
Basic Programming
Reference Manual

P/N 028156
The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a duly
executed agreement to purchase or lease equipment or to license software. The only warranties made
by Unisys, if any, with respect to the products described in this document are set forth in such agreement.
Unisys cannot accept any financial or other responsibility that may be the result of your use of the
information in this document or software material, including direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise
of such changes and/or additions.

© 1993 Unisys Corporation. All rights reserved.

RESTRICTED RIGHTS LEGEND
Use, reproduction, or disclosure is subject to the restrictions set forth in DFARS 252.227–7013 and
FARS 52.227–14 for commercial computer software.

Attachmate and the Attachmate logo are registered trademarks of Attachmate Corporation in the United States and other countries.
INFOConnect is a trademark and Unisys is a registered trademark of Unisys Corporation.

All other trademarks and registered trademarks are property of their respective owners.

The names, places, and/or events used in this publication are not intended to correspond to any individual, group, or
association existing, living, or otherwise. Any similarity or likeness of the names, places, and/or events with the names of
any individual, living or otherwise, or that of any group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including direct,
special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

RESTRICTED RIGHTS LEGEND. Use, reproduction, or disclosure is subject to the restrictions set forth in DFARS
252.227–7013 and FARS 52.227–14 for commercial computer software.

Correspondence regarding this publication may be forwarded using the Documentation Questionnaire in this document,
or may be addressed directly to Unisys, INFOConnect Development Group, Malvern Development Center, 2450
Swedesford Road, Room B101, Paoli, Pennsylvania, 19301.

Unisys and INFOConnect are trademarks of Unisys Corporation.

Microsoft is a registered trademark and Windows and Visual Basic are trademarks of Microsoft Corporation.

XVT is a trademark of XVT Software Inc.

IBM is a registered trademark of International Business Machines Corporation.

Novell is a registered trademark of Novell, Inc.

4173 5390–000 v

Contents

About this Manual ... xxi

Section 1 Introduction

ICS Accessory API ...1–2
ICS Library API ...1–2

Section 2 Functions By Category

ICS Accessory API ...2–1
MS-Windows API ..2–2
XVT/Win API ...2–3

ICS DosLink Client/Server Applications...........................2–5
ICS Memory Management API...2–6

MS-Windows API ..2–6
XVT/Win API ...2–6

General Utilities ..2–7
MS-Windows API ..2–8
XVT/Win API ...2–9

ICS Library API ...2–10
Entry Points Provided by SLs and EILs2–10

MS-Windows API...2–11
ICS Utilities for Library Development2–12

MS-Windows API...2–12

Section 3 INFOConnect API

IcAddRefContextID...3–2
IcAllocBuffer ...3–3
IcChangeHandle ...3–4
IC_CHECK_DATAFLAGS...3–6
IC_CHECK_RESULT_SEVERE ..3–7
IcCloseSession...3–8
IcCreateHandle ...3–9
IcCreateHwnd..3–10
IcCreateSession..3–11
IcDefaultErrorProc..3–12

Contents

vi 4173 5390–000

IcDeleteLibraryConfig..3–14
IcDeregisterAccessory ..3–16
IcDestroyHandle...3–17
IcDestroyHwnd...3–18
IcDestroySession...3–19
IcDialogConfig..3–20
IcExitOk...3–21
IcFreeBuffer ..3–22
IcGetBufferSize ..3–23
IcGetChannelID ..3–24
IcGetCmdlineOption ..3–25
IcGetContext...3–27
IcGetContextID ...3–28
IcGetContextString ..3–29
IcGetINFOConnectDir ..3–30
IcGetLibraryDefault..3–31
IcGetNewPath...3–32
IcGetNextEvent...3–34
IcGetPathID...3–35
IcGetPathNames...3–36
IC_GET_RESULT_CONTEXT...3–37
IC_GET_RESULT_SUBTYPE...3–38
IC_GET_RESULT_SUBVALUE..3–39
IC_GET_RESULT_TYPE ..3–40
IC_GET_RESULT_VALUE..3–41
IcGetServiceName..3–42
IcGetSessionID...3–43
IcGetSessionInfo..3–44
IcGetString..3–45
IcHandleOffset..3–46
IcInitIcs..3–47
IcIsDebug..3–48
IcLcl ...3–49
IcLibCloseChannel...3–50
IcLibCloseSession ...3–51
IcLibEvent ...3–52
IcLibGetSessionInfo ..3–54
IcLibGetString ..3–55
IcLibIdentifySession ..3–57
IcLibInstall ..3–58
IcLibLcl..3–60
IcLibOpenChannel ...3–62
IcLibOpenSession..3–65
IcLibPrintConfig ...3–68
IcLibRcv ..3–70

Contents

4173 5390–000 vii

IcLibSetResult...3–71
IcLibTerminate..3–72
IcLibUpdateConfig..3–73
IcLibVerifyConfig..3–76
IcLibXmt ..3–78
IcLockBuffer..3–79
IC_MAKE_RESULT...3–80
IcMgrEilEvent..3–81
IcMgrGetSessionInfo..3–82
IcMgrLcl...3–83
IcMgrRcv ...3–84
IcMgrSendEvent ...3–85
IcMgrSetResult ...3–87
IcMgrTraceBuffer..3–88
IcMgrTraceResult ...3–90
IcMgrXmt ...3–92
IcNextEvent ...3–93
IcNotifyConfig ...3–95
IcOpenAccessory ...3–97
IcOpenSession..3–100
IcRcv..3–104
IcReadBuffer ...3–106
IcReadLibraryConfig ..3–107
IcReAllocBuffer...3–109
IcRegisterAccessory..3–110
IcRegisterCallback ...3–111
IcRegisterMsgSession ...3–113
IcReleaseContextID..3–115
IcRunAccessory ...3–116
IcRunHelp3..3–118
IcRunLibHelp ..3–120
IcSelectPath ..3–121
IcSetError ..3–123
IcSetServerInfo ...3–124
IcSetSessionError ..3–125
IcSetStatus..3–127
IcUnlockBuffer ..3–128
IcWriteBuffer ...3–129
IcWriteLibraryConfig ..3–131
IcXmt..3–133
NOREF...3–135
ic_buf_alloc...3–136
ic_buf_free ..3–137
ic_buf_lock..3–138
ic_buf_realloc ...3–139

Contents

viii 4173 5390–000

ic_buf_unlock...3–140
ic_change_handle..3–141
ic_close_session..3–142
ic_default_error_proc ..3–143
ic_deregister_accessory ...3–145
ic_exit_ok..3–146
ic_galloc..3–147
ic_get_context ..3–148
ic_get_context_string..3–149
ic_get_infoconnect_dir..3–150
ic_get_new_path ..3–151
ic_get_path_id..3–153
ic_get_path_names..3–154
ic_get_session_id ..3–155
ic_get_session_info...3–156
ic_get_string...3–157
ic_gfree ...3–158
ic_glock...3–159
ic_grealloc ..3–160
ic_gunlock ..3–161
ic_init_ics..3–162
ic_lcl ..3–163
ic_open_accessory..3–164
ic_open_session ..3–167
ic_rcv...3–170
ic_register_accessory ...3–171
ic_register_msg_session ..3–172
ic_run_accessory...3–174
ic_set_error...3–176
ic_set_status ..3–177
ic_xmt..3–178

Section 4 ICS Messages/Events

E_IC_ERROR ..4–3
E_IC_LCL_RESULT..4–4
E_IC_NEWPATH...4–5
E_IC_NULLEVENT..4–6
E_IC_RCV_DONE ...4–7
E_IC_RCV_ERROR...4–8
E_IC_SESSION_CLOSE...4–9
E_IC_SESSION_EST ..4–10
E_IC_STATUS...4–11
E_IC_STATUS_RESULT ..4–12
E_IC_XMT_DONE ...4–13

Contents

4173 5390–000 ix

E_IC_XMT_ERROR...4–14
IC_ERROR / "IC_Error" ..4–15
IC_LASTEVENT...4–16
IC_LCLRESULT / "IC_LclResult"4–17
IC_NEWPATH / "IC_NewPath" ..4–18
IC_NULLEVENT ..4–19
IC_RCVDONE / "IC_RcvDone" ..4–20
IC_RCVERROR / "IC_RcvError"......................................4–21
IC_SENDSTATUS..4–22
IC_SESSIONCLOSED / "IC_SessionClosed"4–23
IC_SESSIONESTABLISHED / "IC_SessionEstablished"

...4–24
IC_STATUS / "IC_Status" ..4–26
IC_STATUSRESULT / "IC_StatusResult"4–27
IC_TIMER / "IC_Timer"...4–28
IC_XMTDONE / "IC_XmtDone" ..4–29
IC_XMTERROR / "IC_XmtError"......................................4–30

Section 5 ICS Data Structures/Types

CHANNELID ..5–1
EVENT..5–2
HIC_CHANNEL..5–3
HIC_CONFIG ...5–3
HIC_SESSION ...5–3
HIC_STATUSBUF..5–4
IC_BASEREVISION...5–4
IC_BASEVERSION..5–4
IC_BUFHND...5–5
IC_BUILD_REVISION..5–5
IC_CALLBACK..5–5
IC_COMMAND...5–6
IC_COMPONENT...5–7
IC_COMPONENT_TYPE ...5–7
IC_DEBUG...5–10
IC_DICT_FIELD ...5–12
IC_DICT_NODE ...5–13
IC_DICT_TABLE..5–15
IC_DIRECTORYTYPES...5–16
IC_EMU_LEVEL ..5–17
IC_ERROR_INFO ..5–17
IC_ERROR_MASK ..5–18
IC_ERROR_SEVERE ..5–18
IC_ERROR_TERMINATE..5–19
IC_ERROR_WARNING ...5–19

Contents

x 4173 5390–000

IC_FIELD_FLAGS...5–20
IC_FIELDTYPE..5–22
IC_HEADER_SIZE ..5–25
IC_HEADER_3_0 ..5–25
IC_KEY_SERIALNUM...5–26
IC_LCL_FLAGS ..5–26
IC_LIBRARY_FLAGS ...5–27
IC_MAXACCESSORYIDLEN..5–27
IC_MAXACCESSORYIDSIZE ...5–28
IC_MAXCHANNELIDLEN ...5–28
IC_MAXCHANNELIDSIZE ..5–28
IC_MAXCONNECTEDPATHIDLEN5–28
IC_MAXDESCRIPTIONSIZE...5–29
IC_MAXERRORINSERT ...5–29
IC_MAXERRORSTRING...5–29
IC_MAXFILENAMESIZE ...5–30
IC_MAXIDSIZE..5–30
IC_MAXLIBRARYIDLEN...5–30
IC_MAXLIBRARYIDSIZE..5–31
IC_MAXPACKAGEIDSIZE..5–31
IC_MAXPATHIDLEN...5–31
IC_MAXPATHIDSIZE ..5–31
IC_MAXPRINTSTRING ...5–32
IC_MAXSESSIONIDLEN...5–32
IC_MAXSESSIONIDSIZE..5–32
IC_MAXSESSIONIDSUFFIX ...5–33
IC_MAXSTRINGLENGTH ...5–33
IC_MAXTEMPLATEIDLEN ...5–33
IC_MAXTEMPLATEIDSIZE...5–33
IC_MAXVENDORNAMELEN ..5–34
IC_MAXVENDORNAMESIZE..5–34
IC_MAXWSIDSIZE ..5–34
IC_MEMHND ...5–34
IC_MINOR_VERSION ...5–35
IC_MSG_CONFIG ...5–35
IC_NEXTEVENT_FLAGS..5–37
IC_OK ..5–38
IC_OPEN_OPTIONS ...5–38
IC_PACKAGE..5–39
IC_PATH_FLAGS..5–39
IC_PRINT_SUMMARY ..5–39
IC_RC_NODE..5–40
IC_RECORD_INFO ...5–43
IC_RECORD_SIZE..5–44
IC_RESULT ...5–44

Contents

4173 5390–000 xi

IC_RESULT_CONTEXT_CFG...5–45
IC_RESULT_CONTEXT_ICDB..5–45
IC_RESULT_CONTEXT_ICUTIL.......................................5–45
IC_RESULT_CONTEXT_INVALID....................................5–46
IC_RESULT_CONTEXT_STD ...5–46
IC_RESULT_SUBTYPE...5–46
IC_RESULT_SUBVALUE..5–47
IC_REVISION_...5–47
IC_REVISIONNUM...5–48
IC_SERIALNUM...5–48
IC_SESSION_FLAGS..5–49
IC_SINFO...5–50
IC_STATUSBUF ..5–52
IC_STATUS_BLOCKING ..5–54
IC_STATUS_BUFFER...5–55
IC_STATUS_COMMMGR..5–56
IC_STATUS_CONNECT..5–57
IC_STATUS_CONTROL..5–59
IC_STATUS_DATAFLAGS ...5–60
IC_STATUS_FKEY..5–62
IC_STATUS_LINESTATE..5–63
IC_STATUS_REACTIVATE...5–64
IC_STATUS_TRANS ...5–65
IC_STATUS_UTS ..5–66
IC_TABLE_FLAGS..5–66
IC_TABLETYPE...5–68
IC_TemplateBegin ..5–69
IC_TemplateChannel ..5–70
IC_TemplateConfig...5–70
IC_TemplateConfigTable ...5–71
IC_TemplateDescription ..5–71
IC_TemplateEnd ...5–72
IC_TemplateFlags...5–72
IC_TemplateInit...5–72
IC_TemplateLibrary ..5–74
IC_TemplateOpenID ...5–74
IC_TemplateTerm ...5–75
IC_UPGRADE_INFO ...5–75
IC_VER...5–77
IC_VER_INFO..5–77
IC_VERIFY...5–78
IC_VERIFY_OK..5–79
IC_VERSION_FILE..5–79
IC_VERSION_PRODUCT..5–80
IC_VERSION_STRING ..5–80

Contents

xii 4173 5390–000

IC_VERSION_... ..5–80
ICSTD_ACTIVECHANNEL..5–81
ICSTD_ACTIVEPATH ...5–81
ICSTD_ACTIVEPATHCHANNEL......................................5–82
ICSTD_CHANNEL...5–82
ICSTD_PATH...5–82
ICSTD_PATHCHANNEL...5–83
ICXVTCONFIG...5–83
ICXVTWIN..5–83
LPHIC_CHANNEL...5–84
LPHIC_SESSION ..5–84
LPIC_RESULT_CONTEXT ...5–84
LPIC_SINFO..5–84
LPIC_STATUSBUF ...5–85
LPIC_UPGRADE_INFO ..5–85
LPIC_VER_INFO...5–85
NULL_HIC_CHANNEL..5–86
NULL_HIC_CONFIG ...5–86
NULL_HIC_SESSION ...5–86
NULL_HIC_STATUSBUF..5–86
NULL_IC_BUFHND...5–87
NULL_IC_MEMHND..5–87
PATHID..5–87
VER_FILEDESCRIPTION_STR ..5–88
VER_FILESUBTYPE...5–89
VER_FILETYPE...5–89
VER_INTERNALNAME_STR..5–90

Section 6 ICS Accessory Definition

Appendix A Standard IDs (Keys) & Component Numbers

Accessory IDs ... A–1
Service Library IDs.. A–2
External Interface Library IDs .. A–3
Component Numbers.. A–4

Contents

4173 5390–000 xiii

Appendix B Status Types and Statuses

Statuses Sent from Accessory to LibraryB–2
IC_STATUS_BLOCKING... B–2
IC_STATUS_BUFFER... B–2
IC_STATUS_CONNECT ... B–4
IC_STATUS_DATAFLAGS.. B–4
IC_STATUS_FKEY.. B–5
IC_STATUS_REACTIVATE....................................... B–6
IC_STATUS_TRANS... B–6

Statuses Sent from Library to AccessoryB–7
IC_STATUS_CONNECT ... B–7
IC_STATUS_CONTROL.. B–8
IC_STATUS_LINESTATE.. B–9

Statuses Sent from Accessory to Accessory...............B–10
IC_STATUS_DATAFLAGS...................................... B–10
IC_STATUS_CONTROL.. B–11

Statuses Sent from ICS to AccessoryB–12
IC_STATUS_COMMMGR B–12

UTS-Specific Statuses ..B–14
IC_STATUS_UTS.. B–14

IC_UTS_SELECTION subtype 0...................... B–14
IC_UTS_DVC_READY subtype 0x10............... B–15
IC_UTS_DVC_BUSY subtype 0x11 B–15
IC_UTS_DVC_ERROR subtype 0x12.............. B–15
IC_UTS_DVC_NOTREADY subtype 0x13....... B–15
IC_UTS_ATTENTION subtype 0x20 B–15

DosLink-Specific Statuses ...B–16
DOSLINK_SINFO .. B–16

Library Support for 1.11 ApplicationsB–17
UTS EIL (and INT1 SL)..................................... B–17
TTY EIL... B–17

IC_STATUS_SPECIALMSG.................................... B–18
TTY EIL... B–18
From UTS EIL or INT1 SL to the Accessory..... B–18
From Accessory to UTS EIL or INT1 SL........... B–18

Contents

xiv 4173 5390–000

Appendix C Errors and Results

INFOConnect Connectivity Services............................... C–2
ICS Standard Errors .. C–2

IC_ASSIGNMENT_ERROR (Value 902) C–3
IC_ASSIGNMENT_UPDATED (Value 2004) C–3
IC_CANCELED (Value 2003)............................ C–3
IC_COMPLETE (Value 2013) C–4
IC_CONTEXT_ALREADY_CREATED

(Value 701) ... C–4
IC_CONTEXT_ALREADY_DELETED

(Value 702) ... C–4
IC_CONTEXT_INVALID (Value 703) C–5
IC_CONTEXT_NOT_FOUND (Value 704)........ C–5
IC_CONTEXTSTRING_NOT_FOUND

(Value 705) ... C–5
IC_CONTEXTSTRING_TRUNCATED

(Value 706) ... C–6
IC_CONTEXTTABLE_FULL (Value 700).......... C–6
IC_ERROR_ACCESSORY_FAILED

(Value 801) ... C–6
IC_ERROR_ACCESSORY_NOT_FOUND

(Value 800) ... C–7
IC_ERROR_ALREADYCLOSED

(Value 509) ... C–7
IC_ERROR_APP_BUSY (Value 11) C–7
IC_ERROR_APP_GONE (Value 12) C–8
IC_ERROR_BADFUNCTION (Value 300) C–8
IC_ERROR_BADPARAMETER (Value 4) C–8
IC_ERROR_BADREVISION (Value 302).......... C–9
IC_ERROR_BADSESSION (Value 1)............... C–9
IC_ERROR_BADTEMPLATE (Value 611)...... C–10
IC_ERROR_BADVERSION (Value 301)......... C–10
IC_ERROR_CANCELOPEN (Value 2000) C–10
IC_ERROR_CHAN_BUSY (Value 612) C–11
IC_ERROR_CHANNELINUSE (Value 503) C–11
IC_ERROR_COLON_PRESENT

(Value 906) ... C–11
IC_ERROR_INITICS (Value 500) C–12
IC_ERROR_INMODIFY (Value 507)............... C–12
IC_ERROR_INTERNAL (Value 5) C–12
IC_ERROR_INVALID_CONFIGREC

(Value 900) ... C–13
IC_ERROR_INVALIDPATH (Value 502)......... C–13
IC_ERROR_INVALID_WINCOMBO

(Value 8) ... C–13

Contents

4173 5390–000 xv

IC_ERROR_INVALID_WINOPTION
(Value 7)..C–14

IC_ERROR_LIBRARY_CONFIG
(Value 901)..C–14

IC_ERROR_LOSTRCV (Value 305)................C–14
IC_ERROR_LOSTXMT (Value 306)................C–15
IC_ERROR_MGR_BUSY (Value 9)C–15
IC_ERROR_NEWREVISION (Value 615)C–15
IC_ERROR_NEWVERSION (Value 605)C–16
IC_ERROR_NOCHANDATA (Value 609)C–16
IC_ERROR_NOCLOSE (Value 508)C–16
IC_ERROR_NODATABASE (Value 102)C–17
IC_ERROR_NOFIND (Value 2008).................C–17
IC_ERROR_NOLIBLOAD (Value 600)C–17
IC_ERROR_NOLIBRARY (Value 607)............C–18
IC_ERROR_NOMEMORY (Value 3)C–18
IC_ERROR_NOPARTNER (Value 303)C–18
IC_ERROR_NOPATHDATA (Value 608)C–19
IC_ERROR_NOPATHID (Value 903)C–19
IC_ERROR_NORCVMEM (Value 309)C–19
IC_ERROR_NOSESSION (Value 2001)C–20
IC_ERROR_NOSESSIONMEM (Value 307)...C–20
IC_ERROR_NOTEMPLATE (Value 610)C–20
IC_ERROR_NOVERSION (Value 603)C–21
IC_ERROR_NOXMTMEM (Value 308)C–21
IC_ERROR_OLDVERSION (Value 614)C–21
IC_ERROR_PATHBUSY (Value 510)C–22
IC_ERROR_PATHID_EXISTS (Value 908).....C–22
IC_ERROR_PICHANNELINUSE

(Value 504)..C–22
IC_ERROR_PIVERSION (Value 602)C–23
IC_ERROR_PMCHANNELINUSE

(Value 505)..C–23
IC_ERROR_PMVERSION (Value 601)C–23
IC_ERROR_QUEUEFULL (Value 304)C–24
IC_ERROR_RCV_BUSY (Value 10)C–24
IC_ERROR_REOPEN (Value 2)C–24
IC_ERROR_SERVICE_NOT_AVAILABLE

(Value 1001)..C–25
IC_ERROR_SHELL_ACTIVE (Value 103)C–25
IC_ERROR_SIZE_EXCEEDED

(Value 904)..C–25
IC_ERROR_SPACE_PRESENT

(Value 905)..C–26

Contents

xvi 4173 5390–000

IC_ERROR_TERMINATE_CLEAR
(Value 104) ... C–26

IC_ERROR_TERMINATE_EXIT
(Value 105) ... C–27

IC_ERROR_TERMINATE_NOMSG
(Value 0) ... C–27

IC_ERROR_TERMINATE_SHUTDOWN
(Value 106) ... C–28

IC_ERROR_TILDE_PRESENT
(Value 907) ... C–28

IC_ERROR_TIMERS (Value 1)....................... C–28
IC_ERROR_TRUNCATED (Value 2002) C–29
IC_ERROR_UNIMPLEMENTED

(Value 2012) ... C–29
IC_ERROR_UNKNOWN (Value 1000) C–29
IC_ERROR_UNKNOWN_COMMAND

(Value 2010) ... C–30
IC_ERROR_UNKNOWN_PARAMETER

(Value 2009) ... C–30
IC_ERROR_UNKNOWN_TABLE

(Value 2011) ... C–30
IC_ERROR_UNOPENEDSESSION

(Value 506) ... C–31
IC_ERROR_UPGRADE_WAIT (Value 613) ... C–31
IC_ERROR_WRONGVERSION

(Value 604) ... C–31
IC_ERROR_XMT_BUSY (Value 6)................. C–32
IC_IGNORE (Value 2007) C–32
IC_INCOMPLETE (Value 2006)...................... C–32
IC_INFO_QEVENT (Value 320)...................... C–33
IC_OK (Value 0) .. C–33
IC_VERIFY_OK (Value 2005) C–33

ICS Standard Configurator Errors C–34
IC_CFG_ALREADY_ACTIVE (Value 141)...... C–34
IC_CFG_BIT_FIELD (Value 134).................... C–34
IC_CFG_DATA_MISMATCH (Value 113)....... C–34
IC_CFG_DATA_TRUNCATED (Value 133).... C–35
IC_CFG_DELETE_INUSE (Value 143)........... C–35
IC_CFG_DIFFERENT_ACTIVE (Value 140) .. C–35
IC_CFG_INFO_EXCESS (Value 132) C–36
IC_CFG_INFO_IMPOSSIBLE (Value 127) C–36
IC_CFG_INFO_TRUNCATED (Value 131)..... C–36
IC_CFG_INTERNAL_ERROR (Value 100)..... C–36
IC_CFG_INVALID_DATABASE (Value 160) .. C–37
IC_CFG_INVALID_DB (Value 105)................. C–37

Contents

4173 5390–000 xvii

IC_CFG_INVALID_DBMODE (Value 106)C–37
IC_CFG_INVALID_FIELD (Value 109)............C–38
IC_CFG_INVALID_FIELD_TYPE

(Value 111)..C–38
IC_CFG_INVALID_HANDLE (Value 103)C–38
IC_CFG_INVALID_HWND (Value 161)...........C–39
IC_CFG_INVALID_KEY (Value 108)...............C–39
IC_CFG_INVALID_LIBRARY (Value 104).......C–39
IC_CFG_INVALID_POSITION (Value 112).....C–40
IC_CFG_INVALID_PROPERTY

(Value 116)..C–40
IC_CFG_INVALID_SIZE (Value 114)C–40
IC_CFG_INVALID_TABLE (Value 107)...........C–41
IC_CFG_INVALID_TABLE_TYPE

(Value 110)..C–41
IC_CFG_INVALID_TEMPLATE (Value 162) ...C–41
IC_CFG_INVALID_TYPE (Value 115).............C–42
IC_CFG_INVALID_TYPE_SIZE

(Value 135)..C–42
IC_CFG_MISMATCH_DATA (Value 126)C–42
IC_CFG_NAME_TRUNCATED (Value 130) ...C–42
IC_CFG_NEW_DATA (Value 128)C–43
IC_CFG_NO_DATA_MEMORY (Value 136)...C–43
IC_CFG_NO_HCFG_MEMORY

(Value 139)..C–43
IC_CFG_NO_HDB_MEMORY (Value 138).....C–44
IC_CFG_NO_HLIB_MEMORY (Value 162)C–44
IC_CFG_NO_INFO_MEMORY (Value 137)....C–44
IC_CFG_NO_INIT (Value 102)........................C–45
IC_CFG_NOT_FOUND (Value 125)................C–45
IC_CFG_NOT_IMPLEMENTED

(Value 101)..C–45
IC_CFG_STILL_ACTIVE (Value 142)C–46
IC_CFG_UNKNOWN_COMPONENT

(Value 119)..C–46
IC_CFG_UNKNOWN_FIELDTYPE

(Value 122)..C–46
IC_CFG_UNKNOWN_GENERIC

(Value 121)..C–46
IC_CFG_UNKNOWN_PROPERTY

(Value 118)..C–47
IC_CFG_UNKNOWN_ROLE (Value 117)C–47
IC_CFG_UNKNOWN_SUPPLIER

(Value 120)..C–47
IC_CFG_UNSAVED_DATA (Value 129)C–47

Contents

xviii 4173 5390–000

IC_CFG_WRONG_FIELDSIZE (Value 123) ... C–48
IC_CFG_WRONG_FIELDTYPE

(Value 124) ... C–48
IcACOMS.. C–49

IcACOMS Errors.. C–49
COMS_CHANNEL_ACTIVE (Value 225)........ C–49
COMS_ERROR_ACTIVESESS (Value 211) .. C–49
COMS_ERROR_DUPLICATE (Value 214)..... C–50
COMS_ERROR_INSERTCHANNEL

(Value 216) ... C–50
COMS_ERROR_INSERTSESSION

(Value 215) ... C–50
COMS_ERROR_INSERTWINDOWS

(Value 217) ... C–51
COMS_ERROR_MAXDIALOGS

(Value 212) ... C–51
IcHLCNTS... C–52

IcHLCNTS Errors... C–52
NTS_CONNECT_DENIED (Value 3) C–52
NTS_CONNECT_FAILED (Value 2) C–53
NTS_CONNECT_LOST (Value 4) C–53
NTS_CONNECT_REJECTED (Value 22)....... C–54
NTS_CREDITS_EXCEEDED (Value 23) C–54
NTS_MSG_OK (Value 1) C–54
NTS_NO_HOSTPATH (Value 24)................... C–55
NTS_TERMINAL_ACTIVE (Value 21) C–55

IcLCW... C–56
IcLCW Errors ... C–56

IcLocal.. C–57
IcLocal Errors .. C–57

IcMon.. C–58
IcMon Errors .. C–58

ICMON_ERR_KEYVALUE (Value 500) C–58
ICMON_ERR_NODUPEOPTIONS

(Value 502) ... C–58
ICMON_ERR_RANGEVALUE (Value 501)..... C–59

IcNBIOS.. C–60
IcNBIOS Errors.. C–60

NETBIOS_DUP_NAME (Value 4) C–60
NETBIOS_ERR_ADATA (Value 8) C–60
NETBIOS_ERR_ADD_NAME (Value 5) C–61
NETBIOS_ERR_CALL (Value 7) C–61
NETBIOS_ERR_CONNECT (Value 9)............ C–61
NETBIOS_ERR_DELETE_NAME

(Value 11) ... C–62

Contents

4173 5390–000 xix

NETBIOS_ERR_LISTEN (Value 6)C–62
NETBIOS_ERR_RECEIVE (Value 32)C–62
NETBIOS_ERR_RECEIVING (Value 22)C–63
NETBIOS_ERR_SEND (Value 33)..................C–63
NETBIOS_ERR_SENDING (Value 23)C–63
NETBIOS_INTERNAL (Value 10)....................C–64
NETBIOS_NOT_FOUND (Value 3)C–64
NETBIOS_XMT_BUSY (Value 21)C–64

IcTCP ..C–65
IcTCP Errors ..C–65

IcTELNET..C–66
IcTELNET Errors..C–66

TELNET_BAD_CONFIG (Value 12)C–66
TELNET_ERR_RECEIVING (Value 22)C–66
TELNET_ERR_SENDING (Value 23)C–67
TELNET_INTERNAL (Value 10)......................C–67

IcTrace..C–68
IcTrace Errors ..C–68

IcTTY...C–69
IcTTY Errors...C–69

TTY_ERROR_BAUDERROR (Value 8)C–69
TTY_ERROR_BYTEERROR (Value 7)C–69
TTY_ERROR_DEFPARAM (Value 5)C–70
TTY_ERROR_DIALABORTED (Value 11)C–70
TTY_ERROR_NOPORT (Value 1)C–70
TTY_ERROR_NOQs (Value 4)C–70
TTY_ERROR_NOTIMER (Value 10)...............C–71
TTY_ERROR_NOTOPEN (Value 3)................C–71
TTY_ERROR_OPEN (Value 2)C–71
TTY_ERROR_UNAVAILPORT (Value 6)C–72
TTY_ERROR_UNKNOWN (Value 9)C–72
TTY_LCLERROR_FAILED (Value 40)C–72
TTY_RCVERROR_FAILED (Value 22)C–72
TTY_RCVERROR_FRAME (Value 21)C–73
TTY_RCVERROR_OVERRUN (Value 20)......C–73
TTY_XMTERROR_CTSTO (Value 30)............C–73
TTY_XMTERROR_DSRTO (Value 31)C–73
TTY_XMTERROR_RLSDTO (Value 32)C–74
TTY_XMTERROR_TRANSMITTING

(Value 34)..C–74
TTY_XMTERROR_TXFULL (Value 33)C–74

Contents

xx 4173 5390–000

IcXNS.. C–75
IcXNS Errors.. C–75

DCDEV_BAD_DEVICE (Value 1003) C–75
DCDEV_NO_CHANNEL (Value 1006)............ C–75
DCDEV_NO_DEVICE (Value 1001) C–76
DCDEV_NO_DRIVER (Value 1005) C–76
DCDEV_NOT_DEVICE (Value 1002) C–76
DCDEV_OLD_DEVICE (Value 1004) C–77
DCDEV_READ_ERROR (Value 1020) C–77
DCDEV_WRITE_ERROR (Value 1021).......... C–77
DCDEV_WRITE_INCOMPLETE

(Value 1022) ... C–78
XNS_ADDRESS_ERROR (Value 701) C–78
XNS_SOCKET_ERROR (Value 702).............. C–78

Glossary ...G-1

Index ..I-1

4173 5390–000 xxi

About This Manual

Purpose
This reference manual, relative to release 3.0, provides detailed information about
the INFOConnect Connectivity Services (ICS) programming interface, messages, and
data types available for ICS Accessory development and for the development of
additional data filters (Service Libraries) and connection types (External Interface
Libraries).

Scope
This is a Basic INFOConnect Developer's Kit. This manual is intended purely as a
reference for use in developing components to the INFOConnect Connectivity
Services product.

Audience
The INFOConnect Development Kit Basic Programming Reference Manual audience
is the programmer who is developing cooperative applications that use INFOConnect
Connectivity Services for data communications, or developing reusable
INFOConnect accessories. This manual is also geared towards the developer who
wishes to build additional data filters (Service Libraries) and connection types
(External Interface Libraries). For information on the concepts and procedures
involved in developing ICS components, refer to the INFOConnect Development Kit
Basic Developer's Guide.

About This Manual

xxii 4173 5390–000

Prerequisites
Applications dependent on Microsoft Windows 3.0 or 3.1 (referred to in this
document as Windows or MS-Windows) must be familiar with the Windows
Software Development Kit. Familiarity with a C language compiler compatible with
Microsoft Windows 3.0 or 3.1 is also necessary.

XVT is the presentation toolkit that is supported by Unisys for developing portable
applications on the MS-Windows platform. Therefore, the programmer wishing to
develop portable user interface code using XVT must be familiar with the XVT
Presentation Toolkit.

How to Use This Guide
This is a reference manual. It is meant to be used as a reference tool in conjunction
with the INFOConnect Development Kit Basic Developer's Guide.

Organization
This manual consists of the following sections and appendixes. In addition, a
glossary and an index appear at the end of this manual.

Section 1. Introduction

This section provides background information about the INFOConnect Connectivity
Services program and, in particular, about the INFOConnect Development Kit.

Section 2. Functions by Category

This section lists and briefly describes the ICS API functions according to these
categories:

Accessory API
DosLink API
Memory Management API
General Utilities
Library API

Section 3. INFOConnect Connectivity Services API

This section contains an alphabetical list of the ICS API. The documentation for
each function includes the function prototype, a description of the function, an
explanation of each of the parameters, and the possible return values. Also included
is are any special notes about use of the function, as well as a key table noting which
ICS layer would use the function. Related topics, such as specific data types or
events/messages related to the API, are also listed.

About This Manual

4173 5390–000 xxiii

Section 4. ICS Messages/Events

This section contains an alphabetical list and documentation for the Windows
messages and XVT/Win events defined by INFOConnect Connectivity Services.

Section 5. ICS Data Structures/Types

This section contains an alphabetical list and documentation for the data structures
and types defined by INFOConnect Connectivity Services.

Section 6. ICS Accessory Definition

This section describes the components of an ICS Accessory.

Appendix A. Standard IDs (Keys) & Component Numbers

Appendix A lists and describes the INFOConnect Connectivity Services standard IDs
for accessories and libraries, as well as the standard component numbers and
currently assigned vendor-specific component numbers.

Appendix B. Status Types and Statuses

Appendix B lists and describes the INFOConnect Connectivity Services status types
and statuses.

Appendix C. Errors and Results

Appendix C lists and describes the INFOConnect Connectivity Services errors and
informative results, as well as errors specific to Unisys-provided ICS components.

About This Manual

xxiv 4173 5390–000

Related Product Information
INFOConnect Development Kit Basic Developer's Guide
(4173 5408-000)

Describes how to use the IDK to develop INFOConnect Accessories, and to develop
additional data filters (Service Libraries) and connection types (External Interface
Libraries).

INFOConnect Connectivity Services Installation and Configuration Guide (4240
0119-200)

Contains information on installing and configuring the INFOConnect runtime
product.

Microsoft Windows Software Development Kit Programmer's Reference

Contains reference material for the Windows SDK.

Microsoft Windows Software Development Kit Guide to Programming

Describes how to use the Windows SDK to develop Windows applications and
dynamic link libraries.

XVT Programmer's Manual

Contains reference material for the XVT developers kit.

About This Manual

4173 5390–000 xxv

Notational Conventions
Convention Description

Accessory When selected in the key table of a specific
INFOConnect API description, indicates that this
API is specific to INFOConnect Accessories through
the Accessory AIL. Note that the API is available to
those INFOConnect applications and libraries that
have initialized themselves by calling the IcInitIcs
function.

AIL Abbreviation for Application Interface Library.
When selected in the key table of a specific
INFOConnect API description, indicates that this
API must either be provided by the AIL or is
available as a utility to the AIL. Note that functions
that begin with IcLib ... must be provided by the AIL
at the given ordinal values.

Unless otherwise stated, the term AIL also refers to
its various forms, such as interprocess interface
library and stack interface library.

Bold Function names and data types/structures appear in
bold.

Byte In this document, this term is equivalent to one
octet.

Configurator When selected in the key table of a specific
INFOConnect API description, indicates that this
API is specific to Configuration Accessories. The
API is available to those INFOConnect accessories
and libraries that have initialized themselves as a
Configurator by calling the IcOpenDatabase
function.

About This Manual

xxvi 4173 5390–000

Convention Description

DosLink When selected in the key table of a specific
INFOConnect API description, indicates that this
API is specific to those DOS applications that run in
MS-Windows Enhanced Mode and use
INFOConnect Connectivity Services for data
communications.

EIL Abbreviation for External Interface Library. When
selected in the key table of a specific INFOConnect
API description, indicates that this API must either
be a callback function provided by the EIL or is
available as a utility to the EIL. Note that functions
that begin with IcLib ... must be provided by the EIL
at the given ordinal values.

HI Refers to the high word (high-order 16 bits) of a
long parameter.

IN, OUT In parameter description, indicates if the parameter
is input (IN), output (OUT), or both input/output
(IN/OUT).

*IN, *OUT In parameter description of pointer parameters,
indicates whether the data POINTED to is input
(*IN), output (*OUT), or both input/output
(*IN/*OUT). The pointer parameter itself must
always be input.

italicized words Function parameters and fields of a data structure
are italicized.

LO Refers to the low word (low-order 16 bits) of a long
parameter.

About This Manual

4173 5390–000 xxvii

Convention Description

NA In parameter description, indicates that the value of
the input parameter is not defined. Use the
appropriate NULL value.

Shell When selected in the key table of a specific
INFOConnect API description, indicates that this
API is specific to INFOConnect Shells. Note that
the API is also available to those INFOConnect
accessories or libraries that have initialized
themselves as a Shell by calling the IcInitShell
function.

SL Abbreviation for Service Library. When selected in
the key table of a specific INFOConnect API
description, indicates that this API must either be
provided by the SL or is available as a utility to the
SL. Note that functions that begin with IcLib ...
must be provided by the SL at the given ordinal
values.

(ver) In the function heading, indicates the first version of
the INFOConnect Development Kit in which the
given API is available.

WIN Abbreviation for Windows. When selected in the
key table of a specific INFOConnect API
description, indicates that this API is Windows-
specific.

XVT When selected in the key table of a specific
INFOConnect API description, indicates that this
API is XVT/Win-specific.

About This Manual

xxviii 4173 5390–000

Naming Conventions
INFOConnect Connectivity Services provides a Microsoft Windows version of the
communications interface, as well as an interface utilizing XVT for Windows. The
ICS function names follow the style conventions of the Windows platform.
XVT/Win-specific API follows the style conventions of that platform.

Function names are constructed by using the IC prefix followed by a verb/noun
combination. This combination indicates the action (such as the verb open) of the
function and the object (such as the noun session) on which the function operates.
Each word in the function name begins with a capital letter (for example,
IcOpenSession). The XVT/Win-specific API function names are in lower case with
each word in the name separated by an underscore (for example, ic_open_session).

All #defined names are capitalized (for example, IC_RCVDONE).

ICS events for the Windows platform must be registered with Windows. This is
done using the quoted version described in the Events/Messages section of this
manual (for example, "IC_RcvDone"). ICS events for the XVT/Win platform are in
all capital letters and are prefixed by E_IC_ (for example, E_IC_RCV_DONE).

4173 5390–000 1–1

Section 1
Introduction

The INFOConnect Connectivity Services (ICS) Program provides a workstation
platform that delivers code portability and reusability to the developer of a
cooperative system. ICS provides an open, layered architecture that allows
application independence from session/presentation-type services and from specific
data communications protocols. This is achieved by addressing many known
limitations and differences among Graphical User Interfaces (GUIs), communication
protocols and other aspects of supporting cooperative systems.

The INFOConnect Development Kit (IDK) provides the tools required for a
developer to build portable and reusable components for the INFOConnect product.
By using the IDK, developers can create ICS components that can plug into the
various layers of the ICS architecture. This IDK consists of the INFOConnect
Development Kit Basic Programming Reference Manual (this document), the
INFOConnect Development Kit Basic Developer's Guide, and the INFOConnect
Developer's Diskette(s). The IDK Diskette(s) contain libraries that provide a
consistent application programming interface (API) across the various platforms
supported, as well as many sample INFOConnect components. Developers who
utilize the INFOConnect Development Kit can be assured that all components
documented within this Kit will work together.

Introduction

1–2 4173 5390–000

ICS Accessory API
The INFOConnect Connectivity Services Accessories API provides both a Microsoft
Windows version of the INFOConnect Connectivity Services API and a platform
independent version utilizing XVT/Win. XVT/Win-specific API is provided for
those ICS functions that require a buffer handle parameter. Use the ICS provided
memory utilities for XVT/Win to obtain global buffers. To access ICS functions that
have a Windows window handle parameter, use GET_HWND() under XVT 2.0, or
first use the XVT/Win get_value() function to obtain the Windows
ATTR_NATIVE_WINDOW window handle under XVT 3.

INFOConnect also provides an API for DOS applications that run under MS-
Windows Enhanced mode and wish to use the MS-Windows version of the
INFOConnect API for client/server-type data communications. See the
INFOConnect Development Kit Basic Developer's Guide for information on writing
these types of applications.

ICS Library API
Since XVT does not currently support the development of dynamic link libraries,
service libraries and external interface libraries must be developed for specific
platforms. Therefore, INFOConnect Connectivity Services provides a GUI specific
programming interface for developing these libraries. Each library is required to
provide a core set of functions and may utilize the ICS programming interface. See
Section 2, "ICS Library API" for a brief description of the ICS programming
interface for library development.

4173 5390–000 2–1

Section 2
Functions By Category

This section lists and briefly describes the ICS API functions according to these
categories:

Accessory API
DosLink API
Memory Management API
General Utilities
Library API

ICS Accessory API
The ICS Accessory Application Programming Interface (AAPI) is the interface
provided for accessories and applications used in session management and error
handling. The INFOConnect Accessory AIL (IcAAPI16.DLL) exports this AAPI.
Note that the AAPIs exist in the ICS Manager and are, by default, available to the
INFOConnect accessory. Both MS-Windows and XVT/Win versions of the AAPI are
provided.

Functions By Category

2–2 4173 5390–000

MS-Windows API
To access Windows-specific AAPI, messages, and data types, include the icwin.h
include file after WINDOWS.H .

Basic Session Management Functions

Name Purpose

IcCloseSession Initiates session termination.

IcExitOk Responds to an ICS exit request.

IcInitIcs Initializes ICS.

IcLcl Cancels pending transmits and/or
receives.

IcOpenAccessory Starts an ICS accessory with a local
connection.

IcOpenSession Initiates session establishment.

IcRcv Requests a buffer of data.

IcRegisterMsgSession Registers ICS events.

IcXmt Initiates transmission of a data buffer.

Additional Session Management Functions

Name Purpose

IcChangeHandle Changes the ownership of an open
session.

IcGetPathID Obtains the path ID of an active session.

IcGetSessionID Obtains a session identification string
from a session handle.

IcGetSessionInfo Returns pertinent information about a
session.

IcSetStatus Sends a status message.

Functions By Category

4173 5390–000 2–3

Error Handling

Name Purpose

IcDefaultErrorProc Allows ICS to handle an error result.

IcGetString Converts an error result into a string.

IcSetError Used by accessories to generate errors.

XVT/Win API
The XVT/Win API, events, and data types are made available to your application by
INFOConnect Connectivity Services through the XVT.H include file. This is done
by running the ICXVTMOD utility (See the IDK Basic Developer's Guide for more
information on installing the IDK). Therefore, there is no additional file to include
in order to access these functions.

Basic Session Management Functions

Name Purpose

ic_close_session Initiates session termination.

ic_exit_ok Responds to an ICS exit request.

ic_init_ics Initializes ICS.

ic_lcl Cancels pending transmits and/or
receives.

ic_open_accessory Starts an ICS accessory with a local
connection.

ic_open_session Initiates session establishment.

ic_rcv Requests a buffer of data.

ic_register_msg_session Registers ICS events.

ic_xmt Initiates transmission of a data buffer.

Functions By Category

2–4 4173 5390–000

Additional Session Management Functions

Name Purpose

ic_change_handle Changes the ownership of an open
session.

ic_get_path_id Obtains the path identification string of
an active session.

ic_get_session_id Obtains a session identification string
from a session handle.

ic_get_session_info Returns pertinent information about a
session.

ic_set_status Sends a status message.

Error Handling

Name Purpose

ic_default_error_proc Allows ICS to handle an error result.

ic_get_string Converts an error result into a string.

ic_set_error Used by accessories to generate errors.

Functions By Category

4173 5390–000 2–5

ICS DosLink Client/Server Applications
DosLink Client/Server-type applications may access the MS-Windows version of the
Basic Session Management Functions, Additional Session Management Functions,
Memory Management Functions and the IcSetError function, as well as the
functions listed below. To access this API, and the ICS messages and data types,
include the icdos.h include file. DosLink Client/Server applications can run in
Windows enhanced mode only, and DosLinkS.EXE must be running. See the IDK
Basic Developer's Guide for more information.

Name Purpose

IcCreateHandle Creates an ICS memory handle from a
DOS far string pointer with offset zero.

IcCreateHwnd Creates an ICS window handle.

IcCreateSession Creates an ICS session structure.

IcDestroyHandle Destroys the handle created by
IcCreateHandle.

IcDestroyHwnd Destroys the handle created by
IcCreateHwnd.

IcDestroySession Destroys an ICS session structure.

IcGetNextEvent Retrieves the next event for a session.

IcGetServiceName Retrieves the service name of the
partner session.

IcHandleOffset Sets the memory offset for the DOS far
string pointer.

IcNextEvent Indicates the callback routine is ready
for the next event.

IcRegisterCallback Registers a session's callback routine.

IcSetServerInfo Declares a session to be a server
session.

Functions By Category

2–6 4173 5390–000

ICS Memory Management API

MS-Windows API
This memory management API is accessible by ICS accessories and libraries. No
additional include file is needed in order to access this API.

Name Purpose

IcAllocBuffer Allocates sharable memory.

IcFreeBuffer Frees memory allocated with
IcAllocBuffer .

IcGetBufferSize Returns the size of a buffer allocated
with IcAllocBuffer .

IcLockBuffer Locks memory allocated with
IcAllocBuffer .

IcReadBuffer Reads data from a buffer.

IcReAllocBuffer Resizes memory allocated with
IcAllocBuffer .

IcUnlockBuffer Unlocks memory locked with
IcLockBuffer .

IcWriteBuffer Writes data to a buffer.

XVT/Win API
This API is defined in XVT.H . No additional include file is needed to access this
API.

Name Purpose

ic_buf_alloc Allocates sharable memory.

ic_buf_free Frees memory allocated with
ic_buf_alloc.

ic_buf_lock Locks memory allocated with
ic_buf_alloc.

ic_buf_realloc Resizes memory allocated with
ic_buf_alloc.

Functions By Category

4173 5390–000 2–7

ic_buf_unlock Unlocks memory locked with
ic_buf_lock.

ic_galloc Allocates non-sharable memory.

ic_gfree Frees memory allocated with ic_galloc.

ic_glock Locks memory allocated with ic_galloc.

ic_grealloc Resizes memory allocated with
ic_galloc.

ic_gunlock Unlocks memory locked with ic_glock.

General Utilities
These general utilities are accessible by ICS accessories and libraries. No additional
include file is needed in order to access these general utilities under either platform.

Name Purpose

IC_CHECK_DATAFLAGS Use to retrieve the value of an
IC_STATUS_DATAFLAGS status.

IC_CHECK_RESULT_SEVERE Use to check the severity of an
IC_RESULT .

IC_GET_RESULT_CONTEXT Use to extract the context from an
IC_RESULT .

IC_GET_RESULT_SUBTYPE Use to extract the subtype from an
IC_RESULT .

IC_GET_RESULT_SUBVALUE Use to extract the subvalue from
an IC_RESULT .

IC_GET_RESULT_TYPE Use to extract the type from an
IC_RESULT .

IC_GET_RESULT_VALUE Use to extract the value from an
IC_RESULT .

IC_MAKE_RESULT Creates an IC_RESULT from a
context, a type, and a value.

IcRunHelp3 Invokes the ICS help system.

Functions By Category

2–8 4173 5390–000

MS-Windows API
Name Purpose

IcGetINFOConnectDir Use to obtain CodeDir or DataDir.

IcMgrTraceBuffer Writes a buffer of data to IcTrace's
debug file.

IcMgrTraceResult Writes an IC_RESULT to IcTrace's
debug file.

Path Management Functions

Name Purpose

IcGetNewPath Initiates a path configuration dialog.

IcGetPathNames Provides a list of configured paths.

Accessory Management

Name Purpose

IcDeregisterAccessory Companion to IcRegisterAccessory.

IcGetContext Converts a string identifier into a
context.

IcGetContextString Converts a context into a string
identifier.

IcRegisterAccessory Identifies the application as an
accessory.

IcRunAccessory Independently starts an ICS accessory.

Accessory-Only Utilities

The following general utilities are available for ICS accessories only. Include the
icutil.h include file to access them.

Name Purpose

IcGetCmdlineOption Retrieves a given command line option.

Functions By Category

4173 5390–000 2–9

XVT/Win API
Name Purpose

ic_get_infoconnect_dir Use to obtain CodeDir or DataDir.

Path Management Functions

Name Purpose

ic_get_new_path Initiates a path configuration dialog.

ic_get_path_names Provides a list of configured paths.

Accessory Management

Name Purpose

ic_deregister_accessory Companion to ic_register_accessory.

ic_get_context Converts a string identifier into a
context.

ic_get_context_string Converts a context into a string
identifier.

ic_register_accessory Identifies the application as an
accessory.

ic_run_accessory Independently starts an ICS accessory.

Functions By Category

2–10 4173 5390–000

ICS Library API

Entry Points Provided by SLs and EILs
Each of the following procedures must be exported by SLs and EILs at the given
ordinal numbers. To view the prototypes associated with these IcLib... procedures,
see the icproto.h include file. The library should use procedure names that more
closely adhere to its purpose. For example, a TTY EIL could use function names that
begin with IcTTY..., and a COMS SL could use names that begin with IcCOMS...
The specific library's .DEF file references the function names used by that
implementation.

The library procedures listed under Library Load/Unload, Session Establishment, and
Session Communications are guaranteed to be called under the INFOConnect Shell's
task.

The icdict.h file is included into the library's resource file to support the ICS
required resources. See the ICS Data Structures/Types section for information on the
structure of these user-defined resources. Refer to Microsoft Windows Software
Development Kit, Programmer's Reference, User-Defined Resource Statement
section for more information.

Since XVT does not currently support the development of dynamic link libraries,
service libraries and external interface libraries must be developed for specific
platforms.

Functions By Category

4173 5390–000 2–11

MS-Windows API

Library Load/Unload

Name Purpose

IcLibInstall @ 6 First procedure called by ICS when
the library is loaded.

IcLibTerminate @ 12 Last procedure called by ICS before
the library is unloaded

Session Establishment

Name Purpose

IcLibOpenChannel @ 16 Called when the channel is first opened.

IcLibCloseChannel @ 17 Procedure called when the channel is no
longer needed.

IcLibOpenSession @ 9 Called to open a session on the given
channel.

IcLibCloseSession @ 2 Procedure called to close the session.

IcLibIdentifySession @ 5 Called to uniquely identify a session.

Session Communications

Name Purpose

IcLibEvent @ 3 Called to process ICS messages.

IcLibXmt @ 13 Procedure called to transmit data.

IcLibRcv @ 8 Procedure called to receive data.

IcLibLcl @ 7 Called to cancel pending transmits
and/or receives.

IcLibSetResult @ 11 Called to process status and error
messages.

Functions By Category

2–12 4173 5390–000

Session Information

Name Purpose

IcLibGetSessionInfo @ 10 Procedure called to provide session
related information.

IcLibGetString @ 4 Called to convert an error result into a
string.

Session Configuration

Name Purpose

IcLibUpdateConfig @ 1 Procedure called to update configuration.

IcLibVerifyConfig @ 14 Called to verify the contents of a
configuration buffer.

IcLibPrintConfig @ 15 Procedure called to obtain displayable
configuration information.

ICS Utilities for Library Development
To access the library utilities API, messages, and data types, include the iclib.h
include file after WINDOWS.H .

MS-Windows API

Name Purpose

IcAddRefContextID Locks a library into memory until it is
released.

IcGetChannelID Obtains the ID of a channel.

IcGetContextID Obtains the context of a library and
locks the library until it is released.
Loads the library if not already loaded.

