_TRANS.
 Continue to support ICS 2.0 through ProcessICS20Msg and
 RegisterICS20Msgs.
 01/26/93 Update PING code to demonstrate IC_STATUS_BUFFER
 extended status

*/

#define NOCOMM
#include <windows.h>
#include <icwin.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include "icwinapp.h"
#ifdef PING
 #include "reflect.hic"
#endif

/* *** */
/* Global data and type declarations */
/* *** */

HANDLE hInst;

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 BOOL bFocusNotify;
 BOOL bBlockingOn;
 unsigned uBufsize;
 int nXmtTries;
 int nRcvTries;
 IC_RESULT icstatus;
 #ifdef PING
 HIC_STATUSBUF hStatusBuf;
 #endif
} s;

IC_RESULT_CONTEXT iccontext = IC_RESULT_CONTEXT_INVALID;
IC_SINFO sinfo;
IC_RESULT icerror;
char sWindowName[256];
char sWindowHdr[256];
char sNoteBuf[256];
char sPrompt[256];

Writing INFOConnect/Windows Applications

3–56 4173 5408-000

/* INFOConnect message numbers for ICS 2.0 support */
static unsigned IC_SessionEstablished;
static unsigned IC_SessionClosed;
static unsigned IC_Status;
static unsigned IC_XmtDone;
static unsigned IC_RcvDone;
static unsigned IC_XmtError;
static unsigned IC_RcvError;
static unsigned IC_Error;
static unsigned IC_NewPath;
static unsigned IC_LclResult;
static unsigned IC_StatusResult;
static unsigned IC_Timer;

unsigned ICSVersion = IC_VERSION_3_0;

#define MAXRETRIES 5
#define MAXBUFSIZE 4096

/* The following macros break down 'wParam' and 'lParam' into
 INFOConnect items.
*/
#define HSESSION ((HIC_SESSION)wParam)
#define ICRESULT ((IC_RESULT)lParam)
#define ICBUFFER ((HANDLE)HIWORD(ICRESULT))
#define ICLENGTH (LOWORD(ICRESULT))
#define ICCONTEXT (IC_GET_RESULT_CONTEXT(ICRESULT))
#define ICTYPE (IC_GET_RESULT_TYPE(ICRESULT))
#define ICVALUE (IC_GET_RESULT_VALUE(ICRESULT))

/* *** */
/* Local support routines */
/* *** */

BOOL InitApplication(HANDLE hInstance);
BOOL InitInstance(HANDLE hInstance, int nCmdShow, LPSTR lpCmdLine);
int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow);
long FAR PASCAL MainWndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
BOOL FAR PASCAL About(HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam);
BOOL FAR PASCAL XmtDlg(HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam);
void HandleIcError(HWND hWnd, HIC_SESSION session,
 unsigned message, IC_RESULT icerror);
void UpdateWindowName(HWND hWnd, LPSTR lpWindowName);
void TerminateApplication(HWND hWnd);
IC_RESULT GetCmdlineOption(LPSTR sCmdLine, char option,
 char endDelimiter, LPSTR sValue,
 unsigned uValueSize);
void ICSSessionEstablished(HWND hWnd, HIC_SESSION hSession,
 IC_RESULT result);
void ICSSessionClosed(HWND hWnd, HIC_SESSION hSession);
void ICSStatus(HWND hWnd, HIC_SESSION hSession, IC_RESULT result);
void ICSXmtDone(HWND hWnd, HIC_SESSION hSession);
void ICSRcvDone(HWND hWnd, HIC_SESSION hSession, HANDLE hBuffer,
 unsigned buflen);
void ICSXmtError(HWND hWnd, HIC_SESSION hSession, IC_RESULT result);

Writing INFOConnect/Windows Applications

4173 5408-000 3–57

void ICSRcvError(HWND hWnd, HIC_SESSION hSession, IC_RESULT result);
void ICSNewPath(HWND hWnd, HIC_SESSION hSession);
void ICSError(HWND hWnd, HIC_SESSION hSession, IC_RESULT result);
void ICSTimer(HWND hWnd, HIC_SESSION hSession);
void ICSStatusResult(HWND hWnd, HIC_SESSION hSession,
 IC_RESULT result);
void ICSLclResult(HWND hWnd, HIC_SESSION hSession);
long ProcessICS20Msg(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
BOOL RegisterICS20Msgs(void);
#ifdef PING
void PingReflect (HWND hWnd);
void DisplayPingAnswer (HWND hWnd, HIC_SESSION hSession,
 UINT uType, HIC_STATUSBUF hStatusBuf);
void PingStatus (HWND hWnd, HIC_SESSION hSession,
 IC_RESULT result);
void PingStatusResult (HWND hWnd, HIC_SESSION hSession,
 IC_RESULT result);
#endif

/* *** */
/* Standard Windows functions */
/* *** */

int PASCAL WinMain(HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 MSG msg;

 if (!hPrevInstance)
 if (!InitApplication(hInstance))
 return(FALSE);

 if (!InitInstance(hInstance, nCmdShow, lpCmdLine))
 return(FALSE);

 while (GetMessage(&msg, NULL, NULL, NULL)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return(msg.wParam);
}

Writing INFOConnect/Windows Applications

3–58 4173 5408-000

BOOL InitApplication(HANDLE hInstance)
{
 WNDCLASS wc;

 wc.style = NULL;
 wc.lpfnWndProc = MainWndProc;

 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(hInstance, QMYICON);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = GetStockObject(WHITE_BRUSH);
 wc.lpszMenuName = QMYMENUNAME;
 wc.lpszClassName = QMYCLASSNAME;

 if (!RegisterClass(&wc)) {
 assert(FALSE);
 return(FALSE);
 }
 return(TRUE);
}

BOOL InitInstance(HANDLE hInstance,
 int nCmdShow,
 LPSTR lpCmdLine)
{
 HWND hWnd; /* Main window handle */
 char ICPath[IC_MAXPATHIDSIZE] = "";
 char sAccessoryID[IC_MAXACCESSORYIDSIZE] = {QAPPNAME};
 LPSTR pPathID;

 hInst = hInstance;

 LoadString(hInst, WINDOW_NAME,
 sWindowName, sizeof(sWindowName));
 hWnd = CreateWindow(
 QMYCLASSNAME,
 sWindowName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL
);

 if (!hWnd) {
 assert(FALSE);
 return(FALSE);
 }

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd); /* Sends WM_PAINT message */

Writing INFOConnect/Windows Applications

4173 5408-000 3–59

 /* Initialize INFOConnect Interfaces */
 icerror = IcInitIcs(IC_VERSION_3_0,IC_REVISION_3_0);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 /* If you are not running on ICS 3.0, see if you are on ICS 2.0 */
 icerror = IcInitIcs(IC_VERSION_2_0,IC_REVISION_2_0);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 LoadString(hInst, ICS_INIT_FAILED, sNoteBuf, sizeof(sNoteBuf));
 MessageBox(hWnd, sNoteBuf, QAPPNAME, MB_OK);
 } else {
 RegisterICS20Msgs();
 ICSVersion=IC_VERSION_2_0; /* for IcOpenSession/IcRegisterMsgSession */
 }
 }

 /* Register as an accessory. INFOConnect applications that
 aren't called as accessories don't have to do this.
 */
 icerror = GetCmdlineOption(lpCmdLine, 'K', ' ',
 sAccessoryID, sizeof(sAccessoryID));
 icerror = IcRegisterAccessory(sAccessoryID, 0, &iccontext);
 if IC_CHECK_RESULT_SEVERE(icerror)
 goto done;

 s.hSession = NULL_HIC_SESSION;
 s.hXmtBuf = NULL;
 s.hRcvBuf = NULL;
 s.bSessionEst = FALSE;
 s.bFocusNotify = FALSE;
 s.bBlockingOn = FALSE;
 s.uBufsize = 0;
 s.nXmtTries = 0;
 s.nRcvTries = 0;
 s.icstatus = IC_OK;
 #ifdef PING
 s.hStatusBuf = NULL_HIC_STATUSBUF;
 #endif

 /*
 Open an INFOConnect Session.
 Use path name from the command line, if specified.
 Otherwise, prompt the user.
 */
 icerror = GetCmdlineOption(lpCmdLine, 'P', ' ',
 ICPath, sizeof(ICPath));
 /*
 ICS Release 3.0 and above use IcRegisterMsgSession,
 so prompt for the path ID, if necessary.
 */
 pPathID = ICPath;
 if (icerror != IC_OK) {
 if (ICSVersion >= IC_VERSION_3_0)
 icerror = IcSelectPath(hWnd, NULL_HIC_CONFIG, 0,
 ICPath, sizeof(ICPath));
 else /* Pointer must be NULL for ICS 2.0 empty string. */
 pPathID = NULL;
 }

Writing INFOConnect/Windows Applications

3–60 4173 5408-000

 /*
 ICS Release 3.0 and above use IcRegisterMsgSession, so
 IcOpenSession needs to be called with a NULL window handle.
 */
 if (!IC_CHECK_RESULT_SEVERE(icerror) &&
 (icerror != IC_ERROR_CANCELOPEN)) {
 icerror = IcOpenSession(((ICSVersion < IC_VERSION_3_0) ? hWnd : NULL),
 pPathID, &s.hSession);
 }

 if (IC_CHECK_RESULT_SEVERE(icerror) ||
 (icerror == IC_ERROR_CANCELOPEN))
 goto done;

 if (ICSVersion >= IC_VERSION_3_0)
 icerror = IcRegisterMsgSession(s.hSession, hWnd, s.hSession,
 IC_MSGBASE, IC_LCLRESULT);

done:
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd, s.hSession, NULL, icerror);
 if (iccontext != IC_RESULT_CONTEXT_INVALID) {
 IcDeregisterAccessory(iccontext);
 iccontext = IC_RESULT_CONTEXT_INVALID;
 }
 if (s.hSession != NULL_HIC_SESSION)
 IcCloseSession(s.hSession);
 return(FALSE);
 }
 return(TRUE);
}

long FAR PASCAL MainWndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 FARPROC lpProcAbout, lpXmtDlg;
 LPSTR buf;
 HDC hDC;
 PAINTSTRUCT ps;

 switch (message) {
 case WM_COMMAND:
 switch (wParam) {
 case IDM_ABOUT:
 lpProcAbout = MakeProcInstance(About, hInst);
 DialogBox(hInst,
 "AboutBox",
 hWnd,
 lpProcAbout);
 FreeProcInstance(lpProcAbout);
 break;

 case IDM_EXIT:
 TerminateApplication(hWnd);
 break;

Writing INFOConnect/Windows Applications

4173 5408-000 3–61

 #ifdef PING
 case IDM_PING:
 PingReflect(hWnd);
 break;
 #endif

 default:
 return(DefWindowProc(hWnd,message,wParam,lParam));
 }
 break;

 case WM_CHAR:
 /*
 The user has pressed a key. Use a dialog box
 to get the message text to be transmitted.
 Put it in sNOTEBUF, then use 'lstrcpy' to move
 the message text into the transmit buffer.
 */
 if ((s.nXmtTries>0) || (!s.bSessionEst)) {
 LoadString(hInst, XMT_NOT_DONE,
 sNoteBuf, sizeof(sNoteBuf));
 MessageBox (hWnd,
 (LPSTR)sNoteBuf,
 QAPPNAME,
 MB_ICONEXCLAMATION | MB_OK);
 }
 else {
 lpXmtDlg = MakeProcInstance(XmtDlg, hInst);
 if (DialogBox(hInst, "XmtDlg", hWnd, lpXmtDlg)) {
 if ((buf=IcLockBuffer(s.hXmtBuf)) == NULL) {
 assert(FALSE);
 }
 else {
 if (!s.bBlockingOn)
 lstrcat(sNoteBuf, "\r\n");
 lstrcpy(buf, (LPSTR)sNoteBuf);
 IcUnlockBuffer(s.hXmtBuf);
 IcSetStatus(s.hSession, IC_TRANSACTION_BEGIN);
 s.nXmtTries = 1;
 icerror = IcXmt(s.hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 HandleIcError(hWnd, s.hSession,
 NULL, icerror);
 }
 }
 }
 FreeProcInstance(lpXmtDlg);
 }
 break;

 case WM_PAINT:
 hDC = BeginPaint(hWnd, &ps);
 LoadString(hInst, WINDOW_HDR,
 sNoteBuf, sizeof(sNoteBuf));
 TextOut(hDC,10,10,sNoteBuf,strlen(sNoteBuf));
 EndPaint(hWnd, &ps);
 break;

Writing INFOConnect/Windows Applications

3–62 4173 5408-000

 case WM_ACTIVATE:
 /*
 'wParam' indicates whether we are 'activating'
 or 'deactivating' a window.
 */
 if ((s.bFocusNotify) && (s.bSessionEst)) {
 if (wParam)
 s.icstatus = IC_REACTIVATE_ON;
 else
 s.icstatus = IC_REACTIVATE_OFF;
 icerror=IcSetStatus(s.hSession,s.icstatus);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.icstatus = IC_OK;
 s.bFocusNotify = FALSE;
 HandleIcError(hWnd, s.hSession, NULL, icerror);
 s.bFocusNotify = TRUE;
 }
 }
 return(DefWindowProc(hWnd, message, wParam, lParam));

 case WM_CLOSE:
 TerminateApplication(hWnd);
 break;

 case WM_DESTROY:
 PostQuitMessage(0); /* sends a WM_QUIT msg */
 break;

 /************************/
 /* INFOConnect messages */
 /************************/

 case (IC_MSGBASE+IC_SESSIONESTABLISHED):
 ICSSessionEstablished(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_SESSIONCLOSED):
 ICSSessionClosed(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_STATUS):
 ICSStatus(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_XMTDONE):
 ICSXmtDone(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_RCVDONE):
 ICSRcvDone(hWnd, HSESSION, ICBUFFER, ICLENGTH);
 break;

 case (IC_MSGBASE+IC_XMTERROR):
 ICSXmtError(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_RCVERROR):
 ICSRcvError(hWnd, HSESSION, ICRESULT);
 break;

Writing INFOConnect/Windows Applications

4173 5408-000 3–63

case (IC_MSGBASE+IC_NEWPATH):
 ICSNewPath(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_ERROR):
 ICSError(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_TIMER):
 ICSTimer(hWnd, HSESSION);
 break;

 case (IC_MSGBASE+IC_STATUSRESULT):
 ICSStatusResult(hWnd, HSESSION, ICRESULT);
 break;

 case (IC_MSGBASE+IC_LCLRESULT):
 ICSLclResult(hWnd, HSESSION);
 break;

 default:
 if ((ICSVersion >= IC_VERSION_3_0) ||
 (! ProcessICS20Msg(hWnd, message, wParam, lParam)))
 return(DefWindowProc(hWnd, message, wParam, lParam));
 }
 return(NULL);
}

/* *** */
/* Local functions */
/* *** */

BOOL FAR PASCAL About(HWND hDlg,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 NOREF(lParam);
 switch (message) {
 case WM_INITDIALOG:
 return(TRUE);

 case WM_COMMAND:
 if (wParam == IDOK
 || wParam == IDCANCEL) {
 EndDialog(hDlg, TRUE);
 return(TRUE);
 }
 break;
 }
 return(FALSE); /* Didn't process a message */
}

Writing INFOConnect/Windows Applications

3–64 4173 5408-000

BOOL FAR PASCAL XmtDlg(HWND hDlg,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 /*
 This is the dialog callback function used when the user
 wants to enter a message to transmit.
 */

 NOREF(lParam);
 switch (message) {
 case WM_COMMAND:
 switch (wParam) {
 case IDOK:
 GetDlgItemText(hDlg,
 IDC_XMTTEXT,
 sNoteBuf,
 sizeof(sNoteBuf));
 EndDialog(hDlg, TRUE);
 return(TRUE);

 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 return(TRUE);
 }
 break;
 case WM_INITDIALOG:
 LoadString(hInst, DEFAULT_XMT_MSG,
 sPrompt, sizeof(sPrompt));
 SetDlgItemText(hDlg, IDC_XMTTEXT, sPrompt);
 SendDlgItemMessage(hDlg, IDC_XMTTEXT, EM_SETSEL,
 NULL, MAKELONG(0, 0x7fff));
 SetFocus(GetDlgItem(hDlg, IDC_XMTTEXT));
 break;
 }
 return(FALSE);
}

void TerminateApplication(HWND hWnd)
{
 /*
 Clean up any INFOConnect resources still assigned.
 */
 static BOOL bDestroyWindow = TRUE;

 s.bSessionEst = FALSE;
 if (s.hSession != NULL_HIC_SESSION) {
 IcCloseSession(s.hSession);
 }
 if (s.hXmtBuf != NULL) {
 IcFreeBuffer(s.hXmtBuf);
 s.hXmtBuf = NULL;
 }
 if (s.hRcvBuf != NULL) {
 IcFreeBuffer(s.hRcvBuf);
 s.hRcvBuf = NULL;
 }

Writing INFOConnect/Windows Applications

4173 5408-000 3–65

if (bDestroyWindow) {
 bDestroyWindow = FALSE;
 DestroyWindow(hWnd); /* sends a WM_DESTROY msg */
 }
 if (iccontext != IC_RESULT_CONTEXT_INVALID) {
 IcDeregisterAccessory(iccontext);
 iccontext = IC_RESULT_CONTEXT_INVALID;
 }
}

void UpdateWindowName(HWND hWnd, LPSTR lpWindowName)
{
 /*
 Append the INFOConnect session name to the Window name
 and display it.
 */

 char SessionName[IC_MAXSESSIONIDSIZE];

 icerror = IcGetSessionID(s.hSession,
 SessionName,
 sizeof(SessionName));
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd, s.hSession, NULL, icerror);
 lstrcat(lpWindowName,(LPSTR)" - ");
 lstrcat(lpWindowName,SessionName);
 SetWindowText(hWnd, lpWindowName);
}

void HandleIcError(HWND hWnd,
 HIC_SESSION session,
 unsigned message,
 IC_RESULT icerror)
{
 /*
 Pass all INFOConnect errors back to INFOConnect
 for the default action.

 If you want to format and display the error
 message yourself, use IcGetString instead
 of IcDefaultErrorProc.

 */
 /*
 ICS 2.0 default error procedure needs the RegisterWindowMessage
 message value. Since the SessionEstablished message is the only
 one that ICS 2.0 acts on, we can pass that here when necessary.
 For ICS 3.0 and greater, the default error procedure understands
 the defined message indices defined in icdef.h.
 */
 if ((ICSVersion < IC_VERSION_3_0) && (message==IC_SESSIONESTABLISHED))
 message=IC_SessionEstablished;
 IcDefaultErrorProc(hWnd,session,message,icerror);
 if (IC_GET_RESULT_TYPE(icerror) >= IC_ERROR_TERMINATE)
 s.bSessionEst = FALSE;
}

Writing INFOConnect/Windows Applications

3–66 4173 5408-000

#define scan_blanks(ptr, len) \
 while ((len > 0) && (*ptr == ' ')) { \
 ptr++; \
 len--; \
 }

IC_RESULT GetCmdlineOption (LPSTR sCmdLine,
 char option,
 char endDelimiter,
 LPSTR sValue,
 unsigned uValueSize)
{
 /* Returns IC_OK if and only if the 'option'
 has been specified in the command line.
 'option' is case-insensitive.
 For IC_OK, the buffer pointed to by 'sValue', and
 whose size (including \0) is 'uValueSize', will
 return the null terminated value, otherwise
 the buffer is not affected.

 Return values:
 IC_ERROR_NOFIND if 'option' is not found.
 IC_ERROR_TRUNCATED if destination buffer is too small.
 */
 IC_RESULT ok;
 LPSTR ptr;
 unsigned len;

 ok = IC_ERROR_NOFIND;

 if (sCmdLine != NULL) {
 ptr = sCmdLine;
 len = lstrlen (sCmdLine);
 while (len > 0) {
 if (*ptr == '-') {
 ptr++;
 len--;
 if ((len > 0) &&
 ((*ptr == (char)tolower(option)) ||
 (*ptr == (char)toupper(option)))) {
 ptr++;
 len--;
 scan_blanks(ptr, len);
 while ((len > 0) &&
 (*ptr != endDelimiter) &&
 (uValueSize > 1)) {
 ok = IC_OK;
 *sValue = *ptr;
 sValue++;
 uValueSize--;
 if (uValueSize == 0)
 return IC_ERROR_TRUNCATED;
 ptr++;
 len--;
 }
 *sValue = '\0';
 }

Writing INFOConnect/Windows Applications

4173 5408-000 3–67

 else { /* skip over unwanted option string */
 scan_blanks(ptr, len);
 while ((len > 0) && (*ptr != endDelimiter)) {
 ptr++;
 len--;
 }
 }
 }
 else {
 ptr++;
 len--;
 }
 }
 }
 return ok;
}

void ICSSessionEstablished(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)

{
 assert(hSession==s.hSession); /* bad session */
 if IC_CHECK_RESULT_SEVERE(result) {
 HandleIcError(hWnd,hSession,IC_SESSIONESTABLISHED,result);
 IcCloseSession(hSession);
 }
 else {
 icerror = IcGetSessionInfo(hSession, &sinfo);
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.bFocusNotify = sinfo.focus_notify;
 s.bBlockingOn = sinfo.block_mode;
 UpdateWindowName(hWnd, sWindowName);

 /* Allocate INFOConnect buffers. */
 s.uBufsize=min((unsigned)sinfo.max_size,MAXBUFSIZE);
 s.hXmtBuf = IcAllocBuffer(s.uBufsize);
 s.hRcvBuf = IcAllocBuffer(s.uBufsize);
 assert(s.hXmtBuf!=NULL);
 assert(s.hRcvBuf!=NULL);
 s.bSessionEst = TRUE;
 IcSetStatus(hSession, IC_TRANSACTION_ON);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
 }
}

Writing INFOConnect/Windows Applications

3–68 4173 5408-000

void ICSSessionClosed(HWND hWnd,
 HIC_SESSION hSession)
{
 /*
 Calling TerminateApplication() from here results in an
 orderly termination if the user clears your application's
 session from the INFOConnect status window.
 If your application can stay active in this situation,
 don't call TerminateApplication() from here.
 */
 assert(hSession==s.hSession);
 s.hSession = NULL_HIC_SESSION;
 TerminateApplication(hWnd);
}

void ICSStatus(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 assert(hSession==s.hSession ||
 IC_GET_RESULT_TYPE(result) == IC_STATUS_COMMMGR);
 if (result==IC_CONTROL_ACTIVATE)
 SetFocus(hWnd);
 if ((result==IC_COMMMGR_QUERYEXIT) ||
 (result==IC_COMMMGR_QUERYSHUTDOWN))
 IcExitOk(TRUE);
 if (result==IC_COMMMGR_CANCELEXIT)
 ; /* Some other app responded QUERYEXIT/FALSE.
 INFOConnect won't exit after all.
 */
 if (result==IC_COMMMGR_EXIT)
 ; /* INFOConnect is really going away.
 All apps responded QUERYEXIT/TRUE.
 */
 #ifdef PING
 PingStatus(hWnd, hSession, result);
 #endif
}

void ICSXmtDone(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
 s.nXmtTries = 0; /* no outstanding transmits */
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–69

void ICSRcvDone(HWND hWnd,
 HIC_SESSION hSession,
 HANDLE hBuffer,
 unsigned buflen)
{
 LPSTR buf;
 char sTitle[100];
 unsigned i;

 /* Display the received message */
 assert(hSession==s.hSession);
 s.nRcvTries = 0; /* no outstanding receives */
 buf = IcLockBuffer(hBuffer);
 assert(buf!=NULL);
 for (i=0; i < buflen && i < sizeof(sNoteBuf)-2; i++)
 sNoteBuf[i] = buf[i];
 sNoteBuf[i] = 0;
 IcUnlockBuffer(hBuffer);
 IcSetStatus(hSession, IC_TRANSACTION_END);
 LoadString(hInst, RCV_MSG_PREFIX, sTitle, sizeof(sTitle));
 MessageBox (hWnd,
 (LPSTR)sNoteBuf,
 sTitle,
 MB_ICONINFORMATION | MB_OK);
 s.nRcvTries = 1;
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 s.nRcvTries = 0;
 HandleIcError(hWnd,hSession,NULL,icerror);
 }
}

void ICSXmtError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{

 /* Ignore warnings and informational errors,
 Xmt request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 assert(hSession==s.hSession);
 if (++(s.nXmtTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_XMTERROR,result);
 s.nXmtTries = 1;
 }
 if (s.bSessionEst) {
 /* Try again. No need to IC_TRANSACTION_BEGIN since its
 already been sent in WM_CHAR.
 */
 icerror = IcXmt(hSession, s.hXmtBuf,
 strlen(sNoteBuf));
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nXmtTries = 0;
 IcSetStatus(s.hSession, IC_TRANSACTION_END);
 }
 }
 else
 s.nXmtTries = 0;
 }
}

Writing INFOConnect/Windows Applications

3–70 4173 5408-000

void ICSRcvError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{

 /* Ignore warnings and informational errors,
 Rcv request still outstanding.
 */
 if (IC_CHECK_RESULT_SEVERE(result)) {
 /* Don't send IC_TRANSACTION_END since we keep trying until
 successful.
 */
 assert(hSession==s.hSession);
 if (++(s.nRcvTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,IC_RCVERROR,result);
 s.nRcvTries = 1;
 }
 if (s.bSessionEst) {
 /* try receive again */
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nRcvTries = 0;
 }
 }
 else
 s.nRcvTries = 0;
 }
}

void ICSNewPath(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
}

void ICSError(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
 HandleIcError(hWnd,hSession,IC_ERROR,result);
}

void ICSTimer(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–71

void ICSStatusResult(HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 NOREF(hWnd);
 NOREF(result);
 assert(hSession==s.hSession);
 #ifdef PING
 PingStatusResult(hWnd, hSession, result);
 #endif
 s.icstatus = IC_OK;
 }

void ICSLclResult(HWND hWnd,
 HIC_SESSION hSession)
{
 NOREF(hWnd);
 assert(hSession==s.hSession);
}

/* Support ICS 2.0 */

BOOL RegisterICS20Msgs (void)
{
#define REGISTERWINDOWMESSAGE(n) (n=RegisterWindowMessage(#n))

 /* Register INFOConnect message numbers */
 if ((!REGISTERWINDOWMESSAGE(IC_SessionEstablished)) ||
 (!REGISTERWINDOWMESSAGE(IC_SessionClosed)) ||
 (!REGISTERWINDOWMESSAGE(IC_Status)) ||
 (!REGISTERWINDOWMESSAGE(IC_XmtDone)) ||
 (!REGISTERWINDOWMESSAGE(IC_RcvDone)) ||
 (!REGISTERWINDOWMESSAGE(IC_XmtError)) ||
 (!REGISTERWINDOWMESSAGE(IC_RcvError)) ||
 (!REGISTERWINDOWMESSAGE(IC_NewPath)) ||
 (!REGISTERWINDOWMESSAGE(IC_Error)) ||
 (!REGISTERWINDOWMESSAGE(IC_Timer)) ||
 (!REGISTERWINDOWMESSAGE(IC_StatusResult)) ||
 (!REGISTERWINDOWMESSAGE(IC_LclResult))) {
 assert(FALSE);
 return(FALSE);
 }
 return(TRUE);
}

Writing INFOConnect/Windows Applications

3–72 4173 5408-000

long ProcessICS20Msg(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
{
 if (message==IC_SessionEstablished) {
 ICSSessionEstablished(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_SessionClosed) {
 ICSSessionClosed(hWnd, HSESSION);
 }
 else if (message==IC_Status) {
 ICSStatus(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_XmtDone) {
 ICSXmtDone(hWnd, HSESSION);
 }
 else if (message==IC_RcvDone) {
 ICSRcvDone(hWnd, HSESSION, ICBUFFER, ICLENGTH);
 }
 else if (message==IC_XmtError) {
 ICSXmtError(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_RcvError) {
 ICSRcvError(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_NewPath) {
 ICSNewPath(hWnd, HSESSION);
 }
 else if (message==IC_Error) {
 ICSError(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_Timer) {
 ICSTimer(hWnd, HSESSION);
 }
 else if (message==IC_StatusResult) {
 ICSStatusResult(hWnd, HSESSION, ICRESULT);
 }
 else if (message==IC_LclResult) {
 ICSLclResult(hWnd, HSESSION);
 } else
 return(DefWindowProc(hWnd, message, wParam, lParam));
 return(NULL);
}

Writing INFOConnect/Windows Applications

4173 5408-000 3–73

#ifdef PING
void PingReflect (HWND hWnd)
{
 LPIC_STATUSBUF lpStatusBuf = NULL;
 LPSTR lpData = NULL;
 IC_RESULT_CONTEXT LibContext = IC_RESULT_CONTEXT_INVALID;

 if (s.hStatusBuf) {
 MessageBox(hWnd, "Ping already activated", QAPPNAME, MB_OK);
 return;
 }
 icerror = IcGetContext(REFLECT_CONTEXTSTRING, &LibContext);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 MessageBox(hWnd, "Reflect library not active", QAPPNAME, MB_OK);
 if (icerror != IC_CONTEXTSTRING_NOT_FOUND)
 HandleIcError(hWnd,s.hSession,NULL,icerror);
 }
 else {
 s.hStatusBuf = IcAllocBuffer(sizeof(IC_STATUSBUF) + 256);
 assert(s.hStatusBuf);
 lpStatusBuf = (LPIC_STATUSBUF)IcLockBuffer(s.hStatusBuf);
 assert(lpStatusBuf);
 lpStatusBuf->icstatus=IC_MAKE_RESULT(LibContext,
 REFLECT_STATUS_PING,
 0);
 lpStatusBuf->icerror = IC_OK;
 lpStatusBuf->uBufSize = 256;
 lpData = (LPSTR)(lpStatusBuf+1);
 lstrcpy(lpData,"Hello?");
 lpStatusBuf->uDataSize = lstrlen(lpData);
 IcUnlockBuffer(s.hStatusBuf);
 s.icstatus=IC_MAKE_RESULT(IC_RESULT_CONTEXT_STD,
 IC_STATUS_BUFFER,
 s.hStatusBuf);
 icerror=IcSetStatus(s.hSession, s.icstatus);
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,s.hSession,NULL,icerror);
 }
}

Writing INFOConnect/Windows Applications

3–74 4173 5408-000

void DisplayPingAnswer (HWND hWnd,
 HIC_SESSION hSession,
 UINT uType,
 HIC_STATUSBUF hStatusBuf)
{
 LPIC_STATUSBUF lpStatusBuf = NULL;
 LPSTR lpData = NULL;
 IC_RESULT_TYPE sbtype;
 char tracemsg[IC_MAXSTRINGLENGTH];

 lpStatusBuf = (LPIC_STATUSBUF)IcLockBuffer(hStatusBuf);
 if (lpStatusBuf == NULL) {
 lstrcpy(tracemsg, "lpStatusBuf was NULL");
 IcMgrTraceBuffer(iccontext, hSession, uType,
 QAPPNAME".PingStatus",
 tracemsg, lstrlen(tracemsg));
 return;
 }
 if IC_CHECK_RESULT_SEVERE(lpStatusBuf->icerror) {
 HandleIcError(hWnd, hSession, IC_STATUS, lpStatusBuf->icerror);
 MessageBox(hWnd, "Reflect library returned an error to PING",
 QAPPNAME, MB_OK);
 }
 else {
 sbtype = IC_GET_RESULT_TYPE(lpStatusBuf->icstatus);
 if (sbtype == REFLECT_STATUS_PING) {
 lpData = (LPSTR)(lpStatusBuf+1);
 MessageBox(hWnd, lpData, "Answer to your ping", MB_OK);
 }
 }
 IcUnlockBuffer(hStatusBuf);
}

void PingStatus (HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 /* Example of library-specific status message */

 HIC_STATUSBUF hStatusBuf = NULL_HIC_STATUSBUF;
 LPSTR lpData = NULL;
 IC_RESULT icerror = IC_OK;
 IC_RESULT_CONTEXT iccontext;
 IC_RESULT_TYPE ictype;
 IC_RESULT_VALUE icvalue;

 iccontext = IC_GET_RESULT_CONTEXT(result);
 ictype = IC_GET_RESULT_TYPE(result);
 icvalue = IC_GET_RESULT_VALUE(result);
 if ((iccontext == IC_RESULT_CONTEXT_STD) &&
 (ictype == IC_STATUS_BUFFER)) {
 hStatusBuf = (HIC_STATUSBUF)icvalue;
 if (hStatusBuf != s.hStatusBuf)
 /* This is not the extended status buffer IcWinApp */
 /* allocated or it was released */
 return;
 }

Writing INFOConnect/Windows Applications

4173 5408-000 3–75

 else {
 /* This is not an extended status buffer */
 return;
 }
 DisplayPingAnswer(hWnd, hSession, IC_STATUS, hStatusBuf);
 IcFreeBuffer(hStatusBuf);
 s.hStatusBuf = NULL_HIC_STATUSBUF;
 s.icstatus = IC_OK;
}

void PingStatusResult (HWND hWnd,
 HIC_SESSION hSession,
 IC_RESULT result)
{
 #define PENDINGSTATUSTYPE (IC_GET_RESULT_TYPE(s.icstatus))

 /* check to see if we are waiting for a Ping extended status */
 if ((PENDINGSTATUSTYPE != IC_STATUS_BUFFER) ||
 (s.hStatusBuf == NULL_HIC_STATUSBUF))
 return;

 if (IC_CHECK_RESULT_SEVERE(result)) {
 MessageBox(hWnd, "Reflect library did not answer PING",
 QAPPNAME, MB_OK);
 HandleIcError(hWnd, hSession, IC_STATUSRESULT, result);
 }
 else
 DisplayPingAnswer(hWnd, hSession,
 IC_STATUSRESULT, s.hStatusBuf);
 IcFreeBuffer(s.hStatusBuf);
 s.hStatusBuf = NULL_HIC_STATUSBUF;
 s.icstatus = IC_OK;
}
#endif

Writing INFOConnect/Windows Applications

3–76 4173 5408-000

CoupleW - a Windows Application that
Connects Two INFOConnect Sessions

The CoupleW application opens two INFOConnect sessions and routes all traffic
from one to the other. It is the counterpart to the LOCAL external interface which
connects two sessions at the external interface layer. CoupleW prompts the user for
two pathnames unless they are passed in on the command line like this:

couplew.exe -p pathABC -p pathDEF

What is CoupleW used for?

There are numerous uses for CoupleW, some of which include:

•• CoupleW can be used as the skeleton for a server application that connects pairs
of INFOConnect paths.

• Working with INFOConnect accessories (using IcOpenAccessory) often involves
connecting two sessions as in CoupleW; one session is for a host connection and
the other is for the accessory connection. The IcOpenAc sample program further
demonstrates this.

How does CoupleW work?

CoupleW opens both sessions, allocates a single receive buffer for each and goes into
receive mode for each session. When session A gets an IC_RcvDone event,
CoupleW transmits the received buffer on session B. When session B gets the
IC_XmtDone event, CoupleW goes back into receive mode on session A. Similar
processing occurs when session B gets a IC_RcvDone event.

Writing INFOConnect/Windows Applications

4173 5408-000 3–77

Source file descriptions

CoupleW.c C-language source

CoupleW.h Header file

CoupleW.rc Resource file

CoupleW.def Module-definition file used to link

CoupleW.ico Icon file

All source files needed to build CoupleW are provided with the IDK in the SAMPLE
directory. To build CoupleW, do:

nmake -f makefile PROGRAM=couplew

0–1

4173 5408-000 4–1

Section 4
Writing INFOConnect/XVT Applications

Note: The IDK is compatible with XVT 2.0, 3.01 and 3.02, however, the XVT toolkit
changed substantially between XVT 2.0 and 3.0x. The sample code fragments
shown in this document are based on XVT 3.0x.

Writing an XVT application that uses INFOConnect Connectivity Services is like
writing a normal XVT application enhanced by extra events, data structures and
functions that are added by running IcXvtMod.exe. It is assumed you are familiar
with developing standard XVT applications.

This section leads you through the development of a simple XVT application that
uses INFOConnect Connectivity Services in addition to the presentation services
offered by XVT. All source files necessary to build IcXvtApp are provided with the
IDK.

An XVT application is made up of several source files, some of which include:

a C-language source (.C) file
a header (.H) file
a resource (.URL) file

The following are some of the basic data communications tasks you will encounter as
you write the C-language source (.C) file.

Writing INFOConnect/XVT Applications

4–2 4173 5408-000

Basic procedures for XVT Applications
This section shows how to use the INFOConnect functions to accomplish the basic
procedures or tasks that all INFOConnect applications must follow.

Initializing INFOConnect Connectivity Services
All INFOConnect events, functions and types are defined in Xvt.h which was
modified by IcXvtMod.exe during IDK installation. To access the INFOConnect
definitions, you must define the tag ICXVT before including Xvt.h. If your
application also includes Windows.h, you must also define the tag ICXVTWIN
before including Xvt.h.

Call ic_init_ics to initialize INFOConnect Connectivity Services. A good place to do
this is during E_CREATE processing in the event handler routine. IC_VERSION_...
and IC_REVISION_... provide version control over the INFOConnect API. Refer to
page 4-32, Running with old versions of INFOConnect, for more information on
version control.

Sample code

#define ICXVT
#include <xvt.h>

IC_RESULT icerror;

long event_handler(WINDOW win, EVENT * ep)
{

 switch (ep->type) {

 /***/
 /* Standard XVT events are shown first. */
 /***/

 case E_CREATE:

 /* Initialize INFOConnect Interfaces */
 icerror = ic_init_ics(IC_VERSION_3_0, IC_REVISION_3_0);
 if (icerror != IC_OK) {

ic_default_error_proc(win, NULL_IC_SESSHND,
 NULL, icerror);

 xvt_terminate();
 }
 break;

 case ...

}

Writing INFOConnect/XVT Applications

4173 5408-000 4–3

Opening a Session and Allocating Buffers
Before you can send data with INFOConnect, you must open an INFOConnect
session. The steps to open a session and allocate datacomm buffers follow:

Initialize INFOConnect

Initialize INFOConnect Connectivity Services using ic_init_ics if you haven't done
so already.

Call ic_open_session

Call ic_open_session to request a path to be opened. You can supply a path or let
INFOConnect prompt the user for a path. If INFOConnect returns a non-severe error,
then a pending session handle has been created. INFOConnect will generate an
E_IC_SESSION_EST event later when the session is actually established.

Do not use the pending session handle before the E_IC_SESSION_EST event occurs.
No E_IC_SESSION_EST event is generated if INFOConnect returns a severe error
on the ic_open_session call.

All INFOConnect events for this session will be delivered to the event handler
associated with the window specified on the first parameter of the ic_open_session
function call.

Handle the E_IC_SESSION_EST event and allocate buffers

Add a case statement for E_IC_SESSION_EST to the appropriate event handler with
code to process the session establishment event and allocate buffers for transmitting
and receiving data. When determining what buffer size to use, call
ic_get_session_info to find the maximum buffer size the underlying communications
software can support. Since connections may support very large buffers, you may
want to put a ceiling on the buffer size as shown in the code fragment. Function
ic_buf_alloc must be used to allocate the buffers to satisfy underlying platform
requirements or shared global handles. Check for NULL_IC_BUFHND after the
allocation requests to see that the buffers were properly allocated.

Writing INFOConnect/XVT Applications

4–4 4173 5408-000

Define a BOOLEAN indicating 'session establishment'

It is a good idea to create and set a global BOOLEAN variable in your application to
indicate the current state of your session. This is primarily needed during the time
between the ic_open_session call and before the E_IC_SESSION_EST event is
returned to your application. The sample code uses a variable named bSessionEst
and makes no INFOConnect requests using the pending session handle until
bSessionEst is TRUE.

Call ic_close_session after errors

If the E_IC_SESSION_EST event contains a severe error you must call
ic_close_session to release the pending session handle.

Sample Code

#define MAXBUFSIZE 4096
#define HSESSION (ep->v.ic.session)
#define ICRESULT (ep->v.ic.v.result)

/* Global variables used with INFOConnect */
IC_SINFO sinfo;
IC_RESULT icerror;
struct aSession {
 IC_SESSHND hSession;
 IC_BUFHND hXmtBuf;
 IC_BUFHND hRcvBuf;
 BOOLEAN bSessionEst;
 unsigned uBufsize;
} s;

...

long event_handler(WINDOW win, EVENT * ep)
{
 switch (ep->type) {
 case E_CREATE:
 if (!do_ic_init(win))
 xvt_terminate();
 break;

Writing INFOConnect/XVT Applications

4173 5408-000 4–5

 case E_IC_SESSION_EST:
 if (ICRESULT != IC_OK) {
 ic_default_error_proc (win, HSESSION, ep->type, ICRESULT);
 ic_close_session(HSESSION);
 }
 else { /* session establishment was successful */
 ic_get_session_info(HSESSION, &sinfo);

 /* Allocate INFOConnect buffers. */
 s.uBufsize = min((unsigned)sinfo.max_size, MAXBUFSIZE);
 s.hXmtBuf = ic_buf_alloc((long)s.uBufsize);
 s.hRcvBuf = ic_buf_alloc((long)s.uBufsize);
 assert(s.hXmtBuf!=NULL_IC_BUFHND);
 assert(s.hRcvBuf!=NULL_IC_BUFHND);
 s.bSessionEst = TRUE;
 }
 break;

 case E_IC_ERROR:
 ic_default_error_proc(win, HSESSION, ep->type, ICRESULT);
 break;
 }
}

BOOLEAN do_ic_init(WINDOW win)
{
 s.hSession = NULL_IC_SESSHND;
 s.hXmtBuf = NULL_IC_BUFHND;
 s.hRcvBuf = NULL_IC_BUFHND;
 s.bSessionEst = FALSE;
 s.uBufsize = 0;
 icerror = ic_open_session(win, NULL, &s.hSession);
 if (icerror != IC_OK) {
 ic_default_error_proc(win, NULL_IC_SESSHND,
 (unsigned)NULL, icerror);
 return(FALSE);
 }
 return(TRUE);
}

Writing INFOConnect/XVT Applications

4–6 4173 5408-000

Transmitting a Buffer
The ic_xmt function attempts to transmit a buffer of data. This function is
asynchronous in nature; it returns immediately to the application before the transmit
request is completed. A non-severe error is returned indicating the transmit request
has been initiated. When the transmit request finishes, one of two events is passed to
your event_handler routine: E_IC_XMT_DONE or E_IC_XMT_ERROR. The basic
steps to follow are:

Don't transmit prematurely

Don't transmit over a session before the E_IC_SESSION_EST event is returned for
that session. Don't transmit while a previous transmit request is still pending for that
session. The sample code below uses two variables, bSessionEst and nXmtTries, to
manage these conditions.

Allocate and lock a transmit buffer

Allocate a transmit buffer using ic_buf_alloc if you haven't already done so. Lock
the transmit buffer with ic_buf_lock.

Fill the buffer and unlock it

Copy your data to the transmit buffer. If the data can contain null characters, you
may find the XVT function gmemcpy useful, otherwise, you can use gstrcpy.
Remember that gstrcpy will stop as soon as a null character is found.

Unlock the buffer with ic_buf_unlock.

Call ic_xmt

Pass the buffer to INFOConnect with ic_xmt.

You should declare a global variable to indicate that a transmit request is
outstanding. Check this variable to avoid transmitting a second buffer before a
previous transmit request has finished.

One approach is to simply use a global BOOLEAN to indicate outstanding transmit
requests. Don't transmit unless the BOOLEAN is clear, then set the BOOLEAN after
calling ic_xmt successfully. Clear the BOOLEAN when an E_IC_XMT_DONE or
E_IC_XMT_ERROR event is received.

The sample program, IcXvtApp, uses a different approach. A counter named
nXmtTries indicates when a transmit request is pending and will also be useful later
to manage transmit errors and retries.

Writing INFOConnect/XVT Applications

4173 5408-000 4–7

Handle the E_IC_XMT_DONE and E_IC_XMT_ERROR events

Add case statements for E_IC_XMT_DONE and E_IC_XMT_ERROR to your
event_handler function. Set your global variable to indicate that transmit requests
are now allowed.

The E_IC_XMT_DONE event contains the buffer handle and buffer length of the
transmitted data.

An E_IC_XMT_ERROR event contains an IC_RESULT with the reason for the
transmit failure. Don't ignore these events. You may want to display the error or
retry the transmit request. See page 4 - 24 for more on handling data
communications errors.

Sample code

STR_FAR buf;
int nXmtTries = 0;

void do_transmit(char localbuf[])
{
 if (nXmtTries>0 || !bSessionEst)

note("Not ready to transmit");
else {

buf = ic_buf_lock(hXmtBuf)
gmemcpy(buf, localbuf, (long)bufsize);
ic_buf_unlock(hXmtBuf);
icerror = ic_xmt(hSession, hXmtBuf, bufsize);
if (icerror == IC_OK)

nXmtTries = 1;
else

ic_default_error_proc(win,hSession,NULL,icerror);
}
}

long event_handler(WINDOW win, EVENT * ep)
{
switch (ep->type) {
case E_IC_XMT_DONE:

nXmtTries = 0;
...
break;

case E_IC_XMT_ERROR:
... see discussion on handling datacomm errors
break;

}
}

Writing INFOConnect/XVT Applications

4–8 4173 5408-000

Receiving a Buffer
The ic_rcv function requests a buffer of data. This function is asynchronous in
nature; it returns immediately to the application before the receive request is
completed. A non-severe error is returned indicating the receive request was
initiated. When the receive request finishes, one of two events is passed to your
event_handler routine: E_IC_RCV_DONE or E_IC_RCV_ERROR. The basic steps
to follow are:

Don't issue a receive request prematurely

Don't use a session before the E_IC_SESSION_EST event is returned for that
session. Don't make a receive request while a previous receive request is still
pending for that session. The sample code below uses two variables, bSessionEst and
nRcvTries, to manage these conditions.

Allocate a receive buffer

Allocate a receive buffer using ic_buf_alloc if you haven't already done so.

Call ic_rcv

Pass the buffer to INFOConnect with ic_rcv.

You should declare a global variable to indicate that a receive request is outstanding.
Check this variable to avoid making a second receive request with the previous one
still outstanding.

One approach is to simply use a global BOOLEAN to indicate outstanding receive
requests. Don't issue a receive request unless the BOOLEAN is clear, then set the
BOOLEAN after calling ic_rcv successfully. Clear the BOOLEAN when an
E_IC_RCV_DONE or E_IC_RCV_ERROR event is received.

The sample program, IcXvtApp, uses a different approach. A counter named
nRcvTries indicates when a receive request is pending and will also be useful later to
manage receive errors and retries.

Writing INFOConnect/XVT Applications

4173 5408-000 4–9

Handle the E_IC_RCV_DONE and E_IC_RCV_ERROR events

Add case statements for E_IC_RCV_DONE and E_IC_RCV_ERROR to your
event_handler routine. Set your global variable to indicate new receive requests are
now allowed.

The E_IC_RCV_DONE event contains the buffer handle and buffer length of the
received data.

An E_IC_RCV_ERROR events contains an IC_RESULT with the reason for the
receive failure. Don't ignore these events. You may want to display the error or
retry the receive request. See page 4 - 24 for more on handling data communications
errors.

Sample code

STR_FAR buf;
int nRcvTries = 0;

void do_receive()
{
if (nRcvTries>0 || !bSessionEst)

note("Receive outstanding or session not ready");
else {

icerror = ic_rcv(hSession, hRcvBuf, bufsize);
if (icerror == IC_OK);

nRcvTries = 1;
else

ic_default_error_proc(win,
 hSession,
 NULL,
 icerror);

}
}

long event_handler(WINDOW win, EVENT * ep)
{
switch (ep->type) {
case E_IC_RCV_DONE:

nRcvTries = 0;
...
break;

case E_IC_RCV_ERROR:
... see discussion on handling datacomm errors
break;

}
}

Writing INFOConnect/XVT Applications

4–10 4173 5408-000

Using Datacomm Buffers
This section covers some guidelines that will help you better manage your
application's datacomm buffers. The ic_rcv and ic_xmt functions are asynchronous
in nature; they return immediately before the datacomm request is actually
completed. This means your application must be careful about accessing the
datacomm buffers that were passed to these functions. The following list will help
you better manage the data communications of your application.

Allocate datacomm buffers using INFOConnect routines

Use ic_buf_alloc to allocate buffers that will be passed to INFOConnect. This
ensures that the buffers have the proper system attributes. Datacomm buffers must
be global and shareable across applications.

INFOConnect datacomm is asynchronous

Calls to ic_rcv and ic_xmt return to your application immediately before the request
is actually completed. Later, an event will be sent to your application when the
request is completed. Until this event is returned, your request is referred to as
pending.

Don't use pending buffers

Do not access a buffer that is associated with a pending request. It is a good idea to
define and set a variable for each buffer that tracks when the buffer is associated with
a pending request.

Don't issue a receive or transmit request until the E_IC_SESSION_EST event has
been returned.

Don't issue a receive request while a pending receive request exists for the same
session. The state of the first receive request is undefined. Normally, the first
request is canceled without returning an E_IC_RCV_DONE or E_IC_RCV_ERROR
event, but your application cannot assume that all external interfaces will behave
similarly for this situation. The same holds true for premature transmit requests.

Writing INFOConnect/XVT Applications

4173 5408-000 4–11

Use one receive buffer and one transmit buffer

You can have as many datacomm buffers as you like, but a session can only have one
active transmit buffer and one active receive buffer at a time. Therefore, it is
recommended to allocate one receive buffer and one transmit buffer.

You can use one buffer for both transmitting and receiving, but for maximum
interoperability use separate buffers. Your application can be more responsive using
separate buffers since it can keep a receive request pending while waiting for a
pending transmit request to complete.

Cancel pending requests with ic_lcl

Pending requests can be canceled by using ic_lcl. You must wait until an
E_IC_LCL_RESULT event is returned to your application on behalf of the canceled
messages before you can safely access any datacomm buffers.

Don't ignore errors

Don't ignore error events (E_IC_XMT_ERROR and E_IC_RCV_ERROR). You may
want to retry the request at least some number of times. See page 4 - 24 for more on
handling data communications errors.

Writing INFOConnect/XVT Applications

4–12 4173 5408-000

Basic Error Handling
Nearly every INFOConnect function and event returns a 'long' (type IC_RESULT)
indicating the success of the function or event. Any value other than IC_OK
indicates an error. Your application can handle errors in several ways:

• Pass errors back to INFOConnect for handling

• Display and handle errors yourself

• Test for standard errors and resume without any user intervention

• Handling E_IC_ERROR events

Here are the four categories of errors and recommended actions for each:

IC_ERROR_INFO Log this error if the application has a log file. Don't
bother displaying a message to the user. The
requested function was completed.

IC_ERROR_WARNING The requested function was completed, but something
unusual or noteworthy happened. The application
can choose to log or display this error. The default
error procedure will display these errors.

IC_ERROR_SEVERE The requested function did not complete successfully.
The user should usually see this error.

IC_ERROR_TERMINATE Display this error and close the session.