IcIsDebug Obtains the current debug mode of ICS.

IcMgrEilEvent Posts events to an EIL's event
procedure.

IcMgrGetSessionInfo Returns pertinent information about the
lower a part of a session.

Functions By Category

4173 5390–000 2–13

IcMgrLcl Sends local requests down the library
stack.

IcMgrRcv Sends receive requests down the library
stack.

IcMgrSendEvent Posts events upwards in the library
stack.

IcMgrSetResult Sends status and error results down the
library stack.

IcMgrXmt Sends transmit requests down the
library stack.

IcNotifyConfig Passes notification messages
to the active configurators.

IcReleaseContextID Releases the context of a library and
decrements its reference count.
Companion to IcAddRefContextID and
IcGetContextID.

IcRunLibHelp Invokes the ICS help system.

IcSetSessionError Records errors.

0–1

4173 5390–000 3–1

Section 3
INFOConnect API

This section fully documents, in alphabetical order, all of the INFOConnect API.
Note that alphanumerics precede underscores.

The information given for each function includes the function prototype, a
description of the function, an explanation of each of the function parameters, and
the function's possible return values. Following this are any special notes about the
function. Included is a table that flags the ICS component that would use the
function. The first line of the table indicates the platform for which the function is
geared: Windows, XVT/Win, or DOS (DosLink). The rest of the table indicates the
ICS layer that would use the function: accessory, ICS Shell, ICS Configuration
Accessories, Application Interface Library, Service Library, or External Interface
Library. Following the table is a list of additional functions, data types, and
messages/events that are related to the function and may, therefore, provide
additional information.

This manual is part of the Basic INFOConnect Developer’s Kit.

INFOConnect API

3–2 4173 5390–000

IcAddRefContextID
(3.0)

IC_RESULT FAR PASCAL IcAddRefContextID
(IC_RESULT_CONTEXT context)

IcAddRefContextID is used to delay unloading the given library from memory.
This may be necessary to ensure that the library remains in memory until after the
library has completed the processing initiated by IcLibCloseChannel. The library is
guaranteed to remain in memory until after a matching IcReleaseContextID is
called.

Note that IcAddRefContextID increments the reference count for the given library.
When use of the library is completed, IcReleaseContextID must be called to
decrement the reference count. After the count reaches zero, the library's
termination routine will be called and the library will be unloaded from memory.

Parameters Description

context IN An IC_RESULT_CONTEXT of the
library to lock into memory.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

Note: IcAddRefContextID and IcReleaseContextID must occur in matching pairs.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcReleaseContextID function

INFOConnect API

4173 5390–000 3–3

IcAllocBuffer
(1.0)

HANDLE FAR PASCAL IcAllocBuffer
(unsigned bufsize)

IcAllocBuffer allocates a global buffer that can be shared by different tasks.

Parameters Description

bufsize IN The number of bytes to allocate.

Return Value:

A global buffer handle is returned if the memory was allocated. (HANDLE)NULL is
returned if the memory could not be allocated.

Note: ICS data communication buffers must be shared by different tasks.
IcAllocBuffer ensures that these buffers are properly allocated to satisfy
any operating system requirements for shared buffers. Therefore, buffers
passed to the INFOConnect Connectivity Services routines MUST have been
allocated through IcAllocBuffer .

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcFreeBuffer function

INFOConnect API

3–4 4173 5390–000

IcChangeHandle
(1.0)

IC_RESULT FAR PASCAL IcChangeHandle
(HIC_SESSION hsession,
HWND hWnd)

IcChangeHandle changes the ownership of a currently established communication
session. All subsequent communication messages are then directed to the window
function associated with that new window.

Parameters Description

hsession IN The HIC_SESSION handle of the
opened communication session to
which the new window becomes
associated.

hWnd IN The window handle for the window
that will obtain ownership of the
given communication session.

Return Value:

IC_OK is returned if the change was successful.
IC_ERROR_UNOPENEDSESSION is returned if the given communication session
is not a valid, established session. See Appendix C for other possible errors.

INFOConnect API

4173 5390–000 3–5

Note: An implicit IcLcl(hsession, IC_LCL_RCVXMT) is performed prior to the
switch.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcLcl function

HIC_SESSION data type

IC_LCL_FLAGS data type

IcNextEvent function

IC_NEXTEVENT_FLAGS data type

INFOConnect API

3–6 4173 5390–000

IC_CHECK_DATAFLAGS
(3.0)

IC_CHECK_DATAFLAGS (r)

The IC_CHECK_DATAFLAGS macro checks a status message to determine if it is
an IC_STATUS_DATAFLAGS status.

Parameters Description

r IN The status result.

Return Value:

TRUE if the status is an IC_STATUS_DATAFLAGS status. FALSE otherwise.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_STATUS_DATAFLAGS data type

INFOConnect API

4173 5390–000 3–7

IC_CHECK_RESULT_SEVERE
(2.0)

IC_CHECK_RESULT_SEVERE (result)

The IC_CHECK_RESULT_SEVERE macro checks the severity of the given
IC_RESULT .

Parameters Description

result IN An IC_RESULT to check.

Return Value:

TRUE if the IC_RESULT_TYPE is IC_ERROR_SEVERE or
IC_ERROR_TERMINATE . FALSE otherwise.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_ERROR_SEVERE data type

IC_ERROR_TERMINATE data type

IC_RESULT data type

IC_RESULT_TYPE data type

INFOConnect API

3–8 4173 5390–000

IcCloseSession
(1.0)

IC_RESULT FAR PASCAL IcCloseSession
(HIC_SESSION hsession)

IcCloseSession causes INFOConnect Connectivity Services to close the given
communication session.

Parameters Description

hsession IN The HIC_SESSION handle of the
open communication session to
close.

Return Value:

IC_OK is returned. The result of the communication session closure will be sent to
the application's window procedure as the ICS message IC_SESSIONCLOSED.
This result will be IC_OK if the session closed properly. See Appendix C for
possible errors.

Notes:

− An IC_OK result from IcOpenSession requires that IcCloseSession be called
regardless of the IC_SESSIONESTABLISHED message result.

− ICS DosLink applications should call IcDestroySession after calling this routine
to flush the event buffer and destroy the session record.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

IcDestroySession function

IcNextEvent function

IC_NEXTEVENT_FLAGS data type

INFOConnect API

4173 5390–000 3–9

IcCreateHandle
(2.0)

HANDLE FAR PASCAL IcCreateHandle
(LPSTR mem,
WORD len)

For ICS DosLink applications, IcCreateHandle creates a memory handle for use
with the ICS API.

ICS DosLink applications would normally use IcAllocBuffer to obtain memory
buffers. IcCreateHandle can be used instead only if the application's memory
pointer has a zero offset. If the application's memory pointer does not have a zero
offset, see the IcHandleOffset function.

Parameters Description

mem IN A pointer to the memory which the
new handle should reference.

len IN The size of the data, in bytes.

Return Value:

The ICS memory handle is returned. NULL if the handle could not be created, that
is, the pointer offset is not equal to zero.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcAllocBuffer function

IcDestroyHandle function

IcHandleOffset function

INFOConnect API

3–10 4173 5390–000

IcCreateHwnd
(2.0)

HWND FAR PASCAL IcCreateHwnd
(LPSTR classname)

For ICS DosLink applications, IcCreateHwnd creates an MS-Windows type window
handle for use with the ICS API.

Parameters Description

classname *IN An MS-Windows class, or, to use
the ICS default, this could be a
NULL string or the pointer itself
may be NULL.

Return Value:

An ICS window handle is returned. NULL is returned if the handle could not be
created.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

4173 5390–000 3–11

IcCreateSession
(2.0)

IC_RESULT FAR PASCAL IcCreateSession
(LPHIC_SESSION lpsession)

For ICS DosLink applications, IcCreateSession creates an ICS session structure and
returns its session handle. This handle must be passed in on the call to
IcOpenSession.

If the ICS DosLink application is using a callback function (in contrast to polling
using IcGetNextEvent), then IcRegisterCallback must be called before calling
IcOpenSession. If the ICS DosLink application wishes to be a server session
(instead of defaulting to a client session), then IcSetServerInfo must be called
before calling IcOpenSession.

Parameters Description

lpsession *OUT An HIC_SESSION to be
initialized with the ICS
session handle.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

IcRegisterCallback function

IcSetServerInfo function

IcDestroySession function

INFOConnect API

3–12 4173 5390–000

IcDefaultErrorProc
(1.0)

IC_RESULT FAR PASCAL IcDefaultErrorProc
(HWND hWnd,
HANDLE hData,
unsigned uType,
IC_RESULT error)

IcDefaultErrorProc retrieves, formats, and displays the error string corresponding
to the given ICS error to the user. It is called for all errors that the application does
not wish to handle itself.

Only severe, terminate, and warning errors are presented to the user unless the user
runs the ICS Shell with the -d (for debug) parameter. In this case, all errors passed in
to IcDefaultErrorProc are formatted and displayed to the user.

Parameters Description

hWnd IN The handle of the calling
application's window.

hData IN The handle of the open
communication session for which
the error occurred, or NULL if not
applicable.

uType IN The ICS error message type (for
example, IC_ERROR,
IC_RCVERROR , etc.) or NULL if
not applicable.

error IN The ICS error that occurred.

INFOConnect API

4173 5390–000 3–13

Return Value:

IC_OK is returned.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

IC_ERROR_INFO data type

IC_ERROR_WARNING data type

IC_ERROR_SEVERE data type

IC_ERROR_TERMINATE data type

IcGetString function

INFOConnect API

3–14 4173 5390–000

IcDeleteLibraryConfig
(2.0)

IC_RESULT FAR PASCAL IcDeleteLibraryConfig
(IC_RESULT_CONTEXT context,
int TableNumber,
int KeyIndex,
void FAR * KeyStruct)

IcDeleteLibraryConfig deletes the record with the given key from the given table in
the ICS database.

Parameters Description

context IN The library's context.

TableNumber IN The number of the table from
which to delete.

KeyIndex IN The zero-relative index of the key
field from the beginning of the
record.

KeyStruct *IN A pointer to the key portion of the
database table record structure for
the given table with the necessary
key field initialized.

Return Value:

IC_OK if successful. See Appendix C for other possible errors.

INFOConnect API

4173 5390–000 3–15

Notes:

− IcDeleteLibraryConfig is used only on library's invisible tables
(IC_TF_INVISIBLETABLE IC_TABLE_FLAGS flag). Path and Channel
tables are managed by the ICS Manager and through the IcLibUpdateConfig
procedure.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcReadLibraryConfig function

IcWriteLibraryConfig function

IC_DICT_NODE data type

IC_TABLE_FLAGS data type

INFOConnect API

3–16 4173 5390–000

IcDeregisterAccessory
(1.0)

IC_RESULT FAR PASCAL IcDeregisterAccessory
(IC_RESULT_CONTEXT context)

IcDeregisterAccessory removes the association between the given
IC_RESULT_CONTEXT and its accessory. The context is no longer valid.

Parameter Description

context IN The IC_RESULT_CONTEXT of
the accessory to deregister.

Return Value:

IC_OK is returned if successful, IC_ERROR_INTERNAL is returned if the context
exceeds the context table bounds.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

IcRegisterAccessory function

INFOConnect API

4173 5390–000 3–17

IcDestroyHandle
(2.0)

void FAR PASCAL IcDestroyHandle
(HANDLE hMem)

For ICS DosLink applications, IcDestroyHandle destroys the memory handle
created by IcCreateHandle.

Parameter Description

hMem IN The memory handle to be
destroyed.

Return Value:

None.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcCreateHandle function

INFOConnect API

3–18 4173 5390–000

IcDestroyHwnd
(2.0)

void FAR PASCAL IcDestroyHwnd
(HWND hWnd)

For ICS DosLink applications, IcDestroyHwnd destroys the window handle created
by IcCreateHwnd.

Parameters Description

hWnd *IN The ICS window handle to be
destroyed.

Return Value:

None.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcCreateHwnd function

INFOConnect API

4173 5390–000 3–19

IcDestroySession
(2.0)

IC_RESULT FAR PASCAL IcDestroySession
(HIC_SESSION session)

For ICS DosLink applications, IcDestroySession destroys the ICS session structure
created by IcCreateSession. The session handle is no longer valid, and all pending
events for this session are destroyed. This implies that if the application uses
IcRegisterCallback, it will no longer be called.

Parameters Description

session IN The session to be destroyed.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

Note: IcDestroySession must be called after IcCloseSession when the session
handle is no longer needed. Failure to do so will result in a notification
message from the DosLink.386 virtual device when the DOS virtual machine
is destroyed stating that INFOConnect sessions were active.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcCloseSession function

IcOpenSession function

INFOConnect API

3–20 4173 5390–000

IcDialogConfig
(3.0)

IC_RESULT FAR PASCAL IcDialogConfig
(HIC_CONFIG hConfig,
HINSTANCE hInstance,
LPCSTR Dlg,
DLGPROC DlgProc,
LPARAM lParam)

IcDialogConfig accesses the Windows DialogBoxParam procedure to display the
given dialog box. Use it when you wish to display a dialog box for some given
hConfig.

Parameters Description

hConfig IN The HIC_CONFIG handle of the
open configuration session.

hInstance IN The instance handle.

Dlg *IN The dialog box template name.

DlgProc IN The instance address of the dialog
callback procedure.

lParam IN The initialization value for lParam.

Return Value:

The return value is the MAKELONG of the value returned from the Windows
DialogBoxParam function. For consistency, the dialog callback procedure can use
EndDialog(..., LOWORD(IC_OK) for returning TRUE and EndDialog(...,
LOWORD(IC_CANCELED) for returning FALSE.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibUpdateConfig function

IcLibVerifyConfig function

INFOConnect API

4173 5390–000 3–21

IcExitOk
(2.0)

IC_RESULT FAR PASCAL IcExitOk
(BOOL Ok)

IcExitOk is used to notify INFOConnect Connectivity Services that a session can or
cannot be closed. It is used in response to several IC_STATUS_COMMMGR
status messages. A distributed application may use IcExitOk to prevent ICS from
exiting in order to gracefully terminate the host component.

Parameters Description

Ok IN TRUE if the session may be safely
closed, FALSE to abort the
termination of ICS.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

Note: If IcExitOk is not called in response to the IC_COMMMGR_QUERYEXIT
status message, the ICS Shell will query the user for permission to close the
open communication sessions.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_STATUS_COMMMGR data type

INFOConnect API

3–22 4173 5390–000

IcFreeBuffer
(1.0)

IC_RESULT FAR PASCAL IcFreeBuffer
(HANDLE hBuffer)

IcFreeBuffer frees memory previously allocated through IcAllocBuffer .

Parameters Description

hBuffer IN The handle of the global buffer to
free.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

INFOConnect API

4173 5390–000 3–23

IcGetBufferSize
(1.0)

DWORD FAR PASCAL IcGetBufferSize
 HANDLE hBuffer)

IcGetBufferSize returns the size of the specified buffer.

Parameters Description

hBuffer IN The handle of a buffer allocated
with IcAllocBuffer .

Return Value:

Size, in bytes, of the given memory block. If the given handle is not valid or if the
memory has been discarded, this is zero.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

INFOConnect API

3–24 4173 5390–000

IcGetChannelID
(2.0)

IC_RESULT FAR PASCAL IcGetChannelID
(IC_RESULT_CONTEXT context,
HIC_CHANNEL hIcChannel,
LPSTR buffer,
unsigned len)

IcGetChannelID obtains the channel ID from a channel handle.

Parameters Description

context IN A library context.

hIcChannel IN The ICS HIC_CHANNEL
handle of the channel from
which to retrieve the channel
ID.

buffer *OUT A buffer to receive the
channel ID.

len IN The size of the buffer in
bytes.

Return Value:

IC_OK if successful. IC_ERROR_BADPARAMETER if a parameter is incorrect.
IC_ERROR_TRUNCATED if the buffer was too small and the data was truncated.
See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_CHANNEL data type

INFOConnect API

4173 5390–000 3–25

IcGetCmdlineOption
(3.0)

IC_RESULT FAR PASCAL IcGetCmdlineOption
(LPSTR sCmdLine,
char option,
char endDelimiter,
LPSTR sValue,
unsigned uValueSize)

IcGetCmdlineOption parses the given command line for the given option and
retrieves the value associated with that option, if one exists. The option's value
follows the option character on the command line.

IcGetCmdlineOption is always case INSENSITIVE.

Parameters Description

sCmdLine *IN The null terminated
command line on which to
parse.

option IN The character option for
which to search.

endDelimiter IN The delimiter for the value of
the option. This is usually a
space.

sValue *OUT The value associated with the
given option, if one exists on
the command line.

uValueSize IN The size of the sValue buffer.
It should be big enough to
include an additional null
character.

Return Value:

IC_OK is returned if the option was found on the command line. In this case,
sValue contains the value immediately following the option, if one exists. The
IC_ERROR_NOFIND informational error is returned if the option was not found on
the command line. IC_ERROR_TRUNCATED is returned if the destination buffer
is too small for the option's value.

Notes:

INFOConnect API

3–26 4173 5390–000

− To access this procedure, include the icutil.h include file into your application.

− If the same option exists multiple times on the command line,
IcGetCmdlineOption returns only the first occurrence.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

Section 6, "ICS Accessory Definition"

INFOConnect API

4173 5390–000 3–27

IcGetContext
(1.0)

IC_RESULT FAR PASCAL IcGetContext
(LPSTR name,
LPIC_RESULT_CONTEXT lpcontext)

IcGetContext provides the context associated with the given unique context string.

Parameters Description

name *IN A unique context
identification string, as
defined in the .HIC include
file of the component.

lpcontext *OUT An
IC_RESULT_CONTEXT
type that receives the context
associated with name, if it
exists.

Return Value:

IC_OK is returned if the context is found and returned.
IC_CONTEXTSTRING_NOT_FOUND is returned if the context could not be
retrieved. In this case, the value pointed to by lpcontext is invalid.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

LPIC_RESULT_CONTEXT data type

IcGetContextString function

INFOConnect API

3–28 4173 5390–000

IcGetContextID
(2.0)

IC_RESULT FAR PASCAL IcGetContextID
(LPSTR ID ,
LPIC_RESULT_CONTEXT context)

IcGetContextID returns the context of the given library. The library is loaded, if
necessary, and locked for use by the calling component. When the caller is done
with the library, it must call IcReleaseContextID.

Parameters Description

ID *IN A library ID.

context *OUT An
IC_RESULT_CONTEXT to
receive the library context.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcReleaseContextID function

INFOConnect API

4173 5390–000 3–29

IcGetContextString
(1.0)

IC_RESULT FAR PASCAL IcGetContextString
(IC_RESULT_CONTEXT context,
LPSTR buffer,
unsigned length)

IcGetContextString provides the unique, null-terminated context string associated
with the given context.

Parameters Description

context IN A context.

buffer *OUT A buffer to receive the unique
context string associated with
the given context.

length IN The size of the buffer in bytes.

Return Value:

IC_OK is returned if the context string is successfully retrieved. Otherwise,
IC_CONTEXT_NOT_FOUND is returned and buffer is filled with NULLs.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

IcGetContext function

INFOConnect API

3–30 4173 5390–000

IcGetINFOConnectDir
(2.0)

IC_RESULT FAR PASCAL IcGetINFOConnectDir
(enum IC_DIRECTORYTYPES dirtype,
LPSTR pstr,
unsigned strsize)

IcGetINFOConnectDir returns INFOConnect directory information.

Parameters Description

dirtype IN The IC_DIRECTORYTYPES
type information to retrieve.

pstr *OUT The string to receive the
information.

strsize IN The length of the string in bytes.
This should be at least
IC_MAXFILENAMESIZE .

Return Value:

IC_OK if successful. See Appendix C for possible errors.

Note: IC_CODEDIR requests the name of the directory containing the ICS code
files. This directory can be a shared directory. IC_DATADIR requests the
name of the directory containing the ICS data files. Applications should use
this directory for all use configuration files.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_DIRECTORYTYPES data type

INFOConnect API

4173 5390–000 3–31

IcGetLibraryDefault
(2.0)

IC_RESULT FAR PASCAL IcGetLibraryDefault
(IC_RESULT_CONTEXT context,
int TableNumber,
void far * buffer,
unsigned len)

IcGetLibraryDefault retrieves the default configuration data for the library's given
table.

Parameters Description

context IN A library context.

TableNumber IN The number of the table for
which to retrieve the default
data.

buffer *OUT A buffer to receive the data.

len IN The size of the buffer in
bytes.

Return Value:

IC_OK if successful. IC_ERROR_BADPARAMETER if a parameter is incorrect.
IC_ERROR_TRUNCATED if the buffer was too small and the data was truncated.
See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

INFOConnect API

3–32 4173 5390–000

IcGetNewPath
(1.0)

IC_RESULT FAR PASCAL IcGetNewPath
(HANDLE hWnd,
HANDLE hBuffer,
unsigned len)

IcGetNewPath provides a programmatic interface to the ICS path configuration
dialogs.

When the user has completed the configuration, an IC_NEWPATH message is sent
to hWnd. At this point, the buffer designated by hBuffer will contain the unique,
null-terminated path ID of the newly configured ICS path, or, if the user cancelled
the path configuration, it will contain NULL.

Parameters Description

hWnd IN The handle of the calling
application's window.

hBuffer IN The handle to a buffer
allocated with IcAllocBuffer
to be filled with a null-
terminated path identification
string (path ID).

len IN The size of buffer in bytes.
This must be at least
IC_MAXPATHIDSIZE .

INFOConnect API

4173 5390–000 3–33

Return Value:

IC_OK when the configuration procedure has been initiated.
IC_ERROR_BADPARAMETER (and the configuration procedures are not
initiated) if len is less than IC_MAXPATHIDSIZE or if hBuffer is NULL.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_NEWPATH message

INFOConnect API

3–34 4173 5390–000

IcGetNextEvent
(2.0)

void FAR PASCAL IcGetNextEvent
(HIC_SESSION session,
LPHANDLE hWnd,
LPWORD message,
LPLONG lParam)

For ICS DosLink applications, IcGetNextEvent retrieves the next event for the
session. It is used to poll for events, and may be used instead of, or in addition to,
the callback routine.

Parameters Description

session IN A session handle.

hWnd *OUT The window handle on which
the event occurred.

message *OUT The event, or
IC_NULLEVENT if no
messages are available.

lParam *OUT The long parameter for the
event.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

4173 5390–000 3–35

IcGetPathID
(2.0)

IC_RESULT FAR PASCAL IcGetPathID
(HIC_SESSION hsession,
LPSTR buffer,
unsigned length)

IcGetPathID provides the identification string of the ICS path for the given
communication session.

Parameters Description

hsession IN An HIC_SESSION
communication session
handle. The session need not
be established.

buffer *OUT A global buffer to receive the
null-terminated path
identification string.

length IN The size of the buffer in
bytes. This must be at least
IC_MAXPATHIDSIZE .

Return Value:

IC_OK if successful. Possible errors are IC_ERROR_BADPARAMETER and
IC_ERROR_UNOPENEDSESSION. See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

3–36 4173 5390–000

IcGetPathNames
(1.0)

IC_RESULT FAR PASCAL IcGetPathNames
(HANDLE hB uffer,
unsigned length)

IcGetPathNames provides a list of the configured path IDs. The list is returned in
the given buffer and consists of a two-byte integer (count of configured ICS paths)
followed by as many complete 'path entries' that will fit in the buffer. Each 'path
entry' consists of a one byte (character) flag ('1' == currently active, '0' == currently
inactive) followed by a null-terminated ASCII string (the path ID).

Parameters Description

hBuffer IN The handle to a buffer,
allocated with IcAllocBuffer ,
in which the list is returned.

length IN The size of the buffer in
bytes.

Return Value:

IC_OK if successful. IC_ERROR_BADPARAMETER if len is less than 3 or if
hBuffer is NULL. See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

4173 5390–000 3–37

IC_GET_RESULT_CONTEXT
(1.0)

IC_GET_RESULT_CONTEXT (result)

The IC_GET_RESULT_CONTEXT macro extracts the IC_RESULT_CONTEXT
from the given IC_RESULT .

Parameters Description

result IN An IC_RESULT status or error
from which the context is
extracted.

Return Value:

The extracted context.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_CONTEXT data type

INFOConnect API

3–38 4173 5390–000

IC_GET_RESULT_SUBTYPE
(2.0)

IC_GET_RESULT_SUBTYPE (result)

The IC_GET_RESULT_SUBTYPE macro extracts the IC_RESULT_SUBTYPE
from the given IC_RESULT .

Parameters Description

result IN An IC_RESULT status or error
from which the subtype is
extracted.

Return Value:

The extracted subtype.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_SUBTYPE data type

INFOConnect API

4173 5390–000 3–39

IC_GET_RESULT_SUBVALUE
(2.0)

IC_GET_RESULT_SUBVALUE (result)

The IC_GET_RESULT_SUBVALUE macro extracts the
IC_RESULT_SUBVALUE from the given IC_RESULT .

Parameters Description

result IN An IC_RESULT status or error
from which the subvalue is
extracted.

Return Value:

The extracted subvalue.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_SUBVALUE data type

INFOConnect API

3–40 4173 5390–000

IC_GET_RESULT_TYPE
(1.0)

IC_GET_RESULT_TYPE (result)

The IC_GET_RESULT_TYPE macro extracts the IC_RESULT_TYPE from the
given IC_RESULT .

Parameters Description

result IN An IC_RESULT status or error
from which the type is extracted.

Return Value:

The extracted type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_TYPE data type

INFOConnect API

4173 5390–000 3–41

IC_GET_RESULT_VALUE
(1.0)

IC_GET_RESULT_VALUE (result)

The IC_GET_RESULT_VALUE macro extracts the IC_RESULT_VALUE from
the given IC_RESULT .

Parameters Description

result IN An IC_RESULT status or error
from which the value is extracted.

Return Value:

The extracted value.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_VALUE data type

INFOConnect API

3–42 4173 5390–000

IcGetServiceName
(2.0)

IC_RESULT FAR PASCAL IcGetServiceName
(HIC_SESSION session,
LPSTR name,
unsigned length)

For ICS DosLink client/server applications, IcGetServiceName retrieves the service
name of the partner session. If this is called by a server session, the pathname (that
is, the path parameter from the client's call to IcOpenSession) is returned.

Parameters Description

session IN A session handle.

name *OUT A global buffer to receive the
null-terminated service name.

length IN The size of the buffer in
bytes.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

IcSetServerInfo function

INFOConnect API

4173 5390–000 3–43

IcGetSessionID
(2.0)

IC_RESULT FAR PASCAL IcGetSessionID
(HIC_SESSION hsession,
LPSTR buffer,
unsigned length)

IcGetSessionID returns the unique session identification string (ID) for the given
session. The session ID consists of the path ID, followed by a semicolon and the
unique session name, if it exists.

Parameters Description

hsession IN The HIC_SESSION handle
of the communication session
whose ID is to be retrieved.

buffer *OUT A buffer, allocated with
IcAllocBuffer , in which to
return the communication
session ID.

length IN The size of the buffer in
bytes. This must be at least
IC_MAXSESSIONIDLEN .

Return Value:

IC_OK if successful. IC_ERROR_UNOPENEDSESSION if the session handle is
invalid, IC_ERROR_TRUNCATED if the buffer was not large enough to hold the
session ID. See Appendix C for other possible errors.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

3–44 4173 5390–000

IcGetSessionInfo
(1.0)

IC_RESULT FAR PASCAL IcGetSessionInfo
(HIC_SESSION hsession,
LPIC_SINFO info)

IcGetSessionInfo initializes the given IC_SINFO data structure with pertinent
information about the communication session.

Parameters Description

hsession IN The HIC_SESSION handle
of an established
communication session.

info *OUT An IC_SINFO record to be
filled with communication
session information.

Return Value:

IC_OK if the structure was initialized. See Appendix C for possible errors.

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_SINFO data type

INFOConnect API

4173 5390–000 3–45

IcGetString
(1.0)

IC_RESULT FAR PASCAL IcGetString
(HIC_SESSION hsession,
IC_RESULT result,
LPSTR buffer,
unsigned length)

IcGetString retrieves the text associated with the given error result. The null-
terminated text is placed in the given buffer.

Parameters Description

hsession IN The communication session on
which the error occurred, or
NULL_HIC_SESSION if not
relevant.

result IN The error result.

buffer *OUT A buffer to receive the text.

length IN The size of the buffer in bytes.
This should be at least
IC_MAXSTRINGLENGTH .

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

INFOConnect API

3–46 4173 5390–000

IcHandleOffset
(2.0)

IC_RESULT FAR PASCAL IcHandleOffset
(HIC_SESSION session,
WORD utype,
LPSTR mem,
HANDLE FAR * lphandle)

For ICS DosLink applications, IcHandleOffset creates a memory handle for use
with the ICS API.

Parameters Description

session IN A session handle.

utype IN The type of the buffer. Use
IC_XMTDONE for a transmit
buffer, use IC_RCVDONE for a
receive buffer.

mem IN The far pointer to the data.

lphandle *OUT The HANDLE variable to
receive the buffer handle.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

Note: ICS DosLink applications would normally use IcAllocBuffer to obtain
memory buffers. If the IcHandleOffset function is used, the call must
immediately precede the call to IcRcv or IcXmt.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcCreateHandle function

IcAllocBuffer function

INFOConnect API

4173 5390–000 3–47

IcInitIcs
(1.0)

IC_RESULT FAR PASCAL IcInitIcs
(int version,
int revision)

IcInitIcs allows INFOConnect Connectivity Services to initialize, if necessary.

Parameters Description

version IN The highest ICS version that the
calling program understands. The
program does not take advantage of
any new features that a higher ICS
version may contain.

revision IN The highest ICS revision which the
calling program understands. The
program does not take advantage of
any new features that a higher ICS
revision may contain.

Return Value:

IC_OK if ICS initializes successfully or has been previously initialized,
IC_ERROR_NEWVERSION if a newer version of ICS is needed. See Appendix C
for other possible errors.

Note: IcInitIcs MUST be called once prior to calling any of the INFOConnect
Connectivity Services functions.

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_STATUS_COMMMGR data type

IC_STATUS event

INFOConnect API

3–48 4173 5390–000

IcIsDebug
(2.0)

BOOL FAR PASCAL IcIsDebug
(enum IC_DEBUG debug)

IcIsDebug reports the status of the requested debug mode of INFOConnect.

Parameters Description

debug IN The debug mode for which to
check.

Return Value:

The return value is TRUE if INFOConnect is running in the specified debug mode.
FALSE otherwise.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DEBUG data type

INFOConnect API

4173 5390–000 3–49

IcLcl
(1.0)

IC_RESULT FAR PASCAL IcLcl
(HIC_SESSION hsession,
IC_LCL_FLAGS which)

IcLcl cancels the pending request (designated by which) for the given
communication session. An IC_LCLRESULT message will be received for the
cancelled requests.

Parameters Description

hsession IN The established communication
session's HIC_SESSION handle.

which IN An IC_LCL_FLAGS value that
designates which pending request
to cancel.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned. See Appendix C for other possible
errors.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_LCL_FLAGS data type

INFOConnect API

3–50 4173 5390–000

IcLibCloseChannel
(2.0)

IC_RESULT FAR PASCAL IcLibCloseChannel
(HIC_CHANNEL hLibChannel)

IcLibCloseChannel is provided by the ICS library and is called to terminate a
communication channel. This routine is called after all sessions that were opened
with this channel handle have been closed. At this point, channel related data may be
cleaned up.

Parameters Description

hLibChannel IN The library handle of the channel to
close. This is the value returned
from the IcLibOpenChannel call.

Return Values:

IC_OK if successful. Otherwise, a standard or a library-specific error.

Notes:

− IcLibCloseChannel must be exported at ordinal value 17.

− If the library has no channel configuration information (that is, no
IC_TF_CHANNELTABLE), IcLibCloseChannel is called once when the last
session using the library is closed. The library should perform any session-
related cleanup.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_CHANNEL data type

IC_TABLE_FLAGS data type

IcLibOpenChannel function

INFOConnect API

4173 5390–000 3–51

IcLibCloseSession
(1.0)

IC_RESULT FAR PASCAL IcLibCloseSession
(HIC_SESSION hLibSession,
HIC_CHANNEL hLibChannel)

IcLibCloseSession is provided by the ICS library and is called to terminate a
communication session. At this point, session related data is to be cleaned up.

Parameters Description

hLibSession IN The library handle of the session to
close.

hLibChannel IN The library handle of the session's
channel. This is optionally used by
the library to facilitate locating the
appropriate session.

Return Values:

IC_OK if successful. Otherwise, a standard or a library-specific error.

Note: IcLibCloseSession must be exported at ordinal value 2.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_SESSION data type

HIC_CHANNEL data type

IcLibOpenSession function

INFOConnect API

3–52 4173 5390–000

IcLibEvent
(1.0)

IC_RESULT FAR PASCAL IcLibEvent
(UINT uType,
HIC_SESSION hLibSession,
GLOBALHANDLE hBuffer,
UINT uSize)

IcLibEvent is provided by the ICS library and allows the library to process events
directed to it. After any initial processing, the corresponding events are issued up the
library stack by calling IcMgrSendEvent.

Parameters Description

uType IN An Event

hLibSession IN The library handle of a session.

hBuffer IN A handle to a global buffer or the
HIWORD of an IC_RESULT ,
depending on uType.

uSize IN The buffer size in bytes or the
LOWORD of an IC_RESULT ,
depending on uType.

Return Value:

IC_OK if the message is valid and can be processed for the given communication
session. Otherwise, a standard or a library-specific error.

Notes:

− IcLibEvent must be exported at ordinal value 3.

− The first message received by the library is the IC_SESSIONESTABLISHED
message. To guarantee that the session has been properly established, libraries
must wait for this message before sending messages to the session.

− The last message received by the library is the IC_SESSIONCLOSED message.
The library must not send any messages to the session after the
IC_SESSIONCLOSED is received.

INFOConnect API

4173 5390–000 3–53

− The library's session handle, hLibSession, may be NULL_HIC_SESSION when
IcLibEvent is called with the IC_COMMMGR_INITIALIZED and
IC_COMMMGR_TERMINATED status messages. When reacting to
IC_COMMMGR_TERMINATED, the library may need to decrement its use
count. If the use count is not zero when INFOConnect closes, an entry will be
made into the trace log file by the active Trace library.

− The AIL should both send the message to the application AND call
IcMgrSendEvent. This allows the ICS Manager to verify that the ICS messages
are flowing up the library stack.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_SESSION data type

IcMgrSendEvent function

IcOpenSession function

Section 4, "ICS Messages/Events"

INFOConnect API

3–54 4173 5390–000

IcLibGetSessionInfo
(1.0)

IC_RESULT FAR PASCAL IcLibGetSessionInfo
(HIC_SESSION hLibSession,
LPIC_SINFO sinfo)

IcLibGetSessionInfo is provided by the ICS library and is called to alter the
pertinent fields in the given IC_SINFO record. An external interface library
receives the structure with the ICS Manager defaults (currently, this is a zero-filled
structure). The library must initialize all of the fields that pertain to it. A service
library should modify only those fields that pertain to it.

Parameters Description

hLibSession IN The library handle of a session.

sinfo *OUT An IC_SINFO record to be
updated with the session
information.

Return Value:

IC_OK if successful. Otherwise, a standard or a library-specific error.

Note: IcLibGetSessionInfo must be exported at ordinal value 10.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

LPIC_SINFO data type

IC_SINFO data type

INFOConnect API

4173 5390–000 3–55

IcLibGetString
(1.0)

IC_RESULT FAR PASCAL IcLibGetString
(HIC_SESSION hLibSession,
IC_RESULT result,
LPSTR buffer,
UINT length)

IcLibGetString is provided by the ICS library and should retrieve the null-
terminated string associated with the given error result. Every library-specific error
must have an associated string for displaying the error to the user.

If the library has used the IcSetSessionError utility, then the string may contain up
to three string inserts (%s only). The ICS Manager will substitute the inserts into the
string on behalf of the library, after the library returns.

Parameters Description

hLibSession IN The library handle of the
communication session on
which the error occurred. The
library may use information
associated with this handle to
modify the string before
returning it.

hLibSession is
NULL_HIC_SESSION if the
error is not associated with any
session.

result IN The error result.

buffer *OUT A buffer to receive the string.

length IN The size of the buffer in bytes.

INFOConnect API

3–56 4173 5390–000

Return Value:

IC_OK if successful. An IC_RESULT error otherwise. See Appendix C for
possible errors.

Note: IcLibGetString must be exported at ordinal value 4.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcSetSessionError function

INFOConnect API

4173 5390–000 3–57

IcLibIdentifySession
(1.0)

HANDLE FAR PASCAL IcLibIdentifySession
(HIC_SESSION hLibSession)

IcLibIdentifySession is provided by the ICS library. If all libraries in a session
return IC_VERIFY_OK from IcLibOpenSession(...IC_OPEN_VERIFY ,...),
IcLibIdentifySession is called for each library in the communication session to
retrieve a unique session identifier.

Parameters Description

hLibSession IN The library handle of a session.

Return Value:

If a library supports multiple sessions on a single path (a multiplexing library), it
should return a handle to a global buffer (allocated through IcAllocBuffer) that
contains a unique alphanumeric identification string. This string should
meaningfully identify the session to the user. It may be up to
IC_MAXSESSIONIDSUFFIX bytes long. Additional bytes are truncated.

A library that is not multiplexing may return (HANDLE)NULL.

Notes:

− IcLibIdentifySession must be exported at ordinal value 5.

−− IcLibIdentifySession is called starting with the service library at the top of the
library stack and ending with the external interface library, until a single library
returns a non-NULL buffer handle. If all libraries return NULL, the ICS
Manager generates the unique session identification string using hIcSession.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

INFOConnect API

3–58 4173 5390–000

IcLibInstall
(1.0)

IC_RESULT FAR PASCAL IcLibInstall
(IC_RESULT_CONTEXT context)

IcLibInstall is provided by the ICS library and is called once by the ICS Manager
when the library is loaded for either configuration and/or communication session
establishment. It is used to initialize the library.

If installation fails (that is, returns an IC_ERROR_TERMINATE error type), the
library is immediately terminated. Therefore, only STANDARD terminate errors
may be returned from IcLibInstall in the failure case. Non-standard errors cannot be
used in the failure case because, since the library has not installed properly, it is not
available to return text through the IcLibGetString function.

Parameters Description

context IN The unique context identification
for the library.

Return Value:

IC_OK if installation completes successfully. If installation fails, return a
STANDARD IC_RESULT terminate error. In this case, the library is immediately
unloaded. If a library-specific IC_ERROR_SEVERE is returned, the library is
loaded and IcLibGetString may be called to retrieve the text associated with the
error. In this case, no sessions will be opened over this library, and IcLibTerminate
will eventually be called before the library is unloaded. See Appendix C for possible
errors.

INFOConnect API

4173 5390–000 3–59

Notes:

− IcLibInstall must be exported at ordinal value 6.

−− IC_ERROR_INFO and IC_ERROR_WARNING type return values do not
constitute installation failure.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibTerminate function

INFOConnect API

3–60 4173 5390–000

IcLibLcl
(1.0)

IC_RESULT FAR PASCAL IcLibLcl
(HIC_SESSION hLibSession,
IC_LCL_FLAGS which)

IcLibLcl is provided by the ICS library and is called to stop reception of
communication messages. Each library should do what is necessary to cancel
pending requests. After processing, ALL libraries must pass the request to the
underlying component by calling IcMgrLcl .

Parameters Description

hLibSession IN The library handle of a session.

which IN Bit flag designating which pending
request to cancel. See
IC_LCL_FLAGS data type.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. Otherwise, a standard or a library-specific error.

Notes:

− IcLibLcl must be exported at ordinal value 7.

− The IC_LCL_CLOSESESSION type indicates an impending call to
IcLibCloseSession. The library should not attempt to use any of this session's
buffers once IcLibLcl returns from being called with the
IC_LCL_CLOSESESSION flag.

− The which flag contains bit fields. Therefore, use bit operators to test for the
necessary request types. For example, (which & IC_LCL_RCV) is TRUE if the
IC_LCL_RCV bit is set.

INFOConnect API

4173 5390–000 3–61

− All libraries, including EILs, must call IcMgrLcl to inform the underlying
components that the library has completed processing. If the EIL fails to call
IcMgrLcl on the IC_LCL_CLOSESESSION flag, the IC_SESSIONCLOSED
message will never be sent to the EIL's IcLibEvent procedure and the session
will never close.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcMgrLcl function

IC_LCL_FLAGS data type

INFOConnect API

3–62 4173 5390–000

IcLibOpenChannel
(2.0)

IC_RESULT FAR PASCAL IcLibOpenChannel
(HIC_CHANNEL hIcChannel,
void FAR * buffer,
UINT len,
IC_OPEN_OPTIONS Options,
LPHIC_CHANNEL lphLibChannel)

IcLibOpenChannel is provided by the ICS library and is called to initialize a library
channel. It is used to create and initialize channel related data. IcLibOpenChannel
is called once before any session that uses this channel is opened. It should open the
requested channel.

Parameters Description

hIcChannel IN The ICS HIC_CHANNEL
handle of the channel. The
library must use this value on
all calls from the library to
the ICS Manager where a
channel handle is required.
See IcGetChannelID.

buffer *IN The buffer of global data for
that channel. The data in this
buffer corresponds to the data
defined in the library's
IC_TF_CHANNELTABLE
data dictionary.

len IN The size of the buffer in
bytes.

Options IN IC_OPEN_VERIFY if the
channel should only be
verified for opening. That is,
if the session can be opened,
return IC_VERIFY_OK
without actually performing
the open request.

INFOConnect API

4173 5390–000 3–63

lphLibChannel *IN/*OUT If needed, the library should
assign a value which
uniquely identifies this
channel within the library
(the default value is
hIcChannel). The value
returned here is used on all
future calls from the ICS
Manager to the library to
identify the channel. (For
example, IcLibOpenSession,
IcLibCloseChannel.) See
the discussion in the IDK
Basic Developer's Guide
about 'aliasing'.

Return Values:

IC_OK , or IC_ERROR_INFO or IC_ERROR_WARNING result type, if the open
was successful. IC_VERIFY_OK if the verify was successful. Otherwise, a
standard or a library-specific error.

INFOConnect API

3–64 4173 5390–000

Notes:

− IcLibOpenChannel must be exported at ordinal value 16.

− If the library has no channel configuration information (that is, no
IC_TF_CHANNELTABLE), IcLibOpenChannel is called once with
NULL_HIC_CHANNEL , a NULL buffer, and zero length. The library should
simply return a successful result.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_CHANNEL data type

LPHIC_CHANNEL data type

IcLibCloseChannel function

IC_OPEN_OPTIONS data type

IC_TABLE_FLAGS data type

INFOConnect API

4173 5390–000 3–65

IcLibOpenSession
(1.0)

IC_RESULT FAR PASCAL IcLibOpenSession
(HIC_SESSION hIcSession,
HIC_CHANNEL hLibChannel,
void FAR * buffer,
UINT len,
IC_OPEN_OPTIONS Options,
LPHIC_SESSION lphLibSession)

IcLibOpenSession is provided by the ICS library and is called either to initialize a
library communication session or to verify that a session can be opened. It is to be
used to create and initialize session related data.

Parameters Description

hIcSession IN The ICS HIC_SESSION
handle of the session to open.
The library must use this
value on all calls from the
library to the ICS Manager
where a session handle is
required. (For example,
IcMgrXmt , IcMgrRcv , etc.)

hLibChannel IN The library handle of the
session's channel. This is the
value returned from
IcLibOpenChannel.

buffer *IN The buffer of path-specific
data for that channel. The
data in this buffer
corresponds to the data
defined in the library's
IC_TF_PATHTABLE data
dictionary.

len IN The size of the buffer in
bytes.

INFOConnect API

3–66 4173 5390–000

Options IN IC_OPEN_VERIFY flag if
the session should only be
verified for opening. That is,
if the session can be opened,
return IC_VERIFY_OK and
do not open the session.
Otherwise, return an error.

lphLibSession *IN/*OUT If needed, the library should
assign a value which
uniquely identifies this
session within the library (the
default value is hIcSession).

Return Values:

IC_OK , or IC_ERROR_INFO or IC_ERROR_WARNING result type, if the open
was successful. IC_VERIFY_OK if the verify was successful. Otherwise, a
standard or a library-specific error.

Notes:

− IcLibOpenSession must be exported at ordinal value 9.

− The Options flag contains bit fields. Therefore, use bit operators to test for the
necessary request types. For example, (Options & IC_OPEN_VERIFY) is
TRUE if the IC_OPEN_VERIFY bit is set.

− The value returned in lphLibSession is used as the hLibSession input value with
all future calls from the ICS Manager to the library to identify the session. For
example, IcLibXmt, IcLibRcv, IcLibLcl , IcLibSetResult, IcLibGetSessionInfo,
IcLibIdentifySession, IcLibCloseSession will all be called with this session
handle. IcLibGetString and IcLibEvent will be called with this session handle if
the session handle applies. See IcLibGetString and IcLibEvent for more
information.

− If the library has no path data (that is, no IC_TF_PATHTABLE),
IcLibOpenSession is called with a NULL buffer and zero length.

INFOConnect API

4173 5390–000 3–67

− After a successful return, the ICS Manager calls IcLibOpenSession again with
(Options = IC_OPEN_VERIFY) and (hIcSession = NULL_HIC_SESSION) to
determine if multiple instances of this path are supported.

The ICS Manager continues the path verification through the list of libraries in
the stack. If at least one library in the stack returns something other than
IC_VERIFY_OK, then this path is excluded from the Select Path dialog box.
Otherwise (that is, all libraries in the stack return IC_VERIFY_OK) the
IcLibIdentifySession function is called starting with the service library at the
top of the library stack and ending with the external interface library, until a
single library returns a non-NULL buffer handle. If all libraries return NULL,
the ICS Manager generates the unique session identification string using
hIcSession.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

HIC_SESSION data type

LPHIC_SESSION data type

HIC_CHANNEL data type

IcLibCloseSession function

IcLibIdentifySession function

IC_OPEN_OPTIONS data type

IC_TABLE_FLAGS data type

INFOConnect API

3–68 4173 5390–000

IcLibPrintConfig
(2.0)

IC_RESULT FAR PASCAL IcLibPrintConfig
(UINT TableNumber,
IC_PRINT_DETAIL detail,
void FAR * buffer,
UINT len,
LPSTR print,
UINT prlen)

IcLibPrintConfig is provided by the ICS library and is called to obtain a displayable
string of library-specific configuration information.

Parameters Description

TableNumber IN The number of the configuration table
from the library's resource file.

detail IN The amount of detail to include.
Currently, only summary information
is supported. Therefore, this is
IC_PRINT_SUMMARY .

buffer *IN The buffer of data for summarizing.

len IN The size of the buffer in bytes.

print *OUT A string to receive the summarized
data.

prlen IN The size of the output string in bytes.
When (detail ==
IC_PRINT_SUMMARY), prlen is at
least IC_MAXPRINTSTRING large.

INFOConnect API

4173 5390–000 3–69

Return Values:

IC_OK if successful. Otherwise, a standard or a library-specific error.

Notes:

−− IcLibOpenSession must be exported at ordinal value 15.

− The summarized data is brief, including only pertinent information. For
example, the TTY EIL may return a buffer for display as follows.

COM1,2400,7,1,E

−− IcLibOpenSession must return an IC_ERROR_UNKNOWN_COMMAND result
for all unknown detail values.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

INFOConnect API

3–70 4173 5390–000

IcLibRcv
(1.0)

IC_RESULT FAR PASCAL IcLibRcv
(HIC_SESSION hLibSession,
HANDLE buffer,
UINT length)

IcLibRcv is provided by the ICS library and is called to receive data into the
specified buffer. Each library should do what is necessary to initiate a receive. A
service library should eventually pass the request to the underlying library stack by
calling IcMgrRcv .

Parameters Description

hLibSession IN The library handle of a session.

buffer IN A handle to a global buffer in
which data will be returned.

length IN The size of buffer in bytes.

Return Value:

IC_OK if the communication session is valid and the command can be processed. If
the library supports a single receive request at a time and already has a request
outstanding, it should return IC_ERROR_RCV_BUSY. Otherwise, a standard or a
library-specific error.

Note: IcLibRcv must be exported at ordinal value 8.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcMgrRcv function

INFOConnect API

4173 5390–000 3–71

IcLibSetResult
(1.0)

IC_RESULT FAR PASCAL IcLibSetResult
(HIC_SESSION hLibSession,
UINT uType,
IC_RESULT result)

IcLibSetResult is provided by the ICS library and passes status and error
information between the various INFOConnect communication layers. After any
necessary processing, the IC_RESULT is passed back to the ICS Manager by calling
IcMgrSetResult. The result of calling IcMgrSetResult is to be the return value
from IcLibSetResult .

Parameters Description

hLibSession IN The library handle of a session.

uType IN The type of the IC_RESULT :
IC_ERROR or IC_STATUS.

result IN The IC_RESULT message. See
Appendix B for the defined ICS
statuses. See Appendix C for the
defined ICS errors.

Return Value:

If a processing error occurred, a standard or a library-specific error. Otherwise, the
return value from the call to IcMgrSetResult.

Note: IcLibSetResult must be exported at ordinal value 11.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_STATUS message

IC_ERROR message

IcMgrSetResult function

INFOConnect API

3–72 4173 5390–000

IcLibTerminate
(1.0)

IC_RESULT FAR PASCAL IcLibTerminate
(void)

IcLibTerminate is provided by the ICS library and is called once by the ICS
Manager when all library sessions and channels have been closed and the library is
about to be unloaded. Any global cleanup may be done here.

Parameters Description

None.

Return Value:

IC_OK if successful. Otherwise, a standard or a library-specific error.

Note: IcLibTerminate must be exported at ordinal value 12.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibInstall function

INFOConnect API

4173 5390–000 3–73

IcLibUpdateConfig
(3.0)

IC_RESULT FAR PASCAL IcLibUpdateConfig
(HIC_CONFIG hConfig,
UINT TableNumber,
LPSTR buffer,
UINT len,
IC_COMMAND Command)

IcLibUpdateConfig is provided by the ICS library and should present a dialog box
to the administrator, when appropriate (for example, during an Add or Modify
action). Otherwise, the procedure may perform any desired data cleanup, etc.

Note that the TableNumber parameter determines what type of configuration is being
performed: path specific or global. Therefore, the appropriate dialog box may be
displayed.

IcDialogConfig is provided to display the dialog box for the hConfig.

Parameters Description

hConfig IN The HIC_CONFIG handle
of the open configuration
session.

TableNumber IN The number of the table from
the library's resource file that
is being configured.

buffer *IN/*OUT A buffer of data to be
modified. Note that this may
contain default data from the
library's RC file.

len IN The size of the buffer in
bytes.

Command IN An IC_COMMAND . This
is the action that caused this
function to be called.

Return Values:

IC_OK if successful. IC_CANCELED if the user canceled from the dialog.
Otherwise, a standard or a library-specific error.

Notes:

INFOConnect API

3–74 4173 5390–000

− IcLibUpdateConfig must be exported at ordinal value 1. It should allow the
user to update the given data and it should return an appropriate result. The
ICS Manager will update the ICS database accordingly.

−− IcLibUpdateConfig must return an IC_ERROR_UNKNOWN_COMMAND
result for all unknown Commands.

− For IC_TF_PATHTABLE and IC_TF_CHANNELTABLE tables, the library
receives only the data it defines in its data dictionary. It does not receive the
path or channel keys that are added by ICS. For the exceptional case where the
library wishes to access this information, it can do so as follows for the
IC_TF_PATHTABLE:

typedef struct {
...

} MYLIBPATHCONFIG;

typedef struct {
PATHID pathID;
CHANNELID channelID;
MYLIBPATHCONFIG MyLibPathConfig;

} PATHCONFIG

typedef PATHCONFIG FAR * LPPATHCONFIG;

Therefore, the PATHID would be referenced by:

(LPPATHCONFIG) ((LPSTR)buffer - sizeof(PATHID) - sizeof(CHANNELID));

And the CHANNELID would be referenced by:

(LPPATHCONFIG) ((LPSTR)buffer - sizeof(CHANNELID));

INFOConnect API

4173 5390–000 3–75

The IC_TF_CHANNELTABLE access is similar:

typedef struct {
...

} MYLIBCHANNELCONFIG;

typedef struct {
CHANNELID channelID;
MYLIBCHANNELCONFIG MyLibChannelConfig;

} CHANNELCONFIG

typedef CHANNELCONFIG FAR * LPCHANNELCONFIG;

Therefore, the CHANNELID would be referenced by:

(LPCHANNELCONFIG) ((LPSTR)buffer - sizeof(CHANNELID));

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_COMMAND data type

IC_DICT_NODE data type

IC_TABLE_FLAGS data type

INFOConnect API

3–76 4173 5390–000

IcLibVerifyConfig
(3.0)

IC_RESULT FAR PASCAL IcLibVerifyConfig
(HIC_CONFIG hConfig,
UINT TableNumber,
LPSTR buffer,
UINT len,
IC_VERIFY Command)

IcLibVerifyConfig is provided by the ICS library to verify the contents of the
configuration buffer. If Command is IC_VER_DISPLAY , errors are to be displayed
to the user. If Command is IC_VER_MODIFY , the erroneous data is to be presented
to the user for correction. Otherwise, an error is returned.