Writing INFOConnect/XVT Applications

4173 5408-000 4–13

Passing errors back to INFOConnect for handling

If your application doesn't need to control the presentation style of the error message,
the simplest way to handle errors is to pass them back to the INFOConnect default
error procedure.

Note: The INFOConnect default error procedure will automatically call
ic_close_session on your behalf for errors of type IC_ERROR_TERMINATE.
On return from the default procedure, it is good practice to test for
IC_ERROR_TERMINATE type errors and, at a minimum, mark the session
as closed. Otherwise, you might inadvertently make a transmit or receive
request before the E_IC_SESSION_CLOSE event is sent to your application.

Here is a code fragment that illustrates using the default error procedure after
receiving an INFOConnect event and also after calling an INFOConnect function.

long event_handler(WINDOW win, EVENT *ep)
{
 switch (ep->type) {
 case E_IC_RCV_ERROR:
 handle_ic_error(win,
 ep->v.ic.session,
 ep->type, /* event type valid */
 ep->v.ic.v.result);
 /* try receive again */
 icerror = ic_rcv(ep->v.ic.session,
 hRcvBuf,
 uBufsize);
 if (icerror != IC_OK)
 handle_ic_error(win,
 ep->v.ic.session,
 NULL, /* no event type */
 icerror);
 break;
}

void handle_ic_error(WINDOW win,
 IC_SESSHND hSession,
 unsigned type,
 IC_RESULT icerror)
{
 ic_default_error_proc(win, hSession, type, icerror);
 if (IC_GET_RESULT_TYPE(icerror) >= IC_ERROR_TERMINATE)
 xvt_terminate();
}

Writing INFOConnect/XVT Applications

4–14 4173 5408-000

The advantage of using function handle_ic_error instead of calling
ic_default_error_proc directly is to leave your application the flexibility of adding
code in handle_ic_error to format your own messages in the future.

Look at the two calls to handle_ic_error. Compare the 3rd parameter on each call.
On the first call, the event type is known (E_IC_RCV_ERROR) and is passed to
ic_default_error_proc. On the second call, NULL is passed because there is no
relevant 'event type' after making an INFOConnect function call. Most of the time,
you will be passing NULL for the 3rd parameter. For more examples on using the
event-type parameter with ic_default_error_proc, see the sample programs on the
IDK disk.

Displaying and handling errors yourself

To display error messages directly from your application, function ic_get_string is
available to retrieve the text of the error. You must also satisfy the following
requirements normally provided by ic_default_error_proc.

• Don't display informational errors. Informational errors are of type
IC_ERROR_INFO. IC_GET_RESULT_TYPE is an INFOConnect macro used to
extract the error type from an IC_RESULT.

• There are a few termination messages used by INFOConnect to close sessions
without displaying anything to the user. You should suppress displaying the
following:

IC_ERROR_TERMINATE_NOMSG
IC_ERROR_TERMINATE_CLEAR
IC_ERROR_TERMINATE_EXIT
IC_ERROR_TERMINATE_SHUTDOWN.

• Close the session for errors of type IC_ERROR_TERMINATE.
IC_GET_RESULT_TYPE is an INFOConnect macro used to extract the error-
type from an IC_RESULT.

Writing INFOConnect/XVT Applications

4173 5408-000 4–15

void foobar()
{
IC_RESULT icerror;

icerror = ic_get_session_info(hSession, ...)
if (icerror != IC_OK)

handle_ic_error(win, hSession, NULL, icerror);

}

void handle_ic_error(WINDOW win,
 IC_SESSHND hSession,
 unsigned uType,
 IC_RESULT icerror)
{
 char msg[256];

 if (((IC_GET_RESULT_TYPE(icerror) & IC_ERROR_MASK) ==
 IC_ERROR_INFO) &&

 (icerror != IC_ERROR_TERMINATE_NOMSG) &&
 (icerror != IC_ERROR_TERMINATE_CLEAR) &&
 (icerror != IC_ERROR_TERMINATE_EXIT) &&
 (icerror != IC_ERROR_TERMINATE_SHUTDOWN))
 {
 if (ic_get_string(hSession,
 icerror,
 (LPSTR)msg,
 sizeof(msg)) == IC_OK) {

 note(win,msg);
 }
 }
 if ((IC_GET_RESULT_TYPE(icerror) & IC_ERROR_MASK) ==
 IC_ERROR_TERMINATE) {
 ic_close_session(hSession);
 }
 return IC_OK;
}

Testing for standard errors

Standard INFOConnect errors are defined in IcError.h You may find some errors
that your application can intercept and resolve without bothering the user. Appendix
C of the IDK Programming Reference Manual also lists the standard errors.

Writing INFOConnect/XVT Applications

4–16 4173 5408-000

Handling E_IC_ERROR events

Although they are infrequent, all applications must be prepared to handle
E_IC_ERROR events. Assuming you have written a function like 'handle_ic_error'
shown above, you can call it as follows:

long event_handler(WINDOW win, EVENT * ep)
{
switch (ep->type) {
case E_COMMAND:
 ...
 break;
case ...

case E_IC_ERROR:
 handle_ic_error(win, ep->v.ic.session, ep->type, ep->v.ic.v.result);
 break;
}
}

Basic Status Handling
Status messages are used to communicate between your application and
INFOConnect. Statuses can travel in one of two directions: from the application to
INFOConnect or from INFOConnect to the application. Your application uses
function ic_set_status to send statuses and watches for event E_IC_STATUS to
receive statuses from INFOConnect.

Standard statuses are defined in the IcStatus.h header file. Here is a sampling of
statuses:

/* Line state values */
#define IC_LINESTATE_XMT ...
#define IC_LINESTATE_RCV ...
#define IC_LINESTATE_LCL ...

/* Connection state */
#define IC_CONNECT_EOF ...
#define IC_CONNECT_CLOSE ...
#define IC_CONNECT_OPEN ...
#define IC_CONNECT_NOACTIVITY ...
#define IC_CONNECT_ACTIVITY ...

/* Reactivate session when sinfo.focus_notify == TRUE */
#define IC_REACTIVATE_ON ...
#define IC_REACTIVATE_OFF ...

/* Requests to applications */
#define IC_CONTROL_ACTIVATE ...
#define IC_CONTROL_RCVREADY ...
#define IC_CONTROL_RCVAVAIL ...

Writing INFOConnect/XVT Applications

4173 5408-000 4–17

Does my application need to do something for every possible status?

No. Most statuses can be ignored by your application. Here are the primary statuses
your application should support:

• IC_CONTROL_ACTIVATE

• IC_REACTIVATE_ON and IC_REACTIVATE_OFF

• IC_CONTROL_RCVAVAIL

• IC_STATUS_TRANS

Handling IC_CONTROL_ACTIVATE statuses

If INFOConnect wants your application to become the active window, it sends an
IC_CONTROL_ACTIVATE status. The following code fragment shows how to
support this status:

long event_handler(WINDOW win, EVENT * ep)
{
 switch (ep->type) {
 case E_COMMAND:
 ...
 break;
 case E_IC_STATUS:
 if (ICRESULT==IC_CONTROL_ACTIVATE)
 /* Support the 'GoTo' button from INFOConnect */
 set_front_window(win);
 break;
 case ...
 ...
 break;
 }
}

Writing INFOConnect/XVT Applications

4–18 4173 5408-000

Sending IC_REACTIVATE statuses

Sometimes the underlying INFOConnect libraries are required to be notified when
your application-window gains and loses focus. This is an attribute of the session
and is referred to as focus-notification. Your application must do two things related
to focus-notification.

• Call ic_get_session_info to determine if your session requires focus-notification

• Recognize E_FOCUS events and send IC_REACTIVATE statuses

BOOLEAN bSessionEst;
BOOLEAN bFocusNotify;

long event_handler(WINDOW win, EVENT * ep)
{
 IC_SINFO sinfo;

 switch (ep->type) {

 case E_IC_SESSION_EST:
 ...
 bSessionEst = TRUE;
 icerror = ic_get_session_info(hSession, &sinfo);
 if (icerror != IC_OK)
 ic_default_error_proc(win, hSession,
 NULL, icerror);
 bFocusNotify = sinfo.focus_notify;
 ...
 break;

 case E_FOCUS:
 if ((bFocusNotify) && (bSessionEst)) {
 if (ep->v.active)
 icerror=ic_set_status(hSession,IC_REACTIVATE_ON);
 else
 icerror=ic_set_status(hSession,IC_REACTIVATE_OFF);
 if (icerror != IC_OK)
 ic_default_error_proc(win, hSession,
 NULL, icerror);
 }
 break;

Writing INFOConnect/XVT Applications

4173 5408-000 4–19

Handling IC_CONTROL_RCVAVAIL statuses

If your application normally stays in receive mode, you probably don't need to watch
for IC_CONTROL_RCVAVAIL statuses, but applications that intentionally stay out
of receive mode for long periods of time should recognize this status. When an
application is not in receive mode and a message becomes available, the underlying
INFOConnect libraries can send an IC_CONTROL_RCVAVAIL status to request
your application to go into receive mode. Ignoring IC_CONTROL_RCVAVAIL
statuses may result in your application appearing sluggish and unresponsive.

Sending IC_STATUS_TRANS statuses

In order for INFOConnect to keep an accurate count of transactions, your application
needs to notify INFOConnect of the beginning and the end of the transactions. Use
IC_TRANSACTION_ON and IC_TRANSACTION_OFF to indicate whether or not
the transactions will be flanked by IC_TRANSACTION_BEGIN and
IC_TRANSACTION_END status messages.

Closing a Session
Call ic_close_session to end an INFOConnect session. This function returns
immediately. Event E_IC_SESSION_CLOSE is passed to the event_handler when
the session is actually closed. The basic steps to follow are:

Clear the BOOLEAN indicating 'session establishment'

The sample code uses a variable named bSessionEst for this purpose.

Call ic_close_session and deallocate buffers

Use INFOConnect memory management routines to free datacomm buffers. Notice
that datacomm buffers can be freed immediately after returning from IcCloseSession
rather than waiting for the E_IC_SESSION_CLOSE event. The Manager cancels any
outstanding transmit or receive requests during ic_close_session to ensure that the
datacomm buffers are idle. It is a good idea to set the buffer handle variables to
NULL_IC_BUFHND after releasing the buffers.

Writing INFOConnect/XVT Applications

4–20 4173 5408-000

Handle the E_IC_SESSION_CLOSE event

This is the best place to clear the session handle with NULL_IC_SESSHND rather
than immediately after the ic_close_session function call.

Sample code

void do_close()
{
 bSessionEst = FALSE;
 if (hSession != NULL_IC_SESSHND) {
 ic_close_session(hSession);
 }
 if (hXmtBuf != NULL_IC_BUFHND) {
 ic_buf_free(hXmtBuf);
 hXmtBuf = NULL_IC_BUFHND;
 }
 if (hRcvBuf != NULL_IC_BUFHND) {
 ic_buf_free(hRcvBuf);
 hRcvBuf = NULL_IC_BUFHND;
 }
}

long event_handler(WINDOW win, EVENT *ep)
{
switch (ep->type) {

case E_IC_SESSION_CLOSE:
hSession = NULL_IC_SESSHND;
break;

}
}

Terminating your Application
The sequence of events during application termination can vary depending on who
initiated the termination: the user, INFOConnect, the system or your application
itself. For each scenario, the first event passed to your application is different. See
the discussion after the code fragment for specific details about each scenario.

Close any open INFOConnect sessions and free any buffers before terminating your
application. The general recommended strategy is to do all this during E_DESTROY
processing. Notice the precautions taken in the code fragment below such as setting
released resources to NULL.

Writing INFOConnect/XVT Applications

4173 5408-000 4–21

The following scheme handles termination cleanly no matter how it is initiated.

long event_handler(WINDOW win, EVENT * ep)
{
switch (ep->type) {
case E_COMMAND:

switch (ep->v.cmd.tag) {
case ...
case M_FILE_QUIT:

xvt_terminate();
break;

}
break;

case E_CLOSE:
xvt_terminate();

case E_QUIT:
if (ep->v.query) quit_OK();
else xvt_terminate();
break;

case E_DESTROY:
do_ic_cleanup();
break;

case E_IC_SESSION_CLOSE:
/* See discussion below */
hSession = NULL_IC_SESSHND;
xvt_terminate();
break;

case E_IC_STATUS:
if (ICRESULT==IC_COMMMGR_QUERYEXIT)

ic_exit_ok(TRUE);
if (ICRESULT==IC_COMMMGR_CANCELEXIT)

; /* Some other app responded QUERYEXIT/FALSE.
 INFOConnect won't exit after all. */

if (ICRESULT==IC_COMMMGR_EXIT)
; /* INFOConnect is really going away.
 All apps responded QUERYEXIT/TRUE. */

break;
}
}

Writing INFOConnect/XVT Applications

4–22 4173 5408-000

void do_ic_cleanup()
{
 bSessionEst = FALSE;
 if (hSession != NULL_IC_SESSHND) {
 ic_close_session(hSession);
 }
 if (hXmtBuf != NULL_IC_BUFHND) {
 ic_buf_free(hXmtBuf);
 hXmtBuf = NULL_IC_BUFHND;
 }
 if (hRcvBuf != NULL_IC_BUFHND) {
 ic_buf_free(hRcvBuf);
 hRcvBuf = NULL_IC_BUFHND;
 }
}

User-initiated termination of your application - M_FILE_QUIT

Most applications have a File-menu/Exit-option that allows the user to terminate the
application by choosing the Exit option. This results in an E_COMMAND event
with a M_FILE_QUIT command tag value. Your application needs to be prepared to
close INFOConnect sessions and free any associated buffers. The code fragment
shown above accomplishes this by calling xvt_terminate.

INFOConnect-initiated termination - E_IC_SESSION_CLOSE

If the user clears the session associated with your application from the INFOConnect
Manager window, INFOConnect sends your application an E_IC_SESSION_CLOSE
event. To abort your application at this point, the recommended procedure is to call
xvt_terminate from E_IC_SESSION_CLOSE processing. Do not call xvt_terminate
from E_IC_SESSION_CLOSE processing if you want to keep your application active
in this situation.

User-initiated termination of the INFOConnect Manager

If the user shuts down INFOConnect itself from the INFOConnect Manager window
(ALT-F4 keystroke), a series of status messages are sent to all active INFOConnect
applications. First your application receives IC_COMMMGR_QUERYEXIT. The
application must call ic_exit_ok with either TRUE if it is OK to terminate or FALSE
if it is not OK to terminate. If it is OK, then INFOConnect will continue querying
the other INFOConnect applications.

Writing INFOConnect/XVT Applications

4173 5408-000 4–23

If an application refuses to shut down, all applications that had agreed to the
shutdown are sent IC_COMMMGR_CANCELEXIT and continue with normal
execution. If all applications agree to the shutdown, the Manager then sends
IC_COMMMGR_EXIT to confirm that all applications have agreed to close. As a
final notice, the application will receive a terminate severity error,
IC_ERROR_TERMINATE_EXIT. The application can temporarily delay closing the
session if necessary.

System-initiated termination - E_QUIT and E_CLOSE

Termination invoked by the system generates E_CLOSE and E_QUIT events.

Application-initiated termination

Your application can force termination itself by calling xvt_terminate. To do this
you should follow the suggestion of releasing all INFOConnect resources during
E_DESTROY processing.

Writing INFOConnect/XVT Applications

4–24 4173 5408-000

Advanced Procedures for XVT Applications

Canceling Pending Requests
Many applications typically stay in receive mode so they're ready to respond to any
messages from the partner activity. Occasionally, it may be necessary to cancel this
outstanding receive request.

The ic_lcl function selectively cancels pending actions. A parameter indicates what
is to be canceled: the pending transmit request, pending receive request, or both.
Your application should wait for an E_IC_LCL_RESULT event before accessing the
datacomm buffers associated with the canceled actions. By waiting for this event,
you are sure to process any E_IC_RCV_DONE or E_IC_XMT_DONE events that
were already in your event queue before the ic_lcl was done.

/* The following definitions are in ICDEF.H */
/* You do NOT need to define these in your application */

#define IC_LCL_RCV 1
#define IC_LCL_XMT 2
#define IC_LCL_RCVXMT (IC_LCL_RCV | IC_LCL_XMT)
#define IC_LCL_CLOSESESSION 4

Sample code

The following code cancels any pending receive or transmit request.

icerror = ic_lcl(hSession, IC_LCL_RCVXMT);
if (icerror != IC_OK) {
 ic_default_error_proc(win, hSession, NULL, icerror);

Writing INFOConnect/XVT Applications

4173 5408-000 4–25

Handling Data Communications Errors
Data communications errors show up as E_IC_XMT_ERROR and
E_IC_RCV_ERROR events in the event_hander routine. A good application will act
on these events. Often, you may just want to retry the request for some number of
times.

The following code fragment will retry datacomm errors five times before displaying
an error to the user. Two variables, nXmtTries and nRcvTries, are the basis of this
technique. They are incremented when a request results in an error. They are set to
zero after successful completion (E_IC_XMT_DONE and E_IC_RCV_DONE)
indicating there is no longer an outstanding request.

#define MAXRETRIES 5

/* global variables */
int nXmtTries = 0;
int nRcvTries = 0;

long event_handler(WINDOW win, EVENT * ep)
 switch (ep->type) {
 ...
 case E_IC_XMT_DONE:
 nXmtTries = 0;
 ...
 break;

 case E_IC_RCV_DONE:
 nRcvTries = 0;
 ...
 break;

 case E_IC_XMT_ERROR:
 if (++nXmtTries > MAXRETRIES) {
 ic_default_error_proc(win,
 ep->v.ic.session,
 ep->type,
 ep->v.ic.v.result);
 nXmtTries = 1;
 }
 /* try again */
 icerror = ic_xmt(ep->v.ic.session, hXmtBuf,
 gstrlen(sNoteBuf));
 if (icerror != IC_OK)
 nXmtTries = 0;
 ic_default_error_proc(win,
 ep->v.ic.session,
 NULL,
 icerror);
 break;

Writing INFOConnect/XVT Applications

4–26 4173 5408-000

case E_IC_RCV_ERROR:
 if (++nRcvTries > MAXRETRIES) {
 ic_default_error_proc(win,
 ep->v.ic.session,
 ep->type,
 ep->v.ic.v.result);
 nRcvTries = 1;
 }
 /* try again */
 icerror = ic_rcv(ep->v.ic.session,hRcvBuf,uBufsize);
 if (icerror != IC_OK)
 nRcvTries = 0;
 ic_default_error_proc(win,
 ep->v.ic.session,
 NULL,
 icerror);
 break;

 ...
 }

Advanced Status and Error Handling
Before reading this discussion, you should be familiar with the definition of context
given in Section 2 , "An Introduction to INFOConnect Connectivity Services."

What is typedef IC_RESULT?

INFOConnect statuses and errors are defined with type IC_RESULT. An
IC_RESULT type is a 'long' made up of three parts: a context, a type and a value.
The formal names for these three are: IC_RESULT_CONTEXT, IC_RESULT_TYPE
and IC_RESULT_VALUE.

The following macros are available for building and tearing down IC_RESULT
types.

IC_MAKE_RESULT Builds IC_RESULT from its 3 parts

IC_GET_RESULT_CONTEX
T

Extracts 'context' from IC_RESULT

IC_GET_RESULT_TYPE Extracts 'type' from IC_RESULT

IC_GET_RESULT_VALUE Extracts 'value' from IC_RESULT

Writing INFOConnect/XVT Applications

4173 5408-000 4–27

How do I test for library-specific statuses and errors?

If necessary, you can determine where a status or error is defined by extracting the
context from the IC_RESULT. This might be useful when you are formatting your
own error messages and want to include the name of the library that defines the error.

 Note: The library that defines a message is not necessarily the only library that
uses or generates that message, although that is generally the case.
Standard INFOConnect statuses and errors have a context of
IC_RESULT_CONTEXT_STD and are defined in IcError.h and IcStatus.h.

Each INFOConnect library or accessory that defines unique statuses and errors must
provide a header file defining the types and values for its statuses and errors. The
naming convention for the header file is to use the .HIC suffix for the header file.
The .HIC file also contains configuration information For example, TTY-specific
definitions from IcTTY.dll are defined in IcTTY.hic.

What is the scope or visibility of statuses and errors?

Generally, statuses and errors are only 'seen' by the components in the current path:
the application, the service libraries, and the external interface library. Status and
error events are not sent across the connection by INFOConnect except for
accessories executing locally (invoked via ic_open_accessory). One of the sample
programs, CoupleS, is a service library that extends the scope of statuses and errors
by encoding them and sending them across the connection.

What are these status messages telling me?

Perhaps you're wondering what the status messages listed in Appendix B of the IDK
Programming Reference Manual really mean! The following paragraphs give a brief
description of several of the status messages.

IC_CONTROL_RCVAVAIL status

The IC_CONTROL_RCVAVAIL status is sent to the application when a
message is available but the application isn't in receive mode and ready to get
it. Although a terminal emulator generally returns to receive mode as quickly
as possible after each host message, there might be times when an
IC_CONTROL_RCVAVAIL status is sent to the terminal because another
message is available, but the terminal is still in a local state.

Writing INFOConnect/XVT Applications

4–28 4173 5408-000

IC_CONNECT_... statuses

These statuses originate with the external interface. They can be used by the
application to show the user some kind of status about the datacomm
connection.

The IC_CONNECT_ACTIVITY and IC_CONNECT_NOACTIVITY pair of
statuses indicate the presence of line activity. The exact meaning of a line
depends on the specific external interface, but generally a line carries much
more than the traffic for just one session. Therefore,
IC_CONNECT_ACTIVITY means that something is happening on the line, but
not necessarily for your session. IC_CONNECT_NOACTIVITY indicates the
absence of any line activity for some reasonable period of time (for example,.
10 seconds). External interfaces must choose an appropriate time period so
that the application is not flooded with nuisance statuses.

The IC_CONNECT_OPEN and IC_CONNECT_CLOSE pair of statuses
indicate activity for a specific INFOConnect session, namely, the current one.
Once again, the exact meaning varies with the external interface.

IC_CONTROL_ACTIVATE status

Suppose a session with an INFOConnect terminal is minimized and focus is
switched to the main INFOConnect window. The INFOConnect window shows
the active sessions. By selecting the Goto button while the session for the
INFOConnect terminal is selected, INFOConnect sends an
IC_CONTROL_ACTIVATE status to the application requesting it to grab the
input focus.

IC_LINESTATE_... statuses

Three line state statuses, IC_LINESTATE_XMT, IC_LINESTATE_RCV, and
IC_LINESTATE_LCL, are intended to help terminal emulators tell the user
about the current state of the line. Depending on the underlying libraries, calls
to ic_rcv and ic_xmt are sometimes followed by IC_LINESTATE_RCV and
IC_LINESTATE_XMT statuses. Also, E_IC_RCVDONE events are sometimes
followed by IC_LINESTATE_LCL statuses.

Writing INFOConnect/XVT Applications

4173 5408-000 4–29

Using IC_STATUS_BUFFER extended status

When an application needs to exchange more information with an ICS library than
IC_RESULT_VALUE can store, it can send a buffer of information with the
IC_STATUS_BUFFER extended status. To accomplish this, a HIC_STATUSBUF
buffer handle is assigned to the IC_RESULT_VALUE member of the IC_RESULT
structure.

Extended statuses can be exchanged in two ways: synchronously and
asynchronously. Refer to Section 7, "Writing INFOConnect Libraries for Windows
3.x" for detailed steps on exchanging extended statuses.

Using Event Hooks with XVT 3.0
INFOConnect uses an XVT event hook routine to pass INFOConnect events to your
window event handler. You are still free to use an event hook routine from your
application, but you must be careful to pass control to any hook routine already
registered with XVT. In other words, all event hook routines must cooperate and
pass control to the next routine in the chain.

For example, here is the code in INFOConnect that manages the XVT event hook
interface. The hook routine itself, ic_event_hook, is registered with XVT during
ic_init_ics processing. Ic_init_ics also saves the address of any preexisting hook
routine. Later, when ic_event_hook is actually called, it does its own processing and
then passes control to the next hook routine in the chain.

Writing INFOConnect/XVT Applications

4–30 4173 5408-000

typedef BOOLEAN (FAR *EVENTHOOK)(HWND hwnd, \
 unsigned message, \
 unsigned wParam, \
 long lParam, \
 long FAR *rp);
EVENTHOOK old_event_hook;

IC_RESULT ic_init_ics(int version, int revision)
{
 ...
 old_event_hook = (EVENTHOOK)get_value(NULL_WIN,
 ATTR_EVENT_HOOK);
 set_value(NULL_WIN, ATTR_EVENT_HOOK, (long)ic_event_hook);
 return IC_OK;
}

BOOLEAN FAR ic_event_hook(HWND hwnd,
 unsigned message,
 unsigned wParam,
 long lParam,
 long FAR* rp)
{
 ...
 if ((EVENTHOOK)0L == old_event_hook)
 return TRUE;
 else
 return((*old_event_hook)(hwnd, message, wParam, lParam, rp));
}

Using Keyboard and Event Hooks with XVT 2.0
Note: The following discussion only applies to developers using XVT 2.x. Event

and keyboard hook processing changed between XVT 2.0 and 3.0.

XVT provides a way for applications to alter the standard keyboard and event
behavior. Module whook.c is provided by XVT 2.0 and contains sample code for
function key_hook and event_hook. INFOConnect applications still have this
flexibility although the mechanics have been slightly altered.

Writing INFOConnect/XVT Applications

4173 5408-000 4–31

event_hook

If your application requires event_hook functionality, you must follow the standard
instructions given in whook.c, however, you must name your function ICevent_hook
instead of event_hook because INFOConnect itself uses event_hook. Module
icxehook.c is provided as a starting point for ICevent_hook. The Windows version is
in \idk\win\icxehook.c.

BOOLEAN ICevent_hook(int rid, BOOLEAN modal, MSG far *mp) {
 /* Called for every event from windows */
 return TRUE;
 }

key_hook

If your application requires key_hook functionality, you should follow the standard
instructions given in whook.c. The name of your function is key_hook as
documented in whook.c. INFOConnect does not provide a template for key_hook;
use the code in the XVT whook.c module.

Windows 3.x Linking considerations for the hook routines

Icxevent.obj is provided by INFOConnect and must always be included in the link
regardless of whether or not you are providing your own ICevent_hook. Your own
ICevent_hook module, icxehook.obj, is then added to the linkstream for your
application.

On the other hand, icxkey.obj is only a default key_hook routine provided by
INFOConnect and is to be dropped from the link if you are providing your own
key_hook routine.

Encoding and Decoding
Some transports do not guarantee that all binary data streams can be safely sent
across the connection (that is, SINFO.transparent=FALSE). Binary data must be
encoded by the sender and decoded by the receiver. This requires close coordination
between the workstation and host components; INFOConnect does not currently
provide encoding and decoding services. A service library is a good place to
implement the workstation side of this functionality.

Writing INFOConnect/XVT Applications

4–32 4173 5408-000

Data Compression and Error Detection
INFOConnect does not currently provide routines for data compression and error
detection. Error detection is generally the responsibility of the communications
layers beneath the INFOConnect architecture. Data compression, on the other hand,
is an ideal application for an INFOConnect service library.

Running with Old Versions of INFOConnect
The basic philosophy of INFOConnect version control is "Old applications must still
run with new versions of the Manager, but new applications are not required to run
with old Managers." In fact, the Manager normally refuses to run applications built
with a version of the IDK that is newer than the Manager itself. The assumption is
that new applications might make new API calls that an old Manager doesn't know
about.

If you are upgrading an existing application to a new version of the IDK, and can
function properly without making new INFOConnect API calls, this section describes
how to build your application with the latest IDK and initialize with different
versions of the Manager at run time. Your application must remember which version
of the Manager it is executing and only make appropriate API calls known by that
version of the Manager.

The version of an application is normally "marked" on the initial call to ic_init_ics:

icerror = ic_init_ics(IC_VERSION_3_0, IC_REVISION_3_0);
if (icerror != IC_OK)
 // error processing. INFOConnect services are not available.

IC_VERSION_3_0 and IC_REVISION_3_0 are defined in IcDef.h. IC_VERSION_...
is added at major release levels (Release 1.0, 2.0, 3.0). IC_REVISION_... has a finer
granularity -- a new one is added each time the INFOConnect APIs are extended or
changed.

If you compile your XVT application using the 2.0 values for version and revision
(IC_VERSION_2_0 and IC_REVISION_2_0) and attempt to run with INFOConnect
1.0, an error IC_ERROR_NEWVERSION is returned. However, your XVT
application can successfully run with INFOConnect 2.0 or 3.0.

Writing INFOConnect/XVT Applications

4173 5408-000 4–33

The following code sample is suggested for initializing with the Manager:

int icversion; /* global variable */
IC_RESULT icerror;

if ((icerror=IcInitIcs(IC_VERSION_CHECK,IC_REVISION_1_0)) == IC_OK)
 icversion = IC_VERSION_1_0;
else if ((icerror=IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0)) == IC_OK)
 icversion = IC_VERSION_3_0;
else if ((icerror=IcInitIcs(IC_VERSION_2_0,IC_REVISION_2_0)) == IC_OK)
 icversion = IC_VERSION_2_0;
else {
 IcDefaultErrorProc(hWnd, NULL, NULL, icerror);
 /* INFOConnect services are unavailable!! */
}

At the end of this code fragment, icversion is set to the level of the Manager with
which you are running.

CAUTION

Be careful to check icversion before making any API calls undefined in
older versions of INFOConnect. Otherwise, you will encounter unexpected
behavior.

The recommended way to isolate new API calls in your application follows:

if ((icversion >= IC_VERSION_3_0) &&
{
 /* call some new 3.0 INFOConnect API */
}
else {
 /* alternative action using pre 3.0 API calls */
}

Procedures for INFOConnect Accessories
INFOConnect applications that can be invoked and controlled by other INFOConnect
applications are called accessories. INFOConnect accessories are written so that
they can be used to build more sophisticated INFOConnect accessories. You
communicate with an accessory through an INFOConnect session. It is easy and very
useful to extend your INFOConnect application to become an accessory.

Writing INFOConnect/XVT Applications

4–34 4173 5408-000

Calling INFOConnect Accessories
Two functions are available to invoke accessories: ic_open_accessory and
ic_run_accessory. ic_open_accessory is the more useful of the two; a connection is
established between your application and the accessory using the Local external
interface.

Sample code

#define HSESSION (ep->v.ic.session)
IC_RESULT icerror;
IC_SINFO sinfo;
IC_SESSHND hMyHostConnection, hMyAnsiSession;

/* Retrieve characteristics of the host connection */
icerror = ic_get_session_info(hMyHostConnection, &sinfo);
if (icerror != IC_OK) {
 handle_ic_error(win, HSESSION, NULL, icerror);
 terminate();
}

/* Open an accessory named ANSI using pathname MYPATH */
icerror = ic_open_accessory(win, "ANSI", NULL,
 "MYPATH", &sinfo, &hMyAnsiSession);
if (icerror != IC_OK) {
 handle_ic_error(win, NULL_IC_SESSHND, NULL, icerror);
 terminate();
}

Notice the sinfo structure required as one of the parameters on ic_open_accessory.
This code fragment assumes that a host connection has already been established. The
session attributes of the host connection are retrieved and used to initialize the local
connection to the ANSI accessory. For an example of using ic_open_accessory in
complete context, see the sample program, IcOpenAc.

Making your Application an INFOConnect Accessory
Note: See Section 6 of the IDK Programming Reference Manual for a complete list

of requirements for accessories.

All INFOConnect accessories are expected to do the following:

Parse the command line

All INFOConnect accessories should accept the -P and -L command line options for
pathname and window location.

Writing INFOConnect/XVT Applications

4173 5408-000 4–35

For a coding example of parsing the pathname, see function cmdline_get_path in the
sample program IcXvtApp.

Display the INFOConnect session name

Where relevant, accessories should incorporate the INFOConnect session name in the
window's title bar. This will help the user differentiate between multiple, active
copies of an accessory.

The following code fragment was taken from the IcXvtApp sample program.

/* Display session name */

char sSessionName[IC_MAXSESSIONIDSIZE];

ic_get_session_id(HSESSION,
 sSessionName,
 sizeof(sSessionName));
set_doc_title(win, sSessionName);

Handle the IC_CONTROL_ACTIVATE status message

The code necessary to support this status was covered earlier under "Basic status
handling." INFOConnect sends this status when the user presses the GoTo button on
the INFOConnect window display of active sessions.

Registering and Deregistering as an accessory

Accessories that define statuses or errors must obtain a context by calling
ic_register_accessory. Use the context string defined in your .HIC header file.

Writing INFOConnect/XVT Applications

4–36 4173 5408-000

Provide a header file for accessory callers

Accessories must provide an .HIC header file that defines their identifying context
string and any nonstandard, accessory-specific errors or statuses defined by the
accessory. The compile-time name and value of the context string must be unique
from all other INFOConnect accessories.

/**/
/* SAMPLE.HIC */
/* */
/**/

#define SAMPLE_CONTEXTSTRING "SAMPLE"

/* status types - none defined */

/* error types - none defined */

Writing INFOConnect/XVT Applications

4173 5408-000 4–37

Compiling

Windows Platform
Note: Before compiling and linking any INFOConnect applications, review the

System Verification Checklist in the Installation section.

Memory Models

XVT applications can use either the Medium or Large memory models. The
Windows SDK and XVT documentation cover the use of the various memory
models. The INFOConnect architecture places no additional constraints on memory
model usage.

Include files for XVT applications

All INFOConnect events, functions and types are defined in Xvt.h which was
modified by IcXvtMod.exe during IDK installation. To access the INFOConnect
definitions, you must define the tag ICXVT before including Xvt.h. If your
application also includes Windows.h, you must also define the tag ICXVTWIN
before including Xvt.h.

#define ICXVT /* Allow INFOConnect Interfaces */
#include <xvt.h>

Writing INFOConnect/XVT Applications

4–38 4173 5408-000

C compiler options

Follow the recommendations in the XVT documentation. The sample programs
provided with the IDK were built with the following options using the Microsoft C
compiler.

cl -c -AM -Gsw -W3 -Oils -Zp -FPc -DCCMSC -DOSDOS -DWSWIN
icxvtapp.c

-c Compile only - don't link

-AM Medium memory model

-Gsw (s) remove stack probes
(w) compile for Windows

-W3 Generate warnings

-Oils (i) enable intrinsic functions
(l) enable loop optimization
(s) favor code size
(t) favor execution time
(d) optional flag for debugging

Note: Choosing between (s) and (t) can have a significant
impact on your application. You may want to
experiment before settling on one of them.

Note: Using the (d) flag disables optimization and is
recommended when using debuggers like
CodeView. Some of the sample programs use the
(d) flag in their make files. Don't forget to remove it
when building the production version of your code.

-Zp (p) pack structures on 1 byte boundaries
(i) optional flag for CodeView debugging

-FPc Generate calls to the emulator floating-point library

-DCCMSC Microsoft C compiler

-DOSDOS MS-DOS operating system

-DWSWIN Windows platform

Writing INFOConnect/XVT Applications

4173 5408-000 4–39

Compiler Errors

Some common compilation errors and their solutions are listed in this section.

Out of near heap space

If your application includes both <xvt.h> and <windows.h> there may be too many
names for the compiler to handle. The newer, DOS-extended compilers should not
encounter this problem; upgrade if possible. Otherwise, see the comments in
<windows.h> about removing unnecessary names from the compile. You will need
to add code similar to the following:

#define ICXVT
#include <xvt.h>

#define NOGDICAPMASKS - CC_*, LC_*, PC_*, CP_*, TC_*, RC_
#define NOWINSTYLES - WS_*, CS_*, ES_*, LBS_*, SBS_*
#define NOSYSMETRICS - SM_*
#define NOMENUS - MF_*
#define NOICONS - IDI_*
#define NOSYSCOMMANDS - SC_*
#define NOMINMAX - Macros min(a,b) and max(a,b)
#define NOSOUND - Sound driver routines
#define NOWH - SetWindowsHook and WH_*
#define NOWINOFFSETS - GWL_*, GCL_*, associated routines
#define NOKANJI - Kanji support stuff.
#define NOCOMM
#define NOPROFILER - Profiler interface.
#define NOSCROLL - SB_* and scrolling routines
#define NODEFERWINDOWPOS - DeferWindowPos routines

#include <windows.h>

Resource Files
XVT resource files (*.URL) are processed with XVT's CURL utility. The generated
.RC file is then processed with RC.EXE, the standard Windows resource compiler.

XVT 3.0

curl -r rcwin -p -DWSWIN -DOSDOS -DCCMSC -DKPURL icxvtapp.url
rc -r icxvtapp.rc

XVT 2.0

curl -r -DWSWIN -DOSDOS -DCCMSC -DKPURL icxvtap2.url
rc -r icxvtap2.rc

Writing INFOConnect/XVT Applications

4–40 4173 5408-000

Linking

Windows Platform
Refer to the XVT documentation for linking procedures. Basically, you link as for
any XVT/Windows application with one exception; you must additionally reference
an INFOConnect library in the list of libraries used. There are several INFOConnect
libraries to choose from depending on the memory model, version of XVT, and
INFOConnect release level(s):

IcXvtM.lib Resolves all references to the 3.0 release of ICS functions for
XVT 3.0x (Medium memory model)

IcXvtL.lib Resolves all references to the 3.0 release of ICS functions for
XVT 3.0x (Large memory model)

IcXvt2M.lib Resolves all references to the 3.0 release of ICS functions for
XVT 2.0 (Medium memory model)

IcXvt2L.lib Resolves all references to the 3.0 release of ICS functions for
XVT 2.0 (Large memory model)

Ic2XvtM.lib Resolves all references to the 2.0 and 3.0 releases of ICS
functions for XVT 3.0x (Medium memory model)

Ic2XvtL.lib Resolves all references to the 2.0 and 3.0 releases of ICS
functions for XVT 3.0x (Large memory model)

Ic2Xvt2M.lib Resolves all references to the 2.0 and 3.0 releases of ICS
functions for XVT 2.0 (Medium memory model)

Ic2Xvt2L.lib Resolves all references to the 2.0 and 3.0 releases of ICS
functions for XVT 2.0 (Large memory model)

The .EXE file built by the linker is then combined with the .RES resource file built
earlier.

The sample XVT application, IcXvtApp, was built with the following statements:

link @icxvtapp.lnk
rc icxvtapp.res icxvtapp.exe

Writing INFOConnect/XVT Applications

4173 5408-000 4–41

Linker (LNK) files for XVT 3.0 applications

A typical LNK file (for example, icxvtapp.lnk) contains:

/noe/nod/map/line/co icxvtapp.obj
icxvtapp.exe
icxvtapp.map
icxvtM Mmxvtw xvtw xvtwtx Mlibcew libw
icxvtapp.def

IcXvtApp is the name of the application object file.

The /NOE option allows you to override an object file built into the libraries with one
of your own. This option prevents the linker from searching the extended dictionary,
which is an internal list of symbol locations that the linker maintains.

The /NOD option allows you to specify the Windows libraries explicitly. It tells the
linker not to search any libraries specified in the object file to resolve external
references.

Never use the /NOI option with Windows.

The /CO option is optionally used to prepare for debugging with the Microsoft
CodeView debugger. Don't forget to remove it from the production version of your
code.

IcXvtM.lib resolves all references to the INFOConnect functions for Medium model
applications. Large model applications use IcXvtL.lib instead.

Mmxvtw.lib is the XVT library for medium memory model applications compiled
with the Microsoft C compiler. A large model application built with Borland C++
would use LBxvtw.lib instead.

Xvtw.lib and Xvtwtx.lib are also XVT libraries.

Mlibcew.lib is Windows library for medium memory model.

Libw.lib is another Windows library.

Writing INFOConnect/XVT Applications

4–42 4173 5408-000

Module definition (DEF) files for XVT 3.0 applications

A typical module definition file (for example, IcXvtApp.def) contains:

NAME IcXvtApp
DESCRIPTION 'Sample INFOConnect/XVT Application'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
SEGMENTS
; the entry point of the code (WinMain) must be PRELOAD
 _TEXT MOVEABLE DISCARDABLE PRELOAD

HEAPSIZE 8192
STACKSIZE 5120 ; recommended minimum for Windows apps

; All functions that will be called by any Windows routine
; MUST be exported.

EXPORTS

Linker (LNK) files for XVT 2.0 applications

A typical LNK file (for example, IcXvtAp2.lnk) contains:

/noe/nod/map/line/co icxvtap2.obj c:\idk\lib\win\icxevent c:\idk\lib\win\icxkey
icxvtap2.exe
icxvtap2.map
icxvt2M Mmxvtw Mlibcew libw
icxvtap2.def

IcXvtAp2 is the name of the application object file.

Icxevent is the INFOConnect event_hook routine and must always be included in the
linkstream. If you are providing your own ICevent_hook, it must be provided in
addition to Icxevent. See page 4 - 28 for more details.

Icxkey is a default key_hook module provided by INFOConnect. If you are
providing your own key_hook routine it must replace icxkey. See page 4 - 28 for
more details.

The /NOE option allows you to override an object file built into the libraries with one
of your own (like whook.obj). This option prevents the linker from searching the
extended dictionary, which is an internal list of symbol locations that the linker
maintains.

Writing INFOConnect/XVT Applications

4173 5408-000 4–43

The /NOD option allows you to specify the Windows libraries explicate. It tells the
linker not to search any libraries specified in the object file to resolve external
references.

Never use the /NOI option with Windows.

The /CO option is optionally used to prepare for debugging with the Microsoft
CodeView debugger. Don't forget to remove it from the production version of your
code.

IcXvt2M.lib resolves all references to the INFOConnect functions for Medium
model applications. Large model applications use IcXvt2L.lib instead.

Mmxvtw.lib is the XVT library for medium memory model applications built with
Microsoft C.

Mlibcew.lib is Windows library for medium memory model.

Libw.lib is another Windows library.

Module definition (DEF) files for XVT 2.0 applications

A typical module definition file (for example, IcXvtAp2.def) contains:

NAME IcXvtAp2
DESCRIPTION 'Sample INFOConnect/XVT 2.0 Application'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE MOVEABLE DISCARDABLE
DATA PRELOAD MOVEABLE MULTIPLE
SEGMENTS
; the entry point of the code (WinMain) must be PRELOAD
 _TEXT MOVEABLE DISCARDABLE PRELOAD

HEAPSIZE 8192
STACKSIZE 5120 ; recommended minimum for Windows apps

; All functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
 xvt_WndProc @1
 xvt_dialog @2
 xvt_AbortDlgProc @3
 xvt_AbortProc @4
 xvt_FontFunc @5
 ControlWndProc @6

Writing INFOConnect/XVT Applications

4–44 4173 5408-000

IcXvtApp - A sample XVT application
Finally we are ready to look at the complete source for IcXvtApp, an XVT
application that uses INFOConnect services. Most of the code fragments used as
examples in the preceding discussion were taken from this program.

Note: The XVT toolkit changed substantially between XVT 2.0 and 3.0. IcXvtApp
is written using the XVT 3.0 toolkit. Developers using XVT 2.0 should see
sample program IcXvtAp2. It is the same program as IcXvtApp, but uses the
XVT 2.0 API.

What does IcXvtApp do?

IcXvtApp is a simple communications program. It opens an INFOConnect session
and allows the user to enter messages to be sent across the communications path
using dialog boxes. Received messages are also displayed using dialog boxes. XVT
functions are used for all presentation services (for example, windows and dialogs)
and INFOConnect functions are used for all communications services. No platform-
specific functions (such as Windows or MS-DOS functions) are used.

Source file descriptions

IcXvtApp.c C-language source for XVT 3.0x

IcXvtApp.h Header file for XVT 3.0x

IcXvtApp.url Resource file for XVT 3.0x

IcXvtApp.def Module-definition file used to link for XVT 3.0x

IcXvtApp.ico Icon file for XVT 3.0x

IcXvtAp2.c C-language source for XVT 2.0

IcXvtAp2.h Header file for XVT 2.0

IcXvtAp2.url Resource file for XVT 2.0

IcXvtAp2.def Module-definition file used to link for XVT 2.0

IcXvtAp2.ico Icon file for XVT 2.0

Writing INFOConnect/XVT Applications

4173 5408-000 4–45

All source files needed to build this application are provided with the IDK in the
sample directory.

Windows platform

To build the windows version of this application, do:

nmake -f makefile PROGRAM=icxvtapp XVT=y

XVT 2.0 users

nmake -f makefile PROGRAM=icxvtap2 XVT=y XVTVER=0x0200

Writing INFOConnect/XVT Applications

4–46 4173 5408-000

Couple - An XVT Application that Connects
Two INFOConnect Sessions

The Couple application opens two INFOConnect sessions and routes all traffic from
one to the other. It is the counterpart to the LOCAL external interface which
connects two sessions at the external interface layer. Couple prompts the user for
two path names unless they are passed in on the command line like this:

couple.exe -p pathABC -p pathDEF

What is Couple used for?

Uses for Couple come up in many situations. Here are just a few ideas:

•• Couple can be used as the skeleton for a server application that connects pairs of
INFOConnect paths.

• Working with INFOConnect accessories (using ic_open_accessory) often
involves connecting two sessions as in Couple; one session is for a host
connection and the other is for the accessory connection. The IcOpenAc sample
program further demonstrates this.

How does Couple work?

Couple opens both sessions, allocates a single receive buffer for each and goes into
receive mode for each session. When session A gets an E_IC_RCV_DONE event,
Couple transmits the received buffer on session B. When session B gets the
E_IC_XMT_DONE event, Couple goes back into receive mode on session A.
Similar processing occurs when session B gets a E_IC_RCV_DONE event.

Writing INFOConnect/XVT Applications

4173 5408-000 4–47

Source file descriptions

Couple.c C-language source

Couple.h Header file

Couple.url Resource file

Couple.def Module-definition file used to link

Couple.ico Icon file

All source files needed to build Couple are provided with the IDK in the SAMPLE
directory.

Windows platform

To build the windows version, do:

nmake -f makefile PROGRAM=couple XVT=y

Writing INFOConnect/XVT Applications

4–48 4173 5408-000

IcOpenAc - An XVT Application that Opens an
INFOConnect Accessory

IcOpenAc demonstrates how to connect to an INFOConnect accessory using
ic_open_accessory. Two sessions are opened; one to a host and one to an accessory.
IcOpenAc routes all datacomm traffic between the two open sessions. Selected
messages from the host are intercepted and processed by IcOpenAc instead of
passing them on to the accessory. Accessory developers can use IcOpenAc to test the
behavior of their accessory when it is actually invoked as an accessory via
ic_open_accessory.

The user of IcOpenAc specifies the pathname of a host connection, an INFOConnect
accessory name, the desired window state of the invoked accessory, and an initial
command to be sent to the host on behalf of the accessory. Here is the format of the
options recognized by IcOpenAc:

-p A pathname

-a An accessory name

-o Options recognized by the invoked accessory

-w Option to control the accessory's initial window state

-c An initial command or statement to be transmitted
across the session

icopenac.exe -p MYPATH -a icxvtapp -c my first message to transmit

How does IcOpenAc work?

IcOpenAc is based on the model for connecting two sessions demonstrated in the
Couple sample application. After opening a path to the host and another path to an
accessory, each session is put in receive mode. An initial message is transmitted to
both sessions, then all traffic received from each session is transmitted to the other
as in Couple. The traffic from the host is monitored for a particular message which
is then intercepted and processed by IcOpenAc. IcOpenAc is coded to watch for a
special termination message, <ESC>D, after which it terminates. The host program
that issues the <ESC>D message is not provided in the IDK.

IcOpenAc is also an example of an XVT application that includes native Windows
code, too.

Writing INFOConnect/XVT Applications

4173 5408-000 4–49

Source file descriptions

IcOpenAc.c C-language source

IcOpenAc.h Header file

IcOpenAc.url Resource file

IcOpenAc.def Module-definition file used to link

IcOpenAc.ico Icon file

All source files needed to build IcOpenAc are provided with the IDK in the sample
directory.

Windows platform

To build the windows version, do:

nmake -f makefile PROGRAM=icopenac XVT=y

0–1

4173 5408-000 5–1

Section 5
Writing INFOConnect/DosLink
Applications

DosLink is an INFOConnect solution that allows DOS applications to make
connections to other computers using INFOConnect Connectivity Services. The DOS
application requires a DOS window in enhanced mode Windows. This capability is
only available on 386 class machines and higher.

What is the DOS application's perspective of INFOConnect DosLink services?

After reviewing Section 2, you may be wondering how events and window handles fit
into the world of DOS programming. The event-driven model is usually foreign to
traditional DOS programming techniques. DOS programs often use a polling style
while waiting for external events (for example, the arrival of a datacomm message)
to occur. Somewhere in the main program loop, a routine is polled to determine if an
event has occurred.

Event processing

The INFOConnect DosLink API is a subset of the INFOConnect Accessory API and
is made up of functions and events. In addition to making INFOConnect function
calls, your application must process INFOConnect events returned to it. Typically,
this event processing is coded in a routine named IcEventHandler. IcEventHandler
itself can be "handled" in two ways. It can be registered as a callback routine during
application initialization and called directly by INFOConnect later as events occur.
Or, more convenient for DOS programming, you can explicitly poll for INFOConnect
events during your main program loop and pass any available events directly to the
event handler. These two approaches are referred to as event callbacks and event
polling. The approach used is specified during initialization.

Writing INFOConnect/DosLink Applications

5–2 4173 5408-000

Window handles

Another characteristic of the DosLink API is the use of window handles in some of
the function parameter lists. A Windows program naturally has a window handle,
but what do window handles have to do with DOS programs? Window handles are in
the DosLink API for consistency with the other INFOConnect APIs. When an
INFOConnect session is opened, it is associated with a window handle. A special
function, IcCreateHwnd, is provided for DosLink applications to obtain a window
handle.

Buffer handles

Finally, the DosLink API requires datacomm buffers to be passed to INFOConnect
using handles. There are several approaches available to DosLink applications for
obtaining buffers and buffer handles. You can use INFOConnect functions to
actually allocate your datacomm buffers. These routines return buffer handles right
from the start. Or, for existing DOS programs that are using non-INFOConnect
memory allocation routines, the DosLink API provides a way to assign handles to far
pointers.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–3

Basic Procedures for DosLink Applications
This section shows how to use the INFOConnect DosLink API to accomplish basic
data communications tasks in your application.

Initializing INFOConnect Connectivity Services
All INFOConnect events, functions and types are defined in IcDos.h. Include this
header file at the beginning of your application.

Call IcInitIcs to initialize with INFOConnect Connectivity Services.
IC_VERSION_3_0 and IC_REVISION_3_0 provide version control designating to
use the INFOConnect 3.0 API.

Sample code

#include <icdos.h>;
#include <assert.h>;

IC_RESULT icerror;

void main(int argc, char * * argv)
{
 /* Initialize INFOConnect Interfaces */
 icerror = IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0);
 if (icerror != IC_OK) {
 assert(FALSE);
 }
 ...
}

Writing INFOConnect/DosLink Applications

5–4 4173 5408-000

Opening a Session
Before you can send data with INFOConnect, you must open an INFOConnect
session. Here are the steps to open a session and allocate datacomm buffers.