Parameters Description

hConfig IN The HIC_CONFIG handle
of the open configuration
session.

TableNumber IN The number of the table from
the resource file that is being
verified.

buffer *IN/*OUT A buffer of configuration
data to be verified, and
possibly modified.

len IN The size of the buffer in
bytes.

Command IN An IC_VERIFY command.

Return Values:

IC_OK if successful. Otherwise, a standard or a library-specific error.

INFOConnect API

4173 5390–000 3–77

Notes:

− IcLibVerifyConfig must be exported at ordinal value 14. It is used to allow the
library to perform semantic checking on configuration data that has been input
in an alternate manner. The library may wish to call this routine from the
IcLibUpdateConfig routine to perform semantic checking on its configuration
data.

−− IcDialogConfig is provided to display the dialog box for the hConfig.

−− IcLibVerifyConfig must return an IC_ERROR_UNKNOWN_COMMAND result
for all unknown Commands.

− If the library changes a configuration record structure (thus incrementing the
revision number of the data table), INFOConnect automatically performs the
upgrade from the previous format to the new format. Data is copied field by
field from a record in the old format to a new record in the updated format
according to the field numbers. IcLibVerifyConfig is then called with the
IC_VER_UPGRADE command so that the library can perform any necessary
data conversions using IC_UPGRADE_INFO. Finally, IcLibVerifyConfig is
called with the IC_VER_SAVE command so that the library can verify the data
record before that record is save into the configuration database.

After all data records have been processed, quick configuration is invoked.

See the IC_VERIFY data type and the IDK Basic Developer's Guide for more
information.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_VERIFY data type

IC_UPGRADE_INFO data structure

INFOConnect API

3–78 4173 5390–000

IcLibXmt
(1.0)

IC_RESULT FAR PASCAL IcLibXmt
(HIC_SESSION hLibSession,
HANDLE buffer,
UINT length)

IcLibXmt is provided by the ICS library and is called to initiate transmission of a
data buffer. A service library should eventually pass the request to the underlying
library stack by calling IcMgrXmt .

Parameters Description

hLibSession IN The library handle of a session.

buffer IN A handle to a global buffer of data.

length IN The number of bytes to transmit.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. If the library supports a single transmit request at a time and already has
a request outstanding, it should return IC_ERROR_XMT_BUSY . Otherwise, a
standard or a library-specific error.

Note: IcLibXmt must be exported at ordinal value 13.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcMgrXmt function

INFOConnect API

4173 5390–000 3–79

IcLockBuffer
(1.0)

LPSTR FAR PASCAL IcLockBuffer
(HANDLE hBuffer)

IcLockBuffer locks memory previously created through IcAllocBuffer .

Parameters Description

hBuffer IN The handle of a global buffer,
allocated with IcAllocBuffer , to
lock.

Return Value:

An LPSTR type pointer to the locked block of memory or NULL if the memory
handle is not valid.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

IcUnlockBuffer function

INFOConnect API

3–80 4173 5390–000

IC_MAKE_RESULT
(1.0)

IC_MAKE_RESULT (context, type, value)

The IC_MAKE_RESULT macro creates an IC_RESULT from the given
IC_RESULT_CONTEXT , IC_RESULT_TYPE , and IC_RESULT_VALUE .

Parameters Description

context IN An IC_RESULT_CONTEXT .

type IN An IC_RESULT_TYPE .

value IN An IC_RESULT_VALUE .

Return Value:

The created IC_RESULT status or error.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IC_RESULT_CONTEXT data type

IC_RESULT_TYPE data type

IC_RESULT_VALUE data type

INFOConnect API

4173 5390–000 3–81

IcMgrEilEvent
(3.0)

IC_RESULT FAR PASCAL IcMgrEilEvent
(HIC_SESSION hIcSession,
UINT uType,
HANDLE hBuff ,
UINT uSize)

IcMgrEilEvent allows external interface libraries to post messages to their own
event procedure. This may be useful for processing interrupts as events.

Parameters Description

hIcSession IN The ICS Manager's
HIC_SESSION handle.

uType IN A message type.

hBuff IN A handle to a global buffer or the
HIWORD of an IC_RESULT ,
depending on uType.

uSize IN The buffer size in bytes or the
LOWORD of an IC_RESULT ,
depending on uType.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibEvent function

INFOConnect API

3–82 4173 5390–000

IcMgrGetSessionInfo
(3.0)

IC_RESULT FAR PASCAL IcMgrGetSessionInfo
(HIC_SESSION hSession,
LPIC_SINFO info)

IcMgrGetSessionInfo initializes the given IC_SINFO data structure with pertinent
information about the lower communication session.

Parameters Description

hSession IN The ICS Manager's
HIC_SESSION handle of an
established communication
session.

info *OUT An IC_SINFO record to be
filled with communication
session information.

Return Value:

IC_OK if the structure was initialized. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ● Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_SINFO data type

INFOConnect API

4173 5390–000 3–83

IcMgrLcl
(3.0)

IC_RESULT FAR PASCAL IcMgrLcl
(HIC_SESSION hIcSession,
UINT which)

IcMgrLcl is an entry point into the underlying library stack to stop reception of
communication messages. The pending request or requests (designated by which) for
the given communication session are cancelled.

Parameters Description

hIcSession IN The ICS Manager's
HIC_SESSION handle.

which IN Designates the IC_LCL_FLAGS
type of pending request to cancel.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. See Appendix C for possible errors.

Note: All libraries, including EILs, must call IcMgrLcl to inform the underlying
components that the library has completed processing. If the EIL fails to
call IcMgrLcl when the IC_LCL_CLOSESESSION flag is received in
IcLibLcl , the IC_SESSIONCLOSED message will never be sent to the EIL's
IcLibEvent procedure and the session will never close.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_LCLRESULT message

IC_LCL_FLAGS data type

INFOConnect API

3–84 4173 5390–000

IcMgrRcv
(3.0)

IC_RESULT FAR PASCAL IcMgrRcv
(HIC_SESSION hIcSession,
HANDLE buffer,
UINT length)

IcMgrRcv is an entry point into the underlying library stack to request to receive
data into the specified buffer.

Parameters Description

hIcSession IN The ICS Manager's
HIC_SESSION handle.

buffer IN A handle to a global buffer in
which received data will be
returned.

length IN The size of the buffer in bytes.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ❍ EIL

See also:

IC_RCVDONE message

IC_RCVERROR message

INFOConnect API

4173 5390–000 3–85

IcMgrSendEvent
(3.0)

IC_RESULT FAR PASCAL IcMgrSendEvent
(HIC_SESSION hIcSession,
UINT uType,
HANDLE hBuffer,
UNIT uSize)

IcMgrSendEvent posts a message to the next higher layer in the library stack for the
given communication session.

Parameters Description

hIcSession IN The ICS Manager's
HIC_SESSION handle.

uType IN A message type.

hBuffer IN A handle to a global buffer or the
HIWORD of an IC_RESULT .

uSize IN The size of the buffer in bytes or
the LOWORD of an IC_RESULT .

INFOConnect API

3–86 4173 5390–000

Return Value:

IC_OK if the message is valid and was posted to the next higher layer in the library
stack. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_ERROR message

IC_RCVDONE message

IC_RCVERROR message

IC_SESSIONESTABLISHED message

IC_STATUS message

IC_XMTDONE message

IC_XMTERROR message

INFOConnect API

4173 5390–000 3–87

IcMgrSetResult
(3.0)

IC_RESULT FAR PASCAL IcMgrSetResult
(HIC_SESSION hIcSession,
UINT uType,
IC_RESULT result)

IcMgrSetResult is an entry point into the underlying library stack to process status
and error information.

Parameters Description

hIcSession IN An ICS Manager's HIC_SESSION
handle.

uType IN The type of the IC_RESULT :
IC_ERROR or IC_STATUS.

result IN The IC_RESULT message. See
Appendix B for the defined ICS
statuses. See Appendix C for the
defined ICS errors.

Return Value:

IC_OK if successful. An IC_RESULT error otherwise. See Appendix C for
possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_ERROR message

IC_STATUS message

IC_RESULT data type

INFOConnect API

3–88 4173 5390–000

IcMgrTraceBuffer
(3.0)

IC_RESULT FAR PASCAL IcMgrTraceBuffer
(IC_RESULT_CONTEXT Context,
HIC_SESSION hIcSession,
UINT uType,
LPSTR Tag,
void FAR * Buffer,
UINT Len)

IcMgrTraceBuffer allows libraries to write a buffer of data to the trace.log debug
file. The data is only written if tracing has been enabled for the given session.

The IcTrace hook library also uses IcMgrTraceBuffer to trace INFOConnect data
communications by writing buffer contents to a trace file, trace.log, located in the
DataDir directory.

Parameters Description

Context IN The library's context.

hIcSession IN An ICS Manager's HIC_SESSION
handle.

uType IN A message type, or
IC_NULLEVENT if not
applicable.

Tag IN An identifying string.

Buffer *IN A buffer of data to write.

Len IN The size of the buffer, in bytes.

INFOConnect API

4173 5390–000 3–89

Return Value:

IC_OK is returned if the request is valid, whether or not the data is written to the file
(since tracing may not be enabled). See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DEBUG data type

IcMgrTraceResult function

INFOConnect API

3–90 4173 5390–000

IcMgrTraceResult
(3.0)

IC_RESULT FAR PASCAL IcMgrTraceResult
(IC_RESULT_CONTEXT Context,
HIC_SESSION hIcSession,
UINT uType,
LPSTR Tag,
IC_RESULT Result)

IcMgrTraceResult allows libraries to write an IC_RESULT to the trace.log debug
file. The data is only written if tracing has been enabled for the given session.

The IcTrace hook library also uses IcMgrTraceResult to trace INFOConnect data
communications by writing events and IC_RESULTs to a trace file, trace.log,
located in the DataDir directory.

Parameters Description

Context IN The library's context.

hIcSession IN An ICS Manager's HIC_SESSION
handle.

uType IN A message type, or
IC_NULLEVENT if not
applicable.

Tag *IN An identifying string.

Result IN An IC_RESULT to write.

INFOConnect API

4173 5390–000 3–91

Return Value:

IC_OK is returned if the request is valid, whether or not the data is written to the file
(since tracing may not be enabled). See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DEBUG data type

IcMgrTraceResult function

INFOConnect API

3–92 4173 5390–000

IcMgrXmt
(3.0)

IC_RESULT FAR PASCAL IcMgrXmt
(HIC_SESSION hIcSession,
HANDLE buffer,
UINT length)

IcMgrXmt is an entry point into the underlying library stack to initiate transmission
of the given data buffer.

Parameters Description

hIcSession IN The ICS Manager's HIC_SESSION
handle.

buffer IN A handle to a global buffer of data.

length IN The number of bytes to transmit.

Return Value:

IC_OK is returned if the communication session is valid and the command can be
processed. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ❍ EIL

See also:

IC_XMTDONE message

IC_XMTERROR message

INFOConnect API

4173 5390–000 3–93

IcNextEvent
(2.0)

IC_RESULT FAR PASCAL IcNextEvent
(HIC_SESSION session,
IC_NEXTEVENT_FLAGS flags,
WORD delay)

For ICS DosLink applications, IcNextEvent indicates that the callback routine is
ready for the next event. It can also be used to set a timer and to query for events.

Parameters Description

session IN A session handle.

flags IN IC_NEXTEVENT_FLAGS flags.

delay IN If the IC_NEXTEVENT_TIMER
flag is set, this specifies, in
milliseconds, the amount of time
elapsed before receiving a timer
event (IC_TIMER).

Return Value:

IC_OK is returned if successful, or if the IC_NEXTEVENT_CHECK flag is
specified and there are no events in the queue. If the IC_NEXTEVENT_CHECK
flag is specified and there are events in the queue, IC_INFO_QEVENT is returned.
See Appendix C for possible errors.

Notes:

− IcNextEvent must be called by the callback routine with the
(IC_NEXTEVENT_POP|IC_NEXTEVENT_READY) flags when it is done
processing an event. This removes the event from the queue and informs ICS
that the callback routine is ready to receive the next event. ICS DosLink
applications that use the IcRegisterCallback function (in contrast to polling
using IcGetNextEvent), must follow each call to all ICS APIs with a call to
IcNextEvent with the IC_NEXTEVENT_READY flag.

− ICS DosLink applications may poll ICS for events instead of, or as well as,
registering the callback routine. See IcGetNextEvent for more information.

− For the INFOConnect 2.0 release, the event returned after the given delay is
IC_SETDONE, NOT IC_TIMER .

❍ WIN ❍ XVT ● DosLink

INFOConnect API

3–94 4173 5390–000

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_NEXTEVENT_FLAGS data types

INFOConnect API

4173 5390–000 3–95

IcNotifyConfig
(3.0)

IC_RESULT FAR PASCAL IcNotifyConfig
(IC_COMPONENT ComponentNum,
UINT TableNum,
 UINT Message,
IC_SERIALNUM SerialNum)

IcNotifyConfig notifies configuration windows of changes that have been made to
the configuration database.

Parameters Description

ComponentNum IN The supplier-specific
IC_COMPONENT of the
component that owns the table that
has been altered.

TableNum IN The table number of the table that
has been altered.

Message IN The message indicating the change.

SerialNum IN The one-relative index of the
record that has been altered. The
serial number key is
IC_KEY_SERIALNUM .

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

INFOConnect API

3–96 4173 5390–000

Note: Libraries that support dynamic tables use IcNotifyConfig to ensure that the
IC_MSG_CONFIG message types are distributed properly. All messages
must be distributed for IC_TF_DYNAMICTABLE tables. For
IC_TF_ACTIVE... tables, IcNotifyConfig should be called for the update
message only. It should be called on a timer tick or after some maximum
transaction count.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_MSG_CONFIG data type messages

IC_TABLE_FLAGS data type

INFOConnect API

4173 5390–000 3–97

IcOpenAccessory
(1.0)

IC_RESULT FAR PASCAL IcOpenAccessory
(HWND hWnd,
LPSTR name
LPSTR options,
LPSTR sessionname,
LPIC_SINFO sinfo,
LPHIC_SESSION lphsession)

IcOpenAccessory allows an application to invoke an ICS accessory via dynamically
created ICS paths linked with the LOCAL external interface library.

Parameters Description

hWnd IN The handle of the window
attached to this communication
session.

name *IN The accessory ID. See Appendix
A for ICS Standard IDs.

options *IN A null-terminated string of
command line options,
excluding the path (-p) option.
See Section 6 for information on
command line options.

sessionname *IN A null-terminated identification
string (not necessarily unique)
created by the application that
names the newly created ICS
paths. This is the name that is
used to create the
communication session name
that is returned by a call to
IcGetSessionName. This name
appears in the title bar of the
invoked accessory.

sinfo *IN An IC_SINFO record that has
been previously initialized,
possibly by a call to
IcGetSessionInfo.

INFOConnect API

3–98 4173 5390–000

lphsession *OUT An HIC_SESSION to receive
the communication session
handle of the newly opened
session.

Return Value:

IC_OK if successful. Possible error results are IC_ERROR_NOMEMORY ,
IC_ERROR_BADPARAMETER , IC_ERROR_ACCESSORY_NOT_FOUND, and
IC_ERROR_ACCESSORY_FAILED . See Appendix C for other possible errors.

INFOConnect API

4173 5390–000 3–99

Notes:

− Since IcOpenAccessory calls IcRunAccessory, it supports the -Wxy window
state command line option. This option determines the state of the accessory's
window when it is executed by the ICS Manager. The valid values for x and y
are as follows:

x y

value meaning value meaning

n normal a active

m maximized b background

i iconized

h hidden

Using any other values results in the return of an
IC_ERROR_INVALID_WINOPTION error.

The default window state is normal and active. Invalid value combinations are
hidden/active and maximized/background. These combinations result in the
return of an IC_ERROR_INVALID_WINCOMBO error.

− To invoke an accessory without a communication session connection between the
calling application and the accessory, use IcRunAccessory.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcGetSessionName function

IcGetSessionInfo function

IcRunAccessory function

IC_SINFO data structure

INFOConnect API

3–100 4173 5390–000

IcOpenSession
(1.0)

IC_RESULT FAR PASCAL IcOpenSession
(HWND hWnd,
LPSTR path,
LPHIC_SESSION lphsession)

IcOpenSession requests the establishment of a logical communications connection,
either within the system (that is, the ICS path uses the LOCAL external interface
library) or to another computer.

Parameters Description

hWnd IN The window handle of the
window attached to this
communication session. All
messages from INFOConnect
Connectivity Services for this
session are sent to this
window. If
IcRegisterMsgSession is
used to register windows
messages, this parameter
should be NULL.

path *IN The INFOConnect
Connectivity Services path ID
to be associated with the
communication session. If
this is NULL or if the pointer
itself is NULL, INFOConnect
Connectivity Services will
prompt the user for a path ID.

Or, for ICS DosLink
Client/Server type
applications, this is the
service name that is used to
identify the partner to which
the link is made.

lphsession *OUT An HIC_SESSION to
receive the session handle.

INFOConnect API

4173 5390–000 3–101

*IN/OUT For ICS DosLink
Client/Server type
applications, this must be
initialized as the session
handle that is obtained from a
call to IcCreateSession.

Return Value:

If the request is valid, then either IC_OK or an IC_ERROR_WARNING or
IC_ERROR_INFO type error (other than IC_ERROR_CANCELOPEN) is returned
and the LPHIC_SESSION is set to a valid session handle and the communication
session becomes associated with the application's window. Otherwise, an error is
returned, the session handle is set to NULL_HIC_SESSION, and the connection is
not available. Some possible errors are IC_ERROR_NOMEMORY and the
informational error IC_ERROR_CANCELOPEN . See Appendix C for other
possible errors.

INFOConnect API

3–102 4173 5390–000

Notes:

−− IC_ERROR_CANCELOPEN is an IC_ERROR_INFO error type that indicates
that the user cancelled from the select path dialog box. For this special return
value, the session handle is NULL_HIC_SESSION and no session is opened.
Therefore, this return value should be treated as a special case return value
from IcOpenSession.

− If either IC_OK or an IC_ERROR_WARNING or IC_ERROR_INFO type error
(other than IC_ERROR_CANCELOPEN) is returned, the ICS message
IC_SESSIONESTABLISHED will be sent to the application when the
communication session establishes. The session handle is not valid unless the
IC_SESSIONESTABLISHED event is received with an IC_OK result, or an
IC_ERROR_INFO or IC_ERROR_WARNING result type. This handle should
then be used with any other INFOConnect Connectivity Services function dealing
with this communication session.

− If an IC_SESSIONESTABLISHED event is received with an
IC_ERROR_SEVERE or IC_ERROR_TERMINATE error result,
communication session establishment failed and the session handle is invalid.
The communication session is to be closed immediately by calling
IcCloseSession.

− If using IcRegisterMsgSession to register for messages and the hWnd and path
parameters are both NULL, then the Windows desktop automatically becomes
the parent window. To prevent this, call IcSelectPath to display the select path
dialog box from your application.

− For ICS DosLink applications that are using the callback facility, the hWnd
parameter that is input here is the same handle that is used as the window
handle of the callback function.

INFOConnect API

4173 5390–000 3–103

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_SESSIONESTABLISHED message

IcCloseSession function

IcCreateSession function

IcRegisterMsgSession function

IcSelectPath function

INFOConnect API

3–104 4173 5390–000

IcRcv
(1.0)

IC_RESULT FAR PASCAL IcRcv
(HIC_SESSION hsession,
HANDLE buffer,
UINT length)

IcRcv is called to request a block of data for the given communication session. For
most sessions, one receive request may be outstanding for a session at a time, with
the subsequent receive request will result in an IC_ERROR_RCV_BUSY receive
error.

Parameters Description

hsession IN The established communication
session's handle.

buffer IN The handle of a buffer allocated
with IcAllocBuffer to receive the
data.

length IN Maximum number of bytes to
receive.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned. See Appendix C for other possible
errors.

INFOConnect API

4173 5390–000 3–105

Note: When the receive request is complete, an ICS message of either
IC_RCVDONE or IC_RCVERROR (or "IC_RcvDone" or "IC_RcvError" ,
as appropriate) will be sent to the application.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RCVDONE message

IC_RCVERROR message

IcLcl function

INFOConnect API

3–106 4173 5390–000

IcReadBuffer
(3.0)

IC_RESULT FAR PASCAL IcReadBuffer
(HANDLE hBuffer,
UINT BufOffset,
void FAR * Data,
UINT DataOffset,
UINT Len)

IcReadBuffer reads data from a buffer identified by a Windows HANDLE to a
buffer identified by a far pointer.

Parameters Description

hBuffer IN The handle of the buffer from
which to read the data.

BufOffset IN The offset into the buffer
designated by hBuffer of the
data. This is usually zero.

Data *OUT The buffer to receive the data.

DataOffset IN The offset into the buffer where
the data is read. This is usually
zero.

Len IN The number of bytes to read.

Return Value:

IC_OK if successful. IC_ERROR_NOMEMORY if the buffer could not be locked.
See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcWriteBuffer function

INFOConnect API

4173 5390–000 3–107

IcReadLibraryConfig
(2.0)

IC_RESULT FAR PASCAL IcReadLibraryConfig
(IC_RESULT_CONTEXT context,
int TableNumber,
int KeyIndex,
void FAR * KeyStruct,
void FAR * buffer,
unsigned len)

IcReadLibraryConfig reads the record with the given key(s) from the given table.
KeyStruct is a pointer to the key portion of the data dictionary record structure for
the given table. The necessary key field must be initialized.

Parameters Description

context IN The library's context.

TableNumber IN The number of the table from
which to read.

KeyIndex IN The zero-relative index of the
key field from the beginning of
the record.

KeyStruct *IN The key portion of the database
table record structure for the
given table with the necessary
key field initialized.

buffer *OUT A buffer to receive the record.
This cannot contain the same
structure pointed to by
KeyStruct.

len IN The size of the buffer in bytes.
This should be at least the size
of the database record.

Return Value:

IC_OK if successful. IC_ERROR_TRUNCATED if the buffer was too small and
the record was truncated. See Appendix C for other possible errors.

Notes:

INFOConnect API

3–108 4173 5390–000

− IcReadLibraryConfig is used only on library's invisible tables
(IC_TF_INVISIBLETABLE flag). Path and Channel tables are managed by the
ICS Manager and through IcLibUpdateConfig procedure.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcWriteLibraryConfig function

IcDeleteLibraryConfig function

IC_DICT_NODE data type

IC_TABLE_FLAGS data type

INFOConnect API

4173 5390–000 3–109

IcReAllocBuffer
(1.0)

HANDLE FAR PASCAL IcReAllocBuffer
(HANDLE hBuffer,
unsigned bufsize)

IcReAllocBuffer reallocates memory previously created through IcAllocBuffer .

Parameters Description

hBuffer IN The handle of the global buffer to
reallocate.

bufsize IN The new size, in bytes, of the
reallocated buffer.

Return Value:

A buffer handle is returned if the memory was reallocated, (HANDLE)NULL
otherwise.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

INFOConnect API

3–110 4173 5390–000

IcRegisterAccessory
(1.0)

IC_RESULT FAR PASCAL IcRegisterAccessory
(LPSTR name,
unsigned types,
LPIC_RESULT_CONTEXT context)

IcRegisterAccessory associates the accessory name with a context, and returns that
context through LPIC_RESULT_CONTEXT . The context is a dynamically
assigned identifier that can be used to uniquely identify the accessory when
generating statuses and errors.

Parameters Description

name *IN A null-terminated, unique
accessory context string.

types IN Reserved for future use. Must
be zero.

context *OUT An IC_RESULT_CONTEXT
that receives the context
associated with name.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

LPIC_RESULT_CONTEXT data type

INFOConnect API

4173 5390–000 3–111

IcRegisterCallback
(2.0)

IC_RESULT FAR PASCAL IcRegisterCallback
(HIC_SESSION session,
IC_CALLBACK cb)

For ICS DosLink applications, IcRegisterCallback registers, or updates, the
application's callback function with ICS. This callback routine will be called for
each event on that session.

Each ICS API call implies that the callback routine is not ready to receive events.
Therefore, the application must call IcNextEvent after each ICS API call in order to
notify ICS that the callback routine is ready.

Parameters Description

session IN A session handle.

cb *IN The callback function.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

Notes:

− When the callback routine is done processing an event, it should call
IcNextEvent with the (IC_NEXTEVENT_POP|IC_NEXTEVENT_READY)
flags to remove the event from the queue and inform ICS that it is ready to
receive the next event. ICS DosLink applications that use the
IcRegisterCallback function (in contrast to polling using IcGetNextEvent), must
follow each call to all ICS APIs with a call to IcNextEvent with the
IC_NEXTEVENT_READY flag.

− ICS DosLink applications may poll ICS for events instead of, or as well as,
registering the callback routine. See IcGetNextEvent for more information.

INFOConnect API

3–112 4173 5390–000

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcNextEvent function

IC_NEXTEVENT_FLAGS data type

IC_CALLBACK data type

INFOConnect API

4173 5390–000 3–113

IcRegisterMsgSession
(3.0)

IC_RESULT FAR PASCAL IcRegisterMsgSession
(HIC_SESSION hIcSession,
HWND hWnd
UINT wParam,
UINT MessageOffset,
UINT MessageCount)

IcRegisterMsgSession registers the ICS messages with Windows on a per-session
basis.

MessageOffset is specific to each application and can be different for each hSession.
Developers may use WM_USER as the message offset. The message switch
statement may then be coded using MessageOffset+IC_NULLEVENT , etc. See
Section 4 for the sequence of messages.

The given window will only receive messages from MessageOffset to
(MessageOffset + MessageCount). To stop receiving messages, call
IcRegisterMsgSession with the MessageCount parameter IC_NULLEVENT .

Parameters Description

hIcSession IN The HIC_SESSION handle of the
open session.

hWnd IN The handle of the window to receive
the ICS messages.

wParam IN A value to be passed in as the
wParam word parameter for every
message. For example, this may be
hSession or perhaps the ID of a
control.

MessageOffset IN The Windows message offset for the
messages. This is usually, but not
necessarily, WM_USER.

MessageCount IN The number of messages to register.
See Section 4 for the number of
messages available.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

INFOConnect API

3–114 4173 5390–000

Notes:

− If MessaegOffset is zero, messages are returned as in the ICS 2.0 release (that
is, they are registered with Windows RegisterWindowMessage procedure).

− Call IcOpenSession with a NULL window handle. Note that if the path ID
parameter to IcOpenSession is also NULL, then the Windows desktop
automatically becomes the parent window. To prevent this, call IcSelectPath to
display the select path dialog box from your application.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

IcSelectPath function

INFOConnect API

4173 5390–000 3–115

IcReleaseContextID
(2.0)

IC_RESULT FAR PASCAL IcReleaseContextID
(IC_RESULT_CONTEXT context)

IcReleaseContextID releases the context of the given library from configuration.
The library is unlocked from configuration and unloaded, if necessary.

IcReleaseContextID must be called by the configuration accessory after either
IcGetContextID or IcAddRefContextID has been called and the library
configuration has been accessed. In other words, each time IcGetContextID is
called, IcReleaseContextID must eventually be called.

Parameters Description

context IN An IC_RESULT_CONTEXT to
be released.

Return Value:

IC_OK if successful. See Appendix C for other possible errors.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcGetContextID function

INFOConnect API

3–116 4173 5390–000

IcRunAccessory
(1.0)

IC_RESULT IcRunA ccessory
(LPSTR ID ,
LPSTR options)

IcRunAccessory allows an application to invoke an ICS accessory. There is no
communication session connection between the calling application and the
accessory.

Parameters Description

ID *IN The accessory ID. See Appendix A
for ICS Standard IDs.

options *IN A null-terminated string of
command line options. See
Section 6 for information on
command line options.

Return Value:

IC_OK if successful. Possible error results are IC_ERROR_NOMEMORY ,
IC_ERROR_BADPARAMETER , IC_ERROR_ACCESSORY_NOT_FOUND, and
IC_ERROR_ACCESSORY_FAILED . See Appendix C for other possible errors.

INFOConnect API

4173 5390–000 3–117

Notes:

− IcRunAccessory supports the -Wxy window state command line option. This
option determines the state of the accessory's window when it is executed by the
ICS Manager. The valid values for x and y are as follows:

x y

value meaning value meaning

n normal a active

m maximized b background

i iconized

h hidden

Using any other value results in the return of an
IC_ERROR_INVALID_WINOPTION error.

The default window state is normal and active. Invalid value combinations are
hidden/active and maximized/background. These combinations result in the
return of an IC_ERROR_INVALID_WINCOMBO error.

− To invoke an accessory with a communication session connection between the
calling application and the accessory (via dynamically created ICS paths linked
with the LOCAL external interface library), use IcOpenAccessory.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenAccessory function

INFOConnect API

3–118 4173 5390–000

IcRunHelp3
(3.0)

IC_RESULT FAR PASCAL IcRunHelp3
(UINT type,
LPSTR ID ,
LPSTR lpFile,
DWORD Topic)

IcRunHelp3 runs the Windows help system. The help file should be installed into
the same directory as the executable, and it should have the same root file name as
the library or accessory. For package component IDs, the package help file name is
the last help file specified in the packages .INF installation file.

To access the INFOConnect help file, the type should be IC_MANAGER and ID and
lpFile should be NULL.

If lpFile is a fully qualified file name, it is used as the help file. If the file name is
not fully qualified or if it is NULL, the INFOConnect database will be queried to
determine the fully qualified help file name. In this case, the type and ID must be
given.

Parameters Description

type IN The type of component ID:
IC_ACCESSORY,
IC_LIBRARY , IC_PACKAGE or
IC_MANAGER .

ID *IN A component or package ID, or
NULL if a fully qualified file
name is given for lpFile.

lpFile *IN NULL or a fully qualified null-
terminated help file name.

Topic IN A help context topic number at
which to position.

INFOConnect API

4173 5390–000 3–119

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

INFOConnect API

3–120 4173 5390–000

IcRunLibHelp
(3.0)

IC_RESULT FAR PASCAL IcRunLibHelp
(IC_RESULT_CONTEXT context,
DWORD Topic)

IcRunLibHelp runs the Windows help system for the library with the given context
ID. The help file should be installed into the same directory as the executable, and it
should have the same root file name.

Parameters Description

context IN An IC_RESULT_CONTEXT of
the library whose help file should
be invoked.

Topic IN A help context topic number at
which to position.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

INFOConnect API

4173 5390–000 3–121

IcSelectPath
(3.0)

IC_RESULT FAR PASCAL IcSelectPath
(HWND hWnd,
HIC_CONFIG hPath,
UINT Options,
LPSTR PathID,
UINT Len)

IcSelectPath displays the select path dialog box to the user, allowing the user to
choose the path on which to open a session.

Parameters Description

hWnd IN The window that becomes the
parent window of the select path
dialog box.

hPath IN An HIC_CONFIG that is used to
filter the available paths. Use
NULL_HIC_CONFIG to present
all available paths to the user.

Options IN Use zero. This causes active paths
to be excluded from the list of
available paths.

PathID *OUT The selected path ID, or NULL if
none was selected.

Len IN The size of the buffer. This should
be at least
IC_MAXPATHIDSIZE .

Return Value:

IC_OK if successful. The IC_ERROR_INFO error IC_ERROR_CANCELOPEN
if the user cancelled from the dialog box. See Appendix C for a list of possible
errors.

INFOConnect API

3–122 4173 5390–000

Note: Currently, the filtering of paths is not supported. Therefore, hPath is
always assumed to be NULL_HIC_CONFIG .

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

INFOConnect API

4173 5390–000 3–123

IcSetError
(1.0)

IC_RESULT FAR PASCAL IcSetError
(HIC_SESSION hsession,
IC_RESULT error)

IcSetError passes various error-type information through the INFOConnect
communication session to a library in the library stack or to an attached application.

Parameters Description

hsession IN The communication session's
handle.

error IN The IC_RESULT error message.
See Appendix C for the ICS errors.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

For ICS DosLink Client/Server applications, an IC_ERROR_NOPARTNER return
value indicates that the other half of the session is not established and the request is
ignored.

Note: Accessory-specific errors require a unique accessory context. To obtain
this, use IcRegisterAccessory.

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

IcRegisterAccessory function

INFOConnect API

3–124 4173 5390–000

IcSetServerInfo
(2.0)

IC_RESULT FAR PASCAL IcSetServerInfo
(HIC_SESSION session,
LPIC_SINFO info)

For ICS DosLink applications, IcSetServerInfo makes the session a server session
and initializes the given IC_SINFO data structure with pertinent information about
the communication session. IcSetServerInfo must be called before calling
IcOpenSession.

Once a session is declared as a server, the application may call IcSetServerInfo after
calling IcOpenSession. This causes an IC_CONNECT_SERVER
(IC_STATUS_CONNECT type) status to be sent to the client session.

Parameters Description

session IN A session handle.

info *IN An IC_SINFO record to be passed
to the client session during an
IcGetSessionInfo call.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpenSession function

IC_SINFO data type

IC_STATUS_CONNECT data type

INFOConnect API

4173 5390–000 3–125

IcSetSessionError
(1.0)

IC_RESULT FAR PASCAL IcSetSessionError
(HIC_SESSION hIcSession,
IC_RESULT_CONTEXT context,
IC_RESULT error,
LPSTR lpinsert1,
LPSTR lpinsert2,
LPSTR lpinsert3)

IcSetSessionError must be used when returning ICS standard error results (see
Appendix C for a list of standard error results) to insure that the correct library is
associated with the given error. The IcSetSessionError procedure may also be
useful when returning library-specific errors, especially those which require up to
three string inserts (%s formatting ONLY). This alleviates the library from
managing the information itself.

Parameters Description

hIcSession IN The ICS session handle on which
the error occurred, or
NULL_HIC_SESSION if not
applicable.

context IN The unique library context.

error IN The IC_RESULT error.

lpinsert1 *IN A string of maximum
IC_MAXERRORINSERT bytes.
This string will be used as the first
string insert. The pointer itself
may be NULL.

lpinsert2 *IN A string of maximum
IC_MAXERRORINSERT bytes.
This string will be used as the
second string insert. The pointer
itself may be NULL, and it must be
if lpinsert1 is NULL.

INFOConnect API

3–126 4173 5390–000

lpinsert3 *IN A string of maximum
IC_MAXERRORINSERT bytes.
This string will be used as the third
string insert. The pointer itself
may be NULL, and it must be if
lpinsert2 is NULL.

Return Value:

The return value is the IC_RESULT error input parameter.

Example:

The following example shows returning the standard IC_ERROR_INTERNAL ,
which accepts one insert, a string describing the location of the error.

return IcSetSessionError (hIcSession, MyContext,
IC_ERROR_INTERNAL, "IcLibOpenSession", NULL, NULL);

The following example returns a library-specific error,
TTY_XMTERROR_TRANSMITTING .

IC_RESULT error;

error = IC_MAKE_RESULT(MyContext, TTY_ERROR,
TTY_XMTERROR_TRANSMITTING);

return IcSetSessionError(hIcSession, MyContext,
error, NULL, NULL, NULL);

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_MAKE_RESULT function

IcLibGetString function

INFOConnect API

4173 5390–000 3–127

IcSetStatus
(1.0)

IC_RESULT FAR PASCAL IcSetStatus
(HIC_SESSION hsession,
IC_RESULT status)

IcSetStatus passes various status information through the INFOConnect
communication session to a library in the library stack or to an attached application.
An IC_STATUSRESULT message will be received when the status has been
delivered.

Parameters Description

hsession IN The handle of the communication
session.

status IN The IC_RESULT status message.
See Appendix B for the defined ICS
statuses.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

For ICS DosLink Client/Server applications, an IC_ERROR_NOPARTNER return
value indicates that the other half of the session is not established and the request is
ignored.

Note: Accessory-specific statuses require a unique accessory context. To obtain
this, use IcRegisterAccessory.

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

IcRegisterAccessory function

INFOConnect API

3–128 4173 5390–000

IcUnlockBuffer
(1.0)

IC_RESULT FAR PASCAL IcUnlockBuffer
(HANDLE hBuffer)

IcUnlockBuffer unlocks memory previously locked by IcLockBuffer .

Parameters Description

hBuffer IN The handle of a global buffer to
unlock.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcAllocBuffer function

IcLockBuffer function

INFOConnect API

4173 5390–000 3–129

IcWriteBuffer
(3.0)

IC_RESULT FAR PASCAL IcWriteBuffer
(HANDLE hBuffer,
UINT BufOffset,
void FAR * Data,
UINT DataOffset,
UINT Len)

IcWriteBuffer writes data from a buffer identified by a far pointer to a buffer
identified by a Windows HANDLE.

Parameters Description

hBuffer IN/*OUT The handle of the buffer
from which to write the
data.

BufOffset IN The offset into the buffer
designated by hBuffer
where the data is written.
This is usually zero.

Data *IN The buffer from which the
data is written.

DataOffset IN The offset into the buffer
from where the data is
written. This is usually
zero.

Len IN The number of bytes of data
to write.

INFOConnect API

3–130 4173 5390–000

Return Value:

IC_OK if successful. IC_ERROR_NOMEMORY if the buffer could not be locked.
See Appendix C for other possible errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcReadBuffer function

INFOConnect API

4173 5390–000 3–131

IcWriteLibraryConfig
(2.0)

IC_RESULT FAR PASCAL IcWriteLibraryConfig
(IC_RESULT_CONTEXT context,
int TableNumber,
void FAR * buffer,
unsigned len)

IcWriteLibraryConfig overwrites the given record in the given table in the ICS
database. If the record does not exist, it is added; if the record does exist, it is
located and updated using the primary key.

Parameters Description

context IN The library's context.

TableNumber IN The number of the table for which
to write.

buffer *IN The buffer to write.

len IN The size of the buffer in bytes.

Return Value:

IC_OK if successful. IC_ERROR_INVALID_CONFIGREC if the length of the
buffer does not equal the length of the record stored in the ICS database. See
Appendix C for other possible errors.

Notes:

− IcWriteLibraryConfig is used only on library's invisible tables
(IC_TF_INVISIBLETABLE flag). Path and Channel tables are managed by the
ICS Manager and through IcLibUpdateConfig procedure.

INFOConnect API

3–132 4173 5390–000

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcReadLibraryConfig function

IcDeleteLibraryConfig function

IC_DICT_NODE data type

IC_TABLE_FLAGS data type

INFOConnect API

4173 5390–000 3–133

IcXmt
(1.0)

IC_RESULT FAR PASCAL IcXmt
(HIC_SESSION hsession,
HANDLE buffer,
UINT length)

IcXmt is called to transmit a block of data for the given communication session. For
most sessions, one transmission may be outstanding for a session at a time, with the
subsequent transmit request will result in an IC_ERROR_XMT_BUSY transmit
error.

If the IC_SINFO record indicates that the session is not transparent (that is,
transparent == FALSE), then the data should NOT contain any special, protocol-
specific characters. Special characters will be added by the underlying ICS libraries
as required by the protocol.

Parameters Description

hsession IN The established communication
session's handle.

buffer IN A buffer, allocated with
IcAllocBuffer , of data to be
transmitted.

length IN The number of bytes to transmit.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

INFOConnect API

3–134 4173 5390–000

Note: When the transmission is complete, an INFOConnect Connectivity Services
message of either IC_XMTDONE or IC_XMTERROR will be sent to the
application. The buffer must not be modified until one of these messages is
received or until an IC_LCLRESULT is received after a call to IcLcl .

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_XMTDONE message

IC_XMTERROR message

IC_SINFO data structure

INFOConnect API

4173 5390–000 3–135

NOREF
(2.0)

NOREF(a)

The NOREF macro may be used to reference a procedure's formal parameter that
would not otherwise be referenced. Unreferenced formal parameters cause nuisance
errors from optimizing compilers.

Parameters Description

a IN A variable.

Return Value:

The input variable.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

INFOConnect API

3–136 4173 5390–000

ic_buf_alloc
(1.0)

IC_BUFHND ic_buf_alloc
(long bufsize)

ic_buf_alloc allocates sharable memory and returns its IC_BUFHND handle type.

Parameter Description

bufsize IN The number of bytes to allocate.

Return Value:

An IC_BUFHND handle type is returned if the memory was allocated.
NULL_IC_BUFHND type is returned if the memory could not be allocated.

Note: ICS data communication buffers must be shared by different tasks.
ic_buf_alloc ensures that these buffers are properly allocated to satisfy any
operating system requirements for shared buffer. Therefore, buffers passed
to the INFOConnect Connectivity Services routines MUST have been
allocated through ic_buf_alloc.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_buf_free function

IC_BUFHND data type

NULL_IC_BUFHND data type

INFOConnect API

4173 5390–000 3–137

ic_buf_free
(1.0)

void ic_buf_free
(IC_BUFHND hBuffer)

ic_buf_free frees memory previously allocated through ic_buf_alloc.

Parameter Description

hBuffer IN The IC_BUFHND buffer memory
handle of the buffer to free.

Return Value:

None.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_buf_alloc function

IC_BUFHND data type

INFOConnect API

3–138 4173 5390–000

ic_buf_lock
(1.0)

STR_FAR ic_buf_lock
(IC_BUFHND hBuffer)

ic_buf_lock locks memory previously created through ic_buf_alloc.

Parameter Description

hBuffer IN The IC_BUFHND buffer memory
handle of the buffer to lock.

Return Value:

An XVT STR_FAR type pointer to the locked block of memory.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_buf_alloc function

ic_buf_unlock function

IC_BUFHND data type

INFOConnect API

4173 5390–000 3–139

ic_buf_realloc
(1.0)

IC_BUFHND ic_buf_realloc
(IC_BUFHND hBuffer,
long bufsize)

ic_buf_realloc reallocates memory previously created through ic_buf_alloc.

Parameters Description

hBuffer IN The IC_BUFHND buffer memory
handle of the buffer to reallocate.

bufsize IN The new size, in bytes, of the
reallocated buffer.

Return Value:

An IC_BUFHND handle type is returned if the memory was allocated.
NULL_IC_BUFHND type is returned if the memory could not be allocated.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_buf_alloc function

IC_BUFHND data type

NULL_IC_BUFHND data type

INFOConnect API

3–140 4173 5390–000

ic_buf_unlock
(1.0)

void ic_buf_unlock
(IC_BUFHND hBuffer)

ic_buf_unlock unlocks memory previously locked through ic_buf_lock.

Parameter Description

hBuffer IN The IC_BUFHND buffer memory
handle of the buffer to unlock.

Return Value:

None.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_buf_lock function

IC_BUFHND data type

INFOConnect API

4173 5390–000 3–141

ic_change_handle
(1.0)

IC_RESULT ic_change_handle
(HIC_SESSION hsession,
WINDOW hWnd)

ic_change_handle changes the ownership of a currently established communication
session. All subsequent communication events are then directed to the main event
procedure associated with that new window.

Parameters Description

hsession IN The HIC_SESSION handle of the
opened communication session to
which the new window becomes
associated.

hWnd IN The WINDOW handle for the
window that will obtain ownership
of the given communication
session.

Return Value:

IC_OK is returned if the change was successful.
IC_ERROR_UNOPENEDSESSION is returned if the given communication session
is not a valid, established session. See Appendix C for other possible errors.

Note: An implicit ic_lcl(hsession, IC_LCL_RCVXMT) is performed prior to the
switch.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_lcl function

HIC_SESSION data type

IC_LCL_FLAGS data type

INFOConnect API

3–142 4173 5390–000

ic_close_session
(1.0)

IC_RESULT ic_close_session
(HIC_SESSION hsession)

ic_close_session causes INFOConnect Connectivity Services to close the given
communication session.

Parameter Description

hsession IN The HIC_SESSION handle of the
open communication session to
close.

Return Value:

IC_OK is returned. The result of the communication session closure will be sent to
the application's main event procedure through the INFOConnect-XVT event
E_IC_SESSION_CLOSE. This result will be IC_OK if the communication session
closed properly. See Appendix C for other possible errors.

Note: An IC_OK result from ic_open_session requires that ic_close_session be
called regardless of the E_IC_SESSION_EST event result.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_open_session function

INFOConnect API

4173 5390–000 3–143

ic_default_error_proc
(1.0)

IC_RESULT ic_default_error_proc
(WINDOW hWnd,
HIC_SESSION hsession,
unsigned uType,
IC_RESULT error)

ic_default_error_proc retrieves, formats, and displays the error string
corresponding to the given ICS error to the user. It is called for all errors that the
application does not wish to handle itself.

Only severe, terminate, and warning errors are presented to the user unless the user
runs the ICS Shell with the -d (for debug) parameter. In this case, all errors that are
passed in to this procedure are formatted and displayed to the user.

Parameters Description

hWnd IN The handle of the calling
application's window.

hsession IN The HIC_SESSION handle of the
open communication session for
which the error occurred, or
NULL_HIC_SESSION if not
applicable.

uType IN The ICS error event type (for
example, E_IC_ERROR, etc.) or
NULL if not applicable.

error IN The ICS error that occurred.

INFOConnect API

3–144 4173 5390–000

Return Value:

IC_OK is returned.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

HIC_SESSION data type

NULL_HIC_SESSION data type

IC_ERROR_INFO data type

IC_ERROR_WARNING data type

IC_ERROR_SEVERE data type

IC_ERROR_TERMINATE data type

ic_get_string function

INFOConnect API

4173 5390–000 3–145

ic_deregister_accessory
(1.0)

IC_RESULT ic_deregister_accessory
(IC_RESULT_CONTEXT context)

ic_deregister_accessory removes the association between the given
IC_RESULT_CONTEXT and its accessory. The context is no longer valid.

Parameter Description

context IN The IC_RESULT_CONTEXT of
the accessory to deregister.

Return Value:

IC_OK is returned if successful, IC_ERROR_INTERNAL is returned if the context
exceeds the context table bounds.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

ic_register_accessory function

INFOConnect API

3–146 4173 5390–000

ic_exit_ok
(2.0)

IC_RESULT ic_exit_ok
(BOOLEAN Ok)

ic_exit_ok is used to notify INFOConnect Connectivity Services that a session can or
cannot be closed. It is used in response to several IC_STATUS_COMMMGR
status messages. A distributed application may use ic_exit_ok to prevent ICS from
exiting in order to gracefully terminate the host component.

Parameter Description

Ok IN TRUE if the session may be safely
closed, FALSE to abort the
termination of ICS.

Return Value:

IC_OK if successful. See Appendix C for possible errors.

Note: If this procedure is not called in response to the
IC_COMMMGR_QUERYEXIT status message, the ICS Shell will query the
user for permission to close the open communication sessions.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_STATUS_COMMMGR data type

INFOConnect API

4173 5390–000 3–147

ic_galloc
(1.0)

IC_MEMHND ic_galloc
(long bufsize)

ic_galloc allocates memory that is NOT sharable and returns its IC_MEMHND
handle type.

Parameter Description

bufsize IN The number of bytes to allocate.

Return Value:

An IC_MEMHND handle type is returned if the memory was allocated.
NULL_IC_MEMHND type is returned if the memory could not be allocated.

Note: Buffers created through ic_galloc are for large, general purpose, intra-
application memory usage. Use ic_buf_alloc for shared memory allocation.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_gfree function

IC_MEMHND data type

NULL_IC_MEMHND data type

INFOConnect API

3–148 4173 5390–000

ic_get_context
(1.0)

IC_RESULT ic_get_context
(STR_FAR name,
LPIC_RESULT_CONTEXT lpcontext)

ic_get_context provides the context associated with the given unique context string.

Parameters Description

name *IN The unique context string.

lpcontext *OUT An IC_RESULT_CONTEXT
type that receives the context
associated with name, if it
exists.

Return Value:

IC_OK is returned if the context is found and returned.
IC_CONTEXTSTRING_NOT_FOUND is returned if the context could not be
retrieved. In this case, the value pointed to by lpcontext is invalid.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

LPIC_RESULT_CONTEXT data type

ic_get_context_string function

INFOConnect API

4173 5390–000 3–149

ic_get_context_string
(1.0)

IC_RESULT ic_get_context_string
(IC_RESULT_CONTEXT context,
STR_FAR buffer,
unsigned length)

ic_get_context_string provides the unique, null-terminated context string associated
with the given context.

Parameters Description

context IN A context.

buffer *OUT A buffer to receive the unique
context string associated with
the given context.

length IN The size of the buffer in bytes.

Return Value:

IC_OK is returned if the context string is successfully retrieved. Otherwise,
IC_CONTEXT_NOT_FOUND is returned and buffer is filled with NULLs.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

ic_get_context function

INFOConnect API

3–150 4173 5390–000

ic_get_infoconnect_dir
(2.0)

IC_RESULT ic_get_infoconnect_dir
(enum IC_DIRECTORYTYPES dirtype,
STR_FAR pstr,
unsigned strsize)

ic_get_infoconnect_dir returns INFOConnect directory information.

Parameters Description

dirtype IN The IC_DIRECTORYTYPES
type of information to retrieve.

pstr *OUT A string to receive the
information.

strsize IN The length of the string in bytes.
This should be at least
IC_MAXFILENAMESIZE .

Return Value:

IC_OK if successful. See Appendix C for possible errors.

Note: dirtype IC_CODEDIR requests the name of the directory containing the ICS
code files. This directory can be a shared directory. IC_DATADIR
requests the name of the directory containing the ICS data files.
Applications should use this directory for all use configuration files.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_DIRECTORYTYPES data type

INFOConnect API

4173 5390–000 3–151

ic_get_new_path
(1.0)

IC_RESULT ic_get_new_path
(WINDOW hWnd,
IC_BUFHND hBuffer,
unsigned len)

ic_get_new_path provides a programmatic interface to the ICS path configuration
dialogs.

Parameters Description

hWnd IN The WINDOW handle of the
calling application's window.

hBuffer IN The handle to a globally allocated
buffer to be filled with a null-
terminated path identification (path
ID) string. This buffer must have
been allocated through
ic_buf_alloc.

len IN The size of buffer in bytes. This
must be at least
IC_MAXPATHIDSIZE .

Return Value:

IC_OK when the configuration procedure has been initiated.
IC_ERROR_BADPARAMETER (and the configuration procedure is not initiated)
if len is less than IC_MAXPATHIDSIZE or if hBuffer is NULL_IC_BUFHND .

INFOConnect API

3–152 4173 5390–000

Note: When the user has completed the configuration dialogs, an
E_IC_NEWPATH event is sent to hWnd. At this point, the buffer
designated by hBuffer will contain the unique, null-terminated path ID of
the newly configured ICS path, or, if the user cancelled the path
configuration, it will contain NULL.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

E_IC_NEWPATH event

INFOConnect API

4173 5390–000 3–153

ic_get_path_id
(2.0)

IC_RESULT ic_get_path_id
(HIC_SESSION hsession,
STR_FAR buffer,
unsigned length)

ic_get_path_id provides the identification string of the ICS path for the given
communication session.

Parameters Description

hsession IN An HIC_SESSION
communication session handle.
The session need not be
established.

buffer *OUT A global buffer to receive the
null-terminated path
identification string.

length IN The size of the buffer in bytes.
This must be at least
IC_MAXPATHIDSIZE .

Return Value:

IC_OK if successful. Possible errors are IC_ERROR_BADPARAMETER and
IC_ERROR_UNOPENEDSESSION. See Appendix C for other possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

3–154 4173 5390–000

ic_get_path_names
(1.0)

IC_RESULT ic_get_path_names
(IC_BUFHND buffer,
unsigned length)

ic_get_path_names provides a list of the configured path IDs. The list is returned in
the given buffer and consists of a two-byte integer (count of configured path IDs)
followed by as many complete 'path entries' that will fit in the buffer. Each 'path
entry' consists of a one byte (character) flag ('1' == currently active, '0' == currently
inactive) followed by a null-terminated ASCII string (the path ID).

Parameters Description

buffer IN A global buffer, allocated through
ic_buf_alloc, in which the list is
returned.

length IN The size of the buffer in bytes.

Return Value:

IC_OK if successful. IC_ERROR_BADPARAMETER if len is less than 3 or if
hBuffer is NULL_IC_BUFHND . See Appendix C for other possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

4173 5390–000 3–155

ic_get_session_id
(2.0)

IC_RESULT ic_get_session_id
(HIC_SESSION hsession,
STR_FAR buffer,
unsigned length)

ic_get_session_id returns the unique session identification string (session ID) for the
given session. The session ID consists of the path ID, followed by a semicolon and
the unique session name, if it exists.

Parameters Description

hsession IN The HIC_SESSION handle of
the communication session
whose ID is to be retrieved.

buffer *OUT A global buffer, allocated with
ic_buf_alloc, in which to return
the communication session ID.

length IN The size of the buffer in bytes.
This must be at least
IC_MAXSESSIONIDLEN .