Initialize INFOConnect

Initialize INFOConnect Connectivity Services using IcInitIcs if you haven't done so
already.

Obtain a window handle

Call IcCreateHwnd to create a window handle. The DosLink API contains window
handles to remain consistent with the other INFOConnect APIs. You will need a
window handle to open a session later. Active sessions are associated with window
handles. You can use any convenient string with IcCreateHwnd; the application
name is a convenient choice. The sample code uses argv[0], which is the
command line parameter for the program name.

Create a session handle

Call IcCreateSession to create a session handle. This handle must be passed to
IcOpenSession before transmit or receive requests can be sent across the connection.

Call IcOpenSession

Call IcOpenSession to request a path to be opened. For the 'hWnd' and 'lpsession'
parameters, use the handles returned from IcCreateHwnd and IcCreateSession. You
must supply a path name for the 'host' parameter. If you are familiar with writing
INFOConnect/Windows or INFOConnect/XVT applications, you may be used to
passing a NULL string for the path name and let INFOConnect prompt the user for a
path. This functionality is not available to DosLink applications.

If INFOConnect returns from IcOpenSession with IC_OK, the session establishment
process has successfully started, but not completed. INFOConnect passes an
IC_SESSIONESTABLISHED message to your event function later when the session
is actually established. You must be careful not to use the pending session handle
before the IC_SESSIONESTABLISHED message occurs. No
IC_SESSIONESTABLISHED message is generated if INFOConnect does not return
with IC_OK on the IcOpenSession call.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–5

Establish an INFOConnect event handler

IcOpenSession is the first INFOConnect function that results in an event being sent
to your application. As discussed earlier, you need a routine, typically named
IcEventHandler, to process these events. If you are a Windows programmer, you
may notice that the function prototype for IcEventHandler looks like the Window
procedure required in Windows applications.

There are two styles for INFOConnect event handlers: polling and callback. The
sample code fragment below uses a "polling style" event handler. Function
IcGetNextEvent retrieves new INFOConnect events from the event queue which are
then passed to the event handler.

Handle the IC_SESSIONESTABLISHED event

Add a test for IC_SESSIONESTABLISHED to your event handler. It's a good idea to
create and set a global boolean variable to indicate the current state of your session.
This is primarily needed during the time between the IcOpenSession call and before
the IC_SESSIONESTABLISHED message is returned to your application. The
sample code uses bSessionEst within the session structure and doesn't try to transmit
or receive data until bSessionEst is TRUE.

If the IC_SESSIONESTABLISHED message does not contain IC_OK (indicating an
error of some kind), you must call IcCloseSession to release the pending session
handle.

If you are familiar with INFOConnect application development, you may be used to
allocating buffers now and initiating transmit and/or receive requests. As described
later in this section, DosLink applications are dependent on an INFOConnect server
accessory, DosLinkS, to open the requested path on behalf of the application.
DosLink applications must wait for some special status messages from the server
accessory.

Define an enumeration indicating 'connection state'

It's useful to define an enumeration type to track the state of the DosLink connection.
The sample code uses

enum {NOTESTABLISHED, BROKEN, JOINED, SERVER] ConnectState

for this purpose. The connection state is communicated to the application with
IC_STATUS/IC_CONNECT_... events. Connection states are related to the
DosLinkS server accessory. For now, suffice it to say that DosLink applications
cannot transmit or receive across a connection until the connection state has reached
the SERVER state.

Writing INFOConnect/DosLink Applications

5–6 4173 5408-000

Handle the IC_STATUS/IC_CONNECT_SERVER event and optionally allocate
buffers

Add a test for IC_STATUS to your INFOConnect event handler to process the
IC_CONNECT_SERVER message. You can optionally allocate INFOConnect
buffers now (as in the sample code fragment below) for transmitting and receiving
data. If your DOS application is already allocating buffers using standard C runtime
library routines, these buffers can be assigned handles using other DosLink API
calls. This is discussed later. When determining what buffer size to use, call
IcGetSessionInfo to find the maximum buffer size the underlying communications
software can support. Some connections may support very large buffers, so you may
want to put a ceiling on the buffer size as shown in the code fragment. Be sure to
check for NULL on the allocation requests.

Sample code

The following code fragment illustrates everything covered in the above discussion.

#include <icdos.h>;
#include <assert.h>;

struct aSession { /* INFOConnect session structure */
 HWND hWnd;
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 enum {NOTESTABLISHED, BROKEN, JOINED, SERVER} ConnectState;
 unsigned uBufsize;
} s;

IC_RESULT icerror;
IC_SINFO sinfo;

void main(int argc, char * * argv)
{
 /* Initialize INFOConnect Interfaces */
 icerror = IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0);
 assert (icerror == IC_OK);
 /* Initialize the INFOConnect session structure. */
 s.hWnd = IcCreateHwnd(argv[0]); /* program name */
 s.hSession = NULL_HIC_SESSION;
 s.hXmtBuf = NULL;
 s.hRcvBuf = NULL;
 s.bSessionEst = FALSE;
 s.ConnectState = NOTESTABLISHED;
 s.uBufsize = 0;

Writing INFOConnect/DosLink Applications

4173 5408-000 5–7

 icerror = IcCreateSession(&s.hSession);
 assert (icerror == IC_OK);
 icerror = IcOpenSession(s.hWnd, "mypath", &s.hSession);
 assert (icerror == IC_OK);

 do { /* This is the main loop in your application. */
 HANDLE hWnd;
 unsigned message;
 IC_RESULT icresult;

 IcGetNextEvent(s.hSession, &hWnd, &message, &icresult);
 IcEventHandler(hWnd, message, s.hSession, icresult);
 } while (s.bSessionEst);
}

long FAR PASCAL IcEventHandler(HWND hWnd,
 unsigned message,
 HIC_SESSION hSession,
 IC_RESULT icresult)
{
 switch (message) {
 case IC_SESSIONESTABLISHED:
 if IC_CHECK_RESULT_SEVERE(icresult)
 IcCloseSession(hSession);
 else {
 s.bSessionEst = TRUE;
 s.ConnectState = BROKEN;
 break;
 case IC_STATUS:
 if (icresult == IC_CONNECT_JOINED)
 s.ConnectState = JOINED;
 else if (icresult == IC_CONNECT_SERVER) {
 s.ConnectState = SERVER;
 icerror = IcGetSessionInfo(hSession, &sinfo);
 assert(icerror == IC_OK);
 s.uBufsize=min((unsigned)sinfo.max_size,MAXBUFSIZE);
 s.hXmtBuf = IcAllocBuffer(s.uBufsize);
 s.hRcvBuf = IcAllocBuffer(s.uBufsize);
 }
 else if (icresult == IC_CONNECT_BROKEN)
 s.ConnectState = BROKEN;
 break;
 case IC_NULLEVENT:
 break;
 }
 return(NULL);
}

Writing INFOConnect/DosLink Applications

5–8 4173 5408-000

Transmitting a Buffer
The IcXmt function attempts to transmit a buffer of data. This function is
asynchronous in nature; it returns immediately to the application before the transmit
is completed. A return value of IC_OK means the transmit request has been
initiated. When the transmit finishes, one of two messages is passed to your
INFOConnect event handler : IC_XMTDONE or IC_XMTERROR. The basic steps
to follow are:

Don't transmit prematurely

Don't transmit over a session before two INFOConnect messages have been sent to
your application: the IC_SESSIONESTABLISHED message and the
IC_CONNECT_SERVER status message. Also, don't transmit while a previous
transmit request is still pending for that session. The sample code below uses
several variables, bSessionEst, ConnectState and nXmtTries, to manage these
conditions.

Allocate and lock a transmit buffer

If you used IcAllocBuffer to allocate the transmit buffer, lock the buffer with
IcLockBuffer.

Prepare the transmit buffer

If you used IcAllocBuffer to allocate the transmit buffer, lock the buffer with
IcLockBuffer. Fill the transmit buffer and unlock it with IcUnlockBuffer.

If you are not using IcAllocBuffer to allocate the transmit buffer, obtain a handle
using IcCreateHandle and/or IcHandleOffset.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–9

Call IcXmt

Pass the buffer to INFOConnect with IcXmt.

You should declare a variable to indicate a transmit request is outstanding. Check
this variable to avoid transmitting a second buffer before a previous transmit request
has finished.

One approach is to simply use a boolean to indicate outstanding transmit requests.
Don't transmit unless the boolean is clear, then set the boolean after calling IcXmt
successfully. Clear the boolean when an IC_XMTDONE or IC_XMTERROR
message is received.

The sample program, IcDosApp, uses a different approach. A counter named
nXmtTries indicates when a transmit request is pending and will also be useful later
to manage transmit errors and retries.

Handle the IC_XMTDONE and IC_XMTERROR messages

Add tests for IC_XMTDONE and IC_XMTERROR to your event handler. Set your
variable to indicate that transmits are now allowed.

IC_XMTDONE messages contain the buffer handle and buffer length of the
transmitted data.

IC_XMTERROR messages contain an IC_RESULT with the reason for the transmit
failure. Don't ignore these messages. You may want to display the error or retry the
transmit request. See page 5 - 19 for more on handling data communications errors.

Writing INFOConnect/DosLink Applications

5–10 4173 5408-000

Sample code

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 enum {NOTESTABLISHED, BROKEN, JOINED, SERVER} ConnectState;
 unsigned uBufsize;
 int nXmtTries;
} s;

void DoTransmit(char localbuf[])
{
 if ((s.nXmtTries>0) || (!s.bSessionEst) || (s.ConnectState<SERVER)) {
 ... beep or issue message indicating not ready to transmit
 }
 else {
 if ((buf=IcLockBuffer(s.hXmtBuf)) == NULL) {
 assert(FALSE);
 }
 else {
 _fstrcpy(buf, localbuf);
 IcUnlockBuffer(s.hXmtBuf);
 icerror = IcXmt(s.hSession, s.hXmtBuf,
 strlen(localbuf));
 if (! IC_CHECK_RESULT_SEVERE(icerror))
 s.nXmtTries = 1;
 else
 assert(FALSE); /* display icerror */
 }
 }
}

long FAR PASCAL IcEventHandler(HWND hWnd,
 unsigned message,
 HIC_SESSION hSession,
 IC_RESULT icresult)
{
 switch (message) {
 case IC_XMTDONE:
 s.nXmtTries = 0; /* no outstanding transmits */
 break;
 case IC_XMTERROR:
 ... see discussion on handling datacomm errors
 break;
 }
 return(NULL);
}

Writing INFOConnect/DosLink Applications

4173 5408-000 5–11

Receiving a Buffer
The IcRcv function requests a buffer of data. This function is asynchronous in
nature; it returns immediately to the application before the receive is completed. A
return value of IC_OK means the receive request was initiated. When the receive
request finishes, one of two messages is passed to your event handler:
IC_RCVDONE or IC_RCVERROR. The basic steps to follow are:

Don't issue a receive request prematurely

Don't use a session before two INFOConnect messages have been sent to your
application: the IC_SESSIONESTABLISHED message and the
IC_CONNECT_SERVER status message. Don't make a receive request for a session
while a previous receive request is still pending for that session. The sample code
below uses several variables, bSessionEst, ConnectState and nRcvTries, to manage
these conditions.

Allocate a receive buffer

Allocate a receive buffer if you haven't already done so. IcAllocBuffer is
recommended for datacomm buffer allocation.

Call IcRcv

Pass the buffer to INFOConnect with IcRcv.

You should declare a variable to indicate that a receive request is outstanding. Check
this variable to avoid making a second receive request while the previous one is still
outstanding.

One approach is to use a global boolean to indicate outstanding receive requests.
Don't issue a receive request unless the boolean is clear, then set the boolean after
calling IcRcv successfully. Clear the boolean when an IC_RCVDONE or
IC_RCVERROR message is received.

The sample program, IcDosApp, uses a different approach. A counter named
nRcvTries indicates when a receive request is pending and will also be useful later to
manage receive errors and retries.

Writing INFOConnect/DosLink Applications

5–12 4173 5408-000

Handle the IC_RCVDONE and IC_RCVERROR messages

Add tests for IC_RCVDONE and IC_RCVERROR messages to your event hander.
Set your variable to indicate that new receive requests are now allowed.

IC_RCVDONE messages contain the buffer handle and buffer length of the received
data.

IC_RCVERROR messages contain an IC_RESULT with the reason for the receive
failure. Don't ignore these messages. You may want to display the error or retry the
receive request. See page 5 - 19 for more on handling data communications errors.

Sample code

struct aSession {
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
 int nRcvTries;
} s;

void DoReceive(void)
{
 if ((s.nRcvTries>0) || (!s.bSessionEst) || (s.ConnectState<SERVER)) {
 ... beep or issue error message indicating not ready to receive
 }
 else {
 icerror = IcRcv(s.hSession, s.hRcvBuf, s.uBufsize);
 if (! IC_CHECK_RESULT_SEVERE(icrerror))
 s.nRcvTries = 1;
 else
 assert(FALSE); /* display icerror */
 }
}

long FAR PASCAL IcEventHandler(HWND hWnd,
 unsigned message,
 HIC_SESSION hSession,
 IC_RESULT icresult)
{
 switch (message) {
 case IC_RCVDONE:
 s.nRcvries = 0; /* no outstanding receive */
 break;
 case IC_RCVERROR:
 ... see discussion on handling datacomm errors
 break;
 }
 return(NULL);
}

Writing INFOConnect/DosLink Applications

4173 5408-000 5–13

Allocating and Using Datacomm Buffers
This section contains guidelines to help you better manage your application's
datacomm buffers. The IcRcv and IcXmt functions are asynchronous in nature; they
return immediately before the datacomm request is actually completed. This means
your application must be careful about accessing the datacomm buffers that were
passed to these functions. The following list will help you better manage your
application's data communications.

Allocate datacomm buffers with IcAllocBuffer if possible

Normally, INFOConnect applications must use IcAllocBuffer and IcFreeBuffer to
allocate data communications buffers to ensure that the buffers have the proper
system attributes to be shareable across applications. Use these routines if you can
because it's simpler. Most of the sample code fragments use IcAllocBuffer.

Using INFOConnect routines for buffer allocation may be inconvenient for existing
DOS applications, therefore, there are DosLink functions that convert far pointers to
INFOConnect handles. IcCreateHandle and IcDestroyHandle convert paragraph-
aligned, normalized far pointers to and from INFOConnect handles. A paragraph-
aligned address is a segment/offset pair in which the offset is a multiple of 16. A
normalized address is a segment/offset pair in which the offset is less than 16. You
must normalize buffer addresses yourself before calling IcCreateHandle.

If your buffers are not paragraph-aligned you cannot use IcCreateHandle. Instead,
use IcHandleOffset immediately before calling IcXmt or IcRcv to temporarily
convert non-paragraph-aligned pointers to an INFOConnect-compatible form.

INFOConnect datacomm is asynchronous

Calls to IcRcv and IcXmt will return to your application immediately before the
request is actually completed. Later, a message will be sent to your event handler
when the request is completed. Until this message is returned, your request is
referred to as pending.

Writing INFOConnect/DosLink Applications

5–14 4173 5408-000

Don't use pending buffers

Do not access a buffer that is associated with a pending request. It's a good idea to
define and set a variable for each buffer that tracks when the buffer is associated with
a pending request.

Don't issue a receive or transmit request until the IC_SESSIONESTABLISHED
message and the IC_CONNECT_SERVER status message have been returned.

Don't issue a receive request while a pending receive request exists for the same
session. The state of the first receive request is undefined if this happens. Your
application cannot assume that all external interfaces will behave similarly for this
situation. The DosLink interface happens to queue all requests without verifying
whether the request uses a pending buffer or not.

These same warnings hold true for premature transmit requests.

Use one receive buffer and one transmit buffer

You can have as many datacomm buffers as you like, but a session can only have one
active transmit buffer and one active receive buffer at a time. Therefore, it's
recommended to allocate one receive buffer and one transmit buffer.

You can use one buffer for both transmitting and receiving, but for maximum
interoperability use separate buffers. Your application can be more responsive using
separate buffers since it can keep a receive request pending while waiting for a
pending transmit request to complete.

Cancel pending requests with IcLcl

Pending requests can be canceled by using IcLcl. You must wait until an
IC_LCLRESULT message is returned to your application on behalf of the canceled
messages before you can safely access any datacomm buffers.

Don't ignore errors

Don't ignore error messages (IC_XMTERROR and IC_RCVERROR). You may want
to retry the request at least some number of times. See page 5 - 19 for more on
handling data communications errors.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–15

Error Handling
Nearly every INFOConnect function and message returns an IC_RESULT type
indicating the success of the function or message. Any value other than IC_OK
indicates an error. In addition to the value returned from INFOConnect functions,
asynchronous error events can be returned to your event handler with the IC_ERROR
message. The four categories of errors and recommended actions for each follow:

IC_ERROR_INFO Log this error if the application has a log file. Don't
bother displaying a message to the user. The
requested function was completed.

IC_ERROR_WARNIN
G

The requested function was completed, but something
unusual or noteworthy happened. The application
can choose to log or display this error.

IC_ERROR_SEVERE The requested function did not complete successfully.
The user should usually see this error.

IC_ERROR_TERMINA
TE

Display this error and close the session.

The following are some guidelines for error handling. The sample code fragment
below follows all these guidelines.

• Don't display anything for IC_OK.

• Support IC_ERROR_TERMINATE_NOMSG errors. This is a special error used
by INFOConnect to close sessions without displaying anything to the user.

• Close the session for errors of type IC_ERROR_TERMINATE.
IC_GET_RESULT_TYPE is an INFOConnect macro used to extract the error-
type from 'icerror'.

• IcDefaultErrorProc, the INFOConnect default error procedure available to
standard INFOConnect applications, is not accessible to DosLink applications.
You must display errors yourself.

• IcGetString, the INFOConnect function for retrieving error text, is currently not
accessible to DosLink applications.

Writing INFOConnect/DosLink Applications

5–16 4173 5408-000

Sample code

Here is a code fragment that makes a transmit request and passes any errors to a
general error handling routine called HandleIcError.

icerror = IcXmt(hSession, s.hXmtBuf, s.nXmtLen);
if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,hSession,NULL,icerror);

void HandleIcError(HWND hWnd,
 HIC_SESSION session,
 unsigned message,
 IC_RESULT icerror)
{
 /* This routine does basic processing of INFOConnect
 errors. It uses standard Console I/O routines to display
 error numbers. Sessions are closed upon
 detection of errors of type IC_ERROR_TERMINATE.
 */
 if ((icerror != IC_OK) &&
 (icerror != IC_ERROR_TERMINATE_NOMSG))
 {
 if (message != NULL)
 _cprintf("INFOConnect error:%lx messagetype:%x \r\n",
 icerror, message);
 else
 _cprintf("INFOConnect error %lx \r\n", icerror);
 }
 if ((IC_GET_RESULT_TYPE(icerror) & IC_ERROR_MASK) ==
 IC_ERROR_TERMINATE)
 IcCloseSession(session);
}

Writing INFOConnect/DosLink Applications

4173 5408-000 5–17

Closing a Session
Call IcCloseSession to end an INFOConnect session. This function returns
immediately. Message IC_SESSIONCLOSED is passed to the event handler when
the session is actually closed. The basic steps to follow are:

Clear the boolean indicating 'session establishment'

The sample code uses a variable named bSessionEst for this purpose. This variable
was originally set when the IC_SESSIONESTABLISHED message was received by
the application.

Call IcCloseSession and IcDestroySession and deallocate buffers

Use INFOConnect memory management routines to free datacomm buffers. It's also
a good idea to clear the buffer handle variables with NULL.

Destroy the window handle

If no other INFOConnect sessions are associated with the window handle, destroy it
with IcDestroyHwnd.

Handle the IC_SESSIONCLOSED message

In addition to the expected IC_SESSIONCLOSED message that is delivered to your
application after IcCloseSession, your application must be prepared for unsolicited
IC_SESSIONCLOSED messages. If the user clears your application's session from
the INFOConnect manager window, an IC_SESSIONCLOSED message is delivered
to your event handler. Typically, your application should terminate gracefully.

Writing INFOConnect/DosLink Applications

5–18 4173 5408-000

Sample code

struct aSession {
 HWND hWnd;
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
} s;

void DoIcClose(void)
{
 s.bSessionEst = FALSE;
 if (s.hSession != NULL_HIC_SESSION) {
 IcCloseSession(s.hSession);
 IcDestroySession(s.hSession);
 s.hSession = NULL_HIC_SESSION;
 }
 if (s.hWnd != NULL) {
 IcDestroyHwnd(s.hWnd);
 s.hWnd = NULL;
 }
 if (s.hXmtBuf != NULL) {
 IcFreeBuffer(s.hXmtBuf);
 s.hXmtBuf = NULL;
 }
 if (s.hRcvBuf != NULL) {
 IcFreeBuffer(s.hRcvBuf);
 s.hRcvBuf = NULL;
 }
}

Writing INFOConnect/DosLink Applications

4173 5408-000 5–19

Advanced Procedures for DosLink
Applications

Canceling Pending Requests
Many applications typically stay in receive mode so they're ready to respond to any
messages from the partner activity. Occasionally, it may be necessary to cancel this
outstanding receive request.

The IcLcl function selectively cancels pending actions. A parameter indicates what
is to be canceled: the pending transmit requests, pending receive requests, or both.
Your application must wait for an IC_LCLRESULT message before safely accessing
the datacomm buffer associated with the canceled actions.

/* The following definitions are in ICDEF.H */
/* You do NOT need to define these in your application */

#define IC_LCL_RCV 1
#define IC_LCL_XMT 2
#define IC_LCL_RCVXMT (IC_LCL_RCV | IC_LCL_XMT)
#define IC_LCL_CLOSESESSION 4

Sample code

The following code cancels any pending receive or transmit requests.

icerror = IcLcl(hSession, IC_LCL_RCVXMT);
if IC_CHECK_RESULT_SEVERE(icerror) {
 assert(FALSE);

Writing INFOConnect/DosLink Applications

5–20 4173 5408-000

Handling Data Communications Errors
Data communications errors show up as IC_XMTERROR and IC_RCVERROR
messages in your event handler. A good application will act on these messages.
Often, you may just want to retry the request for some number of times.

The following code fragment will retry datacomm errors five times before displaying
an error to the user. Two variables, nXmtTries and nRcvTries, are the basis of this
technique. They are incremented when a request results in an error. They are set to
zero after successful completion (IC_XMTDONE and IC_RCVDONE) indicating
there is no longer an outstanding request.

#define MAXRETRIES 5

struct aSession {
 HWND hWnd;
 HIC_SESSION hSession;
 HANDLE hXmtBuf;
 HANDLE hRcvBuf;
 BOOL bSessionEst;
 unsigned uBufsize;
 int nXmtLen;
 int nXmtTries;
 int nRcvTries;
} s;

long FAR PASCAL IcEventHandler(HWND hWnd,
 unsigned message,
 HIC_SESSION hSession,
 IC_RESULT icresult)
{
 switch (message) {
 case IC_XMTDONE:
 s.nXmtTries = 0; /* no outstanding transmits */
 break;
 case IC_RCVDONE:
 s.nRcvTries = 0; /* no outstanding receives */
 break;
 case IC_XMTERROR:
 if (++(s.nXmtTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,message,icresult);
 s.nXmtTries = 1;
 }
 /* try transmit again */
 icerror = IcXmt(hSession, s.hXmtBuf, s.nXmtLen);
 if IC_CHECK_RESULT_SEVERE(icerror){
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nXmtTries = 0;
 }
 break;

Writing INFOConnect/DosLink Applications

4173 5408-000 5–21

 case IC_RCVERROR:
 if (++(s.nRcvTries) > MAXRETRIES) {
 HandleIcError(hWnd,hSession,message,icresult);
 s.nRcvTries = 1;
 }
 /* try receive again */
 icerror = IcRcv(hSession, s.hRcvBuf, s.uBufsize);
 if IC_CHECK_RESULT_SEVERE(icrerror){
 HandleIcError(hWnd,hSession,NULL,icerror);
 s.nRcvTries = 0;
 }
 break;
 }
 return(NULL);
}

Running with Old Versions of INFOConnect
The basic philosophy of INFOConnect version control is "Old applications must still
run with new versions of the Manager, but new applications are not required to run
with old Managers." In fact, the Manager normally refuses to run applications built
with a version of the IDK that is newer than the Manager itself. The assumption is
that new applications might make new API calls that an old Manager doesn't know
about.

If you are upgrading an existing application to a new version of the IDK, and can
function properly without making new INFOConnect API calls, this section describes
how to build your application with the latest IDK and initialize with different
versions of the Manager at run time. Your application must remember which version
of the Manager it is executing with, and only make appropriate API calls known by
that version of the Manager.

The version of an application is normally "marked" on the initial call to IcInitIcs:

icerror = IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0);
if IC_CHECK_RESULT_SEVERE(icerror)
 // error processing. INFOConnect services are not available.

IC_VERSION_3_0 and IC_REVISION_3_0 are defined in IcDef.h. A new
IC_VERSION_... is updated at major release levels (for example, release 1.0, 2.0,
3.0). IC_REVISION_... has a finer granularity -- it is updated each time the
INFOConnect APIs are extended or changed.

Writing INFOConnect/DosLink Applications

5–22 4173 5408-000

However, nothing prevents you from calling IcInitIcs again with values from an
earlier version of the IDK. The following code sequence is one possibility for
initializing with the Manager.

int icversion; /* global variable */
IC_RESULT icerror;

if ((icerror=IcInitIcs(IC_VERSION_CHECK,IC_REVISION_1_0)) == IC_OK)
 icversion = IC_VERSION_1_0;
else if ((icerror=IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0)) == IC_OK)
 icversion = IC_VERSION_3_0;
else if ((icerror=IcInitIcs(IC_VERSION_2_0,IC_REVISION_2_0)) == IC_OK)
 icversion = IC_VERSION_2_0;
else {
 IcDefaultErrorProc(hWnd, NULL, NULL, icerror);
 /* INFOConnect services are unavailable!! */
}

At the end of this code fragment, icversion is set to the level of the Manager you are
running with.

CAUTION

Be careful to check icversion before making any API calls undefined in
older versions of INFOConnect. Otherwise, you will encounter unexpected
behavior.

Here is the recommended way to isolate new API calls in your application:

if ((icversion >= IC_VERSION_3_0)
{
 /* call some new 3.0 INFOConnect API */
}
else {
 /* alternative action using pre 3.0 API calls */
}

Writing INFOConnect/DosLink Applications

4173 5408-000 5–23

A Closer Look at the DosLink Solution
The DosLink solution is implemented by a collection of components as shown in the
following diagram. The goal of DosLink is to allow a DOS application to connect to
the host using an INFOConnect target path. The DOS application appears to be
manipulating the target path directly, but there are actually several other components
involved. The dotted line represents the route followed by data on its journey
between the application and the host.

Figure 5–1. The DosLink Solution

Windows virtual machine

DOS application

DOS virtual machine

DosLinkS.EXE

IcDosLnk.DLL

PC
Target Path

Host

(DosLink.LIB)
DosLink API

Running Windows in 386 Enhanced Mode

DosLink.386

Writing INFOConnect/DosLink Applications

5–24 4173 5408-000

Each component along the dotted line, from the DOS application to the host, is
described in the following paragraphs.

DOS (or DosLink) application

This is an updated version of a DOS application that uses the DosLink API to open
and use the target path. Everything in between the DOS application and the target
path is transparent to the DOS application. IcDosApp is a sample DOS application
provided in the IDK that operates at this position in the architecture.

If you have a collection of DOS applications that uses a common data
communications API, perhaps with a DOS Terminate and Stay Resident (TSR), you
can modify the TSR to use the DosLink API. IcBDrive is a sample TSR provided in
the IDK that maps a subset of the BDrive DOS-based data communications API to
the INFOConnect Accessory API.

DosLink API

IcDos.h is a C-header file that contains the function prototypes for the INFOConnect
DosLink services available to DOS applications. When you link your application,
DosLink.lib resolves references to the DosLink API. The link process binds an
object module from DosLink.lib to your application (IcDos.obj). This object module
actually interfaces with the DosLink virtual device driver below. You do not need
the Windows SDK to link your application. DosLink applications only require a C-
compiler and the IDK to build.

DosLink.386

DosLink.386 is a Virtual Device Driver (VxD) distributed with the basic
INFOConnect Connectivity Services package. Virtual devices allow communication
between different virtual machines when a machine is running in 386 enhanced
mode. When Windows runs in enhanced mode, it starts each DOS session in a
different virtual machine.

IcDosLnk.dll

IcDosLnk is an INFOConnect External Interface Library that maps the standard
INFOConnect Accessory API on to the interface used by DosLink.386 virtual device.
IcDosLnk is also distributed with the basic INFOConnect Connectivity Services
package.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–25

DosLinkS.exe

DosLinkS is a server application that joins two INFOConnect paths together and
routes all datacomm traffic between them. Each DosLink application requires the
DosLinkS server to manage a pair of paths in this manner. The two icons in the
architecture diagram represent these two paths. One of the paths is the target path
that the DOS application thinks it is directly manipulating. The other path is named
DosLink and is internally configured and maintained by DosLinkS.

DosLinkS is an INFOConnect accessory distributed with the basic INFOConnect
Connectivity Services package. It is based on the CoupleW sample application
provided with the IDK. However, where CoupleW only connects a single pair of
paths, DosLinkS can manage many pairs of paths. Each DosLink application running
on the machine results in a pair of paths for DosLinkS to manage. DosLinkS must be
up and running before any DosLink applications try to open paths. This can be done
in Windows 3.1 by dragging the DosLinkS icon into the Startup program group or in
Windows 3.0 by updating WIN.INI:

[windows]
load=c:\infoconn\doslinks.exe

Target path

The target path can be any INFOConnect path configured on the PC. Therefore, your
DOS application has access to all the transports available through INFOConnect now
and in the future.

Writing INFOConnect/DosLink Applications

5–26 4173 5408-000

Compiling and Linking
Note: Before compiling and linking any INFOConnect applications, please review

the System Verification Checklist in the Installation section.

Compiling and Linking Environment

DosLink applications are Real-mode DOS programs, not Windows programs.
Therefore, you do not need the Windows SDK to build DosLink applications. In fact,
if you are building DosLink applications on a Windows development machine, you
must be careful that no Windows-related libraries or header files are accidentally
pulled in during the compile and link process.

Also, some C compilers (for example, Microsoft C 5.1 and 6.0) are capable of
building both real-mode DOS programs and protected-mode OS2 programs. The
default environment, real mode or protected mode is selected during compiler
installation. If the following message is displayed when you run a Doslink
application:

This program cannot be run in DOS mode

your default environment is probably OS2/protected mode. Typically, there are
different libraries for the two modes. Microsoft compilers use names like
SLIBCER.LIB and SLIBCEP.LIB for the real and protected mode, small model
libraries. Refer to your compiler installation documentation for information
pertaining to real mode and protected mode.

Memory Models

The Medium or Small memory models are recommended, but the INFOConnect
architecture places no constraints on memory model usage.

Include files

The function prototypes for the DosLink API are declared in the IcDos.h header file.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–27

C compiler options

The sample programs provided with the INFOConnect Development Kit are built
with the following options using the Microsoft C compiler.

cl -c -AS -Gs -W3 -Oils -Zp -FPc icdosapp.c

-c Compile only - don't link

-AS Small memory model

-Gs (s) remove stack probes

-W3 Generate all warnings

-Oils (i) enable intrinsic functions
(l) enable loop optimization
(s) favor code size
(t) favor execution time
(d) optional flag for debugging

Notes:

• Choosing between (s) and (t) can have a significant impact
on your application. You may want to experiment before
settling on one of them.

• Using the (d) flag disables optimization and is
recommended when using debuggers like CodeView.
Some of the sample programs use the (d) flag in their make
files. Don't forget to remove it when building the production
version of your code.

-Zp (p) pack structures on 1 byte boundaries
(i) optional flag for CodeView debugging

Writing INFOConnect/DosLink Applications

5–28 4173 5408-000

Linker (LNK) files

The sample DosLink application, IcDosApp, was built with the following statements:

link @icdosapp.lnk

A typical LNK file (IcDosApp.lnk) contains:

/noi/map/line/co/stack:0x2000 icdosapp.obj
icdosapp.exe
icdosapp.map
doslink;

IcDosApp is the name of the application object file.

The /NOI option (noignorecase) causes the linker to distinguish between uppercase
and lowercase letters.

The /CO option is optionally used to prepare for debugging with the Microsoft
CodeView debugger. Don't forget to remove it from the production version of your
code.

The /MAP and /LINE options are optional for debugging purposes.

DosLink is an object module library that resolves references to the INFOConnect
functions.

Writing INFOConnect/DosLink Applications

4173 5408-000 5–29

IcDosApp - a Sample DosLink Application
Finally we are ready to look at the source for IcDosApp, a DosLink application that
uses INFOConnect services. Most of the code fragments used as examples in the
preceding discussion were taken from this program.

What does IcDosApp do?

IcDosApp is a simple, TTY-style communications program run from the DOS
window on a machine running in Windows 386 enhanced mode. IcDosApp opens an
INFOConnect path and sends keystrokes across the connection. The host is expected
to echo the received character as in a full-duplex connection to a UNIX host.
Microsoft console IO routines (_getch and _cputs) are used to access the keyboard
and screen. You will have to modify the source if your compiler runtime library
does not support these routines.

When invoked, IcDosApp expects a single command line parameter, the
INFOConnect path to be opened.

c> icdosapp myunixpath

Source file descriptions

IcDosApp.c C-language source

All source files needed to build this application are provided with the IDK in the
SAMPLE directory. To build this application, do:

nmake -f makedos. PROGRAM=icdosapp

Writing INFOConnect/DosLink Applications

5–30 4173 5408-000

IcBDrive - a Sample DosLink TSR
BDrive is a data communications API used by many older DOS programs. BDrive
was implemented as a DOS TSR program. Replacing the BDrive TSR with a TSR
that maps the BDrive API to the DosLink API enables any program that uses BDrive
has access to the INFOConnect transports.

Note: The IcBDrive sample program only maps a subset of the BDrive API to
INFOConnect.

Source file descriptions

IcBDrive.c C-language source

IcBDrive.msg Message source file

All source files needed to build this application are provided with the IDK in the
SAMPLE directory. To build this application, do:

nmake -f makedos. PROGRAM=icbdrive

To run a BDrive program, first install the IcBDrive TSR, then run the DOS program:

c> icbdrive
c> myprogram

4173 5408-000 6–1

Section 6
A Closer Look at the INFOConnect
Architecture

This section is primarily directed at developers of INFOConnect libraries: both
service libraries and external interface libraries. Applications developers may
benefit from this information, but should not need it for development.

Manager Components
The following table lists each Manager Component, its dynamic link library (DLL)
or executable (EXE) name, and the API it provides to applications, accessories and
libraries:

Manager Component DLL/EXE API

INFOConnect Manager INFOConn.exe -

Communication Manager IcMgr.dll Library API and Manager API

Configuration Manager IcMgrCfg.dll Configuration Accessory API

Installation Manager InstMgr.exe -

Quick Configuration
Manager

IcQCfg.exe -

Database Manager IcDb.dll -

Utilities IcUtil.dll and
IcAbout.dll

-

Table 6–1. Manager Component, DLL/EXE, and API

A Closer Look at the INFOConnect Architecture

6–2 4173 5408-000

Notes:

• The session related interfaces of the ICS Accessory Application Programming
Interface (AAPI) are provided by the Application Interface Library
(IcAAPI16.dll).

• A CommMgr.dll stub provides support for applications built with the 1.0 and 2.0
INFOConnect Development Kits.

The following diagram illustrates the manager components of INFOConnect
Connectivity Services and the Application Programming Interfaces (APIs) they
provide:

Figure 6–1. Manager Components and APIs

Configuration
Manager

IcMgrCfg.dll

Database

IcDb.dll

INFOConn.cfg

InstMgr.cfg

Manager
Communication

IcMgr.dll

Manager APIConfig API

Utilities
IcUtil.dll

IcAbout.dll

INFOConnect

INFOConn.exe

Manager Accessory

Interface
Application

Library

Accessory API

IcAAPI16.dll

Service
Library

External

Interface Library

L
i
b
r
a
r
y

A
P
I

Manager Components

Application

ManagerInstallation

InstMgr.exe

Manager

Configuration

IcQCfg.exe

Manager

Quick

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–3

Structure of Service and External Interface
Libraries

For brevity, service libraries may sometimes be referred to as services and external
interface libraries as interfaces or EILs.

Each service and interface defines and exports a list of functions called by the
manager.

The following table describes the functions that must be provided by an
INFOConnect library:

IcLibUpdateConfig Called to present a dialog box to user for configuration

IcLibVerifyConfig Called to verify a configuration

IcLibPrintConfig Called to format library-specific configuration
information

IcLibInstall Called once to perform initialization

IcLibTerminate Called once to do cleanup before the library is
unloaded

IcLibOpenChannel Called to initialize a library channel

IcLibCloseChannel Called to terminate a library channel

IcLibOpenSession Called when application opens a session

IcLibCloseSession Called when application closes a session

IcLibXmt Called to transmit a buffer

IcLibRcv Called to receive a buffer

IcLibLcl Called to cancel pending transmits and receives

IcLibSetResult Called to process status and error events

IcLibEvent Called to preprocess events destined for the application

IcLibGetString Called to supply error message text

IcLibIdentifySessio
n

Called to retrieve a unique session identifier

IcLibGetSessionInf
o

Called to provide the application with session
information

A Closer Look at the INFOConnect Architecture

6–4 4173 5408-000

ICS Control Flow

Processing an Open Session Request
The following diagram shows the flow of control through the INFOConnect system
when an application calls function IcOpenSession.

Figure 6–2. Processing During Session Establishment

External Interface Library

IcLibOpenChannel() IcLibOpenSession() IcLibEvent()

Application
do_open() ICSSessionEstablished()

1 3

path name
IC_OK
hSession

IcOpenSession()
2

IcLibStackEvent()

IcMgrOpenSession()

4

6 7
Manager

8
9

IcMgrSendEvent()

11

hSession

5

12

Channel Table
record

Path Table
record

Channel Table

Path Table
record

IcMgrSendEvent()

13

IC_SESSIONESTABLISHED

IC_SESSIONESTABLISHED

AAPI16.AIL/IPC16.IIL

Window Function 10

IC_SESSIONESTABLISHED

IC_SESSIONESTABLISHED

IC_SESSIONESTABLISHED

IC_SESSIONESTABLISHED

16

record

IcMgrControlSession()

IC_OK

15

19

ICCTL_START

Window Function

18

17

IcLibOpenChannel()
IcLibEvent()

Service Library

IcLibOpenSession()
14

MainWndProc()

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–5

The following steps relate to Figure 6-1:

1. The application has already initialized with INFOConnect and now calls
IcOpenSession passing in the path name to be opened.

2. The application Interface Library/Interprocess Interface Library (AIL/IIL) does
preliminary verification of the open request, looks up the path name, posts a
message to an internal window on the INFOConnect message queue and returns
a pending session handle, hSession, to the application. The dotted line indicates
the posted message.

3. The application resumes processing until the session established event is
returned.

4. The GUI system gives control to the AIL/IIL's Window function to process the
message posted in step 2. This new execution sequence continues from step 4
through step 16. The Window function calls a Manager function called
IcMgrOpenSession.

5. The Manager determines what service libraries and external interface are used
by the path. Libraries are loaded, as necessary.

If the external interface defines channels and this is the first session to be
opened on the channel, IcLibOpenChannel is called. If the channel is already
open because an earlier session used the same channel, IcLibOpenChannel is not
called. If IcLibOpenChannel is called, your library is passed a channel table
record and must initiate the process of opening the channel. Remember, though,
that you cannot just wait for some external event to occur because Windows is a
cooperative multitasking environment. If the "open" process cannot complete
until some outside event has occurred, you must go ahead and return IC_OK
from IcLibOpenChannel. Later, when the session established event is bubbled
up to the IcLibEvent routine, you can refuse to bubble that event on up the stack
until the awaited external event has occurred.

If the external interface doesn't use channels, IcLibOpenChannel is still called
one time during session establishment for the first session. Simply return
IC_OK.

6. Next, the Manager calls IcLibOpenSession to open a specific session. If your
library uses channels, the corresponding channel handle is passed in along with
the appropriate path table record to IcLibOpenSession. After initializing session
related data, return IC_OK.

A Closer Look at the INFOConnect Architecture

6–6 4173 5408-000

The Manager immediately calls IcLibOpenSession a second time with the same
parameters except for Options, which is set to IC_OPEN_VERIFY. This allows
the Manager to determine if the path being opened can be opened again. If not,
the Manager will prune the path from the list of available paths presented to the
user in future session establishment dialogs. Returning anything but
IC_VERIFY_OK will result in removing the path from the available list.

7. Service library processing occurs next. If any service libraries are configured in
the path, the bottom most one (closest to the external interface) is called at
IcLibOpenChannel. The conditions under which IcLibOpenChannel is called are
the same as in step 5. service libraries that define or don't define channels are
treated the same as the corresponding external interfaces described in step 5.

8. The service library's IcLibOpenSession routine is called to open a specific
session. After initializing session related data, return IC_OK.

As in step 6, the Manager immediately calls IcLibOpenSession a second time
with the Options set to IC_OPEN_VERIFY. As discussed in step 6, your library
must return IC_VERIFY_OK if the same path can continue to be opened by the
user.

If multiple service libraries are configured in the path, steps 7 and 8 are repeated
for each library up the stack.

9. If all libraries in the stack have returned IC_VERIFY_OK on the secondary
IcLibOpenSession calls, the path will remain in the list of available paths, and
the user can choose it again in a future session establishment dialog. However,
the Manager must have a unique suffix string to attach to the name of each
session opened using this same path. Therefore, the Manager begins working its
way down the stack of libraries (from the service library closest to the
application to the external interface at the bottom) calling IcLibIdentifySession
in each library. As soon as one of the libraries returns a non-NULL string, this
probing activity stops and the lower libraries are not called. The Manager
returns an IC_OK to the AIL/IIL.

10. The AIL/IIL calls IcMgrControlSession with ICCTL_START to establish the
session.

11. The Manager begins the process of notifying all the libraries in the stack about
the newly opened session. A session-established event is bubbled up through the
architecture starting with the external interface.

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–7

12. At this point, the EIL has complete control of the session establishment process.
The next library in the stack won't get the session established event until the EIL
passes it on. Generally, the EIL does some bookkeeping and immediately
bubbles the event up the library stack by calling the Manager at
IcMgrSendEvent. However, if the EIL is waiting for some external event to
occur, it can temporarily block the session establishment process by simply not
calling IcMgrSendEvent for now. Later, perhaps during the EIL's timer
processing, the EIL can resume the session establishment process by calling
IcMgrSendEvent.

Note: Remember that for cooperative multitasking platforms like Windows, you
must "wait" via some kind of timer or callback mechanism. You can't just
take over control of the CPU.

13. The Manager determines if there are more service libraries to call and passes the
session established event up the stack. If there were no service libraries
configured in the path, the Manager would post the event to the AIL/IIL at this
point.

14. Each service library in the stack gets called at IcLibEvent and calls
IcMgrSendEvent in turn. As noted in step 12, each library can temporarily block
the process and wait to call IcMgrSendEvent at some later time.

15. Finally, the Manager runs out of service libraries to call, so then calls the
AIL/IIL's IcLibStackEvent function with the session established event
(Ic_SessionEstablished).

16. The AIL/IIL posts a session established event to an internal window on the
application message queue . The dotted line indicates the posted message.

17. The GUI system gives control to the AIL/IIL to process the message posted in
step 16.

18. The AIL/IIL posts an IC_SESSIONESTABLISHED message to the application's
message queue. The application now has a valid session handle (hSession).

19. The application can allocate buffers and begin sending data across the session.

A Closer Look at the INFOConnect Architecture

6–8 4173 5408-000

Processing a Transmit (or Receive) Request
The following diagram shows the flow of control through the INFOConnect
architecture when an application calls function IcXmt to transmit some data across a
session. The same flow control also applies to receive requests (IcRcv).

Figure 6–3. Processing During Transmit

Manager

External
IcLibXmt() 10

timer/interrupt

Application
do_transmit()

 ICSXmtDone()
1 3

hXmtBuf IC_OK

IcXmt() 2

IcLibStackEvent() 14Window function

IC_XMTDONE

Interface

IcLibXmt() 12
Service
Library

IcMgrXmt()

initiate transmit notification of completion

4

6

7

8

9

hXmtBuf

hXmtBuf

AAPI16.AIL/

Library

IcLibEvent()

11
IcMgrSendEvent()

code

IcMgrXmt()
5

hXmtBuf

hXmtBuf

13
IcMgrSendEvent()

IC_XMTDONE

IPC16.IIL

Window function15

16

17

IC_XMTDONE

IC_XMTDONE

IC_XMTDONE

MainWndProc()

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–9

The following steps relate to Figure 6-2:

1. The application fills a buffer and passes its handle to IcXmt.

2. The Application Interface Library/Interprocess Interface Library (AIL/IIL) does
preliminary verification of the transmit request. If it looks like a valid request,
the AIL/IIL posts a message to an internal window on the INFOConnect message
queue and returns IC_OK to the application. The dotted line indicates the posted
message.

3. The application resumes processing until the transmit finishes. The data buffer
being transmitted, hXmtBuf, is still unavailable to the application until the
transmit done event is returned.

4. The GUI system gives control to the AIL/IIL's Window function to process the
message posted in step 2. The Window function calls a Manager function called
IcMgrXmt.

5. IcMgrXmt determines the first service library in the stack and calls service
library function IcLibXmt passing the application's buffer handle. If there are
no service libraries in the path configuration, IcMgrXmt calls the external
interface library and skips to step 8.

6. The service library can change the buffer, if desired, and then pass it on to the
Manager using IcMgrXmt. The service library can even allocate and pass a new
buffer to the Manager.

7. The Manager determines the next library in the stack. It could be another
service library, but eventually the buffer is passed to the external interface
Library.

8. The EIL initiates a transmit across the lower communications layers. When
each library returns in turn, the execution sequence that began at step 4 is
complete.

9. The lower communications layer completes the transmit request and notifies the
external interface. Exactly how this is done will depend on the implementation
of the particular interface. A timer routine registered earlier by the interface
during IcLibOpenChannel is one possibility. The timer routine could
periodically poll the status of all datacomm requests. An interrupt routine is
another possibility.

10. The EIL determines that the transmit is done and sends a transmit done event
(IC_XMTDONE) to the manager at IcMgrSendEvent.

A Closer Look at the INFOConnect Architecture

6–10 4173 5408-000

11. The Manager determines the next service library in the stack and passes the
transmit done event to the library, by calling the service library function
IcLibEvent.

12. The service library processes the transmit done event and passes it on up the
stack to the Manager by calling IcMgrSendEvent.

13. When the Manager exhausts the stack of service libraries, it passes the transmit
done event to the AIL/IIL's IcLibStackEvent function.

14. The AIL/IIL posts a transmit done message (IC_XMTDONE) to an internal
window on the application message queue. The dotted line indicates the posted
event. When each library returns in turn, the execution sequence that started at
step 9 is complete.

15. As in step 4, the GUI system gives control to the AIL/IIL to process the posted
message.

16. The AIL/IIL posts an IC_XMTDONE message to the application's message
queue.

17. The application resumes processing the transmit done message.

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–11

Processing Status and Error Events
Status and error events go in one of two directions depending on who initiates them,
the application or the external interface library.

The processing that occurs when the application requests to go into the local state
(IcLcl) is handled similarly to the processing done for status events initiated by the
application.

Figure 6–4. Status Initiated by the Application

External IcLibSetResult()

Application
do_status() ICSStatusResult

1 3

IC_RESULT IC_OK

IcSetStatus() 2

Window function

Manager

IC_STATUSRESULT

Interface

IcLibSetResult()
Service

4

7

IC_RESULT

IC_RESULT

IcMgrSetResult()

9

10

IcMgrSetResult()

6

IC_RESULT

8

IC_OK or error

IC_OK or error

IC_OK or error

AAPI16.AIL/IPC16.IIL

15

 Library

 Library

IcLibStackEvent()12

16

IC_OK or error

Window Function

13

5 11

14

IC_STATUSRESULT

IC_RESULT

MainWndProc()

A Closer Look at the INFOConnect Architecture

6–12 4173 5408-000

The following steps relate to Figure 6-3:

1. The application calls function Ic_SetStatus (or Ic_SetError) and passes in an
IC_RESULT.

2. The AIL/IIL does preliminary verification of the call. If it looks OK, the
AIL/IIL posts a message to an internal window on the INFOConnect message
queue and returns IC_OK to the application.

3. The application resumes processing.

4. The GUI system gives control to the AIL/IIL's Window function to process the
message posted in step 2.

5. The Window function calls a manager routine named IcMgrSetResult with the
IC_RESULT.

6. IcMgrSetResult determines the first service library in the stack and calls service
library function IcLibSetResult. IcMgrSetResult passes the application's
IC_RESULT parameter and indicates whether this is a status or error. If there
are no service libraries in the path configuration, IcMgrSetResult calls the
external interface library and skips to step 8.

7. The service library can recognize or ignore the status, but it must pass it on
down the stack by calling IcMgrSetResult.

8. The Manager determines the next library in the stack. It could be another
service library, but eventually the IC_RESULT is passed to the external interface
Library.

The interface can recognize or ignore the status. If the interface recognizes the
status, it should return an IC_OK or error to the caller.

If the interface doesn't recognize the status, it should continue to pass the
IC_RESULT down to IcMgrSetResult for processing by the Manager. Then,
whatever the Manager returns should be bubbled back up the chain.

9. The Manager determines the next service library in the stack and returns to it.

10. Each service library returns to its original caller.

11. When the Manager determines that all libraries in the stack have returned, it
returns the IC_RESULT to the window function.

12. The window function calls IcLibStackEvent with the associated result.

A Closer Look at the INFOConnect Architecture

4173 5408-000 6–13

13. The AIL/IIL posts a status result message to an internal window on the
application message queue. The dotted line indicates the posted message. This
completes the execution sequence that started at step 4.

14. As in step 4, the GUI system gives control to the AIL/IIL to process the posted
message.

15. The AIL/IIL posts an IC_STATUSRESULT message to the application's
message queue.

16. The application resumes processing the status result message.

Figure 6–5. Status Initiated by a Library

Manager

External Interface Library 2
timer code

Application
 ICSStatus

IcLibStackEvent()
6

IC_STATUS

4Service Library

notification of status change or error

1

AAPI16.AIL/IPC16.IIL

IC_STATUS

IcLibEvent()

3
IcMgrSendEvent()

IC_STATUS

5
IcMgrSendEvent()

IC_STATUS

IC_STATUS

Window function7

8

9

MainWndProc()

A Closer Look at the INFOConnect Architecture

6–14 4173 5408-000

The following steps relate to Figure 6-4:

1. The lower communications layer notifies the external interface of some status
change or error. Exactly how this is done will depend on the implementation of
the particular interface. The timer code shown in the diagram is just one
possible implementation. This routine might have been registered earlier by the
interface (perhaps during IcLibInstall) and it periodically polls the status of all
datacomm requests.

2. The external interface determines that a status change or error has occurred. It
builds an IC_RESULT with the appropriate context, type and value and calls the
manager at function IcMgrSendEvent.

3. The Manager bubbles the IC_STATUS event up through the stack of service
libraries starting with the bottom most one first.

4. Each service library gets an opportunity to see the IC_RESULT headed for the
application.

5. The Manager eventually runs out of service libraries and calls the AIL/IIL.

6. The AIL/IIL posts a status message to an internal window on the application
message queue. The dotted line indicates the posted event. This completes the
sequence that started in step 1.

7. The GUI system gives control to the AIL/IIL to process the message posted in
step 6.

8. The AIL/IIL posts an IC_STATUS or IC_ERROR message to the application's
message queue.

9. The application resumes processing the status or error message.

4173 5408-000 7–1

Section 7
Writing INFOConnect Libraries for
Windows 3.x

This section leads you through all phases of service and external interface library
development: designing, coding, compiling and linking. Several sample libraries
are presented at the end of the section. All source files necessary to build the
samples are provided with the development kit.

Skeleton files are also provided with the development kit (Service.* and Intrface.*)
as a starting point for your own library development.

Basically, writing an INFOConnect library consists of creating a DLL that exports
the required list of functions introduced in Section 6, "A Closer Look of the
INFOConnect Architecture". Before explaining each of the required functions, there
are some broader design issues that must be explained.

Writing INFOConnect Libraries for Windows 3.x

7–2 4173 5408-000

Design Issues
This section covers issues and questions to be considered before you begin to write
your library.

Choosing Between Accessories, Services and Interfaces
It is not always obvious whether a particular solution is best implemented as an
accessory or service or interface, or some combination. In the C language, the choice
of a for statement, do statement, or while statement is often a matter of style or
convenience; any of them can be made to work, but one is likely to be more
appropriate. The same is often true of the choice between ICS components.

Don't favor writing applications and overlook the use of service and external
interface libraries. Before assuming that you need to write an application, think
about your solution first as a service library, then as an external interface library, and
finally as an accessory or application. You may be able to implement at least part of
your solution as a library. Libraries are generally smaller and more structured than
applications and are more easily reused by other INFOConnect applications.

Tasks suited for service libraries are usually the easiest to identify. Do you need to
filter the data stream in some way? For example, suppose you need to convert
incoming EBCDIC data to ASCII. This could easily be accomplished within the
application itself, but if implemented as a service, the code can easily be reused by
other applications. Tasks typically assigned to the Session and Presentation layers of
the OSI model are very appropriate for service libraries. This includes things like
dialog management, data compression, data representation, and data encryption.
Furthermore, don't lower your sights on what a service library can accomplish. They
can be quite sophisticated; even doing transmits and receives "behind the
applications' back."

Tasks suited for external interface libraries are not limited to the obvious ones like
support for a new data communications transport. If you need to interface to a
Windows DLL from your application, consider writing an external interface library
for that piece of the implementation. Once again, your code is more likely to be
reusable by other ICS applications.

INFOConnect libraries do not generally "talk" to the user except for the
configuration dialog. If your task requires interaction with a user it might be better
to split the task, implementing the user interaction portion as an application and
other the parts of the task as a library (or multiple libraries).

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–3

Session Attributes
The IC_SINFO data structure contains session attributes that describe to the
application the characteristics and limitations of a connection. Less ambitious
applications may choose to only work across some subset of "preferred" connection-
types that minimizes the effort required by the application to get data across the
session.

Session attributes are primarily in the domain of external interface libraries.
Interfaces initialize the IC_SINFO structure and services generally leave them alone.
However, it is well within the capabilities of a service to alter one or more session
attributes to enhance the basic characteristics of the connection.

The "preferred" values for session attributes from the application's perspective
follow. Transparent and block_mode probably have the greatest impact on the
application.

Max_size

Generally, the bigger the block that can be transported across the connection, the
better.

Transparent

Transparent indicates whether all binary data streams can be sent across the
connection. Transparent=TRUE connections are preferable and more convenient to
the application. Non-transparent connections require the application to use some
type of data encoding mechanism or be content to only use the displayable ASCII
character set.

Block_mode

Block_mode indicates whether data is sent and received as messages or as a stream
of characters. Block_mode=TRUE connections are preferable. Otherwise, the
application must scan the receive buffers and do its own blocking/unblocking of data
into logical messages.

Reliable

Reliable indicates whether undelivered messages are signaled to the application.
Naturally, reliable=TRUE is preferable.

Focus_notify

Focus_notify indicates whether or not the application should call the Set Status
procedure with IC_REACTIVATE_ON or IC_REACTIVATE_OFF each time it gains
or loses focus. Focus_notify=FALSE is preferred, however, it is easy to support
focus_notify and most applications should support it.

Writing INFOConnect Libraries for Windows 3.x

7–4 4173 5408-000

Configuration Management
Library configuration is based on tables. Configuration information for a library is
organized into tables of rows and columns (records and fields). Tables can reference
each other through link fields. The goal is to eliminate data redundancy. Rather than
duplicating information in two places, information is stored in one place and links
are established between tables.

The INFOConnect configuration architecture centers around two tables: the path and
channel tables. Multiple path records in the path table are linked to one channel
record in the channel table. Path and channel records are passed to the library from
the Manager during the session establishment process.

Don't confuse the above diagram with multiplexing. The diagram shows the static
relationship between paths and channels. Non-multiplexing libraries can often use
channels and paths in their organization of configuration information.

For external interface libraries that define both channels and paths, the INFOConnect
Manager provides a user interface in order to link a path to a channel. Service
libraries typically do not require channel tables. A service library that defines a
channel table must also provide an interface (a control on the path dialog) which
links a path to a channel.

PathA1

PathA2

PathB1

PathB2

PathB3

PathC1

ChannelA

ChannelB

ChannelC

Channel
Table

Table
Path

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–5

A library can use several combinations of tables. The most common combinations
are: no tables at all, only a path table, or both a path and channel table. Libraries can
also define additional tables, such as custom tables or invisible tables, as needed. All
tables, except invisible tables, can be accessed by using the INFOConnect Library
Configuration window. Your library manages the user interface for invisible tables
with minimal help from the Manager.

Table definitions and default values are contained in your library's resource (.RC)
file, but the actual table data resides in the INFOConnect configuration file,
INFOConn.cfg. Your library provides callback functions to help the Manager
process your tables. IcLibUpdateConfig, IcLibVerifyConfig and IcLibPrintConfig
are callback functions that process tables at configuration time. IcLibUpdateConfig
typically provides dialog boxes for each table defined by your library.
IcLibOpenChannel and IcLibOpenSession are callback functions that process tables
at run time. During session establishment, the Manager passes the appropriate
channel and path table records to IcLibOpenChannel and IcLibOpenSession. See the
control flow diagram in Section 6, "A Closer Look at the INFOConnect
Architecture," for more information about session establishment processing.

As mentioned earlier, some libraries won't need any tables. When a library does the
same processing on all data that passes through it (for example, there is no difference
in processing between one session and another), there is no need for configuration
tables that differentiate paths from each other. Other libraries will only need a path
table. This is very common. The Stack library in the IDK samples only uses a path
table. Finally, when many paths share some common information, that information
should be moved into another table such as a channel or custom table; especially if
this information is shared at runtime. The Reflect sample library uses both a path
and channel table. The UTS and Poll/Select external interface libraries also use both
tables. Channel tables are often used by EILs to store shared, hardware-related
information like COM port number, interrupt number, and so forth.

Writing INFOConnect Libraries for Windows 3.x

7–6 4173 5408-000

The work required to implement library configuration is broken into the following
steps:

•• Table Design
•• Table Description
•• Table Processing

Table Design

The following is a walk through of the table design for a hypothetical TTY External
Interface Library that drives a modem attached to one of the PC's COM ports. The
path table contains most of the information needed for a connection: baud rate,
parity, phone number, and so forth. Rather than "hard-code" a COM port and IRQ
into each path, though, we will use a channel table and define the COM port there.

Here is the layout of our two tables along with sample records for each.

Path table

PathID ChannelID Baud Data Stop Parity Phone

CompuSrv ModemA 9600 7 1 E 555-1212

UnixBox ModemA 19200 8 1 N 555-1234

Channel table

ChannelID COM port IRQ

ModemA 2 3

If the modem is moved to a different COM port, only the channel table record for
ModemA needs to be updated. The two path table records remain unchanged.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–7

Dialog boxes for path and channel tables

To keep one foot in the real world, here are the associated dialog boxes to be
completed by the user during path and channel configuration. In this example, all
fields in the path and channel tables are included in the dialog box. This is not
required. There may very well be fields in a table that the user never sees.

Writing INFOConnect Libraries for Windows 3.x

7–8 4173 5408-000

Table Description

Now we must define each field in each table before encoding the table definitions
into the .RC library resource file. Each field is described by a key type, field type,
starting location and length. Here are some of the available types listed in the
IcDict.h header file:

/* Key types (Field Flags) */
#define IC_FF_NO_KEY 0
#define IC_FF_PRIMARY_KEY 1
#define IC_FF_LINK_KEY 2
#define IC_FF_ALTERNATE_KEY 3

/* Field types */
#define IC_FT_BINARY 0
#define IC_FT_INT 1
#define IC_FT_BOOL 2
#define IC_FT_CHAR 3
#define IC_FT_UNSIGNED 4
#define IC_FT_STRUCTURE 5
#define IC_FT_STRING 6
#define IC_FT_STRINGI 7

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–9

Path table field-descriptions

The first two fields in the path table, PathID and ChannelID, exist by default in all
path tables. The remaining fields, starting with Baud in this example, are different
for each specific library. No start and length information is needed for PathID and
ChannelID because the Manager provides that for you.

field name key type

(use IC_FF_ data types)

field type

(use IC_FT_ data types)

start

bit

length

in bits

PathID IC_FF_PRIMARY_KEY string - IC_FT_STRINGI *** ***

ChannelID IC_FF_LINK_KEY string - IC_FT_STRINGI *** ***

Baud IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16

Databit IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16

Stopbit IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16

Parity IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16

Phone IC_FF_NO_KEY string - IC_FT_STRINGI -1 160 (20

bytes)

Note: A -1 is used for the start-bit to indicate that the field immediately follows
the previous field.

Channel table field-descriptions

The first field in the channel table, ChannelID, exists by default in all channel tables.
The remaining fields, starting with COM port in this example, are specific to each
library. No start and length information is needed for ChannelID because the
Manager provides that for you.

field name key type

(use IC_FF_ data types)

data type

(use IC_FT_ data types)

start

bit

length in

bits

ChannelID IC_FF_PRIMARY_KEY string - IC_FT_STRINGI *** ***

COM port IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16

IRQ IC_FF_NO_KEY integer - IC_FT_UNSIGNED -1 16 (2 bytes)

*** These fields are always present, but are defined and managed by the Manager.
Do not actually define them in your table description.

Writing INFOConnect Libraries for Windows 3.x

7–10 4173 5408-000

Table descriptions in .RC format

The table descriptions can now be encoded into an INFOConnect-specific resource to
be included in the library's .RC resource file. This is just one section of several that
are required in the .RC file. See page 7 - 74 for a complete description of the
resource file and how all the sections interrelate. Notice how the field names are
also defined in the STRINGTABLE.

#define IC_PATHTABLE_BASENO 1000
#define IC_CHANNELTABLE_BASENO 1001

/* Field names */

#define BAUD 100
#define DATABIT 101
#define STOPBIT 102
#define PARITY 103
#define PHONE 104
#define COMPORT 105
#define IRQ 106

IC_PATHTABLE_BASENO IC_DICTIONARY_RCTYPE
BEGIN
 BAUD, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16,
 DATABIT, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16,
 STOPBIT, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16,
 PARITY, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16,
 PHONE, IC_FF_NO_KEY, IC_FT_STRING, -1, 160,
 0
END

IC_CHANNELTABLE_BASENO IC_DICTIONARY_RCTYPE
BEGIN
 COMPORT, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16,
 IRQ, IC_FF_NO_KEY, IC_FT_UNSIGNED, -1, 16
 0
END

STRINGTABLE
BEGIN
 BAUD, "Baud"
 DATABIT, "Data bits"
 STOPBIT, "Stop bits"
 PARITY, "Parity"
 PHONE, "Phone number"
 COMPORT, "COM Port"
 IRQ, "IRQ"
END

BAUD, DATABIT, STOPBIT, PARITY, PHONE, COMPORT and IRQ are numeric
IDs that correspond to strings in the STRINGTABLE defining the field names in the
configuration tables.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–11

Modifying library table fields

At times library updates or new features may require modifications to the library
table information. During the installation process, configuration data is moved from
the old records to new records by matching field numbers between the old and the
new dictionaries. If the new field is longer, it is padded on the right with zeros. If it
is shorter, the data is truncated on the right. New fields receive default data from the
default data resource.

Note: The serial number of the table should be incremented to identify that there
have been modifications to the table.

The following rules should be followed when making changes to the fields that
existed in prior versions of the library:

• When information needs to be added, the new fields must be added to the end of
the table.

• When information is no longer required, the field should not be deleted. Rather
than delete the field, obsolete the field by setting its length to 0 in the table
description in the .RC file. Also, the field definition in the .HIC file should be
commented out.

• When information needs to be modified, change the key type, data type, start bit
or length in the table description in the .RC file. However, never change an
IC_FF_NO_KEY to an IC_FF_ALTERNATE_KEY when other alternate keys
follow in the table definition. This would renumber the alternate keys. In this
case, obsolete the IC_FF_NO_KEY and add the new IC_FF_ALTERNATE_KEY
to the end of the table.

Note: Special conditions in upgrading configuration records of previously
released levels, such as reformatting data, can be automatically handled
during the installation process by providing upgrade code in
IcLibUpdateConfig and IcLibVerifyConfig. Reflect has been coded to
demonstrate the library upgrade feature.

Writing INFOConnect Libraries for Windows 3.x

7–12 4173 5408-000

Table Processing

There are five callback functions that manipulate tables. IcLibUpdateConfig,
IcLibVerifyConfig and IcLibPrintConfig build and update tables during
configuration. IcLibOpenChannel and IcLibOpenSession use them at run time
during session establishment.

IcLibUpdateConfig

This is the primary callback used during channel and path configuration. The
Manager passes your library a record (or row) from either the path, channel or
custom table and indicates the type of action being performed: add, modify,
examine, and so forth. New records (during add operations) are initialized with
values from the default record defined in your library's resource file. The library is
expected to present the appropriate dialog box to the user and return an updated table
record to the Manager. There is often a one to one correlation between tables and
dialog boxes, but that is not required.

IcLibVerifyConfig

This function is called by the Manager to perform semantic checking on a record
from one of your library tables. No dialog box or user interaction is to be done. Any
time a library is configured, this routine is called to accept the data before it is
stored, for example during Quick Configuration of a package.

IcLibPrintConfig

This function is expected to format and return a displayable text string summarizing
a record from one of your library tables. The description text displayed in the
INFOConnect Library Configuration is obtained from this function.

IcLibOpenChannel

This function is called during session activation when a path is being opened and the
path is associated with an unopened channel. A channel table record is passed as
input along with a channel handle to identify the channel in future references. Your
library does what needs to be done to open the channel and saves the channel handle
and any relevant information from the channel table record.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–13

IcLibOpenSession

This function is called during session activation. IcLibOpenChannel has already
been called, if necessary. A path table record is passed as input along with the
handle of the channel associated with this path. Your library does what needs to be
done to open the session and saves the session handle and any relevant information
from the path table record.

Session and Channel Runtime-record Layout
The next data structures you should design are channel and session runtime-records
describing each active channel and session. These structures are basically containers
for the path and channel table records passed to your library during session
establishment plus any additional information required to manage the channel or
session while it is open. Carefully thought-out record structures make designing the
different required functions very straight forward.

Writing INFOConnect Libraries for Windows 3.x

7–14 4173 5408-000

Here are possible channel and session runtime-records for the hypothetical TTY EIL
we have been designing. Typedef structs channel_config and path_config define all
the information from the channel and path tables.

typedef struct aChannelConfig { // save info from channel table
 int COMport;
 int IRQ;
} channel_config;

typedef struct aPathConfig { // save info from path table
 int baud;
 int databit;
 int stopbit;
 int parity;
 char phone[20];
} path_config;

typedef struct aChannelRec {
 struct aChannelRec *pNextChannelRec;
 HIC_CHANNEL hChannel;
 HIC_SESSION hSession; // first child session for this channel
 channel_config cr;
} CHANNELREC;

typedef struct aSessionRec {
 struct aSessionRec *pNextSessionRec;
 HIC_SESSION hSession;
 HIC_CHANNEL hChannel; // parent channel for this session
 path_config cr;
} SESSIONREC;

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–15

Error Management
Almost all the required IcLib functions return an error value using typedef
IC_RESULT. Many of the INFOConnect events also incorporate an error value.
These are the two mechanisms available to your library for reporting errors. Except
for the configuration dialogs, you should never issue dialog or message boxes from
your library. This allows the application to have complete control over error
presentation to the user.

INFOConnect provides a collection of standard errors that should satisfy most of
your library's requirements. Standard errors are defined in IcError.h and are further
described in the IDK Programming Reference Manual. You should make every
effort to only use standard errors, but there is also a mechanism available for
defining library-specific errors using the .HIC header file and the IcLibGetString
function.

Both standard and library-specific errors are classified into four types. Library-
specific errors can be defined so as to be further subgrouped within each of these
types as necessary. Here are the four types of errors and the recommended action to
be taken by the application:

IC_ERROR_INFO The requested function was completed. The application
should log this error if it has a log file. Don't bother displaying
a message to the user. The default error procedure, available
to the application, will only display these errors if
INFOConnect is running in debug mode.

IC_ERROR_WARNIN
G

The requested function was completed, but something
unusual or noteworthy happened. The application can choose
to log or display this error. The default error procedure,
available to the application, will display these errors.

IC_ERROR_SEVER
E

The requested function did not complete successfully. The
application should display this error to the user. The default
error procedure, available to the application, will display these
errors.

IC_ERROR_TERMIN
ATE

The application should display this error and then close the
session. The default error procedure, available to the
application, will display these errors.

Generally, errors are not transmitted across the connection; the error is only seen by
the components associated with the current session: the application, Manager,
service libraries and external interface.

Note: For errors of type IC_ERROR_INFO and IC_ERROR_WARNING,
applications can assume that the requested function was completed.

Writing INFOConnect Libraries for Windows 3.x

7–16 4173 5408-000

Status Management
Status messages are used to communicate between the different components of the
current session: the application, Manager, service libraries and external interface.
Generally, statuses are not transmitted across the connection; the status is only seen
by the components associated with the current session.

Statuses can travel in one of two directions: from the application down to the
external interface or from the external interface up to the application. Statuses from
the application are passed to the IcLibSetResult function and statuses headed to the
application are "bubbled up" through the IcLibEvent function.

INFOConnect provides a collection of standard statuses that should satisfy most of
your library's requirements. Standard statuses are defined in IcStatus.h and further
described in the IDK Programming Reference Manual. You should make every
effort to only use standard statuses, but there is also a mechanism available for
defining library-specific statuses using the .HIC header file. Unlike errors, statuses
have no associated text and therefore are not handled by the IcLibGetString function.

Here are the standard status types defined in IcStatus.h that external interfaces
should support:

• all IC_STATUS_LINESTATE statuses

• all IC_STATUS_CONNECT statuses except IC_CONNECT_EOF

• IC_CONTROL_RCVAVAIL

• IC_STATUS_TRANS

Section 3, "Writing INFOConnect/Windows Applications," provides a complete
discussion on these statuses.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–17

Using IC_STATUS_BUFFER Extended Status
When an application needs to exchange more information with an ICS library than
IC_RESULT_VALUE can store, it can send a buffer of information with the
IC_STATUS_BUFFER extended status. To accomplish this, a HIC_STATUSBUF
buffer handle is assigned to the IC_RESULT_VALUE member of the IC_RESULT
structure.

In the following discussion, these members of the IC_STATUSBUF structure will be
referenced:

• icstatus, the actual status that is associated with the status information as
defined by the library

• icerror , the IC_RESULT of the status request

• uBufSize, the actual size of the IC_STATUSBUF buffer

• uDataSize, the size of the valid data

• data, the data buffer. This buffer should not contain pointers, but may
contain offsets within the structure.

Extended statuses can be exchanged in two ways: synchronously and
asynchronously. The following steps are involved in exchanging a synchronous
extended status:

1. The application allocates a buffer for the IC_STATUSBUF data structure. It
then updates icstatus, icerror, uBufSize. uDataSize and data (data is optional, the
status data buffer may be used for the library to supply the application with
status data). Be sure to store the handle for IC_STATUSBUF for use in step 5.

2. The application creates an IC_RESULT by calling IC_MAKE_RESULT with the
following three parameters: IC_RESULT_CONTEXT_STD,
IC_STATUS_BUFFER, and the handle to the IC_STATUSBUF data structure.
The extended status is sent to the library by calling IcSetStatus.

3. The library receives the status in IcLibSetResult and calls
IC_GET_RESULT_VALUE to obtain the handle of the IC_STATUSBUF. The
library performs whatever tasks are required depending on the icstatus field. It
may just read the information in the data buffer and take appropriate actions. If
the library writes information to the data buffer, it must also update uDataSize.

Writing INFOConnect Libraries for Windows 3.x

7–18 4173 5408-000

4. The library sets the icerror field to IC_OK or an appropriate error and also
returns icerror from IcLibSetResult.

5. The application receives an IC_StatusResult message. It now accesses the
information stored in IC_STATUSBUF by using the handle stored in step 1.

Note: The application must remember to release the memory allocated for
IC_STATUSBUF.

In the asynchronous case:

1. The application allocates a buffer for the IC_STATUSBUF data structure. It
then updates icstatus, icerror, uBufSize. uDataSize and data. Data is optional,
the data buffer may be used for the library to supply the application with status
data.

2. The application creates an IC_RESULT by calling IC_MAKE_RESULT with the
following three parameters: IC_RESULT_CONTEXT_STD,
IC_STATUS_BUFFER, and the handle to the IC_STATUSBUF data structure.
The extended status is sent to the library by calling IcSetStatus with this
IC_RESULT.

3. The library receives the status in IcLibSetResult and calls
IC_GET_RESULT_VALUE to obtain the handle to IC_STATUSBUF. The
library sets icerror to IC_INCOMPLETE and also returns IC_INCOMPLETE.

4. The application receives an IC_StatusResult message. Since the result is
IC_INCOMPLETE, the application waits until it receives an IC_STATUS
message.

5. The library performs whatever tasks are required depending on the icstatus field.
It may just read the information in the data buffer and take appropriate actions.
If the library writes information to the data buffer, it must also update
uDataSize.

6. The library sets the icerror field to IC_COMPLETE (or an appropriate error) and
calls IcMgrSendEvent to send the IC_STATUS_BUFFER extended status back
to the application.

7. The application receives an IC_Status message. It now accesses the information
stored in IC_STATUSBUF by calling IC_GET_RESULT_VALUE to obtain the
handle to IC_STATUSBUF.

Note: The application must remember to release the memory allocated for
IC_STATUSBUF.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–19

Version Control
There are four places to identify various version control information for your library:

• The package section of an installation script file (.INF), which is used to
install the library, contains INFOConnect Connectivity Services version
numbers. This represents the version of the package and the version range
of ICS that the package was built for.

• The version information section of the library's resource file (.RC) contains
library version information which is used by the INFOConnect Installation
Manager. This is the version of each file.

• The INFOConnect RCDATA section of the library's resource file (.RC)
contains INFOConnect Connectivity Services version numbers. This is the
version range of ICS that the library was built for.

• Every library table has a serial number which is incremented to identify a
newer version of the table. This is the version of the table.

INFOConnect Connectivity Services version numbers

INFOConnect Connectivity Services version numbers contains four fields: major
version, minor version, EMU level, and build revision. IC_VERSION_FILE and
IC_VERSION_PRODUCT are defined in IcDef.h as follows:

#define IC_VERSION_FILE IC_MAJOR_VERSION, IC_MINOR_VERSION, IC_EMU_LEVEL
 IC_BUILD_REVISION
#define IC_VERSION_PRODUCT IC_MAJOR_VERSION, IC_MINOR_VERSION, IC_EMU_LEVEL,
 IC_BUILD_REvISION

Writing INFOConnect Libraries for Windows 3.x

7–20 4173 5408-000

The File Version and Product Version can be viewed as follows:

/* File/Product Version Information */
/* image format 3.00 0 (000) */
/* * Major version */
/* ** Minor version */
/* * EMU Level */
/* *** Build revision */

Using major release 3.0 as an example: IC_MAJOR_VERSION is 3 and
IC_MINOR_VERSION, IC_EMU_LEVEL, and IC_BUILD_REVISION are 0.

Another way to look at ICS version numbers is to group the major version and minor
version fields as "Version" information and the EMU level and build revision fields
as "Revision" information. The IC_VER_INFO data structure allows programmers
to access ICS version information as four BYTE fields or two WORD fields:

typedef LONG IC_VER;
typedef union {
 IC_VER IcVer;
 struct {
 WORD Rev;
 WORD Ver;
 } w;
 struct {
 BYTE Revision;
 BYTE EmuLevel;
 BYTE MinorVersion;
 BYTE MajorVersion;
 } b;
} IC_VER_INFO;

To continue the 3.0 example, Ver consists of major and minor version and is
equivalent to IC_VERSION_3_0 (defined as 0x0300). Rev, consists of EMU level
and revision and is equivalent to IC_REVISION_3_0 (defined as 0x0000)
IC_VERSION_... and IC_REVISION_... defines are also found in IcDef.h.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–21

Installation script file version information

There are three parameters containing version information in the [package] section
of the installation script file (*.INF): version, lowicver and highicver:

• The version parameter is an informational field which assigns a version
identifier to the package.

• The lowicver parameter defines the minimum INFOConnect API level that the
package requires.

• The highicver parameter defines the highest INFOConnect API level that the
package utilizes.

Each parameter contains four version number fields: major version, minor version,
EMU level, and build revision:

[package]
; 'name' cannot contain blank characters
 name = "Reflect"
 description = "Sample External Interface"
 version= 2, 0, 0, 0
 lowicver= 2, 0, 0, 0
 highicver= 3, 00, 0, 000
/* * Major version */
/* ** Minor version */
/* * EMU Level */
/* *** Build revision */

All three parameters set fields of type IC_VER within the package table:
pkg_version, low_icver, and high_icver. Installation scripts are discussed in detail in
Section 9, "Packaging an INFOConnect Application."

Notes:

• When highicver is set to "3, 0, 0, 0", which is equivalent to IC_VERSION_3_0
(0x0300) and IC_REVISION_3_0 (0x0000) or higher, the 3.0 Quick
Configuration model is activated during installation.

• The Configuration Manager will also check the minimum and maximum
version/revision numbers specified in the library's resource file (.RC) to verify
that the library can handle the 3.0 Quick Configuration model.

Writing INFOConnect Libraries for Windows 3.x

7–22 4173 5408-000

Windows 3.1 version information resource

The INFOConnect Installation Manager uses the version checking capabilities
provided by the Windows 3.1 file installation library, VER.DLL, to determine when
an existing file should be replaced by a newer version during installation. The
version information is supplied in the library's resource file (.RC).

#ifdef WINSDKVER
#if (WINSDKVER >= 0x030a)
/* VER.DLL is only available in the Windows 3.1 SDK */
#include <ver.h>
#define VER_FILETYPE VFT_DLL
#define VER_FILESUBTYPE VFT_UNKNOWN
#define VER_FILEDESCRIPTION_STR QMARKETINGNAME
#define VER_INTERNALNAME_STR QMODULEID
#define VER_FILEVERSION NFILEVERSION
#define VER_PRODUCTVERSION NPRODUCTVERSION
#define IC_FILEVERSION_STR QVERSION
#define IC_PRODUCTVERSION_STR QVERSION
...
#include <icdef.rh>
#endif
#endif /* WINSDKVER */

The version information can be viewed by examining the library. To examine the
library, open the INFOConnect Library Installation window by selecting Libraries
from the Install menu, select the library you want to view, and then select the
Examine button.

For a complete description of the version information resource section, refer to page
7 - 81.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–23

INFOConnect RCDATA version information

The INFOConnect RCDATA section of the library's resource file contains a
minimum ICS version/revision level and a maximum ICS version/revision level.

INFOConnect RCDATA
BEGIN
 IC_VERSION_2_0,
 IC_REVISION_2_0,

...

 /* The following fields are new for 2.02 */
 IC_VERSION_3_0,
 IC_REVISION_3_0,

...

END

IC_VERSION_2_0 and IC_REVISION_2_0 refer to the minimum (or oldest) level of
Connectivity Services that the library requires for proper operation. Older levels of
Connectivity Services will refuse to load the library.

IC_VERSION_3_0 and IC_REVISION_3_0 specify the maximum (or latest) level of
Connectivity Services that the library was developed with; therefore, taking
advantage of that level of ICS features.

The version information can be viewed by examining the library. To examine the
library, open the INFOConnect Library Installation window by selecting Libraries
from the Install menu, select the library you want to view, and then select the
Examine button.

For more complete information on resource files, see "Resource Files" on page 7 -
74.

Library table serial numbers

Library table serial numbers are defined in the IC_RC_DICTIONARY RCDATA
section of the library's resource file. If you need to add, change, or obsolete fields in
a library table, you must identify the change by incrementing the table serial number.
Incrementing the table serial number and providing upgrade code, if necessary, in
IcLibUpdateConfig and IcLibVerifyConfig allows end-users to upgrade to your new
library version preserving the existing configuration information. Refer to the
"Modifying library tables" section on page 7 - 10.

Writing INFOConnect Libraries for Windows 3.x

7–24 4173 5408-000

Filtering Service Libraries
This section contains some general warnings that affect most service libraries that
are performing some kind of filtering function.

Modifying the application's transmit buffers

This must be done at IcLibXmt.

Modifying the application's receive buffers

This must be done in IcLibEvent after intercepting IC_RCVDONE events. You may
be tempted to do this at IcLibRcv, but the receive buffer is empty at that point.

Total buffer size vs. amount of data in the buffer

If you are inserting data into the buffer, be careful about exceeding the buffer's
capacity. There are two different buffer sizes you are working with:

• The total size of the datacomm buffer

• The amount of data within the datacomm buffer.

Function IcGetBufferSize retrieves the total size of the global memory block. The
length or size parameters on functions IcLibXmt, IcLibRcv, and IcLibEvent either
specify the amount of data in or to be put in the buffer.

Breaking up the application's original buffer

Be careful about converting an application's transmit or receive request into multiple
buffers and requests, particularly for sessions defined with block_mode=TRUE.

For example, suppose you are developing a service library that prefixes each
transmitted buffer from the application with a header packet. Rather than allocate a
new buffer and copy the header packet followed by the application's buffer, it seems
advantageous to simply transmit the header packet, then transmit the application's
buffer. However, two IC_XMTDONE events will be returned to the application.
Your service must intercept and "swallow" one of them. Also, the receiving
component of the distributed application may be expecting a single block rather than
two pieces. Both of these problems can be addressed, but must be taken into account
in your design.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–25

Windows 3.x Issues
What is a DLL?

INFOConnect libraries are implemented as Windows Dynamic-Link Libraries (DLL)
using native Windows function calls. The Windows 3.x SDK Guide to Programming
contains a chapter on DLLs. You should study that chapter before writing an
INFOConnect library.

How do tasks and stacks affect DLLs?

A task is the fundamental unit of scheduling in Windows. Applications run as tasks,
and the INFOConnect Manager's window is running as a task. Services and
interfaces are DLL libraries that are called: sometimes to run as part of application's
task and sometimes to run as part of the Manager's task.

Unlike a task module, a DLL library does not have its own stack. Instead, it uses the
stack segment of the task that called the DLL library. This situation is also
succinctly stated as "the DS != SS issue."

What does this mean to the INFOConnect library developer?

Some system resources are associated with a particular task. Most of the required
library routines (for example, IcLibOpenChannel) are running as part of the
Manager's task. The exceptions are: IcLibGetString, IcLibGetSessionInfo,
IcLibUpdateConfig, IcLibVerifyConfig and IcLibPrintConfig. For example, in
Windows, a file handle returned to the Manager is meaningless to the application. If
your library opens a file in IcLibInstall (running as part of the Manager task), it
could not write to the file from IcLibGetSessionInfo (running as part of the
application task) without reopening the file to obtain a new file handle.

Also be aware of how much stack space you are using for variable declarations,
especially for recursive functions like IcLibXmt, IcLibRcv, and IcLibEvent that call
each other. Since you don't have control of the INFOConnect Manager's stack size,
you may need to use the local or global heap for some data items instead of the stack.

How do I write a device driver?

Some external interfaces may interface to, and require the development of, a lower
device driver layer. There are several types of drivers: DOS device drivers,
Windows device drivers and Virtual device drivers. See the Windows 3.1 SDK Guide
to Programming, Section 20.2.4 , for Device Driver considerations. The
development kit does not cover device driver development.

Writing INFOConnect Libraries for Windows 3.x

7–26 4173 5408-000

Writing the Required IcLib Functions
Each service and each interface defines and exports a list of required functions called
by the manager. See the IDK Programmer's Reference Manual for the ordinal values
to use when exporting the required functions.

IcLibInstall
IC_RESULT FAR PASCAL IcLibInstall (IC_RESULT_CONTEXT context)

This procedure is called once by the INFOConnect Connectivity Manager when the
library is loaded. You should do the bulk of your initialization here rather than in
LIBMAIN. Don't forget to save the context passed to you as a parameter. It is used
later during error and status processing.

IcLibInstall can return any type of error except one: library-specific errors of type
IC_ERROR_TERMINATE. This is because terminate errors cause your library to be
immediately unloaded and therefore your library can't be called at IcLibGetString.
Severe errors will still allow your library to be loaded and you can expect
IcLibTerminate to be called later in those cases.

IcLibInstall is called whenever your library is loaded whether for configuration or
session establishment.

Return Value

Return IC_OK if installation completes successfully. Return a standard IC_RESULT
error otherwise.

Note: See Appendix C of the IDK Programming Reference Manual for possible
errors.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–27

Sample code

/* Global variables */
IC_RESULT_CONTEXT LibContext;

IC_RESULT FAR PASCAL IcLibInstall(IC_RESULT_CONTEXT context)
{
 /*
 This procedure is called once by INFOConnect
 when the library is loaded.

 Return IC_OK if initialization is successful.
 */
 int i;

 LibContext = context;
 ...
 return IC_OK;
}

Writing INFOConnect Libraries for Windows 3.x

7–28 4173 5408-000

IcLibTerminate
IC_RESULT FAR PASCAL IcLibTerminate (void)

This procedure is called once by INFOConnect when the INFOConnect
Communication Services are being closed and the library is no longer needed. It is
called after IcLibCloseSession and IcLibCloseChannel. You should do the bulk of
your termination here rather than in WEP. Free all resources allocated by your
library. Don't forget to remove or kill any timers you may have started in
IcLibInstall.

Return Value

Return IC_OK if termination completes successfully. Only standard IC_RESULT
errors can be returned from this procedure.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–29

IcLibUpdateConfig
IC_RESULT FAR PASCAL IcLibUpdateConfig (HIC_CONFIG hConfig,
 UINT TableNumber,
 void FAR * buffer,
 UINT len,
 IC_COMMAND Command)

This function is called when your library is expected build or update one of its
configuration tables. Normally this involves presenting a dialog box to the user.

The hConfig parameter is a handle to a configuration session.

The TableNumber parameter indicates which of your library's tables is being
manipulated.

The Command parameter indicates what type of action the user is taking: add,
modify or examine. For IC_CMD_EXAMINE, be careful about showing editable
fields, otherwise, the user is led to believe that changes can be made when in fact
they are discarded. The sample libraries in the development kit, for example, have
taken liberties and do not follow this practice.

Two new IC_COMMAND types have been added in INFOConnect 3.0:
IC_CMD_SAVE and IC_CMD_DISCARD. IC_CMD_SAVE is received
immediately before the data is saved to the data base. IC_CMD_DISCARD is
received when data from a previous call to IcLibUpdateConfig or IcLibVerifyConfig
is being discarded. For example, IC_CMD_DISCARD is returned to
IcLibUpdateConfig when a user cancels during a dialog associated with
IcLibUpadateConfig.

Use IcDialogConfig instead of the Windows API for dialog box manipulation since it
uses HIC_CONFIG as a parameter.

Return Value

IC_OK is returned if successful. If the user canceled from the dialog, return
IC_CANCELED. IC_ERROR_UNKNOWN_COMMAND must be returned for any
unknown Command. Otherwise, return a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

7–30 4173 5408-000

Sample Code

IC_RESULT FAR PASCAL IcLibUpdateConfig (HIC_CONFIG hConfig,
 UINT TableNumber,
 void FAR * buffer,
 UINT len,
 IC_COMMAND Command)
{
 /*
 The user is updating something in the configuration.
 If appropriate, present a dialog box.
 */

 IC_RESULT icerror = IC_OK;

 switch (TableNumber) {
 case IC_PATHTABLE_BASENO:
 switch (Command) {
 case IC_CMD_ADD:
 case IC_CMD_MODIFY:
 case IC_CMD_EXAMINE:
 assert (len == sizeof(path_config));
 icerror = IcDialogConfig(hConfig, hLibInstance,
 IDD_PATH_CONFIG,
 (FARPROC)cbPathConfigDlg,
 (DWORD)buffer);
 break;

 case IC_CMD_COPY:
 case IC_CMD_DELETE:
 case IC_CMD_SAVE:
 case IC_CMD_DISCARD:
 break;

 case IC_CMD_ABOUT:
 default:
 icerror = IcSetSessionError(NULL, LibContext,
 IC_ERROR_UNKNOWN_COMMAND,
 NULL, NULL, NULL);
 } /* end of swtich(command) */
 break; /* end of case IC_PATHTABLE_BASENO */

 case IC_CHANNELTABLE_BASENO:
 /* insert code for the channel table */

 ...

 break; /* end of case IC_CHANNELTABLE_BASENO */

 default:
 icerror = IcSetSessionError(NULL, LibContext,
 IC_ERROR_UNKNOWN_TABLE,
 NULL, NULL, NULL);
 break;
 } /* end of switch(TableNumber) */
 return icerror;
}

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–31

IcLibVerifyConfig
IC_RESULT FAR PASCAL IcLibVerifyConfig (HIC_CONFIG hConfig
 UINT TableNumber,
 void FAR * buffer,
 UINT len,
 IC_VERIFY Command)

This function is called to perform semantic checking on a record from one of your
library tables.

The IC_VER_UPGRADE command tells the library to perform special upgrade
processing and data conversions on the given buffer of data.

The IC_VER_DELETE command tells the library that the given configuration data is
about to be deleted. If the library returns a sever error, the data will not be deleted.

The IC_VER_SAVE command (called IC_VER_NODISPLAY in ICS Release 2.0)
tells the library that the configuration data is about to be saved. If the library returns
a severe error, the data will not be saved.

Return Value

Return IC_OK if successful. IC_ERROR_UNKNOWN_COMMAND must be
returned for any unknown Command. Otherwise, return a standard or library specific
error.

Writing INFOConnect Libraries for Windows 3.x

7–32 4173 5408-000

Sample Code

IC_RESULT FAR PASCAL IcLibVerifyConfig (HIC_CONFIG hConfig,
 UINT TableNumber,
 void FAR * buffer,
 UINT len,
 IC_VERIFY Command)
{
 IC_RESULT icerror = IC_OK;

 NOREF(hConfig);
 NOREF(TableNumber);
 NOREF(buffer);
 NOREF(len);

 if ((TableNumber != IC_PATHTABLE_BASENO) ||
 (TableNumber != IC_CHANNELTABLE_BASENO))
 return IcSetSessionError(NULL, LibContext, IC_ERROR_UNKNOWN_TABLE,
 NULL, NULL, NULL);

 switch (Command) {
 case IC_VER_DISPLAY:
 case IC_VER_MODIFY:
 case IC_VER_SAVE:
 case IC_VER_UPGRADE:
 case IC_VER_DELETE:
 break;

 default:
 icerror = IcSetSessionError(NULL, LibContext,
 IC_ERROR_UNKNOWN_COMMAND,
 NULL, NULL, NULL);
 break;
 }
 return icerror;
}

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–33

IcLibPrintConfig
IC_RESULT FAR PASCAL IcLibPrintConfig (UINT TableNumber,
 IC_PRINT_DETAIL detail,
 void FAR * buffer,
 UINT len,
 LPSTR print,
 UINT prlen)

This function is expected to format and return a displayable text string summarizing
a record from one of your library tables. Alternate ways of viewing INFOConnect
configurations can be developed using this function. The INFOConnect Manager
uses this function to obtain the description which is displayed in the INFOConnect
Library Object Configuration window.

Return Value

IC_OK is returned if successful. IC_ERROR_UNKNOWN_COMMAND must be
returned for any unknown detail. Otherwise, return a standard or library specific
error.

Writing INFOConnect Libraries for Windows 3.x

7–34 4173 5408-000

IcLibOpenChannel
IC_RESULT FAR PASCAL IcLibOpenChannel (HIC_CHANNEL hIcChannel,
 void FAR * buffer,
 UINT len,
 IC_OPEN_OPTIONS Options,
 LPHIC_SESSION lphLibChannel)

This function is called to initialize a library channel. It is called once before any
sessions (for example, paths) that use the channel are opened. Since a session is
being established, IcLibOpenChannel is a good place to perform additional session
related initialization not performed in IcLibInstall. For control flow, see Processing
an open session request in Section 6, "A Closer Look at the ICS Architecture."

IcLibOpenChannel should return promptly to the caller. Displaying a dialog box
here and waiting for the user's response before returning to the Manager must be
avoided. That goes against the spirit of Windows-style cooperative multi-tasking.

Libraries are not required to define library channels. If a library doesn't define a
channel table, this function is still called once with a NULL buffer and zero length.
The library should perform any session related global initialization and return
IC_OK.

The lphLibChannel parameter is used with channel aliasing which is explained on
page 7 - 53.

Return Value

IC_OK is returned if successful, otherwise an IC_RESULT error. The open process
will continue for errors of type IC_ERROR_WARNING and IC_ERROR_INFO.
Errors of type IC_ERROR_TERMINATE and IC_ERROR_SEVERE will cause the
open process to fail.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–35

IcLibCloseChannel
IC_RESULT FAR PASCAL IcLibCloseChannel (HIC_CHANNEL hLibChannel)

This function is called to terminate a channel after all sessions associated with this
channel have been closed.

IcLibCloseChannel is the opposite of IcLibOpenChannel and is therefore very
similar. Normally, IcLibCloseChannel just undoes everything done by
IcLibOpenChannel. When you are looking for things to do in IcLibCloseChannel,
look in:

• IcLibOpenChannel

• IcLibOpenSession for items not handled by IcLibCloseSession

• IcLibEvent/IC_SESSIONESTABLISHED for items not handled by
IcLibEvent/IC_SESSIONCLOSED or IcLibCloseSession.

Return Value

Return IC_OK if successful. Otherwise, return a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

7–36 4173 5408-000

IcLibOpenSession
IC_RESULT FAR PASCAL IcLibOpenSession (HIC_SESSION hIcSession,
 HIC_CHANNEL hLibChannel,
 void FAR * Buffer
 UINT len,
 IC_OPEN_OPTIONS Options,
 LPHIC_SESSION lphLibSession)

This function is called to initialize a session.

When an application makes an open session request, it eventually results in a call to
IcLibOpenSession. For control flow, see "Processing an Open Session Request" in
Section 6, "A Closer Look at the INFOConnect Architecture."

If IcLibOpenSession returns IC_OK, but you later determine (perhaps in a timer
routine or during IcLibEvent) that the session can't be opened, do not call
IcCloseSession to close the session. Instead, you must request the application to
close the session by generating an error of type IC_ERROR_TERMINATE using an
IC_ERROR message sent with IcMgrSendEvent. Do not call IcMgrSendEvent until
IcLibEvent has processed the IC_SESSIONESTABLISHED event.

IcLibOpenSession should return promptly to the caller. Displaying a dialog box here
and waiting for the user's response before returning to the Manager should not be
done. That goes against the philosophy of Windows-style cooperative multi-tasking.

Notes for External Interfaces

The external interface's IcLibOpenSession is called before the service library,
therefore, your external interface should not make any service library calls during
IcLibOpenSession processing. Simply set the session to the idle state and wait for
the IC_SESSIONESTABLISHED event to be passed to IcLibEvent.

If your interface starts a timer routine, make sure your timer code doesn't start
making calls to the service library until the IC_SESSIONESTABLISHED event has
been received by IcLibEvent or after the IC_SESSIONCLOSED event has been
received by IcLibEvent.

Return Value

IC_OK, IC_ERROR_INFO or IC_ERROR_WARNING result type is returned if the
open was successful. IC_VERIFY_OK if the verify was successful. Otherwise,
return a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–37

IcLibCloseSession
IC_RESULT FAR PASCAL IcLibCLoseSession (HIC_SESSION hLibSession,
 HIC_CHANNEL hLibChannel)

This function is called to terminate a session. All session-related data should be
cleaned up.

IcLibCloseSession is the opposite of IcLibOpenSession and is therefore very similar.
Normally, IcLibCloseSession just undoes everything done by IcLibOpenSession.
When you are looking for things to do in IcLibCloseSession, look in
IcLibOpenSession.

Libraries running with ICS 3.0 that need to delay the session close processing may
want to delay in IcLibLcl/IC_LCL_CLOSESESSION and/or
IcLibEvent/IC_SESSIONCLOSED, rather than delay in IcLibCloseSession.

For libraries running with ICS 2.0, an IC_SESSIONCLOSED message does not get
passed to your library at IcLibEvent, as does an IC_SESSIONESTABLISHED
message during session open processing. Therefore, any resources or processing
done by IcLibEvent/IC_SESSIONESTABLISHED may need to be released in
IcLibCloseSession.

Return Value

If cleanup is successful, return IC_OK. Otherwise, return a standard or library
specific error.

Writing INFOConnect Libraries for Windows 3.x

7–38 4173 5408-000

IcLibXmt / IcLibRcv
IC_RESULT FAR PASCAL IcLibXmt (HIC_SESSION hLibSession,
 HANDLE buffer,
 UINT length)

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hLibSession,
 HANDLE buffer,
 UINT length)

These functions are called to receive or transmit data from the specified buffer.

A successful return value (IC_OK or one of type IC_ERROR_INFO or
IC_ERROR_WARNING) does not mean the request is complete, but that it has been
initiated. The application expects to later receive an ICS event indicating the
outcome of the request.

A return value of type IC_ERROR_SEVERE or IC_ERROR_TERMINATE means no
further action will be taken by the library for this request. A bad return value is
usually caused by an invalid session handle. The application does not expect to
receive an ICS event in this case.

Generally, libraries do not "swallow" receive or transmit requests from the
application. Transmit requests must eventually return an IC_XMTDONE or
IC_XMTERROR event and receive requests must return an IC_RCVDONE or
IC_RCVERROR event. An example of an exception to this is a service library that
initiates transmits "behind the back" of the application. In this case, the resulting
IC_XMTDONE event must be intercepted and "swallowed" or the application will
probably get confused.

IcLibXmt and IcLibRcv are very closely tied to the IcLibEvent function and are often
in a recursive calling arrangement. For example, a service library calls IcMgrXmt to
push a transmit request down the stack. The EIL calls IcMgrSendEvent to pass an
IC_XMTERROR event back up the stack before returning in its IcLibEvent function.
This causes the service library to be called at IcLibEvent with the IC_XMTERROR.
Any service library in the session could retry the transmit request by call IcMgrXmt
again. It doesn't even have to be an error condition, a service library could call
IcMgrXmt upon receiving an IC_XMTDONE event. This means you must be very
careful about changing the state of your library after calling IcMgrXmt, because of
the possible recursion. One technique is to update your internal structures as if the
IcMgrXmt call was successful immediately before calling IcMgrXmt. Another way
to state this warning is: when IcLibXmt calls IcMgrXmt it must be prepared to be
called again itself before the IcMgrXmt call returns.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–39

Here is another typical scenario illustrating the indirect recursion possible between
IcLibXmt/IcLibRcv and IcLibEvent. Library A sits below Library B in the library
stack. Library A's IcLibEvent routine calls IcMgrSendEvent. This results in Library
B's IcLibEvent routine getting called. If Library B does a transmit ("behind the
application's back") Library A's IcLibXmt will get called before the original
IcMgrSendEvent call has ever returned.

The delivery of IC_XMTDONE and IC_RCVDONE events to the application are
generally independent of each other. However, there are situations where the
application can rightly expect a certain sequence of delivery for these two events.
Consider the following scenario. Many applications typically maintain an
outstanding receive request in preparation for receipt of messages from their partner
component. If an application then does a transmit, it will logically expect the
IC_XMTDONE event to be returned to it before the IC_RCVDONE event containing
the partner's reply to the transmit.

Another stipulation: if an event is generated by one of these functions (for example
IcLibXmt) with IcMgrSendEvent, the library is committed to returning IC_OK for
that function (IcLibXmt) when the function does finally return. Otherwise, the
earlier rule is broken that states that a return value not equal to IC_OK means the
request is dead.

Be sure to use IcMgrXmt/IcMgrRcv (or IcLibraryXmt/IcLibraryRcv if running with
2.0 and 3.0) to post the transmit/receive request down to the next library in the
library stack.

Notes for External Interfaces

An EIL must be aware that an application can use separate datacomm buffers in
order to keep a receive request pending while waiting for a pending transmit request
to complete. Even if the transport below is synchronous in nature, the EIL must be
prepared to queue the requests from applications which are asynchronous in nature.

This does not mean that an EIL has to handle more than one transmit request (or
more than one receive request) at a time from an application. The application should
only have one pending receive request and one pending transmit request.

Return Value

IC_OK if the session is valid and the command can be processed. Otherwise, return
a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

7–40 4173 5408-000

IcLibLcl
IC_RESULT FAR PASCAL IcLibLcl (HIC_SESSION hLibSession,
 IC_LCL_FLAGS which)

This function is called to cancel pending transmit and/or receive requests. Unlike
IcLibRcv and IcLibXmt, no event needs to be generated and passed to the application
with IcMgrSendEvent. Since the application call to IcLcl is returned before any
library is called, the Manager sends an IC_LCLRESULT event to the application on
behalf of the libraries.

Be sure to use IcMgrLcl (or IcLibraryLcl if running with 2.0 and 3.0) in order to pass
the message down to the next library in the library stack.

Note: If the IC_LCL_CLOSESESSION is not passed down the stack the session will
not close. If a library with a maximum version less than IC_VERSION_3_0
in the INFOConnect RCDATA resource does not call IcMgrLcl, a close
session will be passed down the stack when the library returns.