Return Value:

IC_OK if successful. IC_ERROR_UNOPENEDSESSION if the session handle is
invalid, IC_ERROR_TRUNCATED if the buffer was not large enough to hold the
session ID. See Appendix C for other possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

INFOConnect API

3–156 4173 5390–000

ic_get_session_info
(1.0)

IC_RESULT ic_get_session_info
(HIC_SESSION hsession,
LPIC_SINFO info)

ic_get_session_info initializes the given IC_SINFO data structure with pertinent
information about the communication session.

Parameters Description

hsession IN The HIC_SESSION handle of
an established communication
session.

info *OUT An IC_SINFO record to be
filled with communication
session information.

Return Value:

IC_OK if the structure was initialized. See Appendix C for other possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_SINFO data type

INFOConnect API

4173 5390–000 3–157

ic_get_string
(1.0)

IC_RESULT ic_get_string
(HIC_SESSION hsession,
IC_RESULT result,
STR_FAR buffer,
unsigned length)

ic_get_string retrieves the text associated with the given error result. The null-
terminated text is placed in the given buffer.

Parameters Description

hsession IN The communication session on
which the error occurred, or
NULL_HIC_SESSION if not
relevant.

result IN The error result.

buffer *OUT A buffer to receive the text.

length IN The size of the buffer in bytes.
This should be at least
IC_MAXSTRINGLENGTH .

Return Value:

IC_OK if successful. See Appendix C for possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

INFOConnect API

3–158 4173 5390–000

ic_gfree
(1.0)

void ic_gfree
(IC_MEMHND hBuffer)

ic_gfree frees memory previously allocated through ic_galloc.

Parameters Description

hBuffer IN IC_MEMHND general memory
handle of the buffer to free.

Return Value:

None.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_galloc function

IC_MEMHND data type

INFOConnect API

4173 5390–000 3–159

ic_glock
(1.0)

STR_FAR ic_glock
(IC_MEMHND hBuffer)

ic_glock locks memory previously created through ic_galloc.

Parameters Description

hBuffer IN The IC_MEMHND general
memory handle of the buffer to
lock.

Return Value:

An XVT STR_FAR type pointer to the locked block of memory.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_galloc function

ic_gunlock function

IC_MEMHND data type

INFOConnect API

3–160 4173 5390–000

ic_grealloc
(1.0)

IC_MEMHND ic_grealloc
(IC_MEMHND hnd,
long bufsize)

ic_grealloc reallocates memory previously created through ic_galloc.

Parameters Description

hnd IN The IC_MEMHND general
memory handle of the buffer to
reallocate.

bufsize IN The new size, in bytes, of the
reallocated buffer.

Return Value:

An IC_MEMHND handle type is returned if the memory was allocated.
NULL_IC_MEMHND type is returned if the memory could not be allocated.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_galloc function

IC_MEMHND data type

NULL_IC_MEMHND data type

INFOConnect API

4173 5390–000 3–161

ic_gunlock
(1.0)

void ic_gunlock
(IC_MEMHND hBuffer)

ic_gunlock unlocks memory previously locked through ic_glock.

Parameters Description

hBuffer IN The IC_MEMHND general
memory handle of the buffer to
unlock.

Return Value:

None.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_galloc function

ic_glock function

IC_MEMHND data type

NULL_IC_MEMHND data type

INFOConnect API

3–162 4173 5390–000

ic_init_ics
(1.0)

IC_RESULT ic_init_ics
(int version,
int revision)

ic_init_ics allows INFOConnect Connectivity Services to initialize, if necessary. It
MUST be called once from the application's appl_init routine prior to calling any of
the INFOConnect Connectivity Services functions.

Parameters Description

version IN The highest ICS version which the
calling program understands. The
program does not take advantage of
any new features that a higher ICS
version may contain.

revision IN The highest ICS revision which the
calling program understands. The
program does not take advantage of
any new features that a higher ICS
revision may contain.

Return Value:

IC_OK if ICS initializes successfully or has been previously initialized,
IC_ERROR_NEWVERSION if a newer version of ICS is needed. See Appendix C
for other possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_STATUS_COMMMGR data type and

IC_STATUS event

INFOConnect API

4173 5390–000 3–163

ic_lcl
(1.0)

IC_RESULT ic_lcl
(HIC_SESSION hsession,
short which)

ic_lcl cancels the pending request (designated by which) for the given
communication session. An E_IC_LCL_RESULT event will be received for the
cancelled requests.

Parameters Description

hsession IN The established communication
session's HIC_SESSION handle
type.

which IN One of the IC_LCL_FLAGS
values that designates which
pending request to cancel.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned. See Appendix C for other possible
errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_LCL_FLAGS data type

INFOConnect API

3–164 4173 5390–000

ic_open_accessory
(1.0)

IC_RESULT ic_open_accessory
(WINDOW hWnd,
STR_FAR name,
STR_FAR options,
STR_FAR sessionname,
LPIC_SINFO sinfo,
LPHIC_SESSION lphsession)

ic_open_accessory allows an application to invoke an ICS accessory via
dynamically created ICS paths linked with the LOCAL external interface library.

Parameters Description

hWnd IN The XVT WINDOW handle of
the window attached to this
communication session.

name *IN The accessory ID. See Appendix
A for ICS Standard IDs.

options *IN A null-terminated string of
command line options, excluding
the path (-p) option. (See
Section 6 for information on
command line options.)

sessionname *IN A null-terminated identification
string (not necessarily unique)
created by the application that
names the newly created ICS
paths. This is the name that is
used to create the
communication session name
that is returned by a call to
ic_get_session_id. This name
appears in the title bar of the
invoked accessory.

sinfo *IN An IC_SINFO record that has
been previously initialized,
possibly by a call to
ic_get_session_info.

INFOConnect API

4173 5390–000 3–165

lphsession *OUT An HIC_SESSION to receive
the handle of the newly opened
communication session.

Return Value:

IC_OK if successful. Possible error results are IC_ERROR_NOMEMORY ,
IC_ERROR_BADPARAMETER , IC_ERROR_ACCESSORY_NOT_FOUND, and
IC_ERROR_ACCESSORY_FAILED . See Appendix C for other possible errors.

Notes:

− Since this procedure calls IcRunAccessory, it supports the -Wxy window state
command line option. This option determines the state of the accessory's window
when it is executed by the ICS Manager. The valid values for x and y are as
follows:

x y

value meaning value meaning

n normal a active

m maximized b background

i iconized

h hidden

Using any other values results in the return of an
IC_ERROR_INVALID_WINOPTION error.

The default window state is normal and active. Invalid value combinations are
hidden/active and maximized/background. These combinations result in the
return of an IC_ERROR_INVALID_WINCOMBO error.

− To invoke an accessory without a communication session connection between the
calling application and the accessory, use ic_run_accessory.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_get_session_id function

INFOConnect API

3–166 4173 5390–000

ic_get_session_info function

IC_SINFO data structure

INFOConnect API

4173 5390–000 3–167

ic_open_session
(1.0)

IC_RESULT ic_open_session
(WINDOW hWnd,
STR_FAR path,
LPHIC_SESSION lpsession)

ic_open_session requests the establishment of a logical communications connection
either within the system (that is, the ICS path uses the LOCAL external interface
library) or to another computer.

Parameters Description

hWnd IN The XVT WINDOW handle of
the window attached to this
communication session. All
events generated from
INFOConnect Connectivity
Services for this session are sent
to this window. If
ic_register_msg_session is used
to register windows messages,
this parameter should be
NULL_WIN.

path *IN The INFOConnect Connectivity
Services path ID to be associated
with the communication session.
If this is NULL or if the pointer
itself is NULL, INFOConnect
Connectivity Services will
prompt the user for a path ID.

lpsession *OUT An HIC_SESSION to receive
the handle.

Return Value:

If the request is valid, then either IC_OK or an IC_ERROR_WARNING or
IC_ERROR_INFO type error (other than IC_ERROR_CANCELOPEN) is
returned, the LPHIC_SESSION is set to a valid HIC_SESSION handle and the
communication session becomes associated with the application's window.
Otherwise, an error is returned, the session handle is set to NULL_HIC_SESSION,
and the connection is not available. Some possible errors are

INFOConnect API

3–168 4173 5390–000

IC_ERROR_NOMEMORY and the informational error
IC_ERROR_CANCELOPEN . See Appendix C for other possible errors. See
Appendix C for other possible errors.

Notes:

− IC_ERROR_CANCELOPEN is an IC_ERROR_INFO error type that indicates
that the user cancelled from the select path dialog box. For this special return
value, the session handle is NULL_HIC_SESSION and no session is opened.
Therefore, this return value should be treated as a special case return value
from ic_open_session.

− If either IC_OK or an IC_ERROR_WARNING or IC_ERROR_INFO type error
(other than IC_ERROR_CANCELOPEN) is returned, the INFOConnect-XVT
event E_IC_SESSION_EST will be sent to the application when the
communication session establishes. The session handle is not valid unless the
E_IC_SESSION_EST event is received with the event.v.ic.v.result of IC_OK, or
with an IC_ERROR_INFO or IC_ERROR_WARNING result type. This handle
should then be used with any other INFOConnect Connectivity Services function
dealing with this communication session.

− If an E_IC_SESSION_EST event is received with an IC_ERROR_SEVERE or
IC_ERROR_TERMINATE error result in event.v.ic.v.result, communication
session establishment failed and the session handle type is invalid. The session
is to be closed immediately by calling ic_close_session.

− If using ic_register_msg_session to register for messages and the hWnd and
path parameters are both NULL, then the Windows desktop automatically
becomes the parent window. To prevent this, call IcSelectPath to display the
select path dialog box from your application.

INFOConnect API

4173 5390–000 3–169

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

E_IC_SESSION_EST event

ic_close_session function

ic_register_msg_session function

IcSelectPath function

INFOConnect API

3–170 4173 5390–000

ic_rcv
(1.0)

IC_RESULT ic_rcv
(HIC_SESSION hsession,
IC_BUFHND buffer,
unsigned length)

ic_rcv is called to request a block of data for the given communication session. Only
one receive request may be outstanding for a session at a time.

Parameters Description

hsession IN The established communication
session's handle type.

buffer IN The handle of a buffer allocated
through ic_buf_alloc to receive the
data.

length IN Maximum number of bytes to
receive.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned. See Appendix C for other possible
errors.

Note: When the receive request is complete, an INFOConnect-XVT event of either
E_IC_RCV_DONE or E_IC_RCV_ERROR will be sent to the application.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

E_IC_RCV_DONE event

E_IC_RCV_ERROR event

ic_lcl function

INFOConnect API

4173 5390–000 3–171

ic_register_accessory
(1.0)

IC_RESULT ic_register_accessory
(STR_FAR name,
unsigned types,
LPIC_RESULT_CONTEXT context)

ic_register_accessory associates the accessory name with a context, and returns that
context through LPIC_RESULT_CONTEXT . The context is a dynamically
assigned identification that can be used to uniquely identify the accessory when
generating statuses and errors.

Parameters Description

name *IN A null-terminated, unique
accessory context string.

types IN Reserved for future use. Must
be zero.

context *OUT An IC_RESULT_CONTEXT
that receives the context
associated with name.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT_CONTEXT data type

LPIC_RESULT_CONTEXT data type

INFOConnect API

3–172 4173 5390–000

ic_register_msg_session
(3.0)

IC_RESULT ic_register_msg_session
(HIC_SESSION hIcSession,
WINDOW hWnd
UINT wParam,
UINT MessageCount)

ic_register_msg_session registers the ICS events with Windows on a per-session
basis.

The given window will only receive events less than or equal to MessageCount. To
stop receiving messages, call ic_register_msg_session with the MessageCount
parameter E_IC_NULLEVENT .

Parameters Description

hIcSession IN The HIC_SESSION handle of the
open session.

hWnd IN The handle of the window to
receive the ICS messages.

wParam IN A value to be passed in as the
event.v.ic.session word parameter
for every message. For example,
this may be hSession or perhaps the
ID of a control.

MessageCount IN The number of messages to
register. See Section 4 for the
number of messages available.

Return Value:

IC_OK is returned if successful. See Appendix C for possible errors.

INFOConnect API

4173 5390–000 3–173

Note: Call ic_open_session with a NULL window handle. Note that if the path ID
parameter to ic_open_session is also NULL, then the Windows desktop
automatically becomes the parent window. To prevent this, call
IcSelectPath to display the select path dialog box from your application.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_open_session function

IcSelectPath function

INFOConnect API

3–174 4173 5390–000

ic_run_accessory
(1.0)

IC_RESULT ic_run_accessory
(STR_FAR ID ,
STR_FAR options)

ic_run_accessory allows an application to invoke an ICS accessory. There is no
communication session connection between the calling application and the
accessory.

Parameters Description

ID *IN The accessory ID. See Appendix A
for ICS Standard IDs.

options *IN A null-terminated string of
command line options. See Section
6 for valid command line options.

Return Value:

IC_OK if successful. Possible error results are IC_ERROR_NOMEMORY ,
IC_ERROR_BADPARAMETER , IC_ERROR_ACCESSORY_NOT_FOUND, and
IC_ERROR_ACCESSORY_FAILED . See Appendix C for other possible errors.

INFOConnect API

4173 5390–000 3–175

Notes:

− This procedure supports the -Wxy window state command line option. This
option determines the state of the accessory's window when it is executed by the
ICS Manager. The valid values for x and y are as follows:

x y

value meaning value meaning

n normal a active

m maximized b background

i iconized

h hidden

Using any other values results in the return of an
IC_ERROR_INVALID_WINOPTION error.

The default window state is normal and active. Invalid value combinations are
hidden/active and maximized/background. These combinations result in the
return of an IC_ERROR_INVALID_WINCOMBO error.

− To invoke an accessory with a communication session connection between the
calling application and the accessory (via dynamically created ICS paths linked
with the LOCAL external interface library), use ic_open_accessory.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

ic_open_accessory function

INFOConnect API

3–176 4173 5390–000

ic_set_error
(1.0)

IC_RESULT ic_set_error
(HIC_SESSION hsession,
IC_RESULT error)

ic_set_error passes various error information through the INFOConnect
communication session to a library in the library stack or to an attached application.

Parameters Description

hsession IN The HIC_SESSION handle.

error IN The IC_RESULT error message.
See Appendix C for the ICS errors.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

Note: Accessory-specific errors require a unique accessory context. To obtain
this, use ic_register_accessory.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

ic_register_accessory function

INFOConnect API

4173 5390–000 3–177

ic_set_status
(1.0)

IC_RESULT ic_set_status
(HIC_SESSION hsession,
IC_RESULT status)

ic_set_status passes various status information through the INFOConnect
communication session to a library in the library stack or to an attached application.
An E_IC_STATUS_RESULT event will be received when the status has been
delivered.

Parameters Description

hsession IN The session's handle.

status IN The IC_RESULT status message.
See Appendix B for the defined
ICS statuses.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

Note: Accessory-specific statuses require a unique accessory context. To obtain
this, use ic_register_accessory.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RESULT data type

ic_register_accessory function

INFOConnect API

3–178 4173 5390–000

ic_xmt
(1.0)

IC_RESULT ic_xmt
(HIC_SESSION hsession,
IC_BUFHND buffer,
unsigned length)

ic_xmt is called to transmit a block of data for the given communication session.
Only one transmission may be outstanding for a session at a time. If the IC_SINFO
record indicates that the session is not transparent (that is, transparent == FALSE),
then the data should NOT contain any special, protocol-specific characters. Special
characters will be added by the underlying ICS libraries as required by the protocol.

parameters Description

hsession IN The established communication
session's HIC_SESSION handle
type.

buffer IN A buffer handle, allocated through
ic_buf_alloc, of data to be
transmitted.

length IN The number of bytes to transmit.

Return Value:

IC_OK is returned if the communication session is valid. Otherwise,
IC_ERROR_UNOPENEDSESSION is returned.

INFOConnect API

4173 5390–000 3–179

Note: When the transmission is complete, an INFOConnect-XVT event of either
E_IC_XMT_DONE or E_IC_XMT_ERROR will be sent to the application.
The buffer must not be modified until one of these messages is received or
until an E_IC_LCL_RESULT is received after a call to ic_lcl.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

E_IC_XMT_DONE event

E_IC_XMT_ERROR event

IC_SINFO data structure

0–1

4173 5390–000 4–1

Section 4
ICS Messages/Events

Several messages are generated in response to INFOConnect Connectivity Services
events.

MS-Windows Note

To avoid potential conflicts with message numbers in MS-Windows, the
messages must be registered with either IcRegisterMsgSession or
RegisterWindowMessage. For RegisterWindowMessage, the message
strings are designated in this section as quoted strings (like
"IC_RcvDone"). See the INFOConnect Basic Developer's Guide for
information on registering Window's messages.

Libraries use the defined message index. These are capitalized, such as
IC_RCVDONE.

ICS Messages/Events

4–2 4173 5390–000

Note

IcRegisterMsgSession and ic_register_msg_session ICS API are
available to register messages using an offset and count. The following is
the message sequence that may be used for the count of messages to
register. Therefore, to register for all of the messages, use
IC_LASTEVENT .

IC_NULLEVENT
IC_SESSIONESTABLISHED
IC_SESSIONCLOSED
IC_STATUS
IC_XMTDONE
IC_RCVDONE
IC_XMTERROR
IC_RCVERROR
IC_NEWPATH
IC_ERROR
IC_TIMER
IC_STATUSRESULT
IC_LCLRESULT
IC_SENDSTATUS
IC_LASTEVENT

ICS Messages/Events

4173 5390–000 4–3

E_IC_ERROR
This event is generated when an error occurs. The pertinent values in EVENT are as
follows:

− event.v.ic.session is the session handle type for the communication session on
which the error occurred or NULL_HIC_SESSION if not applicable.

− event.v.ic.v.result is the error result. See Appendix C for a list of ICS errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ICS Messages/Events

4–4 4173 5390–000

E_IC_LCL_RESULT
This event is generated when a call to ic_lcl finally completes. The pertinent values
in EVENT are as follows:

− event.v.ic.session is the session handle type for the communication session for
which the message was generated.

− event.v.ic.v.result is the ICS result. See Appendix C for a list of ICS errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_lcl function

ICS Messages/Events

4173 5390–000 4–5

E_IC_NEWPATH
This event is generated only when an application uses the ic_get_new_path interface
into the ICS path configuration. It is sent to the application's main event function by
the configuration accessory when the user exits the final configuration form. The
pertinent values in EVENT are as follows:

− event.v.ic.session is the handle of the buffer that received the new path
identification string.

− event.v.ic.v.result is IC_OK if the add succeeded, IC_CANCELED if the user
cancelled from the dialogs, or from an ICS error. See Appendix C for a list of
ICS errors.

Note:

This event is sent to the main configuration accessory's window to initiate the
ICS path configuration. In this case, the pertinent values in EVENT are as
follows:

− event.v.ic.session is the application's window handle to which the
E_IC_NEWPATH event must be sent.

− event.v.ic.v.rcv.buffer is the handle of the buffer to receive the new path
identification string.

− event.v.ic.v.rcv.length is the length, in bytes, of the buffer.

When processing has completed, the configuration accessory must post the
E_IC_NEWPATH event to the application's window with the appropriate event
values.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ● Configurator

● AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_get_new_path function

ICS Messages/Events

4–6 4173 5390–000

E_IC_NULLEVENT
This message indicates that no additional events are available.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

ICS Messages/Events

4173 5390–000 4–7

E_IC_RCV_DONE
This event is generated when a receive request completes. The pertinent values in
EVENT are as follows:

− event.v.ic.session is the session handle type for the communication session for
which the message was generated.

− event.v.ic.v.rcv.buffer is the buffer handle type of the received buffer.

− event.v.ic.v.rcv.length is the length, in bytes, of the buffer received.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_rcv function

ICS Messages/Events

4–8 4173 5390–000

E_IC_RCV_ERROR
This event is generated when a receive request fails. The pertinent values in EVENT
are as follows:

− event.v.ic.session is the communication session handle type.

− event.v.ic.v.result is the ICS error. See Appendix C for a list of ICS errors.

Note: Applications can ignore or log errors of type IC_ERROR_INFO or
IC_ERROR_WARNING The receive request remains outstanding, which is
in accordance with the definition of IC_ERROR_INFO and
IC_ERROR_WARNING error types.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_rcv function

ICS Messages/Events

4173 5390–000 4–9

E_IC_SESSION_CLOSE
This event is generated to notify an application of communication session
termination. It normally results when the application requests session closure.
However, it may also be caused by error conditions or by session termination by the
user, such as clearing the session from the ICS Shell. The pertinent values in
EVENT are as follows:

− event.v.ic.session is the handle type for the communication session for which
the message was generated.

− event.v.ic.v.result is IC_OK if the communication session closed properly.
Otherwise, it is an ICS error. See Appendix C for a list of ICS error results.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_close_session function

ICS Messages/Events

4–10 4173 5390–000

E_IC_SESSION_EST
This event is generated when a communication session is established as a result of a
successful request to open a session. The pertinent values in EVENT are as follows:

− event.v.ic.session is the handle type for the communication session for which
the message was generated.

− event.v.ic.v.result is IC_OK or an IC_ERROR_INFO or
IC_ERROR_WARNING result type if the communication session
establishment succeeded (this implies that the session handle type is now valid).
Otherwise, the result is an ICS error. See Appendix C for a list of ICS errors.

Note: If the application receives the E_IC_SESSION_EST event with an
IC_ERROR_SEVERE or IC_ERROR_TERMINATE result type, the session
must be closed immediately. If the E_IC_SESSION_EST event result is an
IC_ERROR_INFO or IC_ERROR_WARNING type (or IC_OK), the session
may be used for communication before being closed.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_open_session function

ic_close_session function

ICS Messages/Events

4173 5390–000 4–11

E_IC_STATUS
This event is generated to report status information. The pertinent values in EVENT
are as follows:

− event.v.ic.session is the session handle type for the communication session for
which the message was generated.

− event.v.ic.v.result is the status. See Appendix B for the defined statuses.

Notes:

− The accessory need not process all status events.

− Applications that wish to react to IC_COMMMGR_INITIALIZED and
IC_COMMMGR_TERMINATED statuses will receive event.v.ic.session ==
NULL_HIC_SESSION since these statuses are not associated with an
INFOConnect session

− This event reports status information that may have been generated by the
underlying library stack, by the ICS Manager, or by another ICS application. In
contrast, the E_IC_STATUS_RESULT event is received only after a call to
ic_set_status and reports that the status event has been delivered.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ICS Messages/Events

4–12 4173 5390–000

E_IC_STATUS_RESULT
This event is generated when a call to ic_set_status finally completes. The pertinent
values in EVENT are as follows:

− event.v.ic.session is the session handle type for the communication session for
which the message was generated.

− event.v.ic.v.result is the ICS result. See Appendix C for a list of ICS errors.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ic_set_status function

ICS Messages/Events

4173 5390–000 4–13

E_IC_XMT_DONE
This event is generated when a transmission request completes. The pertinent values
in EVENT are as follows:

− event.v.ic.session is the session handle for the communication session for which
the message was generated.

− event.v.ic.v.rcv.buffer is the handle of the transmitted buffer.

− event.v.ic.v.rcv.length is the length of the transmitted data.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ICS Messages/Events

4–14 4173 5390–000

E_IC_XMT_ERROR
This event is generated if a transmission request fails. The pertinent values in
EVENT are as follows:

− event.v.ic.session is the session handle type for the communication session for
which the message was generated.

− event.v.ic.v.result is the ICS error. See Appendix C for a list of ICS errors.

Note: Applications may ignore or log errors of type IC_ERROR_INFO or
IC_ERROR_WARNING. The transmit request remains outstanding, which
is in accordance with the definition of IC_ERROR_INFO and
IC_ERROR_WARNING error types.

❍ WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

EVENT data structure

ICS Messages/Events

4173 5390–000 4–15

IC_ERROR / "IC_Error"
This message is generated when an error, other than a transmit or receive error,
occurs. The IC_RESULT accompanies this message.

The application receives the error in the lParam parameter. The HIC_SESSION on
which the error occurred (or NULL_HIC_SESSION if not applicable) is returned to
the application in wParam. Libraries may also generate library-specific errors which
are indicated by the library's unique result context. See Appendix C for a list of
standard errors.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT data type

IcMgrSendEvent function

IcMgrSetResult function

ICS Messages/Events

4–16 4173 5390–000

IC_LASTEVENT
This is the highest currently-defined INFOConnect message number. Use this to
register for all ICS messages through IcRegisterMsgSession.

● WIN ❍ XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcRegisterMsgSession function

ICS Messages/Events

4173 5390–000 4–17

IC_LCLRESULT / "IC_LclResult"
This message is generated by an IIL when a call to IcLcl finally completes. The
wParam data contains the handle for the communication session for which the
message was generated. The lParam data contains the ICS result. See Appendix C
for a list of ICS errors.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ❍ SL ❍ EIL

See also:

IcLcl function

ICS Messages/Events

4–18 4173 5390–000

IC_NEWPATH / "IC_NewPath"
This message is generated only when an application uses the IcGetNewPath
interface into ICS path configuration. It is sent to the application by the
configuration accessory when the user exits the last configuration form.

The application receives the handle of the buffer that received the new path
identification string in wParam. The lParam data contains IC_OK if the add
succeeded, IC_CANCELED if the user cancelled from the dialogs, or an ICS error.
See Appendix C for a list of ICS errors.

Note:

This event is also sent to the main configuration accessory's window to initiate
the ICS path configuration.

− The wParam data contains the application's window handle to which the
IC_NewPath message must be sent.

− HI data of lParam contains the handle of the buffer designated to receive
the new path identification string.

− LO data of lParam contains the length, in bytes, of the buffer.

When processing has completed, the configuration accessory must post the
IC_NewPath message to the application's window with the appropriate values.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcGetNewPath function

ICS Messages/Events

4173 5390–000 4–19

IC_NULLEVENT
This message indicates that no additional events are available. For ICS DosLink
applications that are polling for messages, this is the message is generated when no
other messages are available.

● WIN ❍ XVT ● DosLink

❍ Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcGetNextEvent function

ICS Messages/Events

4–20 4173 5390–000

IC_RCVDONE / "IC_RcvDone"
This message is generated when data becomes available due to the successful
completion of a previous receive request. The buffer handle and the length of the
received data accompany this message.

The application receives the handle for the communication session for which the
message was generated in wParam. HI data of lParam contains the buffer handle of
the received data. LO data of lParam contains the length of received data.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcRcv function

IcMgrSendEvent function

ICS Messages/Events

4173 5390–000 4–21

IC_RCVERROR / "IC_RcvError"
This message is generated when a request to receive data fails. The IC_RESULT
accompanies this message.

The application receives the handle for the communication session for which the
message was generated in wParam. The lParam data contains the ICS error. See
Appendix C for a list of ICS errors.

Notes:

− Applications can ignore or log errors of type IC_ERROR_INFO or
IC_ERROR_WARNING. The receive request remains outstanding, which is in
accordance with the definition of IC_ERROR_INFO and
IC_ERROR_WARNING error types.

− Libraries should not generate IC_ERROR_INFO or IC_ERROR_WARNING
type IC_RESULTs for this message in order to maintain compatibility with older
ICS applications. Instead, these types of informational errors should be sent to
the application through an IC_ERROR message. Note that the receive request
remains outstanding, which is in accordance with the definition of
IC_ERROR_INFO and IC_ERROR_WARNING error types.

If the library does generate informational and warning type receive errors, ICS
2.0 applications will need to execute with the Diagnostic service library to filter
and translate these messages to IC_ERROR messages. For more information on
the Diagnostic service library, see the IDK Developer's Guide.

− If a library also sends an IC_STATUS message to the application, the message
should be sent after the error message so that the application is informed of the
reason for the status message before the message is received.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcRcv function

IcMgrSendEvent function

ICS Messages/Events

4–22 4173 5390–000

IC_SENDSTATUS
This message is available for Interprocess Interface libraries to send status messages
immediately up the library stack. Currently, the IC_STATUS_COMMMGR status
messages are supported in this way. If the application has not registered for
IC_SENDSTATUS, the message is translated by the AIL to the IC_STATUS
message before being delivered to the application.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ❍ SL ❍ EIL

See also:

IC_STATUS message

ICS Messages/Events

4173 5390–000 4–23

IC_SESSIONCLOSED / "IC_SessionClosed"
This message is generated to notify an application of communication session
termination. It normally results from a request by the accessory to close the session.
However, it may also be caused by error conditions or by user termination of a
session.

The application receives the handle for the communication session for which the
message was generated in the wParam data. The lParam data contains IC_OK if the
communication session closed properly. Otherwise, it is an ICS error. See Appendix
C for a list of ICS error results.

Notes:

− Only libraries with the max_version field of the IC_RC_NODE resource
structure greater than IC_VERSION_2_0 will receive this message in their
event procedures. The message must be passed up the library stack (by calling
IcMgrSendEvent) in order for the session to close.

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcCloseSession function

ICS Messages/Events

4–24 4173 5390–000

IC_SESSIONESTABLISHED /
"IC_SessionEstablished"

This message is generated when a communication session finishes establishing as a
result of a successful request to open a session.

The application receives the handle for the communication session for which the
message was generated in the wParam data. The lParam data contains IC_OK or an
IC_ERROR_INFO or IC_ERROR_WARNING result type if the communication
session establishment succeeded (this implies that the session handle type is now
valid). Otherwise, the lParam data contains an ICS error. See Appendix C for a list
of ICS errors.

IC_SESSIONESTABLISHED is the first message received by a library, including
EILs. To guarantee that the session has been properly established, libraries must
wait for this message before sending any messages to the session or making any calls
to IcMgrXmt , IcMgrRcv , IcMgrLcl , or IcMgrSetResult. EIL developers must
note that after any initial processing, this message must be issued up the library stack
by calling IcMgrSendEvent.

Notes:

− If the application receives this message with an IC_ERROR_SEVERE or
IC_ERROR_TERMINATE result type, the application must close the session
immediately. If the message result is an IC_ERROR_INFO or
IC_ERROR_WARNING type (or IC_OK), the session may be used for
communication before being closed.

− Libraries with the max_version field of the IC_RC_NODE resource structure
less than IC_VERSION_2_1 will receive ONLY IC_SESSIONESTABLISHED
in their event procedures.

ICS Messages/Events

4173 5390–000 4–25

● WIN ❍ XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcOpenSession function

IcCloseSession function

IcLibEvent function

ICS Messages/Events

4–26 4173 5390–000

IC_STATUS / "IC_Status"
This message is generated to report status information from the underlying
communication session layers. The IC_RESULT status accompanies this message.

The application receives the handle for the communication session for which the
message was generated in the wParam data. The lParam data contains the specific
status message. See Appendix B for defined status types.

Notes:

− The accessory need not process all status messages.

− Applications that wish to react to IC_COMMMGR_INITIALIZED and
IC_COMMMGR_TERMINATED statuses must register "IC_Status" with
Windows, since these statuses are not associated with an INFOConnect session
(wParam == NULL_HIC_SESSION).

− Libraries with the max_version field of the IC_RC_NODE resource structure
greater than IC_VERSION_2_0 will the IC_COMMMGR_INITIALIZED and
IC_COMMMGR_TERMINATED statuses with hLibSession ==
NULL_HIC_SESSION, since these statuses are not associated with a session.

− This message reports status information that may have been generated by the
underlying library stack, by the ICS Manager, or by another ICS application. In
contrast, the IC_STATUSRESULT message is received only after a call to
IcSetStatus and reports that the status message has been delivered.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcSetStatus function

IC_STATUSRESULT message

IcMgrSendEvent function

IcMgrSetResult function

ICS Messages/Events

4173 5390–000 4–27

IC_STATUSRESULT / "IC_StatusResult"
This message is generated by an IIL when a call to IcSetStatus finally completes. It
indicates that the status has been delivered.

The application receives the handle for the communication session for which the
message was generated in the wParam data. The lParam data contains the ICS result.
See Appendix C for a list of ICS errors.

Note: The status messages that are delivered by calling IcSetStatus are delivered
to the application via the IC_STATUS message.

● WIN ❍ XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ❍ SL ❍ EIL

See also:

IcSetStatus function

IC_Status message

ICS Messages/Events

4–28 4173 5390–000

IC_TIMER / "IC_Timer"
For ICS DosLink applications that use a callback routine and set a timer, this
message is generated when the timer expires.

● WIN ❍ XVT ● DosLink

❍ Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcNextEvent function

ICS Messages/Events

4173 5390–000 4–29

IC_XMTDONE / "IC_XmtDone"
This message is generated when a request to transmit data completes. The buffer
handle of the transmitted data and the length of the transmitted data must accompany
this message.

The application receives the handle for the communication session for which the
message was generated in the wParam data. HI data of lParam contains the buffer
handle of the transmitted data. LO data of lParam contains the length of the
transmitted data.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcXmt function

IcMgrSendEvent function

ICS Messages/Events

4–30 4173 5390–000

IC_XMTERROR / "IC_XmtError"
This message is generated if a request to transmit data fails. The IC_RESULT error
accompanies this message.

The application receives the handle for the communication session for which the
message was generated in the wParam data. The lParam data contains the error. See
Appendix C for a list of ICS errors.

Notes:

− Applications can ignore or log errors of type IC_ERROR_INFO or
IC_ERROR_WARNING. The transmit request remains outstanding, which is in
accordance with the definition of IC_ERROR_INFO and
IC_ERROR_WARNING error types.

− Libraries should not generate IC_ERROR_INFO or IC_ERROR_WARNING
type IC_RESULTs for this message in order to maintain compatibility with older
ICS applications. Instead, these types of informational errors should be sent to
the application through an IC_ERROR message. Note that the transmit request
remains outstanding, which is in accordance with the definition of
IC_ERROR_INFO and IC_ERROR_WARNING error types.

If the library does generate informational and warning type transmit errors, ICS
2.0 applications will need to execute with the Diagnostic service library to filter
and translate these messages to IC_ERROR messages. For more information on
the Diagnostic service library, see the IDK Developer's Guide.

− If a library also sends an IC_STATUS message to the application, the message
should be sent after the error message so that the application is informed of the
reason for the status message before the message is received.

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcXmt function

IcMgrSendEvent function

4173 5390–000 5–1

Section 5
ICS Data Structures/Types

The following data structures and types are defined for INFOConnect Connectivity
Services.

CHANNELID
typedef struct {

char ID [IC_MAXCHANNELIDSIZE];
} CHANNELID;

This data structure type defines a channel identification string.

ID The channel ID.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–2 4173 5390–000

EVENT
typedef struct s_event {
 union {
 ...
 struct {
 HIC_SESSION session;
 union {

 struct { /* E_IC_RCV_DONE, E_IC_XMT_DONE */
 IC_BUFHND buffer;
 short length;
 } rcv;
 IC_RESULT result;

 } v;
 } ic;
 struct {

char session;
short function;
IC_BUFHND datahnd;
unsigned short length;
unsigned short pspos
BOOLEAN connected;
IC_RESULT result;

 } sc;
 ...
 } v;
} EVENT, *EVENT_PTR;

This is an addition to the XVT EVENT structure. This addition occurs when the
ICXVTMOD program is executed to update the XVT.H include file. See the
INFOConnect Development Kit Developer's Guide for more information on using
ICXVTMOD.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

Section 4, "ICS Messages/Events"

ICS Data Structures/Types

4173 5390–000 5–3

HIC_CHANNEL
A channel handle data type.

● WIN ● XVT ❍ DosLink

❍ Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

HIC_CONFIG
A configuration handle data type. A valid handle denotes a configuration session.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcOpen...Config functions

HIC_SESSION
A session handle data type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–4 4173 5390–000

HIC_STATUSBUF
An extended status buffer handle data type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_STATUSBUF data structure

IC_BASEREVISION
The base revision number of the IC_BASEVERSION of the ICS IDK that is
supported by the ICS Manager.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

IC_BASEVERSION
The base version number of the ICS IDK that is supported by the ICS Manager.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

ICS Data Structures/Types

4173 5390–000 5–5

IC_BUFHND
INFOConnect Connectivity Services global buffer handle type for shared data.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

IC_BUILD_REVISION
The specific generation number for this software revision. This number appears in
parentheses at the end of the version string, IC_VERSION_STRING .

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_VER_INFO data structure

IC_CALLBACK
typedef LONG

(FAR PASCAL *IC_CALLBACK)(WORD,WORD,WORD,LONG);

This is a special typedef for ICS DosLink applications that is used for the event
callback routine.

❍ WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcRegisterCallback function

ICS Data Structures/Types

5–6 4173 5390–000

IC_COMMAND
ICS type used to communicate the action that is causing the library's
IcLibUpdateConfig procedure to be invoked. The following commands are defined.

IC_CMD_ABOUT

The user is requesting About Box information.

IC_CMD_ADD

The user is performing an Add action.

IC_CMD_COPY

The user is performing a Copy action.

IC_CMD_DELETE

The user is performing a Delete action.

IC_CMD_DISCARD

This command is received when data from the previous call is being discarded.

IC_CMD_EXAMINE

The user is performing an Examine action.

IC_CMD_MODIFY

The user is performing a Modify action.

IC_CMD_SAVE

This command is received immediately before the data is saved to the
database. If the data is not being saved, an IC_CMD_DISCARD command is
received.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcLibUpdateConfig function

ICS Data Structures/Types

4173 5390–000 5–7

IC_COMPONENT
ICS type that associates the supplier with the component. The IC_COMPONENT
consists of a component number and a supplier number. Both generic and branded
IC_COMPONENT s are defined. Generic IC_COMPONENT s are defined in ic.hic
and are used by those components that conform to the interface defined in the
component's .HIC include file. Branded IC_COMPONENT s encompass those
components from a particular vendor. The supplier number of branded
IC_COMPONENT s is assigned through the Malvern Development Group. The
vendor is responsible for managing the component numbers for its INFOConnect
products. The currently assigned supplier numbers, component numbers, and
IC_COMPONENT s are recorded in the ic.hic include file for your reference. See
Appendix A for more information.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

ic.hic header file

Appendix A "Component Numbers

IC_COMPONENT_TYPE
Flags used in the component's resource file to mark the component's type.

IC_ACCESSORY

Accessory identification for use in the accessory resource file.

IC_APILIBRARY

Identification for use in the library resource file for the library component of
an application. This library component should be installed either in the same
directory as the ICS Manager (the default directory is the Windows system
directory) or in the Windows DLL path. A library of this type will be accessed
by various applications. It contains configuration information for the
application and may perform configuration tasks and contain application-
specific API. See IC_APPLIBRARY below.

ICS Data Structures/Types

5–8 4173 5390–000

IC_APPINTERFACE

Application Interface Library (AIL) identification for use in the library's
resource file. Libraries of this type cannot be included in path templates. A
library of this type creates sessions with itself as the topmost library. Also see
IC_IPCINTERFACE and IC_STACKINTERFACE below.

IC_APPLIBRARY

Identification for use in the library resource file for the library component of
an application. This library component should be installed in the same
directory as the application and may contain application-specific API. A
library of this type contains configuration information for the application and
may perform configuration tasks. See IC_APILIBRARY above.

IC_HOOKLIBRARY

Hook Library identification for use in the resource file of a hook library. Hook
libraries provide special features to the ICS Manager. The library must export
the IcLibInstall , IcLibTerminate , and IcLibGetString procedures as
documented.

IC_INTERFACE

External Interface Library (EIL) identification for use in the library's resource
file.

IC_IPCINTERFACE

Interprocess Interface Library (IIL) identification for use in the library's
resource file. IILs associate two sessions in different processes by internally
linking the EIL role of one session to the AIL role of the other session.
Libraries of this type are typically not included in path templates. This type of
library is automatically included in sessions when an AIL requests a path that
must be opened in a different process. The library acts as an EIL in the first
session which it links to the second session where it acts in the AIL role.

IC_LIBRARY

Service or external interface library identification for use when the library type
is not important.

ICS Data Structures/Types

4173 5390–000 5–9

IC_MANAGER

ICS Manager identification.

IC_QUICKCONFIG

Quick Configuration Library identification for use in the resource file of a
quick configuration library.

IC_SERVICE

Service Library identification for use in the library's resource file.

IC_STACKINTERFACE

Stacking interface library identification for use in the library's resource file.
Libraries of this type typically implement multiplexing or switching functions
on lower level sessions. Stack interface libraries associate two sessions in the
same process by internally linking the EIL role of one session to the AIL role
of the other session. Libraries of this type can be included in path templates as
an EIL (for use by the higher level paths). During IcLibOpenChannel or
IcLibOpenSession, this type of library typically behaves like an AIL and
creates a session with a lower level path.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

ICS Data Structures/Types

5–10 4173 5390–000

IC_DEBUG
ICS type used to set and query the mode of ICS. Tracing can occur at the application
level (that is, the data flow between the application and the library stack is
monitored), or it can occur at the library level (that is, the data flow between each
library in the library stack is monitored, along with application level data flow).
Enabling the tracing facility means that the Trace Service Library is inserted between
as many libraries in the library stack as possible while maintaining a stack of less
than the current 15 library limit.

IC_DEBUG_DBWINLOG

In this mode, the ICS Manager's debug window is enabled for displaying debug
information if IC_DEBUG_TRACELOG is not set. If
IC_DEBUG_TRACELOG is set, debug information is handled only by the
TraceLog library.

IC_DEBUG_LIBOPENAPI

In this mode, the library open/close-type API are traced. This includes the
install/terminate API, the open/close API for sessions, channels, etc., and the
load/free library API.

IC_DEBUG_MODE

Implies that the default error procedure will display all messages that it
receives to the user.

IC_DEBUG_MONITOR

In this mode, the library with the ID 'Monitor' is added to all sessions. The
Monitor library maintains transaction-related information on a per-session
basis.

IC_DEBUG_SWITCHES

This is the number of IC_DEBUG_... switches.

IC_DEBUG_TRACE

Enables tracing at the application level for all sessions that are opened with
templates that have the Trace flag set.

IC_DEBUG_TRACEALL

Enables tracing at the application level for all sessions that are opened after
this mode is set.

ICS Data Structures/Types

4173 5390–000 5–11

IC_DEBUG_TRACEALLSTACK

Enables tracing at the library level for all sessions that are opened after this
mode is set.

IC_DEBUG_TRACEENABLE

Enables the addition of the library with the Trace library ID to be inserted in
the stack of libraries.

IC_DEBUG_TRACELOG

Activates tracing. This indicates that the special purpose TraceLog library is
loaded and tracing begins. The TraceLog library manages the trace log debug
file for all library calls to IcMgrTraceBuffer and IcMgrTraceResult.

IC_DEBUG_TRACEPATH

Enables tracing at the application level for all sessions that are opened with
paths that have the Trace flag set.

IC_DEBUG_TRACEPATHSTACK

Enables tracing at the library level for all sessions that are opened with paths
that have the Trace flag set.

IC_DEBUG_TRACESTACK

Enables tracing at the library level for all sessions that are opened with
templates that have the Trace flag set.

Notes:

− Note that application level tracing is controlled by:

IC_DEBUG_TRACEALL All open sessions

IC_DEBUG_TRACEPATH Open sessions with flagged paths
(default set)

IC_DEBUG_TRACE Open sessions with flagged templates

ICS Data Structures/Types

5–12 4173 5390–000

− Library level tracing, which includes application level tracing, is controlled by:

IC_DEBUG_TRACEALLSTACK All open sessions

IC_DEBUG_TRACEPATHSTACK Open sessions with flagged
paths

IC_DEBUG_TRACESTACK Open sessions with flagged
templates (default set)

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcIsDebug function

IC_DICT_FIELD
typedef struct aDictField {

unsigned short StringId;
unsigned short KeyFlags;
unsigned short DataType;
unsigned short BitOffset;
unsigned short BitLength;

} IC_DICT_FIELD;

This data structure type defines the format of a single line in a data dictionary table.
Each line of a data dictionary table describes a single field of a table record.

StringId The numeric ID of the string table entry for the
string ID of this field. An ID of zero indicates
the end of the data dictionary table.

KeyFlags The IC_FIELD_FLAGS flag that describes
this field.

DataType The IC_FIELDTYPE that describes this field.
The data type does NOT specify the length of
the data. Length is specified by BitLength.

ICS Data Structures/Types

4173 5390–000 5–13

BitOffset The offset of this field, in bits, from the start
of the structure. Using -1 causes the offset to
automatically default to follow the previous
field.

BitLength The length of the field in bits.

Note: The length of a table record is computed by the field with the greatest
(BitOffset + BitLength), converting this to byte size and rounding up to the
nearest byte.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_FIELDTYPE data type

IC_FIELD_FLAGS data type

IC_DICT_NODE
typedef struct aICDICTNode {

unsigned TableCount;
unsigned TableFirst;
unsigned DictRcType;
unsigned DefaultRcType;
unsigned reserved1;
unsigned reserved2;
unsigned reserved3;
unsigned reserved4;
IC_DICT_TABLE Table [];

} IC_DICT_NODE;

This data structure type defines the format of the dictionary_id RCDATA entry in the
library's resource file. All libraries that contain path, channel, or invisible data must
define that data in data dictionary tables. This resource entry is needed to access
these tables. See IC_DICT_FIELD for the expected format of a line in a data
dictionary table. Refer to Microsoft Windows Software Development Kit
Reference, User-Defined Resource Statement section for more information.

TableCount The number of data dictionary tables.

ICS Data Structures/Types

5–14 4173 5390–000

TableFirst The base number of the data dictionary tables.

DictRcType The RC data type of the data dictionary tables.

DefaultRcType The RC data type of the default data tables.
The numeric IDs of the default data tables
must be the same as those of the corresponding
data dictionary tables.

reserved1 Reserved, must be zero.

reserved2 Reserved, must be zero.

reserved3 Reserved, must be zero.

reserved4 Reserved, must be zero.

Table See the IC_DICT_TABLE data structure.
Note that there must be TableCount Table
entries.

Notes:

− The TableCount and TableFirst fields determine the data dictionary table
numbers. Therefore, the tables must be numbered sequentially.

− Each data dictionary table must fully define the corresponding configuration
data structure.

− Each data dictionary table must have a default data table that must have the
same numeric ID as the corresponding data dictionary table. The default data
table must contain the default data as a binary image of the corresponding data
structure. No field-type processing is performed on this default, user-defined
data resource. Therefore, it is imperative that the default data table be a binary
image of the data dictionary table. Again, refer to Microsoft Windows
Software Development Kit Reference, User-Defined Resource Statement section
and the INFOConnect Development Kit Basic Developer's Guide for more
information.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

ICS Data Structures/Types

4173 5390–000 5–15

IC_DICT_TABLE data structure

IC_DICT_TABLE
typedef struct {

IC_TABLE_FLAGS Flags;
UINT TableId;
UINT Ver;

} IC_DICT_TABLE;

This data structure type defines a table entry in the IC_DICT_NODE structure. The
IC_DICT_NODE structure must contain one entry for each data dictionary table
defined by the library.

Flags The IC_TABLE_FLAGS for the table.

TableId The string resource string number of the
table's string identifier, or title.

Ver The table version. Changes to Ver (in
combination with the record length) between
library releases identifies that the
configuration database table requires
reorganization.

ICS Data Structures/Types

5–16 4173 5390–000

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

IC_DICT_NODE data structure

IC_DIRECTORYTYPES
ICS type relating to directory-type and database-type information.

IC_CODEDIR

This is the directory type for retrieving the name of the directory that contains
INFOConnect code files. It is either the CodeDir entry from the
[INFOConnect] section of WIN.INI or, if that does not exist, the directory from
which the ICS Communications Manager DLL is executing. See the ICS
Installation and Configuration Guide for more information.

IC_DATADIR

This is the directory type for retrieving the name of the directory that contains
INFOConnect data files. For standalone and publish installations, this
directory name is either the DataDir entry from the [INFOConnect] section of
WIN.INI or, if that does not exist, the Windows Directory. For other types of
installation, this directory name is retrieved from the IcMgr.INI file. See the
ICS Installation and Configuration Guide for more information.

IC_MASTERDIR

This is the directory type for retrieving the name of the directory that contains
INFOConnect master database. The master database contains the
administrative configurations created during network installation of
INFOConnect.

IC_MGR_INI

This is the type used for retrieving the fully qualified filename of the
IcMgr.INI file that is currently in use. The IcMgr.INI file is used to record
directory-type information and installation options for Local standalone and

ICS Data Structures/Types

4173 5390–000 5–17

LAN installations. See the ICS Installation and Configuration Guide for more
information.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcGetINFOConnectDir function

ic_get_infoconnect_dir function

IC_EMU_LEVEL
The Emergency Maintenance Upgrade level. This identifier appears after the
IC_MINOR_VERSION in the version information string. It is an alphabetic
identifier, A through Z (mapping 1 through 26) that distinguishes emergency
upgrades that occur between minor software releases. For non-emergency release
levels, this is zero and does not appear in the version string,
IC_VERSION_STRING .

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_ERROR_INFO
The ICS informative result, or error, type. An error in the range of this type indicates
that the request succeeded and suggests that the application log this minor error (or
information) for future reference, if desired. It need not be displayed to the user.

Note: ICS DosLink applications cannot use IcDefaultErrorProc to display errors.
As of the current INFOConnect release level, the application cannot use
IcGetString to retrieve the error string. A future release will allow the use
of IcGetString so that the application can display the error string itself.

● WIN ● XVT ● DosLink

ICS Data Structures/Types

5–18 4173 5390–000

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcDefaultErrorProc function

ic_default_error_proc function

IC_ERROR_MASK data type

IC_ERROR_MASK
The mask used to determine the range of the type of the error result. See the IDK
Developer's Guide for an example of using this mask.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_CHECK_RESULT_SEVERE macro

IC_ERROR_SEVERE
The ICS serious error type indicating that this particular request failed. An error in
the range of this type must be displayed to the user.

Note: ICS DosLink applications cannot use IcDefaultErrorProc to display errors.
As of the current INFOConnect release level, the application cannot use
IcGetString to retrieve the error string. A future release will allow the use
of IcGetString so that the application can display the error string itself.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcDefaultErrorProc function

ic_default_error_proc function

ICS Data Structures/Types

4173 5390–000 5–19

IC_ERROR_MASK data type

IC_ERROR_TERMINATE
The ICS fatal error type indicating that this request failed. All other requests using
the associated session handle will also fail. Therefore, an error in the range of this
type suggests that the communication session be closed. If the default error
procedure is called, the error message will be displayed to the user and the
communication session will be closed automatically.

Note: ICS DosLink applications cannot use IcDefaultErrorProc to display errors.
As of the current INFOConnect release level, the application cannot use
IcGetString to retrieve the error string. A future release will allow the use
of IcGetString so that the application can display the error string itself.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcDefaultErrorProc function

ic_default_error_proc function

IC_ERROR_MASK data type

Appendix C for a list of ICS errors

IC_ERROR_WARNING
The ICS warning result, or error, type. An error in the range of this type indicates
that the request succeeded and suggests that the error should either be displayed to
the user or logged by the application for future reference. User intervention (for
example, re-configuring or upgrading the software) will remove the warning of this
type. The default error procedure will display errors of this type.

Note: ICS DosLink applications cannot use IcDefaultErrorProc to display errors.
As of the current INFOConnect release level, the application cannot use
IcGetString to retrieve the error string. A future release will allow the use
of IcGetString so that the application can display the error string itself.

● WIN ● XVT ● DosLink

ICS Data Structures/Types

5–20 4173 5390–000

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcDefaultErrorProc function

ic_default_error_proc function

IC_ERROR_MASK data type

Appendix C for a list of ICS errors

IC_FIELD_FLAGS
Data dictionary field flags.

IC_FF_ALTERNATE_KEY

Data dictionary field flag that marks the field as being an alternate key.

IC_FF_LINK_KEY

Data dictionary field flag that marks the field as having the same field name
and field type as the primary key in another table.

IC_FF_LINK_KEY_CHANNEL

This data dictionary field flag marks a field in a primary key structure as a link
to channel information. This field must be at least
IC_MAXCHANNELIDSIZE big. The structure should also include a field for
the unique portion of the primary key. This allows the IcAdmin utility to
locate and automatically copy the channel related information that exists in a
library's invisible table.

ICS Data Structures/Types

4173 5390–000 5–21

For example, the primary key in a library's invisible table that contains
channel-related information would be declared as follows:

ID_CHAN_HOSTDATA, IC_FF_PRIMARY_KEY, IC_FT_STRUCTURE, 0, 256
ID_CHANNEL, IC_FF_LINK_KEY_CHANNEL, IC_FT_STRINGI, 0, 128
ID_HOSTDATA, IC_FF_NO_KEY, IC_FT_STRINGI, 128, 128
/* define the remaining fields here */

IC_FF_LINK_KEY_PATH

This data dictionary field flag marks a field in a primary key structure as a link
to path information. This field must be at least IC_MAXPATHIDSIZE big.
The structure should also include a field for the unique portion of the primary
key. This allows the IcAdmin utility to locate and automatically copy the path
related information that exists in a library's invisible table.