Return Value

IC_OK is returned if successful. Otherwise, return a standard or library specific
error.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–41

IcLibSetResult
IC_RESULT FAR PASCAL IcLibSetResult (HIC_SESSION hLibSession,
 UINT uType,
 IC_RESULT result)

This function is used to receive statuses and errors from the higher ICS components
that were initiated by the application. For control flow, see "Status Initiated by the
Application" in Section 6, "A Closer Look at the ICS Architecture."

Notes for Service Libraries

After any necessary processing, services must make a call to IcMgrSetResult (or
IcSetResult if running with 2.0 and 3.0) unless the function of the library is to
intercept the status call.

Notes for External Interfaces

Any unprocessed IC_RESULTs should be passed on to IcMgrSetResult (or
IcSetResult if running with 2.0 and 3.0) rather than treated as errors.

Return Value

Often, your library will just pass up the IC_RESULT value returned from calling
IcMgrSetResult itself. Otherwise, return a standard or library specific error.

Sample code

IC_RESULT FAR PASCAL IcLibSetResult (HIC_SESSION hLibSession,
 UINT uType,
 IC_RESULT result)
{
 return IcMgrSetResult(hLibSession, uType, result);
}

Writing INFOConnect Libraries for Windows 3.x

7–42 4173 5408-000

IcLibEvent
IC_RESULT FAR PASCAL IcLibEvent (UINT uType,
 HIC_SESSION hLibSession,
 GLOBALHANDLE hBuff,
 UINT uSize)

Parameters Description

uType IN One of the following event types:

IC_RCVDONE
IC_RCVERROR
IC_XMTDONE
IC_XMTERROR
IC_ERROR
IC_STATUS
IC_SESSIONESTABLISHED
IC_SESSIONCLOSED
IC_SENDSTATUS

hLibSession IN A session handle.

hBuff IN A handle to a global buffer or the HIWORD of an
IC_RESULT, depending on uType.

uSize IN The buffer size in bytes or the LOWORD of an
IC_RESULT, depending on uType.

This function allows libraries to process events passed from a lower layer in the
INFOConnect architecture. After processing the event, it must be passed up to the
next layer in the ICS architecture. See the control flow diagrams in Section 6, "A
Closer Look at ICS Architecture."

The processing to be done in IcLibEvent is tied very closely with some of the other
IcLib functions. For example, the code in the IC_SESSIONESTABLISHED case is
closely related to the IcLibOpenSession processing.

A library must never generate or "bubble up" an IC_SESSIONESTABLISHED event
for a session until it has first received the IC_SESSIONESTABLISHED event for
that session. The Manager initiates this process by sending the first
IC_SESSIONESTABLISHED event to the EIL at the bottom of the stack. Until then,
all of the libraries in the stack are not initialized.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–43

Libraries that support ICS 3.0 must be prepared for events with hLibSession set to
NULL_HIC_SESSION. These are global events of possible interest to the library.
The library should not pass these events up the stack by calling IcMgrSendEvent.

There are two instances where an IC_STATUS event with hLibSession set to
NULL_HIC_SESSION is received by a library. The first is an IC_STATUS message
of IC_COMMMGR_INITIALIZED and is received by all libraries which have the
library entry field ICMGR_LIB_LOADFLAGS set to 1. This flag is used to control
autoload. The second is an IC_STATUS message of
IC_COMMMGR_TERMINATED and is received by a library if the library is still
loaded when INFOConn.exe terminates. IC_COMMMGR_... status values are
described in the IDK Programming Reference Manual.

Libraries that do not support ICS 3.0 or higher do not receive an
IC_SESSIONCLOSED event. Libraries that do support ICS 3.0 will receive an
IC_SESSIONCLOSED event in IcLibEvent. The IC_SESSIONCLOSED event must
be passed up the stack in order for the session to close.

Note: If the IC_SESSIONCLOSED is not passed up the stack the session will not
close. If a library with a maximum version less than IC_VERSION_3_0 in
the INFOConnect RCDATA resource does not call IcMgrSendEvent, a
session closed event will be passed up the stack when the library returns.

For all events that do not have hLibSession set to NULL_HIC_SESSION, be sure to
use IcMgrSendEvent (or IcSendEvent if running with 2.0 and 3.0) to pass the event to
the next higher layer in the library stack, including unknown events.

Note: Only increasing the maximum level of ICS that your library supports in the
INFOConnect resource section of the library's resource file causes the new
status messages to be sent to your library. If a library specifies that it
supports a minimum level of ICS 2.0 and a maximum level of ICS 3.0, it will
receive ICS 3.0 status events. If your library only supports the 2.0 status
events, use the 2.0 values to set the minimum and maximum level of ICS. See
the Resource Files section for designating the minimum and maximum level
of Connectivity Services that the library supports.

Generating IC_STATUS and IC_ERROR events can be done using the macros
HIWORD and LOWORD.

Writing INFOConnect Libraries for Windows 3.x

7–44 4173 5408-000

Using HIWORD and LOWORD with hBuff and uSize

The hBuff and uSize parameters on IcLibEvent are somewhat misleading for those
event types that are actually passing in a single IC_RESULT type (which is a 'long'
value) like IC_SESSIONESTABLISHED, IC_STATUS, and IC_ERROR. For this
reason, you may occasionally need to use the HIWORD and LOWORD macros.

Here is a fragment of code from a library requesting the application to close the
session. An IC_ERROR_TERMINATE_NOMSG error (an IC_RESULT defined in
IcError.h) is bubbled up to the application. Notice the use of the HIWORD and
LOWORD macros to pass a 'long' value through the hBuff and uSize parameters
which are a single word each.

icerror=IcMgrSendEvent(hLibSession, hIC_ERROR,
 HIWORD(IC_ERROR_TERMINATE_NOMSG),
 LOWORD(IC_ERROR_TERMINATE_NOMSG));
if IC_CHECK_RESULT_SEVERE(icerror)
 ReturnInternalError(hLibSession, INTERNAL_ERROR_10);

Return Value

Return IC_OK if the message is valid and can be processed for the given session.
Otherwise, return a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–45

Sample code

IC_RESULT FAR PASCAL IcLibEvent(UINT uType,
 HIC_SESSION hLibSession,
 GLOBALHANDLE hBuff,
 UINT uSize)
{
 /*
 Event types that your library doesn't handle
 MUST be passed on to the application.
 */

 switch (uType) {
 case IC_SESSIONESTABLISHED:
 case IC_SESSIONCLOSED:
 case IC_XMTDONE:
 case IC_RCVDONE:
 case IC_XMTERROR:
 case IC_RCVERROR:
 case IC_STATUS:
 case IC_ERROR:
 case IC_SENDSTATUS:
 default:
 return IcMgrSendEvent(hLibSession, uType, hBuff, uSize);
 break;
 }
}

Writing INFOConnect Libraries for Windows 3.x

7–46 4173 5408-000

IcLibGetSessionInfo
IC_RESULT FAR PASCAL IcLibGetSessionInfo (HIC_SESSION hLibSession,
 LPIC_SINFO sinfo)

IcLibGetSessionInfo is called to build an IC_SINFO record that describes the current
session's attributes. The external interface sets the IC_SINFO structure which has
been initialized to zeros by the Manager. The IC_SINFO structure and the meaning
of each session attribute is described in the IDK Programming Reference Manual.

Notes for Service Libraries

Service libraries should only modify those attributes that pertain to the task of the
service. Some services may not need to change any IC_SINFO fields.

Notes for External Interfaces

Interfaces should initialize all defined fields in the IC_SINFO structure. Reserved
fields are set to zero by the Manager.

Return Value

IC_OK is returned if successful. Otherwise, return a standard or library specific
error.

Sample code for service library

IC_RESULT FAR PASCAL IcLibGetSessionInfo(HIC_SESSION hLibSession,
 LPIC_SINFO sinfo)
{
 /*
 The external interface must initialize all SINFO fields.
 The service library should only change ones it is
 specifically going to manage.

 See the INFOConnect Reference Manual for descriptions
 of the different attributes.
 */

 return IC_OK;
}

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–47

Sample code for external interface

IC_RESULT FAR PASCAL IcLibGetSessionInfo(HIC_SESSION hLibSession,
 LPIC_SINFO sinfo)
{
 /*
 The external interface must initialize all SINFO fields.

 See the INFOConnect Reference Manual for descriptions
 of the different attributes.
 */

 sinfo->max_size = MAXRECORDSIZE;
 sinfo->transparent = TRUE;
 sinfo->block_mode = TRUE;
 sinfo->reliable = TRUE;
 sinfo->focus_notify = FALSE;
 return IC_OK;
}

Writing INFOConnect Libraries for Windows 3.x

7–48 4173 5408-000

IcLibGetString
IC_RESULT FAR PASCAL IcLibGetString (HANDLE hData,
 IC_RESULT result,
 LPSTR buffer,
 UINT length)

This function retrieves a null-terminated text string associated with a library specific
error for your library. Status messages do not have text strings associated with them.

hData is the library handle of the communication session on which the error occurred
or NULL_HIC_SESSION if the error is not associated with any session.

Try to maximize your use of standard errors before defining unique errors.
Application developers are more likely to code for standard errors and possibly take
some corrective action without bothering the user with an error message. Upon
receiving a non-standard error, an application's most likely course of action is to
simply display it.

IcLibGetString is called after your library has returned a unique error and the
application calls IcGetString to construct an error message to display. If an error
message contains an insert, the text of the insert must be saved when the error is
generated (perhaps in the library's session record) so that the IcLibGetString function
can later retrieve it.

The message text should not contain either your library name or an error number;
that information is retrieved by the caller through other means. To prepare for
internationalization, the text for the error should be retrieved from a resource file.

Return value

Return IC_OK if successful. Otherwise, return a standard or library specific error.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–49

Sample code

This code fragment was taken from Reflect.c, a sample interface library. Errors are
defined in Reflect.hic and the error text is in Reflect.rc. Notice how the value
portion of the error is used as the stringtable index of the error message text.

IC_RESULT FAR PASCAL IcLibGetString(HANDLE hData,
 IC_RESULT icresult,
 LPSTR buffer,
 UINT length)
{
 /*
 Return text for library specific errors.
 */

 IC_RESULT_CONTEXT iccontext;
 IC_RESULT_TYPE ictype;
 IC_RESULT_VALUE icvalue;

 iccontext = IC_GET_RESULT_CONTEXT(icresult);
 ictype = IC_GET_RESULT_TYPE(icresult);
 icvalue = IC_GET_RESULT_VALUE(icresult);

 if (LoadString(hLibInstance,icvalue,buffer,length)!=0)
 return IC_OK;
 else
 return(IcSetSessionError(hData, LibContext, IC_ERROR_INTERNAL,
 "GetString/LoadString", NULL, NULL));
}

Header file containing error definitions

/***/
/* REFLECT.HIC */
/***/

#define REFLECT_CONTEXTSTRING "REFLECT"

...

/* status types */
#define REFLECT_STATUS_PING 1

/* error types */
#define REFLECT_ERROR_SEVERE IC_ERROR_SEVERE

/* values and string numbers correspond */
#define REFLECT_ERROR_XMTERROR 1
#define REFLECT_ERROR_RCVERROR 2

Writing INFOConnect Libraries for Windows 3.x

7–50 4173 5408-000

Resource file containing error text

/**/
/* REFLECT.RC */
/**/

#include <windows.h>
#include <icdef.h>
#include <icdict.h>
#include "reflect.h"

...

STRINGTABLE
BEGIN
...
 REFLECT_ERROR_XMTERROR, "XmtError"
 REFLECT_ERROR_RCVERROR, "RcvError"
...
END
...

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–51

IcLibIdentifySession
HANDLE FAR PASCAL IcLibIdentifySession (HIC_SESSION hLibSession)

This function is called for each session to retrieve a unique session identifier if
multiple instances of a path can be active. Multiple instances of a path can be active
when all libraries in a session return IC_VERIFY_OK in
IcLibOpenSession/IC_OPEN_VERIFY.

Return Value

For sessions that can be opened over a single path, the library can return a handle to a
global buffer (allocated through IcAllocBuffer) containing a unique alphanumeric
identification string up to IC_MAXSESSIONIDLEN characters. Otherwise, return
(HANDLE)NULL.

Sample code

HANDLE FAR PASCAL IcLibIdentifySession (HANDLE hSession)
{
return (HANDLE)NULL;
}

Writing INFOConnect Libraries for Windows 3.x

7–52 4173 5408-000

Windows DLL requirements
Windows requires all DLLs to provide an initialization routine, LIBMAIN, and a
termination routine, WEP. The Windows 3.x SDK Guide to Programming covers
these routines in more detail.

LIBMAIN

LIBMAIN is called directly by Windows when the DLL is loaded. You should only
do Windows-related tasks here. Don't do any INFOConnect-related tasks here.

BOOL FAR PASCAL LIBMAIN(HANDLE hInstance,
 WORD wDataSeg,
 WORD wHeapSize,
 LPSTR lpCmdLine)
{
 /*
 This is a Windows-specific function required for all
 DLL libraries. It is called by Windows when the
 library is initially loaded.
 */

 NOREF(wDataSeg);
 NOREF(wHeapSize);
 NOREF(lpCmdLine);

 LibInstance = hInstance;
 return TRUE;
}

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–53

WEP

WEP is called directly by Windows when the DLL is unloaded. You should only do
Windows related tasks here. Don't do any INFOConnect-related tasks here. The
following code should usually be sufficient for your use.

int FAR PASCAL WEP (int nParameter)
{
 /*
 This is a Windows-specific function required for all
 DLL libraries. It is called by Windows when the
 library is being unloaded.
 */

 if (nParameter == WEP_SYSTEM_EXIT)
 return (1);
 else if (nParameter == WEP_FREE_DLL)
 return (1);
 else
 return (1);
}

Other Procedures and Guidelines

Session and Channel Aliasing
Aliasing is a way for INFOConnect and your library to exchange "nicknames" for
session and channel handles.

Why should I use aliases?

Aliases are not required, but are provided as a convenience and performance boost to
library execution. To see the advantage of aliases, compare the two code fragments
that follow. Both code fragments are from a library that uses a linked list of session
records. Whenever the library is called, the proper session record must be located.
Notice the code in IcLibRcv in the first code fragment that calls GetSessionRec to
scan all session records for hSession. In the second code fragment, aliases are used.
INFOConnect passes the library a session handle that the library just locks to access
the proper session record; no searching is necessary.

Aliases are assigned by your library in IcLibOpenChannel and IcLibOpenSession.
They allow you to avoid a lot of list-searching. Most of the sample libraries in the
development kit use aliasing.

Writing INFOConnect Libraries for Windows 3.x

7–54 4173 5408-000

Sample code fragment without aliases

typedef struct aSessionRec {
 struct aSessionRec *pNextSessionRec;
 HIC_SESSION hSession; /* INFOConnect session handle */
 ...
} SESSIONREC;

typedef struct aSessionRec *PSESSIONREC;

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hLibSession,
 HANDLE buffer,
 UINT length)
{
 PSESSIONREC pSession;

 /* First, search for the list entry containing hLibSession */
 pSession = GetSessionRec (hSession);
 /* Now do my normal processing */
 ...
 return IcMgrRcv(hLibSession, buffer, length);
}

PSESSIONREC GetSessionRec (HIC_SESSION hLibSession)
{
 PSESSIONREC p;

 p = pSessionNode;
 while ((p != NULL) && (p->hSession != hLibSession))
 p = p->pNextSessionRec;
 if ((p == NULL) || (p->hSession != hLibSession))
 return NULL;
 else
 return p;
}

The memory for the session record created in AddSessionRec is allocated using
LocalAlloc (LPTR, len). The LPTR flag is used to allocate fixed memory. This
allows the sample to define LockLibSession which actually just typecasts a handle to
a PSESSIONREC and to define an UnlockLibSession which actually just returns.
This explains why the code fragment above does not lock or unlock memory. The
next sample, which uses aliases, shows the use of the LockLibSession and
UnlockLibSession.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–55

Sample code fragment using aliases

#define LockMem(handle) (handle)
#define UnlockMem(handle)
#define LockLibSession(h) ((PSESSIONREC)LockMem(h))
#define UnlockLibSession(h) UnlockMem(h)

typedef struct aSessionRec *PSESSIONREC;

typedef struct aSessionRec {
 struct aSessionRec *pNextSessionRec;
 /* Here are two handles for the same session */
 HIC_SESSION hIcSession; /* INFOConnect session handle */
 HIC_SESSION hLibSession; /* My library's session handle */
 ...
} SESSIONREC;

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hLibSession,
 HANDLE buffer,
 unsigned length)
{
 HIC_SESSION hIcSession;
 PSESSIONREC pSession;

 /* INFOConnect passes me my own session handle that I */
 /* can immediately lock. No need to search. */
 pSession = LockLibSession(hLibSession);
 /* Before I call IcMgrRcv(), I must retrieve the */
 /* INFOConnect session handle. */
 hIcSession = pSession->hIcSession;
 ...
 UnlockLibSession(hLibSession);
 return IcMgrRcv(hIcSession, buffer, length);
}

Writing INFOConnect Libraries for Windows 3.x

7–56 4173 5408-000

Establishing aliases

Here is the code necessary to establish a session alias in IcLibOpenSession. Similar
processing is used in IcLibOpenChannel to establish a channel alias.

Notice how the local pointer, pSession, is cast and returned to INFOConnect as the
session alias. This scheme only works for local pointers. Far pointers are two words
in size; HIC_SESSION is one word.

IC_RESULT FAR PASCAL IcLibOpenSession(HIC_SESSION hIcSession,
 HIC_CHANNEL hLibChannel,
 void FAR * lpConfigBuf,
 UINT len,
 IC_OPEN_OPTIONS Options,
 LPHIC_SESSION lphLibSession)
{
 PSESSIONREC pSession;
 IC_RESULT icerror = IC_OK;

 pSession = AddSessionRec(hLibChannel, hIcSession,
 lpConfigBuf, len);

 ...
 *lphLibSession = MakeSessionHnd(pSession);
 return icerror;
}

Using aliases

Once an alias is established, all calls from INFOConnect to your library will use
either hLibSession or hLibChannel and all calls that your library makes to
INFOConnect must use hIcSession or hIcChannel. Its a good idea for your session
and channel records to contain both names. The following sample libraries in the
development kit use aliasing: Service, Intrface, and IcStack2.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–57

Generating Errors from your Library
Your library can generate standard errors or define and issue library-specific errors.
There are two methods of reporting errors: sometimes with the function's return
value and sometimes with IC_ERROR events.

Generating standard errors

Standard errors are defined in IcError.h. Messages can have from zero to three
inserts. Appendix C of the IDK Programming Reference Manual documents which
standard errors use text inserts. Function IcSetSessionError must be used when
returning standard errors to enable INFOConnect to capture which library generated
the error. The following code fragment returns one error with a single insert and a
second error without inserts. LibContext is the context saved earlier from the
IcLibInstall call to your library.

IC_RESULT_CONTEXT LibContext; /* set in IcLibInstall */

IC_RESULT FAR PASCAL IcLibOpenSession(HIC_SESSION hSession,
 HIC_CHANNEL hChannel,
 void FAR * lpConfigBuf,
 unsigned len,
 BOOL bVerify,
 LPHIC_SESSION lphSession)
{
 /*
 This function is called to initialize a library session.
 Return IC_OK or IC_VERIFY_OK for successful completion.
 */

 IC_RESULT icerror = IC_OK;

 if (!lpConfigBuf)
 return(IcSetSessionError(hSession,
 LibContext,
 IC_ERROR_INTERNAL,
 "IcLibOpenSession",
 NULL,NULL));
 if (!OpenSession(hSession, hChannel, lpConfigBuf))
 return(IcSetSessionError(hSession, LibContext,
 IC_ERROR_PICHANNELINUSE,
 NULL, NULL, NULL));
 ...
 return icerror;
}

Writing INFOConnect Libraries for Windows 3.x

7–58 4173 5408-000

Generating library-specific errors

Errors unique to your library must be defined in your .HIC header file and must
include your library's context passed to you at function IcLibInstall. Errors are
defined with type IC_RESULT which is a 'long' made up of three parts: a context, a
type and a value.

IC_RESULT_CONTEXT LibContext; /* set in IcLibInstall */

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hSession,
 HANDLE hBuffer,
 unsigned length)
{
 if (length < ENCODEDBUFSIZE) {
 return (IC_MAKE_RESULT(LibContext,
 REFLECT_ERROR_SEVERE,
 REFLECT_ERROR_XMTERROR);
 }
 ...
}

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–59

Defining library-specific errors

Although statuses and errors use the same structure (typedef IC_RESULT) they are
never used in the same context. Therefore, a status and error can have the same type
and value without being confused.

Here is the HIC header file defining the error used in the above code fragment:

/**/
/* REFLECT.HIC */
/**/

#define REFLECT_CONTEXTSTRING "REFLECT"

...

/* status types */
#define REFLECT_STATUS_PING 1

/* error types */
#define REFLECT_ERROR_SEVERE IC_ERROR_SEVERE

/* values and string numbers correspond */
#define REFLECT_ERROR_XMTERROR 1
#define REFLECT_ERROR_RCVERROR 2

Displaying library-specific errors

Never display errors directly from your library. After you have returned an error to
the application, your library will be called at IcLibGetString and is expected to return
the associated text for an error message. See the section on IcLibGetString for more
information.

Generating IC_ERROR messages

Sometimes you may find it necessary to use HIWORD and LOWORD when
generating IC_ERROR events. This is how a double-word 'long' value can be passed
in using the two single-word parameters of IcMgrSendEvent.

IC_RESULT icresult, icerror;
...
icresult = ...
icerror = IcMgrSendEvent(hLibSession, IC_ERROR,
 HIWORD(icresult),
 LOWORD(icresult));
if IC_CHECK_RESULT_SEVERE(icerror)
 return icerror;

Writing INFOConnect Libraries for Windows 3.x

7–60 4173 5408-000

Requesting Session Termination
Occasionally, a situation may require the session to be closed. INFOConnect
libraries do not close sessions directly themselves. Instead, you can request the
application to close the session by issuing any error with a type of
IC_ERROR_TERMINATE.

A standard error, IC_ERROR_TERMINATE_NOMSG, is also available for
situations when the session should go away silently without any message to the user.
Here is some code taken from a service modifier that is sending a "silent"
termination request to the application. Notice the use of HIWORD and LOWORD to
break the 'long' IC_RESULT data type down into two single words.

icerror=IcMgrSendEvent(hLibSession, IC_ERROR,
 HIWORD(IC_ERROR_TERMINATE_NOMSG),
 LOWORD(IC_ERROR_TERMINATE_NOMSG));
if IC_CHECK_RESULT_SEVERE(icerror)
 ReturnInternalError(hLibSession, INTERNAL_ERROR_10);

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–61

On-line Help
Your configuration dialog should contain a Help button that invokes the Windows
help system with a specific on-line help file for your library. The following topics
should be covered in the on-line help (.HLP) :

• The purpose and capabilities of your library.

• The configuration dialog for your library.

• Error help text, if your library sets IC_LF_ERROR_HELP in the library_flags
field of its INFOConnect RCDATA resource.

The following files are used to build the .HLP file:

.DOC Microsoft Word document (optional)

.RTF Rich Text Format file

.HLP final on-line help file used by Windows

HELP.STY MSWord style sheet (optional, WORD for DOS only)

.HPJ Help Project File - Help Compiler control file

RTF_DOS.E
XE

MSWord utility to convert .DOC and .STY -> .RTF
(optional, WORD for DOS only)

.HH .H header file defining context-sensitive IDs (optional)

The Tools Reference Manual of the Windows SDK covers the generation of on-line
help files in detail, but here is a summary of the steps involved.

Build a .RTF file containing your on-line help text

The Windows help system uses .RTF (Rich Text Format) files. You can use any
word processor that supports the .RTF format.

Create the Windows-compatible on-line help file (.HLP)

Create an .HPJ file and then run the Windows SDK Help Compiler to convert the
.RTF file into a .HLP file.

If you use Microsoft Word for DOS 5.0 or later, you may find the RTF_DOS.EXE
utility useful to convert standard MSWord documents into .RTF files.

Writing INFOConnect Libraries for Windows 3.x

7–62 4173 5408-000

Call IcRunHelp from your configuration dialog callback function

By using IcRunHelp, your library doesn't have to know where your help file is
installed. Here is a sample callback function that uses IcRunHelp.

BOOL FAR PASCAL cbConfigDlg(HWND hDlg,
 unsigned message,
 WORD wParam,
 LONG lParam)
{
 IC_RESULT icerror;

 switch (message) {
 case WM_COMMAND: {
 switch (wParam) {
 case ID_HELP:
 icerror = IcRunHelp("ModuleName.HLP",
 (DWORD)LibContextID);
 break;
 case IDOK:
 EndDialog(hDlg, TRUE);
 break;
 case IDCANCEL:
 EndDialog(hDlg, FALSE);
 break;
 default:
 return FALSE;
 break;
 }
 return TRUE;
 }
 break;
 case WM_INITDIALOG:
 return TRUE;
 break;
 default:
 return FALSE;
 }
 return FALSE;
}

Note: The module name (IC_MODULEID as defined in the library's resource file)
with a .HLP extension should be used for the help file name. The Manager
uses the file name of a loaded library to construct the fully qualified help
file name by changing the extension to .HLP. If the library is not loaded, the
Manager uses the filename in the configuration database with a .HLP
extension.

See the sample INFOConnect libraries on the IDK disk for a complete example of
providing on-line help support.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–63

Modifying Global Variables
Be careful about modifying global variables outside of your IcLibInstall and
IcLibTerminate routines. Will multiple session threads "step on each other"?

Communicating with Applications Using Status Messages
Generally, applications and libraries should avoid nonstandard statuses. However,
sometimes it is quite appropriate for an application and library to communicate using
status messages. Although status messages are small, large blocks of information
can be exchanged by storing the handle of an INFOConnect status buffer
(HIC_STATUSBUF) in an IC_STATUS_BUFFER extended status. This section
illustrates and gives some guidelines for defining an IC_STATUS_BUFFER
extended status that incorporates a library specific status.

The code fragments shown in this section are taken from the IcWinApp sample
application and the Reflect sample external interface library. These samples can be
built to communicate with an extended status which contains a library specific status,
REFLECT_STATUS_PING.

IcWinApp's modified menu bar contains a special menu item for initiating a
REFLECT_STATUS_PING message. If running over a path configured with the
Reflect library, Reflect will modify the string stored in the IC_STATUSBUF
structure and sends the extended status back to IcWinApp. IcWinApp displays the
string returned from REFLECT.

To activate the PING code, you must add

#define PING

to the header files IcWinApp.h and Reflect.h and then rebuild both samples.

Writing INFOConnect Libraries for Windows 3.x

7–64 4173 5408-000

Define the status message in a .HIC file

Either the accessory or the library can define the status type, but typically the library
defines them. Both components must then include the defining HIC file.

In the PING sample, the REFLECT_STATUS_PING status message is defined in
Reflect.hic. The ICVALUE portion (low word) of an IC_STATUS_BUFFER
extended status contains the handle of an IC_STATUSBUF buffer. The icstatus field
of the IC_STATUSBUF structure contains a library specific status with a status type
of REFLECT_STATUS_PING.

/**/
/* REFLECT.HIC */
/**/

#define REFLECT_CONTEXTSTRING "REFLECT"

...

/* status types */
#define REFLECT_STATUS_PING 1

/* error types */
#define REFLECT_ERROR_SEVERE IC_ERROR_SEVERE

/* values and string numbers correspond */
#define REFLECT_ERROR_XMTERROR 1
#define REFLECT_ERROR_RCVERROR 2

Obtaining Contexts

If the new status message is defined in the application's HIC file, the application
must call IcRegisterAccessory to obtain a context. This implies that the application
satisfies all the requirements of an INFOConnect accessory. This is one reason to
define the status in the library's HIC file instead.

The partner process uses IcGetContext and the context string from the .HIC file to
obtain the runtime context. IcGetContext normally returns IC_OK or
IC_CONTEXTSTRING_NOT_FOUND. You should decide if the "no find" situation
is an error that should be displayed or not.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–65

In the PING sample, the REFLECT_STATUS_PING status is defined in the Reflect
library's .HIC file. IcWinApp obtains the context of Reflect using
REFLECT_CONTEXTSTRING which is also defined Reflect.hic. Notice that the "no
find" situation is handled specifically by IcWinApp, but all other errors are passed to
the default error procedure.

IC_RESULT icerror;
IC_RESULT_CONTEXT LibContext = IC_RESULT_CONTEXT_INVALID;

icerror = IcGetContext(REFLECT_CONTEXTSTRING, &LibContext);
if (icerror != IC_OK) {
 MessageBox(hWnd, "Reflect library not active", NULL, MB_OK);
 if (icerror != IC_CONTEXTSTRING_NOT_FOUND)
 IcDefaultErrorProc(hWnd,hSession,NULL,icerror);
}

Don't save Contexts across messages

The component defining the status message always knows its own context, but the
partner component must use IcGetContext and/or IcGetContextString each time it
uses the context. The context returned by IcGetContext is only valid during the
processing of the current message. Don't expect to retrieve the context once and save
it globally. Contexts are assigned dynamically by the Manager as accessories
register themselves and libraries are loaded. A context can become invalid if the
defining accessory or library terminates and the Manager reassigns the context to
someone else.

The PING sample follows this guideline in IcWinApp. Notice that IcWinApp always
requests Reflect's context each time a status message is sent or received.

Writing INFOConnect Libraries for Windows 3.x

7–66 4173 5408-000

Use IC_MAKE_RESULT to build a library specific status messages

The IC_MAKE_RESULT macro is useful for building the status message from its
three parts: context, status type and status value.

The following code fragment uses IC_MAKE_RESULT to make the library specific
status. This status contains a context of the Reflect library and the
REFLECT_STATUS_PING status type.

LPIC_STATUSBUF lpStatusBuf = NULL;
IC_RESULT icerror;
IC_RESULT_CONTEXT LibContext = IC_RESULT_CONTEXT_INVALID;

 icerror = IcGetContext(REFLECT_CONTEXTSTRING, &LibContext);
 /* add appropriate error handling */
 /* allocate and lock the extended status buffer */
 lpStatusBuf->icstatus = IC_MAKE_RESULT(LibContext, REFLECT_STATUS_PING, 0);

Building an IC_STATUS_BUFFER extended status message

In the PING example, IcWinApp allocates a buffer large enough to contain the
IC_STATUSBUF followed by the "PING" data. The icstatus field of the
IC_STATUSBUF structure contains a library specific status with a status type of
REFLECT_STATUS_PING. All fields of the IC_STATUSBUF structure are
initialized. The "PING" null terminated string immediately follows the
IC_STATUSBUF header.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–67

The PING sample then uses IC_MAKE_RESULT to make the IC_STATUS_BUFFER
extended status. This status contains a context of IC_RESULT_CONTEXT_STD, a
type of IC_STATUS_BUFFER, and a value of the handle to the IC_STATUSBUF
buffer. The following code fragment is from IcWinApp.c:

void PingReflect (HWND hWnd)
{
 LPIC_STATUSBUF lpStatusBuf = NULL;
 LPSTR lpData = NULL;
 IC_RESULT_CONTEXT LibContext = IC_RESULT_CONTEXT_INVALID;

 icerror = IcGetContext(REFLECT_CONTEXTSTRING,
 &LibContext);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 MessageBox(hWnd, "Reflect library not active",
 QAPPNAME, MB_OK);
 if (icerror != IC_CONTEXTSTRING_NOT_FOUND)
 HandleIcError(hWnd,s.hSession,NULL,icerror);
 }
 else {
 s.hStatusBuf = IcAllocBuffer(sizeof(IC_STATUSBUF) + 256);
 assert(s.hStatusBuf);
 lpStatusBuf = (LPIC_STATUSBUF)IcLockBuffer(s.hStatusBuf);
 assert(lpStatusBuf);
 lpStatusBuf->icstatus=IC_MAKE_RESULT(LibContext,
 REFLECT_STATUS_PING,
 0);
 lpStatusBuf->icerror = IC_OK;
 lpStatusBuf->uBufSize = 256;
 lpData = (LPSTR)(lpStatusBuf+1);
 lstrcpy(lpData,"Hello?");
 lpStatusBuf->uDataSize = lstrlen(lpData);
 IcUnlockBuffer(s.hStatusBuf);
 s.icstatus=IC_MAKE_RESULT(IC_RESULT_CONTEXT_STD,
 IC_STATUS_BUFFER,
 s.hStatusBuf);
 icerror=IcSetStatus(s.hSession, s.icstatus);
 if IC_CHECK_RESULT_SEVERE(icerror)
 HandleIcError(hWnd,s.hSession,NULL,icerror);
 }
}

Writing INFOConnect Libraries for Windows 3.x

7–68 4173 5408-000

Libraries send status messages with IcMgrSendEvent

IcMgrSendEvent expects two single-word parameters rather than a IC_RESULT
'long' value. Use the LOWORD and HIWORD macros to break down the 'long'
value.

IC_RESULT icstatus
HIC_STATUSBUF hStatusBuf;

icstatus=IC_MAKE_RESULT(IC_RESULT_CONTEXT_STD,
 IC_STATUS_BUFFER,
 hStatusBuf);

IcMgrSendEvent(hLibSession, IC_STATUS,
 HIWORD(icstatus), LOWORD(icstatus));

Don't push library-specific statuses on down the library stack

After processing a library-specific status, your library should "swallow" the status by
not calling IcMgrSetResult to continue passing the status down the stack. Then, if a
status makes it all the way down the library stack and the application is returned an
IC_StatusResult event containing an error, the application knows the library didn't
properly process the status.

Defining a message protocol between the application and library

When global buffers are exchanged between the application and library, be sure to
agree who's responsibility it is to free the buffer. Typically, the sender allocates the
buffer and the receiver frees it, however, senders must allow for the error case when
the message is not successfully processed by the receiver. In the PING sample,
IcWinApp both allocates and frees the global buffer. Also notice how IcWinApp
frees the buffer after detecting an error in IC_StatusResult processing.

System Timers
INFOConnect libraries that need timers must access them directly from Windows.
INFOConnect does not currently provide any kind of framework or API for libraries
to share an INFOConnect timer.

There are several techniques for allocating Windows system timers. Generally, the
preferable way for INFOConnect libraries is the "no-WndProc" approach (the HWND
parameter on the SetTimer call is set to NULL), because libraries generally don't
have Window functions and message loops.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–69

Sample code

The REFLECT sample library registers a timer routine using this technique. The
library's local callback function, TimerRoutine, is registered during IcLibInstall
processing and deregistered during IcLibTerminate processing.

#define TIMERRESOLUTION 2000
int nTimerID=0;

IC_RESULT FAR PASCAL IcLibInstall(IC_RESULT_CONTEXT context)
{
 nTimerID=SetTimer(NULL,0,TIMERRESOLUTION,(FARPROC)TimerRoutine);
 if (nTimerID == 0)
 return IcSetSessionError(NULL, LibContext,
 IC_ERROR_TIMERS,
 NULL,NULL,NULL);

 return IC_OK;
}

IC_RESULT FAR PASCAL IcLibTerminate(void)
{
 IC_RESULT icerror = IC_OK;

 if (nTimerID)
 KillTimer(NULL,nTimerID);
 return icerror;
}

WORD FAR PASCAL TimerRoutine(HWND hWnd,
 WORD wMsg,
 int nIDEvent,
 DWORD dwTime)
{
 /*
 This callback function must appear in the .DEF file.
 */
 ...
 }
 return (0);
}

Writing INFOConnect Libraries for Windows 3.x

7–70 4173 5408-000

Tracing
There are two functions, IcMgrTraceBuffer and IcMgrTraceResult, which allow
libraries to write information to the trace.log debug file when tracing has been
enabled for the session.

The IcMgrTraceResult function can be called by a library to append a trace entry
containing an IC_RESULT in the trace log file. IcMgrTraceBuffer can be used by a
library to add data or state information to the trace log. For example, a library may
need to trace transmit and receive buffers when buffers appear to be "lost." Another
useful possibility is to log pertinent session information after receiving an error
result or an unexpected event.

IC_OK is returned for both procedures if the request is valid, even if debug was not
enabled for the session and the information was not traced.

Sample code and Trace log entry

The following code sample demonstrating the usage of IcMgrTraceResult and
IcMgrTraceBuffer is from IcStack2:

 icerror = IcLcl(pSession->hIcSessionBelow, which);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 /* Log the result and the session record in the trace log */
 IcMgrTraceResult(LibContext, pSession->hIcSession,
 IC_NULLEVENT,
 QMODULEID".IcLibLcl: Error from IcLcl call",
 icerror);
 IcMgrTraceBuffer(LibContext, pSession->hIcSession,
 IC_NULLEVENT,
 QMODULEID".IcLibLcl: Session Record",
 pSession, sizeof(SESSIONREC));

The following trace log entries occurred when an INFOConnect closed while a
session that included IcStack2 as an EIL was active:

Session:0003 ICSTACK2.IcLibLcl: Severe Error from IcLcl call IC_ERROR_BADPARAMETER
Session:0003 ICSTACK2.IcLibLcl: Contents of Session Record IC_OK
 00 00 03 00 80 07 44 04 01 00 01 00 53 59 53 54 D.....SYST
 45 4D 58 5F 58 58 58 58 00 20 20 20 EMX_XXXX.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–71

Running with Multiple Versions of INFOConnect
Service and external interface libraries compiled with the 2.0 release of the IDK will
run with INFOConnect release 3.0 without recompiling. Libraries can be written to
run with multiple versions of INFOConnect by following one or both of these
guidelines.

Follow step 1 if the library sets the minimum and maximum levels of ICS to 2.0 in
the resource file. Follow step 1 and 2 if the minimum level is 2.0 and the maximum
level is 3.0 in the resource file. The INFOConnect RCDATA section of the library's
resource file identifies the minimum ICS version/revision level and a maximum ICS
version/revision level.

1. To compile a 2.0 library using the 3.0 IDK, continue to use the 2.0 Library API
routines and IcLib... function prototypes. Stubs that call the new API routines
have been provided in CommMgr.dll.

2. Determine the level of INFOConnect that the library is running with by using
successive calls to IcInitIcs. Provide code that checks the version of
INFOConnect prior to using any of the new 3.0 functionality. Typecast the
parameters in the IcLib... functions that have changed between ICS 2.0 and 3.0.
For Example, the first parameter of IcLibUpdateConfig and IcLibVerifyConfig
has been changed from a HWND to a HIC_CONFIG.

Notes:

• A library that runs with INFOConnect 2.0 and 3.0 must be linked using
IcWin20.lib.

• If the library runs with INFOConnect 3.0 only, always use 3.0 calls and link with
IcWin.lib.

• Section 10, "Converting from Previous Releases", provides detailed information
on upgrading from Release 2.0 to 3.0. Be sure the updates have been completed
prior to setting the maximum version in the library's resource file to reflect
INFOConnect 3.0.

Writing INFOConnect Libraries for Windows 3.x

7–72 4173 5408-000

The following code fragment can be added to IcLibInstall to determine the release
level of INFOConnect that the library is running with:

int icversion; /* global variable */
IC_RESULT icerror;

if ((icerror=IcInitIcs(IC_VERSION_3_0, IC_REVISION_3_0)) == IC_OK)
 icversion = IC_VERSION_3_0;
else
 icversion = IC_VERSION_2_0;

The recommended way to isolate new API calls in your library follows:

if (icversion >= IC_VERSION_3_0) {
 /* call some new 3.0 INFOConnect API */
}
else {
 /* alternative action using pre 3.0 API calls */
}

Library Checklist
To assure consistency in library behavior, this section gives general guidelines and
covers some common situations and how libraries should respond to those situations.
If libraries don't respond consistently, applications become library-dependent and
one of the major thrusts of the INFOConnect program is defeated.

Assume applications will ignore status messages

Applications should generally be allowed to ignore a status message. Design your
library so that it behaves reasonably if an application ignores a status message
emitted by the library. This is especially true for library-specific statuses.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–73

Compiling
Note: Before compiling and linking, review the System Verification Checklist in

Section 1, Installation.

Memory Models

INFOConnect libraries must adhere to the requirements of Dynamic Link Libraries.

The Windows SDK documentation covers the use of the various memory models.
The INFOConnect architecture places no additional constraints on memory model
usage.

Include files

INFOConnect libraries include the following headers in their source files.

#include <windows.h>
#include <iclib.h>
#include <icproto.h> /* optional */

Writing INFOConnect Libraries for Windows 3.x

7–74 4173 5408-000

Compiler options

The generic service library, SERVICE, included with the INFOConnect Development
Kit uses the following options with the Microsoft C compiler.

cl -c -ASw -Gsw -Os -Zdp service.c

-c Compile only - don't link

-ASw (S) near code pointers and near data pointers
(w) SS != DS DS not loaded on function entry

-Gsw (s) remove stack probes
(w) compile for Windows

-Os (s) favor code size
(d) optional flag for debugging

Note: Using the (d) flag disables
optimization and is recommended
when using debuggers like
CodeView. Some of the sample
programs use the (d) flag in their
make files. Don't forget to remove it
when building the production
version of your code.

-Zp (p) pack structures on 1 byte boundaries
(i) optional flag for CodeView debugging

Note: Don't forget to remove the (i) flag
when building the production
version of your code.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–75

Resource Files
Windows applications and DLLs use resource files (.RC) to define things like menus,
icons, stringtables, bitmaps, and so forth. In addition to these conventional
resources, INFOConnect makes use of two less common types supported by the
Resource Compiler: RCDATA and User-Defined resources.

There are five INFOConnect-related resources in the .RC file. Let's walk through
several fragments from a resource file for the Intrface sample library and look at
each of these INFOConnect sections.

Here is the beginning of Intrface.rc:

/***/
/* INTRFACE.RC */
/***/

#include <windows.h>
#include <icdef.h>
#include <icdict.h>
#include <icsample.hic>
#include "intrface.h"

IcDef.h and IcDict.h are INFOConnect header files containing general definitions
needed in all INFOConnect resource files. IcSample.hic contains component number
information. Intrface.h contains local definitions specific to this library. Definitions
in Intrface.h will be specifically pointed out because you will have to provide a
similar header file for your own resource file.

Writing INFOConnect Libraries for Windows 3.x

7–76 4173 5408-000

INFOConnect resource

The INFOConnect resource is a RCDATA resource that points to all other
INFOConnect-related resources. It specifies whether the component is an
application or library, the vendor of the component, and so forth. See data type
IC_RC_NODE in the IDK Programming Reference Manual for a detailed description
of this resource.

INFOConnect RCDATA
BEGIN
 IC_VERSION_3_0,
 IC_REVISION_3_0,
 IC_INTERFACE, // IC_SERVICE vs IC_INTERFACE vs IC_ACCESSORY
 IC_HEADER_3_0, // size of the INFOConnect RCDATA section
 IC_RC_DICTIONARY, // link to dictionary tables
 IC_LIBRARYID, // STRINGTABLE link
 IC_LIBRARYDESC, // STRINGTABLE link
 IC_VENDOR, // STRINGTABLE link
 IC_MODULEID, // STRINGTABLE link, Windows DLL name
 0, 0, // session and library flags
 CONFIGRCID, // link to path template resource
 /* The following fields are new for 2.02 */
 IC_VERSION_3_0,
 IC_REVISION_3_0,
 0, // reserved, must be zero
 0, // reserved, must be zero
 0, 0, // no generic component value
 SAMPLE_INTRFACE, UIS_SAMPLE // Supplier number for Intrface
END

IC_VERSION_2_0 and IC_REVISION_2_0 refer to the minimum (or oldest) level of
Connectivity Services that the library requires for proper operation. Older levels of
Connectivity Services will refuse to load the library.

IC_INTERFACE in the type field specifies that this component is an interface
library.

IC_HEADER_3_0 designates the size of the header.

IC_RC_DICTIONARY is the link to dictionary tables. It is only needed by
INFOConnect libraries that define configuration tables. A 0 is used if the library
doesn't define any tables.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–77

IC_LIBRARYID identifies the context string in the string table for your library. This
is the same string that is defined in your .HIC file and used by other INFOConnect
applications and libraries to detect library-specific statuses and errors generated by
your library. Unlike a ModuleID, which must be a unique Windows DLL name, a
LibraryID is only relevant within the domain of the INFOConnect Manager.
LibraryIDs can be longer and more descriptive than ModuleIDs; they can be
IC_MAXLIBRARYIDLEN characters long. The user sees LibraryIDs in various
Manager status lists and windows.

IC_LIBRARYDESC identifies the default description in the string table. It is used
when the library is installed.

IC_VENDOR identifies the vendor identification string in the string table.

IC_MODULEID identifies the string table entry of the Windows DLL name of your
library. The string must match the library name in your library's module definition
file (.DEF). This DLL name must not conflict with any other Windows DLL.

The next two fields are set to 0 if not relevant. Use IC_SF_SESSIONSTATUS for
the session flag if the library can respond to the IC_CONNECT_STATUS status type.
Use IC_LF_ERRORHELP for the library flag if the library has context sensitive help
topics for every library-defined error value.

CONFIGRCID is only needed for libraries that define path templates. It is zero if no
path templates are used by the library. See the IDK Programmer's Reference
Manual, under IC_TemplateInit data type for an example of the format for
CONFIGRCID.

IC_VERSION_3_0 and IC_REVISION_3_0 specify the maximum (or latest) level of
Connectivity Services that the library was developed with; therefore, taking
advantage of that level of ICS features.

Note: Specify IC_VERSION_3_0 and IC_REVISION_3_0 only after all
requirements in Chapter 10, "Converting from Release 2.0 to 3.0 have been
completed. Specify IC_VERSION_2_0 and IC_REVISION_2_0 until the
enhancements to the library have been completed.

The next two fields are reserved fields and must be set to 0.

Writing INFOConnect Libraries for Windows 3.x

7–78 4173 5408-000

The next two entries are the LO, HI values of the IC_COMPONENT data type which
defines the generic component number for the library. Components that specify a
non-zero generic IC_COMPONENT perform a specific function and must conform to
the interface defined by the specific component's .HIC file. Generic component
numbers are assigned by the Malvern Development Group.

The last two entries are the LO, HI values of the IC_COMPONENT data type which
defines the branded (supplier specific) component number for the library. The
branded IC_COMPONENT uniquely identifies the component

Note: If the branded component is defined as 0,0 a unique value will be assigned
when the library ID is added to the INFOConnect configuration database.
Refer to "Component Numbers" in Appendix A of the IDK Programming
Reference Manual for more information on Component numbers.

IC_RC_DICTIONARY

The dictionary resource is only required for libraries; it is an RCDATA resource that
points to the various table definitions (path, channel, custom and invisible) for the
library. See data types IC_DICT_NODE and IC_DICT_TABLE in the IDK
Programming Reference Manual for a detailed description of this resource.

IC_RC_DICTIONARY RCDATA
BEGIN
 IC_DICTIONARY_COUNT, // number of tables
 IC_DICTIONARY_BASE, // link to first table
 IC_DICTIONARY_RCTYPE,// User-defined RC resource
 IC_DEFAULT_RCTYPE, // User-defined RC resource
 0, 0, 0, 0,

 IC_TF_PATHTABLE, // start of path table info
 ID_PATHTABLE,
 IC_PATHTABLE_SERIALNO,

 IC_TF_CHANNELTABLE, // start of channel table info
 ID_CHANNELTABLE
 IC_CHANNELTABLE_SERIALNO
END

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–79

IC_DICTIONARY_RCTYPE defines the user-defined resource used in your resource
file to define configuration tables.

IC_DEFAULT_RCTYPE defines the user-defined resource used in your resource file
to define default records for your path, channel and invisible tables.

The end of the IC_RC_DICTIONARY resource section contains a sequence of
triplets, one triplet for each table defined in your library. These triplets are just a
sort of table of contents for each table; the tables themselves are not completely
defined here. The example above references two tables: a path table and channel
table.

Table definitions

Table definitions are only required for libraries. They describe the configuration
tables such as path, channel, custom and invisible tables for the library. Each table
definition contains names, types and positions of the fields that make up the table.
See data type IC_DICT_FIELD in the IDK Programming Reference Manual for a
detailed description of this resource.

IC_PATHTABLE_BASENO IC_DICTIONARY_RCTYPE
BEGIN
 ID_PATHTABLE_DESC, IC_FF_NO_KEY, IC_FT_CHAR, 0, 160,
 0
END

IC_CHANNELTABLE_BASENO IC_DICTIONARY_RCTYPE
BEGIN
 ID_CHANNELTABLE_DESC, IC_FF_NO_KEY, IC_FT_CHAR, 0, 160
 0
END

The Intrface sample has very rudimentary tables. Both tables only have one field, a
20 character description field. Notice that no key fields are present. Keys are not
defined in the table definitions for the path and channel tables; INFOConnect
provides them by default. Invisible tables, however, do require that you define key
fields.

Writing INFOConnect Libraries for Windows 3.x

7–80 4173 5408-000

Table defaults

Each table definition requires an accompanying default record. When the user adds a
new path or new channel, the default data passed to your library will come from this
section of the resource file. See data type IC_DICT_FIELD in the IDK Programming
Reference Manual for a detailed description of this resource.

IC_PATHTABLE_BASENO IC_DEFAULT_RCTYPE
BEGIN
 "Path Description \0"
END

IC_CHANNELTABLE_BASENO IC_DEFAULT_RCTYPE
BEGIN
 "Channel Description\0"
END

CONFIGRCID

The configuration resource defines path templates. Path templates identify a group
of libraries that function together. Any INFOConnect component can define
templates, but they are most often used by External Interface Libraries. Service
libraries that are always used with the same External Interface Library can also make
use of templates. For more information on the CONFIGRCID RCDATA resource,
see IC_TemplateInit in the IDK Programming Reference Manual.

This template shows the Service sample library stacked over the Intrface sample
library:

CONFIGRCID RCDATA
BEGIN
 IC_TemplateInit
 IC_TemplateBegin "Intrface"
 IC_TemplateDescription "Sample Interface Library"
 IC_TemplateLibrary "Service"
 IC_TemplateLibrary "Intrface"
 IC_TemplateEnd
 IC_TemplateTerm
END

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–81

STRINGTABLE

You should already have a STRINGTABLE in your resource file. INFOConnect
requires the STRINGTABLE to contain some additional entries with text for things
like the application or library name, the vendor name, error messages, and so forth.

STRINGTABLE
BEGIN
 IC_MODULEID, QMODULEID
 IC_LIBRARYID, INTRFACE_CONTEXTSTRING
 IC_LIBRARYDESC, "Sample INFOConnect External Interface Library"
 IC_VENDOR, QVENDOR
 /* Strings naming each field in the path and channel tables */
 ID_PATHTABLE, "Path Configuration"
 ID_PATHTABLE_DESC, "PathDescriptionField"
 ID_CHANNELTABLE, "Channel Configuration"
 ID_CHANNELTABLE_DESC, "ChannelDescriptionField"
END

Writing INFOConnect Libraries for Windows 3.x

7–82 4173 5408-000

Version information resource

Windows 3.1 provides version checking capabilities to installation programs in its
file installation library, VER.DLL. The INFOConnect Installation Manager does
version checking when installing files that have version information in their resource
section. The sample programs and makefiles use the technique shown below.
Version information is compiled into the resource file if the WINSDKVER
environment variable is defined and if WINSDKVER indicates that the Windows 3.1
SDK is available. The VER.H header file is not available in the Windows 3.0 SDK.
The constants used on the right side of the #define statements (for example,
QMARKETINGNAME, QMODULEID) are generally defined in the .H file and are
specifically tailored for your component.