For example, the primary key in a library's invisible table that contains path-
related information would be declared as follows:

ID_PATH_WSDATA, IC_FF_PRIMARY_KEY, IC_FT_STRUCTURE, 0, 256
ID_PATH, IC_FF_LINK_KEY_CHANNEL, IC_FT_STRINGI, 0, 128
ID_WSDATA, IC_FF_NO_KEY, IC_FT_STRINGI, 128, 128
/* define the remaining fields here */

IC_FF_NO_KEY

Data dictionary field flag that is used for fields that are not keys.

IC_FF_PRIMARY_KEY

Data dictionary field flag that marks a field as a unique key. The
IC_TF_PATHTABLE and IC_TF_CHANNELTABLE table keys are
managed by the ICS Manager. They should not have primary key fields.
IC_TF_INVISIBLETABLE tables are managed directly by the library. These
tables must have one primary key field and it must be the first field of the
table.

ICS Data Structures/Types

5–22 4173 5390–000

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DICT_FIELD data structure

IC_FIELDTYPE
These ICS flags are used in a library's data dictionary to mark the field type.

IC_FT_BINARY

Data dictionary field flag that marks the field as type binary.

IC_FT_BOOL

Data dictionary field flag that marks the field as type boolean.

IC_FT_CHAR

Data dictionary field flag that marks the field as a case sensitive, character type
field that is not necessarily null-terminated. If the input data length is shorter,
the field will be padded to length with null characters.

IC_FT_INT

Data dictionary field flag that marks the field as type integer.

IC_FT_STRING

Data dictionary field flag that marks the field type as a null-terminated string
that is case sensitive.

IC_FT_STRINGI

Data dictionary field flag that marks the field type as a case insensitive, null-
terminated string. Note that stringi does not refer to the string form of
integers.

IC_FT_STRUCTURE

Data dictionary field flag that marks the fields following as part of the given
structure. The fields included in the structure are those that fall within the
structure's BitOffset and (BitOffset + BitLength).

ICS Data Structures/Types

4173 5390–000 5–23

IC_FT_UNSIGNED

Data dictionary field flag that marks the field as type unsigned integer.

IC_FST_COMPONENT

The subtype field flag that marks the field as type IC_COMPONENT .

IC_FST_COUNTER

The subtype field flag that marks the field as a counter.

IC_FST_GAUGE

The subtype field flag that marks the field as a counter for a gauge.

IC_FST_ICVER

The subtype field flag that marks the field as type IC_VER .

IC_FST_REVISIONNUM

The subtype field flag that marks the field as type IC_REVISIONNUM .

IC_FST_SERIALNUM

The subtype field flag that marks the field as type IC_SERIALNUM .

IC_FST_TIMETICK

The subtype field flag that marks the field as a counter for timer ticks.

IC_FTX_COMPONENT

The extended field type (type/subtype composite) tag used in the library RC
file to mark the IC_COMPONENT field of an INFOConnect table.

IC_FTX_COUNTER

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as a counter.

IC_FTX_GAUGE

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as a counter for a gauge.

ICS Data Structures/Types

5–24 4173 5390–000

IC_FTX_ICVER

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as type IC_VER .

IC_FTX_REVISIONNUM

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as type IC_REVISIONNUM .

IC_FTX_SERIALNUM

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as type IC_SERIALNUM .

IC_FTX_TIMETICK

The extended field type (type/subtype composite) tag used in the library RC
file to mark a field of an INFOConnect table as a counter for timer ticks.

ICS Data Structures/Types

4173 5390–000 5–25

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DICT_FIELD data structure

IC_HEADER_SIZE
The size of the header in the INFOConnect RCDATA section of the resource file.
This incudes the version field up to and including the ConfigRcId field. See the
IC_RC_NODE data structure.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

IC_HEADER_3_0
The size of the header in the INFOConnect RCDATA section of the resource file for
the 3.0 Release. This incudes the version field up to and including the SupplierNum
field. See the IC_RC_NODE data structure.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

ICS Data Structures/Types

5–26 4173 5390–000

IC_KEY_SERIALNUM
This is the special, reserved key number for referencing the SerialNum key of table
records. The SerialNum is the unique serial number for the record.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

IC_LCL_FLAGS
This type designates which kind of local action should be performed.

IC_LCL_CLOSESESSION

Flag used to cancel the pending receive and transmit requests just before a
session is closed. This flag may be processed specially by the library by
preparing for an impending session close. (The library must not attempt to use
any transmit or receive buffers or send any messages for that session while
waiting for it to close.) IC_LCL_CLOSESESSION is used in combination
with IC_LCL_RCVXMT .

IC_LCL_RCV

This flag is used to cancel the pending request to receive data.

IC_LCL_RCVXMT

Flag used to cancel both the pending receive and pending transmit requests.

IC_LCL_XMT

Used to cancel the pending request to transmit data.

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLcl function

ic_lcl function

ICS Data Structures/Types

4173 5390–000 5–27

IcLibLcl function

IcMgrLcl function

IC_LIBRARY_FLAGS
These library flags are used in the IC_RC_NODE of a library's resource file.

IC_LF_ERRORHELP

Error flag that is to be included in the IC_RC_NODE resource type for
libraries that have context sensitive help topics for every library-defined error
value. The help topic number for the text of the error must correspond to the
IC_RESULT_VALUE of the error. This is used by INFOConnect
Connectivity Services to provide trouble-shooting help from the ICS default
error dialog.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

IC_MAXACCESSORYIDLEN
The maximum length of an accessory identifier (accessory ID), not including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–28 4173 5390–000

IC_MAXACCESSORYIDSIZE
The maximum size of an accessory identifier (accessory ID), including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXCHANNELIDLEN
The maximum length of a channel identifier (channel ID), not including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXCHANNELIDSIZE
The maximum size of a channel identifier (channel ID), including the terminating
null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXCONNECTEDPATHIDLEN
The maximum length of a dynamically connected path identification (path ID) string,
not including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–29

IC_MAXDESCRIPTIONSIZE
The maximum size of a description string, including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXERRORINSERT
The maximum size of a string inserted into an error string, including the terminating
null character.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcSetSessionError function

IcLibGetString function

IC_MAXERRORSTRING
The maximum length of an error string, not including the terminating null character.
Every library-specific error must have an associated string for displaying the error to
the user. If the library uses the IcSetSessionError utility, the string may contain up
to three string inserts (%s formatting ONLY).

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–30 4173 5390–000

See also:

IcSetSessionError function

IcLibGetString function

IC_MAXFILENAMESIZE
The maximum size of a fully qualified filename, including the terminating null
character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXIDSIZE
The maximum size of a library or accessory identifier (or key), including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXLIBRARYIDLEN
The maximum length of a library identifier (library ID), not including the
terminating null character.

● WIN ● XVT ❍ DosLink

❍ Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–31

IC_MAXLIBRARYIDSIZE
The maximum size of a library identifier (library ID), including the terminating null
character.

● WIN ● XVT ❍ DosLink

❍ Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXPACKAGEIDSIZE
The maximum size of a package ID, including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXPATHIDLEN
The maximum length of a path identification (path ID) string, not including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXPATHIDSIZE
The maximum size of a path identifier (path ID), including the terminating null
character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–32 4173 5390–000

IC_MAXPRINTSTRING
The maximum size of a printable string. That is, the size of print buffer parameter of
IcLibPrintConfig , including the terminating null character.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibPrintConfig function

IC_MAXSESSIONIDLEN
The maximum length of a communication session identification (session ID) string,
not including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXSESSIONIDSIZE
The maximum size of a communication session identification (session ID) string,
including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–33

IC_MAXSESSIONIDSUFFIX
The maximum number of bytes that are returned from IcLibIdentifySession that are
used in creating the session ID string.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

IC_MAXSTRINGLENGTH
The maximum length of a string, not including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXTEMPLATEIDLEN
The maximum length of a template identifier (template ID), not including the
terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXTEMPLATEIDSIZE
The maximum size of a template identifier (template ID), including the terminating
null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–34 4173 5390–000

IC_MAXVENDORNAMELEN
The maximum length of a vendor name, not including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXVENDORNAMESIZE
The maximum size of a vendor name, including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MAXWSIDSIZE
The maximum size of a workstation ID, including the terminating null character.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MEMHND
INFOConnect Connectivity Services global buffer handle type for non-shared, intra-
application memory.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

ICS Data Structures/Types

4173 5390–000 5–35

IC_MINOR_VERSION
The minor portion of the version. This number appears after the '.' in the version
string, IC_VERSION_STRING .

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_MSG_CONFIG
These are the indices for the Configuration Accessory API messages that are
generated when a configuration data table has be altered. These messages must have
been previously registered by the accessory before they can be sent to the accessory.

The messages are sent to all configurators that have the altered configuration object
open.

IC_ADD_CONFIG

The index for the Configuration Accessory API message that is generated when
a configuration data record has been added to a configuration table.

If the initial attempt to post this message fails, posting the message will be
retried after some time interval until either it succeeds, or until a message is
available for a configuration record with another serial number. In this case,
all configuration messages will queue up until an IC_REFRESH_CONFIG is
successfully delivered.

If an IC_ADD_CONFIG message has not yet been delivered and an
IC_DELETE_CONFIG message for the same configuration record (that is, a
configuration record with the same serial number) becomes available, no
message is delivered.

If an IC_ADD_CONFIG message has not yet been delivered and an
IC_UPDATE_CONFIG message for the same configuration record becomes
available, only the IC_ADD_CONFIG message is delivered.

This message is message index 1.

IC_DELETE_CONFIG

This is the index for the Configuration Accessory API message that is
generated when a configuration data record has been deleted from a
configuration table.

ICS Data Structures/Types

5–36 4173 5390–000

If the initial attempt to post this message fails, posting the message will be
retried after some time interval until either it succeeds, or until a message is
available for a configuration record with another serial number. In this case,
all configuration messages will queue up until an IC_REFRESH_CONFIG is
successfully delivered.

It is message index 3.

IC_REFRESH_CONFIG

This message is posted initially. It is also posted after some time interval
when an attempt to post an IC_ADD_CONFIG , IC_UPDATE_CONFIG , or
IC_DELETE_CONFIG message for multiple configuration records (that is,
configuration messages with different serial numbers) fails.

This message is message index 0.

IC_UPDATE_CONFIG

This is the index for the Configuration Accessory API message that is
generated when a configuration data record has been updated in a configuration
table.

If the initial attempt to post this message fails, posting the message will be
retried after some time interval until either it succeeds, or until a message is
available for a configuration record with another serial number. In this case,
all configuration messages will queue up until an IC_REFRESH_CONFIG is
successfully delivered.

If an IC_UPDATE_CONFIG message has not yet been delivered and an
IC_DELETE_CONFIG message for the same configuration record (that is, a
configuration record with the same serial number) becomes available, only the
IC_DELETE_CONFIG message is delivered.

It is message index 2.

ICS Data Structures/Types

4173 5390–000 5–37

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcNotifyConfig function

IC_NEXTEVENT_FLAGS
These flags are used by ICS DosLink applications that use a callback function (in
contrast to polling using IcGetNextEvent).

IC_NEXTEVENT_CHECK

Used to check the message queue for messages.

IC_NEXTEVENT_POP

Used to request that the current message be popped from the message queue.

IC_NEXTEVENT_READY

Flag used to inform ICS that the callback routine is ready to receive the next
message. ICS DosLink applications must follow each call to all ICS APIs with
a call to IcNextEvent with this flag.

IC_NEXTEVENT_TIMER

Used to set a timer value.

ICS Data Structures/Types

5–38 4173 5390–000

● WIN ❍ XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcNextEvent function

IcRegisterCallback function

IC_INFO_QEVENT informative return value

IC_OK
An IC_RESULT indicating no error.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_OPEN_OPTIONS
ICS option flags that indicate the open options for IcLibOpenChannel and
IcLibOpenSession.

IC_OPEN_VERIFY

If (Options & IC_OPEN_VERIFY) is true on the IcLibOpen... function call,
the library should return IC_VERIFY_OK if an attempt to open this session
would succeed. It should return an error if an attempt to open this session
would fail. This information is used to prune the list of path IDs available to
the user from the select path dialog.

● WIN ● XVT ● DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–39

See also:

IcLibOpenSession function

IC_PACKAGE
Package identification that defines an ID as a package ID.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

IC_PATH_FLAGS
ICS flags that indicate the status of a path.

IC_PF_HIDDEN

ICS flag indicating that a path is hidden. That is, the path will not appear as a
choice in the ICS Select Path dialog box.

IC_PF_SYSTEM

ICS flag indicating a library ID.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

IC_PRINT_SUMMARY
A flag that requests summary format of the library's configuration data.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–40 4173 5390–000

See also:

IcLibPrintConfig function

IC_RC_NODE
typedef struct aICRCNode {

unsigned version;
unsigned revision;
IC_COMPONENT_TYPE type;
unsigned header_size;
unsigned dictionary_id;
unsigned id;
unsigned description;
unsigned vendor;
unsigned module_id;
IC_SESSION_FLAGS session_flags;
IC_LIBRARY_FLAGS library_flags;
unsigned ConfigRcId;
/* The following fields were added in the 2.02 Release */
/* Use the IC_HEADER_3_0 for this resource header size */
unsigned max_version;
unsigned max_revision;
unsigned sybtype;
unsigned GenericDictMap;
IC_COMPONENT GenericNum
IC_COMPONENT SupplierNum

} IC_RC_NODE;

This data structure type defines the format of the INFOConnect RCDATA resource.
INFOConnect is defined in the icdef.h include file. This resource is required for all
INFOConnect Connectivity Services libraries and accessories. Refer to Microsoft
Windows Software Development Kit Reference, User-Defined Resource Statement
section for more information.

version The oldest level of Connectivity Services that
this component supports. See
IC_VERSION_....

revision The oldest level of Connectivity Services that
this component supports. See
IC_REVISION_....

ICS Data Structures/Types

4173 5390–000 5–41

type The IC_COMPONENT_TYPE of the file.

header_size The size of the header. See IC_HEADER_....

dictionary_id The numeric ID of the dictionary resource
RCDATA, formatted as an IC_DICT_NODE ,
or zero if no data dictionary tables exist.

id The string resource string number of the file's
ID. See Appendix A for a list of ICS Standard
IDs. This ID is used as the default when the
library or accessory is installed.

description The string resource string number of the file's
description. This description is used as the
default when the library or accessory is
installed.

vendor The string resource string number of the
vendor identification.

module_id The string resource string number of the file's
module ID. This should be the name from the
.DEF file and may be the same as id.

session_flags The pertinent IC_SESSION_FLAGS or zero
if not applicable.

library_flags The pertinent IC_LIBRARY_FLAGS or zero
if not applicable.

ConfigRcId The numeric ID of the template configuration
resource RCDATA (IC_Template...), or zero
if one doesn't exist.

max_version The highest level of Connectivity Services that
this component supports. See
IC_VERSION_....

max_revision The highest level of Connectivity Services that
this component supports. See
IC_REVISION_....

subtype Reserved. Must be zero.

GenericDictMap If this is a trace hook library, this is the ordinal
value for the IcLibTrace entry point.
Otherwise, this must be zero.

ICS Data Structures/Types

5–42 4173 5390–000

GenericNum The generic component value. Note that this
LONG value must appear in the RC file as two
values: LO, HI.

SupplierNum The supplier component value. Note that this
LONG value must appear in the RC file as two
values: LO, HI.

Note: During installation, the library/accessory ID and description will be
extracted from the string table and used as defaults when adding the
library/accessory to the ICS database. The CONFIGRCID RCDATA is only
valid for accessories and libraries. It will be parsed and the resulting
templates added to the ICS database. Refer to Microsoft Windows
Software Development Kit Reference, User-Defined Resource Statement
section for more information. See IC_TemplateInit for an example of the
format of the CONFIGRCID RCDATA resource.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–43

See also:

IC_DICT_NODE data type

IC_HEADER_SIZE data type

IC_ACCESSORY data type

IC_SERVICE data type

IC_INTERFACE data type

IC_SESSION_FLAGS data type

IC_LIBRARY_FLAGS data type

IC_Template... data types

IC_RECORD_INFO
typedef struct {

IC_SERIALNUM SerialNum;
IC_REVISIONNUM RevisionNum;

} IC_RECORD_INFO;

This data structure type defines the informational fields for the records of the active
path (session) and active channel tables.

SerialNum The unique serial number for the record.

RevisionNum The count of the number of times this record
has been modified.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

ICS Data Structures/Types

5–44 4173 5390–000

IC_RECORD_SIZE
The size of an IC_DICT_FIELD data type in bytes.

● WIN ● XVT ❍ DosLink

❍ Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_DICT_FIELD data type

IC_RESULT
INFOConnect Connectivity Services type used to communicate status and error
information. It is the type returned by most INFOConnect functions and by most ICS
events. It consists of the following three parts:

IC_RESULT_CONTEXT

The context that defines the result.

IC_RESULT_TYPE

The result type.

IC_RESULT_VALUE

The result value.

Note: See Appendix B for a list of ICS statuses. See Appendix C for a list of ICS
errors.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–45

See also:

IC_ERROR_MASK data type

IC_ERROR_INFO data type

IC_ERROR_WARNING data type

IC_ERROR_SEVERE data type

IC_ERROR_TERMINATE data type

IC_RESULT_SUBTYPE data type

IC_RESULT_SUBVALUE data type

IC_RESULT_CONTEXT_CFG
The INFOConnect Configuration Accessory result context.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_RESULT_CONTEXT_ICDB
The result context of the INFOConnect Database DLL.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_RESULT_CONTEXT_ICUTIL
The result context of the INFOConnect Utilities DLL.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–46 4173 5390–000

IC_RESULT_CONTEXT_INVALID
The INFOConnect invalid result context.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_RESULT_CONTEXT_STD
The INFOConnect standard result context for the ICS Manager.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_RESULT_SUBTYPE
INFOConnect Connectivity Services type that interprets part of
IC_RESULT_VALUE as a subtype field. This is used by the IC_STATUS_UTS
status message. See Appendix B for more information on this status message.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT_VALUE data type

IC_RESULT_SUBVALUE data type

ICS Data Structures/Types

4173 5390–000 5–47

IC_RESULT_SUBVALUE
INFOConnect Connectivity Services type that interprets part of
IC_RESULT_VALUE as a subvalue field. This is especially useful for the
IC_STATUS_UTS status message. See Appendix B for more information on this
status message.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RESULT_VALUE data type

IC_RESULT_SUBTYPE data type

IC_REVISION_...
Used to delimit the range of release revisions of the ICS API supported by this
component.

IC_REVISION_1_0

ICS Revision 1.0.

IC_REVISION_1_2

ICS Revision 1.2.

IC_REVISION_2_0

ICS Revision 2.0.

IC_REVISION_2_02

ICS Revision 2.02.

IC_REVISION_3_0

ICS Revision 3.0.

Etc.

ICS Data Structures/Types

5–48 4173 5390–000

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

IC_REVISIONNUM
ICS data type for the count of the number of times a configuration record has been
modified.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RECORD_INFO data structure

IC_SERIALNUM
ICS data type for the unique serial number of a configuration record.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_RECORD_INFO data structure

ICS Data Structures/Types

4173 5390–000 5–49

IC_SESSION_FLAGS
These session flags are used in the IC_RC_NODE of a library's resource file.

IC_SF_SESSIONSTATUS

This flag is to be included in the IC_RC_NODE resource type for libraries that
can respond to the IC_CONNECT_STATUS status type.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

IC_STATUS_CONNECT status type

ICS Data Structures/Types

5–50 4173 5390–000

IC_SINFO
typedef struct aSINFO {

long max_size;
unsigned transparent:1;
unsigned block_mode:1;
unsigned reliable:1;
unsigned focus_notify:1;
unsigned server:1
unsigned untrans8:1
unsigned connect:1
unsigned reconnect:1
unsigned autoreconnect:1
unsigned :1
unsigned :1
unsigned :1
unsigned :1
unsigned :1
unsigned :1
unsigned :1
short padword;
long padlong[6];

} IC_SINFO;

This data structure type defines a record of pertinent information about a
communication session.

max_size The maximum size of a transmission block or
a received block of data that can be transported
across the connection.

transparent Signifies whether or not all binary data
streams can be safely sent across this
connection. FALSE implies that, at the very
least, only the alpha-numerics, period, comma,
and ESC can be safely sent.

block_mode Signifies whether or not the data is sent and
received as messages or just as a stream of
characters. For some libraries, the
IC_STATUS_BLOCKING status can alter
the state of this field.

ICS Data Structures/Types

4173 5390–000 5–51

reliable Signifies whether or not undelivered messages
are signaled to the application (usually through
communication session failure).

focus_notify Signifies whether or not the application should
call the Set Status procedure with
IC_REACTIVATE_ON or
IC_REACTIVATE_OFF each time it gains or
loses focus.

server Signifies whether or not this is a server.

untrans8 Reserved for future use.

connect Signifies whether or not the library generates
IC_CONNECT_OPEN and
IC_CONNECT_CLOSE statuses.

reconnect Signifies whether or not the library honors
IC_CONNECT_OPEN,
IC_CONNECT_CLOSE, and
IC_CONNECT_EOF statuses from the
application.

autoreconnect Signifies whether or not the library will
assume an IC_CONNECT_OPEN status
whenever it generates an
IC_CONNECT_CLOSE status.

unsigned Reserved for future use.

padword Reserved for future use.

padlong Reserved for future use.

ICS Data Structures/Types

5–52 4173 5390–000

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcGetSessionInfo function

ic_get_session_info function

IcSetStatus function

ic_set_status function

IcLibGetSessionInfo function

IC_STATUS_BLOCKING data type

IC_STATUS_REACTIVATE data type

IC_STATUSBUF
typedef struct aSTATUSBUF {

IC_RESULT icstatus;
IC_RESULT icerror;
long reserved;
unsigned uBufSize;
unsigned uDataSize;

} IC_STATUSBUF;

This data structure type defines a header for a data buffer that is used with the
extended status IC_STATUS_BUFFER.

icstatus The actual status message associated with the
data buffer of information.

icerror The IC_RESULT of the status request.

reserved Reserved for future use.

uBufSize The actual size, in bytes, of the data buffer.

uDataSize The size, in bytes, of the valid data.

ICS Data Structures/Types

4173 5390–000 5–53

Notes:

− The data buffer must immediately follow the IC_STATUSBUF header. It should
not contain pointers, but may contain offsets within the structure.

− The IC_STATUS_BUFFER status message request can be synchronous or
asynchronous. For a synchronous message, the library receives and processes
the IC_STATUS_BUFFER status message, setting the icerror field to either
IC_OK or an error. The icerror result is returned, and appears to the
application as an IC_STATUSRESULT message. An IC_OK result implies that
the data buffer has been accessed and uDataSize is the size of the valid
information.

For an asynchronous message, the library receives the IC_STATUS_BUFFER
status message, sets the icerror field to IC_INCOMPLETE and returns
IC_INCOMPLETE. The application receives the IC_StatusResult message with
the IC_INCOMPLTE result. When the library finally supplies the uDataSize
and accesses the data buffer, the icerror field should be set to IC_COMPLETE
or to an error and the IC_STATUS_BUFFER status message should be sent
back to the application.

In both cases, the application should be responsible for freeing the buffer. The
buffer should not be freed, however, until after the application receives an
IC_StatusResult response of IC_OK or an error. If the result is
IC_INCOMPLETE, this is the asynchronous case and the buffer should not be
freed until the status is returned via the IC_STATUS_BUFFER status message.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_STATUS_BUFFER status type

IC_STATUS_BLOCKING
This is an application-initiated status type that is used to control the blocking mode
of those service libraries that support it.

IC_BLOCKING_ON

Turn blocking mode ON.

ICS Data Structures/Types

5–54 4173 5390–000

IC_BLOCKING_OFF

Turn blocking mode OFF.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–55

See also:

IcSetStatus function

ic_set_status function

IcLibSetResult function

IC_SINFO data structure

IC_STATUS_BUFFER
IC_STATUS_BUFFER is an extended status that allows a buffer of information to
be exchanged between ICS components. It is to be used whenever the status
information to be exchanged exceeds the limits of the IC_RESULT structure. In this
case, the IC_RESULT_VALUE portion of the status message is an INFOConnect
buffer handle of type HIC_STATUSBUF.

The IC_STATUS_BUFFER status message request can be synchronous or
asynchronous. For a synchronous message, the library receives and processes the
IC_STATUS_BUFFER status message, setting the icerror field to either IC_OK or
an error. The icerror result is returned to the application as an
IC_STATUSRESULT message. An IC_OK result implies that data has been
accessed and uDataSize is the size of the valid information.

For an asynchronous message, the library receives the IC_STATUS_BUFFER status
message, sets the icerror field to IC_INCOMPLETE and returns
IC_INCOMPLETE . The application receives the IC_STATUSRESULT message
with the IC_INCOMPLTE result. When the library finally supplies the uDataSize
and data, the icerror field should be set to IC_COMPLETE or to an error and the
IC_STATUS_BUFFER status message should be sent back to the application using
IcMgrSendEvent.

In both cases, the application should be responsible for freeing the buffer. The buffer
should not be freed, however, until after the application receives an
IC_STATUSRESULT response of IC_OK or an error. If the result is
IC_INCOMPLETE , this is the asynchronous case and the buffer should not be freed
until the status is returned via the IC_STATUS_BUFFER status message.

ICS Data Structures/Types

5–56 4173 5390–000

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcSetStatus function

ic_set_status function

IcLibSetResult function

IC_STATUS_COMMMGR
This status type originates from the ICS Manager itself and conveys initialization or
termination information. If the ICS Manager terminates, the ICS accessory must call
the ICS initialization routine before calling any other ICS procedures.

IC_COMMMGR_CANCELEXIT

Status sent to all ICS communications sessions that previously received an
IC_COMMMGR_QUERYEXIT status when one of the applications calls
IcExitOk (FALSE).

IC_COMMMGR_EXIT

Status sent to all ICS communications sessions if IcExitOk (FALSE) is never
called. The ICS Manager will then exit.

IC_COMMMGR_INITIALIZED

Status sent to all Windows applications when the ICS Manager finishes
initializing. ICS accessories may now call the ICS initialization routine, if
necessary, before establishing INFOConnect sessions.

IC_COMMMGR_QUERYEXIT

Status sent to all ICS communications sessions when the user closes the
INFOConnect Shell. If the application does not wish to close the session, it
should cancel the exit by calling IcExitOk (FALSE).

ICS Data Structures/Types

4173 5390–000 5–57

IC_COMMMGR_QUERYSHUTDOWN

Status sent to all ICS communications sessions when Windows is exiting. If
the application does not wish to close the session, it should cancel the exit by
calling IcExitOk (FALSE).

IC_COMMMGR_REINSTALL

Status posted to all windows by install.exe when the ICS Manager is being
reinstalled.

IC_COMMMGR_TERMINATED

Status sent to all Windows applications when the ICS Manager finishes
terminating. All ICS accessories should either close or call the ICS
initialization routine before establishing another ICS session.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

IC_STATUS_CONNECT
When initiated from an external interface library, this status type signifies the state
of the connection. When initiated from an application, a networking external
interface library is instructed to alter the state of the connection, if possible. The
connection states are defined by one of the following statuses.

IC_CONNECT_ACTIVITY

The physical connection (not necessarily this communication session) is
functioning as expected.

IC_CONNECT_CLOSE

The logical connection is NOT available for bi-directional communication
under the current configuration.

IC_CONNECT_EOF

The logical communication session is physically closed (for use under
TCP/IP).

IC_CONNECT_NOACTIVITY

The physical connection is NOT functioning as expected.

ICS Data Structures/Types

5–58 4173 5390–000

IC_CONNECT_OPEN

The logical connection is available for bi-directional communication under the
current configuration.

IC_CONNECT_STATUS

Status originating from the application requesting that the EIL display status
information to the user. This is the status sent when the user selects the Status
button from the INFOConnect Shell.

IC_CONNECT_BROKEN

Status that indicates that the other half of two connected sessions has closed.

IC_CONNECT_JOINED

Status that indicates that two sessions have been connected. For example, this
is the status received when two DosLink sessions are connected.

IC_CONNECT_SERVER

Status that originates from the server application (such as the DosLink Server
accessory) that indicates readiness to the client.

Note: Library developers should take care not to generate an over abundance of
status messages to prevent thrashing. This is especially important on entry
level workstations that may have insufficient memory to execute the current
application mix.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcSetStatus function

ic_set_status function

IcLibSetResult function

IcSetServerInfo function

IC_STATUS_CONTROL
When initiated from an external interface library, this status type signifies that a
request is being made to the application. When initiated from an application, it

ICS Data Structures/Types

4173 5390–000 5–59

signifies a request to another connected application. The requests are defined by one
of the following statuses.

IC_CONTROL_ACTIVATE

This status requests that the application's window become active for user input.
It is usually initiated from the ICS Shell through the GoTo button.

IC_CONTROL_RCVREADY

This status requests that the application perform a receive request if it does not
already have a request outstanding.

IC_CONTROL_RCVAVAIL

This is a notification that a message is available but not deliverable due to the
state of the application.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcSetStatus function

ic_set_status function

IcLibSetResult function

IcOpenAccessory function

ic_open_accessory function

ICS Data Structures/Types

5–60 4173 5390–000

IC_STATUS_DATAFLAGS
This application-initiated status controls the state of messages. It is used with the
IcSetStatus/IcXmt functions and the IC_RCVDONE event to mark expedited
and/or multipart messages. The initial state of messages is assumed to be
IC_DATAFLAGS_NONE .

IC_DATAFLAGS(v)

This is a macro that creates an IC_DATAFLAGS status with status value v.

IC_DATAFLAGS_EXPEDITED

This status indicates that the following transmitted message is urgent. It is to
be delivered ahead of any other messages in the message queue.

IC_DATAFLAGS_MORE

This status indicates that the following transmitted messages are part of a
multipart message.

IC_DATAFLAGS_NONE

This status indicates that none of the data flags are set. It is used to indicate
the last part of a multipart message. Note that this status is sent before the
final part of the message is transmitted.

IC_DATAFLAGS_RESERVED1

Reserved status.

IC_DATAFLAGS_RESERVED2

Reserved status.

Notes:

− The following is an example of sending two expedited messages:

IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_EXPEDITED));
IcXmt(); /* send an expedited message */
IcXmt(); /* send another expedited message */
IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_NONE)); /* restore default state */
...

ICS Data Structures/Types

4173 5390–000 5–61

− The following is an example of sending multipart messages:

IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_MORE));
IcXmt(); /* send first part of multipart message */
... /* send additional parts of message */
IcXmt(); /* ... */
IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_NONE)); /* restore default state */
IcXmt(); /* send last part of multipart message */
...

− The following is an example of sending multipart, expedited messages:

IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_EXPEDITED|IC_DATAFLAGS_MORE));
IcXmt(); /* send first part of expedited message */
...
IcXmt(); /* send middle of expedited message */
IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_EXPEDITED));
IcXmt(); /* send last part of expedited message */
... /* send more expedited messages */
IcSetStatus(hSession, IC_DATAFLAGS(IC_DATAFLAGS_NONE)); /* restore default state */
IcXmt(); /* send normal message */
...

− The following shows a portion of the IC_RCVDONE case:

IC_RESULT_VALUE dataflags;

case IC_Status:
if (IC_CHECK_DATAFLAGS(icstatus))

dataflags = IC_GET_RESULT_VALUE(icstatus);
case IC_RcvDone:

if (dataflags & IC_DATAFLAGS_EXPEDITED) {
... /* handle expedited case */

}
if (dataflags & IC_DATAFLAGS_MORE) {

... /* handle multipart case */
}

ICS Data Structures/Types

5–62 4173 5390–000

● WIN ● XVT ● DosLink

● Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_CHECK_DATAFLAGS macro

IC_STATUS_FKEY
This application-initiated status type is used to send function key messages to the
underlying layers of the ICS communication session. The function keys are defined
by one of the following statuses.

IC_FKEY_BREAK

The break key.

IC_FKEY_1

Function key 1.

IC_FKEY_2

Function key 2.

...

...

IC_FKEY_23

Function key 23.

IC_FKEY_24

Function key 24.

IC_FKEY_MSGWAIT

Uniscope-specific break key.

IC_FKEY_SYSMODE

Uniscope-specific OS3 system mode key.

ICS Data Structures/Types

4173 5390–000 5–63

IC_FKEY_WSMODE

Uniscope-specific OS3 workstation mode key.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_STATUS_LINESTATE
This external interface library-initiated status type signifies the state of the
underlying layer of the ICS communication session. The line states are defined by
one of the following statuses.

IC_LINESTATE_LCL

The ICS communication session is neither transmitting nor receiving.

IC_LINESTATE_RCV

The ICS communication session is in receive mode.

IC_LINESTATE_XMT

The ICS communication session is in transmit mode.

Note: For performance reasons, the DosLink Server filters out the
IC_STATUS_LINESTATE status types.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_STATUS message

E_IC_STATUS event

IcSetStatus function

ic_set_status function

IcLibSetResult function

ICS Data Structures/Types

5–64 4173 5390–000

IC_STATUS_REACTIVATE
This application-initiated status type is used to notify the underlying communication
session layers that the application window has received or lost focus.

IC_REACTIVATE_ON

Application has received focus and sinfo.focus_notify is TRUE.

IC_REACTIVATE_OFF

Application has lost focus and sinfo.focus_notify is TRUE.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcGetSessionInfo function

ic_get_session_info function

IcSetStatus function

ic_set_status function

IcLibSetResult function

IcLibGetSessionInfo function

IC_SINFO data type

ICS Data Structures/Types

4173 5390–000 5–65

IC_STATUS_TRANS
This application-initiated status type is used to notify the backplane of the beginning
and end of transactions. The initial state of all applications is assumed to be
IC_TRANSACTION_OFF .

IC_TRANSACTION_ON

Indicates that IC_TRANSACTION_BEGIN and IC_TRANSACTION_END
status will be sent.

IC_TRANSACTION_OFF

Indicates that IC_TRANSACTION_BEGIN and IC_TRANSACTION_END
status will not be sent.

IC_TRANSACTION_BEGIN

Sent at the beginning of a transaction.

IC_TRANSACTION_END

Sent at the end of a transaction.

● WIN ● XVT ❍ DosLink

● Accessory ❍ Shell ❍ Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IcSetStatus function

ic_set_status function

IcLibSetResult function

ICS Data Structures/Types

5–66 4173 5390–000

IC_STATUS_UTS
This status type may be used to send and receive special messages to/from the UTS
external interface libraries. See Appendix B for more information on the special
values that this status message supports.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IcGetSessionInfo function

ic_get_session_info function

IcSetStatus function

ic_set_status function

IC_STATUS message

E_IC_STATUS event

IC_RESULT_SUBTYPE data type

IC_RESULT_SUBVALUE data type

Appendix B

IC_TABLE_FLAGS
These are flags used in a library's data dictionary that mark different kinds of
configuration tables.

IC_TF_ACTIVECHANNEL

This flag marks a table as containing channel data for those channels that are
involved in active sessions. IC_TF_ACTIVECHANNEL tables must be
managed by the library.

By default, the first field of this table is the ICSTD_ACTIVECHANNEL
channel ID field.

IC_TF_ACTIVECUSTOM

Flag that marks a table as containing dynamic, custom information. Data in
IC_TF_ACTIVECUSTOM tables are managed by the library.

ICS Data Structures/Types

4173 5390–000 5–67

IC_TF_ACTIVEPATH

Data dictionary table flag that marks a table as containing path-type
information for active paths. Also called a session table.
IC_TF_ACTIVEPATH tables must be managed by the library. The ICS
Manager gets access to this information through IcLibAccessConfig.

By default, the first two fields of this table are the ICSTD_ACTIVEPATH
path ID field and ICSTD_ACTIVEPATHCHANNEL channel ID field.

IC_TF_CHANNELTABLE

Flag that marks a table as channel data. Data in IC_TF_CHANNELTABLE s
is to be made visible to the user through the global configuration dialog. The
corresponding database table, along with the table's primary key, is managed
by the ICS Manager. There can be zero or one channel tables. If a channel
table is defined, a path table must also be defined containing at least one field.
The field, however, may be a filler field.

By default, the first field of this table is the ICSTD_CHANNEL channel ID
field.

IC_TF_CUSTOMTABLE

Data dictionary table flag that marks a table as being a visible table other than
channel or path. This table is managed by the library itself through a dialog
box which the user can access through the ICS Shell or Configurator. There
can be any number of custom tables.

IC_TF_DYNAMICTABLE

This flag marks a table as containing dynamic data.
IC_TF_DYNAMICTABLE tables are invisible and must be managed by the
library. The ICS Manager gets access to this information through
IcLibAccessConfig.

IC_TF_INVISIBLETABLE

Data dictionary table flag that marks a table as being managed by the library
itself. Data in IC_TF_INVISIBLETABLE s must be managed by the library.
There can be any number of invisible tables.

IC_TF_PATHTABLE

This flag marks a table as path-specific data. Data n IC_TF_PATHTABLE s is
to be made visible to the user through the path configuration dialog. The
corresponding database table, along with the table's primary key, is managed
by the ICS Manager. There can be zero or one path tables. However, if a

ICS Data Structures/Types

5–68 4173 5390–000

channel table is defined, a path table must also be defined. As of the current
INFOConnect release this table must have at least one field. The field,
however, may be a filler field.

By default, the first two fields of this table are the ICSTD_PATH path ID field
and ICSTD_PATHCHANNEL channel ID field.

IC_TF_STACKTABLE

Data dictionary table flag that marks a table as being a stack table.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_DICT_FIELD data structure

IcLibAccessConfig function

IcLibUpdateConfig function

IC_TABLETYPE
ICS type of configuration tables.

IC_ACTIVECHANNEL

Denotes the active channel table.

IC_ACTIVECUSTOM

Denotes the active custom table.

IC_ACTIVEPATH

Denotes the active path table (also referred to as the session table).

IC_CHANNEL

Denotes the channel table.

IC_CUSTOMTABLE

Denotes the custom table.

IC_PATH

Denotes the path table.

ICS Data Structures/Types

4173 5390–000 5–69

IC_TEMPLATE

Denotes the template table.

IC_UNKNOWN

Denotes an unknown table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

IC_TemplateBegin
The ICS template resource flag for starting the definition of a template. This must
be followed by the template identification (template ID).

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateChannel
The ICS template resource flag for identifying the channel ID in a template
definition. This is an optional flag and, if it exists, must be followed by the channel
identification.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–70 4173 5390–000

See also:

IC_TemplateInit data type

IC_TemplateConfig
The ICS template resource flag for identifying the configuration library ID of the
configuration library associated with this template. This is an optional flag and, if it
exists, must be followed by the library ID of the library that controls configuration
for this template. If this flag exists, IC_TemplateConfigTable must also exist.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateConfigTable data type

ICS Data Structures/Types

4173 5390–000 5–71

IC_TemplateConfigTable
The ICS template resource flag for identifying the table number of the configuration
table for the configuration library associated with this template. This is an optional
flag and, if it exists, must be followed by the table number of the configuration table
as defined in the library's resource file. If this flag exists, IC_TemplateConfig must
also exist.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateConfig data type

IC_TemplateDescription
The ICS template resource flag for identifying the template description in a template
definition. This flag must be followed by the description.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

ICS Data Structures/Types

5–72 4173 5390–000

IC_TemplateEnd
The ICS template resource flag for ending the definition of a template.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateFlags
The ICS template resource flag for identifying the template flags of a template. The
template flags, if it exists, can be "H" for hidden (that is, IC_PF_HIDDEN), "S" for
system (that is, IC_PF_SYSTEM), or "HS" for hidden and system (that is,
IC_PF_HIDDEN & IC_PF_SYSTEM).

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateInit
The ICS template resource flag for starting a series of one or more template
descriptions.

ICS Data Structures/Types

4173 5390–000 5–73

Notes:

− The following is an example of the format of the CONFIGRCID RCDATA
resource.

CONFIGRCID RCDATA
BEGIN
IC_TemplateInit

IC_TemplateBegin "TP1" /* template id */
IC_TemplateDescription "Trace/Local"
IC_TemplateLibrary "Trace" /* library stack */
IC_TemplateLibrary "Local"
IC_TemplateEnd

IC_TemplateBegin "TP2"
IC_TemplateDescription "Service/Local"
IC_TemplateLibrary "Service"
IC_TemplateChannel "sChanID" /* optional channel ID */
IC_TemplateLibrary "Local"
IC_TemplateEnd

IC_TemplateBegin "TTY"
IC_TemplateDescription "TTY Communications"
IC_TemplateOpenID "ANSI" /* optional OpenID */
IC_TemplateLibrary "TTY"
IC_TemplateEnd

IC_TemplateBegin "Local"
IC_TemplateDescription "Local Communications"
IC_TemplateFlags "H" /* optional flags */
IC_TemplateConfig "Local"
IC_TemplateConfigTable "1002"
IC_TemplateLibrary "Local"
IC_TemplateEnd

IC_TemplateTerm
END

ICS Data Structures/Types

5–74 4173 5390–000

− There may be any number of template definitions (template definitions are
bounded by IC_TemplateBegin and IC_TemplateEnd).

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data type

IC_TemplateLibrary
The ICS template resource flag for identifying the library ID in a template definition.
There may be one or more of these and each must be followed by the library
identification. If a channel ID is to be associated with a library in a template, the
channel flag must immediately follow the library flag/library ID line in the resource.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateOpenID
The ICS template resource flag for identifying the template OpenID of a template.
This flag is optional. If it exists, it must be followed by the template's OpenID. The
OpenID is an identifier, usually a standard accessory ID, with which to associate this
template. See Appendix A for a list of standard IDs.

ICS Data Structures/Types

4173 5390–000 5–75

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_TemplateTerm
The ICS template resource flag for terminating a list of one or more template
definitions.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_TemplateInit data type

IC_UPGRADE_INFO
typedef struct aUPGRADEINFO {

UINT UpgradeLen;
UINT OldDataOffset;
UINT OldDataLen;
UINT OldDataSerialNum;
long Reserved2;
long Reserved3;

} IC_UPGRADE_INFO;

This data structure type defines the data found at (buffer + len) for
IcLibVerifyConfig when Command == IC_VER_UPGRADE.

UpgradeLen The size, in bytes, of this data structure.

OldDataOffset The offset of the previously formatted data
buffer (or 'old' data) from the start of the
IcLibVerifyConfig buffer parameter.

ICS Data Structures/Types

5–76 4173 5390–000

OldDataLen The size, in bytes, of the old data buffer.

OldDataSerialNum The serial number of the table from which the
old data buffer came.

Reserved2 Reserved for future use.

Reserved3 Reserved for future use.

Note: The following is a pictorial view of the relationship of the new buffer (the
buffer parameter to IcLibVerifyConfig), the IC_UPGRADE_INFO data
structure, and the old data buffer.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibVerifyConfig function

ICS Data Structures/Types

4173 5390–000 5–77

IC_VER
The ICS type for component versions.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_VER_INFO
typedef union {

IC_VER IcVer;
struct {

WORD Rev;
WORD Ver;

} w;
struct

BYTE Revision;
BYTE EmuLevel;
BYTE MinorVersion;
BYTE MajorVersion;

} b;
} IC_VER_INFO;

This data structure type defines the format of the version control information.

IcVer The ICS IC_VER version number.

Alternate View:

Rev The Revision portion of IcVer .

Ver The Version portion of IcVer .

ICS Data Structures/Types

5–78 4173 5390–000

Alternate View:

Revision The IC_BUILD_REVISION .

EmuLevel The IC_EMU_LEVEL , 1
through 26 (mapping A through
Z), zero if this is not an
emergency release.

MinorVersion The minor,
IC_MINOR_VERSION ,
portion of the version.

MajorVersion The major portion of the
version.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_VERIFY
ICS type use to communicate the action to be taken in a library's IcLibVerifyConfig
procedure when the configuration is in error. The following commands are defined.

IC_VER_DELETE

The given configuration data is about to be deleted. Perform any special
verification/cleanup of related information.

IC_VER_DISPLAY

Verify and display errors to the user.

IC_VER_MODIFY

Verify, displaying errors to the user for modification.

IC_VER_SAVE

The given configuration data is about to be saved. Verify without displaying
errors to the user.

ICS Data Structures/Types

4173 5390–000 5–79

IC_VER_UPGRADE

Perform special upgrade processing and data conversions on the given buffer of
data. Note that an IC_UPGRADE_INFO data structure is located at (buffer +
len) for providing access to the data in the previous format.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IcLibVerifyConfig function

IC_UPGRADE_INFO data structure

IC_VERIFY_OK
An IC_RESULT indicating that no error occurred during a verify action.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

IC_VERSION_FILE
The default file version for Windows version control.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_VER_INFO data structure

icdef.rh include file

IC_VERSION_PRODUCT
The default product version for Windows version control.

ICS Data Structures/Types

5–80 4173 5390–000

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_VER_INFO data structure

icdef.rh include file

IC_VERSION_STRING
The ICS current version information in string format.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

IC_VERSION_...
Used to delimit the range of release levels of the ICS API supported by this
component. These are used as the version (oldest version) and the max_version
(newest version) values in the INFOConnect RCDATA resource for backward
compatibility.

IC_VERSION_CHECK

Used for backward compatibility to release version 1.0.

IC_VERSION_1_0

ICS Version 1.0.

IC_VERSION_1_2

ICS Version 1.2.

IC_VERSION_2_0

ICS Version 2.0.

IC_VERSION_2_02

ICS Version 2.02.

ICS Data Structures/Types

4173 5390–000 5–81

IC_VERSION_3_0

ICS Version 3.0.

Etc.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_RC_NODE data structure

ICSTD_ACTIVECHANNEL
Identifies the HIC_CHANNEL channel handle field of an active channel table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICSTD_ACTIVEPATH
Identifies the HIC_SESSION session (active path) handle field of an active path
table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICS Data Structures/Types

5–82 4173 5390–000

ICSTD_ACTIVEPATHCHANNEL
Identifies the HIC_CHANNEL channel handle field of an active path table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICSTD_CHANNEL
Identifies the channel ID field of a channel table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICSTD_PATH
Identifies the path ID field of a path table.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICSTD_PATHCHANNEL
Identifies the channel ID field of a path table.

ICS Data Structures/Types

4173 5390–000 5–83

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_TABLE_FLAGS data type

ICXVTCONFIG
This tag must be defined by XVT applications in order to use the ICS configuration
API. Add the following line before #include <xvt.h>.

#define ICXVTCONFIG

❍ WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

ICXVTWIN
This tag must be defined by XVT applications that also include the WINDOWS.H
include file. Add the following line before #include <xvt.h>.

#define ICXVTWIN

❍ WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

LPHIC_CHANNEL
Far pointer to an HIC_CHANNEL type.

● WIN ❍ XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

5–84 4173 5390–000

LPHIC_SESSION
Far pointer to an HIC_SESSION type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

LPIC_RESULT_CONTEXT
Far pointer to an IC_RESULT_CONTEXT type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

LPIC_SINFO
Far pointer to an IC_SINFO record type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_SINFO data structure

LPIC_STATUSBUF
Far pointer to an IC_STATUSBUF record type.

● WIN ● XVT ● DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

ICS Data Structures/Types

4173 5390–000 5–85

See also:

IC_STATUSBUF data structure

LPIC_UPGRADE_INFO
Far pointer to an IC_UPGRADE_INFO record type.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ❍ Configurator

● AIL ● SL ● EIL

See also:

IC_UPGRADE_INFO data structure

LPIC_VER_INFO
A far pointer to an IC_VER_INFO structure.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

See also:

IC_VER_INFO data structure

ICS Data Structures/Types

5–86 4173 5390–000

NULL_HIC_CHANNEL
ICS NULL channel handle.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

NULL_HIC_CONFIG
ICS NULL configuration handle.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

NULL_HIC_SESSION
ICS NULL session handle.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

NULL_HIC_STATUSBUF
ICS NULL extended status buffer handle.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

IC_STATUSBUF data structure

ICS Data Structures/Types

4173 5390–000 5–87

NULL_IC_BUFHND
INFOConnect Connectivity Services NULL buffer handle type for shared data. Use
this to test for the validity of an IC_BUFHND type.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

NULL_IC_MEMHND
INFOConnect Connectivity Services NULL buffer handle type for non-shared, intra-
application memory. Use this to test for the validity of an IC_MEMHND type.

❍ WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

❍ AIL ❍ SL ❍ EIL

PATHID
typedef struct {

char ID [IC_MAXPATHIDSIZE];
} PATHID;

This data structure type defines a path ID.

ID The path ID.

● WIN ● XVT ❍ DosLink

❍ Accessory ❍ Shell ● Configurator

● AIL ● SL ● EIL

VER_FILEDESCRIPTION_STR
Used in the Windows 3.1 version structure for all INFOConnect files that utilize the
version definition. This value, which is a descriptive string of the component, must
be defined by your component before including the icdef.rh file. See the Windows

ICS Data Structures/Types

5–88 4173 5390–000

3.1 Software Development Kit for information on updating the default version values
in icdef.rh.

Note: The following is an example of an accessory resource for an application
called MyApp.EXE that uses version control.

#include "ver.h"

#define VER_FILETYPE VFT_APP
#define VER_FILESUBTYPE VFT2_UNKNOWN
#define VER_FILEDESCRIPTION_STR "MyApp Description"
#define VER_INTERNALNAME_STR "MyApp"

#include "Iicdef.rh"

/* Insert the rest of your RC file here */

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

VER_FILESUBTYPE data type

VER_FILETYPE data type

ICS Data Structures/Types

4173 5390–000 5–89

VER_FILESUBTYPE
Used in the Windows 3.1 version structure for all INFOConnect files that utilize the
version definition. This value, which is a version subtype, must be defined by your
component before including the icdef.rh file.

Valid subtype values are defined in VER.H from the Windows 3.1 SDK.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

VER_FILEDESCRIPTION_STR data type for an
example

VER_FILETYPE
Used in the Windows 3.1 version structure for all INFOConnect files that utilize the
version definition. This value, which is a version type, must be defined by your
component before including the icdef.rh file.

Valid file-type values are defined in VER.H from the Windows 3.1 SDK.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

VER_FILEDESCRIPTION_STR data type for an
example

ICS Data Structures/Types

5–90 4173 5390–000

VER_INTERNALNAME_STR
Used in the Windows 3.1 version structure for all INFOConnect files that utilize the
version definition. This value, which is the internal name of the component, must be
defined by your component before including the icdef.rh file.

● WIN ● XVT ❍ DosLink

● Accessory ● Shell ● Configurator

● AIL ● SL ● EIL

See also:

VER_FILEDESCRIPTION_STR data type for an
example

4173 5390–000 6–1

Section 6
ICS Accessory Definition

An ICS accessory is an ICS application that can be invoked and controlled by other
ICS applications. Accessories are written to be useful in building more sophisticated
products. An accessory adheres to the following.

• Parse and react to the ICS-defined command line parameters.

Table 6–1. ICS Command Line Parameters

Parameter Meaning

<options file> The filename of the configuration options file. This file,
when saved by the user, is to contain at least the most
recent command line parameter options. This filename,
if it exists, must be the first parameter on the command
line.

-d or -D Indicates running in debug mode, if the accessory
supports it.

-k or -K Followed by optional spaces and the current
accessory's ID. This option is always on the command
line when the accessory is being invoked by an
application (that is, the accessory is being executed as
a result of a call to IcOpenAccessory or
IcRunAccessory).

continued

ICS Accessory Definition

6–2 4173 5390–000

Table 6–1. ICS Command Line Parameters (cont.)

Parameter Meaning

-l or -L Followed by optional spaces and the screen
coordinates of the top left and bottom right window
corners, enclosed in parentheses, as follows:
(left,top,right,bottom)

-p or -P Followed by optional spaces and the desired path name
(path ID). When present, the accessory must open a
session with the indicated path before any other
processing. If an error is encountered (for example, an
invalid options file format or an invalid command line
parameter) the accessory must explicitly close the
opened session.

-wxy or -Wxy Window state parameter that is generated by a call to
IcRunAccessory . Accessories must not define this
command line parameter for its own purposes.
Accessories must, however, recognize and react to the
parameter. See the IcRunAccessory function in
Section 6 for the valid values for x and y.

• Display the session name and the accessory's identification string on the
accessory window's title bar.

• Register and deregister itself, obtaining a context number. See
IcRegisterAccessory and IcDeregisterAccessory.

• Provide a .HIC include file that contains the accessory's context string and any
accessory-specific statuses and errors.

• Respond to the IC_CONTROL_ACTIVATE status message by bringing itself
into focus. If the accessory window was iconized, it should be restored.

• Delimit transactions using the IC_STATUS_TRANS status message.

• Terminate when all ICS sessions that it is using are closed.

• Provide the IC_RC_NODE type of user-defined resource in the resource file.

ICS Accessory Definition

4173 5390–000 6–3

• Adhere to the ICS on-line help style that follows:

− Follow the MS-Windows 3.1 Help guidelines. See the Windows 3.1
Software Development Kit for more information. In particular, the Help
pull-down menu includes a Contents item, a Search for Help on item, a How
to Use Help item, and an About item.

− Install the help book in the same directory as the executable. The help book
should have the same root name as the executable with the HLP extension.

− Accessories that require ICS 2.0 or higher can use the Windows 3.1 help
compiler, since the Windows 3.1 Help engine is redistributed with the
Connectivity Services package.

0–1

4173 5390–000 A–1

Appendix A
Standard IDs (Keys) & Component
Numbers

The following, case-insensitive IDs are standard for INFOConnect Connectivity
Services. This means that any vendor developing an accessory or library that
functions as described must associate itself with the corresponding ID through its
resource file and install procedure. This ensures that accessories can access the
desired runtime regardless of the vendor. This does not preclude the use of unique
IDs where necessary.

Accessory IDs
ID Description

ANSI VT-220 Emulator

DosLinkServer DosLink Server Accessory

MT A Series MT Emulator

PPT Printer Pass Through for A Series

SNMP SNMP Agent

UTS60 UTS60 Emulator

UTS60G UTS60 Graphics Engine

Standard IDs (Keys) & Component Numbers

A–2 4173 5390–000

Service Library IDs
ID Description

COMS A Series COMS

DTPX DTPX Service

HCLNTS HLCN Terminal Services

INT1 2200 Interactive 1

TCP-A A Series TCP/IP Access

TELCON DCP TELCON

TELNET TELNET Services

TP0 TCP TP0/RFC1006 Services

Trace Trace INFOConnect Session Activity

TTY-1100 1100 Demand TTY

Standard IDs (Keys) & Component Numbers

4173 5390–000 A–3

External Interface Library IDs
ID Description

AVGATE A Series LAN Gateway

DosLink ICS DosLink Access

Local Local Communications

NetBIOS NetBIOS Access

OSGATE OS 2200 LAN Gateway

OSI OSI Access

PS Poll/Select Access

Stack ICS Path Stacker

TCP TCP/IP Socket Access

TTY TTY Access

UTS Uniscope Access

WinSock Windows Socket Access

XNS XNS Access

X25 X.25 Access

Standard IDs (Keys) & Component Numbers

A–4 4173 5390–000

Component Numbers
Component numbers are defined by the IC_COMPONENT data type and are used
by the INFOConnect Connectivity Services configuration accessory to uniquely
identify components.

Every INFOConnect component is assigned two IC_COMPONENT s: a generic
IC_COMPONENT and a branded (supplier-specific) IC_COMPONENT .
Components with non-zero generic IC_COMPONENT s conform to the interface
defined by the specific component's .HIC include file. The branded
IC_COMPONENT uniquely identifies the component. A component with a zero
generic IC_COMPONENT performs some specific function defined by the vendor
of that component.

The generic IC_COMPONENT identifies the component according to its function.
The same generic IC_COMPONENT is used by all components that implement the
same function. These types of components are preferable because they provide more
flexibility and inter-operate with more current and future INFOConnect components.
The developer provides the IC_COMPONENT value in the IC_RC_NODE of the
component's resource file. If a non-zero generic IC_COMPONENT is not provided,
the component is assumed to provide a unique function. No generic
IC_COMPONENT value is assigned.

The branded IC_COMPONENT uniquely identifies the specific component. The
vendor provides this value in the IC_RC_NODE of the component's resource file. If
a non-zero branded IC_COMPONENT is not provided, a unique value will be
generated and assigned when the library ID is added to the INFOConnect
configuration database.

An IC_COMPONENT is constructed so that it can be managed using the universal
Simple Network Management Protocol (SNMP) / Management Information Base
(MIB). It consists of two parts: a component number and a supplier number.
Generic IC_COMPONENT s and the supplier number of branded
IC_COMPONENT s are assigned through the Malvern Development Group. Each
vendor is responsible for managing the component number of the
IC_COMPONENT s for its INFOConnect products. The currently assigned generic
IC_COMPONENT s and branded supplier numbers are recorded in the ic.hic include
file.

Standard IDs (Keys) & Component Numbers

4173 5390–000 A–5

Notes:

• The Windows resource compiler does not accept LONG values in resources. The
IC_COMPONENT value must appear in the IC_RC_NODE resource as its two
parts. Because of x86 little-endian architecture, the IC_COMPONENT parts
must be specified in the reverse order in the INFOConnect resource: supplier
number followed by the component number.

• To obtain a vendor-specific, or branded, supplier number for your components,
submit a Contact in the Primus database.

0–1

4173 5390–000 B–1

Appendix B
Status Types and Statuses

This section provides an overview of ICS standard statuses, which are also
documented in Section 5, "ICS Data Structures and Types." The statuses are
presented according to their use by components, as follows.

• Statuses Sent from Accessory to Library

• Statuses Sent from Library to Accessory

• Statuses Sent from Accessory to Accessory

• Statuses Sent from ICS to Accessory

• UTS-Specific Statuses

• DosLink-Specific Statuses

• Library Support for 1.11 Applications

Note that statuses may be described in multiple sections. Applications should
process incoming events as needed. Service libraries and external interface libraries
should produce the necessary status events when it is meaningful to do so.

Libraries may use these standard statuses or they may also generate their own,
library-specific statuses using the library's context along with library-defined status
types and status values. These values must be defined in the library's .HIC include
file along with the context string to associate with the library's context. Applications
wishing to recognize a library-specific status would include the particular library's
.HIC include file. It would then be able to get the library's context from the context
string by using IcGetContext. The application would recognize the library-specific
status by retrieving the IC_RESULT_CONTEXT from the status.

Status Types and Statuses

B–2 4173 5390–000

Statuses Sent from Accessory to Library

IC_STATUS_BLOCKING
IC_STATUS_BLOCKING is an application-initiated status type that is used to
control the blocking mode of those service libraries that support it. The application
toggles the blocking mode using the following statuses.

IC_BLOCKING_ON Turn blocking on.

IC_BLOCKING_OFF Turn blocking off.

Applications that require blocking should either be altered to support non-blocking
interfaces or refuse to support a session over a library that sets sinfo.block_mode to
FALSE.

IC_STATUS_BUFFER
IC_STATUS_BUFFER is an extended status that allows a buffer of information to
be exchanged between an ICS application and an ICS library. It is to be used
whenever the status information to be exchanged exceeds the bounds of the
IC_RESULT structure. In this case, the IC_RESULT_VALUE portion of the status
message is an INFOConnect buffer handle of type HIC_STATUSBUF. The
IC_STATUSBUF data structure is defined as follows:

typedef struct aSTATUSBUF {
IC_RESULT icstatus;
IC_RESULT icerror;
long reserved;
unsigned uBufSize;
unsigned uDataSize;

} IC_STATUSBUF;

Status Types and Statuses

4173 5390–000 B–3

icstatus The actual status message associated with the
buffer of information.

icerror The IC_RESULT of the status request.

reserved Reserved for future use.

uBufSize The actual size, in bytes, of the data buffer.

uDataSize The size, in bytes, of the valid data in the data
buffer.

Note that the data buffer must immediately follow the IC_STATUSBUF header. It
should not contain pointers, but may contain offsets within the structure.

The IC_STATUS_BUFFER status message request can be synchronous or
asynchronous. For a synchronous message, the library receives and processes the
IC_STATUS_BUFFER status message, setting the icerror field to either IC_OK or
an error. The icerror result is returned to the application as an IC_StatusResult
message. An IC_OK result implies that the data buffer has been accessed and
uDataSize is the size of the valid information.

For an asynchronous message, the library receives the IC_STATUS_BUFFER status
message, sets the icerror field to IC_INCOMPLETE and returns
IC_INCOMPLETE . The application receives the IC_StatusResult message with
the IC_INCOMPLETE result. When the library finally supplies the uDataSize and
accesses the data buffer, the icerror field should be set to IC_COMPLETE or to an
error. The IC_STATUS_BUFFER status message should then be sent back to the
application.

In both cases, the application should be responsible for freeing the data buffer. The
data buffer should not be freed, however, until after the application receives an
IC_StatusResult response of IC_OK or an error. If the result is
IC_INCOMPLETE , this is the asynchronous case and the data buffer should not be
freed until the status is returned via the IC_STATUS_BUFFER status message.

IC_STATUS_CONNECT
The IC_STATUS_CONNECT status type instructs the external interface library to
alter the connection state. The connection states are defined by one of the following
statuses.

Status Types and Statuses

B–4 4173 5390–000

IC_CONNECT_OPEN Request to reopen the connection.
This status is supported only if
sinfo.reconnect is TRUE. If the library
cannot honor this request, it should
return an error from its IcSetStatus
procedure.

IC_CONNECT_CLOSE Close the connection. This status is
supported only if sinfo.reconnect is
TRUE.

IC_CONNECT_EOF Request that no more data be sent (for
use under TCP/IP). This status is
supported only if sinfo.reconnect is
TRUE.

IC_CONNECT_STATUS Request that the EIL display status
information to the user. This is the
status sent when the user selects the
Status button from the ICS Shell.

See the IC_STATUS_CONNECT entry in the Statuses Sent From Library to
Accessory section below.

IC_STATUS_DATAFLAGS
This status controls the state of messages to mark expedited and/or multipart
messages. The initial state of messages is assumed to be non-expedited and single
part.

IC_DATAFLAGS(v) A macro that creates an
IC_DATAFLAGS status with value v.

IC_DATAFLAGS_EXPEDITED This status indicates that the following
transmitted message is urgent. It is to
be delivered ahead of any other
messages in the message queue.

IC_DATAFLAGS_MORE This status indicates that the following
transmitted messages are part of a
multipart message.

IC_DATAFLAGS_NONE This status indicates that none of the
data flags are set. It is used to indicate
the last part of a multipart message.

Status Types and Statuses

4173 5390–000 B–5

IC_DATAFLAGS_RESERVED1 Reserved status.

IC_DATAFLAGS_RESERVED2 Reserved status.

IC_STATUS_FKEY
This application-initiated status type is used to send function key messages to the
underlying layer of the ICS communication session. The function keys are defined
by one of the following statuses.

IC_FKEY_BREAK The break key

IC_FKEY_1 Function key 1

IC_FKEY_2 Function key 2

. .

. .

. .

IC_FKEY_23 Function key 23

IC_FKEY_24 Function key 24

IC_FKEY_MSGWAIT Uniscope-specific BEL character key

IC_FKEY_SYSMODE Uniscope-specific OS3 system mode
key used to set system mode

IC_FKEY_WSMODE Uniscope-specific OS3 workstation
mode key used to set workstation
mode

Status Types and Statuses

B–6 4173 5390–000

IC_STATUS_REACTIVATE
These status messages must be sent by an application to the communication session
by calling the set status procedure when sinfo.focus_notify is TRUE.

IC_REACTIVATE_ON Application has received focus and
sinfo.focus_notify is TRUE.

IC_REACTIVATE_OFF Application has lost focus and
sinfo.focus_notify is TRUE.

A library that needs to be notified of an application gaining/losing input focus (such
as COMS), should set sinfo.focus_notify to TRUE in the IcLibGetSessionInfo
procedure. (The COMS library generates and transmits messages (?on...) when the
current window changes.)

Applications without visible windows must either support these statuses or refuse to
support a session over a library that requests this type of notification.

IC_STATUS_TRANS
These status messages are sent by INFOConnect accessories to delimit transactions.
Note that the initial state of all applications is assumed to be
IC_TRANSACTION_OFF .

IC_TRANSACTION_ON Indicates that
IC_TRANSACTION_BEGIN and
IC_TRANSACTION_END status will
be sent.

IC_TRANSACTION_OFF Indicates that
IC_TRANSACTION_BEGIN and
IC_TRANSACTION_END status will
not be sent.

IC_TRANSACTION_BEGIN Sent at the beginning of a
transaction.

IC_TRANSACTION_END Sent at the end of a transaction.

Status Types and Statuses

4173 5390–000 B–7

Statuses Sent from Library to Accessory

IC_STATUS_CONNECT
These IC_STATUS_CONNECT statuses are typically issued from the EIL and
report the state of the connection. The connection states are defined by one of the
following statuses.

IC_CONNECT_OPEN The logical connection is available
for bidirectional communication
under the current configuration.

IC_CONNECT_CLOSE The logical connection is NOT
available for bidirectional
communication under the current
configuration. This is the initial state
of the session.

IC_CONNECT_EOF The logical communication session
is physically closed, no more data
will be received (for use under
TCP/IP).

IC_CONNECT_ACTIVITY The physical connection (not
necessarily this communication
session) is functioning as expected.

IC_CONNECT_NOACTIVITY The physical connection is NOT
functioning as expected.

IC_CONNECT_BROKEN Status that indicates that the other
half of two connected sessions has
closed. For example, a DosLink
session receives this status when its
partner session is closed.

IC_CONNECT_JOINED Status that indicates that two
sessions have been connected. For
example, this is the status received
when two DosLink sessions are
connected.

Status Types and Statuses

B–8 4173 5390–000

IC_CONNECT_SERVER Status that originates from the server
application (such as the DosLink
Server accessory) that indicates
readiness to the client.

Libraries should send these statuses only when the status of the connection changes.

See also the IC_STATUS_CONNECT entry in the "Statuses Sent from Accessory to
Library" section.

IC_STATUS_CONTROL
When initiated from an external interface library, a status of this type makes a
request to the application. The requests are defined by one of the following statuses.

IC_CONTROL_ACTIVATE This status requests that the
applications window become active for
user input. This occurs when the user
selects the GoTo button on the user
interface window.

IC_CONTROL_RCVREADY This status requests that the
application perform a receive request.
It indicates to the application that a
received message must be delivered
or it may be lost.

IC_CONTROL_RCVAVAIL This is a notification, or advisory,
status indicating that a message is
available but not deliverable due to the
state of the application. The session
may be blocked until the message is
delivered (for example, Poll/Select
remains in the enqueued state until the
message is delivered).

See the IC_STATUS_CONTROL entry in the "Statuses Sent from Accessory to
Accessory" section.

IC_STATUS_LINESTATE
This EIL-initiated status type signifies the state of the underlying layer of the ICS
communication session. This status is generally used by terminal emulators, such as
MT and T27 type emulators. Therefore, Poll/Select libraries should generate these
statuses.

Status Types and Statuses

4173 5390–000 B–9

An IC_STATUS_LINESTATE status message is generated by the external interface
library each time the line state changes. Pass the event to the application by calling
IcMgrSendEvent(...). Applications receiving this event may or may not wish to
process it.

The meaning of the line state statuses are as follows.

IC_LINESTATE_LCL The ICS communication session is
neither transmitting nor receiving.

IC_LINESTATE_RCV The ICS communication session is in
receive mode.

IC_LINESTATE_XMT The ICS communication session is in
transmit or transmit/receive mode.

Status Types and Statuses

B–10 4173 5390–000

Statuses Sent from Accessory to Accessory

IC_STATUS_DATAFLAGS
This application-initiated status controls the state of messages. It is used with the
IcSetStatus/IcXmt functions and the IC_RcvDone event to mark expedited and/or
multipart messages. The initial state of messages is assumed to be non-expedited
and single part.

IC_DATAFLAGS(v) A macro that creates an
IC_DATAFLAGS status with value v.

IC_DATAFLAGS_EXPEDITED This status indicates that the following
transmitted message is urgent. It is to
be delivered ahead of any other
messages in the message queue.

IC_DATAFLAGS_MORE This status indicates that the following
transmitted messages are part of a
multipart message.

IC_DATAFLAGS_NONE This status is complementary to
IC_DATAFLAGS_MORE . It is used to
indicate the last part of a multipart
message.

IC_DATAFLAGS_RESERVED1 Reserved status.

IC_DATAFLAGS_RESERVED2 Reserved status.

Note: For an example, see the IC_STATUS_DATAFLAGS status in Section 5,
"Data Structures and Types".

Status Types and Statuses

4173 5390–000 B–11

IC_STATUS_CONTROL
This status makes a request to another connected accessory. The requests are defined
by one of the following statuses.

IC_CONTROL_ACTIVATE This status requests that the other
application's window become active for
user input.

IC_CONTROL_RCVREADY This status requests that the other
application perform a receive request.

See the IC_STATUS_CONTROL entry in the Statuses Sent From Library to
Accessory section above.

Status Types and Statuses

B–12 4173 5390–000

Statuses Sent from ICS to Accessory

IC_STATUS_COMMMGR
This status type originates from the ICS Manager itself and conveys initialization or
termination information. If the ICS Manager terminates, the ICS accessory must call
the ICS initialization routine before calling any other ICS procedures.

IC_COMMMGR_INITIALIZED Status sent to all Windows
applications when the ICS
Manager finishes initializing. ICS
accessories may now call the ICS
initialization routine, if necessary,
before establishing INFOConnect
sessions.

IC_COMMMGR_TERMINATED Status sent to all Windows
applications when the ICS
Manager finishes terminating. All
ICS accessories should either
close or call the ICS initialization
routine before establishing
another ICS session.

IC_COMMMGR_QUERYEXIT Status sent to all ICS
communications sessions when
the user closes the INFOConnect
Shell. If the application does not
wish to close the session, it should
cancel the exit by calling
IcExitOk(FALSE) . Otherwise, call
IcExitOk(TRUE) .

IC_COMMMGR_QUERYSHUTDOW
N

Status sent to all ICS
communications sessions when
Windows is exiting. If the
application does not wish to close
the session, it should cancel the
exit by calling IcExitOk(FALSE) .
Otherwise, call IcExitOk(TRUE) .

Status Types and Statuses

4173 5390–000 B–13

IC_COMMMGR_CANCELEXIT Status sent to all ICS
communications sessions that
previously received an
IC_COMMMGR_QUERYEXIT
status when at least one of the
applications called
IcExitOk(FALSE) .

IC_COMMMGR_EXIT Status sent to all ICS
communications sessions if
IcExitOk(FALSE) is never called.
The ICS Manager will then exit.

IC_COMMMGR_REINSTALL Status posted to all windows by
install.exe when the ICS Manager
is being reinstalled.

Status Types and Statuses

B–14 4173 5390–000

UTS-Specific Statuses

IC_STATUS_UTS
IC_UTS_SELECTION
IC_UTS_DVC_READY
IC_UTS_DVC_BUSY
IC_UTS_DVC_ERROR
IC_UTS_DVC_NOTREADY
IC_UTS_ATTENTION

IC_UTS_DESELECT_ACTIVITY
IC_UTS_DESELECT_DID
IC_UTS_MSGWAIT
IC_UTS_POC

This status type may be used to send and receive special messages to/from the UTS
external interface library (and the INT1 SL).

The library may send the following status to the application. The
IC_RESULT_VALUE is interpreted as two subfields: IC_RESULT_SUBTYPE
(subtype) and IC_RESULT_SUBVALUE (subvalue). A special macro,
IC_MAKE_UTS_RESULT(t, v) , is available to create an IC_RESULT from the
standard context and from the IC_RESULT_TYPE and IC_RESULT_VALUE .

IC_UTS_SELECTION subtype 0

IC_UTS_DESELECT_ACTIVITY This status message has a subvalue of
0x71. It is a request to deselect the
current device.

IC_UTS_DESELECT_DID This status message has a subvalue of
0x72. It is a request to flush and
deselect the current device.

IC_UTS_MSGWAIT This status message has a subvalue of
0x07. This is message wait.

Subvalues in the range of
0x20 - 0x6F and 0x73 - 0x7F

These status messages request the
selection of the given Device ID (DID).

The application may send the following status to the UTS external interface. The
IC_RESULT_VALUE is interpreted as two subfields: IC_RESULT_SUBTYPE
(subtype) and IC_RESULT_SUBVALUE (subvalue).

Status Types and Statuses

4173 5390–000 B–15

IC_UTS_DVC_READY subtype 0x10

Subvalues in the range of
0x20 - 0x6F and 0x73 - 0x7F

These status messages indicate that
the given device (DID) is ready.

IC_UTS_DVC_BUSY subtype 0x11

Subvalues in the range of
0x20 - 0x6F and 0x73 - 0x7F

These status messages indicate that
the given device (DID) is busy.

IC_UTS_DVC_ERROR subtype 0x12

Subvalues in the range of
0x20 - 0x6F and 0x73 - 0x7F

These status messages indicate that
the given device (DID) has an error.

IC_UTS_DVC_NOTREADY subtype 0x13

Subvalues in the range of
0x20 - 0x6F and 0x73 - 0x7F

These status messages indicate that
the given device (DID) is not
responding.

IC_UTS_ATTENTION subtype 0x20

IC_UTS_POC This status message has a subvalue of
0x36. It indicates power confidence
tests have completed (that is, send
<DLE>6 to the host).

Status Types and Statuses

B–16 4173 5390–000

DosLink-Specific Statuses

DOSLINK_SINFO
This status type, when associated with the DosLink EIL context, is sent from the
DosLink Server accessory by calling IcMgrSetResult. The value of the status is the
session handle on which to retrieve SINFO data. The DosLink EIL uses the result
value as the session handle for calling IcMgrGetSessionInfo. The SINFO record is
then passed to the DosLink Client using the DosLink IcSetServerInfo API. When
the SINFO data has been copied to the DosLink Client session, an
IC_CONNECT_SERVER (IC_STATUS_CONNECT type) status is sent to the
client session. The session information data is then available to the client session.

Status Types and Statuses

4173 5390–000 B–17

Library Support for 1.11 Applications
Applications written with the 1.11 version of the IDK use the
IC_STATUS_SPECIALMSG status message instead of the IC_STATUS_UTS or
the IC_STATUS_FKEY statuses. In order for 2.0 libraries to support these
applications, they should be aware of this.

The IC_STATUS_SPECIALMSG status with IC_RESULT_VALUE 0x07
(Message Wait), has the same binary value as the new IC_UTS_MSGWAIT status.
The IC_UTS_DESELECT... statuses also have the same binary values as their
IC_STATUS_SPECIALMSG counterparts. Therefore, libraries need not do any
special processing for sending these status to version 1.11 applications.

Version 1.11 applications will be sending IC_STATUS_SPECIALMSG type
statuses to the library. If the library receives an IC_UTS_SELECTION (subtype ==
0) status message from an application, the library should use the
IC_RESULT_SUBVALUE to perform the IC_STATUS_FKEY action using the
following table.

SUBVALUE Status

0x37 IC_FKEY_1

0x47 IC_FKEY_2

0x57 IC_FKEY_3

0x67 IC_FKEY_4

0x20 to 0x32 IC_FKEY_5 to IC_FKEY_22

UTS EIL (and INT1 SL)

0x07 IC_FKEY_MSGWAIT

TTY EIL

0x00 IC_FKEY_BREAK

Status Types and Statuses

B–18 4173 5390–000

The IC_STATUS_SPECIALMSG status is presented below for completeness.
Existing applications should be modified to use the IC_STATUS_UTS and
IC_STATUS_FKEY statuses before release 3.0 of the IDK.

IC_STATUS_SPECIALMSG
This status type was used by the 1.11 version of some of the ICS layers to send and
receive special messages through the communication session. The unique status
values are defined as follows.

TTY EIL

TTY external interface library interprets the following
IC_STATUS_SPECIALMSG IC_RESULT_VALUE , sent by an application, as
follows.

0x00 Break key.

The application uses the IC_MAKE_RESULT macro with
IC_RESULT_CONTEXT_STD , IC_STATUS_SPECIALMSG, and value 0x00 to
create this status before calling the set status procedure.

From UTS EIL or INT1 SL to the Accessory

The UTS external interface library and the INT1 service library generate the
following IC_STATUS_SPECIALMSG IC_RESULT_VALUE s to an application.

0x07 Unsolicited MESSAGE WAIT from
host.

0x72 Deselection DID has been received
from host.

The application can use the IC_GET_RESULT_TYPE and
IC_GET_RESULT_VALUE macros to examine the status result.

From Accessory to UTS EIL or INT1 SL

The UTS external interface library and the INT1 service library interpret the
following IC_STATUS_SPECIALMSG IC_RESULT_VALUE s from an
application as follows.

0x07 Message Wait.

0x37 F1 Key.

Status Types and Statuses

4173 5390–000 B–19

0x47 F2 Key.

0x57 F3 Key.

0x67 F4 Key.

0x20 F5 Key.

0x21 F6 Key.

0x22 F7 Key.

0x23 F8 Key.

0x24 F9 Key.

0x25 F10 Key.

0x26 F11 Key.

0x27 F12 Key.

0x28 F13 Key.

0x29 F14 Key.

0x2A F15 Key.

0x2B F16 Key.

0x2C F17 Key.

0x2D F18 Key.

0x2E F19 Key.

0x2F F20 Key.

0x30 F21 Key.

0x31 F22 Key.

The application uses the IC_MAKE_RESULT macro with
IC_RESULT_CONTEXT_STD , IC_STATUS_SPECIALMSG, and the desired
value from above to create the status result before calling the set status procedure.

0–1

4173 5390–000 C–1

Appendix C
Errors and Results

This appendix lists and describes the INFOConnect Connectivity Services errors and
informative results, as well as standard configuration accessory errors and errors
specific to Unisys-provided ICS service libraries and external interface libraries.
These fields must be provided by other vendors developing the given library.

Library-specific errors are generated using the library's context along with library-
defined error types and error values. These values are defined in the library's .HIC
include file along with the context string associated with the library's context. (The
context string must be unique up to the first eight characters.) To maintain
flexibility, applications should generally not be coded to particular library-specific
errors. However, those developer's wishing to recognize a library-specific error
would include that particular library's .HIC include file into the application. The
application would then be coded to retrieve the library's context from the context
string using IcGetContext. The library-specific error is recognized using the
IC_GET_RESULT_... API to retrieve various parts from the error result, including
the IC_RESULT_CONTEXT .

Errors and Results

C–2 4173 5390–000

INFOConnect Connectivity Services

ICS Standard Errors
The following error results are common/general errors defined for INFOConnect
Connectivity Services. They may be returned as the result of a procedure call or with
an error event (IC_Error , IC_RcvError , and so forth under MS-Windows or
E_IC_ERROR, and so forth under XVT).

Most errors (with the exception of interactive library configuration and the Version
2.0 implementation of the EIL AutoDial feature in TTY, for example) are filtered
back through the application. The application may be coded to handle the error
itself, perhaps by displaying it to the user or by performing some other action, or the
error may be passed back to INFOConnect by calling the INFOConnect default error
procedure.

Library developers may use any of the standard error results, but must call
IcSetSessionError prior to exiting the active procedure. (See IcSetSessionError in
Section 3, "INFOConnect API", for more information.)

Terminate-type errors indicate that the particular request failed and that all other
requests on the associated session will also fail. Therefore, the communication
session must be closed. If the default error procedure is called, the error message
will be displayed to the user and the communication session will be closed
automatically.

Severe-type errors indicate that a particular request failed. Errors in the range of this
type are serious enough that they are always displayed to the user.

Errors in the range of the IC_ERROR_WARNING type indicate that the request
succeeded and suggest that the result should either be displayed to the user or logged
by the application for future reference. User intervention (for example,
reconfiguring or upgrading the software) will prevent the warning from reoccurring.

Errors in the range of the IC_ERROR_INFO type are informative. They may be
optionally logged by the application and should not be displayed to the user. Results
that do not indicate an error, but rather some return condition, are also of type
IC_ERROR_INFO .

IC_ASSIGNMENT_ERROR (Value 902)

The template ID is already assigned to a template.
The requested update has not been made.

Level: Severe

Errors and Results

4173 5390–000 C–3

IC_ASSIGNMENT_ERROR indicates that the requested template ID cannot be
assigned. This error occurs when an attempt is made to use a template ID that is
already assigned to a template.

The user seeing this error can either use a different template ID or can rename the
existing template before retrying the action.

IC_ASSIGNMENT_UPDATED (Value 2004)

The template ID has been updated.

Level: Informational

IC_ASSIGNMENT_UPDATED result indicates that the request to update to a
template ID that has been previously assigned to a template has been completed.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_CANCELED (Value 2003)

The user cancelled from the dialog.

Level: Informational

The IC_CANCELED result indicates that the user cancelled from the active dialog.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

Errors and Results

C–4 4173 5390–000

IC_COMPLETE (Value 2013)

The pending request has successfully completed.

Level: Informational

The IC_COMPLETE result indicates that a pending request has been completed.
This is the result used to identify the completion of an extended, asynchronous status
request. See Appendix B for information on extended statuses.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_CONTEXT_ALREADY_CREATED (Value 701)

The ICS context for <context string> has already been created.
Context strings must be unique.

Level: Severe

IC_CONTEXT_ALREADY_CREATED indicates that the requested INFOConnect
context already exists. This error occurs when an attempt is made to load the
INFOConnect component with the given context string and a component with that
same context string has already been loaded. Each context string must be unique.

The user seeing this error should unload the existing component before trying to load
the component with the same context string.

IC_CONTEXT_ALREADY_DELETED (Value 702)

The ICS context for <context> has already been deleted.
Contact the component's vendor for further information.

Level: Severe

IC_CONTEXT_ALREADY_DELETED indicates that a request to delete a context
cannot be completed. This error occurs when the given context does not exist
because either it was already deleted or it was never created. This error should not
occur in the released version of a product.

The user seeing this error should contact the component's vendor for further
information.

IC_CONTEXT_INVALID (Value 703)

Invalid Context: <context>.
Contact the component's vendor for further information.

Errors and Results

4173 5390–000 C–5

Level: Severe

IC_CONTEXT_INVALID indicates an invalid context has been detected. This
error occurs when an attempt is made to access the given context and that context has
not been successfully initialized. This error should not occur in the released version
of a product.

The user seeing this error should contact the component's vendor for further
information.

IC_CONTEXT_NOT_FOUND (Value 704)

Context <context> not found.
Contact the component's vendor for further information.

Level: Severe

IC_CONTEXT_NOT_FOUND indicates that the given context cannot be found in
the INFOConnect table of contexts. This error occurs when an attempt is made to
access a component whose context was not successfully created. This error should
not occur in the released version of a product.

The user seeing this error should contact the component's vendor for further
information.

IC_CONTEXTSTRING_NOT_FOUND (Value 705)

Context string <context string> not found.
Contact the component's vendor for further information.

Level: Severe

IC_CONTEXTSTRING_NOT_FOUND indicates that the given context string
cannot be found in the INFOConnect table of contexts. This error occurs when an
attempt is made to access a component whose context was not successfully created.
This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor for further
information.

IC_CONTEXTSTRING_TRUNCATED (Value 706)

Context string <context string > truncated.
Contact the component's vendor for further information.

Level: Severe

Errors and Results

C–6 4173 5390–000

IC_CONTEXTSTRING_TRUNCATED indicates that the retrieved context string
was truncated. This error occurs when an attempt is made to retrieve the context
string from a context and the output buffer parameter is not big enough to hold the
context string. The buffer should be at least 9 bytes big.

The user seeing this error should contact the component's vendor for further
information.

IC_CONTEXTTABLE_FULL (Value 700)

The context table is full. Close some Windows applications and retry the
action.

Level: Severe

IC_CONTEXTTABLE_FULL indicates that no more context entries can be added
to the table of context/context strings. This error occurs in low memory conditions.

The user seeing this error should close some Windows applications and try the action
again.

IC_ERROR_ACCESSORY_FAILED (Value 801)

Accessory <name> execution failed. Verify that this is a valid Windows
code file.

Level: Severe

IC_ERROR_ACCESSORY_FAILED indicates that the given accessory could not
be executed. This error occurs when an attempt is made to execute an INFOConnect
application as an accessory and the accessory cannot execute successfully (see the
IcOpenAccessory and IcRunAccessory functions).

The user seeing this error should verify that the given file is a valid Windows code
file.

IC_ERROR_ACCESSORY_NOT_FOUND (Value 800)

Accessory <name> not found. Verify the accessory installation, the file
name, and the DOS path.

Level: Severe

IC_ERROR_ACCESSORY_NOT_FOUND indicates that the given file could not
be located. This error occurs when an attempt is made to execute an INFOConnect

Errors and Results

4173 5390–000 C–7

accessory through IcOpenAccessory or IcRunAccessory and the file or the DOS
path could not be found.

The user seeing this error should verify that the given file name and DOS path, as
well as the ICS installation of the accessory.

IC_ERROR_ALREADYCLOSED (Value 509)

The ICS Communications Manager has already been terminated.
Close and restart the INFOConnect Shell.

Level: Severe

IC_ERROR_ALREADYCLOSED indicates that no INFOConnect Shell is
executing. This error occurs only from IcTerminateShell when IcInitShell has not
been called. ICS Shell developers must be sure to call IcInitShell and
IcTerminateShell in pairs. This error should not occur in the released version of a
product.

The user seeing this error should contact the component's vendor.

IC_ERROR_APP_BUSY (Value 11)

Application queue full. Message discarded.

Level: Severe

IC_ERROR_APP_BUSY indicates that a message cannot be posted to an
application. This error occurs when the application's message queue is full.

The user seeing this error should give control to the application so that some
messages may be delivered.

IC_ERROR_APP_GONE (Value 12)

Application queue closed. Message discarded.

Level: Severe

IC_ERROR_APP_GONE indicates that a message cannot be posted to an
application. This error occurs when an AIL/IIL attempts to post a message to an
application whose window handle is no longer valid. This may occur if the
application terminates without closing all of its INFOConnect sessions.

The user seeing this error should contact the application's vendor.

Errors and Results

C–8 4173 5390–000

IC_ERROR_BADFUNCTION (Value 300)

Internal error: Bad function. Contact the component's vendor for further
information.

Level: Severe

For ICS DosLink applications, IC_ERROR_BADFUNCTION indicates an internal
error to the DosLink.386 driver.

The user seeing this error should contact the component's vendor.

IC_ERROR_BADPARAMETER (Value 4)

Invalid parameter received. Contact the component's vendor for further
information.

Level: Severe

IC_ERROR_BADPARAMETER is returned when an ICS procedure receives an
invalid parameter. This may occur when an unexpected NULL string pointer is
received or when a buffer length is less than the minimum required by the called
procedure. Errors of this type should not occur in the final release of a product.

The user seeing this error should contact the component's vendor.

Errors and Results

4173 5390–000 C–9

IC_ERROR_BADREVISION (Value 302)

This component references unknown revision <number>. Reboot the
computer and try again.

Level: Severe

IC_ERROR_BADREVISION indicates that the given revision number is unknown
to the ICS Manager. It may occur when a component contains an invalid or unknown
revision number or as the result of memory corruption.

The user seeing this error should attempt to recreate it before contacting the
component's vendor.

IC_ERROR_BADSESSION (Value 1)

Invalid session handle detected at <string>.
Session must be terminated.

Level: Termination

IC_ERROR_BADSESSION indicates that an invalid session handle has been
detected. This error occurs when some underlying layer of INFOConnect
Connectivity Services receives a handle to a session that is not a valid session handle
or, where required, the handle of an established session. Once the error message is
displayed, the communication session is to be closed through the close session
procedure. If the default error procedure is called, it closes the session
automatically.

For debugging purposes, library developers returning this error result from an ICS
library must first call IcSetSessionError with the lpinsert1 parameter pointing to a
string that identifies the location in the code where the error was detected (for
example, IcLibXmt).

The user seeing this error should turn on the Tracing Log facility from the
INFOConnect manager for the session and recreate the error. The resulting log file
should be sent to the INFOConnect support representative.

Errors and Results

C–10 4173 5390–000

IC_ERROR_BADTEMPLATE (Value 611)

Configuration of path template <template name> is invalid. Choose Modify
from Install Path Templates to update the corrupted data.

Level: Severe

IC_ERROR_BADTEMPLATE is an internal error indicating that the specified path
template configuration is corrupted. It may occur as the result of disk corruption.

The user seeing this error should modify the template and save it, allowing the
corrupted data to be overwritten.

IC_ERROR_BADVERSION (Value 301)

This component references unknown version <number>. Reboot the
computer and try again.

Level: Severe

IC_ERROR_BADVERSION indicates that the given version number is unknown to
the ICS Manager. It may occur when a component contains an invalid or unknown
version number or as the result of memory corruption.

The user seeing this error should attempt to recreate it before contacting the
component's vendor.

IC_ERROR_CANCELOPEN (Value 2000)

User did not select a valid path identification.

Level: Informational

The IC_ERROR_CANCELOPEN result occurs when the user selects the Cancel
button on the Select Path dialog box during the open session procedure. Note that
this is an informational result that indicates the dialog box was successfully executed
and that a path was NOT selected by the user.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_CHAN_BUSY (Value 612)

Library <name> is still busy opening channel <identifier>. Wait until the
channel has opened and try again.

Level: Severe

Errors and Results

4173 5390–000 C–11

IC_ERROR_CHAN_BUSY indicates that a library's IcLibOpenSession routine is
being called before a previous call to the library's IcLibOpenChannel routine for
that same channel has been completed. This may occur, for instance, if
IcLibOpenChannel waits for user input.

The user seeing this error should wait until the channel finishes opening and try to
open the path again.

IC_ERROR_CHANNELINUSE (Value 503)

Channel <identifier> already in use by <library> non-multiplexing library.
The requested path cannot be opened at this time.

Level: Severe

IC_ERROR_CHANNELINUSE indicates that the given ICS path (specified by
<identifier>) cannot be opened a second time. This error occurs from
IcOpenSession when the channel configured for the given ICS path is already being
used by the non-multiplexing library specified by <library>.

The user seeing this error should close one of the applications.

IC_ERROR_COLON_PRESENT (Value 906)

Colon(:) not allowed in ID. Correct the ID and try again.

Level: Severe

IC_ERROR_COLON_PRESENT indicates that the ICS ID erroneously contains a
colon. ICS does not allow colons in IDs.

The user seeing this error should correct the ID and try the action again.

Errors and Results

C–12 4173 5390–000

IC_ERROR_INITICS (Value 500)

Unable to start INFOConnect. ABORTING.
Contact the INFOConnect support representative for further information.

Level: Severe

IC_ERROR_INITICS indicates that INFOConnect cannot be executed. This error
occurs from IcInitIcs when an unknown error occurs during INFOConnect
Connectivity Services initialization. INFOConnect is aborted.

The user seeing this error should contact the INFOConnect support representative.

IC_ERROR_INMODIFY (Value 507)

Path <name> is currently being modified.
You cannot establish a session with this path.

Level: Severe

IC_ERROR_INMODIFY indicates that the given path cannot be opened. This error
occurs when the user is modifying a path and, at the same time, attempts to open a
session over it. These two activities are mutually exclusive. The session will not be
established.

The user seeing this error should finish modifying the path configuration before
attempting to use it.

IC_ERROR_INTERNAL (Value 5)

Internal error detected at <string>.
Contact the component vendor for further instruction.

Level: Severe

IC_ERROR_INTERNAL indicates a non-fatal internal error has been detected.
This error occurs when some layer of ICS detects an impossible or unlikely state.
For debugging purposes, developers returning this error from an ICS library must
first call IcSetSessionError with the lpinsert1 parameter pointing to a location
identification string.

The user seeing this error should contact the component's vendor for more
information.

Errors and Results

4173 5390–000 C–13

IC_ERROR_INVALID_CONFIGREC (Value 900)

Invalid configuration record structure returned.
Configuration aborted. Select Configure from the Configure Packages
window.

Level: Severe

IC_ERROR_INVALID_CONFIGREC indicates that a configuration record was
invalid. This error occurs when the structure of the record does not match that
expected by the ICS database.

The user seeing this error should select Configure from the Configure Packages
window to force a data upgrade to occur. The action should then be retried. If the
error still occurs, contact the component's vendor.

IC_ERROR_INVALIDPATH (Value 502)

Invalid path requested: <path ID>. Verify the path configuration.

Level: Severe

IC_ERROR_INVALIDPATH indicates that the given path ID is invalid. This error
occurs when the user tries to establish a session with a path ID that is not configured.

The user seeing this error should verify that a path with the given path ID is properly
configured.

IC_ERROR_INVALID_WINCOMBO (Value 8)

Invalid window state combination. Contact the component's vendor for
further information.

Level: Severe

IC_ERROR_INVALID_WINCOMBO indicates that a request was made to open an
ICS accessory with a hidden/active or maximized/background window state. This
error occurs when one of these invalid combinations of window state options is
passed to IcOpenAccessory or IcRunAccessory (through the -W option). See
IcOpenAccessory or IcRunAccessory in Section 3, "INFOConnect API", , for more
information. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

Errors and Results

C–14 4173 5390–000

IC_ERROR_INVALID_WINOPTION (Value 7)

Invalid window state option. Contact the component's vendor for further
information.

Level: Severe

IC_ERROR_INVALID_WINOPTION indicates that a request was made to open an
ICS accessory using unknown window state options. This error occurs when an
invalid window state option is passed to IcOpenAccessory or IcRunAccessory
(through the -W option). See IcOpenAccessory or IcRunAccessory in Section 3 of
the ICS Reference Manual, "INFOConnect API", for more information. This error
should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_ERROR_LIBRARY_CONFIG (Value 901)

The given ID is still configured in a path. Delete this path or reconfigure it
without this library.

Level: Severe

IC_ERROR_LIBRARY_CONFIG indicates that the library cannot be deleted. This
error occurs when an attempt is made to delete a library while it is still configured in
a path.

The user seeing this error should delete or reconfigure the path without the offending
library ID before deleting the library.

IC_ERROR_LOSTRCV (Value 305)

Receive request lost. Please retry the request.

Level: Severe

For ICS DosLink applications, IC_ERROR_LOSTRCV indicates that a receive
request was lost.

The user seeing this error should retry the receive request.

Errors and Results

4173 5390–000 C–15

IC_ERROR_LOSTXMT (Value 306)

Transmit request lost. Please retry the request.

Level: Severe

For ICS DosLink applications, IC_ERROR_LOSTXMT indicates that a transmit
request was lost.

The user seeing this error should retry the transmit request.

IC_ERROR_MGR_BUSY (Value 9)

Communication queue full. Request ignored.

Level: Severe

IC_ERROR_MGR_BUSY indicates that a message cannot be posted. This error
occurs when the ICS Communications Manager message queue is full. The
accessory must relinquish control so that some messages may be delivered.

The user seeing this error should close the accessory to allow messages to be
delivered and contact the accessory's vendor.

IC_ERROR_NEWREVISION (Value 615)

This component requires a newer version (<number>) of the INFOConnect
Communications Manager. Update the ICS software before using this
component.

Level: Severe

IC_ERROR_NEWREVISION indicates that the component cannot execute with the
installed ICS Manager. This error occurs when a newer revision of an ICS accessory
or application attempts to run with an older version of ICS.

The user seeing this error must update the ICS software before using the component.

Errors and Results

C–16 4173 5390–000

IC_ERROR_NEWVERSION (Value 605)

This application requires Version <number> of the INFOConnect
Communications Manager. Update the ICS software before using this
component.

Level: Severe

IC_ERROR_NEWVERSION indicates that the component cannot execute with the
installed ICS Manager. This error occurs when a newer version of an ICS accessory
or application attempts to run with an older version of ICS.

The user seeing this error must update the ICS software before using the calling
application.

IC_ERROR_NOCHANDATA (Value 609)

Channel <identifier> configuration data for library <library> missing.
Have the Administrator modify the channel configuration for this library.

Level: Severe

IC_ERROR_NOCHANDATA is an internal error indicating that the specified
library is missing the specified channel configuration data. This may occur as the
result of disk corruption.

The user seeing this error should modify the channel configuration.

IC_ERROR_NOCLOSE (Value 508)

The ICS Communications Manager is not ready to terminate. Be sure that
all dialogs are closed.

Level: Severe

IC_ERROR_NOCLOSE indicates that the ICS Manager cannot be closed. This
error occurs, for example, when the user still has the Select Path dialog open.

The user seeing this error should close all ICS dialogs before closing INFOConnect.

IC_ERROR_NODATABASE (Value 102)

Database Not Found. Please terminate and restart INFOConnect.

Level: Termination

IC_ERROR_NODATABASE indicates that a valid INFOConnect database could
not be located. This error occurs when the database was not properly opened or

Errors and Results

4173 5390–000 C–17

created. During initialization, the ICS Shell would have received the specific
database error and should have displayed the error to the user. Once the error
message is displayed, INFOConnect should be terminated and restarted.

The user seeing this error should verify that all INFOConnect command line
parameters are correct. If the problem still occurs, contact the ICS Shell vendor.

IC_ERROR_NOFIND (Value 2008)

The requested information could not be found.

Level: Informational

The IC_ERROR_NOFIND result indicates that requested information could not be
found.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_NOLIBLOAD (Value 600)

Unable to load <component>. The result code is <number>.
Verify that this is a valid Windows code file.

Level: Severe

IC_ERROR_NOLIBLOAD indicates that the ICS component specified by
<component> cannot be loaded. A result code is specified by <number>.

The user seeing this error should verify that the given component is a valid Windows
code file and that Windows itself is properly installed.

IC_ERROR_NOLIBRARY (Value 607)

Library <name> is not installed. Install the necessary library and try
again.

Level: Severe

IC_ERROR_NOLIBRARY indicates that the specified library is not currently
installed. This may occur if the Trace library is deinstalled or deleted and the user
attempts to trace sessions. The error may also occur if the Local library is
deinstalled or deleted and an application attempts to use an accessory.

The user seeing this error should install the necessary library.

Errors and Results

C–18 4173 5390–000

IC_ERROR_NOMEMORY (Value 3)

Memory Error. Free some memory and try again.

Level: Severe

IC_ERROR_NOMEMORY is returned when an attempt to allocate or access an
ICS memory block fails. It occurs in low memory conditions.

The user seeing this error should free some memory before continuing.

IC_ERROR_NOPARTNER (Value 303)

Partner session could not be found.

Level: Warning

IC_ERROR_NOPARTNER indicates that the partner session (for example, for an
ICS DosLink Client/Server application) is not yet established.

The user seeing this error should wait until the partner session establishes before
continuing to use the session.

Errors and Results

4173 5390–000 C–19

IC_ERROR_NOPATHDATA (Value 608)

Path configuration data for library <name> is missing. Modify the path
configuration and try again.

Level: Severe

IC_ERROR_NOPATHDATA is an internal error indicating that the specified
library is missing path configuration data. It may occur as the result of disk
corruption.

The user seeing this error should modify the path configuration.

IC_ERROR_NOPATHID (Value 903)

Path ID missing. Verify the path ID and try again.

Level: Severe

IC_ERROR_NOPATHID indicates that the path ID is not found. It occurs when an
attempt is made to access a path with an ID that is not assigned.

The user seeing this error should verify that the path ID is correct and retry the
action.

IC_ERROR_NORCVMEM (Value 309)

Internal error: no receive memory. Free some memory and try again.

Level: Severe

For ICS DosLink applications, the IC_ERROR_NORCVMEM internal error is
returned when an attempt to allocate or access an ICS memory block fails. It occurs
in low memory conditions.

The user seeing this error should free some memory before continuing.

Errors and Results

C–20 4173 5390–000

IC_ERROR_NOSESSION (Value 2001)

Session is not established.

Level: Informational

IC_ERROR_NOSESSION result indicates that the session in question has not yet
been successfully established. The session is in the process of opening, and may or
may not open successfully .

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_NOSESSIONMEM (Value 307)

Internal error: no session memory. Free some memory and try again.

Level: Severe

For ICS DosLink applications, IC_ERROR_NOSESSIONMEM is returned when an
attempt to allocate or access an ICS memory block fails. It occurs in low memory
conditions.

The user seeing this error should free some memory before continuing.

IC_ERROR_NOTEMPLATE (Value 610)

Path template <template ID> is not configured. Try to reconfigure the
template.

Level: Severe

IC_ERROR_NOTEMPLATE is an internal error indicating that a path is
attempting to use the specified path template that does not exist. It may occur as the
result of disk corruption.

The user seeing this error should try to reconfigure the given template. If the error
still occurs, contact the INFOConnect Configuration Accessory vendor.

Errors and Results

4173 5390–000 C–21

IC_ERROR_NOVERSION (Value 603)

Cannot verify version information. <name> not loaded. Try reinstalling
this product.

Level: Severe

IC_ERROR_NOVERSION indicates that ICS version information cannot be
verified. It occurs when the specified file does not contain the required
INFOConnect RCDATA version information in its resource file. This may occur as
the result of memory or disk corruption.

The user seeing this error should reinstall the offending product before retrying the
action. If the error still occurs, contact the component's vendor.

IC_ERROR_NOXMTMEM (Value 308)

Internal error: no transmit memory. Free some memory and try again.

Level: Severe

For ICS DosLink applications, the IC_ERROR_NOXMTMEM internal error is
returned when an attempt to allocate or access an ICS memory block fails. It occurs
in low memory conditions.

The user seeing this error should free some memory before continuing.

IC_ERROR_OLDVERSION (Value 614)

This component requires obsolete version <number>. Contact the
component's vendor for a software upgrade.

Level: Severe

IC_ERROR_OLDVERSION indicates that the component cannot be executed. It
occurs when an application requires an older version of ICS.

The user seeing this error should contact the component's vendor to obtain an
updated version of the component.

Errors and Results

C–22 4173 5390–000

IC_ERROR_PATHBUSY (Value 510)

Path <path ID> is currently active. Multiple instances of this path are not
allowed.

Level: Severe

IC_ERROR_PATHBUSY indicates that the given path cannot be opened. It occurs
when an attempt is made to open a second session over a non-multiplexing path.

The user seeing this error should close the active session before attempting to open
another session using that path.

IC_ERROR_PATHID_EXISTS (Value 908)

Path ID already exists. Use a different ID or rename the existing path.

Level: Severe

IC_ERROR_PATHID_EXISTS indicates that a path ID already exists. It occurs
when an attempt is made to add a path with a path ID that is already assigned.

The user seeing this error should either use a different ID or rename the existing path
ID.

IC_ERROR_PICHANNELINUSE (Value 504)

Channel <identifier> in use. Not sharable between <library> and <library>
external interface libraries.

Level: Severe

IC_ERROR_PICHANNELINUSE indicates that the given channel cannot be used
by both of the given external interface libraries simultaneously. It occurs from
IcOpenSession when the user attempts to use a single multiplexing service library
with two different external interface libraries over the same channel.

The user seeing this error should close the active session before opening a session
over the other path.

IC_ERROR_PIVERSION (Value 602)

<name> is not a valid INFOConnect external interface library. Library
not loaded. Try reinstalling this product.

Level: Severe

Errors and Results

4173 5390–000 C–23

IC_ERROR_PIVERSION indicates that the given file cannot be loaded as an
external interface library. It occurs when the specified file does not properly identify
itself as an INFOConnect EIL.

The user seeing this error should reinstall the offending product before trying to open
the session. If the error still occurs, contact the component's vendor.

IC_ERROR_PMCHANNELINUSE (Value 505)

Channel <identifier> in use. Not sharable between <library> and <library>
service libraries.

Level: Severe

IC_ERROR_PMCHANNELINUSE indicates that the given channel cannot be used
by both of the given service libraries simultaneously. It occurs from IcOpenSession
when the user attempts to use a single multiplexing service library with two different
external interface libraries over the same channel.

The user seeing this error should close the active session before opening a session
over the other path.

IC_ERROR_PMVERSION (Value 601)

<name> is not a valid INFOConnect service library.
Library not loaded. Try reinstalling this product.

Level: Severe

IC_ERROR_PMVERSION indicates that the given file cannot be loaded as a
service library. It occurs when the specified file does not properly identify itself as
an INFOConnect SL.

The user seeing this error should reinstall the offending product before trying to open
the session. If the error still occurs, contact the component's vendor.

IC_ERROR_QUEUEFULL (Value 304)

Queue full.

Level: Severe

For ICS DosLink applications, the IC_ERROR_QUEUEFULL internal error
indicates that a message cannot be posted to a DosLink application. It occurs when
the DosLink.386 driver's queue is full.

Errors and Results

C–24 4173 5390–000

The user seeing this error should give control to the application so that some
messages may be delivered.

IC_ERROR_RCV_BUSY (Value 10)

Station is still receiving. Request ignored.

Level: Severe

IC_ERROR_RCV_BUSY indicates that a receive request is still outstanding. It
occurs when a second request to receive data is made before the first one completes.
The accessory should wait for a receive-done or a receive-error type message before
requesting more data.

The user seeing this error should wait until the accessory receives data for the
outstanding request before making another receive request.

IC_ERROR_REOPEN (Value 2)

Internal Error.
Attempt to re-open external interface library.
Contact the component vendor for further instruction.

Level: Severe

IC_ERROR_REOPEN indicates an internal error. It occurs when an attempt is
made to reopen a communications device.

The user should contact the component's vendor.

Errors and Results

4173 5390–000 C–25

IC_ERROR_SERVICE_NOT_AVAILABLE (Value 1001)

Unavailable service requested: <service name>. Verify the service name
with the component's documentation.

Level: Severe

IC_ERROR_SERVICE_NOT_AVAILABLE indicates that the request for the given
service cannot be fulfilled. It occurs when a request is made for a service that is not
supported.

The user seeing this error should verify that the service name is correct by referring
to the component's documentation.

IC_ERROR_SHELL_ACTIVE (Value 103)

An INFOConnect Shell is already active.
You cannot run multiple shells.