#ifdef WINSDKVER
#if (WINSDKVER >= 0x030a)
/* VER.DLL is only available in the Windows 3.1 SDK */
#include <ver.h>
#define VER_FILETYPE VFT_DLL
/* VFT_APP for applications */
/* VFT_DLL for libraries */

#define VER_FILESUBTYPE VFT_UNKNOWN
#define VER_FILEDESCRIPTION_STR QMARKETINGNAME
#define VER_INTERNALNAME_STR QMODULEID
#define VER_FILEVERSION NFILEVERSION
#define VER_PRODUCTVERSION NPRODUCTVERSION
#define IC_FILEVERSION_STR QVERSION
#define IC_PRODUCTVERSION_STR QVERSION
#define IC_LEGALCOPYRIGHT_STR QCOPYRIGHT
#define IC_LEGALTRADEMARKS_STR QTRADEMARK
#define IC_PRODUCTNAME_STR QPRODUCTNAME
#define IC_COMPANYNAME_STR QVENDOR
#include <icdef.rh>
#endif
#endif /* WINSDKVER */

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–83

version information

vendor

application or library name

INFOConnect resource header

table name

Library dictionary header

table type

table serial number

links to table descriptions

Default path record

INFOConnect resource file (.RC) layout

INFOConnect RCDATA

IC_RC_DICTIONARY RCDATA

STRINGTABLE

Path table description

field name

field type

field position

IC_RC_NODE

IC_DICT_NODE &

IC_DICT_TABLE

text for library name

String table entries

text for table names

text for field names

text fo vendor name

data type

data types

CONFIGRCID RCDATA

IC_RC_NODETemplate descriptions
data type

Default channel record

Channel table description

field name

field type

field position

Default invisible record

IC_DICT_FIELD

field name

field type

field position

Invisible table description

data type

Writing INFOConnect Libraries for Windows 3.x

7–84 4173 5408-000

Compiling the resource file

Resource files (.RC) for INFOConnect DLLs are compiled just like any other
resource file. The generic interface library, Intrface, was built with the following
statement:

rc -r intrface.rc

INFOConnect Header Files
An INFOConnect header file (.HIC) is supplied by each library so that the
information can be used not only by the library's source files, but also as needed by
other INFOConnect applications or libraries.

Each library must have a unique context string. Any INFOConnect component can
call IcGetContext with the defined context string to obtain the components context.

A table number must be assigned for each library table definition declared in the
library's resource file (.RC). The fields in each table must also be defined. These
table numbers and their field numbers are needed when using Configuration API
calls.

The tables are numbered sequentially, starting with one. The fields within each table
are also numbered sequentially starting with one, including PathID and ChannelID.
Adding comments about the key and field types provides useful information to
developer's using the .HIC file.

Note: If a field is obsolete, see Modifying Library Tables on page 7 - 10, comment
out the field number, do not delete it and renumber the fields.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–85

Library specific errors and statuses are also defined in the INFOConnect header file.
Refer to "Generating library-specific errors' on page 7 - 57 and "Communicating with
applications with status messages' on page 7 - 63.

#define REFLECT_CONTEXTSTRING "REFLECT"
#define REFLECT_TEMPLATEID "Reflect"

#define REFLECT_ID 1
#define REFLECT_VERSION 1

#define UIS_SAMPLE_REFLECT 0x00010001 /* ComponentNum == 1,1 */

/* Define Reflect's table numbers as 1 relative.
 Also define the table's field numbers. */

#define REFLECT_PATH_TABLENUM 1
 /* The path and channel fields are defined here
 but managed by the backplane. */
#define REFLECT_PATH_PATHID 1
#define REFLECT_PATH_CHANNELID 2

#define REFLECT_CHANNEL_TABLENUM 2
#define REFLECT_CHANNEL_CHANNELID 1
#define REFLECT_CHANNEL_PREFIX 2 /* 40 char IC_FT_STRINGI */
#define REFLECT_CHANNEL_ERRORFACTOR 3 /* IC_FT_INT field.
 Can force Xmt/Rcv errors.
 value =1 all Xmt/Rcvs are successful
 value =2 every other Xmt/Rcv is successful
 value =3 every third Xmt/Rcv is successful, etc. */
#define REFLECT_CHANNEL_SUFFIX 4 /* 40 char IC_FT_STRINGI */

#define REFLECT_ADMIN_TABLENUM 3
#define REFLECT_ADMIN_KEY 1 /* IC_FT_UNSIGNED */
 /* The following arbitrary value is used as the
 key when writing to the administrabive table. */
#define IC_ADMINTABLE_KEY 0x1234
#define REFLECT_ADMIN_PATHID 2 /* IC_FT_INT */

/* status types */
#define REFLECT_STATUS_PING 1

/* error types */
#define REFLECT_ERROR_SEVERE IC_ERROR_SEVERE

/* values and string numbers correspond */
#define REFLECT_ERROR_XMTERROR 1
#define REFLECT_ERROR_RCVERROR 2

Writing INFOConnect Libraries for Windows 3.x

7–86 4173 5408-000

Linking
INFOConnect libraries are linked like normal Windows DLLs. Service.dll, the
Dynamic-Link Library for the generic service library skeleton included with the
development kit was linked as follows:

link @service.lnk
rc service.res service.dll

The Resource Compiler is run after the linker to combine the .RES file created
earlier with the new .DLL file.

Linker (LNK) files for service libraries

A typical LNK file contains:

/noe/nod/map/line service.obj+c:\windev\lib\libentry
service.dll
service.map
icwin Sdllcew libw
service.def

The /NOD option allows you to specify the Windows libraries explicitly. It tells the
linker not to search any libraries specified in the object file to resolve external
references.

The /NOE option allows you to override an object file built into the libraries with one
of your own (like whook.obj). This option prevents the linker from searching the
extended dictionary, which is an internal list of symbol locations that the linker
maintains.

LIBENTRY.OBJ is provided with the Windows SDK and contains initialization code
required for all Windows DLLs.

IcWin.lib resolves all references to INFOConnect functions. Use IcWin20.lib when
compiling a library that has been coded to run with INFOConnect releases 2.0 and
3.0 .

SDLLCEW.LIB and LIBW.LIB are Windows libraries.

Refer to the Windows SDK documentation for detailed information about linking
requirements of DLLs.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–87

Module definition (.DEF) files for Service Libraries

A typical DEF file (for example, Service.def) is shown below. The EXPORTS
section must include the IcLib... entries as shown. The ordinal numbers on the IcLib
functions are important. Any functions that are called by Windows (for example,
dialog box callback functions) must be listed after the IcLib functions. The IDK
samples start the ordinal numbers at fifty for the functions called by Windows to
allow easy insertion of new IcLib functions in future ICS releases.

;***/
;* SERVICE.DEF */
;***/

LIBRARY Service
DESCRIPTION 'Sample INFOConnect Service Library'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE MOVEABLE DISCARDABLE PRELOAD

;DLLs require DATA SINGLE because there is only one instance
DATA SINGLE PRELOAD MOVEABLE
HEAPSIZE 4096
EXPORTS
 IcLibUpdateConfig @1
 IcLibCloseSession @2
 IcLibEvent @3
 IcLibGetString @4
 IcLibIdentifySession @5
 IcLibInstall @6
 IcLibLcl @7
 IcLibRcv @8
 IcLibOpenSession @9
 IcLibGetSessionInfo @10
 IcLibSetResult @11
 IcLibTerminate @12
 IcLibXmt @13
 IcLibVerifyConfig @14
 IcLibPrintConfig @15
 IcLibOpenChannel @16
 IcLibCloseChannel @17

; Don't forget to include callback functions in this list
 cbChannelConfigDlg @50
 cbPathConfigDlg @51
 cbAboutDlg @52

 WEP @53 RESIDENTNAME

Writing INFOConnect Libraries for Windows 3.x

7–88 4173 5408-000

Module definition (.DEF) files for External Interface Libraries

A typical DEF file (for example, Intrface.def) is shown below. The EXPORTS
section must include the IcLib... entries as shown. The ordinal numbers on the IcLib
functions are important. Any functions that are called by Windows (for example,
dialog box callback functions) must be listed after the IcLib... entries.

;**/
;* INTRFACE.DEF */
;**/

LIBRARY Intrface
DESCRIPTION 'Sample INFOConnect External-Interface Library'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE
CODE MOVEABLE DISCARDABLE PRELOAD

;DLLs require DATA SINGLE because there is only one instance
DATA SINGLE PRELOAD MOVEABLE
HEAPSIZE 4096
EXPORTS
 IcLibUpdateConfig @1
 IcLibCloseSession @2
 IcLibEvent @3
 IcLibGetString @4
 IcLibIdentifySession @5
 IcLibInstall @6
 IcLibLcl @7
 IcLibRcv @8
 IcLibOpenSession @9
 IcLibGetSessionInfo @10
 IcLibSetResult @11
 IcLibTerminate @12
 IcLibXmt @13
 IcLibVerifyConfig @14
 IcLibPrintConfig @15
 IcLibOpenChannel @16
 IcLibCloseChannel @17

; Don't forget to include callback functions in this list

 cbChannelConfigDlg @50
 cbPathConfigDlg @51
 cbAboutDlg @52

 WEP @53 RESIDENTNAME

The IMPLIB utility

You do NOT have to run the IMPLIB utility and create an import library for your
DLL. INFOConnect applications are not linked directly with your DLL; they are
linked with IcWin.lib, an import library provided with the development kit.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–89

PS2TTY - A Sample Service Library
PS2TTY scans receive buffers and removes any poll/select escape-sequences before
passing the buffer on to the application. It is useful in connections to A Series hosts.
PS2TTY is meant to be used with the simple TTY-like communications applications
in the IDK like IcXvtApp, IcWinApp, or IcDosApp. PS2TTY cleans up the displayed
output by removing MT-emulator commands that these sample programs are not
built to recognize. PS2TTY requires no path or channel configuration; simply insert
it in a path anywhere above the external interface.

What can I learn from PS2TTY?

PS2TTY is an example of a simple, filtering service library. The only code specific
to this library is in function IcLibEvent in the IC_RCVDONE processing.

Source file descriptions

PS2TTY.c C-language source

PS2TTY.h Header file

PS2TTY.hic Header file defining library-specific errors and
statuses

PS2TTY.rc Resource file

PS2TTY.dlg Configuration dialog source statements

PS2TTY.hpj Help project file for on-line help

PS2TTY.hh Header file for on-line help

PS2TTY.doc On-line help text in Microsoft Word format

PS2TTY.rtf On-line help text in Rich Text Format

PS2TTY.hlp On-line help text after Help Compiler processing

PS2TTY.def Module-definition file used to link

All source files needed to build PS2TTY.dll and PS2TTY.hlp are provided with the
IDK in the SAMPLE directory. To build the PS2TTY library, do:

nmake -f makelib LIBRARY=ps2tty

Writing INFOConnect Libraries for Windows 3.x

7–90 4173 5408-000

CoupleS - A Sample Service Library
Normally, statuses and errors are only 'seen' by the components in the current path:
the application, the service libraries and the external interface. Status and error
events are not sent across the connection by INFOConnect (except for accessories
executing locally on the same workstation). CoupleS is a service library that extends
the scope of statuses and errors by intercepting, encoding, and transmitting them
across the connection. A partner CoupleS library on the other end of the connection
decodes the status or error, generates the appropriate event, and passes it to the
application.

CoupleS is normally used with a LAN connection (for example, XNS). The partner
path at the other end of the connection must also use CoupleS. CoupleS intercepts
statuses initiated by the application, then encodes and transmits them across the
connection. The external interface below CoupleS never sees the status. Encoded
status messages coming across the connection are decoded and passed up to the
application as normal status messages. Status messages initiated by the external
interface below CoupleS are intercepted and discarded.

What can I learn from CoupleS?

CoupleS actually does transmits and receives "behind the application's back." It also
has a crude encoding/decoding capability to address the problem of transmitting
across Transparent=FALSE sessions.

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–91

Source file descriptions

CoupleS.c C-language source

CoupleS.h Header file

CoupleS.hic Header file defining library-specific errors and
statuses

CoupleS.rc Resource file

CoupleS.dlg Configuration dialog source statements

CoupleS.hpj Help project file for on-line help

CoupleS.hh Header file for on-line help

CoupleS.doc On-line help text in Microsoft Word format

CoupleS.rtf On-line help text in Rich Text Format

CoupleS.hlp On-line help text after Help Compiler processing

CoupleS.def Module-definition file used to link

All source files needed to build CoupleS.dll and CoupleS.hlp are provided with the
IDK in the SAMPLE directory. To build the CoupleS library, do:

nmake -f makelib LIBRARY=couples

Writing INFOConnect Libraries for Windows 3.x

7–92 4173 5408-000

Service - A Generic Service Library
Service can be used as the starting point for your own service library development.
It contains all the required functions that a service library DLL must provide. If
executed as is, Service will pass all data unaltered to and from the application.

Source file descriptions

Service.c C-language source

Service.h Header file

Service.hic Header file defining library-specific errors and
statuses

Service.rc Resource file

Service.dlg Configuration dialog source statements

Service.hpj Help project file for on-line help

Service.hh Header file for on-line help

Service.doc On-line help text in Microsoft Word format

Service.rtf On-line help text in Rich Text Format

Service.hlp On-line help text after Help Compiler processing

Service.def Module-definition file used to link

All source files needed to build Service.dll and Service.hlp are provided with the
development kit in the sample directory. To build the Service library, do:

nmake -f makelib LIBRARY=service

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–93

Reflect - A Sample External Interface
Reflect is a sample external interface that simply stores any transmitted messages
from the application and returns them to the application when a receive is issued.
Receive requests are queued if there is no stored message to return. As soon as a
transmit is processed, pending receives are processed and passed to the application.
Reflect can be built and executed without requiring an actual datacomm cable or
specific data communications environment.

Additional Features of Reflect

Reflect has been coded to demonstrate the library upgrade feature. Define
REFLECT01 to build Reflect with Release 2.0 configuration tables. That is, the table
contains only the prefix and error factor fields as in Release 2.0. Define
REFLECT02 to build Reflect with Release 3.0 configuration tables. That is, the table
contains additional fields (suffix and a bit field) and the prefix field is obsoleted.
Notice that during the upgrade, the data from the prefix field is salvaged and
converted to the suffix.

Source file descriptions

Reflect.c C-language source

Reflect.h Header file

Reflect.hic Header file defining library-specific errors and
statuses

Reflect.rc Resource file

Reflect.dlg Configuration dialog source statements

Reflect.hpj Help project file for on-line help

Reflect.hh Header file for on-line help

Reflect.doc On-line help text in Microsoft Word format

Reflect.rtf On-line help text in Rich Text Format

Reflect.hlp On-line help text after Help Compiler processing

Reflect.def Module-definition file used to link

All source files needed to build Reflect.dll and Reflect.hlp are provided with the
Development kit in the SAMPLE directory. To build the Reflect external interface,
do:

nmake -f makelib LIBRARY=reflect

Writing INFOConnect Libraries for Windows 3.x

7–94 4173 5408-000

IcStack2- A Sample External Interface
IcStack2 is a sample external interface that can be used to stack one INFOConnect
path on top of another. Although IcStack2 maps the INFOConnect API onto itself, it
also serves as a model for mapping any other event-driven API on to the
INFOConnect API

Source file descriptions

IcStack2.c C-language source

IcStack2.h Header file

IcStack2.hic Header file defining library-specific errors and
statuses

IcStack2.rc Resource file

IcStack2.dlg Configuration dialog source statements

IcStack2.hpj Help project file for on-line help

IcStack2.hh Header file for on-line help

IcStack2.doc On-line help text in Microsoft Word format

IcStack2.rtf On-line help text in Rich Text Format

IcStack2.hlp On-line help text after Help Compiler processing

IcStack2.def Module-definition file used to link

All source files needed to build IcStack2.dll and IcStack2.hlp are provided with the
Development kit in the SAMPLE directory. To build the IcStack2 external interface,
do:

nmake -f makelib LIBRARY=icstack2

Writing INFOConnect Libraries for Windows 3.x

4173 5408-000 7–95

Intrface - A Generic External Interface
Intrface can be used as the starting point for your own external interface
development. It contains all the required functions that an external interface DLL
must provide.

Intrface will compile successfully as is, however, if executed as is, it will never
return IC_XMTDONE or IC_RCVDONE events to the application.

Source file descriptions

Intrface.c C-language source

Intrface.h Header file

Intrface.hic Header file defining library-specific errors and
statuses

Intrface.rc Resource file

Intrface.dlg Configuration dialog source statements

Intrface.hpj Help project file for on-line help

Intrface.hh Header file for on-line help

Intrface.doc On-line help text in Microsoft Word format

Intrface.rtf On-line help text in Rich Text Format

Intrface.hlp On-line help text after Help Compiler processing

Intrface.def Module-definition file used to link

All source files needed to build Intrface.dll and Intrface.hlp are provided with the
development kit in the SAMPLE directory. To build the Intrface library, do:

nmake -f makelib LIBRARY=intrface

0–1

4173 5408-000 8–1

Section 8
Debugging

General Debugging Procedures
This section covers debugging techniques that work on all platforms.

Tracing INFOConnect Datacomm Activity
The INFOConnect trace facility traces datacomm traffic as it travels through the
INFOConnect architecture and writes it to a trace file named Trace.log. Calls and
events are displayed from the application's point of view. If multiple sessions are
being traced, they are all captured in one trace log. All INFOConnect API calls are
not recorded in Trace.log, only those involved in datacomm traffic. For example,
calls to IcAllocBuffer or ic_buf_alloc are not captured in Trace.log.

What does the output from Trace look like?

Each line beginning with Session: indicates either a function call made by an
application/ library or an event returned to the application. The
INFOConnect/Windows names of functions and events are used. If selected, the
contents of transmit and receive buffers are also displayed.

Debugging

8–2 4173 5408-000

Sample Trace File

Below is an actual trace listing of a short session between an INFOConnect terminal
accessory and a mainframe host. The trace shows the calls made by the accessory
and the events returned by INFOConnect. The traced session consisted of a login
attempt and the responses from the host.

 Session:0000 LoadLibrary C:\INFOCONN\ICAAPI16.DLL IC_OK
 Session:0000 LoadLibrary C:\INFOCONN\ICIPC16.DLL IC_OK
 Session:5003 IcMgrOpenSession PINE-VALLEY IC_OK
 Session:0000 LoadLibrary C:\INFOCONN\TCPLWP.EIL IC_OK
 Session:0000 Exit:TCP.IcLibOpenSession Result: IC_VERIFY_OK
 Session:0000 LoadLibrary C:\INFOCONN\ICTELNET.DLL IC_OK
 Session:0000 Exit:TELNET.IcLibOpenSession Result: IC_VERIFY_OK
 Session:2003 Evnt:IC_SESSIONESTABLISHED PINE-VALLEY:123.12.123.123 IC_OK
 Session:4003 Evnt:IC_SESSIONESTABLISHED PINE-VALLEY:123.12.123.123 IC_OK
 Session:6003 Evnt:IC_SESSIONESTABLISHED PINE-VALLEY:123.12.123.123 IC_OK
 Session:2003 Entr:Trace.IcLibRcv hBuff:11ee length(dec):511
 Session:2003 Evnt:IC_STATUS IC_CONNECT_OPEN
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_OFF
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_OFF
 Session:2003 Evnt:IC_RCVDONE hBuff:11ee length(dec):58

 0D 0A 0D 0A 55 4E 49 58 28 72 29 20 53 79 73 74 UNIX(r) Syst
 65 6D 20 56 20 52 65 6C 65 61 73 65 20 34 2E 30 em V Release 4.0
 20 28 70 69 6E 65 76 61 6C 79 29 0D 0A 0D 00 0D (pinevaly).....
 0A 0D 00 6C 6F 67 69 6E 3A 20 ...login:

 Session:2003 Entr:Trace.IcLibRcv hBuff:11ee length(dec):511
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_ON
 Session:2003 Entr:Trace.IcLibXmt hBuff:2576 length(dec):7

 75 73 65 72 69 64 0D userid.

 Session:2003 Evnt:IC_XMTDONE hBuff:2576 length(dec):7
 Session:2003 Evnt:IC_RCVDONE hBuff:11ee length(dec):9

 50 61 73 73 77 6F 72 64 3A Password:

 Session:2003 Entr:Trace.IcLibRcv hBuff:11ee length(dec):511
 Session:2003 Entr:Trace.IcLibXmt hBuff:2576 length(dec):13

 75 73 65 72 70 61 73 73 77 6F 72 64 0D userpassword.

 Session:2003 Evnt:IC_XMTDONE hBuff:2576 length(dec):13
 Session:2003 Evnt:IC_RCVDONE hBuff:11ee length(dec):2

 0D 0A ..

 Session:2003 Entr:Trace.IcLibRcv hBuff:11ee length(dec):511
 Session:2003 Evnt:IC_RCVDONE hBuff:11ee length(dec):24

 4C 6F 67 69 6E 20 69 6E 63 6F 72 72 65 63 74 0D Login incorrect.
 0A 6C 6F 67 69 6E 3A 20 .login:

Debugging

4173 5408-000 8–3

 Session:2003 Entr:Trace.IcLibRcv hBuff:11ee length(dec):511
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_OFF
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_ON
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_OFF
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_OFF
 Session:2003 Entr:Trace.IcLibLcl LCL_CLOSESESSION | LCL_RCVXMT
 Session:2003 Evnt:IC_SESSIONCLOSED
 Session:4003 Evnt:IC_SESSIONCLOSED
 Session:6003 Evnt:IC_SESSIONCLOSED
 Session:6003 IcMgrCloseSession PINE-VALLEY IC_OK
 Session:2003 Entr:Trace.IcLibSetResult IC_REACTIVATE_ON
 Session:4003 IcMgrCloseSession PINE-VALLEY IC_OK
 Session:0003 Timer Destroy Session IC_OK
 Session:0000 FreeLibrary AAPI16 IC_OK
 Session:0000 FreeLibrary IPC16 IC_OK
 Session:0000 FreeLibrary TCP IC_OK
 Session:0000 FreeLibrary TELNET IC_OK

How do I activate Trace?

Activating the INFOConnect Trace facility is done through the Administer menu.
You must be logged on as the Administrator.

The generated file is named Trace.log and is written to your DataDir directory which
is normally c:\windows. New trace sessions are appended to Trace.log, so you may
need to occasionally erase or prune Trace.log.

The Path and Path Template configuration dialogs also provide a Trace check box
that affects the Trace facility. See INFOConnect's on-line help for more information
about using Trace.

Adding Trace Information to the Trace Log
There are two functions, IcMgrTraceBuffer and IcMgrTraceResult, which allow
applications and libraries to write information to the Trace.log file when the trace log
is active.

The IcMgrTraceResult function can be called by to append a trace entry containing
an IC_RESULT in the trace log file.

IcMgrTraceBuffer can be used to add data or state information to the Trace.log file.
For example, an application or library may need to trace transmit and receive buffers
when buffers appear to be "lost." Another useful possibility is to log pertinent
session information after receiving an error result or an unexpected event.

Debugging

8–4 4173 5408-000

IC_OK is returned for both procedures if the request is valid, even if the trace log is
inactive and the information was not traced.

Note: The "Show Xmt/Rcv buffer contents" option in the Trace Log Options
window must be set in order to display the buffer contents in Trace.log when
using IcMgrTraceBuffer.

Sample code and Trace log entry

The following code sample demonstrating the usage of IcMgrTraceResult and
IcMgrTraceBuffer is from IcStack2:

 icerror = IcLcl(pSession->hIcSessionBelow, which);
 if IC_CHECK_RESULT_SEVERE(icerror) {
 /* Log the result and the session record in the trace log */
 IcMgrTraceResult(LibContext, pSession->hIcSession,
 IC_NULLEVENT,
 QMODULEID".IcLibLcl: Error from IcLcl call",
 icerror);
 IcMgrTraceBuffer(LibContext, pSession->hIcSession,
 IC_NULLEVENT,
 QMODULEID".IcLibLcl: Session Record",
 pSession, sizeof(SESSIONREC));

The following trace log entries occurred when an INFOConnect closed while a
session that included IcStack2 as an EIL was active:

Session:0003 ICSTACK2.IcLibLcl: Severe Error from IcLcl call IC_ERROR_BADPARAMETER
Session:0003 ICSTACK2.IcLibLcl: Contents of Session Record IC_OK
 00 00 03 00 80 07 44 04 01 00 01 00 53 59 53 54 D.....SYST
 45 4D 58 5F 58 58 58 58 00 20 20 20 EMX_XXXX.

Debugging

4173 5408-000 8–5

Using the Diagnostic Library
The diagnostic library can be used to detect and log interoperability problems
between applications and libraries in the Trace.log file. When trace logging is
enabled, the Trace.log will contain entries that can be analyzed so that corrections in
the library can be implemented. The diagnostic library can also be set up to display a
dialog box for each interoperability problem that is uncovered. Unit test your
application and/or library with the diagnostic library for a period of time in order to
detect interoperability problems.

The following interoperability problems are detected:

• Premature transmit and receive requests initiated by the application.

• Validation of the buffer handles in IC_XMTDONE and IC_RCVDONE events.

• Detection of premature events before the IC_SESSIONESTABLISHED event.

• Detection of informational or warning errors in IC_RCVERROR and
IC_XMTERROR messages.

See the INFOConnect on-line help for details on using the Diagnostic Library and the
interoperability problems it detects (and corrects as needed).

Using the Assert Macro in Applications
The assert macro is used liberally in the IDK sample applications for many error
conditions. XVT and Windows both support it. The following code fragment uses
assert to verify that IcAllocBuffer returned valid buffer handles:

 /* Allocate INFOConnect buffers. */
 s.uBufsize=min((unsigned)sinfo.max_size,MAXBUFSIZE);
 s.hXmtBuf = IcAllocBuffer(s.uBufsize);
 s.hRcvBuf = IcAllocBuffer(s.uBufsize);
 assert(s.hXmtBuf!=NULL);
 assert(s.hRcvBuf!=NULL);

When this code is executed, if the conditional expression in parentheses is FALSE,
assert prints a dialog box with a message of the form

Assertion failed: (s.hXmtBuf!=NULL) at line 1234

Assert is usually supported in any standard C runtime library. When it is time to
compile the production version of your code, a compile time flag disables code
generation of assert statements or you can replace the assertions with more

Debugging

8–6 4173 5408-000

formalized error messages. If you are not familiar with the assert macro, you should
look at it; it's a very useful debugging tool.

Note: The standard Assert macro cannot be used in Windows DLL libraries. The
IDK provides a version of assert that does work with DLLs. It is defined in
<IcAssert.h>

Using the INFOConnect -d Debug Option
INFOConnect can be started in debug mode using the -d option.

c:\infoconn\infoconn -d

This sets a flag that can be tested by applications and libraries using the IcIsDebug
function call. In debug mode, INFOConnect displays all error types returned to the
default error procedure (IcDefaultErrorProc or ic_default_error_proc) rather than
just some of the types.

IcIsDebug is needed by libraries because libraries don't normally have an execution-
time user-interface. The only way to activate debug code in a library would be to
recompile the library or add a button to the configuration dialog box.

The INFOConnect trace facility uses debug mode to choose between two methods of
writing to the trace file. In normal mode, the trace file is kept open until
IcLibTerminate. In debug mode, the trace file is flushed after every write. This
allows the trace file to be viewed at any time and provides a complete trace file even
if the system crashes, but affect performance.

Windows 3.x Debugging Procedures
This section covers debugging techniques unique to the Windows 3.x platform.

Windows 3.1 Issues
Special steps must be taken to develop Windows applications with the Windows 3.1
SDK if the application is to also run with Windows 3.0. See the Microsoft
documentation.

Debugging

4173 5408-000 8–7

Source Level Debugging
All of the major Windows-capable compilers provide a source level debugger
including Microsoft's CodeView for Windows and Borland's Turbo Debugger for
Windows.

Note: If you have an old compiler that doesn't include a source level debugger,
upgrade now! Early versions of some debuggers required a secondary
monochrome monitor and display adapter card, but current versions can run
on single monitor systems.

Using Debug version of Windows
Microsoft strongly recommends that developers test with the debug system binaries.
Various types of error checking are done and any errors or warning messages are sent
to the debug terminal. If you aren't running with a debugger or debug terminal, you
can run the DBWIN application (provided on the Windows SDK) to see messages
produced by the debug system. The SDK installation process sets up two batch files,
D2N.bat and N2D.bat, that switch between the normal and debug versions.

Win.ini debug options

The Windows 3.1 debug kernel has additional facilities activated through the Win.ini
file.

To force termination after invalid parameters are detected

[Kernel]
ErrorOptions=1

To detect overwrites to buffers passed into the Windows APIs

[Windows]
ILoveBear=0

Common Coding Mistakes
Applications cannot use a pending session handle

Don't use the session handle returned by IcOpenSession (or ic_open_session) until
the IC_SessionEstablished message (or E_IC_SESSION_EST event) has been
returned. See the discussion in "Opening a Session."

Debugging

8–8 4173 5408-000

Running with wrong or mixed versions of ICS

Multiple versions of INFOConnect can exist on the same machine, but extra
precautions must be taken. The installation directory of some of the INFOConnect
DLLs changed between INFOConnect releases. Also, a number of INFOConnect
DLLs have been added.

If you have installed INFOConnect 3.0, but execute an application from a directory
containing older INFOConnect DLLs, you can encounter problems. Problems may
also occur if the PATH environment variable specifies an INFOConnect directory
that contains older INFOConnect DLLs.

Wrong copy of <string.h>

Both Windows and Microsoft C provide a <string.h> header file. This can cause
UNRECOVERABLE APPLICATION ERRORS at execution time unless the
\WINDEV\INCLUDE directory has been specified before the \C\INCLUDE directory
in the INCLUDE environment variable.

Fix the INCLUDE variable as discussed in the System Verification Checklist in
Section 1, "Installation."

Insufficient stack size

If your code behaves differently from one execution to the next, you may need to
increase the stack size in the Module Definition file (.DEF). Windows automatically
increases the heap as needed, but not the stack. An insufficient stack can lead to
memory corruption during execution.

Inadvertently freeing INFOConnect buffers more than once

Be careful to only free INFOConnect buffers once. To avoid problems, it's a good
idea to set released buffer handles to NULL after calling IcFreeBuffer (ic_buf_free).
This is especially important in functions that could be executed several times during
some shutdown sequences. Windows can crash if the same buffer handle is released
twice.

Debugging

4173 5408-000 8–9

The following code fragment demonstrates freeing INFOConnect buffers:

void TerminateApplication(HWND hWnd)
{
 ...

 if (s.hXmtBuf != NULL) {
 IcFreeBuffer(s.hXmtBuf);
 s.hXmtBuf = NULL;
 }
 if (s.hRcvBuf != NULL) {
 IcFreeBuffer(s.hRcvBuf);
 s.hRcvBuf = NULL;
 }
}

Using trace entries as a debugging tool

Adding trace entries to the trace log using IcMgrTraceResult and IcMgrTraceBuffer
is a useful way of debugging code. It is also a convenient way to support the
production version of your code by adding log entries in code segments that should
never be reached or to log error results. See "Adding Trace Information to the Trace
Log" in this section for details on using IcMgrTraceResult and IcMgrTraceBuffer.

Using message boxes as a debugging tool

Interspersing message boxes throughout your code is a simple but useful debugging
technique, especially if you aren't able to run a source code debugger like CodeView
for Windows. However, be aware that message boxes can alter the timing of code
execution by yielding control to Windows at a time that ordinarily would not happen.
Service library and External Interface developers must be especially wary of this.

Note: It may be better to use IcMgrTrace... calls so as not to alter the timing of
code execution.

Version verification errors on resource files

Missing resources can result in version errors from INFOConnect. You can
inadvertently "lose" resources because of the way the Resource Compiler processes
#include directives. If you use #include directives, be aware that the Resource
Compiler only processes preprocessor directives from .H or .C files. This behavior is
documented in the Windows SDK literature.

0–1

4173 5408-000 9–1

Section 9
Packaging INFOConnect Components

Overview
What is the purpose of the INFOConnect Installation Manager?

The INFOConnect Installation Manager is a general purpose Windows installation
program that provides a common look and feel for all INFOConnect-based
workstation software. The Installation Manager runs as a Windows application and
provides the following basic capabilities:

• Installation (copying files from distribution media)

• Deinstallation (removing files from the workstation)

• Decompression of compressed distribution media

• File version checking

• Windows Program group modification

• Windows Font and bitmap installation

• Registration of INFOConnect accessories and libraries

Developers can also write code that is called during installation to perform further
customization like:

• Updating Win.ini, System.ini, Config.sys and AutoExec.bat

• Configuring INFOConnect paths

Packaging INFOConnect Components

9–2 4173 5408-000

How do I control the installation process?

There are three ways you control Installation Manager. You must write an
IcSetup.inf script file and you can optionally provide Exit Hook and Quick
Configuration libraries to further customize the installation process.

Terminology
The following terminology is specific to INFOConnect installation and packages:

Package

Users order and install INFOConnect packages based on their specific application
and connectivity needs. For maximum flexibility, INFOConnect solutions are
broken into different packages which are installed on the workstation in different
combinations and "plugged" into the INFOConnect architecture.

A package is a set of files transferred from distribution disks to the workstation.
Information about each installed package is saved in the installation database,
InstMgr.cfg. This information is used to deinstall a package later, if requested by the
user. A package can span more than one disk.

Installation Manager

The Installation Manager controls the installation and deinstallation of packages.
The Installation Manager allows INFOConnect accessories and libraries to be
registered in the INFOConnect configuration database, INFOConn.cfg. A series of
packages can be installed in any order by the user and the Installation Manager
insures that they are processed properly.

Install Shell

The Install Shell (Install.exe) bootstraps the installation process. When a user starts
an installation from the Windows Program Manager Run command, an Install Shell
is invoked which does a minimal amount of work before transferring control to the
Installation Manager.

Standalone Installation (Install)

An environment in which INFOConnect packages are installed for non-shared use by
an individual workstation. All of the package files are copied to a workstation
destination. The workstation operator is the administrator for all packages on that
workstation. (Install)

Packaging INFOConnect Components

4173 5408-000 9–3

Publish Installation (Install /A)

An environment in which an administrator installs INFOConnect packages for shared
use by multiple workstations. All of the package files are copied to a shared
destination which is typically on a file server. The administrator has single point
control over package availability and package configuration. The individual
workstation operator must subscribe to a published package in order to enable use of
the shared files.

Subscribe Installation (Install /N)

An environment in which published INFOConnect packages are enabled for use by an
individual workstation. Only a subset of the package files are copied to a
workstation destination. The workstation configuration is influenced by the
published package installation and configuration.

Complete Deinstallation (Install /U)

To completely remove all INFOConnect packages, including the Connectivity
Services packages, from the workstation. This includes package files, package
configuration and system modifications.

INFOConnect Packages window

The INFOConnect Packages window can be opened by selecting the INFOConnect
Manager Install Menu and then selecting Packages. A list of all installed packages
and a brief description is displayed.

The Installation Manager is executed by selecting the Add button to install or replace
a package, the Delete button to deinstall a package or the Examine button to display
package information.

Quick Configuration is initiated for an individual package by first selecting the
package and then selecting the Configure button. Quick Configuration is initiated for
all packages by selecting the Config All button.

INF files

INF files are text files that describe your INFOConnect package to the Installation
Manager. They look very similar to Windows INI files. The default INF file on a
package disk is named IcSetup.inf.

CodeDir

After the INFOConnect Connectivity Services is installed, Win.ini contains an
[INFOConnect] section with several statements. The CodeDir statement defines the
directory containing the standard INFOConnect accessories and libraries. The
default value for CodeDir is c:\infoconn.

Packaging INFOConnect Components

9–4 4173 5408-000

DataDir

After the INFOConnect Connectivity Services is installed, Win.ini contains an
[INFOConnect] section with several statements. The DataDir statement defines the
directory containing the configuration and installation databases. Also, accessories
typically save options files in the DataDir directory. The default value for DataDir is
c:\windows.

Installation Database

The INFOConnect installation database, InstMgr.cfg, is comprised of INFOConnect
package information. The Installation Manager maintains the information in the
installation database.

Configuration Database

The INFOConnect configuration database, INFOConn.cfg, is comprised of
INFOConnect component and configuration information. The Configuration
Manager maintains the information in the configuration database.

Registration

INFOConnect accessories and libraries are required to have special information
about themselves in their resource files. During registration, this information is
transferred to the Configuration Manager and recorded in the configuration database.

Quick Configuration Manager

The Quick Configuration (Quick Config) Manager controls the sequence of package
Quick Configuration. The Quick Config Manager calls the Quick Configuration
libraries after package installation and when selected in the INFOConnect Packages
window.

Quick Configuration Library

Each INFOConnect package can optionally contain one Quick Configuration (Quick
Config) library. A Quick Config library is a Windows DLL (Dynamic Link Library)
that is called after package installation and before package deinstallation. The intent
of Quick Configuration after package installation is to get the package into a turnkey
state with a minimum amount of user input. The intent of Quick Configuration
before package deinstallation is to allow the package to participate in package
removal.

Packaging INFOConnect Components

4173 5408-000 9–5

Sequence Number

Packages can optionally assign sequence numbers. When a series of packages is
installed at once, the sequence number determines the order that the quick config
libraries are processed by the Quick Configuration Manager.

Exit Hook Library

An Exit Hook library is a Windows DLL (Dynamic Link Library) that is called at
different points during the installation and deinstallation of a package. Exit hooks
are used to modify or augment the installation process.

Packaging INFOConnect Components

9–6 4173 5408-000

Writing a .INF Script File
This section describes how to write an installation script file (IcWinApp.inf) that:

• Installs IcWinApp.exe and registers it as an accessory in the configuration
database.

• Displays IcWinApp.txt at the end of the installation as a readme file.

• Builds an icon for the IcWinapp executable file in the Windows INFOConnect
group.

• Installs the IcWinApp.c, IcWinApp.h, and IcWinApp.rc source files in a
subdirectory called src, for additional demonstration purposes.

Note: For a "real" product, you may only want to install the .EXE and .TXT files.

To build IcWinApp with Microsoft C 7.0, do the following from the DOS prompt:

>cd \idk\sample
>nmake -f makefile PROGRAM=icwinapp

To execute this installation script (IcWinApp.inf), run the INFOConnect Manager
and select the Add button in the INFOConnect Package window. Enter the fully
qualified script file name (c:\idk\sample\icwinapp.inf) when prompted for a package.

Packaging INFOConnect Components

4173 5408-000 9–7

Sample .INF file

Here are the contents of IcWinApp.inf, the script file that controls the installation of
IcWinApp:

;***
;* ICWINAPP.INF Installation Script File *
;* *
;* Sample INFOConnect Windows application *
;* *
;***

[dialog]
 caption = "INFOConnect IcWinApp Accessory"

[package]
; 'name' cannot contain blank characters
 name = "IcWinApp"
 description = "Sample Accessory"
 version=3,0,0,0
 lowicver=2,0,0,0
 highicver=3,0,0,0

[data]
 defdir = c:\icwinapp
 codedir = ignore
 format = VER

[disks]
 1 = ., "INFOConnect IcWinApp Disk 1"

[needed.space]
 minspace = 120000

[app.copy.appstuff]
 #acc, 0:, Accessory
 #readme, 0:, Readme
 #source, 0:src

[acc]
 1:icwinapp.exe, icwinapp.exe, "IcWinApp Sample Accessory"

[readme]
 1:icwinapp.txt, icwinapp.txt, "Readme file"

[source]
 1:icwinapp.c, icwinapp.c, "Source files"
 1:icwinapp.h, icwinapp.h
 1:icwinapp.rc, icwinapp.rc

[progman.groups]
 INFOConnect, infoconn.grp

[INFOConnect]
 IcWinApp, icwinapp.exe

Packaging INFOConnect Components

9–8 4173 5408-000

The dialog section provides a string to be displayed in the title bar during package
installation. The package section provides a package name. It must not contain
blank characters. The format = VER statement is required. It specifies the syntax
being used in the .INF script file and that the Installation Manager will use Windows
Ver.dll to check version information. The disks section provides disk names that are
on the distribution disk labels. The needed.space section contains a value expressed
in bytes. The user is prompted if the workstation has insufficient room to hold the
package.

The app.copy.appstuff section begins to describe the files that make up the package.
All of the files in the package are divided into several groups and this section serves
as the index into those groups. Each group is defined by a single statement in the
app.copy.appstuff section. Each statement specifies where all files in that group are
to be copied. Each statement also specifies any special processing unique to that
group of files. In the sample, the Accessory label on the #acc statement specifies
that files in the acc section, in this case just IcWinApp.exe, are to be registered in the
configuration database as accessories. The #readme statement specifies that
IcWinApp.txt is to be displayed as the package ReadMe file at the end of the
installation. The #source section has no special processing requirements. All files
in this section are simply copied to the workstation in a subdirectory called src
(c:\infoconn\src).

The acc, readme and source sections were pointed to by the #acc, #readme and
#source statements in the app.copy.appstuff section. Each file to be installed
requires a single statement containing the input file name, destination file name, and
comment string to be displayed as that file is installed. Remember that common
characteristics applying to all files in the section, like the destination directory, are
specified in the app.copy.appstuff section.

Notice that only one comment string is specified in the source section. The "source
files" comment string will be displayed for all three source files during installation.
Another alternative is to specify a different comment string for each individual file
to be displayed during installation.

The progman.groups section serves as the index into the program groups that are to
be created or updated by this package. In the sample, the INFOConnect program
group is to be updated with an icon labeled "IcWinApp" that executes IcWinApp.exe.

Packaging INFOConnect Components

4173 5408-000 9–9

Creating the Package Diskette(s)
Root directory contents

You control and specify the directory structure of your distribution diskette in your
INF script file. However, several files must be in the root directory of the first
diskette in your package.

IcSetup.inf

A package must have an IcSetup.inf script file in the root directory.

Install.exe

A copy of the Install Shell (Install.exe)must exist in the root directory. The Install
Shell bootstraps the installation process. You can get this program from the root
directory of the IDK package itself.

File Compression

Files can optionally be compressed on the distribution diskette using Compress.exe,
the Microsoft compression utility. Compress is not part of the IDK, but is part of the
Microsoft Windows 3.x Software Development Kit. The naming convention for
compressed files is to replace the last letter of the file extension with an underscore
("_").

Packaging INFOConnect Components

9–10 4173 5408-000

A Closer Look at Processing Flow

Installation Flow
The processing flow of a package installation depends in a large measure on what
sections are present in the INF file and what options are specified there. This section
describes a full featured installation using all sections in the INF file. If some of
those sections have not been specified, the corresponding installation step is skipped.

Getting Started

The Install.exe program is run from the Windows Program Manager Run command.
For a floppy installation from drive A:, the user would enter a:\install. Install.exe
then reads the IcSetup.inf file.

A package installation may also be started by selecting the Add button in the
INFOConnect Packages window. When prompted for the package root directory,
enter the package root directory (for example, a:\ to install from a:\IcSetup.inf) or
enter a fully qualified script file name (for example, c:\idk\sample\icwinapp.inf).

Release Notes

If a release.notes statement is present in the package section of the INF, a dialog
box is presented with the specified file at the start of installation. This provides you
with a method for displaying text or instructions before installation gets underway.

Buttons are presented, giving the user the options of continuing with the installation
or quitting. Scroll bars are displayed on the right side of the box allowing the user
to scroll through the document if it is longer than one screen.

Packaging INFOConnect Components

4173 5408-000 9–11

Destination

A dialog box is now presented which asks the user for verification of the destination
directory.

This dialog box has a caption specified by the caption statement of the dialog
section of the INF.

The user is presented with a default destination. This default destination is taken
from the defdir statement of the data section in the INF. If there is no defdir
statement, the current value of Codedir in the Win.ini [INFOConnect] section is
used, if there is one from a previous INFOConnect product or installation. If there is
no Codedir statement in Win.ini, the default destination is C:\INFOConn. This is an
editable dialog box; the user can modify the destination.

The user's chosen destination is then checked against the value in Win.ini. If they
are different when installing INFOConnect Connectivity Services, a dialog box is
presented which states:

"INFOConnect section of WIN.INI mismatched. Overwrite Codedir = <original destination> with CodeDir = <user specified
destination>?

The user may select either the Yes or No button. If Yes is selected, the value of
Codedir is changed in Win.ini.

Bootstrap

When the user starts Install.exe from the Windows Program Manager Run command,
what is actually invoked is an Install Shell which does a minimal amount of work
before the Installation Manager takes over to do the main job of the install. The
bootstrap step transfers control from the Install Shell to the Installation Manager. If
the user has executed the Installation Manager from the INFOConnect Manager
Install menu, the bootstrap step is not necessary and is not done.

The Install Shell looks in Win.ini for an [INFOConnect] section and gets the
CodeDir value out of that section. The Install Shell then tries to run the Installation
Manager (InstMgr.exe) out of the CodeDir directory. If this fails, the user sees a
diagnostic message in a dialog box. IcSetup.inf is then passed from the Install Shell
to the Install Manager.

Packaging INFOConnect Components

9–12 4173 5408-000

Package Check

The Installation Manager checks to see if the package the user is copying already
exists. If it is, the user is prompted with a dialog box which states:

"The package name is already installed. Do you want to reinstall the package?"

The package name is that which is specified in the package section of the INF.

The user may select either the Yes or No buttons. If Yes is chosen, the Installation
Manager first removes the old package and then the installs the new package. If No
is chosen, the installation is discontinued.

App.Copy.Noremove Section

Sections specified in the app.copy.noremove section are now processed. Files
copied by these sections are not removed during package deletion, except during a
complete deinstall (install /U). This section can be used for copy protection files,
files shared across packages, or configuration information which you would not want
to have removed if the package was deleted.

App.Copy.Appstuff Section

The app.copy.appstuff section is processed next. This section specifies other
sections which contain the files to be copied to the destination. Sections can be of a
special type, indicating that the files require particular actions besides copying.

Copying

The main work of the installation is file copying. This is driven by the
app.copy.appstuff section which details what files are to be copied and any special
action that is taken for those files. This section is processed during a standalone,
local, and publish installation.

The user is presented with a progress indicator during file copying. If multiple disks
are required, the user is prompted to insert the appropriate disk.

Miscellaneous message boxes are displayed during file copying to report error
conditions or solicit user response.

Packaging INFOConnect Components

4173 5408-000 9–13

If this is a publish installation (install /A), the app.copy.publish and the
app.copy.subscribe sections are also processed. The app.copy.publish details what
files are to be copied and any special action that is taken for those files. The
app.copy.subscribe section actions are interpreted during a publish and will be
executed when a user subscribes to the package.

The app.copy.standalone section can be used to add special instructions which will
not be processed during a publish or subscribe installation.

Program Group

The user is asked for verification of the destination program group and is presented
with a default program group. This is an optional and editable dialog box. It is
controlled by the progman.groups section in the .INF script.

During a publish installation, the publish.progman.groups is processed first and
then the progman.groups section. The progman.groups section actions are
interpreted during a publish and will be executed when a user subscribes to the
package.

In addition, there is an standalone.progman.groups section which will not be
processed during a publish installation.

Installation Complete

When all files have been copied for the package being installed, the user is presented
with a dialog box saying "Package installation complete." At the top of this box are
optional control buttons: Help, ReadMe, and Modify. These buttons are present in
this dialog box only if the corresponding sections are present in the INF file.

The help type section copies the specified files to the destination directory. In
addition, the user is presented with a HELP button in the Installation Complete
dialog box which allows the user to enter directly into the last help file copied at the
specified topic.

The readme type section copies the specified files to the destination directory. In
addition, the user is presented with a README button in the Installation Complete
dialog box. If this button is chosen, NOTEPAD is launched with the readme text in
the last file copied for viewing.

Packaging INFOConnect Components

9–14 4173 5408-000

The optional modify button is provided in the Installation Complete dialog box if the
driver section type has been specified in the INF. The modify button launches the
Notepad with Config.sys. This enables the user to edit the Config.sys file to include
the drivers copied during the installation.

At the bottom of this dialog box is the question

"Do you want to continue with the installation of another package?"

This question is accompanied by Yes and No buttons.

Yes (Installing another package)

Selection of the Yes button starts a subsequent installation of a different package.

The user is presented with a dialog box which prompts the user to insert a new disk.
After the user OK's his selection, the Installation Manager restarts the installation
process at the Release Notes step described previously. (However, since InstMgr.exe
is already installed and running at this point, the Bootstrap step is skipped).

No (No more to install)

Selection of the No button causes the Installation Manager to continue through the
steps of quick configuration, if specified.

Quick Config

The Installation Manager now turns control over to the Quick Config Manager. The
Quick Config Manager sorts all of the installed packages based on the sequence
numbers and calls the quick config libraries. Installation terminates at this point.

Packaging INFOConnect Components

4173 5408-000 9–15

Deinstallation Flow
Package deinstallation occurs in one of two ways:

1. An explicit deinstall occurs when a user selects a package in the INFOConnect
Packages window and clicks the Delete button.

2. An implied deinstall occurs when a user clicks on the Add button in the
INFOConnect Packages window and specifies a package that is already installed.
The Installation Manager prompts the user with "Do you want to reinstall the
package?'. If the user clicks on the Yes button, the package is deinstalled and
then installed.

Deinstalling a package will only undo the installation actions. That is, files which
have been copied are removed (unless they are specified in the INF as special files
that should not be removed during deinstallation) and the entry is removed from the
installation database.

Note: During a complete deinstall (install /U) all files are removed, even if the
files are specified in the INF file as special files that should not be removed.

The Installation Manager first checks to see if any package files are in use. If a file
is in use, the file name is displayed to the user. The user has the option to stop using
the specified file and then click the OK button. This allows the package
deinstallation to continue. The other option is to just click the Cancel button which
stops the package deinstallation.

Deinstallation calls quick config so that it can undo the quick config action.
Additional database entries, for example path templates or channels, are not removed
during deinstallation.

The next phase of deinstallation is the deregistration of package accessories and
libraries in the INFOConnect configuration data base and package fonts with
Windows.

All package icons and files are then deleted to complete the package deinstallation.

Packaging INFOConnect Components

9–16 4173 5408-000

INF SYNTAX
The format of the .INF script file is similar to that of a Windows initialization (.INI)
file:

[section]
 entry=value

The .INF script file uses additional section syntax, some of which links to other
sections which contain the files to be copied to the destination. Sections can be of a
special type, indicating to the Installation Manager that the files require particular
actions besides copying. The following .INF entry demonstrates the copying and
registering of two accessories:

[app.copy.appstuff]
 #sample, 0:, Accessory

[sample]
 1:sample1.exe, sample1.exe, "Sample1 accessory"
 1:sample2.exe, sample2.exe, "Sample2 accessory"

Sections:

Each section is identified by an alphanumeric name enclosed in square brackets (for
example, [section]). Some section names are 'hard coded', requiring reserved names,
while other section names are user defined. The syntax within a section varies with
the section definition.

Comments:

A comment begins with a semicolon and can be included on the same line as syntax
as long as it follows the syntax.

Spaces:

Spaces are ignored, except when between double quotes. Blank lines are ignored.

Packaging INFOConnect Components

4173 5408-000 9–17

Conventions

Bold typeface denotes 'hard-coded', reserved values.

Only one statement per line.

Statements cannot be continued on multiple lines.

Items appearing in non-bold brackets are optional. Only the information within the
brackets should appear in the INF statement, not the brackets themselves.

If bold brackets are present, they are part of they syntax and must be included.

A list may be given within braces, such as a | b | c. The vertical bar, |, means "or."
Pick one item from the list to be included in the statement.

Packaging INFOConnect Components

9–18 4173 5408-000

Data Section
Optional Section.

Function:

The data section specifies the directory to which files are copied.

Syntax:

[data]
defdir = d
codedir = ignore
format = VER

where:

d Fully specified disk directory

Semantics:

The defdir statement defines the default destination directory. Defdir must include a
drive letter. If Win.ini contains a codedir statement, it overrides defdir (unless
codedir = ignore is specified). The defdir statement is optional. If it is not present,
the default is "C:\INFOConn".

The codedir statement is optional. The default is that the codedir statement in
Win.ini overrides the defdir statement in the INF. If codedir = ignore is specified,
the codedir statement in Win.ini does not override the defdir statement.

The format = VER statement is required for the syntax as described in this section. It
also triggers the Installation Manager to use Windows Ver.dll to check version
information.

Example:

[data]
 defdir = c:\icwinapp
 codedir = ignore
 format = VER

Packaging INFOConnect Components

4173 5408-000 9–19

Dialog Section
Optional section.

Function:

The dialog section allows you to specify a custom title for the Installation Manager's
dialog box. If this section is not present, the default caption is "INFOConnect
Installation."

Syntax:

[dialog]
caption = s

where:

s String, in double quotes, max length = 128

Semantics:

The caption statement determines the value that appears in the title bar of
Installation Manager's dialog box.

Example:

[dialog]
 caption = "INFOConnect Connectivity Services"

Packaging INFOConnect Components

9–20 4173 5408-000

Disks Section
Required section.

Function:

The disks section defines the distribution disks. These disk definitions can be for
physically different disks as well as for different directories on the same disk.

Syntax:

[disks]
n = path, "title"

where:

n The disk identifier, a single character 1-9 or A-Z (or a-
z).

path The source directory on the disk from which the
Installation Manager copies the requested files.

title String, a descriptive name for the disk. The title
should match the distribution label exactly.

Semantics:

The Installation Manager prompts the user to enter the correct disk for the requested
files. The path can be the root directory denoted by the period (.) or relative to the
root directory denoted by period-slash-directory (.\directory). Any number of disk
directories can be specified.

Example:

[disks]
 1 = ., "INFOConnect IcWinApp Disk 1"

Packaging INFOConnect Components

4173 5408-000 9–21

Package Section
Required section.

Function:

The package section provides information about the package to the Installation
Manager. When a user selects the INFOConnect Package window, a list is presented
showing the installed packages by the name and description given in the package
section.

Syntax:

[package]
name = s32
description = s64
version = v
lowicver = v
highicver = v
release.notes = filename
chainlink = n:scriptname
chaindesc = s64
chaintext = n:textfile
publish.chainlink = n:scriptname
publish.chaindesc = s64
publish.chaintext = n:textfile

where:

s32 String, in double quotes, max length = 32

s64 String, in double quotes, max length = 64
(IC_MAX_DESCRIPTIONSIZE)

v Major version, minor version, emu level and build revision

filename The name of the file displayed, including the filename extension.
This file is not copied as part of the installation process.

n: The disk identifier: a single character 1-9, A-Z or a-z.

scriptname The name of the .INF file used for chaining the installation of
another package after the current .INF file installation is
completed.

textfile The name of the file displayed, including the filename extension.
This file is not copied as part of the installation process.

Packaging INFOConnect Components

9–22 4173 5408-000

Semantics:

The name statement must specify a unique package identifier and is limited to 32
characters; no embedded blanks are allowed. It is used as the primary key into the
table of installed packages. The proposed convention is to use a marketing style id
for the name.

The description statement specifies a string which is displayed along with the name
field as a description of what the package contains.

The version statement is an informational field which assigns a version identifier to
the package. The lowicver statement defines the minimum INFOConnect API level
that the package requires. The highicver statement defines the highest INFOConnect
API level that the package supports. All three parameters set fields of type IC_VER
within the package table: pkg_version, low_icver, and high_icver.

If the release.notes statement is present, a dialog box is presented with the specified
file at the start of installation. This provides you with a method for displaying text
or instructions before the installation commences. This statement is optional.

If the chainlink and chaindesc (or publish.chainlink and publish.chaindesc for a
publish installation) statements are present, the Installation Manager will "chain"
install the package identified by chainlink. Chaindesc is a description of the "chain"
package. After the current package is installed, the user will be prompted: "Do you
want to install the <chaindesc> package?". The user has the option of selecting a Yes
or No button. If chaintext (or publish.chaintext) is present, a Pkg Info button is also
displayed. When the Pkg Info button is selected, Windows Notepad is executed with
the specified text file.

Example:

[package]
 name = "Sample"
 description = "Sample Description"
 version=1,0,0,0
 lowicver=2,0,0,0
 highicver=3,0,0,0
 release.notes = readme.txt
 chainlink=1:next.inf
 chaindesc="Next package description"
 chaintext=1:next.txt

Packaging INFOConnect Components

4173 5408-000 9–23

Progman.Groups Section
Publish.Progman.Groups Section
StandAlone.Progman.Groups Section

Note: Notice the spelling, these are progman.groups sections, not
program.groups sections.

Optional sections.

Function:

The progman.groups section defines program icons that are to be built during a
standalone and subscribe installation.

The publish.progman.groups section defines program icons that are to be built during
a publish (/A) installation.

The standalone.progman.groups section defines program icons that are to be built
during a standalone installation.

All three sections allow you to set the title of the Windows program group or to use
the INFOConnect program group.

Syntax:

[progman.groups] | [publish.progman.groups] | [standalone.progman.groups]
groupname [,groupfile.grp]

[section-name]
"description", appfile.exe, [iconfile.exe [,icon #]]

Packaging INFOConnect Components

9–24 4173 5408-000

where:

groupname Is the title Program Manager displays under the icon that
represents the group. The groupname is also the name of
the .INF section that defines the contents of the group.

groupfile.grp Is the filename in which Program Manager saves
information about the group. This parameter is optional. If
it is used, the .grp extension is required.

section-name The section name is the groupname.

description Is the text that will appear below the program icon when
displayed in Program Manager. The description can be in
double quotes (for example, "Shared Mgr").

appfile.exe Is the command line that starts the application. This can be
a quoted string (for example, "abc.exe /a").

iconfile.exe Is a file that contains the icon that represents the
<appfile.exe> application. This parameter is optional and
may be of type EXE or ICO. Typically, this is the
executable file itself. If omitted the first icon found in
<appfile.exe> is used.

icon # Is the offset of the icon within the <iconfile.exe> file. This
parameter is optional, but if used is zero relative. To use
the nth icon, specify the number n-1 in this field.

Semantics:

If 'INFOConnect' is used under [progman.groups] it links to the [INFOConnect]
section that defines the icon values as well as naming the Windows Program
Manager program group. When the INFOConnect Connectivity Services package is
installed, the user is given to option to change the name of the INFOConnect
program group. The name is recorded in WIN.INI as ProgramGroup. If any other
script file references the "INFOConnect" group name, the value of ProgramGroup
will be inserted in its place. A script file can choose its own program group by using
a different groupname link in the script file.

Note: INFOConnect is a 'hard coded', case sensitive reserved value.

Packaging INFOConnect Components

4173 5408-000 9–25

Examples:

The following code fragment demonstrates the progman.groups section using
INFOConnect as the program group. The IcWinApp icon will be added to the
INFOConnect program group with a description of IcWinApp. Remember, if the
INFOConnect program group name was modified during installation of ICS, that
program group name will be substituted for INFOConnect.

[progman.groups]
 INFOConnect, infoconn.grp

[INFOConnect]
 IcWinApp, icwinapp.exe

Examples:

The following code fragment demonstrates the progman.groups section using
IcWinApp as the program group. An IcWinApp program group will be created in
Program Manager if it doesn't exist. An IcWinApp icon will be built and added to
the IcWinApp program group with a description of IcWinApp Sample.

[progman.groups]
 IcWinApp, icwinapp.grp

[IcWinApp]
 "IcWinApp Sample", icwinapp.exe

The following code fragment demonstrates the publish.progman.groups section. An
IcAdmin program group will be created in Program Manager if it doesn't exist. An
INFOConnect icon will be built and added to the IcAdmin program group with a
description of Shared Manager.

[publish.progman.groups]
 IcAdmin, icadmin.grp

[IcAdmin]
 "Shared Manager", "infoconn.exe /A"

Packaging INFOConnect Components

9–26 4173 5408-000

Needed.Space Section
Required section.

Function:

The needed.space section defines how much disk space, in bytes, the application
requires. If the specified amount of space is not available, the user is prompted to
specify a different destination or exit the installation.

Syntax:

[needed.space]
minspace = i

where:

i Integer number of needed disk space in bytes

Example:

[needed.space]
 minspace = 100000

Packaging INFOConnect Components

4173 5408-000 9–27

App.Copy.AppStuff Section
App.Copy.NoRemove Section
App.Copy.Publish Section
App.Copy.Subscribe Section
App.Copy.StandAlone Section

Optional sections.

Function:

You may define one or more copy sections in the .INF script specifying which files
to copy from the release disk(s) to the destination directory. These sections can be a
simple list of files as in the undefined type section or they can specify a special type
of file to copy such as in a library or a font type section. The following is a list of
the "hard coded" sections available in the install script (.INF) file:

• The app.copy.appstuff section contains installation instructions that are executed
during standalone, publish (install /A) and subscribe (install /N) installations.

• The app.copy.noremove section contains installation instructions that are
executed during standalone, publish and subscribe installations. It defines files
to be copied which are not removed by the deinstallation process, except during
a complete deinstall (install /U).

• The app.copy.publish section contains installation instructions that are executed
during a publish installation.

• The app.copy.subscribe section contains installation instructions that are
interpreted during a publish installation and are executed during a subscribe
installation.

• The app.copy.standalone section contains installation instructions that are
executed during a standalone installation.

Packaging INFOConnect Components

9–28 4173 5408-000

Syntax:

[app.copy.appstuff] | [app.copy.noremove] | [app.copy.publish] |
[app.copy.subscribe] | [app.copy.standalone]
 #section-name, d:dest [, type section]

[section-name]
 n:source-file, dest-file, "desc" [,topic-index | ,delete | ,font-name]

where:

section-name The name of the INF section that lists the files to be copied.

d A character representing the destination directory where:

0: Represents the installation directory
$: Represents the Codedir directory
%: Represents the Datadir directory
&: Represents the windows directory
^: Represents the windows system directory
!: Represents the installation directory (0:) during a
 standalone or publish install. During a subscribe install,
 designates that the files are to be moved to the
 workstation so that it does not share the published files.

dest The pathname of the destination directory to which the
Installation Manager copies the requested files.

[, type section] The following are the different section types which can be
specified in the INF to copy files. Typed sections are pointed
to by one of the copy sections:

• The accessory type section copies the specified files to
the destination directory. In addition, the files are
registered as accessories in the configuration database.
INFOConnect accessories are required to have special
INFOConnect-related resources in their resource files.
During registration, this information is transferred to the
Configuration Manager and recorded in the
configuration database.

• The bitmap type section copies the specified files to the
Windows directory. The user is informed of this action
by the final dialog box.

Packaging INFOConnect Components

4173 5408-000 9–29

[, type section]
(continued)

• The driver type section copies the specified files to the
destination directory. In addition, the user is presented
with a MODIFY button on the Installation Complete
dialog box. If chosen, Windows NOTEPAD is launched
with C:\Config.sys loaded for user viewing and
modification.

• The font type section copies the specified .FON files to
the Windows system directory. Font-name is an optional
parameter as defined in WININI2.txt under [FONTS].
The font is then registered with Windows with the
AddFontResource function. For Windows 3.1 or higher,
a .TTF file is copied to the destination directory.
CreateScalableFontResource is executed to create a
.FOT file in the destination directory. The font is then
registered with Windows with the AddFontResource
function.

• The help type section copies the specified files to the
destination directory. In addition, the user is presented
with a Help button in the Installation Complete dialog
box which allows the user to enter directly into the last
help file copied at the specified topic. Therefore, only
one help section should be specified. If more than one
help section is specified, all the files listed are copied,
but only the last file in the last section is accessed by the
Help button. An optional parameter for the help type
section is topic-index. A non-zero value denotes a help
topic. A zero value denotes an index.

• The library type section copies the specified files to the
destination directory. In addition, the files are registered
as libraries in the configuration database. If the library
has templates in it, the template resources are also
registered. INFOConnect libraries are required to have
special INFOConnect-related resources in their resource
files. During registration, this information is transferred
to the Configuration Manager and recorded in the
configuration database.

• The noremove type section marks the section as a "no
remove" section. The files are not deleted during
package deinstallation. This type section can be used
for files that are shared across packages.

Packaging INFOConnect Components

9–30 4173 5408-000

[, type section]
(continued)

• The purvey type section copies files to the Windows
directory. The files being copied are OEM files. If these
files are already in use, the Installation Manager checks
to see what version of the files are currently loaded. If
the 3.1 version is already present, the Installation
Manager does not need to copy the file. If the 3.0
version of the file is present, the Installation Manager
gives the user an error message telling them to close the
in-use file so that it can be copied.

• The readme type section copies the specified files to the
destination directory. In addition, the user is presented
with a Readme button in the Installation Complete dialog
box. If this button is chosen, Windows NOTEPAD is
launched with the readme text in the last file copied for
viewing. Therefore, only one readme section should be
specified. If more than one is specified, all the files listed
are copied, but only the last file in the last section is
accessed by the Readme button.

• The system type section copies the specified files to the
Windows system directory (c:\windows\system). An
optional parameter for the system type section is delete.
If a file of the same name exists in the destination
directory, it is deleted.

• The template type section copies the specified files to
the destination directory. In addition, all template
resource data contained in the files is extracted and
registered in the configuration database.

• The undefined type section copies the specified files to
the destination directory. No special actions are taken
for those files. The undefined type sections are sections
where the optional section-type parameter has not been
specified. You should not put "undefined" as a section
type in the syntax.

• The windows type section copies the specified files to
the Windows directory (c:\windows). An optional
parameter for the windows type section is delete. If a file
of the same name exists in the destination directory, it is
deleted.

• The winpurvey type section copies files to the windows
directory. The files being copied are OEM files. If these
files are already in use, the Installation Manager checks
to see what version of the files are currently loaded. If
the 3.1 version is already present, the Installation
Manager does not need to copy the file. If the 3.0
version of the file is present, the Installation Manager
gives the user an error message telling them to close the
in-use file so that it can be copied.

Packaging INFOConnect Components

4173 5408-000 9–31

n: The disk identifier: a single character 1-9, A-Z or a-z.

source-file Specifies the name of a file or set of files from which you want
to copy, including the filename extension.

The source file can be either compressed or uncompressed.
The convention from the Microsoft compress utility is to
replace the last letter of the file extension with an underscore
("_") if the source is a compressed file. The Microsoft VER.dll
library, included with INFOConnect, is used to copy the file
and thereby provides decompression and version support as
well.

dest-file Specifies the name of the file or set of files to which you want
to copy, including the filename extension.

desc Descriptive text that is being displayed as the file is being
copied. If this field is blank the previous value will continue to
be used.

topic-index Option for the help type section.

delete Option for the system and windows type sections.

font-name Option for the font type section.

Semantics:

In some cases, it may be necessary to create a dummy directory level; that is, a
directory which holds only directories but no actual files. For example, if the INF
writer wishes to place files in a directory \A\B, he must first create the directory \A,
then the directory \A\B can be created. The directory \A is referred to here as a
dummy directory. To create that dummy directory, the INF writer should specify a
section for that directory. The section that is specified must be present and empty.
The IcSetup.inf file for the IDK contains examples of creating dummy directories.

Packaging INFOConnect Components

9–32 4173 5408-000

Example:

The following example demonstrates the syntax of type sections described above:

[app.copy.appstuff]
 #acc, 0:, Accessory
 #readme, 0:, Readme
 #source, 0:src
 #bitmap, 0:, Bitmap
 #drvr, 0:, Driver
 #lib, 0:, library
 #help, 0:, help

[app.copy.noremove]
 #unitslib, 0:, System
 #unitsutil, $:
 #fonts, 0:, Font

[app.copy.publish]
 #publish, 0:

[app.copy.subscribe]
 #subscribe, 0:

[acc]
 1:sample.exe, sample.exe, "Sample Accessory"

[readme]
 1:readme.txt, readme.txt, "Readme file"

[source]
 1:sample.c, sample.c, "Source files"
 1:sample.h, sample.h
 1:sample.rc, sample.rc

[bitmap]
 1:sample.bmp, sample.bmp, "Bitmap file"

[drvr]
 1:DEVCOM.SYS, DEVCOM.SYS, "Device Driver"

[fonts]
 1:ABC.FON, ABC.FON, "ABC.FON", Helv
 1:XYZ.TTF, XYZ.TTF, "True Type XYZ"

[lib]
 1:reflect.dll, reflect.dll, "Reflect External Interface"

Packaging INFOConnect Components

4173 5408-000 9–33

[help]
 1:reflect.hlp, reflect.hlp, "Reflect On-line Help"

[unitslib]
 1:ICCUA.DLL, ICCUA.DLL, "Usage Allowances DLL"

[unitsutil]
 1:ICCUNITS.EXE, ICCUNITS.EXE, "Usage Units Utility"
 1:ICCUNITS.HLP, ICCUNITS.HLP, "Usage Units Util Help"

[publish]
 1:INSTALL.EXE, INSTALL.EXE, "INSTALL.EXE"

[subscribe]
 1:INSTALL.EXE, INSTALL.EXE, "INSTALL.EXE"

Packaging INFOConnect Components

9–34 4173 5408-000

INF Examples

IcWinApp INF
The following is the INF file for IcWinApp from the IDK sample directory. It
illustrates the use of accessory, readme and undefined type sections.

;***
;* ICWINAPP.INF Installation Script File *
;* *
;* Sample INFOConnect Windows application *
;* *
;***

[dialog]
 caption = "INFOConnect IcWinApp Accessory"

[package]
; 'name' cannot contain blank characters
 name = "IcWinApp"
 description = "Sample Accessory"
 version=3,0,0,0
 lowicver=2,0,0,0
 highicver=3,0,0,0

[data]
 defdir = c:\icwinapp
 codedir = ignore
 format = VER

[disks]
 1 = ., "INFOConnect IcWinApp Disk 1"

[needed.space]
 minspace = 120000

[app.copy.appstuff]
 #acc, 0:, Accessory
 #readme, 0:, Readme
 #source, 0:src

[acc]
 1:icwinapp.exe, icwinapp.exe, "IcWinApp Sample Accessory"

Packaging INFOConnect Components

4173 5408-000 9–35

[readme]
 1:icwinapp.txt, icwinapp.txt, "Readme file"

[source]
 1:icwinapp.c, icwinapp.c, "Source files"
 1:icwinapp.h, icwinapp.h
 1:icwinapp.rc, icwinapp.rc

[progman.groups]
 INFOConnect, infoconn.grp

[INFOConnect]
 IcWinApp, icwinapp.exe

Packaging INFOConnect Components

9–36 4173 5408-000

Reflect INF
The following is the .INF file for Reflect from the IDK sample directory. It
illustrates the use of library and help type sections.

;***
;* REFLECT.INF Installation Script File *
;* *
;* Sample INFOConnect Windows Library *
;* *
;***

[dialog]
 caption = "INFOConnect Reflect EIL"

[package]
; 'name' cannot contain blank characters
 name = "Reflect"
 seqnumber = 4000
 description = "Sample External Interface"
 version=3,0,0,0
 lowicver=3,0,0,0
 highicver=3,0,0,0

[data]
 defdir = c:\infoconn
 format = VER ; Use Ver Utility, three parameters copy-from sections
 ; DOS copy, two parameters copy-from sections

[disks]
 1 = ., "INFOConnect Reflect Disk 1"

[needed.space]
 minspace = 70000

[app.copy.appstuff]
 #lib, 0:, library
 #help, 0:, help

[lib]
 1:reflect.dll, reflect.dll, "Reflect External Interface"

[help]
 1:reflect.hlp, reflect.hlp, "Reflect Online Help"

4173 5408-000 10–1

Section 10
Converting from Previous Releases

This section contains two subsections: "Converting from Release 2.0 to 3.0" and
"Converting from Release 1.0 to 2.0."

Note: Be careful when keeping multiple versions of the IDK on your machine.
Verify that the compiler and/or linker is not finding more than one of them.
This is a common situation that causes compilation errors. Check all the
directories in your INCLUDE environment variable for IcDef.h, one of the
INFOConnect header files. Be sure the compiler only finds one copy of
IcDef.h.

Converting From Release 2.0 to 3.0
This section describes the new features of INFOConnect Release 3.0. It also
identifies new features that are available to existing 2.0 INFOConnect applications
and libraries after implementing source changes.

3.0 Features

Architecture Diagram

The main difference between the INFOConnect 2.0 and 3.0 architecture is the
addition of a new INFOConnect component, the Application Interface Library (AIL).
The AIL component of an INFOConnect session allows for the coexistence of
multiple communications interfaces since it provides the session related interfaces of
the Accessory Application Programming Interface (AAPI).

Converting from Previous Releases

10–2 4173 5408-000

The INFOConnect architecture diagram has been updated to illustrate the flow of
data through the different INFOConnect components. The large vertical arrows
represent the application's data passing through the INFOConnect architecture. The
thinner black lines indicate the flow of control through the INFOConnect
architecture. The INFOConnect Manager controls all interaction between the four
components of the INFOConnect architecture: Accessory/Application, Application
Interface Library, Service Library, and External Interface Library.

Figure 10–1. INFOConnect 3.0 Architecture

Manager

Accessory/

Application Layer

Presentation Layer

Transport Layer

Service Library

External Interface

Interface Library

External
Interface Library

Application

Transports

Session Layer

INFOConnect Components

Application

Converting from Previous Releases

4173 5408-000 10–3

Manager Components

The following is a list of each Manager Component, its dynamic link library (.DLL)
or executable (.EXE) name, and the API it provides to Applications, Accessories and
Libraries:

Manager Component DLL/EXE API

INFOConnect Manager INFOConn.exe -

Communication Manager IcMgr.dll Library API and Manager API

Configuration Manager IcMgrCfg.dll Configuration Accessory API

Installation Manager InstMgr.exe -

Quick Configuration
Manager

IcQCfg.exe -

Database Manager IcDb.dll -

Utilities IcUtil.dll and
IcAbout.dll

-

Note: The Application Interface Library (IcAAPI16.dll) provides the session
related interfaces of the ICS Accessory Application Programming Interface
(AAPI).

INFOConnect release 3.0 contains the following changes:

• CommMgr.dll is now called IcMgr.dll. CommMgr.dll is now a stub that calls
IcMgr.dll or IcAAPI16.dll as appropriate.

• The session related interfaces of the Accessory Application Programming
Interface (AAPI) are provided by the Application Interface Library. The
Communication Manager component provides the rest of the APIs and the non-
session related interfaces of the AAPI to accessories, applications and libraries.

See Section 6 "A Closer Look at the INFOConnect Architecture," for a detailed
description and diagram of the Manager Components.

Converting from Previous Releases

10–4 4173 5408-000

Application Interface Library

An Application Interface Library (AIL) is the component that supports a specific set
of INFOConnect interfaces and provides the application interface to INFOConnect
communications. In INFOConnect 3.0, the INFOConnect Accessory AIL
(IcAAPI16.dll) exports the session related interfaces of the Accessory API for the
Windows (Win16) platform.

The AIL component of an INFOConnect session allows for the coexistence of
multiple communications interfaces. The AIL requests establishment of an
INFOConnect session by calling the Communication Manager to associate the AIL
with a path. This allows different applications to use the same path at the same time,
or different times, even though they may use different communication APIs.

Interprocess Interface Library

An Interprocess Interface Library (IIL) acts as both an AIL and an EIL. An IIL
associates two sessions in different processes by internally linking the EIL role of
one session to the AIL role of the other session. The IIL is automatically included in
sessions when an AIL requests a path that must be opened in a different process. An
IIL shields the application from needing to know which underlying environment the
INFOConnect subsystem is running in.

Stack Interface Library

A Stack Interface library acts as both an AIL and an EIL. A Stack library associates
two sessions in the same processes by internally linking the EIL role of one session
to the AIL role of the other session. The Stack library associates two sessions by
internally linking the EIL role of one session to the AIL role of the other session.
Stack libraries can be included in path templates as an EIL.

Switching Library

A type of Stack Interface library that stacks one session (where it is configured as an
EIL) on top of another session and filters the data stream for commands to open and
close the lower session.

Hook Library

A special purpose library that provides special features to the INFOConnect
Connectivity Manager. The INFOConnect Trace Facility is a hook library that
manages the trace log file and writes trace information to it. Details on how to add
entries to the trace log are provided in Section 8, "Debugging."

Converting from Previous Releases

4173 5408-000 10–5

Shell

A Shell is an INFOConnect accessory that runs as the INFOConnect Manager. The
INFOConnect architecture requires the Manager to be a separately running Windows
task. The Manager can optionally provide a user interface to allow session
monitoring. It may also include a configurator. Different INFOConnect shells can
be developed using the INFOConnect Shell API. Ic16SS.exe is an alternate
INFOConnect Shell available with INFOConnect 3.0.

Configuration API

The Configuration API provides interfaces to get and set individual configuration
fields within any INFOConnect Component. The Configuration API can be used by
an accessory or library which has been initialized as a Configurator.

Configurator

A Configurator is an INFOConnect accessory that provides the user interface for
INFOConnect configuration. The INFOConnect architecture allows more than one
configurator to be executing simultaneously. Configurators use the Configurator
API.

ICS Version Numbers

INFOConnect Connectivity Services version numbers contains four fields: major
version, minor version, emu level, and build revision. IC_VERSION_FILE and
IC_VERSION_PRODUCT are defined in IcDef.h as follows:

#define IC_VERSION_FILE IC_MAJOR_VERSION, IC_MINOR_VERSION, IC_EMU_LEVEL
 IC_BUILD_REVISION
#define IC_VERSION_PRODUCT IC_MAJOR_VERSION, IC_MINOR_VERSION, IC_EMU_LEVEL,
 IC_BUILD_REVISION

Converting from Previous Releases

10–6 4173 5408-000

The File Version and Product Version can be viewed as follows:

/* File/Product Version Information */
/* image format 3.00 0 (000) */
/* * Major version */
/* ** Minor version */
/* * EMU Level */
/* *** Build revision */

Using major release 3.0 as an example: IC_MAJOR_VERSION is 3 and
IC_MINOR_VERSION, IC_EMU_LEVEL, and IC_BUILD_REVISION are 0.

Another way to look at ICS version numbers is to group the major version and minor
version fields as "Version" information and the EMU level and build revision fields
as "Revision" information. The IC_VER_INFO data structure allows programmers
to access ICS version information as four BYTE fields or two WORD fields:

typedef LONG IC_VER;
typedef union {
 IC_VER IcVer;
 struct {
 WORD Rev;
 WORD Ver;
 } w;
 struct {
 BYTE Revision;
 BYTE EmuLevel;
 BYTE MinorVersion;
 BYTE MajorVersion;
 } b;
} IC_VER_INFO;

To continue the 3.0 example, Ver consists of major and minor version and is
equivalent to IC_VERSION_3_0 (defined as 0x0300). Rev, consists of EMU level
and revision and is equivalent to IC_REVISION_3_0 (defined as 0x0000)
IC_VERSION_... and IC_REVISION_... defines are also found in IcDef.h.

Converting from Previous Releases

4173 5408-000 10–7

Component Numbers

Component numbers are used by Configurators to configure INFOConnect
components. There are two types of component numbers: generic and branded
(supplier specific). Generic and branded component number consists of two parts: a
component number and a supplier number.

The supplier number and component number of a generic IC_COMPONENT are
assigned by the Malvern Development Group. Generic IC_COMPONENT values are
defined in Ic.hic.

An INFOConnect component with a non-zero generic component number must
perform the same function as other INFOConnect components that designate the
same generic number. The configuration information for the generic component is
defined in the specified generic component's .HIC file. For example, a library using
a generic number of IC_GENERIC_TCP must use the configuration information
defined in IcTCP.hic.

The branded IC_COMPONENT uniquely identifies the INFOConnect component.
The supplier number of a branded IC_COMPONENT is assigned by the Malvern
Development Group. The branded IC_COMPONENT supplier numbers are defined
in Ic.hic. The component number of a branded IC_COMPONENT is assigned by the
vendor.

Trace Functions

There are two functions, IcMgrTraceBuffer and IcMgrTraceResult, which allow
applications and libraries to write information to the trace.log file when the trace log
is active.

The IcMgrTraceResult function can be called to append a trace entry containing an
IC_RESULT in the trace.log file. IcMgrTraceBuffer can be used by to add data or
state information to the trace log. These two functions can be used in conjunction
with one another if an unexpected error result is received: first log the result with
IcMgrTraceResult and then log pertinent session information with
IcMgrTraceBuffer. IcMgrTraceBuffer can also be used to trace transmit and receive
buffers which appear to be "lost."

Details on how to add entries to the trace log are provided in Section 8, "Debugging."

Converting from Previous Releases

10–8 4173 5408-000

IC_STATUS_BUFFER

When an application needs to exchange more information with an ICS library than
IC_RESULT_VALUE can store, it can send a buffer of information with the
IC_STATUS_BUFFER extended status. Extended statuses can be exchanged in two
ways: synchronously and asynchronously. Information on using extended statuses
can be found in Chapter 7, "Writing INFOConnect Libraries for Windows 3.x."

Changes Affecting Applications and Libraries

INFOConnect Version Identification

Note: This section provides information on identifying the INFOConnect release
levels that your application or library has been coded to run with. Your
application or library can run with INFOConnect 3.0 without making any
modifications. Do not change the INFOConnect version information to
reflect INFOConnect 3.0 until the modifications specified in "Changes
Affecting Applications and Libraries" and "Changes Affecting Applications"
or "Changes Affecting Libraries" have been completed.

The INFOConnect RCDATA section of the resource file (.RC) identifies the
minimum and maximum INFOConnect Connectivity Services versions for which
your application or library has been coded.

The package section of an installation script file (.INF), which is used to install an
INFOConnect package, contains similar INFOConnect Connectivity Services version
numbers for the package.

Converting from Previous Releases

4173 5408-000 10–9

INFOConnect RCDATA version information

The INFOConnect RCDATA section of the application's or library's resource file
contains a minimum ICS version/revision level, a maximum ICS version/revision
level.

The RCDATA section only needs to be updated if the application or library is using
INFOConnect 3.0 functionality. Otherwise, continue to use the 2.0 format.

INFOConnect RCDATA
BEGIN
 IC_VERSION_2_0,
 IC_REVISION_2_0,
...
 IC_HEADER_3_0
...

 IC_VERSION_3_0,
 IC_REVISION_3_0,
...
END

In 2.0, the version and revision fields (IC_VERSION_2_0 and IC_REVISION_2_0)
referred to the version of the IDK with which the component was built. In 3.0, it
refers to the minimum (or oldest) level of Connectivity Services that the library
requires for proper operation. Older levels of Connectivity Services will refuse to
load the library.

The header_size field (IC_HEADER_3_0) specifies the size of the header in the
INFOConnect RCDATA section of the resource file. New fields have been appended
to the 2.0 definition of the IC_RC_NODE data structure. IC_HEADER_3_0
designates the increased 3.0 size. IC_HEADER_SIZE should still be used if the
application or library is using the 2.0 definition of the IC_RC_DATA data structure.
The IC_RC_NODE data structure is defined in the IDK Programming Reference
Manual.

IC_VERSION_3_0 and IC_REVISION_3_0 specify the maximum (or highest) level
of Connectivity Services that the library was developed with, in order to take
advantage of that level of ICS features.

Note: IC_VERSION and IC_REVISION in prior releases of the IDK were updated
to reflect the current release level of the IDK. For IDK release 3.0 onward,
IC_VERSION and IC_REVISION will reflect the 2.0 IDK version and
revision values. New IC_VERSION_... and IC_REVISION_... values will be
added for each release of the IDK.

Converting from Previous Releases

10–10 4173 5408-000

RCDATA section modifications are not required if the application or library wants
to run with INFOConnect 3.0 but does not take advantage of the new 3.0
functionality. To make it easier to upgrade in the future, update the RCDATA
section as follows:

• Set version and revision fields to designate IC_VERSION_2_0 and
IC_REVISION_2_0.

• Set maximum version and revision fields to designate IC_VERSION_2_0
and IC_REVISION_2_0.

• Fill in all of the fields of the IC_RC_NODE data structure and set the header
size to IC_HEADER_3_0.

If the application or library takes advantage of new 3.0 functionality and does not
need to run with INFOConnect 2.0, update the RCDATA section as follows:

• Set the version and revision fields to designate IC_VERSION_3_0 and
IC_REVISION_3_0.

• Set maximum version and revision fields to designate IC_VERSION_3_0
and IC_REVISION_3_0.

• Set the header size to IC_HEADER_3_0.

If the application or library takes advantage of new 3.0 functionality and also wants
to run with INFOConnect 2.0, update the RCDATA section as follows:

• Set the version and revision fields to designate IC_VERSION_2_0 and
IC_REVISION_2_0.

• Set the maximum version and revision fields to designate
IC_VERSION_3_0 and IC_REVISION_3_0.

• Set the header size to IC_HEADER_3_0.

Note: Additional code is required when running with both ICS 2.0 and ICS 3.0.
The library or application must be coded so that it does not use any 3.0
functionality when running with INFOConnect 2.0.

Converting from Previous Releases

4173 5408-000 10–11

Installation script file version information

There are three parameters containing version information in the [package] section
of the installation script file (*.INF): version, lowicver and highicver:

• The version parameter is an informational field which assigns a version
identifier to the package.

• The lowicver parameter defines the minimum INFOConnect API level that the
package requires.

• The highicver parameter defines the highest INFOConnect API level that the
package supports

Each parameter contains four version number fields: major version, minor version,
emu level, and build revision:

[package]
; 'name' cannot contain blank characters
 name = "Reflect"
 description = "Sample External Interface"
 version= 2, 0, 0, 0
 lowicver= 2, 0, 0, 0
 highicver= 3, 00, 0, 000
/* * Major version */
/* ** Minor version */
/* * EMU Level */
/* *** Build revision */

Installation scripts are discussed in detail in Section 9, "Packaging an INFOConnect
Application."

Notes:

• When highicver is set to "3, 0, 0, 0", which is equivalent to IC_VERSION_3_0
(0x0300) and IC_REVISION_3_0 (0x0000) or higher, the 3.0 Quick
Configuration model is activated during installation.

• The Installation Manager will also check the version, revision, max_version and
max_revision values specified in the library's resource file (.RC) to verify that
the library can handle the 3.0 Quick Configuration model.

Converting from Previous Releases

10–12 4173 5408-000

Component Numbers

The generic and branded component numbers are assigned in the RCDATA section of
the INFOConnect component's resource file.

Defining Component Numbers

The 3.0 INFOConnect RCDATA section of the INFOConnect component's resource
file contains the generic and branded component numbers: GenericNum and
SupplierNum.

The GenericNum field is assigned a 0 if the component is not performing the same
function as a currently defined generic component; otherwise, assign the generic
number defined in Ic.hic.

The SupplerNum field is assigned a unique branded component number defined by
the vendor.

Note: Component numbers do have to be assigned. If the branded component is
defined as 0,0 (or if still using the 2.0 IC_RC_NODE data structure which
does not contain the component numbers), a unique value will be assigned
when the INFOConnect component is added to the INFOConnect
configuration database.

The following code fragment is from Service.rc:

INFOConnect RCDATA
BEGIN
...
 IC_HEADER_3_0
...
 0, 0, /* no GenericNum */
 SAMPLE_SERVICE, /* SupplierNum for the Service Sample */
 UIS_SAMPLE /* Source uses UIS_SAMPLE_SERVICE */
 /* See Ic.hic and IcSample.hic */
END

Converting from Previous Releases

4173 5408-000 10–13

Managing Branded Component Numbers

Each vendor is responsible for managing the component numbers for all of their
INFOConnect components, ensuring uniqueness. The branded component numbers
for the IDK samples are defined in a file called IcSample.hic, which is in the IDK
include directory. Vendors may want to adapt this format for defining their branded
component numbers.

The following are code fragments from Ic.hic and IcSample.hic that show the
branded component definitions for the sample service libraries in the IDK:

/* Include File : Ic.hic */

#define UIS_SAMPLE 1

/* Include File : IcSample.hic */

/* IC_SERVICE samples 1 - 99 */
#define SAMPLE_PS2TTY 1
#define SAMPLE_COUPLES 2
#define SAMPLE_SERVICE 3
#define UIS_SAMPLE_PS2TTY MAKELONG(SAMPLE_PS2TTY ,UIS_SAMPLE)
#define UIS_SAMPLE_COUPLES MAKELONG(SAMPLE_COUPLES ,UIS_SAMPLE)
#define UIS_SAMPLE_SERVICE MAKELONG(SAMPLE_SERVICE ,UIS_SAMPLE)

Changes Affecting Applications
Existing applications will run without change. However, some recommended
changes are explained. Other new features of particular interest to application
developers are also explained.

Converting from Previous Releases

10–14 4173 5408-000

CommMgr.lib Removed

Note: This change only affects Windows-specific applications. XVT users can
ignore it.

CommMgr.lib has been replaced by IcWin.lib in the 3.0 release. INFOConnect now
consists of several DLLs and IcWin.lib resolves references to the appropriate DLL.

If your library or application runs with ICS release 2.0 and 3.0, link with
IcWin20.lib.

The 2.0 IDK included both CommMgr.lib and IcWin.lib. Update your makefiles to
use IcWin.lib instead of CommMgr.lib when linking.

New XVT Link Libraries (.LIB)

Link your XVT application with one of the following link libraries depending on
which XVT release (2.0 or 3.0x), memory model (medium or large), and ICS release
(ICS release 3.0 only or ICS releases 2.0 and 3.0) the application will be using:

IcXvtL.lib Resolves all references to the 3.0 Release of ICS functions
for XVT 3.0x (Large memory model)

IcXvtM.lib Resolves all references to the 3.0 Release of ICS functions
for XVT 3.0x (Medium memory model)

IcXvt2L.lib Resolves all references to the 3.0 Release of ICS functions
for XVT 2.0 (Large memory model)

IcXvt2M.lib Resolves all references to the 3.0 Release of ICS functions
for XVT 2.0 (Medium memory model)

Ic2XvtL.lib Resolves all references to the 2.0 and 3.0 Releases of ICS
functions for XVT3.0x (Large memory model)

Ic2XvtM.lib Resolves all references to the 2.0 and 3.0 Releases of ICS
functions for XVT 3.0x (Medium memory model)

Ic2Xvt2L.lib Resolves all references to the 2.0 and 3.0 Releases of ICS
functions for XVT 2.0 (Large memory model)

Ic2Xvt2M.lib Resolves all references to the 2.0 and 3.0 Releases of ICS
functions for XVT 2.0 (Medium memory model)

Converting from Previous Releases

4173 5408-000 10–15

ICXVTWIN Tag

This tag must be defined by XVT applications that also include the Windows.h
include file. Add the following line before #include <xvt.h>:

#define ICXVTWIN

New IC_STATUS_COMMMGR Status

As the INFOConnect Manager initializes or shuts down, it sends
IC_STATUS_COMMMGR status messages to indicate the different states of the
initialization or termination process. Existing applications are not required to
recognize these messages, but may find them useful. A new termination status has
been added in INFOConnect 3.0, IC_COMMMGR_QUERYSHUTDOWN. This
status is sent to all ICS communications sessions when Windows is exiting. If the
application does not wish to close the session, it should cancel the exit by calling
IcExitOk(FALSE). The IC_STATUS_COMMMGR statuses (IC_COMMMGR_...)
are documented in the IDK Programming Reference Manual.

New IC_STATUS_TRANS Statuses

In order for INFOConnect to keep an accurate count of transactions, your application
must notify INFOConnect of the beginning and the end of the transactions. Use
IC_TRANSACTION_ON and IC_TRANSACTION_OFF to indicate whether or not
transactions will be flanked by IC_TRANSACTION_BEGIN and
IC_TRANSACTION_END status messages.

IcRegisterMsgSession

Note: In order to use this new API interface the application must use
IC_VERSION_3_0 and IC_REVISION_3_0 for max_version, max_revision
and its call to IcInitIcs.

This function registers the ICS messages with Windows on a per-session basis. This
function allows developers to add INFOConnect messages to the message switch
statement in MainWinProc. IcWinApp.c provides sample code using
IcRegisterMsgSession.

Converting from Previous Releases

10–16 4173 5408-000

Running with Old Versions of INFOConnect

Updating your application to a new version of the IDK will normally prevent your
application from running with older versions of INFOConnect. See "Running with
Old Versions of INFOConnect" in Sections 3, 4, or 5 for instructions on how to build
with a new IDK and continue to run with older versions of INFOConnect.

Changes Affecting Libraries
Note: Service and external interface libraries compiled with the 2.0 release of the

IDK will run with INFOConnect release 3.0 without recompiling. This
section provides information for recompiling libraries with the 3.0 IDK,
whether it is just to update the library or to take advantage of new
INFOConnect 3.0 functionality. Each section will contain information
detailing if the change is optional, required, or for new 3.0 functionality.

Library API Changes

The following routines provided in the 2.0 IDK for session communications have
been renamed.

Note: The 2.0 API names can still be used. Stubs, that call the new API routines in
IcMgr.dll, have been provided in CommMgr.dll. If your library still
supports INFOConnect release 2.0, continue to use the 2.0 API names.
(Additional Note: The 2.0 API routines may not be supported in the 4.0
IDK).

2.0 API Name 3.0 API Name

IcLibraryLcl IcMgrLcl

IcLibraryRcv IcMgrRcv

IcLibraryXmt IcMgrXmt

IcSetResult IcMgrSetResult

IcSendEvent IcMgrSendEvent

Note: The first two parameters have been reversed.

IcPostEILEvent IcMgrEilEvent

Note: Parameters are different from 2.0 API.

Converting from Previous Releases

4173 5408-000 10–17

Changes for IcLib Functions

The following IcLib... functions have new or modified parameters in the 3.0 IDK.
These parameters must be updated in order to compile without errors and warnings.
Changes required for upgrading to INFOConnect 3.0 are also designated, but not
required.

IcLibOpenChannel

Old Parameter New Parameter

unsigned len UINT len

BOOL bVerify IC_OPEN_OPTIONS Options

LPHIC_SESSION lpchannel LPHIC_CHANNEL lphLibChannel

Service and Interface libraries should use the IC_OPEN_VERIFY value for Options.

Old code fragment:

 if (bVerify) {
 return IC_VERIFY_OK;
 }

Suggested new code:

 if (Options & IC_OPEN_VERIFY) {
 return IC_VERIFY_OK;
 }

Converting from Previous Releases

10–18 4173 5408-000

IcLibOpenSession

Old Parameter New Parameter

unsigned len UINT len

BOOL bVerify IC_OPEN_OPTIONS Options

Service and Interface libraries should use the IC_OPEN_VERIFY value for Options.

Old code fragment:

 if (bVerify) {
 return IC_VERIFY_OK;
 }

Suggested new code:

 if (Options & IC_OPEN_VERIFY) {
 return IC_VERIFY_OK;
 }

IcLibEvent

Old Parameter New Parameter

unsigned uType UINT uType

unsigned uSize UINT uSize

Libraries that support ICS 3.0 must be prepared for events with hLibSession set to
NULL_HIC_SESSION. These are global events of possible interest to the library.
The library should not pass these events up the stack by calling IcMgrSendEvent. In
3.0 there are two instances of an IC_STATUS event with hLibSession set to
NULL_HIC_SESSION: IC_COMMMGR_INITIALIZED and
IC_COMMMGR_TERMINATED.

In 3.0 there are two new event types: IC_SENDSTATUS and IC_SESSIONCLOSED.
External Interface Libraries that do not support ICS 3.0 or higher only receive an
IC_SESSIONESTABLISHED event.

Converting from Previous Releases

4173 5408-000 10–19

For all events that do not have hLibSession set to NULL_HIC_SESSION, be sure to
use IcMgrSendEvent (or IcSendEvent if running with 2.0 and 3.0) to pass the event to
the next higher layer in the library stack, including unknown events.

Note: If the IC_SESSIONCLOSED is not passed up the stack the session will not
close. If a library with a maximum version less than IC_VERSION_3_0 in
the INFOConnect RCDATA resource does not call IcMgrSendEvent, a
session closed event will be passed up the stack when the library returns.

IcLibLcl

Old Parameter New Parameter

WORD type IC_LCL_FLAGS which

Be sure to use IcMgrLcl (or IcLibraryLcl if running with 2.0 and 3.0) in order to pass
the message down to the next library in the library stack.

Note: If the IC_LCL_CLOSESESSION is not passed down the stack the session will
not close. If a library with a maximum version less than IC_VERSION_3_0
in the INFOConnect RCDATA resource does not call IcMgrLcl, a close
session will be passed down the stack when the library returns.

IcLibRcv

Old Parameter New Parameter

unsigned length UINT length

Be sure to use IcMgrRcv (or IcLibraryRcv if running with 2.0 and 3.0) to post the
receive request down to the next library in the library stack.

IcLibXmt

Old Parameter New Parameter

unsigned length UINT length

Be sure to use IcMgrXmt (or IcLibraryXmt if running with 2.0 and 3.0) to post the
transmit request down to the next library in the library stack.

Converting from Previous Releases

10–20 4173 5408-000

IcLibSetResult

Old Parameter New Parameter

unsigned uType UINT uType

Be sure to use IcMgrSetResult (or IcSetResult if running with 2.0 and 3.0) to pass
status or error information down to the next library in the library stack.

IcLibGetString

Old Parameter New Parameter

unsigned length UINT length

Be sure to check that hLibSession is not NULL_HIC_SESSION. No additional
changes are needed.

IcLibUpdateConfig

Old Parameter New Parameter

HWND hWnd HIC_CONFIG hConfig

Watch: The first parameter is a
HIC_CONFIG, not HWND.

int TableNumber UINT TableNumber

unsigned len UINT len

enum IC_COMMAND
Command

IC_COMMAND Command

Note: The following updates are required for 3.0. Be sure the updates have been
completed prior to setting the maximum version in the library's resource file
to reflect INFOConnect 3.0.

Two new IC_COMMAND types have been added in INFOConnect 3.0:
IC_CMD_SAVE and IC_CMD_DISCARD. IC_CMD_SAVE is received
immediately before the data is saved to the data base. IC_CMD_DISCARD is
received when data from a previous call to IcLibUpdateConfig or IcLibVerifyConfig
is being discarded. For example, IC_CMD_DISCARD is returned to
IcLibUpdateConfig when a user cancels during a dialog associated with
IcLibUpadateConfig.

Converting from Previous Releases

4173 5408-000 10–21

IC_ERROR_UNKNOWN_COMMAND should be returned if the library encounters
an unknown IC_COMMAND type.

Use IcDialogConfig instead of the Windows API for dialog box manipulation since it
uses HIC_CONFIG as a parameter.

IcLibVerifyConfig

Old Parameter New Parameter

HWND hWnd HIC_CONFIG hConfig

Watch: The first parameter is now
HIC_CONFIG, not HWND.

int TableNumber UINT TableNumber

unsigned len UINT len

enum IC_VERIFY Command IC_VERIFY Command

Note: The following updates are required for 3.0. Be sure the updates have been
completed prior to setting the maximum version in the library's resource file
to reflect INFOConnect 3.0.

Two new IC_VERIFY types have been added in INFOConnect 3.0:
IC_VER_UPGRADE and IC_VER_DELETE. The IC_VER_UPGRADE command
tells the library to perform special upgrade processing and data conversions on the
given buffer of data. The IC_VER_DELETE command tells the library that the given
configuration data is about to be deleted. If the library returns a severe error, the
data will not be deleted.

The IC_VER_NODISPLAY has been renamed as IC_VER_SAVE. This command
tells the library that the configuration data is about to be saved. If the library returns
a sever error, the data will not be saved.

IC_ERROR_UNKNOWN_COMMAND should be returned if the library encounters
an unknown IC_VERIFY type.

Converting from Previous Releases

10–22 4173 5408-000

IcLibPrintConfig

Old Parameter New Parameter

int TableNumber UINT TableNumber

int detail IC_PRINT_DETAIL detail

unsigned len UINT len

unsigned prlen UINT prlen

IC_ERROR_UNKNOWN COMMAND should be returned if the library encounters
an unknown IC_PRINT_DETAIL type.

Changes for Service Libraries

A service library that supports ICS 3.0 and defines a channel table must provide an
interface (a control on the path dialog) which links a path to a channel. Also
consider whether the table should be a custom table rather than a channel table.
INFOConnect 3.0 will support a user interface to associate a path with a channel only
for libraries that have a maximum version less than INFOConnect 3.0. This user
interface will be removed in the next release of ICS.

Note: Be sure the updates have been completed prior to setting the maximum
version in the library's resource file to reflect INFOConnect 3.0.

Running with Multiple Versions of INFOConnect

Libraries can be written to run with multiple versions of INFOConnect. Updating
your library to a new version of the IDK will normally prevent your application from
running with older versions of INFOConnect. See "Running with Multiple of
INFOConnect" in Section 7, for instructions on how to build with a new IDK and
continue to run with older versions of INFOConnect.

Converting from Previous Releases

4173 5408-000 10–23

Converting From Release 1.0 to 2.0
This section describes the new features of INFOConnect Release 2.0 and identifies
features that require source changes to existing INFOConnect applications and
libraries developed with INFOConnect Release 1.0. Release 1.0 was delivered with
Designer Workbench and is sometimes referred to as "Stage 0."

2.0 Features

Architecture Diagram

The INFOConnect architecture diagram has been updated to better illustrate the flow
of data through the different layers. The Manager is more clearly shown as the
mediator between the different layers. Also, notice that multiple Service Libraries
(formerly Protocol-Modifiers) can now be stacked in a single path. This feature
promotes the development of small, reusable components. The different APIs are no
longer explicitly labeled in the diagram. The Accessories API has a few additions in
release 2.0, but is basically unchanged. The Protocol-Modifier and Protocol-
Interface APIs have been collapsed into a single Library API. In essence though, the
architecture has not changed.