Level: Termination

The IC_ERROR_SHELL_ACTIVE error indicates that an attempt has been made to
execute two INFOConnect Shell applications. It occurs when an accessory tries to
register itself as the INFOConnect Shell through IcInitShell and an INFOConnect
Shell is already running. Only one ICS Shell may be active at a time. The second
must terminate.

The user seeing this error should terminate the offending application.

IC_ERROR_SIZE_EXCEEDED (Value 904)

ID length limited to %d characters. Correct the ID and try again.

Level: Severe

IC_ERROR_SIZE_EXCEEDED indicates that a ID is too big. It occurs when an ID
exceeds IC_MAX***IDLEN .

The user seeing this error should correct the ID and try the action again.

Errors and Results

C–26 4173 5390–000

IC_ERROR_SPACE_PRESENT (Value 905)

Space not allowed in ID. Correct the ID and try again.

Level: Severe

IC_ERROR_SPACE_PRESENT indicates that an ID erroneously contains a space.
ICS does not allow spaces in IDs.

The user seeing this error should correct the ID and try the action again.

IC_ERROR_TERMINATE_CLEAR (Value 104)

A request has been made to clear this session.

Level: Termination

IC_ERROR_TERMINATE_CLEAR simply notifies an application that a
communication session is being cleared. It occurs when the user chooses the Clear
button from the INFOConnect user interface. The application has a chance to
intercept this error and perform its termination routine before allowing the session to
terminate. If the default error procedure is called, the session will close
automatically. Unless INFOConnect is being executed in Debug mode, the
associated error text will not be displayed by the default error procedure.

The user seeing this error should choose OK on the default error dialog to allow the
session to close. The user will not see this error unless a
-d appears as a command line parameter to INFOConnect.

Errors and Results

4173 5390–000 C–27

IC_ERROR_TERMINATE_EXIT (Value 105)

A request has been made to close this session so INFOConnect can exit.

Level: Termination

IC_ERROR_TERMINATE_EXIT simply notifies the application that a
communication session is being terminated because the user is closing INFOConnect
Connectivity Services. The application has a chance to intercept this error and
perform its termination routine before allowing the session to terminate. If the
default error procedure is called, the session will close automatically. Unless
INFOConnect is being executed in Debug mode, the associated error text will not be
displayed by the default error procedure.

The user seeing this error should choose OK on the default error dialog to allow the
session to close. The user will not see this error unless a
-d appears as a command line parameter to INFOConnect.

IC_ERROR_TERMINATE_NOMSG (Value 0)

A request has been made to unconditionally
terminate this session.

Level: Termination

IC_ERROR_TERMINATE_NOMSG simply requests that a communication
session be unconditionally terminated. This is the error that is generated by the
Local EIL when one half of the connected communications session is closed, and
also by the IcTELNET SL if the TCP socket is closed. If the default error procedure
is called, the session will close automatically. Unless INFOConnect is being
executed in Debug mode, the associated error text will not be displayed by the
default error procedure.

The user seeing this error should choose OK on the default error dialog to allow the
session to close. The user will not see this error unless a
-d appears as a command line parameter to INFOConnect.

Errors and Results

C–28 4173 5390–000

IC_ERROR_TERMINATE_SHUTDOWN (Value 106)

A request has been made to close this session so workstation can shutdown.

Level: Termination

IC_ERROR_TERMINATE_SHUTDOWN simply notifies the application that a
communication session is being terminated because the user is closing Windows.
The application has a chance to intercept this error and perform its termination
routine before allowing the session to terminate. If the default error procedure is
called, the session will close automatically. Unless INFOConnect is being executed
in Debug mode, the associated error text will not be displayed by the default error
procedure.

The user seeing this error should choose OK on the default error dialog to allow the
session to close. The user will not see this error unless a
-d appears as a command line parameter to INFOConnect.

IC_ERROR_TILDE_PRESENT (Value 907)

Tilde(~) not allowed in ID. Correct the ID and try again.

Level: Severe

IC_ERROR_TILDE_PRESENT indicates that an ID erroneously contains a tilde
(~). ICS does not allow tildes in IDs.

The user seeing this error should correct the ID and try the action again.

IC_ERROR_TIMERS (Value 1)

Too Many Timers. Terminate some timers and retry.

Level: Severe

IC_ERROR_TIMERS indicates that a Windows timer cannot be started. It occurs
when an attempt is made to start a Windows timer and the maximum number of
timers has already been reached.

The user seeing this error should terminate some Windows applications that are
using the timer resource and try the action again.

Errors and Results

4173 5390–000 C–29

IC_ERROR_TRUNCATED (Value 2002)

Buffer too small. String truncated.

Level: Informational

IC_ERROR_TRUNCATED result indicates that the output data has been truncated.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_UNIMPLEMENTED (Value 2012)

The requested function is not implemented.

Level: Informational

The IC_ERROR_UNIMPLEMENTED result is returned from function stubs that
have not yet been implemented. This error should not occur in the released version
of a product.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_UNKNOWN (Value 1000)

Unknown error encountered. Contact the component's vendor for more
information.

Level: Severe

IC_ERROR_UNKNOWN indicates an unknown error. Developer's should attempt
to use more descriptive errors.

The user seeing this error should contact the component's vendor.

Errors and Results

C–30 4173 5390–000

IC_ERROR_UNKNOWN_COMMAND (Value 2010)

Unknown command.

Level: Informational

The IC_ERROR_UNKNOWN_COMMAND result indicates that a command
parameter is unknown.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_UNKNOWN_PARAMETER (Value 2009)

Unknown parameter.

Level: Informational

The IC_ERROR_UNKNOWN_PARAMETER result indicates that a parameter
value is unknown.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_ERROR_UNKNOWN_TABLE (Value 2011)

Unknown table.

Level: Informational

The IC_ERROR_UNKNOWN_TABLE result indicates that a table parameter is
unknown.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

Errors and Results

4173 5390–000 C–31

IC_ERROR_UNOPENEDSESSION (Value 506)

Attempt to use unopened session. Verify the path configuration and clear
the session, if necessary.

Level: Severe

IC_ERROR_UNOPENEDSESSION indicates that the session is not yet available
for communication. It occurs when an application attempts to use a session handle
that either does not exist or that has not yet finished establishing. See the
IC_SessionEstablished message type (or the E_IC_SESSION_EST event type) for
more information.

The user seeing this error may need to clear the session and verify that the path
configuration is correct before reopening the session.

IC_ERROR_UPGRADE_WAIT (Value 613)

Library <name> is waiting for configuration data upgrade. Select
Configure from the Configure Packages window.

Level: Severe

IC_ERROR_UPGRADE_WAIT indicates that the quick configuration accessory
has not performed the data upgrade for a library whose data record format has
changed. It may occur when quick configuration is abnormally terminated.

The user seeing this error should run quick configuration for the "Incomplete"
packages to force the data upgrade to occur.

IC_ERROR_WRONGVERSION (Value 604)

Current version of INFOConnect does not support this version of <name>.
Library not loaded. Upgrade the necessary software.

Level: Severe

IC_ERROR_WRONGVERSION indicates that the given library cannot be
executed. It occurs when the version of the specified ICS library is not supported by
the current running version of ICS.

The user seeing this error should either update the library software or the ICS
software.

IC_ERROR_XMT_BUSY (Value 6)

Station is still transmitting. Request ignored.

Errors and Results

C–32 4173 5390–000

Level: Severe

IC_ERROR_XMT_BUSY indicates that a transmit request is still outstanding. It
occurs when a second request to transmit data is made before the first one completes.
The accessory should wait for a transmit-done or a transmit-error type message
before retransmitting.

The user seeing this error should wait until the accessory transmits data for the
outstanding request before making another transmit request.

IC_IGNORE (Value 2007)

This request is being ignored at this time.

Level: Informational

The IC_IGNORE result indicates that a request is being ignored.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_INCOMPLETE (Value 2006)

The request cannot be completed at this time.

Level: Informational

The IC_INCOMPLETE result indicates that a request could not be completed. The
request may be completed at a later time. See the IC_COMPLETE informational
result.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

Errors and Results

4173 5390–000 C–33

IC_INFO_QEVENT (Value 320)

Message Queued.

Level: Informational

The IC_INFO_QEVENT result occurs when querying the ICS DosLink
IcNextEvent API with the IC_NEXTEVENT_CHECK flag and indicates that at
least one event is queued for the session.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_OK (Value 0)

No Error.

Level: Informational

The IC_OK result indicates a successful completion of the request.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

IC_VERIFY_OK (Value 2005)

The requested session may be successfully opened.

Level: Informational

The IC_VERIFY_OK result indicates that a verify action completed successfully.

The user seeing this result may wish to log it for future reference. Otherwise, the
result may be ignored.

Errors and Results

C–34 4173 5390–000

ICS Standard Configurator Errors
The following error results are common/general errors defined for the ICS standard
configurator. They may be returned as the result of a procedure call or with an error
event (IC_Error , IC_RcvError , and so forth under MS-Windows or
E_IC_ERROR, and so forth under XVT). These errors have the
IC_RESULT_CONTEXT_CFG context.

IC_CFG_ALREADY_ACTIVE (Value 141)

Init Config already active.

Level: Warning

IC_CFG_ALREADY_ACTIVE may occur in the ICS 2.02 release when a
configuration application attempts to initialize the configuration API twice.

The user seeing this error should contact the component's vendor.

IC_CFG_BIT_FIELD (Value 134)

Bit field unsupported. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_BIT_FIELD indicates that an invalid action is being attempted on a bit
field. See the IcGetField, IcSetField, IcGetKey, and IcSetKey functions. This
error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_DATA_MISMATCH (Value 113)

Data format mismatch. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_DATA_MISMATCH occurs when a given IC_DATA_INFO.Length or
IC_DATA_INFO.TableRevisionNum does not match those of the selected object.
It will also occur if the size of requested data exceeds the
IC_DATA_INFO.DataLength for the selected object. See the IcGetLibData ,
IcSetLibData, and IcCopyLibConfig functions.

The user seeing this error should contact the component's vendor.

Errors and Results

4173 5390–000 C–35

IC_CFG_DATA_TRUNCATED (Value 133)

Data record truncated.

Level: Warning

IC_CFG_DATA_TRUNCATED indicates that the retrieved data record was
truncated. It occurs when an attempt is made to retrieve a configuration data record
and the output buffer parameter is not big enough to hold the context string. See
IcGetLibDataInfo for information on retrieving information about the configuration
data record.

The user seeing this error should contact the component's vendor for further
information.

IC_CFG_DELETE_INUSE (Value 143)

Request to delete item rejected. You must first delete all references to the
item. Still in use by <identifier>.

Level: Severe

IC_CFG_DELETE_INUSE occurs if an attempt is made to delete a configuration
object that is configured as part of another configuration object. For example, a
template cannot be deleted if a path is configured with it; a library or channel cannot
be deleted if a path or template is configured using it; and a library's path
configuration cannot be deleted if an ICS path is configured with it.

The user seeing this error should modify the configuration so that the configuration
does not access the configuration object before deleting it.

IC_CFG_DIFFERENT_ACTIVE (Value 140)

Init Config of different version already active. Contact the component's
vendor for more information.

Level: Severe

IC_CFG_DIFFERENT_ACTIVE may occur in the ICS 2.02 release when a
configuration application attempts to initialize the configuration API twice.

The user seeing this error should contact the component's vendor.

IC_CFG_INFO_EXCESS (Value 132)

Excess info requested.

Errors and Results

C–36 4173 5390–000

Level: Warning

IC_CFG_INFO_EXCESS is currently not referenced.

IC_CFG_INFO_IMPOSSIBLE (Value 127)

Retrieval of informational data is impossible. Contact the component's
vendor for more information.

Level: Severe

IC_CFG_INFO_IMPOSSIBLE occurs when a request for configuration
information (IC_TABLE_INFO , IC_DATA_INFO , IC_KEY_INFO ,
IC_FIELD_INFO) is made and the length parameter is less than the size of the
appropriate record for any version of ICS. This error should not occur in the released
version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INFO_TRUNCATED (Value 131)

Additional info available.

Level: Warning

IC_CFG_INFO_TRUNCATED is currently not referenced.

IC_CFG_INTERNAL_ERROR (Value 100)

Internal Configuration API Error. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_INTERNAL_ERROR is an internal error with the Configuration
Accessory API.

The user seeing this error should contact the configuration accessory's vendor for
further instruction.

IC_CFG_INVALID_DATABASE (Value 160)

Invalid HIC_DATABASE. Contact the component's vendor for more
information.

Level: Severe

Errors and Results

4173 5390–000 C–37

IC_CFG_INVALID_DATABASE indicates that an HIC_DATABASE parameter is
invalid. This error occurs when attempting to access a database that has never been
opened or that has already been closed. This error should not occur in the released
version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_DB (Value 105)

Invalid IC_DB parameter. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_DB indicates that an IC_DB parameter is invalid. This error
should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_DBMODE (Value 106)

Invalid IC_DB_MODE parameter. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_INVALID_DBMODE indicates that an IC_DB_MODE parameter is
invalid. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

Errors and Results

C–38 4173 5390–000

IC_CFG_INVALID_FIELD (Value 109)

Invalid Field number. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_FIELD occurs when a reference is made to a non-existing field
number, non-existing field name, or a non-existing IC_FIELD_REVISIONNUM .
Check the component's .HIC include file for currently defined field numbers. This
error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_FIELD_TYPE (Value 111)

Invalid field type parameter. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_FIELD_TYPE indicates that the field type parameter is
invalid. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_HANDLE (Value 103)

Invalid HIC_CONFIG. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_HANDLE indicates that the handle parameter is invalid. This
occurs when the configuration object has never been opened, a severe error occurred
during the open, or the object was already closed. This error should not occur in the
released version of a product.

The user seeing this error should contact the component's vendor.

Errors and Results

4173 5390–000 C–39

IC_CFG_INVALID_HWND (Value 161)

Invalid configuration window handle. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_INVALID_HWND indicates that the window handle parameter is invalid.
This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_KEY (Value 108)

Invalid Key number. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_KEY occurs when a reference is made to a non-existing key
number, or to a table that has no keys or IC_KEY_SERIALNUM defined. Check
the component's .HIC include file for currently defined key numbers. This error
should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_LIBRARY (Value 104)

Attempt to select library failed. Verify the library ID and try again.

Level: Severe

IC_CFG_INVALID_LIBRARY indicates that a library's configuration cannot be
accessed. The error occurs when an attempt is made to access an invalid library ID.

The user seeing this error should verify that the library ID is correct.

Errors and Results

C–40 4173 5390–000

IC_CFG_INVALID_POSITION (Value 112)

Invalid IC_POSITION parameter. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_INVALID_POSITION indicates that the position parameter is invalid.
This error occurs when IcPositionConfig receives an invalid IC_POSITION
parameter, or receives the IC_POS_NEXTDUP, IC_POS_NEXT, or
IC_POS_PREVIOUS parameter when no configuration object is currently selected.
This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_PROPERTY (Value 116)

Unsupported property parameter. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_INVALID_PROPERTY indicates that the property parameter is invalid.
This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_SIZE (Value 114)

Unsupported field size. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_SIZE occurs when an attempt is made to get (or set) a field or
key with a variable when the conversion between the variable and the field/key is
unsupported. For example, trying to get a 2 byte integer into a 1 byte variable will
result in this error. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_TABLE (Value 107)

Invalid Table parameter. Contact the component's vendor for more
information.

Level: Severe

Errors and Results

4173 5390–000 C–41

IC_CFG_INVALID_TABLE indicates that the table parameter does not reference a
valid configuration table for the currently selected component. This error should not
occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_TABLE_TYPE (Value 110)

Invalid table type parameter. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_TABLE_TYPE indicates that the table type parameter is
invalid. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_TEMPLATE (Value 162)

Path config contains invalid Path Template. Contact the component's
vendor for more information.

Level: Severe

IC_CFG_INVALID_TEMPLATE indicates that the table type parameter is invalid.
This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

Errors and Results

C–42 4173 5390–000

IC_CFG_INVALID_TYPE (Value 115)

Unsupported field type. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_TYPE occurs when an attempt is made to get (or set) a field or
key with an incompatible type. For example, trying to get a IC_FT_INTEGER of a
field defined as IC_FT_CHAR will result in this error. This error should not occur
in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_INVALID_TYPE_SIZE (Value 135)

Unsupported field type/size. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_INVALID_TYPE_SIZE occurs when an attempt is made to get (or set) a
field or key with an incompatible field size/field type combinations. This error
should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_MISMATCH_DATA (Value 126)

Mismatch data format. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_MISMATCH_DATA is currently not referenced.

IC_CFG_NAME_TRUNCATED (Value 130)

Retrieved name truncated.

Level: Warning

IC_CFG_NAME_TRUNCATED indicates that the retrieved field name
(IcGetFieldName) or table name (IcGetLibTableName) was truncated. It occurs
when an attempt is made to retrieve a field name or table name and the output buffer
parameter is not big enough to hold the name.

Errors and Results

4173 5390–000 C–43

IC_CFG_NEW_DATA (Value 128)

New record created.

Level: Warning

IC_CFG_NEW_DATA indicates that a new configuration data record was created
from the default configuration data. It occurs from those configuration functions
that automatically create new records when the database is read/write and the
requested record does not currently exist. See IcFindNewConfig.

The user seeing this error should modify the default configuration data appropriately.

IC_CFG_NO_DATA_MEMORY (Value 136)

No memory to load configuration data. Free some memory and try again.

Level: Severe

IC_CFG_NO_DATA_MEMORY indicates that a configuration object data buffer
cannot be allocated. It occurs in low memory conditions.

The user seeing this error should free some memory and retry the action.

IC_CFG_NO_HCFG_MEMORY (Value 139)

No memory to open config session. Close some ICS configuration
applications and try again.

Level: Severe

IC_CFG_NO_HCFG_MEMORY occurs when a configuration object cannot be
allocated. It occurs in low memory conditions.

The user seeing this error should close one or more ICS configuration applications
and try the action again.

Errors and Results

C–44 4173 5390–000

IC_CFG_NO_HDB_MEMORY (Value 138)

No memory to open config database. Close some ICS configuration
applications and try again.

Level: Severe

IC_CFG_NO_HDB_MEMORY occurs when the database configuration object
cannot be allocated. It occurs in low memory conditions.

The user seeing this error should close one or more ICS configuration applications
and try the action again.

IC_CFG_NO_HLIB_MEMORY (Value 162)

No memory to open config library. Close some ICS configuration
applications and try again.

Level: Severe

IC_CFG_NO_HLIB_MEMORY occurs when the database configuration object
cannot be allocated. It occurs in low memory conditions.

The user seeing this error should close one or more ICS configuration applications
and try the action again.

IC_CFG_NO_INFO_MEMORY (Value 137)

No memory to load configuration info. Free some memory and try again.

Level: Severe

IC_CFG_NO_INFO_MEMORY occurs when an attempt to allocate a configuration
definition buffer fails. It occurs in low memory conditions.

The user seeing this error should free some memory and try the action again.

Errors and Results

4173 5390–000 C–45

IC_CFG_NO_INIT (Value 102)

Application never IcInitConfig. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_NO_INIT may occur in the ICS 2.02 release when a configuration
application attempts to use the configuration API before it initializes it.

The user seeing this error should contact the component's vendor.

IC_CFG_NOT_FOUND (Value 125)

Configuration data not found. Verify the configuration.

Level: Severe

IC_CFG_NOT_FOUND indicates that a configuration record could not be found. It
occurs when either the requested record is missing, or from IcPositionConfig when
there are no more entries at which to position.

The user seeing this error should verify that the configuration is correct.

IC_CFG_NOT_IMPLEMENTED (Value 101)

Configuration API not implemented. Contact the component's vendor for
more information.

Level: Severe

IC_CFG_NOT_IMPLEMENTED occurs when requesting service from
configuration API that has not yet been implemented. All functions will be
implemented as documented in a future ICS release. Developers should code
accordingly. Therefore, this error should not occur in the released version of a
product.

The user seeing this error should contact the component's vendor.

Errors and Results

C–46 4173 5390–000

IC_CFG_STILL_ACTIVE (Value 142)

Init Config is still active.

Level: Warning

IC_CFG_STILL_ACTIVE indicates that configuration objects are still open and
active. This error occurs when a configuration application closes a configuration
session before closing the active configuration objects. The configuration objects
remain active.

The user seeing this error should complete the configuration task.

IC_CFG_UNKNOWN_COMPONENT (Value 119)

Unknown component. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_UNKNOWN_COMPONENT is currently not referenced.

IC_CFG_UNKNOWN_FIELDTYPE (Value 122)

Unknown field type. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_UNKNOWN_FIELDTYPE is currently not referenced.

IC_CFG_UNKNOWN_GENERIC (Value 121)

Unknown generic component. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_UNKNOWN_GENERIC is currently not referenced.

Errors and Results

4173 5390–000 C–47

IC_CFG_UNKNOWN_PROPERTY (Value 118)

Unknown property number. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_UNKNOWN_PROPERTY indicates that the property parameter is
unsupported. This error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_UNKNOWN_ROLE (Value 117)

Unknown role parameter. Contact the component's vendor for more
information.

Level: Severe

IC_CFG_UNKNOWN_ROLE indicates that the role parameter is invalid. This
error should not occur in the released version of a product.

The user seeing this error should contact the component's vendor.

IC_CFG_UNKNOWN_SUPPLIER (Value 120)

Unknown supplier. Contact the component's vendor for more information.

Level: Severe

IC_CFG_UNKNOWN_SUPPLIER is currently not referenced.

IC_CFG_UNSAVED_DATA (Value 129)

Unsaved data discarded.

Level: Warning

IC_CFG_UNSAVED_DATA is currently not referenced.

Errors and Results

C–48 4173 5390–000

IC_CFG_WRONG_FIELDSIZE (Value 123)

Wrong field size. Contact the component's vendor for more information.

Level: Severe

IC_CFG_WRONG_FIELDSIZE is currently not referenced.

IC_CFG_WRONG_FIELDTYPE (Value 124)

Wrong field type. Contact the component's vendor for more information.

Level: Severe

IC_CFG_WRONG_FIELDTYPE is currently not referenced.

Errors and Results

4173 5390–000 C–49

IcACOMS
IcACOMS is a multiplexing library that manages A Series COMS-specific
communications protocol. The icacoms.hic include file defines the generic interface
of the IcACOMS AIL.

IcACOMS Errors
The following error values are specific to the IcACOMS library. They are
distinguished by the context associated with the context string
COMS_CONTEXTSTRING , defined in the icacoms.hic include file. Include this
file in an application that is coded to be aware of these specific errors.

COMS_CHANNEL_ACTIVE (Value 225)

Channel already active.

Level: Warning

The COMS_CHANNEL_ACTIVE warning occurs when an attempt is made to open
a COMS channel that is already open. Each COMS channel can only be opened once.

The user seeing this error should not try to open the channel again.

COMS_ERROR_ACTIVESESS (Value 211)

Internal Error. OpenSession requested by an active session.
Contact the component vendor for further instruction.

Level: Severe

COMS_ERROR_ACTIVESESS is an internal error that occurs when an attempt is
made to re-open a COMS communication session that has not been properly closed.

The user seeing this error should contact the vendor for further instruction.

Errors and Results

C–50 4173 5390–000

COMS_ERROR_DUPLICATE (Value 214)

Selected CUSTOM PATH is already active.

Level: Severe

COMS_ERROR_DUPLICATE occurs when an attempt is made to establish a
communication session on a COMS custom window that is already active.

The user seeing this error should not try to open the second instance of the custom
path. Only one instance of each custom path can be active at a time.

COMS_ERROR_INSERTCHANNEL (Value 216)

Memory error while accessing Channel List.
Free up some memory and try again.

Level: Severe

COMS_ERROR_INSERTCHANNEL indicates that an internal IcACOMS error has
occurred, and usually signifies a memory error.

The user seeing this error should free some memory and try again.

COMS_ERROR_INSERTSESSION (Value 215)

Memory error while accessing Session List.
Free up some memory and try again.

Level: Severe

COMS_ERROR_INSERTSESSION indicates that an internal IcACOMS error has
occurred, and usually signifies a memory error.

The user seeing this error should free some memory and try again.

Errors and Results

4173 5390–000 C–51

COMS_ERROR_INSERTWINDOWS (Value 217)

Memory error while accessing COMS Windows List.
Free up some memory and try again.

Level: Severe

COMS_ERROR_INSERTWINDOWS indicates that an internal IcACOMS error
has occurred, and usually signifies a memory error.

The user seeing this error should free some memory and try again.

COMS_ERROR_MAXDIALOGS (Value 212)

Maximum COMS Dialogs Active. Close some and try again.

Level: Severe

COMS_ERROR_MAXDIALOGS occurs when the maximum number of COMS
dialogs has been reached.

The user seeing this error should either close some dialogs and try again or open the
session on a different COMS window.

Errors and Results

C–52 4173 5390–000

IcHLCNTS
IcHLCNTS is an external interface library that provides an interface to A Series Host
Lan Connection (HLCN) Terminal Services (TS). The ichlcnts.hic include file
defines the generic interface of the IcHLCNTS EIL.

The IcHLCNTS EIL also acts as the package's configuration library. The package
configuration table is defined by ICHLCNTS_HOST_TABLENUM .

IcHLCNTS Errors
The following error values are specific to the IcHLCNTS external interface library.
They are distinguished by the context associated with the context string
HCLNTS_CONTEXTSTRING , defined in the ichlcnts.hic include file. Include
this file in an application that is coded to be aware of these specific errors.

NTS_CONNECT_DENIED (Value 3)

HOST DENIED CONNECTION

Level: Severe

NTS_CONNECT_DENIED indicates that the A Series host rejected the connection
of the terminal name configured in the path.

The user seeing this error should check the configuration and verify the terminal
name with the MIS department.

If the user has configured this path to receive messages, then this error text appears
as a message on the terminal screen. Otherwise, the error is returned as an error
message to the application. See NTS_CONNECT_REJECTED.

Errors and Results

4173 5390–000 C–53

NTS_CONNECT_FAILED (Value 2)

CONNECT REQUEST FAILED

Level: Severe

NTS_CONNECT_FAILED indicates that the NetBIOS connection was lost while
waiting for the host to connect. It occurs when IcHCLNTS receives a status message
from NetBIOS indicating that the session is closed.

The user seeing this error should hit transmit to try to re-establish the session.

If the user has configured this path to receive messages, then this error text appears
as a message on the terminal screen. Otherwise, the error is returned as an error
message to the application.

NTS_CONNECT_LOST (Value 4)

CONNECTION HAS BEEN LOST

Level: Severe

NTS_CONNECT_LOST indicates that the NetBIOS connection to the host has been
lost or the host terminated the session. It occurs when IcHCLNTS receives a status
message from NetBIOS indicating that the session is closed.

The user seeing this error should hit transmit to try to re-establish the session.

If the user has configured this path to receive messages, then this error text appears
as a message on the terminal screen. Otherwise, the error is returned as an error
message to the application.

Errors and Results

C–54 4173 5390–000

NTS_CONNECT_REJECTED (Value 22)

Connection request denied: (<host error>) <associated text>
Transmit again to retry the connection attempt.

Level: Severe

NTS_CONNECT_REJECTED reports the error code received from the host, as well
as the error text from the host. The error occurs when the A Series host rejects the
connection attempt. It is returned to the application only if the path has not been
configured to receive messages.

The user seeing this error should hit transmit to try to re-establish the session.

If the user has configured this path to receive messages, then the text associated with
the NTS_CONNECT_DENIED error appears on the terminal screen followed by the
error text from the host.

NTS_CREDITS_EXCEEDED (Value 23)

Protocol error. Buffer credits exceeded. Message discarded.

Level: Severe

NTS_CREDITS_EXCEEDED indicates that a message has been discarded. It
occurs when the host has sent data that has exceeded the specified protocol limits.

The user seeing this error should trace both the configured path and the host path
associated with the path's channel. The debug files should be sent to the component
vendor for further action.

NTS_MSG_OK (Value 1)

.ok.

Level: Non-error

This terminal data message appears on the terminal screen if the user has configured
the path for input edit and has issued a terminal options command (for example, ?+s,
?-i, etc.).

NTS_NO_HOSTPATH (Value 24)

HostPath <name> referenced by HLCNTS Channel <identifier> has not
been configured.

Level: Severe

Errors and Results

4173 5390–000 C–55

NTS_NO_HOSTPATH occurs when an attempt is made to open the given host path
that is associated with the given channel and that host path has not yet been
configured.

The user seeing this error should configure the host path and try again.

NTS_TERMINAL_ACTIVE (Value 21)

Terminal <name> is already active. Unable to open terminal multiple
times.

Level: Severe

NTS_TERMINAL_ACTIVE indicates that the open session request failed. It occurs
when an attempt is made to open a second session using a terminal name that is
already open.

The user seeing this error should not try to open a terminal session multiple times.

Errors and Results

C–56 4173 5390–000

IcLCW
IcLCW is a service library that, when used in conjunction with the IcXNS external
interface library, provides LAN Connected Workstation-specific, value-added
functionality. The iclcw.hic include file defines the generic interface of the IcLCW
SL.

The IcLCW SL also acts as the package's configuration library. The package
configuration table is defined by ICLCW_TEMPL_TABLENUM .

IcLCW Errors
There are no error results specific to the IcLCW service library.

Errors and Results

4173 5390–000 C–57

IcLocal
IcLocal is an external interface library that manages data communications between
two applications on the same system. The iclocal.hic include file defines the generic
interface of the IcLocal EIL.

IcLocal Errors
There are no error results specific to the IcLocal external interface library.

Errors and Results

C–58 4173 5390–000

IcMon
IcMon is a service library that maintains transaction-related information on a per-
session basis. The generic component ID is IC_GENERIC_MON . The icmon.hic
include file defines the generic interface of the IcMon SL.

IcMon Errors
The following error values are specific to the IcMon service library. They are
distinguished by the context associated with the context string
ICMON_CONTEXTSTRING , defined in the icmon.hic include file. Include this
file in an application that is coded to be aware of these specific errors.

ICMON_ERR_KEYVALUE (Value 500)

Invalid key for monitor's configuration record.

Level: Severe

ICMON_ERR_KEYVALUE indicates that the ICMON_OPTIONSTABLE_KEY
key is incorrect. It may occur as the result of memory or disk corruption.

The user seeing this error should reconfigure the monitor library. If the error still
occurs, contact the component's vendor for further information.

ICMON_ERR_NODUPEOPTIONS (Value 502)

Only one Monitor Options record is allowed.

Level: Severe

ICMON_ERR_NODUPEOPTIONS indicates that the options table can only have
one record. It occurs if an application attempts to add a second record to the
Monitor's options table.

The user seeing this error should contact the component's vendor.

Errors and Results

4173 5390–000 C–59

ICMON_ERR_RANGEVALUE (Value 501)

Invalid RANGE in monitor's configuration options. RANGE values must
be in increasing order.

Level: Severe

ICMON_ERR_RANGEVALUE occurs when the transaction counters, denoted by
fields ICMON_SESS_PREV_RT_RANGE1,
ICMON_SESS_PREV_RT_RANGE2, and ICMON_SESS_PREV_RT_RANGE3
are not set in ascending order.

The user seeing this error should reconfigure the monitor library.

Errors and Results

C–60 4173 5390–000

IcNBIOS
IcNBIOS is an external interface library that provides an interface to NetBIOS
protocol stacks. The icnbios.hic include file defines the generic interface of the
IcNBIOS EIL.

IcNBIOS Errors
The following error values are specific to the IcNBIOS external interface library.
They are distinguished by the context associated with the context string
NETBIOS_CONTEXTSTRING , defined in the icnbios.hic include file. Include
this file in an application that is coded to be aware of these specific errors.

Note that the configurable Auto Connect feature of IcNBIOS alters the errors that
will be reported. When this feature is enabled, the IcNBIOS EIL will automatically
reconnect failed sessions. The error will be returned to the application with the
informational error level. These are normally not displayed by the default error
procedure.

NETBIOS_DUP_NAME (Value 4)

NetBIOS name already in use on the network.

Level: Termination

NETBIOS_DUP_NAME occurs when a request is made to claim a NetBIOS name
that is already active on the network.

The user seeing this error must choose a different NetBIOS name before opening the
session.

NETBIOS_ERR_ADATA (Value 8)

Error %#2x getting adapter data to retrieve the permanent node name.

Level: Severe

NETBIOS_ERR_ADATA reports the error number that occurs when adapter data,
which contains the permanent node name, could not be retrieved.

The user seeing this error should supply a NetBIOS name in the path configuration
and try again.

Errors and Results

4173 5390–000 C–61

NETBIOS_ERR_ADD_NAME (Value 5)

Error %#2x adding NetBIOS name.
See NetBIOS documentation for more information.

Level: Termination

NETBIOS_ERR_ADD_NAME reports the error number that occurred when adding
(claiming) a NetBIOS name on the network fails. This may be the result of an
abnormal termination of INFOConnect.

The user seeing this error should reboot the machine.

NETBIOS_ERR_CALL (Value 7)

Error %#2x on call. See NetBIOS documentation for more information.

Level: Severe

NETBIOS_ERR_CALL reports the error number that occurs when a call to the
remote device cannot be performed.

The user seeing this error should refer to the NetBIOS documentation for more
information on the given error number.

NETBIOS_ERR_CONNECT (Value 9)

NetBIOS call error %#2x. See NetBIOS documentation for more
information.

Level: Termination or Informational

NETBIOS_ERR_CONNECT reports the error number that occurs when a call to the
remote device completes in error.

This error is normally a terminate-type error. However, if the user has configured
this path with auto connection and the error number is 05h, 12h, or 14h, then the
error is returned to the application as an informational-type error and the NetBIOS
call is attempted again.

The user seeing this error should close session and re-open it to try to reconnect.

NETBIOS_ERR_DELETE_NAME (Value 11)

Error %#2x deleting NetBIOS name from the network.
See NetBIOS documentation for more information.

Level: Severe

Errors and Results

C–62 4173 5390–000

NETBIOS_ERR_DELETE_NAME reports the error number that occurs when
deleting a NetBIOS name fails. The machine may have to be rebooted to reinitialize
the local name table.

The user seeing this error should refer to the NetBIOS documentation for more
information on the given error number.

NETBIOS_ERR_LISTEN (Value 6)

Error %#2x on listen.
See NetBIOS documentation for more information.

Level: Severe

NETBIOS_ERR_LISTEN reports the error number that occurs when a listen for an
incoming call was attempted. If the Auto Connect feature if IcNBIOS was enabled,
the listen will be retried.

The user seeing this error should refer to the NetBIOS documentation for more
information on the given error number.

NETBIOS_ERR_RECEIVE (Value 32)

Rcv error %#2x. See NetBIOS documentation for more information.

Level: Severe or Informational

This error reports the error number that occurs when receiving a message.

NETBIOS_ERR_RECEIVE is normally a severe-type error (thus canceling the
receive request). However, if the user has configured this path with auto connection
and the error number is 0ah or 18h, then an informational-type error is reported to
the application, the connection is closed, and an attempt is made to re-open the
connection and continue the receive request.

The user seeing this error should refer to the NetBIOS documentation for more
information on the given error number.

NETBIOS_ERR_RECEIVING (Value 22)

A receive is still pending. Request ignored.

Level: Severe

NETBIOS_ERR_RECEIVING indicates that a receive request is still outstanding.
It occurs when an attempt is made to issue a second receive request. Only one
receive request may be outstanding at a time.

Errors and Results

4173 5390–000 C–63

The user seeing this error should wait until the accessory receives data for the
outstanding request before making another receive request.

NETBIOS_ERR_SEND (Value 33)

Xmt error %#2x. See NetBIOS documentation for more information.

Level: Severe or Warning

NETBIOS_ERR_SEND reports the error number that occurs when transmitting a
message.

This error is normally a severe-type error (thus canceling the transmit request).
However, if the user has configured this path with auto connection and the error
number is 0ah or 18h, then a warning-type error is reported to the application, the
connection is closed, and an attempt is made to re-open the connection and continue
the transmit request.

The user seeing this error should refer to the NetBIOS documentation for more
information on the given error number.

NETBIOS_ERR_SENDING (Value 23)

A transmit is still pending. Request ignored.

Level: Severe

NETBIOS_ERR_SENDING indicates that a transmit request is still outstanding. It
occurs when an attempt is made to issue a second transmit request. Only one
transmit request may be outstanding at a time.

The user seeing this error should wait until the accessory transmits data for the
outstanding request before making another transmit request.

NETBIOS_INTERNAL (Value 10)

ICNBIOS EIL internal error <number>.
Contact component vendor for more information.

Level: Severe

NETBIOS_INTERNAL reports an internal IcNBIOS error number.

The user seeing this error should report the IcNBIOS error number to the
component's vendor.

Errors and Results

C–64 4173 5390–000

NETBIOS_NOT_FOUND (Value 3)

NetBIOS not found. Load NetBIOS before running Windows.

Level: Severe

NETBIOS_NOT_FOUND occurs when NetBIOS could not be found.

The user seeing this error should verify that NetBIOS is loaded before running
Windows.

NETBIOS_XMT_BUSY (Value 21)

Station is still transmitting. Request to terminate transmit ignored.

Level: Severe

NETBIOS_XMT_BUSY occurs when a transmission is still in process and the
application requested to cancel it. The IC_LCL_XMT request is ignored.

The user seeing this error should wait until the transmit request has completed.

Errors and Results

4173 5390–000 C–65

IcTCP
The IcTCP external interface library provides generic TCP/IC socket access. The
ictcp.hic include file defines the generic interface of the IcTCP EIL.

IcTCP Errors
There are no error results specific to the IcTCP external interface library.

Errors and Results

C–66 4173 5390–000

IcTELNET
The IcTELNET service library provides basic TELNET services over TCP/IP. This
allows VT-type emulator to hosts which support TELNET (for example, U Series,
1100/2200 Series, A Series). The ictelnet.hic include file defines the generic
interface of the IcTELNET SL.

The IcTELNET SL also acts as the package's configuration library. The package
configuration table is defined by ICTEL_TEMPL_TABLENUM .

IcTELNET Errors
The following error values are specific to the IcTELNET service library. They are
distinguished by the context associated with the context string
TELNET_CONTEXTSTRING , defined in the ictelnet.hic include file. Include this
file in an application that is coded to be aware of these specific errors.

TELNET_BAD_CONFIG (Value 12)

Internal Error. Contact the component vendor for more information.

Level: Severe

TELNET_BAD_CONFIG is an internal error that indicates that an error has
occurred within the INFOConnect database. It may occur as the result of disk
corruption.

The user seeing this error should contact the component vendor for more
information.

TELNET_ERR_RECEIVING (Value 22)

A receive is still pending. Request ignored.

Level: Severe

TELNET_ERR_RECEIVING occurs when an attempt is made to issue a second
receive request. Only one receive request may be outstanding at a time.

The user seeing this error should wait until the receive request has completed.

TELNET_ERR_SENDING (Value 23)

A transmit is still pending. Request ignored.

Level: Severe

Errors and Results

4173 5390–000 C–67

TELNET_ERR_SENDING occurs when an attempt is made to issue a second
transmit request. Only one transmit request may be outstanding at a time.

The user seeing this error should wait until the transmit request has completed.

TELNET_INTERNAL (Value 10)

IcTELNET Service Library internal error <number>.
Contact component vendor for more information.

Level: Severe

TELNET_INTERNAL reports an internal IcTELNET error number.

The user seeing this error should report the IcTELNET error number to the
component's vendor.

Errors and Results

C–68 4173 5390–000

IcTrace
The IcTrace service library traces INFOConnect data communications calls and
events and writes them to a trace file, trace.log, located in the DataDir directory. The
ictrace.hic include file defines the generic interface of the IcTrace SL.

IcTrace Errors
There are no error results specific to the IcTrace service library.

Errors and Results

4173 5390–000 C–69

IcTTY
IcTTY is an external interface library that manages a TTY connection through the
computer's COM ports. The ictty.hic include file defines the generic interface of the
IcTTY EIL.

IcTTY Errors
The following error values are specific to the IcTTY external interface library. They
are distinguished by the context associated with the context string
TTY_CONTEXTSTRING , defined in the ictty.hic include file. Include this file in
an application that is coded to be aware of these specific errors.

The following errors prefixed by TTY_ERROR_... may occur during
communication session establishment. They correspond to the results returned by
MS-Windows if an error occurs while opening the Windows communication device.

TTY_ERROR_BAUDERROR (Value 8)

Baud rate is not supported. Reconfigure path and try again.

Level: Termination

TTY_ERROR_BAUDERROR indicates that the configured baud rate is
unsupported.

The user seeing this error should reconfigure this path and try again.

TTY_ERROR_BYTEERROR (Value 7)

Invalid byte size specified. Reconfigure path and try again.

Level: Termination

TTY_ERROR_BYTEERROR indicates that the configured byte size is invalid.

The user seeing this error should reconfigure this path and try again.

Errors and Results

C–70 4173 5390–000

TTY_ERROR_DEFPARAM (Value 5)

Default parameters are bad. Verify configuration.

Level: Termination

TTY_ERROR_DEFPARAM indicates that the default parameters are invalid.

The user seeing this error should reconfigure this path, verify the Windows
communications port configuration, and try again.

TTY_ERROR_DIALABORTED (Value 11)

User Aborted Autodialing.

Level: Termination

TTY_ERROR_DIALABORTED indicates that the user aborted the auto dialing
feature of the IcTTY EIL. The session will not be opened.

TTY_ERROR_NOPORT (Value 1)

Com port does not exist. Reconfigure and try again.

Level: Termination

TTY_ERROR_NOPORT indicates that the communication ID is invalid or
unsupported.

The user seeing this error should reconfigure this path, verify the Windows
communications port configuration, and try again.

TTY_ERROR_NOQs (Value 4)

Unable to allocate I/O queues. Free up some memory and try again.

Level: Termination

TTY_ERROR_NOQs indicates that there is not enough memory to allocate the
input/output queues. It occurs in low memory conditions.

The user seeing this error should free some memory and try again.

TTY_ERROR_NOTIMER (Value 10)

Dialing timer could not be started.

Level: Termination

Errors and Results

4173 5390–000 C–71

TTY_ERROR_NOTIMER occurs when an attempt to start the auto dialing
Windows timer fails. Dialing cannot continue, and the session will not be opened.

The user seeing this error should terminate some Windows applications that are
using the timer resource and try again.

TTY_ERROR_NOTOPEN (Value 3)

Com port is not open. Verify Windows communication port configuration.

Level: Termination

TTY_ERROR_NOTOPEN indicates that the communication device could not be
opened.

The user seeing this error should verify that the Windows communication port
configuration is correct.

TTY_ERROR_OPEN (Value 2)

Device is already open. Verify that another application is not using the
communications port.

Level: Termination

TTY_ERROR_OPEN indicates that the communication device is already open.

The user seeing this error should verify that another application is not using the
communications port.

Errors and Results

C–72 4173 5390–000

TTY_ERROR_UNAVAILPORT (Value 6)

Com port is not available. Verify communications hardware.

Level: Termination

TTY_ERROR_UNAVAILPORT indicates that the device hardware is not available.

The user seeing this error should verify that the communications hardware is
correctly installed and operational.

TTY_ERROR_UNKNOWN (Value 9)

Unknown status returned by Windows.

Level: Termination

TTY_ERROR_UNKNOWN indicates that an unknown error result was returned by
MS-Windows.

The user seeing this error should contact the component's vendor.

TTY_LCLERROR_FAILED (Value 40)

The communications port could not be set into Local mode. Verify
handshaking configuration.

Level: Termination

TTY_LCLERROR_FAILED indicates that the previous request to set the
communications port into local mode did not succeed.

The user seeing this error should verify the handshaking configuration.

TTY_RCVERROR_FAILED (Value 22)

The communications port could not be set into Receive mode. Verify
handshaking configuration.

Level: Termination

TTY_RCVERROR_FAILED indicates that the previous request to set the
communications port into Receive mode did not succeed.

The user seeing this error should verify the handshaking configuration.

Errors and Results

4173 5390–000 C–73

TTY_RCVERROR_FRAME (Value 21)

The hardware detects a framing error.
Check hardware and verify hardware configuration.

Level: Severe

TTY_RCVERROR_FRAME occurs when the hardware detects a framing error.

The user seeing this error should verify the hardware and the hardware configuration.

TTY_RCVERROR_OVERRUN (Value 20)

A receive overrun error has occurred, data has been lost.
Contact the component vendor for further instruction.

Level: Severe

TTY_RCVERROR_OVERRUN occurs when data in the receive buffer is not read
before more data arrives.

The user seeing this error should contact the component's vendor.

TTY_XMTERROR_CTSTO (Value 30)

Clear-to-send timeout. Check wiring and verify configuration.

Level: Severe

TTY_XMTERROR_CTSTO occurs when the Clear-to-send signal times out while
trying to transmit.

The user seeing this error should verify the wiring and the configuration.

TTY_XMTERROR_DSRTO (Value 31)

Data-set-ready timeout. Check wiring and verify configuration.

Level: Severe

TTY_XMTERROR_DSRTO occurs when the Data-set-ready signal times out while
trying to transmit.

The user seeing this error should verify the wiring and the configuration.

TTY_XMTERROR_RLSDTO (Value 32)

Receive-line-signal-detect timeout. Check wiring and verify configuration.

Errors and Results

C–74 4173 5390–000

Level: Severe

TTY_XMTERROR_RLSDTO occurs when the Receive-line-signal-detect signal
times out while trying to transmit.

The user seeing this error should verify the wiring and the configuration.

TTY_XMTERROR_TRANSMITTING (Value 34)

Station is still transmitting. Request ignored.

Level: Termination

TTY_XMTERROR_TRANSMITTING indicates that the previous request to
transmit has not completed. This request is rejected. The application/accessory
should wait for a transmit-done or a transmit-error type event/message before
retransmitting.

The user seeing this error should contact the component's vendor.

TTY_XMTERROR_TXFULL (Value 33)

The transmit queue is full while trying to queue a character.
Contact the application vendor for further information.

Level: Severe

TTY_XMTERROR_TXFULL occurs when data cannot be queued because the
transmit queue is full.

The user seeing this error should contact the application's vendor.

Errors and Results

4173 5390–000 C–75

IcXNS
IcXNS is an external interface library that allows access to network nodes on a
Novell LAN. The icxns.hic include file defines the generic interface of the IcXNS
EIL.

IcXNS Errors
The following error values are specific to the IcXNS external interface library. They
are distinguished by the context associated with the context string
XNS_CONTEXTSTRING , which is defined in the icxns.hic include file. Include
icxns.hic and dcdevice.hic in an application that is coded to be aware of these
specific errors.

DCDEV_BAD_DEVICE (Value 1003)

Internal Error.
Invalid XNS device driver (XNSCOM.SYS).

Level: Severe

DCDEV_BAD_DEVICE occurs when the version of the installed XNSCOM.SYS
device is not a valid XNS device.

The user seeing this error should reinstall the XNS device driver.

DCDEV_NO_CHANNEL (Value 1006)

No channel available. Increase /Sn parameter of
XNSCOM.SYS device in config.sys or close an active session.

Level: Severe

DCDEV_NO_CHANNEL occurs when no channel is available.

The user seeing this error should increase the /Sn parameter for the XNS device
driver in CONFIG.SYS and reboot the machine or close an active XNS session.

Errors and Results

C–76 4173 5390–000

DCDEV_NO_DEVICE (Value 1001)

Unable to open device. Verify that device=<path>XNSCOM.SYS is present
in CONFIG.SYS.

Level: Severe

DCDEV_NO_DEVICE occurs when the required data communications device could
not be opened.

The user seeing this error should verify that the device statement for the XNS device
driver in CONFIG.SYS is correct.

DCDEV_NO_DRIVER (Value 1005)

XNSCOM.SYS requires IPX.COM to be loaded.

Level: Severe

DCDEV_NO_DRIVER occurs when IPX.COM is not loaded. IPX.COM must be
loaded before loading Windows.

The user seeing this error should load IPX before loading Windows.

DCDEV_NOT_DEVICE (Value 1002)

Unable to verify device. Verify that CONFIG.SYS references the correct
version of XNSCOM.SYS.

Level: Severe

DCDEV_NOT_DEVICE occurs when the required device could not be verified.

The user seeing this error should verify that CONFIG.SYS references the correct
version of XNSCOM.SYS and reboot if necessary.

Errors and Results

4173 5390–000 C–77

DCDEV_OLD_DEVICE (Value 1004)

Old XNS device driver (XNSCOM.SYS).

Level: Warning or Severe

DCDEV_OLD_DEVICE occurs when the version of the installed XNSCOM.SYS
device is older than the IcXNS.DLL library. If the library can continue, this is a
warning type message; otherwise, it is severe.

The user seeing this error should verify that CONFIG.SYS references the correct
version of XNSCOM.SYS and reboot if necessary.

DCDEV_READ_ERROR (Value 1020)

Internal Read error.
Contact the component vendor for further instruction.

Level: Severe

DCDEV_READ_ERROR indicates that the data communications device could not
read data.

The user seeing this error should contact the component's vendor.

DCDEV_WRITE_ERROR (Value 1021)

Internal Write error.
Contact the component vendor for further instruction.

Level: Severe

DCDEV_WRITE_ERROR indicates that the data communications device could not
write data.

The user seeing this error should contact the component's vendor.

Errors and Results

C–78 4173 5390–000

DCDEV_WRITE_INCOMPLETE (Value 1022)

Write incomplete. Verify that the /b parameter of XNSCOM.SYS device in
config.sys matches the application's suggested value.

Level: Severe

DCDEV_WRITE_INCOMPLETE indicates that the data communications device
could not complete writing data.

The user seeing this error should verify that the /b parameter for the XNS device
driver in CONFIG.SYS matches the application's suggested value.

XNS_ADDRESS_ERROR (Value 701)

LAN terminal address error.

Level: Severe

XNS_ADDRESS_ERROR occurs when the LAN terminal address is in error.

The user seeing this error should verify the configured address.

XNS_SOCKET_ERROR (Value 702)

Same socket already open.

Level: Severe

XNS_SOCKET_ERROR occurs when the configured socket is already open.

The user seeing this error should verify that the socket configuration is correct.

4173 5390–000 Glossary–1

Glossary

A
AAPI

See Accessory Application Programming Interface.

accessory
An ICS application that can be invoked and controlled by other ICS applications.
Accessories are written to be useful in building more sophisticated products. An
accessory adheres to the rules outlined in Section 6 of this manual.

Accessory Application Programming Interface (AAPI)
The interface available to INFOConnect applications and accessories. The AAPI
defines a collection of services for sending and receiving data across a data
communications connection in a transport-independent manner.

accessory ID
See ID.

AIL
See application interface library.

aliasing (channel and session)
The ICS Manager uses channel identifiers in the form of HIC_CHANNEL s and
session identifiers in the form of HIC_SESSIONs. Libraries must use these
identifiers, or handles, when calling the ICS Manager API as needed. The library
may create an alias for these identifiers by assigning a value that uniquely identifies
the channel or session in the IcLibOpenChannel or IcLibOpenSession procedure.
In this case, the library will receive this value on all calls from the ICS Manager.
Otherwise, the library receives the ICS Manager's identifier.

application interface library (AIL)
A library that implicitly appears at the top of the library stack and typically exports
the application interface to accessories. The INFOConnect Accessory AIL
(IcAAPI16.DLL) exports all session related interfaces of the INFOConnect
Accessories API. Other AAPI functions are exported directly by the ICS Manager
and are also available to INFOConnect accessories.

Application Type
See Open ID.

Glossary

Glossary–2 4173 5390–000

B
branded component numbers

A supplier-specific identifier that uniquely identifies a component. See component
number.

C
channel data

Global channel-related data for ICS libraries that is reusable on a per-session basis.
Default data may be supplied by the library during template installation. Channel
data may be configured by the user through channel configuration and associated
with path data during path configuration. This is the data passed into
IcLibOpenChannel.

CodeDir
The name of the directory that contains INFOConnect code files. CodeDir refers to
either the [INFOConnect] CodeDir entry from WIN.INI or, if that does not exist, the
directory from which the ICS Manager DLLs are executing.

Communications Manager
The ICS Manager component that provides the interface between the accessory and
the library components. The Communications Manager handles loading the
necessary libraries at session establishment.

communication path
See path.

communication session
See session.

component number
Identifiers used by the INFOConnect Connectivity Services configuration accessory
to uniquely identify components. Component numbers are defined by the
IC_COMPONENT data type. See Appendix A for a more information.

configuration session
An instance of active configuration of a particular INFOConnect element (such as an
INFOConnect path or library).

configuration accessory or configurator
An INFOConnect accessory that provides the user interface to the configuration
functions for the INFOConnect Connectivity Services product. There may be more
than one configuration accessory executing. The configuration accessory provided
on the ICS runtime diskettes is referred to as the INFOConnect Manager.