Converting from Previous Releases

10–24 4173 5408-000

Figure 10–2. INFOConnect 2.0 Architecture

INFOConnect is now made up of several DLLs that are installed into the Windows
SYSTEM directory:

CommMgr.dll INFOConnect manager

IcUtil.dll Miscellaneous support routines

IcDb.dll Configuration database manager

IcMgrCfg.dll Configuration/installation support routines

Manager

Accessory
Application Layer

Presentation Layer

Session Layer

Transport Layer

Service Library

External Interface

Converting from Previous Releases

4173 5408-000 10–25

INFOConnect directories

Directory Contents Installation
default

CodeDir Standard INFOConnect libraries
and accessories

c:\infoconn

DataDir Configuration database, macro
files, option files, and so on

c:\windows

Windows System
Directory

INFOConnect Manager DLLs c:\windows\system

- 3rd party accessories and
libraries

defined in IcSetup.inf

Notice that you can now install your application or library in a directory separate
from the standard INFOConnect files.

Terminology

Several new terms are introduced in INFOConnect 2.0 and a few have been renamed.

Service Library

Previously called protocol-modifiers, service libraries act like filters between the
application and lower communication transports. Zero or more service libraries can
exist in an INFOConnect path. Because service libraries are now optional, the
PassThru protocol-modifier no longer exists.

External Interface Library (EIL)

External Interface Libraries, previously called protocol-interfaces, are adapters that
provide a mapping between the INFOConnect architecture and externally provided
communications components. Each INFOConnect path must contain one (and only
one) EIL.

Multiplexing Library

Multiplexing libraries are EILs that provide multiple logical connections across a
single connection.

Converting from Previous Releases

10–26 4173 5408-000

Path

Paths are basically the same. A path consists of one external interface and zero or
more service libraries. Previously, paths consisted of exactly one protocol-modifier
and one protocol-interface.

Path Template

Users configure paths by choosing from the available path templates. Path templates
define a group of libraries that function together. Templates simplify INFOConnect
path configuration by alleviating users from having to know which libraries work
together. Furthermore, they allow the development of many, small service libraries
without overwhelming the user at configuration time with a long list of libraries.
Library developers can define path templates to be installed by the INFOConnect
installation utility.

Library API

The Protocol-Modifier API and Protocol-Interface API were collapsed into a single
API called the Library API. This primarily requires simple name changes in existing
libraries. There are a few new functions for building and processing configuration
information.

Accessory IDs and Library IDs

Accessory and Library IDs allow different implementations of an accessory or
library to be easily interchanged on the workstation. IDs permit a user to pick and
choose from different INFOConnect components provided by different vendors.
Accessories are invoked by other INFOConnect applications using their Accessory
ID instead of a filename.

Channel Index

Channel indexes no longer exist. They were used to implement multiplexing
capabilities (multiple logical connections across a single physical connection), but
required careful coordination between the protocol-modifier and protocol-interface.
Multiplexing is now supported such that service libraries and EILs that aren't
multiplexers themselves are not required to do anything special to support a
multiplexing library running in the same library stack.

Converting from Previous Releases

4173 5408-000 10–27

INFOConnect Installation Manager

Instructions are now provided with the IDK to package your INFOConnect
application or library for use with the INFOConnect Installation Manager. The
Installation Manager installs your INFOConnect component on the workstation and
provides a common look and feel across the INFOConnect program. Installation
script files allow you to customize your application's installation.

Accessory IDs

An Accessory ID is a name provided during accessory installation. An INFOConnect
application invokes an accessory with its Accessory ID rather than its directory and
filename. Different implementations of the same accessory can be developed as long
they use the same Accessory ID, but at any one time, only one implementation of an
accessory is installed in the INFOConnect environment.

The IDK Programming Reference Manual has a complete list, but here is a sampling
of the standard Accessory IDs:

INFOConn The INFOConnect shell

MT A Series MT emulator

ANSI VT-220 style emulator

UTS60 UTS60 emulator

UTS60G UTS60 graphics engine

PPT Printer pass through

Accessory Window States

IcOpenAccessory and IcRunAccessory now support a -Wxy command line option to
control the state of the accessory and its window when executed by the Manager.
The accessory can be made an active or a background task, and its window can be
brought up as normal, maximized, iconized, or hidden.

Converting from Previous Releases

10–28 4173 5408-000

DosLink

DosLink is an INFOConnect solution that allows DOS applications to make
connections to other computers using INFOConnect Connectivity Services. The DOS
application must be running in a DOS window in enhanced mode Windows,
therefore, this capability is only available on 386 class machines and higher.

Library Configuration

The majority of changes and enhancements that went into Release 2.0 involve the
configuration of service libraries and external interface libraries.

Library configuration is based on tables. Configuration information for a library is
organized into tables of rows and columns (records and fields). Tables can reference
each other through link fields. The goal is to eliminate data redundancy. Rather than
duplicating information in two places, information is stored in one place and links
are established between tables.

Library API Control Flow Diagrams

As mentioned earlier, the Protocol-Modifier and Protocol-Interface APIs have been
combined into a single Library API. This was a natural development due to the
inherent similarities of the two APIs and the consequences of library stacking.

Refer to the updated control flow diagrams in Section 6, "A Closer Look at the
INFOConnect Architecture."

Session and Channel Aliasing

Aliasing is a new feature provided for the convenience and efficiency of
INFOConnect libraries. Without aliases, a library must constantly scan its own list
of session and channel records for the INFOConnect session handle. Aliasing allows
a library to eliminate this excessive searching. Aliasing can be ignored until an
existing library has been converted and is up and running.

Tracing INFOConnect Activity

Activating the INFOConnect Trace Facility is now done through the Administration
menu options rather than manually configuring paths with the TRACE library.

Converting from Previous Releases

4173 5408-000 10–29

The generated file is now named Trace.log (instead of Trace.dbg) and is written to
your DataDir directory which is normally c:\windows. New trace sessions are
appended to Trace.log rather than rewriting over the previous trace, so you may need
to occasionally erase or prune Trace.log.

The Path and Path Template configuration dialogs also provide a Trace check box
that affects the Trace facility. See INFOConnect's on-line help for more information
about using Trace.

INFOConn.ini

INFOConnect path configuration information was previously stored in
INFOConn.ini. This information is now stored in a new file named INFOConn.cfg
using a new format. One of the new DLLs, IcDb.dll, manages access to
INFOConn.cfg. There is currently no utility for moving old paths stored in
INFOConn.ini into INFOConn.cfg.

Running Old INFOConnect Modifiers and Interfaces

Old protocol-modifiers and protocol-interfaces will still work with INFOConnect
2.0. They must be reconfigured, though, because there is currently no utility for
upgrading old paths stored in INFOConn.ini into INFOConn.cfg.

Changes Affecting Applications
Existing applications will run without change. However, several recommended
changes are explained. Other new features of particular interest to application
developers are also explained.

Converting from Previous Releases

10–30 4173 5408-000

Running with Old Versions of INFOConnect

Updating your application to a new version of the IDK will normally prevent your
application from running with older versions of INFOConnect. See "Running with
Old Version of INFOConnect" in Sections 3, 4 and 5 for instructions on how to build
with a new IDK and continue to run with older versions of INFOConnect.

CommMgr.lib Replaced by IcWin.lib

Note: This change only affects Windows-specific applications. XVT users can
ignore it.

Update your makefiles to use IcWin.lib instead of CommMgr.lib when linking.
INFOConnect now consists of several DLLs and IcWin.lib resolves references to the
appropriate DLL.

HANDLE Versus HIC_SESSION

Note: This change only affects Windows-specific applications. XVT users can
ignore it.

INFOConnect session handles are now properly defined using a new typedef,
HIC_SESSION, instead of the generic HANDLE. For example, all function
prototype parameter lists that pass session handles now use HIC_SESSION. Your
application will run without this change, but you should make it now for future
compatibility.

IC_RESULT FAR PASCAL IcXmt(HIC_SESSION session,
 HANDLE buffer,
 unsigned length);

IC_RESULT FAR PASCAL IcRcv(HIC_SESSION session,
 HANDLE buffer,
 unsigned length);

IC_RESULT FAR PASCAL IcLcl(HIC_SESSION session,
 WORD which);

Also, instead of using NULL to test or set session handles, use
NULL_HIC_SESSION.

Converting from Previous Releases

4173 5408-000 10–31

New INFOConnect Events

The following INFOConnect events are new in Release 2.0. Existing applications are
not required to recognize them, but may find them useful. They are documented in
the IDK Programming Reference Manual.

Windows API

IC_LclResult Generated when a call to IcLcl finally completes

IC_StatusResult Generated when a call to IcSetStatus finally
completes

XVT API

E_IC_LCL_RESULT Generated when a call to ic_lcl finally completes

E_IC_STATUS_RESU
LT

Generated when a call to ic_set_status finally
completes

Windows applications that choose to use these events must register the new message
numbers along with the other INFOConnect messages like IC_SessionEstablished,
IC_RcvDone, etc. See the sample program, IcWinApp.c, for all references to
IC_LclResult and IC_StatusResult.

Freeing Buffers Immediately after Session Closure

Some applications waited to free datacomm buffers until the session closure event
was returned to the application. This was to prevent errors during a small window of
vulnerability caused by a protocol-modifier or protocol-interface inadvertently
writing to a datacomm buffer associated with a recently closed session.
Improvements in the INFOConnect Library API have closed this window of
vulnerability and applications can safely free buffers immediately after closing a
session.

Converting from Previous Releases

10–32 4173 5408-000

New IC_STATUS_COMMMGR Statuses

As the INFOConnect Manager shuts down, it sends new status messages to indicate
the different states during the termination process. Existing applications are not
required to recognize these messages, but may find them useful. They are
documented in the IDK Programming Reference Manual.

IC_COMMMGR_INITIALIZED
IC_COMMMGR_TERMINATED
IC_COMMMGR_QUERYEXIT
IC_COMMMGR_CANCELEXIT
IC_COMMMGR_EXIT

IcGetSessionName and IcGetPathName

Two functions have changed names and parameter lists. Also, the second parameter
on these functions has changed from a handle to a long pointer. This avoids having
to allocate an INFOConnect buffer to use these functions.

The old names are still supported. Existing applications don't have to change.

Windows API

Old name New name

IcGetSessionName IcGetSessionID

IcGetPathName IcGetPathID

XVT API

Old name New name

ic_get_session_name ic_get_session_id

ic_get_path_name ic_get_path_id

Example

Here are before and after code fragments from IcWinApp.c (a sample application in
the IDK) showing the conversion of IcGetSessionName to IcGetSessionID.

Converting from Previous Releases

4173 5408-000 10–33

Old code fragment using IcGetSessionName

void UpdateWindowName(HWND hWnd, LPSTR lpWindowName)
{
 /*
 Append the INFOConnect session name to the Window name
 and display it.
 */

 HANDLE hSessionName;
 LPSTR lpSessionName;

 hSessionName = IcAllocBuffer(IC_MAXSESSIONIDLEN);
 icerror = IcGetSessionName(s.hSession,
 hSessionName,
 IC_MAXSESSIONIDLEN);
 lpSessionName = IcLockBuffer(hSessionName);
 lstrcat(lpWindowName,(LPSTR)" - ");
 lstrcat(lpWindowName,lpSessionName);
 SetWindowText(hWnd, lpWindowName);
 IcUnlockBuffer(hSessionName);
 IcFreeBuffer(hSessionName);
}

Converted code using IcGetSessionID

void UpdateWindowName(HWND hWnd, LPSTR lpWindowName)
{
 /*
 Append the INFOConnect session name to the Window name
 and display it.
 */

 char SessionName[IC_MAXSESSIONIDLEN+1];

 icerror = IcGetSessionID(s.hSession,
 SessionName,
 sizeof(SessionName));
 lstrcat(lpWindowName,(LPSTR)" - ");
 lstrcat(lpWindowName,SessionName);
 SetWindowText(hWnd, lpWindowName);
}

Converting from Previous Releases

10–34 4173 5408-000

IcOpenAccessory and ic_open_accessory

If your application uses IcOpenAccessory or ic_open_accessory to invoke any of the
standard INFOConnect accessories be sure to use the appropriate Accessory ID and
not a hard coded filename. This prevents dependencies in your application on
knowing where INFOConnect accessories are installed.

For example, to invoke the A Series MT Emulator:

icerror = IcOpenAccessory(hWnd,
 "MT", // accessory ID
 NULL,
 "mypath",
 &sinfo,
 &hSession);

Don't do this:

icerror = IcOpenAccessory(hWnd,
 "c:\infoconn\mt.exe", // WRONG !
 NULL,
 "mypath",
 &sinfo,
 &hSession);

Initial window state of the accessory

You can now control the initial state of the accessory's window using the -W option.
Available states are: normal, maximized, iconized, hidden, active, background. See
the IDK Programming Reference Manual for details.

To invoke a UTS Emulator with a maximized window:

icerror = IcOpenAccessory(hWnd,
 "UTS", // accessory ID
 "-W ma", // maximized, active window
 "mypath",
 &sinfo,
 &hSession);

Converting from Previous Releases

4173 5408-000 10–35

New Requirements for Accessories

Release 2.0 adds several requirements for INFOConnect accessories: scanning the
command line for the -K option and adding an INFOConnect resource to the resource
(.RCA) file. See Section 6 of the IDK Programming Reference Manual, "ICS
Accessory Definition", for a complete list of requirements. You can ignore this
section if your application is not invoked by other INFOConnect applications as an
accessory. You can test your accessory using the IcOpenAc sample program
provided in the IDK.

Initial window state of an invoked accessory

IcOpenAccessory and IcRunAccessory accept a -W option to allow the calling
application to control the initial state of the invoked accessory's window: normal,
maximized, iconized, hidden, active, background, etc. The Manager relies on
accessories to honor the standard nCmdShow parameter passed to them by Windows
at WinMain. After creating their window, accessories should call ShowWindow and
pass along the nCmdShow parameter. The following code fragment is taken from the
IDK sample program, IcWinApp.

Converting from Previous Releases

10–36 4173 5408-000

int PASCAL WinMain(HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 MSG msg;

 if (!hPrevInstance)
 if (!InitApplication(hInstance))
 return(FALSE);

 if (!InitInstance(hInstance, nCmdShow, lpCmdLine))
 return(FALSE);

 while (GetMessage(&msg, NULL, NULL, NULL)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return(msg.wParam);
}

BOOL InitInstance(HANDLE hInstance,
 int nCmdShow,
| LPSTR lpCmdLine)
{
 hInst = hInstance;

 hWnd = CreateWindow(......);

 if (!hWnd)
 return(FALSE);

 ShowWindow(hWnd, nCmdShow);
 UpdateWindow(hWnd); /* Sends WM_PAINT message */

-K command line option

Accessories should parse the command line for the Accessory ID parameter and
incorporate it in some fashion in the window's title bar. This gives the user a better
indication about the relationship between the invoking application and the invoked
accessory. See the code fragment from IcWinApp below.

AccessoryID registration

Release 2.0 accessories must contain an INFOConnect RCDATA section in the
resource file (.RC) and some accompanying text strings in the STRINGTABLE.

To illustrate accessory registration, here are some code fragments from IcWinApp, a
sample INFOConnect accessory in the IDK.

Converting from Previous Releases

4173 5408-000 10–37

IcWinApp.h

#define APPNAME IcWinApp
#define QAPPNAME "IcWinApp"
#define QMARKETINGNAME "INFOConnect Sample Accessory"
#define QVENDOR "Unisys"

#define IC_ACCESSORYID 101
#define IC_ACCESSORYDESC 102
#define IC_VENDOR 103

IcWinApp.rc

#include <windows.h>
#include <icdef.h>
#include <icdict.h>
#include "icwinapp.h"

INFOConnect RCDATA
BEGIN
 IC_VERSION,
 IC_REVISION,
 IC_ACCESSORY,
 IC_HEADER_SIZE,
 0,
 IC_ACCESSORYID, /* Calling apps use this name to invoke your accessory */
 IC_ACCESSORYDESC,
 IC_VENDOR,
 0, 0, 0, 0
END

STRINGTABLE DISCARDABLE
BEGIN
 IC_ACCESSORYID, QAPPNAME
 IC_ACCESSORYDESC, QMARKETINGNAME
 IC_VENDOR, QVENDOR
END

IcWinApp.c

 char sAccessoryID[IC_MAXACCESSORYIDSIZE] = {QAPPNAME};

 icerror = GetCmdlineOption(lpCmdLine, 'K', ' ',
 sAccessoryID, sizeof(sAccessoryID));
 icerror = IcRegisterAccessory(sAccessoryID, 0, &iccontext);
 if (icerror != IC_OK) {
 HandleIcError(hWnd, NULL, NULL, icerror);
 return(FALSE);
 }

Converting from Previous Releases

10–38 4173 5408-000

Changes Affecting Libraries
Existing protocol-modifiers and protocol-interfaces will run without change.
However, it is strongly recommended that you update them to release 2.0.

COMMMGR.LIB Replaced by ICWIN.LIB

Update your makefiles to use IcWin.lib instead of CommMgr.lib when linking.
INFOConnect now consists of several DLLs and IcWin.lib resolves references to the
appropriate DLL.

New Header (.H) Files

The INFOConnect header files have been reorganized.

Include the following files in the main source file (.C)

#include <windows.h>
#include <iclib.h>
#include <icproto.h>

Include the following files in the resource file (.RC)

#include <windows.h>
#include <icdef.h>
#include <icdict.h>

IcAssert.h

The assert macro is a useful debugging tool that many of the 1.0 sample applications
used, but none of the sample protocol-modifiers and interfaces used it because the
standard assert macro did not work with DLLs. INFOConnect now provides a
version of assert that can be used from a DLL and most of the sample libraries use it.
The INFOConnect assert macro is defined in :

#include <icassert.h>

Converting from Previous Releases

4173 5408-000 10–39

Function Name Changes

Most of the following name changes can be made using an editor with a global
search and replace command.

IcP- functions changed to IcLib

All of the required callback function names in your library have been renamed with
the IcLib prefix instead of IcPm or IcPi. A few functions differ by more than just the
prefix. Although it is actually the ordinal number of your callback function (rather
than the name) that is critical, we suggest changing your function names to avoid
confusion.

Old name New name

IcP-ConfigPath IcLibUpdateConfig

IcP-DeselectChannel IcLibCloseSession

IcP-Event IcLibEvent

IcP-GetString IcLibGetString

IcP-IdentifySession IcLibIdentifySession

IcP-Install IcLibInstall

IcP-Lcl IcLibLcl

IcP-Rcv IcLibRcv

IcP-SelectChannel IcLibOpenSession

IcP-SetInfo IcLibGetSessionInfo

IcP-SetResult IcLibSetResult

IcP-Terminate IcLibTerminate

IcP-Xmt IcLibXmt

Converting from Previous Releases

10–40 4173 5408-000

The following functions are new and have no counterpart in release 1.0, but are
shown here for completeness. They are described in more detail elsewhere.

New callback functions

IcLibVerifyConfig
IcLibPrintConfig
IcLibOpenChannel
IcLibCloseChannel

Updated .DEF file

These new names show up in the module definition (.DEF) file which must be
updated for your library. Here is the updated .DEF file from the SERVICE sample
library in the IDK.

;***/
;* SERVICE.DEF */
;***/

LIBRARY service
DESCRIPTION 'Sample INFOConnect Service Library'
EXETYPE WINDOWS
STUB 'WINSTUB.EXE'
CODE MOVEABLE DISCARDABLE PRELOAD

;DLLs require DATA SINGLE because there is only one instance
DATA SINGLE PRELOAD MOVEABLE
HEAPSIZE 4096
EXPORTS
 IcLibUpdateConfig @1
 IcLibCloseSession @2
 IcLibEvent @3
 IcLibGetString @4
 IcLibIdentifySession @5
 IcLibInstall @6
 IcLibLcl @7
 IcLibRcv @8
 IcLibOpenSession @9
 IcLibGetSessionInfo @10
 IcLibSetResult @11
 IcLibTerminate @12
 IcLibXmt @13
 IcLibVerifyConfig @14

Converting from Previous Releases

4173 5408-000 10–41

 IcLibPrintConfig @15
 IcLibOpenChannel @16
 IcLibCloseChannel @17

; Don't forget to include callback functions in this list

 cbChannelConfigDlg @19
 cbPathConfigDlg @20
 cbAboutDlg @21

 WEP @22 RESIDENTNAME

Name changes affecting only protocol-modifiers

The following functions that are called by protocol-modifiers have been renamed.
The function parameters are unchanged. Update your library to call the new names
instead of the old.

Old name New name

IcEvent IcSendEvent

IcPiSetResult IcSetResult

IcPiXmt IcLibraryXmt

IcPiRcv IcLibraryRcv

IcPiLcl IcLibraryLcl

For example, here are two code fragments, one from an old release 1.0 protocol-
modifier and the other from an updated release 2.0 service library. The updated
library calls IcLibraryRcv instead of IcPiRcv.

Release 1.0 fragment

IC_RESULT FAR PASCAL IcPmRcv (HANDLE hSession, /* OLD */
 HANDLE buffer,
 unsigned length)
{
 ...
 return IcPiRcv(hSession, buffer, length);
}

Converting from Previous Releases

10–42 4173 5408-000

Release 2.0 fragment

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hSession, /* NEW */
 HANDLE buffer,
 unsigned length)
{
 ...
 return IcLibraryRcv(hSession, buffer, length);
}

Name changes affecting only protocol-interfaces

The following functions that are called by protocol-interfaces have been renamed.
Update your library to call the new names instead of the old.

Old name New name

IcPmEvent IcSendEvent

HANDLE Versus HIC_SESSION

INFOConnect session handles are now more properly defined using a new typedef,
HIC_SESSION, instead of the generic HANDLE typedef. All function prototype
parameter lists that pass session handles now use HIC_SESSION. Existing code that
uses HANDLE will still compile, but new code should use the HIC_SESSION
typedef.

Old protocol-modifier function using HANDLE

IC_RESULT FAR PASCAL IcPmRcv (HANDLE hSession,
 HANDLE buffer,
 unsigned length)

New service library function using HIC_SESSION

IC_RESULT FAR PASCAL IcLibRcv (HIC_SESSION hSession,
 HANDLE buffer,
 unsigned length)

Converting from Previous Releases

4173 5408-000 10–43

IcLibInstall

IcLibInstall (formerly IcP-Install) and IcLibTerminate were previously not called
during path configuration, but now they are. If this affects your library (it will not
affect a lot of libraries), it will just mean moving some code from IcLibInstall to
either IcLibOpenChannel or IcLibOpenSession.

Library Configuration

The work required to implement library configuration is broken into the following
steps:

Table design: Design the tables

Table description: Update the library's resource file (.RC) with your table
descriptions

Table processing: Update the library source file (.C) with the
configuration-related callback functions

See the "Configuration Management" discussion in Section 7, Writing INFOConnect
Libraries for Windows 3.x.

Session Establishment

IcP-SelectChannel is replaced by IcLibOpenChannel and IcLibOpenSession. The
code that is currently in IcP-SelectChannel must be distributed between
IcLibOpenChannel and IcLibOpenSession.

Libraries without channels

For those libraries that don't use channels (the most common case) you can just
rename your IcP-SelectChannel function as IcLibOpenSession. Add a skeleton
function for IcLibOpenChannel that just returns IC_OK. This is necessary because
IcLibOpenChannel is still called one time with a NULL channel and NULL buffer for
libraries that don't define channels.

IC_RESULT FAR PASCAL IcLibOpenChannel
 (HIC_CHANNEL hChannel,
 void FAR * lpConfigBuf,
 unsigned len,
 BOOL bVerify,
 LPHIC_CHANNEL lphChannel)
{
 return IC_OK;
}

Converting from Previous Releases

10–44 4173 5408-000

Libraries with channels

Libraries that use channels must split the code in IcP-SelectChannel between the new
IcLibOpenChannel and IcLibOpenSession. IcLibOpenSession is called whenever a
session is opened. IcLibOpenChannel is called before IcLibOpenSession, but only
for those sessions that are using a new, unused channel.

IcP-ConfigPath Replacements

The old IcP-ConfigPath routine has been replaced by three new callback functions:
IcLibUpdateConfig, IcLibVerifyConfig and IcLibPrintConfig. These functions are
discussed in Section 7, "Writing INFOConnect Libraries for Windows 3.x."

Session and Channel Aliases

Aliases are provided as a convenience and performance boost to library execution.
They are not required , therefore, you should probably ignore aliases and get your
library running, then come back and enable aliases. To disable session and channel
aliasing, simply ignore the lph~Alias pointers on the IcLibOpenChannel and
IcLibOpenSession functions. The fields that these pointers refer to have been
properly initialized.

IC_RESULT FAR PASCAL IcLibOpenChannel
 (HIC_CHANNEL hChannel,
 void FAR * lpConfigBuf,
 unsigned len,
 BOOL bVerify,
 LPHIC_CHANNEL lphChannelAlias)

IC_RESULT FAR PASCAL IcLibOpenSession
 (HIC_SESSION hSession,
 HIC_CHANNEL hChannel,
 void FAR * lpConfigBuf,
 unsigned len,
 BOOL bVerify,
 LPHIC_SESSION lphSessionAlias)

Aliasing is covered in detail in Section 7, "Writing INFOConnect Libraries for
Windows 3.x."

4173 5408-000 Index–1

Index

A
accessory

definition, 2-7
accessory API

definition, 2-7
events, 2-19
functions, 2-16

accessory IDs
definition, 10-27

accessory management
functions, 2-18

accessory window states
definition, 10-27

advanced error handling
Windows applications, 3-36
XVT applications, 4-26

advanced status handling
Windows applications, 3-36
XVT applications, 4-26

AIL
definition, 2-7, 10-4

aliasing
library, 7-53

allocating buffers
Windows applications, 3-5
XVT applications, 4-3

alphabetical list
IDK package, 1-3
IDK samples package, 1-9

app.copy.appstuff
installation, 9-12

app.copy.appstuff section
syntax, 9-27

app.copy.noremove section
installation, 9-12
syntax, 9-27

app.copy.publish section
syntax, 9-27

app.copy.standalone section
syntax, 9-27

app.copy.subscribe section
syntax, 9-27

application
definition, 2-7

Application Interface Library, (See AIL)
architecture

diagram, 2-5, 10-1
relationship to session, 2-13

architecture diagram
INFOConnect 2.0, 10-23
INFOConnect 3.0, 10-1

assert macro
debugging applications, 8-5

B
basic error handling

Windows applications, 3-17
XVT applications, 4-12

basic procedures
DosLink applications, 5-3
Windows applications, 3-2
XVT applications, 4-2

basic session management
functions, 2-16

basic status handling
Windows applications, 3-22
XVT applications, 4-16

bootstrap
installation, 9-11

Borland C
compatible makefiles, 1-18
make command line, 1-21

buffers
inter-application, 2-15
intra-application, 2-15

Index

Index–2 4173 5408-000

C

calling INFOConnect accessories
Windows applications, 3-41
XVT applications, 4-34

canceling pending requests
DosLink applications, 5-19
Windows applications, 3-32
XVT applications, 4-24

checklist
system verification (for windows),

1-19
choosing between

library, 7-2
closer look

manager components, 6-1
manager components diagram, 6-2

closing a session
DosLink applications, 5-17
Windows applications, 3-26
XVT applications, 4-19

codedir
definition, 9-3

coding mistakes
debugging, 8-7

communicating with applications
library, 7-63

compiling
library, 7-73
Windows applications, 3-44
XVT applications, 4-37

compiling and linking
DosLink applications, 5-26

complete deinstallation
definition, 9-3

component numbers
definition, 10-7

configuration API
definition, 10-5

configuration database
definition, 9-4

configuration management
library, 7-4

configurator
definition, 2-10, 10-5

context
definition, 2-15

converting from release 1.0 to 2.0
2.0 architecture diagram, 10-23
2.0 terminology, 10-25
aliases, 10-28, 10-44
CommMgr.lib replaced by IcWin.lib,

10-30, 10-38
freeing buffers immediately after

session closure, 10-31
function name changes, 10-39
HANDLE versus HIC_SESSION,

10-30, 10-42
IcGetSessionName and

IcGetPathName, 10-32
IcLibInstall, 10-43
IcOpenAccessory and

Ic_open_accessory, 10-34
IcP -ConfigPath replacements, 10-44
INFOConn.ini, 10-29
library API control flow diagrams,

10-28
library configuration, 10-43
library session establishment, 10-43
new IC_STATUS_COMMMGR

Statuses, 10-32
new INFOConnect events, 10-31
new library header files, 10-38
new requirements for accessories,

10-35
running old INFOConnect modifiers

and interfaces, 10-29
tracing INFOConnect activity, 10-28

Index

4173 5408-000 Index–3

converting from release 2.0 to 3.0
3.0 architecture diagram, 10-1
3.0 manager components, 10-3
changes affecting applications

CommMgr.lib removed, 10-14
component numbers, 10-12
defining component numbers,

10-12
IcRegisterMsgSession, 10-15
ICXVTWIN tag, 10-15
INF file version information,

10-11
INFOConnect RCDATA version

information, 10-9
INFOConnect version

identification, 10-8
managing branded component

numbers, 10-13
new IC_STATUS_COMMMGR

status, 10-15
new IC_STATUS_TRANS

statuses, 10-15
new XVT link libraries, 10-14
running with old versions of

INFOConnect, 10-16
changes affecting libraries

changes for IcLib functions, 10-17
component numbers, 10-12
defining component numbers,

10-12
INF file version information,

10-11
INFOConnect RCDATA version

information, 10-9
INFOConnect version

identification, 10-8
library API changes, 10-16
managing branded component

numbers, 10-13
running with multiple versions of

ICS, 10-22
service library specific, 10-22

cooperative application
definition, 2-6

D

data compression and error detection
Windows applications, 3-39
XVT applications, 4-32

data section
syntax, 9-18

datadir
definition, 9-4

debugging
adding trace information to the trace

log, 8-3
common coding mistakes, 8-7
diagnostic library, 8-5
INFOConnect -d debug option, 8-6
source level debugging, 8-7
tracing INFOConnect datacomm

activity, 8-1
using assert macro in applications,

8-5
using debug version of Windows, 8-7
Windows 3.1 issues, 8-6

definition
accessory, 2-7
accessory API, 2-7
accessory IDs, 10-27
accessory window states, 10-27
AIL, 2-7, 10-4
application, 2-7
Application Interface Library, 2-7,

10-4
codedir, 9-3
complete deinstallation, 9-3
component numbers, 10-7
configuration API, 10-5
configuration database, 9-4
configurator, 2-10, 10-5
context, 2-15
cooperative application, 2-6
datadir, 9-4
DosLink, 10-28
DosLink API, 2-7
EIL, 2-8
exit hook library, 2-9

Index

Index–4 4173 5408-000

extended status buffer, 10-8
External Interface Library, 2-8
hook library, 2-9, 10-4
IC_RESULT, 2-15
ICS version numbers, 10-5
IIL, 2-8, 10-4
INF file, 9-3
INFOConnect library, 2-10
INFOConnect packages window, 9-3
install shell, 9-2
installation database, 9-4, 9-5
installation manager, 9-2, 10-27
inter-application buffers, 2-15
Interprocess Interface Library, 2-8,

10-4
intra-application buffers, 2-15
library channel, 2-14
library configuration, 10-28
manager components, 2-6
multiplexing library, 2-9
package, 9-2
path, 2-2, 2-11
path template, 2-14
publish installation, 9-3
quick config library, 2-9
quick configuration library, 2-9, 9-4
quick configuration manager, 9-4
registration, 9-4
sequence number, 9-5
service library, 2-8
session, 2-2, 2-12
session information block, 2-15
shell, 2-10, 10-5
stack interface library, 2-9, 10-4
standalone installation, 9-2
subscribe installation, 9-3
switching library, 2-9, 10-4
XVT, 2-7

design issues
library, 7-2

destination
installation, 9-11

diagnostic library
debugging, 8-5

dialog section
syntax, 9-19

disks section
syntax, 9-20

distribution media
creating, 9-9
file compression, 9-9
icsetup.inf, 9-9
install.exe, 9-9
root directory contents, 9-9

DosLink
definition, 10-28

DosLink API
definition, 2-7

DosLink applications
basic procedures, 5-3
canceling pending requests, 5-19
closing a session, 5-17
compiling and linking, 5-26
DosLink solution, closer look, 5-23
error handling, 5-15
handling data communications errors,

5-20
initializing ICS, 5-3
introduction, 5-1
opening a session, 5-4
receiving a buffer, 5-11
running with old versions of ICS,

5-21
samples

IcBDrive, 5-30
IcDosApp, 5-29

transmitting a buffer, 5-8
using datacomm buffers, 5-13

DosLink solution, closer look
DosLink applications, 5-23

E

EIL, (See also library)
definition, 2-8

encoding and decoding
Windows applications, 3-38
XVT applications, 4-31

environment variables
INCLUDE, 1-19
installation, 1-17

error events
ICS control flow, 6-11

error handling
DosLink applications, 5-15
functions, 2-17

Index

4173 5408-000 Index–5

error management
library, 7-15

events
accessory API, 2-19

exit hook library
definition, 2-9

extended status buffer
description, 10-8

external interface library, (See EIL),
(See also library)

F

file compression
package diskettes, 9-9

filtering service
libraries, 7-24

functions
accessory API, 2-16
accessory management, 2-18
basic session management, 2-16
error handling, 2-17
memory management, 2-18
path management, 2-17

G

generating errors
library, 7-57

H

handling data communications errors
DosLink applications, 5-20
Windows applications, 3-33
XVT applications, 4-25

hook library
definition, 2-9, 10-4

I

IC_RESULT
definition, 2-15

IC_STATUS_BUFFER
description, 10-8

IC_STATUS_BUFFER extended status
library, 7-17

IcLibCloseChannel
library, 7-35

IcLibCloseSession
library, 7-37

IcLibEvent
converting from release 2.0 to 3.0,

10-18
library, 7-42

IcLibGetSessionInfo
library, 7-46

IcLibGetString
converting from release 2.0 to 3.0,

10-20
library, 7-48

IcLibIdentifySession
library, 7-51

IcLibInstall
library, 7-26

IcLibLcl
converting from release 2.0 to 3.0,

10-19
library, 7-40

IcLibOpenChannel
converting from release 2.0 to 3.0,

10-17
library, 7-34

IcLibOpenSession
converting from release 2.0 to 3.0,

10-18
library, 7-36

IcLibPrintConfig
converting from release 2.0 to 3.0,

10-22
library, 7-33

IcLibRcv
converting from release 2.0 to 3.0,

10-19
library, 7-38

IcLibSetResult
converting from release 2.0 to 3.0,

10-20
library, 7-41

IcLibTerminate
library, 7-28

Index

Index–6 4173 5408-000

IcLibUpdateConfig
converting from release 2.0 to 3.0,

10-20
library, 7-29

IcLibVerifyConfig
converting from release 2.0 to 3.0,

10-21
library, 7-31

IcLibXmt
converting from release 2.0 to 3.0,

10-19
library, 7-38

ICS
application's perspective of, 2-2
architecture, 2-5
purpose, 2-1

ICS control flow
error events, 6-11
open session request, 6-4
receive request, 6-8
status events, 6-11
transmit request, 6-8

ICS version numbers
definition, 10-5
library, 7-19

icxvtmod
installation, 1-22

IDK package
alphabetical list, 1-3

IDK samples package
alphabetical list, 1-9

IIL
definition, 2-8, 10-4

INCLUDE
environment variable, 1-19

INF file
accessory type section, 9-28
app.copy.appstuff section, 9-27
app.copy.noremove section, 9-27
app.copy.publish section, 9-27
app.copy.standalone section, 9-27
app.copy.subscribe section, 9-27
bitmap type section, 9-28
data section, 9-18
definition, 9-3
dialog section, 9-19
disks section, 9-20
driver type section, 9-29
font type section, 9-29
help type section, 9-29

library type section, 9-29
needed.space section, 9-26
noremove type section, 9-29
package section, 9-21
progman.groups section, 9-23
publish.progman.groups section, 9-23
purvey type section, 9-30
readme type section, 9-30
sample, 9-7, 9-34, 9-36
standalone.progman.groups section,

9-23
system type section, 9-30
template type section, 9-30
undefined type section, 9-30
windows type section, 9-30
winpurvey type section, 9-30
writing, 9-6

INF script file version information
library, 7-21

INF syntax
introduction, 9-16

INFOConnect -d debug option
debugging, 8-6

INFOConnect 2.0
architecture diagram, 10-23

INFOConnect 3.0
architecture diagram, 10-1
manager components, 10-3

INFOConnect Connectivity Services,
(See ICS)

INFOConnect header files
library, 7-84

INFOConnect library
definition, 2-10

INFOConnect packages window
definition, 9-3

INFOConnect RCDATA version
information

library, 7-23
Windows applications, 3-47

initializing ICS
DosLink applications, 5-3
Windows applications, 3-2
XVT applications, 4-2

install shell
definition, 9-2

Index

4173 5408-000 Index–7

installation
app.copy.appstuff, 9-12
app.copy.noremove section, 9-12
bootstrap, 9-11
copying, 9-12
deinstallation flow, 9-15
destination, 9-11
environment variables, 1-17
icxvtmod, 1-22
installation flow, 9-10
installing the IDK, 1-17
package check, 9-12
package contents, 1-3

IDK package, 1-3
IDK sample package, 1-9

program group, 9-13
quick config, 9-14
release notes, 9-10
starting, 9-10
system requirements, 1-1
Windows 3.0 SDK, 1-19
windows platform, 1-1
XVT, 1-22

installation database
definition, 9-4, 9-5

installation manager
definition, 9-2, 10-27

installation script file, (See INF file)
installing the IDK

installation, 1-17
inter-application buffers

definition, 2-15
Interprocess Interface Library, (See IIL)
intra-application buffers

definition, 2-15
introduction

DosLink applications, 5-1

L

library
aliasing, 7-53
choosing between, 7-2
communicating with applications,

7-63
compiling, 7-73
configuration management, 7-4
design issues, 7-2
error management, 7-15

filtering service libraries, 7-24
generating errors, 7-57
IC_STATUS_BUFFER extended

status, 7-17
IcLibCloseChannel, 7-35
IcLibCloseSession, 7-37
IcLibEvent, 7-42
IcLibGetSessionInfo, 7-46
IcLibGetString, 7-48
IcLibIdentifySession, 7-51
IcLibInstall, 7-26
IcLibLcl, 7-40
IcLibOpenChannel, 7-34
IcLibOpenSession, 7-36
IcLibPrintConfig, 7-33
IcLibRcv, 7-38
IcLibSetResult, 7-41
IcLibTerminate, 7-28
IcLibUpdateConfig, 7-29
IcLibVerifyConfig, 7-31
IcLibXmt, 7-38
ICS version numbers, 7-19
INF script file version information,

7-21
INFOConnect header files, 7-84
INFOConnect RCDATA version

information, 7-23
library checklist, 7-72
library table serial numbers, 7-23
linking, 7-86
list of required functions, 6-3
modifying global variables, 7-63
on-line help, 7-61
requesting session termination, 7-60
required IcLib functions, 7-26
resource files, 7-75
running with multiple versions of

ICS, 7-71
samples

CoupleS, 7-90
IcStack2, 7-94
Intrface, 7-95
PS2TTY, 7-89
Reflect, 7-93
Service, 7-92

session and channel aliasing, 7-53
session and channel runtime record

layout, 7-13
session attributes, 7-3
status management, 7-16

Index

Index–8 4173 5408-000

status messages, 7-63
structure, 6-3
system timers, 7-68
table

description, 7-8
design, 7-6
processing, 7-12

tracing, 7-70
version control, 7-19
Windows 3.1 version information

resource, 7-22
Windows 3.x issues, 7-25
Windows DLL requirements, 7-52

library channel
definition, 2-14

library checklist
library, 7-72

library configuration
definition, 10-28

library table serial numbers
library, 7-23

linker
Microsoft C segmented, 1-19

linking
library, 7-86
Windows applications, 3-51
XVT applications, 4-40

M

makefiles
Borland C compatible, 1-18
Microsoft C compatible, 1-18

making your application an
INFOConnect accessory

Windows applications, 3-42
XVT applications, 4-34

manager components
closer look, 6-1
definition, 2-6
INFOConnect 3.0, 10-3

manager components diagram
closer look, 6-2

memory management
functions, 2-18

Microsoft C
compatible makefiles, 1-18
make command line, 1-21
OLDNAMES, 1-20
unresolved external references, 1-20

modifying global variables
library, 7-63

multiplexing library
definition, 2-9

N

needed.space section
syntax, 9-26

O

OLDNAMES
Microsoft C, 1-20

on-line help
library, 7-61

open session request
ICS control flow, 6-4

opening a session
DosLink applications, 5-4
Windows applications, 3-5
XVT applications, 4-3

P

package
definition, 9-2

package check
installation, 9-12

package diskettes
creating, 9-9
file compression, 9-9
icsetup.inf, 9-9
install.exe, 9-9
root directory contents, 9-9

package section
syntax, 9-21

Index

4173 5408-000 Index–9

packaging
deinstallation flow, 9-15
installation flow, 9-10
overview, 9-1
sample INF file, 9-7, 9-34, 9-36
writing a script file, 9-6

path
definition, 2-2, 2-11
relationship to session, 2-12

path management
functions, 2-17

path template
definition, 2-14

procedures for INFOConnect accessories
Windows applications, 3-41
XVT applications, 4-33

progman.groups section
syntax, 9-23

program group
installation, 9-13

publish installation
definition, 9-3

publish.progman.groups section
syntax, 9-23

Q

quick config
installation, 9-14

quick configuration, (See Quick Config)
quick configuration library

definition, 2-9, 9-4
quick configuration manager

definition, 9-4

R

receive request
ICS control flow, 6-8

receiving a buffer
DosLink applications, 5-11
Windows applications, 3-12
XVT applications, 4-8

registration
definition, 9-4

release notes
installation, 9-10

requesting session termination
library, 7-60

required IcLib functions
library, 7-26

resource files
library, 7-75
Windows applications, 3-46
XVT applications, 4-39

running with multiple versions of ICS
library, 7-71

running with old versions of ICS
DosLink applications, 5-21
Windows applications, 3-39
XVT applications, 4-32

S

Samples
library

CoupleS, 7-90
IcStack2, 7-94
PS2TTY, 7-89
Reflect, 7-93
Service, 7-92

samples
DosLink applications

IcBDrive, 5-30
IcDosApp, 5-29

library
Intrface, 7-95

Windows applications
CoupleW, 3-76
IcWinApp, 3-53

XVT applications
Couple, 4-46
IcOpenAc, 4-48
IcXvtApp, 4-44

script file, (See INF file)
sample, 9-7, 9-34, 9-36
writing, 9-6

Index

Index–10 4173 5408-000

section
app.copy.appstuff, 9-12, 9-27
app.copy.noremove, 9-12, 9-27
app.copy.publish, 9-27
app.copy.standalone, 9-27
app.copy.subscribe, 9-27
data, 9-18
dialog, 9-19
disks, 9-20
needed.space, 9-26
package, 9-21
progman.groups, 9-23
publish.progman.groups, 9-23
standalone.progman.groups, 9-23

sequence number
definition, 9-5

service library, (See also library)
definition, 2-8

session
definition, 2-2, 2-12
relationship to architecture, 2-13
relationship to path, 2-12

session and channel aliasing
library, 7-53

session and channel runtime record
layout

library, 7-13
session attributes

library, 7-3
session information block

definition, 2-15
shell

definition, 2-10, 10-5
SL, (See service library), (See also

library)
stack interface library

definition, 2-9, 10-4
standalone installation

definition, 9-2
standalone.progman.groups section

syntax, 9-23
status events

ICS control flow, 6-11
status management

library, 7-16
status messages

library, 7-63
subscribe installation

definition, 9-3

switching library
definition, 2-9, 10-4

system requirements
installation, 1-1

system timers
library, 7-68

system verification checklist (for
windows), 1-19

T

table, library
description, 7-8
design, 7-6
processing, 7-12

terminating your application
Windows applications, 3-28
XVT applications, 4-20

terminology
accessory, 2-7
accessory API, 2-7
AIL, 2-7, 10-4
application, 2-7
Application Interface Library, 2-7,

10-4
codedir, 9-3
complete deinstallation, 9-3
component numbers, 10-7
configuration API, 10-5
configuration database, 9-4
configurator, 2-10, 10-5
context, 2-15
cooperative application, 2-6
datadir, 9-4
DosLink API, 2-7
EIL, 2-8
exit hook library, 2-9
External Interface Library, 2-8
hook library, 2-9, 10-4
IC_RESULT, 2-15
ICS version numbers, 10-5
IIL, 2-8, 10-4
INF file, 9-3
INFOConnect library, 2-10
INFOConnect packages window, 9-3
install shell, 9-2
installation database, 9-4, 9-5
installation manager, 9-2
inter-application buffers, 2-15

Index

4173 5408-000 Index–11

Interprocess Interface Library, 2-8,
10-4

intra-application buffers, 2-15
library channel, 2-14
manager components, 2-6
multiplexing library, 2-9
package, 9-2
path, 2-11
path template, 2-14
publish installation, 9-3
quick config library, 2-9
quick configuration library, 2-9, 9-4
quick configuration manager, 9-4
registration, 9-4
sequence number, 9-5
service library, 2-8
session, 2-12
session information block, 2-15
shell, 2-10, 10-5
stack interface library, 2-9, 10-4
standalone installation, 9-2
subscribe installation, 9-3
switching library, 2-9, 10-4
XVT, 2-7

trace
adding trace information to the trace

log, 8-3
function descriptions, 10-7
IcMgrTraceBuffer, 8-3
IcMgrTraceResult, 8-3

tracing
library, 7-70

tracing INFOConnect datacomm activity
debugging, 8-1

transmit request
ICS control flow, 6-8

transmitting a buffer
DosLink applications, 5-8
Windows applications, 3-8
XVT applications, 4-6

type section
accessory, 9-28
bitmap, 9-28
driver, 9-29
font, 9-29
help, 9-29
library, 9-29
noremove, 9-29
purvey, 9-30
readme, 9-30
system, 9-30
template, 9-30
undefined, 9-30
windows, 9-30
winpurvey, 9-30

U

unresolved external references
Microsoft C, 1-20

using datacomm buffers
DosLink applications, 5-13
Windows applications, 3-15
XVT applications, 4-10

using event hooks with XVT 3.0
XVT applications, 4-29

using keyboard and event hooks with
XVT 2.0

XVT applications, 4-30

V

version control
library, 7-19

Index

Index–12 4173 5408-000

W

Windows 3.1 issues
debugging, 8-6

Windows 3.1 version information
resource

library, 7-22
Windows 3.x issues

library, 7-25
Windows applications

advanced error handling, 3-36
advanced status handling, 3-36
allocating buffers, 3-5
basic error handling, 3-17
basic procedures, 3-2
basic status handling, 3-22
calling INFOConnect accessories,

3-41
canceling pending requests, 3-32
closing a session, 3-26
compiling, 3-44
data compression and error detection,

3-39
encoding and decoding, 3-38
handling data communications errors,

3-33
INFOConnect version RCDATA

version information, 3-47
initializing ICS, 3-2
linking, 3-51
making your application an

INFOConnect accessory, 3-42
opening a session, 3-5
procedures for INFOConnect

accessories, 3-41
receiving a buffer, 3-12
resource files, 3-46
running with old versions of ICS,

3-39
samples

CoupleW, 3-76
IcWinApp, 3-53

terminating your application, 3-28
transmitting a buffer, 3-8
using datacomm buffers, 3-15

Windows debug version
debugging, 8-7

Windows DLL requirements
library, 7-52

windows platform
installation, 1-1

X

XVT
definition, 2-7
installation, 1-22

XVT applications
advanced error handling, 4-26
advanced status handling, 4-26
allocating buffers, 4-3
basic error handling, 4-12
basic procedures, 4-2
basic status handling, 4-16
calling INFOConnect accessories,

4-34
canceling pending requests, 4-24
closing a session, 4-19
compiling, 4-37
data compression and error detection,

4-32
encoding and decoding, 4-31
handling data communications errors,

4-25
initializing ICS, 4-2
linking, 4-40
making your application an

INFOConnect accessory, 4-34
opening a session, 4-3
procedures for INFOConnect

accessories, 4-33
receiving a buffer, 4-8
resource files, 4-39
running with old versions of ICS,

4-32
samples

Couple, 4-46
IcOpenAc, 4-48
IcXvtApp, 4-44

terminating your application, 4-20
transmitting a buffer, 4-6
using datacomm buffers, 4-10
using event hooks with XVT 3.0,

4-29
using keyboard and event hooks with

XVT 2.0, 4-30

	Contents
	About This Guide
	Section 1: Installation
	Windows Platform
	Preparing XVT for Use with INFOConnect

	Section 2: An Introduction to INFOConnect
	Architecture Diagram
	Terminology
	Accessory API Functions
	Accessory API Events

	Section 3: Writing INFOConnect/Windows
	Basic Procedures for Windows Applications
	Advanced Procedures for Windows
	Procedures for INFOConnect Accessories
	Compiling
	Resource Files
	Linking
	IcWinApp - a Sample Windows Application
	CoupleW - a Windows Application that

	Section 4: Writing INFOConnect/XVT Applications
	Basic procedures for XVT Applications
	Advanced Procedures for XVT Applications
	Procedures for INFOConnect Accessories
	Compiling
	Resource Files
	Linking
	IcXvtApp - A sample XVT application
	Couple - An XVT Application that Connects
	IcOpenAc - An XVT Application that Opens an

	Section 5: Writing INFOConnect/DosLink
	Basic Procedures for DosLink Applications
	Advanced Procedures for DosLink
	A Closer Look at the DosLink Solution
	Compiling and Linking
	IcDosApp - a Sample DosLink Application
	IcBDrive - a Sample DosLink TSR

	Section 6: A Closer Look at the INFOConnect
	Manager Components
	Structure of Service and External Interface
	ICS Control Flow

	Section 7: Writing INFOConnect Libraries for
	Design Issues
	Writing the Required IcLib Functions
	Other Procedures and Guidelines
	Compiling
	Resource Files
	INFOConnect Header Files
	Linking
	PS2TTY - A Sample Service Library
	CoupleS - A Sample Service Library
	Service - A Generic Service Library
	Reflect - A Sample External Interface
	IcStack2- A Sample External Interface
	Intrface - A Generic External Interface

	Section 8: Debugging
	General Debugging Procedures
	Windows 3.x Debugging Procedures
	Common Coding Mistakes

	Section 9: Packaging INFOConnect Components
	Overview
	Writing a .INF Script File
	Creating the Package Diskette(s)
	A Closer Look at Processing Flow
	INF SYNTAX
	INF Examples

	Section 10: Converting from Previous Releases
	Converting From Release 2.0 to 3.0
	Converting From Release 1.0 to 2.0

	Index