Glossary

4173 5390–000 Glossary–3

Configuration Manager
The ICS Manager component that provides the configuration feature of
INFOConnect by allowing access to the Database Manager. It also manages the
interface between libraries during configuration.

context
A dynamically assigned identification for INFOConnect Connectivity Services
loaded DLLs and registered accessories. It can be used to uniquely identify the
accessory/library where the status and error messages are defined. A context is part
of an IC_RESULT value.

context string
Unique identification string that is used to obtain a unique context for loaded ICS
components. The context string is defined in the component's .HIC include file.

cooperative system
A system consisting of multiple components that may be executing on a single
computer system or on different computer systems. INFOConnect Connectivity
Services provides the communications layer between different components of the
cooperative system when one of the components is running on a workstation GUI
platform.

Glossary

Glossary–4 4173 5390–000

D
data dictionary table

A table of IC_DICT_FIELD s followed by a single NULL value. This is a user-
defined resource type with the type ID given as the DictRcType field value in the
IC_DICT_NODE resource. The name IDs are computed using the TableFirst and
TableCount field values of the same resource. Each table defines some portion of a
library's configuration data.

Database Manager
The ICS Manager component that maintains the configuration database.

DataDir
The name of the directory that contains INFOConnect data files. DataDir refers to
either the [INFOConnect] DataDir entry from WIN.INI or, if that does not exist, the
Windows Directory.

DosLink
Client/Server-type DOS applications that run in Windows enhanced mode and utilize
the ICS API for data communications.

DosLink API
A subset of the Accessory API that defines those INFOConnect data communications
services available to DOS applications.

E
EIL

See external interface library.

exit-hook library
A special library that gains control from the ICS Installation Accessory at certain
points during installation and deinstallation of the product. There may be only one
exit-hook library per package. If this library exists, its filename is recorded in the
package INF installation file.

external interface library (EIL)
A library that acts as an adaptor to a particular type of communications hardware or
software. Each path is configured with a single EIL. EILs act as the point where a
path connects to another "environmental context". This is often an external
communications driver, but an EIL can also connect to another INFOConnect path
and initiate another pass through the INFOConnect architecture. Applications, as
well as other libraries in the path, are unaware of EILs.

Glossary

4173 5390–000 Glossary–5

G
generic component number

Identifies a component according to its function.. See component number.

Graphical User Interface (GUI)
User presentation that consists of managing multiple objects on a single screen. The
interface consists of windows, dialogs, keyboard, and, mouse support which together
provide a high-level of consistency to the users perception of the system.

GUI
See Graphical User Interface.

H
.HIC include file

An include file provided by an ICS library component that contains the library's
context string, library-specific statuses and errors, and definitions for each of the
library's configuration tables along with field definitions for each field of the tables.

hidden path
A path configured as hidden will not appear for selection at runtime when an
INFOConnect application or accessory opens a session without a pre-specified path.
This is useful when a path is pre-configured for use by a particular application or
accessory and so should not be chosen for use with other applications.

hidden template
A template configured as hidden will not appear for selection during path
configuration. This is useful for administrators to configure templates that are not
normally visible to the user.

hook library
A special purpose library that provides special features to the ICS Manager. See
trace library, exit-hook library.

Glossary

Glossary–6 4173 5390–000

I
ICS Manager or The Manager

The backplane of the INFOConnect Connectivity Services product. The ICS
Manager consists of a set of dynamic link libraries that control data communications
as well as provide access to the INFOConnect API. The following components
provide all of the features of the ICS product: Communication Manager,
Configuration Manager, Database Manager, INFOConnect Manager, Installation
Manager, and Utility Manager.

ICS path
See path.

IC_RESULT
An IC_RESULT is a small packet of data used to describe errors and statuses. Most
INFOConnect functions and events return an IC_RESULT indicating success or
failure. Functions exist to translate 'error' IC_RESULTs into displayable text
strings. IC_RESULT consists of three parts: a context, a type, and a value. Utilities
exist to extract the various parts from an IC_RESULT and to create an IC_RESULT
from its parts.

ID (accessory ID/library ID)
An ID, or key, that identifies the fully qualified runfile name. It must be less than
IC_MAXIDSIZE large, and is usually installed for the user during product
installation.

IIL
See interprocess interface library.

.INF file
An installation script file for an INFOConnect package.

INFOCONN.CFG
This file contains configuration information for INFOConnect Connectivity Services
and its currently configured paths.

INFOConnect library
Application Interface Libraries, Service Libraries, External Interface Libraries,
Quick Configuration Libraries, and Hook Libraries are collectively referred to as
INFOConnect libraries. Also see interprocess interface library and stack library.

Glossary

4173 5390–000 Glossary–7

INFOConnect Manager
The ICS Manager component that is the user interface to ICS. It provides both
configurator and shell accessory features.

installation accessory
An INFOConnect utility that provides the user interface for installation,
deinstallation, and quick configuration of INFOConnect components. The
installation accessory provided on the ICS runtime diskettes is referred to as the
Installation Manager. Also see local installation, standalone installation, subscribe
installation, and publish installation.

Installation Manager
The ICS Manager component that provides the installation, deinstallation, and quick
configuration features. Also see installation accessory.

INSTMGR.CFG
This file contains package information for INFOConnect Connectivity Services and
its currently installed packages.

interprocess interface library (IIL)
A library that acts as both an AIL and an EIL. An IIL associates two sessions in
different processes by internally linking the EIL role of one session to the AIL role
of the other session. Libraries of this type are typically not included in path
templates. The IIL is automatically included in sessions when an AIL requests a path
that must be opened in a different process.

L
library

See INFOConnect library, multiplexing library.

library channel
See channel data.

library ID
See ID.

library stack
A stack of ICS libraries consisting of an application interface library, zero to 14
service libraries, and terminated by a single external interface library.

Glossary

Glossary–8 4173 5390–000

local installation
Installation (/L option) of a package on a workstation or server that redirects files
destined for the Windows and Windows system directories to the installation
destination directory. This option, therefore, affects the destination of files during
standalone installation, publish installation, and subscribe installation.

M
Manager

See ICS Manager.

multiplexing library
A stack interface library that can support multiple communication sessions (where it
is configured as an EIL) over another session. The sessions are associated with a
channel in the EIL role which is associated with a lower level path. Typically, this
lower level path is specified during channel configuration of the EIL role.

O
Open ID

The Open ID, also referred to as Application Type, is a library or accessory identifier
that is used to narrow the list of available paths or templates during a selection.

P
path (ICS path or communication path)

Defines the hardware and software components (and their configurations) necessary
for communicating between components of a cooperative application. It involves
zero or more (up to 14) service libraries and one external interface library, along
with their respective configurations. The path may involve communications within
the system or to another computer. It is identified by a path ID.

path data
Data that is specific to ICS libraries and is unique on a per-session basis. Path data
will be configured by the user through path configuration. This is the data passed
into IcLibOpenSession.

path ID
A unique, user-assigned string of fifteen characters or less, containing no spaces,
colons(:), or tildes(~) that identifies an ICS path.

path template
See template.

Glossary

4173 5390–000 Glossary–9

publish installation
Installation (/A option) of a package to a shared directory on a network by the
network administrator. All necessary files are copied to various directories on the
server, including the Windows and the Windows system directories. The package is
shared by network users through a subscribe installation. Also see local installation.

Q
quick configuration library

A special purpose library that performs quick configuration for a library or a set of
libraries in a package.

S
service library (SL)

A library that acts as a filter on the data and status messages which flow between an
application interface library and external interface library. Zero or more service
libraries can be stacked in a single INFOConnect path. Service libraries generally
operate independently and are unaware of the other libraries in the path.

session (communication session)
An open or active instance of an ICS path. It has an associated session handle that is
a unique integer used by INFOConnect Connectivity Services to identify the
communication session.

session identification string
A string consisting of the path ID and, if multiple copies of the path can be active, a
semicolon and the unique library-defined session ID.

session manager stack library
A stack interface library that can support multiple communication sessions (where it
is configured as an EIL) over another session. The sessions are grouped into a
session group (sometimes by using a channel). One or more alternate lower level
paths may be configured for fallback when the primary lower level path is
unavailable. This type of library filters the data stream for commands that reroute
the session data to different applications.

shell or shell accessory
An INFOConnect utility that acts as the EXE portion of the ICS Manager. It must
call the IcInitShell procedure before entering its message loop. Only one
INFOConnect Shell can be running at any given time, and it may or may not include
a configuration accessory.

Glossary

Glossary–10 4173 5390–000

SL
See service library.

stack
See library stack.

stack interface library
A library that acts as both an AIL and an EIL. A stack interface library provides
multiplexing or switching functions on lower level sessions. These types of libraries
associate two sessions in the same process by internally linking the EIL role of one
session to the AIL role of the other session. Libraries of this type can be included in
path templates as an EIL (for use by higher level paths). Also see multiplexing
library, switching library, session manager stack library.

stack library
See stack interface library.

standalone installation
Installation of a package on a workstation. All necessary files are copied to various
directories on the workstation, including the Windows and the Windows system
directories. Also see local installation.

subscribe installation
Installation (/N option) of a package from a network to a workstation that allows the
workstation to access the shared copy of the package. Various files may be copied to
the Windows and the Windows system directories. Also see local installation.

switching stack library
A stack interface library that stacks one session (where it is configured as an EIL) on
top of another session and filters the data stream for commands to close and open the
lower session.

system path
A path marked as system implies that the path's associated Open ID is intended to
reference a library rather than an accessory. This is convenient for low-level paths
that are used as transport layers by higher level paths (usually by supplying the path
ID as channel data for the EIL associated with the higher-level path template). Paths
marked as system do not appear for selection during path configuration. These paths
are normally configured automatically by the library component that uses these path.
System paths should also be marked as hidden to prevent them from appearing for
user selection at runtime.

Glossary

4173 5390–000 Glossary–11

system template
A template marked as system implies that the template's associated Open ID is
intended to reference a library rather than an accessory. This is convenient for low-
level paths that are used as transport layers by higher level paths (usually by
supplying the path ID as channel data for the EIL associated with the higher-level
template). System templates are typically used by library configuration and quick
configuration libraries when creating system paths. Therefore, they are normally
configured automatically by the library components that use these templates.
Templates marked as system should also be marked as hidden in order to prevent
them from appearing for user selection.

T
template

A stack of ICS libraries consisting of zero or more service libraries terminated by a
single external interface library. The EIL may be associated with channel data.
Templates are usually installed for the user during library installation and are
selected during path configuration to create paths. Templates generally categorize
the basic types of connections available on a workstation. This simplifies the path
configuration process by reducing a large number of libraries to a small set of path
templates.

template ID
A string, or key, less than IC_MAXIDSIZE large that identifies the template.

trace library
A special service library that traces session communication so that session activity
can be monitored.

trace log library
A special library that manages a log file by writing information to it.

U
Utility Manager

The ICS Manager component that provides internal utilities.

Glossary

Glossary–12 4173 5390–000

X
XVT

XVT is a software toolkit produced by XVT Software Inc. that provides graphical
presentation services like windows, list boxes, scroll bars, etc. to applications.
Developers using XVT instead of directly using the underlying window system (i.e.
making direct calls to Windows functions) may readily port their applications to any
of the GUIs that Unisys offers on its workstations. INFOConnect applications are
strongly encouraged, but not required, to use the XVT toolkit instead of the native
presentation services.

4173 5390–000 Index–1

Index

A
accessory

definition, 6-1
standard IDs (keys), A-1
statuses from, B-2, B-10
statuses to, B-7, B-10, B-12
Windows API, 2-2
XVT/Win API, 2-3

accessory API, (See also memory
management API and general
utilities)

ic_change_handle, 3-141
ic_close_session, 3-142
ic_default_error_proc, 3-143
ic_exit_ok, 3-146
ic_get_path_id, 3-153
ic_get_session_id, 3-155
ic_get_session_info, 3-156
ic_get_string, 3-157
ic_init_ics, 3-162
ic_lcl, 3-163
ic_open_accessory, 3-164
ic_open_session, 3-167
ic_rcv, 3-170
ic_register_msg_session, 3-172
ic_set_error, 3-176
ic_set_status, 3-177
ic_xmt, 3-178
IcChangeHandle, 3-4
IcCloseSession, 3-8
IcDefaultErrorProc, 3-12
IcExitOk, 3-21
IcGetPathID, 3-35
IcGetSessionID, 3-43
IcGetSessionInfo, 3-44
IcGetString, 3-45
IcInitIcs, 3-47
IcLcl, 3-49
IcOpenAccessory, 3-97
IcOpenSession, 3-100
IcRcv, 3-104

IcRegisterMsgSession, 3-113
IcSelectPath, 3-121
IcSetError, 3-123
IcSetStatus, 3-127
IcXmt, 3-133

accessory utilities
IcGetCmdlineOption, 3-25

AIL, (See application interface library)
application interface library, 5-8

B
basic session management API

ic_close_session, 3-142
ic_exit_ok, 3-146
ic_init_ics, 3-162
ic_lcl, 3-163
ic_open_accessory, 3-164
ic_open_session, 3-167
ic_rcv, 3-170
ic_register_msg_session, 3-172
ic_xmt, 3-178
IcCloseSession, 3-8
IcExitOk, 3-21
IcInitIcs, 3-47
IcLcl, 3-49
IcOpenAccessory, 3-97
IcOpenSession, 3-100
IcRcv, 3-104
IcRegisterMsgSession, 3-113
IcXmt, 3-133

blocking, 5-54
branded component numbers, 5-7, A-4
buffers, (See memory

management API)

C
CHANNELID, 5-1
Client/Server Applications,

(See DosLink)
component numbers, A-4
configuration API

Index

Index–2 4173 5390–000

IcNotifyConfig, 3-95
IcSelectPath, 3-121

D

DosLink
displaying error strings, 5-17

DosLink API, 2-5
DosLink Specific API

IcCreateHandle, 3-9
IcCreateHwnd, 3-10
IcCreateSession, 3-11
IcDestroyHandle, 3-17
IcDestroyHwnd, 3-18
IcDestroySession, 3-19
IcGetNextEvent, 3-34
IcGetServiceName, 3-42
IcHandleOffset, 3-46
IcNextEvent, 3-93
IcRegisterCallback, 3-111
IcSetServerInfo, 3-124

DosLink-specific statuses, B-16
DOSLINK_SINFO, B-16

E

E_IC_ERROR, 4-3
E_IC_LCL_RESULT, 3-163, 3-179, 4-4
E_IC_NEWPATH, 3-152, 4-5
E_IC_NULLEVENT, 3-172, 4-6
E_IC_RCV_DONE, 3-170, 4-7
E_IC_RCV_ERROR, 3-170, 4-8
E_IC_SESSION_CLOSE, 3-142, 4-9
E_IC_SESSION_EST, 3-142, 3-168,

4-10
E_IC_STATUS, 4-11
E_IC_STATUS_RESULT, 3-177, 4-12
E_IC_XMT_DONE, 3-179, 4-13
E_IC_XMT_ERROR, 3-179, 4-14
error handling API

ic_default_error_proc, 3-143
ic_get_string, 3-157
ic_set_error, 3-176
IcDefaultErrorProc, 3-12
IcGetString, 3-45
IcSetError, 3-123

errors
IcACOMS, C-49

IcHLCNTS, C-52
IcLCW, C-56
IcLocal, C-57
IcMon, C-58
IcNBIOS, C-60
IcTCP, C-65
IcTELNET, C-66
IcTrace, C-68
IcTTY, C-69
IcXNS, C-75
standard ICS, C-2

EVENT, 5-2
extended status, 5-55
external interface library, 5-8

standard IDs (keys), A-3

F

field
flags, 5-20
standard, 5-81, 5-82, 5-83
types, 5-22

flags
field, 5-20
library, 5-27
session, 5-49
table, 5-66

G

general utilities
IC_CHECK_DATAFLAGS, 3-6
IC_CHECK_RESULT_SEVERE, 3-7
ic_deregister_accessory, 3-145
ic_get_context, 3-148
ic_get_context_string, 3-149
ic_get_infoconnect_dir, 3-150
ic_get_new_path, 3-151
ic_get_path_names, 3-154
IC_GET_RESULT_CONTEXT, 3-37
IC_GET_RESULT_SUBTYPE, 3-38
IC_GET_RESULT_SUBVALUE,

3-39
IC_GET_RESULT_TYPE, 3-40
IC_GET_RESULT_VALUE, 3-41
IC_MAKE_RESULT, 3-80
ic_register_accessory, 3-171
ic_run_accessory, 3-174

Index

4173 5390–000 Index–3

IcDeregisterAccessory, 3-16
IcGetContext, 3-27
IcGetContextString, 3-29
IcGetINFOConnectDir, 3-30
IcGetNewPath, 3-32
IcGetPathNames, 3-36
IcMgrTraceBuffer, 3-88
IcMgrTraceResult, 3-90
IcReadBuffer, 3-106
IcRegisterAccessory, 3-110
IcRunAccessory, 3-116
IcRunHelp3, 3-118
IcWriteBuffer, 3-129
NOREF, 3-135

generic component numbers, 5-7, A-4
global buffers, (See memory

management API)

H

HIC_CHANNEL, 5-3
HIC_CONFIG, 5-3
HIC_SESSION, 5-3
HIC_STATUSBUF, 5-4
hook library, 5-8

I

"IC_Error", 4-15
"IC_LclResult", 4-17
"IC_NewPath", 4-18
"IC_RcvDone", 4-20
"IC_RcvError", 4-21
"IC_SessionClosed", 4-23
"IC_SessionEstablished", 4-24
"IC_Status", 4-26
"IC_StatusResult", 4-27
"IC_Timer", 4-28
"IC_XmtDone", 4-29
"IC_XmtError", 4-30
IC_ACCESSORY, 5-7
IC_ADD_CONFIG, 5-35
IC_APILIBRARY, 5-7
IC_APPINTERFACE, 5-8
IC_APPLIBRARY, 5-8
IC_BASEREVISION, 5-4
IC_BASEVERSION, 5-4
ic_buf_alloc, 3-136

ic_buf_free, 3-137
ic_buf_lock, 3-138
ic_buf_realloc, 3-139
ic_buf_unlock, 3-140
IC_BUFHND, 5-5
IC_BUILD_REVISION, 5-5
IC_CALLBACK, 5-5
ic_change_handle, 3-141
IC_CHECK_DATAFLAGS, 3-6
IC_CHECK_RESULT_SEVERE, 3-7
ic_close_session, 3-142
IC_CMD_..., (See IC_COMMAND)
IC_CODEDIR, 5-16
IC_COMMAND, 3-73, 5-6
IC_COMMMGR_INITIALIZED, 4-11,

4-26
IC_COMMMGR_TERMINATED, 4-11,

4-26
IC_COMPONENT, 5-7, A-4
IC_COMPONENT_TYPE, 5-7
IC_CONNECT_STATUS, 5-49
IC_DATADIR, 5-16
IC_DATAFLAGS, 5-60
IC_DEBUG, 3-48, 5-10
ic_default_error_proc, 3-143
IC_DELETE_CONFIG, 5-36
ic_deregister_accessory, 3-145
IC_DICT_FIELD, 5-12, 5-44
IC_DICT_NODE, 5-13
IC_DICT_TABLE, 5-14, 5-15
IC_DIRECTORYTYPES, 3-30, 5-16
IC_EMU_LEVEL, 5-17
IC_ERROR, 4-15
IC_ERROR_INFO, 5-17
IC_ERROR_MASK, 5-18
IC_ERROR_SEVERE, 5-18
IC_ERROR_TERMINATE, 5-19
IC_ERROR_WARNING, 5-19
ic_exit_ok, 3-146
IC_FF_..., (See IC_FIELD_FLAGS)
IC_FIELD_FLAGS, 5-20
IC_FIELDTYPE, 5-22
IC_FST_..., (See IC_FIELDTYPE

[IC_FT_UNSIGNED])
IC_FT_..., (See IC_FIELDTYPE)
IC_FTX_..., (See IC_FIELDTYPE

[IC_FT_UNSIGNED])
ic_galloc, 3-147
ic_get_context, 3-148
ic_get_context_string, 3-149

Index

Index–4 4173 5390–000

ic_get_infoconnect_dir, 3-150
ic_get_new_path, 3-151, 4-5
ic_get_path_id, 3-153
ic_get_path_names, 3-154
IC_GET_RESULT_CONTEXT, 3-37
IC_GET_RESULT_SUBTYPE, 3-38
IC_GET_RESULT_SUBVALUE, 3-39
IC_GET_RESULT_TYPE, 3-40
IC_GET_RESULT_VALUE, 3-41
ic_get_session_id, 3-155
ic_get_session_info, 3-156
ic_get_string, 3-157
ic_gfree, 3-158
ic_glock, 3-159
ic_grealloc, 3-160
ic_gunlock, 3-161
IC_HEADER_3_0, 5-25
IC_HEADER_SIZE, 5-25
IC_HOOKLIBRARY, 5-8
ic_init_ics, 3-162
IC_INTERFACE, 5-8
IC_IPCINTERFACE, 5-8
IC_KEY_SERIALNUM, 5-26
IC_LASTEVENT, 4-16
ic_lcl, 3-163, 4-4
IC_LCL_FLAGS, 3-5, 3-60, 5-26
IC_LCL_RCVXMT, 5-26
IC_LCLRESULT, 3-49, 3-134, 4-17
IC_LF_..., (See IC_LIBRARY_FLAGS)
IC_LIBRARY, 5-8
IC_LIBRARY_FLAGS, 5-27
IC_MAKE_RESULT, 3-80
IC_MANAGER, 5-9
IC_MASTERDIR, 5-16
IC_MAXACCESSORYIDLEN, 5-27
IC_MAXACCESSORYIDSIZE, 5-28
IC_MAXCHANNELIDLEN, 5-28
IC_MAXCHANNELIDSIZE, 5-28
IC_MAXCONNECTEDPATHIDLEN,

5-28
IC_MAXDESCRIPTIONSIZE, 5-29
IC_MAXERRORINSERT, 5-29
IC_MAXERRORSTRING, 5-29
IC_MAXFILENAMESIZE, 5-30
IC_MAXIDSIZE, 5-30
IC_MAXLIBRARYIDLEN, 5-30
IC_MAXLIBRARYIDSIZE, 5-31
IC_MAXPACKAGEIDSIZE, 5-31
IC_MAXPATHIDLEN, 5-31
IC_MAXPATHIDSIZE, 5-31

IC_MAXPRINTSTRING, 5-32
IC_MAXSESSIONIDLEN, 5-32
IC_MAXSESSIONIDSIZE, 5-32
IC_MAXSESSIONIDSUFFIX, 3-57,

5-33
IC_MAXSTRINGLENGTH, 5-33
IC_MAXTEMPLATEIDLEN, 5-33
IC_MAXTEMPLATEIDSIZE, 5-33
IC_MAXVENDORNAMELEN, 5-34
IC_MAXVENDORNAMESIZE, 5-34
IC_MAXWSIDSIZE, 5-34
IC_MEMHND, 5-34
IC_MGR_INI, 5-16
IC_MINOR_VERSION, 5-35
IC_MSG_CONFIG, 3-96, 5-35
IC_NEWPATH, 3-32, 4-18
IC_NEXTEVENT_FLAGS, 5-37
IC_NULLEVENT, 4-19
IC_OK, 5-38
ic_open_accessory, 3-164
IC_OPEN_OPTIONS, 3-62, 3-66, 5-38
ic_open_session, 3-167
IC_PACKAGE, 5-39
IC_PATH_FLAGS, 5-39
IC_PRINT_SUMMARY, 5-39
IC_QUICKCONFIG, 5-9
IC_RC_NODE, 4-23, 4-24, 4-26, 5-40,

5-49
ic_rcv, 3-170
IC_RCVDONE, 3-46, 3-105, 4-20, 5-60
IC_RCVERROR, 3-105, 4-21
IC_RECORD_INFO, 5-43
IC_RECORD_SIZE, 5-44
IC_REFRESH_CONFIG, 5-36
ic_register_accessory, 3-171
ic_register_msg_session, 3-172
IC_RESULT, 5-44
IC_RESULT_CONTEXT, 5-44
IC_RESULT_CONTEXT_INVALID,

5-46
IC_RESULT_SUBTYPE, 5-46
IC_RESULT_SUBVALUE, 5-47
IC_RESULT_TYPE, 5-44
IC_RESULT_VALUE, 5-44
IC_REVISION_..., 5-47
IC_REVISIONNUM, 5-48
ic_run_accessory, 3-174
IC_SENDSTATUS, 4-22
IC_SERIALNUM, 5-48
IC_SERVICE, 5-9

Index

4173 5390–000 Index–5

IC_SESSION_FLAGS, 5-49
IC_SESSIONCLOSED, 3-8, 3-52, 3-61,

3-83, 4-23
IC_SESSIONESTABLISHED, 3-8, 3-52,

3-102, 4-24
ic_set_error, 3-176
ic_set_status, 3-177, 4-12
IC_SF_..., (See IC_SESSION_FLAGS)
IC_SINFO, 3-44, 3-54, 3-82, 5-50
IC_STACKINTERFACE, 5-9
IC_STATUS, 4-21, 4-26
IC_STATUS_BLOCKING, 5-50, 5-54,

B-2
IC_STATUS_BUFFER, 5-55, B-2
IC_STATUS_COMMMGR, 3-21, 3-53,

4-22, 5-56, B-12
IC_STATUS_CONNECT, 3-124, 5-50,

5-57, B-3, B-7
IC_STATUS_CONTROL, 5-59, B-8,

B-11
IC_STATUS_DATAFLAGS, 5-60, B-4,

B-10
IC_STATUS_FKEY, 5-62, B-5
IC_STATUS_LINESTATE, 5-63, B-8
IC_STATUS_REACTIVATE, 5-50,

5-64, B-6
IC_STATUS_TRANS, 5-65, B-6
IC_STATUS_UTS, 5-66, B-14
IC_STATUSBUF, 5-52
IC_STATUSRESULT, 3-127, 4-27,

5-53, 5-55
IC_TABLE_FLAGS, 5-66
IC_TABLETYPE, 5-68
IC_TemplateBegin, 5-69
IC_TemplateChannel, 5-69
IC_TemplateConfig, 5-70
IC_TemplateConfigTable, 5-71
IC_TemplateDescription, 5-71
IC_TemplateEnd, 5-72
IC_TemplateFlags, 5-72
IC_TemplateInit, 5-72
IC_TemplateLibrary, 5-74
IC_TemplateOpenID, 5-74
IC_TemplateTerm, 5-75
IC_TF_..., (See IC_TABLE_FLAGS)
IC_TIMER, 3-93, 4-28
IC_UPDATE_CONFIG, 5-36
IC_UPGRADE_INFO, 5-75
IC_VER, 5-76
IC_VER_INFO, 5-77

IC_VER_UPGRADE, 5-75
IC_VERIFY, 3-76, 5-78
IC_VERIFY_OK, 5-79
IC_VERSION_..., 5-80
IC_VERSION_FILE, 5-79
IC_VERSION_PRODUCT, 5-80
IC_VERSION_STRING, 5-5, 5-80
ic_xmt, 3-178
IC_XMTDONE, 3-46, 3-134, 4-29
IC_XMTERROR, 3-134, 4-30
IcACOMS errors, C-49
IcAddRefContextID, 3-2, 3-115
IcAllocBuffer, 3-3
IcChangeHandle, 3-4
IcCloseSession, 3-8
IcCreateHandle, 3-9
IcCreateHwnd, 3-10
IcCreateSession, 3-11, 3-101
IcDefaultErrorProc, 3-12
IcDeleteLibraryConfig, 3-14
IcDeregisterAccessory, 3-16
IcDestroyHandle, 3-17
IcDestroyHwnd, 3-18
IcDestroySession, 3-19
IcDialogConfig, 3-20, 3-73
IcExitOk, 3-21, 5-56
IcFreeBuffer, 3-22
IcGetBufferSize, 3-23
IcGetChannelID, 3-24
IcGetCmdlineOption, 3-25
IcGetContext, 3-27
IcGetContextID, 3-28, 3-115
IcGetContextString, 3-29
IcGetINFOConnectDir, 3-30
IcGetLibraryDefault, 3-31
IcGetNewPath, 3-32, 4-18
IcGetNextEvent, 3-11, 3-34, 5-37
IcGetPathID, 3-35
IcGetPathNames, 3-36
IcGetServiceName, 3-42
IcGetSessionID, 3-43
IcGetSessionInfo, 3-44
IcGetString, 3-45
IcHandleOffset, 3-46
IcHLCNTS errors, C-52
IcInitIcs, 3-47
IcIsDebug, 3-48
IcLcl, 3-49, 4-17
IcLCW errors, C-56
IcLibCloseChannel, 3-50

Index

Index–6 4173 5390–000

IcLibCloseSession, 3-51
IcLibEvent, 3-52
IcLibGetSessionInfo, 3-54
IcLibGetString, 3-55
IcLibIdentifySession, 3-57, 5-33
IcLibInstall, 3-58
IcLibLcl, 3-60
IcLibOpenChannel, 3-62
IcLibOpenSession, 3-57, 3-65
IcLibPrintConfig, 3-68, 5-32
IcLibRcv, 3-70
IcLibSetResult, 3-71
IcLibTerminate, 3-72
IcLibUpdateConfig, 3-73, 5-6
IcLibVerifyConfig, 3-76, 5-75
IcLibXmt, 3-78
IcLocal errors, C-57
IcLockBuffer, 3-79
IcMgrEilEvent, 3-81
IcMgrGetSessionInfo, 3-82
IcMgrLcl, 3-60, 3-83, 4-24
IcMgrRcv, 3-84, 4-24
IcMgrSendEvent, 3-52, 3-85, 4-24
IcMgrSetResult, 3-87, 4-24
IcMgrTraceBuffer, 3-88
IcMgrTraceResult, 3-90
IcMgrXmt, 3-92, 4-24
IcMon errors, C-58
IcNBIOS errors, C-60
IcNextEvent, 3-93, 3-111, 5-37
IcNotifyConfig, 3-95
IcOpenAccessory, 3-97
IcOpenSession, 3-100, 3-114
IcRcv, 3-104
IcReadBuffer, 3-106
IcReadLibraryConfig, 3-107
IcReAllocBuffer, 3-109
IcRegisterAccessory, 3-110, 3-127
IcRegisterCallback, 3-11, 3-19, 3-111
IcRegisterMsgSession, 3-100, 3-113,

4-1, 4-16
IcReleaseContextID, 3-2, 3-28, 3-115
IcRunAccessory, 3-99, 3-116
IcRunHelp3, 3-118
IcRunLibHelp, 3-120
ICS errors, C-2
IcSelectPath, 3-121
IcSetError, 3-123
IcSetServerInfo, 3-11, 3-124
IcSetSessionError, 3-55, 3-125

IcSetStatus, 3-127, 4-27
ICSTD_ACTIVECHANNEL, 5-81
ICSTD_ACTIVEPATH, 5-81
ICSTD_ACTIVEPATHCHANNEL, 5-82
ICSTD_CHANNEL, 5-82
ICSTD_PATH, 5-82
ICSTD_PATHCHANNEL, 5-83
IcTCP errors, C-65
IcTELNET errors, C-66
IcTrace errors, C-68
IcTTY errors, C-69
IcUnlockBuffer, 3-128
IcWriteBuffer, 3-129
IcWriteLibraryConfig, 3-131
IcXmt, 3-133
IcXNS errors, C-75
ICXVTCONFIG, 5-83
ICXVTWIN, 5-83
INFOConnect Development Kit, 1-1
interprocess interface library, 5-8

K

keys
IC_FF_ALTERNATE_KEY, 5-20
IC_FF_LINK_KEY, 5-20
IC_FF_LINK_KEY_CHANNEL,

5-20
IC_FF_LINK_KEY_PATH, 5-21
IC_FF_PRIMARY_KEY, 5-21
referencing, 5-26
standard accessory, A-1
standard external interface library,

A-3
standard service library, A-2

Index

4173 5390–000 Index–7

L
library

application interface, 5-8
external interface, 5-8
hook, 5-8
interprocess interface, 5-8
quick configuration, 5-9
service, 5-9
stacking interface, 5-9
statuses from, B-7
statuses to, B-2

library API
entry points provided by, 2-10
utilities for development of, 2-12

library entry points, 2-10
IcLibCloseChannel, 3-50
IcLibCloseSession, 3-51
IcLibEvent, 3-52
IcLibGetSessionInfo, 3-54
IcLibGetString, 3-55
IcLibIdentifySession, 3-57
IcLibInstall, 3-58
IcLibLcl, 3-60
IcLibOpenChannel, 3-62
IcLibOpenSession, 3-65
IcLibPrintConfig, 3-68
IcLibRcv, 3-70
IcLibSetResult, 3-71
IcLibTerminate, 3-72
IcLibUpdateConfig, 3-73
IcLibVerifyConfig, 3-76
IcLibXmt, 3-78

library utilities, (See also general
utilities)

IcAddRefContextID, 3-2
IcDeleteLibraryConfig, 3-14
IcDialogConfig, 3-20
IcGetChannelID, 3-24
IcGetContextID, 3-28
IcGetLibraryDefault, 3-31
IcIsDebug, 3-48
IcMgrEilEvent, 3-81
IcMgrGetSessionInfo, 3-82
IcMgrLcl, 3-83
IcMgrRcv, 3-84
IcMgrSendEvent, 3-85
IcMgrSetResult, 3-87
IcMgrXmt, 3-92
IcNotifyConfig, 3-95

IcReadLibraryConfig, 3-107
IcReleaseContextID, 3-115
IcRunLibHelp, 3-120
IcSetSessionError, 3-125
IcWriteLibraryConfig, 3-131

LPHIC_CHANNEL, 5-84
LPHIC_SESSION, 5-84
LPIC_RESULT_CONTEXT, 5-84
LPIC_SINFO, 5-84
LPIC_STATUSBUF, 5-85
LPIC_UPGRADE_INFO, 5-85
LPIC_VER_INFO, 5-85

M

memory management API
ic_buf_alloc, 3-136
ic_buf_free, 3-137
ic_buf_lock, 3-138
ic_buf_realloc, 3-139
ic_buf_unlock, 3-140
ic_galloc, 3-147
ic_gfree, 3-158
ic_glock, 3-159
ic_grealloc, 3-160
ic_gunlock, 3-161
IcAllocBuffer, 3-3
IcFreeBuffer, 3-22
IcGetBufferSize, 3-23
IcLockBuffer, 3-79
IcReAllocBuffer, 3-109
IcUnlockBuffer, 3-128
Windows, 2-6
XVT/Win, 2-6

N

NOREF, 3-135
NULL_HIC_CHANNEL, 5-86
NULL_HIC_CONFIG, 5-86
NULL_HIC_SESSION, 5-86
NULL_HIC_STATUSBUF, 5-86
NULL_IC_BUFHND, 5-87
NULL_IC_MEMHND, 5-87

Index

Index–8 4173 5390–000

O
OpenID, 5-74

P

PATHID, 5-87

Q

quick configuration library, 5-9

R

record
information, 5-43

results, API for
checking severity, 3-7
creating, 3-80
retrieving parts, 3-37, 3-38, 3-39,

3-40, 3-41

S

service library, 5-9
standard IDs (keys), A-2

session information, 5-50
session management API

ic_change_handle, 3-141
ic_close_session, 3-142
ic_exit_ok, 3-146
ic_get_path_id, 3-153
ic_get_session_id, 3-155
ic_get_session_info, 3-156
ic_init_ics, 3-162
ic_lcl, 3-163
ic_open_accessory, 3-164
ic_open_session, 3-167
ic_rcv, 3-170
ic_register_msg_session, 3-172
ic_set_status, 3-177
ic_xmt, 3-178
IcChangeHandle, 3-4
IcCloseSession, 3-8
IcExitOk, 3-21
IcGetPathID, 3-35

IcGetSessionID, 3-43
IcGetSessionInfo, 3-44
IcInitIcs, 3-47
IcLcl, 3-49
IcOpenAccessory, 3-97
IcOpenSession, 3-100
IcRcv, 3-104
IcRegisterMsgSession, 3-113
IcSetStatus, 3-127
IcXmt, 3-133

standard configurator results
by value

severe
(Value 100), C-36
(Value 101), C-45
(Value 102), C-45
(Value 103), C-38
(Value 104), C-39
(Value 105), C-37
(Value 106), C-37
(Value 107), C-41
(Value 108), C-39
(Value 109), C-38
(Value 110), C-41
(Value 111), C-38
(Value 112), C-40
(Value 113), C-34
(Value 114), C-40
(Value 115), C-42
(Value 116), C-40
(Value 117), C-47
(Value 118), C-47
(Value 119), C-46
(Value 120), C-47
(Value 121), C-46
(Value 122), C-46
(Value 123), C-48
(Value 124), C-48
(Value 125), C-45
(Value 126), C-42
(Value 127), C-36
(Value 134), C-34
(Value 135), C-42
(Value 136), C-43
(Value 137), C-44
(Value 138), C-44
(Value 139), C-43
(Value 140), C-35
(Value 143), C-35
(Value 160), C-37

Index

4173 5390–000 Index–9

(Value 161), C-39
(Value 162), C-41, C-44

warning
(Value 128), C-43
(Value 129), C-47
(Value 130), C-42
(Value 131), C-36
(Value 132), C-36
(Value 133), C-35
(Value 141), C-34
(Value 142), C-46

standard context
configuration accessory, 5-45
database utility, 5-45
ICS Manager, 5-46
utilities, 5-45

standard ICS results
by value

informational
(Value 0), C-33
(Value 320), C-33
(Value 2000), C-10
(Value 2001), C-20
(Value 2002), C-29
(Value 2003), C-3
(Value 2004), C-3
(Value 2005), C-33
(Value 2006), C-32
(Value 2007), C-32
(Value 2008), C-17
(Value 2009), C-30
(Value 2010), C-30
(Value 2011), C-30
(Value 2012), C-29
(Value 2013), C-4

severe
(Value 1), C-28
(Value 2), C-24
(Value 3), C-18
(Value 4), C-8
(Value 5), C-12
(Value 6), C-32
(Value 7), C-14
(Value 8), C-13
(Value 9), C-15
(Value 10), C-24
(Value 11), C-7
(Value 12), C-7
(Value 300), C-8
(Value 301), C-10

(Value 302), C-9
(Value 304), C-23
(Value 305), C-14
(Value 306), C-15
(Value 307), C-20
(Value 308), C-21
(Value 309), C-19
(Value 500), C-12
(Value 502), C-13
(Value 503), C-11
(Value 504), C-22
(Value 505), C-23
(Value 506), C-31
(Value 507), C-12
(Value 508), C-16
(Value 509), C-7
(Value 510), C-22
(Value 600), C-17
(Value 601), C-23
(Value 602), C-23
(Value 603), C-21
(Value 604), C-31
(Value 605), C-16
(Value 607), C-17
(Value 608), C-19
(Value 609), C-16
(Value 610), C-20
(Value 611), C-10
(Value 612), C-11
(Value 613), C-31
(Value 614), C-21
(Value 615), C-15
(Value 700), C-6
(Value 701), C-4
(Value 702), C-4
(Value 703), C-5
(Value 704), C-5
(Value 705), C-5
(Value 706), C-6
(Value 800), C-7
(Value 801), C-6
(Value 900), C-13
(Value 901), C-14
(Value 902), C-2
(Value 903), C-19
(Value 904), C-25
(Value 905), C-26
(Value 906), C-11
(Value 907), C-28
(Value 908), C-22

Index

Index–10 4173 5390–000

(Value 1000), C-29
(Value 1001), C-25

terminate
(Value 0), C-27
(Value 1), C-9
(Value 102), C-16
(Value 103), C-25
(Value 104), C-26
(Value 105), C-27
(Value 106), C-28

warning
(Value 303), C-18

statuses
DosLink-specific, B-16
from accessory to accessory, B-10
from accessory to library, B-2
from ICS to accessory, B-12
from library to accessory, B-7
UTS-specific, B-14

supplier-specific (branded) component
numbers, A-4

T

table, configuration
flags, 5-66
IC_TABLETYPE, 5-68

template configuration, 5-69
transaction monitoring support, 5-65

U

utilities
for library development, 2-12
general, 2-7
Windows, 2-8
XVT/Win, 2-9

UTS-specific statuses, B-14

V

VER_FILEDESCRIPTION_STR, 5-88
VER_FILESUBTYPE, 5-89
VER_FILETYPE, 5-89
VER_INTERNALNAME_STR, 5-90

W

window state options, 3-99, 3-117,
3-165, 3-175

Windows API
accessory API, 2-2
DosLink API, 2-5
general utilities, 2-8
library API, 2-10
memory management API, 2-6

Windows messages
"IC_Error", 4-15
"IC_LclResult", 4-17
"IC_NewPath", 4-18
"IC_RcvDone", 4-20
"IC_RcvError", 4-21
"IC_SessionClosed", 4-23
"IC_SessionEstablished", 4-24
"IC_Status", 4-26
"IC_StatusResult", 4-27
"IC_Timer", 4-28
"IC_XmtDone", 4-29
"IC_XmtError", 4-30
IC_ERROR, 4-15
IC_LASTEVENT, 4-16
IC_LCLRESULT, 4-17
IC_NEWPATH, 4-18
IC_NULLEVENT, 4-19
IC_RCVDONE, 4-20
IC_RCVERROR, 4-21
IC_SENDSTATUS, 4-22
IC_SESSIONCLOSED, 4-23
IC_SESSIONESTABLISHED, 4-24
IC_STATUS, 4-26
IC_STATUSRESULT, 4-27
IC_TIMER, 4-28
IC_XMTDONE, 4-29
IC_XMTERROR, 4-30

Index

4173 5390–000 Index–11

X
XVT

ICXVTCONFIG, 5-83
ICXVTWIN, 5-83

XVT events
E_IC_ERROR, 4-3
E_IC_LCL_RESULT, 4-4
E_IC_NEWPATH, 4-5
E_IC_NULLEVENT, 4-6
E_IC_RCV_DONE, 4-7
E_IC_RCV_ERROR, 4-8
E_IC_SESSION_CLOSE, 4-9
E_IC_SESSION_EST, 4-10
E_IC_STATUS, 4-11
E_IC_STATUS_RESULT, 4-12
E_IC_XMT_DONE, 4-13
E_IC_XMT_ERROR, 4-14

XVT/Win API
accessory API, 2-3
general utilities, 2-9
memory management API, 2-6

	Contents
	About This Manual
	Purpose
	Scope
	Audience
	Prerequisites
	How to Use This Guide
	Organization
	Related Product Information
	Notational Conventions
	Naming Conventions

	Section 1: Introduction
	ICS Accessory API
	ICS Library API

	Section 2: Functions By Category
	ICS Accessory API
	ICS DosLink Client/Server Applications
	ICS Memory Management API
	General Utilities
	ICS Library API

	Section 3: INFOConnect API
	IcAddRefContextID
	IcAllocBuffer
	IcChangeHandle
	IC_CHECK_DATAFLAGS
	IC_CHECK_RESULT_SEVERE
	IcCloseSession
	IcCreateHandle
	IcCreateHwnd
	IcCreateSession
	IcDefaultErrorProc
	IcDeleteLibraryConfig
	IcDeregisterAccessory
	IcDestroyHandle
	IcDestroyHwnd
	IcDestroySession
	IcDialogConfig
	IcExitOk
	IcFreeBuffer
	IcGetBufferSize
	IcGetChannelID
	IcGetCmdlineOption
	IcGetContext
	IcGetContextID
	IcGetContextString
	IcGetINFOConnectDir
	IcGetLibraryDefault
	IcGetNewPath
	IcGetNextEvent
	IcGetPathID
	IcGetPathNames
	IC_GET_RESULT_CONTEXT
	IC_GET_RESULT_SUBTYPE
	IC_GET_RESULT_SUBVALUE
	IC_GET_RESULT_TYPE
	IC_GET_RESULT_VALUE
	IcGetServiceName
	IcGetSessionID
	IcGetSessionInfo
	IcGetString
	IcHandleOffset
	IcInitIcs
	IcIsDebug
	IcLcl
	IcLibCloseChannel
	IcLibCloseSession
	IcLibEvent
	IcLibGetSessionInfo
	IcLibGetString
	IcLibIdentifySession
	IcLibInstall
	IcLibLcl
	IcLibOpenChannel
	IcLibOpenSession
	IcLibPrintConfig
	IcLibRcv
	IcLibSetResult
	IcLibTerminate
	IcLibUpdateConfig
	IcLibVerifyConfig
	IcLibXmt
	IcLockBuffer
	IC_MAKE_RESULT
	IcMgrEilEvent
	IcMgrGetSessionInfo
	IcMgrLcl
	IcMgrRcv
	IcMgrSendEvent
	IcMgrSetResult
	IcMgrTraceBuffer
	IcMgrTraceResult
	IcMgrXmt
	IcNextEvent
	IcNotifyConfig
	IcOpenAccessory
	IcOpenSession
	IcRcv
	IcReadBuffer
	IcReadLibraryConfig
	IcReAllocBuffer
	IcRegisterAccessory
	IcRegisterCallback
	IcRegisterMsgSession
	IcReleaseContextID
	IcRunAccessory
	IcRunHelp3
	IcRunLibHelp
	IcSelectPath
	IcSetError
	IcSetServerInfo
	IcSetSessionError
	IcSetStatus
	IcUnlockBuffer
	IcWriteBuffer
	IcWriteLibraryConfig
	IcXmt
	NOREF
	ic_buf_alloc
	ic_buf_free
	ic_buf_lock
	ic_buf_realloc
	ic_buf_unlock
	ic_change_handle
	ic_close_session
	ic_default_error_proc
	ic_deregister_accessory
	ic_exit_ok
	ic_galloc
	ic_get_context
	ic_get_context_string
	ic_get_infoconnect_dir
	ic_get_new_path
	ic_get_path_id
	ic_get_path_names
	ic_get_session_id
	ic_get_session_info
	ic_get_string
	ic_gfree
	ic_glock
	ic_grealloc
	ic_gunlock
	ic_init_ics
	ic_lcl
	ic_open_accessory
	ic_open_session
	ic_rcv
	ic_register_accessory
	ic_register_msg_session
	ic_run_accessory
	ic_set_error
	ic_set_status
	ic_xmt

	Section 4: ICS Messages/Events
	E_IC_ERROR
	E_IC_LCL_RESULT
	E_IC_NEWPATH
	E_IC_NULLEVENT
	E_IC_RCV_DONE
	E_IC_RCV_ERROR
	E_IC_SESSION_CLOSE
	E_IC_SESSION_EST
	E_IC_STATUS
	E_IC_STATUS_RESULT
	E_IC_XMT_DONE
	E_IC_XMT_ERROR
	IC_ERROR / "IC_Error"
	IC_LASTEVENT
	IC_LCLRESULT / "IC_LclResult"
	IC_NEWPATH / "IC_NewPath"
	IC_NULLEVENT
	IC_RCVDONE / "IC_RcvDone"
	IC_RCVERROR / "IC_RcvError"
	IC_SENDSTATUS
	IC_SESSIONCLOSED / "IC_SessionClosed"
	IC_SESSIONESTABLISHED /
	IC_STATUS / "IC_Status"
	IC_STATUSRESULT / "IC_StatusResult"
	IC_TIMER / "IC_Timer"
	IC_XMTDONE / "IC_XmtDone"
	IC_XMTERROR / "IC_XmtError"

	Section 5: ICS Data Structures/Types
	CHANNELID
	EVENT
	HIC_CHANNEL
	HIC_CONFIG
	HIC_SESSION
	HIC_STATUSBUF
	IC_BASEREVISION
	IC_BASEVERSION
	IC_BUFHND
	IC_BUILD_REVISION
	IC_CALLBACK
	IC_COMMAND
	IC_COMPONENT
	IC_COMPONENT_TYPE
	IC_DEBUG
	IC_DICT_FIELD
	IC_DICT_NODE
	IC_DICT_TABLE
	IC_DIRECTORYTYPES
	IC_EMU_LEVEL
	IC_ERROR_INFO
	IC_ERROR_MASK
	IC_ERROR_SEVERE
	IC_ERROR_TERMINATE
	IC_ERROR_WARNING
	IC_FIELD_FLAGS
	IC_FIELDTYPE
	IC_HEADER_SIZE
	IC_HEADER_3_0
	IC_KEY_SERIALNUM
	IC_LCL_FLAGS
	IC_LIBRARY_FLAGS
	IC_MAXACCESSORYIDLEN
	IC_MAXACCESSORYIDSIZE
	IC_MAXCHANNELIDLEN
	IC_MAXCHANNELIDSIZE
	IC_MAXCONNECTEDPATHIDLEN
	IC_MAXDESCRIPTIONSIZE
	IC_MAXERRORINSERT
	IC_MAXERRORSTRING
	IC_MAXFILENAMESIZE
	IC_MAXIDSIZE
	IC_MAXLIBRARYIDLEN
	IC_MAXLIBRARYIDSIZE
	IC_MAXPACKAGEIDSIZE
	IC_MAXPATHIDLEN
	IC_MAXPATHIDSIZE
	IC_MAXPRINTSTRING
	IC_MAXSESSIONIDLEN
	IC_MAXSESSIONIDSIZE
	IC_MAXSESSIONIDSUFFIX
	IC_MAXSTRINGLENGTH
	IC_MAXTEMPLATEIDLEN
	IC_MAXTEMPLATEIDSIZE
	IC_MAXVENDORNAMELEN
	IC_MAXVENDORNAMESIZE
	IC_MAXWSIDSIZE
	IC_MEMHND
	IC_MINOR_VERSION
	IC_MSG_CONFIG
	IC_NEXTEVENT_FLAGS
	IC_OK
	IC_OPEN_OPTIONS
	IC_PACKAGE
	IC_PATH_FLAGS
	IC_PRINT_SUMMARY
	IC_RC_NODE
	IC_RECORD_INFO
	IC_RECORD_SIZE
	IC_RESULT
	IC_RESULT_CONTEXT_CFG
	IC_RESULT_CONTEXT_ICDB
	IC_RESULT_CONTEXT_ICUTIL
	IC_RESULT_CONTEXT_INVALID
	IC_RESULT_CONTEXT_STD
	IC_RESULT_SUBTYPE
	IC_RESULT_SUBVALUE
	IC_REVISION_...
	IC_REVISIONNUM
	IC_SERIALNUM
	IC_SESSION_FLAGS
	IC_SINFO
	IC_STATUSBUF
	IC_STATUS_BLOCKING
	IC_STATUS_BUFFER
	IC_STATUS_COMMMGR
	IC_STATUS_CONNECT
	IC_STATUS_CONTROL
	IC_STATUS_DATAFLAGS
	IC_STATUS_FKEY
	IC_STATUS_LINESTATE
	IC_STATUS_REACTIVATE
	IC_STATUS_TRANS
	IC_STATUS_UTS
	IC_TABLE_FLAGS
	IC_TABLETYPE
	IC_TemplateBegin
	IC_TemplateChannel
	IC_TemplateConfig
	IC_TemplateConfigTable
	IC_TemplateDescription
	IC_TemplateEnd
	IC_TemplateFlags
	IC_TemplateInit
	IC_TemplateLibrary
	IC_TemplateOpenID
	IC_TemplateTerm
	IC_UPGRADE_INFO
	IC_VER
	IC_VER_INFO
	IC_VERIFY
	IC_VERIFY_OK
	IC_VERSION_FILE
	IC_VERSION_PRODUCT
	IC_VERSION_STRING
	IC_VERSION_...
	ICSTD_ACTIVECHANNEL
	ICSTD_ACTIVEPATH
	ICSTD_ACTIVEPATHCHANNEL
	ICSTD_CHANNEL
	ICSTD_PATH
	ICSTD_PATHCHANNEL
	ICXVTCONFIG
	ICXVTWIN
	LPHIC_CHANNEL
	LPHIC_SESSION
	LPIC_RESULT_CONTEXT
	LPIC_SINFO
	LPIC_STATUSBUF
	LPIC_UPGRADE_INFO
	LPIC_VER_INFO
	NULL_HIC_CHANNEL
	NULL_HIC_CONFIG
	NULL_HIC_SESSION
	NULL_HIC_STATUSBUF
	NULL_IC_BUFHND
	NULL_IC_MEMHND
	PATHID
	VER_FILEDESCRIPTION_STR
	VER_FILESUBTYPE
	VER_FILETYPE
	VER_INTERNALNAME_STR

	Section 6: ICS Accessory Definition
	Appendix A: Standard IDs (Keys) & Component
	Accessory IDs
	Service Library IDs
	External Interface Library IDs
	Component Numbers

	Appendix B: Status Types and Statuses
	Statuses Sent from Accessory to Library
	Statuses Sent from Library to Accessory
	Statuses Sent from Accessory to Accessory
	Statuses Sent from ICS to Accessory
	UTS-Specific Statuses
	DosLink-Specific Statuses
	Library Support for 1.11 Applications

	Appendix C: Errors and Results
	INFOConnect Connectivity Services
	IcACOMS
	IcHLCNTS
	IcLCW
	IcLocal
	IcMon
	IcNBIOS
	IcTCP
	IcTELNET
	IcTrace
	IcTTY
	IcXNS

	Glossary
	Index

